UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries
Fred B. Schneider

Springer Science+Business Media, LLC

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Brooks, C Programming: The Essentials for Engineers and Scientists
Dandamudi, Introduction to Assembly Language Programming
Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition
Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and Systems

Oliver Grillmeyer

Exploring Computer
Science with Scheme

Oliver Grillmeyer

Department of Computer Science
University of California at Berkeley
Berkeley, CA 94720

USA

Series Editors

David Gries

Fred B. Schneider

Department of Computer Science
Cornell University

Upson Hall

Ithaca, NY 14853-7501

USA

Microsoft Windows, Windows 3.1, and Windows 95 are registered trademarks of Microsoft
Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

Netscape and Netscape Navigator are registered trademarks of Netscape Communications
Corporation.

PowerPC is a registered trademark of International Business Machines Corporation.

Intel Pentium is a registered trademark of Intel Corporation.

Library of Congress Cataloging-in-Publication Data
Grillmeyer, Oliver.
Exploring computer science with Scheme / Oliver Grillmeyer
p. cm.—(Undergraduate texts in computer science)
Includes index.

ISBN 978-1-4419-2855-9 ISBN 978-1-4757-2937-5 (eBook)
DOI 10.1007/978-1-4757-2937-5
1. Computer science. I Title. II. Series.

QA76.G723 1997

004—dc21 97-24294

Printed on acid-free paper.

© 1998 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc in 1998.
Softcover reprint of the hardcover 1st edition 1998

All rights reserved. This work may not be translated or copied in whole or in part without the written permis-
sion of the publisher Springer Science+Business Media, LLC, ex-

cept for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of in-
formation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar method-
ology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are
not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Terry Kornak; manufacturing supervised by Joe Quatela.
Photocomposed copy prepared by the author in TROFF.

987654

To my parents, Hans and Maria,
and my wife, Myriam.

PREFACE

1 Computer Science

Most introductory computer science textbooks teach the reader how to write pro-
grams in a particular programming language. The student may get the impres-
sion that there isn’t much more to computer science than just learning different
programming languages. Hence, the more languages you know, the more capa-
ble you are of solving a greater variety of problems. A student may think that
with a number of programming languages under her belt, she can solve most any
problem.

As most computer scientists would agree, there is a lot more to the field than
just learning different languages—just as architecture involves a lot more than
learning how to draw different straight lines and shapes. One of the goals of this
book is to present the reader with an understanding of what computer science
really is. This is done by presenting the subfields into which computer science is
broken, giving explanations and sample programs for each.

It is still important to do some programming to get a deeper understanding of
computer science. There are books that discuss computer science and give excel-
lent overviews of the field, but do not involve any programming. This approach
quite often leaves the reader wondering how the computer actually does all the
powerful tasks that it can do. Such books give an idea of what computers are
used for and what the areas of study under computer science are, but not how
the computer performs these tasks.

This book will mix theory with applications. The reader will learn the "sci-
ence" of computer science and then see actual applications thereof. This will help
demystify the theories and ideas presented.

It's more than just
programming

viii Preface

Advantages of
Scheme

Imperative versus
functional
programming

Developing problem
solving skills

2 Language Used

Scheme, a dialect of Lisp, will be used. With today’s faster, more powerful, and
less expensive new machines, languages like Scheme that have typically been in
the educational arena in schools of higher education are entering the home user’s
world. Using Scheme, the programmer can solve many problems much easier
and with much less writing and effort than with the more conventional
languages used in introductory texts, such as Pascal, BASIC, C, C++, and Java.

The family of LISP languages are sometimes criticized for use as introductory
programming languages because they are not used as widely by programmers in
the workplace as languages like Pascal, C, or C++. However, it is important to
remember that the purpose of an introductory computer science text should be to
teach computer science and not just a particular programming language. It is
easier to learn programming concepts using Scheme than with these other more
popular languages. This is due to the overhead these languages impose on the
learner. Scheme is easy to learn, so more time can be spent on programming and
computer science concepts than on language idiosyncrasies. Programming tech-
niques and concepts transfer from one language to another, so after learning
Scheme students can learn Pascal or C relatively quickly.

3 Functional Programming

Typically, students learn to program using an imperative approach. This para-
digm is used with languages such as FORTRAN, Pascal, C, and BASIC. The
imperative approach involves programming by focusing on the sequences of
steps that are necessary to perform a task. Such programs tend to consist of inter-
dependent and highly interconnected pieces.

This book uses the functional approach to programming. The functional
approach concentrates on the creation of simple functions that are applied to
values to obtain desired results. These functions are composed (combined) to
achieve the desired programming goal. Such simple functions are easily tested
individually. This greatly helps in producing programs that work right the first
time.

One is not limited to imperative programming when using Pascal-like
languages, but these languages lend themselves to such techniques. Similarly,
one can use imperative programming techniques in Scheme, but the language is
better suited to functional programming.

4 Problem Solving

A major goal of this book is to teach fundamental problem-solving skills. These
skills can be applied to any problem-solving task using any programming
language. Many new students learn how to program through analogy without
ever getting a deep understanding of the concepts. Such students perform very
poorly when given new types of problems that cannot be solved using the tem-
plates they have been religiously following. Like memorizing recipes in a

Pedagogical Techniques ix

cookbook, if you can make chocolate chip cookies you can make raisin cookies,
but not cheesecake unless you know more of the concepts of cooking.

This book illustrates techniques to aid in the writing of programs. Such tech-
niques include abstracting the problem into the domain of Scheme, creating
pseudo code as an intermediate solution, using top-down and bottom-up design,
building procedural and data abstractions, developing defensive, safe-coding
skills, and writing testable, modular programs. In addition, heuristics are given
that help determine good test cases to test your code.

5 Pedagogical Techniques

Throughout the book I have tried to present material in a clear, concise manner,
using numerous Scheme examples. Common mistakes that students make as
they are learning programming are presented in boxes like this:

Mistakes to Avoid
Remember that rest returns a list with all but the first element. A com-
mon mistake is to think that

(rest ’'(a (b)))

returns (b) instead of the true value returned: ((b)).

Other boxes are used to point out important issues that deserve to be brought
to the reader’s attention. Margin notes are used throughout the text as a reference
tool to help the reader find material in the text and to highlight the important
issues presented.

Most programming examples are presented in a case study fashion in which
the thought process, design decisions, false starts, and alternative programming
choices are presented. This gives the reader a much better understanding of what
is involved in programming and helps to make normally tacit programming
skills explicit such that the reader can more easily learn them.

Each chapter has numerous exercises to help readers test their understanding
of the material. All chapters end with a summary of the entire chapter, which is
good for a quick reference or refresher.

Many functions are introduced to augment the built-in functions of Scheme.
Most of these functions come from Common LISP and are chosen because they
provide useful extensions to Scheme and are used in many of the subsequent
programming examples. Wherever possible, these new functions are immedi-
ately defined giving the reader a clear understanding of how they work and what
they do. Motivation for the creation of the new functions is given to avoid
presenting the functions without a context for their use. This helps readers know
when to use the functions and how they might consider extending Scheme to
meet their needs.

Aids to understanding
the text

Extensions to Scheme

Preface

6 Goals
To recap, the major goals of this text are to:

e Develop an understanding of computer science as a discipline.

e Learn computer programming using the functional programming paradigm
and Scheme as the language of choice.

e Develop problem-solving and good programming skills.

e Present the material in a way that facilitates learning.

7 Acknowledgements

First and foremost I thank Michael Clancy for his numerous invaluable sugges-
tions on this book. In addition to commenting on each version of the manuscript,
Mike provided help in everything from font selection, layout, and publisher
advice to specific examples, functions, and exercises to incorporate in the text. As
an author of many textbooks, Mike could empathize with my concerns and
difficulties. He was always present to answer a myriad of questions or just listen
to my current accomplishments or struggles.

The first ten chapters of this text were used nine terms in courses I taught at
U.C. Berkeley. In addition the text is being used in the self-paced courses at U.C.
Berkeley. Over the years I received numerous comments from students using this
text. I thank all the students who have made suggestions for improvements or
just praised the text and brought a smile to my face. Many teaching assistants
and readers who have worked with me have commented on the text. I thank
them all and give special thanks to Steve Lumetta, Glenn Von Tersch, Mike
Schiff, and Tom Boegel.

Thanks to the computer science faculty, graduate students, and support staff
at U.C. Berkeley for all the knowledge they have imparted to me over the years.
In particular I thank Robert Wahbe, Seth Teller, Paul Hilfinger, Brian Harvey, and
Lotfi Zadeh. Kevin Mullally, Fran Rizzardi, and Ruben Zelwer provided techni-
cal and formatting support.

Martin Gilchrist from Springer-Verlag was very helpful, giving me
encouragement and flexibility in the design and contents of the text. I thank
Springer-Verlag’s series editor David Gries for his careful and thorough review
of the manuscript and the extensive comments and enthusiasm he provided.
Thanks to Terry Kornak, production editor, and Chrisa Hotchkiss who proofread
the text. They both helped smooth out the rough edges. Karen Phillips was the
design supervisor who helped bring my ideas for the cover of the book into real-
ity. Thanks to Chris Dovolis for his helpful review of the text.

Special thanks to Gino Cheng and Brett DeSchepper for providing company
and laughs during all the late night trips to Cafe Milano, Triple Rock, and Flint’s,
and for providing sanity through frisbee therapy. Thanks to Brian Peterson for
listening to my concerns and all the slices of Blondies. Thanks to Jean Root, Tedi
Diaz, Liza Gabato, and Kate Capps for their constant support. Kathryn Jones pro-
vided font examples and suggestions. The layout of the text is due in large part to
the suggestions and advice of Yoshiro Soga who also keeps me abreast of all the

Acknowledgements xi

changes in the worlds of personal computers and football. Thanks to everyone in
the U.C. Berkeley Hapkido club who helped me recharge after long days of work
on the book.

My family provided support throughout the writing of the book; they were
always excited over any progress (even small) that was made. Thanks Robert,
Stephen, Maria, and Hans for the encouragement.

Thank you Myriam for bearing all the late nights I spent working on the book
and for tolerating me bringing work on our trips to India, Sri Lanka, and Mexico.
Thanks for listening to the day-to-day sagas during the book’s creation. The book
is complete. I'll cook dinner tonight.

CHAPTERS

O @ 3 &N U B W N =

O e .
Ul b W N =R O

Introduction to Computer Science

Problem Solving and Problem Abstraction

13

29

Programming the Computer

Lists: The Basic Data Structure

61

Conditionals

Repetition Through Recursion

Data Structures

Functionals

Input and Outputcueuucueucnceee.

Repetition Through Iteration

Advanced Uses of Functions

Database Management Systems

Compilers and Interpreters

Operating Systemsccceerereereaseecs

Artificial Intelligence

Soft Computing: Fuzzy Logic, Neural Networks, and Genetic

Algorithms

103
125
169
199
231
243
261
285
319
373
411

475

BRIEF CONTENTS

1

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

21
22
23
24
25
2.6
27
2.8

Introduction to Computer Science 1
What Is @ COMPULET? ...t ssssssssasssass e bsssessssssaessssens 1
A Look Inside the COMPULETouuiiiiiciiiiiiinicsinienssecssssss s sssssssssssessssens 3
Connections Between COMPULETS ..ottt sses s ssssens 4
What Is COmMPULEr SCIENCE? ...ttt sssssessasns 5
Subfields Within SOftWare ... 5
Subfields Within HArdware ... ssssssssssssssssisessenes 10
Subfields Within both Software and Hardware ..o 10
SUMIMATY oottt s b s e bbbt b s bbb b s bbb es 1
Additional Reading ...t saies 12

Problem Solving and Problem Abstraction 13
Problem SOIVING ..ottt sb s sasn 13
What Computers Can Do ...t ssssssssssssssssssssssssssnes 14
Computer LANGUAGES ..ottt sssssssss st sssssssessins 15
Problem ADSHaction ...t 15
PSEUAO COE ...ttt bbbttt sb ettt bbb sasssess 20
Using Memorized SEQUENCES ...t sesssesssssssssasssssssssssssssssssssns 22
Adding Parameters to Memorized SEqUENCESc.cocivimimincinsincininiceisiessssssessssssssecsnns 26

SUMIMATY ...ttt st ss b e ren b s e s b bbb bbb bbb e bbb bbb st 28

xvi Brief Contents

3 Programming the COMPULETucecvcvircrnecncrisenennnnsisesncnsssnsnssesnsessennansesssasans 29
3.1 The Scheme ENVIronmentccciiirniccnniniiniccceesseetsssnstssesesesessssessesssstsesessssssenens 29
3.2 Numerical FUNCHONSuoviiueirictittitcesiininescie et sessaesnesse s s ssesesssesessassasssane 31
3.3 ThE EVAIUALOT ...ttt csesste e s esrecseatecsesesssssssseseasastssscssanansases 35
34 Bottom-Up DESIGN ettt s 37
3.5 TOP-DOWN DESIZIouetnrittetttictinisscsisssssesstee s ses e sseac et esscsssssessasensssssastassessansassens 38
3.6 VATIADIES ...t e st a e s et e 40
3.7 User-Defined FUNCHONScouuiiiiiminiiiciccineessecese e e sessesestsetsesesstssssssssesessensnsenes 43
3.8 5cOpPE AN EXIENLouveeeeretns st st 48
3.9 SRAdOWING ..ecoeititcctcc sttt st st st se s st st a s b sane st s antas 49
3.10 Programming StYIe ...ttt s st ses e s asaessasttse e s astases 51
3.11 Using let to Create Local Variablesccmiieeiinieninccnciinicesenenesieesecsssesesesssesessecsenns 53
312 WIHNG SEYLES ..ottt s s s bbb nas 56
313 SUIMMATY ..ottt sas s ssss s ssas st ss s s e bbb et sha e bbb st a st asnaes 57
4 Lists: The Basic Data Structure teseesesnesssnesnsnsstassssnesassssasasansaass) |
4.1 ListS iNSCHEME ...ttt st s s s s e ene 61
4.2 Stopping Evaluation With quote ... 62
4.3 SPECIAl FOIMS ...ttt s s s asess bt st s s bbbt nns 63
4.4 Using Lists as Data SIUCHUTES ...ttt s sesessessssesesesessane 64
4.5 Taking Lists APArt ...ttt et sssssssssasansasenssans 65
4.6 Combining cars aNd CATS ...t seassseassssasansaestesens 75
4.7 Creating LiSts ...ttt s et 76
4.8 Representing and Manipulating Text with LiStsccccocieinieiiiiccrecnnencneccenrneneeniescsessenenene 82
4.9 Optional Section: QUasiqUOted LiStSc.ccveurieurecrmiiccriricriiniisirtnectrsesesee e asesesestessacsssecsens 87
4.10 Miscellaneous List FUNCHONSoc.ciuiuicecrceneensesessice e iensss st esessesessassssssesssesessassassssas 88
4.11 Representing a Database With Listsc.uuueciiiininceniicceictsce et seeesssnesenns 92
4.12 Optional Section: Internal Representations Of Listsccecveererecreerrreremserseseessesesensessenseseess 97
4.13 Optional Section: DOtted LiStseceuiiuiuicrecrireieinessiscsnieesesressesssssessssssesssssssssssssssssssessssssesses 99
4.14 SUIMIMNATY .oovrriurrcrenetististstessstesresses st e s ss st bbbt bbbt sbeta s et s s asaasstasssssenessinssies 101
5 Conditionalsccceeeeeeeeeueucecnranes [103
5.1 Control Through Conditional EXPIeSSIONScccceceeeereeeurureeerneernrreesesesssssesssssesssssssssssssssses 103
5.2 CONA EXPIESSIONSucvueinicriiciiitinisctstsssiseseststasisetsesessasasssens s ssssassssasssssesssesassssesssasaesesssnes 107
53 Testing Multiple Conditions and Negationsccccecvvurueeverrenrennrrnesensenssssssesssssssseeseseens 109
54 List and Atom PrediCatescuiiincnnenieininciciiceceeessesssssssssassessssssaessassssssssssstsesssaess 113
5.5 Optional Section: All Equality Predicates Are Not EQUalccoeeevureerereeccerreeeiennriresensesennes 115
5.6 A MuUSical OffEriNgcocviviuviuiinirniincinnriintst st st sessssss e ssss st sasenssesnss 117
5.7 Determining the Value of Poker Handscuouenivcreeurunsenennnniessissesseses s sessssssssssssscssnee 119
5.8 SUINIMATY ..ottt sssetsssessstsstssssastss s s ss e s sasasse e ses s esasnsssasasasassessssens 122

Brief Contents

xvii

6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
72
73
74
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5
9.6

10

10.1
10.2
10.3
10.4
10.5
10.6

Repetition Through Recursion 125
RECUTSION .ttt st ses st b e s s s s s pa st s s n e bbb 125
Optional Section: Global Variables and Recursion ... 138
Optional Section: Different Types of RECUISIONccoeueerierinetrennrnssristssisssseessisesssnsssseensanes 139
Using Recursion to Sequence Through Lists ..ot 142
Using Recursion to Create NeW LiSts ...ttt 148
Sequencing Through Nested Lists with car-cdr Recursionooeieeneincnnncnccecnne. 152
Nested Loops or Recursion Within RECUISIONcccovueeeeneiiniceccicicsiinns 160
SUININATY ..ottt s s s s s s s s st s R s e s s s s s st bs s bt st b st b st b 168

Data Structures 169
WHhy Data StrUuCtUIES? ...ttt ses st ssasens 169
ASSOCIAtION LISES ...uueiiiiiiiiiteiiciirctccntsss st st st s ns st sasas st seasas 172
Design for Modifiabilitycccveiueeeeniremnisnesssse et 175
SELS ettt R s AR AR R st 176
TIEES e st e s st et 181
Sample Exercise with Trees and Setscccvuirminrinenieiniieninnisnsseceesse s 190
SUMIMATY .ottt et sttt sttt st se e sn st st tae e atsansass 196

Functionals 199
Passing FUNCHONS a5 ATGUINENLScocceiinineineenisisesntsssssssesestsssssssasesesasesssssessssasessanses 199
Writing Functions that Take Functions as ATgUMENtSoceoiiimneennninnncisinenenneniians 202
Lambda EXPIESSIONScccecvurininriiseisceseiissessessssssissssssssssssssssesssssssssssssssssssssstsess ssssssssssssssees 215
Combining Results with accumulate ... 219
SUIMIMATY .ottt bt a st st st st st an s et st snbae e s s asnanasass 230

Input and Output 231
INPUL/OULPUL ..ottt st st et b s s 231
Getting YES/INO ANSWETScoeumiriuieiscrisntssisssnsss st s ssssssessssssss s sessssessssssssssssssens 235
Conditions with Multiple ACHONSccccouveerereristneieneeesets sttt seaees 235
Example: Visualizing Chaoscovrmrnincineseneitsss st sssssssssssssssssssssnes 237
Read-EVal-Print LOOPcccoeuuvuieircenetrsiinstssrssssss s ettt sesss s sssssssssssssssasesas 239
SUININATYcuiritinitiiiticiiinsassess st ssssas st s s st s s st st st et s st b st s asnesss 241
Repetition Through Iteration 243

TEETALION «.ecucueuicrerieeiceerrce st tass st s s bbb et b s bbb s e bbb b st een 243
Repeating Actions @ Number of TiMEScccuovuerinrinineneneseinnisssssss s sessessseaes 245
Repeating an Action for each Element ina Listccvcvevimeiemnninnnieccccceieienne 246
General Examples with do LOOPSccccuoumninietniteississt st saees 248
Writing Mapping Functions and Filters Using Iteration ..o 250

Nested Loops Using Iteration ...ttt sssasssns 255

xviii Brief Contents

10.7 SUMIMNQATY .oviierveririnererennaiiereennessenenssssisssissssss st ssssssssessssssssssstsssestssassssssesssasesssssssassosssassssnns 259

11 Advanced USeS Of FUNCLIONScceeecrrreccsnssecccssssssessessscsssssssssssssssssssssossssssssssess 201

11.1 Writing Functions that Take a Variable Number of Argumentscoecoveerieveiscuecieinnnnns 261
112 Functions that Return FUNCHONS ..ottt 262
11.3 Object-Oriented Programmingccoeeeiersermniniissessinsescscstnnisesincssssssssssssssstonsessssssiseens 266
114 Forcing Exits with call-with-current-continuation ..., 275
11.5 SUIMMATY oottt nssssnse st sssnss st ses s st sest st sese s sessasssssssssissnastsssisessssosssseas 281
11.6 Additional REAdINGcceueieuemieeeietceetntses ettt ettt sasesaes 282

12 Database Management SYStemScoecereeeeesesesesesaesesnssnsessssssssssasasssnssssasasasss 285

12,1 Database SYSLEIMScceucueuiuieiimerieeniissisisnssssssissssisssssssssersssesssssssssassssssssasssssssstsssssesssssessas 285
12.2 Historical BaCKGIOUNAccoeuiiieiiiiirineniettnesnisesineeessissssss e essssssesesensasssesssstssssasssssssassans 290
12.3 Implementing a Relational Database in Schemeccoeuiieeoninineinennneeciecsenenns 296
124 FULUIE TIENAS ..eveeeeeeeiireerereeiecieieessiesteseeseesasssessessesssessesessesssasssseesstesssensessssassassssaessesssnsssssasseass 314
12,5 SUMIMATY ..ooiereeeieinitetnteientnesesene s sssss s s s s ssss s s s s s ssas st sttt sessstssssnssossesssssasssnsssssnanes 315
126 Additional REadingcccveviveriricininiiiinieiiiinisscssiessssesesnsnsssssssssassessssassssssessssssssssesenes 315
12,7 COde LISHNG ...cvvviiiirrititiiiinctiinssiscinisssiessssssisssssnsssssssssssssssnsssasssnsastsssasassossssnssssasessssssnes 316

13 Compilers and INterpreterscercrneeresnsenseesessesessssssssesesssssssassessensanss 319

13.1 Compilers Versus INterpretersneneinenreeineeesssssssssssessssssssssssssssssses 319
13.2 LeXical ANALYSISccvvvererrrrerneresteinnesesisrsssne s sssss s sssessstss e s tsssesesssssssssssssssss e s ssssssenns 320
13.3 PAISING ..cerireerenerererineeninenieteteesesnsessisssessssssssssstsssssssssssssssesssssssssssssssassasesssesasesssasasesnssssssssssssses 321
134 Semantic ANALYSIS ...t sae s srsae s erenes 330
13.5 Code GENETAtiONcocuiiiiereireiitiicsiesete s ss s ss b se s s sbe s s s s b s sassas s et nss 331
13.6 Historical Background and Current TTendsccovininisinissinsiiinnsesiieniisissesesssesenes 343
13.7 Implementing a Simple Scheme Compiler in Scheme ...t 346
13.8 Extending Our COMPILETcviiiiiininnicniinisssiissssssisssassssssssssssesssssssssssesessasans 362
13.9 FUUIE TIENAS ..ouocvrtinrirctctctnitensstessssesss st b bbb as s s s b s bbb s snas s besaanes 365
13.10 SUMIMATY ..ocevvenerireriiennenineresntneseseeesssssssssssssssssesstsssssesssssssssssesssssssssesssesssssssesssesssosssssssssasesssssasas 365
13.11 Additional REAdiNgG ...ttt s s s ssesees 366
13.12 Code Listingcccvuururererrernenenerssinensesnssennns Cetre e bbb s s bR e et 366
14 Operating Systems SR £
14.1 Operating SyStemsccceuveuvirirniniiseienensesnssinesessesnenenes v st s enes 373
14.2 Historical Back8IOUNccoeuiiiiiciitneiisrninesissessssesssessssssssssssssssssessssesssssssssessssessssssnss 374
14.3 Resource Allocation ettt RS R RR e bR ae s shshe R b e bR sh b s s R ettt 376
144 Process and Memory Managementocieiueiseineesesessessessessesssssissssssssssssssesssssssssssssssns 379
14.5 File Systemsccouvuverircirinrrinncncnnees st R s R sh bR eR e bR e sh e b nsesRenen 381
14.6 Utilitiesccocovuveveriivcrinenncnns seeretueet ettt st e bR e e e bR en st se Rt 382

14.7 Types of Operating SYStEMScc.vvuiierrerrinriciniensisensesssssssssssssssssssssssssssissssssssassssenss 383

Brief Contents

Xix

14.8 How a Scheduler WOTKS ...ttt st sssnssssens 384
149 Implementing a Scheduler in Scheme ... s 385
14.10 FUtUTe TIENAScuiirrririririscsisetse st ssssas bbb st s s 401
14.11 SUMMATY oot b bbbt s s b e s e s asas st nbmenna 403
14.12 Additional REading ...ttt s 404
14.13 COde LISHNG ..c.covviriiiriirtiiiisiinniisssiisinsesistseesesessisssssssessassesssssssssssssmssasssssssssassssssssasassssssas 405
15 Artificial Intelligence . 411
15.1 Artificial INtellIeNCe ...ttt 411
15.2 Historical BackgIOUNA ...t s sn s s eos 412
15.3 Common ProblemS ...ttt sssssss s sssesesssssessssssssssssssssssssses 416
15.4 Problem Solvers and PIanners ...ttt sssssssssssssssnassss 435
15.5 EXPErt SYStEIMSccurvriviririirierctnereteiescs sttt et ten et sttt s asn s ss s seaness 436
15.6 Implementing an Expert System in Scheme ... 438
15.7 Natural Language Processingccovemieiieieeeeisinininie st ssssssssssscsesesssssssssssssssssessaseas 456
15.8 RODOLICS ..ocucuiuieniiiinscnctiiiisiniiiisssisise s ssssssssesssssssssebsssssssssssssesesssnsasssssessssssssnsasssssssasas 463
15.9 VESION .ottt esess s e s ss s s s sr s b s ap s st p s s e enat s 464
15.10 Is Artificial Intelligence PoSSible?ccouiirieiiiiresreecetnesntse sttt 466
15.1T SUININQATY oottt ssssssssss e sessse s s s s ssssssssssssassesssssatasassnsasatasanssessnssssasans 469
15.12 Additional REAdINGcoeveimiermninciniiiiniisireseneniseetssenesnseesesessesssssssesesesssssassssssssssassssass 470
15.13 COde LiSHINE ...ccouvuiriririirrireesstrtnssiisisiesiess e sesessns s ssssssnsssssssssssssssssasssassesasssssssssatasssasasssssssss 472

16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic

AlOorithmseeiveneinnecnennnnnerencnrissasnes 475
16.1 SOft COMPULINGcocueiiireritcictitcictcic sttt s s ettt s st st s s s st e s st s 475
16.2 FUZZY LOGIC vttt en ettt st s b sttt sn s sesnass 476
16.3 NeUral NetWOTKS ...ttt eses s s sen s e s s ssnnens 496
16.4 Genetic AIGOTItNINSovviiiic s s s 518
16.5 Mixing Metaphors to Create Better Systemso.ovceureemieeiinecene 531
16.6 FULUTE TIENAS ...ttt s b s s s b s san s 533
16.7 SUININATY ettt sesese bbb bes s e bbb s bt na s ss s bttt st s e s s s s sssnssbensanas 534
16.8 Additional Readingcccocuiiiiuriiiiinitenccetcie ettt 535

16.9 Code LiSHNEcovvieiitiritiiciittciissicsinsse ettt s sa s n e s 536

CONTENTS

1 Introduction to Computer Science seeseneesestsasaesessensaesssssasasssssesasassssssnenases 1

1.1 WhatIs @ COMPULET? ...ttt bbb b e b enae 1
—definitions and introduction of a simple machine model
1.1.1 Example: Balancing your checkbook ... 2

1.2 A Look Inside the COMPULETccuuriiereirictentetseestts st se st s sssssesnssass 3
—examining the components of a computer system

1.3 Connections Between COMPULETScvueieetreieieinininsinintnee it sesss s sassenes 4
—expanded abilities from interconnected computers

1.4 What Is COMPULEr SCIENCE?c.curtvriterreticinteie sttt ss s sessasssaens 5
—a science in its own right

1.5 Subfields Within SOftWare ... bsssasns 5
—list of fields with introductory discussions
151 Operating SYStEMS ...ttt s nas 5
1.5.2 Compilers, interpreters, and programming languagesc..ccoocuveevrerrrrervsrnnscesenseenec. 6
153 Database MANAGEMENt SYSEIMSouceumeeemrremmrecrrsmsnsasesssssessssessssessseesssesssnessasssssssannecs 7
1.5.4 Artificial intelligence ..ottt 8
1.5.5 SOft COMPULNE ..ocovuveeiictctctctcictintci et as b s saeses 8
156 GIapRuCS ..ottt sttt bbb b bbb saes 9
1.5.7 EXEICISES .ucuirecuiritcriricsresesesssss s sssas s sas s sb s s st sss s setacssssassassesssssssssessns 9

1.6 Subfields Within Hardware ...t scsscsssssessssssssassnes 10
—list of three fields with introductory discussions

1.7 Subfields Within both Software and Hardwareoiinivininninnnincennecnseeccsesssienns 10
—introduction to three fields that border hardware and software
1.7.1 EXEICISES ...courerniriircsscscsssinissnnssetss et bbb e st sb s e s st s s nns 11

1.8 SUIMINATY .ottt sttt s ss s bbb s s e et s b e bos bt 11

1.9

Additional Reading ...t sssassssssns 12

xxii Contents

2
21

22

23

24

25

26

27

2.8

3.2

3.3

3.4

3.5

3.6

Problem Solving and Problem Abstraction veesnenes 13
Problem SOIVINGoueeeeeieteeee et tss s s ss st tsens sttt st sas 13
—the problem with problem solving
What Computers Can DO ...t ssss s sestsssensasonsnes 14
—the capabilities of the CPU
Computer LANGUAGEScocoveriiirrinrerenennierenaesietins e seesssssssssssssssssasssnsassssssssssassestsssssasansass 15
—the added power of computer languages
Problem ADSLIACHONcoeuiiviveiniininniiiiiiiiscisessssssnssssssessnssssssssesssssssasssssssssesenstsasassossassosasensas 15
—a new way to think of problems
241 Example: Move the yellow block up three meters ..o, 18
242 AMDIGUIHESocveeereietite ettt s e 18
PSEUAOD COMEccinimeiniiiririaniniisiimisessisesisiesssesessssstsse st sesstssssssstsssasassssassasssasasess sassssensnsossinsas 20
—a step between the problem and the solution
251 Example: Draw a two-by-two meter square around the yellow block 20
252 EXEICISES .eoucuiriucurniinininisiinnsesissnsinssiscsssesssssessssssssasssssnsssssasssssstssssussssssssssssastoseass sensasssnssios 22
Using Memorized SEQUENCESco.euuieieriereininsrssiniessistssssisetsssesssasestssssssssssusesessisssasissscssassssses 22
—organizing programs into logical units
2.6.1 Example: Write the robot’s name—BOBccooiiniriioiiiicsiecninnines 22
2.6.2 Refinement of pSeUdO COAEoummminirmniriinietnne e 23
2.6.3 EXEICISES ..cocvirrurrerrireiririniisnsesrisesesssssesesssssssassssessssssssssssssssssssasssssasssstssssssstssssssassssssssss 26
Adding Parameters to Memorized SEqUENCESccceviieinenieniniieniniscesenisisenstsnessieeecssaens 26
—allowing variability in memorized sequences
271 EXEICISES .ecururriucritiriiniriscniseiensiensisssesesssesetssssesssssssssssssssesssesssssasessssssassssnsosasssss st ansasasssssasas 27
SUIMINATY co.ecvivirereriieinisesetenstneresessnseesssssssssssssesassssssssssasessssstssesatssssasssssesasasatossssssssssssansossssssssassoreses 28

Programming the Computer 29
The Scheme ENVITONIMENEoucvriiiniiiinriiiscininieinessenseisssssesenesssessssssssssssssssssssssssssssons 29
—parts of the Scheme environment
3.1.1 Example: Determining the price of an item with 6% tax addedccoceeuveurivcncnee 30
Numerical FUNCHONSuvioeeeeteeetetrtcisctseess s ese s s s s s s e sesasassessassonsses 31
—built-in functions that work on numbers
3.21 Common errors when calling functionsc.ccrnnminiinensieenncenesssssseesces 33
322 EXEICISES .ucvririrenrriinnriniintenestssss st st sas et s e s s e s s bbb a et e e s enents 34
3.23 Function COMPOSILIONcecuveeriertieeenitieiitieieisinnsinnas e sssesesenesesssssssssssesesesssssssssess 35
TRE EVAIUALOT ..ottt ascscsssss e esssss s sassas s e s sesssssssasanss 35
—the heart of Scheme
3.3.1 EXEICISES .ecuceiniereiiiriinistiiinisisstesstsssnssns e ssssssaesessssssssssssssesesnsnssssnesssssessassessasesssssassssssaes 36
3.3.2 Example: Compute your iNCOME taXcceuivereemiieriniiseriteiiiseesesesssssssssssssescssasssnsies 36
BOHOM-UP DESIGNecvrinirininiiectriiiserssnisisssssssse s sssssssss s sssssssssesesessssssssssassessssasssssssssies 37
—thinking about small details first
TOP-DOWN DESIGI ...oveerereririiereteretise sttt sttt es s s et ssassta et shsasases s sens 38
—going from the abstract to the concrete
351 EXEICISES ...ouuueiiuiricriiniinenisissessssssst st st ss s ssss s bsbesssass s sas s sas s s secasacses 39

ATTADILES ciiiininiiiiiiiiiiiitiieeittettetiaiieitenceteestetencestatiatsetcaceseesusecseroresesessssosssosnsosssssossecrsnsessosncasase

Contents xxiii
—a means of naming values
3.6.1 Symbol and variable NAMESccceurvrerenrerireneneree e 42
3.7 User-Defined FUNCHONS ..ottt ssiiessssessies s sasesssssessasessssssssssesses 43
—writing your own functions
3.8 Scope and EXLENt ...ttt bR 48
—where and when symbols are valid
3.9 SRAOWING ..ottt bbb bbb bbb bR bbb 49
—will the real symbol please step forward
3.10 Programming StYle ... s s snens 51
—avoiding code that will cause problems later
3101 EXEICISES ..cucuvcvevcrerinircnittiesinsessenes it sssesese s sasassssssesssnsssssssssassssssssssssssasanes 52
3.11 Using let to Create Local Variables ...t sessesssenes 53
—using let and let* within functions to save partial results and help break up computations
311 EXEICISEScuecucrirenitcninitinninisrnsesssen s sasssssss e s bbb s e nsbsb et snaseananassassets 56
312 WIHHNG SEYIES ..ottt b s s bensarenens 56
—different ways of presenting your code to enhance readability
313 SUIMIMATY ..ottt es bbb sa b a s s bbb e e s b b sbtsea s R e sate 57
4 Lists: The Basic Data Structure 61
4.1 Lists iNSCREIMNE ...ttt st e bbb s 61
~lists as collections of objects and as function calls
4.2 Stopping Evaluation with quote ... 62
—stopping the evaluator to treat things literally
4.3 SPecial FOIMS ...ttt sttt sb s sttt bbb b s bs s bane 63
—exceptions to normal evaluation
431 EXEICISES wouuueerrercreinnctctecteesensesnesinsas s sesstssa st sess st bet s sas s s s seas b s s ns s as e e sebasnenasans 63
44 Using Lists as Data Structures ... ssnssssns 64
—taking advantage of the structural possibilities of lists
441 EXEICISES .ottt ase e e asa s e b b n s s s R naes 65
4.5 TaKing LiSts APATtccccoivimiuniriericiciesnicsienecssesstsstsssssssssssssssesssesssssisssssssssasssssssssssases 65
—functions that return elements or sections of lists
4.5.1 Example: Extracting random elements from a data structurecccoceuurueurenucnnce. 72
4.5.2 EXEICISES ...cucuierrremrcienenitnisstiseeesestie st sese s sss s e e e bsasas s snasso et be e senssnenaenes 74
4.6 Combining cars aNd CAISccoieericereseesiiirissnisa s sa s st b sss st snses 75
~shorthands for these often used functional compositions
4.7 Creating LiSts ...ttt sttt st bbb es 76
—functions that create lists
4.7.1 EXEICISES ..cervurrerereetrernsiniiesctssitcsissisisse st ssss s sanese s sas s ssss s s s s s ssnsnesassestssessssassensssns 80
4.8 Representing and Manipulating Text with Listscccomoiencinnene 82
—programming example illustrating basic concepts of handling sentence structures
4.8.1 EXEICISES ettt sas s st e e s e bbb s 83
4.8.2 Computer-Generated SWeePStaKescoeeeuerreserseieresseisesniisessetnes st sssssssssssanes 84
4.8.3 EXEICISEScvueirecriieircncnecrecissct st et s e 87
4.9 Optional Section: QUasiqUOted LiSSccecuevueerrcereeirisinstesnninnssstssssssstss st seees 87

xxiv Contents

~a simple means of creating lists with evaluated and literal objects

4.9.1 EXEICISEScoovverrtererinieesesetst s ssssss st b bbb R r e 88
4.10 Miscellaneous List FUNCHONS ..ottt ssssssseaens 88
—functions that return information about lists
4.10.1 EXEICISES ...oceuiuiriiniininrcic s sttsssteease s ssss bt ses s s s sa s s s s s s ssenaens T 90
4.11 Representing a Database With Listscocuoeueueeneiieeoninineeinncec e 92
—programming example using lists to represent a complex database
4.11.1 Selecting items from the databasecccoocuvuirrecernnnieentne s 92
4.11.2 Adding elements to the databasecccvuvemeveneininentiineeetc s 93
4.11.3 EXEICISESueceerrieeeencrieriinescsctrietssen s saessssssss e seass s sstst st st s s s sss s s s e sessssstsssssnssstsnssessssnses 97
4.12 Optional Section: Internal Representations of Listsccoceeeeivenmninnnnnninincstie e 97
—a model of how lists are represented inside the computer
4.13 Optional Section: Dotted LiStsccccceuvenireinirnisrenninnniisnesssenis s sssssessssssssssnsens 99
~what you get when you cons something onto an atom
4.14 SUIMINATY ...ooerreericciee et s s ss s st b s s st e s R et s b s b s s bt s sben s st s s anenanes 101
5 Conditionals tereseassenesssresreasressaas e as et s s R Rs s se s s R e e asRs e a R sen s eRaRaReeS 103
5.1 Control Through Conditional EXpressions ... sssesenss 103
—numerical predicate functions, and the i £ special form
5.1.1 EXEICISEScvtireeetteieictceet st ssses s bbbt b s s sb s 105
5.2 CONd EXPIESSIONS ..ottt s s s s a s se b b snas s s s enans 107
—making decisions with cond
5.2.1 EXEICISES ..overiietieietnstctesc s b bbb sn s s b s 108
53 Testing Multiple Conditions and Negationscc.ccceuveuriiicinnnincnnencniccecscciessccsenns 109
—using and, or, and not to make more complex conditions
5.3.1 EXEICISES ..oouivrietienetititen sttt s s s et s s s s bbb 113
54 Listand Atom PrediCates ...t ensssssanns 113
—predicates that work with lists and atoms
541 EXEICISEScuoveurienettcsent sttt b s st s s bbb 115
5.5 Optional Section: All Equality Predicates Are Not Equalcoccovuiiviinviininnncinnincnsincnnens 115
—differences between the predicates that check for equality
56 A MUSICal OffErINGcoovveeiiieiticecr et sssesssesss s sessscsssssssasias 117
—programming example that uses musical scales and intervals
5.6.1 Computing the intervals betWeen notescoeuvivvirvicrcerinincscniniscrsssisasanses 117
5.6.2 Computing the note an interval beyond another noteccccccecvuvevererrnerincucunnnne 118
5.6.3 EXEICISES ...ecvrveriierincniinicsesiscisistsessisessssssssssssssss ssacessessssssnssesesssesenssssens sesssnessnsessonssens 119
5.7 Determining the Value of Poker Handscccocouuinciiininieincuneninineeeennineeeseeasaesenscseenssssnes 119
—programming example for the card game poker
5.7.1 EXEICISES .ucuveirriirimirencsciisensisessssss st sssssssssessssasssssse e sestsssssenssessstsssanessssssssesosns 121
5.8 SUMINATY ..ouovveirinticietiii ettt st sas s s asb st s et sss e sessars s sn b ates 122

Contents

xxv

6
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.2

Repetition Through Recursion 125
RECUTSION vttt eses st bbb bbb st et s st et 125
—the basics of writing recursive functions
6.1.1 Example: Finding a number in a list that exceeds a threshold value 125
6.1.2 Example: Investing in your best interestcc.oovurincriiniicininnenecsnnnssessssnsennens 129
6.1.3 Example: Summing digitscceeuvueuriiuririninncinireieinti s iees 131
6.1.4 General rules for writing recursive functionse.ccveeueecieeerreneessinessnsssesssesnnnns 134
6.1.5 Example: Testing if the digits in a number are in increasing ordercccccevvvuunee. 135
6.1.6 EXEICISES ..cuvrveveeereriirneeentetntess et sstsaste bbb s st s s s s e 136
Optional Section: Global Variables and Recursioncouencicinennenrisennessnnssesesssnenens 138
—how not to write recursive code
Optional Section: Different Types of ReCUISIONc.ccocureereeeerneninestiesessnssssessssesssasens 139
—tail versus embedded recursion
6.3.1 Example: FACtOTial ...ttt s s sssasas 139
6.3.2 EXEICISES ...ccoiiriririrriiircnititiicscscsnn e sssesss s sse s sssbss st ssesenesssssnesssnanssnssnsasassenasasans 142
Using Recursion to Sequence Through Listsccceeveuviiieineineinennnciesnesssssnssstsssiens 142
—solutions to various recursive list problems
64.1 Example: Adding up numbers in a listccccccoeuveieriernereinennereiienncsesereisiensesessesssenns 142
6.42 Example: Checking if a list consists entirely of numberscoeuvvevvnicververrrneennas 143
6.4.3 EXEICISES ..ccvieieiirirititiiniectisni et ses bbb s s bbb s en bbb s R e 145
Using Recursion to Create New Listscciviieiineenenennercntcsneessenes s 148
—recursive functions that cons up new lists
6.5.1 Example: A mapping function to take the square roots of numbers in a list 148
6.5.2 Example: A filter to extract positive numbers from a listccccoeereurrernrirernennnnee. 149
6.5.3 EXEICISES ...cvvrverereriirrrtitctitctiinicscitsisnsi st s s s sssssssssss st s s s s be s bss s e s st st stensassasesssens 150
Sequencing Through Nested Lists with car-cdr Recursioneereeeveernvenncinnnnnnn. 152
—complex tree recursive functions
6.6.1 Example: Counting all the atoms ina listcccoeueeermeeimnniieiecreeteeeterenas 152
6.6.2 Example: Deep reverse of @ listccevirunerrininisinnienenenninnncectesenssstessasssnessesesesnaas 154
6.6.3 EXEICISES ...ucoveerrerriteretiriicietitiinsesnesisssssssssssssssssssssesssessssnssasssssssssssssnsssasssnsnssssones 158
Nested Loops or Recursion Within ReCUrSionuiicenincnicineeerenesnsnesesssecssens 160
—implementing nested loops using multiple recursive functions
6.7.1 Example: Sum of factorials ...ttt 160
6.7.2 Example: Sequencing through a database using nested 100psccccceeuruercvrnnnee. 161
6.7.3 Example: POKer revisitedccoiiieneieinininniieneninesennssisssssnsnsssesssssassessens 164
6.7.4 EXEICISES ..cooverieiiiririrircriniinssiicersne s seesssastssssssessasssses s s s sssessssssasenssssssanssesssesssnenessans 167
SUININATY ..ovviiireireeiiiiiiicieseseiissiiissessesesssssssasssssssssssssssssesesesessssasessssssssssssesssssssssssesssssssens 168

Data Structures 169
WHhy Data SIUCHUTES?coeveveieeierieiinsiesssisesssssstssisssis s sesessssssessssssessssessesssssssssssssne 169
—adding computational power with data structures
7.1.1 Example: Breaking Secret COAesccouemimmnninernnieisesniscienssieicssssssnsssssesessessssseses 169
7.1.2 EXEICISES .covveeererririetrceuniirieesastssstsissstssssessssnsstsesssscssssasssststsssssssssssssossssssasssnsnsssssssssasans 171

AsSOCIation ListScccvvecieereeeiveivennressneraneennns teerressaesessressseeessaserbesbesersaeatteentesstesesteasaaenne 172

xxvi Contents

7.3

74

7.5

7.6

77

8.2

8.3

8.4

—creating simple pairings with association lists

721 Optional section: Association lists with dotted listscccoveereeevnnnnccniicrnnee 173
722 EXEICISESooeveircriniriretitiniitenisiisni i ssscssssss et sbsasa s ssssr s s s s s b a s s st st st s nassnebens 174
Design for Modifiabilitycoeemiieiiii e 175
—using selector and creator functions to access and modify your data structure
731 EXEICISES ..ottt bbb s e s b s et 176
SELS ..ottt R s bR s e et e bbb 176
—using lists to represent unordered information
74.1 Example: Using sets to represent locations traveled tocccoeeenenrviereenisiecnnnnnnee. 178
742 EXEICISES ..ooererererececnicncncrceecesiisisestst s sb e sssbss st s e e e s st an s sba s st s s aasnbane 180
TIEES «.veueueererereneeee ettt et sessas s b s R e b b s AR e e R SR b bR e bRt R b ns 181
—using lists to represent hierarchically ordered information
751 Depth-First SEArChcccooeniiviernerrieinsisstne st sttt st s b 183
7.5.2 Breadth-First SEArch ...ttt sass s sassans 185
7.5.3 EXEICISESurereeeecicccteesse sttt bbb s bt sasa b s st s b e s n et s e bbb na 188
Sample Exercise with Trees and Setsc..coeueuerrenrceninceniisteenstesieseseses st ssss s sessesaes 190
—programming example using trees and sets to help choose a restaurant
7.6.1 EXEICISESuceeuiririniiririitinistresesst ettt st sa e bt sttt s b e st s sas e baba e st et e e bebabesens 195
SUININQATY ..vvuvriririreretiiisiiisinsie it sesessessassse st ss et s s s be s b sa s s st sbes st st srs s s st s s esasaaststssntasasnassnanans 196
FUnctionalsceeeeneeeninennneincessssseseseseseseenenenes cenesnsaennnnes tesaressusenssacusonsonens 199
Passing FUNCHONS a5 ATGUIMENLSociveinieirrieniiesesssenisssse e sess s sssss s ssssesesssssssssssssssases 199
—functions taking functions as arguments
8.1.1 Mapping fUNCHONS ..ottt s b st 199
8.1.2 apply: A variation on the normal function applicationcccoeeeeinnreeneieinnrnnnnne. 201
Writing Functions that Take Functions as ArgUmMentscccocvueueineieernensssnessssssssisssenns 202
—extending the capabilities of Scheme by creating functions that take functions
821 —if fUNCHONS ..ottt sttt sas st bbb b enen 203
B.2.2 EXEICISESovcvereieiriirciiitce st ettt s b s s b e s e 205
8.2.3 —if-nOL fUNCHONS ..ottt ittt ssaese e b s s sanes 206
B.24 EXEICISES ..ottt et s st e s nen 208
8.25 @VEXY ANA ANY ...oueerereeeeeeeee ettt e e s e e e se st et es s e s s ae b e e e e e an e s saasnasnes 209
8.2.6 EXEICISES ...ttt et s sb b a0 211
8.2.7 Optional section: Using multiple lists with map, for-each, every, and any 211
B.2.8 EXEICISES ..ottt sttt st s s bt a b e 214
Lambda EXPIeSSIONSc.cccoeimiimiiiciieiscscscsssssss st sstssesssesasssssssssesessssssssssssssnss 215
—creating nameless functions on the fly
8.3.1 EXEICISES ..ottt bbb s bbb s e e 218
Combining Results with accumulate ... s 219
—applying binary functions to elements of a list
841 EXEICISES ..ueenreiiinirinittecetnncsss sttt bt e s sa e e e e 223
842 SOTHNG LSS ...covveieeceeccetreee ettt s st e s R 224
84.3 Example: Poker revisited, yet againc.cocoeuorunereeetetieciciee e 225

B4 EXEICISES ..oooeeeieeeeeieieteeeeieese st setessesssessesssessstesraassssesssnssessssasassssssstessssssesestess sasseesansenanss 228

Contents

Xxvii

8.5

9.2
9.3

9.4

9.5

9.6

10
10.1

10.2

10.3

10.4

10.5

10.6

10.7

SUMMATY oottt s bbb sn s 230
Input and Outputecerissnesenrisnsnsnsesesssssssssssesas 231
INPUL/OULPUL oot es s es e s e st smssr b 231
—definitions
9.1.1 Printing out additional infOrmationceceveveeveerernenneceneneenniensererseseseseeseseesensnne 231
912 INPUL e sr e 233
Getting Yes/INO ANSWETSocucvimieriiinisinsesccreseeesesssesesessess e esesesassesssesessessssesssasssessesssens 235
—writing some simple functions to get simple yes/no responses from the user
Conditions with Multiple ACHORNScccooniriivininiiniiicircce st sessssseesnens 235
—using cond with expressions producing side-effects
Example: Visualizing Chaosccovimiiiicccssisesesenssesssssesesssesessssssseses 237
—modeling a simple nonlinear equation to see chaos
9.4.1 EXEICISES .oeeeeeirreeere s s bbb bbb s 238
Read-Eval-Print LOOP ..ottt s ssssssssssssssenes 239
~the fundamental loop within Scheme’s interpreter
9.5.1 EXEICISES woovriuierietietcets ettt bbbt 240
SUIMIMATY ..ottt st srs bbb bbb s bbb bbb bes st ss st 241
Repetition Through Iteration ceeseseeeeneaessessssaeassnsssasssassssassasistaaren 243
TEETALION ..o bbb 243
—functions used to repeat actions in a nonrecursive fashion
Repeating Actions a Number of TImes ...t 245
—repetition for a fixed number of times
10.2.1 Example: Printing changing populations ... 245
Repeating an Action for each Element in a List ..o, 246
—repetition through a list
10.3.1 Example: Checking if a list consists of numbers onlyccccoecvrvieriirincirvcrcinnnnees 246
General Examples with do LOOPScccoiniriniciiininciiiiniicncnesssssssssessenes 248
—a general form of iteration
10.4.1 Example: Factorial ... seessesessees 248
10.4.2 Example: Adding up the digits ina number ... 248
Writing Mapping Functions and Filters Using Iterationcccccoociivinininicinincncrnincinincnee 250
—example functions to carry out these common actions with iteration
10.5.1 Example: A mapping function to take square roots in a listc.ccecoeeuvuvcuvireinnennen 250
10.5.2 Example: A filter to extract positive numbers from a list of numbers 251
10.5.3 EXEICISES ...uuevviiniiiictittcn s bbbt bes s 252
10.5.4 Example: Sorting a list ...t s 252
10.5.5 EXEICISES ...cueuiiiietitctestetstsns sttt s 255
Nested Loops Using Iteration ...t sessnsssinenes 255
—writing nested loops using iterative functions
10.6.1 EXEICISEScovrivriinetenittteeerctte ettt stsae s s s ss s s as s sanssesens 258
SUIMIMATY ..ottt bbb e seb bt bsa st enenes 259

xxviii Contents

11
111

11.2

113

11.4

11.5
11.6

12
12.1

12.2

12.3

12.4

12.5
12.6
12.7

Advanced Uses Of FUNCHONSccevvveveverereresnnnreesesesnnnsasananens 261
Writing Functions that Take a Variable Number of Argumentsccccccovevieernnncvennnnnnns 261
—variations on function creation and use
Functions that Return FUNCHONSccvviveriirictccttc e esssnes 262
—returning functions to create objects with local state
11.2.1 EXEICISES ettt s sass bt s n s s sesas s s s e s esarensenes 265
Object-Oriented PrOgrammingcoocecnmueimisciesninssenssnsesesisesesssssessssessssessssssssssses 266
—a brief introduction to the object programming paradigm
11.3.1 How to write in the object Styleieeeenenieie e 268
11.3.2 EXEICISESevuenenreietnctntet st ssss s sss sttt st s sttt a st st s e s nnas 274
Forcing Exits with call-with-current-continuation ... 275
—a means of prematurely exiting from continuations
11.4.1 Using call-with-current-continuation to exit from a do loopcc............ 279
11.4.2 EXEICISES ...cocoveerireccririeintresesisisisesssiniesessssssesssesesesssensssssssssssssssssssssssssssenssssensssssenes 280
SUIMINATY .evvvemitriiiiiieisiscterseie et ssse e sstssss s e ssss s s s s s st ss s st e s s e s s s s st s st st atsasnsane 281
Additional REAdINGcvvuiuiuiiniicincniciceninsis st se st s s nenaes 282

Database Management Systems 285
Database SYSTEMSccoivvrienireiiriietienietsstese e s s s s a s aan 285
—creating, maintaining, and querying large data structures
12,111 EXEICISES .uuueieiiiitiiiicicscsnt et bese s bbb b s n s 290
Historical BackBIoundmiinniniiiisinsisesssssnsissssassssssssssesssssessssenes 290
—a look back at the developments in database systems
12.2.1 First generation: Hierarchical and network database systemsccccceeucnnnee. 290
12.2.2 Second generation: Relational database systemsc.c.ccoeeeeineieinerencsinesennnnn, 296
12.2.3 Considerations database systems must addressccceeeueeierreiesersnsnesisssnennnns 296
Implementing a Relational Database in Schemecooniriiincicriceeennnee 296
—case study: designing and writing a relational database system
12.3.1 Deciding on a data SLIUCLUTEcccieeirecremiecrcririeicesiseeseesesenssstssssesssesessasssssssans 298
12.3.2 Implementing the WHERE ClauSeoooocciriiciiiciiitciccncicnictnsenenisessne s snnns 299
12.3.3 Implementing the SELECT ClaUSEcccociueirecimiinineininccnneincciinceisnsisessssensesnssesns 303
12.3.4 Implementing the FROM ClAUSE ...ttt eens 304
12.3.5 Putting it all tOGEther ...ttt nenes 308
12.3.6 SOIMNE EXLTAScvreeeecncrcrinicntsees e et b tbs b s s s nss s anans 309
12.3.7 EXEICISEScovvirrnrtrreteneciisctssess sttt se s e s b b sse e e ns st b sasnanns 312
FUUTE TIENAS .ottt st s ses s sssssese b b sa b snannes 314
—a look forward at future database systems
SUMMATY ..ottt bttt sttt e se et st abe s s s ssasse st sessessabssrassssnsses 315
Additional REAAINGc.coviiieereeiinieenererirecereresseece ettt st nes s s et ssssenesasasssesssnsnssssasrnes 315

COAE LISHNG «.eoveveevrricttitneteirecrat st ss bbb st s st sses s ssas st e b s s saes 316

Contents

xxix

13 Compilers and Interpreters 319
13.1 Compilers Versus INtEIPIetersovveecniecrnimmsiinsinisssesisssessenasessssssssssssssessssssssssesse 319
~translation versus simulation
13.2 LeXical ANALYSIScoeueureteetet ettt sas s s anens 320
—characters to symbols
13.2.1 EXEICISES .vovueereietsteeretttsssise s sn s es s bbb s b sa st es s an s sassns 320
13.2.2 Tokens and Symbol ablesceivininiricininisciniiiciisssicssisssesinessssesessessesns 321
133 PAISINE oottt s e R e bR s e ne s 321
—symbols to structure
13.3.1 TOP-DOWR PAISINGcvvrrrrrrrrenricritsiisesiinsisissnnesisessssssssssisssssssssisissssssssssssssasssssssrsssases 323
13.3.2 PredictiVe ParSing ... sesissessssssssssssssssssssssssssssssssssss 326
13.3.3 BotOM-UP PATSING ...coveitirirctiiciiistsnnnsniteninssssennnsisssesssssssessssssssssssssssssessssassssass 327
134 SemantiC ANALYSIS ... ssssse s as s s s renes 330
—structure to meaning
13.5 Code GENETALIONcucueriuimiiririrrinrcissisiescssiisiiesssas s ssssssssrssssssssassssssssssssssssssssssssasasssenss 331
—meaning translated
13.5.1 Mini SCREME ..ottt sssessas s sassas b s s bass 331
13.5.2 A simple COMPULET ...ttt sses b enens 332
13.5.3 Assembly langUAGEcccoeueuureririnreriicrcitet s enaes 333
13.5.4 Conditional expressions in assembly languagecocvvivimnnnrcininisiscsnesenans 336
13.5.5 Function definitions and calls in assembly languagecccooevvuvirivvrninerccrcnnenn. 337
13.6 Historical Background and Current Trends ... s 343
—early compilers and compiler building tools and techniques
13.6.1 Compiling the COMPIIET ..ottt s sees 344
13.7 Implementing a Simple Scheme Compiler in Schemeccccoueeeeernennneernneiersciniisrensens 346
—case study: building a code generator for a subset of Scheme
13.7.1 Generating code fOr i f eXPIeSSiONScceeceereermereresiessseeiesesesesssessessesssssessessenss 350
13.7.2 Generating code for define eXPIeSSiONScocceuveevrisiiserssrsssessssersnssesssessnansaens 354
13.7.3 Generating code for calls to user-defined functionsccceceueuvurirueevceinicncennnnns 356
13.7.4 Generating code for calls to built-in functionscceevirviceiiicriciceciicinnnens 357
13.7.5 Testing our COMPIIEToecviieieiicientetetntttte e e se s s sasness 359
13.7.6 EXEICISES ..ucureeirinrsiriinnicssiisnsne st asisssssasssissssssassssssssssssssassssssessssns 361
13.8 Extending Our COMPILET ...ttt ssse s ssssass s sasbassaes 362
—what it would take to incorporate more of Scheme in our compiler
13.8.1 Adding more data types to our COMPIlerccocoeueurrirreuiinerercicrcii e, 362
13.8.2 Adding more functions to our COMPIlErcoriiiiiirieciieciriciricicnsceecaenaes 363
13.8.3 Adding more special forms and handling scope in our compilerccceeuuun.e 363
13.8.4 Code OPHMUZAION ...ueecerceriecrnieriininsiesieisensesssessesssssssets s sssesssssssssssssssssssssssssssssssns 364
1319 FUtUTE TIENAS ..ottt sttt s bbb s asas s e s sasaes 365
—building compilers for parallel machines and for different types of languages
13.10 SUMMATY ..ottt ssss s s st se st sss s st st sase st sssssesas b e s s s st snsssssas s s nassssasees 365
13.11 Additional Reading ..ottt sttt sssssssesssssens 366
1312 COde LISHING ...oucevveerirircicninitcscsssissssises s sssss s b e sss s s sasssesssssessssessssasssens 366

xxXx Contents

14 Operating Systemscccevereesercrescncaernes ceeasasasnsasansasssntanens S 373

14.1 Operating SYStEINScocuevverersismntininiee ettt se st s b s st s as 373
—the link between human and machine

14.2 Historical Backround ...ttt sssssss s ssssss s ssesens 374
—the development and changes in operating systems

14.3 ReSoUICe AlIOCAONcccvviiinmiiiiriinisititiiicetste et esssae st sasbs bbb s nnsannaes 376
—handling all the system resources

144 Process and Memory Managementcocoveiieccneieninienntnnes et sssaens 379
—getting the best usage of the CPU and keeping the memory secure

14.5 File SYStEIMNScuiviuirciicictcice ettt et s s s b 381
—maintaining large structures of information across computers

146 UHIHES .ovcecrcniericcenercenicneticns s sscsssre st sebs bbb bbb bbb b e b e 382
—a host of specialized programs that perform a myriad of tasks

14.7 Types of Operating SYSEIMScoccevueerrermsrstssinstsessssntsess st ssssssssssssssssass 383
—from simple batch systems to distributed operating systems

14.8 How a Scheduler WOTKS ..ot sssess s ssssessssssessassssses 384
—looking at the details of process management

149 Implementinga Scheduler in SChemeccovivieereieite e 385
—case study: building two schedulers and testing different scheduling algorithms
149.1 Deciding on a data SrUCHUIEcccovuurerrerirnneciriircnit st s 386
14.9.2 Building a batch scheduler ...t e 387
14.9.3 Building a multitasking scheduler ... 391
14.9.4 EXEICISESucevmieiiiitriesiscienisisinsissetsstst st s ssssssssessssesessssssssssssstssasessatesessssssssessssssnans 400

14.10 FUture TIENASccceeermiericrinnicciiissssicss st s st sttt 401
—looking into distributed, parallel, and threaded operating systems

14.11 SUIMINATY ..vcriretinetetee sttt e b s bbb s s s bbb s b bbbt bbb b s s a s aes 403

14.12 Additional Reading ...ttt 404

14.13 COde LISHINE ...covrrircrcrirciiititntctcissctiescsssssisisssssssssssessssssssssssssssssssssssssssssssssasasassssssesons 405

15 Artificial Intelligence eeresesesanntnseasatsnsssaseaseassassasstssseasnessasestans ceesnsanesanns 411

15.1 Artificial INtElIGENCEucviuirctctct s 411
—making machines smart
15.1.1 Subfields of artificial intellIgenCecevvuvrerrreririrericireccrirreee e 412

15.2 Historical Background ...ttt ssssessssss s s ssesasassesans 412
~from great expectations to toy solutions
15.2.1 Game playing and puzzle solving programscccecvcecureseninccsnsnseesisnsenssssnsenes 414

15.3 CommON PrODIEIMSccceiriiiciiiiieninietneniiissesnenes it ssesst st s sssssesssssessssssassssssssnsases 416
—problems that exist in most fields of Al
15.3.1 SEArChINGcccoevimirriicricictietesites sttt s sa e s 416
15.3.2 Scheduling problem solved with A* search ... 422
153.3 The missionaries and cannibals problem solved with A* searchccccouuuee...... 426
15.3.4 EXEICISES ...cccorerririeeiiisiniiissisissse st sh st st e st ss s st se e s b se s et sas st ens 428
15.3.5 Knowledge representationcoevreeeeeeencniccse s 429

15.3.6 REASONINGccrrerimreruririsiintnisiistsssss sttt s s be b b s s a s sn b b sa b

Contents

xxxi

154

15.5

15.6

15.7

15.8
159
15.10
15.11

15.12
15.13

15.3.7 World or commonsense Knowledgecccocvmminiininiireenssnncssiiescsnensesesssens 433
Problem Solvers and PIanners ...t s ssssssassssassnsense 435
—programs that find solutions and plan strategies

EXPEIt SYSEEIMSeoveeertreeiteete st en st sen e e s s sr st e st sseses 436
—programs that model expert behavior in a specific task

Implementing an Expert System in Scheme ... 438
—case study: building an expert system shell

15.6.1 An expertin Mille BOINES ...ttt sasessasensens 439
15.6.2 The Mille Bornes rulebase ...t 444
15.6.3 Building a driver for Mille BOrnes ..ot 449
15.6.4 EXEICISESeviuimiriininiciinincisseis st ssses st s s s s b s besssbasassasensasassssesssassonss 455
Natural Language PrOCeSSINGcceceveeirmeeinineiinissiensssssnsssisssnsssssstsssssssscsesessasescssenises 456
—understanding human languages

15.7.1 Representing natural IanguAagescccoveeiveeiniinininnineenice e 458
15.7.2 Current uses Of NLP ...ttt st sesssssssaseseasess 461
RODOHCS ottt sssssssssssssssssssssssesessasssssssssssstsssssssssssssssasssssssssssssases 463
—moving around and grasping objects in the real world

VISION ottt st s sn s bbb s b e e s s s s s et s e b s b snssnss s snsas s aneseusasante 464
—recognizing objects from pictures or video images

Is Artificial Intelligence PoSSIDIE?coeuiiereiniiennieietec st 466
—some arguments for and against Al

SUIMIMATY ..ovoveieirrrneierenieesreieasise st anes st sssetssss s s s st sttt st st st s s e se st sssesssssessssassesessssssnstssnsnass 469
Additional REAdINGciiimiiinciiinitiiiesctnicctres et ss st ss s sss s sasens 470
COde LISHNE «.ocuverucririitiiitiestciee sttt ettt tss st s asts s sn sttt st s 472

16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic

AIGOTItRINScuereneenrsreecesecsesnsstcsscnsssssssssssesesssassssesasassssssnsasssssssass 475
16.1 SOft COMPULIE ...covevrvrieirirneririnresitiireesetsinnsesesessressssssssasaserssss s s snastststsssssssssssssonssssasssssassssscsesss 475
—computing with uncertain information
16.2 FUZZY LOGIC ettt sttt st sttt s tsn s s s e bbb e s 476
—logic that isn't just true or false but has degrees of certainty
16.2.1 FUuZzy eXPert SYStEIMScococrrurureveerererivrinrssisntaseissssssisintssesssssssssssssesssssssssssssesasssssesse 477
16.2.2 History of fUZzy IOGICccvueuirerinineteinstecee et 480
16.2.3 A fuzzy expert system in SChemeooveuieminieicceenee 481
16.2.4 FUZZY ChEESECAKEcuunvriinirrienrerires sttt st 487
16.2.5 EXEICISEScovrimiiiniriniriniinetisnssstsss st snssss s ssesssssssssssssssststsnssssssssasssasssssssssssassasssssnes 495
16.3 NeUral NEtWOIKS ...ttt isssssss s sssesssstssssssssssssstssssssssssssssssssssssssssssssssssses 496
—systems that model the mechanism of the brain
16.3.1 Learning in NEUTal NEtScccoeimmmmernrrennnineninesisesenisssessesssstntsesnsesissesssessssssesssssesses 498
16.3.2 Comparing neural nets with other Systemscccoeueeimeniionnncnees 500
16.3.3 History of neural NEtWOTKScovueererriniierneinnssisinnsissststsssssssssissssssssssssssssssssssess 502
16.3.4 A neural network in SCheme ... 503
16.3.5 EXEICISESoucucueiriiiriricinscineinistis et sssss st ssessssssssnsesessssssssnsssssesssssssssasenses 517
16.4 Genetic AIGOTIINS ...ttt sttt sa s s sttt ssssasass 518

xXxxii

Contents

16.5
16.6
16.7

16.8
16.9

—programs that evolve over time

16.4.1 Building a genetic algorithm in Schemecccocevmmemeeeninence e 520
16.4.2 EXEICISES ..cvveeeriectictctetnnete sttt s s st sa s sas s s s s s b s st nan s 531
Mixing Metaphors to Create Better SyStemscoceeuererneeineeinsneneeecsntes s 531
—the benefits of combining fuzzy logic, neural networks, and genetic algorithms

FUUTE TIENAS oottt bbb b s e e s e 533
—the growth of soft computing in the future

SUMMATY ..ottt st s s s a b s e s a b e e b st st anns 534
Additional Reading ...ttt sttt s s 535
COdE LISHNE ...uvreueiitriinciiiciiitiiesesss s ssss s e s st st ssssbsss s st st sssssssssasstassna e ssasansane 536
APPENAIX cuerrriinininincnisisesecsenasssassssssssasssasasses 545
INAEX cueierrurrirniensnsnnnsnnsnssnsnsnnsiansessssessssssssessssessssssesssssessensasssssssassnssasssns S 561

CHAPTER 1

INTRODUCTION TO
COMPUTER SCIENCE

1.1 What Is a Computer?

A computer can be defined as a machine capable of performing a set of well-
defined functions. Modern computers are electronic devices. However, the first
computing devices were mechanical in nature! It's the particular set of functions
that the computer performs that separates it from microwave ovens or stereos,
which are also electronic devices that perform well-defined functions.

A very simple computer that you have probably used is a four-function calcu-
lator. These calculators perform a set of well-defined functions, namely basic
arithmetic functions (+, —, X, +). Such calculators may be called simple computers
but not general purpose computers. Calculators lack some essential functionality,
namely control functions. These control functions are used to make decisions
based on certain conditions. Many calculators lack the ability to be programmed.
You must enter all the necessary key strokes each time you wish to perform any
calculation. Programmable calculators are an exception—they allow you to save
a sequence of keystrokes that can be recalled. Calculators have limited memory,
often just one memory key’

All of these factors, control functions, programmability, and extra memory
are important parts of a general purpose computer. To get a better idea why
these features are useful, let’s try a simple problem using a calculator.

! The underlying mechanism (electronic components or gears) of a computer is not important in
terms of the computer’s abilities. It is important in terms of the speed of the computer.

% This does not mean that the calculator can store only one number. Rather, it means that the person
using it can save and retrieve only one number.

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Features important to
computers

2 Chapter 1: Introduction to Computer Science

Using a calculator

Using a computer

1.1.1 Example: Balancing your checkbook

You may have done this numerous times already using a calculator. Focus on the

differences between using a calculator and using a computer to perform this task.
With a calculator you might use the following approach:

Enter your starting balance (since the last time you balanced).
Call this your current balance.
For each entry in your checkbook do the following:
If it is a deposit,
add it to the current balance.
Otherwise, if it is a withdrawal (or finance charge),
subtract it from the current balance.
Otherwise, it is a check, so
subtract it from the current balance.
Your current balance now reflects your final balance.

If you want to get a total of your deposits, withdrawals, and checks paid, you
must recompute that information, or modify the above approach to keep running
totals of the three amounts. These running totals would be maintained on paper
or in other memory keys on the calculator if such existed.

The above steps can be converted into a computer program. Computing the
totals of the deposits, withdrawals, and checks paid can be easily incorporated.
The computer would execute or run this program. This means that the computer
follows the given steps. We want the computer to make the decisions and calcu-
lations so that our job is as easy as possible. Ideally we would only enter the
amounts and their types. For example, we might enter

$5789.25 start balance
$100 deposit

$25.37 withdrawal
$50.67 check

$120.45 withdrawal
end

The computer will read this information and decide what calculations to per-
form based on the transaction type. Once finished, it could give us results like the
following;:

Initial balance $5789.25

1 deposit totaling $100.00

2 withdrawals totaling $145.82
1 check paid totaling $50.67

Final balance $5692.76

1.2 A Look Inside the Computer 3

All we had to do was enter the transaction amounts and types. The computer
did the right things with them, and then gave us the information we wanted. For
the computer to do this, it must have control functions to perform actions based
on the type of transaction received—check, deposit, withdrawal, or initial bal-
ance. Extra memory is necessary to save the deposit, withdrawal, and checks
paid subtotals. Lastly, programmability is necessary to provide the computer
with the steps needed. Writing such programs will be the topic of later chapters.

Using a computer to balance a checkbook can easily provide more informa-
tion than using a calculator would. However, using a computer necessitates the
creation of a working program. This tradeoff is one that must be considered
whenever contemplating the writing of a program to reduce the amount of
human work required to perform a certain task. Writing a program does take
time and thought, but it can be repaid in saved labor, less boredom (i.e., balanc-
ing your checking account), and less human error.

1.2 A Look Inside the Computer

The computer can be divided into two parts, hardware and software. The hardware
is the "machine" part of the computer. In an electronic computer, the hardware
consists of the electronics that enable the computer to perform its basic functions.
This hardware cannot be altered, hence the term hardware. As we have seen in
the checkbook example, for a computer to do a specific task, a program is neces-
sary. The programs that one writes are instances of software. Software, unlike
hardware, is easily changed.

How do we get the hardware to follow the steps dictated by the software?
Hardware alone does nothing. It is like a calculator sitting on a desk. Software
alone does nothing. It is like a person who has a sequence of calculations in mind
but no calculator on which to run them. With the calculator and person, the miss-
ing pieces are the numberpad and display. They act as an interface between the
person and the electronics inside. The picture is more complex with a computer.

An operating system is used to run programs on the hardware of the machine.
Running a program entails having the computer hardware follow the steps given
in the program. The operating system controls the hardware and allows the user
of the computer to run programs (software) on that computer. A simplified
diagram of a computer system looks like this:

Why computers need
control functions,
memory, and
programmability

Tradeoffs

Hardware versus
software

Operating systems

4 Chapter 1: Introduction to Computer Science

Networks

Internet and World
Wide Web

Person 1 Operating 2 Hardware
System
3 5 4
Software

The person (or user) sends commands to the operating system, and gets infor-
mation back [1]. The operating system gives instructions to the hardware and the
hardware returns results to the operating system [2]. The person creates pro-
grams (software) [3], which can be run on the hardware [4]. The operating sys-
tem is used to invoke programs such that they may be run on the hardware [5].

The focus of this book is not on machine hardware or operating systems, but
on the creation of software. Only a simple version of machine hardware will be
shown in the later chapters. Operating systems are covered in Chapter 14.

1.3 Connections Between Computers

Computers can be connected to other computers in what is termed a network.
Computers connected together can send and receive information to one another.
There are extensive networks linking computers around the world. Users can
send electronic mail (e-mail) to other users on different machines or read messages
over computer bulletin boards from people in numerous countries. One such bul-
letin board forum, USENET, covers thousands of topics and extends to millions
of computers around the world.

The extensive networking of computers grew into the present day Internet, a
network that links millions of computers. The Internet was used originally by
only a small percentage of computer users primarily for electronic mail and data
transfer. This changed with the development of the World Wide Web project in
1990. This project included the creation of a new language, HTML, to create
hypertext documents—documents that have links to other sections of the document
or to other documents. Browsers were developed to provide simple access to data
on the World Wide Web (also called the Web or WWW) and support multimedia
data (pictures, movies, and sounds).

The Web has created an explosive growth in the computer industry by pro-
viding a simple means of presenting and receiving information from other peo-
ple throughout the world. Computer usage on the Web is growing exponentially.
Two hundred million people are expected to be using the WWW by the year
2002.

1.5 Subfields Within Software 5

1.4 What Is Computer Science?

Computer science can be defined as the study of computers—their design, capa-
bilities, and limitations. Most of computer science falls into the domains of
hardware or software. There is one other domain, theory, that is primarily associ-
ated with software but can involve hardware. Theory addresses issues of com-
plexity, algorithms (ways of doing things), efficiency, and limitations of algo-
rithms and computers, among other things. Some elements of computer theory
will be explored in later chapters.

Teaching you how to create programs is one of the goals of this book. How-
ever, do not be misled. Just as there is more to math than arithmetic, and more to
music than writing circles and lines on a staff, there is more to computer science
than writing computer programs. Computer science is a discipline in its own
right with theories, goals, beliefs, and limitations. This text will give the reader a
taste of what the discipline of computer science is by going beyond simple pro-
gramming and looking into problem solving, design, and abstraction. The major
subfields of computer science will be explored individually in this text showing
each field’s accomplishments and goals. The main focus will be on the fields
within software.

1.5 Subfields Within Software

Within software a number of subfields have arisen as computer science has
matured. Below is a list of these subfields:

Operating systems

Compilers, interpreters, and programming language design

Database management systems

Artificial intelligence

Soft computing

Graphics

1.5.1 Operating systems

Operating systems provide a link between the user, the hardware, and the
software. The operating system creates an environment with specialized com-
mands that let the user perform various sophisticated actions. Exactly what this
environment looks like and what actions are supported depend on the particular
operating system. Some of these actions may include

displaying information on terminals or printing on printers

sorting, searching, and restructuring information

hiding or making available information to others using the same computer
modifying or creating information

getting instructions on using the operating system itself

providing access to programs that perform a wide array of tasks

accessing or sending information to other computers

Theory

Going beyond
programming

Functions of operating
systems

6 Chapter 1: Introduction to Computer Science

Peripherals

Time sharing

Machine language
versus high-level
programming
languages

¢ sending information to other people on the same or different computers

Operating systems perform other functions. Computers have keyboards (or
other input devices such as a mouse or writing pad) and terminals that allow people
to send and receive information to and from the computer. There are other peri-
pheral devices, such as line or laser printers that produce paper copies of informa-
tion stored in the computer, and disk drives that give the computer access to large
amounts of information. The operating system controls all of these resources.

Larger computer systems allow more than one person to use the computer
simultaneously. The operating system tries to give each person the illusion that
he or she is the only one using the machine. This is termed time sharing. This is
done by having the computer split its attention among the different users, some-
what like a parent dealing with many children at the same time. The operating
system allocates the computer’s resources, such as line printers and disk drives,
among the people using the computer.

Operating systems may provide support for network features such as elec-
tronic mail or access to bulletin boards. Transmitting data across networks to or
from other computers is sometimes handled by the operating system as well.

1.5.2 Compilers, interpreters, and programming languages
Hardware performs a limited number of simple functions. This is because
hardware design makes a tradeoff between simple, fast functions (or instruc-
tions) and complex, slower instructions. Designers have opted for simple, fast
instructions due to the performance improvements given to the computer. Hav-
ing many complex, esoteric functions (like square root or logarithm) built into the
hardware is not worthwhile due to their relative infrequency of use and the
overall system performance decline they cause’

It is possible to write programs using only the instructions that the hardware
can perform. This hardware language is called machine language. Writing large,
sophisticated programs in machine language is a tedious and rather unexciting
process. This is due to the simple nature of machine languages. It is like trying to
discuss your feelings about something important to you and only using
kindergarten-level words. To remedy this, high-level programming languages were
developed as a link between the hardware and programmers. Human or natural
languages do not make good programming languages as they are very ambiguous
and highly context sensitive. Words mean different things depending on their
position or use in a sentence. Look at the following sentence’s use of the word
"can.”

* There are, however, custom hardware components like Digital Signal Processors that perform
higher-level functions. These components are not for general computing use. For general
computing, there has been a movement towards even smaller, simpler instructions. These designs,
RISCs (Reduced Instruction Set Computers), are designed to have a small number of commonly
used instructions, but run at very high speeds.

1.5 Subfields Within Software 7

Can the boss can me from the can factory because I can no longer can cans
as fast as she can?

High-level programming languages are somewhat of a compromise between
human-spoken languages and machine languages.

Compilers (translators) and interpreters (simulators) enable the computer to Compilers and
understand programs written in a high-level programming language. Compilers interpreters
translate programs in these new languages into the machine language that the
computer understands. Interpreters do not produce translated programs like
compilers, but instead simulate the execution of programs to produce the desired
results. This simulation results in slower execution of the programs as compared
to a compiled program. Compilers and interpreters are programs that are written
in a language that the machine already understands. Therefore, one can build
languages on top of other existing languages. Look at mathematics for an anal-
ogy. Once you know the language of addition, subtraction, and so forth, you can
build up to algebra, and then you can build calculus upon your knowledge of
algebra and basic math operations.

The transition of programs to computer "understandable” machine language
is diagramed below.

High-level
Language
Programs

Machine

Compiler Language

Details on how interpreters and compilers are written will be covered in
Chapter 13.

1.5.3 Database management systems
Another subfield of computer science is database management systems. One of the Database systems
major uses of computers is in storing, retrieving, and updating information
(data). A collection of data is referred to as a database. Just as operating systems
act as an environment for users, database management systems are programs
that provide an environment that is tailored for the creation, modification, and
access of data. This new environment is often less flexible than one that a com-
piler or interpreter creates with a new language. However, the database manage-
ment environment has many specialized features that are unique to the problems
that you encounter when dealing with large amounts of data. Using such a sys-
tem, you can easily make complex queries of the data, add new information, or
change existing information.

For example, you may have a database of all the friends that you have with
information on each person indicating their address, phone number, birth date,

8 Chapter 1: Introduction to Computer Science

Artificial intelligence

Soft computing

Fuzzy logic

Neural networks

association to you, and other pertinent information. With a database manage-
ment system you need not worry about how that information is represented in
the machine. There are still some things you must decide about the representa-
tion, but they are all on a very high level. You could easily make queries into
such a database to print all your friends who have a birthday this month, or print
everyone who is between the ages of twenty and twenty-five, in the hiking club,
and living in San Francisco or New York. More useful actions can be performed,
such as easily removing everyone who lives in Los Angeles.
Database management systems will be covered in Chapter 12.

1.5.4 Artificial intelligence
The most controversial field of computer science is artificial intelligence. Artificial
intelligence deals with the simulation or modeling of "intelligence" on computers.
It comprises many subfields that each address some aspect of intelligence. These
include
e Natural language processing:
Understanding, translating, and paraphrasing spoken languages such as
English or German
e Machine learning:
Learning new information from existing or newly obtained knowledge
e Problem solving:
Solving tasks within realworld environments
e Expert systems:
Embodying the knowledge of experts in a particular domain
e Robotics:
Creating robots that can move about and function in real environments
e Vision:
Recognizing three-dimensional objects given two-dimensional images
Chapter 15 will focus on each of these subfields, touching upon their prob-
lems and accomplishments.

1.5.5 Soft computing

Soft computing deals with nonexact or subsymbolic information. The field
comprises various fields, of which fuzzy logic, neural networks, and genetic algo-
rithms are the most noteworthy.

Fuzzy logic extends familiar, two-value logic that supports only true or false
values, and extends it to incorporate multivalued logic. Multivalued logic lets one
specify degrees of belief such that fuzzy concepts like tall, heavy, and small can
be expressed more naturally. Fuzzy logic is primarily used to build fuzzy expert
systems that are used often in control devices like antilock car brakes, washing
machines, and subways.

Neural networks are loose simulations of neurons in the brain. They offer an
alternate way of representing information from that used in traditional artificial
intelligence, which uses symbols to represent knowledge. Neural networks

1.5 Subfields Within Software

9

represent information subsymbolically. Information is distributed throughout the
network. This has advantages and disadvantages over symbolic, exact represen-
tations.

Genetic algorithms simulate the process of evolutionary change. Information
is represented as chromosomes that can change through crosslinking (two chromo-
somes splitting to form two new chromosomes) and mutation (a piece of a chro-
mosome changing). The chromosomes that perform better are kept, and the sys-
tem evolves over time to yield a good solution to the problem at hand. Genetic
algorithms work by going through a series of evolutionary changes until the sys-
tem performs at a certain level.

Chapter 16 covers these subfields of soft computing, giving examples of each
in Scheme.

1.5.6 Graphics

Computer graphics involves modeling and simulating two- and three-dimensional
objects on the computer. Examples of objects that have been modeled in simu-
lated environments include aircraft in flight, ships, automobile aerodynamics,
stress and metal fatigue, CAT (Computer Axial Tomography) and MRI (Mag-
netic Resonance Imaging) for medical examination of bones and tissues.

The field of computer-aided design (CAD), which helps people with the
design of anything from buildings to bolts, depends on computer graphics.
Architects use CAD tools to design buildings and show clients how the building
will look once it is completed. In fact some of these tools even allow you to do a
virtual walk-through of the building to get a feel for the space and the lighting.

Much work is done in graphics for the movie industry. This work may
involve augmenting realworld scenes with lifelike, realistic special effects.
Another avenue is creating fantastic special effects that would be impossible to
create in the physical world, such as flying faster than the speed of light or des-
cending into a black hole.

1.5.7 Exercises
1.1 Describe the following terms in your own words:

computer

hardware

software

operating system

compiler

database management system
artificial intelligence

soft computing

graphics

Genetic algorithms

Computer graphics

10 Chapter 1: Introduction to Computer Science

Hardware

Parallel programming

Network issues

Fault tolerance

1.6 Subfields Within Hardware
The following list gives some of the major subfields within hardware:

o Integrated circuit design and manufacturing
e Circuit design
e Computer architecture

The electronics of modern day computers are made up of integrated circuits.
These are small electronic devices that perform very specialized functions.
Integrated circuits are made from silicon that is microscopically etched. The heart
of most computers, the central processing unit, is typically a single integrated cir-
cuit.

Circuit design involves the combination of integrated circuits and simpler
electronic components to create electronic circuitry that can perform more
sophisticated functions. Computers are made up of integrated circuits and other
simpler electronic devices that are joined on a circuit board—sometimes called a
motherboard.

Computer architecture deals with the design of electronic circuits to create
functioning computers. There are numerous design decisions that affect the capa-
bilities, cost, and speed of the computer.

1.7 Subfields Within both Software and Hardware

There are areas within computer science that are closely tied to both hardware
and software. These include

e Parallel processing and concurrent programming
e Networks and communication
¢ Fault tolerance

The part of the computer that does the calculations and decision making is
called the processor. Parallel processors are computers that have more than one
processor. This enables calculations to occur simultaneously (in parallel). Con-
current programming addresses the problems of creating computer programs
that take advantage of these parallel architectures. The parts of programs that can
be run simultaneously are sent to different processors, such that they can all be
run in less time than if they were run sequentially on a single processor.

The widespread growth of networks such as the Internet (introduced in sec-
tion 1.3) has placed demands on researchers to improve the capabilities of net-
works. There are both hardware concerns dealing with the electronics and circui-
try of the connections between the machines, and software concerns focusing on
the communication of information from machine to machine. Speed, security,
and information integrity are areas of concern in network hardware and
software. In addition, there are theoretical aspects of networks concentrating on
efficient routing and layout of the networks.

Fault tolerance deals with the creation and testing of hardware and software
that can handle erroneous or unexpected situations gracefully. Such robustness is
critical with many applications, especially when lives depend on the proper

1.9 Additional Reading 11

functioning of the system, such as computer-controlled antilock brake systems in
cars or air traffic control systems in airports.

1.7.1 Exercises
1.2 List some applications for which computer networks would be useful.

1.3 List some products using computers that must be fault tolerant systems.

1.4 List some applications where parallel processors would be beneficial in
improving the performance of the system.

1.8 Summary

e General purpose computers can be programmed, have control functions to
make decisions, can perform numerical calculations, and have a great deal of
memory.

e Hardware makes up the electronics of computers.

e The programs that can run on computers are referred to as software.

e Operating systems provide a level of abstraction allowing various useful
actions to be easily performed. ‘

e Operating systems handle many of the peripheral devices and shared
resources of computer systems such as terminals, keyboards, line printers,
and disk drives.

e Compilers translate high-level languages into machine language that can be
run on the computer.

e Interpreters simulate the execution of programs written in high-level
languages.

e Database management systems provide a specialized environment for organ-
izing and searching through large amounts of data.

e Artificial intelligence includes those aspects of software that involve the simu-
lation of some aspect of cognition.

e Soft computing involves the representation of multivalued and subsymbolic
information that is needed to handle information that is not sharply definable.

e Computer graphics is concerned with modeling two- and three-dimensional
objects.

e Hardware subfields cover the spectrum from the creation of integrated cir-
cuits to the design of computers using such components.

e Parallel processing, networking, and fault tolerance are three fields that cross
the boundaries into both hardware and software.

12 Chapter 1: Introduction to Computer Science

1.9 Additional Reading
Brookshear, J.G. (1997). Computer Science: an Overview, Fifth Edition, Addison-
Wesley, Reading, MA.

Goldschlager, L. and Lister, A. (1988). Computer Science: a Modern Introduction.
Second edition, Prentice Hall, Englewood Cliffs, NJ.

CHAPTER 2

PROBLEM SOLVING AND
PROBLEM ABSTRACTION

2.1 Problem Solving

People spend a great deal of time solving problems, often without consciously
thinking about them. For example, when you go grocery shopping, you may
encounter and solve a number of problems without paying attention to them.
You might be looking for cream of asparagus soup. You have techniques that you
use to find this particular flavor of soup. You probably don’t look for it among
the frozen pizzas. You may ask someone where it can be found to narrow your
search. You might ask, "Where is the cream of asparagus soup?" and be told, "The
soups are on aisle four," in which case you would go there and search among the
soups. You probably wouldn’t respond with, "That’s fine, but I want to know
where the cream of asparagus soup is!"

There are countless examples of problem-solving situations that seem trivial.
There are other circumstances that we might actually consider problems because
they involve more thought. These include solving math word problems, such as
"if 12 ounces of soup costs 59 cents and 20 ounces of the same soup costs one dol-
lar, which is a better bargain?"

Computers have less general knowledge than humans do. This is why it is
necessary to supply incredibly detailed information to instruct computers to
carry out even seemingly simple or obvious tasks. What you should try to
develop in this chapter are the skills involved in taking an English problem
description and solving it by creating a detailed set of instructions that a machine
can follow. The rest of this book will show the specifics of creating computer pro-
gram solutions to problems, in other words, going from problem descriptions in
English to working computer solutions.

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

A typical problem-
solving situation

Being specific

14 Chapter 2: Problem Solving and Problem Abstraction

Understanding the
system

Central processing
unit

The first requirement in problem solving is a thorough knowledge of the
capabilities of the system with which you are trying to solve the problem. You
typically need not know how the system works, just what it can do. For example,
you can instruct a friend to get to your house without having the foggiest idea
about how her brain works. You do know, however, the level of instructions she
can follow. The instructions that you would give to a two-year-old differ from
those you would give to an adult. Similarly, you need to know what computers
can do and what they can understand before you begin to instruct them to carry
out specific tasks.

2.2 What Computers Can Do

For the most part, computers are stupid machines. They can perform only a lim-
ited number of simple operations, usually on the order of fifty to a few hundred.
Examples of such computer operations or instructions include addition, subtrac-
tion, checking if a number is less than zero, and repeating a collection of instruc-
tions. Most of these operations deal with numerical computations or control—
deciding what to do next. Even multiplication may not be a standard operation
but instead be implemented as a series of additions.

At this point it may seem a wonder computers do the things that they do.
After all, computers help people make business decisions, predict the weather,
and compute square roots of large numbers in less time than it takes us to write
the numbers on a piece of paper. How can this be?

The picture of the computer that many people have is that of a sophisticated,
powerful machine. However, the picture that has been painted here is that of a
rather dismal idiot savant. What has been illustrated is the core of the computer,
the central processing unit or CPU. You don’t normally see this low level of the
machine; instead, you see a much different environment, which is the result of
various levels built upon the basic CPU. Each level allows more complex, special-
ized actions to be performed. As discussed in Chapter 1, an operating system is
one such level of abstraction that can be built upon the underlying CPU. This
provides a new environment with a new means of communicating with the
hardware. Computers such as Macintoshes, PCs, and video games (that have
computers) all have environments that are built upon the hardware. These
environments make the computer appear powerful and sophisticated.

Our mental development can provide an analogy. As infants, we had fewer
capabilities, but each year we learned more and more, adding levels of
knowledge. One such level was language, which gave us the ability to communi-
cate and to read this textbook. If we look at the brain as a CPU, as infants, our
brains performed only simple actions. The more we learned, the more abstract
and powerful our brains became.

2.4 Problem Abstraction 15

2.3 Computer Languages

Just as humans understand language, so do computers. And computers, like
humans, can understand more than one language. Computers typically use two
levels of language. The lowest level is the machine language. This language is used
to instruct the computer hardware to carry out its basic CPU functions. The next
level consists of languages that are built up from the machine language. These
languages have particular characteristics and capabilities just as our spoken
languages do. Some African languages do not have words for concepts like own-
ership. Indonesian has many different greetings/blessings to say to someone
depending on the time of day. Similarly, each computer language has its areas of
specialty and weakness. A computer language has a particular mind set or pro-
gramming style. If you speak more than one language, you know that there are
different ways of thinking or expressing concepts or ideas in each language. Simi-
larly, two solutions to the same problem, each solved using a different computer
language, can be different in form and approach.

Computer languages are becoming more powerful and sophisticated; how-
ever, no computer language approaches human spoken language. The ambiguity
and complexity of our spoken languages has made it extremely difficult to create
a computer program that can understand them. This creates a gap that must be
bridged. How do we go from English problems to computer language solutions?
The next section will focus on this issue.

Let’s review what has been covered:

e CPUs perform only a set of very simple operations.

e Levels of abstraction built upon the CPU make computers more powerful and
easier to use.

e Programming languages are a level of abstraction that provide an environ-
ment that is closer to the way we think.

e It is from this programming language environment that we will build pro-
grams to solve our needs and to extend the computer’s capabilities further.

2.4 Problem Abstraction

The first step in going from English problems to computer solutions is thinking
about the problem in terms of the environment in which we will solve the prob-
lem. This environment may be some programming language environment. It
may be the lowest-level machine language. It may be a database management
system. Regardless of the environment, we must think of the problem in terms of
what the environment allows and understands. To do this, we need to have a
solid understanding of the environment.

The environment in which we will begin problem solving exercises is a robot
simulation. This robot, named Bob, lives in an artificial world that contains
colored blocks. The blocks are movable and stackable. The robot understands the
following commands:

Machine language

Summary

Knowing the problem
domain

16 Chapter 2: Problem Solving and Problem Abstraction

Robot commands

move forward distance meters

turn left number degrees

turn right number degrees

pick up object

drop object

look

lower pen

raise pen

memorize sequence-name instruction-sequence
perform sequence-name

The words in italics represent variables—actual values would be used in their
place in commands to the robot.

The goal is to instruct the robot to carry out simple tasks in this world. The
first task is to move one of the objects in this artificial world.

It's a good idea to learn the capabilities and limitations of the system in which
you must program. Let's try some of the commands and see what effect they
have. In the robot sessions that follow, our requests to the robot will be shown in
italics. The robot’s replies will be shown in boldface.

request: look
green block at 0 degrees, 3 meters away
yellow block at 90 degrees, 2 meters away

The robot returns the position of the blocks in a standard way, telling us the color
of the block and its position in degrees and meters from the robot. In this world,
0 degrees is straight up (north), 90 degrees is right (east), 180 degrees is down
(south), and 270 degrees is left (west).

The diagram below illustrates the initial robot world. The robot is facing up
(north).

green

yellow

2.4 Problem Abstraction

17

Let’s try some more commands:

request: pick up green block
Error: green block is not reachable

request: drop yellow block
Error: yellow block is not in my possession

request: turn right 90 degrees
right turn complete

request: look
green block at 270 degrees 3 meters away
yellow block at 0 degrees 2 meters away

request: turn left 90 degrees
left turn complete

request: move forward 2 meters
move complete

request: look
green block at 0 degrees 1 meter away
yellow block at 135 degrees 2.83 meters away

The memorize command is used to name a sequence of steps that we wish the
robot to perform later. This is useful to abbreviate an often-needed sequence or to
create a logical collection of steps that help make the overall program more read-
able. The memorized sequence of commands is performed when a perform com-
mand is issued.

request: memorize go-back-2-turnaround-look
turn left 180 degrees
move forward 2 meters
turn left 180 degrees
look
end
okay

request: perform go-back-2-turnaround-look
left turn complete

move complete

left turn complete

green block at 0 degrees 3 meters away
yellow block at 90 degrees 2 meters away

The robot world looks the same at the end of this sequence of commands as it
did at the start.

The robot was instructed to turn to the right, look, then turn back, then move
up towards the green block. After that the robot memorized a sequence to turn
around to the left, move two meters, turn back around, and look. Next the robot

Memorized
sequences

18 Chapter 2: Problem Solving and Problem Abstraction

Recognizing
ambiguities

performed these memorized steps, thereby returning the robot to its starting
position.

Now that we have an idea of what the robot can do, let’s get back to the task
at hand—making the robot move an object.

2.4.1 Example: Move the yellow block up three meters
This problem can be thought of as a sequence of operations:

e move to the yellow block
e pick up the yellow block
e move up three meters
e drop the yellow block

Initially the robot is facing up towards the green block. To move the robot to
the yellow block, the robot must face in that direction.
Moving to the yellow block entails the following:

turn right 90 degrees
move forward 2 meters

Picking up the yellow block can be done with one command:
pick up yellow block
Moving up three meters is done as

turn left 90 degrees
move forward 3 meters

Dropping the yellow block is expressed as
drop yellow block
Putting it all together, we get
turn right 90 degrees
move forward 2 meters
pick up yellow block
turn left 90 degrees

move forward 3 meters
drop yellow block

2.4.2 Ambiguities

The above problem presented a subtle ambiguity. The problem was to move the
yellow block up three meters. The ambiguity lies in the problem statement and in
the operations of the robot. First, in the problem statement, no mention is made
as to whether the yellow block could be shifted to the left or right when it is
moved up three meters. Second, the description of how the robot picks up and
drops objects was not very detailed. Does the robot need to be touching the
object to pick it up? Does the robot need to be facing the object to pick it up?
Does the robot drop the object in the reverse manner as it was picked up, or
below, behind, or to the side? Before we can respond to any clarification in the
problem statement, we must be certain of these questions about the robot.

2.4 Problem Abstraction

19

Let’s assume that the robot must be touching and facing the object before it
can be picked up and that the object is dropped in front of the robot. We'll refine
the problem statement to be moving the yellow block such that it is three meters

directly above its previous position; hence, there should be no final left or right

shifting of the block. Now do we have enough information to solve the problem?

We can review the steps we took. Moving to the yellow block is still okay, as
is picking up the yellow block. Moving up three meters seems okay, but there is
an ambiguity lurking here. Does the object stay in front of the robot as it moves
and turns?

Let’s assume that it does. By turning left, the block is moved so that it is no
longer to the right but above the robot. When the robot moves three meters, the
block has moved more than three meters from its original position, because the
robot’s turning the block moved it up an amount equal to the diameter of the
robot. The diagram below should help you visualize what is going on. The dotted
block labeled block start represents the yellow block’s initial position. The robot
has moved next to it from its initial position. The different dashed shapes
represent different positions of the yellow block during its movements.

]

green after

block | move |

after .
desired
move

t
up spo

L o J
after™\ :

robot . block -
move :

start i [start
right /- :

The block moves immediately above the robot to the position labeled after
turn after the robot rotates left. Next the robot moves up taking the block ahead
of it. If the robot drops the yellow block after moving it up three meters, it ends
up in the location indicated by the dashed box labeled after move. The position
where we would like the block to be dropped is labeled desired spot. To get to this
position, the robot must turn to the right by 90 degrees, effectively undoing the
left turn taken before the robot moved up three meters.

20 Chapter 2: Problem Solving and Problem Abstraction

Representing
solutions in pseudo
code

The corrected commands are given below:

turn right 90 degrees
move forward 2 meters
pick up yellow block
turn left 90 degrees
move forward 3 meters
turn right 90 degrees
drop yellow block

2.5 Pseudo Code

Sometimes a problem is difficult to think of in terms of the commands of the sys-
tem being used. In this case, we use an intermediary language known as pseudo
code. Pseudo code lies between English and the environment in which we want
our solution to be. There are no definite rules for how pseudo code must look. It
is merely a description of the problem that comes closer to the desired solution.
In the previous problem, our pseudo code was

move to the yellow block

pick up the yellow block

move up three meters

drop the yellow block

The following two problems give more examples of using pseudo code.

2.5.1 Example: Draw a two-by-two meter square around the yellow
block

Before we begin this problem, we need to know the position of the robot in rela-
tion to the yellow block, the size of the robot and the yellow block, and the posi-
tion of the robot’s pen relative to the robot. Assume that the robot is facing up
directly in front of the yellow block. Also assume that the blocks are one meter
wide by one meter deep, that the robot is one meter in diameter, and that the pen
is in the center of the robot. Thus the robot must follow a path immediately
around the edge of the yellow box to make a two meter by two meter square. The
steps to follow for this problem are

have the robot lower the pen
move the robot left one meter
move the robot up two meters
move the robot right two meters
move the robot down two meters
move the robot left one meter
have the robot raise the pen

2.5 Pseudo Code

21

Trace out the robot’s movements on the diagram below.

yellow

robot

Below are the commands to move the robot. Above each command is a
comment (a line beginning with a semicolon ";") that indicates the step
involved. Comments are not interpreted as part of the program.

; have the robot lower the pen
lower pen
; move the robot (currently facing north) left one meter

turn left 90 degrees
move forward 1 meter

; move the robot (currently facing west) up two meters

turn right 90 degrees
move forward 2 meters

; move the robot (currently facing north) right two meters

turn right 90 degrees
move forward 2 meters

; move the robot (currently facing east) down two meters

turn right 90 degrees
move forward 2 meters

; move the robot (currently facing south) left one meter

turn right 90 degrees
move forward 1 meter

; have the robot (now facing west) raise the pen
raise pen
The diagram below shows the trace of the robot’s motions. The robot is

shown in the end position. He is facing left. The dashed line represents the
path the robot followed.

22 Chapter 2: Problem Solving and Problem Abstraction

Simplifying code with
memorized
sequences

2.5.2 Exercises
2.1 How would you change the above program to have the robot travel coun-
terclockwise?

2.2 Write a sequence of steps that instructs the robot to draw a triangle around
the yellow block. Assume that the robot starts in the same position as in the
last example. Make the triangle six meters on each side.

2.3 Assume that the robot is between the two blocks with the green block to the
immediate left and the yellow block to the immediate right. In other words,
the three objects are in a line, with both blocks touching the robot. Write a
sequence of steps to command the robot to draw a rectangle around both
blocks. What assumptions are you making in your solution?

2.6 Using Memorized Sequences

Memorized sequences provide a way to break down a problem into subprob-
lems. This is extremely helpful with larger problems, since they can rapidly
become incomprehensible. Also, collections of commands that need to be
repeated in the solution can be repeated by invoking the memorized sequence
multiple times. This saves a great deal of writing and helps eliminate errors.

2.6.1 Example: Write the robot's name—BOB

For this problem, let’s assume that the robot is in an empty world, so we don’t
need to worry about running into blocks. Also assume that the robot begins at
the lower left corner of what will become the "B" and that the robot is facing up.
The diagram below shows what the name "BOB" should look like.

2.6 Using Memorized Sequences 23

The initial pseudo code for this problem follows:

draw the first "B"

move into position for the "O"

draw the "O"

move into position for the second "B"

draw the second "B"

Since we will be drawing two "B'"s and they are fairly complex, the commands
to draw a "B" should be memorized. Positioning the robot to draw the next letter
can be implemented with a single memorized sequence if we design the drawing
of letters such that the robot ends up in the same position relative to the letter
being drawn each time. This makes it easier to join different parts of the program
without having to worry about where the robot is and which direction he is fac-
ing. We will make sure that the robot is facing up and is at the left side of the
baseline (lower left corner) of the letter at the start and end of printing each letter.

2.6.2 Refinement of pseudo code

Going from the above pseudo code to actual robot commands is more difficult in
this problem than in the previous problems. The problem is sufficiently complex
that we should do another pass through the pseudo code and refine it, adding
more details.

A good place to start is to look for repetition and see whether memorized
sequences would help. The top half of the "B" is the same as the bottom, so the
commands to draw half a "B" can be a memorized sequence. Similarly, the same
sequence can be used to draw the left and right halves of the "O" along a diago-
nal. Below are diagrams representing these pieces.

B

Now we can refine our previous pseudo code:

Looking for repetition

24 Chapter 2: Problem Solving and Problem Abstraction

draw the first "B"

— draw the bottom half of the "B"

~ move into position for the upper half

— draw the upper half of the "B"

- move to the original starting position and direction

e move right to draw the next letter
e draw the"O"

— draw the left half of the "O"

— move into position for the right half

— draw the right half of the "O"

— move to the original starting position and direction

e move right to draw the next letter
e repeat the steps for the first "B"

The high-level steps (bulleted steps) can be implemented as memorized
sequences. They provide a logical breakdown of the problem and eliminate the
repetition in drawing "B"s and moving the robot into position to draw the next
letter. Similarly, the commands to draw letter halves can be memorized
sequences. We will begin with these half-letter sequences.

Just as we must insure that the robot is in proper position and orientation
before drawing each letter, we must assume some standard before each letter
half is drawn. Let’s assume that the robot is in the proper position and facing the
direction of the first line to draw; hence, the first action of a draw half-letter
sequence will be to lower the pen and start drawing. It will be the job of the
whole-letter drawing sequences to insure that the robot is in the proper position
and orientation before invoking each memorized half-letter sequence.

; Robot is initially facing north, with the pen up.

memorize draw-half-of-B
lower pen
move forward 0.5 meters
turn right 90 degrees
move forward 0.4 meters
turn right 45 degrees
move forward 0.2 meters
turn right 45 degrees
move forward 0.25 meters
turn right 45 degrees
move forward 0.2 meters
turn right 45 degrees
move forward 0.4 meters
raise pen

end

2.6 Using Memorized Sequences

25

; Robot is oriented to draw the first line, with the pen up.

memorize draw-half-of-0
lower pen
move forward 0.2 meters
turn right 45 degrees
move forward 0.8 meters
turn right 45 degrees
move forward 0.2 meters
turn right 45 degrees
move forward 0.4 meters
raise pen

end

Next, we can write memorized sequences to draw the "B" and "O" and move
the robot into position for the next letter.

; Robot is initially at the lower left corner of the "B"
; facing north, with the pen up.
memorize draw-B
; draw lower half of "B" first
perform draw-half-of-B
; set up for upper half of "B"
turn right 90 degrees
move forward 0.5 meters
; draw upper half of "B"
perform draw-half-of-B
; return to starting position and direction
turn left 90 degrees
move forward 0.5 meters
turn left 180 degrees
end

; Robot is initially at the lower left corner of the "O"
; facing north, with the pen up.
memorize draw-O
; set up for left half of "O"
turn left 45 degrees
perform draw-half-of-0
; set up for right half of "O"
turn right 45 degrees
perform draw-half-of-0
; return to starting position and direction
turn right 90 degrees
end

Notice that after each letter is drawn the robot ends up facing north, so he
must turn to the right to move to the proper position for the next letter and then
face north again to draw the next letter. We can write a memorized sequence to
implement these steps.

26 Chapter 2: Problem Solving and Problem Abstraction

Using parameters to
make memorized
sequences more
general

; Move robot to draw next letter.
memorize adjust-position

turn right 90 degrees

move forward 1 meter

turn left 90 degrees
end

Putting the whole thing together, we have:

; Assume that the robot is facing up at the lower left corner
; of the first "B" with the pen up.

perform draw-B

perform adjust-position

perform draw-O

perform adjust-position

perform draw-B

perform adjust-position

2.6.3 Exercises

24

25

2.6

27

28

29

How could memorized sequences be used in the previous problem (draw-
ing a box around the yellow block) to improve the solution?

Write pseudo code to write out the numbers zero through nine. Think of
how memorized sequences could make the task easier.

What memorized sequences would be helpful in writing out the letters of
the alphabet?

Write a memorized sequence to stack the yellow block on top of the green
block. What assumptions must you make?

Write commands to switch the order of two blocks that are stacked one
upon the other. Try to use memorized sequences to simplify things.

Think of some other commands that would give the robot more flexibility.

2.7 Adding Parameters to Memorized Sequences

Some of the robot’s commands allow us to specify additional information, such
as a distance to move or a number of degrees to turn. By making a simple change
to the way we write memorized sequences, we can allow sequences that take
such information. These additional values need names by which they can be
referred within the definition of the sequence. These names are called parameters.
For example, imagine the following new version of the sequence adjust-
position from the previous problem:

2.7 Adding Parameters to Memorized Sequences

27

; Move robot (facing up) distance meters to the right.
memorize metric-move-right (distance) meters

turn right 90 degrees

move forward distance meters

turn left 90 degrees
end

This new memorized sequence has a parameter, distance, that indicates how
many meters to move to the right. To invoke this new sequence to move four
meters, use the following command:

perform metric-move-right 4 meters

This will perform the steps within metric-move-right, substituting the value
4 for the parameter distance. In this example, 4 is the argument to the performed
sequence.
To enhance our system further, we can add mathematical functions to our
commands. This way we could write sequences like the following:
; Move robot (facing up) distance feet to the right.
memorize nonmetric-move-right (distance) feet
turn right 90 degrees
move forward distance + 3.28 meters
turn left 90 degrees
end

There are approximately 3.28 feet in one meter, so dividing a distance given in
feet by 3.28 gives the equivalent distance in meters such that move forward
(which takes meters) can be invoked with the appropriate value.

The following command results in a move of 3 + 3.28 = 0.915 meters:

perform nonmetric-move-right 3 feet

2.7.1 Exercises
2.10 Assume that the command turn left no longer works. Write a memorized
sequence to perform a left turn using the command turn right.

2.11 Write a sequence that draws a square around a block in which the length of
the side of a square is a parameter to the sequence. Assume that the value
given will be large enough to draw a square around the block. Also assume
that the robot is immediately below the middle of the block and is facing up.

2.12 Write a version of draw-B that takes a parameter for the height of the "B".

2.13 Describe the robot’s actions when the following commands are invoked:

Mathematical
functions

28 Chapter 2: Problem Solving and Problem Abstraction

memorize mystery (number)
turn left 90 degrees
move forward number meters
perform mystery number
end

perform mystery 2

2.14 What actions does the robot take when performing the sequence fractal?

memorize fractal (number)
move forward number meters
turn left 45 degrees
perform fractal number + 3
turn right 90 degrees
perform fractal number + 3
turn left 45 degrees
move forward number meters
end

Hint: assume that the robot ignores the sequence fractal when number is less
than 1. Try starting with number equal to 2, then try 6, and then 18.

2.8 Summary

The major issues of this chapter involve the steps to take when solving problems.
e Begin by disambiguating the problem.
Any aspects that are not clearly defined should be resolved.
e Think of a solution to the problem using a sequence of abstract steps.
These steps can be expressed as pseudo code.
e Refine the steps to the level of sophistication of the system on which your
solution will run. This may involve several passes, each taking the solution
closer to the level of the commands understood by the system.

CHAPTER 3

PROGRAMMING THE COMPUTER

3.1 The Scheme Environment

At this point we begin to use a real programming language to perform tasks and
solve problems. The programming language used is Scheme, which is a dialect of
LisP. LISP is an acronym for LISt Processing. We will define what a list is and
how Scheme goes about processing lists in Chapter 4.

Programming languages were introduced in Chapters 1 and 2 as environ-
ments that fill the gap between machine languages and natural languages, like
English and Serbo-Croatian. In this chapter, we begin to explore the Scheme
environment and what can be done within it. First we must develop an under-
standing of the Scheme environment.

Let’s begin with four basic elements within Scheme: numbers, symbols, vari-
ables, and functions.

Numbers in Scheme are like the numbers with which you are familiar.
Scheme has integers such as 42 and -87, real numbers such as 3.1415 and -2.69,
and ratios such as 5 (written in Scheme as 2/3).

Symbols are names. They can have values or can be used merely for their
name. For example, john is a symbol. A sentence can be constructed in Scheme
by joining symbols together, where each symbol represents a word in the sen-
tence. Scheme is a symbolic processing language, meaning it is good at perform-
ing operations on symbols such as creating, transforming, and comparing sym-
bols and collections of symbols.

Variables are symbols that have values associated with them. Remember
when you worked on algebra problems that started with "let x be the number of
goats in Farmer Bob’s ranch"? In Scheme, x would be a variable. We can use the
symbol myriam as a variable by giving it a value. Later we can reference or
change the value of the variable myriam.

Functions perform operations. They are Scheme’s equivalent to the com-
mands of the robot world of Chapter 2. Some of the robot commands took

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Basic components of
Scheme

30 Chapter 3: Programming the Computer

Scheme interpreter

Calling functions

arguments (e.g., move forwardand turn left). Scheme functions can take argu-
ments as well. This enables functions to give different results according to their
arguments.

Most functions perform operations on values (arguments) and return a result.
The basic four operators (+, —, X, +) in calculators are analogous to Scheme func-
tions, and the numbers to which these operators are applied correspond to argu-
ments within Scheme. When we instruct the computer to carry out the actions of
a function, we are invoking or calling the function.

Some texts refer to Scheme functions as procedures. Most programming
languages use functions to denote objects that return one value when invoked,
whereas procedures do not return a value explicitly. This book follows this nam-
ing convention, considering functions as objects that return only one value.

The core of Scheme is the interpreter. The computer does not directly under-
stand Scheme. It is only by virtue of the Scheme interpreter that the computer can
respond to our Scheme requests and return understandable results. Requests are
typed on the computer's keyboard. The interpreter receives the requests and
sends the appropriate information to the computer, which performs the neces-
sary operations and sends information back to the interpreter. The interpreter
prints this information as a result that we can understand on the terminal screen.
The following diagram illustrates these components:

Scheme machine requests
Interpreter

(a program)

Person Computer

machine results

English results

An analogy can be drawn to the way a human interpreter interacts with two
speakers who do not speak each other’s languages. In the example below an
English and a French speaker communicate via an interpreter.

English words Interpreter French words French

(a human) speaker

English
speaker

English words French words

3.1.1 Example: Determining the price of an item with 6% tax added
To compute a tax amount, a function that can multiply numeric arguments
together is needed. Fortunately, such a function exists and is called *. We need to
know how to invoke functions with arguments and how to obtain the results.

Invoking (or calling) a function is done by enclosing the function name fol-
lowed by its arguments in parentheses. Hence, the function call (* 7.95 1.06)
multiplies 7.95 by 1.06 and returns the product, 8.42.

! The operating system normally plays a role in this diagram as well, acting between the computer
and interpreter. It was left out to keep the focus on the interpreter.

3.2 Numerical Functions 31

Before function calls can be typed into the computer, the Scheme interpreter
must be invoked. Consult your instructor, system administrator, (or Scheme
software manual if you have a personal computer and a Scheme interpreter) to
determine how to start up Scheme. There is no standard way to exit from
Scheme. Try entering (exit) or (quit) or checking if there is a menu command
to exit Scheme.

Once the interpreter has been invoked, a prompt is displayed. The prompt
indicates that the interpreter is ready to receive requests. This book uses the
greater-than sign, >, as a prompt. Your prompt may be different. Throughout this
book, the prompt and the interpreter’s responses will be shown in boldface. The
user’s input will be displayed in italics. Comments appear as text following a
semicolon. The comments shown are merely to provide information to the
reader. They do not need to be entered for these examples to work.

When (* 7.95 1.06) is entered in the interpreter, the product is printed.
What you will see is

> (* 7.95 1.06)
8.42

Mistakes to Avoid
Don’t forget the space between the function name and its arguments
(the values upon which the function acts). Thus,

(*7.95 1.06)
results in an error. Try it on your computer.

3.2 Numerical Functions

Scheme supports the four basic math operators found on calculators, as well as a
host of other arithmetic functions. The table below is a partial list of these func-
tions and the operations they perform.

return value

sum of arguments

difference of arguments in left to right order
product of arguments

quotient of arguments in left to right order
maximum of arguments

minimum of arguments

integer part of num (digits to the left of the decimal)
square root of num, Vnum

absolute value of num, |num |

function arguments

+ 0 or more
1 or more

* 0 or more

/ 1 or more

max 1 or more

min 1 or more

truncate num

sqrt num

abs num

Starting and stopping
Scheme

Interacting with
Scheme

Simple arithmetic
functions

expt
remainder

num power
numl num?2

exponentiation (num raised to power), num?**’
remainder of numl1 when divided by num2

32

Chapter 3: Programming the Computer

Note: the functions - and / take at most two arguments in some implementa-
tions of Scheme. If + and * are called with no arguments, 0 and 1 (the arithmetic
and multiplicative identities) are returned respectively. Given one argument,
they merely return that argument. If given one argument, - returns its negation,
and / returns its reciprocal. When min or max are called with one argument, that
argument is returned. To get a better idea of how these functions work, look at
the following examples:

> (*)
1
> (+)
0

> (+ 3)
3

> (* 4.56)
4.56

> (-3
-3

> (/ 4)
1/4 ; aratio is returned

> (-2 3 4) ;computes 2 -3 -4
-5

> (/ 2 3 4) ;computes2 /3 / 4
1/6 ; ratios are always reduced to lowest terms

> (max -24 8 -3 -62)
8

> (min -24 8 -3 -62)
-62

> (truncate 18.5)
18

> (truncate -8.7)
-8

> (sqrt 49)
7.0

> (expt 2 3)

v

(remainder 5 3)

3.2 Numerical Functions

33

> (remainder 3 4)
3

The last example may be confusing. It involves understanding integer divi-
sion, which requires that the answer be an integer. This is done by truncating the
real division answer. Dividing 3 by 4 gives us 0.75, which when truncated is 0.
This means that we must subtract 0 x 4 from 3, leaving 3; hence, the remainder is
3. If we were to make a diagram of this, it would look like

Orem 3
4| 3
=0

3

3.2.1 Common errors when calling functions
Many types of errors can occur, even at this early stage of learning to program. It
is easy to get frustrated thinking that the machine doesn’t work when an error
message is given. Rather than give up, hit the computer, wish you had never
taken a computer class, or try to get your day job back, it’s best to take a deep
breath and actually read the error message. Not everything in the message may
be helpful, but often you can learn what caused the problem. Since each imple-
mentation of Scheme has its own way of handling error messages, it is impossible
to give all possible errors that you might encounter. The important thing is to be
aware of the types of errors that can arise and be familiar with the error messages
given by your system.

Some of the more common errors that can occur and the reasons they occur
are given below:

e Too many arguments:
This is often caused by having a mistaken understanding of the arguments
that the function takes or forgetting a parenthesis after the last argument.

e Too few arguments:
This can be caused by a mistaken understanding of the arguments that the
function takes or by including an extra parenthesis before the last argument.

e Invalid function name:
This is most often a spelling mistake or simply using the wrong name for a
function (e.g., using power instead of expt).

e Type clash:
A type clash is a mismatch of the value types (e.g., integer or real) that a func-
tion allows. For example, remainder works with integers and not real
numbers.

e No output:
This is most likely due to missing right parentheses. Try entering one or more
right parentheses until you get a response.

Below are examples of these errors.

Integer division and
remainders

Error messages

34 Chapter 3: Programming the Computer

> (abs 3 4)

Error: Too many arguments: (abs 3 4)
> (-)

Error: Too few arguments: (-)

> (power 3 4)
Error: Unbound variable: POWER

> (remainder 3 4.2)
Error: Expected INTEGER

> (+3 (* 4 5)

For this last input, the interpreter will not return a value, nor will it print
another prompt. This is because it is waiting for the second right parenthesis to
end the + function call. As a general rule if you are waiting a long time for a
response, try typing in some right parentheses.

Not all error messages are as readable as those given above. Learning how to
read complex error messages is an important skill; it can save you a great deal of
frustration and wasted time.

3.2.2 Exercises
3.1 What do the function calls below return when typed into the Scheme inter-

preter?

(- 4)

(/ 4)

(+ 4 2 3)
(- 4 2 3)
(- 4 -2 -3)
(/ 24 6 2)
(expt 4 3)

(remainder 7 3)

(remainder 3 7)

3.2 What do the function calls below return? Some of them may produce errors.
(sqrt 9 16)

(sgqrt 9 + 16)
(-2 4)

(*2 3 4)

(+)

(=)

(*)

3.3 The Evaluator 35

(/)
(+ 3)

(remainder 4.2 1.7)

3.2.3 Function composition
Functions can be composed (combined). For example, the price with 6% tax on the
sum of $12.69, $186.34, and $2.74 can be expressed in Scheme as follows:

> (* (+ 12.69 186.34 2.74) 1.06)
213.8762

The three prices are added first, and then their sum is multiplied by 1.06.
Only one value, the product, is returned as the value of the function call. Notice
that the sum is not printed; it is only computed as part of the final multiplication
calculation.

In most instances, wherever an argument is expected, a function call can take
its place. The outermost function is calculated last and its value is printed. This
mechanism will be explained in the next section on the evaluator.

3.3 The Evaluator

Function calls, variables, and numbers all can be entered into the interpreter and
evaluated. The generic name for anything that can be evaluated is an expression.
Another name used instead of expression is s-expression. This stands for symbolic
expression.

We've already written some simple expressions in Scheme. Now let’s get a
better understanding of how Scheme works and learn more about existing
features of the system.

The Scheme evaluator is the heart of every Scheme system. The evaluator gets
your input requests and evaluates them according to the following rules:

e numbers evaluate to themselves
¢ function calls are evaluated in the following manner:
the arguments are evaluated;
if errors occur, an error message is printed;
otherwise,
the function is applied to the evaluated arguments;
the result is returned

Notice that in defining the evaluation of a function, one of the steps is to
evaluate the arguments to the function. Evaluating the arguments allows us to
use function calls as arguments to functions. If Scheme only allowed numbers as
arguments, it could have much simpler evaluation rules. The definition we have
used includes the term it is defining; this is a recursive definition. We examine
recursion in Chapter 6.

Another term to pay attention to in the definition of evaluate is apply. Apply-
ing a function to its evaluated arguments means that the action of the function is
performed on the arguments. This yields a result, which is then returned as the

Composing functions

Expressions and
s-expressions

The workings of the
evaluator

Evaluating arguments

Applying the function

36

Chapter 3: Programming the Computer

value of the function call.

Let's use some examples to see what goes on in the evaluator. Once again, the
user’s input is in italics, the computer’s output is in boldface, and explana-
tions of what the evaluator does is in regular type preceded by semicolons.

> 42 ; numbers evaluate to themselves

42

> -18.4 ; negative and real numbers are numbers too
-18.4

> (+1 2) ; this is a function call, and + is a valid function
3 ;1 evaluatesto1,and 2 to 2

; applying + to 1 and 2 yields 3

> (+ (* 2 3) 4) ; this is a function call, and + is a valid function
10 ; (* 2 3) is the first argument to be evaluated
; * is a valid function
; its arguments 2 and 3 evaluate to 2 and 3
; applying * to 2 and 3 yields 6
; the second argument, 4, evaluates to 4
; lastly, + is applied to 6 and 4, yielding 10

3.3.1 Exercises
3.3 Write out the steps the evaluator takes when evaluating the following func-
tion calls:

(sqrt (+ 9 7))

(* -3 (+ (* 2 3) 4))

3.4 To what do the function calls below evaluate? Some of them may produce
errors.

(+4 (- 3) -2
(+ (- 3) (/ 2))

(+ (* 2 3) (- 8))

3.3.2 Example: Compute your income tax
To compute income tax, assuming a fixed tax rate of 15%, we’ll use the following
formula:

tax = (work-income + interest-income — standard-deduction) x 0.15
— (withholding + tax-credits)

Assume the actual values for this formula are

3.4 Bottom-Up Design 37

work-income $25,174.65
interest-income $132.67
standard-deduction $6,050.00
withholding $3,673.83
tax-credits $125.00

We can write the formula in Scheme in one of two ways. One way is to think
of the exact sequence of steps that must be taken, beginning with the first opera-
tion, then the second, and so on. Alternatively, we may view the computation
more abstractly, beginning with the highest-level operation to be performed, then
continuing with a sequence of refinements leading to simple operations that can
be entered into the interpreter.

These are such common means for problem solving that they have special
names, bottom-up and top-down design, respectively. One approach is not neces-
sarily better than the other for all problems, but for certain problems one
approach may lead to a solution with less mental effort than the other approach
would. Often it is a matter of what works best for the individual programmer.
For complex tasks, both techniques are often used together. We will see examples
of this when we begin writing larger programs.

3.4 Bottom-Up Design

Let’s create a bottom-up solution. We start with the bottommost items, in other
words, with the first actions that must be performed. The first computation is to
determine the taxable income. In Scheme, we would write

> (+ 25174.65 132.67 -6050)
19257.3

Notice that we didn’t use commas when entering numbers. Commas are never
used with numbers in Scheme; however, the decimal point is needed. We entered
a negative number for the standard deduction because it is subtracted from the
two income amounts. Scheme allows a mixture of real numbers and integers.
Next, the tax to pay (tax debit) is the product of the total taxable income and

the tax rate. Recall that the arguments to a function may be function calls them-
selves.

> (* (+ 25174.65 132.67 -6050) 0.15)

2888.6

The next step is to determine the total credits.

> (+ 3673.83 125)
3798.83

Lastly, we subtract the total credits from the total debits.

> (- (* (+ 25174.65 132.67 -6050) 0.15) (+ 3673.83 125))
-910.232

We get $910.23 back!

Design approaches

Specifying numbers in
Scheme

38 Chapter 3: Programming the Computer

Abstraction

Refinement

A bottom-up approach involves building up to the solution, using each step
along the way as part of the next step toward the solution. We did not have to
enter each of these lines into the interpreter. All of the preliminary work could
have been done on paper. The partial results returned at each step could have
been used directly in obtaining the next result, so that the last step could have
been

> (- 2888.6 3798.83)
-910.23

A longer approach was shown so that each step along the way could be seen
and partial results could be generated to confirm that no mistakes (especially
with parentheses) were made along the way.

The parentheses are extremely important. You can’t use extra parentheses to
make it look nicer, or fewer because it already looks too ugly.

3.5 Top-Down Design

Now let’s try the top-down approach. In top-down design, the problem is first
looked at from higher levels beginning with the most abstract definition that can
succinctly describe the solution. In this case, it breaks down to looking at the
amount of tax due as being equivalent to the difference of total debits and total
credits. In other words,

tax-due = total-debits — total-credits

Next, a process of refinement is employed to add more details to the solution.
We need to define total-debits and total-credits. total-debits is the product of
taxable-income and the tax rate, 0.15. total-credits is the sum of withholding and tax-
credits.

tax-debits = taxable-income x 0.15
tax-credits = withholding + tax-credits

We know what all these values are except taxable-income, which is the sum of
work-income and (interest-income minus standard-deduction). In the bottom-up
example above we simply added three values rather than express a sum and a
difference. The same can be done here.

Putting everything together and typing it into the evaluator yields

> (- (* (+ 25174.65 132.67 -6050) 0.15) (+ 3673.83 125))
-910.232

Top-down design starts with an abstract definition of the problem. The final
solution is reached by refining this to the level of Scheme. This approach lets you
ignore the details of the problem at first.

The differences between top-down and bottom-up design and the advantages
of one over another will become more apparent as the problems get more com-
plex. Try out both approaches to develop your understanding of them.

3.5 Top-Down Design 39

3.5.1 Exercises
3.5 What are some of the advantages of bottom-up design?

3.6 What are some of the advantages of top-down design?
3.7 Do you prefer bottom-up or top-down design?

3.8 Develop solutions in Scheme to the problems below. Try using both top-
down and bottom-up approaches.
e Quadratic formula:

—b+Vb? —4ac b—-Vvb?*-4ac
2a

tl= d root2=—
Yoo ana roo 2

wherea=3,b=6,and c=2.

e Distance between two points:

distance = /(x,—x,)* + (y,~y,)?
wherex, =5,x, =—4,y, =-3,and y, = 6.

e Pythagorean theorem:

hypotenuse = Vsidel® +side2*
where sidel = 3.7 and side2 = 5.4.

e Evaluating polynomials:
y=2x>-4x"+8x-2
where x = 6.

3.9 Earthquakes are measured using the Richter scale. Values on the Richter
scale can be translated into seismic energy (in ergs) using the following for-
mula:’

10(1 1.8+ 1.5Richter_value)

Calculate the strength (in ergs) of the 1906 San Francisco earthquake, which
measured approximately 8.25 on the Richter scale.

3.10 Dividing the seismic energies of earthquakes, one finds that an increase of
one unit on the Richter scale corresponds to a 31.6 time increase in seismic
energy. Thus, an earthquake reading 4.4 on the Richter scale is 31.6 times
stronger than a 3.4 earthquake. Another way of looking at this is that it takes
31.6 earthquakes that measure 3.4 on the Richter scale to equal one 4.4

% This formula comes from Bruce A. Bolt’s book, Earthquakes.

40 Chapter 3: Programming the Computer

define

Binding values to
variables

Evaluator rules for
variables
Unbound variables

earthquake in seismic energy.
Compute the number of 5.0 earthquakes it takes to equal one 8.25 earth-
quake. The formula to compute the order of magnitude difference in seismic
energy between two earthquakes is:

31 .6(big_quake - small_quake)

3.11 Compute the time it would take to reach the moon if you could drive
straight there at 130 kilometers per hour. The moon is 384,000 kilometers
from the Earth. Assume that you don’t need to stop for gas along the way.

3.12 Compute the time it would take to walk around the Earth along the equator.
The Earth is 12,640 kilometers in diameter and the circumference of a sphere
is the diameter times ©, which is approximately 3.1416. Assume an average
walking speed of 3 kilometers per hour and that it is possible to walk
around the Earth.

3.6 Variables

In a calculator, the memory key stores a value that can be retrieved. In computer
programming, it is useful to have many such memory keys; they are called vari-
ables. To keep track of which variable holds which value, each must be named in
some fashion. You can create a virtually unlimited number of variables’

To create a variable, use define. It takes a variable name and its value as
arguments. For example, to create a variable called tax-rate with value 0.15, use

> (define tax-rate 0.15)
??

define binds a variable to a value. Binding associates a value with a variable
so that the value can be referenced by name using the variable name. define
returns an undefined value, which is shown as 2?2 in this text. Your version of
Scheme may return a different value. Some Scheme interpreters return the vari-
able name.
Once a variable has been defined, its value can be retrieved by simply enter-
ing the name of the variable.
> tax-rate
0.15

This extends our definition of the evaluator to include that variables evaluate to
their current bound values.

If an unbound variable is evaluated, an error message will occur. It may look
like

% The limitation here is implementation dependent. It depends on such factors as available memory
on the computer, and the implementor’s design decisions and whims.

3.6 Variables 41

> taxrate

Error: Unbound variable: taxrate

Your version of Scheme may print undefined variable or some similar mes-
sage.

Mistakes to Avoid
Undefined variable errors are fairly common. If you don’t understand
why an error message was given, be sure to check the spelling of the
variable you are trying to evaluate as well as the call to define used to
create it. Chances are you misspelled the variable in one of those
instances.

It is possible to rebind a variable. This is convenient if you bound it to the
wrong value beforehand or want to change the value to get different results. The
define above bound tax-rate to 0.15. We can change this binding as follows:

> (define tax-rate 0.10)
?2?

> tax-rate
0.10

In this case, 0.10 is returned. Each successive define to the same variable
rebinds that variable!

To get the negative of a variable’s value you cannot simply put a - in front of
the variable name to make it negative. Instead, use the function - with your vari-
able as in: (- debt). The examples below illustrate what happens:

> (define debt 49)
?2?

> -debt

Error: Unbound variable: -debt

> - debt
<Procedure: ->
49

> (- debt)
-49

> debt
49

* The preferred way to change a variable that has already been defined is using the function set!.
For example:

(set! tax-rate 0.10)

Redefining variables

Negating variables

92 Chapter 3: Programming the Computer

Rules for symbol
names

Case insensitive

Keywords

Choosing variable
names

How variables are
evaluated

3.6.1 Symbol and variable names
Symbols are the names of variables. Symbol names can be made up of upper- or
lower-case letters, numbers, and any of the characters given below:

+ - * / $ % ~ & = < > - . 1 2

Scheme is case insensitive; it treats upper- and lower-case characters in sym-
bols as the same. Therefore, the names foo, F00, and Foo all refer to the same
symbol. A symbol name cannot begin with a number or a period. For example,
1000Omaniacs, 3.1l4pies, and .5bite are not valid symbol names. However,
all10000maniacs, three.l4pies, and half-a-bite are legal symbol names.

A keyword is a symbol that has a special meaning in Scheme; a keyword can-
not be used as a variable name. Examples of keywords are define, and, or,
begin, case, cond, if, else, delay, do, lambda, let, quote, and unquote. There
are a few others, but they are not English words.

It is best to use meaningful variable names, rather than one-letter names or
names that do not explain what the variable represents. Such mnemonic names
help make your Scheme code more readable and understandable. Here are some
examples of good mnemonic names:

> (define sum-of-squares (+ (expt 3 2) (expt 4 2)))
??

> (define length-of-hypotenuse (sqrt sum-of-squares))
?2?

> (define the-ultimate-answer 42)
??

Mistakes to Avoid
Some beginning Scheme programmers may think that each time a

variable is evaluated, the value to which it is bound must be recalcu-
lated. For example, if you view length-of -hypotenuse above as having
the value (sqrt sum-of-squares) instead of 5.0, then you might
believe that each time length-of-hypotenuse is evaluated, (sqrt
sum-of -squares) is recomputed. This is not the case. length-of-
hypotenuse is bound to 5.0. Each time length-of-hypotenuse is
evaluated, 5.0 is returned regardless of what happens to sum-of-
squares; no other calculations are necessary. To see this, imagine that
the definition of sum-of-squares were changed. The variable 1ength-
of -hypotenuse would maintain its value.

> (define sum-of-squares (+ (expt 6 2) (expt 8 2)))

??

> length-of-hypotenuse
5.0

3.7 User-Defined Functions 43

Sometimes it is desirable to have a result that changes based on a variable’s
value. This can be accomplished by writing functions.

3.7 User-Defined Functions

Until now, we’ve used the built-in functions of Scheme. There are around a hun-
dred built-in functions, but often it is desirable to create our own functions. By
creating functions, we in effect extend the language to allow new tasks to be per-
formed easily. Later, more abstract and sophisticated functions can be built upon
these newly defined functions. This building up to sophisticated functions pro-
vides a convenient means of solving large, difficult programming tasks.

Another motivation for creating functions is to save a great deal of extra typ-
ing. As an example, let’s revisit the tax formula

tax = (work-income + interest-income — standard-deduction) x 0.15
— (withholding + tax-credits)

Without having a function to perform this task, each time we would have to
enter

(- (* (+ work-income interest-income (- standard-deduction)) 0.15)
(+ withholding tax-credits))

where work-income, interest-income, standard-deduction, withholding,
and tax-credits are replaced by their actual values.

If there were a function, tax-amount, that took our amounts as arguments
and computed the tax, we could write

(tax-amount work-income interest-income standard-deduction
withholding tax-credits)

wherever we wished the tax to be computed, again substituting the real values in
place of the variable names above.

Using functions not only saves a great deal of typing, it reduces the potential
for errors and makes the program more readable and understandable. Someone
can read the code and surmise that a tax amount is being computed. If uncertain,
the reader can always examine the comment or code in the function tax-amount
itself. Using mnemonic, meaningful function names further clarifies your pro-
grams. Calling the above function t or c-t would not be as understandable as
naming it tax-amount.

Functions are defined using a variation of define. This variation needs three
items: the name of the function being defined, the names of the parameters of the
function, and the body of the function. The body consists of the action(s) that the
function is to perform and specifies what the function will return when invoked
(called). Parameters are names that correspond to the arguments given in a call to
the function. The names of the parameters are the names by which these argu-
ment values are referenced inside the body of the function. Another way of say-
ing this is that parameters are place holders for argument values.

Another analogy comes from the sequences presented in Chapter 2. The com-
mand memorize performs the same task for robot commands as define does for

Motivation for creating
functions

Defining functions and
function parameters

14 Chapter 3: Programming the Computer

define Syntax

Evaluating function
calls

Scheme expressions. perform is used to call memorized sequences with argu-
ments that are passed to parameters. The same thing happens when a Scheme
function is called. The arguments are evaluated and their values are passed to the
parameters, binding the parameters to the evaluated argument values.

The general form of a define for functions is

(define (function-name parameter-list)

body |)

where parameter-list is zero or more symbols (naming parameters) and body is one
Or more expressions.

In a define, the first argument consists of the function name and the parame-
ter names enclosed in parentheses. The remaining arguments make up the body
of the function.

To illustrate definitions and invocations of functions, we’ll define a simpler
function that computes the square of a value. To begin, the number of parameters
and their meaning should be made explicit, as well as what the function does and
what it returns. This function, called square, will have one parameter, called
number; it represents the value we wish to square. This result is the return value
of square.

The definition of square along with a brief comment describing the function
follows:

; Return the square of a number.
(define (square number)
(* number number))

When you type this into the interpreter, the return value is undefined.

When a function is called, each expression in the body of the function is
evaluated. The return value is the evaluated result of the last expression. In the
case of square, there is only one expression defining the body:

(* number number)

This expression is evaluated and that result is the return value of the function
call.
An example function call to square is
> (square 3)
9
The number 3 is the argument that is sent to the function. It is evaluated
before that function uses it. This result, 3, is the value to which the parameter
number is bound. Next, the body of the function is evaluated using the new bind-
ing of number. Hence, when

(* number number)

is evaluated, number evaluates to 3 and * is applied to 3 and 3. This results in 9,
which is the return value of the function call, and is what the interpreter prints.
The call

(square (+ 1 2))

3.7 User-Defined Functions 45

also results in 9. The argument (+ 1 2) evaluates to 3, so number is bound to 3.
The rest of the evaluation is the same as in the example above.

Mistakes to Avoid
Don’t confuse function definitions with function calls (invocations). To
define (create) a function, use define. To call (invoke) a function,
enclose the name of the function and the arguments in parentheses.

Mistakes to Avoid Function definitions
Don’t confuse function definitions with variable definitions. versus variable
(define (length-of-hypotenuse) (sqrt sum-of-squares)) definitions

is a function definition. To get the length, use (length-of-
hypotenuse). The answer depends on the current value of sum-of-
squares. Contrast that with the following:

(define length-of-hypotenuse (sqrt sum-of-squares))
This define sets the variable 1ength-of-hypotenuse. To access that
value later, use length-of-hypotenuse. The return value is based on

the value sum-of-squares had when the define was made. This was
illustrated previously at the end of section 3.6, "Variables."

Mistakes to Avoid
When defining functions, be sure to enclose the function name and all
the parameter names in one set of parentheses. The function sum-abs,
which takes two numbers and returns the sum of their absolute values,
would be written as:

(define (sum-abs numl num2) ; proper heading
(+ (abs numl) (abs num2)))
not as:
(define sum-abs (numl num2) ; improper heading

(+ (abs numl) (abs num2)))

The function and parameter names in a function definition look like
function calls in terms of the placement of the parentheses and the
number of items. For example, to find the sum of the absolute values of
-3 and 4, we would write (sum-abs -3 4). This has the same form as
the function definition (sum-abs numl num2).

The next example shows the function definition for the tax problem presented
previously. Recall that the three elements needed for a function definition are

46 Chapter 3: Programming the Computer

the name of the function
the parameter list
the body of the function

The name of the function is tax-amount. The parameter list contains names for
the numbers needed, as shown below:

work-income income from jobs

interest-income income from interest

standard-deduction standard deduction

withholding withholding tax already paid

tax-credits any credits to be deducted from the tax to pay

The body of the function looks like

(- (* (+ work-income interest-income (- standard-deduction))
0.15)
(+ withholding tax-credits))

The entire function is

; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
withholding tax-credits)
(- (* (+ work-income interest-income (- standard-deduction))
0.15)
(+ withholding tax-credits)))

To invoke this new function with the values below

work-income $25,174.65
interest-income $132.67
standard-deduction $6,050.00
withholding $3,673.83
tax-credits $125.00

use the function call
(tax-amount 25174.65 132.67 6050.00 3673.83 125.00)

The parameters in the function definition are bound to the values of the argu-
ments in the function call. These bindings are shown below:

parameter is bound to
work-income 25174.65
interest-income 132.67
standard-deduction 6050.00
withholding 3673.83
tax-credits 125.00

Using these bindings, what gets computed is
(- (* (+ 25174.65 132.67 (- 6050)) 0.15) (+ 3673.83 125))
The result of the above computation is ~910.232.

3.7 User-Defined Functions

47

User-defined functions can be used within other user-defined functions, as
long as the functions are defined before they are invoked. In other words, before a
call to a function can be made, both the function and all functions used within it
must be defined. If tax-amount calls another function (say tax-rate, to compute
a tax rate based on the income), both tax-rate and tax-amount would have to
be defined before tax-amount can be called. The order in which functions are
defined is not important aside from this restriction. Thus, tax-amount can be
defined before any of the functions that it calls are defined’ We will take advan-
tage of this fact throughout this book, especially when using top-down design.

Let’s illustrate this with a concrete example. Suppose we wanted to build a
more complex tax model in which the taxable income is taxed at different levels
depending on the amount of income. The first $20,000 is taxed at 15%. The next
$30,000 at 25%, and anything above $50,000 is taxed at 50%. It seems like we need
some way of making decisions to solve this problem, but we can write this func-
tion using max and min.

Let’s look at this problem in a top-down fashion. The idea is to add up three
products. Each product is the amount of income in a particular tax bracket (e.g.,
$20,000-$50,000) times the tax rate for that bracket. The amount of income in the
lowest bracket ($20,000 or less) is the minimum of the income and 20,000.

(min income 20000)

The income in the $20,000-$50,000 bracket is more complicated to compute. The
calculation

(min income 50000)

returns a maximum of 50,000. Subtracting 20,000 from this gives the income over
$20,000. But what if the income is less than $20,000? We would get a negative
amount To remedy this we can take the maximum of the difference we just com-
puted and zero. The entire calculation is

(max (-~ (min income 50000) 20000) 0)

The remaining value is the income above $50,000. We don’t need to worry about
a limit on the income; the only concern is that there is income over $50,000. Sub-
tracting 50,000 from the income and taking the maximum of that difference and
zero gives us the desired value:

(max (- income 50000) 0)
Now that we have determined how to compute the amounts in the three
brackets, we must multiply each by the corresponding tax rate and add up the

three products to get a total tax amount. This will be the body of our function.
The function has a single parameter, the taxable income:

* In some programming languages this is not allowed—whenever a function is called or used within

another function, it must be defined beforehand. Such a language would require tax-rate to be
defined before tax-amount.

" This would give a negative tax reducing the total tax we must pay. A novel plan to help low-
income people, but something the government would surely object to.

Order of function
definitions

Tax brackets

48 Chapter 3: Programming the Computer

; Compute tax based on three income brackets.
(define (tax-rate income)
(+ (* (min income 20000) 0.15)
(* (max (- (min income 50000) 20000) 0) 0.25)
(* (max (- income 50000) 0) 0.5)))

Here are some example calls to show that this function works:

> (tax-rate 10000)
1500.0

> (tax-rate 20000)
3000.0

> (tax-rate 30000)
5500.0

> (tax-rate 50000)
10500.0

> (tax-rate 80000)
25500.0
The final step is to modify tax-amount to use tax-rate. Here is the new ver-
sion:
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
withholding tax-credits)
(- (tax-rate
(+ work-income interest-income (- standard-deduction)))
(+ withholding tax-credits)))

The tax on our old figures is now

> (tax-amount 25174.65 132.67 6050.00 3673.83 125.00)
-910.232

This is the same amount we got with the previous function. Notice, however, that
the taxable income is less than $20,000, so it is taxed at 15%.

3.8 Scope and Extent
Each time square is called, its parameter number is bound to the value of the
argument. When square returns, number is no longer defined. To illustrate this,
observe the following example:

> (square 4)

16

> number
Undefined variable - number

We have previously seen that by creating a variable with define, that variable

can be later accessed. However, in the above case, number cannot be accessed
outside of the function.

3.9 Shadowing 49

Two important aspects of a variable must be understood: its scope and its
extent. The scope of a variable refers to that part of the program in which a vari-
able may be accessed; its extent refers to the times during the execution of a pro-
gram when a variable may be accessed. In simpler terms, scope is where a vari-
able can be used, and extent is when a variable can be used.

We have seen two types of variables: global variables and parameters. The vari-
able tax-rate used in section 3.6, "Variables", is an example of a global variable.
It was created by calling define, as shown below:

> (define tax-rate 0.15)
??

Global variables can be accessed anywhere or any time after they have been
created. The scope of a global variable is the part of the program after the point
of its creation. The extent of a global variable is any time after its creation while
the interpreter is still active.

Parameters are created when a function is defined and can be accessed only
within the body of that function. They have a more limited scope, namely the
body of the function. The extent of a parameter is not limited to the time that the
function is being invoked. However, accessing a parameter outside the normal
call to that function is a somewhat tricky process. It will be covered in Chapter
11, when lexical closures are introduced. To simplify the picture without creating
a false story, we’ll concern ourselves with scope only. Thus, the reason why the
variable number could not be accessed in the previous example is that its scope is
the body of the function square. Therefore, it cannot be accessed outside of the
body of the function.

3.9 Shadowing

Shadowing also affects the scope of variables. Global variables with the same
name always refer to the same variable and its one current binding. In Scheme, if
the same name is used for a global variable and a function parameter, then that
name refers to different variables and they each have their own unique bindings.
Look at the example below to get a better understanding of the implications of
this.

> (define number 4) ; number is a global variable
?2?
> number ; access the global variable number
4
> (define (double number) ; number is a parameter
(* 2 number))
?2?

> (double 7)
14

Scope and extent of
global variables

Scope and extent of
parameters

50 Chapter 3: Programming the Computer

Precedence of
parameters over
global variables

Functions taking no
arguments

Shadowing of
functions

> number ; access the global variable number
4

The first two expressions, (define number 4) and number, refer to the global
variable number. The third expression, a function definition, refers to number as a
parameter. When the function is called with (double 7), the parameter number
is bound to 7. The body of the function evaluates to 14, which is the return value
of the function. The last expression, number, returns the value of the global vari-
able number, which is still 4. There is no way in this example to access the param-
eter number from outside the function double. This is what scope defines.

How was it that Scheme decided to use the parameter number within the
function and not the global variable number? Within functions, parameters take
precedence over global variables with the same name. This is what is meant by
shadowing. The parameter number shadows the global variable number inside the
function double.

If number had not been defined as a parameter in double, then the following
would have happened:

> number ; access the global variable number (still 4)
4
> (define (new-double) ; a function with no arguments
(* 2 number)) ; use the global variable number
??

> (new-double)
8

> number ; access the global variable number
4

Notice that new-double has no parameters. To create a function that takes no
arguments, simply put a right parenthesis after the function name in the
definition. A call to a function taking no arguments is made by enclosing the
function name within parentheses.

In this example, number refers to the global variable throughout. When new-
double is called, the global variable number is used, so 8 is returned.

Typically, shadowing is the effect that is desired; in other words, the
parameter’s value is the desired one and not a global variable with the same
name. However, be careful when choosing parameter names not to use the name
of a Scheme function. Look at what happens in the following example, which
computes the difference between the largest and smallest of three numbers with
the constraint that they must be between a certain minimum and maximum
threshold range. To get the largest number we use the function max. Calling max
with the minimum threshold value in addition to the three numbers assures that
the numbers aren’t too small. Otherwise, the minimum threshold value is
returned. The same is done in finding the minimum value.

3.10 Programming Style 51

; Return difference between the largest and smallest of three
; numbers within the range min to max.
(define (difference numl num2 num3 min max)

(- (max numl num2 num3 min) (min numl num2 num3 max)))

> (difference 24 13 20 0 100)
Error: Operator is not a function

This tells us that one of the functions we used was not legal. One version of
Scheme gave the following error message:

Wrong type to apply: 100

This is a rather confusing error message. It sounds like a type clash—100 is used,
but some other type (noninteger) is expected. The error also mentions "apply."
Functions are applied, so the error message means that the wrong type was given
when a function was expected.

At a first glance the code looks okay; however, we are using min and max as
parameters. Just as parameters shadow global variables, they shadow functions.
Instead of using the function max, we wound up using the number 100 as a func-
tion. This caused the error.

Mistakes to Avoid
Be sure not to use parameter names that are also function names.

3.10 Programming Style

Before continuing with further examples of function definitions, the issue of good
programming practice should be discussed. The examples given throughout this
book will adhere to "good" programming practice. This is measured by readabil-
ity, modifiability, conciseness, robustness, and other factors. A common
programming-style error occurs when misusing define. Below is such an exam-
ple:

; Redefine number to be twice as large.

(define (bad-double)

(define number (* 2 number)))

The violation is in the use of define in the function bad-double. The define
has a side-effect of making a change elsewhere in the program: the value of the
global variable number is changed. If this weren't expected, for example, if new-
double had been written by someone else, and you were not aware of this partic-
ular side-effect, then tracking down the cause of the change in number’s value
could be a difficult task, especially if the program involved was lengthy.

If bad-double had been written with number as a parameter, only that param-
eter would have changed. The global variable number would not have changed
since it would have been shadowed by the parameter number, and there would be
no effect outside of the function. This is relatively harmless. However, if all we

Good programming
practices

Problems with define
inside functions

52

Chapter 3: Programming the Computer

want is a function that doubles its argument, the first version of the function,
double on page 49, is the preferred one.
As a simple rule to avoid problems, remember the following;:

Don’t use define within functions.

3.10.1 Exercises
3.13 Write a function that takes three numbers and returns their average.

3.14 Write a function that takes five numbers and returns the average of the mid-
dle three (dropping the highest and lowest values).

3.15 Write a function that returns the result of converting a temperature in Fahr-
enheit to its equivalent in Celsius. Use the formula

Celsius = (Fahrenheit —32) x 5/9.

3.16 Write a function that returns the result of converting a temperature in Cel-
sius to Fahrenheit. See the previous problem for the Fahrenheit to Celsius
formula.

3.17 Chinese years correspond to animals in a twelve-year cycle. Write a function
that returns the next year of the dragon. To compute this year you will need
to know a previous year of the dragon. 1964, 1976, and 1988 were all previ-
ous years of the dragon. Your function will take one previous year of the
dragon and the current year as arguments. Write your function so that it
does not matter with which previous year of the dragon you call it.

3.18 Assume you have calculated your spending by how much you typically
spend daily (food and daily needs), weekly (transportation costs, entertain-
ment, etc.), and monthly (rent, loans, credit cards, etc.). Write a function to
compute your annual spending. Your function should have three parame-
ters corresponding to the three spending amounts.

3.19 Write a function that computes how many years you could live on a quan-
tity of money. This quantity will be the one parameter of this function. You
should use the function you defined in the previous problem to solve this
problem.

3.20 One Thai Baht is worth about 4 U.S. cents. Write a function that takes an
amount in Baht and converts it into dollars. How expensive is a 400 Baht
shirt? How many dollars are there to one Baht?

3.11 Using 1et to Create Local Variables 53

3.11 Using 1et to Create Local Variables

Parameters are one way to create variables that have limited scope—the body of
the function in which they are defined. 1et expressions are another means of
creating variables with limited scope. Such variables are often called local vari-
ables, because their scope is local to a certain part of the program. 1et expressions
are often used within functions to create additional local variables. As an exam-
ple, recall the tax computation presented earlier in this chapter. In the top-down
solution, the tax amount was

(- total-debits total-credits)
This eventually led to the complete solution given below:

; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
withholding tax-credits)
(- (* (+ work-income interest-income (- standard-deduction))
0.15)
(+ withholding tax-credits)))

This solution is not as readable as the first step in the top-down approach above.
We could make the function more readable by using the variables total-debits
and total-credits, and somehow binding them to the proper values. These
variables act as abbreviations for the values that they hold. The variables must be
bound within the function because they get their values

(* (+ work-income interest-income (- standard-deduction)) 0.15)

and
(+ withholding tax-credits)

from the parameters, work-income, interest-income, standard-deduction,
withholding, and tax-credits of the function.

Using a define within the function violates the principle of programming
style discussed in the previous section, namely another global variable with that
same name would lose its binding. To get around this problem, a 1et expression
is used.

The general form of 1et is as follows:

(let ((variable-1 value-1)
(variable-2 value-2)

(variable-N value-N))

body |)

The first argument to let is a list of variable-value pairs. Each of these pairs con-
sists of a variable name and a value (some expression) for that variable. The body
of the 1et is like the body of a function—it can be any number of expressions and
the value returned by the 1et is the return value of the last expression.

The variables defined in the let can be used only within the body of the
let—their scope is the body of the let. let variables shadow global variables
and parameters defined outside of the let.

Local variables

let Syntax

Variable-value pairs

Scoping of 1et
variables

54 Chapter 3: Programming the Computer

Evaluation rules for A 1let expression is evaluated as follows. The values (value-1 ... value-N) are

let evaluated (in some undefined order) and the results are saved. The local vari-
ables (variable-1 ... variable-N) are then bound to the saved results. The expres-
sions in the body of the let are evaluated and the result of the final expression is
returned.

Mistakes to Avoid
Since a let expression evaluates the values (value-1 ... value-N) first
and then binds the variables (variable-1 ... variable-N) to those results, the
values should not refer to other variables defined within the 1et. In
other words, the variables in a 1let are valid only within the body of the
let.

The new function to compute the tax is

; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
withholding tax-credits)
(let ((total-debits (* (+ work-income interest-income
(- standard-deduction))
0.15))
(total-credits (+ withholding tax-credits)))
(- total-debits total-credits)))

The values

(* (+ work-income interest-income (- standard-deduction)) 0.15)
and
(+ withholding tax-credits)

are evaluated and then total-debits and total-credits are bound to the
results. The expression

(- total-debits total-credits)

makes up the entire body of the 1et. Its return value is the return value of the
let.

You could add the variable taxable-income to represent the sum of the work
and interest incomes minus the standard deduction. This would reflect the
thought process of the bottom-up design of the code, namely

Determine the taxable income.

Determine the total debits by multiplying the taxable income by the tax rate.
Determine the total credits.

Subtract the total credits from the total debits.

The new 1et would be

3.11 Using 1et to Create Local Variables 55

(let ((taxable-income (+ work-income interest-income
(- standard-deduction)))
(total-debits (* taxable-income 0.15))
(total-credits (+ withholding tax-credits)))
(- total-debits total-credits))

Evaluating this code produces an undefined variable error message indicating
that taxable-income is undefined. This is because variables defined in a 1et can-
not be used as values that define subsequent variables in a 1let. The variable-
value pair that causes this problem is

(total-debits (* taxable-income 0.15))

To get around this difficulty, Scheme provides a variant of let called let*.
let* evaluates the values of the variable-value pairs one at a time like 1et; how-
ever, let* binds each variable to its corresponding value, once that value is
determined, then proceeds to the next variable-value pair. Therefore, the expres-
sions that represent the values of variables can refer to variables previously
defined within the variable-value pair list.

Below is a working version of the function tax-amount, using let*:

; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
withholding tax-credits)
(let* ((taxable-income (+ work-income interest-income
(- standard-deduction)))
(total-debits (* taxable-income 0.15))
(total-credits (+ withholding tax-credits)))
(- total-debits total-credits)))

This solution is closer to an imperative approach to programming in which par-
tial results leading to a solution are saved in variables, which are combined to
yield a final result. This approach has the advantage in this case of being some-
what more readable than the original definition of tax-amount given at the start
of this section. The disadvantage is that this new solution is somewhat longer.
However, in a tradeoff between readability and length of code, you should favor
readability.

In general, 1et and 1et* expressions should be used

e To make a function more readable by breaking the final result into partial
computations with results saved in mnemonic variable names.

e To avoid computing the same values several times within a function.

e To save values that cannot be recomputed (for example, calls to read or ran-
dom)’

7 The function read gets a value from the user—it is discussed in Chapter 9. random is used to
generate random numbers—it is discussed in Chapter 4.

Using 1et= to
reference previously
defined local variables

Imperative
programming

When to use 1et and
let*

56

Chapter 3: Programming the Computer

Mistakes to Avoid
Forgetting the parentheses around the variable-value pairs of a let
expression is a very common syntactical mistake. This is easily done
when there is a single variable-value pair as the example below shows.
(let (number 16) ; improper code
(sqrt number))

To fix this code, another set of parentheses is needed around the
variable-value pair.

(let ((number 16)) ; correct code
(sqgrt number))

3.11.1 Exercises

3.21

3.22

Write a function that takes a single number that represents a century. Your
function should return the year in that century that is a palindrome—
something that reads the same forward as it does backward. For example
given 20, your function should return 1991. Use a 1et or let* expression in
your solution. Does your function work for centuries beyond the 101st?
What about the first century?

The function piggy-bank takes a number that represents how many pennies
we have. It should return the equivalent number of quarters, nickels, and
pennies as a number where the last digit is the number of pennies, the
second to last digit is the number of nickels, and the first digits are the
number of quarters. The amounts of quarters and nickels should be maxim-
ized (i.e., there shouldn’t be more than 4 nickels or 4 pennies in the answer).
(piggy-bank 42) should return 132
(define (piggy-bank pennies)
(let ((quarters (truncate (/ pennies 25)))
(nickels (truncate (/ pennies 5)))
(left-over-pennies (remainder pennies 1)))
(+ (* quarters 100) (* nickels 10) left-over-pennies)))

What does piggy-bank return when called with 42? If this is the wrong

answer, fix piggy-bank but keep as much of the structure of the program as
possible.

3.12 Writing Styles

The

code examples in this text follow one particular style. There are many other

styles. Discussions about which programming styles and languages are the best
often turn into religious arguments, in which the parties argue furiously over the
merits of their style or language. People have debated over issues as trivial as
whether one should indent three spaces or four. No one style is the "right" style.

3.13 Summary

57

You should choose a style that is the most readable to you and use it consistently.
Here are some possibilities:
(define (this-books-style argl arg2)
(let ((varl valuel)
(var2 value2))
(+ (some-very-long-function with lots of arguments)

3)))

(define (line-up-parens-style2 argl arg2)
(let ((varl valuel)
(var2 value2)

)
(+ (some-very-long-function with lots of arguments)
3

)

)

(define
(arguments-on-lines-below-style argl arg2)
(let

((varl valuel)
(var2 value2))
(+
(some-very-long-function
with
lots
of
arguments)

31

3.13 Summary

e Function calls are made by enclosing the function name followed by the argu-
ments to the function in parentheses.

¢ Bottom-up design is a means of solving problems in which you begin with the
small details that must be computed first. These first computations will be the
innermost arguments of the final Scheme expression.

e Top-down design, another means of problem solving, entails thinking of the
problem in abstract terms and then refining these terms to Scheme functions.
This approach results in the creation of Scheme code in much the same order
as it is written in the final solution.

e Numbers evaluate to themselves.

e Variables evaluate to the values to which they are currently bound.

e Function calls are evaluated by first evaluating the arguments. Then the func-
tion is applied to the evaluated arguments and the result is displayed. If the
function is not builtin or defined previously, an error message is printed.

58 Chapter 3: Programming the Computer

e Variables are bound to values using define.
Functions are defined using define.
The scope of a variable is the part of the program in which the variable is
defined.

e The scope of a global variable is from its creation point to the end of the pro-
gram.

e The scope of a parameter is the body of the function in which it is defined.
Extent is the time during the execution of a program in which a variable is
defined.

e Shadowing occurs when a parameter’s scope supersedes the scope of a global
variable with the same name.

e let and let* expressions can be used to create local variables. Creating such
variables can make a program more readable since they provide names for
partial results in the final computation. The scope of a 1et variable is the body
of the 1let or let*. A let variable shadows parameters and global variables
of the same name defined outside the 1et or 1et* expression.

e Summary of functions introduced in this chapter:

function arguments return value

+ 0 or more sum of arguments

- 1 or more difference of arguments in left to right order
* 0 or more product of arguments

/ 1 or more quotient of arguments in left to right order
max 1 or more maximum of arguments

min 1 or more minimum of arguments

truncate num integer part of num (digits to the left of the decimal)
sqrt num square root of num, Vnum

abs num absolute value of num, |num |

expt num power exponentiation (num raised to power), num?

remainder numlnum2 remainder of numl when divided by num?2
e Summary of other objects introduced in this chapter:

object arguments return value

define variable value binds variable to value

define (function params) body creates function

let var-value-pairs body binds vars to values and evaluate body

let* var-value-pairs body binds vars to values in order and evaluate body

e The syntax of define for function definitions is as follows:
(define (function-name parameter-list)

body |)

3.13 Summary 59

e The syntax of 1et and 1et* is as follows:

(let ((variable-1 value-1)
(variable-2 value-2)

(variable-N value-N))

body |)

CHAPTER 4

LISTS:
THE BASIC DATA STRUCTURE

4.1 Listsin Scheme

Information stored within a computer system is called data. The types of data we
have seen are numbers and symbols. Collectively, these are called atoms.

When a collection of data is organized in some fashion, it is referred to as a
data structure. The fundamental data structure used in Scheme is the list. A list
specifies an ordered collection of information. Lists are written in Scheme as a
left parenthesis followed by the information desired in the list and closed with a
right parenthesis. The list of even numbers between 1 and 7 is written in Scheme
as

(2 4 6)

The numbers 2, 4, and 6 are the elements of the list. The order of the elements
within the list is important; the lists (6 4 2) and (2 4 6) are different.

The elements of a list can be any atoms (numbers or symbols) or lists. The fol-
lowing lists are all legal within Scheme:

list contains
(are you my mother) four elements, all symbols

(4 score and 7 years ago) six elements, all atoms

O no elements, an empty list

((a bc) (12 3)) two elements, both lists of three elements
(() 18.54 1/2 ((3))) four elements: two lists and two numbers
(sqrt 4) two elements: a symbol and a number

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Atoms

Data structures and
lists

Elements of lists

62 Chapter 4: Lists: The Basic Data Structure

Sublist

Function calls versus
lists as data

quote

A list that is an element of a list is a sublist. In section 4.4 we look at the advan-
tages of lists of sublists.

The list (sqrt 4) has two elements: the symbol sqrt, which is the name of a
built-in Scheme function, and the number 4. We have been using lists to make
function calls all along. This brings up an interesting dilemma. How do we dif-
ferentiate function calls from lists of information? After all, in Scheme they look
the same. However, if you were to enter a list that was not a valid function call,
you would see something like the following:

> (a b c)
Error: Unbound variable: a

4.2 Stopping Evaluation with quote

To force the evaluator not to evaluate a list as a function call, use quote, as in
> (quote (a b c))
(abc)

quote takes one expression and returns it. Therefore, it prevents the evalua-
tion of its argument. This is the case even if the argument is a list that looks like a
function call:

> (quote (+ 2 3))

(+ 2 3)

quote is used so often that a special shorthand (the

> '(+ 2 3)

(+ 2 3)
This notation is functionally equivalent to (quote (+ 2 3)). It saves a lot of typ-
ing and helps reduce the number of parentheses, which is always a blessing in
Scheme!

A common mistake is to overquote lists. Since quote stops the evaluation of
its one argument, it is not necessary to quote lists within other quoted lists as in
the following example’

> '(’(a bc) (12 3))
("(abc) (1 23))
Notice how this differs from

> ‘((abc) (12 3))
((abc) (1L 2 3))

The empty list must be quoted as well.

"oy n

symbol) exists for it.

! Scheme is a dialect of Lisp, which has been facetiously referred to as standing for Lots of Irritating
Single Parentheses.

2 Your version of Scheme may return the function quote instead of the shorthan
This would produce the return value ((quote (a b c)) (quote (1 2 3))).

"wo,on

as shown.

4.3 Special Forms

63

> ()
)

As we have already seen, typing the name of a variable into the interpreter
returns the value to which the variable is currently bound. Sometimes we wish to
refer to the variable name, and not its value. In this case, we are interested in the
symbol itself, so we quote it:

> (quote num)
num

The " ' " shorthand can be used, as in

> ’‘num
num

Mistakes to Avoid
Don’t quote variables that you wish to bind using de fine. For example,

(define ’'value 2112)

results in an error. define does not evaluate its first argument. The next
section discusses the cases when the normal evaluation rules are not
used.

4.3 Special Forms

quote simply returns its argument. Yet how does this argument escape from the
normal evaluation that happens to arguments of functions? Applying the rules of
function evaluation to the example above, the argument num must be evaluated
before quote is applied to it. This evaluation should result in the value to which
nun is currently bound. quote would then be applied to that value.

The normal evaluation mechanism is not used for quote. Instead, the argu-
ment to quote is not evaluated but simply returned. Objects that look like func-
tions but do not obey the normal evaluation rules are called special forms. As you
can guess, quote is a special form. Special forms are not functions.

For each special form, the evaluator has a rule for how it should be evaluated.
One of the goals of Scheme is to minimize the number of special forms. We have
encountered four special forms already: define, let, let*, and quote.

4.3.1 Exercises
4.1 Why are define, let, and let* implemented as special forms instead of
regular functions?

4.2 Which arguments to define and let are evaluated and which arguments
are not evaluated?

Special forms use
special evaluation
rules

64 Chapter 4: Lists: The Basic Data Structure

Nested lists

4.3 What do the following expressions evaluate to? Some of them may produce
errors. Test your answers on the computer.

"'(a b c)
(‘a 'b 'c)
/(/a 'b C)

(quote a (1 2))
(quote ' (1 2))

()
((+ 1 2))

4.4 Using Lists as Data Structures
Lists can be used to represent sets of values such as the prime numbers less than
10:

(12357)

Lists can represent more complex data structures, like an address:
((John Doe)
(14 Main Street)
(Anytown Anystate 12345))

This structure uses nested lists (lists that contain lists as elements) to break up the
address into three parts: name, street, and city-town-zip. It need not be entered
into the computer on multiple lines as shown; this is merely for readability.

Nested lists provide a natural way of organizing data, or creating hierarchies.
Suppose you want a list of the titles of your compact disk collection. You could
create a large non-nested structure like

(Rolling_Stones Its_Only_Rock_and_Roll Pat_Metheny First_Circle
Rolling_Stones Black_and_Blue Andy_Narell The_Hammer)

Such a list would be difficult to understand, especially if it were long. The data
structure does not separate the artists from the CDs, nor does it provide any
categories by which you might wish to organize music. It also has unnecessary
repetition (Rolling Stones twice)

A much better data structure for a CD collection might be

* Some may argue that there is no such thing as too much Rolling Stones.

4.5 Taking Lists Apart

65

(rock
(Rolling_Stones
(Black_and_Blue
Its_Only_Rock_and_Roll))
jazz
(Pat_Metheny
(First_Circle)
Andy_Narell
(The_Hammer)))

This data structure can be illustrated with the following hierarchy:

CD collection

rock

Rolling Stones Pat Metheny Andy Narell
Black and Blue

It's Only Rock and Roll

First Circle The Hammer

With such a data structure, the CDs are arranged according to musical
category, (e.g., rock, jazz, classical). Each category of music is followed by a list of
artists and their works. These artists-works lists are lists of artist-name and CD-
list pairs. This ensures no ambiguity as to artist or CD name and eliminates
repetition of artist names.

This is by no means the only representation that could be used to maintain
such information.

4.4.1 Exercises
4.4 What other ways can you think of to organize a collection of CDs?

4.5 What advantages and/or disadvantages does your data structure have com-
pared to this one?

4.6 Design a data structure that you could use to maintain information on stu-
dents: name, student ID number, year in school, address, grades, grade
point average, etc.

4.5 Taking Lists Apart

Many of the functions that will be introduced in this chapter perform operations
on the top-level elements of lists only. The atoms and lists that make up a list are
the top-level elements of that list. For example,

((a list) an-atom (a (nested list)))

CD data structure

Counting top-level
elements

66 Chapter 4: Lists: The Basic Data Structure

length

Simple list functions

History of car and car

has three top-level elements: two are lists and one is an atom.
To determine the number of top-level elements in a list, use the function
length.

function argument return value
length list the number of elements in list

Here are some example function calls using length.

> (length ’(1 two (three (not-four nor-five))))
3

> (length ’((just an) ((ordinary)) (((list) not))))
3

> (length ’())
0
The elements in the first example are 1, two, and (three (not-four nor-
five)) which is considered one element even though it contains a symbol and a
list of two symbols itself. When counting top-level elements, a list up to its clos-
ing right parenthesis is considered a single top-level element. The three elements
in the second example are (just an), ((ordinary)),and (((list) not)).

In Chapter 3, we said that LISP, of which Scheme is a dialect, is an acronym
for LISt Processing. This is because LISP has a number of functions to take apart,
create, sequence through, and even restructure lists. The built-in functions car
and cdr are the fundamental functions used to return parts of lists. car returns
the first element of a list, and cdr returns the list without the the first element.

The names car and cdr date back to the first implementation of LISP on the
IBM 704 computer. A computer consists of a large collection of numbers, called
words. On the IBM 704 computer, each word could be accessed by specifying its
location (address) in one of a number of index registers. Each word had different
components that could be individually examined. Two of these, the address and
decrement parts, could be used to reference other words. These parts were used
to hold the first element and the rest of a list. The names car and cdr come from
abbreviations of the instructions used to get these different components. car
stands for Contents of the Address part of Register number and cdr for Contents
of the Decrement part of Register number. These names have stuck through time,
although many versions of LISP now have additional, more mnemonic names for
these functions such as first and rest.

We can easily write the functions first and rest as follows:

; Return the first element of a list.
(define (first a-list)
(car a-list))

; Return the rest of a list.
(define (rest a-list)
(cdr a-list))

4.5 Taking Lists Apart 67

In addition, we can use combinations of car and cdr to create functions to
extract the second, third, fourth, and fifth elements of a list:

; Return the second element of a list.
(define (second a-list)
(car (cdr a-list)))

; Return the third element of a list.
(define (third a-list)
(car (cdr (cdr a-list))))

You get the idea. Each subsequent cdr returns a list with one less element.
The implementation of the functions fourth and fifth is left as an exercise for
the reader.

Below is a table of the functions used to return parts of lists. All these func-
tions take a single argument that must be a list.

function argument return value first — fifth, rest,
first list first element of list car, cdr

rest list rest of list without the first element

car list same as first

cdr list same as rest

second list second element of list

third list third element of list

fourth list fourth element of list

fifth list fifth element of list

The following examples illustrate uses of these functions:
> (first '((z e r o) 1 (2) ((3))))
(z e ¥ 0)
> (rest '((z er o) 1 (2) ((3))))
(1 (2) ((3)))
> (second ’((z e r o) 1 (2) ((3))))
1
> (third ’((z e r o) 1 (2) ((3))))
(2)
> (fourth ’((z e r o) 1 (2) ((3))))
((3))

> (fifth ’((z e r o) 1 (2) ((3))))
Error: Pair expected

> (car (cdr ’((z e r o) 1 (2) ((3)))))
1

> (cdr (car ’((z e ro) 1 (2) ((3)))))
(e r o)

68 Chapter 4: Lists: The Basic Data Structure

> (cdr (cdr “((z e r o) 1 (2) ((3)))))

((2) ((3)))
The call to fifth above resulted in an error because the list has only four ele-
ments. Similarly, if car, cdr, first, or rest is applied to ’ (), an error will result.

Mistakes to Avoid
Remember that rest returns a list with all but the first element. A com-
mon mistake is to think that

(rest '(a b))
returns b instead of the actual value returned: (b). Similarly,
(rest ’'(a (b)))

returns ((b)) and not (b).
The simplest way to determine the return value of rest is to cross
out the first element of the list. What's left is the rest of the list.

Getting any element Scheme provides a more general means of extracting elements from lists. This
from a list is useful when the exact element number is not known beforehand; for example,
when it is the result of some computation.

list-ref function arguments return value
list-ref list position element at position in list

list-ref takes two arguments: a list and the position of the desired element
in the list. The position of elements in a list is numbered, in order, starting at zero
and continuing up to one less than the length of the list. Thus, the positions of the
elements in a list of three elements are 0, 1, and 2.

If 1ist-ref is called with a position larger than or equal to the number of ele-
ments in list, an error will result.

Mistakes to Avoid
Positions are not the same as element numbers used in functions like
first and second. The first element of a list is at position 0 and not 1.
Thus, to return the fifth element of the list my-list, use

(list-ref my-list 4)

Finding the last Let’s write a function that returns the last element of a list. We can use 1ist-
element of a list ref with the length of the list minus 1. Here is an attempt at this function:
; Return the last element in a-list.
(define (last a-list)
(list-ref ‘a-list (- (length ’a-list) 1)))

> (last ’(the buck stops here))
Error: Pair expected

4.5 Taking Lists Apart 69

By quoting a-1list, the literal symbol a-1ist is used instead of the parame-
ter. Here is another attempt:
; Return the last element in a-list.
(define (last a-list)
(list-ref (a-list) (- (length (a-list)) 1)))

> (last ’(the buck stops here))
Error: Wrong type to apply: (the buck stops here)

This error occurred because the value of a-1ist, (the buck stops here),
was treated like a function. It is a list and cannot be applied as a function. Quot-
ing it will get rid of that error as seen below:

; Return the last element in a-list.
(define (last a-list)
(list-ref ’'(a-list) (- (length ’(a-list)) 1)))

> (last ’(the buck stops here))
a-list
No error this time, but we didn’t get the answer we wanted either. By quoting

(a-list), we get the literal list (a-1ist). The length of that list is 1, so we end
up taking list-ref of the list (a-1ist) and 0, which is the symbol a-1ist. To
fix this, we need to use the value of the parameter a-1ist. This is obtained by
using a-1ist directly without parentheses or quotes.

; Return the last element in a-list.

(define (last a-list)

(list-ref a-list (- (length a-list) 1)))

> (last ’(the buck stops here))
here

It works! It is essential in Scheme to understand the meaning of quotes and
parentheses. Quoting a symbol or list returns its literal value. Putting parentheses
around a symbol treats that symbol as if it were a function. A symbol without
quotes or parentheses is a variable (or parameter) and it returns its current value.
If you understand these ideas, you will reduce the number of errors you get
when writing Scheme code.

Scheme has a built-in function that returns the tail end of a list, 1ist-tail. It
would be nice to have a more general function that returns a variable-sized, con-
tiguous piece from the head, tail, or middle of a list. We’ll call this function sub-
seq (short for subsequence). subseq returns a contiguous subsequence from any-
where within a list. It can be used to return the tail end of a list so the function
list-tail isn’t necessary. You’'ll be able to write subseq in Chapter 6.

The following table shows different ways that subseq can be used to return
different parts of a list:

When to use quotes
and parentheses and
when not to

Getting sections of a
list

70 Chapter 4: Lists: The Basic Data Structure

subseq

Understanding subseq

function arguments return value
subseq list, 0, end left part of list up to element end
subseq list, start right part of list starting at element start + 1

subseq list, start,end list with elements start + 1 through end

subseq can be used with two or three arguments. With two arguments sub-
seq uses the length of the list as the value for end. With three arguments subseq
takes a list, a start element number, start, and an end element number, end, and
returns a list starting with element number start + 1 up to element number end.
start must be an integer between 0 and the number of elements in the list. end
must be an integer between start and the number of elements in the list. The list
returned will have end minus start elements. An alternate way of looking at sub-
seq is that start indicates the number of elements to skip from the front of the list
and end is the last element number to include in the list.

Below are examples to help clarify these functions:
> (length ’'((z e r o) 1 (2) ((3))))
4

> (list-ref '((z e r o) 1 (2) ((3))) 0) ; position 0 is the first element
(z e r o)

> (list-ref ’'((z e r o) 1 (2) ((3))) 3)

((3))

> (list-ref '((z e r o) 1 (2) ((3))) 4) ; position 4 is too large
Error: Pair expected

> (subseq "((z er o) 1 (2) ((3))) 0) ; list of the first element onward
((z exro)l (2) ((3)))

> (subseq ‘((z er o) 1 (2) ((3))) 3) ; list of the fourth element
(((3)))

> (subseq ‘((z e r o) 1 (2) ((3))) 5) ; start value is too large

Error: Improper start value for subseq

> (subseq ‘((z e r o) 1 (2) ((3))) 0 1) ; list of the first element
((z e r 0))

> (subseq ‘((z e r o) 1 (2) ((3))) 1 3) ; list of the 2nd and 3rd elements
(1 (2))

> (subseq "((z e r o) 1 (2) ((3))) 2 2) ; list of 2-2 = 0 elements

()

> (subseq ’‘((z e r o) 1 (2) ((3))) 1 0) ; end is less than start
Error: Improper end value for subseq

> (subseq ‘((z er o) 1 (2) ((3))) 1 5) ; end is too large
Error: Improper end value for subseq

4.5 Taking Lists Apart 71

Mistakes to Avoid

The list functions we’ve examined don’t change their arguments. The
functions rest and cdr return the tail end of lists, leaving the original
lists intact. The function subseq actually creates a new list without alter-
ing the list supplied as an argument in the function calls. Thus, if subseq
is called with a symbol that is bound to a list, a new list is returned and
the symbol is still bound to the original list. This can be seen in the fol-
lowing example:

> (define my-list ’(this is my very own list))

??

> (subseq my-list 2 4)

(my very)

> my-list

(this is my very own list)

Mistakes to Avoid
In determining the starting element of a return list, subseq starts with
the element that follows the value of start given. But the ending element
is included. Therefore, to get the list of the second through fifth elements
of my-1list, use
(subseq my-list 1 5)

Another device that you can use to help get the start argument to
subseq straight is to think of it as the number of elements that will be
skipped from the head of the list. Thus, (subseq my-list 1) skips the
first element returning the second element onward.

You may have wondered why subseq uses such a strange scheme for its
arguments. Part of the reason for this is to reduce the number of off-by-one situa-
tions that arise. When a value is one away from its desired value, it is called off-
by-one. As it is written, subseq requires few off-by-one adjustments to be made.

Functions that return element positions can be used with subseq. The func-
tion position (which is presented in section 4.10) returns the position of an ele-
ment in a list. We can use the result from a call to position to specify a start
value for subseq. This means that subseq would need to use positions of ele-
ments like 1ist-ref does instead of element numbers. The start argument to
subseq does this. The end value to subseq doesn’t, however. This is to make it
easier to refer to end positions relative to the last element of the list. The element
number of the last element is the length of the list.

The following chart should help clarify the above explanation by showing
how few off-by-one situations arise. You can use it as a quick reference for tem-
plates when using subseq.

Method in the
madness—reducing
off-by-one situations

72 Chapter 4: Lists: The Basic Data Structure

Templates for subseq

When to use which list
function

Modeling bureaucratic
responses

Getting a random
element from a list

part of list desired call to subseq

First N elements (subseq a-list 0 N)

Last N elements (subseq a-list (- (length a-list) N))
List without first N elements (subseq a-list N)

List without last N elements (subseq a-list 0 (- (length a-list) N))
List of elements N through M (subseq a-list (- N 1) M)

List from position P onwards (subseq a-list P)

List from position P throughQ (subseq a-list P (+ Q 1))

To summarize, use first (or car) through fifth to return a particular ele-
ment from a list. There are times when the element number must be computed.
In this case, use the function 1ist-ref. To return a list with all but the first ele-
ment, use rest (or cdr). To return a section of a list (the head, tail, or middle of a
list), use subseq following the chart above for specific guidance.

4.5.1 Example: Extracting random elements from a data structure
Those of you Arnold Schwarzenegger fans who saw Terminator know that the
Terminator had lists of responses from which he could choose to decide the most
appropriate retort for any given situation. If you've ever dealt with a true
bureaucrat you know that they too seem to be functioning by virtue of simply
responding to anything you say with one of a few responses. This type of
behavior can easily be modeled in Scheme. Suppose that you have a list contain-
ing responses to be used by a particular person such as a bank teller, post office
clerk, or police officer. To simplify references to this response list, imagine that it
has been bound to the symbol retort, using define as shown below:
(define retort
"((i am sorry but we are closed now)

(talk to the person at the end of the hall)

(you need form 1044-tx8 and not 1044-fg4)

(we cannot take personal checks)

(i am sorry we need exact change)

(oh you only had to fill out this one form not those 20 others)))

The task is to write a function that randomly chooses a retort from a retort
list. An extension to Scheme called random will be helpful; (random num) returns
a random number between 0 and num — 1. Thus,

(random 3)

returns either 0, 1, or 2.
This result works very nicely in conjunction with 1ist-ref, which takes a
number between 0 and the length of a list minus one. The call

(list-ref '(a b c) (random 3))

returns a, b, or c.
In general, to return a random element from any list, the following function
can be used:

4.5 Taking Lists Apart

73

; Return a random element from the list a-list.
(define (get-random-element a-list)
(list-ref
a-list
(random (length a-list))))
get-random-element can be applied to retort to get a random retort. Each
call to random generates a new random number, so each time get-random-
element is called, a potentially different retort will be returned.

Mistakes to Avoid

Scheme does not attach any semantics (meaning) to parameter or vari-
able names. The way a parameter is used dictates its type requirements.
Thus, naming the parameter above a-1ist does not mean that it must
be a list. However, the way we use a-1ist as arguments to length and
list-ref means that a-1ist must be a list. If not, we will get an error
when the function is called. It is the responsibility of the person who
calls get-random-element to assure that it is called with the proper
argument types.

This does not make for secure code that you would want to let just
anybody use. To remedy this, there are ways of doing type-checking:
checking the types of variables. This is covered in Chapter 5.

Mistakes to Avoid
Don’t confuse arguments to a function with elements of a list. Look at
the following examples, which compute the average of three values:

(define (averagel numl num2 num3)
(/ (+ numl num2 num3) 3))

(define (average2 num-list)
(/ (+ (first num-list) (second num-list)
(third num-list)) 3))

The first function averagel takes three arguments (which should be
numbers) and returns their average. The second function average2

takes one argument (which should be a list of at least three numbers)
and returns the average of the first three numbers in the list.

74

Chapter 4: Lists: The Basic Data Structure

4.5.2 Exercises
4.7 What do the following expressions return? Test your answers on the com-
puter. Some of them may produce errors.
(car ’())

(cdr ' ())

(third (subseq '((4 5) 1/3 67.89 (78) value) 1))

(rest (subseq ’'(how (strange) (((this)) may) seem) 1 4))
(length '(’a (1 2)))

(length ' ((3 elements here)))

(length ' ((yet ((another)) strange (list))))

(car ' ((yet ((another)) strange (list))))

(cdr ' ((yet ((another)) strange (list))))

(car (car ’'((yet ((another)) strange (list)))))

(car (cdr (car ’'((yet ((another)) strange (list))))))

(car (cdr (cdr (car '((yet ((another)) strange (list)))))))

4.8 Assume that the function extract below will be called with a list of lists of
atoms (e.g., ((a b c¢) (1 2 3))). Fill in the blank such that the function
returns a.) the first list of atoms or b.) the first atom.

(define (extract list-of-lists)
(list-of-1lists))

4.9 Write an expression that returns the third element of the list a-list.

4.10 Write an expression that returns element number (+ value 2) of the list a-
list.

4.11 Write an expression that returns the list of CDs from the second jazz artist in
the CD data structure presented earlier.

4.12 Write your own version of 1ist-ref using the other list functions we have
discussed. Be careful that your function returns item number num and not
the list of the numth item.

4.13 Write a function but-last that takes two arguments, a-list and num, and
returns a list of all but the last num elements of a-list. Use the other list func-
tions from this section in your solution.

4.14 Write a function called start that takes two arguments, a-list and num, and
returns the first num elements from a-list. Use the other list functions from

4.6 Combining cars and cdrs 75

this section in your solution.

4.15 Write a function end that takes two arguments, a-list and num, and returns
the last num elements from a-list. Use the other list functions from this sec-
tion in your solution.

4.16 The function month below returns the month corresponding to month-num.
Does the function work correctly? If not, fix it.

(define (month month-num)
(list-ref ’'(January February March April May June July
August September October November December)
month-num))

4.17 The function replace-element below takes a-list, a list, position, a position
in a-list, and element, an atom that will replace the element at position in a-
list. For example,

> (replace-element ’(this list is very mundane) 4 ’exciting)
(this list is very exciting)
Find and fix any bugs in the function below. Note: append combines the ele-
ments of many lists into one list. See section 4.7 for a detailed explanation.
(define (replace-element a-list position element)
(append
(subseq a-list 0 position)
element
(subseq a-list position)))

4.18 Fill in the blanks with functions and arguments so that the output shown
would be produced. Each line may have zero or more arguments.

> ((a list of sorts))
(a list)

> (’(a list of sorts))
(list of)

> (’(a list of sorts))
(of sorts)

> ¢ (a list of sorts))
list

4.6 Combining cars and cdrs

There are times when you have a rather complex list data structure, with many Abbreviations of cax
sublists (elements that are lists themselves). To extract particular elements from and car compositions
sublists, combinations of cars and cdrs can be used as shown in exercise 4.7.

Because such constructions are used so often in Scheme, abbreviations have been

76 Chapter 4: Lists: The Basic Data Structure

car cdr pronunciation

created to compose up to four levels of car and cdr function calls. The expres-
sion

(car (cdr ' ((Sam Smith) 23000 (August 5 1967))))
can be abbreviated as

(cadr ' ((Sam Smith) 23000 (August 5 1967)))
This particular expression returns the second element from the list given; hence it
could be expressed as

(second ' ((Sam Smith) 23000 (August 5 1967)))

Abbreviations of car and cdr combinations are made by taking the a’s and d’s

from up to four adjacent car and cdr function calls and enclosing them between

c and r. This is easier shown than said. Below are more examples of car and cdr
combinations and their abbreviations.

longhand abbreviation

(cdr (car my-list)) (cdar my-list)
(car (car (cdr my-list)) (caadr my-list)
(car (cdr (car (cdr my-list)))) (cadadr my-list)

One major problem with car and cdr and the various combinations of abbre-
viations thereof is their correct pronunciation. The table below should help you
with this.

function pronunciation rhymes with or sounds like

car kér car

cdr kti"-dor footer
caar ka-4r’ the 'r’
cadr ka’-dor fatter

cdar kti-dar’ foot tar
cddr ku-di’-der could litter
cadar ks-dér” the tar
cadadr ks-da’-der cadaver

cddadr kti-di-da’-dar could it matter
dasincar, liasincould, sasinthe or cut, a as in cat.

4.7 Creating Lists
We have created lists by writing them out explicitly, as in
(this is a list)
We have used functions that return parts of lists, possibly creating new lists in

the process. Sometimes we need even more flexibility.
Lists can be created using the functions cons, 1ist, and append.

4.7 Creating Lists 77

function arguments return value Functions to build lists
cons element list list with element inserted at the start
list ellel2 ...eIN the list (el1 el2 ... eIN)

append listl list2 ... listN the list formed by concatenating the elements of
list1 list2 ... listN.

cons takes two arguments and returns a new list that has element as its first cons
element and list as the rest of the list. The first argument, element, can be a list or
an atom, but the second argument, list, should be a list"
Below are some examples of what cons returns and what the car and cdr of
those return values look like.
> (cons ’‘something ’())
(something)

> (car ’(something))
something

> (cdr ’(something))
9]

> (cons ’apples ’(and oranges))
(apples and oranges)

> (car ’(apples and oranges))
apples

> (cdr ’(apples and oranges))
(and oranges)

> (cons ’‘(some list) ’(another list))
((some list) another list)

> (car ’((some list) another list))
(some list)

> (cdr ’((some list) another list))
(another list)

Notice in each of the above cases that the first argument to cons is the car of the cons as opposite of
resultant list and the second argument is the cdr of the resultant list. This is true ~ car and car
for cons in general.

The first example,

(cons ’'something ' ())

shows how to create a list of one element by inserting (consing) that element into

* If the second argument is not a list, the result will be a dotted list. Dotted lists are discussed in the
optional section on dotted lists at the end of this chapter.

78

Chapter 4: Lists: The Basic Data Structure

list

append

an empty list.
The second example,

(cons 'apples ‘(and oranges))

shows the addition of an atom to the front of an existing list.
The third example,

(cons ’'(some list) ’(another list))

demonstrates that lists can be added as elements.

Using cons to create a list of three elements involves three calls to cons:
> (cons ’a (cons ‘b (cons ‘c “())))
(a b c)
list provides a more convenient means of creating lists of many elements.
list takes as arguments the elements of the desired list and returns a new list of
those elements. The order of the arguments corresponds to the order of the ele-
ments in the resultant list. The arguments to 1ist can be atoms or lists. Below are
some examples showing how 1ist works. Note that the arguments to 1ist must
be quoted if they are lists or symbols and are to be interpreted as such.
> (list ’a ’b ’‘c)
(a b c)

> (list ’(a list) ’a-symbol 4 ’())
((a list) a-symbol 4 ())

Another way to create lists is to use append. append takes all the top-level ele-
ments of its argument lists and forms a new list of those elements. In other
words, append concatenates the top-level elements from all of its arguments into
a new list. Internally, append works by performing a series of conses. Elements
from all but the last argument list are consed onto the last list. This is easier
shown than said. Following each example of append below is the equivalent
series of cons function calls:

> (append ’(first list) ’(second list) ’‘(third list))
(first list second list third list)

> (cons ’first
(cons ’list (cons ’‘second (cons ‘list ’(third list)))))
(first list second list third list)

> (append ’((32)) '() "(((1 2 3))))
((32) ((1 2 3)))

> (cons ’(32) ‘(((1 2 3))))
((32) ((1 2 3)))

4.7 Creating Lists 79

> (append 4 ’(3))
Error: Pair expected
The first example above shows how multiple lists appended together result in
one new list with the elements of each list as elements of the new list. The second
example of append shows that the empty list can be appended to other lists. By
doing so, no elements are added. The last append is illegal, since all the argu-
ments to append should be lists’
cons, list, and append perform different tasks and return different lists
when given the same arguments. Look at the following examples:
> (cons ’(1) ’(a))
((1) a)

> (list ’(1) ’(a))
((1) (a))

> (append ‘(1) ‘(a))
(1 a)

It may seem strange to have the functions cons, 1ist, and append when it is
easier to create lists by writing them out explicitly, as in

‘(this ((list is) easy to make))

Sometimes the elements of a list are not known beforehand, since they must be
computed. These computations may be numerical or may involve extracting
information from other lists. These lists may be the values of variables, since vari-
ables can be bound to lists using define or used in functions as parameters. In
these cases, such lists must be created using cons, 1ist, or append. The following
example shows the creation of a new list consisting of the first element of the list
employee-1list, and the value of salary increased by 10%.

(list (first employee-list) (* salary 1.10))
Here is another example showing the necessity of these functions. Let's write

a function, add-to-end, that takes an item and a list and returns the list with item
added to the end. For example,

> (add-to-end ’period ’(end a sentence with a))
(end a sentence with a period)
> (add-to-end ’(parenthetical remark) ’(end a sentence with a))

(end a sentence with a (parenthetical remark))

To do this we’ll have to append the elements in the list to a 1ist of the item to
add:

5 The last argument to append can be an atom. If so, the result will be a dotted list. Dotted lists are
discussed in the optional section on dotted lists at the end of this chapter.

Differences with cons,
1list, and append

Literal versus
constructed lists

Adding to the end of a
list

80 Chapter 4: Lists: The Basic Data Structure

; Return a-list with item added to the end.
(define (add-to-end item a-list)
(append a-list (list item)))

Mistakes to Avoid
Suppose the variable people has the value 842. To make a list of that
number, the call

(people)

won’t work, as it will treat people as a function. Instead use 1ist as fol-
lows:

(list people)

Mistakes to Avoid
Don’t use 1ist as the name of a parameter to a function. The parameter
will shadow the function 1ist.
> (define (add-to-end item list)
(append list (list item)))
??

> (add-to-end ’bang ’(end a sentence with a))
Error: Wrong type to apply: (end a sentence with a)

4.7.1 Exercises
4.19 What do the following expressions evaluate to? Some of them may produce

errors.
(cons 3 ' (4)) (list 3 '(4)) (append 3 ' (4))
(cons ' (3) ’'(4)) (list ' (3) '(4)) (append ' (3) ' (4))

(list 3 4)

(list ’(3) 4)

4.20 Assume that the following defines have been made:

(define numbers ‘(2 4 6))
(define letters ’'(q e d))
(define deep-list ' (((13))))

4.7 Creating Lists

81

Using only these three variables and the functions cons, 1ist, and append,
write expressions that will return the following lists:
(246 qged ((13)))

((2 4 6) (g ed) ((13)))
(24 6 (qged) ((13)))
((2 4 6) (qed) (((13))))
((2 4 6) qged ((13)))

4.21 Fill in the blanks with functions and arguments so that the output shown
would be produced.

> (’(not created equal))
(alas all lists are not created equal)

> (’(not created equal))
((alas all lists are) not created equal)

> (’(not created equal))
(lists (not created equal))

> (’(not created equal))
((lists) (not created equal))

4.22 Write a function that takes a list a-list and returns a list of only the first ele-
ment of a-list. Note: this is not the same as first or car. For example, given
the list (an apple a day), your function should return (an).

4.23 Write a function add - third that takes two arguments, element and a-list, and
returns a-list with element as the new third element. The original third ele-
ment of a-list becomes the new fourth element, and so on for the remaining
elements in a-list. For example, given the symbol eaten and the list (an
apple a day), your function should return (an apple eaten a day).
Assume that a-list has at least three elements.

4.24 Write a function remove-third that takes a list and returns the list without
its third element. For example, given the list (an apple a day), your func-
tion should return (an apple day). Assume that the list has at least three
elements.

4.25 Write a function switch-first-and-second that takes a list and returns the
list with the first and second elements switched. For example, given the list
(an apple a day), your function should return (apple an a day).
Assume that the list has at least two elements.

82 Chapter 4: Lists: The Basic Data Structure

Using lists to
represent sentences

Sentence data
abstraction

4.8 Representing and Manipulating Text with Lists

Lists are a natural data structure to represent text. Sentences can be represented
as lists of words, and words as symbols; thus, the sentence "Kim likes to dance to
Aretha Franklin tunes" can be represented by

(kim likes to dance to aretha franklin tunes)

If we wanted to play around with this sentence, we should first bind it to a
symbol, as in
> (define sentence ’(kim likes to dance to aretha franklin tunes))
??
To produce the sentence "Kim likes to dance in the dark" we can use the follow-
ing expression:
> (append (subseq sentence 0 4) ’(in the dark))
(kim likes to dance in the dark)

To produce the sentence "Kim dances to Aretha Franklin tunes,” use the
expression

> (cons (first sentence) (cons ’‘dances (subseq sentence 4)))
(kim dances to aretha franklin tunes)

or
> (append (list (first sentence) ’‘dances) (subseq sentence 4))

(kim dances to aretha franklin tunes)

The problem with these solutions is that they require prior knowledge of
what the original sentence looks like. To work properly, the calls to subseq
require knowledge of the number of words at the end and beginning of the sen-
tence. A better solution would be to organize the sentence into parts—a noun
phrase, verb phrase, and object phrase. The original sentence would be
represented as

> (define noun-phrase ’(kim))
?2?

> (define verb-phrase ’(likes to dance))
?2?

> (define object-phrase ’(to aretha franklin tunes))
??
To make the entire sentence, use

> (append noun-phrase verb-phrase object-phrase)
(kim likes to dance to aretha franklin tunes)

The other two sentences can be produced as follows:
> (append noun-phrase verb-phrase ’(in the dark))

(kim likes to dance in the dark)

> (append noun-phrase ’(dances) object-phrase)
(kim dances to aretha franklin tunes)

4.8 Representing and Manipulating Text with Lists

83

To make these solutions more general, functions could be made as follows:

; Return a sentence with noun-phrase, verb-phrase,
; and "in the dark."
(define (in-the-dark-sentence noun-phrase verb-phrase)
(append
noun-phrase
verb-phrase
‘(in the dark)))

; Return a sentence with noun-phrase, "dances,"
; and object-phrase.
(define (dances-sentence noun-phrase object-phrase)
(append
noun-phrase
' (dances)
object-phrase))

These functions could be called with other phrases to produce new sentences.
> (in-the-dark-sentence ’(little green creatures)

"(are often seen))
(little green creatures are often seen in the dark)

> (dances-sentence ’(a little purple creature)
’(on her fingertips in my dreams))
(a little purple creature dances on her fingertips in my dreams)

Such sentences could not have been produced with the original solutions to
this problem. By creating a more generic representation of a sentence, we ended
up with more general and useful solutions.

4.8.1 Exercises
4.26 Why was the list (kim) used to represent a noun phrase instead of the sym-
bol kim, which could be consed onto the verb and object phrases?

4.27 How might you further define a generic sentence to allow more variation in
the sentences that could be produced?

4.28 Write a function add-words that takes sentence, a list representing a sen-
tence, words, another list representing words to add to sentence, and position,
a number denoting a position in sentence. add-words should return a list
made by adding the words in words to sentence immediately before the word
at position in sentence. For example,
> (add-words ’(the dog barks loudly) ’(with huge fangs) 2)
(the dog with huge fangs barks loudly)

84 Chapter 4: Lists: The Basic Data Structure

Creating form letters

Representing names

Difficulties with names

4.8.2 Computer-Generated sweepstakes
How many times have you received mail telling you something like this:

OLIVER GRILLMEYER
will receive $1,000,000

in the ~ Aren’t We Cool”” Sweepstakes
to be paid in yearly installments of $100,000

over the next 10 years or $50,000 over the next 20 years
if you are the one-in-a-billion lucky person chosen in our random drawing.

If you have gotten this letter, what are you doing with my junk mail?

Scheme can be used to create such form letters, given a list of names to send
them to. To begin we need a representation for the names. One simple solution is
to represent names as symbols in a list like

(John Q. Public)

The problem with such an approach is that our form letters may wish to
extract the last name to print something like

Imagine your response when our representative comes to your door to say
"Congratulations Mr. Grillmeyer, you have won $1,000,000."

To do this we need to extract the last name from a list. It may seem simple
enough using subseq as follows:

> (subseq ’(John Q. Public) 2)
(Public)

But what if the person has no middle name? Again you can be clever and just
extract the last element of the list by determining how many elements to skip
from the front based on the length of the list.

> (subseq ’(Jane Doe) (- (length ’(Jane Doe)) 1))
(Doe)

As an exercise, write a function that takes a list and returns the last name
based on this approach. Does your function work on lists with any number of
first or middle names?

There is another potential problem lurking here. The last symbol in a name
list may not be the person’s last name. For example,

complete name last name
Ludwig van Beethoven van Beethoven
Myriam Roxanna Haynal M.D. Haynal

Dr. Gino Cheng Esq. Cheng

Carla Juanita de la Cruz III dela Cruz

A seemingly simple problem has opened up into a can of worms. To get
around our current dilemma we can do one of three things:

1) Write Scheme code to deal with all of these special cases.
2) Represent names in a different way to disambiguously represent last names.

4.8 Representing and Manipulating Text with Lists 85

3) Ignore the issue and have our letters only print the person’s entire name.

The third approach may seem like an invalid solution, but there are times
when tasks just get too difficult and it is better to simplify the problem rather
than implement it as originally desired. The pioneers in language translation
learned this lesson the hard way. More on that in Chapter 15.

The first approach is possible if we have a handle on all the possible titles and
prefixes to last names we may run across, and there are no ambiguities. It is left
as an exercise to the reader.

The second approach is easiest, assuming we have control over the form of
the data. This is not always the case for programmers. However, when it is an
option, it is best to design your data representation to simplify your task. This is
a frequently used technique in programming. In fact, there are entire texts
devoted to program design as a split between data representation and algo-
rithms’

Another advantage is that we don’t have to worry about future names that
don’t follow the conventions of which we are currently aware. There are plenty
of nonconventional names you are probably aware of such as Madonna, Sting,
the Edge, Plato, Socrates, and Aristotle (the ancient Greeks didn’t have last
names).

We can represent names as a list of five lists denoting the prefix, first, middle,
last name, and suffixes of the person. Thus, Miss Carla Juanita de la Cruz III
becomes

((Miss) (Carla) (Juanita) (de la Cruz) (III))
And Sting becomes

(() (sting) () () ())

The last name is the fourth element of a name list. Below is a selector function
to extract the last name from a name list:
; Return the last name, fourth element, from a name list.

(define (last-name name-list)
(fourth name-list))

It may seem pointless to create a function as simple as this, but it is
worthwhile because it makes our final program more readable. It is clearer what
is happening when we use a function called 1ast-name rather than fourth. Also,
if we should decide to change the data representation, we need only change the
selector function. We don’t have to search through the entire program looking for
calls to fourth and decide if they are extracting the last name or doing something
else.

Let's return to the problem of writing form letters. A form letter can be
viewed as a template in which the person’s name is to be inserted in certain parts.
One such form letter may be the following;:

% Niklaus Wirth's text Programs = Algorithms + Data Structures is a classic example and is a good text,
despite the fact that the title is an equation.

Data representations
to simplify coding

Selector functions

86 Chapter 4: Lists: The Basic Data Structure

Dear Mr. Grillmeyer

This is your last chance to receive our mailings at
the Grillmeyer residence. By ordering your personalized
ceramic utensil set, we will enter the Grillmeyer family
in our sweepstakes giveaway. Don’t think any more,
justdo it.

To produce such a form letter we can generate a list of symbols for each line
of actual text. An entire form letter will be a list of these lists. Here is an attempt
to produce the above form letter:

; Return the prefix (first element) from a name list.
(define (prefix name-list)
(first name-list))

; Produce a form letter addressed to name-list.
(define (make-form-letter name-list)
(list
(list ’'Dear (prefix name-list) (last-name name-list))
()
’(This is your last chance to receive our mailings at)
(list ’'the (last-name name-list) ’‘residence. ’'By ’'ordering
'your ’'personalized)
(list ’‘ceramic ‘utensil ’‘set, ‘we ’‘will ’‘enter ’the
(last-name name-list) ’family)
’(in our sweepstakes giveaway. Don’t think any more,)
"(just do it.)))

However, when we enter this code into the Scheme interpreter, we get the fol-
lowing error:

Error: Comma not inside a quasiquote.

Recall from Chapter 3 that commas are not allowed in symbol names. Their
use will be shown in the next section on quasiquoted lists. If we remove the com-
mas from our lists and reenter the function, no error results. So let’s try it out.
> (make-form-letter ’'((Mr.) (Michael) (Phillip) (Jagger) ’()))
((DEAR (MR.) (JAGGER)) () (THIS IS YOUR LAST CHANCE TO RECEIVE OUR
MAILINGS AT) (THE (JAGGER) RESIDENCE. BY ORDERING YOUR PERSONALIZE
D) (CERAMIC UTENSIL SET WE WILL ENTER THE (JAGGER) FAMILY) (IN OUR
SWEEPSTAKES GIVEAWAY. DON ’'T THINK ANY MORE) (JUST DO IT.))

This output is far from desirable. In Chapter 9 we cover a means of getting
around this problem. For now, we can print one line at a time using functions
like first or list-ref.

> (first (make-form-letter ’((Mr.) (Michael) (Phillip) (Jagger) ())))
(DEAR (MR.) (JAGGER))

The remaining problem is to eliminate the extra parentheses. This can be done
using append instead of 1ist when creating our lists. Simply changing 1ist to
append will introduce another problem, because all the arguments to append

4.9 Optional Section: Quasiquoted Lists

87

should be lists. Below is the correct solution:
; Produce a form letter addressed to name-list.
(define (make-form-letter name-list)
(list
(append '’ (Dear) (prefix name-list) (last-name name-list))
")
'(This is your last chance to receive our mailings at)
(append ’(the) (last-name name-list)
'(residence. By ordering your personalized))
(append ' (ceramic utensil set we will enter the)
(last-name name-list) ’(family))
’(in our sweepstakes giveaway. Don’t think any more,)
’(just do it.)))

4.8.3 Exercises
4.29 Does the above solution give reasonable output when called with names
like Sting or Madonna?

4.30 Write a function that generates your own personalized form letter.

4.9 Optional Section: Quasiquoted Lists

Another means of creating lists is to use the special form quasiquote. Rather
than specifying the structure and contents of a list using combinations of cons,
list, and append, quasiquote allows you to indicate the form of the list directly.
quasiquote (abbreviated as "*") is an extension of the special form quote. It can
be used to produce literal lists such as

> “(mary had a little lamb (or so the story goes))
(mary had a little lamb (or so the story goes))

To create lists that contain the values of variables or the results of computa-
tions, simply precede any expressions that you wish to be evaluated by a comma.
This is a shorthand for unquote. Assume that the definitions below have been
made:

(define person ’‘mary)

(define object ’(a little lamb))
The list (mary had a little lamb (or so the story goes)) can be created
with

“(,person had a little ,(third object) (or so the story goes))
Notice what happens when a list is inserted.

> ‘(,person had ,object (or so the story goes))
(mary had (a little lamb) (or so the story goes))

Building lists with

quasiquote

Evaluating parts of
quasiquoted lists

88 Chapter 4: Lists: The Basic Data Structure

unquote-splicing

There is an operator similar to comma—comma followed by the at-sign "@".
This is a shorthand for unquote-splicing. The expression following the
comma-at-sign pair should evaluate to a list, and this list is appended to the rest
of the quasiquoted list. Thus,

> ‘(,person had , @object (or so the story goes))
(mary had a little lamb (or so the story goes))

In summary, to add an evaluated expression to a list, use
, expression

where you wish the evaluated expression to go. To insert the elements of a list
obtained from evaluating an expression, use

, @expression
in the quasiquoted list at the position where these elements should go.

4.9.1 Exercises
4.31 Assume that the following defines have been made:

(define number 8.31)
(define name ‘(gino as in pizza))

What do the following expressions evaluate to?
* (number ,number name ,name)

*((+ number 100) , @name)

“(,(+ number 1) ,@(cdr name))

4.32 Using the symbols defined in the previous exercise, write expressions that
would produce the following lists:
(gino as in 8.31)

(gino as in (gino as in) pizza)

((8.31 gino (as in pizza)) 10.31)

4.33 Write a function that uses quasiquoted lists to create form letters as shown
in the previous section.

4.10 Miscellaneous List Functions

A number of other functions work with lists. Below are some of these functions,
the arguments that they take, and the values they return. member and reverse are
built-in Scheme functions. The other functions will be defined in this section or in
the appendix. They are given as exercises in Chapter 6. Other functions allow you
to apply a function to each element in a list. These functions will be covered in
Chapter 8.

4.10 Miscellaneous List Functions 89

function arguments

return value

position element list

member element list
count element list
remove element list
reverse list

the position of element in list (counting from zero),
#£ if element is not in list

the rest of list starting with the first occurrence of
element, #£ if element is not in list

the number of occurrences of element in list

list with all occurrences of element removed

the reverse of the top-level elements of list

The functions position, member, count, and remove search for elements
within list. These elements can be numbers, symbols, or lists. This behavior can
be seen in the following examples that show sample calls of the function posi-

tion:

> (define my-list ’(this list (will help) explain 6 list functions))

??

> (position ’‘list my-list)

1

> (position 6 my-list)
4

> (position ’‘word my-list)

#£

> (position ’(will help) my-list)

2

> (position ‘will my-list)

#£

The functions that search for the occurrence of element within list do not

search sublists within list.

The last function call resulted in #f because position

does not look within sublists to find matches. Calling member with ‘will and the

same list as arguments will yield #£. Calling count with 'will and the same list

as arguments will yield 0. Similarly, calling remove with the same arguments will
return the original list (no elements are removed).
Here are examples of the other functions:

> (member 6 my-list)

(6 list functions)

> (member ’‘list my-list)

(list (will help)

explain 6 list functions)

> (count 6 my-list)

1

> (count ’‘list my-1list)

Which elements get
matched

Certain elements don't
get matched

90 Chapter 4: Lists: The Basic Data Structure

Writing count

Writing position

> (remove 6 my-list)
(this list (will help) explain list functions)

> (remove ’list my-1list)
(this (will help) explain 6 functions)

> (reverse my-list)
(functions list 6 explain (will help) list this)

Notice that in the call to reverse, the sublist (will help) was not reversed.
reverse only reverses the top-level elements.

We don’t know enough to write the function remove; that material is covered
in the sections on creating lists and filters in Chapter 6. We can write the function
count (using remove) and we can write a simplified version of position. The
number of times an item occurs in a list can be determined by subtracting the
number of elements in the list from the number of elements that are left in the list
after all occurrences of the item are removed. The number of items in a list is the
length of that list. The function count follows:

; Return the number of times item occurs in a-list.
(define (count item a-list)
(- (length a-list)
(length (remove item a-list))))

The position of an item in a list can be determined using a similar technique
as used in count. Taking member of the item and the list will return the list from
item onwards. The difference between the length of the entire list and the list
from member is the number of elements that occur before the item, which is the
same as the position of the item. Here is the code to do this:

; Return the position of item in a-list.
(define (position item a-list)
(- (length a-list)
(length (member item a-list))))

Note: this version of position does not work if item does not occur in a-

list.

4.10.1 Exercises
4.34 Using the symbol my-1ist defined as

(this list (will help) explain 6 list functions)

and the functions in this section, write expressions that will return the fol-
lowing lists. You may use more than one function in each answer.
(explain 6 list functions)

3
((will help) explain 6 functions)

(explain (will help) list this)

4.10 Miscellaneous List Functions

91

(this list (will help))
((will help) explain)

(functions explain this)

4.35 Write a function with two parameters, element and a-list, that returns the
position of the last occurrence of element in a-list. Assume that element is in
a-list. Watch out for off-by-one errors—those in which the answer you get is
one away from the answer you want.

4.36 Write a function that takes a list and returns the list with the first and last
elements switched.

4.37 Write a function count -both that takes two atoms and a list and returns the
number of times either of those atoms occurs in the list. Write two versions
of this function: one using the function + and one without +. For example,

> (count-both ’a ’b "(a bracadabra))
7

4.38 Suppose the following expressions have been entered into Scheme:
(define months
’(jan feb mar apr may jun jul aug sep oct nov dec))
(define days
¢ 31 28 31 30 31 30 31 31 30 31 30 31))

Write a function num-days that takes a symbol representing a month and
returns the number of days in that month. For example,

> (num-days ‘jul)
31

4.39 Write a function whos - there that returns the names of people working on a
certain day and time. whos-there has two parameters: schedule, a list
representing the work schedule for some day, and time, an hour of the day
(in military time, 0-23). Here is a sample schedule for Monday:

(10 hiro 11 madelaine elizabeth 12 13 kessie lou 14)

Given this schedule and the time 11, whos-there should return the list
(madelaine elizabeth). Called with the time 12, an empty list should be
returned.

Hint: think how you can extract part of the schedule from a certain time
till one hour past that time (e.g., that part of the list from 11 to 12), and then
adjust this to get the names only. What assumptions about the schedule and
hour passed in do you have to make to avoid getting errors when the func-
tion is called?

92 Chapter 4: Lists: The Basic Data Structure

CD database

Finding the jazz artists

Finding a particular list
of CDs

4.11 Representing a Database with Lists

Let’s return to the example given earlier of maintaining a database of CDs. Recall
that the data structure looked like the following:

(rock
(Rolling_Stones
(Black_and_Blue
Its_Only_Rock_and_Roll))
jazz
(Pat_Metheny
(First_Circle)
Andy_Narell
(The_Hammer)))

4.11.1 Selecting items from the database
Let's write an expression to return all the jazz artists and CDs in the collection.
We'll assume that the CDs may not be in the order shown above (i.e., rock CDs
first, then jazz CDs). The order may be different or other music types may exist.
Assume that the CD list has been bound to the symbol cp-1ist. The jazz artists
and CDs are in the list following the top-level symbol jazz within cp-1ist. To
get this list, a combination of 1ist-ref and position can be used. position can
be used with jazz to find the location of jazz incp-1ist:

> (position ’jazz CD-list)

2
list-ref can use this result (with one added to it) to get the list of jazz artists
and CDs:

> (list-ref CD-list (+ (position ’jazz CD-list) 1))

(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer))

A slightly simpler solution uses member:

> (member ’jazz CD-list)
(jazz (Pat_Metheny (First_Circle) Andy_Narell (The_Hammer)))

Taking second of this list gives us the same list we got above:

> (second (member ’‘jazz CD-1list))
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer))

We can go a level deeper and write an expression that returns Andy Narell’s
CDs. The technique used to return the jazz artists and CDs can be used to find
the CDs of a particular artist. This is due to the the similarities between cp-1ist
and the artist-CD lists. cD-1ist consists of pairs; each pair is a category and an
artist-CD list. The artist-CD lists are similar in that they are pairs, where each
pair has an artist name and a CD list. To illustrate this parallel, observe the fol-
lowing:

> (define jazz-artist-CD-list (second (member ’jazz CD-1list)))
??

4.11 Representing a Database with Lists 93

> jazz-artist-CD-list
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer))

> (second (member ’‘andy_narell jazz-artist-CD-1list))
(The_Hammer)

Now let’s write a general function that takes a musical category (e.g., rock,
jazz) and an artist, and returns all the CDs from that artist. This can be accom-
plished by generalizing what we did above through the use of parameters
instead of specific values. To improve the readability of the solution, the compo-
sition of second and member can be made into a function as follows:

; Return the element that follows selector in a-list.
(define (element-after selector a-list)
(second (member selector a-list)))

Here are two example calls to this new function:

> (element-after ’‘rock CD-list)
(Rolling_Stones (Black_and_Blue Its_Only_Rock_and_Roll))

> (element-after ’‘Pat_Metheny jazz-artist-CD-1list)
(First_Circle)
The main function can now be written:
; Return the CDs by artist and type in CD-list.
(define (artist-CD-1list type artist CD-1list)
(element-after
artist
(element-after type CD-list)))

Here are some sample calls to this new function:

> (artist-CD-list ’jazz ’‘pat-metheny CD-1list)
(First_Circle)

> (artist-CD-1list ‘rock ’‘rolling_stones CD-1list)
(black_and_blue its_only_rock_and_roll)

4.11.2 Adding elements to the database

Now let’s write a function to add new CDs to the above structure. The function
will take four parameters: the CD to add, the category of music, the artist name,
and the CD data structure. This problem involves taking apart and rebuilding
lists. It can be thought of in the following steps:

o Get the list of existing CDs from cp-1ist, the CD data structure
e Add the new CD to the head of that list

e Create a new artist-CD list using the new list of CDs

e Create a new overall CD list using the new artist-CD list

Generalizing what
we’ve done

Extracting a list of
CDs

Pseudo code to add
CDs

94 Chapter 4: Lists: The Basic Data Structure

Changing an element
in a list

Getting the elements
before the item to be
added

Let’s refine these steps:

o Get the list of existing CDs from cp-1ist, the CD data structure:
This is exactly what the function artist-cp-1ist written above does.

e Add the new CD to the head of that list:
This involves calling cons with the new CD and the result from the above
step.

e Create a new artist-CD list using the new list of CDs:
Before we refine this step, we should think of it in general terms to combine it
with the next step.

e Create a new overall CD list using the new artist-CD list:

The last two steps involve creating a new list that has one element changed
from the original list. A new element replaces the element immediately after the
category or artist name in the list. The task is to write a function that takes a list,
a-list, an element to add, element, and a category or artist name, selector,
and returns a new list with element inserted in the position following selector
in a-1ist. For example, the value returned from
(new-element jazz-artist-CD-list ’'(We_Live_Here First_Circle)

'"Pat_Metheny)
is
(Pat_Metheny (We_Live_Here First_Circle) Andy_Narell (The_Hammer))
This function combines three lists:

e the items before the element to be added—the left side of the list
the list of the new element
e theitems after the element to be added—the right side of the list

Now our task is to refine these three steps.

e Step 1: the items before the element to be added—the left side of the list
To get the left side of a list, use subseq. subseq needs the position of the
category or artist name to denote the last element (the end) of the left side. The
start value is 0. Putting this together in a function we get
; Return the elements up to and including selector in a-list.
(define (items-before a-list selector)
(subseq
a-list
0
(position selector a-list)))

Testing this new function yields

> (items-before jazz-artist-CD-1list ’‘Pat_Metheny)
)

We wanted to have the list
(Pat_Metheny)

4.11 Representing a Database with Lists

95

Remember that subseq does not include the element at position end. We made an
off-by-one error, which is easily fixed by adding one to the value that position
returns. The corrected code is
; Return the elements up to and including selector in a-list.
(define (items-before a-list selector)
(subseq
a-list
0
(+ (position selector a-list) 1)))

Testing this new function yields

> (items-before jazz-artist-CD-list ’‘Pat_Metheny)
(Pat_Metheny)

e Step 2: the list of the new element

This is easily done using 1ist. We must use the list of the element to add and
not just the element because we are using append to build up the new list, and
append takes lists of the elements that will be in the resulting list.

e Step 3: the items after the element to be added—the right side of the list

To return the tail end of a list, subseq can be used. Once again we know the Getting the elements

position of the category or artist that is before the element that gets added. This after the item to be

position could be used with subsegq. Since we want the tail end of the list, we can added
leave off the third argument, end, to subseq. The start value is the position of the

first element that is returned. This is the position of the element that is two ele-

ments beyond the selector (we want to skip the selector and its matching value—

either a CD list or the remaining artist/CD list pairs). The code to return the ele-

ments after the new element added is

; Return the elements following the artist selector and her CDs.
(define (items-after a-list selector)
(subseq
a-list 3
(+ (position selector a-list) 2)))
A test of this function yields

> (items-after jazz-artist-CD-list ’‘Pat_Metheny)
(Andy_Narell (The_Hammer))

This is correct. Putting the three pieces together we can write the function new-
element:

; Return a-list with element replacing the item after selector. Putting an element
(define (new-element a-list element selector) into a list
(append

(items-before a-list selector)
(list element)
(items-after a-list selector)))

96 Chapter 4: Lists: The Basic Data Structure

A test of this function yields

> (new-element jazz-artist-CD-list ’(We_Live_Here First_Circle)
’Pat_Metheny)

(Pat_Metheny (We_Live_Here First Circle) Andy_Narell (The_Hammer))

The final step is to put all the pieces listed below together to produce the func-
tion add-new-CD:

o Get the list of existing CDs from cD-1ist

e Add the new CD to the head of that list

e Create a new artist-CD list using the new list of CDs

e Create a new overall CD list using the new artist-CD list

Putting a CD in the ; Return a new CD-list with a new CD added for artist in
CD data structure i category.
(define (add-new-CD CD category artist CD-list)
(new-element
CD-list
(new-element
(element-after category CD-list)
(cons
CD
(artist-CD-list category artist CD-list))
artist)
category))

Let’s test this function:

> (add-new-CD ’'Tattoo-you ’‘rock ‘Rolling_Stones CD-list)
(rock
(Rolling_Stones
(Tattoo-you
Black_and_Blue
Its_Only_Rock_and_Roll))
jazz
(Pat_Metheny
(First_Circle)
Andy_Narell
(The_Hammer)))

The actual output will not be indented as shown.
Why so many Each step in the pseudo code was carried out by a function. We did not need
functions? to use this many functions in the solution to this problem. The advantage to such
an approach, however, is that each function can be tested individually. Then,
when all the parts are put together, the chances of the entire solution being
correct are much greater.
If the code is written as one large function and contains some error, a bug, it
may be in any part of the function, and there is no easy way to narrow it down
without looking through the entire large function.

4.12 Optional Section: Internal Representations of Lists 97

Another advantage to having so many functions is they can act as building
blocks to a larger program. Selecting or creating parts of the data structure can be
done with these generic functions. Another real advantage is lurking here: should
the data structure change, all that needs to be changed are these selector and
creator functions. This topic is covered in depth in Chapter 7.

4.11.3 Exercises
4.40 Write items-before and items-after using member and some of the other
functions presented earlier instead of subseq.

4.41 Write a function delete-cCD that has the same parameters as add-new-cp,
but instead of adding a new CD, delete-cD returns a CD list with cp
removed. Does your solution work if cp is not in the CD list?

4.12 Optional Section: Internal Representations of Lists
Scheme represents lists as sequences of cons cells. A cons cell has two com-
ponents: the first indicates the next element of the list and the second indicates
the rest of the list. The list (a b c¢) consists of three cons cells. It can be drawn as
follows:

(abc)

C

a b c

Each box represents a cons cell. The left half of the box has an arrow that
points to an element of the list. The right half of the box has an arrow that points
to the rest of the list. In the case of the third cons cell, the rest of the list is (). This
is represented as a box with a line through it. Scheme denotes the end of a list by
having the right half of a cons cell point to (). The arrows are called pointers. A
pointer represents a location in the computer’s memory. A pointer to a symbol is
the location of that symbol in the computer. A list is represented as a pointer to
the first cons cell in a cons cell chain. The pointer on the upper left in the above
diagram represents the list (a b c). Scheme prints out lists by sequencing
through the chain of cons cells until a cons cell with a () right side is encoun-
tered. For each cons cell, the element pointed to by the left side pointer is printed
out.

7 In the case of dotted lists, the end of a list is a cons cell whose right side points to an atom. Dotted
lists are covered in the next section.

Cons cells: the
building blocks of lists

Pointers

98 Chapter 4: Lists: The Basic Data Structure

How cons cells make Cons cells are created and combined to make lists. The function cons creates a

lists single cons cell. The two arguments to cons are the objects to which the left and
right pointers of the new cons cell will point. Again, think of a list as being
represented by a pointer to the first cons cell in the chain of cons cells that make
up that list. This tells us that car is obtained by returning what the left half of
that first cons cell points to, and cdr returns what the right half points to.

Examples of cons cell The diagrams below are illustrations of the lists shown in section 4.7. , "Creat-

diagrams ing Lists." Notice that the left side of the first cons cell points to the car of the list
and the right side points to the cdr.

(something)

l

something

(apples and oranges)

apples and oranges
((some list) another list)
a
i i
another list

some list

4.13 Optional Section: Dotted Lists 99

Thinking in terms of the internal representations of lists, cons, 1ist, and
append perform the following actions:

e cons adds a new cons cell to the front of the list.

e 1list creates a chain of cons cells—one for each argument with which it is
called.

e append creates new cons cells that are connected to the list representing the
last argument given to append. One cons cell is created for each element in
each of the lists that is supplied as an argument to append, with the exception
of the last argument.

4.13 Optional Section: Dotted Lists
If an object is consed onto an atom, a dotted list is returned.
> (cons ’‘something ’‘strange)
(something . strange)
> (cons ’(some list) ’strange)
((some list) . strange)
The example,

(cons ’'something ’strange)

shows what happens when a symbol is consed onto a symbol. The resultant
object,

(something . strange)
is called a dotted list. The dot notation is used to differentiate a normal list—one
with () as its final cdr—from a dotted list. The final cdr of a dotted list is not a

cons cell or (). The diagram below shows the internal representation of this dot-
ted list:

(something . strange)

something strange

The final cdr points to the symbol strange.
The cars and cdrs of the results from the above calls to cons are the same as
the arguments that were applied to cons:

What cons, 1ist, and
append really do

Dotted lists

Representation of
dotted lists

100 Chapter 4: Lists: The Basic Data Structure

Using dotted lists with
list functions

> (car ’(something . strange))
something

> (cdr ’(something . strange))
strange

> (car ’((some list) . strange))
(some list)

> (cdr ’((some list) . strange))
strange
Dotted lists can be produced by append when the last argument is an atom:

> (append ’(4) 3)
(4 . 3)

This is equivalent to

> (cons 4 3)
(4 . 3)

Dotted lists can produce somewhat strange results when applied to some of

the previously illustrated list functions:

> (first (3 . 4))
3

> (second (3 . 4))
Exrror: Pair expected

> (length (3 . 4))
Error: Pair expected

> (member 3 ‘(3 . 4))
(3 . 4)

> (member 4 ‘(3 . 4))
Error: Pair expected

Most of the list functions will produce errors if they try to go beyond the final

cons cell in a dotted list. This is what happened in all of the cases that resulted in
errors above. The call to first and the first call to member were successful
because they did not attempt to go past that final cons cell. This may not be true
in all implementations of Scheme.

As a general rule, you should avoid using most list functions with dotted lists.

The list functions that will work with dotted lists are car, cdr, first, and rest.

4.14 Summary

101

4.14 Summary

The three basic data structures in Scheme are numbers, symbols, and lists.
Collectively, numbers and symbols are called atoms. Lists are ordered collec-
tions of atoms or lists. The items in lists are called the elements of the list.

The empty list, one with no elements, is written as * ().

To stop the normal process of evaluation, the special form quote is used.
quote is frequently used to stop the evaluation of lists as functions.

Special forms are like functions, but they do not follow the evaluation rules
for functions.

To find the number of elements in a list, use 1ength.

To extract an element from a list whose position is known, use one of first
through fifth.

To extract elements from lists when their positions must be computed before-
hand, use 1ist-ref.

To return all but the first element of a list, use rest or cdr.

To return the head of a list, use subseq with 0 and end, where end is the last
element number you want to include.

To return the tail of a list, use subseq with start — 1, where start is the first ele-
ment number you want to include.

To return any contiguous section of a list, use subseq with start — 1 and end,
where start is the first element to include and end is the last.

Compositions of car and cdr can be abbreviated by surrounding the as and
ds in the car and cdr calls withc and r.

To return a list with a new first element, use cons.

To create a list of many elements, use 1ist.

To put the elements of lists together into one list, use append.

quasiquote can be used to create lists by specifying templates of the list.

The elements are not evaluated unless they are preceded by a comma or a
comma and at-sign, ", ¢". Forms preceded by a comma are evaluated and
their return value used. Forms preceded by a comma-at-sign pair should
evaluate to lists, and the elements of those lists are used.

To return the position of an element, the number of times an element occurs,
or the rest of the list starting from the element, use position, count, or
member, respectively.

To remove all occurrences of an element from a list, use remove.

To get the reverse of a list, use reverse.

The functions position, count, member, and remove do not search within
sublists.

Lists are composed of cons cell chains. Each cons cell has two pointers, which
point to the next element in the list and the rest of the list.

A dotted list is produced when an object is consed or appended onto an atom.

102

Chapter 4: Lists: The Basic Data Structure

e Summary of functions introduced in this chapter:

function arguments return value

length list the number of elements in list

first list first element of list

rest list rest of list without the first element

car list same as first

cdr list same as rest

second list second element of list

third list third element of list

fourth list fourth element of list

fifth list fifth element of list

list-ref list position element at position pos in list

subseq list 0 end left part of list up to element end

subseq list start right part of list starting at element start + 1

subseq list start end list with elements start + 1 through end

random num randomly generated number between 0 and num - 1

cons element list list with element inserted at the start

list ellel2 ... eIN the list (el el2 ... eIN)

append listl list2 ... listN the list formed by concatenating the elements
of listl, list2, ..., listN.

position element list the position of element in list (counting from
zero), #f£ if element is not in list

member element list the rest of list starting with the first occurrence
of element, #£ if element is not in list

count element list the number of occurrences of element in list

remove element list list with all occurrences of element removed

reverse list the reverse of the top-level elements of list

e Summary of special forms introduced in this chapter:

expression unevaluated

special form arguments return value
quote expression
quasiquote expression

expression unevaluated except for items preceded
by ", " or ll, @ll

CHAPTER 5

CONDITIONALS

5.1 Control Through Conditional Expressions

In addition to operations performed upon numbers, symbols, and lists, Scheme
has control operations. Recall from Chapter 1 that control operations are an
important element that separates computers from simpler computational dev-
ices. Control operations allow decisions to be made. Different actions are taken
based on the given conditions. Let’s look at how Scheme handles control.

Scheme has a built-in special form, if, that checks a condition and returns one
value if it's true and a different value if it’s false! The general form of if is as fol-
lows:

(if condition
action
else-action)

where else-action is optional. To use this function, we need to learn how to create
conditions that return true or false values in Scheme.

Predicates are functions that return true / false values. They can be used as con-
ditions within if special forms. Many of these functions are easily identifiable
because their names end in 2. Below is a list of some of the common predicate
functions that work on numbers and their meanings:

! This is termed an if-then-else statement in many other programming languages.

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Control operations

if

Predicates

104 Chapter 5: Conditionals

False values

True values

Type-checking

if is a special form

predicate arguments returns true if and only if
< numl .. numN numl <num2 < ... < numN
> numl ...numN numl > num2 > ... > numN
= numl .. numN numl = num2 = ... = numN
<= numl .. numN numl <num2 <...<numN
>= numl .. numN numl 2 num2 > ... > numN
zero? num num=0

positive? num num >0

negative? num num<0

even? num num is an even number
odd? num num is an odd number
number? num num is a number (integer, real, or ratio)
real? num num is a real number

integer? num num is an integer

In Scheme, the built-in symbol #f represents false; anything else represents
true. #£ is predefined in the language and cannot be changed. Such a symbol is
called a constant.

There is another predefined constant, #t, which is often used to represent true;
however, any non-#f value is considered true in Scheme.

As a simple example, suppose you want to add one to some value; yet that
value may not be a number, in which case you want to return the value. This type
of test is called type-checking. Type refers to the kind or type of value to which a
variable may be bound (e.g.,, number, symbol, list). To test if something is a
number, use the predicate number?. Below are some examples illustrating the use
of number?:

> (number? -1)
#t

> (number? ’‘an-atom)
#£

> (number? ’(some list))
#1
We can use this predicate as the condition of an i f expression.

(if (number? item)
(+ item 1)
item)

; item is the value being tested

If itemis a number, (+ item 1) is evaluated and item plus one is returned; oth-
erwise item is evaluated and its value is returned.

An if is a special form because not all of its arguments are evaluated. The
condition is always evaluated. Depending on the return value of condition, only
one of action or else-action is evaluated and that value is returned as the return
value of the if. If else-action is not included and condition is false, an undefined
value is returned.

5.1 Control Through Conditional Expressions

105

To see why this evaluation method is important, let’s look at what happens if
we evaluate all of the arguments to the previous if expression when called with
a non-numerical value, (a 1list), for item. ' (a list) will be substituted for
item in the following expressions:

expression return value

(number? ’'(a list)) #f£

(+ '(a list) 1) Error: Expected INTEGER
’(a list) (a list)

If all the arguments to i f were evaluated, we would have a problem if i tem were
not bound to a number. Since if is a special form,

(+ item 1)
will be evaluated only if item represents a number, in which case it is safe to per-
form the addition.

The actions of an i f can be any expression, even another i f as the next exam- Nestedifs
ple will illustrate. To test if a number, num, is greater than 1 but less than 100, the
following expression can be used:

(if (> num 1)
(if (< num 100)
#t
#1)
#£f)
If num is not greater than 1, the condition of the first i f fails and the else-action,
#£ (the second #f) is evaluated. #£ evaluates to itself, thus #f would be returned.
If the first condition is satisfied, the action to evaluate is the inner i f:
(if (< num 100)
#t
#1)
If the condition of this if,
(< num 100)

is satisfied, #t is returned; otherwise #f is returned. Thus, in order for #t to be
returned, both conditions must be true.

5.1.1 Exercises
5.1 Write an if expression that returns the value of the greater of two symbols,
numl and num2.

5.2 Write a function that returns the smaller of its two arguments.

5.3 What does the following expression return?

106

Chapter 5: Conditionals

5.4

5.5

5.6

5.7

58

59

(if (= 3 4)
3
(if (= 2 2)
2

1))

The following list represents pets and their qualities:
(define qualities ’(cat (independent lazy sleepy)
dog (needy loyal) fish (wet slimy colorful) lion (dangerous)))

Complete the function characteristic that indicates if a certain animal has
a particular characteristic according to the data in the list qualities. For
example,

> (characteristic ’‘dog ’loyal)

(yes a dog is loyal)

> (characteristic ’lion ‘dull)
(no a lion is not dull)

(define (characteristic animal quality)

(let ((animal-quality-list))
(if ¢) ; animal has quality
() ; yes message
()))) ; no message

Write a function that takes three numbers representing the lengths of the
sides of a triangle. It should return true if the sides represent a right
triangle—if the sum of the squares of the first two equals the square of the
third. Assume that the arguments are in the proper order, in other words,
that the third argument will represent the length of the hypotenuse, the
longest side of the triangle.

Could you solve the above problem if you had to determine the longest
side? If so, give a solution; if not, indicate why.

Write a function that takes two arguments and returns true if both argu-
ments are equal to 0.

Write a function that returns true if its one argument is equal to 1 or 0.
Write a function that takes two arguments, num1 and num2, and returns the

result of dividing num1 by num?2 if num2 is a nonzero number. If numl or
num?2 are not numbers, your function should return the symbol non-number.

5.2 cond Expressions 107

510

5.11

5.2

If num2 is zero, your function should return the symbol zero-divisor.
What happens if you divide a number by zero in Scheme?

Write a function that takes one argument, number, and returns its square
root if it is non-negative. If number is negative, your function should return
the symbol negative. What happens if you take the square root of a nega-
tive number in Scheme?

If you divide two integers, the result will be an integer or a ratio (such as
2/3). For example, dividing 2 and 3 results in 2/3. Write a function that
takes two integer arguments and returns their quotient as an integer or a
real number (floating point number). If the first integer is evenly divisible by
the second, your function should return an integer, otherwise it should
return a real number. Called with 2 and 3, your function should return the
real number 0.667.

cond Expressions

The special form cond is used as a more generalized means of testing conditions
in Scheme. cond takes multiple condition-action pairs as arguments. Each condi-
tion is tested, in the order given, until a condition evaluating to true (a non-#£
result) is encountered. The action associated with this condition is then evaluated
and that value is returned. Below is an example to clarify this rather involved
special form:

(cond ((<€ num 10) (* num num))
((< num 100) (* num 2))
((< num 1000) (+ num 10))
(else (/ num 3)))

In the following examples, the current condition-action pair will be in a

(cond [((< num 10) (* num num))]
((€ num 100) (* num 2))
((€< num 1000) (+ num 10))
(else (/ num 3)))

The condition, (< num 10), is evaluated. If it is true, then the action, (* num
num), is evaluated, and the product is returned as the value of the cond. If the
condition is false, evaluation continues with the next condition-action pair:

(cond ((€ num 10) (* num num))
[((< num 100) (* num 2))]
((€ num 1000) (+ num 10))
(else (/ num 3)))

which is evaluated like the previous pair.
If the first three conditions are false, we arrive at the final pair:

cond

Evaluation example
with cond

108 Chapter 5: Conditionals

else: the fallout
condition within cond

(cond ((< num 10) (* num num))
((< num 100) (* num 2))
((< num 1000) (4 num 10))

[(else (/ num 3))])

The condition else is always true; therefore, (/ num 3) is returned as the
value of the cond. This is the standard way of having an otherwise clause within a
condition. It effectively means if all the above conditions are false, then perform
this action.

The above cond can be expressed in English as

If num is less than 10, return (* num num)

otherwise, if num is less than 100, return (* num 2)
otherwise, if num is less than 1000, return (+ num 10)
otherwise, return (/ num 3)

The order of the condition-action pairs is important, because they are
evaluated in the order listed. The location of any otherwise clause—one with else
as its condition—is important. If it is the first pair, then its action is always per-
formed and none of the other conditions are evaluated.

Mistakes to Avoid
Do not put condition-action pairs after an else clause. The condition
else is true, so once it is encountered, its action will be evaluated and
returned and no further conditions will be examined. An else clause
should always be the last condition-action pair in a cond.

5.2.1 Exercises
5.12 Assume that the cond expression in the section above had been written as
(cond ((< num 1000) (+ num 10))
((< num 100) (* num 2))
((< num 10) (* num num))
(else (/ num 3)))

What value would be returned if num were equal to 37? What would the ori-

ginal cond have returned? What value(s) of num will yield the same results
for both conds?

5.13 Write a function date-compare that takes two lists, each representing a date
and returns the symbol less if the first is before the second, and #£ other-
wise. A date is represented as a list of three elements: the month, day, and
year. For example,

> (date-compare ’(1 3 1984) ‘(1 4 1984))
less

5.3 Testing Multiple Conditions and Negations 109

5.14 Write a function that takes a single numerical parameter, num, and returns
the symbol positive if num is greater than zero, negative if num is less
than zero, and zero otherwise. Your function should use a single cond
expression.

5.15 The previous "Exercises" section had a number of problems that asked you
to write functions using if. Which of these could be more succinctly written
using cond instead?

5.16 Modify your solution to exercise 5.4 so that it also tests if the animal is
present in the list qualities. If it isn’t, return a message indicating so. For
example,

> (characteristic ’platypus ’strange)
(sorry a platypus is not a pet)

5.3 Testing Multiple Conditions and Negations

To test multiple predicates, the special forms and and or are used. Both of these
take any number of arguments. When an and expression is evaluated, each argu-
ment is evaluated one at a time from left to right. If an argument is encountered
that evaluates to #£, the evaluation of the and stops and #f is returned. If all the
arguments evaluate to true, the result of the last argument is returned. In other
words, an and returns a true value only if all of its arguments do not evaluate to
#£.

An or expression is evaluated in a similar fashion to and. If all the arguments
to an or return #f£, #f is returned. If any of the arguments, evaluated from left to
right, returns a true value, evaluation stops and that value is returned.

To test for the opposite, or negation, of a condition, use the function not. not
takes one argument and returns #£ if the argument is true, and #t if it is false, #£.

The special forms and and or can be used like conditional expressions. The
previous if expression

(if (> num 1)
(if (< num 100)
#t
#£)
#£)
can be written using an and expression as follows:

(and (> num 1)
(< num 100))

Evaluation of the and begins by testing if num is greater than 1. If it's not, #f is
returned. Otherwise evaluation continues by testing if num is less than 100. If it's
not, #f is returned. Otherwise #t is returned because it is the return value of the
last condition, (< num 100).

and evaluation rules

ox evaluation rules

not

110 Chapter 5: Conditionals

Expressing complex
conditions in Scheme

Using if, cond, and,
Or or

This and condition can be more simply expressed as
(< 1 num 100)
which is true if 1 is less than num (same as num is greater than 1) and nun is less
than 100.

Below are some examples of conditions and their Scheme representations
using and, or, and not.

Condition Scheme version
num is odd and divisible by 3 (and (odd? num)

(= (remainder num 3) 0))
num = 3 or num =4 (or (= num 3) (= num 4))
numis evenand (77 <num < 100) (and (even? num) (< 77 num 100))
value is not a number (not (number? value))
num is notin 10, 11, ..., 20 (not (<= 10 num 20))

This last example could be expressed as num is less than 10 or num is greater
than 20. In Scheme this would be written as

(or (< num 10) (> num 20))

Not all if and cond expressions are easily written as and or or expressions,
especially if they return values other than #t or #£. For example, the previous if
expression \

(if (number? item)
(+ item 1)
item)
can be written as
(or (and (number? item) (+ item 1))
item)
The or has two arguments: one and expression and the expression
item
The and expression is evaluated first. The condition
(number? item)
is evaluated. If it returns a non-#f value, evaluation continues with
(+ item 1)
which evaluates to a non-#£ value, and this value is the result of the and expres-
sion. This value will be the result of the or expression as it is a non-#f result of
the first argument to or. If the and expression evaluates to #£, because the expres-
sion
(number? item)
evaluates to #f, the final argument to or,
item
is evaluated. It evaluates to the value of the symbol item, and this value is
returned as the return value of the or.

5.3 Testing Multiple Conditions and Negations 111

The original if expression is more understandable and readable, and would
be preferred to the or / and equivalent.

In general, an if-then or if-then-else expression with an else part returning #£
can be written using and. Similarly, nested if-then-else expressions can be written
using an and if all the else parts return #£. Other simple and nested if-then-else
expressions are best written using i f, cond, or nested i fs.

Mistakes to Avoid
The opposite of "less than," <, is >=, not . A simpler alternate is to use

(not (< numl num2))

to express the opposite of "less than."

Mistakes to Avoid
English typically uses "or" to indicate an alternative, as in: "You can
have ice cream or beer for dessert." This is called an exclusive or—one of
the two items is true, but not both. Scheme uses an inclusive or. One or
both items must be true for the or to be true. To test if either of two
numbers is zero, but not both,

(or (zero? numl) (zero? num2))
will not work, as it will be true if both numbers are zero as well. Instead
use
(or (and (zero? numl) (not (zero? num2)))
(and (zero? num2) (not (zero? numl))))
or

(and (not (and (zero? num2) (zero? numl)))
(or (zero? numl) (zero? num2)))

This second form is used in situations in which you want to return one
value if both items are true, another value if one but not both are true,
and another value if both are not true. This can be expressed nicely
using a cond:

(cond ((and conditionl condition2) 'both)
((oxr conditionl condition2) 'only-one)
(else ’'neither))

When to use if, cond,
Or and

Exclusive versus
inclusive or

112 Chapter 5: Conditionals

De Morgan’s laws

Mistakes to Avoid
Be careful in translating English to Scheme. For example, the condition
"number is neither greater than 20 nor less than 10" is written in Scheme
with an and, not an or as the English inclusive or statement implies. The
correct interpretation is as follows:

(and (not (> number 20))
)

(not (<€ number 10)))
Similarly, it could be written as

(and (<= number 20))
(>= number 10)))

which can be simplified as
(<= 10 number 20)

De Morgan, a nineteenth century logician, created laws that give
equivalences for ands and ors with nots. They show that

(not (and conditionl condition2))
is the same as

(or (not conditionl) (not condition2))
and that

(not (or conditionl condition))
is the same as

(and (not conditionl) (not condition2))
Thus the above and expression

(and (not (> number 20))
(not (< number 10)))

can be written as

(not (or (> number 20)
(< number 10)))

Sometimes it is preferable to transform a condition using De Morgan’s
laws to make it easier to read. For example, to test "if value is not a
number or not zero," use

(or (not (number? value))
(not (zero? value)))

which can be written as

(not (and (number? value)
(zero? value)))

which reads "if value is not the number zero."

5.4 List and Atom Predicates

113

5.3.1 Exercises
5.17 Rewrite the if expressions below without using if or cond. You may use
and and or expressions, but try to use the fewest ands and ors possible.
(if (positive? number)
#t
#1)

(if (positive? number)
'positive
#£f)

(if (positive? number)
'positive
'negative)

Which of these is more readable using and and or expressions?

5.18 Rewrite the following and and or expressions using if or cond expressions.
In each case, use just a single i f or cond expression.

(and (even? num) ’even)
(or (even? num) ’'odd)

(or (and (zero? number) ’zero)
(and (negative? number) ’'negative)
'positive)

5.19 Write a function that takes three arguments, elementl and element2, which
are both bound to atoms, and a-list, a list. Your function should return true
if element1 occurs before element2 in a-list. You may use the list functions
from Chapter 4.

5.20 Write a function to perform your own tests for subseq (from Chapter 4) that
takes three arguments, a list, a-list, and the start and end element numbers of
the list. Your function should compare the values of start and end against the
length of a-list and each other, and return some helpful error message if they
are not legal. Otherwise your function should call subseq to return the
appropriate sublist. Your error message should indicate which value is bad
and what is wrong with it.

5.4 List and Atom Predicates

In addition to numerical predicates, Scheme provides predicates that work on
lists and atoms. Below is a collection of some of the more common of these predi-
cates:

114 Chapter 5: Conditionals

List and atom predi-
cates

predicate arguments returns true if and only if

list? arg arg is a list
atom? arg arg is an atom
symbol? arg arg is a symbol
null? arg argis ()

equal? arglarg2 argl is the same as arg2
member element list element occurs in list

The predicate atom? is not built into Scheme, but is easily defined as follows:

; Return true if item is a symbol or a number, false otherwise.
(define (atom? item)
(or (symbol? item) (number? item)))

There are other functions that return true if an element occurs in a list (e.g.,
position). Usually member is used, as it is more readable in the context of a
predicate, as in

(if (member ’'anchovies pizza-toppings)
’(sorry i am not hungry)
"(sure i will have a slice))
Study the following evaluations to see how the above functions work:

> (list? ’(this is a list with anchovies))
#t

> (atom? ’word)
#t

> (atom? 37)
#t

> (atom? ’(this is a list with anchovies))
#f

> (symbol? ’‘word)
#t

> (symbol? 37)
#£

> (equal? ’‘linguica ’linguica)
#t

> (equal? ’‘linguica ’anchovies)
#f

> (equal? 13 (+ 10 3))
#t

> (equal? ’(a (hidden (anchovy))) ‘(a (hidden (anchovy))))
#t

5.5 Optional Section: All Equality Predicates Are Not Equal 115

> (equal? ’(a (list)) ’(a list))
#£

> (null? ’())
#t

> (null? ’(this list is not empty))
#£

5.4.1 Exercises
5.21 Exercise 4.16 from Chapter 4 asks you to debug the following function that
takes a number and returns the month that corresponds to that number:
(define (month month-num)
(list-ref ’'(January February March April May June July
August September October November December)
month-num))

Modify the debugged version of this function such that if called with an in-
valid value for month-num, the function returns the symbol bad-month.

5.22 Write a function element-after that takes two parameters, element and a-
list, and returns the element that follows element in a-list. If element does not
occur in a-list, element-after should return the symbol no-match. If element is
the last element in a-list, your function should return the symbol at-end-
of -list. For example, the call

(element-after ’'your ’(what is your favorite color))

should return the symbol favorite.

5.23 Write a version of position using the other built-in list functions from
Chapter 4. It should return #f if the element is not in the list.

5.5 Optional Section: All Equality Predicates Are Not Equal

The function = is used to test for numerical equivalence, and the function equal?
is used to test for equivalence of atoms or lists. There are other equality predi-
cates. Below is a list of the common ones. Each of these predicates takes two
arguments, with the exception of = which takes two or more arguments.

predicate returns true if and only if the arguments are

equal? numbers or symbols that are the same; lists that are or look the same
eqv? numbers, symbols, or lists that are the same

= numbers that are the same

equal? is the most general of these. If two objects are = or eqv?, they are also
equal?. Next in generality is eqv?, which is true for numbers that are = or sym-
bols or lists that are identical. The most specific equality predicate is = which is
true if the two objects being compared are the same numbers. = cannot be used

Equality predicates

116 Chapter 5: Conditionals

Equality predicates
used with lists

Creation of cons cells

When to use the
different equality
predicates

with symbols or lists?

The functions eqv? and equal? differ in their comparisons with lists. eqv? is
not true for lists or cons cells unless they refer to the same cons cell. The empty
list, (), is always eqv? to itself. These functions compare the pointers that point
to the first cons cell that describes a list. If these pointers point to the same cons
cell, then the lists are eqv?. Cons cells are discussed in "Optional Section: Inter-
nal Representation of Lists" in Chapter 4. In order for two lists to be equal? they
must look the same—have the same elements in the same order.

To understand eqv?, it is important to know when new cons cells get created,
or when existing ones are used. Whenever a list is explicitly mentioned through
quote Or quasiquote as in

‘(this is a new list that i am creating now)

a new set of cons cells is created. The following functions also create new cons
cells: cons, 1ist, append, subseq, remove, and reverse. When these functions
are used the new cons cells that are created will not be eqv? to other lists even if
they look the same.

Study the examples below carefully to get a better understanding of the
differences between the equality predicates, especially when comparing lists.
Remember symbols that are the same are equal? and eqv?. Numbers that are the
same are =, equal?, and eqv?. Lists that are the same (same cons cells) are equal?
and eqv?. Lists that look the same (not the same cons cells) are equal?.

> (equal? 3 (+ 1 2))

#t

> (egqv? 3 (+ 1 2))

#t

> (eqv? ’‘word ‘word)

#t

> (equal? ’“(a list) ‘“(a list))

#t

> (eqv? ‘(a list) ’(a list)) ; each ’(a list) creates new cons cells
#£

> (define my-list ’“(a list))

?2?

> (eqv? my-list my-1list) ; both lists refer to the same cons cell
#t

% A fourth equality predicate, eq?, is identical to eqv? except when comparing numbers, in which
case they may or may not be eq? depending on the implementation of Scheme used. This
predicate is used when comparison speed is important and only symbols or lists are being
compared.

5.6 A Musical Offering 117

> (eqv? my-list ’(a list)) ;'(a list) creates new cons cells
#£
> (egv? (cdr my-list) (cdr my-list)) ; no new cons cells are created
#t

> (eqgv? (reverse my-list) (reverse my-list)) ;new cons cells are created
#£

> (eqv? (cons 4 my-list) (cons 4 my-list)) ; new cons cells are created
#£

> (equal? (cons 4 my-list) (cons 4 my-list)) ;thetwo lists look the same
#t

5.6 A Musical Offering
In western music, the notes of the musical scale can be represented with the list
(A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp)

Each two consecutive notes are one half-step apart. There are names for the
intervals or distances that any two notes are from one another. These names, in
half-step increments between two notes, are given in the list below beginning
with a zero half-step interval.

(unison minor-second major-second minor-third major-third
perfect-fourth diminished-fifth perfect-fifth augmented-fifth
major-sixth minor-seventh major-seventh)

From this table we see that a one half-step interval is called a minor-second, and
a perfect-fifth is a 7 half-step interval.

5.6.1 Computing the intervals between notes
Using the two lists above we can construct a function that takes two notes and
returns the interval between them. To do this, determine the number of half-steps
between the two notes, then determine the interval that corresponds to that
number of half-steps. There is one problem to avoid. The order in which the
notes are given is important. The interval between C and G is a perfect-fifth (7
half-steps); however, the interval between a G and the next higher C (after G-
sharp the notes continue with A again) is 5 half-steps, or a perfect-fourth. This
makes the problem slightly more difficult. The number of half-steps between two
notes is the difference in their positions in the scale-list if the second note comes
after the first in the scale-list. If the first note comes after the second, then the
interval is twelve minus the distance in their positions.

To make the code easier, we’ll save the distance between the notes in a let
variable. The code follows:

Musical scale

Names of note incre-
ments

118

Chapter 5: Conditionals

; Return the musical interval between notel and note2.
(define (interval notel note2 scale-list interval-list)
(let ((distance (- (position note2 scale-list)
(position notel scale-list))))
(if (positive? distance)
(list-ref interval-list distance)
(list-ref interval-list (- 12 distance)))))

Let’s test this function. If we call the function with the notes C and D, and the
above scale and interval lists, the 1et variable, distance, is bound to 2. Taking
list-ref of interval-list and 2 returns major-second. If we call the function
with D and C, and the same scale and interval lists, distance is bound to -2, and
the function returns 1list-ref of interval-list and 12 — -2, which is an error
because there is not an element at position 14 in the list. The problem is that dis-
tance is negative and we should subtract the absolute value of distance. This
bug is fixed by changing the else-action of the i f expression to

(list-ref interval-list (- 12 (abs distance)))
or to
(list-ref interval-list (+ 12 distance))

Another good test to make is calling the function with the same note for
notel and note2. This would give distance a value of 0, which is not true when
applied to positive?; thus list-ref of interval-list and 12, or an error is
returned. To fix this bug, the condition of the i f should be changed to

(or (positive? distance) (zero? distance))
or the then and else actions can be switched and the condition changed to
(negative? distance)
A correct solution is
; Return the musical interval between notel and note2.
(define (interval notel note2 scale-list interval-list)
(let ((distance (- (position note2 scale-list)
(position notel scale-list))))
(if (negative? distance)
(list-ref interval-list (+ 12 distance))
(list-ref interval-list distance))))

5.6.2 Computing the note an interval beyond another note
Another useful function is one that takes a note and an interval and returns the
note that is that interval amount above the original note. This function must
determine the number of half-steps that defines the interval desired, then add
that value to the position of the note in the scale, giving the position of the new
note. The actual new note is computed by taking 1ist-ref with this position and
the scale-list.

If we try out this algorithm to determine the note a perfect-fifth above C, we
find a perfect-fifth to be 7 half-steps, and C to be in position 3 in the scale-list.

5.7 Determining the Value of Poker Hands

119

Adding 7 and 3 gives 10, and the note at position 10 is G. Thus, G is a perfect-fifth
above C. This is correct.

However, what happens when we try to compute the perfect-fourth of G—it
should be C. The number of half-steps in a perfect-fourth is 5 and the position of
G is 10, adding these yields 15, but there is no note at position 15 in the scale-list.
To keep the position between 0 and 11, take the remainder of the position and 12.
This treats our scale-list as a circular list. Taking the remainder of 15 and 12 gives
3, and the note in position 3 in the scale-list is C, which is correct.

The Scheme code for this function is

; Return the note an interval above note.
(define (higher-note note interval scale-list interval-list)
(let ((half-steps (position interval interval-list))
(note-position (position note scale-list)))
(list-ref scale-list
(remainder (+ note-position half-steps) 12))))

5.6.3 Exercises

5.24 The next two problems use a different approach than the previous functions
did to handle the problem of exceeding the boundaries of the scale-list. This
approach is to represent the scale-list as a longer list, as follows:

(A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp
A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp)

Below is an alternate solution to the function interval:

(define (interval-alt notel note2 scale-list interval-list)
(let ((distance (- (position note2 (reverse scale-list))
(position notel scale-list))))
(list-ref interval-list distance)))

Will this solution work? Why or why not?

5.25 Below is an alternate solution to the function higher-note using the scale-
list given in the previous problem:

(define (higher-note-alt note interval scale-list interval-list)
(let ((half-steps (position interval interval-list))
(note-position (position note scale-list)))
(list-ref scale-list (+ note-position half-steps))))

Will this solution work? Why or why not?

5.7 Determining the Value of Poker Hands

Poker is a multiplayer card game in which each person has a total of five cards.
These can be represented as a list, as in

(jack queen queen jack three)

120 Chapter 5: Conditionals

Names of poker
hands

Counting cards

Pseudo code for
poker

The order of the cards does not matter. The value of a player’s cards (their hand)
is based on the following ordering:

name example hand

four-of-a-kind (seven seven seven two seven)
full house (two eight eight two two)
three-of-a-kind (ace ace king four ace)

two pairs (six seven two two seven)
one pair (three five three king ace)

This is a simplification of the actual game of poker, which has other winning
hands like straights and flushes. In this version of poker, four-of-a-kind is worth
the most and one pair the least. A full house consists of one pair and three-of-a-
kind. '
To determine a hand value, we must count the number of times that each card
occurs in the player’s hand. Given the list

(jack seven queen jack jack)

we need to count the number of jacks, queens and sevens. Yet we don’t know
beforehand what cards exist in the hand. In reality what we will have to do is
count the number of times the first card occurs in the hand, and the number of
times the second card occurs, and so on. This gives us five totals. For the above
example, we would get the totals 3, 1, 1, 3, and 3 for the first, second, third,
fourth, and fifth elements of the list, respectively. The first 3 tells us that the first
element occurred three times in the card list. From this information we can deter-
mine what the value of the hand is. For example, if any of the totals is 4, then the
hand is a four-of-a-kind. Rather than keeping these totals in five separate vari-
ables, or recomputing them each time they are needed, we can save them in a list
and take advantage of the list predicates like member to determine if a particular
total exists.

The highest value hands should be checked for first to avoid problems like
calling a full house a pair or three-of-a-kind because that condition was satisfied
first. The pseudo code for this function can be expressed as follows:

e compute and save the totals of each card in the hand in the variable count-
list

check for four-of-a-kind

check for full house

check for three-of-a-kind

check for two pair

check for one pair

The checks can be refined as follows:

e check for four-of-a-kind:
check if 4 is in count-1list
e check for full house:
check if 3 and 2 are in count-1ist

5.7 Determining the Value of Poker Hands

121

e check for three-of-a-kind:
check if 3is in count-1list
e check for two pair:
check if 2 occurs four times in count-1list
The reason 2 must occur four times in count-1list is that if it occurs just
twice, that denotes a single pair.
e check for one pair:
check if 2 is in count-1ist

Expressing this in Scheme gives

; Return the value of a poker hand.
(define (poker-value hand)
(let ((count-list (list
(count (first hand) hand)
(count (second hand) hand)
(count (third hand) hand)
(count (fourth hand) hand)
(count (fifth hand) hand))))
(cond
((member 4 count-list)
"four-of-a-kind)
((and (member 3 count-list) (member 2 count-list))
"full-house)
((member 3 count-list)
"three-of-a-kind)
((= 4 (count 2 count-list))
"two-pair)
((member 2 count-list)
'one-pair)
(else 'nothing))))

5.7.1 Exercises

5.26 Suppose we had written the code to check the conditions in reverse order
starting with one pair. What input hands to this new function would give
erroneous results? What input hands would give correct results?

5.27 Write a function that takes two hands as arguments and returns the winning
hand—that with the higher value. If the card values are the same, your func-
tion should return the symbol tie.

5.28 Modify the function poker-value so that it returns the names of the cards
that participated in the pairs, full houses, etc. For example, if given

(king queen eight one queen)

your modified function should return

122

Chapter 5: Conditionals

(one-pair queen)
If called with
(king queen king king queen)
your modified function should return
(full-house king queen)”
This is tricky for the case of two pair. Hint: use remove in your solution.

5.29 Combine your solutions to the previous two exercises so that your new

function can pick the winning hand for similar hands by comparing the
cards used in the hand. For example, your solution should be able to tell
that three jacks would beat three nines.

5.8 Summary

Predicates are functions that can be used as conditions in and, or, if, and
cond expressions. Such predicates return #f£ if they are false, and some non-#£
value if they are true.

#f and #t represent false and true, respectively, in Scheme.

They are constants and cannot be changed.

To test a condition and then take one of two actions depending on the out-
come, use if.

To test multiple conditions, use cond.

cond can perform multiple actions for each condition. As with functions, the
return value of the cond is the result of the last action evaluated.

To form compound conditions, use and or or.

To test the negation of a condition, use not.

To test if an expression evaluates to a list, an atom, a symbol, or the empty
list, use 1ist?, atom?, symbol?, or null?, respectively.

To test if an atom occurs in a list, use member.

To test if two atoms are the same or two lists look the same, use equal?.

To test if two atoms (symbols or numbers) or two lists are the same, use eqv?.
To test if two symbols or two lists are the same, use eq?.

To test if two numbers are the same, use =.

5.8 Summary

123

Summary of predicates introduced in this chapter:

predicate arguments returns true if and only if
not arg arg is #£

< numl ...numN numl <num2 <... < numN
> numl ... numN numl > num2 > ... > numN
= numl ... numN numl = num2 = ... = numN
<= numl ... numN numl < num2<...<numN
>= numl ... numN numl 2 num2 > ... 2 numN
zero? num num=0

positive? num num >0

negative? num num <0

even? num num is an even number
odd? num num is an odd number
number? num num is a number (integer, real, or ratio)
real? num num is a real number
integer? num num is an integer

list? arg arg is a list

atom? arg arg is an atom

symbol? arg arg is a symbol

null? arg argis ()

member element list “element occurs in list
equal? argl arg2 arg1 looks the same as arg2
eqv? argl arg2 argl is the same as arg2

= numl num2 numl is the same as num?2

Summary of special forms introduced in this chapter:

(1f condition
action
[else-action])

If condition is true, returns action. If condition is false, returns else-action. If con-
dition is false and there is no else-action, returns an undefined value.

(cond (condition actionl action2 ... actionN)
(condition action1 action2 ... actionN)

(else actionl action? ... actionN)

Evaluates conditions in order and returns the last action, actionN, correspond-
ing to the first condition that is true. If the are no actions, condition is returned.
If all conditions are false, returns actionN corresponding to else. If all condi-
tions are false and there is no else clause, cond returns an undefined value.

(and conditionl condition2 ... conditionN)

Evaluates conditions until a false condition is found or all conditions are true.
Returns #f if a false condition is found, otherwise returns conditionN.

124 Chapter 5: Conditionals

(ox conditionl condition2 ... conditionN)

Evaluates conditions until a true condition is found or all conditions are false.
Returns first true condition found or #f if all conditions are false.

CHAPTER 6

REPETITION
THROUGH RECURSION

6.1 Recursion

There are times when a sequence of actions should be repeated. We may want to
apply a function to all the elements of a list. We may want to add the first twenty
numbers in a list. We may want to return the first symbol in a list. To carry out
such actions the technique of recursion can be used. It is essential to master recur-
sion, as it is commonly used in Scheme programming. There are different types
of recursion that we will explore individually. The important thing is not to just
memorize the general form for each type of recursion illustrated, but to get a
thorough understanding of the process of writing recursive functions. Recursion
is a skill that you improve on with practice. Use the examples to guide you, then
practice, practice, practice.

6.1.1 Example: Finding a number in a list that exceeds a threshold
value
Recursion is often used with lists. The following example illustrates many of the
basic ideas used when recursing through lists. Recursion involves having some
code that needs to be repeated and some way of deciding when you are done.
The code to repeat for this first example is a test if a number in a list exceeds
some threshold. We are done when we find a value that exceeds the threshold,
and we return that number.
This can be expressed in Scheme as
(if (> (first a-list) threshold)
(first a-list)
else-action)

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Recursion through
lists

126 Chapter 6: Repetition Through Recursion

Recursive definitions

Recursive functions
and recursive calls

If the above condition is met, (first a-1list) is evaluated and the desired
element is returned. The else-action is the important missing piece. It must find
the element we are looking for if it’s not the first element of the list. This can be
viewed as finding the element that exceeds the threshold in the rest of the list,
which can be expressed as

(if (> (second a-list) threshold)
(second a-list)
; Find the element that exceeds threshold in the rest of the rest of a-list

and so forth.
If we attempted to write this in Scheme, we would get the neverending
sequence
(if (> (first a-list) threshold)
(first a-list)
(if (> (second a-list) threshold)
(second a-list)
(if (> (third a-list) threshold)
(third a-1list)

Writing such code that works for any length list would be impossible. Yet so
far, the only means we have seen of invoking a section of code is by typing it into
the interpreter or by calling a function that embodies that code. The first choice is
impractical, as we have just seen. If we attempt the second alternative, wouldn’t
we run into the same senseless repetition as above?

The key here is to look back at the earlier definition of the problem.

To return the element in a list that exceeds the threshold:
if the first element of the list is greater than the threshold
return that first element
otherwise,
return the element in the rest of the list that exceeds the threshold

This definition is recursive because it uses the term being defined within its
definition, namely the step in the otherwise clause that tells us to perform a prob-
lem identical to the one being defined, except with the rest of the list instead of
the entire list. The definition has an indication of when to stop—when an element
greater than the threshold is found.

The function can be written using an i f expression that implements the above
pseudo code in Scheme. This function has two parameters, threshold and a-
list. The otherwise clause has a call to the function we are defining; thus, it is a
recursive call, which makes this a recursive function. This recursive call is with a
different value for a-list—(rest a-1list). This breaks the problem into a smaller,
similar problem: namely, finding the element exceeding the threshold in the rest
of the list. Defining the problem in terms of smaller, similar pieces is an impor-
tant aspect of writing recursive functions. The resulting function would be

6.1 Recursion

127

; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)
(if (> (first a-list) threshold)
(first a-list)
(first-greater threshold (rest a-list))))

If first-greater is called with a value of (first a-list) greater than the
value of threshold, (first a-list) is returned. Otherwise, first-greater is
called again, but this time (and this is the key point) with the rest of a-1ist.
When this recursive call is evaluated, it checks the first of the list (which is the
rest of the original a-1ist). Thus the second of the original list is checked. Each
element in the list is checked in this fashion until we find an element that exceeds
the threshold. That element is returned and the recursive repetition stops.

In the trace below a series of recursive calls is made. This is called a recursive
descent.

(first-greater 3 (1 2 4 3 5))

; The first condition fails since 1 isn’t > 3.

; The otherwise clause is performed.

; The result of the call to (first-greater 3 /(1 2 4 3 5))is
; the result of this otherwise clause.

d
(first-greater 3 (2 4 3 5))
!

; Again the condition is false and the return value is
; the result of the otherwise clause.

(first-greater 3 7 (4 3 5))
l

; The condition is true as 4 > 3, thus 4 is returned.
{

4
The interpreter’s output will be as follows:

> (first-greater 3 (1 2 4 3 5))
4

Let’s try another example:

> (first-greater 5 (1 2 4 3 5))
Error: Pair expected

What happened? What should the function have returned? In this case there
are no values in the given list that are greater than the threshold value, 5. We
wind up recursing through the list until we hit the end of the list. Yet we con-
tinue to make a recursive call with the empty list. This results in an error when
we try to take the first of the empty list.

To fix this bug, we must add a test for an empty list and not recurse further. If
we hit the end of the list, we should return some reasonable value. #£ is a good
choice in this case. Below is the new code with the added test:

Recursive descent

Recursing too far

128 Chapter 6: Repetition Through Recursion

; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)
(cond ((> (first a-list) threshold)
(first a-list))
((null? a-list)
#£)
(else
(first-greater threshold (rest a-list)))))

Let’s try this new code out.

> (first-greater 5 (1 2 4 3 5))
Error: Pair expected

Putting exit cases in We get the same error. In such situations be sure that you used the proper

the proper order spelling of the function in its definition and all its calls. Sometimes what looks
like a bug is just a renaming problem in which you end up defining a new func-
tion that calls your old function and produces the same error. Since we didn’t
make these mistakes, the function must have an error. The first thing the function
does is compare the first of the list with the threshold value. After that we test
if the list is empty. These two tests are in the wrong order. We must first check if
the list is empty before comparing the first element. Below is the correct function
and a sample call:

; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)
(cond ((null? a-list)
#£)
((> (first a-list) threshold)
(first a-list))
(else
(first-greater threshold (rest a-list)))))

> (first-greater 5 (1 2 4 3 5))
#£

Mistakes to Avoid
Before taking the first or rest of a list, be sure that the list is not
empty (check if (null? a-1list) is not true). In recursive functions that
take lists, a check for an empty list is usually the first condition that
should be tested.

By evaluating recursive calls as we have evaluated nonrecursive function
calls, the outcome of a sample invocation can be traced easily. The important
observations to make in the case of first-greater are

e Whenever the exit condition is not met, the function is called recursively with
a new value for a-1list.

e Eventually one of the exit conditions (> (first a-list) threshold) or
(null? a-list) will be met and the recursion will end.

6.1 Recursion 129

In general, recursive functions have

e exit or termination cases that return values that do not involve recursive calls.
e recursive cases in which a recursive call is made.

In these recursive cases, the recursive call is made with a smaller part of the
problem to be solved. Recursion works by breaking the problem down into
smaller pieces that eventually lead to exit conditions that terminate the recursion.

6.1.2 Example: Investing in your best interest
This example explores your monetary growth when investing a fixed amount
monthly over many years with interest compounded daily. You can use this to
do financial planning for your retirement or to calculate how much you would
have to invest each month to put a kid through college.

To model these investment scenarios we will need to repeat a section of code
a certain number of times. Three important elements are needed:

e The block of code to repeat
e A counter to indicate how many repetitions have been made
e A check to determine if we are done

The block of code to repeat must determine the new balance (balance plus
balance times daily interest rate). In addition, every month we add an additional
amount to the balance.

To model interest compounded daily, we must perform 365 repetitions (we'll
ignore leap years). A counter variable can keep track of the current day we are
calculating. We'll need to examine the counter variable to determine if we must
add the additional amount to our balance (every 30 days to model making an
increment once each month). This counter will get incremented with each repeti-
tion of the code. The termination check will be a simple if or cond expression
checking the value of the counter.

Let's refine what we have above and let the counter, which will be called
counter, start with the value one and increment until it is greater than the
number of days days. This means we are done when counter is greater than
days. The refined pseudo code follows:

if counter is greater than days,
return the current balance

otherwise,
make a recursive call with counter plus 1 and
a new balance (based on the old balance balance
and the interest rate rate) and a possible
increment increment.

The function has five parameters, balance, counter, days, rate, and incre-
ment. The recursive call breaks the problem into a smaller problem by passing
different values for counter and balance. The recursive call computes the new
balance for the days counter plus 1 to days. Eventually counter will exceed
days and the recursion will stop. Expressing this in Scheme gives

Exit and recursive
cases

Modeling investment
scenarios

Pseudo code for
investment modeling

130

Chapter 6: Repetition Through Recursion

; Compute growth of investment given start balance, time period,
; and daily interest rate with increment added every 30 days.
(define (new-balance balance counter days rate increment)
(cond ((> counter days)
balance)
((zero? (remainder counter 30))
(new-balance
(+ (* balance rate) balance increment)
(+ counter 1) days rate increment))
(else
(new-balance
(+ (* balance rate) balance)
(+ counter 1) days rate increment))))

Helper function to This function has two parameters that are only needed for the recursive com-
reduce the number of putations (counter and balance), and three parameters that make the function
parameters general but do not change in the recursive calls (days, rate, and increment).

This screams for a helper function that takes fewer arguments and calls new-
balance with initial values for counter and balance.

We can go a step further and write a function investment that will make it
easier to model investments over many years. Rather than take the number of
days we are investing and the daily interest rate, it will take the number of years
we’ll invest and the annual interest rate. We’ll need one extra parameter, the
amount to invest each month. Here is the code for investment:

; Compute annual investment given annual interest rate, years,
; and monthly investment amount.
(define (investment years rate increment)

(new-balance 0 1 (* 365 years) (/ rate 365) increment))

Below is a trace of the function new-balance to model 1% interest gained
each day over three days on an initial investment of $1000.

(new-balance 1000 1 3 0.01 0)

; The exit condition fails, as 1 isn’t > 3.
; The otherwise clause is performed and its action is evaluated.

(new-balance 1010 2 3 0.01 0)
; The exit condition fails again.
d
(new-balance 1020.1 3 3 0.01 0)
{
(new-balance 1030.301 4 3 0.01 0)
; The exit condition is true, as 4 >3

1030.301

6.1 Recursion 131

The next example is a call to calculate how much we’d make investing $100 a
month for three months, with an initial investment of $1000 with 1% interest
daily (don’t we wish).

> (new-balance 1000 1 90 0.01 100)
2865.09

Now let’s call investment to model some more realistic, long-term invest-
ments:

> (investment 10 0.05 200) ; invest $200 monthly over 10 years
31372.45
> (investment 20 0.05 100) ; invest $100 monthly over 20 years
41690.72

In both of these examples the same amount is invested (about $24,000) but the
gains are much larger by starting earlier. So start investing now.

6.1.3 Example: Summing digits

Let’s write another recursive function. This function returns the sum of the
digits within number, where number is an argument to the function.

Some examples will help to illustrate what the function should do:

the sum of the digitsin 1is 1
the sum of the digits in 342 is 9
the sum of the digits in 1989 is 27

To solve this problem, think of the definitional pseudo code' to the function.
Definitional pseudo code is pseudo code that provides definitions for what the
function should return based on the arguments with which it is called. Such a
description takes on the following form:

If condition-1 is true, the function returns return-value-1.
Otherwise, if condition-2 is true, the function returns return-value-2.

Otherwise, the function returns return-value-N.

From such a description, the actual Scheme code can be easily written using
if or cond conditional expressions. Part of the definitional pseudo code to a
recursive function is a recursive call that breaks the problem into smaller parts. In
addition, there should be return values that do not involve recursive calls. These
are the actions matching the exit conditions.

Below is the definitional pseudo code to the sum of the digits problem:

' This is a term I have coined and is not standard in computer science.

Definitional pseudo
code

132 Chapter 6: Repetition Through Recursion

Pseudo code for
adding digits

The sum of the digits in number is
number if number has only one digit
otherwise, the sum of the digits is
the first (leftmost) digit of number plus
the sum of the rest of the digits in number.

Another possible definition is

The sum of the digits in number is
number if number has only one digit
otherwise, the sum of the digits is
the last (rightmost) digit of number plus
the sum of the rest of the digits in number.

Both of these solutions have the same terminating condition—when number
has only a single digit. In the recursive case, they both break the problem into
smaller pieces, namely considering the sum of the digits to be the sum of one
digit and the sum of the rest of the digits. Computing the sum of the rest of the
digits will be the recursive call in our solution. Eventually this will yield a one-
digit number, satisfying the exit condition.

In deciding which of the two above definitions to use, we should look into
which is easier to do: extract the first (leftmost) digit and all but the first digit of a
number, or extract the last (rightmost) digit and all but the last digit. Without
knowing how many digits the number is, the first digit is difficult to extract,
whereas the last digit is the remainder of the number when divided by ten. The
rest of the digits (the remaining digits to the left) are obtained by dividing the
number by ten and then removing any fractional part. This is done with the func-
tion truncate, which returns the integer part of real numbers (the digits to the
left of the decimal point).

For example, the last digit of 347 is

(remainder 347 10) — 7
and the first digits are
(truncate (/ 347 10)) — 34

Lastly, a number is one digit long (our exit condition) if dividing it by ten and
truncating the result evaluates to zero. The two examples below illustrate this:
(zero? (truncate (/ 9 10))) — #t

however,
(zero? (truncate (/ 347 10))) — #f

At this point we can create the definitional pseudo code to our summing
digits problem:

6.1 Recursion

133

if number is a one-digit number, then
return number
otherwise
return the sum of the last digit in number
and
the sum of the digits of the rest of number without the last digit.

Rewriting this in Scheme, we get

; Return sum of the digits in number.
(define (sum-digits number)
(if (zero? (truncate (/ number 10)))
number
(+ (remainder number 10)
(sum-digits (truncate (/ number 10))))))

To make this function more readable and eliminate the two identical calls to
truncate, a let expression can be used as follows:

; Return sum of the digits in number.
(define (sum-digits number)
(let ((last-digit (remainder number 10))
(rest-of-number (truncate (/ number 10))))
(if (zero? rest-of-number)
number
(+ last-digit
(sum-digits rest-of-number)))))

Follow the recursive descent in the trace of this code:
(sum-digits 526)

; last-digit is bound to 6
; rest-of -number is bound to 52, which is not zero, so the else action is evaluated

{
(+ 6 (sum-digits 52))
l

; last-digit is bound to 2
; rest-of -number is bound to 5

3
(+ 2 (sum-digits 5))
l

; last-digit is bound to 5
; rest-of - number is bound to 0, satisfying our exit condition

5

Two recursive calls are made, each one embedded as one of the values that must
be summed with the current last digit. Once the last recursive call

(sum-digits 5)

has been made, these sums can be determined. This can be viewed as climbing Recursive unwind

out of the recursive descent. This is called a recursive unwind.

Chapter 6: Repetition Through Recursion

(sum-digits 526)
(+ 6 (sum-digits 52))
{
(+ 2 (sum-digits 5))
A

5

\A
13

Starting at the last recursive call in the above diagram, the value of
(sum-digits 5)
which is 5 is added to 2 to give the value of
(sum-digits 52)
In a similar fashion, that result, 7, is added to 6, yielding 13, the return value of
(sum-digits 526)
Future traces will show both the downward recursive calls and the return
values from the recursive steps in one diagram, as in
(sum-iigits 526)

;last-digit is bound to 6
; rest-of -number is bound to 52, which is not zero, so the else action is evaluated

(+ 6 (sum-digits 52))
; last-digit is bound to 2
; rest-of -number is bound to 5

d
(+ 2 (sum-digits 5))
l

;last-digitis bound to 5
; rest-of -number is bound to 0, satisfying our exit condition

5

N

!
13

6.1.4 General rules for writing recursive functions

Prescriptive method Let’s review the steps in writing a recursive function:

for writing recursive

e Think of the exit cases—the simplest conditions in which an immediate
answer is known without taking any recursive steps. What are the return

6.1 Recursion 135

values in these cases?

e Think of the recursive cases—those involving recursive calls. The recursive
calls should break the problem up into similar, smaller pieces. How can the
results of the recursive calls be used to get the desired return result?

e Write out the definitional pseudo code to the function using the exit and
recursive cases.

e Refine any steps so that the ideas can be stated in Scheme.

e Verify that your solution works in a simple example where only one recursive
call is needed. If there are problems, rethink your return values for your exit
and recursive cases. Examine the exit conditions, as they may not be
appropriate either.

e Write the Scheme code using your definitional pseudo code to guide you.

e Test out your code on the computer or by hand using traces.

6.1.5 Example: Testing if the digits in a number are in increasing
order

Let's use the guidelines given above to solve the next recursive problem. The

problem is to check if the digits in a number are in increasing order from left to

right. For example, the number 1234 has digits that are in increasing order from

left to right; however, 647 does not.

This problem can be viewed as determining if the digits are in decreasing
order from right to left. As we saw in the last problem, it is easier to sequence
through a number in a right to left fashion, so the problem will be restated as
such.

First the exit cases—one will be when there are no more digits to compare
against in the number, in which case we return #t. Another exit case is when a
digit is encountered that is greater than the previous digit (the digit to the right of
it). In this case #f is returned.

The recursive case occurs when there are more digits to check and the current
digit is less than or equal to the previous digit. In this case we need to compare
against the remaining digits (those to the left) recursively.

Now put these cases together as the definitional pseudo code to the problem
and refine any areas that do not easily translate into Scheme.

if there are no more digits to check, return #t

otherwise, if the current digit is greater than the digit to the right of it,
return #£

otherwise, return the result of a recursive call with the leftmost digits.

Some of these steps need refinement. First, how do we know if there are no
more digits to check? Presumably we will be stripping off the last digit with each
recursive call, and eventually we will reach zero. As was illustrated in the sum-
digits function, when a one-digit number is divided by ten and truncated, zero
is returned, as in

(truncate (/ 7 10)) —> O

Pseudo code to test
order of digits

Refinement of pseudo
code

136

Chapter 6: Repetition Through Recursion

Thus, there are no more digits to examine when the number to check is zero.

Another aspect that needs refinement is the notion of comparing the current
digit against the digit to the right of it. This can be viewed as comparing the last
digit (rightmost) with the next to last digit (the one to its immediate left).

We can use a let expression to name the last digit, next to last digit, and the
rest of the number (without the last digit). Since we can use the value of the rest
of the number to more easily compute the next to last digit, we’ll use a 1et*.

Now that the refinements have been made, we can express the solution in
Scheme as follows:

; Return true if the digits in number are increasing

; from left to right.

(define (increasing-digits number)

(let* ((last-digit (remainder number 10))
(rest-of -number (truncate (/ number 10)))
(next-to-last-digit (remainder rest-of-number 10)))
(cond ((zero? rest-of-number) i#t)
((> next-to-last-digit last-digit) #f)
(else (increasing-digits rest-of-number)))))
Follow the trace below to see how this function works:

(increasing-digits 812)

; last-digit is bound to the value of (remainder 812 10) — 2

; rest-of -number is bound to the value of (truncate (/ 812 10)) — 81
;next-to-last-digit is bound to the value of (remainder 81 10) — 1
; 81 is not zero, nor is 1 > 2, thus the otherwise action is performed

(increasing-digits 81)

; last-digit is bound to the value of (remainder 81 10) — 1

; rest-of -number is bound to the value of (truncate (/ 81 10)) — 8
;next-to-last-digit is bound to the value of (remainder 8 10) — 8
; 8 is not zero, but 8 > 1, so #f is returned.

l
#f

6.1.6 Exercises

6.1 Another way of testing if a number is a one-digit number is by checking if it
is less than ten; however, this does not work for negative numbers. Does the
function sum-digits work for negative numbers? What about the function
increasing-digits? If not, how would you fix these functions so that they
do work when called with negative numbers?

6.2 Write a function sum-evens with two parameters, start and end. The func-
tion should return the sum of the even numbers between start and end

6.1 Recursion

137

inclusive.

6.3 Explain what this modification to new-balance does.

(define (new-balance balance counter days rate period increment)
(cond ((> counter days)
balance)
((zero? (remainder counter period))
(new-balance
(+ (* balance rate) balance increment)
(+ counter 1)
days rate period increment))
(else
(new-balance
(+ (* balance rate) balance)
(+ counter 1)
days rate period increment))))

Give a sample call to show how much is gained if you invest $50 at the end
of each week for a year (52 weeks). Then make a call to see how much is
made if you invest the same amount, $2600, by quarters ($650 is invested at
the end of each quarter—every 13 weeks). Use 7% as the annual interest rate
in your calls. How much more do you make with weekly deposits versus
quarterly deposits?

6.4 The following modification to the function new-balance allows different
types of investment options.

(define (newer-balance balance counter days rate day-list
increment)
(cond ((> counter days)
balance)
((member (remainder counter 7) day-list)
(newer-balance
(+ (* balance rate) balance increment)
(+ counter 1)
days rate day-list increment))
(else (newer-balance
(+ (* balance rate) balance)
(+ counter 1)
days rate day-list increment))))

Write function calls to model the following annual investments with 5%
annual interest (assume that the first week of the year begins on a Monday):
a.) investing $10 each weekday (Monday through Friday); b.) making equal
investments twice a week on Mondays and Thursdays based on an annual
investment total of $1000; and c.) investing $5 a day (except Sundays) start-
ing with an initial balance of $250.

138 Chapter 6: Repetition Through Recursion

6.5 Write a function with two parameters, digit, a single-digit number, and a
positive number, number. The function should return #t if digit is one of the
digits in number, and #f otherwise.

6.6 Write a function with one parameter, number, an integer value. The function
should return the largest digit in number.

6.7 Modify the function increasing-digits to use an alternate approach for
comparing the current digit with the previous digit—that of using an addi-
tional parameter to hold the previous digit. Each time the function is called
recursively, the current digit value can be used as the previous digit argu-
ment. What value should this extra parameter be given for the initial call?
Does your solution work for one-digit numbers? Do you prefer this new
solution or the original one with one parameter?

6.2 Optional Section: Global Variables and Recursion

Free variables The function new-balance could have been written without using days, rate,
and increment as parameters, instead treating them as free variables within new-
balance. A free variable is a variable used in a function that is not a parameter or
a local variable within a 1et or let*. Using these parameters as free variables
may seem more logical because their values are not changed when making recur-
sive calls. The new code to new-balance would look like the following;:

; Compute growth of investment given start balance, time period,
; and daily interest rate with increment added every 30 days.
(define (alt-new-balance balance counter)
(cond ((> counter days)
balance)
((zero? (remainder counter 30))
(alt-new-balance
(+ (* balance rate) balance increment)
(+ counter 1)))
(else
(alt-new-balance
(+ (* balance rate) balance)
(+ counter 1)))))

Each time you want to invoke alt-new-balance, initial values of days, rate,
and increment must be defined. The equivalent of the call to new-balance
below,

(new-balance 1000 1 3 0.01 0)
would be

6.3 Optional Section: Different Types of Recursion 139

(define days 3)

(define rate 0.01)
(define increment 0)
(alt-new-balance 1000 1)

This is not as desirable. You have to remember to set all the values each time
you want to call alt-new-balance. A more serious problem occurs if there
already is a variable with any of the names that were bound somewhere else in
the code. It would lose its old value. Effectively, this means that you must care-
fully examine the code to avoid this and hope that the code will not change in the
future and introduce problems.

The situation would be worse yet if counter were treated as a free variable in
alt-new-balance. For that function to work as such, the value of counter would
have to be changed within the function. As we saw in Chapter 3, this would
affect the value of counter outside of the function, since it is a global variable.
Once again, such side-effects are not considered to be good programming style
and should be avoided. It is better to pass all the values that the function needs as
arguments, as in the original function new-balance.

6.3 Optional Section: Different Types of Recursion

The functions first-greater, new-balance, and increasing-digits are tail
recursive functions. Tail recursion is so named because in the recursive cases,
when a recursive call is made, the last action taken is the recursive function call.
There are no expressions that follow the recursive call, nor is the recursive call an
argument to another function to which the result of the recursive call must be
applied. In other words, there are no further evaluations necessary after the
recursive call is complete.

Another type of recursion is embedded recursion. This is characterized by recur-
sive cases in which the recursive call is placed so that there are more actions to
take after the recursive call returns. The function sum-digits is an embedded
recursive function. This is because the recursive call is used as an argument to the
+ function:

(+ last-digit
(sum-digits rest-of-number))
After the recursive call returns its value, that value must be added to the last
digit of the number.

6.3.1 Example: Factorial
Below is another example of embedded recursion—computing the factorial of a
number:

Danger of using free
variables instead of
parameters

Tail recursion

Embedded recursion

140 Chapter 6: Repetition Through Recursion

Embedded recursive
factorial

Tail recursive factorial

; Return max factorial.
(define (factorial max)
(if (zero? max)
1
(* max
(factorial (- max 1)))))
Notice that the recursive call
(factorial (- max 1))
is an argument to the function *, and once it is evaluated it is multiplied by max.
This product is the return value of the function. Therefore, there are delayed
actions that can only be performed after the recursive call returns its value. A
careful exploration of a trace of factorial will help show what this function
does.

(factorial 3)
(* 3 (factorial 2))
(* 2 tfactorial 1))
(* 1 ffactirial 0))

1

Y

l
6

The value of (factorial 3) is the product of 3 and (factorial 2). To com-
pute this product, (factorial 2) must first be determined. (factorial 2) is
the product of 2 and (factorial 1), and (factorial 1) is1 times (factorial
0). At this point we reach the exit condition in our recursion, when max equals 0,
and we return 1. (factorial 0), 1, is multiplied by 1 to get the value of (fac-
torial 1). Now we return from our recursive descent. 1 is multiplied by 2, giv-
ing 2, the value of (factorial 2). This result is multiplied by 3, yielding 6, the
value of (factorial 3),and we're done. ,

Compare the embedded recursion function factorial with the tail recursive
function tail-factorial, below.

; Return max factorial (tail recursive).
(define (tail-factorial max total)
(if (zero? max)
total
(tail-factorial (- max 1) (* max total))))

6.3 Optional Section: Different Types of Recursion 141

Notice that tail-factorial has two parameters; however, it is functionally
equivalent to the function factorial. It is often necessary to use extra parame-
ters in a tail recursive solution. These parameters are often not necessary with
embedded recursive solutions, because that information is contained in the
delayed expressions that are evaluated when the recursion returns upon reaching
the exit condition. In general, embedded recursive functions can be written as tail
recursive functions’

The first parameter to tail-factorial, max, performs the same role as does
the parameter max in factorial. The second parameter, total, stores the current
partial product. In the initial call, total must be 1. At each step through the
recursion, total represents the product of all the previous values of max. There
are no expressions to return to. Once max is 0, total contains the correct product,
and that is the return value. Below is a trace of tail-factorial:

(tail-factorial 3 1)

(tail-factorial 2 3)
d

(tail-factorial 1 6)

(tail-factorial 0 6)
l
6

One of the disadvantages of tail recursive solutions is the need for extra
parameters to store partial results. There is a nice way to hide these extra param-
eters so that the user of the function need not worry about them. A helper function
can be written that has the number of parameters we would like to have. This
function calls the actual recursive function (which has additional parameters),
filling in the initial values for the other parameters. As an example, the function
below allows us to effectively call tail-factorial with one parameter:

; Return max factorial (helper function).
(define (fact max)
(tail-factorial max 1))

As you can see, these functions are easy to write.

% This is true for a class of embedded recursive functions known as linear recursive functions. These
are functions that use only one recursive call in their recursive cases. In contrast, tree recursive
functions have more than one recursive call. These recursive calls are combined in some fashion to
produce a return value for the function. Tree recursive functions are embedded recursive functions.
However, writing tree recursive functions as tail recursive functions often involves going through a
good deal of effort, and isn’t really that much fun.

Extra parameters with
tail recursion

Helper functions with
tail recursion

142 Chapter 6: Repetition Through Recursion

Recursive breakdown
on lists

6.3.2 Exercises
6.8 Why was tail-factorial called with 1 as the initial value for total?

6.9 Does thecall (tail-factorial 0 1) give the desired results?
6.10 What happens if the call (tail-factorial -2 1) is made?

6.11 How would you fix the code to handle any problems that may exist in the
two exercises above?

6.12 Write a tail recursive function with one parameter, max, that computes the
sum of the even numbers from 1 to max.

6.13 Write a function with a single parameter, num, that sums every number
between 1 and num that is evenly divisible by 4. Write your function
without using remainder.

6.4 Using Recursion to Sequence Through Lists

Lists and recursion go hand-in-hand. It is fairly simple to create recursive func-
tions that sequence through lists, or create lists. Most recursive functions that
take lists terminate (with an exit case) when called with an empty list. In the
recursive cases, the problem is usually broken down into performing some action
with the first element of the list and the result of the recursive call with the rest of
the list.

6.4.1 Example: Adding up numbers in a list

Let's write a function, sum-list, that computes the sum of the numbers in a list
that only contains numbers. To begin, consider an exit case—if we have an empty
list, the sum is zero. In the recursive case we need to break up the problem into a
similar, smaller problem. The recursive action can be viewed as adding the first
number in the list to the sum of the rest of the numbers in the list. The sum of the
rest of the numbers in a list is just a recursive call to this function with the rest of
the list.

The first element of the list and the rest of the elements in a list were chosen as
operations to break the problem down because they are simple, fast operations in
Scheme. Computing the first and rest of a list is much more efficient than
computing the last element and taking a subseq to get all but the last element of a
list. Since the order in which the elements in the list are added doesn’t matter, we
might as well be efficient about it.

sum-list can be expressed in definitional pseudo code as follows:

6.4 Using Recursion to Sequence Through Lists

143

if the list is empty, return 0
otherwise, return the sum of the first element and
sum-list of the rest of the list.

Finally, refinements of this pseudo code should be made:
A list is empty if nul1? of that list is #t.
The Scheme solution is

; Return sum of numbers in number-list.
(define (sum-list number-list)
(if (null? number-list)
0
(+ (first number-list)
(sum-list (rest number-list)))))

A trace of the function will show how it works:
(sum-list '(-3 4 5))

(+ -3 (sum-list ’(4 5)))
(+ 4 (sum-list ’(5)))
{
(+ 5 (sum-list ’()))
{

0

(€, K

6.4.2 Example: Checking if a list consists entirely of numbers

The function sum-1ist will not work if given a list that has non-numeric ele-
ments. To check for that, we will create a predicate function, all-numbers?, that
sequences through a list and verifies that all the elements are numbers.

One exit condition for such a function is an empty list. If given an empty list,
should all-numbers? return #t or #£? To answer this, you must think of how the
recursion will work in the recursive case, where the recursive call will be with a
smaller list, and eventually with the empty list.

For a list to be all numbers, the first element must be a number and the rest of
the list must be all numbers. If the function returned #f when called with the
empty list, the function would always return #f because anything and #f is #£ in
Scheme.

all-numbers? should return #f if an element is encountered that is not a
number. This should be another exit case—if the first element of the list is not a
number, return #f£.

144 Chapter 6: Repetition Through Recursion

Eliminating
redundancy

Our definitional pseudo code looks like the following;:

if the list is empty, then return true

otherwise, if the first element is not a number, return false

otherwise, return true if the first element is a number and
the rest of the list is all numbers—the recursive call.

The only detail to refine is testing if the first element of the list is a number.
This can be done with the function number?, which returns true if given a numeri-
cal argument, false otherwise.

It's a good idea to review your pseudo code and look for missing pieces, or
redundant pieces. In this case, redundancy is the problem. Twice there is a test to
determine if the first element of the list is a number. The second test that would
be part of an and function call is not necessary because once you have reached
that point in the code, you know that the first element in the list is a number.
Thus, the code can be simplified as

if the list is empty, then return true
otherwise, if the first element is not a number, return false
otherwise, return the result of the recursive call on the rest of the list.

There are some additional observations to make in the above pseudo code.
Since there are two conditions to test, and an otherwise clause in case both are
false, a cond is easier to use than two i fs. The test to determine if the list is empty
should be performed before testing if the first element is a number.

In Scheme, the code would be as follows:

; Return true if all elements of a-list are numbers.
(define (all-numbers? a-list)
(cond ((null? a-list)
#t)
((not (number? (first a-list)))
#£)
(else
(all-numbers? (rest a-list)))))

Below are two traces of this function:

(all-numbers? ‘(3 frogs 4 you))
(all-numbers? ’(frogs 4 you))

#£

Notice how the recursion stopped as soon as a non-number was found. The
next trace continues recursing until the empty list is encountered:

6.4 Using Recursion to Sequence Through Lists

145

(all-numbers? ' (25 0 624))

(all-numbers? ’'(0 624))
d

(all-numbers? ’(624))
l

(all-numbers? ' ())

#t
Now we can use all-numbers? to create a safer version of sum-1list:

; Add all numbers in a-list unless some are not numbers.
(define (safe-sum a-list)
(if (all-numbers? a-list)
(sum-list a-list)
"bad-1list))

6.4.3 Exercises
6.14 Show a sample call to abc that will return a value and one that will enter an
infinite loop.
(define (abc xyz)
(cond ((first xyz) (rest xyz))
(else (abc xyz))))

6.15 Show a sample call to def that will return a value and one that will produce
an error.

(define (def uvw)
(or (zero? (first uvw)) (def (rest uvw))))

6.16 Write a function that takes a single list and returns true if any elements in
the list are numbers.

6.17 Write a function that takes a list of numbers and returns the maximum
number in the list.

6.18 Below is an alternate solution to all-numbers?:

(define (all-numbers-alt? a-list)
(1f (null? a-list)
#t
(and (number? (first a-list))
(all-numbers-alt? (rest a-list)))))

Does this solution work? If so, will it stop as soon as it encounters a non-
number, as all-numbers? did? If not, can you fix it so it does work?

146 Chapter 6: Repetition Through Recursion

6.19 Below is an alternate solution to all-numbers?:
(define (all-numbers-alt? a-list)
(if (null? a-list)
#t
(and (all-numbers-alt? (rest a-list))
(number? (first a-list)))))

Does this solution work? If so, will it stop as soon as it encounters a non-
number, as all-numbers? did? If not, can you fix it so it does work?

6.20 What does the function below do? Give a meaningful sample call to this
function.
(define (unknown a-list cl c2 c3)
(cond ((null? a-list)
(list cl c2 c3))
((number? (first a-list))
(unknown (rest a-list) (+ cl 1) c2 c3))
((symbol? (first a-list))
(unknown (rest a-list) cl (+ c2 1) c3))
((list? (first a-list))
(unknown (rest a-list) cl c2 (+ c3 1)))
(else
(unknown (rest a-list) cl c2 c3))))

6.21 Write a function that takes a list consisting of numbers and returns true if
the numbers are in increasing order.

6.22 Write a function that takes a list consisting of zeroes and ones and returns
true if the zeroes and ones alternate, as in thelist (0 1 0 1 0).

6.23 Write a function that takes a list consisting of numbers, symbols, and possi-
bly sublists, and returns the sum of all the numbers in the list. You should
ignore numbers that occur within sublists.

6.24 Write your own version of the function position using recursion.

6.25 Write your own version of the function count using recursion.

6.26 Write your own version of the function 1ength using recursion.

6.27 Write your own version of the function member using recursion.

6.28 Write your own version of the function 1ist-ref using recursion.

6.29 Write your own recursive version of the function subseq that takes a list
and an integer, start, denoting the start position of the resulting list.

6.4 Using Recursion to Sequence Through Lists

147

6.30 The function below follows a path through a list.
(define (mystery a-list)
(cond ((null? a-list) #f)

((atom? a-list) a-list)

((symbol? (first a-list)) (first a-list))

(else

(mystery (list-ref a-list (first a-list))))))
What would the following two calls return?

(mystery ‘(3 (a b c) (3 xy 2) (2 be or not 2 be) answer))

(mystery ’(2 one (1 (3 4 ((2)) (1 short list) bye))))

6.31 Given the two functions below

(define (abc lst)
(cond ((null? lst) 1lst)
((>= (def (car 1lst)) (def (abc (cdr 1lst))))
(car 1lst))
(else (abc (cdr 1lst)))))

(define (def 1st)
(if (null? 1st)
0
(+ 1 (def (cdr 1lst)))))

What do the following calls return?
(def "(1 2 3 4))

(abc ’((1 2 3) (123 4) (ab)))
If the >= in abc were changed to <, what would the following call return? Be
careful—this question is deceptively tricky.

(abc ’((1 2 3) (123 4) (ab)))

6.32 Suppose abc (from the previous exercise) were modified to be:

(define (abc 1lst)
(cond ((null? 1lst) 0)
((>= (def (car 1lst)) (abc (cdr 1lst))) (def (car 1lst)))
(else (abc (cdr 1lst)))))
What would the following call return?

(abc “((1 2 3) (1 2 3 4) (a b)))

6.33 Write a function that takes a list and returns the first symbol in the list, or #£
if no symbols exist in the list.

6.34 Write a function that takes a list and returns the last positive number in the
list, or #£ if no positive numbers exist in the list.

148 Chapter 6: Repetition Through Recursion

Mapping functions
and filters

Build up approach

Leap of faith

6.5 Using Recursion to Create New Lists

Recursion can be used to construct lists. Mapping functions and filters are common
examples of such functions. A mapping function applies a function to each ele-
ment in a list and returns a list of the results. A filter is a function that sequences
through a list and returns a list of only those elements that satisfy a certain condi-
tion. Whereas mapping functions return a list of the same size as their argument
list, filters may return shorter lists.

The function cons is typically used in the recursive cases of functions that
create lists to build up the resultant lists.

6.5.1 Example: A mapping function to take the square roots of
numbers in a list

Let's begin with a function that takes a list of numbers and returns a list of the

square roots of those numbers. We will sequence through the list in the same

manner as the functions sum-1ist and all-numbers? did; thus, eventually we

will reach the empty list.

We can think about the solution to this problem starting with the exit case.
Next we look at cases that involve a single recursive call, then two recursive calls,
and so on until we are convinced that our idea is sound. Such a build up
technique—starting with the exit case and building up to larger examples—is a
common means of creating recursive solutions.

For the current problem, if we are given an empty list, () is the proper return
value—the square roots of an empty list of numbers is an empty list. Given a list
of one element, the square root of that element can be combined using cons with
the square roots of the rest of the elements, (), to produce a list of one square
root. This technique works with larger lists too. With two elements we cons the
square root of the first element onto the recursive call of the rest of the list, which
we just showed is a list of one square root. This produces a list of the two square
roots of the argument list in the proper order.

Given any size list, consing the square root of the first element onto the result
of the recursive call with the rest of the list gives us back a list of square roots in
the proper order.

The leap of faith method is an alternate means of formulating recursive solu-
tions. Using the leap of faith you begin with a more complicated example input
to your function and assume that the recursive call produces the correct output.
This is the leap of faith because at this point you haven’t written a recursive solu-
tion. You just assume it exists and works. Next you determine how to use the
result of the recursive call to create the final return value given your input to the
function.

Let's try this approach with the current problem. Given the list (49 16 100),
assume that the recursive call with the rest of the list, (16 100), produces the list
(4 10). To get the desired result, (7 4 10), we cons the square root of 49 onto
the recursive call. This is the action we take in the recursive case.

Our definitional pseudo code follows:

6.5 Using Recursion to Create New Lists

149

if the list is empty, return the empty list
otherwise, return the result of consing the square root of the first
element onto the recursive call of the rest of the elements.

In Scheme, the code is as follows:

; Return a list of the square roots of the numbers in a-list.
(define (square-roots a-list)
(if (null? a-list)
!
)
(cons (sqrt (first a-list))
(square-roots (rest a-list)))))
A trace reveals the following:

(square-roots ’ (49 16 100))
{

(cons (sqrt 49) (square-roots ’ (16 100)))
2 2

7.0 d
(cons (sqrt 16) (square-roots ’(100)))
2
4.0 l
(cons (sqrt 100) (square-roots ’()))
10.0 0
(10.0)
{
(4.0 10.0)
2
(7.0 4.0 100)

6.5.2 Example: A filter to extract positive numbers from a list

The next example is a filter that constructs a list of all the positive numbers in its
argument list. The exit case for this function is once again the empty list, and the
return value in this case is the empty list. The difference between filters and map-
ping functions is that an additional test is needed to check if the next element of
the list should be placed in the resultant list or not. For this problem, the test
checks if the number is positive. If so, that element should be added to the resul-
tant list; otherwise, skip that value and return the positive numbers in the rest of
the list.

150 Chapter 6: Repetition Through Recursion

The definitional pseudo code is

if the list is empty, return the empty list
otherwise, if the first element of the list is a positive number,
return the cons of the first element and
the recursive call with the rest of the list
otherwise, return the recursive call with the rest of the list.
In Scheme,

; Return a list of the positive numbers in a-list.
(define (positive-filter a-list)
(cond ((null? a-list)

()
((positive? (first a-list))
(cons (first a-list)
(positive-filter (rest a-list))))
(else
(positive-filter (rest a-list)))))

Here is a trace of positive-filter:
(positive-filter ’(3 -1 2))

(cons 3 (positive-filter ' (-1 2)))
(positivi-filter "(2))
(cons 2 (positive-filter ’()))
0
(2)

(32)

6.5.3 Exercises
6.35 Write a function that takes a list of numbers and returns a list of pairs of
numbers, where a pair is a list of the number and its square. Given the list

(3 4 °5)
your function should produce the list
((3 9) (4 16) (5 23))

6.36 Write a function that takes a number and returns a list of all the integer mul-
tiples of that number from 1 to 10. Given the number 3, your function
should return the list

(3 6 9 12 15 18 21 24 27 30)

6.5 Using Recursion to Create New Lists 151

6.37 Write a filter function that takes a list of numbers and two integers, low and
high. The function should return only those numbers that are between low
and high, exclusive.

6.38 Write a function that takes two arguments, start and end, and returns a list
of all the odd integers between start and end.

6.39 Write a simplified version of the function append that only takes two lists.

6.40 The function switch-em takes a list and should return the list with pairs of
top-level elements switched. For example,

> (switch-em ’((i am) just another (run of the mill) list)
(just (i am) (run of the mill) another list)

There are one or more bugs in this function. Find the bugs and fix them.
(define (switch-em a-list)
(if (null? a-list)

")

(append
(second a-list)
(first a-1list)
(switch-em (cdr a-list)))))

6.41 Write your own version of the function remove.
6.42 Write your own version of the function reverse.

6.43 Write a function substitute that takes a list and two atoms, old and new.
The function should return a new list with all top-level occurrences of old
replaced with new. For example,

(substitute ’(me but (not me)) ’‘me ’'you)
should produce the list
(you but (not me))

6.44 Write your own version of the function subseq that takes three arguments,
the list, the start, and the end values. Assume that the start and end values
are legal.

6.45 Does the function positive-filter work if called with a list in which some
elements are not numbers? If not, modify the function so that it does work
with such a list.

152 Chapter 6: Repetition Through Recursion

Linear versus tree
recursion

car-cdr recursion

Leap of faith with tree
recursion

6.6 Sequencing Through Nested Lists with car-cdr Recur-
sion

All of the recursive functions shown have been linear recursive functions. A linear
recursive function is one that has at most one recursive call in any of its recursive
cases. Functions can have more than one recursive call in their recursive cases.
Such functions are termed nonlinear or tree recursive. They may be called deep or
multiple recursive as well. Tree recursion is a very powerful type of recursion, in
that a small amount of code can perform seemingly impossible or difficult tasks.
There is a price that must be paid for this power: tree recursive functions are
somewhat more difficult to write, trace, and debug than their linear recursive
siblings.

A common type of tree recursion in Scheme is car-cdr recursion. It is so
named because a recursive call is made with both the car and the car of the list.
This is used when dealing with lists that have sublists, so that all the sublists can
be sequenced through. With the linear recursive functions we have used so far,
only the top-level elements have been examined.

6.6.1 Example: Counting all the atoms in a list
An example to begin with is the function count-atoms that takes a list and counts
the number of atoms in that list and all of its sublists. Below are some examples
to show what this function returns:

(count-atoms ‘(1 2 a)) — 3

(count-atoms ‘((1 (2 a)))) — 3
(count-atoms ‘((1 2 (a b ¢) d) 10 (((woxrd))))) — 8

We begin by considering the exit cases. Once again, the empty list is an exit
condition. The number of atoms in the empty list is zero.

In the recursive cases of some of our previous list recursive functions, we
applied the car of the list to some function, and called the cdr recursively. The
results of these two function calls were then combined using some other func-
tion. Let’s try the same technique with this problem. The car of the list may be an
atom or a list. If it is an atom, then the number of atoms to return is one. Other-
wise, the car is a list, and since we are writing a function to count the number of
atoms in a list, the function should be called recursively with the car of the list.
We need to include the cdr of the list as well by calling it recursively.

At this point we can use the leap of faith strategy. If we believe that our recur-
sive function will produce the proper answers for the car and the cdr of the list,
then if we add these results together, we will have the total number of atoms in
the list. For example, if given the list

((2 3) 4 (5 numbers))
the recursive calls with the car and cdr of the list yield

(count-atoms ‘(2 3)) — 2
(count-atoms ‘(4 (5 numbers))) — 3

6.6 Sequencing Through Nested Lists with caxr-cdr Recursion 153

Adding these results yields 5, the number of atoms in the original list. This tech-
nique also works with lists in which the car is an atom. In this case, the number
of atoms is one plus the number of atoms in the cdr of the list. Thus,

(count-atoms ‘(2 4 (5 numbers))) —
1 + (count-atoms ’'(4 (5 numbers)))

We can express the solution in definitional pseudo code as follows:

if the list is empty, return 0

otherwise, if the car of the list is an atom, return one plus
the recursive call with the cdr of the list

otherwise, return the sum of the recursive calls with the car and
the cdr of the lists.

If you feel uneasy about this solution, perhaps because you didn’t buy the
leap of faith approach, then you should test out your solution using your
definitional pseudo code. Let’s test out the solution with the above example list:

((2 3) 4 (5 numbers))

We really need to verify if the recursive calls with the car and the car of this
list work to add faith to our leap of faith. Beginning with the car, (2 3),

(count-atoms ‘(2 3)) — 1 + (count-atoms ’(3))
and

(count-atoms ’'(3)) — 1 + (count-atoms ’())
and

(count-atoms ‘()) — 0

This results in 2, which is correct. Notice that since the car of the list was an
atom in each case, we performed linear recursion to get this partial result.
Moving on to the car we have

(count-atoms ‘(4 (5 numbers))) -
1 + (count-atoms ’((5 numbers)))

and

(count-atoms ’ ((5 numbers))) -
(count-atoms ‘(5 numbers)) + (count-atoms ’())

Continuing with these two recursive calls
(count-atoms ’ (5 numbers)) — 2

because it is a two-atom list like (count-atoms ’(2 3)).
Next

(count-atoms ‘()) — O
Adding up these results, 2 and 0, yields 2, which is added to 1 (from the atom 4),

yielding 3. Lastly, adding 3 to 2 from (count-atoms ’ (2 3)) gives 5; thus, our
pseudo code performs correctly.

Verifying the leap of
faith

154 Chapter 6: Repetition Through Recursion

Now we can write out the Scheme function.

; Return the number of atoms that occur anywhere in a-list.
(define (count-atoms a-list)
(cond ((null? a-list)
0)
((atom? (car a-list))
(+ 1 (count-atoms (cdr a-list))))
(else
(+ (count-atoms (car a-list))
(count-atoms (cdr a-list))))))

Below is a trace of this function:

(count-atoms ‘(a (b (c))))

(+ 1 (count-atoms ’((b (c)))))
l

(+ (count-atoms ’(b (c))) (count-atoms ' ()))
l 0
(+ 1 (count-atoms ' ((c))))
(+ (count-atoms ‘(c)) (count-atoms ' ()))
d 0
(+ 1 (count-atoms ' ()))
0
l
1
!
1
l
2
d
2
!
3

6.6.2 Example: Deep reverse of a list
Another function that uses car-cdr recursion is a deep reverse of a list. In a deep
reverse, all the atoms, even those within sublists, should be reversed. Given the
list

((a b) (2 (3 4)))
the function should return

(((4 3) 2) (b a))

6.6 Sequencing Through Nested Lists with cax-cdr Recursion 155

Contrast this with the built-in function reverse:

> (reverse ’‘((a b) (2 (3 4))))
((2 (3 4)) (a b))

Once again, as with all the recursive list functions we have created, an exit
condition is the empty list. Since we are returning a list, if we are passed the
empty list, we should return ().

As with the count-atoms function, if the first item in the list is a list, its ele-
ments must be reversed, and then that list should be put into the resultant list in
the proper location. Assembling the lists from the recursive calls can get tricky.

To make matters simpler, we can think about how to do a top-level reverse, as
the built-in function reverse performs. The first element in the list must become
the last element. To do this, imagine appending the reverse of the rest of the list
onto the list of the first element. For example, given the list

(1 2 3)
the reverse of the rest of the list is

(3 2)
and the list of the first element is

(1)
Appending these together yields

(3 2 1)
which is the reverse of the original list. Note that the reason we used the list of
the first element, as opposed to just the first element, is because append con-
structs lists from lists, so both arguments to append should be lists.

We are using the leap of faith strategy and assuming that the recursive step
works, and then determining how to use the results from the recursive calls to
produce the desired result. We should verify that the leap of faith idea works.
This can be done using the build up approach. This approach starts by testing the
function with arguments that satisfy an exit condition. Next test the function with
a call that requires a single recursive call. Then build up to calls with more recur-
sive calls until you are convinced the function works (or doesn’t work).

We will try the build up approach now. First we must create the definitional
pseudo code. Remember, this is for a top-level reverse, not a deep reverse.

if the list to reverse is empty, return the empty list
otherwise, return the result of appending the reverse of the rest of the list
onto the list of the first element.

Now the test starting with an exit case

(reverse ' ())

0

Top-level reverse

Verifying code with
the build up approach

156 Chapter 6: Repetition Through Recursion

With one recursive call, we get

(reverse ' (2))
(append (reverse ’'()) (list 2))
! !

0 2)
{
2)

We can go further and try a call that requires an additional recursive step:

(reverse ' (1 2))
(append (reverse ’'(2)) (list 1))
l l

2) (1)
l
(21)

Once again, the proper result is obtained. This adds the faith to the leap of faith.

Deep reverse The same technique used in a top-level reverse can be used in a deep reverse,
with the added condition that the elements within sublists should be reversed
using the deep-reverse function recursively. If these sublists have sublists, they
should be reversed, and so on.

Just as with the count-atoms function, we only deal with sublists when
checking the car of the list. If the car is a list, we call it recursively. Combining
this idea with the top-level reverse pseudo code we can construct the following
definitional pseudo code:

if the list given to deep-reverse is empty, return ’ ()
otherwise, if the first item in the list is an atom, return the
append of the deep-reverse of the rest of the list onto
the list of that atom
otherwise, return the
append of the deep-reverse of the rest of the list onto
the deep-reverse of the first element (which is a list).

This can be written in Scheme as:

; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-reverse a-list)
(cond ((null? a-list)
(N
((atom? (car a-list))
(append (deep-reverse (cdr a-list))
(list (car a-list))))
(else
(append (deep-reverse (cdr a-list))
(deep-reverse (car a-list))))))

Below is a trace of deep-reverse. To keep things clearer, only the
recursive calls will be expanded. After this trace the other recursive calls will be

6.6 Sequencing Through Nested Lists with car-cdr Recursion

157

traced out individually, and then all the results will be combined.
(deep-reverse ’'((a 3) (b 2) c))

(append [(deep-reverse ' ((b 2) c))] (deep-reverse ’(a 3)))
l
(append [(deep-reverse '(c))] (deep-reverse ‘(b 2)))
(append [(deep-reverse ' ())] (list ’‘c))
d
0 (c)
l
(c)

(deep-reverse ‘(b 2))

(append (deep-reverse ' (2)) (list ‘b))
l
(append (deep-reverse ’()) (list 2)) (b)
d
0 (2)
l
(2)
l
(2b)
Similarly,
(deep-reverse ’(a 3))
will return
(3a)

Putting it all together, we get
(deep-reverse ’((a 3) (b 2) <))
l

(append (deep-reverse ’'((b 2) c)) (deep-reverse ’(a 3)))
l (3a)
l
(append (deep-reverse ’(c)) (deep-reverse ' (b 2)))
(c) (2b)
2
(c2b)
(c2b3a)

Oops. What went wrong? We got the proper order of symbols, but lost our
nested list structure. Since the order of the symbols is correct, we are probably
making the recursive calls in the correct location, but we are combining the
results of these recursive calls improperly. Looking back at the code, notice that

158 Chapter 6: Repetition Through Recursion

in the last recursive case, we append the deep-reverse of the rest of the list onto
the deep-reverse of the first of the list. Imagine that the first element is

(a 3)
The deep-reverse of that list will be
(3 a)

Appending the list (3 a) to another list merely adds the two elements, 3 and a,
to that list rather than adding the list (3 a). To preserve the list structure,
append the 1ist of the deep-reverse of the car of the list. This is similar to the
recursive case when the car is an atom—we append to the 1ist of the car. Thus
our new code is

; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-reverse a-list)
(cond ((null? a-list)
()
((atom? (car a-list))
(append (deep-reverse (cdr a-list))
(list (car a-list))))
(else
(append (deep-reverse (cdr a-list))
(list (deep-reverse (car a-list)))))))

Perform a trace of this code to verify that it works.

6.6.3 Exercises
6.46 Below is an alternate solution to the count -atoms function. Does it work?

(define (count-atoms a-list)
(cond ((null? a-list)
0)
((atom? a-list)
1)
(else
(+ (count-atoms (car a-list))
(count-atoms (cdr a-list))))))

6.47 Below is another possible solution to the deep-reverse function. Does it
work?

(define (deep-reverse a-list)
(cond ((null? a-list)

"))

((atom? a-list)
a-list)

(else
(append (deep-reverse (cdr a-list))

(1list (deep-reverse (car a-list)))))))

6.6 Sequencing Through Nested Lists with car-cdr Recursion

159

6.48

6.49

6.50

6.51

6.52

6.53

6.54

The function unknown takes a nested list as an argument.

(define (unknown a-list)
(cond ((null? a-list) ' ())
((number? a-list) (list a-list))
((symbol? a-list) ’())
(else
(append
(unknown (car a-list))
(unknown (cdr a-list))))))
What would the following call return?

(unknown ' (2 (3 words) ((4 more))))

Write a function that performs a deep member function on a list. All the
atoms, even those within sublists, should be examined. Given the call

(deep-member 2 ‘(((a b 2))))

your function should return a true value. Do not use the built-in function
member in your solution.

Write a function that returns true if two lists look the same in form. The
atoms may be different, but the parentheses should be the same. The follow-
ing two lists look the same:

((a b (c) d) e)
((1 2 (3) 4) 5)

Given the function below

(define (mystery unknown)
(if (or (null? unknown) (atom? unknown))
unknown
(cons (mystery (car unknown)) (mystery (cdr unknown)))))

What does the call (mystery /(1 (2) 3)) return?

Write a function that returns the total sum of all the numbers in all its sub-
lists. Given the list

(((4 3) b) (2 a))
your function should return 9.

Write a function that returns the smallest number that occurs anywhere in a
list. Given the list

(((4 3) b) (2 a))
your function should return 2.

Write a function that takes a list and returns a flattened version of it—one
with no sublists. Given the list

160 Chapter 6: Repetition Through Recursion

Loops and nested
loops

Inner and outer loops

(((4 3) b) (2 a))
your function should return the list
(4 3 b2 a)

6.55 Write your own version of the function equal?. Use the function eqv? to
compare atoms.

6.7 Nested Loops or Recursion Within Recursion

Linear recursive functions (those with one recursive call in the recursive case)
perform a sequence of similar actions. In many programming languages, such
repetition is called a loop. This is because the actions are performed, then the
computer loops back to the first of those actions and performs the actions again.
It is possible to have loops within loops—such code is called a nested loop. Nested
loops are used to repeat actions that have repeated steps themselves.

6.7.1 Example: Sum of factorials

Calculating the sum of all the factorials from one to number is an example of a
nested loop. To calculate the factorial of a number, a loop is required. To add up
these factorials, another loop is required. The inner loop would be the loop com-
puting factorials. The outer loop would be the loop summing the factorials.

In Scheme, nested loops are created using two recursive functions. One func-
tion, the inner loop, calls itself recursively. The outer loop is another function that
calls itself recursively, and calls the inner loop function.

For our example, we'll begin with the inner loop—factorial. The code is as fol-
lows:

; Return max factorial.
(define (factorial max)
(if (zero? max)
1
(* max
(factorial (- max 1)))))

The outer function must call itself and factorial. It has an exit case when the
number of factorials to sum is zero—in this case the sum is zero. The recursive
case requires the addition of the current factorial of number to the sum of all the
factorials less than number.

This can be expressed in definitional pseudo code as

if number is 0, return 0
otherwise, return the sum of the factorial of number and
the sum of all the factorials from 1 to number minus 1

In Scheme, the function is written as

6.7 Nested Loops or Recursion Within Recursion 161

; Return sum of 0 through number factorial.
(define (sum-facts number)
(if (zero? number)
0
(+ (factorial number)
(sum-facts (- number 1)))))

A trace of the function reveals

(sum-facts 3)

(+ (factorial 3) (sum-facts 2))

6 l
(+ (factorial 2) (sum-facts 1))
2 !
(+ (factorial 1) (sum-facts 0))
1 0
!
1
!
3
!
9

6.7.2 Example: Sequencing through a database using nested
loops

Below is an alternate representation for the CD data structure from Chapter 4.
This data structure is a list of music categories (rock, jazz, classical, etc.) and the
music within them. Each music category is a list of artists and their CDs. These
artist and CD lists have the artist's name as the first element of the list, and the
CDs make up the rest of the list. The artist names and the CD names are lists. The
new data structure looks like the following list:

((rock
((Rolling Stones)
(Black and Blue)
(Its Only Rock and Roll)))
(jazz
((Pat Metheny)
(First Circle))
((Andy Narell)
(The Hammer))))

This CD database can be searched to find the CDs composed by a particular
artist, or to find the occurrence of a particular CD. We will use a nested loop to

find the CDs written by a particular artist. This will be a list of CDs. The outer
loop will sequence through the music categories. These categories are elements of

New CD data struc-
ture

Nested loop to find
CDs

162 Chapter 6: Repetition Through Recursion

Inner loop to find CDs

Outer loop to find the
artist

the list that makes up our entire database. The inner loop sequences through the
artists within a particular category. We need both loops because we are trying to
find a particular artist and we may not know which music category the artist is
in. Let’s build the inner loop first. It will take as an argument a music category
list like the following:
(jazz
((Pat Metheny)
(First Circle))
((Andy Narell)
(The Hammer)))

To simplify the code in the inner loop, we can write the outer loop so that it calls
the inner loop with a list without the category name—the rest of the category
list, like the following;:
(((Pat Metheny)
(First Circle))
((Andy Narell)
(The Hammer)))

The pseudo code we need is

if the list of artists is empty, return #£ to signal the outer function
that the artist is not in this category
otherwise, if the first artist in the list is the desired one, return the
CDs of that artist
otherwise, check the rest of the artists recursively.
To check if the first artist in the list is the one we want, we can use
(equal? (first (first artist-list)) artist-name)
The Scheme code for the inner function is
; Find the CDs of artist-name within a music category list.
(define (CDs-within-category artist-list artist-name)
(cond ((null? artist-list)
#f)
((equal? (first (first artist-list)) artist-name)
(rest (first artist-list)))

(else
(CDs-within-category (rest artist-list) artist-name))))

The outer loop takes the entire CD database as an argument and sequences
through the music categories until a category in which the artist exists is found,
or all the categories have been searched. The outer function will call the inner
function to determine if an artist occurs within a musical category. The inner
function returns the CD list if it finds the artist and #£ if not. The outer function
needs an exit case to handle the case in which the artist does not occur in the
database—it needs to check for an empty database.

The definitional pseudo code for the outer loop is

6.7 Nested Loops or Recursion Within Recursion

163

if the list of categories is empty, return #f—the artist was not found
otherwise, if the first category contains that artist, return the

CD:s of that artist
otherwise, check the rest of the categories recursively.

The Scheme code for the outer function is

; Find the CDs of artist-name within the entire CD-collection.
(define (CDs CD-collection artist-name)
(cond ((null? CD-collection)
#£)
((CDs-within-category (rest (first CD-collection))
artist-name)
(CDs-within-category (rest (first CD-collection))
artist-name))
(else
(CDs (rest CD-collection) artist-name))))

This could be written more efficiently as

; Find the CDs of artist-name within the entire CD-collection.
(define (CDs CD-collection artist-name)
(cond ((null? CD-collection)
#£)
(else
(or (CDs-within-category
(rest (first CD-collection))
artist-name)
(CDs (rest CD-collection) artist-name)))))

This new definition avoids having to call cbs-within-category twice if a
match is found?

We can go one level further and look for a particular CD in the CD database. An innermost loop to
This will require a third innermost loop that sequences through a list of CDs of a find a particular CD

certain artist. The outer function can stay as it is written with the exception that
artist-name should be replaced with cD-name. The inner function will need a
slight change—instead of checking for a match in the artist's name and returning
a CD list, it should look more like the outer function and have an otherwise
clause that returns the or of a call to the innermost function and a recursive call
with the rest of the artists in that category.

The new inner function will be

" Another way of doing this is to change the first version of cps so that the clause that calls cps-
within-category looks like

((CDs-within-category (rest (first CD-collection)) artist-name))

There is no action associated with this condition. This is legal in Scheme; the return value for a true
condition without an action is the return value of that condition.

164 Chapter 6: Repetition Through Recursion

; Find CD-name by an artist within a music category list.
(define (CDs-within-category artist-list CD-name)
(cond ((null? artist-list)
#£)
(else
(or (CD-within-CD-1list
(rest (first artist-list))
CD-name)
(CDs-within-category
(rest artist-list) CD-name)))))
The innermost function gets a CD list like

((Black and Blue)
(Its Only Rock and Roll))

and looks for a match of the CD being searched for. If the CD is found, it should
be returned; otherwise #£ should be returned. This function is similar to the ori-
ginal cDs-within-category function.

The innermost function is

; Find CD-name within a list of CDs.
(define (CD-within-CD-list CD-list CD-name)
(cond ((null? CD-list)
#£)
((equal? (first CD-list) CD-name)
CD-name)
(else

(CD-within-CD-1list (rest CD-list) CD-name))))
Note: this function could have been implemented using member, as follows:
; Find CD-name within a list of CDs.
(define (CD-within-CD-list CD-list CD-name)
(let ((found-name (member CD-name CD-list)))
(if found-name

(first found-name)
#£)))

6.7.3 Example: Poker revisited
Straights in poker Our version of poker from Chapter 5 did not know about straights like
(four five six seven eight)
A straight is much easier to recognize if it is in order than if it is unordered, as
in
(six eight five four seven)

If we can sort the hand we are passed, we can test if it matches a subsequence

of a list of the ordered cards. These cards can be saved in the variable card-
ordering.

6.7 Nested Loops or Recursion Within Recursion 165

(define card-ordering

’(two three four five six seven eight nine ten
jack queen king ace))

Sorting data is a frequently performed operation in computer programming.
There are books on the subject and numerous sorting algorithms. We will use a
method known as insertion sort. The idea behind this sort technique is to build a
sorted list beginning with an empty list and inserting elements one at a time in
the proper place in the list until a complete sorted list is obtained. There are two
loops. The inner loop places an element in the sorted list. The outer loop calls the
inner loop to place all the elements.

The inner loop takes two parameters, sorted-list, the sorted list, and element,
the element to insert in sorted-list. The definitional pseudo code to the inner loop
is as follows:

if sorted-list is empty, return the list of element

otherwise, if element is less than the first element in sorted-list,
return the list obtained from consing element onto sorted-list

otherwise, return the cons of the first element of sorted-list
and the recursive call of element and the rest of sorted-list.

We must refine what we mean by one card being less than another. A card is
"less than" another card if it occurs earlier in card-ordering. This can be deter-
mined by comparing the position of the two cards within card-ordering. The
function below does this:

; Return true if cardl is lower in value than card2.
(define (lower-card? cardl card2)
(€< (position cardl card-ordering)
(position card2 card-ordering)))

The Scheme code for the inner loop is

; Insert card in sorted order into sorted-list.
(define (insert-card element sorted-list)
(cond ((null? sorted-list)
(list element))
((lower-card? element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert-card element (rest sorted-list))))))

The outer loop that sorts an unsorted list has the following definitional
pseudo code:

if the list to sort is empty, return ’ ()
otherwise, insert the first element of the list into the recursive call
of the rest of the list

Insertion sort

Adding an element to
a sorted list

Outer loop to sort a
list

166 Chapter 6: Repetition Through Recursion

In Scheme, this is written
; Perform insertion sort on a-list.
(define (sort-hand a-list)
(if (null? a-list)
")
(insert-card
(first a-list)
(sort-hand (rest a-list)))))

Let’s see how this code works with the trace below:

(sort-hand ’(seven two three))
(insert-card ’'seven (sort-hand ’'(two three)))
(insert-card ’'two (sort-hand ’(three)))
(insert-card ’'three (sort-hand ' ()))

0
l
(three)
l
(two three)
d

(two three seven)
And let’s trace the final call to insert-card:

(insert-card ’'seven ’(two three))
l

(cons ’'two (insert-card ’‘seven ’(three)))

(cons ’'three (insert-card ’'seven ’()))
d
(seven)
{
(three seven)

l

(two three seven)

Now we can sort our hand and determine if we have a straight. Once the
hand is sorted we want to compare it with a subsequence of card-ordering,
starting with the low card in our hand. To avoid unnecessary testing we can add
another test to see if our low card is less than a jack. If it’s not, we cannot have a
straight.

6.7 Nested Loops or Recursion Within Recursion

167

; Return true if hand is a straight.
(define (is-straight? hand card-ordering)
(let* ((sorted-hand (sort-hand hand))
(low-card (first sorted-hand)))
(and (lower-card? low-card ’jack)
(equal?
sorted-hand
(subseq
(member low-card card-ordering)

0 .5)))))

6.7.4 Exercises

6.56 Modify the functions from the CD example so that the entire database is
searched when looking for a particular artist, as opposed to the present
scheme in which the search stops when the first artist match is found. Re-
turn a list of all CDs by the artist from all categories.

6.57 Does the below alternate definition for cps work? If not, fix it so it does
work properly.
(define (CDs CD-collection artist-name)
(or
(null? CD-collection)
(CDs-within-category (rest (first CD-collection))
artist-name)
(CDs (rest CD-collection) artist-name)))

6.58 Modify the function poker-value from Chapter 4 so that instead of return-
ing nothing for a nonwinning hand, it returns the high card in the hand. For
example, if given the hand

(seven jack three five two)

your function should return jack.

6.59 Write a function tables that produces a list of multiplication tables. For
example

(tables 3 4)
would produce the list

((1 23 4)
(2 4 6 8)
(3 6 9 12))

168

Chapter 6: Repetition Through Recursion

6.8 Summary

When writing recursive functions, begin by considering the exit cases. Next
think about the recursive cases that break the problem down into similar,
smaller subproblems that eventually reach exit cases.

Tail recursive functions have recursive cases in which the return value is a
recursive call.

Embedded recursive functions have recursive cases in which the return value
has a recursive call that is an argument to another function. Another type of
embedded recursive function is one in which there is an expression that fol-
lows the recursive call in the action of a recursive case.

Recursive functions that sequence through lists typically have an exit case
that checks for an empty list. Such functions usually perform some test or
action with the first of the list and make a recursive call with the rest of the
list.

Mapping and filter functions typically construct lists using cons.

car-cdr recursion is a type of recursion that involves recursive calls to both
the car and the cdr of a list.

Nested loops can be written with multiple recursive functions in which the
outer loop functions call themselves and the inner loop functions.

CHAPTER 7

DATA STRUCTURES

7.1 Why Data Structures?

We have looked at Scheme’s most common data structure, the list. We have seen
how ordered lists and hierarchies can be represented. The focus in this chapter is
on using data structures like these and other more abstract data structures in pro-
grams.

Niklaus Wirth, the creator of the programming language Pascal, wrote a book
entitled Algorithms + Data Structures = Programs. In this classic computer science
text, he shows that algorithms alone do not make programs; data structures play
an important role in the design of programs. This is still true today, and is true
for the language Scheme. Just as we are able to write complex programs by
abstracting the steps or algorithm necessary, we can create elegant programs by
creating abstract data structures to represent the information that our program
uses.

Perhaps the biggest flaw that beginning programmers make is to ignore the
importance of data structures in their programs. It is common to see beginners
create the simplest structure that comes to mind or no structure whatsoever, and
then create large amounts of code to get the program to work. This approach can
yield working programs, but usually they are hard to maintain and modify. By
spending some time up front carefully considering how the data in your program
will be used and designing the best structure to meet those needs, you can save a
great deal of time later in coding.

Enough preaching from the soap box. Let’s examine some real examples.

7.1.1 Example: Breaking secret codes

Remember when you were a kid and had a secret decoder ring that you got when
you mailed in three box tops of Sugar, Starch, and Sucrose Cereal? It was effectively
a list of letter pairs that you used to translate English words into a secret code or

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Importance of data
structures

170 Chapter 7: Data Structures

Data integrity

Mapping English to
code

vice versa. It was fun at first, but after a while it just became too tedious. Of
course what you really needed was a computer to do the work for you. So we’ll
create a program that will translate English to secret code and secret code to
English. We’ll make two functions to do so, english-to-code and code-to-
english. Both functions will take lists of single-letter symbols that represent
letters in words and return similar lists. For example,

(english-to-code '"(a pp 1l e))
might return

(fzzyr)
In which case,

(code-to-english '(f z z y r))
would return

(apple)

Without using data structures other than the lists that are passed as argu-
ments to these functions, we may be tempted to write the code as a large cond
that matches letters in English to their secret code equivalents. The solution to go
from a letter of secret code, letter, to its English equivalent might look like this:

(cond ((equal? letter ’a) 'f)
((equal? letter ’'b) 'q)

((equal? letter 'z) 'e)
(else ’'unknown-letter))

Two such conds would be necessary—one to go from an English letter to
code, and another to go from code to the equivalent English letter.

This solution involves a good deal of coding and is difficult to modify. For
example, if you wanted to change the secret code, you would have to change
both conds. It would be easy to have inconsistencies between the two conds. This
creates a data integrity problem.

The solution is to have only one mapping between English and the secret code.
Mapping is used in the mathematical sense here—a one-to-one mapping is one
that relates one item uniquely to another item. This mapping must be structured
in such a way that would allow us to translate either way—English to code, or
code to English. A list of two-element lists would do the job. Each of these sub-
lists represents an English letter and its equivalent in the secret code. One reason
that a list of sublists is used instead of one large list is that it ensures that we have
an even number of elements. Another reason is that it is easier to see which ele-
ments match and which are English letters versus code letters without having to
count elements.

Below is what the data structure would look like:

7.1 Why Data Structures? 171

((a f)
(b g)
(c t)

(z e))

To go from English to code involves sequencing through the list recursively,
comparing the first of each sublist (an English letter) with the English letter to
match. When a match is found, the second of the sublist is returned. This process
is repeated for each letter in the argument list given to the english-to-code
function.

To go from code to English is similar, except the seconds of the sublists are
compared against the code letter to match, and the first of the matching pair is
returned.

The function to translate a single English letter to its code equivalent follows.
It has two parameters: the letter to search for, letter, and the data structure of
letter pairs, match-1list.

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(let ((letter-pair (first match-list)))
(if (equal? letter (first letter-pair))
(second letter-pair)
(english-letter-to-code letter (rest match-list)))))

This function can be used in the function english-to-code that takes a list of
English letters and returns the list representing their code equivalent.
; Encode letter-list.

(define (english-to-code letter-list match-list)
(if (null? letter-list)

")

Translating English to
code

Translating code to
English

(cons (english-letter-to-code (first letter-list) match-list)

(english-to-code (rest letter-list) match-list))))

7.1.2 Exercises
7.1 Write functions to translate code to English.

7.2 How would the functions above that translate from English to code have to
be modified if you wished to switch the order in the sublists so that each
sublist was a code letter followed by an English letter?

7.3 What happens if english-to-code is called with a list that has nonletters
(ie, (t 4 2))? Modify the previous functions so that they do something
reasonable in such a situation.

172 Chapter 7: Data Structures

Association lists and
pairs

assoc and rassoc

74 Suppose we eliminated the inner parentheses and made our mapping of
English to code one long list as follows:

(afbgct. . . ze)
Does the following version of english-letter-to-code work?

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(second (member letter match-list)))

If so, write an analogous function that translates code letters into English
letters. If not, explain why.

7.2 Association Lists

Another data structure that is used to make a list of related pairs is an association
list. An association list is a list of nonempty lists. A nonempty list is often called a
CONS or a pair.

Scheme has one built-in function that works with association lists: assoc.
Another function, rassoc, is not built-in, but added as an extension.

function arguments return value
assoc element assoc-list the first pair in assoc-list whose car is element
rassoc element assoc-list the first pair in assoc-list whose cdr is element

With both assoc and rassoc, if element does not match any of the pairs in assoc-
list, #£ is returned.
The function rassoc can be defined using recursion as follows:
; Like assoc but returns the first pair whose cdr matches elt.
(define (rassoc elt assoc-list)
(cond ((null? assoc-list) #f)
((equal? (cdar assoc-list) elt) (car assoc-list))
(else (rassoc elt (cdr assoc-list)))))

Look at the following examples that use a partial mapping of English to code:

> (define eng-to-code

“((a £f) (b g) (c t)))
??

> (assoc ’'b eng-to-code)
(b g)
> (assoc ’'f eng-to-code)

#£

> (rassoc 't eng-to-code)
#£

> (rassoc ’(t) eng-to-code)
(c t)

Notice that rassoc must be called with the list of the code letter to match the
corresponding English letter.

7.2 Association Lists 173

Mistakes to Avoid

Remember that rassoc finds matches with the cdrs of the pairs. To
match the pair (b g), the following call can be made:

> (rassoc ’(g) ’‘((a f) (b g) (c t)))

(b g)
With two-element pairs the cdrs are one-element lists, not atoms.

Similarly the function assoc must be called with lists to find pairs

whose cars are lists. For example,

> (assoc ‘(a b) ’‘(((a a) 1) ((a b) 2) ((a c) 3)))
((a b) 2)

Since assoc returns the pair whose car matches the element being searched
for, to get the value associated with that car, the cdr or second of the pair is
taken. In the case of converting English to code, we would take the second of the
pair to get the corresponding code letter. The same applies to rassoc, except the
car of rassoc is used.
We can write english-letter-to-code and code-to-english-letter
using assoc and rassoc. Instead of forcing the user to call code-to-english-
letter with the list of the code letter (to match the cdxrs of the pairs), we’ll write
the function to call rassoc with the 1ist of the letter.

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(second (assoc letter match-list)))

; Decode the symbol letter.
(define (code-to-english-letter letter match-list)
(car (rassoc (list letter) match-list)))

7.2.1 Optional section: Association lists with dotted lists
A dotted list is formed when an atom or list is consed onto an atom. See the sec-
tion entitled "Optional Section: Dotted Lists" in Chapter 4 for an introduction to
dotted lists. An association list can be made up of dotted lists and then used with
the functions assoc and rassoc. For example,

> (define complementary-colors

’((red . green) (blue . orange) (yellow . purple)))
??

> (assoc ’blue complementary-colors)
(blue . orange)

> (cdr (assoc ’‘blue complementary-colors))
orange

> (rassoc ’purple complementary-colors)
(yellow . purple)

Translation with assoc
and rassoc

174

Chapter 7: Data Structures

> (car (rassoc ’'purple complementary-colors))
yellow

Notice that rassoc is called with an atom because the cdrs of the dotted lists
are atoms. For relationships between atoms, an association list of dotted lists is
often used because it is simpler to use and uses less memory (less cons cells are
required).

To create an association list for the English-letter-to-secret-code letter list, the
sublists like (a f) would be changed to dotted lists like (a . f). The new list
would look like the following:

((a . f)
(b . 9)
(c . t)
(z . e))

We can create new versions of the english-letter-to-code and code-to-
english-letter functions that take association lists of this form. To find a code
letter, the call to assoc is the same, but the code letter is the cdr of the result
instead of the second. To get the English letter, rassoc must be called with the
code letter as an atom.

; Encode the symbol letter from an association list of dotted lists.
(define (english-letter-to-code letter match-list)
(cdr (assoc letter match-1list)))

; Decode the symbol letter from an association list of dotted lists.
(define (code-to-english-letter letter match-list)
(car (rassoc letter match-list)))

7.2.2 Exercises
7.5 Write a program that determines the value of a BlackJack hand. The cards
can be represented using the symbols below:

ace two three four five six seven eight nine ten jack queen king
Aces are worth 1, and jacks, queens, and kings are worth 10. The hand can
be represented as a list of card names, such as

(jack three five)
This hand has a value of 18.

Create an association list to match the card names with the card values,
which are

123456789 10 10 10 10
respectively. This assumes that aces are always worth one. Your program

should include a function that takes a Black]Jack hand (a list of card names)
and the association list, and returns the value of the hand.

7.3 Design for Modifiability 175

7.6 Modify the program above so that aces are worth either 1 or 11. Choose 11
unless that will make the hand worth more than 21, in which case the ace
should be considered worth 1. Your solution should work if given a hand
with more than one ace.

Hint: Only one ace can be worth 11 in a hand; two aces worth 11 each would
give a hand value of 22. Thus, you need only worry about making one ace
worth 11.

7.7 Write a function that takes a card hand (see above problems) and returns #t
if you should hit—ask for another card from the dealer. You can use the fol-
lowing simple algorithm: if the hand is worth less than 15, hit. Or use your
own algorithm, perhaps based on the one dealer’s card that is showing—
this card can be passed to your function as an additional parameter.

7.8 Write a function that checks if the mapping from English to secret code is a
one-to-one mapping—each letter of the English list maps onto a unique
letter of the secret code list.

7.3 Design for Modifiability

The form of the data structures used in programs tends to be modified over time.
Sometimes different forms are used to allow new information to be represented
in the data structure. Sometimes the change is made to allow improvements in
the speed of data retrieval. It would be ideal if there were an easy way to minim-
ize the changes that have to be made in the program when the data structure
takes on a new form.

Imagine that we changed the data structure of the English-letter-to-code
example to a single list as shown below:

(af bg ct . .. ze)

This would entail changing the existing code, which becomes more of an
ordeal if the program is much larger with many parts accessing the data struc-
ture. However, there is a way to assure that the data structure and the program
can be independent entities. The key is to create functions that access and modify
the data structure and use these functions throughout the program instead of
directly accessing or changing the data structure. These selector and creator func-
tions would have to be modified if the database changed; however, the rest of the
program would not have to be changed. An example of a selector function for the
previous nested list data structure would be the function english-letter-to-
code. It represents the simplest form of data access we wish. The function
english-to-code uses this function and does not need to be changed if the data
structure is changed. Only english-letter-to-code and code-to-english-
letter would have to be changed.

If we did change the data structure to the non-nested list form above, we
could still use english-to-code if we write a new version of english-letter-
to-code, as follows:

Data structures are
dynamic

Selector and creator
functions

176

Chapter 7: Data Structures

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(1f (equal? letter (first match-list))
(second match-list)
(english-letter-to-code letter (cddr match-list))))

7.3.1 Exercises
7.9 Write a new version of the function code-to-english-letter that use the
above single list of atoms form of the data structure.

7.10 Suppose that instead of an association list for the English-letter-to-code
mapping, there were a mapping of English letters to two different codes so
that the new data structure looked like the following:

((a £ s)
(b g f)
(c t m)

(z e g))
The first letter in each three-element sublist is the English letter; the second
element is the first code letter; and the third is the second code letter. Write
a selector function that takes such a mapping list and an English letter and
returns a code letter from the first code list. Similarly, write selectors to go
from English to the second set of code letters, and from the first code letters
to the second code letters.

7.4 Sets

Lists can be used to represent sets of values. A set is an unordered collection of
elements with no repeated elements. Sets can be used to represent collections of
numbers or names, such as the names of all the presidents of the United States.
Below is the set of all prime numbers less than 20:

(12357 11 13 17 19)
The order of the elements is not important. The same set could be represented by
the list

(3 7 11 119 17 2 5 13)
A list is a convenient representation for a set because it can grow and shrink and
be examined easily with many of the built-in functions in Scheme.

Sets are used often in mathematics. The most common operations performed
on sets are the following:

7.4 Sets 177

function arguments operation

member element set does element occur in set?

union set1 set2 set of elements in either set1 or set2
intersection set1 set2 set of elements in both of set1 and set2

null? set is set empty?

set-difference setl set2 set of elements in set1 that are not in set2
adjoin element set add element to set if it’s not already in set
subset? setl set2 are all the elements of set1 in set2?

length set the number of elements in set—the cardinality

A valid set is a list with no repeated elements. If the set functions are called with
lists having repeated elements, the return values may have repeated elements as
well. The function adjoin should be used to add elements to a set, since it only
adds an element if it doesn’t already exist in the set. The elements of a set are
usually atoms, but if they are lists, the set functions will still work properly.

We have used member and null? to determine if an element is in a list and if a
list is the empty list, respectively. These are both useful operations with sets.

Two sets can be combined by creating a set of all items they have in
common—their intersection. Another combination of sets is the set of all items
that exist in either of two sets, not including any items more than once—the union
of the sets. The elements that exist in one set but not another can be found using
set-difference. Adding an element to a set can be performed with adjoin,
which conses the element to the list representing the set if that element is not
already in the set. Lastly, subset? is used to determine if one set is a subset of
another set—every element of the first set must be a member of the second set.

The functions union, intersection, set-difference, adjoin, and subset?
are not built into Scheme, but are added in our extensions. We can define these
functions. adjoin is the simplest to define.

; Return set with item added unless it already exists in set.
(define (adjoin item set)
(if (member item set)
set
(cons item set)))

The remaining functions can be defined using recursion and member. For each
set function, we recurse through the first set. The following table shows what
result should be returned depending on whether the first element of that set is or
isn’t in the second set.

function if element is in set2 if element isn’t in set2
union don’t include element include element
intersection include element don’t include element
set-difference don’tinclude element include element
subset? check remaining elements return #£

Different actions should be taken when set1 or set2 are empty. Observe the
subtle differences between these function definitions:

Set functions

Rules for valid sets

adjoin

178 Chapter 7: Data Structures

union

intersection

set-difference

subset?

; Return the set of items in either setl or set2.
(define (union setl set2)
(cond ((null? setl)
set2)
((member (car setl) set2)
(union (cdr setl) set2))
(else
(cons (car setl) (union (cdr setl) set2)))))

; Return the set of items in both setl and set2.
(define (intersection setl set2)
(cond ((or (null? setl) (null? set2))
()
((member (car setl) set2)
(cons (car setl) (intersection (cdr setl) set2)))
(else
(intersection (cdr setl) set2))))

; Return the set of items in setl but not in set2.
(define (set-difference setl set2)
(cond ((null? set2)
setl)
((null? setl)
"())
((member (car setl) set2)
(set-difference (cdr setl) set2))
(else
(cons (car setl) (set-difference (cdr setl) set2)))))

; Return #t if all elements in setl are also in set2, #f otherwise.
(define (subset? setl set2)
(cond ((null? setl)
#t)
((null? set2)
#£)
(else
(and (member (car setl) set2)
(subset? (cdr setl) set2)))))

7.4.1 Example: Using sets to represent locations traveled to
An example application of sets is creating sets of the exotic places that you and
your friends have visited. You could create sets as follows:

(define places-i-have-been
"(turkey belize thailand indonesia india))

(define places-brett-has-been
' (south-dakota thailand))

7.4 Sets

179

(define places-lisa-has-been
' (yugoslavia thailand belize turkey india))

You can compare these sets to determine the places that any two people have
both visited using intersection.

> (intersection places-i-have-been places-brett-has-been)
(thailand)

> (intersection places-i-have-been places-lisa-has-been)
(turkey belize thailand india)

Notice that no elements were repeated in the resultant lists. This is true for
sets—they do not have repeated elements. The actual order of the elements in the
returned lists may differ depending on the implementation of Scheme used. It's
not the order of the elements that matters in a set, but the contents of that set.

The function union can be used to find all the places that either of two people
have visited:

> (union places-brett-has-been places-lisa-has-been)
(south-dakota yugoslavia thailand belize turkey india)

To determine the places that one person has been and another hasn’t, use
set-difference. For example,

> (set-difference places-i-have-been places-lisa-has-been)
(indonesia)

> (set-difference places-lisa-has-been places-i-have-been)
(yugoslavia)

Combining these lists with union gives the places that either one, but not
both, of two people have been to.
> (union (set-difference places-i-have-been places-lisa-has-been)

(set-difference places-lisa-has-been places-i-have-been))
(indonesia yugoslavia)

Another possibility is to take the set-difference of the union and the
intersection. This deletes the places where two people have both been (the
intersection) from the union of the places where they have been. This leaves only
those places that either one has gone to, but not both.
> (set-difference (union places-i-have-been places-lisa-has-been)

(intersection places-lisa-has-been places-i-have-been))
(indonesia yugoslavia)
To determine if someone has been to a particular place, member is used:

> (member ’portugal places-brett-has-been)
#£
subset? can be used to check if one person has been to all the places that
another has been. For example, has Brett been to all the places that Lisa has?

> (subset? places-brett-has-been places-lisa-has-been)
#£

180 Chapter 7: Data Structures

Set equality

subset? can be used to determine if two sets have the same elements. This will
be the case if both sets are subsets of one another:
> (and (subset? places-brett-has-been places-lisa-has-been)

(subset? places-lisa-has-been places-brett-has-been))
#£

The function equal? cannot be used to determine set equality, because equal? is
true only if the lists have the same elements in the same order, whereas set equal-
ity is defined by the members of the sets, and not their order.

7.4.2 Exercises

7.11 Write a version of union using the other set functions but without recursion,
or indicate why it is impossible. Assume that the lists passed as arguments
to your function are valid sets. The two lists may have elements in common,
yet your resultant list should have no duplicates.

7.12 Write a version of intersection using the other set functions but without
recursion, or indicate why it is impossible. Assume that the argument lists
are valid sets.

7.13 Write a version of subset? using the other set functions but without recur-
sion, or indicate why it is impossible. Assume that you are given valid sets.

7.14 Write a version of set-difference using the other set functions but
without recursion, or indicate why it is impossible. Assume that you are
given valid sets.

7.15 subset? was used earlier to determine if two sets are equal; in other words,
to determine if they have the same elements. Come up with a different

means of determining if two sets are the same.

7.16 Assume that you have variables bound to the following values:

seniors the first names of the students in the senior class
juniors the first names of the students in the junior class
physics-majors the first names of the declared physics majors
english-majors the first names of the declared English majors
german-majors the first names of the declared German majors

forestry-majors the first names of the declared forestry majors

Also assume that each student has a unique first name. Give expressions
that could be typed into the interpreter to produce the following sets:

e Seniors majoring in physics

¢ Juniors majoring in both physics and English

e Seniors and juniors majoring in either English or German

7.5 Trees 181

e Seniors and juniors majoring in neither English nor German
e TForestry majors who are not juniors

7.5 Trees

Trees are a very common data structure used in computer science. A computer
science tree has a root, leaves, and branches, just like a real tree; however, these
trees are drawn upside-down. Here is an example:

/+\
X -—
3 4 2 1

This tree represents the arithmetic expression (3 x 4) + (2 — 1). To evaluate this
expression in Scheme, we would write it as

(+ (* 34) (- 2 1))

which is how this tree may be represented in list form.

Trees have nodes and branches. A branch is shown as a / or a \; anything else
is a node. There are three types of nodes: the root, inner nodes, and leaves. The root
is the uppermost node. There is only one root, and in this example it is +. x and —
are inner nodes. A node with no branches below it is called a leaf. 3, 4, 2, and 1
are leaves. The root and inner nodes have branches descending below them.
These branches go to smaller sections of the tree which are called the subtrees. The
roots of these subtrees are the children of the node above them. Similarly, the
node immediately above a node is the parent.

If each node of a tree has two or less branches (or children), it is called a
binary tree. A complete binary tree has zero or two children for each node (as the
previous tree does). Trees with nodes having three or less branches are called ter-
nary trees. N-ary trees are trees with up to N branches below each node.

A complete binary tree can be represented as a list of three elements. The first
element is the root, and the second and third elements are the left and right sub-
trees. The subtrees may be leaves or complete trees. If the subtrees are trees, then
they are represented as lists. Leaves are represented as atoms. This representa-
tion may seem recursive in nature, and it is. Recursion provides a wonderful
means of dealing with these structures, as we will soon explore.

The previous example tree has root +, and the left and right subtrees are

left subtree right subtree
X p—
3 4 2 1
The left subtree has X as its root, and the leaves 3 and 4 are its children. This

subtree can be represented as the list (* 3 4). Similarly, the right subtree can be
represented as (- 2 1). Thus, the entire tree is represented as

Parts of trees

Types of trees

Tree representations

182

Chapter 7: Data Structures

(+ (* 3 4) (-21))

With such a representation, children that are leaves are represented as atoms,
and children that are inner nodes are lists. It may not seem obvious why such a
representation is used instead of simpler forms like

(+ * 34 -21)
or
(3 *4 + 2 - 1)

The first representation, (+ * 3 4 - 2 1), can be used if we assume that
nonleaf nodes are operators (e.g., +, *) and the leaves are numbers. However, it
isn’t as easy to access the children with this representation as it is using the
representation (+ (* 3 4) (- 2 1)). As the next examples will show, being
able to easily access the children of a tree is a very common operation that we
will want to perform. Thelist (3 * 4 + 2 - 1) is ambiguous. It could represent
many different trees. Here are some possible examples:

3/x\
v

RN
4 2

~
1
— T

T
RN
3 4

Here is a different tree that is more complex:

e
6

This tree would be represented using the following list:
(+ (- (*6 (-71)) 4) (/23))
The root of this tree is +, the left subtreeis (- (* 6 (- 7 1)) 4) and the right

subtree is (/ 2 3). These are easily obtained from the list; they are the second
and third elements of the list.

7.5 Trees 183

7.5.1 Depth-First search
Trees can be used to hold a collection of values, as shown in the tree below which
holds a collection of numbers:

13
5 B
6 -1 7 18
How would we determine if a certain number occurred within a tree? We
could start at the root and test it. If it's not the root, then we continue by testing
the left and right sides of the tree. A question arises as to which order this traver-
sal through the tree should take. We could test the entire left side before testing

the right side; in other words, traverse 13, 5, 6, -1, 45, 7, 18. This is called a depth-
first traversal.

The tree above can be represented with the following list:
(13 (5 6 -1) (45 7 18))

To perform a depth-first search through such a list, a recursive strategy is
employed. Begin by comparing the element being searched for with the root of
the tree—this is the first element of the list. If there is no match, continue search-
ing recursively with the left side of the tree. The search is recursive because the
left side of the tree may, as in this case, be a tree. If the left side recursive search
fails, search the right side recursively. The left and right sides of the tree are the
second and third elements of the list, respectively.

We are missing an exit case to check if the item is not in the tree. This can be
added as a test to see if the tree is empty (an empty list), in which case the item
being searched for cannot be in the tree, and #£ should be returned. Another case
to consider is when the tree being examined is a leaf. The tree would be an atom
in this case. The return value should be a test checking if that leaf is the item
being searched for.

The pseudo code for a depth-first search is

if the tree is empty, return #f£

otherwise, if we are at a leaf, return the result of comparing that leaf with
the item we are searching for

otherwise, if the root matches, return true

otherwise, if the left side contains the item (recursive call), return true

otherwise, return the result of checking the right side of the tree recursively

Depth-first search and
depth-first traversal

Recursive algorithm
for depth-first search

184 Chapter 7: Data Structures

Different
representations of
trees

Tree selector func-
tions

The Scheme code follows:

; Use depth-first search to find item in tree.
(define (depth-first-search item tree)

(cond ((null? tree) #f) ; empty tree
((atom? tree) (equal? item tree)) ; leaf
((equal? item (first tree)) #t) ; test root
((depth-first-search item (second tree)) #t) ; test left side
(else

(depth-first-search item (third tree))))) ;testrightside

We have used prefix representation for trees. The root of the tree is the first
item and it is followed by the children. The root may be between the children
(infix) or after the children (postfix). Each of these representations for a tree is
valid and has particular uses.

Function calls in Scheme are expressed in prefix notation:

(* (+ 12) -4)
In typical mathematical notation, infix is used:
(L +2) * -4

Postfix' is used in some programming languages and handheld calculators.
Parentheses are not needed when the number of operands is fixed according to
the operator’ This is one reason why some calculators use postfix notation. Our
previous mathematical expression is written in postfix as

12+ -4 *

Any of these three representations can be used to represent a tree in Scheme.
Extra parentheses (beyond those shown in the above examples) would be needed
for the infix and postfix representations. In light of these different tree representa-
tions and according to the principle of design for modifiability, we should have
selector functions for the root value of the tree and the left and right sides of the
tree. This makes the code more readable as well.

; Return the root of tree.
(define (root tree)
(first tree))

; Return the left subtree of tree.
(define (left-side tree)
(second tree))

; Return the right subtree of tree.
(define (right-side tree)
(third tree))
Another change that can be made is in the recursive step of depth-first-
search; it can be thought of as

" Typically postfix is referred to as R.P.N.—Reverse Polish Notation.
* This is true for prefix as well. Scheme needs parentheses because many functions take a variable
number of arguments.

7.5 Trees 185

itemis in tree if it is either in the left or the right side of tree.
The code using this recursive step and the selector functions is

; Use depth-first search to find item in tree.
(define (depth-first-search item tree)

(cond ((null? tree) #f£f) ; empty tree
((atom? tree) (equal? item tree)) ;leaf
((equal? item (root tree)) #t) ; test root
(else ; test left and right sides

(or (depth-first-search item (left-side tree))
(depth-first-search item (right-side tree))))))
This solution is equivalent to the previous version. Both versions test the left
side of the tree first in the recursive case, and only check the right side if item is
not in the left side. Below is a sample trace:

(depth-first-search -1 ' (13 (5 6 -1) (45 7 18)))

(or (depth-first-search -1 '(5 6 -1))
(depth-first-search -1 ' (45 7 18)))

!
(or (depth-first-search -1 6) (depth-first-search -1 -1))
l 2
#f #t
l
#t
l
#t

The call (depth-first-search -1 ‘(45 7 18)) was not expanded because
it would not be evaluated. The or evaluates its arguments in left to right order.
Since the first argument, (depth-first-search -1 ’(5 6 -1)), returns #t, the
or doesn’t evaluate its second argument.

7.5.2 Breadth-First search

Another way to search through trees is to test the root, then its left child, and
then its right child, continuing in the same manner with the children of the sub-
trees. Using the previous sample tree, this would be the traversal 13, 5, 45, 6, -1,
7, 18. Such a path is called a breadth-first traversal.

Breadth-first search
and breadth-first
traversal

186 Chapter 7: Data Structures

Recursive algorithm A list is needed to keep track of the subtrees that must be returned to. When a
for breadth-first node is reached, it is examined and its subtrees are added to the end of this
search search list and the search continues. Once the search list is empty, the search is

complete. From this definition the pseudo code to perform a breadth-first search
through a list can be created.

if the list of subtrees to search is empty, return #£

otherwise, if the root of the first subtree in the search list matches the item
being searched for, return #t

otherwise, add the subtrees of the current subtree to the end of the search list
and continue searching with the rest of the subtrees in the search list

The current subtree to search is used a few times in the pseudo code, so we’ll
save its value in the 1et variable current -tree. The code follows:

; Use breadth-first search to find item in search-list (a list of trees).
(define (breadth-first-search item search-list)
(let ((current-tree (first search-list)))
(cond ((null? search-list) #f)
((equal? item (root current-tree)) #t)
(else
(breadth-first-search
item
(append
(rest search-list)
(list
(left-side current-tree)
(right-side current-tree))))))))

The function is called with a list of trees to search; thus, it is initially called
with the list of the tree list we want to search. As each node is examined, its
immediate subtrees are added to this search list to examine later. Below is a trace
of a sample call to this function: The value of current-tree is underlined in the
argument to breadth-first-search.

(breadth-first-search -1 ’((13 (5 6 -1) (45 7 18))))

2
(breadth-first-search -1 '((5 6 -1) (45 7 18)))
{

(breadth-first-search -1 ’'((45 7 18) 6 -1))
(breadth-first-search -1 (6 -1 7 18))

Error: Pair expected

Our solution did not handle the case in which we are looking at a leaf. This
should be added as another case in the cond. If we are examining a leaf, the item
is present if it matches that leaf or if it is in the remaining subtrees to be tested.
The new solution is

7.5 Trees

187

; Use breadth-first search to find item in search-list (a list of trees).
(define (breadth-first-search item search-list)
(let ((current-tree (first search-list)))
(cond ((null? search-list) #f)
((atom? current-tree)
(or (equal? item current-tree)
(breadth-first-search item (rest search-list))))
((equal? item (root current-tree)) #t)
(else
(breadth-first-search
item
(append
(rest search-list)
(list
(left-side current-tree)
(right-side current-tree))))))))

With this new code, we get the following trace:
(breadth-first-search -1 (6 -1 7 18))

(breadth-first-search -1 (-1 7 18))
2
#t

In choosing test data, we should use situations to test all the exit cases. In this
function we should test what happens when (null? search-list) is true. This
will occur when the item being searched for is not in the tree:

(breadth-first-search -1 ' ((5 6 7)))

(breadth-first-search -1 (6 7))

d
(breadth-first-search -1 ' (7))
d
(breadth-first-search -1 ’())
d

Error: Pair expected

The error occurs when search-1ist is the empty list. Examining the code, we
see that the let takes the first of search-list, which is (), and an error
results. To fix this, either test for an empty list before the 1et or within the let.
We'll take the second approach and change the 1et to

(let ((current-tree
(if (null? search-list)
"()
(first search-list))))

188 Chapter 7: Data Structures

7.5.3 Exercises
7.17 Is the function below equivalent to depth-first-search? Explain your
answer.

(define (depth-first-search-2 item tree)
(cond ((null? tree) #f)
((atom? tree) (equal? item tree))
(else
(or (equal? item (root tree))
(depth-first-search-2 item (left-side tree))
(depth-first-search-2 item (right-side tree))))))

7.18 Is the function below equivalent to depth-first-search? Explain your
answer.
(define (depth-first-search-3 item tree)
(or (not (null? tree))

(equal? item tree)
(equal? item (root tree))
(depth-first-search-3 item (left-side tree))
(depth-first-search-3 item (right-side tree))))

7.19 Suppose the recursive call to breadth-first-search is changed so that the
subtrees are added before the rest of search-1list.
(breadth-first-search
item
(append
(list
(left-side current-tree)
(right-side current-tree))
(rest search-list)))

How would this affect the traversal through the tree?

7.20 Write a creator function that takes a node value, a left subtree, and a right
subtree and returns a tree list of the form discussed in this section.

7.21 Write a Scheme expression that uses the creator function from the above
problem to produce the tree below:

23

\\\\\
5

RN
9 88

7.22 Write a function that takes a tree and prints out the nodes and leaves of the
tree. Print out the root of the tree first, then the left side of the tree, and
lastly the right side. Print the values on one line with single spaces between

7.5 Trees

189

7.23

7.24

7.25

7.26

them. Use the selector functions defined in this section in your solution.

Write a function that takes a tree and prints out only the leaves of the tree.
Print the leaves on the left side of the tree first. The leaves should be printed
on one line separated by spaces.

Write a function to determine the depth of a tree. The depth of a tree is the
number of branches that must be descended before reaching the bottom-
most leaf of the tree. For example, the depth of the tree below is three.

13

Hints: The depth of a leaf is zero, and the depth of a tree is one plus the
larger of the depths of the left and right subtrees of the tree. Use this method
to determine the depth of the following trees: 13, (6 7 13),and (6 (1 2
3) 13). Try to simplify your solution using the built-in function max. Recall
that max returns the largest of its numeric arguments (e.g., (max 3 4 7 2)
- 7).

The function below takes a binary tree as an argument.

(define (who-knows tree)
(cond ((null? tree) 0)
((symbol? tree) 0)
((number? tree) tree)
(else (max
(who-knows (left-side tree))
(who-knows (right-side tree))))))

What does the call below return?
(who-knows ' (7 (4 3 a) (b 1 4d)))

The function is-expression takes a binary tree, tree. is-expression
should return #t if all the leaves are numbers and all the nonleaf nodes are
any of the symbols +, -, *, or /. If not, #£ should be returned. For example,

> (is-expression ‘(* (+ 1 2) (- 4 1)))

#t

> (is-expression ’'(* (+ 1 two) 14))
#f

This code was written with too much leap of faith and not enough thought.
Fix the code so that it works.

190 Chapter 7: Data Structures

Trees as hierarchies

(define (is-expression tree)
(cond ((null? tree) #f)
((atom? tree) #t)
(else (or
(eq? (first tree) '(+ - * /))
(number? (second tree))
(is-expression (third tree))))))

7.27 The function path-finder takes a binary tree, tree, and a list, path. path-
finder follows the path through the tree specified in path—a list of the sym-
bols 1eft and right and returns the subtree in tree to which path takes it. If
the path goes beyond the leaves of the tree, return the symbol error. For
example,
> (path-finder (3 (4 (5 1 2) 7) (6 9 8)) ’(right))

(6 9 8)

> (path-finder (3 (4 (51 2) 7) (6 9 8)) ’(left left right))

2

> (path-finder (3 (4 (51 2) 7) (6 9 8)) ’(right left right))
error

Assume that path will not contain values other than the symbols 1eft and
right and that the function will not be called initially with an empty tree.
Complete the function below.

(define (path-finder tree path)

(cond ((null?))
((atom?))
((equal?)
(path-finder))
(else
(path-finder))))

7.6 Sample Exercise with Trees and Sets

Trees are often used to represent hierarchies of information. A tree can represent
a family tree, with the nodes being parents, and the leaves, the current generation
of children. Trees can represent the hierarchy of a company, with the president at
the top, and the vice presidents, and so on, below.

Trees can be used to help decide to which restaurant to go. In deciding what
restaurant you want to go to, you have some notion of conditions like what you
want to eat, what you don’t want to eat, how much you want to spend, how
much time you want to take, what atmosphere you want, etc. Some of these cri-
teria may be important and others may not.

The situation gets more complex when there are numerous people trying to
agree on a restaurant. Imagine the following exchange:

7.6 Sample Exercise with Trees and Sets

191

CR: Anyone want to go get some spicy food?
Sandy: = That sounds good by me, but I can’t be gone too long.
Farzad: Idon'tlike it too spicy, and I have to be back soon also.

Craig: How about Japanese food? I feel like splurging on raw fish today.

John: Yeah, we just got paid, let's blow some money, maybe go for margari-
tas too.

Patty: That doesn’t sound quick to me.

Brett: Hey, my boss just left for the day, I'm up for a long lunch.

Paul: I have to finish something tonight, so margaritas are out for me.

Karineh: How about going to a new restaurant?
Dorothy: Are you guys still trying to decide? You need a restaurant expert.

Creating a program that can take such information and return the restaurant
that is best suited to meet most of the requests would require a sophisticated,
large program. However, we can make some simplifications and create a pro-
gram that can help narrow the search of which restaurant to choose.

At first we can limit ourselves to the case of a single person deciding what to
eat. For any particular type of food, she may be interested in eating it, or may not
desire it, or may not care either way. In this program such information will be
represented as two lists:

desired Things that are desired
undesired Things that are not desired

Anything not in either of these lists is considered a don’t care value.
The desired and undesired lists are sets that contain facts about what you
want to eat and what you don’t want to eat. They might look like the following:

desired-foods: (ethnic)
undesired-foods: (drive-in fast-food)

It may seem strange to have two lists—one for the desired foods, and one for
the undesired foods. An alternative is using a single list, as in

desired-foods: (ethnic walk-in sit-down)

Anything not in this list would be considered a don’t care value. With a single list,
a mapping is needed to match items like walk-in and sit-down with the internal
node values (the questions in the tree) drive-in and fast-food. This could be
implemented using an association list.
(define opposites
’((drive-in walk-in)
(fast-food sit-down)
(ethnic domestic)

))

With two lists an association list isn’t needed because all the attributes in the
lists correspond directly with the internal nodes of the restaurant tree. This will
be the approach we use.

Desired and
undesired foods

Alternate
representations

192 Chapter 7: Data Structures

Representing
restaurants

Another data structure is needed to maintain the restaurants. These restau-
rants could be the leaves of a tree in which the internal nodes represent questions
about what you want to eat. For each question node, the left branch of the tree
contains restaurants that pertain if the question is satisfied. The right side of the
tree contains restaurants that the person would want to go to if the question is
not satisfied.

A restaurant tree may look like the following:

fast food?

drive-in food? ethnic food?

In and Out Burger ribs? New Delhi Junction La Vals

Flint's Tommy’s

All the restaurants on the left side of the root, fast food?, are fast food places,
whereas the restaurants on the right side are slower, sit-down restaurants.

A list corresponding to the tree above is

(fast-food (drive-in in-and-out-burger (ribs flints tommys))
(ethnic new-delhi-junction la-vals))

When deciding if a question is satisfied, the desired and undesired lists are
used. For example, if the program is deciding upon fast-food or non fast-food
restaurants, if fast-food exists in the desired list, then the program should con-
tinue with the questions on the left side of the tree. If fast-food is in the
undesired list, then continue with the right side of the tree. If fast-food doesn’t
exist in any list, it is a don’t care value, and both sides of the tree should be exam-
ined.

The program works by sequencing through the tree in the following manner:

if you are at a leaf, you've reached a restaurant, return that restaurant,
otherwise, you are at a decision junction,
if the decision is met (the node occurs in the desired list),
continue with the left side of the tree
otherwise, if the decision is undesired (the node occurs in the
undesired list), continue with the right side of the tree.
otherwise, continue with both sides of the tree (don't care situation).

With the example tree above and the desired and undesired lists below,

desired-foods: (ethnic)
undesired-foods: (drive-in fast-food)

you begin at the root by checking if you want fast food. Since fast-food is in the
undesired foods list, the program continues with the right side of the tree—
asking if you want ethnic foods. ethnic is in the desired list so we go to the left
side of the tree. Here we find the leaf new-delhi-junction and return it.
Adhering to the principle of design for modifiability, we should use the selec-
tor functions we created earlier to access the nodes and subtrees of the tree. The
function root returns the root of a tree. If it is given a subtree of the original tree,

7.6 Sample Exercise with Trees and Sets 193

it returns the root of that subtree, which is an inner node in the original tree. The
function left-side returns the left subtree of a tree, and the function right-
side returns the right subtree of a tree These functions perform the operations
first, second, and third, respectively.
We can add another function to test if we are at a leaf in the tree:
; Return true if tree is a leaf (an atom).
(define (leaf? tree)
(atom? tree))

We check both sides of the tree in don’t care situations. This means that we
may find more that one restaurant that satisfies the constraints. Thus, we should
return a list of restaurants always. And when the restaurant tree is empty, we
should return an empty list. In the case where restaurant-tree is an atom (a
restaurant), the list of that restaurant is returned. The code for the restaurant
advisor can be expressed in Scheme as follows:

; Return list of restaurants according to properties in desired
; and undesired lists.
(define (restaurant-advisor restaurant-tree desired undesired)
(cond ((null? restaurant-tree) ’())
((leaf? restaurant-tree) (list restaurant-tree))
((member (root restaurant-tree) desired)
(restaurant-advisor (left-side restaurant-tree)
desired undesired))
((member (root restaurant-tree) undesired)
(restaurant-advisor (right-side restaurant-tree)
desired undesired))
(else
(append
(restaurant-advisor (left-side restaurant-tree)
desired undesired)
(restaurant-advisor (right-side restaurant-tree)
desired undesired)))))

To handle information from multiple people, some means of combining the
information is needed. In the case of two people, general desired and undesired
lists are needed. These lists should reflect any desires or undesires that the two
people have. If we look at the lists as sets, then taking the union of the desired
lists will yield the set of all desires for those two people. The same can be done
with the undesired lists to produce a general undesired list.

With more than one person, conflicts can arise. A conflict would involve hav-
ing the same item in both the desired and undesired lists. We'll use intersec-
tion to check if the desired and undesired lists have any elements in common. If
the intersection isn’t (), the two lists have elements in common.

Many techniques can be used to handle conflicts. One way is to create a
hierarchy of the people so that certain people’s restaurant desires and undesires
are given priority over other’s desires and undesires.

A more democratic scheme is to give priority to either the desired lists or the
undesired lists. If the desired lists have priority, then any conflicting elements in

Handling conflicts of
interest

194 Chapter 7: Data Structures

the undesired lists are ignored. As it is written, restaurant-advisor gives
preference to items that occur in the desired list. This is because decision nodes
are compared with the desired list first and the search continues down the left
side of the tree if the node is in the desired list. To see this, look at the following
trace. Suppose that the variable restaurants has been bound to the restaurant
list
(fast-food (drive-in in-and-out-burger (ribs flints tommys))
(ethnic new-delhi-junction la-vals))

The trace produces the following:

(restaurant-advisor restaurants
'(fast-food drive-in) ’(fast-food drive-in))
2
; the root of the tree fast-food isindesired
; so we continue with the left side of the tree

\

(restaurant-advisor ’(drive-in in-and-out-burger (ribs flints tommys))
'(fast-food drive-in) ' (fast-food drive-in))
l
; the root of the tree drive-inisindesired
; so we continue with the left side of the tree

(restaurant-advisor ’‘in-and-out-burger
"(fast-food drive-in) ’ (fast-food drive-in))

; the tree in-and-out-burger is a leaf
; so we return the list of it

(in-and-out-burger)

To give the undesired list priority, all the elements in the desired list that are
also in the undesired list should be removed. This can be implemented using
set-difference. The expression

(set-difference desired undesired)

returns the elements in the desired list that aren’t in the undesired list.
Calling the function as
(restaurant-advisor restaurant-tree

(set-difference desired undesired)
undesired)

results in giving the undesired list priority over the desired list. Here is a sample
trace using the same desired and undesired lists we used in the last trace.

7.6 Sample Exercise with Trees and Sets

195

(restaurant-advisor restaurants
(set-difference ’'(fast-food drive-in) ’(fast-food drive-in))
'(fast-food drive-in))
!

; the set-difference returns ’ ()

(restaurant-advisor restaurants
() ’'(fast-food drive-in))

; the root of the tree fast-food is in undesired
; so we continue with the right side of the tree
!
(restaurant-advisor ’(ethnic new-delhi-junction la-vals)
() ’'(fast-food drive-in))

; the root of the tree ethnic is not in desired or
; undesired so we continue with both sides of the tree

(append
(restaurant-advisor ’‘new-delhi-junction
() ’'(fast-food drive-in))
(restaurant-advisor ’la-vals
") ’(fist-food drive-in)))

; the trees new-delhi-junction and 1a-vals are leaves
; so we return their list

!

(append
' (new-delhi-junction)
’(la-vals))

(new-delhi-junction la-vals)

7.6.1 Exercises
7.28 Write a function that takes a list of many desired lists and produces one
general desired list—the union of all the desired lists.

7.29 The following call to restaurant-advisor is an attempt to eliminate
conflicts between the desired and undesired lists without giving priority to
one of them.

(restaurant-advisor restaurant-tree
(set-difference desired undesired)
(set-difference undesired desired))

Will this solution work? Why or why not?

196 Chapter 7: Data Structures

7.30 Rather than give preference to desired or undesired lists, conflicts can be

resolved by a majority rule. If more people prefer a type of food or restau-
rant than do not, that type remains part of the desired list, but is removed
from the undesired list. Write a function that takes a restaurant tree, desired
and undesired lists, and calls restaurant-advisor with new desired and
undesired lists that have all conflicts removed by majority rule. The original
desired and undesired lists are not sets, but rather lists formed by append-
ing various peoples’ preferences together.

Hint: You only need to sequence through the desired list and maintain
the elements that should be in that list. Then you can form a new undesired
list given the new desired list.

7.7 Summary

Association lists are lists of pairs (nonempty lists) where each pair maps one
item with another.

assoc is used to match the cars of association lists, and rassoc is used to
match the cdrs. Both functions return the entire pair that was matched.
Selector and creator functions are used to facilitate code modification and
improve code readability.

Sets are lists of unordered elements with no repeating elements.

To test for set membership, use member.

To find all the elements two sets have in common, use intersection.

To find all the elements two sets have together, use union.

To find the elements in one set that are not in another, use set-difference.
To find if a set is empty, use null?.

To add an element to a set, use adjoin.

To find if one set is a subset of another, use subset?.

To find the number of elements of a set, use 1ength.

Trees are data structures that have a root value and left and right sides that
are trees themselves.

Depth-first and breadth-first search are two common means of traversing a
tree data structure.

7.7 Summary

197

Summary of functions introduced in this chapter:

the first pair in assoc-list whose car is element
the first pair in assoc-list whose cdr is element
true if element occurs in set

the number of elements in set—the cardinality
set of elements in either set1 or set2

set of elements in both of set1 and set2

set of elements in set1 that are not in set2

set with element added if its not already in set

function arguments return value
assoc element assoc-list

rassoc element assoc-list

member element set

null? set true if set is empty
length set

union set1 set2

intersection set1 set2

set-difference setl set2

adjoin element set

subset? set1 set2

true if all the elements of set] are in set2?

CHAPTER 8

FUNCTIONALS

8.1 Passing Functions as Arguments

In Scheme, functions can be passed as arguments to other functions, in the same
fashion that data values like lists and atoms are passed. This enables different
actions to be carried out depending on the function passed. Functions that take
functions as arguments are called functionals. Another term for these functions is
applicative operators.

8.1.1 Mapping functions

Applying a function to every element in a list is called a mapping, hence functions
that do so are called mapping functions. To get a realworld context of mappings,
think of how a map of a city or country is made. Each position in the three-
dimensional object (e.g., country) must be projected onto a two-dimensional
piece of paper. Another way of saying this is that each position is mapped onto
the paper. One of the most common mapping techniques used is the Mercator
projection used in making flat world maps that artificially enlarge regions near
the poles.

map is used to apply a function to every element in a list. The function passed
to map should take one argument and should work when called with any element
of the list. map returns a list of the results of those function applications.

A similar function is for-each, which is identical to map except that it does
not return the results of the function applications. Thus, for-each is only used
for the side-effects that are produced by the function mapped over the elements
of the list. for-each returns an undefined value. One additional important differ-
ence: for-each guarantees that it applies the function to elements of the list in a
left to right order. map makes no such guarantee.

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Functionals

Mapping

map

for-each

200 Chapter 8: Functionals

map and for-each
syntax

function arguments return value
map function list list of results from applying function to elements of list
for-each functionlist undefined, but applies function to elements of list

The square-roots function from Chapter 6 is an example of mapping a func-
tion over a list. The sqrt function is applied to all the elements in the list given to
map, and the resulting list of square roots is returned. square-roots can be
rewritten using map, as

; Return a list of the square roots of the numbers in a-list.
(define (square-roots-mapping a-list)
(map sqrt a-list))

Below are two sample calls to square-roots-mapping:
> (square-roots-mapping ‘(49 64 100 36))
(7.0 8.0 10.0 6.0)
> (square-roots-mapping ‘())

0

The function deep-reverse from Chapter 6 can be written using map as fol-
lows:
; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-rev-map a-list)
(if (atom? a-list)
a-list
(map deep-rev-map (reverse a-list))))
The idea is to use map to invoke the function recursively on all the top-level ele-
ments of the reversed list. The check for an atom is very important; without it,
the function will be called with atoms, and map will give an error if called with
atoms instead of lists. Below are two traces of calls to deep-rev-map. Note that
list is used in the expansion of map to simplify the trace:

(deep-rev-map ' (a apple))
{
(map deep-rev-map ’(apple a))
(list (deep-rev-map ’'apple) (deep-rev-map ‘a))
(list "apple "a))

(apple a)

8.1 Passing Functions as Arguments 201

Here is a more involved trace:
(deep-rev-map ' ((a apple) b bear))
{

(map deep-rev-map ’'(bear b (a apple)))

(list (deep-rev-map ’'bear) (deep-rev-map ’'b) (deep-rev-map ’'(a apple)))
(list "bear "b (map deep-rev-map ’(apple a)))
(list ’'bear ’'b (list (deep-rev-map ’'apple) (deep-rev-map ’a)))

(list ’'bear ’'b (list "apple "a))

(list ’'bear ’'b ' (apple a))
l
(bear b (apple a))

A nice use of the function for-each is a function that prints out the elements
of a list one element per line. This function is written in Chapter 9, section 9.1.1.

8.1.2 apply: A variation on the normal function application
There are times when you want to apply a function that takes a collection of apply
arguments to a list of arguments. For example, in Chapter 6, we wrote the func-
tion sum-1ist that returns the sum of the numbers in a list. We could have writ-
ten this function using apply, as follows:

; Return sum of numbers in number-list.

(define (sum-list-alt number-list)

(apply + number-list))
Here are some other examples using apply:

> (apply max (3 1 -5 4 2))
4

> (apply append ’((one list) (another) (a third list)))
(one list another a third list)

> (apply list (1 2 3 4 5)) ; a useless function call
(1 23 45)

> (apply < ’(1 2 3 4 5))
#t

> (apply * (map abs (3 1 -5 4 2)))
120
apply does not work when given special forms. This means that we cannot apply doesn't take
use apply to test if all the values in a list are true using the special form and. The special forms
following example, which attempts to test if all the elements in a list are numbers,
illustrates this:

202 Chapter 8: Functionals

Function names are
evaluated

> (apply and (map number? (-3 4 one 2)))
Error: apply: Wrong type in argl: macro and

8.2 Writing Functions that Take Functions as Arguments

It is possible to create functions that take functions as arguments. Such functions
can perform various operations on data depending on the functions with which
they are called.

Sometimes you need to invoke the function passed as an argument directly.
The function apply-to-7 takes a function as an argument and returns the result
of that function applied to the number 7.

; Apply 7 to func.
(define (apply-to-7 func)
(func 7))
Below are some example calls to this function:

> (apply-to-7 /)
1/7

> (apply-to-7 number?)
#t
To understand how apply-to-7 works, we must refine our simplified model

of function evaluation from Chapter 3. Our new model must include one impor-
tant distinction: when evaluating functions, both the function and its arguments
are evaluated. Our previous model only indicated that the arguments were
evaluated. The way the function was determined from its name was never
addressed. Since we evaluate the item in the function position of a function call,
we can do things like the following:

; Return a list of eltl and elt2 using cons or list.

(define (listify eltl elt2)

((if (list? elt2) cons list) eltl elt2))

> (listify ’a ’b)
(a b)

> (listify ’a ’(b))
(a b)
The i f expression returns the function cons or 1ist depending on the type of
elt2. This function is then applied to the evaluated arguments, e1t1 and e1t2.
The following function max-of - func takes a list and a function and returns
the maximum result obtained when the function is applied to the elements of the
list:
; Return the largest value of the mapping of function onto a-list.
(define (max-of-func function a-list)
(apply max (map function a-list)))

8.2 Writing Functions that Take Functions as Arguments

203

This function can be invoked as follows:

> (max-of-func abs ’(3 -4 2))
4

> (max-of-func length ’“((73 64 2) ((1 2 3 4)) (a b) ((()))))
3

8.2.1 -if functions
The functions count and remove search for elements that match a given item
within a list. It is helpful to have a means of searching for elements that satisfy a
function. We can do this by creating functions we’ll name count-if and
remove-if. These functions are similar to their non -if ending counterparts with
the exception that elements in the lists passed to these functions are tested against
a predicate function, as opposed to being compared to some element. In addition,
we'll create a function find-if that returns the first element in a list that satisfies
the predicate function.
Below are some examples using these functions:
> (count-if even? ‘(3 5 6 4 7))
2

> (remove-if even? ‘(3 5 6 4 7))
(357)

> (find-if even? (3 5 6 4 7))
6
The function count-if can be implemented using map. map applies the func-
tion to all the elements of the list and returns the results in a list. The number of
true values in that return list is what count-if returns. To get a better picture of
this, look at what map returns given the arguments used above to count-if.
> (map even? ‘(3 5 6 4 7))
(#£ #f #t #t #f)
The number of #ts is what count-if should return. If we remove the #fs, we
get a list of #ts. Here is the code to count-if:
; Return the number of elements in a-list that satisfy func.
(define (count-if func a-list)
(length (remove #f (map func a-list))))

map also can be used to write find-if. The list element that is in the same
position as the first true value from map is what find-if returns. Expressing this
in Scheme, we get
; Return the first element in a-list that satisfies func, else #f.
(define (find-if func a-list)
(list-ref a-list
(position #t (map func a-list))))

count-if

find-if

204

Chapter 8: Functionals

remove-if

remove-if can be implemented using a recursive filter similar to the function
positive-filter from Chapter 6.
; Return a-list without the elements that satisfy func.
(define (remove-if func a-list)
(cond ((null? a-list)

"))
((func (first a-list))
(cons (first a-list)
(remove-if func (rest a-list))))
(else
(remove-if func (rest a-list)))))

Let’s test these functions. Assume the following function has been defined:
; Return true if a-list contain a 3 on the top level.
(define (has-3 a-list)

(member 3 a-list))

> (find-if symbol? ’‘((a list) 13 a-symbol five))
a-symbol

> (count-if symbol? ’((a list) 13 a-symbol five))
2

> (remove-if symbol? ’((a list) 13 a-symbol five))
(a-symbol five)

> (find-if has-3 ’((1 one) (2 two) (3 three)))
Error: list-ref: Wrong type in arg2 #f

> (count-if has-3 ’((1 one) (2 two) (3 three)))
1

> (remove-if has-3 ’'((1 one) (2 two) (3 three)))
((3 three))

Well, at least count-if works. The problem with remove-if is that it is keep-
ing the items it should remove and vice versa. To fix this, reverse the last two
actions so that we do not include (remove) items that satisfy the function and
keep those that do not satisfy the function.

find-if works with symbol?, but not with has-3. The error message indi-
cates that 1ist-ref had #f as its second argument. This second argument is the
result of a call to position that looks for the first occurrence of #t in the result
from map. Let's see what map returns.

> (map has-3 ’((1 one) (2 two) (3 three)))
(#f #f (3 three))

There is no #t in the result, but there is a true (non-#£) value. Unfortunately,
the functions we know up to this point won’t help us to find the first true element
in a list. We could write a recursive function to do so, but at that point we might
as well write a recursive function to implement all of find-if. Let’s do that.

8.2 Writing Functions that Take Functions as Arguments

205

The idea is to apply the function passed as an argument to successive ele-

ments in the list until a true value is returned. Then we return the list element
that satisfied the function. The definitional pseudo code for this follows:

if the list is empty, return #£
otherwise, if the first element satisfies the function, return it
otherwise, recursively check the rest of the list

; Return the first element in a-list that satisfies func, else #f.
(define (find-if func a-list)

(cond ((null? a-list) #f)

((func (first a-list)) (first a-list))
(else (find-if func (rest a-list)))))

Testing this on the two examples above, we see that our new solution works:

> (find-if symbol? ’((a list) 13 a-symbol five))
a-symbol

> (find-if has-3 ’((1 one) (2 two) (3 three)))
(3 three)

The new version of remove-if and sample calls follow:

; Return a-list without the elements that satisfy func.
(define (remove-if func list)
(cond ((null? list)
"))
((func (first list))
(remove-if func (rest list)))
(else
(cons (first list)
(remove-if func (rest list))))))

> (remove-if symbol? ’((a list) 13 a-symbol five))
((a list) 13)

> (remove-if has-3 ’((1 one) (2 two) (3 three)))
((1 one) (2 two))

8.2.2 Exercises

8.1

8.2

8.3

Write a function that takes a list of numbers and returns the average of the
numbers.

Write a function that takes a list of numbers and returns the smallest
number in the list.

Write a function associative? that takes a function (taking two argu-
ments) and three additional arguments that could be applied to that func-
tion two at a time. associative? should return #t if the function passed to
it is associative for the three other arguments. The function is associative if

Fixed finda-if

Fixed remove-if

206

Chapter 8: Functionals

(func (func argl arg2) arg3)
is equal to
(func argl (func arg2 arg3))

8.4 Write a function commutative? that takes a function (taking two arguments)
and two additional arguments that could be applied to that function. commu -
tative? should return #t if the function passed to it is commutative for the
two other arguments. The function is commutative if the order of the argu-
ments does not effect the return value. In other words,

(func argl arg2) isequalk) (func arg2 argl)

8.5 Write a conditional map map-if that takes a function and a list just as map
does, but in addition takes a predicate function. The predicate is applied to
each element of the list, and only if a non-#f value is returned should the
function be applied to the element and that result returned in the answer
list. For example,

(map-if - ‘(0 u 8 1 2) number?)
returns

(0 -8 -1 -2)
Notice that the resultant list does not have to be as long as the original list
with which map-if is called.

8.6 Write a function deep-abs that takes a nested list and applies the function
abs to every atom in the nested list and returns a similarly nested list of
results. For example,

(deep-abs ' ((3 -4 (-5)) (6 ((-7 8)))))
returns
((3 4 (5)) (6 ((7 8))))

8.7 Does the following version of count-if work?

(define (count-if func a-list)
(count #t (map func a-list)))

8.2.3 -if-not functions
To find the first nonpositive number in a list of numbers, we might try to use
find-if withnegative?, as in the following example:

> (find-if negative? (2 3 0 -3 4 -5))

-3
It doesn’t return zero because zero is not negative. However, zero is nonpositive
and is the answer we wanted. To fix this we could write a function that tests for

8.2 Writing Functions that Take Functions as Arguments 207

negative numbers or zero, and pass that to find-if. However, there is a more
general solution.

We can create functions that end in -if-not that are identical to their coun- if-not functions
terparts ending in -if except that they perform their action on the elements that
do not satisfy test. To find the first nonpositive number, we can use

> (find-if-not positive? (2 3 0 -3 4 -5))
0

The function positive-filter from Chapter 6 can be written using remove-
if-not. positive-filter takes a list and returns a list of all the positive
numbers in the list. A better name for remove-if-not would be keep-if—we
keep the elements of the list that satisfy the function.

; Return a list of the positive numbers in a-list.
(define (positive-filter-alt a-list)
(keep-if positive? a-list))
An example call to positive-filter-alt follows:
> (positive-filter-alt (-5 15 6 -20 0 -1))
(15 6)

The table below shows the results of applying the -if and -if-not functions

to thelist (36 three (124)) and the function atom?, as in
> (count-if atom? ’ (36 three (124)))

2

function return value
count-if 2

find-if 36
remove-if ((124))

count-if-not 1
find-if-not (124)
keep-if (36 three)

Implementing count-if-not and find-if-not will be left as exercises. The
first version of remove-if we wrote did what keep-if should.

Here is a summary of the if and if-not functions we have created. All the
functions take a function test and a list list. test should take a single argument
whose type matches that of the elements in list.

function arguments return value Summary of -i£ and
find-if test list first element in list that satisfies test -if-not functions
count-if test list number of elements in list that satisfy test

remove-if test list list without elements that satisfy test

find-if-not test list first element in list that does not satisfy test

count-if-not test list number of elements in list that do not satisfy test

keep-if test list list of elements that satisfy test

208

Chapter 8: Functionals

Mistakes to Avoid
Remember that find-if returns the first element that satisfies the func-
tion, not the result of that function call. Similarly, keep-if returns a list
of elements that satisfy the function, not a list of the return values.

8.2.4 Exercises

8.8

8.9

8.10

8.11

8.12

Write expressions to compute the following results using the list values
that has been bound to some list. Each question refers to the top-level ele-
ments in values:

— The numbers in values

— The non-numbers in values

— The number of non-numbers in values

— The first list in values

— The number of elements in the first list in values
— The list values without any symbols

Write the function find-if-not.
Write the function count-if-not.

Anna proposes the following idea to remove duplicate elements from a list
to make it a legal set. She suggests combining the list of all the unique ele-
ments with the list of all the duplicate elements. The code should work like
the example below:

> (remove-duplicates (3 4 3 2 4))
(3 4 2)
Here is Anna’s code:
(define (remove-duplicates a-list)
(union
(remove-if (lambda (elt) (> (count elt a-list) 1)) a-list)
(keep-if (lambda (elt) (> (count elt a-list) 1)) a-list)))

Does her solution work. Why or why not?

Mike looks at Anna’s code (from the previous exercise) and says that her
idea is right, but her implementation is wrong. If she reversed the two argu-
ments to union it would work. He bases this on the way union is written. Is
Mike right? Why or why not?

8.2 Writing Functions that Take Functions as Arguments

209

8.2.5 every and any

There are times when you want to test if every element of a list satisfies some
function. Or you may want to test if some element satisfies a predicate function.
Examples of this would be the following: are all the elements of a list even
numbers, is a list a valid association list (i.e., it is a list of pairs), and is there a
negative number in a list? We can do this by creating two new functions: every
and any.

These functions are similar to map in that they apply a function to elements of
a list. However, the return value is a true/false value instead of a list of results.
One additional difference is that we don’t always need to check all the values in
the list. For example, if we are testing if all the elements in the list are numbers,
and we encounter a non-number, we don’t need to check further elements. Simi-
larly, if we are checking if the list contains at least one number, we can stop exa-
mining elements once a number is found. In this sense these two functions
behave like and and or.

Here are the complete definitions of the two functions. every returns a true
value if applying the function to every successive element in the list returns a
true value. In this case every returns the final true value encountered. If any
application results in #f, no further elements are tested and #f is returned. any
applies the function to successive elements in the list. If any application returns a
true value, no further elements are tested, and that true value is returned. If all
applications resultin #£, #f is returned.

function arguments return value

every test list final true return value if all elements in list satisfy test,
#£ otherwise
any test list first true return value from applying test to elements

in list, #£ otherwise

The following examples illustrate the use of these functions. Assume the func-
tion short-1ist? has been defined as follows:

; Return true if item is a short list (one or two elements).
(define (short-list? item)

(and
(list? item)
(member (length item) ‘(1 2))))

> (every short-1list? ’((one 1) (two 2) ()))
#£

> (every short-list? ’‘((one 1) (two 2) (3)))
(1 2)

> (every even? ‘(4 6 2))
#t

> (any even? (3 6 2))
#t

every and any

210 Chapter 8: Functionals

> (any even? ’(3 9 27))
#£

> (any short-1list? ’((one 1) (two 2) (3)))
(2)

Let's write these two functions. We cannot use map because it will always
evaluate all the elements in the list. We'll create recursive functions. To return the
final true value, every should stop when it encounters a one-element list. The
definitional pseudo code for every is

if the list is empty, return ??
if there is one element in the list, return the function applied to that element
otherwise, return the and of the first element applied to the function

and the result of a recursive call on the rest of the list.

What shall we return when we have an empty list? You might be inclined to
think that #f should be returned. However, we should be consistent with how
and works; it returns #t if called with no arguments.

The code for every follows:

; Return final true return value if all applications of func
; to the elements of a-list are true, otherwise return #f.
(define (every func a-list)
(cond ((null? a-list) #t)
((null? (rest a-list)) (func (first a-list)))
(else (and (func (first a-list))
(every func (rest a-list))))))

The code for any is very similar. Instead of checking for an item that does not
satisfy the function as an exit case, we need a check for satisfying the function. In
this case the true value is returned. Reaching the empty list means that none of
the elements satisfied the function, so we should return #£. We do not need to
make a check for a one-element list.

; Return first true application of func to the elements of
; a-list, otherwise return #f if no applications are true.
(define (any func a-list)
(if (null? a-list)
#£
(or (func (first a-list))
(any func (rest a-list)))))
The function all-numbers? from Chapter 6 can be written using every. all-
numbers? takes a list and returns #t if all the elements in the list are numbers,
and #f otherwise.

; Return true if all elements of a-list are numbers.
(define (all-numbers-alt? a-list)
(every number? a-list))

Below are two example function calls using this function:

8.2 Writing Functions that Take Functions as Arguments

211

> (all-numbers-alt? (3 4 2))
#t

> (all-numbers-alt? ‘(3 four 2))
#£

8.2.6 Exercises
8.13 Given a list 1ist1, write expressions to return the following values. You
may need to define additional functions.

— true if there is at least one top-level symbol in 1ist1
— true if each element of 1ist1 is a two-element list
— true if 1ist1 has no sublists

8.14 Explain the differences between any and find-if.

8.15 Which functional (e.g., map, find-if, every) would you use to find the fol-
lowing values? Note: if none of the functions appear to do the job, indicate
how you would determine the value using other techniques.

— the first nested list in a list

— the second atom in a list

— the last number in a list

— the numbers greater than ten in a list of atoms
— a list without any sublists

— the average of a list of numbers

— the first three elements in a list

— the number of negative numbers in a list

— if a list has at least one number

— if a list has at least five numbers

8.2.7 Optional section: Using multiple lists with map, for-each,
every, and any
map can be used to apply functions taking multiple arguments to multiple lists. In
this case, map takes more than one list. The function used must take the same
number of arguments as there are lists passed to map. The lists must all be the
same length.
The following examples show how map can be called with multiple lists:
> (map + (3 6 2) ’(4 20 -1))
(7 26 1)

> (map > (3 6 2) (4 20 -1))
(#E #E #t)

212 Chapter 8: Functionals

Rewriting every and
any lo handle multiple
lists

> (map list (3 6 2) '(4 20 -1) '(a b c))

((3 4 a) (6 20 b) (2 -1 ¢c))
Note: The last example transposed the elements in the lists. If the lists are viewed
as rows of a matrix, then the function call transposes rows into a list of columns.

every and any can be written to take more than one list just as map does. The

function given to every or any must take as many arguments as there are lists
given. The function is applied to successive elements in each list:

> (every < ‘(1 3 5) (2 46))

#t

> (every < ‘(1 3 5) (2 45))
#f

every and any stop evaluating at the end of the shortest list if called with
functions taking more than one argument, and given arguments of uneven
lengths. The following example shows this:
> (every > (3 9 4 1) (27 2))
#t

To write the new versions of these functions, we need to use a variation of
define that lets us create a function taking a variable number of arguments. This
is covered in depth in Chapter 11. In this case we specify one regular parameter
(the function), and then use a single parameter name for the remaining lists. That
parameter, 1ists, will be a list of the remaining arguments (which should all be
lists themselves). To extract the first element from each list, we can use map with
first. Applying the function to the elements is trickier, as the elements are in a
list and are not separate arguments. We can use apply to get around this prob-
lem. Making a recursive call will involve using apply, and we need to call the
function recursively with the rests of all the lists. Before we apply every to the
list of rests, we must add the function to this list because apply needs a list of all
the arguments to every. The new code follows:

; every and any each take a variable number of lists as arguments
; and apply func to those lists. apply is used to convert a list of
; arguments into separate arguments.

; Return final true return value if all applications of func to
; successive elements in lists are true, otherwise return #f.
(define (every func . lists)
(cond ((member #t (map null? lists)) #t)
((member #t (map (lambda (lst) (null? (cdr 1st))) lists))
(apply func (map car lists)))
(else
(and (apply func (map car lists))
(apply every (cons func (map cdr lists)))))))

8.2 Writing Functions that Take Functions as Arguments

213

; Return first true value from applying func to successive
; elements in lists, or #f if no elements satisfy func.

(define (any func .

(i1f (member #t (map null? lists))

#f

(or (apply func (map first lists))
(apply any (cons func (map rest lists))))))

The built-in function equal? can be written using every. This function new-
equal? must first test the types with which it is called. If the arguments are
atoms, it checks if they are eqv?. If new-equal? is called with two lists, it calls
another function that compares the lists. This function uses every with new-
equal? to compare the elements of the two lists. It must check the length of the
two lists beforehand because every will stop when it hits the end of the shortest

list.

Here are the functions that perform the above actions:

; Return true if eltl and elt2 (lists or atoms) are equal.
(define (new-equal? eltl elt2)

(cond ((and (atom? eltl) (atom? elt2)) (eqv? eltl elt2))
((or (atom? eltl) (atom? elt2)) #f)
(else (same eltl elt2))))

; Return true if listl and list2 are equal.
(define (same listl list2)

(if (= (length listl) (length list2))
(every new-equal? listl list2)

#£))

We can trace the calls to these functions. Calls to every have been represented

using and.

(new-equal? ' (a (cat))
(same ’(a (cat))
(and (new-equal? ’a

(and (eqv? ’‘a ’'a)

(and
(and
(and
(and

)
#£

#t
A
#t
l
#t
l

#t

‘(a (hat)))

‘(a (hat)))

(new-equal? ’(cat) ’(hat)))
(sami '(cat) ’(hat)))
(and$(new-equal? ‘cat ’'hat)))
(and (eqvi ‘cat ’'hat)))
(and #1))

\:

#£)

214 Chapter 8: Functionals

8.2.8 Exercises
8.16 Does the following version of new-equal? work when called with two lists?
Why or why not?
(define (new-equal? eltl elt2)
(if (atom? eltl)
(eqv? eltl elt2)
(same eltl elt2)))

(define (same listl list2)
(if (= (length listl) (length list2))
(every new-equal? listl list2)
#£))

8.17 Alexandra proposes that the functions new-equal? and same can be
switched and new-equal? will still work when called. Does her switch work
like the old version? Why or why not?

(define (same eltl elt2)
(cond ((and (atom? eltl) (atom? elt2)) (eqv? eltl elt2))
((or (atom? eltl) (atom? elt2)) #f)
(else (new-equal? eltl elt2))))

(define (new-equal? listl list2)
(if (= (length listl) (length list2))
(every same listl list2)
#£))

8.18 Here is yet another version of new-equal, but this one does not use same.
Does it work? Why or why not?
(define (new-equal? eltl elt2)
(cond ((and (atom? eltl) (atom? elt2)) (eqv? eltl elt2))
((or (atom? eltl) (atom? elt2)) #f)
(else
(and (= (length eltl) (length elt2))
(every new-equal? eltl elt2)))))

8.19 Using functionals, write a function that returns true if two lists look the
same in form. The atoms may be different, but the parentheses should be
the same. The following two lists look the same:

((a b (c) d) e
((1 2 (3) 4) 35)

8.20 Using functionals, write a function that takes two lists of atoms and pro-
duces an association list pairing subsequent atoms in each list. Given the
lists (1 2 3) and (one two three), your function should return

((1 one) (2 two) (3 three))

8.3 Lambda Expressions 215

8.21 To determine if any of the lists passed as arguments to every are empty, we
test if any application of null? returns #t using member and map. An alter-
nate idea is to use any with nul1? as follows:

(define (every func . lists)
(if (any null? lists)
#t
(and (apply func (map first lists))
(apply every (cons func (map rest lists))))))
Does this new version of every work? If any were changed in the same
manner as every, would it work?

8.3 Lambda Expressions

Lambda expressions provide another means of creating functions other than using
define. A lambda expression is a list whose first element is the symbol 1ambda;
the second element is a parameter list; and the remaining elements are the body
of the function just as in a define. Unlike define, 1ambda does not take a name
for the function being created; therefore, 1ambda can be looked at as a means of
creating nameless functions.

Lambda expressions can be used in place of function names in functions calls.
Thus, in one step we can define and use a function. Look at the following exam-
ple:

> ((lambda (num) (< num 3)) 2)
#t

This is functionally the same as doing the following two steps:

> (define (small-num num)
(< num 3))
??

> (small-num 2)
#t
The example above has one important difference from the 1ambda example—
it binds the variable small-num to a function. We can use that function later refer-
ring to it by name.
The define above is equivalent to doing the following:
(define small-num (lambda (num) (< num 3)))
The following example shows this equivalence:

> (define small-num (lambda (num) (< num 3)))
??

> (small-num 2)
#t

We define functions because we can refer to them by name instead of writing
an entire lambda expression each time we want to invoke the function. Also, to
write recursive functions we need a name to refer to the function.

Creating nameless
functions on the fly

Alternate way of
defining functions

216 Chapter 8: Functionals

Lambda expressions
with functionals

Lambda expressions are useful as arguments to functionals. This way custom
functions do not have to be defined beforehand with define, but can be created
as one-shot entities.

Below is an example using a lambda expression that returns elements in a list
that are greater than or equal to 10:

> (keep-if
(lambda (num)
(>= num 10))
'(4 18 7 10))
(18 10)

Another common use for lambda expressions is to create functions that com-
bine other functions using and or or. For example, if you wanted to return the
positive numbers in a list that might have non-numbers within it, you would get
an error if you wrote

(keep-if positive? a-list)

This is because positive? results in an error if applied to a non-number. One
solution is to use a lambda expression, as in
(keep-if
(lambda (element)
(and (number? element)
(positive? element)))
a-list)

The set functions union and intersection introduced in Chapter 7 can be
written using functionals and lambda expressions. The union of set1 and set2 is
set2 appended with the elements in set] that are not in set2.

; Return the set of items in either setl or set2.
(define (union-alt setl set2)
(append
set2
(remove-if
(lambda (element)
(member element set2))
setl)))

The remove-if sequences through each element of setl using a lambda
expression. The 1ambda uses member to determine if the element in set1 being
examined is in set2. If so, it is not included in the final list, which is appended to
set2.

8.3 Lambda Expressions 217

Mistakes to Avoid
A lambda expression is needed in the above example. The call to
remove-if could not have been written as

(remove-if member setl)

This is because member needs two arguments. This call would attempt to
invoke member with one argument—successive elements of set1.

Lambda expressions are used to call functionals like remove-if (that
take one argument functions) with multiargument functions. The
lambda expression creates a function taking one argument and calls the
multiargument function with fixed values for the other arguments. In
the above case, to use remove-if with member, the lambda expression
creates a function that compares successive elements of set1 with set2,
the fixed argument to member.

We could not have written a separate function to compute the
member, as in

(define (in-list element)
(member element set2))

This is because the scope of the parameter, set2, is the function union-
alt, thus set2 cannot be referenced outside of that function:

The intersection of setl and set2 is the elements in set1 that are in set2. This is
similar to what we did above with union-alt. However, in this case we want to
keep the elements that satisfy the call to member, so we use keep-if.

; Return the set of items in both setl and set2.
(define (intersection-alt setl set2)
(keep-if
(lambda (element)
(member element set2))
setl))

The function assoc can be implemented using find-if. The test to apply to
find-if is one that checks if the car of the current pair being examined is equal
to the element for which we are searching. find-if returns the first pair whose
car is equal? to the element.

; Return the first sublist in assoc-list whose car matches element.
(define (alt-assoc element assoc-list)
(find-if
(lambda (pair)
(equal? element (car pair)))
assoc-list))

! Some versions of Scheme allow functions to be defined within other functions. In that case we
could define in-1ist within union-alt, and call remove-if with in-1ist.

Using lambda expres-
sions to get around
scoping constraints

218

Chapter 8: Functionals

Mistakes to Avoid
It's easy to forget one or more of the following parts of a lambda expres-
sion:
e The parameter list
e The right parenthesis that closes the lambda expression

Mistakes to Avoid
When using lambda expressions with applicative operators, it is easy to
forget to include the list through which to sequence. Always double
check that you have passed in a list and that the elements of the list can
be applied to the lambda expression.

8.3.1 Exercises
8.22 Using functionals, write your own version of set-difference.

8.23 Using functionals, write your own version of subset?.
8.24 Using functionals, write your own version of rassoc.

8.25 Using functionals, write a function substitute that takes a list and two
atoms old and new. The function should return a new list with all top-level
occurrences of old replaced with new. For example,

(substitute '(me but (not me)) ’‘me ’you)
should produce the list
(you but (not me))

8.26 Write a function that takes a list and returns that list with all the odd
numbers replaced with the even numbers one higher. Hint: use map. Given
the list

(1 out of 3 likes U 2 and U B 40)
your function should return
(2 out of 4 likes U 2 and U B 40)

8.27 Write a function apply-to-atoms that takes func, a function taking one
argument, and a list a-1ist. apply-to-atoms should apply func to all the
atoms in a-list. All the sublists should be left intact. apply-to-atoms
returns a new list of these results. For example,

> (apply-to-atoms list ’(2 (3) four (and (five))))
((2) (3) (four) (and (five)))

8.4 Combining Results with accumulate

219

8.28 Write a function deep-map that takes a function and a nested list and applies
the function to every atom in the nested list and returns a similarly nested
list of results. For example,

(deep-map positive? (3 (-14 (2)) 0 (((-7)))))
returns
(#t (#f (#t)) #f (((#£))))

8.4 Combining Results with accumulate

We will create a function accumulate to apply a binary function (one taking two
arguments) to a list of arguments. The binary function is first applied to the first
two elements of the list. Then the function is applied to this result and the third
element of the list, then to this new result and the next element, and so on. The
process continues until all elements in the list have been processed. In short, the
function is applied to all the elements of the list in a left to right order.

If accumulate is called with an empty list, the return value is the result of cal-
ling the function with no arguments. If accumulate is called with a one-element
list, the return value is the first element of that list.

The general form of accumulate is

(accumulate function list)

The function sum-1ist from Chapter 6, which takes a list of numbers and
returns their sum, can be written using accumulate as follows:
; Return sum of numbers in number-list.

(define (add-list number-list)
(accumulate + number-list))

Below is a sample call to add-1ist:
> (add-list (8 2 -1 0 3))
12
In this example and many other cases accumulate and apply are interchange-
able. When used with functions like +, *, max, min, and append, accumulate
yields the same results as apply, as the following example shows:
> (accumulate append ’((one list) (another list)

(yet (another list))))
(one list another list yet (another list))

> (apply append ’((one list) (another list)
(yet (another 1list))))
(one list another list yet (another list))

The order that accumulate sequences through the arguments is important
when using nonassociative functions such as -, as in

> (accumulate - ‘(1 2 3))
-4

accumulate

Similarities of
accumulate and

apply

220 Chapter 8: Functionals

Differences between
accumulate and
apply

The actions performed are
(- (-12)3)

Mistakes to Avoid
accumulate must be called with a function that takes two arguments.
That function should yield a result that can be applied to the function
itself. For example,
(accumulate > (3 5 -6))

would not work to determine if all the elements of the list were in
increasing order because > returns #t or #£, which cannot be applied to
>. In other words, (> (> 3 5) -6) produces an error.

There are cases where accumulate does more than apply. Suppose you want
to sum the absolute values of a list of numbers. We can use the function sum-abs
from Chapter 3 that returns the sum of the absolute values of two numbers:

; Return the sum of the absolute values of numl and num2.
(define (sum-abs numl num2)
(+ (abs numl) (abs num2)))

To sum the absolute values of a list of numbers, we pass this function and the list
of numbers to accumulate:

> (accumulate sum-abs ’(-2 3 -4 -1))
10

Alternatively, we could have done this using map and accumulate or apply:
> (accumulate + (map abs (-2 3 -4 -1)))
10
> (apply + (map abs /(-2 3 -4 -1)))
10

Here is a more practical application of accumulate. Given many-1lists, a list
of sublists, return the longest sublist:
(define many-lists ’((1 2 3) (1 2 3 4 5) (12 3 4) (1 2)))
We can’t use map with apply as follows:
> (apply max (map length many-lists))
5

This returns the length of the longest sublist. Instead we can write a function that
takes two sublists and returns the longest one and then apply this function and
many-lists to accumulate.

8.4 Combining Results with accumulate 221

; Return the longest of listl and list2.
(define (biggest listl 1list2)
(if (> (length listl) (length list2))
listl
list2))

> (accumulate biggest many-lists)
(1 23 45)

How do we implement accumulate? Let's model the steps that accumulate Writing accumulate
takes when processing a list. The following call to accumulate

(accumulate + (1 2 3 4))
is equivalent to the following expression:
(+ (+ (+ 1 2) 3) 4)
One possibility is to think of the recursive case as follows:

return the result of applying the function to
the recursive call of the list without the last element
and
the last element.

Getting the last element and the list without the last element is not as easy or
fast to do as getting the rest of the list and the first element of the list. Can we
view the recursion in a different fashion?

If we start with the innermost action, (+ 1 2), and then continue outward,
we will be traversing the elements of the list in order. At each step we are apply-
ing the function to the result of the last computation and the current first element
of the list. This value becomes the last computation value to use in the next itera-
tion. We need an extra parameter to hold this last computation. When we reach
the end of the list, that parameter should hold the final answer. This approach is
tail-recursive. The code looks like

; Applies func to answer and first element of a-list, then to that
; result and next element of a-list and so on until a-list is empty.
; Returns final answer.
(define (accum-tail func a-list answer)
(if (null? a-list)
answer
(accum-tail func (rest a-list)
(func answer (first a-list)))))

What should be the initial value of answer? If the function is addition, 0
makes sense, but with multiplication it should be 1, and for append it should be
" (). A better approach is to pick a valid value for any function. The first element
of the list will work. Then we recurse on the rest of the list. We need to verify
the list is not empty first. Otherwise, we return the result of calling the function
with no arguments. The helper function to do this follows:

222 Chapter 8: Functionals

; Applies func to first two elements of a-list, then to that result
; and next element of a-list and so on until a-list is empty.
; Returns final answer.
(define (accumulate func a-list)
(i1f (null? a-list)
(func)
(accum-tail func (rest a-list) (first a-list))))

Using accumulate Mistakes to Avoid
properly It is important to think about how the result of a computation will be
combined by accumulate with other elements of the list. For example,
to sum the squares of a list of numbers you might use a function sum-
squares that returns the sum of the squares of two numbers.

; Returns the sum of the squares of numl and num2.

(define (sum-squares numl num2)

(+ (* numl numl) (* num2 num2)))

And then pass this function to accumulate as follows:

> (accumulate sum-squares ’'(-2 3 -4 -1))
34226

The result is wrong (it should be 30). The problem is that we take the
sum of the first two squares and then square that result and add it to the
square of the third number and so on.
The first argument to sum-squares should be the total collected so

far. Here is a new function that does that:

; Returns the sum of total and num squared.

(define (add-num-squared total num)

(+ total (* num num)))

Calling this new function with accumulate yields the following;:
> (accumulate add-num-squared ’(-2 3 -4 -1))
24

Another problem. We treated the first number as a total, meaning we
added -2 to the sum of the squares of 3, -4, and -1. The first value in the
list should be a sum. A quick fix is to add zero to the start of the number
list:

> (accumulate add-num-squared ’(0 -2 3 -4 -1))
30

It's probably better to use apply and map as follows:

> (apply +
(map (lambda (num) (* num num)) ‘(-2 3 -4 -1)))
30

8.4 Combining Results with accumulate

223

8.4.1 Exercises
8.29 Our first attempt to implement find-if failed when we couldn’t find the
first true element in a list. or will return the first true argument passed to it.
This is almost what we want, except we have a list of values, not a collection
of separate arguments. Can accumulate help us in this endeavor, as shown
below?
(define (find-if func a-list)
(list-ref
a-list
(position
(accumulate
or
(map func a-list))
(map func a-list))))

8.30 Write a function union-of-many that takes a list of sets and returns the
union of all of those sets.

8.31 Write a function combine-assoc-1lists that takes a list of association lists
and returns one association list containing all the pairs of all those associa-
tion lists.

8.32 Write a function that takes a list with numbers, symbols, and lists and
returns the average of the top-level numbers in the list. For example, given
thelist (3 (100) 5 ten), your function should return 4.

8.33 Write a function that takes a list of lists of numbers and returns the list with
the largest number in it. Given the list

((16 43 7) (25 98) (57 2 89 14))
your function should return the list (25 98).

8.34 Write a function smallest that takes a function and a list and returns the
number in the list that has the smallest value when the function is applied to
it. For example,

(smallest abs (-3 4 1 -2))
returns 1.

8.35 The following function is supposed to flatten a list—remove all the inner
parentheses. For example, (1 (2 (3) 4) 5) flattenedis (1 2 3 4 5). Does
it work?

(define (flat a-list)
(if (atom? a-list)
a-list
(map flat (accumulate append a-list))))

224 Chapter 8: Functionals

8.36 The following function is supposed to flatten a list—remove all the inner
parentheses. For example, (1 (2 (3) 4) 5) flattenedis (1 2 3 4 5).Does
it work?

(define (flatten a-list)
(1f (atom? a-list)
(list a-list)
(accumulate append (map flatten a-list))))

8.37 Given a database of musical instruments and their prices, as follows,

((guitar 600)
(piano 2000)
(harmonica 10)
(trumpet 250)
(drums 700)

)
write expressions to return the following:

— The average cost of the instruments

— The price of the most expensive instrument

— The name of the least expensive instrument

— The instruments (and their prices) that cost less than $100
— The number of instruments that cost more than $1000

8.4.2 Sorting lists

A general sort function The function sort-hand was created in Chapter 6 to perform an insertion sort on
a list of playing cards. It would be nice to have a sorting routine that could be
used for sorting any list. To do so, we can use the structure of sort-hand and its
auxiliary function insert-card, but replace the function lower-card? with a
function that is passed in as an argument to our generic sorting function. The
new sorting function takes a function on which to base its comparison and a list
to sort.

; Perform insertion sort on a-list based on compare-func.
(define (sort compare-func a-list)
(if (null? a-list)
"0
(insert
(first a-list)
(sort compare-func (rest a-list))
compare-func)))

8.4 Combining Results with accumulate 225

; Insert element in sorted order into sorted-list based on compare-func.
(define (insert element sorted-list compare-func)
(cond ((null? sorted-list)
(list element))
((compare-func element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert element (rest sorted-list) compare-func)))))

To sort numbers in increasing order, use

> (sort < (5 3 41 2))
(1 23 45)

To sort numbers in decreasing order, use

> (sort > (53 41 2))
(54321)

8.4.3 Example: Poker revisited, yet again
Our previous versions of poker from Chapters 5 and 6 did not use the cards’ suit Card suits and flushes
information. Playing cards have four suits: diamonds, hearts, clubs, and spades.
If we include suit information, we can check for flushes, straight flushes, and
royal flushes. A flush is a hand in which all the cards are of the same suit (e.g., all
diamonds). A straight flush is a straight with all cards of the same suit, and a
royal flush is a straight flush with the cards ten through ace.
We can use an association list to represent card values and suits for a hand.
Thus a possible hand may be

((jack spades) (ace diamonds) (three diamonds) (ace hearts)
(two clubs))

With such a representation our previous code no longer works. We can make
it work with some slight modifications and new code to handle flushes, straight
flushes, and royal flushes.
Selector and creator functions should be written to get the value and suit of a Selector and creator
playing card and to create a card pair. functions for cards
; Return the value of card (e.g., ten or queen).
(define (card-value card)
(caxr card))

; Return the suit of card (e.g., diamonds or hearts).
(define (card-suit card)
(second card))

; Construct a card from its value and suit (e.g., (ten hearts)).
(define (create-card value suit)
(list value suit))

Once again, the ordering of the cards can be saved in the global symbol
card-ordering.

226 Chapter 8: Functionals

Testing for straights

Alternate approaches
to test for straights

(define card-ordering
"(two three four five six seven eight nine ten
jack queen king ace))

We can use the new sort from the previous section, and pass it a function
that is true if the first card comes before the second card. The previous lower-
card? function (from Chapter 6) won’t work with the new card data structure.
The new version should be

; Return true if cardl is lower in value than card2.
(define (lower-value? cardl card2)
(< (position (card-value cardl) card-ordering)
(position (card-value card2) card-ordering)))

We could write this function using member, as follows:

; Return true if cardl is lower in value than card2.
(define (lower-value? cardl card2)
(member (card-value card2)
(rest (member (card-value cardl) card-ordering))))

The function is-straight? needs some slight modification to reflect the new
sorting we are using. We should compare card values only, so we must form a
list of card values without the suit information. This is done easily using map.
Below is the new version:

; Return true if hand represents a straight.
(define (is-straight-new? hand card-ordering)
(let* ((sorted-hand (sort lower-value? hand))
(low-card (first sorted-hand)))
(and (lower-value? low-card (create-card ’jack ’‘any-suit))

(equal?
(map card-value sorted-hand)
(subseq
(member (card-value low-card) card-ordering)
05)))))

We could have taken other approaches to determine if a hand is a straight. In
these approaches we don’t need to sort the cards in the hand, but do need to
know the low card in the hand. One approach is to find the low card, and then
using recursion or every, test that each subsequently higher card exists in the
hand.

Another approach that uses recursion is to find the low card, remove it from
the hand, find the low card in the remaining cards, and verify that it is one card
higher. We do this until a bad low card is found (it's too high) or all the cards
have been examined.

A third approach is to once again begin with the low card and use it to formu-
late the list of cards needed for a straight based on card-ordering, as we did in
our solution above. Then, verify that each card (e.g., using every) in the list of
cards needed is in the hand we have. It's important to sequence through the
cards needed. If we check that all the cards in our hand are in the list of cards
needed, we would get a true answer for hands like (2 2 3 3 5) because they

8.4 Combining Results with accumulate 227

areallinthelist (2 3 4 5 6).

A function to check for a flush follows. It checks if the first card’s suit matches
the suit of the remaining four cards. If so, then that hand is a flush. Alternate
techniques for determining if a hand is a flush are given as exercises in the next
section.

; Return true if hand represents a flush.
(define (is-flush? hand)
(= 4
(count
(card-suit (first hand))
(map card-suit (rest hand)))))

map is used to return only the suit of each card. These suits are compared with
the suit of the first card in the hand. If all of the suits match, is-flush returns
true.

The next function is used to determine if the hand is a royal flush, assuming
that it is known that the hand is a straight flush already. If the hand has an ace
and is a straight flush, it must be a royal flush.

; Return true if hand represents a royal straight.
(define (is-royal-straight? hand)
(member ’'ace (map card-value hand)))

Lastly, the new poker-value function follows. It first computes hand-values,
the card values of the hand, and then computes count -1ist, the number of times
each card appears in the hand. The previous code computed count-1ist by cal-
ling count five times. We can simplify this using a map, which sequences through
the hand calling count to get the number of cards in the hand that match the
current card being examined.

The hands with the highest value should be tested first to avoid problems like
calling a full house a pair. The order of the hand values is as follows:

royal flush

straight flush

four-of-a-kind

full house

flush

straight

three-of-a-kind

two pair

one pair

Such a testing order can cause some inefficiencies. Namely, royal flushes

should be tested for first because they are worth the most; however, to be
efficient this test should be nested within tests that check for flushes and
straights. Before getting too caught up in this dilemma, it's good to think about
the true conflicts that may arise. As it turns out, there are very few. The counting
scheme eliminates problems like calling a four-of-a-kind a three-of-a-kind or a
pair. The conflicts that arise are listed below:

Testing for flushes

Hand ordering

Testing order confiicts

228

Chapter 8: Functionals

hand value possible conflicts (with hands worth less)
royal flush straight flush, straight, flush

straight flush straight, flush

full house three-of-a-kind, one pair

flush straight

two pair one pair

The hand values on the left side of the above table should be tested for before
their matching conflicting card values on the right side. One further conflict
arises in that we would like to perform all the tests for royal flushes, straight
flushes, straights, and flushes within the same nested conditional expression.
This will eliminate unnecessary testing. The new function follows:

; Return the value of a poker hand.
(define (poker-value-new hand)
(let* ((hand-values (map card-value hand))
(count-list
(map
(lambda (card)
(count card hand-values))
hand-values)))
(cond ((is-straight-new? hand card-ordering)
(if (is-flush? hand)

(if (is-royal-straight? hand)
"royal-flush
"straight-flush)

'straight))

((is-flush? hand)
’flush)

((member 4 count-list)
'four-of-a-kind)

((and (member 3 count-list) (member 2 count-list))
’full-house)

((member 3 count-list)
"three-of-a-kind)

((= 4 (count 2 count-list))
'two-pair)

((member 2 count-list)
‘one-pair)

(else
"nothing))))

8.4.4 Exercises

8.38 The code above tests for straights before it tests for flushes. Yet flushes are
worth more than straights. Does this mean the code has a bug? If so, fix it. If
not, why do you think the code was written this way?

8.4 Combining Results with accumulate 229

8.39 In determining if a hand is a flush, could the expression
(accumulate equal? (map card-suit hand))
be used?

8.40 Would this function correctly determine if a hand is a flush?

(define (is-flush? hand)
(let ((first-suit (card-suit (first-hand))))
(every (lambda (card)
(eqv? first-suit (card-suit card)))
(rest hand))))

8.41 Would this function correctly determine if a hand is a flush?

(define (is-flush? hand)
(let ((first-suit (card-suit (first-hand))))
(= 4
(count-if (lambda (card)
(eqv? first-suit (card-suit card)))
(rest hand)))))

8.42 Write a new version of the function is-royal-straight? that uses find-
if instead of member and map.

8.43 How would you change the code if the representation for a card were a dot-
ted list like (queen . hearts) instead of a two-element list?

8.44 How would you modify the code to allow wild cards (jokers)? There are
two jokers in a deck of cards.

8.45 In the game draw poker you are allowed to discard some of your cards and
draw new cards once. Write a function that decides which cards to discard
based on the value of the existing hand.

8.46 Selection sort is an alternate means of sorting lists. Imagine we are sorting
numbers to produce the smallest to the largest numbers. The technique used
in selection sort is to find the smallest number in the list and make it the first
element in the solution. The rest of the solution is determined recursively
using the list with that smallest number removed. Here is a sample call
showing how selection sort should work.

> (sel-sort (3 2 1 4) <)

(1 23 4)
Does sel-sort below properly implement selection sort? Does it work with
lists that have duplicates (e.g., (2 4 4 3))?If not, fix it so it does.

230

Chapter 8: Functionals

(define (sel-sort a-list compare)
(if (null? a-list)
’
0
(let ((next-value (accumulate compare a-list)))
(cons next-value
(sel-sort (remove next-value a-list) compare)))))

8.5 Summary

Below is a table of the functionals covered in this chapter. function, test, and
bin-func are functions that are passed as arguments. function and test should
take a single argument whose type matches that of the elements in list. test
should be a predicate function. bin-func must be a function that takes two
arguments whose types match those of the elements in list. In addition, map,
for-each, every, and any can be called with multiple lists. In this case, they
should be called with a function that takes multiple arguments. The number
of lists must match the number of arguments and the lists must all be the
same length.

function arguments return value

map function lists list of results from applying function to
successive elements of lists

for-each function lists undefined, but applies function to successive
elements of lists

apply function list result of applying function to elements of list

every test lists final true return value if all successive
elements in lists satisfy test, #f otherwise

any test lists first true value from applying test to
successive elements in lists, #£ otherwise

find-if test list first element in list that satisfies test

find-if-not fest list first element in list that does not satisfy test

count-if test list number of elements in list that satisfy test

count-if-not test list number of elements in list that do not satisfy
test

remove-if test list list without elements that satisfy test

keep-if test list list of elements that satisfy test

accumulate bin-funclist result of applying bin-func to the elements in

list two at a time

lambda expressions are used to create specialized functions to use with func-
tionals.

CHAPTER 9

INPUT AND OUTPUT

9.1 Input/Output

Information going from the user to the computer is called input, and information
from the computer to the user is output. We have used the default form of
input/output (often abbreviated as I/0) in Scheme. Input is a product of the
interpreter reading in our requests at the > prompt. Output is the results of
evaluating our input Scheme expressions that the interpreter prints out.

9.1.1 Printing out additional information

There are times when we wish to get more information from a function call than
the evaluated result of the last expression. To display additional information dur-
ing the course of the evaluation of a function, calls to output functions are neces-
sary. Below is a list of some of these output functions:

function arguments prints out return value
newline none a blank line undefined
display expression the value of expression undefined
write expression the value of expression undefined

Below are some examples of these functions:
> (newline)
??

> (display 3)
3??

> (write 3)
3??

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

/o

newline, display,
andwrite

232 Chapter 9: Input and Output

Printing a list one
element per line

Text strings

The return value of newline, display, and write is undefined, and in fact it
will probably appear on the same line as the value printed out, as shown in these
examples. In actual usage the calls to these output functions would be placed
within functions so that they are not the final expression, and thus the return
value of the function call will be some other value. Below is an example of this:

; Print out num and return num squared.
(define (print-and-square num)

(display num)

(* num num))

A call to this function will print the value of the parameter num and its square:

> (print-and-square 7)
749

Use newline to get the output to appear on two lines:

; Print out num, move to the next line, and return num squared.
(define (print-and-square num)

(display num)

(newline)

(* num num))

> (print-and-square 7)
7
49

Using display, newline, and for-each, it is possible to write a short function
that prints out the elements in a list, one element per line:

; Print elements of a-list one per line.
(define (one-per-line a-list)
(for-each
(lambda (item)
(display item)
(newline))
a-list))
Here is a call illustrating this handy function:
> (one-per-line ’(linel (line 2 here) ((finally (line)) 3)))
linel
(line 2 here)
((finally (line)) 3)
?2?

The final return value is undefined because for-each returns an undefined
value.

Text can be displayed by surrounding the desired text in double quotes, and
passing that string to display or write. A string is a sequence of characters sur-
rounded by double quotes. The results can be seen below:

> (display "hi there")
hi there??

9.1 Input/Output

233

> (write "hi there")
"hi there"??

display and write can print out symbol names and lists also:

> (display ’symbol)
symbol??

> (write ’(a short list))
(a short list)??

The difference between the functions display and write is that display
prints out strings without the surrounding double quotes.

9.1.2 Input
To get information to functions, we have used parameters and passed the values
as arguments in function calls. There are times when it is desirable to get extra
information into a function. This can be done in Scheme with the function read.
read reads in information from the user and returns that information. read reads
in anything that looks like a Scheme expression—numbers, words, lists, and even
strings.

> (read)

42

42

> (read)
fred
fred

> (read)
((some (arbitrary list)))
((some (arbitrary list)))

> (read)
"a string”
"a string"

When a read function call is evaluated, the interpreter waits for the user to
enter a value that is read in and returned as the value of read. If more than one
value is entered, the following values are interpreted as further commands to the
interpreter, and are evaluated in the normal fashion:

> (read)

(+ 1 1) (+ 3 4)
(+11)

7

The following example illustrates how a value read in from the user can be
used within a function:

read

234 Chapter 9: Input and Output

; Read in a value and return its square root.
(define (read-and-apply)
(sqrt (read)))

After the function read-and-apply is called, the interpreter waits for the user to
enter a value, then it continues. Once the value is entered, its square root is com-
puted and displayed:

> (read-and-apply)

49

7.0

Reading until a The following function is supposed to ask the user for a number and read in a
number is given value. If the user enters a number, its square root should be returned. Otherwise
the process repeats.

; Read in values until a number is entered; return its square root.
(define (get-number)
(display "Enter a number: ")
(if (number? (read))
(sqrt (read))
(get-number)))
There is a bug in the above code. Rather than return the square root of the
number entered, the call to read in

(sqrt (read))
will force the user to enter another value before execution continues. The value
read in when

(number? (read))

is evaluated is the value desired. To save this value a 1et can be used. The correct
function looks like

; Read in values until a number is entered; return its square root.
(define (get-number)
(display "Enter a number: ")
(let ((number (read)))
(if (number? number)
(sqrt number)
(get-number))))

Below is a trace of this function:

> (get-number)

Enter a number: foo

Enter a number: (a list will not work either)
Enter a number: 121

11.0

9.3 Conditions with Multiple Actions 235

9.2 Getting Yes/No Answers

A useful function to create is one to get a "yes" or "no" answer to a question. The
function should take a string that is the question to ask the user and print that
string, along with an indication to answer yes or no.

; Read in values until a yes or no is entered; return #t if
; yes is entered and #f if no is entered.
(define (yes-no query)
(display query)
(display " (yes or no) ")
(let ((answer (read)))
(cond ((eqv? answer ’'yes) #t)
((eqv? answer ’'no) #f)
(else (yes-no query)))))
Below are examples illustrating this function:
> (yes-no "Do you want to continue?")
Do you want to continue? (yes or no) maybe
Do you want to continue? (yes or no) perhaps

Do you want to continue? (yes or no) no
#£

> (yes-no "Are you sure you want to quit?")
Are you sure you want to quit? (yes or no) yup
Are you sure you want to quit? (yes or no) yes
#t

9.3 Conditions with Multiple Actions

The condition-action pairs in a cond can have more than one action. They are
really condition-action(s) pairs. For the condition that is satisfied, all of its associ-
ated actions are evaluated, but only the return value of the last action is returned
as the value of the cond. For this reason, just as with function definitions, there is
usually only one action associated with each condition.

The usual reason for having more than one action in an action list is to allow
side-effects to take place. With side-effects, it is not the return value that we are
interested in so much as the particular side-effect that it causes. Binding a value
to a variable using define is a commonly performed action that produces side-
effects. Another often used side-effect is printing out information. Since expres-
sions always print their final return values, we have not used any other means of
displaying information. However, there are times when it is desirable to do so.

Suppose you wish to write a cond that returns the number of times element
occurs in a-list. In addition, you want to precede this number with a message.

If a-list is empty, return 0 and print the message

The list is empty

Reading until a yes/no
answer is given

Side-effects

236 Chapter 9: Input and Output

If element did not occur in a-list, return 0 and print the message
The item did not occur in the list
Lastly, if element did occur in a-list, return the number of times it occurred,
preceded by the message
The number of times item occurs in the list is
To get text as displayed above, the simplest way is to call display with the

desired text surrounded in double quotes (").
Below is the code to do this:

; Count the number of times element occurs in a-list; print an
; informative message about the count and return the count.
(define (number-of-times element a-list)
(cond ((null? a-list)
(display "The list is empty ")
0)
((not (member element a-list))
(display "The item did not occur in the list ")
0)
(else
(display "The number of times item occurs in the list is ")
(count element a-list))))

If a-list is an empty list, the two actions

(display "The list is empty ")
0

are evaluated; the text is displayed, and 0 is returned.

If element is not in a-list, these two actions are evaluated:

(display "The item did not occur in the list ")
0

The message gets printed, and 0 is returned.

If element is in a-list, the actions

(display "The number of times item occurs in the list is ")
(count element a-list)

are evaluated, the message is displayed, and the value of
(count element a-list)

is returned.

The sample evaluation of this code illustrates the values that get displayed.

> (number-of-times ’‘word ’(word does occur in this word list))
The number of times item occurs in the list is 2

9.4 Example: Visualizing Chaos 237

9.4 Example: Visualizing Chaos

Ecologists sometimes use formulas to model the growth in a population of
organisms in some ecosystem. The logistic difference equation is one such formula.
It expresses the new population in terms of the old population and some growth
rate constant. The formula is

new population = growth x population X (1 — population)

where population is between zero and one. A population of zero means extinc-
tion and one means the largest possible population that the ecosystem can sup-
port.

For small growth rates, the population typically dies out. Going beyond this
threshold, the population reaches some stable value after a number of genera-
tions. Larger growth rates produce larger end population values. With a growth
rate slightly above three, the population does not stabilize at one value, but
jumps back and forth between two values (bifurcates). Beyond this, the splitting
doubles again and again, but at some point the population jumps around in a
seemingly random fashion—chaos emerges.

We can write a recursive Scheme function to model the change in population
by printing out population values for a given number of iterations. For each itera-
tion we print out the population and then make a recursive call with the new
population. We'll need a counter variable to count the number of iterations. The
function new-balance from Chapter 6 provides a model for what we need to
do—repeat an action a given number of times. However, we can make one
simplification. Rather than count up to the number of iterations, we can count
down from the number of iterations to zero. Since we don’t need to use the value
of the counter, this approach works fine for this problem. It wouldn’t have
worked in new-balance because we used the counter in the function in deciding
when to make incremental deposits.

The function takes three parameters: times, growth, and population.

; Model the growth of population organisms for times generations.
; growth is the growth rate.
(define (population-growth times growth population)
(cond ((= O times)
population)
(else

(display population)

(newline)

(population-growth (- times 1) growth

(* growth population (- 1 population))))))

population-growth terminates when times is zero and returns a final popu-
lation value. This means that times+1 populations are printed: the initial popu-
lation (generation zero) and the next times generations. The recursive action
prints the current population and calls population-growth with counter plus
one and the new population value.

Logistic difference
equation

Population stability
and chaos

Modeling population
growth

238 Chapter 9: Input and Output

Here are some sample calls to population-growth:'

> (population-growth 5 2.0 0.4)
.4

.48

.4992

.4999

.4999

.5

[- I — I — I — I)

(population-growth 5 2.0 0.9) ; same growth rate, larger population
.9
.18
.2952
.4161
.4859
.4996

(=~ I — I — T~ I V 4

(population-growth 5 3.2 0.4) ; larger growth rate—bifurcation
.4
.768
.5701
.7842
.5414
.7945

[— I — I — T — B — I V4

(population-growth 5 4.0 0.4) ; larger growth rate—chaos
.4

.96

.1536

.5200

.9983

.0064

[T - I - B — T — Y - I V4

9.4.1 Exercises

9.1 Find growth rates for population-growth that lead to bifurcations (alter-
nating sequences of populations). Find growth rates that produce alternat-
ing patterns with a period of 4, 8, or 16 (the pattern repeats after 4, 8, or 16
generations).

9.2 At what growth rate does chaos emerge?
9.3 For some growth rates beyond the point of chaos, stable populations with

periods of three appear (patterns that repeat after three generations). Find
these.

! Only four digits of precision are shown in the output.

9.5 Read-Eval-Print Loop

239

9.4 Sometimes it takes a number of generations before the population stabilizes.
Modify population-growth so that it takes another parameter start denot-
ing the number of initial generations to calculate, but not print. Thus, only
generations start+1 to times are printed.

9.5 Write a function to compare the final population given different initial
populations and a fixed growth rate. Your function should return true if all
the populations are within some value (e.g., 0.0001) of the average popula-
tion.

9.6 Some of the questions above asked you to find growth rates where period
doubling or chaos occurs. Write a function that will help you determine
these growth rates.

9.7 Kate wants to change population-growth so that it doesn’t print the initial
(generation zero) population. She proposes the following change:
(define (population-growth times growth population)
(cond ((= 0 times)
population)
(else
(population-growth (- times 1) growth
(* growth population (- 1 population)))

(display population)
(newline))))

Will this work?

9.5 Read-Eval-Print Loop

The central component to the Scheme interpreter is the read-eval-print loop. Com-
mands are read in, then evaluated. Finally the evaluated result is printed. In
Scheme, the functions read, eval, and write do exactly this? We could write
them out to perform a single read-eval-print step:

(write (eval (read)))

read returns whatever is read in from the user. eval takes one argument and
returns its evaluated result. write takes this result and displays it on the screen.
Since eval returns the evaluated result, we need not call write to print it out.
Therefore, we don’t need the write in the simple case of performing one evalua-
tion. However, the evaluator is doing a read-eval-print loop. Because of this we
need the write function call.

An infinite (nonending) read-eval-print loop could be written as follows:

* Itis called a read-eval-print loop instead of a read-eval-write loop because other, older dialects of
Lisp use the function print.

eval

240 Chapter 9: Input and Output

; Print prompt, read input, print out evaluation, repeat.
(define (read-eval-print)

(display "-> ")

(write (eval (read)))

(newline)

(read-eval-print))

The solution below is an improvement, as it allows the user to exit when the
symbol quit is entered.

; Print prompt, read input, print out evaluation, repeat until
; quit is entered.
(define (read-eval-print-with-exit)
(display "-> ")
(let ((command (read)))
(cond ((eqv? command ’'quit)
"bye)
(else
(write (eval command))
(newline)
(read-eval-print-with-exit)))))
Below is an example call to read-eval-print-with-exit:
> (read-eval-print-with-exit)
-> 3
3
-> (* 3 4)
12
-> quit
bye

9.5.1 Exercises
9.8 Given the following function,

(define (mystery num)
(cond ((zero? num) 0)
(else (display num)
(newline)
(mystery (- num 1)))))

what will the function call (mystery 3) display? What is the return value?

9.9 Given the following function,

(define (unknown num)
(cond ((zero? num) O)
(else (unknown (- num 1))
(display num)
(newline))))

what will the function call (unknown 3) display? What is the return value?

9.6 Summary

241

9.10 Craig writes the following function to print both the sum and average of a

list of numbers:

(define (average num-list)
(/ (display (accumulate + num-list))
(length num-list)))

Will Craig’s function work?

9.6 Summary

To print a blank line, use newline.

To print out a string (text surrounded by double quotes) without the double
quotes, use display.

To print symbols, numbers, or lists, use either display or write.

To get a value from the user, use read.

Be sure to save the value read in using a 1et variable if it is used more than
once.

Summary of functions introduced in this chapter:

function arguments prints out return value
newline none a blank line undefined
display expression the value of expression undefined
write expression the value of expression undefined

read none nothing value entered by the user

CHAPTER 10

REPETITION
THROUGH ITERATION

10.1 Iteration

Iteration is a type of repetition that, like recursion, involves repeating a task a cer-
tain number of times, or for every element in a list, or more generally until some
condition is met. Iterative functions provide a means of carrying out these com-
monly performed tasks without having to explicitly create recursive functions. In
general, any linear recursive function (a function with a single recursive call in
each of its recursive cases) can be written using an iterative function. Most of the
examples in this chapter are iterative versions of the functions written using
recursion in Chapter 6. You should compare the iterative solutions to their recur-
sive counterparts and decide which seems more natural to you.

The big advantages of iteration over recursion are increased speed and
reduced memory requirements. Making a function call is an expensive operation
(time- and memory-wise) on a computer. It requires making provisions to save
the parameters, the location to return to, and a host of additional information.
Chapter 13 goes into the mechanism of function calls in great depth.

Saving information for function calls requires memory. Once a function
returns, that memory can be reused. But a recursive solution that makes a great
number of recursive calls may not be able to complete due to memory limita-
tions. You can see this by calling an embedded recursive function with an infinite
loop. Here is a very simple example:

; Infinite loop with embedded recursion.
(define (infinite)

(infinite)

0)

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Speed and memory
considerations

244 Chapter 10: Repetition Through Iteration

Stack overflow

Tail recursion and
iteration

syntax for do

Evaluation rules for do

Calling this function results in a stack overflow error, meaning too much
memory was used in making recursive calls. However, if you use a tail recursive
function, as follows

; Infinite loop with tail recursion.
(define (infinite-iter)
(infinite-iter))
you will not have a stack overflow and the program will run until you interrupt
it. This is because Scheme internally converts tail recursive functions to iterative
loops. Actions are repeated without making recursive calls.

If you are concerned with speed or memory issues, you should use an itera-
tive solution instead of a recursive solution. This means using tail recursive func-
tions or calls to the iterative function do.

The syntax for do is outlined below. The values in square braces "[]" are
optional.

(do ((variablel initial-valuel [update-valuel])
(variable2 initial-value2 [update-value2])

(variableN initial-valueN [update-valueN]))
(test exit-actions)
body)

exit-actions are zero or more expressions, similar to the actions in a condition-
actions pair in a cond expression. body is zero or more expressions. The body of a
do is somewhat analogous to the body of a function definition with one impor-
tant distinction: none of the expressions in the body are returned. They are all
only used for their side-effects, just like any expressions that proceed the final
expression in the body of a function.

do begins by evaluating all the initial-values and then binding all the variables
to those values. Thus the initial-values cannot refer to previous variables. This is
identical to the way that a 1et binds its variables.

Next test is evaluated. If it returns a non-#f result, the exit-actions are
evaluated and the value of the last action is returned, much like how a cond with
a single condition-actions pair would behave. If there are no exit-actions, do
returns an undefined value. If test returns #£, body is evaluated, the update-values
are evaluated, and the variables take on those values. Then the entire process con-
tinues by evaluating test again. If no update-value is supplied for a variable, the
variable keeps its current value. '

The bindings of variables to the update-values follows the same rules as the
bindings to the initial-values. Thus the update-values are all evaluated and then the
variables are sequentially bound to those values. Any references to variables in
update-values refer to the old bindings of those variables.

do may be better understood by showing its equivalent to other Scheme
expressions. The following function, do-1oop, is functionally equivalent to a do
expression. The items in italics represent pieces of the do syntax shown above.
The function do-1o0o0p would be called initially with the initial-values:

10.2 Repeating Actions a Number of Times 245

; Recursive equivalent to do. Functional equivalent
(define (do-loop valuel value? ... valueN) of do
(let ((variablel valuel)
(variable2 value)

(variableN valueN))
(cond (test exit-actions)
(else body
(do-loop update-values)))))

(do-1loop initial-values)

We can model a do without using 1et. In this case, imagine we call do-1oop-2
with the initial-values of the variables:
; Recursive equivalent to do.
(define (do-loop-2 variablel variable2 ... variableN)
(cond (lest exit-actions)
(else body
(do-loop-2 update-values))))

(do-1loop-2 initial-values)

Notice in both of these examples that body is the first action of the else clause
of the conad. It is evaluated but its results are not returned.

10.2 Repeating Actions a Number of Times

To repeat a body of code body a certain number of times, the following do tem-
plate can be used. This template repeats body num-times times by incrementing
the do variable counter with values from 1 to num-times.

(do ((counter 1 (+ counter 1))) Template to repeat
((> counter num-times) exit-actions) actions a number of
body) times

If we don’t need to use the value of counter as it increments or we want
counter to decrement (counting backwards), we can use the following template to
repeat body num-times times:

(do ((counter num-times (- counter 1))) Template to repeat
((= counter 0) exit-actions) actions counting back-
body) wards

10.2.1 Example: Printing changing populations
The function population-growth from Chapter 9 can be implemented easily
using the second template given above. population-growth has three parame-
ters; one is an integer, times, that corresponds to the number of populations to
calculate and print. Here is a new version using iteration:

246 Chapter 10: Repetition Through Iteration

Template to repeat
actions for each ele-
ment in a list

do with two exit cases

; Model the growth of population organisms for times generations.
; growth is the growth rate
(define (population-growth-iter times growth population)
(do ((counter times (- counter 1))
(pop population (* growth pop (- 1 pop))))

((= counter 0) pop)

(display pop)

(newline)))

Notice the use of the variable pop, which is initially bound to the starting
population and then updated to the new population values. Evaluating this func-
tion yields the following:

> (population-growth-iter 5 4.0 0.4)
.4

.96

.1536

.5200

.9983

.0064

oo o0oo0oo

10.3 Repeating an Action for each Element in a List

To repeat a section of code for every element in a list, the following do template
can be used. This template repeats body for each element in a-list. The variable
list-remaining is initialized to a-list and then set to successive rests of a-list each
time through the do.

(do ((list-remaining a-list (rest list-remaining)))
((null? list-remaining) exit-actions)
body)

10.3.1 Example: Checking if a list consists of numbers only

The template above can be used to implement the function all-numbers? from
Chapter 6, which takes a list and returns #t if all the elements in the list are
numbers and #f if not. The iteration through the list should stop when a non-
number is encountered. This means there will be two exit cases, encountering an
empty list (no more elements to process) and encountering an element that is a
non-number. The return value depends on the exit case. The test and exit-actions
of the do must check for both exit cases and return the proper value accordingly.
There is no action to take in the body, so it isn’t needed.

10.3 Repeating an Action for each Element in a List 247

; Return true if all elements of a-list are numbers.
(define (all-numbers?-iter a-list)
(do ((current-list a-list (rest current-list)))
((or (null? current-list)
(not (number? (first current-list))))
(if (null? current-list)
#t
#£))))

Examine the evaluations below:

> (all-numbers?-iter ‘(3 4 2))
#t

> (all-numbers?-iter ‘(3 four 2))
#£

It is important to put the conditions of the or in the order they are given. If
not, we may take the first of an empty list and get an error. The code above
works because if current-1list is empty, (null? current-list) is true and the
or does not check the second condition. For the same reason, the if must check
for an empty list instead of an element that is not a number.

Mistakes to Avoid
In this do and many others, there is no body. If you are comparing
iterative constructions in Scheme with those in other languages like Pas-
cal or C, you may find this strange. In a loop in these languages the
body contains the actions. However, in Scheme the body of a do loop is
only used for side-effects (e.g., printing out values). As an example of
this, let’s change the function above as follows:
; Return true if all elements of a-list are numbers - buggy.
(define (all-numbers?-iter-bad a-list)
(do ((current-list a-list (rest current-list)))
((null? current-list) #t)
(if (not (number? (first current-list)))
#£)))

> (all-numbers?-iter-bad ‘(1 2 three))
#t

> (all-numbers?-iter-bad ’(one two three))
#t

Regardless of the list al1l-numbers?-iter-bad is called with, it will
always return #t. This is because the if expression is part of the body of
the do. It is evaluated, but its return value is never used. The do eventu-
ally ends when the list has been sequenced through and returns #t,
which is the exit action of the do.

Order of conditions in
do

Improper uses of the
body of ado

248

Chapter 10: Repetition Through Iteration

10.4 General Examples with ado Loops

The function do can be used for more than repeating actions a certain number of
times or for each element in a list.

10.4.1 Example: Factorial
An example use of do is the function factorial from Chapter 6, which takes an
argument max and returns the product of the numbers from one to max. The pro-
duct will be maintained in the variable prod.

; Return max factorial (with iteration).

(define (fact-iter max)

(do ((number max (- number 1))
(prod 1 (* number prod)))
((zero? number) prod)))

Below is a trace of the bindings of the variables number and prod for the func-
tion call (fact-iter 3):

number is bound to 3
prod is bound to 1

number is not zero, so the do continues.

number is bound to (- 3 1) or 2
prodis bound to (* 3 1) or3

Notice that the old value of number is used in the computation of prod. This is
because the values are all evaluated before they are bound to the variables. Con-
tinuing on,

number isbound to (- 2 1)or1
prodisbound to (* 2 3)oré

Continuing further,

number isbound to (- 1 1) oro
prodisbound to (* 1 6) or 6

number is now zero. Thus, test is satisfied, and exit-actions are performed. In this
case the one action, prod, is evaluated and returned, giving the result 6.

10.4.2 Example: Adding up the digits in a number

Another example using do is a new version of the function sum-digits from
Chapter 6, which adds the digits in a number. The variables within the 1et in
sum-digits: last-digit and rest-of-number will be used as variables within
the do. last-digit is initialized to the last digit of the parameter number. After
that it is bound to the last digit of rest-of -number. rest-of -number is initially
the leftmost digits of the parameter number, and then the leftmost digits of its
previous value. In addition, the variable answer will be used to accumulate the
sum. answer is initialized to last-digit and updated by adding its old value to
the current value of 1ast-digit.

10.4 General Examples with do Loops

249

; Return sum of the digits in number.
(define (sum-digits-iter number)
(do ((last-digit (remainder number 10)
(remainder rest-of-number 10))
(rest-of -number (truncate (/ number 10))

(truncate (/ rest-of-number 10)))
(answer last-digit (+ answer last-digit)))
((zero? rest-of-number) answer)))

Note that sum-digits-iter and fact-iter have no body. Below is a trace of
this function:
> (sum-digits-iter 749)
Undefined variable: last-digit

Recall that the variables in a do are like the variables in a 1et in that they can- Caution with do
not use the current values of other variables in the variable list. When last- variables
digit is being evaluated, it has not been defined yet. This creates an undefined
variable error. We can change the code as follows to fix this error:

; Return sum of the digits in number.
(define (sum-digits-iter number)
(do ((last-digit (remainder number 10)
(remainder rest-of-number 10))
(rest-of-number (truncate (/ number 10))
(truncate (/ rest-of-number 10)))
(answer 0 (+ answer last-digit)))
((zero? rest-of-number) answer)))

Here is a run of the new version:
> (sum-digits-iter 749)
13

We got rid of the error message, but got the wrong answer. Here is a trace of
the bindings of the variables:

last-digit is bound to (remainder 749 10) or 9
rest-of-number is bound to (truncate (/ 749 10)) or 74
answer is bound to 0

We continue,

last-digit is bound to (remainder 74 10) or 4
rest-of-number is bound to (truncate (/ 74 10))o0r?7
answer is bound to (+ 0 9) or9

Next,

last-digit is bound to (remainder 7 10)or7
rest-of -number is bound to (truncate (/ 7 10)) oro0
answer is bound to (+ 9 4) or13

Since rest -of -number is 0, we exit returning answer, 13.
To get around this problem we can change the exit action to return the answer
plus the current last digit, (+ answer last-digit). Or we can use the last digits

250 Chapter 10: Repetition Through Iteration

directly by eliminating the variable last-digit and just use its value
throughout. Let’s try this approach:

; Return sum of the digits in number.

(define (sum-digits-iter number)

(do ((rest-of-number (truncate (/ number 10))
(truncate (/ rest-of-number 10)))
(answer (remainder number 10)
(+ answer (remainder rest-of-number 10))))
((zero? rest-of-number) answer)))

Let’s try this new version using the previous call, (sum-digits-iter 749).
rest-of -number is bound to (truncate (/ 749 10)) or 74
answer is bound to (remainder 749 10) or 9
rest-of -number is not zero, so the variables are bound to the update values.

rest-of -number is bound to (truncate (/ 74 10)) or?7
answeris bound to (+ 9 (remainder 74 10)) or 13

Again the variables are bound to the update values.

rest-of -number is bound to (truncate (/ 7 10)) oro
answer is bound to (+ 13 (remainder 7 10)) or 20

rest-of -number is now 0, and the value of answer, 20, is returned.

10.5 Writing Mapping Functions and Filters Using Iteration

All the different types of linear recursion functions covered in Chapter 6 have
been shown, with the exception of functions that produce lists—namely the map-
ping functions and filters. It is possible to write such functions using an iterative
construct, but it requires building up a list of results.

10.5.1 Example: A mapping function to take square roots in a list
The function square-roots from Chapter 6 can be written using an iterative
function. square-roots takes a list of numbers and returns the list of the square
roots of those numbers. Since we must build up a list of results, do variables will
be used to update that list and cdr down the list supplied as an argument.

; Return a list of the square roots of the numbers in a-list.

(define (square-roots-iter a-list)

(do ((current-list a-list (cdr current-list))
(answer ‘() (cons (sqrt (car current-list)) answer)))
((null? current-list) answer)))

A trace of the call (square-roots-iter ‘(1 4 9)) follows:

current-listisboundto (1 4 9)
answer is bound to ()

Since current-1list is not (), the iteration continues:

10.5 Writing Mapping Functions and Filters Using Iteration 251

current-listis bound to (cdr ’(1 4 9)) - (4 9)
answer is bound to (cons (sqrt (car ’(1 4 9))) ’'())— (1.0)

current-listis bound to (cdr ’ (4 9)) = (9)
answer is bound to (cons (sqrt (car ’ (4 9))) "(1.0)) > (2.0 1.0)

current-listis bound to (cdr ' (9)) = ()
answer is bound to (cons (sqrt (car ’(9))) (2.0 1.0)) — (3.0 2.0 1.0)

current-list is now () and answer, (3.0 2.0 1.0), is returned. This is the
reverse of the desired result.

In writing the recursive solution to square-roots, consing the sqrt of the
car of the list works because the conses don’t take effect until we unwind from
the recursive descent. With an iterative solution, we are building the list starting
with the first element. Subsequent elements are consed after this. We can fix this
by appending the new item onto the end of the current list, as follows:

(append answer (list (sqrt (car current-list))))

Another, simpler approach is to change the exit action to return the reverse of
answer. This solution follows:
; Return a list of the square roots of the numbers in a-list.
(define (square-roots-iter-correct a-list)
(do ((current-list a-list (cdr current-list))
(answer ' () (cons (sqrt (car current-list)) answer)))
((null? current-list) (reverse answer))))

> (square-roots-iter-correct ’(121 169 64 36))
(11.0 13.0 8.0 6.0)

10.5.2 Example: A filter to extract positive numbers from a list of
numbers
Filters can be written using iteration. The resultant list is created by conditionally
consing elements onto a solution list. Once again we must reverse the final
answer to get the elements in the proper order. The function positive-filter
from Chapter 6 follows. positive-filter takes a list of numbers and returns a
list of only the positive numbers in that list:
; Return a list of the positive numbers in a-1list.
(define (positive-filter-iter a-list)
(do ((current-list a-list (cdr current-list))
(answer ' () (if (positive? (car current-list))
(cons (car current-list) answer)
answer)))
((null? current-list) (reverse answer))))

Below is a trace of (positive-filter-iter ’/(-12 13 14)):

current-listisbound to (-12 13 14)
answer is bound to ()

Using appena fo build
lists with ao

252 Chapter 10: Repetition Through Iteration

current-list is not (), so evaluation continues

current-list becomes (13 14)
answer remains () because -12 is not positive

current-list becomes (14)
answer becomes (13) because 13 is positive

current-list becomes ()
answer becomes (14 13)

current-listis (), so the exit action (reverse answer), (13 14), is returned

10.5.3 Exercises

10.1

10.2

103

104

10.5

10.6

10.7

10.8

Write your own version of the function 1ength using an iterative function.

Using an iterative function, write a function substitute that takes a list
and two atoms, old and new. The function should return a new list with all
top-level occurrences of old replaced with new. For example,

(substitute ’(me but (not me)) ’'me ’'you)
should produce the list
(you but (not me))

Write your own version of the function union using an iterative function.

Write your own version of the function intersection using an iterative
function.

Write a function that removes numbers from a list using an iterative func-
tion.

Write your own version of the function keep-if using an iterative func-
tion.

Write your own version of the function count-if-not using an iterative
function.

Write a function that takes a list and returns a list of the cubes of that list
using an iterative function.

10.5.4 Example: Sorting a list

In Chapters 6 and 8 we developed a function to sort a list. We can write a version
of the enhanced sort from Chapter 8 using do. There are two functions. The main
function sort-iter is similar to a mapping function, except instead of consing a
function applied to the first of the list onto an answer, we call insert-iter to

10.5 Writing Mapping Functions and Filters Using Iteration

253

put the first element of the list in the proper position in the answer. This means
we won’t have to reverse the answer at the very end.

; Perform insertion sort on a-list based on compare-func.
(define (sort-iter compare-func a-list)
(do ((current-list a-list (rest current-list))
(sorted-list ' () (insert-iter (first current-list)
sorted-list compare-func)))
((null? current-list) sorted-list)))

The function insert-iter takes an element to add, a sorted list, and a com-
parison function, and returns a new sorted list with the element added. This
function is somewhat like a mapping in that it sequences through the sorted list,
and somewhat like a filter in that it must decide what to include in the answer
(the element or the current list item). However, it has two exit conditions. If we
satisfy the comparison function, we should return the list we have assembled
(this time we have to reverse it) and the remaining elements we haven’t looked at
yet. The other exit condition is reaching an empty list. In this case we simply
return the reverse of the answer:

; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)
(do ((sort-list sorted-list (rest sort-list))
(new-list ’ () (if (compare-func element (first sort-list))
(cons element new-list)

(cons (first sort-list) new-list))))
((or (null? sort-list)
(compare-func element (first sort-list)))
(if (null? sort-list)
(reverse new-list)
(append (reverse new-list) sort-list)))))

Let’s test out these functions:
> (sort-iter < (3 4 267 1))
0)
Wow! We lost all the values. Before we look at the code, let's test insert-
iter individually. Remember insert-iter expects a sorted list as an argument.
> (insert-iter 3 (1 2 4 6 7) <)
(L2467)

> (insert-iter 3 /(4 6 7) <)
(4 6 7)

> (insert-iter 3 ‘(1 2) <)
(1 2)

This clarifies the bug. Regardless of where the element must be inserted (mid-
dle, start, or end of the sorted list), it is not added. Since we never add elements,
we wind up with an empty list when we call sort-iter.

254 Chapter 10: Repetition Through Iteration

The code seems to add the element to the new list in the update value for
new-1list. However, what winds up happening is that before the update value
sees that the element satisfies the comparison function, the exit action is satisfied.
This is because the old values for sort-1ist and new-1list are used in the vari-
able binding section of the do, but the new values are used in the test. This is
similar to a problem we ran into when writing sum-digits-iter.

To fix the bug we can add element as part of the exit action. We don’t need
the code that adds the element in the update value, so we can change that to
unconditionally add the first item in the sorted list:

; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)
(do ((sort-list sorted-list (rest sort-list))
(new-list () (cons (first sort-list) new-list)))
((or (null? sort-list)
(compare-func element (first sort-list)))
(if (null? sort-list)
(reverse new-list)
(append (reverse new-list) (list element) sort-list)))))

> (insert-iter 3 (1 2 4 6 7) <)
(123 467)

> (insert-iter 3 (4 6 7) <)
(34617)

> (insert-iter 3 (1 2) <)
(1L 2)

Two out of three of the cases worked. In the last case, we exit because we

reach an empty list, and this case needs to add the element to the end of the new
list as well. Here is the correct code:

; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)
(do ((sort-list sorted-list (rest sort-list))
(new-list ’() (cons (first sort-list) new-list)))
((or (null? sort-list)
(compare-func element (first sort-list)))
(1f (null? sort-list)
(reverse (cons element new-list))
(append (reverse new-list) (list element) sort-list)))))

> (insert-iter 3 (1 2) <)
(L 2 3)

> (sort-iter < (3 4 2 6 7 1))
(123 46 7)

10.6 Nested Loops Using Iteration 255

> (sort-iter > (34 26 7 1))
(76 4321)

Not all functions with multiple exit cases are as burdensome to write as
insert-iter. In fact, most of the difficulties stemmed from the binding of vari-
ables after all update values are evaluated. Common LISP gets around this by
using a variation of do called do*, in which the variables are bound immediately
as with 1et*. Scheme does not have this function, unfortunately.

Another way to simplify writing these problematic do loops is using the func-
tion call-with-current-continuation, which provides an alternate way to
exit from within a do loop. This function is presented in Chapter 11 along with
examples of how it can be used with do loops.

10.5.5 Exercises
10.9 Write your own version of the function find-if using an iterative func-
tion.

10.10 Write your own version of the function position using an iterative func-
tion.

10.11 Write your own version of the function member using an iterative function.

10.12 Write your own version of the function assoc using an iterative function.

10.6 Nested Loops Using Iteration

Nested loops can be written using iterative functions. Each loop is carried out by
an iterative function. As an example, imagine a data structure that represents the
structure of a particular company. This company consists of a number of divi-
sions. Each division is a collection of departments. Each department is a collec-
tion of employees.

The company is represented as a list of division lists. The first element of each
division list is the division name. The remaining elements are departments
within that division. Departments are lists where the first element is the depart-
ment name and the rest of the list is employee names. Below is an instance of
such a company:

((far-east (engineering gino bill)
(advertising bernice yoshiro kumi))
(eastern (health ximena)
(technical eric seth))
(western (engineering brian ephram robert)
(investment stephen))
(european (management maria)
(sales hans)
(advertising jutta jurgen tiziana)))

Improvements with do

Nested loops to
search within a
company data
structure

Sample company
database

256 Chapter 10: Repetition Through Iteration

Complications in
saving the inner loop
value

To determine the division and department of a particular person in a com-
pany, a function find-employee can be written that takes a company list and a
person. If that person exists in the company list, a list of their division and
department is returned. If not, #f is returned. The outer loop will sequence
through the divisions, and the inner loop will sequence through the employees
within a division.

We'll need two exit cases in both the outer and the inner loops. The inner loop
should return #£ if no match is found, or return the department name if a match
is found. The outer loop should test the value returned by the inner loop and
return the division and department names if the employee was found in the inner
loop, or return #f£ if all divisions have been tested and no match was found. If
neither of these conditions is true, the outer loop should continue.

Since the inner do loop value will be used twice in the outer do loop—once in
the test and once in the exit-action to return the department name—we should
save the inner loop value in a 1et variable. Unfortunately there is no good way to
do this, as the value of the let variable must be computed within the outer do
loop but used in different locations there. We can’t compute the inner loop’s
value at the start of the outer loop; however, we can save the inner loop’s value
in a do variable in the outer loop. Here again we’ll need two different calls to the
inner loop—one for the initial value and another for the update value. We'll be
better off implementing the inner loop as a separate function.

Helper functions to access the division name and department lists from a
division, and the department name and employee list from a department, will
make the code more readable and easier to update if the database structure
changes.

; Return the name of division.
(define (division-name division)
(first division))

; Return the list of departments in division.
(define (department-list division)
(rest division))

; Return the name of dept.
(define (department-name dept)
(first dept))

; Return the list of employees in dept.
(define (employees dept)
(rest dept))

The rest of the code follows. First the outer loop:

10.6 Nested Loops Using Iteration 257

; Return the division and department of person in company-list,
; #f if person is not in company-list.
(define (find-employee company-list person)
(do ((company company-list (rest company))
(dept
(find-dept (department-list (first company-list)) person)
(find-dept (department-list (first company)) person)))
((or (null? company) dept)
(if (null? company)
#£
(list (division-name (first company))
dept)))))
And the inner loop:

; Return the department of person in dept-list, #f if person is not
; in dept-1list.
(define (find-dept dept-list person)
(do ((dept dept-list (rest dept)))
((or (null? dept)
(member person (employees (first dept))))
(1f (null? dept)
#£
(department-name (first dept))))))

Let's test these functions. Assume that the variable com is bound to the com-
pany data structure shown at the start of this example:
> (find-employee com ’bernice)
(far-east advertising)

> (find-employee com ’fred)
#£

> (find-dept (rest (third com)) ’stephen)
investment

> (find-employee com ’stephen)
(european investment)

The last result should be (western investment). find-dept appears to be
working though. The only problem seems to be that the wrong division is
returned. The problem is subtle: the value of the do variable company is used
when find-dept is called and when division-name is called. However, company
has different values for these different calls. When find-dept is called, company
still has its old value. It does not take on the new value until all the update-values
have been computed. Thus, we wind up looking for the employee in one division
and returning the division name of the next division. This does not happen if the
person is in the first division, because find-dept is called with company-1ist.

To fix this bug, we can return to our first approach of calling the inner loop in
the test and the exit-action parts of the outer loop. Here is the new version:

258 Chapter 10: Repetition Through Iteration

; Return the division and department of person in company-list,
; #f if person is not in company-list.
(define (find-employee company-list person)
(do ((company company-list (rest company)))
((or (null? company)
(find-dept (department-list (first company)) person))
(if (null? company)
#£
(list (division-name (first company))
(find-dept (department-list (first company))
person))))))

> (find-employee com ’bernice)
(far-east advertising)

> (find-employee com ’‘fred)
#£

> (find-employee com ’stephen)
(western investment)

> (find-employee com ’‘hans)
(european sales)

Now the code works.

10.6.1 Exercises
10.13 Write an iterative function that takes a company list of the above form and
returns a list of the departments of the company.

10.14 Write an iterative version of the function sum-facts from Chapter 6. sum-
facts takes an argument number and returns the sum of the factorials of
one through number.

10.15 Here is an alternate fix to find-employee that requires a change to find-
dept as well. It has a subtle bug. Fix it, making as few changes as possible.
(define (find-employee company-list person)
(do ((company company-list (rest company))
(dept #f
(find-dept (first company) person)))
((or (null? company) dept)
(1f (null? company)
#f
dept))))

10.7 Summary 259

(define (find-dept division person)
(do ((dept (department-list division) (rest dept)))

((or (null? dept)

(member person (employees (first dept))))
(if (null? dept)
#£
(list (division-name division)
(department-name (first dept)))))))

10.7 Summary
e To repeat an action a number of times, use the following template:
(do ((counter 1 (+ counter 1)))

((> counter num-times) exit-actions)
body)

body represents the action(s) to repeat. numtimes is the number of repetitions
to take. counter increments from 1 to numtimes through the loop. exit-actions
are the actions to take at the end of the loop.
e To repeat an action for every element of a list, use the following template:
(do ((list-remaining a-list (rest list-remaining)))
((null? list-remaining) exit-actions)
body)

a-list is the list to sequence through. list-remaining is successive rests of that
list. body represents the action(s) to repeat. exit-actions are the actions to take at
the end of the loop.

e To perform general iteration, use do:

(do ((variablel initial-valuel [update-valuel])
(variable2 initial-value2 [update-value2])

(variableN initial-valueN [update-valueN]))
(test exit-actions)
body)

do sets variables like 1et does.

e Multiple exit cases can be handled by combining the exit cases in an or in the
test of the do and then returning the proper value based on the specific condi-
tion that caused the exit. This is tested for in the exit-actions of the do.

CHAPTER 1 1

ADVANCED USES OF FUNCTIONS

11.1 Writing Functions that Take a Variable Number of Argu-
ments

There are three legal ways to specify parameters in a function definition. We have
used the simplest method in which each parameter is given a unique name that
matches directly with an argument when the function is called. These functions
must be called with a fixed number of arguments. We can create functions that
take a variable number of arguments. This is done by specifying one parameter
after the function name and a period (making a function heading that looks like a
dotted list). When the function is called, the arguments will be in a list that is
bound to the single parameter. Here is an example of this method:
; Return average of a variable amount of numbers.
(define (avg . nums)
(if (null? nums)
'no-average
(/ (apply + nums) (length nums))))

v

(avg 3 4 5)

> (avg 123456789 10)
5.5

> (avg)
no-average
We can write functions that take some fixed arguments followed by a variable
number of optional arguments. This is done by using a mix of the syntax from
the method above and the standard syntax we have used to write functions. The
required parameter names follow the function name in the header, then a period
and a single parameter. The function must be called with at least enough

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Writing functions that
take zero or more
arguments

Writing functions with
both fixed and
optional arguments

262 Chapter 11: Advanced Uses of Functions

Defining functions with
optional arguments
using Lambda

First class objects

Functions as
arguments

arguments to match each fixed parameter. The final parameter is bound to a list
of any additional arguments.
In the next example the function elts returns a list of selected elements from

a list. It takes the list as a required argument and a variable number of element
positions as optional arguments. It is an error to call e1ts with no arguments.

; Return list of elements specified by their positions.

(define (elts a-list . positions)

(map (lambda (pos) (list-ref a-list pos)) positions))

> (elts "(a bcdefg)024)
(a c e)

> (elts "(a bcdefgqg))
Q)

> (elts)
Error: Too few arguments: (elts)

These two additional forms of define are not required as part of the Scheme
language specification. That means that your implementation of Scheme may not
support them. You can get around this by using the following variations of
lambda, which are required in Scheme. We could specify the above two functions
as follows:

(define avg
(lambda nums
(if (null? nums)
'no-average
(/ (apply + nums) (length nums)))))

(define elts
(lambda (a-list . positions)
(map (lambda (pos) (list-ref a-list pos)) positions)))

11.2 Functions that Return Functions

Functions are first class objects, meaning they can be used in expressions, stored in
data structures, bound to variables, passed to functions, and returned from func-
tions. In most programming languages functions are not first class objects, so it
may seem that it is not important to give functions such an elevated status. How-
ever, there are some nice advantages to having functions as first class objects.

We have used functions as arguments in many cases. This allows us to write
functions that can be used to perform a variety of tasks. For example, our inser-
tion sort function from Chapter 8 is a big improvement over the original sort
function we wrote in Chapter 6. By making the comparison function an argu-
ment, the same sort function can be used to sort objects of different types and to
sort in increasing or decreasing order.

11.2 Functions that Return Functions 263

Allowing functions to return functions opens up more possibilities. In
Chapter 16 the function make-fuzzy-triangle returns a function based on the
arguments with which it is called. This function is created once and then used a
number of times. The problem could have been solved without this approach,
but it is easier to do this way.

Let’s look at a simple example of a function that returns another function:

; Return function encapsulating info about a person.
(define (person-info name birth-date income job)
(lambda (request)
(cond ((eq? request ’‘name) name)

((eq? request ’'age) (- current-year (third birth-date)))
((eq? request ’year) (third birth-date))
((eq? request ’‘month) (first birth-date))
((eq? request ’‘day) (second birth-date))
((eq? request ’income) income)
((eq? request ’'broke) (< income 1000))
((eq? request ’‘rich) (> income 100000))
((eq? request ’occupation) job))))

The function person-info takes information about a person and returns a
function that encapsulates that information. Encapsulation is maintaining local
information within a function. This information is often called local state informa-
tion. person-info encapsulates name, birth-date, income, and job. The return
function has a single parameter, request. Let’s use these functions:

(define dilbert
(person-info ‘dilbert ‘(5 12 57) 45000 ’'programmer))

> (dilbert ’‘name)
dilbert

> (dilbert ’‘month)
5

> (dilbert ’‘rich)
#f
The first two examples do not offer much more than a simple data structure
with selector functions would offer. The third example goes a bit beyond the sim-
ple access of information.
But what happens to dilbert if we create another person? Does dilbert’s
information change? Let’s see.

(define dogbert (person-info ’‘dogbert ‘(7 9 90) 0 ’‘philosopher))

> (dogbert ’‘name)
dogbert

> (dilbert ’‘name)
dilbert

Dilbert’s data remained intact. Each time person-info is called, it creates a
new function with unique values. This information is maintained in what is

Functions as return
values

Encapsulation

Closures

264 Chapter 11: Advanced Uses of Functions

Extent of closures

Changing values in a
closure

called a lexical closure (typically referred to as a closure). A closure is a function
that contains additional information about the environment in which it was
created. The environment in this case refers to variables and their bindings that
affect the function. These variables are within the scope of the function that is
created. Scope in Scheme is determined lexically according to the position in the
code in which variables are defined. For example, when dogbert is defined by
calling person-info, the function returned has access to the parameters name,
birth-date, income, and year. These are maintained in an environment and are
not accessible in any way other than through the closure once the function
person-info finishes.

A closure stays in existence (its extent) as long as there is some way to access
it. In this example that is as long as the variables dilbert and dogbert are bound
to the function, or any other variable or data structure that includes the closures
exists. For example, we can create a clone for Dilbert named Studbert:

(define studbert dilbert)

> (studbert ’name)
dilbert

Studbert has access to Dilbert’s values because Studbert is defined to be what
Dilbert is. Even if we change dilbert’s binding, studbert maintain’s the values.

(define dilbert ’'programmer)

> (dilbert ’name)
Error: Operator is not a function: programmer

> (studbert ‘name)
dilbert

The values within closures can be changed. The following example illustrates
this. Notice that the function returned takes one required argument and optional
arguments after that:

; Return function encapsulating job information.
(define (job-info name income job)
(lambda (request . value)
(cond ((eq? request ’‘name) name)
((eq? request 'income) income)
((eg? request ’'broke) (< income 1000))
((eq? request ’‘rich) (> income 100000))
((eqg? request ’‘occupation) job)
((eqg? request ’‘raise)
(set! income (+ income (first value))))
((eqg? request ’'new-occupation)
(set! job (first value))))))

(define ratbert (job-info ’'ratbert 1000 ’‘pest))

> (ratbert ’income)
1000

11.2 Functions that Return Functions

265

> (ratbert ’‘raise 100000)
??

> (ratbert ’income)
101000

> (ratbert ’‘rich)
#t

We have created a means of changing information stored within a closure. We
can represent an entire company and give everyone a raise fairly easily using the
function job-info:

(define larry (job-info ’larry 10000 ’stooge))
(define moe (job-info 'moe 11000 ’stooge))
(define curly (job-info ’‘curly 12000 ’'stooge))
(define emps (list larry moe curly))

> (for-each (lambda (emp) (emp ‘raise 500)) emps)
?2?

> (map (lambda (emp) (emp ’income)) emps)
(10500 11500 12500)

The list emps is a list of employees (represented as closures) that can be
sequenced through using for-each and map.

11.2.1 Exercises

11.1 Write a function last that has one required parameter a-1ist and an op-
tional parameter number. If 1ast is called with a-1ist alone, it returns the
last element of a-1ist; otherwise, 1ast returns a list of the last number ele-
ments of a-1ist.

11.2 Write a function ncons that takes a variable number of arguments and
conses them together into a new list.

(ncons ‘a 'b '(c d) (e f))
is equivalent to

(cons 'a (cons 'b (cons ’'(c d) ‘(e £f))))

11.3 Write a function make - power that takes a number num and returns a func-
tion that takes a single argument and raises it to the numth power. For
example,

(make-power 3)

returns a function that cubes its argument. Show a single expression using
make - power that computes 25 to the 6th power.

11.4 Write a new version of accumulate that does not take a list of elements to
be accumulated, but instead takes them as separate arguments. For

266 Chapter 11: Advanced Uses of Functions

Objects

Programming
paradigms

Classes and instances

Instance and class
variables

example,
(new-accum cons ‘a 'b ‘c)
should return the same value as

(accumulate cons ‘(a b c))

11.5 What does the following function do?

(define (weird func)
(lambda args (list (apply func args))))

What do the following expressions return?
((weird abs) 3)

((weird max) 3 4 5 6)
((weird accumulate) list (3 4 5))

11.3 Object-Oriented Programming

Using closures we have created objects like those used in object-oriented pro-
gramming. An object is a data structure that has data and programs associated
with it. It is possible to retrieve the data in an object directly or to get information
resulting from computations on the object’s data.

Object-oriented programming (OOP) is a style or paradigm of programming.
There are four major programming paradigms: imperative programming, func-
tional programming, logic programming, and object-oriented programming.
Languages like Pascal and C follow imperative programming. Scheme is based
on functional programming. PROLOG uses logic programming that involves
programming by creating facts, rules, and queries. Object-oriented programming
languages include Smalltalk, C++, and Java. Look at each of these as a style of
programming. Certain tasks may be easier using a particular style, but any style
is general enough such that a program written in one style could be rewritten
using another style.

Objects are just one part of object-oriented programming. In addition there
are classes, which specify the types of information that objects contain and the
operations they can perform. A class is similar to a data type and an object is an
instance of a class similar to a variable’ For example, we may have a class for cars
(called auto) and then define some instances of cars, like my-car, your-car, and
fast-car.

A class defines the information that the instances of the class have. This infor-
mation is maintained in instance variables or fields. For example our auto class
may have instance variables for the make and model of the car, the number of
doors, and the color. Class variables represent information that is shared between

' This is different from what we are accustomed to in Scheme. Scheme does not specify types for its
variables, as many other programming languages do. Types are associated with the values
themselves.

11.3 Object-Oriented Programming 267

all instances in a class. This may be a common, fixed piece of information, such as
the number of wheels in all cars, or it may be a shared variable such as a counter
of the number of cars, in which every time a new car is created the counter is
increased.

Classes can be based on other classes. For example, our car class may be
based on the class vehicle. The class vehicle is a superclass of auto, which is the
subclass. There may be numerous subclasses of vehicle like motorcycle and
truck. Instance variables in the superclass can be used in the subclasses. For
example, we could put the instance variables for make, model, and color in the
superclass vehicle and still access them from the auto subclass. A subclass
inherits the instance variables of its superclass. This simplifies the creation of pro-
grams. We can still have instance variables for subclasses if needed. For example,
auto and truck would still have the number-of-doors instance variable, but
motorcycle wouldn't.

Some object systems allow inheritance from more than one superclass. This is
called multiple inheritance. It gives more flexibility but has more complications in
handling situations where conflicts in methods may arise.

Code can be part of objects and it is specified in the class definitions. Such
code is called a method. For example, our auto class could have a method to keep
track of miles per gallon. Imagine we had instance variables for the number of
miles driven and the number of gallons purchased. A simple method could
divide these and return miles per gallon. Methods are invoked by message passing.
An object is sent a message that invokes a method. The selection of the method is
called dispatching.

Object-oriented programming provides a convenient means for handling
polymorphic functions—functions that take different types of arguments. The same
message can be sent to different types of objects and handled by different
methods that perform the proper actions based on the object class. This is one
way of handling polymorphic functions. The programmer does not need to
worry about the type of the object. She can focus on the messages to the object.

The benefits of object-oriented programming are in the simplification of com-
plex structures, especially those that are hierarchical in nature and in ease of
reuse of code and code modifiability. The methods associated with objects are
well defined and easy to use. Through message passing, you can focus on the
actions you want performed and not on the details of how they must be done,
which allows polymorphic functions to be used easily. If you ask for the color of
a vehicle, you don’t have to worry if it is a motorcycle or a truck. The language
provides features to eliminate a great deal of the overhead.

There is cost associated with the creation of classes, instance variables,
methods, and instances. So for small programs, this creation overhead might not
be worthwhile. But for large programs it is a big plus. The widespread growth of
C++ and the design of Java to be object-oriented are testimony to the advantages
that object-oriented programming offers.

Superclasses,
subclasses, and
inheritance

Muiltiple inheritance

Methods and
message passing

Polymorphism

Object-oriented
programming plusses

268 Chapter 11: Advanced Uses of Functions

Macros

Creating code and
evaluating it later

Creating class
definitions

11.3.1 How to write in the object style

We will develop a simple example that illustrates some of the things that can be
done using object-oriented programming. The creation of the classes and
instances in these examples is more complex than you would normally encounter
in an object-oriented programming language. This is because Scheme itself does
not support objects. Therefore, we have to explicitly take all the steps required to
produce classes, instances, methods, inheritance, and dispatching.

It is not possible to write code that handles the class and instance creation
overhead to make an OOP system, as our examples will have. This is because
some of the functions that must be created do not follow the normal evaluation
rules. They would be passed arguments that are class and instance names and
methods that should not be evaluated. Essentially we must create special forms.
This can be done by either modifying the interpreter or using an implementation
of Scheme that allows the creation of macros. Macros are similar to functions
except instead of being evaluated, they are translated into equivalent function
compositions and then evaluated. Macros can be used to define special forms
that do not follow the normal evaluation rules. Without macros we would be
unable to write class and instance creation special forms.

The above paragraph is not entirely true. We could write functions to create
classes and instances and provide the OOP features we need. But the special
information needed by these functions (i.e., instance variable names, methods,
superclass names) would have to be quoted or part of quoted lists. Then we build
the functions we need, adding all the overhead to support OOP and embedding
the information we passed in (e.g., class and instance variable names). Finally, we
eval this newly created function. Techniques like this are used in some of the
later chapters where code is adjusted and then evaled. It is much nicer to be able
to use macros where you can more freely design the structure of the function
calls and specify special evaluation rules.

Some implementations of Scheme have extensions that support OOP. For
example, STK has extensions that support both objects and the graphics toolkit of
Tcl/Tk, which provides support for creating graphical user interfaces (GUIs). If
you are using a version of Scheme that supports objects, you should learn how to
use the functions that are provided to create classes, instances, and methods.
Then you can create an example similar to the one given below. You'll most
likely find that your version is much shorter and easier to write.

The example we will build will illustrate some of the features of objects, in
particular the use of class and instance variables, methods, and inheritance from
a superclass. Let’s look into these properties individually to see how they can be
implemented.

To create a class definition, we can define a function that returns another
function. The function returned is an instance of that class. So we are combining
class definition with instance creation. Most OOP systems make these separate
operations. This return function encapsulates the instance variables of the object.
Here is an example:

11.3 Object-Oriented Programming 269

; Create simple car class.
(define (auto make model)
(lambda (req)
(cond ((eq? req ’‘make) make)
((eq? req ’'‘model) model)
(else ’'bad-request))))

This defines a simple class for cars. The return value of auto is a function that
is used as an instance of the auto class. There are two instance variables: make
and model. Here is an example using this function:

(define fast (auto ’‘porsche 928))
(define small (auto ’'plymouth ’‘arrow))

> (fast ’make)
porsche

> (small ’‘model)
arrow

The instances are functions and the messages sent as arguments to the func-
tions retrieve instance variables or invoke methods. In some object systems the
message names are the functions and their arguments are the objects. This fits in
with the idea of viewing functions as action doers and objects as things acted
upon, and works nicely with polymorphism especially when it extends over into
built-in functions. For example, we could have a display method for the auto
class. With our system we would have to invoke it as

(fast ’display)
With other object systems we would enter
(display fast)

Let’s add methods to change instance variables. The method paint changes
the instance variable color and the method add augments the instance variable
accessories. These methods will take additional arguments, so we’ll modify the
return function to take additional, optional arguments:

; Create car class with modifiable instance variables.
(define (auto make model color accessories)
(lambda (req . args)
(cond ((eq? req ’‘make) make)
((eq? req '‘'model) model)
((eq? req ’'color) color)
((eq? req ’'paint) (set! color (first args)) color)
((eq? req ’'accessories) accessories)
((eq? req ’'add)
(set! accessories (append args accessories))
accessories)
(else ’'bad-request))))

When we create a car, we will specify an initial color and accessory list:

Creating instances

Handling messages

Creating methods

270 Chapter 11: Advanced Uses of Functions

Creating class
variables

Instance variables
versus class variables

(define fast (auto ’‘porsche 928 ’‘red ’(stereo fat-tires)))
(define small (auto ’'plymouth ’arrow ’'white ’()))

> (fast ’‘color)
red

> (fast ’‘paint ’‘bright-red)
bright-red

> (fast ’‘color)
bright-red

> (small ’accessories)
0

> (small ’add ’‘radio ’‘clock ‘alarm-system)
(radio clock alarm-system)

We can add a class variable to our initial auto class that is shared among all
cars. To do this the variable will have to be defined outside of the return function
but within the definition of the class so that it is not simply a global variable that
can be affected by any part of the program. Putting a let variable between the
class definition and the return function will solve this. The shared variable a11-
repair-cost keeps track of the total repair cost for all the cars.

Another variable repaired is unique for each car, but is not a parameter to
auto. It acts like an instance variable in that it is unique for each instance; how-
ever, it is not specified as an argument when the object is created. The repair
method takes an item to be repaired and its cost. It will add the repaired item to
the repaired instance variable and update the total cost in the all-repair-cost
class variable. Notice the difference in the placement of the two 1ets:

; Create car class with class and instance variables.
(define (auto make model)
(let ((all-repair-cost 0))
(lambda (req . args)
(let ((repaired ’'()))
(cond ((eq? req ’'make) make)
((eq? req 'model) model)
((eq? req 'cost) all-repair-cost)
((eq? req ’'repair)
(set! all-repair-cost
(+ (second args) all-repair-cost))
(set! repaired (cons (first args) repaired))
repaired)
(else ’'bad-request))))))

(define fast (auto ’'porsche 928))
(define small (auto ’'plymouth ’arrow))

> (fast ’‘repair ’‘brakes 129)
(brakes)

11.3 Object-Oriented Programming 271

> (fast ’‘cost)
129

> (small ’'repair ’fender 300)
(fender)

> (small ’‘cost)
300

> (fast ’‘cost)
129

Our shared variable isn’t being shared. The problem is not with the placement Fixing bugs in our
of the 1et outside of the return function. Instead it is in the definition of the auto class and instance
function before the let. Each time auto is called, it invokes the outer 1et expres- variables
sion which creates a new all-repair-cost variable. Each instance created calls
auto and thus gets a unique all-repair-cost variable. To fix this, the 1et must
be defined before the auto function.

We should test our second 1et variable, repaired, as well:

> (small ‘repair ’‘hood 600)
(hood)

> (small ’cost)
900

The repaired instance variable did not maintain the previous repair, fender.
Once again this 1let is in the wrong position in relation to the inner 1ambda. The
variable all-repair-cost is keeping a proper running total for the individual
cars. The inner 1et should be relocated to the position where the outer let is.
Here is a new version of auto with both of these bugs hopefully fixed:

; Create car class with class and instance variables.
(define auto

(let ((all-repair-cost 0)) ; class variable
(lambda (make model) ; auto function header
(let ((repaired ’())) ; ilnstance variable
(lambda (req . args) ; parameters for methods

(cond ((eq? req ’'make) make)
((eq? req ‘model) model)
((eq? req ’'cost) all-repair-cost)
((eq? req ’'repair)
(set! all-repair-cost
(+ (second args) all-repair-cost))
(set! repaired (cons (first args) repaired))
repaired)
(else ’'bad-request)))))))

(define fast (auto ’‘porsche 928))
(define small (auto ’‘plymouth ’arrow))

272 Chapter 11: Advanced Uses of Functions

Creating inheritance

Passing methods to
the superclass

> (fast ’‘repair ’brakes 129)
(brakes)

> (fast ’cost)
129

> (small ’‘repair ’fender 300)
(fender)

> (small ’‘cost)
429

> (fast ’cost)
429

> (small ’'repair ’‘hood 600)
(hood fender)

> (small ’‘cost)
1029

It works! The final object-oriented feature we’ll include is inheritance. We will
define a superclass to auto called vehicle. It will contain the make and model
instance variables that auto had. The auto subclass will contain an instance vari-
able for the number of doors the car has. The make and model information for a
car will be inherited from the vehicle superclass. This is done by creating an
instance of the superclass whenever an instance of auto is created. Any method
requests that the instance of auto does not know about are sent to the superclass.

In creating the instance of the superclass, certain arguments may be needed.
These can be named explicitly as parameters in the subclass or by using a vari-
able number of arguments. This latter solution makes for code that is easier to
write and to modify. Notice how the parameter list of auto specifies its parame-
ters and takes a variable number for the vehicle superclass. Also notice how the
instance of vehicle is created and how it is invoked when the subclass cannot
handle the request.

; Create vehicle superclass.
(define (vehicle make model)
(lambda (req)
(cond ((eq? req ’‘make) make)
((eq? req ‘model) model)
(else ’'bad-request))))

; Create car subclass.
(define (auto num-doors . args)
(let ((parent (apply vehicle args))) ; create vehicle instance
(lambda (req . args)
(cond ((eq? req 'num-doors) num-doors)
(else ; send message to parent
(apply parent (coms req args)))))))

11.3 Object-Oriented Programming

273

(define fast (auto 3 ’'porsche 928))
(define small (auto 2 ’'plymouth ’'arrow))

> (fast ’‘make)
porsche

> (small ’‘model)
arrow

> (fast ’num-doors)
3

Now that we have explored some aspects used in object-oriented program-
ming, we can put all the pieces together into a larger example. We will have a
vehicle superclass with auto and motorcycle subclasses. These subclasses have
instance variables unique to their classes. Most of the instance variables are in the
vehicle class including the type of the vehicle, which is automatically passed to
the vehicle function when the instance is created. This is done by simply cons-
ing the appropriate type (car or motorcycle) onto the list of arguments applied
to vehicle. An instance of vehicle can be created directly without going
through a subclass. The van object is an example of that.

Another feature that an object system may support is the ability to run some
code when an instance is created. We model this to keep track of the total vehicle
count. The variable num is used in vehicle to maintain this count. Each vehicle or
subclass of vehicle can access the count using the method count. When a vehicle
is created, num is incremented to count the new vehicle.

; Create vehicle superclass.
(define vehicle
(let ((num 0))
(lambda (type make model year color owner)
(set! num (+ num 1))
(lambda (req . args)
(cond ((eq? req 'type) type)
((eq? req ’'make) make)
((eq? req ’'model) model)
((eqg? req ’'year) year)
((eq? req ’'color) color)
((eqg? req ’'owner) owner)
((eq? req ’'buy) (set! owner (car args)) owner)
((eq? req ’'count) num)
(else ’'bad-request))))))

; Create car subclass.
(define (auto num-doors . args)
(let ((parent (apply vehicle (cons ’‘car args))))
(lambda (req . args)
(cond ((eq? req ’'num-doors) num-doors)
(else (apply parent (cons req args)))))))

A large object-
oriented example

274 Chapter 11: Advanced Uses of Functions

; Create motorcycle subclass.
(define motorcycle
(let ((num-bikes 0))
(lambda args
(set! num-bikes (+ num-bikes 1))
(let ((parent (apply vehicle (cons ’'motorcycle args))))
(lambda (req . args)
(cond ((eq? req 'num-bikes) num-bikes)
(else (apply parent (cons req args)))))))))
Below are five instances of these classes that are all put into the list a11 so we
can send messages to all the instances in a single mapping:
(define my-car (auto 4 ‘vw ’jetta 1984 ’‘blue ’‘oliver))
(define her-car (auto 3 ’'mazda 323 1990 ’'blue ’‘myriam))
(define old-bike (motorcycle ’yamaha ’‘XS400 1988 ’'white ’‘oliver))
(define new-bike (motorcycle ’'kawasaki ‘KZ650 1996 ’'red ’'gino))

(define van (vehicle ’utility ’‘nissan ’'quest 1996 ’‘silver ’'hans))
(define all (list my-car her-car old-bike new-bike van))

> (map (lambda (veh) (veh ’‘make)) all)
(vw mazda yamaha kawasaki nissan)

> (map (lambda (veh) (veh ’‘count)) all)
(5555 5)

> (map (lambda (veh) (veh ’‘type)) all)
(car car motorcycle motorcycle utility)

> (map (lambda (veh) (veh ’‘num-bikes)) all)
(bad-request bad-request 2 2 bad-request)

> (map (lambda (veh) (veh ’‘num-doors)) all)
(4 3 bad-request bad-request bad-request)

> (map (lambda (veh) (veh ’‘owner)) all)
(oliver myriam oliver gino hans)

> (new-bike ’‘buy ’‘alex)
alex

> (map (lambda (veh) (veh ’‘owner)) all)
(oliver myriam oliver alex hans)
Notice that the vehicle counts are the same for all instances, because the count
is in a shared variable. The methods num-bikes and num-doors only work with
the motorcycle and auto classes. For all other classes, bad-request is returned.

11.3.2 Exercises
11.6 Why is the name auto used to define the car class instead of car?

11.4 Forcing Exits with call-with-current-continuation

275

11.7 Extend the example above to calculate miles driven and gasoline used for
each car. Provide methods to take mileage and gasoline amounts and keep
them in running totals for each vehicle. Write another method to compute
and return the miles per gallon. Then extend this to support shared vari-
ables for total miles driven and gas used by all the vehicles. Provide a
method that returns the average mileage per gallon of all the vehicles.

11.8 Design the class structure for a library. For books keep track of their title,
author, subject, publisher, page count, and publishing year. For periodicals
store some general information about the magazine (title, subject, which
years are in the collection) and specific information for each issue (article
titles, authors, and subjects). How would you structure the classes to allow
inheritance of information from superclasses?

119 Given the library class structure from the previous problem, add classes
for newspapers and videos. Is this an easy extension or did you have to
redesign parts of your structure?

11.10 Build the actual class and instance functions for the library described
above, supporting books and periodicals only.

11.11 Create classes, instances, and methods to model a problem of your choos-
ing. Try to use class and instance variables, methods that take multiple
arguments, inheritance, and instance or class variables with values that can
be updated.

11.4 Forcing Exits with call-with-current-continuation

Scheme provides a powerful function that can be used to leave a section of code
and jump to a predefined area. This can be used to exit from deep within a com-
position of functions or within a recursive call or a do loop. Any remaining
actions that were to be done are left forever. These bypassed actions are a con-
tinuation. The function that allows us to exit from a continuation is call-with-
current-continuation. Before we talk about this complex and powerful func-
tion, let’s look at continuations.

In Chapter 3 we looked at the evaluation of composed (one expression inside
another) Scheme expressions. Before we apply the outermost function, we must
evaluate its arguments. This sets up a continuation—an action that must be
returned to. For example, when the interpreter begins to evaluate the first subex-
pression,

(* new 4)
in the expression
(list (* new 4) old)

Continuations

276 Chapter 11: Advanced Uses of Functions

call-with-current-

continuation

it makes a continuation to evaluate o1d and to 1ist the two subexpressions. All
actions in Scheme involve continuations, even simple top-level calls: once they
are evaluated, the results are printed and the next command is read in. Continua-
tions can be bypassed using call-with-current-continuation.

call-with-current-continuation allows you to exit from a continuation
(typically a loop) and return a certain value. Leaving a continuation is done sim-
ply by calling a predefined exit function with a value that the prematurely exited
continuation will return. Evaluation continues with the expression after cal1-
with-current-continuation.

call-with-current-continuation takes a function of one argument. That
argument names the exit function. The body of the function contains the
expression(s) from which we wish to be able to exit.’ call-with-current-
continuation is best explained with examples.

The following two recursive functions print strings before and after making
recursive calls. Both test their one argument. When the argument exceeds three,
vanilla returns done. However, strawberry forces an exit by calling stop (the
exit function set by call-with-current-continuation). See how this affects the
remaining displays:

; Print messages during recursive descent and unwind.
(define (vanilla arg)
(cond ((> arg 3) ’‘done)
(else
(display "before recursion")
(newline)
(vanilla (+ arg 1))
(display "after recursion")
(newline))))

; Print messages during recursive descent only.
(define (strawberry arg)
(call-with-current-continuation
(lambda (stop)
(define (inner-berry arg)
(cond ((> arg 3) (stop ’‘done))
(else
(display "before recursion")
(newline)
(inner-berry (+ arg 1))
(display "after recursion")
(newline))))
(inner-berry arg))))

* We can exit from a wider range of continuations than those immediately defined in the body of the
function argument to call-with-current-continuation. This will be covered in the upcoming
examples.

11.4 Forcing Exits with call-with-current-continuation 277

> (vanilla 1)
before recursion
before recursion
before recursion
after recursion
after recursion
after recursion
??

> (strawberry 1)
before recursion
before recursion
before recursion
done

> (list (strawberry 1) ’already)
before recursion

before recursion

before recursion

(done already)

In vanilla three recursive calls are made. The final one, with arg equal to
four, satisfies the exit condition and done is returned. However, this is not the
final return value. The recursive call is followed by another display and new-
line. These must be done for each recursive call made. The final return value is
the return value of the last expression in the else action—a call to newline. This
value is unspecified in Scheme.

In strawberry the exit function stop is called when the exit case of the recur-
sion is reached. This means we immediately exit from the call-with-current-
continuation and do not return to any of the recursive calls (the continuation)
like vanilla did. done is returned as the value of the call-with-current-
continuation and strawberry. The continuation does not include the call to
list as the last function call shows. So the call to 1ist is evaluated and the list
(done already) is returned.

The exit function can be passed as an argument to other functions. This allows
an exit to occur in a function that is not defined within the call-with-current-
continuation. Look at the following variation of strawberry:

; Set up exit function and pass to nonberry.
(define (chocolate argqg)
(call-with-current-continuation
(lambda (stop)
(nonberry arg stop))))

Regular recursion

Exiting from a
recursive descent

Passing exit functions
as arguments

278 Chapter 11: Advanced Uses of Functions

Saving the exit
function in a global
variable

; Print messages during recursive descent only.
(define (nonberry arg exit-func)
(cond ((> arg 3) (exit-func ’'done))
(else

(display "before recursion")
(newline)
(nonberry (+ arg 1) exit-func)
(display "after recursion")
(newline))))

> (chocolate 1)
before recursion
before recursion
before recursion
done

chocolate defines stop as an exit function and then calls nonberry with
stop. When exit-func (which is bound to stop) is called in nonberry, it forces
an immediate exit from the recursion, and done is returned. chocolate behaves
just like st rawberry?

The exit function can be saved in a global variable. The global variable must
be set within the call-with-current-continuation. If we use a define, it can’t
be used outside of the call-with-current-continuation because it creates a
variable local to the call-with-current-continuation. To create a global vari-
able, we must first create the global variable using define on the top level out-
side the call-with-current-continuation, and then change its value inside
the call-with-current-continuation using set!. This can be done as follows:

(define bail-out ’‘nothing-yet)

(call-with-current-continuation
(lambda (stop)
(set! bail-out stop)))

bail-out is now a global exit function. The call-with-current-
continuation is defined at the top level, so calling bail-out causes evaluation
to continue at the top-level read-eval-print loop. Here are some examples show-
ing how bail-out can be used:
> (bail-out 2)
2

> (* 4 (+ 3 (bail-out 2) 5))
2

> (list ’before (bail-out 2) ’after)
2

* Butit tastes quite different.

11.4 Forcing Exits with call-with-current-continuation 279

> (list (display "before ") (bail-out 2) (display "after "))
before 2
The second and third examples show how an exit function nested within a

function call causes the return value to be that of the exit function. The exit func-
tion supersedes the continuation in place. The last example shows that nested
functions are called up to the point of the exit function, and then the exit
function’s value is returned. The string before gets displayed, but after doesn’t
because the second display (the continuation) does not get evaluated.

11.4.1 Using call-with-current-continuation to exit from a do
loop

Many iterative functions using do can be simplified using call-with-current-

continuation. This is especially true for do loops with multiple exit conditions

(e.g., all-numbers?-iter and insert from Chapter 10).

Below is a function that implements subset?. It has two exit conditions: test- Writing subset? with
ing for a nonmatch and testing for an empty list. We need to check each element do and cal1-with-
of the first list and test if it occurs in the second list. If it doesn’t, we needn’t test current-
any further and should exit from the testing loop and return #£. Our do willusea continuation
single exit case testing for an empty list. The call-with-current-continuation
will set up an exit function for the second exit case—an element that does not
occur in the second list.

; Return #t if all elements in setl are also in set2, #f otherwise.
(define (subset?-iter setl set2)
(call-with-current-continuation
(lambda (exit)
(do ((test-set setl (rest test-set)))
((null? test-set) #t)
(if (not (member (first test-set) set2))
(exit #£))))))

The return value will be #f if (first test-set) is ever not a member of
set2, or #t when test-set is empty—all elements have been checked.
Below is a trace of the call (subset?-iter ’(2 3 4) (4 2 5)):

test-setisbound to (2 3 4)
(first test-set) isinset2, (4 2 5),s0 we continue.
test-set isbound to (rest ‘(2 3 4))or (3 4)

(first test-set) is notin set2. Thus exit is called, passing the value #f back
to call-with-current-continuation, which it returns. Hence subset?-iter
returns #f£.

280 Chapter 11

: Advanced Uses of Functions

Finding employees
using do and call-
with-current-
continuation

The function find-employee from Chapter 10 can be written using call-
with-current-continuation. call-with-current-continuation sets up an
exit function to jump out of either do loop. As before, the outer do loop sequences
through the divisions of the company, and the inner do loop sequences through
the departments of each division. If a match is found, the division and depart-
ment of that employee is returned by calling return, the exit function, with a list
of the division and department names. If none of the people in the departments
matches person, then the inner do loop returns no-match. Since the inner do loop
is the body of the outer do, the outer do continues with the next division. If the
department lists in all divisions do not match person, (null? company) will be
true and #£ will be returned.

We are using the definitions of department-list, employees, division-
nane, and department-name from Chapter 10.

; Return the division and department of person in company-list,
; #f if person is not in company-list.
(define (find-employee company-list person)
(call-with-current-continuation
(lambda (return)
(do ((company company-list (rest company)))
((null? company) #f)
(do ((dept (department-list (first company)) (rest dept)))
((null? dept) ’‘no-match)
(if (member person (employees (first dept)))
(return (list (division-name (first company))
(department-name (first dept))))))))))

Here are tests of this new version using the definition of com from Chapter 10:
> (find-employee com ’bernice)
(far-east advertising)

> (find-employee com ’‘fred)
#£

> (find-employee com ’‘stephen)
(western investment)

> (find-employee com ’hans)
(european sales)

11.4.2 Exercises

11.12 Does the following version of strawberry work like the previous one from
page 276?

11.5 Summary 281

(define (strawberry arg)
(call-with-current-continuation
(lambda (stop)
(cond ((> arg 3) (stop ’'done))
(else
(display "before recursion")
(newline)
(strawberry (+ arg 1))
(display "after recursion")
(newline))))))

11.13 Write a new version of all-numbers?-iter from Chapter 10 that uses do
and call-with-current-continuation.

11.14 Write a new version of insert from Chapter 10 that uses do and call-
with-current-continuation.

11.15 Write your own version of the function any using do and call-with-
current-continuation.

11.16 Write your own version of the function every using do and call-with-
current-continuation.

11.17 Write your own version of the function find-if using do and call-with-
current-continuation.

11.18 Write your own version of the function assoc using do and call-with-
current-continuation.

11.5 Summary
e To write a function that takes a variable number of arguments (zero or more),
use one of the following templates:
(define (function . optional-args)

body)

(define function
(lambda optional-args
body))

The arguments are stored in a list named optional-args.
e To write a function that takes some required and some optional arguments,
use one of the following templates:
(define (function required-args . optional-args)

body)

282

Chapter 11: Advanced Uses of Functions

(define function
(lambda (required-args . optional-args)
body))

e Functions are first class objects. They can be used in expressions, stored in
data structures, bound to variables, passed to functions, and returned from
functions.

e A closure is a function that encapsulates information in existence when the
function is created. Closures can be used to keep local state information
instead of using global variables.

e Object-oriented programming is a style of programming based on the use of
objects that maintain data and code, and messages that send information or
make requests of objects.

o Classes specify the type of information in an object. The individual objects are
called instances. The information maintained in objects is called instance vari-
ables. Class variables hold information that is shared among all the instances
of a particular class.

e Methods specify code associated with an object. They may be a function of
some of the instance variables or change the values of these variables or even
invoke other objects sending them messages.

e C(lasses can be based on other classes through inheritance. A subclass inherits
the instance variables and methods of its superclass. Multiple inheritance is
the use of instance variables and methods from more than one superclass.

e Object-oriented programming languages provide support to facilitate the
creation of classes, instances, and methods.

® call-with-current-continuation is used to create a function that when
called returns to the continuation where it was defined. A continuation
represents the actions that must be returned to or continued in a composition
of functions, recursive call, or do loop.

e The exit function created by call-with-current-continuation can be used
within the body of the call-with-current-continuation, or passed as an
argument to another function, or bound to a global variable to create a global
exit function.

® call-with-current-continuation can be used to allow early exits from
iterative functions. This is perhaps the simplest way to deal with multiple exit
cases when using iterative functions.

11.6 Additional Reading

Booch, G. (1994). Object-Oriented Analysis and Design with Applications, Second
edition, Benjamin Cummings, Redwood City, CA.

Budd, T. (1997). An Introduction to Object-Oriented Programming, Second edition,
Addison-Wesley, Reading, MA.

11.6 Additional Reading 283

Keene, S.E. (1989). Object-Oriented Programming in Common LISP: A Programmer’s
Guide to CLOS, Addison-Wesley, Reading, MA.

Kiczales, G., Des Rivieres, J., and Bobrow, D.G. (1991). The Art of the Metaobject
Protocol, MIT Press, Cambridge, MA.

Taylor, D.A. (1990). Object-Oriented Technology: A Manager’s Guide, Addison-
Wesley, Reading, MA.

Wilkinson, N.M. (1995). Using CRC Cards: An Informal Approach to Object-Oriented
Development SIGS Books, New York, NY.

Winblad, A.L., Edwards, S.D., and King, D.R. (1990). Object-Oriented Software,
Addison-Wesley, Reading, MA.

CHAPTER 12

DATABASE MANAGEMENT
SYSTEMS

12.1 Database Systems

A database is a collection of information, such as facts about countries, statistics
on demographics, a store’s inventory, and phone lists. A database system allows
one to access, insert, delete, and modify information stored within a computer
system. The term computer system is used as opposed to computer because
external memory may be needed. Database systems often require large amounts
of memory that greatly exceed the storage capacities of the computer’s main
memory. The database management system (DBMS) performs operations on the
information stored within a database. The DBMS is a program that contains a
query language that allows database updates and retrievals. A DBMS can be
viewed as a layer or abstraction built upon the computer system. The diagram
below shows the pieces of a database system:

DBMS Computer External memory
query language (data) (more data)

There are many ways in which database systems organize data. A table is one
way, as the following example of American beers illustrates. We'll refer to this
table as brew.

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

Databases and
database systems

286 Chapter 12: Database Management Systems

brew relation

Relations, tuples, and
attributes

Query languages and
saL

Sample SQL query

SELECT, FROM, and
WHERE

INSERT

name type rating brewery
Blue Whale ale 9 Oakland
A.V.Oatmeal stout 10 Boonville
Sierra Nevada ale 9 Chico

Big Foot barley-wine 10 Chico
Liberty ale 9 San Francisco
Augsburger lager 4 Milwaukee
Pabst lager 1 Milwaukee
Schlitz malt-liquor 2 Milwaukee

Tables, like the one above, are the primary data structure in relational database sys-
tems. Tables are called relations and rows in a relation are tuples. For example,

Liberty ale 9

is a tuple. The columns in a relation are called attributes. Each tuple has informa-
tion about one member of the relation and each attribute describes one particular
aspect of that tuple (e.g., name or rating).

A query language is similar to a programming language except it is tailored
to the specific task of handling updates and accesses to data. It is possible to
make rather sophisticated retrievals of information using a query language
without having to know how the data is stored. The below query retrieves all the
beers in the brew relation that are from Milwaukee or those that have a rating
above nine. It is written in the query language SQL, an acronym for Structured
Query Language. SQL is pronounced "sequel.”

SELECT brew.name

FROM brew

WHERE brew.brewery = ’'Milwaukee’
or brew.rating > 9;

San Francisco

The result would be

brew.name
A.V. Oatmeal
Big Foot
Augsburger
Pabst
Schiltz

When a query is performed, the tuples in the relation are sequenced through
and the specified attributes of those tuples that satisfy the condition are returned.
The seLEcT clause specifies which attributes are desired. Attribute names are
formed by joining the relation name to the attribute name with a period making
them one symbol. The FroM clause specifies the relations to examine. The WHERE
clause gives the condition against which each tuple is tested.

New data is added using the INSERT clause. To insert Lucky Lager into the
database, the following command is used:

12.1 Database Systems

287

INSERT
INTO brew
VALUES (’Lucky’,

"lager’, 1, ’'Milwaukee’);

More than one relation can be used. For example, a relation of establishments,
bar, and the beers they serve can be created.

name beer location
Pacific Coast Blue Whale Oakland
Pacific Coast A.V.Oatmeal Oakland
Pacific Coast Sierra Nevada QOakland
Brickskeller Sierra Nevada Wash. D.C.
Brickskeller ~ Big Foot Wash. D.C.
Brickskeller ~ Liberty Wash. D.C.
Brickskeller ~ Augsburger Wash. D.C.
Brickskeller Pabst Wash. D.C.
Bent Elbow Pabst Terre Haute
Bent Elbow Schlitz Terre Haute

With the new relation, queries can be made such as the following which finds
all bars that serve local beers and lists the names of those locally brewed beers.
SELECT bar.name, bar.location, brew.name

FROM bar, brew
WHERE bar.location = brew.brewery;

The name and location attributes of the bar relation and the name attribute from
the brew relation are returned.

brew.name
Blue Whale

bar.location
Oakland

bar.name
Pacific Coast

Notice that the FroM clause specifies both the bar and brew relations. These
are combined in an operation called a join. A join appends each tuple in one rela-
tion with all the tuples in another relation. This is one type of join; there are other
types which are discussed later in section 12.3, "Implementing a Relational Data-
base in Scheme."

Below are two queries that find all the bars that serve beers with a rating of
seven or more:

SELECT bar.name

FROM bar, brew
WHERE bar.beer = brew.name
and brew.rating >= 7;
or]
SELECT bar.name
FROM bar
WHERE bar.beer IN

(SELECT brew.name
FROM brew
WHERE brew.rating >= 7);

bar relation

Queries with two

relations

Join operation

288 Chapter 12: Database Management Systems

Nested queries

Closure in SQL

The result from either query is
bar.name

Pacific Coast
Brickskeller

The first example searches through the tuples in the join of the bar and brew
relations. For each tuple, if the beer attribute in the bar relation matches the name
attribute in the brew relation and the beer has a rating of seven or more, the tuple
is eliminated.

The second example is a nested selection. Since selections return relations,
they can be used as input to other selections. In this case the inner SELECT

(SELECT brew.name
FROM brew
WHERE brew.rating >= 7);

searches through the brew relation and returns a relation of beer names that have
ratings of seven or more. This relation is

brew.name

Blue Whale

A.V. Oatmeal

Sierra Nevada

Big Foot

Liberty

Next the outer SELECT
SELECT bar.name

FROM bar
WHERE bar.beer IN
inner SELECT

searches through the bar relation and returns the names of bars that match beers
from the inner selection relation, namely those with ratings of seven or more.
bar.name

Pacific Coast
Brickskeller

Nested queries are possible because SELECTs return relations. In fact, all three
of the relational operators we have seen, SELECT, FROM, and WHERE, return rela-
tions. When a function or operator returns a type that it accepts as input, it is
closed over that function or operation. Many Scheme functions such as +, rest, and
subseq exhibit this very useful property. The following function calls illustrate
how closed functions can be inputs to calls of the same function:

(+ (+ 3 4) 5)

(rest (rest (rest ’'(many numeric and list functions are closed))))

" This type of closure is an algebraic closure and should not be confused with the lexical closure of
functions as discussed in Chapter 11.

12.1 Database Systems

289

Another possible structure for the above database of bar and brew relations is
to combine them in one relation, as shown below:

name beer location type rating brewery
Pacific Coast Blue Whale Oakland ale 9 Oakland
Pacific Coast A.V.Oatmeal Oakland stout 10 Boonville
Pacific Coast Sierra Nevada Oakland ale 9 Chico
Brickskeller ~ Sierra Nevada Wash.D.C. ale 9 Chico
Brickskeller Big Foot Wash. D.C. barley-wine 10 Chico
Brickskeller ~ Liberty Wash. D.C. ale 9 San Francisco
Brickskeller ~ Augsburger Wash. D.C. lager 4 Milwaukee
Brickskeller Pabst Wash. D.C. lager 1 Milwaukee
Bent Elbow Pabst Terre Haute lager 1 Milwaukee
Bent Elbow Schlitz Terre Haute malt-liquor 2 Milwaukee

This may seem conceptually easier than having two separate relations. How-
ever, there is a problem with maintaining data values when tuples are deleted.
For example, suppose that the Brickskeller stops serving Liberty ale and that
tuple is deleted. All the information about Liberty ale would be lost. By having
two relations, bar and brew, the tuple

Brickskeller Liberty Wash. D.C.

can be deleted from the relation bar and the tuple maintaining information about
Liberty ale is retained in the brew relation.

Liberty ale 9 San Francisco

Thus, queries about Liberty ale can still be made. Much repetition is eliminated
when two relations are used. For example, the information about Pabst and
Sierra Nevada beers is maintained only once instead of twice.

In general, relations should be set up to reflect simple, complete chunks of
information. Another possibility for our database would be to use three relations:
one for beers, one for bars and the beers they have, and another for bars and their
location. This would eliminate much of the redundancy that currently exists in
the bar relation. This process of restructuring the form of the database to elim-
inate redundancy and dependencies is called normalization.

Database theory specifies different degrees of normalization to produce data-
bases of different normal forms. The simplest is called first normal form (INF) and
the most rigorous and best from a database design perspective is fifth normal
form (5NF). For example, if we restructure the database as mentioned above and
split the bar relation into two relations: one matching bars with locations and
another matching bars to the beers they serve, we would convert the bar relation
from second normal form to third normal form. Normal forms are covered in
depth in C.J. Date’s text which is referenced in "Additional Reading" at the end of
this chapter.

Alternate data

structure

Disadvantages to

large relations

Use simple relations

Normalization and

normal forms

290 Chapter 12: Database Management Systems

Goals of early
database systems

Hierarchical database
systems and records

12.1.1 Exercises
12.1 Write a SQL query to find the names and brewery locations of beers that
are ales.

12.2 Write a SQL query to find the names and locations of bars that serve beers
that are lagers with ratings above six.

12.3 Write the query below without using a nested SELECT.

SELECT beer.name, beer.rating

FROM beer

WHERE beer.name IN
(SELECT bar.brew, bar.location
FROM bar
WHERE bar.location = ’‘Oakland’);

12.2 Historical Background

Early databases focused on business applications such as banking, record keep-
ing, and reservation systems. These early systems had four major goals:

Efficiency: Fast access and modifications to large amounts of data

Resilience: Survive hardware crashes and software errors

Access control: Simultaneous multiuser access

Persistence: Ensure data exists for long periods without the program run-
ning

12.2.1 First generation: Hierarchical and network database sys-
tems
The first generation of database systems were hierarchical and network systems.
A hierarchical system is set up as a collection of trees. Each tree represents an
implicit relationship between the parent and its zero or more children. Data is
maintained in structures called records. The parent is a certain record type (holds
certain values) and the children are of potentially different types. For example, to
represent information about companies, the parent record type might contain
information about a company like the name of the company and when it was
established. A child type below the company root might represent the different
departments within the company where each member holds the department
name, working budget, person in charge, etc. Below this department record type
there could be different children record types. One child type could hold infor-
mation about the employees of that department with such facts as the names,
dates hired, employee identification numbers, salary, and so on. Another child
type might contain information about the products of the department. A picture
of this follows:

12.2 Historical Background 291

Company
Department
Employee Product

These boxes represent the different record types in the database. The root box,
Company, would contain information about a single company. The Department
box would be relaced by a number of records containing information about the
different departments of the company. Below each department box would be any
number of employee and product records, each containing information about
employees and products within that department. It is not necessary to specify
explicitly which department an employee works in; that fact is implicit from the
tree structure of the database.

We would run into problems if we tried to represent our beer/bars relation-
ship as a hierarchical system. We cannot set up a relationship with a hierarchical
system in which bars are children of beers (i.e., a beer is available from a number
of different bars) and beers are children of bars (a bar serves a number of beers).
This will be further explored below.

In a network system, a child can have more than one parent. This is the distin-
guishing feature between hierarchical and network systems. And this makes the
network system more flexible than the hierarchical system. Network databases
comprise records and sets. Records maintain the information about individual
items in the database. They are similar to tuples within a relational database. Sets
are ordered collections of records. Each set has an owner and various members.
In considering our example database of bars and beers, we can imagine having a
set of beers for each bar representing the beers that each bar carries. This is a 1 to
N relationship, in which there is one owner (a bar) and many members (the beers).
For such relationships, network systems provide a natural model. Sets are
represented as an ordered sequence of records starting at the owner, going
through all the members, and ending back at the owner. A picture of such a rela-
tion follows. The owner is the bar Brickskeller and the members are the beers that
the Brickskeller sells.

Limitations of
hierarchical systems

Network database
systems and sets

292 Chapter 12: Database Management Systems

Limitations of network
systems

Dummy records

—

Sierra Nevada

Big Foot

Liberty Brickskeller

Augsburger

Pabst

.

A complication arises if different owners share the same members in the same
set type. This would happen in our beer/bar database with the beers Pabst and
Sierra Nevada, which are each served in more than one bar. The problem is that
multiple paths are needed and there are ambiguities as to which path to follow
when sequencing through the set. Such a situation is called an N to M relation-
ship (N owners and M members). The following diagram illustrates this more
complex database.

The problem with this next database becomes clear when you try to follow a
path (see page 293). For example, starting at the Bent Elbow an arrow goes up
and left to Pabst. However, two arrows leave Pabst, one to Schlitz, and another to
the Brickskeller.

There is a way to get around this ambiguity. Another record type is needed
(sometimes called a dummy record). Each dummy record represents a beer avail-
able at a particular bar. In our database there are eight different beers, two of
which are served in different bars; thus there are ten unique beer/bar combina-
tions. This means there will be ten instances of this new dummy record type.

12.2 Historical Background 293

—

Blue Whale

J

A.V. Oatmeal Pacific Coast

Sierra Nevada

A

Big Foot
Liberty Brickskeller
Augsburger
Pabst
Bent Elbow
Schlitz

.

S~

This new record will be called bar-beers; it will have two parents, the bar
and brew records. This is not allowed in a hierarchical system where each record
can have only one parent. This gives network systems an advantage. Below is a
diagram of the record structure for this new database:

brew bar

\/

bar-beers

294 Chapter 12: Database Management Systems

Writing queries in
network systems

Below is the diagram of this new structure with the actual record values. The
empty small boxes are records of the type bar-beers. The solid arrows to/from
the top and bottom of the boxes connect members of the bar set. The dashed

arrows to/from the sides of the boxes connect members of the beer set.

To make queries in a network system, we can write programs that sequence
through sets until the desired information is obtained. The current set and record
provide a frame of reference for operations. Certain commands are provided

BlueWhale |~~~ 7777777 7 \
< ——————————————————
AV.Oatmeal | 7777777 7] Pacific Coast
Sierra Nevada /i
Big Foot
Liberty [~ 7 Brickskeller
< - — - -
Augsburger | 7]
< ——————
Pabst | 7 \
<=~ =~
o Bent Elbow
Schlitz |~ 7T T 7
< __________________

such as the following;:

__J

12.2 Historical Background 295

command action

MOVE establishes the field name of a record for searches

FIND finds a record in a set according to the field name established
with a MOVE command

FIND-NEXT go to the next member of the current set

FIND-OWNER go to the owner (record) of the current set

INSERT add a new record in the current set

DELETE delete the current record from the current set

MODIFY change the contents of the current record

CONNECT connect the current record to the current set

DISCONNECT disconnect the current record from the current set

As an example, we'll try to find the beers sold at the Brickskeller that have rat-
ings above seven. To do so we need to sequence through all the beers in the
Brickskeller’s beer set. This set comprises five bar-beer records that each connect
to a beer record containing the rating information we must check. FIND-NEXT is
used to sequence through the set. When the end of the set is reached (the owner
is reached), FIND-NEXT returns fail. Here are the instructions for this query:

MOVE "Brickskeller" to name in bar

FIND bar
Loop: FIND-NEXT in bar-beers
if fail
exit

FIND-OWNER in beer
if rating in beer > 7

PRINT name in bar
GOTO Loop

The MOVE command specifies that we are interested in the record with the

name "Brickskeller." The rinD finds the Brickskeller record in the bar set. Loop
specifies a location (label) in the program that we can come back to with a coro.
The FIND-NEXT finds the next record in the bar-beers set. The first time it is
called it finds the first record in that set. After the last record has been found,
FIND-NEXT returns fail. The if statement checks for fail and exits from the query
if all records have been searched. If there are more records to search, the FIND-
OWNER is performed, which finds the record in the beer set that corresponds to
the current record in the bar-beers set. If the rating of this record is greater than
seven, the name is printed. Next we go back to the statement at the Loop label
and continue searching with the next record in the bar-beers set.

Queries are written in an algorithmic fashion in which you must specify how Relationships
the database is traversed. Therefore you must know how the data is structured, between queries and
in particular which sets connect to which records. data structures

Setting up the structure of such a database is a difficult task, and it involves
having knowledge of how the database will be used to allow queries to be easily
and optimally made. If a database is changed, the queries that access the data
usually must be changed. This is a major difficulty with network systems.

296 Chapter 12: Database Management Systems

Separating storage
details from the data
structure

Data independence

Data integrity

12.2.2 Second generation: Relational database systems

The second generation of database systems uses the relational approach that we
saw in the beginning of this chapter. The relational viewpoint to database sys-
tems was proposed as a simplification to network database systems. Rather than
view the database as an interconnected collection of sets, the relational view is
that a database is a collection of relations.

In relational database systems there are no storage details that are implicit in
the structure of the database, as with network databases. All information is made
explicitly in the relations. This often requires more effort in entering the data ini-
tially, but it doesn’t require that queries be rewritten if the data structure
changes. The order of the tuples and attributes in any table is not important. How
relations are stored internally is invisible to the user; in fact, all the internal
storage details are hidden from the user. The result is a simpler system from the
user’s perspective. The price to be paid is that relational systems require more
work in the DBMS, which is more complex. Relational systems tend to be slower
as well.

12.2.3 Considerations database systems must address

Data independence and data integrity are two key problems that all database sys-
tems must consider. Data independence involves designing database systems
that can perform even when their structure changes via the addition or deletion
of information in the database. This is a difficulty in network database systems
since the form that a query takes depends on how the data is organized.

Data integrity concerns maintaining consistency in the database so that no
items that should be the same are different. This can be solved by eliminating all
redundancy in the database. Data integrity is difficult in relational database sys-
tems, as relations tend to have redundancy. Normalization techniques can be
used to eliminate the redundancy.

12.3 Implementing a Relational Database in Scheme

To get a better understanding of database systems, we’ll implement a mini-
relational database system in Scheme. Before beginning such an endeavor, it is
important to have a good understanding of the commands that must be imple-
mented and the data structures upon which those commands act. In the case of a
relational database, the primary data structure is the relation. A relation consists
of tuples (rows) and attributes (columns). Before deciding how to represent rela-
tions, let’s look at how they are used. The commands that we have seen are

SELECT

FROM

WHERE

The operations that are performed involve both tuples and attributes. SELECT
extracts attributes from relations, as in

12.3 Implementing a Relational Database in Scheme 297
SELECT bar.name, bar.location
WHERE chooses certain tuples from relations, as in
WHERE bar.name = "Pacific Coast"
FROM specifies the relations that will be used in the query. This is important when Unconstrained join

more than one relation is specified, as those relations must be combined in some
fashion. This is done with what is termed a join. An unconstrained join (also
called a Cartesian product) such as

SELECT bar.name, brew.name
FROM bar, brew;

forms all combinations of bar and beer names. There are three bars and eight
beers. Thus there are 3 X 8 = 24 bar/beer combinations altogether. The resulting
relation would look like the following;:

brew.name
Blue Whale
A.V. Oatmeal
Sierra Nevada

bar.name

Pacific Coast
Pacific Coast
Pacific Coast

Pacific Coast Big Foot
Pacific Coast Liberty
Pacific Coast Augsburger
Pacific Coast Pabst
Pacific Coast Schlitz
Brickskeller Blue Whale
Brickskeller A.V. Oatmeal
Brickskeller Sierra Nevada
Brickskeller Big Foot
Brickskeller Liberty
Brickskeller Augsburger
Brickskeller Pabst
Brickskeller Schlitz
Bent Elbow Blue Whale

Bent Elbow
Bent Elbow

A.V. Oatmeal
Sierra Nevada

Bent Elbow Big Foot
Bent Elbow Liberty
Bent Elbow Augsburger
Bent Elbow Pabst
Bent Elbow Schlitz

This example is somewhat misleading, as it gives the impression that all three
bars serve all eight beers, which is not the case. An accurate list is formed by
explicitly requesting only those beers that are served in the bars, as in the follow-
ing query:

SELECT bar.name, brew.name
FROM bar, brew
WHERE bar.beer = brew.name;

298 Chapter 12: Database Management Systems
Constrained join This will result in a constrained join (also called theta join), as the WHERE clause
specifies a join condition. The resulting relation yields the bars and the beers that
they serve:
bar.name brew.name

Pacific Coast
Pacific Coast
Pacific Coast
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Bent Elbow

Bent Elbow

Blue Whale
A.V. Oatmeal
Sierra Nevada
Sierra Nevada
Big Foot
Liberty
Augsburger
Pabst

Pabst

Schlitz

This relation is a subset of the previous relation. The WHERE clause restricts the
tuples of a relation according to some condition.

12.3.1 Deciding on a data structure

Now that the commands of the SQL subset we have been looking at have been
examined, we can start thinking in terms of which Scheme structures would be
most effective.

A SELECT is an operation based on attributes—keeping the desired ones.
WHERE and FROM are based on tuples—keeping desired tuples and joining tuples.
Also printing out relations involves printing a tuple per line. The emphasis is on
tuple operations; therefore, a list of tuples will be a good choice for a data struc-
ture to represent relations. The attribute names can be placed in the first sublist of
each relation. To represent the brew relation, we can use the following list:

(define brew ' (

(brew.name brew. type brew.rating brew.brewery)
(Blue_Whale ale 9 Oakland)
(A.V._Oatmeal stout 10 Boonville)
(Sierra_Nevada ale 9 Chico)
(Big_Foot barley-wine 10 Chico)
(Liberty ale 9 San_Francisco)
(Augsburger lager 4 Milwaukee)
(Pabst lager 1 Milwaukee)
(Schlitz malt-liquor 2 Milwaukee)

))

Notice the use of underscores and dashes to tie words together as single symbols.
The column indentation is just for our readability.

12.3 Implementing a Relational Database in Scheme 299

12.3.2 Implementing the wHERE clause
A WHERE clause is an operation that takes a list of tuples and returns a subset of
that list based on some condition. This can be implemented using a keep-if with
a function that returns true for any of the tuples that are desired and #£ for those
not wanted. To retrieve the ales from the brew relation, the following Scheme
function call could be made:
(keep-if
(lambda (beer-tuple) (eqv? (second beer-tuple) ’'ale))
brew)

A function that performs the operation of a WHERE clause needs a condition
and a relation. The condition will have references to attributes such as
brew.name. These references must be converted to the appropriate attribute
values from within the tuple before the condition can be evaluated. This can be
done in two ways. One way is to replace the attribute references in the condition
with the actual attribute values for each tuple. A second way is to change the
condition such that all attribute references are replaced with function calls that
extract the correct attribute values when called with a tuple.

The first approach is easier to write; however, it involves an extra step for
each tuple. The second method only requires that the condition be changed.
Given this new condition, it can be directly called with each tuple to decide if the
tuple should remain. In the interest of simplicity, let’s try the first approach. The
second method will be left as an exercise.

The function convert takes a condition and a tuple and returns a new condi-
tion with all attribute references replaced with the appropriate tuple values. con-
vert is called with each tuple in the relation. The converted condition is then
evaluated to determine if that particular tuple should be part of the new relation-
ship or not. As an example, consider the following condition and tuple:

original condition: (and (> brew.rating 7) (equal? brew.type ’‘ale))
tuple: (Liberty ale 9 San_Francisco)
attribute names: (brew.name brew.type brew.rating brew.brewery)

converted condition: (and (> 9 7) (equal? ’'ale ’‘ale))

The convert function needs the condition, the current tuple being examined,
and the list of attribute names for that tuple. convert sequences through the con-
dition and replaces references to attributes with the actual values from the
current tuple. Two additional functions will be helpful: a predicate function
attribute-name?, that checks for attribute references, and a function
attribute-value, that returns the appropriate values.

The function attribute-name? checks if the element being examined is an
attribute—a member of the list of attribute names. The function follows:

; Return true if element is an attribute in attrib-names.
(define (attribute-name? element attrib-names)
(member element attrib-names))

Replacing condition
attributes with tuple
values

Checking for attribute
names

300 Chapter 12: Database Management Systems

Getting attribute
values

Deep conversion of
attributes

Evaluating the
converted condition

The function attribute-value gets the value from the tuple that corresponds
to the attribute reference. attribute-value needs the attribute name list and the
tuple being checked. The position of the attribute in the attribute name list is also
the position of the actual value in the tuple. For example, given the attribute
name list and tuple below,

attribute name list: (brew.name brew.type brew.rating brew.location)
tuple: (Liberty ale 9 San_Francisco)

brew.rating is the third element in the attribute name list. Thus its value is the
third element in the tuple, 9. The code for attribute-value follows:

; Return the attribute named element within tuple given a list
; of attribute names, attrib-names.
(define (attribute-value element attrib-names tuple)

(list-ref tuple (position element attrib-names)))

Now that the auxiliary functions attribute-name? and attribute-value
have been defined, we can write convert. convert must look deep inside the
condition to find attribute names. A simple mapping will not work, as only the
top-level elements would be checked. Instead, either a car-cdr recursive func-
tion could be built or we could use a map that has a conditional clause that checks
if the element being examined is a list. If so, we handle it recursively. The code to
do this follows:

; Given condition, tuple, and attrib-names, a list of attributes,
; return a new condition with attributes replaced by actual values.
(define (convert condition tuple attrib-names)
(map (lambda (element)
(cond ((list? element)
(convert element tuple attrib-names))
((attribute-name? element attrib-names)
(attribute-value element attrib-names tuple))
(else element)))
condition))

Let’s test this function.
> (convert ‘(and (> brew.rating 7) (equal? brew.type ’‘ale))
’(Pabst lager 1 Milwaukee)

’(brew.name brew.type brew.rating brew.brewery))
(and (> 1 7) (equal? lager 'ale))

Lastly, the function where can be written. where sequences through the tuples
of the relation comparing them against the condition. For each tuple a new condi-
tion is formed based on the values in the tuple. This new condition is tested to
determine if the tuple should remain. To test the condition, we need an extra
level of evaluation. This is because the function convert returns a condition as a
list (as the examples above illustrate). To evaluate that condition list, an eval is
needed. The examples below will help illustrate this important point:

12.3 Implementing a Relational Database in Scheme 301

> (convert ’(> brew.rating 7) ’(Pabst lager 1 Milwaukee)
’(brew.name brew.type brew.rating brew.brewery))
(>17)

> (if (convert ’(> brew.rating 7) ’(Pabst lager 1 Milwaukee)
’(brew.name brew.type brew.rating brew.brewery))
’OK
‘not_OK)
OK

> (eval (convert ‘(> brew.rating 7) ’(Pabst lager 1 Milwaukee)
’(brew.name brew.type brew.rating brew.brewery)))
#£

The function where can be written using a call to keep-if. Only the tuples
should be tested and not the attribute name list (the first sublist of the relation);
thus, keep-if should be called with the rest of the relation. However, we do
want to return a relation with an attribute name list; therefore we must cons the
attribute name list onto the resulting relation from the keep-if.
Selector functions for the attribute name lists and the tuples of a relation will Selector functions
make our code more readable and easier to modify if the structure of relations is
changed:

; Return the attribute names of a relation.
(define (attributes relation)
(first relation))

; return the list of tuples of a relation
(define (tuples relation)
(rest relation))

And finally, the function where:

; Return all the tuples in relation that satisfy condition.
(define (where condition relation)
(cons
(attributes relation)
(keep-if
(lambda (tuple)
(eval (convert condition tuple (attributes relation))))
(tuples relation))))

Below are some tests of this function. The resulting relations have been shown
one tuple per line with attributes lined up in columns. The real output would
look different.

302

Chapter 12: Database Management Systems

> (where ’(> brew.rating 7) brew)

((brew.name brew.type brew.rating brew.brewery)
(Blue_Whale ale 9 Oakland)
(A.V._Oatmeal stout 10 Boonville)
(Sierra_Nevada ale 9 Chico)

(Big_Foot barley-wine 10 Chico)
(Liberty ale 9 San_Francisco))

> (where ’(and (> brew.rating 7) (equal? brew.type ‘ale)) brew)
Undefined variable: ale

What happened? It's easy to jump to conclusions and think that the Scheme
interpreter made a mistake. After all, ale is quoted and shouldn’t be treated as a
variable. Let's examine the functions that where calls. First let's see what convert
returns for the above condition and the first tuple in the brew relation.

> (convert ’‘(and (> brew.rating 7) (equal? brew.type ’‘ale))
’(Blue_Whale ale 9 Oakland)
’(brew.name brew.type brew.rating brew.brewery))

(and (> 9 7) (equal? ale ’'ale))

If we try to eval this expression, we get an error because the first reference to
ale is not quoted. To get around this problem, we could either change the func-
tion convert such that it inserts a call to quote before any replaced value, or we
could quote all attribute names in conditions passed to where. The second
approach is easier but less intuitive for the user, as attribute names are more like
variables than constant symbols. So we’ll opt for the first approach and modify
convert as follows:

; Given condition, tuple, and attrib-names, a list of attributes,
; return a new condition with attributes replaced by actual values.
(define (convert condition tuple attrib-names)
(map (lambda (element)
(cond ((list? element)
(convert element tuple attrib-names))
((attribute-name? element attrib-names)
(list ’'quote
(attribute-value element attrib-names tuple)))
(else element)))
condition))

Here are tests of the convert and where functions:

> (convert ’‘(and (> brew.rating 7) (equal? brew.type ’‘ale))
’(Blue_Whale ale 9 Oak<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>