UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries
Fred B. Schneider

Springer Science+Business Media, LLC

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms
Bergin, Data Structure Programming
Brooks, Problem Solving with Fortran 90
Brooks, C Programming: The Essentials for Engineers and Scientists
Dandamudi, Introduction to Assembly Language Programming
Grillmeyer, Exploring Computer Science with Scheme
Jalote, An Integrated Approach to Software Engineering, Second Edition
Kizza, Ethical and Social Issues in the Information Age
Kozen, Automata and Computability
Merritt and Stix, Migrating from Pascal to C++
Pearce, Programming and Meta-Programming in Scheme
Zeigler, Objects and Systems

Oliver Grillmeyer

Exploring Computer Science with Scheme

```
Oliver Grillmeyer
Department of Computer Science
University of California at Berkeley
Berkeley, CA 94720
USA
```

Series Editors
David Gries
Fred B. Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Microsoft Windows, Windows 3.1, and Windows 95 are registered trademarks of Microsoft
Corporation.
Macintosh is a registered trademark of Apple Computer, Inc.
Netscape and Netscape Navigator are registered trademarks of Netscape Communications
Corporation.
PowerPC is a registered trademark of International Business Machines Corporation.
Intel Pentium is a registered trademark of Intel Corporation.

Library of Congress Cataloging-in-Publication Data
Grillmeyer, Oliver.
Exploring computer science with Scheme / Oliver Grillmeyer
p. cm .-(Undergraduate texts in computer science)

Includes index.
ISBN 978-1-4419-2855-9 ISBN 978-1-4757-2937-5 (eBook)
DOI 10.1007/978-1-4757-2937-5

1. Computer science. I. Title. II. Series.

QA76.G723 1997
004 -dc21 97-24294
Printed on acid-free paper.
© 1998 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc in 1998.
Softcover reprint of the hardcover 1st edition 1998
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, ex-
cept for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Terry Kornak; manufacturing supervised by Joe Quatela.
Photocomposed copy prepared by the author in TROFF.

987654

To my parents, Hans and Maria, and my wife, Myriam.

PREfACE

1 Computer Science

Most introductory computer science textbooks teach the reader how to write programs in a particular programming language. The student may get the impression that there isn't much more to computer science than just learning different programming languages. Hence, the more languages you know, the more capable you are of solving a greater variety of problems. A student may think that with a number of programming languages under her belt, she can solve most any problem.

As most computer scientists would agree, there is a lot more to the field than just learning different languages-just as architecture involves a lot more than learning how to draw different straight lines and shapes. One of the goals of this book is to present the reader with an understanding of what computer science really is. This is done by presenting the subfields into which computer science is broken, giving explanations and sample programs for each.

It is still important to do some programming to get a deeper understanding of computer science. There are books that discuss computer science and give excellent overviews of the field, but do not involve any programming. This approach quite often leaves the reader wondering how the computer actually does all the powerful tasks that it can do. Such books give an idea of what computers are used for and what the areas of study under computer science are, but not how the computer performs these tasks.

This book will mix theory with applications. The reader will learn the "science" of computer science and then see actual applications thereof. This will help demystify the theories and ideas presented.

It's more than just programming

Advantages of Scheme

2 Language Used

Scheme, a dialect of Lisp, will be used. With today's faster, more powerful, and less expensive new machines, languages like Scheme that have typically been in the educational arena in schools of higher education are entering the home user's world. Using Scheme, the programmer can solve many problems much easier and with much less writing and effort than with the more conventional languages used in introductory texts, such as Pascal, BASIC, C, C++, and Java.

The family of LISP languages are sometimes criticized for use as introductory programming languages because they are not used as widely by programmers in the workplace as languages like Pascal, C, or C++. However, it is important to remember that the purpose of an introductory computer science text should be to teach computer science and not just a particular programming language. It is easier to learn programming concepts using Scheme than with these other more popular languages. This is due to the overhead these languages impose on the learner. Scheme is easy to learn, so more time can be spent on programming and computer science concepts than on language idiosyncrasies. Programming techniques and concepts transfer from one language to another, so after learning Scheme students can learn Pascal or C relatively quickly.

3 Functional Programming

Imperative versus
functional
programming

Typically, students learn to program using an imperative approach. This paradigm is used with languages such as FORTRAN, Pascal, C, and BASIC. The imperative approach involves programming by focusing on the sequences of steps that are necessary to perform a task. Such programs tend to consist of interdependent and highly interconnected pieces.

This book uses the functional approach to programming. The functional approach concentrates on the creation of simple functions that are applied to values to obtain desired results. These functions are composed (combined) to achieve the desired programming goal. Such simple functions are easily tested individually. This greatly helps in producing programs that work right the first time.

One is not limited to imperative programming when using Pascal-like languages, but these languages lend themselves to such techniques. Similarly, one can use imperative programming techniques in Scheme, but the language is better suited to functional programming.

4 Problem Solving

Developing problem solving skills

A major goal of this book is to teach fundamental problem-solving skills. These skills can be applied to any problem-solving task using any programming language. Many new students learn how to program through analogy without ever getting a deep understanding of the concepts. Such students perform very poorly when given new types of problems that cannot be solved using the templates they have been religiously following. Like memorizing recipes in a
cookbook, if you can make chocolate chip cookies you can make raisin cookies, but not cheesecake unless you know more of the concepts of cooking.

This book illustrates techniques to aid in the writing of programs. Such techniques include abstracting the problem into the domain of Scheme, creating pseudo code as an intermediate solution, using top-down and bottom-up design, building procedural and data abstractions, developing defensive, safe-coding skills, and writing testable, modular programs. In addition, heuristics are given that help determine good test cases to test your code.

5 Pedagogical Techniques

Throughout the book I have tried to present material in a clear, concise manner, using numerous Scheme examples. Common mistakes that students make as they are learning programming are presented in boxes like this:

Mistakes to Avoid

Remember that rest returns a list with all but the first element. A common mistake is to think that

```
(rest '(a (b)))
```

returns (b) instead of the true value returned: ((b)).
Other boxes are used to point out important issues that deserve to be brought to the reader's attention. Margin notes are used throughout the text as a reference tool to help the reader find material in the text and to highlight the important issues presented.

Most programming examples are presented in a case study fashion in which the thought process, design decisions, false starts, and alternative programming choices are presented. This gives the reader a much better understanding of what is involved in programming and helps to make normally tacit programming skills explicit such that the reader can more easily learn them.

Each chapter has numerous exercises to help readers test their understanding of the material. All chapters end with a summary of the entire chapter, which is good for a quick reference or refresher.

Many functions are introduced to augment the built-in functions of Scheme. Most of these functions come from Common LISP and are chosen because they provide useful extensions to Scheme and are used in many of the subsequent programming examples. Wherever possible, these new functions are immediately defined giving the reader a clear understanding of how they work and what they do. Motivation for the creation of the new functions is given to avoid presenting the functions without a context for their use. This helps readers know when to use the functions and how they might consider extending Scheme to meet their needs.

Aids to understanding the text

Extensions to Scheme

6 Goals

To recap, the major goals of this text are to:

- Develop an understanding of computer science as a discipline.
- Learn computer programming using the functional programming paradigm and Scheme as the language of choice.
- Develop problem-solving and good programming skills.
- Present the material in a way that facilitates learning.

7 Acknowledgements

First and foremost I thank Michael Clancy for his numerous invaluable suggestions on this book. In addition to commenting on each version of the manuscript, Mike provided help in everything from font selection, layout, and publisher advice to specific examples, functions, and exercises to incorporate in the text. As an author of many textbooks, Mike could empathize with my concerns and difficulties. He was always present to answer a myriad of questions or just listen to my current accomplishments or struggles.

The first ten chapters of this text were used nine terms in courses I taught at U.C. Berkeley. In addition the text is being used in the self-paced courses at U.C. Berkeley. Over the years I received numerous comments from students using this text. I thank all the students who have made suggestions for improvements or just praised the text and brought a smile to my face. Many teaching assistants and readers who have worked with me have commented on the text. I thank them all and give special thanks to Steve Lumetta, Glenn Von Tersch, Mike Schiff, and Tom Boegel.

Thanks to the computer science faculty, graduate students, and support staff at U.C. Berkeley for all the knowledge they have imparted to me over the years. In particular I thank Robert Wahbe, Seth Teller, Paul Hilfinger, Brian Harvey, and Lotfi Zadeh. Kevin Mullally, Fran Rizzardi, and Ruben Zelwer provided technical and formatting support.

Martin Gilchrist from Springer-Verlag was very helpful, giving me encouragement and flexibility in the design and contents of the text. I thank Springer-Verlag's series editor David Gries for his careful and thorough review of the manuscript and the extensive comments and enthusiasm he provided. Thanks to Terry Kornak, production editor, and Chrisa Hotchkiss who proofread the text. They both helped smooth out the rough edges. Karen Phillips was the design supervisor who helped bring my ideas for the cover of the book into reality. Thanks to Chris Dovolis for his helpful review of the text.

Special thanks to Gino Cheng and Brett DeSchepper for providing company and laughs during all the late night trips to Cafe Milano, Triple Rock, and Flint's, and for providing sanity through frisbee therapy. Thanks to Brian Peterson for listening to my concerns and all the slices of Blondies. Thanks to Jean Root, Tedi Diaz, Liza Gabato, and Kate Capps for their constant support. Kathryn Jones provided font examples and suggestions. The layout of the text is due in large part to the suggestions and advice of Yoshiro Soga who also keeps me abreast of all the
changes in the worlds of personal computers and football. Thanks to everyone in the U.C. Berkeley Hapkido club who helped me recharge after long days of work on the book.

My family provided support throughout the writing of the book; they were always excited over any progress (even small) that was made. Thanks Robert, Stephen, Maria, and Hans for the encouragement.

Thank you Myriam for bearing all the late nights I spent working on the book and for tolerating me bringing work on our trips to India, Sri Lanka, and Mexico. Thanks for listening to the day-to-day sagas during the book's creation. The book is complete. I'll cook dinner tonight.

Chapters

1 Introduction to Computer Science 1
2 Problem Solving and Problem Abstraction 13
3 Programming the Computer 29
4 Lists: The Basic Data Structure 61
5 Conditionals 103
6 Repetition Through Recursion 125
7 Data Structures 169
8 Functionals 199
9 Input and Output 231
10 Repetition Through Iteration 243
11 Advanced Uses of Functions 261
12 Database Management Systems 285
13 Compilers and Interpreters 319
14 Operating Systems 373
15 Artificial Intelligence 411
16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms 475

Brief Contents

1 Introduction to Computer Science 1
1.1 What Is a Computer? 1
1.2 A Look Inside the Computer 3
1.3 Connections Between Computers 4
1.4 What Is Computer Science? 5
1.5 Subfields Within Software 5
1.6 Subfields Within Hardware 10
1.7 Subfields Within both Software and Hardware 10
1.8 Summary 11
1.9 Additional Reading 12
2 Problem Solving and Problem Abstraction 13
2.1 Problem Solving 13
2.2 What Computers Can Do 14
2.3 Computer Languages 15
2.4 Problem Abstraction 15
2.5 Pseudo Code 20
2.6 Using Memorized Sequences 22
2.7 Adding Parameters to Memorized Sequences 26
2.8 Summary 28
3 Programming the Computer 29
3.1 The Scheme Environment 29
3.2 Numerical Functions 31
3.3 The Evaluator 35
3.4 Bottom-Up Design 37
3.5 Top-Down Design 38
3.6 Variables 40
3.7 User-Defined Functions 43
3.8 Scope and Extent 48
3.9 Shadowing 49
3.10 Programming Style 51
3.11 Using let to Create Local Variables 53
3.12 Writing Styles 56
3.13 Summary 57
4 Lists: The Basic Data Structure 61
4.1 Lists in Scheme 61
4.2 Stopping Evaluation with quote 62
4.3 Special Forms 63
4.4 Using Lists as Data Structures 64
4.5 Taking Lists Apart 65
4.6 Combining cars and cdrs 75
4.7 Creating Lists 76
4.8 Representing and Manipulating Text with Lists 82
4.9 Optional Section: Quasiquoted Lists 87
4.10 Miscellaneous List Functions 88
4.11 Representing a Database with Lists 92
4.12 Optional Section: Internal Representations of Lists 97
4.13 Optional Section: Dotted Lists 99
4.14 Summary 101
5 Conditionals 103
5.1 Control Through Conditional Expressions 103
5.2 Cond Expressions 107
5.3 Testing Multiple Conditions and Negations 109
5.4 List and Atom Predicates 113
5.5 Optional Section: All Equality Predicates Are Not Equal 115
5.6 A Musical Offering 117
5.7 Determining the Value of Poker Hands 119
5.8 Summary 122
6 Repetition Through Recursion 125
6.1 Recursion 125
6.2 Optional Section: Global Variables and Recursion 138
6.3 Optional Section: Different Types of Recursion 139
6.4 Using Recursion to Sequence Through Lists 142
6.5 Using Recursion to Create New Lists 148
6.6 Sequencing Through Nested Lists with car-cdr Recursion 152
6.7 Nested Loops or Recursion Within Recursion 160
6.8 Summary 168
7 Data Structures 169
7.1 Why Data Structures? 169
7.2 Association Lists 172
7.3 Design for Modifiability 175
7.4 Sets 176
7.5 Trees 181
7.6 Sample Exercise with Trees and Sets 190
7.7 Summary 196
8 Functionals 199
8.1 Passing Functions as Arguments 199
8.2 Writing Functions that Take Functions as Arguments 202
8.3 Lambda Expressions 215
8.4 Combining Results with accumulate 219
8.5 Summary 230
9 Input and Output 231
9.1 Input/Output 231
9.2 Getting Yes/No Answers 235
9.3 Conditions with Multiple Actions 235
9.4 Example: Visualizing Chaos 237
9.5 Read-Eval-Print Loop 239
9.6 Summary 241
10 Repetition Through Iteration 243
10.1 Iteration 243
10.2 Repeating Actions a Number of Times 245
10.3 Repeating an Action for each Element in a List 246
10.4 General Examples with do Loops 248
10.5 Writing Mapping Functions and Filters Using Iteration 250
10.6 Nested Loops Using Iteration 255
10.7 Summary 259
11 Advanced Uses of Functions 261
11.1 Writing Functions that Take a Variable Number of Arguments 261
11.2 Functions that Return Functions 262
11.3 Object-Oriented Programming 266
11.4 Forcing Exits with call-with-current-continuation 275
11.5 Summary 281
11.6 Additional Reading 282
12 Database Management Systems 285
12.1 Database Systems 285
12.2 Historical Background 290
12.3 Implementing a Relational Database in Scheme 296
12.4 Future Trends 314
12.5 Summary 315
12.6 Additional Reading 315
12.7 Code Listing 316
13 Compilers and Interpreters 319
13.1 Compilers Versus Interpreters 319
13.2 Lexical Analysis 320
13.3 Parsing 321
13.4 Semantic Analysis 330
13.5 Code Generation 331
13.6 Historical Background and Current Trends 343
13.7 Implementing a Simple Scheme Compiler in Scheme 346
13.8 Extending Our Compiler 362
13.9 Future Trends 365
13.10 Summary 365
13.11 Additional Reading 366
13.12 Code Listing 366
14 Operating Systems 373
14.1 Operating Systems 373
14.2 Historical Background 374
14.3 Resource Allocation 376
14.4 Process and Memory Management 379
14.5 File Systems 381
14.6 Utilities 382
14.7 Types of Operating Systems 383
14.8 How a Scheduler Works 384
14.9 Implementing a Scheduler in Scheme 385
14.10 Future Trends 401
14.11 Summary 403
14.12 Additional Reading 404
14.13 Code Listing 405
15 Artificial Intelligence 411
15.1 Artificial Intelligence 411
15.2 Historical Background 412
15.3 Common Problems 416
15.4 Problem Solvers and Planners 435
15.5 Expert Systems 436
15.6 Implementing an Expert System in Scheme 438
15.7 Natural Language Processing 456
15.8 Robotics 463
15.9 Vision 464
15.10 Is Artificial Intelligence Possible? 466
15.11 Summary 469
15.12 Additional Reading 470
15.13 Code Listing 472
16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms 475
16.1 Soft Computing 475
16.2 Fuzzy Logic 476
16.3 Neural Networks 496
16.4 Genetic Algorithms 518
16.5 Mixing Metaphors to Create Better Systems 531
16.6 Future Trends 533
16.7 Summary 534
16.8 Additional Reading 535
16.9 Code Listing 536

Contents

1 Introduction to Computer Science 1
1.1 What Is a Computer? 1
-definitions and introduction of a simple machine model
1.1.1 Example: Balancing your checkbook 2
1.2 A Look Inside the Computer 3
-examining the components of a computer system
1.3 Connections Between Computers 4
-expanded abilities from interconnected computers
1.4 What Is Computer Science? 5
-a science in its own right
1.5 Subfields Within Software 5
-list of fields with introductory discussions
1.5.1 Operating systems 5
1.5.2 Compilers, interpreters, and programming languages 6
1.5.3 Database management systems 7
1.5.4 Artificial intelligence 8
1.5.5 Soft computing 8
1.5.6 Graphics 9
1.5.7 Exercises 9
1.6 Subfields Within Hardware 10
-list of three fields with introductory discussions
1.7 Subfields Within both Software and Hardware 10
-introduction to three fields that border hardware and software 1.7.1 Exercises 11
1.8 Summary 11
1.9 Additional Reading 12
2 Problem Solving and Problem Abstraction 13
2.1 Problem Solving 13
-the problem with problem solving
2.2 What Computers Can Do 14
-the capabilities of the CPU
2.3 Computer Languages 15
-the added power of computer languages
2.4 Problem Abstraction 15
-a new way to think of problems
2.4.1 Example: Move the yellow block up three meters 18
2.4.2 Ambiguities 18
2.5 Pseudo Code 20
-a step between the problem and the solution
2.5.1 Example: Draw a two-by-two meter square around the yellow block 20
2.5.2 Exercises 22
2.6 Using Memorized Sequences 22
-organizing programs into logical units
2.6.1 Example: Write the robot's name-BOB 22
2.6.2 Refinement of pseudo code 23
2.6.3 Exercises 26
2.7 Adding Parameters to Memorized Sequences 26
-allowing variability in memorized sequences
2.7.1 Exercises 27
2.8 Summary 28
3 Programming the Computer 29
3.1 The Scheme Environment 29
-parts of the Scheme environment
3.1.1 Example: Determining the price of an item with 6% tax added 30
3.2 Numerical Functions 31
-built-in functions that work on numbers
3.2.1 Common errors when calling functions 33
3.2.2 Exercises 34
3.2.3 Function composition 35
3.3 The Evaluator 35
-the heart of Scheme
3.3.1 Exercises 36
3.3.2 Example: Compute your income tax 36
3.4 Bottom-Up Design 37
-thinking about small details first
3.5 Top-Down Design 38
-going from the abstract to the concrete
3.5.1 Exercises 39
3.6 Variables 40
-a means of naming values
3.6.1 Symbol and variable names 42
3.7 User-Defined Functions 43
-writing your own functions
3.8 Scope and Extent 48
-where and when symbols are valid
3.9 Shadowing 49
-will the real symbol please step forward
3.10 Programming Style 51
-avoiding code that will cause problems later
3.10.1 Exercises 52
3.11 Using let to Create Local Variables 53
-using let and let* within functions to save partial results and help break up computations 3.11.1 Exercises 56
3.12 Writing Styles 56
-different ways of presenting your code to enhance readability
3.13 Summary 57
4 Lists: The Basic Data Structure 61
4.1 Lists in Scheme 61
-lists as collections of objects and as function calls
4.2 Stopping Evaluation with quote 62
-stopping the evaluator to treat things literally
4.3 Special Forms 63
-exceptions to normal evaluation
4.3.1 Exercises 63
4.4 Using Lists as Data Structures 64
-taking advantage of the structural possibilities of lists
4.4.1 Exercises 65
4.5 Taking Lists Apart 65
-functions that return elements or sections of lists
4.5.1 Example: Extracting random elements from a data structure 72
4.5.2 Exercises 74
4.6 Combining cars and cdrs 75
-shorthands for these often used functional compositions
4.7 Creating Lists 76
-functions that create lists
4.7.1 Exercises 80
4.8 Representing and Manipulating Text with Lists 82
-programming example illustrating basic concepts of handling sentence structures 4.8.1 Exercises 83
4.8.2 Computer-Generated sweepstakes 84
4.8.3 Exercises 87
4.9 Optional Section: Quasiquoted Lists 87

- a simple means of creating lists with evaluated and literal objects 4.9.1 Exercises 88
4.10 Miscellaneous List Functions 88
-functions that return information about lists 4.10.1 Exercises 90
4.11 Representing a Database with Lists 92
-programming example using lists to represent a complex database 4.11.1 Selecting items from the database 92
4.11.2 Adding elements to the database 93
4.11.3 Exercises 97
4.12 Optional Section: Internal Representations of Lists 97
-a model of how lists are represented inside the computer
4.13 Optional Section: Dotted Lists 99 -what you get when you cons something onto an atom
4.14 Summary 101
5 Conditionals 103
5.1 Control Through Conditional Expressions 103
-numerical predicate functions, and the if special form
5.1.1 Exercises 105
5.2 Cond Expressions 107
-making decisions with cond
5.2.1 Exercises 108
5.3 Testing Multiple Conditions and Negations 109
-using and, or, and not to make more complex conditions
5.3.1 Exercises 113
5.4 List and Atom Predicates 113
-predicates that work with lists and atoms
5.4.1 Exercises 115
5.5 Optional Section: All Equality Predicates Are Not Equal 115
-differences between the predicates that check for equality
5.6 A Musical Offering 117
-programming example that uses musical scales and intervals
5.6.1 Computing the intervals between notes 117
5.6.2 Computing the note an interval beyond another note 118
5.6.3 Exercises 119
5.7 Determining the Value of Poker Hands 119
-programming example for the card game poker
5.7.1 Exercises 121
5.8 Summary 122
6 Repetition Through Recursion 125
6.1 Recursion 125
-the basics of writing recursive functions
6.1.1 Example: Finding a number in a list that exceeds a threshold value 125
6.1.2 Example: Investing in your best interest 129
6.1.3 Example: Summing digits 131
6.1.4 General rules for writing recursive functions 134
6.1.5 Example: Testing if the digits in a number are in increasing order 135
6.1.6 Exercises 136
6.2 Optional Section: Global Variables and Recursion 138
-how not to write recursive code
6.3 Optional Section: Different Types of Recursion 139
-tail versus embedded recursion
6.3.1 Example: Factorial 139
6.3.2 Exercises 142
6.4 Using Recursion to Sequence Through Lists 142
-solutions to various recursive list problems
6.4.1 Example: Adding up numbers in a list 142
6.4.2 Example: Checking if a list consists entirely of numbers 143
6.4.3 Exercises 145
6.5 Using Recursion to Create New Lists 148
-recursive functions that cons up new lists
6.5.1 Example: A mapping function to take the square roots of numbers in a list 148
6.5.2 Example: A filter to extract positive numbers from a list 149
6.5.3 Exercises 150
6.6 Sequencing Through Nested Lists with car-cdr Recursion 152
-complex tree recursive functions
6.6.1 Example: Counting all the atoms in a list 152
6.6.2 Example: Deep reverse of a list 154
6.6.3 Exercises 158
6.7 Nested Loops or Recursion Within Recursion 160
-implementing nested loops using multiple recursive functions
6.7.1 Example: Sum of factorials 160
6.7.2 Example: Sequencing through a database using nested loops 161
6.7.3 Example: Poker revisited 164
6.7.4 Exercises 167
6.8 Summary 168
7 Data Structures 169
7.1 Why Data Structures? 169
-adding computational power with data structures
7.1.1 Example: Breaking secret codes 169
7.1.2 Exercises 171
7.2 Association Lists 172
-creating simple pairings with association lists
7.2.1 Optional section: Association lists with dotted lists 173
7.2.2 Exercises 174
7.3 Design for Modifiability 175
-using selector and creator functions to access and modify your data structure 7.3.1 Exercises 176
7.4 Sets 176
-using lists to represent unordered information
7.4.1 Example: Using sets to represent locations traveled to 178
7.4.2 Exercises 180
7.5 Trees 181
-using lists to represent hierarchically ordered information
7.5.1 Depth-First search 183
7.5.2 Breadth-First search 185
7.5.3 Exercises 188
7.6 Sample Exercise with Trees and Sets 190
-programming example using trees and sets to help choose a restaurant 7.6.1 Exercises 195
7.7 Summary 196
8 Functionals 199
8.1 Passing Functions as Arguments 199
-functions taking functions as arguments
8.1.1 Mapping functions 199
8.1.2 apply: A variation on the normal function application 201
8.2 Writing Functions that Take Functions as Arguments 202
-extending the capabilities of Scheme by creating functions that take functions
8.2.1 -if functions 203
8.2.2 Exercises 205
8.2.3 -if-not functions 206
8.2.4 Exercises 208
8.2.5 every and any 209
8.2.6 Exercises 211
8.2.7 Optional section: Using multiple lists with map, for-each, every, and any 211
8.2.8 Exercises 214
8.3 Lambda Expressions 215
-creating nameless functions on the fly 8.3.1 Exercises 218
8.4 Combining Results with accumulate 219
-applying binary functions to elements of a list
8.4.1 Exercises 223
8.4.2 Sorting lists 224
8.4.3 Example: Poker revisited, yet again 225
8.4.4 Exercises 228
8.5 Summary 230
9 Input and Output 231
9.1 Input/Output 231
-definitions
9.1.1 Printing out additional information 231
9.1.2 Input 233
9.2 Getting Yes/No Answers 235
-writing some simple functions to get simple yes/no responses from the user
9.3 Conditions with Multiple Actions 235
-using cond with expressions producing side-effects
9.4 Example: Visualizing Chaos 237
-modeling a simple nonlinear equation to see chaos
9.4.1 Exercises 238
9.5 Read-Eval-Print Loop 239
-the fundamental loop within Scheme's interpreter 9.5.1 Exercises 240
9.6 Summary 241
10 Repetition Through Iteration 243
10.1 Iteration 243
-functions used to repeat actions in a nonrecursive fashion
10.2 Repeating Actions a Number of Times 245
-repetition for a fixed number of times
10.2.1 Example: Printing changing populations 245
10.3 Repeating an Action for each Element in a List 246
-repetition through a list
10.3.1 Example: Checking if a list consists of numbers only 246
10.4 General Examples with do Loops 248
- a general form of iteration
10.4.1 Example: Factorial 248
10.4.2 Example: Adding up the digits in a number 248
10.5 Writing Mapping Functions and Filters Using Iteration 250
-example functions to carry out these common actions with iteration
10.5.1 Example: A mapping function to take square roots in a list 250
10.5.2 Example: A filter to extract positive numbers from a list of numbers 251
10.5.3 Exercises 252
10.5.4 Example: Sorting a list 252
10.5.5 Exercises 255
10.6 Nested Loops Using Iteration 255
-writing nested loops using iterative functions
10.6.1 Exercises 258
10.7 Summary 259
11 Advanced Uses of Functions 261
11.1 Writing Functions that Take a Variable Number of Arguments 261
-variations on function creation and use
11.2 Functions that Return Functions 262
-returning functions to create objects with local state
11.2.1 Exercises 265
11.3 Object-Oriented Programming 266
-a brief introduction to the object programming paradigm
11.3.1 How to write in the object style 268
11.3.2 Exercises 274
11.4 Forcing Exits with call-with-current-continuation 275
-a means of prematurely exiting from continuations
11.4.1 Using call-with-current-continuation to exit from a do loop 279
11.4.2 Exercises 280
11.5 Summary 281
11.6 Additional Reading 282
12 Database Management Systems 285
12.1 Database Systems 285
-creating, maintaining, and querying large data structures
12.1.1 Exercises 290
12.2 Historical Background 290
-a look back at the developments in database systems
12.2.1 First generation: Hierarchical and network database systems 290
12.2.2 Second generation: Relational database systems 296
12.2.3 Considerations database systems must address 296
12.3 Implementing a Relational Database in Scheme 296
-case study: designing and writing a relational database system 298
12.3.2 Implementing the wHERE clause 299
12.3.3 Implementing the SELECT clause 303
12.3.4 Implementing the FROM clause 304
12.3.5 Putting it all together 308
12.3.6 Some extras 309
12.3.7 Exercises 312
12.4 Future Trends 314
-a look forward at future database systems
12.5 Summary 315
12.6 Additional Reading 315
12.7 Code Listing 316
13 Compilers and Interpreters 319
13.1 Compilers Versus Interpreters 319
-translation versus simulation
13.2 Lexical Analysis 320
-characters to symbols
13.2.1 Exercises 320
13.2.2 Tokens and symbol tables 321
13.3 Parsing 321
-symbols to structure
13.3.1 Top-Down parsing 323
13.3.2 Predictive parsing 326
13.3.3 Bottom-Up parsing 327
13.4 Semantic Analysis 330
-structure to meaning
13.5 Code Generation 331
-meaning translated
13.5.1 Mini Scheme 331
13.5.2 A simple computer 332
13.5.3 Assembly language 333
13.5.4 Conditional expressions in assembly language 336
13.5.5 Function definitions and calls in assembly language 337
13.6 Historical Background and Current Trends 343
-early compilers and compiler building tools and techniques
13.6.1 Compiling the compiler 344
13.7 Implementing a Simple Scheme Compiler in Scheme 346
-case study: building a code generator for a subset of Scheme
13.7.1 Generating code for if expressions 350
13.7.2 Generating code for define expressions 354
13.7.3 Generating code for calls to user-defined functions 356
13.7.4 Generating code for calls to built-in functions 357
13.7.5 Testing our compiler 359
13.7.6 Exercises 361
13.8 Extending Our Compiler 362
-what it would take to incorporate more of Scheme in our compiler
13.8.1 Adding more data types to our compiler 362
13.8.2 Adding more functions to our compiler 363
13.8.3 Adding more special forms and handling scope in our compiler 363
13.8.4 Code Optimization 364
13.9 Future Trends 365
-building compilers for parallel machines and for different types of languages
13.10 Summary 365
13.11 Additional Reading 366
13.12 Code Listing 366
14 Operating Systems 373
14.1 Operating Systems 373
-the link between human and machine
14.2 Historical Background 374
-the development and changes in operating systems
14.3 Resource Allocation 376
-handling all the system resources
14.4 Process and Memory Management 379
-getting the best usage of the CPU and keeping the memory secure
14.5 File Systems 381
-maintaining large structures of information across computers
14.6 Utilities 382
-a host of specialized programs that perform a myriad of tasks
14.7 Types of Operating Systems 383
-from simple batch systems to distributed operating systems
14.8 How a Scheduler Works 384
-looking at the details of process management
14.9 Implementing a Scheduler in Scheme 385
-case study: building two schedulers and testing different scheduling algorithms
14.9.1 Deciding on a data structure 386
14.9.2 Building a batch scheduler 387
14.9.3 Building a multitasking scheduler 391
14.9.4 Exercises 400
14.10 Future Trends 401
-looking into distributed, parallel, and threaded operating systems
14.11 Summary 403
14.12 Additional Reading 404
14.13 Code Listing 405
15 Artificial Intelligence 411
15.1 Artificial Intelligence 411
-making machines smart
15.1.1 Subfields of artificial intelligence 412
15.2 Historical Background 412
-from great expectations to toy solutions
15.2.1 Game playing and puzzle solving programs 414
15.3 Common Problems 416
-problems that exist in most fields of $A I$
15.3.1 Searching 416
15.3.2 Scheduling problem solved with A* search 422
15.3.3 The missionaries and cannibals problem solved with A^{*} search 426
15.3.4 Exercises 428
15.3.5 Knowledge representation 429
15.3.6 Reasoning 431
15.3.7 World or commonsense knowledge 433
15.4 Problem Solvers and Planners 435
- programs that find solutions and plan strategies
15.5 Expert Systems 436
-programs that model expert behavior in a specific task
15.6 Implementing an Expert System in Scheme 438
-case study: building an expert system shell
15.6.1 An expert in Mille Bornes 439
15.6.2 The Mille Bornes rulebase 444
15.6.3 Building a driver for Mille Bornes 449
15.6.4 Exercises 455
15.7 Natural Language Processing 456
-understanding human languages
15.7.1 Representing natural languages 458
15.7.2 Current uses of NLP 461
15.8 Robotics 463
-moving around and grasping objects in the real world 464
15.9 Vision
-recognizing objects from pictures or video images
-recognizing objects from pictures or video images
15.10 Is Artificial Intelligence Possible? 466
-some arguments for and against AI
15.11 Summary 469
15.12 Additional Reading 470
15.13 Code Listing 472
16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms 475
16.1 Soft Computing 475
-computing with uncertain information
16.2 Fuzzy Logic 476
-logic that isn't just true or false but has degrees of certainty
16.2.1 Fuzzy expert systems 477
16.2.2 History of fuzzy logic 480
16.2.3 A fuzzy expert system in Scheme 481
16.2.4 Fuzzy cheesecake 487
16.2.5 Exercises 495
16.3 Neural Networks 496
-systems that model the mechanism of the brain
16.3.1 Learning in neural nets 498
16.3.2 Comparing neural nets with other systems 500
16.3.3 History of neural networks 502
16.3.4 A neural network in Scheme 503
16.3.5 Exercises 517
16.4 Genetic Algorithms 518
-programs that evolve over time
16.4.1 Building a genetic algorithm in Scheme 520
16.4.2 Exercises 531
16.5 Mixing Metaphors to Create Better Systems 531
-the benefits of combining fuzzy logic, neural networks, and genetic algorithms
16.6 Future Trends 533
-the growth of soft computing in the future
16.7 Summary 534
16.8 Additional Reading 535
16.9 Code Listing 536
Appendix 545
Index 561
Colophon 581

INTRODUCTION TO Computer Science

1.1 What Is a Computer?

A computer can be defined as a machine capable of performing a set of welldefined functions. Modern computers are electronic devices. However, the first computing devices were mechanical in nature. It's the particular set of functions that the computer performs that separates it from microwave ovens or stereos, which are also electronic devices that perform well-defined functions.

A very simple computer that you have probably used is a four-function calculator. These calculators perform a set of well-defined functions, namely basic arithmetic functions (,,$+- \times, \div$). Such calculators may be called simple computers but not general purpose computers. Calculators lack some essential functionality, namely control functions. These control functions are used to make decisions based on certain conditions. Many calculators lack the ability to be programmed. You must enter all the necessary key strokes each time you wish to perform any calculation. Programmable calculators are an exception-they allow you to save a sequence of keystrokes that can be recalled. Calculators have limited memory, often just one memory key. ${ }^{2}$

All of these factors, control functions, programmability, and extra memory are important parts of a general purpose computer. To get a better idea why these features are useful, let's try a simple problem using a calculator.

[^0]Features important to computers

Using a calculator

Using a computer

1.1.1 Example: Balancing your checkbook

You may have done this numerous times already using a calculator. Focus on the differences between using a calculator and using a computer to perform this task.

With a calculator you might use the following approach:
Enter your starting balance (since the last time you balanced).
Call this your current balance.
For each entry in your checkbook do the following:
If it is a deposit,
add it to the current balance.
Otherwise, if it is a withdrawal (or finance charge),
subtract it from the current balance.
Otherwise, it is a check, so
subtract it from the current balance.
Your current balance now reflects your final balance.
If you want to get a total of your deposits, withdrawals, and checks paid, you must recompute that information, or modify the above approach to keep running totals of the three amounts. These running totals would be maintained on paper or in other memory keys on the calculator if such existed.

The above steps can be converted into a computer program. Computing the totals of the deposits, withdrawals, and checks paid can be easily incorporated. The computer would execute or run this program. This means that the computer follows the given steps. We want the computer to make the decisions and calculations so that our job is as easy as possible. Ideally we would only enter the amounts and their types. For example, we might enter

$$
\begin{aligned}
& \$ 5789.25 \text { start balance } \\
& \$ 100 \text { deposit } \\
& \$ 25.37 \text { withdrawal } \\
& \$ 50.67 \text { check } \\
& \$ 120.45 \text { withdrawal } \\
& \text { end }
\end{aligned}
$$

The computer will read this information and decide what calculations to perform based on the transaction type. Once finished, it could give us results like the following:

Initial balance $\$ 5789.25$
1 deposit totaling $\$ 100.00$
2 withdrawals totaling $\$ 145.82$
1 check paid totaling $\$ 50.67$
Final balance $\$ 5692.76$

All we had to do was enter the transaction amounts and types. The computer did the right things with them, and then gave us the information we wanted. For the computer to do this, it must have control functions to perform actions based on the type of transaction received-check, deposit, withdrawal, or initial balance. Extra memory is necessary to save the deposit, withdrawal, and checks paid subtotals. Lastly, programmability is necessary to provide the computer with the steps needed. Writing such programs will be the topic of later chapters.

Using a computer to balance a checkbook can easily provide more information than using a calculator would. However, using a computer necessitates the creation of a working program. This tradeoff is one that must be considered whenever contemplating the writing of a program to reduce the amount of human work required to perform a certain task. Writing a program does take time and thought, but it can be repaid in saved labor, less boredom (i.e., balancing your checking account), and less human error.

1.2 A Look Inside the Computer

The computer can be divided into two parts, hardware and software. The hardware is the "machine" part of the computer. In an electronic computer, the hardware consists of the electronics that enable the computer to perform its basic functions. This hardware cannot be altered, hence the term hardware. As we have seen in the checkbook example, for a computer to do a specific task, a program is necessary. The programs that one writes are instances of software. Software, unlike hardware, is easily changed.

How do we get the hardware to follow the steps dictated by the software? Hardware alone does nothing. It is like a calculator sitting on a desk. Software alone does nothing. It is like a person who has a sequence of calculations in mind but no calculator on which to run them. With the calculator and person, the missing pieces are the numberpad and display. They act as an interface between the person and the electronics inside. The picture is more complex with a computer.

An operating system is used to run programs on the hardware of the machine. Running a program entails having the computer hardware follow the steps given in the program. The operating system controls the hardware and allows the user of the computer to run programs (software) on that computer. A simplified diagram of a computer system looks like this:

Why computers need control functions, memory, and programmability

[^1]Hardware versus software

Operating systems

Networks

Internet and World Wide Web

The person (or user) sends commands to the operating system, and gets information back [1]. The operating system gives instructions to the hardware and the hardware returns results to the operating system [2]. The person creates programs (software) [3], which can be run on the hardware [4]. The operating system is used to invoke programs such that they may be run on the hardware [5].

The focus of this book is not on machine hardware or operating systems, but on the creation of software. Only a simple version of machine hardware will be shown in the later chapters. Operating systems are covered in Chapter 14.

1.3 Connections Between Computers

Computers can be connected to other computers in what is termed a network. Computers connected together can send and receive information to one another. There are extensive networks linking computers around the world. Users can send electronic mail (e-mail) to other users on different machines or read messages over computer bulletin boards from people in numerous countries. One such bulletin board forum, USENET, covers thousands of topics and extends to millions of computers around the world.

The extensive networking of computers grew into the present day Internet, a network that links millions of computers. The Internet was used originally by only a small percentage of computer users primarily for electronic mail and data transfer. This changed with the development of the World Wide Web project in 1990. This project included the creation of a new language, HTML, to create hypertext documents-documents that have links to other sections of the document or to other documents. Browsers were developed to provide simple access to data on the World Wide Web (also called the Web or WWW) and support multimedia data (pictures, movies, and sounds).

The Web has created an explosive growth in the computer industry by providing a simple means of presenting and receiving information from other people throughout the world. Computer usage on the Web is growing exponentially. Two hundred million people are expected to be using the WWW by the year 2002.

1.4 What Is Computer Science?

Computer science can be defined as the study of computers-their design, capabilities, and limitations. Most of computer science falls into the domains of hardware or software. There is one other domain, theory, that is primarily associated with software but can involve hardware. Theory addresses issues of complexity, algorithms (ways of doing things), efficiency, and limitations of algorithms and computers, among other things. Some elements of computer theory will be explored in later chapters.

Teaching you how to create programs is one of the goals of this book. However, do not be misled. Just as there is more to math than arithmetic, and more to music than writing circles and lines on a staff, there is more to computer science than writing computer programs. Computer science is a discipline in its own right with theories, goals, beliefs, and limitations. This text will give the reader a taste of what the discipline of computer science is by going beyond simple programming and looking into problem solving, design, and abstraction. The major subfields of computer science will be explored individually in this text showing each field's accomplishments and goals. The main focus will be on the fields within software.

1.5 Subfields Within Software

Within software a number of subfields have arisen as computer science has matured. Below is a list of these subfields:

- Operating systems
- Compilers, interpreters, and programming language design
- Database management systems
- Artificial intelligence
- Soft computing
- Graphics

1.5.1 Operating systems

Operating systems provide a link between the user, the hardware, and the software. The operating system creates an environment with specialized commands that let the user perform various sophisticated actions. Exactly what this environment looks like and what actions are supported depend on the particular operating system. Some of these actions may include

- displaying information on terminals or printing on printers
- sorting, searching, and restructuring information
- hiding or making available information to others using the same computer
- modifying or creating information
- getting instructions on using the operating system itself
- providing access to programs that perform a wide array of tasks
- accessing or sending information to other computers

Theory

Going beyond
programming

Functions of operating systems

Peripherals

Time sharing

Machine language versus high-level programming languages

- sending information to other people on the same or different computers

Operating systems perform other functions. Computers have keyboards (or other input devices such as a mouse or writing pad) and terminals that allow people to send and receive information to and from the computer. There are other peripheral devices, such as line or laser printers that produce paper copies of information stored in the computer, and disk drives that give the computer access to large amounts of information. The operating system controls all of these resources.

Larger computer systems allow more than one person to use the computer simultaneously. The operating system tries to give each person the illusion that he or she is the only one using the machine. This is termed time sharing. This is done by having the computer split its attention among the different users, somewhat like a parent dealing with many children at the same time. The operating system allocates the computer's resources, such as line printers and disk drives, among the people using the computer.

Operating systems may provide support for network features such as electronic mail or access to bulletin boards. Transmitting data across networks to or from other computers is sometimes handled by the operating system as well.

1.5.2 Compilers, interpreters, and programming languages

Hardware performs a limited number of simple functions. This is because hardware design makes a tradeoff between simple, fast functions (or instructions) and complex, slower instructions. Designers have opted for simple, fast instructions due to the performance improvements given to the computer. Having many complex, esoteric functions (like square root or logarithm) built into the hardware is not worthwhile due to their relative infrequency of use and the overall system performance decline they cause. ${ }^{3}$

It is possible to write programs using only the instructions that the hardware can perform. This hardware language is called machine language. Writing large, sophisticated programs in machine language is a tedious and rather unexciting process. This is due to the simple nature of machine languages. It is like trying to discuss your feelings about something important to you and only using kindergarten-level words. To remedy this, high-level programming languages were developed as a link between the hardware and programmers. Human or natural languages do not make good programming languages as they are very ambiguous and highly context sensitive. Words mean different things depending on their position or use in a sentence. Look at the following sentence's use of the word "can."

[^2]Can the boss can me from the can factory because I can no longer can cans as fast as she can?
High-level programming languages are somewhat of a compromise between human-spoken languages and machine languages.

Compilers (translators) and interpreters (simulators) enable the computer to understand programs written in a high-level programming language. Compilers translate programs in these new languages into the machine language that the computer understands. Interpreters do not produce translated programs like compilers, but instead simulate the execution of programs to produce the desired results. This simulation results in slower execution of the programs as compared to a compiled program. Compilers and interpreters are programs that are written in a language that the machine already understands. Therefore, one can build languages on top of other existing languages. Look at mathematics for an analogy. Once you know the language of addition, subtraction, and so forth, you can build up to algebra, and then you can build calculus upon your knowledge of algebra and basic math operations.

The transition of programs to computer "understandable" machine language is diagramed below.

Details on how interpreters and compilers are written will be covered in Chapter 13.

1.5.3 Database management systems

Another subfield of computer science is database management systems. One of the major uses of computers is in storing, retrieving, and updating information (data). A collection of data is referred to as a database. Just as operating systems act as an environment for users, database management systems are programs that provide an environment that is tailored for the creation, modification, and access of data. This new environment is often less flexible than one that a compiler or interpreter creates with a new language. However, the database management environment has many specialized features that are unique to the problems that you encounter when dealing with large amounts of data. Using such a system, you can easily make complex queries of the data, add new information, or change existing information.

For example, you may have a database of all the friends that you have with information on each person indicating their address, phone number, birth date,

Compilers and interpreters

Artificial intelligence

Soft computing

Fuzzy logic

Neural networks
Nain
association to you, and other pertinent information. With a database management system you need not worry about how that information is represented in the machine. There are still some things you must decide about the representation, but they are all on a very high level. You could easily make queries into such a database to print all your friends who have a birthday this month, or print everyone who is between the ages of twenty and twenty-five, in the hiking club, and living in San Francisco or New York. More useful actions can be performed, such as easily removing everyone who lives in Los Angeles.

Database management systems will be covered in Chapter 12.

1.5.4 Artificial intelligence

The most controversial field of computer science is artificial intelligence. Artificial intelligence deals with the simulation or modeling of "intelligence" on computers. It comprises many subfields that each address some aspect of intelligence. These include

- Natural language processing:

Understanding, translating, and paraphrasing spoken languages such as English or German

- Machine learning:

Learning new information from existing or newly obtained knowledge

- Problem solving:

Solving tasks within realworld environments

- Expert systems:

Embodying the knowledge of experts in a particular domain

- Robotics:

Creating robots that can move about and function in real environments

- Vision:

Recognizing three-dimensional objects given two-dimensional images
Chapter 15 will focus on each of these subfields, touching upon their problems and accomplishments.

1.5.5 Soft computing

Soft computing deals with nonexact or subsymbolic information. The field comprises various fields, of which fuzzy logic, neural networks, and genetic algorithms are the most noteworthy.

Fuzzy logic extends familiar, two-value logic that supports only true or false values, and extends it to incorporate multivalued logic. Multivalued logic lets one specify degrees of belief such that fuzzy concepts like tall, heavy, and small can be expressed more naturally. Fuzzy logic is primarily used to build fuzzy expert systems that are used often in control devices like antilock car brakes, washing machines, and subways.

Neural networks are loose simulations of neurons in the brain. They offer an alternate way of representing information from that used in traditional artificial intelligence, which uses symbols to represent knowledge. Neural networks
represent information subsymbolically. Information is distributed throughout the network. This has advantages and disadvantages over symbolic, exact representations.

Genetic algorithms simulate the process of evolutionary change. Information is represented as chromosomes that can change through crosslinking (two chromosomes splitting to form two new chromosomes) and mutation (a piece of a chromosome changing). The chromosomes that perform better are kept, and the system evolves over time to yield a good solution to the problem at hand. Genetic algorithms work by going through a series of evolutionary changes until the system performs at a certain level.

Chapter 16 covers these subfields of soft computing, giving examples of each in Scheme.

1.5.6 Graphics

Computer graphics involves modeling and simulating two- and three-dimensional objects on the computer. Examples of objects that have been modeled in simulated environments include aircraft in flight, ships, automobile aerodynamics, stress and metal fatigue, CAT (Computer Axial Tomography) and MRI (Magnetic Resonance Imaging) for medical examination of bones and tissues.

The field of computer-aided design (CAD), which helps people with the design of anything from buildings to bolts, depends on computer graphics. Architects use CAD tools to design buildings and show clients how the building will look once it is completed. In fact some of these tools even allow you to do a virtual walk-through of the building to get a feel for the space and the lighting.

Much work is done in graphics for the movie industry. This work may involve augmenting realworld scenes with lifelike, realistic special effects. Another avenue is creating fantastic special effects that would be impossible to create in the physical world, such as flying faster than the speed of light or descending into a black hole.

1.5.7 Exercises

1.1 Describe the following terms in your own words:

> computer
hardware
software
operating system
compiler
database management system
artificial intelligence
soft computing
graphics

Genetic algorithms

Hardware

Parallel programming

Network issues

Fault tolerance

1.6 Subfields Within Hardware

The following list gives some of the major subfields within hardware:

- Integrated circuit design and manufacturing
- Circuit design
- Computer architecture

The electronics of modern day computers are made up of integrated circuits. These are small electronic devices that perform very specialized functions. Integrated circuits are made from silicon that is microscopically etched. The heart of most computers, the central processing unit, is typically a single integrated circuit.

Circuit design involves the combination of integrated circuits and simpler electronic components to create electronic circuitry that can perform more sophisticated functions. Computers are made up of integrated circuits and other simpler electronic devices that are joined on a circuit board-sometimes called a motherboard.

Computer architecture deals with the design of electronic circuits to create functioning computers. There are numerous design decisions that affect the capabilities, cost, and speed of the computer.

1.7 Subfields Within both Software and Hardware

There are areas within computer science that are closely tied to both hardware and software. These include

- Parallel processing and concurrent programming
- Networks and communication
- Fault tolerance

The part of the computer that does the calculations and decision making is called the processor. Parallel processors are computers that have more than one processor. This enables calculations to occur simultaneously (in parallel). Concurrent programming addresses the problems of creating computer programs that take advantage of these parallel architectures. The parts of programs that can be run simultaneously are sent to different processors, such that they can all be run in less time than if they were run sequentially on a single processor.

The widespread growth of networks such as the Internet (introduced in section 1.3) has placed demands on researchers to improve the capabilities of networks. There are both hardware concerns dealing with the electronics and circuitry of the connections between the machines, and software concerns focusing on the communication of information from machine to machine. Speed, security, and information integrity are areas of concern in network hardware and software. In addition, there are theoretical aspects of networks concentrating on efficient routing and layout of the networks.

Fault tolerance deals with the creation and testing of hardware and software that can handle erroneous or unexpected situations gracefully. Such robustness is critical with many applications, especially when lives depend on the proper
functioning of the system, such as computer-controlled antilock brake systems in cars or air traffic control systems in airports.

1.7.1 Exercises

1.2 List some applications for which computer networks would be useful.
1.3 List some products using computers that must be fault tolerant systems.
1.4 List some applications where parallel processors would be beneficial in improving the performance of the system.

1.8 Summary

- General purpose computers can be programmed, have control functions to make decisions, can perform numerical calculations, and have a great deal of memory.
- Hardware makes up the electronics of computers.
- The programs that can run on computers are referred to as software.
- Operating systems provide a level of abstraction allowing various useful actions to be easily performed.
- Operating systems handle many of the peripheral devices and shared resources of computer systems such as terminals, keyboards, line printers, and disk drives.
- Compilers translate high-level languages into machine language that can be run on the computer.
- Interpreters simulate the execution of programs written in high-level languages.
- Database management systems provide a specialized environment for organizing and searching through large amounts of data.
- Artificial intelligence includes those aspects of software that involve the simulation of some aspect of cognition.
- Soft computing involves the representation of multivalued and subsymbolic information that is needed to handle information that is not sharply definable.
- Computer graphics is concerned with modeling two- and three-dimensional objects.
- Hardware subfields cover the spectrum from the creation of integrated circuits to the design of computers using such components.
- Parallel processing, networking, and fault tolerance are three fields that cross the boundaries into both hardware and software.

1.9 Additional Reading

Brookshear, J.G. (1997). Computer Science: an Overview, Fifth Edition, AddisonWesley, Reading, MA.

Goldschlager, L. and Lister, A. (1988). Computer Science: a Modern Introduction. Second edition, Prentice Hall, Englewood Cliffs, NJ.

PROBLEM SOLVING AND Problem Abstraction

2.1 Problem Solving

People spend a great deal of time solving problems, often without consciously thinking about them. For example, when you go grocery shopping, you may encounter and solve a number of problems without paying attention to them. You might be looking for cream of asparagus soup. You have techniques that you use to find this particular flavor of soup. You probably don't look for it among the frozen pizzas. You may ask someone where it can be found to narrow your search. You might ask, "Where is the cream of asparagus soup?" and be told, "The soups are on aisle four," in which case you would go there and search among the soups. You probably wouldn't respond with, "That's fine, but I want to know where the cream of asparagus soup is!"

There are countless examples of problem-solving situations that seem trivial. There are other circumstances that we might actually consider problems because they involve more thought. These include solving math word problems, such as "if 12 ounces of soup costs 59 cents and 20 ounces of the same soup costs one dollar, which is a better bargain?"

Computers have less general knowledge than humans do. This is why it is necessary to supply incredibly detailed information to instruct computers to carry out even seemingly simple or obvious tasks. What you should try to develop in this chapter are the skills involved in taking an English problem description and solving it by creating a detailed set of instructions that a machine can follow. The rest of this book will show the specifics of creating computer program solutions to problems, in other words, going from problem descriptions in English to working computer solutions.

A typical problemsolving situation

Being specific

Understanding the system

Central processing

 unitThe first requirement in problem solving is a thorough knowledge of the capabilities of the system with which you are trying to solve the problem. You typically need not know how the system works, just what it can do. For example, you can instruct a friend to get to your house without having the foggiest idea about how her brain works. You do know, however, the level of instructions she can follow. The instructions that you would give to a two-year-old differ from those you would give to an adult. Similarly, you need to know what computers can do and what they can understand before you begin to instruct them to carry out specific tasks.

2.2 What Computers Can Do

For the most part, computers are stupid machines. They can perform only a limited number of simple operations, usually on the order of fifty to a few hundred. Examples of such computer operations or instructions include addition, subtraction, checking if a number is less than zero, and repeating a collection of instructions. Most of these operations deal with numerical computations or controldeciding what to do next. Even multiplication may not be a standard operation but instead be implemented as a series of additions.

At this point it may seem a wonder computers do the things that they do. After all, computers help people make business decisions, predict the weather, and compute square roots of large numbers in less time than it takes us to write the numbers on a piece of paper. How can this be?

The picture of the computer that many people have is that of a sophisticated, powerful machine. However, the picture that has been painted here is that of a rather dismal idiot savant. What has been illustrated is the core of the computer, the central processing unit or CPU. You don't normally see this low level of the machine; instead, you see a much different environment, which is the result of various levels built upon the basic CPU. Each level allows more complex, specialized actions to be performed. As discussed in Chapter 1, an operating system is one such level of abstraction that can be built upon the underlying CPU. This provides a new environment with a new means of communicating with the hardware. Computers such as Macintoshes, PCs, and video games (that have computers) all have environments that are built upon the hardware. These environments make the computer appear powerful and sophisticated.

Our mental development can provide an analogy. As infants, we had fewer capabilities, but each year we learned more and more, adding levels of knowledge. One such level was language, which gave us the ability to communicate and to read this textbook. If we look at the brain as a CPU, as infants, our brains performed only simple actions. The more we learned, the more abstract and powerful our brains became.

2.3 Computer Languages

Just as humans understand language, so do computers. And computers, like humans, can understand more than one language. Computers typically use two levels of language. The lowest level is the machine language. This language is used to instruct the computer hardware to carry out its basic CPU functions. The next level consists of languages that are built up from the machine language. These languages have particular characteristics and capabilities just as our spoken languages do. Some African languages do not have words for concepts like ownership. Indonesian has many different greetings/blessings to say to someone depending on the time of day. Similarly, each computer language has its areas of specialty and weakness. A computer language has a particular mind set or programming style. If you speak more than one language, you know that there are different ways of thinking or expressing concepts or ideas in each language. Similarly, two solutions to the same problem, each solved using a different computer language, can be different in form and approach.

Computer languages are becoming more powerful and sophisticated; however, no computer language approaches human spoken language. The ambiguity and complexity of our spoken languages has made it extremely difficult to create a computer program that can understand them. This creates a gap that must be bridged. How do we go from English problems to computer language solutions? The next section will focus on this issue.

Let's review what has been covered:

- CPUs perform only a set of very simple operations.
- Levels of abstraction built upon the CPU make computers more powerful and easier to use.
- Programming languages are a level of abstraction that provide an environment that is closer to the way we think.
- It is from this programming language environment that we will build programs to solve our needs and to extend the computer's capabilities further.

2.4 Problem Abstraction

The first step in going from English problems to computer solutions is thinking about the problem in terms of the environment in which we will solve the problem. This environment may be some programming language environment. It may be the lowest-level machine language. It may be a database management system. Regardless of the environment, we must think of the problem in terms of what the environment allows and understands. To do this, we need to have a solid understanding of the environment.

The environment in which we will begin problem solving exercises is a robot simulation. This robot, named Bob, lives in an artificial world that contains colored blocks. The blocks are movable and stackable. The robot understands the following commands:

Machine language

Summary

Knowing the problem domain

- move forward distance meters
- turn left number degrees
- turn right number degrees
- pick up object
- drop object
- look
- lower pen
- raise pen
- memorize sequence-name instruction-sequence
- perform sequence-name

The words in italics represent variables-actual values would be used in their place in commands to the robot.

The goal is to instruct the robot to carry out simple tasks in this world. The first task is to move one of the objects in this artificial world.

It's a good idea to learn the capabilities and limitations of the system in which you must program. Let's try some of the commands and see what effect they have. In the robot sessions that follow, our requests to the robot will be shown in italics. The robot's replies will be shown in boldface.
request: look
green block at 0 degrees, 3 meters away
yellow block at 90 degrees, 2 meters away
The robot returns the position of the blocks in a standard way, telling us the color of the block and its position in degrees and meters from the robot. In this world, 0 degrees is straight up (north), 90 degrees is right (east), 180 degrees is down (south), and 270 degrees is left (west).

The diagram below illustrates the initial robot world. The robot is facing up (north).

green

yellow

Let's try some more commands:

```
request: pick up green block
Error: green block is not reachable
request: drop yellow block
Error: yellow block is not in my possession
request: turn right 90 degrees
right turn complete
request: look
green block at 270 degrees 3 meters away
yellow block at 0 degrees 2 meters away
request: turn left 90 degrees
left turn complete
request: move forward 2 meters
move complete
request: look
green block at 0 degrees 1 meter away
yellow block at 135 degrees 2.83 meters away
```

The memorize command is used to name a sequence of steps that we wish the robot to perform later. This is useful to abbreviate an often-needed sequence or to create a logical collection of steps that help make the overall program more readable. The memorized sequence of commands is performed when a perform command is issued.

The robot world looks the same at the end of this sequence of commands as it did at the start.

The robot was instructed to turn to the right, look, then turn back, then move up towards the green block. After that the robot memorized a sequence to turn around to the left, move two meters, turn back around, and look. Next the robot

```
request: memorize go-back-2-turnaround-look
```

request: memorize go-back-2-turnaround-look
turn left }180\mathrm{ degrees
turn left }180\mathrm{ degrees
move forward 2 meters
move forward 2 meters
turn left 180 degrees
turn left 180 degrees
look
look
end
end
okay
okay
request: perform go-back-2-turnaround-look
request: perform go-back-2-turnaround-look
left turn complete
left turn complete
move complete
move complete
left turn complete
left turn complete
green block at 0 degrees 3 meters away
green block at 0 degrees 3 meters away
yellow block at 90 degrees 2 meters away

```
yellow block at 90 degrees 2 meters away
```

.

Memorized sequences
performed these memorized steps, thereby returning the robot to its starting position.

Now that we have an idea of what the robot can do, let's get back to the task at hand-making the robot move an object.

2.4.1 Example: Move the yellow block up three meters

This problem can be thought of as a sequence of operations:

- move to the yellow block
- pick up the yellow block
- move up three meters
- drop the yellow block

Initially the robot is facing up towards the green block. To move the robot to the yellow block, the robot must face in that direction.
Moving to the yellow block entails the following:

```
turn right 90 degrees
move forward 2 meters
```

Picking up the yellow block can be done with one command:

```
pick up yellow block
```

Moving up three meters is done as

```
turn left 90 degrees
move forward 3 meters
```

Dropping the yellow block is expressed as

```
drop yellow block
```

Putting it all together, we get

```
turn right 90 degrees
move forward 2 meters
pick up yellow block
turn left 90 degrees
move forward 3 meters
drop yellow block
```


2.4.2 Ambiguities

The above problem presented a subtle ambiguity. The problem was to move the yellow block up three meters. The ambiguity lies in the problem statement and in the operations of the robot. First, in the problem statement, no mention is made as to whether the yellow block could be shifted to the left or right when it is moved up three meters. Second, the description of how the robot picks up and drops objects was not very detailed. Does the robot need to be touching the object to pick it up? Does the robot need to be facing the object to pick it up? Does the robot drop the object in the reverse manner as it was picked up, or below, behind, or to the side? Before we can respond to any clarification in the problem statement, we must be certain of these questions about the robot.

Let's assume that the robot must be touching and facing the object before it can be picked up and that the object is dropped in front of the robot. We'll refine the problem statement to be moving the yellow block such that it is three meters directly above its previous position; hence, there should be no final left or right shifting of the block. Now do we have enough information to solve the problem?

We can review the steps we took. Moving to the yellow block is still okay, as is picking up the yellow block. Moving up three meters seems okay, but there is an ambiguity lurking here. Does the object stay in front of the robot as it moves and turns?

Let's assume that it does. By turning left, the block is moved so that it is no longer to the right but above the robot. When the robot moves three meters, the block has moved more than three meters from its original position, because the robot's turning the block moved it up an amount equal to the diameter of the robot. The diagram below should help you visualize what is going on. The dotted block labeled block start represents the yellow block's initial position. The robot has moved next to it from its initial position. The different dashed shapes represent different positions of the yellow block during its movements.

The block moves immediately above the robot to the position labeled after turn after the robot rotates left. Next the robot moves up taking the block ahead of it. If the robot drops the yellow block after moving it up three meters, it ends up in the location indicated by the dashed box labeled after move. The position where we would like the block to be dropped is labeled desired spot. To get to this position, the robot must turn to the right by 90 degrees, effectively undoing the left turn taken before the robot moved up three meters.

The corrected commands are given below:

```
turn right 90 degrees
move forward 2 meters
pick up yellow block
turn left 90 degrees
move forward 3 meters
turn right 90 degrees
drop yellow block
```

Representing solutions in pseudo code

2.5 Pseudo Code

Sometimes a problem is difficult to think of in terms of the commands of the system being used. In this case, we use an intermediary language known as pseudo code. Pseudo code lies between English and the environment in which we want our solution to be. There are no definite rules for how pseudo code must look. It is merely a description of the problem that comes closer to the desired solution. In the previous problem, our pseudo code was

```
move to the yellow block
pick up the yellow block
move up three meters
drop the yellow block
```

The following two problems give more examples of using pseudo code.

2.5.1 Example: Draw a two-by-two meter square around the yellow block

Before we begin this problem, we need to know the position of the robot in relation to the yellow block, the size of the robot and the yellow block, and the position of the robot's pen relative to the robot. Assume that the robot is facing up directly in front of the yellow block. Also assume that the blocks are one meter wide by one meter deep, that the robot is one meter in diameter, and that the pen is in the center of the robot. Thus the robot must follow a path immediately around the edge of the yellow box to make a two meter by two meter square. The steps to follow for this problem are

- have the robot lower the pen
- move the robot left one meter
- move the robot up two meters
- move the robot right two meters
- move the robot down two meters
- move the robot left one meter
- have the robot raise the pen

Trace out the robot's movements on the diagram below.

Below are the commands to move the robot. Above each command is a comment (a line beginning with a semicolon ";") that indicates the step involved. Comments are not interpreted as part of the program.
; have the robot lower the pen
lower pen
; move the robot (currently facing north) left one meter

```
turn left 90 degrees
move forward 1 meter
```

; move the robot (currently facing west) up two meters

```
turn right }90\mathrm{ degrees
move forward 2 meters
```

; move the robot (currently facing north) right two meters

```
turn right 90 degrees
move forward 2 meters
```

; move the robot (currently facing east) down two meters

```
turn right 90 degrees
move forward 2 meters
```

; move the robot (currently facing south) left one meter
turn right 90 degrees
move forward 1 meter
; have the robot (now facing west) raise the pen
raise pen
The diagram below shows the trace of the robot's motions. The robot is shown in the end position. He is facing left. The dashed line represents the path the robot followed.

2.5.2 Exercises

2.1 How would you change the above program to have the robot travel counterclockwise?
2.2 Write a sequence of steps that instructs the robot to draw a triangle around the yellow block. Assume that the robot starts in the same position as in the last example. Make the triangle six meters on each side.
2.3 Assume that the robot is between the two blocks with the green block to the immediate left and the yellow block to the immediate right. In other words, the three objects are in a line, with both blocks touching the robot. Write a sequence of steps to command the robot to draw a rectangle around both blocks. What assumptions are you making in your solution?

Simplifying code with memorized sequences

2.6 Using Memorized Sequences

Memorized sequences provide a way to break down a problem into subproblems. This is extremely helpful with larger problems, since they can rapidly become incomprehensible. Also, collections of commands that need to be repeated in the solution can be repeated by invoking the memorized sequence multiple times. This saves a great deal of writing and helps eliminate errors.

2.6.1 Example: Write the robot's name-BOB

For this problem, let's assume that the robot is in an empty world, so we don't need to worry about running into blocks. Also assume that the robot begins at the lower left corner of what will become the " B " and that the robot is facing up. The diagram below shows what the name "BOB" should look like.

The initial pseudo code for this problem follows:

- draw the first " B "
- move into position for the " O "
- draw the "O"
- move into position for the second "B"
- draw the second "B"

Since we will be drawing two "B"s and they are fairly complex, the commands to draw a " B " should be memorized. Positioning the robot to draw the next letter can be implemented with a single memorized sequence if we design the drawing of letters such that the robot ends up in the same position relative to the letter being drawn each time. This makes it easier to join different parts of the program without having to worry about where the robot is and which direction he is facing. We will make sure that the robot is facing up and is at the left side of the baseline (lower left corner) of the letter at the start and end of printing each letter.

2.6.2 Refinement of pseudo code

Going from the above pseudo code to actual robot commands is more difficult in this problem than in the previous problems. The problem is sufficiently complex that we should do another pass through the pseudo code and refine it, adding more details.

A good place to start is to look for repetition and see whether memorized sequences would help. The top half of the " B " is the same as the bottom, so the commands to draw half a " B " can be a memorized sequence. Similarly, the same sequence can be used to draw the left and right halves of the " O " along a diagonal. Below are diagrams representing these pieces.

Now we can refine our previous pseudo code:

- draw the first "B"
- draw the bottom half of the " B "
- move into position for the upper half
- draw the upper half of the " B "
- move to the original starting position and direction
- move right to draw the next letter
- draw the "O"
- draw the left half of the " O "
- move into position for the right half
- draw the right half of the " O "
- move to the original starting position and direction
- move right to draw the next letter
- repeat the steps for the first "B"

The high-level steps (bulleted steps) can be implemented as memorized sequences. They provide a logical breakdown of the problem and eliminate the repetition in drawing " B "s and moving the robot into position to draw the next letter. Similarly, the commands to draw letter halves can be memorized sequences. We will begin with these half-letter sequences.

Just as we must insure that the robot is in proper position and orientation before drawing each letter, we must assume some standard before each letter half is drawn. Let's assume that the robot is in the proper position and facing the direction of the first line to draw; hence, the first action of a draw half-letter sequence will be to lower the pen and start drawing. It will be the job of the whole-letter drawing sequences to insure that the robot is in the proper position and orientation before invoking each memorized half-letter sequence.

```
; Robot is initially facing north, with the pen up.
memorize draw-half-of-B
    lower pen
    move forward 0.5 meters
    turn right 90 degrees
    move forward 0.4 meters
    turn right 45 degrees
    move forward 0.2 meters
    turn right 45 degrees
    move forward 0.25 meters
    turn right 45 degrees
    move forward 0.2 meters
    turn right 45 degrees
    move forward 0.4 meters
    raise pen
end
```

```
; Robot is oriented to draw the first line, with the pen up.
memorize draw-half-of-o
    lower pen
    move forward 0.2 meters
    turn right 45 degrees
    move forward 0.8 meters
    turn right 45 degrees
    move forward 0.2 meters
    turn right 45 degrees
    move forward 0.4 meters
    raise pen
end
```

Next, we can write memorized sequences to draw the " B " and " O " and move the robot into position for the next letter.

```
; Robot is initially at the lower left corner of the "B"
; facing north, with the pen up.
memorize draw-B
    ; draw lower half of "B" first
        perform draw-half-of-B
    ; set up for upper half of "B"
        turn right 90 degrees
        move forward 0.5 meters
    ; draw upper half of "B"
        perform draw-half-of-B
    ; return to starting position and direction
        turn left 90 degrees
        move forward 0.5 meters
        turn left 180 degrees
end
; Robot is initially at the lower left corner of the "O"
; facing north, with the pen up.
memorize draw-o
    ; set up for left half of "O"
        turn left 45 degrees
        perform draw-half-of-O
    ; set up for right half of "O"
        turn right 45 degrees
        perform draw-half-of-o
    ; return to starting position and direction
        turn right 90 degrees
end
```

Notice that after each letter is drawn the robot ends up facing north, so he must turn to the right to move to the proper position for the next letter and then face north again to draw the next letter. We can write a memorized sequence to implement these steps.

```
; Move robot to draw next letter.
memorize adjust-position
    turn right 90 degrees
    move forward 1 meter
    turn left 90 degrees
end
```

Putting the whole thing together, we have:

```
; Assume that the robot is facing up at the lower left corner
; of the first "B" with the pen up.
perform draw-B
perform adjust-position
perform draw-O
perform adjust-position
perform draw-B
perform adjust-position
```


2.6.3 Exercises

2.4 How could memorized sequences be used in the previous problem (drawing a box around the yellow block) to improve the solution?
2.5 Write pseudo code to write out the numbers zero through nine. Think of how memorized sequences could make the task easier.
2.6 What memorized sequences would be helpful in writing out the letters of the alphabet?
2.7 Write a memorized sequence to stack the yellow block on top of the green block. What assumptions must you make?
2.8 Write commands to switch the order of two blocks that are stacked one upon the other. Try to use memorized sequences to simplify things.
2.9 Think of some other commands that would give the robot more flexibility.

2.7 Adding Parameters to Memorized Sequences

Using parameters to make memorized sequences more general

Some of the robot's commands allow us to specify additional information, such as a distance to move or a number of degrees to turn. By making a simple change to the way we write memorized sequences, we can allow sequences that take such information. These additional values need names by which they can be referred within the definition of the sequence. These names are called parameters. For example, imagine the following new version of the sequence adjustposition from the previous problem:

```
; Move robot (facing up) distance meters to the right.
memorize metric-move-right (distance) meters
    turn right 90 degrees
    move forward distance meters
    turn left 90 degrees
end
```

This new memorized sequence has a parameter, distance, that indicates how many meters to move to the right. To invoke this new sequence to move four meters, use the following command:

```
perform metric-move-right 4 meters
```

This will perform the steps within metric-move-right, substituting the value 4 for the parameter distance. In this example, 4 is the argument to the performed sequence.

To enhance our system further, we can add mathematical functions to our commands. This way we could write sequences like the following:

Mathematical

 functions```
; Move robot (facing up) distance feet to the right.
memorize nonmetric-move-right (distance) feet
 turn right }90\mathrm{ degrees
 move forward distance + 3.28 meters
 turn left 90 degrees
end
```

There are approximately 3.28 feet in one meter, so dividing a distance given in feet by 3.28 gives the equivalent distance in meters such that move forward (which takes meters) can be invoked with the appropriate value.

The following command results in a move of $3 \div 3.28=0.915$ meters:

```
perform nonmetric-move-right 3 feet
```


### 2.7.1 Exercises

2.10 Assume that the command turn left no longer works. Write a memorized sequence to perform a left turn using the command turn right.
2.11 Write a sequence that draws a square around a block in which the length of the side of a square is a parameter to the sequence. Assume that the value given will be large enough to draw a square around the block. Also assume that the robot is immediately below the middle of the block and is facing up.
2.12 Write a version of draw- B that takes a parameter for the height of the " B ".
2.13 Describe the robot's actions when the following commands are invoked:

```
memorize mystery (number)
 turn left 90 degrees
 move forward number meters
 perform mystery number
end
perform mystery 2
```

2.14 What actions does the robot take when performing the sequence fractal?

```
memorize fractal (number)
 move forward number meters
 turn left 45 degrees
 perform fractal number + 3
 turn right }90\mathrm{ degrees
 perform fractal number + 3
 turn left 45 degrees
 move forward number meters
end
```

Hint: assume that the robot ignores the sequence fractal when number is less than 1 . Try starting with number equal to 2 , then try 6 , and then 18 .

### 2.8 Summary

The major issues of this chapter involve the steps to take when solving problems.

- Begin by disambiguating the problem.

Any aspects that are not clearly defined should be resolved.

- Think of a solution to the problem using a sequence of abstract steps. These steps can be expressed as pseudo code.
- Refine the steps to the level of sophistication of the system on which your solution will run. This may involve several passes, each taking the solution closer to the level of the commands understood by the system.


## Programming the Computer

### 3.1 The Scheme Environment

At this point we begin to use a real programming language to perform tasks and solve problems. The programming language used is Scheme, which is a dialect of LISP. LISP is an acronym for LISt Processing. We will define what a list is and how Scheme goes about processing lists in Chapter 4.

Programming languages were introduced in Chapters 1 and 2 as environments that fill the gap between machine languages and natural languages, like English and Serbo-Croatian. In this chapter, we begin to explore the Scheme environment and what can be done within it. First we must develop an understanding of the Scheme environment.

Let's begin with four basic elements within Scheme: numbers, symbols, variables, and functions.

Numbers in Scheme are like the numbers with which you are familiar. Scheme has integers such as 42 and -87 , real numbers such as 3.1415 and -2.69 , and ratios such as $\frac{2}{3}$ (written in Scheme as $2 / 3$ ).

Symbols are names. They can have values or can be used merely for their name. For example, john is a symbol. A sentence can be constructed in Scheme by joining symbols together, where each symbol represents a word in the sentence. Scheme is a symbolic processing language, meaning it is good at performing operations on symbols such as creating, transforming, and comparing symbols and collections of symbols.

Variables are symbols that have values associated with them. Remember when you worked on algebra problems that started with "let $x$ be the number of goats in Farmer Bob's ranch"? In Scheme, $x$ would be a variable. We can use the symbol myriam as a variable by giving it a value. Later we can reference or change the value of the variable myriam.

Functions perform operations. They are Scheme's equivalent to the commands of the robot world of Chapter 2. Some of the robot commands took

[^3]Basic components of Scheme

## Scheme interpreter

Calling functions
arguments (e.g., move forward and turn left). Scheme functions can take arguments as well. This enables functions to give different results according to their arguments.

Most functions perform operations on values (arguments) and return a result. The basic four operators ( $+,-, x, \div$ ) in calculators are analogous to Scheme functions, and the numbers to which these operators are applied correspond to arguments within Scheme. When we instruct the computer to carry out the actions of a function, we are invoking or calling the function.

Some texts refer to Scheme functions as procedures. Most programming languages use functions to denote objects that return one value when invoked, whereas procedures do not return a value explicitly. This book follows this naming convention, considering functions as objects that return only one value.

The core of Scheme is the interpreter. The computer does not directly understand Scheme. It is only by virtue of the Scheme interpreter that the computer can respond to our Scheme requests and return understandable results. Requests are typed on the computer's keyboard. The interpreter receives the requests and sends the appropriate information to the computer, which performs the necessary operations and sends information back to the interpreter. The interpreter prints this information as a result that we can understand on the terminal screen. The following diagram illustrates these components.


An analogy can be drawn to the way a human interpreter interacts with two speakers who do not speak each other's languages. In the example below an English and a French speaker communicate via an interpreter.


### 3.1.1 Example: Determining the price of an item with $\mathbf{6 \%}$ tax added

To compute a tax amount, a function that can multiply numeric arguments together is needed. Fortunately, such a function exists and is called *. We need to know how to invoke functions with arguments and how to obtain the results.

Invoking (or calling) a function is done by enclosing the function name followed by its arguments in parentheses. Hence, the function call (* 7.95 1.06) multiplies 7.95 by 1.06 and returns the product, 8.42.

[^4]Before function calls can be typed into the computer, the Scheme interpreter must be invoked. Consult your instructor, system administrator, (or Scheme software manual if you have a personal computer and a Scheme interpreter) to determine how to start up Scheme. There is no standard way to exit from Scheme. Try entering (exit) or (quit) or checking if there is a menu command to exit Scheme.

Once the interpreter has been invoked, a prompt is displayed. The prompt indicates that the interpreter is ready to receive requests. This book uses the greater-than sign, $>$, as a prompt. Your prompt may be different. Throughout this book, the prompt and the interpreter's responses will be shown in boldface. The user's input will be displayed in italics. Comments appear as text following a semicolon. The comments shown are merely to provide information to the reader. They do not need to be entered for these examples to work.

When (* 7.951 .06 ) is entered in the interpreter, the product is printed. What you will see is
> (* 7.95 1.06)
8.42

## Mistakes to Avoid

Don't forget the space between the function name and its arguments (the values upon which the function acts). Thus,
(*7.95 1.06)
results in an error. Try it on your computer.

### 3.2 Numerical Functions

Scheme supports the four basic math operators found on calculators, as well as a host of other arithmetic functions. The table below is a partial list of these functions and the operations they perform.

| function | arguments | return value |
| :---: | :---: | :---: |
| + | 0 or more | sum of arguments |
| - | 1 or more | difference of arguments in left to right order |
| * | 0 or more | product of arguments |
| 1 | 1 or more | quotient of arguments in left to right order |
| max | 1 or more | maximum of arguments |
| in | 1 or more | minimum of arguments |
| truncate | nит | integer part of num (digits to the left of the decimal) |
| sqrt | num | square root of num, $\sqrt{\text { num }}$ |
| abs | num | absolute value of num, $\mid$ num $\mid$ |
| expt | num power | exponentiation (num raised to power), $n u m^{\text {power }}$ |
| remainder | num1 num2 | remainder of num1 when divided by num2 |

Starting and stopping Scheme

## Interacting with

 SchemeSimple arithmetic functions

Note: the functions - and / take at most two arguments in some implementations of Scheme. If + and * are called with no arguments, 0 and 1 (the arithmetic and multiplicative identities) are returned respectively. Given one argument, they merely return that argument. If given one argument, - returns its negation, and / returns its reciprocal. When min or max are called with one argument, that argument is returned. To get a better idea of how these functions work, look at the following examples:

```
> (*)
l
> (+)
O
> (+ 3)
3
> (* 4.56)
4.56
> (- 3)
-3
> (/ 4)
1/4 ; a ratio is returned
> (-2 3 4) ;computes 2-3-4
-5
>(/l 2 3 4) ;computes 2/3/4
1/6 ; ratios are always reduced to lowest terms
>(max -24 8 - 3 - 62)
8
>(min -24 8 - 3 - 62)
-62
> (truncate 18.5)
18
> (truncate - 8.7)
-8
> (sqrt 49)
7.0
>(expt 2 3)
8
(remainder 5 3)
2
```

The last example may be confusing. It involves understanding integer division, which requires that the answer be an integer. This is done by truncating the real division answer. Dividing 3 by 4 gives us 0.75 , which when truncated is 0 . This means that we must subtract $0 \times 4$ from 3, leaving 3; hence, the remainder is 3. If we were to make a diagram of this, it would look like
0 rem 3

$4 |$| 3 |
| :---: |
| $\frac{-0}{3}$ |

### 3.2.1 Common errors when calling functions

Many types of errors can occur, even at this early stage of learning to program. It is easy to get frustrated thinking that the machine doesn't work when an error message is given. Rather than give up, hit the computer, wish you had never taken a computer class, or try to get your day job back, it's best to take a deep breath and actually read the error message. Not everything in the message may be helpful, but often you can learn what caused the problem. Since each implementation of Scheme has its own way of handling error messages, it is impossible to give all possible errors that you might encounter. The important thing is to be aware of the types of errors that can arise and be familiar with the error messages given by your system.

Some of the more common errors that can occur and the reasons they occur are given below:

- Too many arguments:

This is often caused by having a mistaken understanding of the arguments that the function takes or forgetting a parenthesis after the last argument.

- Too few arguments:

This can be caused by a mistaken understanding of the arguments that the function takes or by including an extra parenthesis before the last argument.

- Invalid function name:

This is most often a spelling mistake or simply using the wrong name for a function (e.g., using power instead of expt).

- Type clash:

A type clash is a mismatch of the value types (e.g., integer or real) that a function allows. For example, remainder works with integers and not real numbers.

- No output:

This is most likely due to missing right parentheses. Try entering one or more right parentheses until you get a response.
Below are examples of these errors.

Integer division and remainders

```
> (abs 3 4)
Error: Too many arguments: (abs 3 4)
> (-)
Error: Too few arguments: (-)
> (power 3 4)
Error: Unbound variable: POWER
> (remainder 3 4.2)
Error: Expected INTEGER
>(+ 3 (* 4 5)
```

For this last input, the interpreter will not return a value, nor will it print another prompt. This is because it is waiting for the second right parenthesis to end the + function call. As a general rule if you are waiting a long time for a response, try typing in some right parentheses.

Not all error messages are as readable as those given above. Learning how to read complex error messages is an important skill; it can save you a great deal of frustration and wasted time.

### 3.2.2 Exercises

3.1 What do the function calls below return when typed into the Scheme interpreter?
(-4)
(/4)
(+ 4 2 3 )
(- $\left.4 \begin{array}{ll}-4 & 3\end{array}\right)$
(- $\left.\begin{array}{lll}-4 & -2 & -3\end{array}\right)$
(/ 246 2)
(expt 4 3)
(remainder 7 3)
(remainder 3 7)
3.2 What do the function calls below return? Some of them may produce errors.
(sqrt 9 16)
(sqrt $9+16$ )
(-2 4)
(*2 3 4)
(+)
(-)
(*)

```
(/)
(+ 3)
(remainder 4.2 1.7)
```


### 3.2.3 Function composition

Functions can be composed (combined). For example, the price with $6 \%$ tax on the sum of $\$ 12.69, \$ 186.34$, and $\$ 2.74$ can be expressed in Scheme as follows:

```
> (* (+ 12.69 186.34 2.74) 1.06)
```

213.8762

The three prices are added first, and then their sum is multiplied by 1.06 . Only one value, the product, is returned as the value of the function call. Notice that the sum is not printed; it is only computed as part of the final multiplication calculation.

In most instances, wherever an argument is expected, a function call can take its place. The outermost function is calculated last and its value is printed. This mechanism will be explained in the next section on the evaluator.

### 3.3 The Evaluator

Function calls, variables, and numbers all can be entered into the interpreter and evaluated. The generic name for anything that can be evaluated is an expression. Another name used instead of expression is s-expression. This stands for symbolic expression.

We've already written some simple expressions in Scheme. Now let's get a better understanding of how Scheme works and learn more about existing features of the system.

The Scheme evaluator is the heart of every Scheme system. The evaluator gets your input requests and evaluates them according to the following rules:

- numbers evaluate to themselves
- function calls are evaluated in the following manner:
the arguments are evaluated;
if errors occur, an error message is printed;
otherwise,
the function is applied to the evaluated arguments;
the result is returned
Notice that in defining the evaluation of a function, one of the steps is to evaluate the arguments to the function. Evaluating the arguments allows us to use function calls as arguments to functions. If Scheme only allowed numbers as arguments, it could have much simpler evaluation rules. The definition we have used includes the term it is defining; this is a recursive definition. We examine recursion in Chapter 6.

Another term to pay attention to in the definition of evaluate is apply. Applying a function to its evaluated arguments means that the action of the function is performed on the arguments. This yields a result, which is then returned as the

Composing functions

Expressions and $s$-expressions

The workings of the evaluator

Evaluating arguments

Applying the function
value of the function call.
Let's use some examples to see what goes on in the evaluator. Once again, the user's input is in italics, the computer's output is in boldface, and explanations of what the evaluator does is in regular type preceded by semicolons.

| > 42 | ; numbers evaluate to themselves |
| :---: | :---: |
| 42 |  |
| > -18.4 | ; negative and real numbers are numbers too |
| -18.4 |  |
| > (+12) | ; this is a function call, and + is a valid function |
| 3 | ; 1 evaluates to 1 , and 2 to 2 |
|  | ; applying + to 1 and 2 yields 3 |
| > (+ (* 2 3) 4) | ; this is a function call, and + is a valid function |
| 10 | ; (* 23 ) is the first argument to be evaluated ; * is a valid function |
|  | ; its arguments 2 and 3 evaluate to 2 and 3 |
|  | ;applying * to 2 and 3 yields 6 |
|  | ; the second argument, 4, evaluates to 4 |
|  | ; lastly, +is applied to 6 and 4, yielding 10 |

### 3.3.1 Exercises

3.3 Write out the steps the evaluator takes when evaluating the following function calls:

```
(sqrt (+ 9 7))
(* - 3 (+ (* 2 3) 4))
```

3.4 To what do the function calls below evaluate? Some of them may produce errors.

```
(+ 4 (- 3) - 2)
(+ (- 3) (/ 2))
(+ (* 2 3) (- 8))
```


### 3.3.2 Example: Compute your income tax

To compute income tax, assuming a fixed tax rate of $15 \%$, we'll use the following formula:

```
tax \(=(\) work-income + interest-income - standard-deduction \() \times 0.15\)
 - (withholding + tax-credits)
```

Assume the actual values for this formula are

| work-income | $\$ 25,174.65$ |
| :--- | ---: |
| interest-income | $\$ 132.67$ |
| standard-deduction | $\$ 6,050.00$ |
| withholding | $\$ 3,673.83$ |
| tax-credits | $\$ 125.00$ |

We can write the formula in Scheme in one of two ways. One way is to think of the exact sequence of steps that must be taken, beginning with the first operation, then the second, and so on. Alternatively, we may view the computation more abstractly, beginning with the highest-level operation to be performed, then continuing with a sequence of refinements leading to simple operations that can be entered into the interpreter.

These are such common means for problem solving that they have special names, bottom-up and top-down design, respectively. One approach is not necessarily better than the other for all problems, but for certain problems one approach may lead to a solution with less mental effort than the other approach would. Often it is a matter of what works best for the individual programmer. For complex tasks, both techniques are often used together. We will see examples of this when we begin writing larger programs.

### 3.4 Bottom-Up Design

Let's create a bottom-up solution. We start with the bottommost items, in other words, with the first actions that must be performed. The first computation is to determine the taxable income. In Scheme, we would write

```
> (+ 25174.65 132.67 -6050)
19257.3
```

Notice that we didn't use commas when entering numbers. Commas are never used with numbers in Scheme; however, the decimal point is needed. We entered a negative number for the standard deduction because it is subtracted from the two income amounts. Scheme allows a mixture of real numbers and integers.

Next, the tax to pay (tax debit) is the product of the total taxable income and the tax rate. Recall that the arguments to a function may be function calls themselves.

```
> (* (+ 25174.65 132.67 -6050) 0.15)
2888.6
```

The next step is to determine the total credits.

```
> (+ 3673.83 125)
3798.83
```

Lastly, we subtract the total credits from the total debits.

```
> (- (* (+ 25174.65 132.67 -6050) 0.15) (+ 3673.83 125))
-910.232
```

We get $\$ 910.23$ back!

Specifying numbers in Scheme

A bottom-up approach involves building up to the solution, using each step along the way as part of the next step toward the solution. We did not have to enter each of these lines into the interpreter. All of the preliminary work could have been done on paper. The partial results returned at each step could have been used directly in obtaining the next result, so that the last step could have been

```
> (- 2888.6 3798.83)
-910.23
```

A longer approach was shown so that each step along the way could be seen and partial results could be generated to confirm that no mistakes (especially with parentheses) were made along the way.

The parentheses are extremely important. You can't use extra parentheses to make it look nicer, or fewer because it already looks too ugly.

### 3.5 Top-Down Design

Now let's try the top-down approach. In top-down design, the problem is first looked at from higher levels beginning with the most abstract definition that can succinctly describe the solution. In this case, it breaks down to looking at the amount of tax due as being equivalent to the difference of total debits and total credits. In other words,

$$
\text { tax-due }=\text { total-debits }- \text { total-credits }
$$

Next, a process of refinement is employed to add more details to the solution. We need to define total-debits and total-credits. total-debits is the product of taxable-income and the tax rate, 0.15 . total-credits is the sum of withholding and taxcredits.

```
tax-debits \(=\) taxable-income \(\times 0.15\)
tax-credits \(=\) withholding + tax-credits
```

We know what all these values are except taxable-income, which is the sum of work-income and (interest-income minus standard-deduction). In the bottom-up example above we simply added three values rather than express a sum and a difference. The same can be done here.

Putting everything together and typing it into the evaluator yields

```
> (- (* (+ 25174.65 132.67 -6050) 0.15) (+ 3673.83 125))
-910.232
```

Top-down design starts with an abstract definition of the problem. The final solution is reached by refining this to the level of Scheme. This approach lets you ignore the details of the problem at first.

The differences between top-down and bottom-up design and the advantages of one over another will become more apparent as the problems get more complex. Try out both approaches to develop your understanding of them.

### 3.5.1 Exercises

3.5 What are some of the advantages of bottom-up design?
3.6 What are some of the advantages of top-down design?
3.7 Do you prefer bottom-up or top-down design?
3.8 Develop solutions in Scheme to the problems below. Try using both topdown and bottom-up approaches.

- Quadratic formula:

$$
\operatorname{root} 1=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and root } 2=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

where $a=3, b=6$, and $c=2$.

- Distance between two points:

$$
\text { distance }=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

where $x_{1}=5, x_{2}=-4, y_{1}=-3$, and $y_{2}=6$.

- Pythagorean theorem:

$$
\text { hypotenuse }=\sqrt{\text { side1 }^{2}+\text { side2 }^{2}}
$$

where side $1=3.7$ and side $2=5.4$.

- Evaluating polynomials:

$$
y=2 x^{3}-4 x^{2}+8 x-2
$$

where $x=6$.
3.9 Earthquakes are measured using the Richter scale. Values on the Richter scale can be translated into seismic energy (in ergs) using the following formula: ${ }^{2}$

$$
10^{\left(11.8+1.5 \text { Richter_value }_{-}\right.}
$$

Calculate the strength (in ergs) of the 1906 San Francisco earthquake, which measured approximately 8.25 on the Richter scale.
3.10 Dividing the seismic energies of earthquakes, one finds that an increase of one unit on the Richter scale corresponds to a 31.6 time increase in seismic energy. Thus, an earthquake reading 4.4 on the Richter scale is 31.6 times stronger than a 3.4 earthquake. Another way of looking at this is that it takes 31.6 earthquakes that measure 3.4 on the Richter scale to equal one 4.4

[^5]Binding values to variables

Evaluator rules for variables Unbound variables
earthquake in seismic energy.
Compute the number of 5.0 earthquakes it takes to equal one 8.25 earthquake. The formula to compute the order of magnitude difference in seismic energy between two earthquakes is:

$$
31.6^{\text {(big_quake - small_quake) }}
$$

3.11 Compute the time it would take to reach the moon if you could drive straight there at 130 kilometers per hour. The moon is 384,000 kilometers from the Earth. Assume that you don't need to stop for gas along the way.
3.12 Compute the time it would take to walk around the Earth along the equator. The Earth is 12,640 kilometers in diameter and the circumference of a sphere is the diameter times $\pi$, which is approximately 3.1416 . Assume an average walking speed of 3 kilometers per hour and that it is possible to walk around the Earth.

### 3.6 Variables

In a calculator, the memory key stores a value that can be retrieved. In computer programming, it is useful to have many such memory keys; they are called variables. To keep track of which variable holds which value, each must be named in some fashion. You can create a virtually unlimited number of variables. ${ }^{3}$

To create a variable, use define. It takes a variable name and its value as arguments. For example, to create a variable called tax-rate with value 0.15 , use

```
> (define tax-rate 0.15)
??
```

define binds a variable to a value. Binding associates a value with a variable so that the value can be referenced by name using the variable name. define returns an undefined value, which is shown as ?? in this text. Your version of Scheme may return a different value. Some Scheme interpreters return the variable name.

Once a variable has been defined, its value can be retrieved by simply entering the name of the variable.

```
> tax-rate
0.15
```

This extends our definition of the evaluator to include that variables evaluate to their current bound values.

If an unbound variable is evaluated, an error message will occur. It may look like

[^6]```
> taxrate
Error: Unbound variable: taxrate
```

Your version of Scheme may print Undefined variable or some similar message.

Mistakes to Avoid

Undefined variable errors are fairly common. If you don't understand why an error message was given, be sure to check the spelling of the variable you are trying to evaluate as well as the call to define used to create it. Chances are you misspelled the variable in one of those instances.

It is possible to rebind a variable. This is convenient if you bound it to the wrong value beforehand or want to change the value to get different results. The define above bound tax-rate to 0.15 . We can change this binding as follows:

```
> (define tax-rate 0.10)
??
```

```
> tax-rate
```

0.10

In this case, 0.10 is returned. Each successive define to the same variable rebinds that variable.

To get the negative of a variable's value you cannot simply put a - in front of

Redefining variables the variable name to make it negative. Instead, use the function - with your variable as in: (- debt). The examples below illustrate what happens:

```
> (define debt 49)
??
> -debt
Error: Unbound variable: -debt
> - debt
<Procedure: ->
4 9
> (- debt)
-49
> debt
4 9
```

[^7]```
(set! tax-rate 0.10)
```

Rules for symbol names

Case insensitive

Keywords

Choosing variable names

How variables are evaluated

### 3.6.1 Symbol and variable names

Symbols are the names of variables. Symbol names can be made up of upper- or lower-case letters, numbers, and any of the characters given below:

Scheme is case insensitive; it treats upper- and lower-case characters in symbols as the same. Therefore, the names foo, FOO, and Foo all refer to the same symbol. A symbol name cannot begin with a number or a period. For example, 10000 maniacs, 3.14 pies, and . 5bite are not valid symbol names. However, all10000maniacs, three. 14pies, and half-a-bite are legal symbol names.

A keyword is a symbol that has a special meaning in Scheme; a keyword cannot be used as a variable name. Examples of keywords are define, and, or, begin, case, cond, if, else, delay, do, lambda, let, quote, and unquote. There are a few others, but they are not English words.

It is best to use meaningful variable names, rather than one-letter names or names that do not explain what the variable represents. Such mnemonic names help make your Scheme code more readable and understandable. Here are some examples of good mnemonic names:

```
> (define sum-of-squares (+ (expt 3 2) (expt 4 2)))
??
> (define length-of-hypotenuse (sqrt sum-of-squares))
??
> (define the-ultimate-answer 42)
??
```


## Mistakes to Avoid

Some beginning Scheme programmers may think that each time a variable is evaluated, the value to which it is bound must be recalculated. For example, if you view length-of-hypotenuse above as having the value (sqrt sum-of-squares) instead of 5.0 , then you might believe that each time length-of-hypotenuse is evaluated, (sqrt sum-of-squares) is recomputed. This is not the case. length-ofhypotenuse is bound to 5.0. Each time length-of-hypotenuse is evaluated, 5.0 is returned regardless of what happens to sum-ofsquares; no other calculations are necessary. To see this, imagine that the definition of sum-of-squares were changed. The variable length-of-hypotenuse would maintain its value.

```
> (define sum-of-squares (+ (expt 6 2) (expt 8 2)))
??
> length-of-hypotenuse
5.0
```

Sometimes it is desirable to have a result that changes based on a variable's value. This can be accomplished by writing functions.

### 3.7 User-Defined Functions

Until now, we've used the built-in functions of Scheme. There are around a hundred built-in functions, but often it is desirable to create our own functions. By creating functions, we in effect extend the language to allow new tasks to be performed easily. Later, more abstract and sophisticated functions can be built upon these newly defined functions. This building up to sophisticated functions provides a convenient means of solving large, difficult programming tasks.

Another motivation for creating functions is to save a great deal of extra typing. As an example, let's revisit the tax formula

$$
\begin{aligned}
\text { tax } & =(\text { work-income }+ \text { interest-income }- \text { standard-deduction }) \times 0.15 \\
& -(\text { withholding }+ \text { tax-credits })
\end{aligned}
$$

Without having a function to perform this task, each time we would have to enter

```
(- (* (+ work-income interest-income (- standard-deduction)) 0.15)
 (+ withholding tax-credits))
```

where work-income, interest-income, standard-deduction, withholding, and tax-credits are replaced by their actual values.

If there were a function, tax-amount, that took our amounts as arguments and computed the tax, we could write

```
(tax-amount work-income interest-income standard-deduction
 withholding tax-credits)
```

wherever we wished the tax to be computed, again substituting the real values in place of the variable names above.

Using functions not only saves a great deal of typing, it reduces the potential for errors and makes the program more readable and understandable. Someone can read the code and surmise that a tax amount is being computed. If uncertain, the reader can always examine the comment or code in the function tax-amount itself. Using mnemonic, meaningful function names further clarifies your programs. Calling the above function $t$ or $c-t$ would not be as understandable as naming it tax-amount.

Functions are defined using a variation of define. This variation needs three items: the name of the function being defined, the names of the parameters of the function, and the body of the function. The body consists of the action(s) that the function is to perform and specifies what the function will return when invoked (called). Parameters are names that correspond to the arguments given in a call to the function. The names of the parameters are the names by which these argument values are referenced inside the body of the function. Another way of saying this is that parameters are place holders for argument values.

Another analogy comes from the sequences presented in Chapter 2. The command memorize performs the same task for robot commands as define does for

Motivation for creating functions

Defining functions and function parameters
define Syntax

Evaluating function calls

Scheme expressions. perform is used to call memorized sequences with arguments that are passed to parameters. The same thing happens when a Scheme function is called. The arguments are evaluated and their values are passed to the parameters, binding the parameters to the evaluated argument values.

The general form of a define for functions is
(define (function-name parameter-list)
body ,
where parameter-list is zero or more symbols (naming parameters) and body is one or more expressions.

In a define, the first argument consists of the function name and the parameter names enclosed in parentheses. The remaining arguments make up the body of the function.

To illustrate definitions and invocations of functions, we'll define a simpler function that computes the square of a value. To begin, the number of parameters and their meaning should be made explicit, as well as what the function does and what it returns. This function, called square, will have one parameter, called number; it represents the value we wish to square. This result is the return value of square.

The definition of square along with a brief comment describing the function follows:

```
; Return the square of a number.
(define (square number)
 (* number number))
```

When you type this into the interpreter, the return value is undefined.
When a function is called, each expression in the body of the function is evaluated. The return value is the evaluated result of the last expression. In the case of square, there is only one expression defining the body:
(* number number)
This expression is evaluated and that result is the return value of the function call.

An example function call to square is
> (square 3 )
9
The number 3 is the argument that is sent to the function. It is evaluated before that function uses it. This result, 3, is the value to which the parameter number is bound. Next, the body of the function is evaluated using the new binding of number. Hence, when
(* number number)
is evaluated, number evaluates to 3 and * is applied to 3 and 3 . This results in 9, which is the return value of the function call, and is what the interpreter prints.

The call

```
(square (+ 1 2))
```

also results in 9. The argument ( +12 ) evaluates to 3 , so number is bound to 3 . The rest of the evaluation is the same as in the example above.

## Mistakes to Avoid

Don't confuse function definitions with function calls (invocations). To define (create) a function, use define. To call (invoke) a function, enclose the name of the function and the arguments in parentheses.

## Mistakes to Avoid

Don't confuse function definitions with variable definitions.

```
(define (length-of-hypotenuse) (sqrt sum-of-squares))
```

is a function definition. To get the length, use (length-ofhypotenuse). The answer depends on the current value of sum-ofsquares. Contrast that with the following:

```
(define length-of-hypotenuse (sqrt sum-of-squares))
```

This define sets the variable length-of-hypotenuse. To access that value later, use length-of-hypotenuse. The return value is based on the value sum-of-squares had when the define was made. This was illustrated previously at the end of section 3.6 , "Variables."

## Mistakes to Avoid

When defining functions, be sure to enclose the function name and all the parameter names in one set of parentheses. The function sum-abs, which takes two numbers and returns the sum of their absolute values, would be written as:

```
(define (sum-abs num1 num2) ;proper heading
 (+ (abs num1) (abs num2)))
```

not as:

```
(define sum-abs (num1 num2) ;improper heading
 (+ (abs num1) (abs num2)))
```

The function and parameter names in a function definition look like function calls in terms of the placement of the parentheses and the number of items. For example, to find the sum of the absolute values of -3 and 4 , we would write (sum-abs -34 ). This has the same form as the function definition (sum-abs num1 num2).

The next example shows the function definition for the tax problem presented previously. Recall that the three elements needed for a function definition are
the name of the function the parameter list the body of the function
The name of the function is tax-amount. The parameter list contains names for the numbers needed, as shown below:

| work-income | income from jobs |
| :--- | :--- |
| interest-income | income from interest |
| standard-deduction | standard deduction |
| withholding | withholding tax already paid |
| tax-credits | any credits to be deducted from the tax to pay |

The body of the function looks like

```
(- (* (+ work-income interest-income (- standard-deduction))
 0.15)
(+ withholding tax-credits))
```

The entire function is

```
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
 withholding tax-credits)
(- (* (+ work-income interest-income (- standard-deduction))
 0.15)
 (+ withholding tax-credits)))
```

To invoke this new function with the values below

```
work-income
$25,174.65
interest-income
 $132.67
standard-deduction $6,050.00
withholding $3,673.83
tax-credits $125.00
```

use the function call
(tax-amount 25174.65132 .676050 .003673 .83125 .00 )
The parameters in the function definition are bound to the values of the arguments in the function call. These bindings are shown below:

| parameter | is bound to |
| :--- | ---: |
| work-income | 25174.65 |
| interest-income | 132.67 |
| standard-deduction | 6050.00 |
| withholding | 3673.83 |
| tax-credits | 125.00 |

Using these bindings, what gets computed is
(- (* (+ $25174.65132 .67(-6050)) 0.15)(+3673.83125)$ )
The result of the above computation is -910.232 .

User-defined functions can be used within other user-defined functions, as long as the functions are defined before they are invoked. In other words, before a call to a function can be made, both the function and all functions used within it must be defined. If tax-amount calls another function (say tax-rate, to compute a tax rate based on the income), both tax-rate and tax-amount would have to be defined before tax-amount can be called. The order in which functions are defined is not important aside from this restriction. Thus, tax-amount can be defined before any of the functions that it calls are defined. We will take advantage of this fact throughout this book, especially when using top-down design.

Let's illustrate this with a concrete example. Suppose we wanted to build a more complex tax model in which the taxable income is taxed at different levels depending on the amount of income. The first $\$ 20 ; 000$ is taxed at $15 \%$. The next $\$ 30,000$ at $25 \%$, and anything above $\$ 50,000$ is taxed at $50 \%$. It seems like we need some way of making decisions to solve this problem, but we can write this function using max and min.

Let's look at this problem in a top-down fashion. The idea is to add up three products. Each product is the amount of income in a particular tax bracket (e.g., $\$ 20,000-\$ 50,000$ ) times the tax rate for that bracket. The amount of income in the lowest bracket ( $\$ 20,000$ or less) is the minimum of the income and 20,000 .
(min income 20000)
The income in the $\$ 20,000-\$ 50,000$ bracket is more complicated to compute. The calculation
(min income 50000)
returns a maximum of 50,000 . Subtracting 20,000 from this gives the income over $\$ 20,000$. But what if the income is less than $\$ 20,000$ ? We would get a negative amount. To remedy this we can take the maximum of the difference we just computed and zero. The entire calculation is
(max (- (min income 50000) 20000) 0)
The remaining value is the income above $\$ 50,000$. We don't need to worry about a limit on the income; the only concern is that there is income over $\$ 50,000$. Subtracting 50,000 from the income and taking the maximum of that difference and zero gives us the desired value:
(max (- income 50000) 0)
Now that we have determined how to compute the amounts in the three brackets, we must multiply each by the corresponding tax rate and add up the three products to get a total tax amount. This will be the body of our function. The function has a single parameter, the taxable income:

[^8]Order of function definitions

Tax brackets

```
; Compute tax based on three income brackets.
(define (tax-rate income)
 (+ (* (min income 20000) 0.15)
 (* (max (- (min income 50000) 20000) 0) 0.25)
 (* (max (- income 50000) 0) 0.5)))
```

Here are some example calls to show that this function works:

```
> (tax-rate 10000)
1500.0
> (tax-rate 20000)
3000.0
> (tax-rate 30000)
5500.0
> (tax-rate 50000)
10500.0
> (tax-rate 80000)
25500.0
```

The final step is to modify tax-amount to use tax-rate. Here is the new version:
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
withholding tax-credits)
(- (tax-rate
(+ work-income interest-income (- standard-deduction)))
(+ withholding tax-credits)) )

The tax on our old figures is now

```
> (tax-amount 25174.65 132.67 6050.00 3673.83 125.00)
-910.232
```

This is the same amount we got with the previous function. Notice, however, that the taxable income is less than $\$ 20,000$, so it is taxed at $15 \%$.

### 3.8 Scope and Extent

Each time square is called, its parameter number is bound to the value of the argument. When square returns, number is no longer defined. To illustrate this, observe the following example:

```
> (square 4)
16
> number
Undefined variable - number
```

We have previously seen that by creating a variable with define, that variable can be later accessed. However, in the above case, number cannot be accessed outside of the function.

Two important aspects of a variable must be understood: its scope and its extent. The scope of a variable refers to that part of the program in which a variable may be accessed; its extent refers to the times during the execution of a program when a variable may be accessed. In simpler terms, scope is where a variable can be used, and extent is when a variable can be used.

We have seen two types of variables: global variables and parameters. The variable tax-rate used in section 3.6, "Variables", is an example of a global variable. It was created by calling define, as shown below:

```
> (define tax-rate 0.15)
??
```

Global variables can be accessed anywhere or any time after they have been created. The scope of a global variable is the part of the program after the point of its creation. The extent of a global variable is any time after its creation while the interpreter is still active.

Parameters are created when a function is defined and can be accessed only within the body of that function. They have a more limited scope, namely the body of the function. The extent of a parameter is not limited to the time that the function is being invoked. However, accessing a parameter outside the normal call to that function is a somewhat tricky process. It will be covered in Chapter 11, when lexical closures are introduced. To simplify the picture without creating a false story, we'll concern ourselves with scope only. Thus, the reason why the variable number could not be accessed in the previous example is that its scope is the body of the function square. Therefore, it cannot be accessed outside of the body of the function.

### 3.9 Shadowing

Shadowing also affects the scope of variables. Global variables with the same name always refer to the same variable and its one current binding. In Scheme, if the same name is used for a global variable and a function parameter, then that name refers to different variables and they each have their own unique bindings. Look at the example below to get a better understanding of the implications of this.

```
> (define number 4) ; number is a global variable
??
> number ;access the global variable number
4
> (define (double number) ; number is a parameter
 (* 2 number))
??
> (double 7)
14
```

Scope and extent of global variables

Scope and extent of parameters

## Precedence of parameters over global variables

Functions taking no arguments

Shadowing of functions
> number ; access the global variable number
4
The first two expressions, (define number 4) and number, refer to the global variable number. The third expression, a function definition, refers to number as a parameter. When the function is called with (double 7), the parameter number is bound to 7 . The body of the function evaluates to 14 , which is the return value of the function. The last expression, number, returns the value of the global variable number, which is still 4 . There is no way in this example to access the parameter number from outside the function double. This is what scope defines.

How was it that Scheme decided to use the parameter number within the function and not the global variable number? Within functions, parameters take precedence over global variables with the same name. This is what is meant by shadowing. The parameter number shadows the global variable number inside the function double.

If number had not been defined as a parameter in double, then the following would have happened:

```
> number ;access the global variable number (still 4)
4
> (define (new-double) ;a function with no arguments
 (* 2 number)) ; use the global variable number
??
> (new-double)
8
> number ;access the global variable number
4
```

Notice that new-double has no parameters. To create a function that takes no arguments, simply put a right parenthesis after the function name in the definition. A call to a function taking no arguments is made by enclosing the function name within parentheses.

In this example, number refers to the global variable throughout. When newdouble is called, the global variable number is used, so 8 is returned.

Typically, shadowing is the effect that is desired; in other words, the parameter's value is the desired one and not a global variable with the same name. However, be careful when choosing parameter names not to use the name of a Scheme function. Look at what happens in the following example, which computes the difference between the largest and smallest of three numbers with the constraint that they must be between a certain minimum and maximum threshold range. To get the largest number we use the function max. Calling max with the minimum threshold value in addition to the three numbers assures that the numbers aren't too small. Otherwise, the minimum threshold value is returned. The same is done in finding the minimum value.

```
; Return difference between the largest and smallest of three
; numbers within the range min to max.
(define (difference num1 num2 num3 min max)
 (- (max num1 num2 num3 min) (min num1 num2 num3 max)))
> (difference 24 13 20 0 100)
Error: Operator is not a function
```

This tells us that one of the functions we used was not legal. One version of Scheme gave the following error message:

```
Wrong type to apply: }10
```

This is a rather confusing error message. It sounds like a type clash-100 is used, but some other type (noninteger) is expected. The error also mentions "apply." Functions are applied, so the error message means that the wrong type was given when a function was expected.

At a first glance the code looks okay; however, we are using min and max as parameters. Just as parameters shadow global variables, they shadow functions. Instead of using the function max, we wound up using the number 100 as a function. This caused the error.

## Mistakes to Avoid

Be sure not to use parameter names that are also function names.

### 3.10 Programming Style

Before continuing with further examples of function definitions, the issue of good programming practice should be discussed. The examples given throughout this book will adhere to "good" programming practice. This is measured by readability, modifiability, conciseness, robustness, and other factors. A common programming-style error occurs when misusing define. Below is such an example:

```
; Redefine number to be twice as large.
(define (bad-double)
 (define number (* 2 number)))
```

The violation is in the use of define in the function bad-double. The define has a side-effect of making a change elsewhere in the program: the value of the global variable number is changed. If this weren't expected, for example, if newdouble had been written by someone else, and you were not aware of this particular side-effect, then tracking down the cause of the change in number's value could be a difficult task, especially if the program involved was lengthy.

If bad-double had been written with number as a parameter, only that parameter would have changed. The global variable number would not have changed since it would have been shadowed by the parameter number, and there would be no effect outside of the function. This is relatively harmless. However, if all we

## Good programming practices

Problems with define inside functions
want is a function that doubles its argument, the first version of the function, double on page 49 , is the preferred one.

As a simple rule to avoid problems, remember the following:

Don't use define within functions.

### 3.10.1 Exercises

3.13 Write a function that takes three numbers and returns their average.
3.14 Write a function that takes five numbers and returns the average of the middle three (dropping the highest and lowest values).
3.15 Write a function that returns the result of converting a temperature in Fahrenheit to its equivalent in Celsius. Use the formula

$$
\text { Celsius }=(\text { Fahrenheit }-32) \times 5 / 9 \text {. }
$$

3.16 Write a function that returns the result of converting a temperature in Celsius to Fahrenheit. See the previous problem for the Fahrenheit to Celsius formula.
3.17 Chinese years correspond to animals in a twelve-year cycle. Write a function that returns the next year of the dragon. To compute this year you will need to know a previous year of the dragon. 1964, 1976, and 1988 were all previous years of the dragon. Your function will take one previous year of the dragon and the current year as arguments. Write your function so that it does not matter with which previous year of the dragon you call it.
3.18 Assume you have calculated your spending by how much you typically spend daily (food and daily needs), weekly (transportation costs, entertainment, etc.), and monthly (rent, loans, credit cards, etc.). Write a function to compute your annual spending. Your function should have three parameters corresponding to the three spending amounts.
3.19 Write a function that computes how many years you could live on a quantity of money. This quantity will be the one parameter of this function. You should use the function you defined in the previous problem to solve this problem.
3.20 One Thai Baht is worth about 4 U.S. cents. Write a function that takes an amount in Baht and converts it into dollars. How expensive is a 400 Baht shirt? How many dollars are there to one Baht?

### 3.11 Using let to Create Local Variables

Parameters are one way to create variables that have limited scope-the body of the function in which they are defined. let expressions are another means of creating variables with limited scope. Such variables are often called local variables, because their scope is local to a certain part of the program. let expressions are often used within functions to create additional local variables. As an example, recall the tax computation presented earlier in this chapter. In the top-down solution, the tax amount was

```
(- total-debits total-credits)
```

This eventually led to the complete solution given below:

```
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
 withholding tax-credits)
(- (* (+ work-income interest-income (- standard-deduction))
 0.15)
 (+ withholding tax-credits)))
```

This solution is not as readable as the first step in the top-down approach above. We could make the function more readable by using the variables total-debits and total-credits, and somehow binding them to the proper values. These variables act as abbreviations for the values that they hold. The variables must be bound within the function because they get their values

```
(* (+ work-income interest-income (- standard-deduction)) 0.15)
 and
(+ withholding tax-credits)
```

from the parameters, work-income, interest-income, standard-deduction, withholding, and tax-credits of the function.

Using a define within the function violates the principle of programming style discussed in the previous section, namely another global variable with that same name would lose its binding. To get around this problem, a let expression is used.

The general form of let is as follows:


The first argument to let is a list of variable-value pairs. Each of these pairs consists of a variable name and a value (some expression) for that variable. The body of the let is like the body of a function-it can be any number of expressions and the value returned by the let is the return value of the last expression.

The variables defined in the let can be used only within the body of the let-their scope is the body of the let. let variables shadow global variables and parameters defined outside of the let.

Local variables
let Syntax

Variable-value pairs

Scoping of let variables

## Evaluation rules for let

A let expression is evaluated as follows. The values (value-1 ... value- N ) are evaluated (in some undefined order) and the results are saved. The local variables (variable-1 ... variable- $N$ ) are then bound to the saved results. The expressions in the body of the let are evaluated and the result of the final expression is returned.

## Mistakes to Avoid

Since a let expression evaluates the values (value-1 ... value-N) first and then binds the variables (variable-1 ... variable- $N$ ) to those results, the values should not refer to other variables defined within the let. In other words, the variables in a let are valid only within the body of the let.

The new function to compute the tax is

```
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
 withholding tax-credits)
 (let ((total-debits (* (+ work-income interest-income
 (- standard-deduction))
 0.15))
 (total-credits (+ withholding tax-credits)))
 (- total-debits total-credits)))
The values
```

```
(* (+ work-income interest-income (- standard-deduction)) 0.15)
```

(* (+ work-income interest-income (- standard-deduction)) 0.15)
and
and
(+ withholding tax-credits)

```
(+ withholding tax-credits)
```

are evaluated and then total-debits and total-credits are bound to the results. The expression
(- total-debits total-credits)
makes up the entire body of the let. Its return value is the return value of the let.

You could add the variable taxable-income to represent the sum of the work and interest incomes minus the standard deduction. This would reflect the thought process of the bottom-up design of the code, namely

Determine the taxable income.
Determine the total debits by multiplying the taxable income by the tax rate.
Determine the total credits.
Subtract the total credits from the total debits.
The new let would be

```
(let ((taxable-income (+ work-income interest-income
 (- standard-deduction)))
 (total-debits (* taxable-income 0.15))
 (total-credits (+ withholding tax-credits)))
 (- total-debits total-credits))
```

Evaluating this code produces an undefined variable error message indicating that taxable-income is undefined. This is because variables defined in a let cannot be used as values that define subsequent variables in a let. The variablevalue pair that causes this problem is

```
(total-debits (* taxable-income 0.15))
```

To get around this difficulty, Scheme provides a variant of let called let*. let* evaluates the values of the variable-value pairs one at a time like let; however, let* binds each variable to its corresponding value, once that value is determined, then proceeds to the next variable-value pair. Therefore, the expressions that represent the values of variables can refer to variables previously defined within the variable-value pair list.

Below is a working version of the function tax-amount, using let*:

```
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction
 withholding tax-credits)
(let* ((taxable-income (+ work-income interest-income
 (- standard-deduction)))
 (total-debits (* taxable-income 0.15))
 (total-credits (+ withholding tax-credits)))
 (- total-debits total-credits)))
```

This solution is closer to an imperative approach to programming in which partial results leading to a solution are saved in variables, which are combined to yield a final result. This approach has the advantage in this case of being somewhat more readable than the original definition of tax-amount given at the start of this section. The disadvantage is that this new solution is somewhat longer. However, in a tradeoff between readability and length of code, you should favor readability.

In general, let and let* expressions should be used When to use let and

- To make a function more readable by breaking the final result into partial computations with results saved in mnemonic variable names.
- To avoid computing the same values several times within a function.
- To save values that cannot be recomputed (for example, calls to read or random).

[^9]Using let* to reference previously defined local variables

Imperative programming

## Mistakes to Avoid

Forgetting the parentheses around the variable-value pairs of a let expression is a very common syntactical mistake. This is easily done when there is a single variable-value pair as the example below shows.

```
(let (number 16) ;improper code
 (sqrt number))
```

To fix this code, another set of parentheses is needed around the variable-value pair.

```
(let ((number 16)) ;correct code
 (sqrt number))
```


### 3.11.1 Exercises

3.21 Write a function that takes a single number that represents a century. Your function should return the year in that century that is a palindromesomething that reads the same forward as it does backward. For example given 20, your function should return 1991. Use a let or let* expression in your solution. Does your function work for centuries beyond the 101st? What about the first century?
3.22 The function piggy-bank takes a number that represents how many pennies we have. It should return the equivalent number of quarters, nickels, and pennies as a number where the last digit is the number of pennies, the second to last digit is the number of nickels, and the first digits are the number of quarters. The amounts of quarters and nickels should be maximized (i.e., there shouldn't be more than 4 nickels or 4 pennies in the answer).
(piggy-bank 42) should return 132

```
(define (piggy-bank pennies)
 (let ((quarters (truncate (/ pennies 25)))
 (nickels (truncate (/ pennies 5)))
 (left-over-pennies (remainder pennies 1)))
 (+ (* quarters 100) (* nickels 10) left-over-pennies)))
```

What does piggy-bank return when called with 42? If this is the wrong answer, fix piggy-bank but keep as much of the structure of the program as possible.

### 3.12 Writing Styles

The code examples in this text follow one particular style. There are many other styles. Discussions about which programming styles and languages are the best often turn into religious arguments, in which the parties argue furiously over the merits of their style or language. People have debated over issues as trivial as whether one should indent three spaces or four. No one style is the "right" style.

You should choose a style that is the most readable to you and use it consistently. Here are some possibilities:

```
(define (this-books-style arg1 arg2)
 (let ((var1 value1)
 (var2 value2))
 (+ (some-very-long-function with lots of arguments)
 3)))
(define (line-up-parens-style2 arg1 arg2)
 (let ((var1 value1)
 (var2 value2)
)
 (+ (some-very-long-function with lots of arguments)
 3
)
)
)
(define
 (arguments-on-lines-below-style arg1 arg2)
 (let
 ((var1 value1)
 (var2 value2))
 (+
 (some-very-long-function
 with
 lots
 of
 arguments)
 3)))
```


### 3.13 Summary

- Function calls are made by enclosing the function name followed by the arguments to the function in parentheses.
- Bottom-up design is a means of solving problems in which you begin with the small details that must be computed first. These first computations will be the innermost arguments of the final Scheme expression.
- Top-down design, another means of problem solving, entails thinking of the problem in abstract terms and then refining these terms to Scheme functions. This approach results in the creation of Scheme code in much the same order as it is written in the final solution.
- Numbers evaluate to themselves.
- Variables evaluate to the values to which they are currently bound.
- Function calls are evaluated by first evaluating the arguments. Then the function is applied to the evaluated arguments and the result is displayed. If the function is not builtin or defined previously, an error message is printed.
- Variables are bound to values using define.
- Functions are defined using define.
- The scope of a variable is the part of the program in which the variable is defined.
- The scope of a global variable is from its creation point to the end of the program.
- The scope of a parameter is the body of the function in which it is defined.
- Extent is the time during the execution of a program in which a variable is defined.
- Shadowing occurs when a parameter's scope supersedes the scope of a global variable with the same name.
- let and let* expressions can be used to create local variables. Creating such variables can make a program more readable since they provide names for partial results in the final computation. The scope of a let variable is the body of the let or let*. A let variable shadows parameters and global variables of the same name defined outside the let or let* expression.
- Summary of functions introduced in this chapter:

| function | arguments | return value |
| :--- | :--- | :--- |
| + | 0 or more | sum of arguments |
|  | 1 or more | difference of arguments in left to right order <br> * |
| max | 0 or more | product of arguments |

- Summary of other objects introduced in this chapter:

| object | arguments | return value |
| :--- | :--- | :--- |
| define | variable value | binds variable to value |
| define | (function params) body | creates function |
| let | var-value-pairs body | binds vars to values and evaluate body |
| let* | var-value-pairs body | binds vars to values in order and evaluate body |

- The syntax of define for function definitions is as follows:
(define (function-name parameter-list)
body )
- The syntax of let and let* is as follows:
(let ( variable-1 value-1)
(variable-2 value-2)
(variable- N value- N ) )
body )


## LISTS: <br> The Basic Data Structure

### 4.1 Lists in Scheme

Information stored within a computer system is called data. The types of data we have seen are numbers and symbols. Collectively, these are called atoms.

When a collection of data is organized in some fashion, it is referred to as a data structure. The fundamental data structure used in Scheme is the list. A list specifies an ordered collection of information. Lists are written in Scheme as a left parenthesis followed by the information desired in the list and closed with a right parenthesis. The list of even numbers between 1 and 7 is written in Scheme as

## $\left(\begin{array}{lll}2 & 4 & 6\end{array}\right)$

The numbers 2,4 , and 6 are the elements of the list. The order of the elements within the list is important; the lists ( $\left.\begin{array}{lll}6 & 4 & 2\end{array}\right)$ and ( $\left.\begin{array}{llll}2 & 4 & 6\end{array}\right)$ are different.

The elements of a list can be any atoms (numbers or symbols) or lists. The fol- Elements of lists lowing lists are all legal within Scheme:

| list | contains |
| :---: | :---: |
| (are you my mother) | four elements, all symbols |
| (4 score and 7 years ago) | six elements, all atoms |
| () | no elements, an empty list |
| $\left(\left(\begin{array}{lll}\mathrm{a} & \mathrm{c}\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right.$ ) | two elements, both lists of three elements |
| (() $18.541 / 2$ ( 3 ) )) | four elements: two lists and two numbers |
| (sqrt 4) | two elements: a symbol and a number |

Atoms

Data structures and lists

Sublist
Function calls versus lists as data

A list that is an element of a list is a sublist. In section 4.4 we look at the advantages of lists of sublists.

The list (sqrt 4) has two elements: the symbol sqrt, which is the name of a built-in Scheme function, and the number 4. We have been using lists to make function calls all along. This brings up an interesting dilemma. How do we differentiate function calls from lists of information? After all, in Scheme they look the same. However, if you were to enter a list that was not a valid function call, you would see something like the following:

```
> (a b c)
```

Error: Unbound variable: a

### 4.2 Stopping Evaluation with quote

## quote

To force the evaluator not to evaluate a list as a function call, use quote, as in

```
> (quote (a b c))
(a b c)
```

quote takes one expression and returns it. Therefore, it prevents the evaluation of its argument. This is the case even if the argument is a list that looks like a function call:

```
>(quote (+ 2 3))
(+ 2 3)
```

quote is used so often that a special shorthand (the " ${ }^{\prime \prime}$ " symbol) exists for it.

```
>'(+ 2 3)
(+ 2 3)
```

This notation is functionally equivalent to (quote (+23)). It saves a lot of typing and helps reduce the number of parentheses, which is always a blessing in Scheme.

A common mistake is to overquote lists. Since quote stops the evaluation of its one argument, it is not necessary to quote lists within other quoted lists as in the following example.

```
> '('(a b c) '(1 2 3))
('(a b c)'(1 2 3))
```

Notice how this differs from

```
> '((a b c) (1 2 3))
((a b c) (1 2 3))
```

The empty list must be quoted as well.

[^10]> ' ( $)$
()

As we have already seen, typing the name of a variable into the interpreter returns the value to which the variable is currently bound. Sometimes we wish to refer to the variable name, and not its value. In this case, we are interested in the symbol itself, so we quote it:

```
> (quote num)
num
```

The " $r$ " shorthand can be used, as in
> 'num
num

## Mistakes to Avoid

Don't quote variables that you wish to bind using define. For example, (define 'value 2112)
results in an error. define does not evaluate its first argument. The next section discusses the cases when the normal evaluation rules are not used.

### 4.3 Special Forms

quote simply returns its argument. Yet how does this argument escape from the normal evaluation that happens to arguments of functions? Applying the rules of function evaluation to the example above, the argument num must be evaluated before quote is applied to it. This evaluation should result in the value to which num is currently bound. quote would then be applied to that value.

The normal evaluation mechanism is not used for quote. Instead, the argument to quote is not evaluated but simply returned. Objects that look like functions but do not obey the normal evaluation rules are called special forms. As you can guess, quote is a special form. Special forms are not functions.

For each special form, the evaluator has a rule for how it should be evaluated. One of the goals of Scheme is to minimize the number of special forms. We have encountered four special forms already: define, let, let*, and quote.

### 4.3.1 Exercises

4.1 Why are define, let, and let* implemented as special forms instead of regular functions?
4.2 Which arguments to define and let are evaluated and which arguments are not evaluated?

Special forms use special evaluation rules
4.3 What do the following expressions evaluate to? Some of them may produce errors. Test your answers on the computer.

```
''(a b c)
('a 'b 'c)
'('a 'b c)
(quote a (1 2))
(quote '(1 2))
()
((+ 1 2))
```


### 4.4 Using Lists as Data Structures

Lists can be used to represent sets of values such as the prime numbers less than 10:
$\left(\begin{array}{lllll}1 & 2 & 3 & 5 & 7\end{array}\right)$
Lists can represent more complex data structures, like an address:
( (John Doe)
(14 Main Street)
(Anytown Anystate 12345) )
This structure uses nested lists (lists that contain lists as elements) to break up the address into three parts: name, street, and city-town-zip. It need not be entered into the computer on multiple lines as shown; this is merely for readability.

Nested lists provide a natural way of organizing data, or creating hierarchies. Suppose you want a list of the titles of your compact disk collection. You could create a large non-nested structure like
(Rolling_Stones Its_Only_Rock_and_Roll Pat_Metheny First_Circle Rolling_Stones Black_and_Blue Andy_Narell The_Hammer)
Such a list would be difficult to understand, especially if it were long. The data structure does not separate the artists from the CDs, nor does it provide any categories by which you might wish to organize music. It also has unnecessary repetition (Rolling Stones twice). ${ }^{3}$

A much better data structure for a CD collection might be

[^11]```
(rock CD data structure
    (Rolling_Stones
        (Black_and_Blue
            Its_Only_Rock_and_Roll))
jazz
    (Pat_Metheny
        (First_Circle)
        Andy_Narell
        (The_Hammer)))
```

This data structure can be illustrated with the following hierarchy:

With such a data structure, the CDs are arranged according to musical category, (e.g., rock, jazz, classical). Each category of music is followed by a list of artists and their works. These artists-works lists are lists of artist-name and CDlist pairs. This ensures no ambiguity as to artist or CD name and eliminates repetition of artist names.

This is by no means the only representation that could be used to maintain such information.

4.4.1 Exercises

4.4 What other ways can you think of to organize a collection of CDs?
4.5 What advantages and/or disadvantages does your data structure have compared to this one?
4.6 Design a data structure that you could use to maintain information on students: name, student ID number, year in school, address, grades, grade point average, etc.

4.5 Taking Lists Apart

Many of the functions that will be introduced in this chapter perform operations on the top-level elements of lists only. The atoms and lists that make up a list are

Counting top-level elements the top-level elements of that list. For example,

```
((a list) an-atom (a (nested list)))
```

Simple list functions

History of car and car
has three top-level elements: two are lists and one is an atom.
To determine the number of top-level elements in a list, use the function length.
function argument return value
length list the number of elements in list
Here are some example function calls using length.

```
> (length '(1 two (three (not-four nor-five))))
3
> (length '((just an) ((ordinary)) (((list) not))))
3
> (length '())
O
```

The elements in the first example are 1, two, and (three (not-four norfive)) which is considered one element even though it contains a symbol and a list of two symbols itself. When counting top-level elements, a list up to its closing right parenthesis is considered a single top-level element. The three elements in the second example are (just an), ((ordinary)), and (((list) not)).

In Chapter 3, we said that LISP, of which Scheme is a dialect, is an acronym for LISt Processing. This is because LISP has a number of functions to take apart, create, sequence through, and even restructure lists. The built-in functions car and cdr are the fundamental functions used to return parts of lists. car returns the first element of a list, and cdr returns the list without the the first element.

The names car and cdr date back to the first implementation of LISP on the IBM 704 computer. A computer consists of a large collection of numbers, called words. On the IBM 704 computer, each word could be accessed by specifying its location (address) in one of a number of index registers. Each word had different components that could be individually examined. Two of these, the address and decrement parts, could be used to reference other words. These parts were used to hold the first element and the rest of a list. The names car and cdr come from abbreviations of the instructions used to get these different components. car stands for Contents of the Address part of Register number and cdr for Contents of the Decrement part of Register number. These names have stuck through time, although many versions of LISP now have additional, more mnemonic names for these functions such as first and rest.

We can easily write the functions first and rest as follows:

```
; Return the first element of a list.
```

; Return the first element of a list.
(define (first a-list)
(define (first a-list)
(car a-list))
(car a-list))
; Return the rest of a list.
; Return the rest of a list.
(define (rest a-list)
(define (rest a-list)
(cdr a-list))

```
    (cdr a-list) )
```

In addition, we can use combinations of car and cdr to create functions to extract the second, third, fourth, and fifth elements of a list:

```
; Return the second element of a list.
(define (second a-list)
    (car (cdr a-list)) )
; Return the third element of a list.
(define (third a-list)
    (car (cdr (cdr a-list))) )
```

You get the idea. Each subsequent cdr returns a list with one less element. The implementation of the functions fourth and fifth is left as an exercise for the reader.

Below is a table of the functions used to return parts of lists. All these functions take a single argument that must be a list.

function	argument	return value	first \rightarrow fifth, rest,
first	list	first element of list	car, cdr
rest	list	rest of list without the first element	
car	list	same as first	
cdr	list	same as rest	
second	list	second element of list	
third	list	third element of list	
fourth	list	fourth element of list	
fifth	list	fifth element of list	

The following examples illustrate uses of these functions:

```
> (first '((z e r o) 1 (2) ((3))))
(z e ro)
> (rest '((z e r o) 1 (2) ((3))))
(1 (2) ((3)))
>(second '((z e r o) 1 (2) ((3))))
1
>(third '((z e r o) 1 (2) ((3))))
(2)
> (fourth '((z e r o) 1 (2) ((3))))
((3))
> (fifth '((z e r o) 1 (2) ((3))))
Error: Pair expected
> (car (cdr '((z e r o) 1 (2) ((3)))))
l
> (cdr (car '((z e r o) 1 (2) ((3)))))
(ero)
```

Getting any element from a list
list-ref

```
> (cdr (cdr '((z e r o) 1 (2) ((3)))))
((2) ((3)))
```

The call to fifth above resulted in an error because the list has only four elements. Similarly, if car, cdr, first, or rest is applied to ' (), an error will result.

Mistakes to Avoid

Remember that rest returns a list with all but the first element. A common mistake is to think that
(rest ' (a b))
returns b instead of the actual value returned: (b). Similarly,
(rest '(a (b)))
returns ((b)) and not (b).
The simplest way to determine the return value of rest is to cross out the first element of the list. What's left is the rest of the list.

Scheme provides a more general means of extracting elements from lists. This is useful when the exact element number is not known beforehand; for example, when it is the result of some computation.
function arguments return value
list-ref list position element at position in list
list-ref takes two arguments: a list and the position of the desired element in the list. The position of elements in a list is numbered, in order, starting at zero and continuing up to one less than the length of the list. Thus, the positions of the elements in a list of three elements are 0,1 , and 2 .

If list-ref is called with a position larger than or equal to the number of elements in list, an error will result.

Mistakes to Avoid

Positions are not the same as element numbers used in functions like first and second. The first element of a list is at position 0 and not 1. Thus, to return the fifth element of the list $m y$-list, use

```
(list-ref my-list 4)
```

Let's write a function that returns the last element of a list. We can use listref with the length of the list minus 1 . Here is an attempt at this function:

```
; Return the last element in a-list.
```

; Return the last element in a-list.
(define (last a-list)
(define (last a-list)
(list-ref 'a-list (- (length 'a-list) 1)))
(list-ref 'a-list (- (length 'a-list) 1)))
> (last '(the buck stops here))
> (last '(the buck stops here))
Error: Pair expected

```
Error: Pair expected
```

By quoting a-list, the literal symbol a-1ist is used instead of the parameter. Here is another attempt:

```
; Return the last element in a-list.
(define (last a-list)
    (list-ref (a-list) (- (length (a-list)) 1)) )
> (last '(the buck stops here))
Error: Wrong type to apply: (the buck stops here)
```

This error occurred because the value of a-list, (the buck stops here), was treated like a function. It is a list and cannot be applied as a function. Quoting it will get rid of that error as seen below:

```
; Return the last element in a-list.
(define (last a-list)
    (list-ref '(a-list) (- (length '(a-list)) 1)) )
> (last '(the buck stops here))
a-list
```

No error this time, but we didn't get the answer we wanted either. By quoting ($a-1 i s t$), we get the literal list ($a-1 i s t$). The length of that list is 1 , so we end up taking list-ref of the list (a-list) and 0 , which is the symbol a-list. To fix this, we need to use the value of the parameter a-list. This is obtained by using a-list directly without parentheses or quotes.

```
; Return the last element in a-list.
(define (last a-list)
    (list-ref a-list (- (length a-list) 1)) )
> (last '(the buck stops here))
here
```

It works! It is essential in Scheme to understand the meaning of quotes and parentheses. Quoting a symbol or list returns its literal value. Putting parentheses around a symbol treats that symbol as if it were a function. A symbol without quotes or parentheses is a variable (or parameter) and it returns its current value. If you understand these ideas, you will reduce the number of errors you get when writing Scheme code.

Scheme has a built-in function that returns the tail end of a list, list-tail. It would be nice to have a more general function that returns a variable-sized, contiguous piece from the head, tail, or middle of a list. We'll call this function subseq (short for subsequence). subseq returns a contiguous subsequence from anywhere within a list. It can be used to return the tail end of a list so the function list-tail isn't necessary. You'll be able to write subseq in Chapter 6.

The following table shows different ways that subseq can be used to return different parts of a list:

When to use quotes and parentheses and when not to

Getting sections of a list

function	arguments	return value
subseq	list, 0, end	left part of list up to element end
subseq	list, start	right part of list starting at element start +1
subseq	list, start, end	list with elements start +1 through end

subseq can be used with two or three arguments. With two arguments subseq uses the length of the list as the value for end. With three arguments subseq takes a list, a start element number, start, and an end element number, end, and returns a list starting with element number start +1 up to element number end. start must be an integer between 0 and the number of elements in the list. end must be an integer between start and the number of elements in the list. The list returned will have end minus start elements. An alternate way of looking at subseq is that start indicates the number of elements to skip from the front of the list and end is the last element number to include in the list.

Below are examples to help clarify these functions:

```
> (length '((z e r o) 1 (2) ((3))))
4
>(list-ref '((z er o) 1 (2) ((3))) 0) ; position 0 is the first element
(z e ro)
> (list-ref '((z e r o) 1 (2) ((3))) 3)
((3))
>(list-ref '((z e r o) 1 (2) ((3))) 4) ; position 4 is too large
Error: Pair expected
>(subseq '((\begin{array}{llllll}{~}&{e}&{0}\end{array}1(2) ((3))) 0) ; list of the first element onward
((z e r o) l (2) ((3)))
> (subseq '((\begin{array}{llllllll}{l}&{e}&{r}&{0}\end{array})}
(((3)))
> (subseq '((\begin{array}{llllllll}{~}&{e}&{r}&{0}\end{array}(2) ((3))) 5) ; start value is too large
Error: Improper start value for subseq
> (subseq '((\begin{array}{llllllll}{z}&{e}&{r}&{0}\end{array})(2) ((3))) O 1) ; list of the first element
((z e r o))
> (subseq '((\begin{array}{llllllllll}{~}&{e}&{r}&{0}\end{array})(2)((3))) 1 3) ; list of the 2nd and 3rd elements
(1 (2))
> (subseq '((\begin{array}{lllllll}{|}&{e}&{0}\end{array})(2) ((3))) 2 2) ; list of 2-2 = 0 elements
()
> (subseq '((\begin{array}{llllllll}{z}&{e}&{0}\end{array})(2) ((3))) 1 0) ;end is less than start
Error: Improper end value for subseq
> (subseq '((\begin{array}{llllllllll}{~}&{e}&{0}\end{array})(2) ((3))) 1 5) ;end is too large
Error: Improper end value for subseq
```


Mistakes to Avoid

The list functions we've examined don't change their arguments. The functions rest and cdr return the tail end of lists, leaving the original lists intact. The function subseq actually creates a new list without altering the list supplied as an argument in the function calls. Thus, if subseq is called with a symbol that is bound to a list, a new list is returned and the symbol is still bound to the original list. This can be seen in the following example:

```
> (define my-list '(this is my very own list))
??
> (subseq my-list 2 4)
(my very)
> my-list
(this is my very own list)
```


Mistakes to Avoid

In determining the starting element of a return list, subseq starts with the element that follows the value of start given. But the ending element is included. Therefore, to get the list of the second through fifth elements of my-list, use

```
(subseq my-list 1 5)
```

Another device that you can use to help get the start argument to subseq straight is to think of it as the number of elements that will be skipped from the head of the list. Thus, (subseq my-list 1) skips the first element returning the second element onward.

You may have wondered why subseq uses such a strange scheme for its arguments. Part of the reason for this is to reduce the number of off-by-one situations that arise. When a value is one away from its desired value, it is called off-by-one. As it is written, subseq requires few off-by-one adjustments to be made.

Functions that return element positions can be used with subseq. The function position (which is presented in section 4.10) returns the position of an element in a list. We can use the result from a call to position to specify a start value for subseq. This means that subseq would need to use positions of elements like list-ref does instead of element numbers. The start argument to subseq does this. The end value to subseq doesn't, however. This is to make it easier to refer to end positions relative to the last element of the list. The element number of the last element is the length of the list.

The following chart should help clarify the above explanation by showing how few off-by-one situations arise. You can use it as a quick reference for templates when using subseq.

Method in the madness-reducing off-by-one situations

Templates for subseq	part of list desired	call to subseq
	First N elements	(subseq a-list 0 N)
	Last N elements	(subseq a-list (- (length a-list) N))
	List without first N elements	(subseq a-list N)
	List without last N elements	(subseq a-list 0 (- (length a-list) N)
	List of elements N through M	(subseq a-list (-N 1) M)
	List from position P onwards	(subseq a-list P)
	List from position P through Q	(subseq a-list P (+Q 1))

When to use which list function

Modeling bureaucratic responses

Getting a random element from a list

To summarize, use first (or car) through fifth to return a particular element from a list. There are times when the element number must be computed. In this case, use the function list-ref. To return a list with all but the first element, use rest (or cdr). To return a section of a list (the head, tail, or middle of a list), use subseq following the chart above for specific guidance.

4.5.1 Example: Extracting random elements from a data structure

Those of you Arnold Schwarzenegger fans who saw Terminator know that the Terminator had lists of responses from which he could choose to decide the most appropriate retort for any given situation. If you've ever dealt with a true bureaucrat you know that they too seem to be functioning by virtue of simply responding to anything you say with one of a few responses. This type of behavior can easily be modeled in Scheme. Suppose that you have a list containing responses to be used by a particular person such as a bank teller, post office clerk, or police officer. To simplify references to this response list, imagine that it has been bound to the symbol retort, using define as shown below:

```
(define retort
    '((i am sorry but we are closed now)
        (talk to the person at the end of the hall)
        (you need form 1044-tx8 and not 1044-fg4)
        (we cannot take personal checks)
        (i am sorry we need exact change)
        (oh you only had to fill out this one form not those 20 others)))
```

The task is to write a function that randomly chooses a retort from a retort list. An extension to Scheme called random will be helpful; (random num) returns a random number between 0 and num -1 . Thus, (random 3)
returns either 0,1 , or 2 .
This result works very nicely in conjunction with list-ref, which takes a number between 0 and the length of a list minus one. The call

```
(list-ref '(a b c) (random 3))
```

returns a, b, or c.
In general, to return a random element from any list, the following function can be used:

```
; Return a random element from the list a-list.
(define (get-random-element a-list)
    (list-ref
            a-list
            (random (length a-list))) )
```

get-random-element can be applied to retort to get a random retort. Each call to random generates a new random number, so each time get-randomelement is called, a potentially different retort will be returned.

Mistakes to Avoid

Scheme does not attach any semantics (meaning) to parameter or variable names. The way a parameter is used dictates its type requirements. Thus, naming the parameter above a-list does not mean that it must be a list. However, the way we use a-list as arguments to length and list-ref means that a-list must be a list. If not, we will get an error when the function is called. It is the responsibility of the person who calls get-random-element to assure that it is called with the proper argument types.

This does not make for secure code that you would want to let just anybody use. To remedy this, there are ways of doing type-checking: checking the types of variables. This is covered in Chapter 5.

Mistakes to Avoid

Don't confuse arguments to a function with elements of a list. Look at the following examples, which compute the average of three values:

```
(define (average1 num1 num2 num3)
    (/ (+ num1 num2 num3) 3) )
(define (average2 num-list)
    (/ (+ (first num-list) (second num-list)
        (third num-list)) 3) )
```

The first function average 1 takes three arguments (which should be numbers) and returns their average. The second function average 2 takes one argument (which should be a list of at least three numbers) and returns the average of the first three numbers in the list.

4.5.2 Exercises

4.7 What do the following expressions return? Test your answers on the computer. Some of them may produce errors.

```
(car '())
(cdr '())
(third (subseq '((4 5) 1/3 67.89 (78) value) 1))
(rest (subseq '(how (strange) (((this)) may) seem) 1 4))
(length '('a '(1 2)))
(length '((3 elements here)))
(length '((yet ((another)) strange (list))))
(car '((yet ((another)) strange (list))))
(cdr '((yet ((another)) strange (list))))
(car (car '((yet ((another)) strange (list)))))
(car (cdr (car '((yet ((another)) strange (list))))))
(car (cdr (cdr (car '((yet ((another)) strange (list)))))))
```

4.8 Assume that the function extract below will be called with a list of lists of atoms (e.g., ($\left.\begin{array}{ll}a & b\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$). Fill in the blank such that the function returns a.) the first list of atoms or b.) the first atom.

```
(define (extract list-of-lists)
    (___ list-of-lists))
```

4.9 Write an expression that returns the third element of the list a-list.
4.10 Write an expression that returns element number (+ value 2) of the list a list.
4.11 Write an expression that returns the list of CDs from the second jazz artist in the CD data structure presented earlier.
4.12 Write your own version of list-ref using the other list functions we have discussed. Be careful that your function returns item number num and not the list of the numth item.
4.13 Write a function but-last that takes two arguments, a-list and num, and returns a list of all but the last num elements of a-list. Use the other list functions from this section in your solution.
4.14 Write a function called start that takes two arguments, a-list and num, and returns the first num elements from a-list. Use the other list functions from
this section in your solution.
4.15 Write a function end that takes two arguments, a-list and num, and returns the last num elements from a-list. Use the other list functions from this section in your solution.
4.16 The function month below returns the month corresponding to month-num. Does the function work correctly? If not, fix it.

```
(define (month month-num)
    (list-ref '(January February March April May June July
            August September October November December)
        month-num) )
```

4.17 The function replace-element below takes a-list, a list, position, a position in a-list, and element, an atom that will replace the element at position in a list. For example,

```
> (replace-element '(this list is very mundane) 4 'exciting)
(this list is very exciting)
```

Find and fix any bugs in the function below. Note: append combines the elements of many lists into one list. See section 4.7 for a detailed explanation.

```
(define (replace-element a-list position element)
    (append
        (subseq a-list 0 position)
        element
        (subseq a-list position)) )
```

4.18 Fill in the blanks with functions and arguments so that the output shown would be produced. Each line may have zero or more arguments.

```
> (___ '(a list of sorts) ____)
(a list)
> (___ '(a list of sorts) ____)
(list of)
> (___ '(a list of sorts) ____)
(of sorts)
> (___ '(a list of sorts) ___)
list
```


4.6 Combining cars and cdrs

There are times when you have a rather complex list data structure, with many sublists (elements that are lists themselves). To extract particular elements from sublists, combinations of cars and cdrs can be used as shown in exercise 4.7. Because such constructions are used so often in Scheme, abbreviations have been

Abbreviations of car and cdr compositions
created to compose up to four levels of car and cdr function calls. The expression

```
    (car (cdr '((Sam Smith) 23000 (August 5 1967))))
```

can be abbreviated as
(cadr '((Sam Smith) 23000 (August 5 1967)))
This particular expression returns the second element from the list given; hence it could be expressed as

```
(second '((Sam Smith) 23000 (August 5 1967)))
```

Abbreviations of car and cdr combinations are made by taking the a's and d's from up to four adjacent car and cdr function calls and enclosing them between c and r. This is easier shown than said. Below are more examples of car and cdr combinations and their abbreviations.

longhand	abbreviation
(cdr (car my-list))	(cdar my-list)
(car (car (cdr my-list))	(caadr my-list)
(car (cdr (car (cdr my-list))))	(cadadr my-list)

One major problem with car and cdr and the various combinations of abbreviations thereof is their correct pronunciation. The table below should help you with this.

function	pronunciation	rhymes with or sounds like
car	kär	car
cdr	ku' ${ }^{\text {-d }}$ ¢r	footer
caar	kz-hr ${ }^{\prime}$	the ' \mathbf{r} '
cadr	ka' ${ }^{\text {d }}$ dr	fatter
cdar	ku'där'	foot tar
cddr	kü-di'-dər	could litter
cadar	$\mathrm{k}_{\text {д-d }} \mathrm{dar}^{\prime}$	the tar
cadadr		cadaver
cddadr	ku'-di-da'-dər	could it matter

4.7 Creating Lists

We have created lists by writing them out explicitly, as in

```
(this is a list)
```

We have used functions that return parts of lists, possibly creating new lists in the process. Sometimes we need even more flexibility.

Lists can be created using the functions cons, list, and append.

function	arguments	return value
cons	element list	list with element inserted at the start
list	el1 el2 ..elN	the list (el1 el2 \ldots elN $)$
append	list1 list2 \ldots list N	the list formed by concatenating the elements of
		list1 list2 ... list N.

cons takes two arguments and returns a new list that has element as its first
cons element and list as the rest of the list. The first argument, element, can be a list or an atom, but the second argument, list, should be a list.

Below are some examples of what cons returns and what the car and cdr of those return values look like.

```
> (cons 'something '())
(something)
> (car '(something))
something
> (cdr '(something))
()
```

```
> (cons 'apples '(and oranges))
```

> (cons 'apples '(and oranges))
(apples and oranges)
(apples and oranges)
> (car '(apples and oranges))
> (car '(apples and oranges))
apples
apples
> (cdr '(apples and oranges))
> (cdr '(apples and oranges))
(and oranges)

```
(and oranges)
```

```
> (cons '(some list) '(another list))
((some list) another list)
> (car '((some list) another list))
(some list)
> (cdr '((some list) another list))
(another list)
```

Notice in each of the above cases that the first argument to cons is the car of the resultant list and the second argument is the cdr of the resultant list. This is true
cons as opposite of car and cdr for cons in general.

The first example,

```
(cons 'something '())
```

shows how to create a list of one element by inserting (consing) that element into

[^12]an empty list.
The second example,

```
(cons 'apples '(and oranges))
```

shows the addition of an atom to the front of an existing list.
The third example,

```
(cons '(some list) '(another list))
```

demonstrates that lists can be added as elements.
Using cons to create a list of three elements involves three calls to cons:

```
> (cons 'a (cons 'b (cons 'c '())))
(a b c)
```

list provides a more convenient means of creating lists of many elements. list takes as arguments the elements of the desired list and returns a new list of those elements. The order of the arguments corresponds to the order of the elements in the resultant list. The arguments to list can be atoms or lists. Below are some examples showing how list works. Note that the arguments to list must be quoted if they are lists or symbols and are to be interpreted as such.

```
> (list 'a 'b 'c)
(a b c)
> (list '(a list) 'a-symbol 4 '())
((a list) a-symbol 4 ())
```

Another way to create lists is to use append. append takes all the top-level elements of its argument lists and forms a new list of those elements. In other words, append concatenates the top-level elements from all of its arguments into a new list. Internally, append works by performing a series of conses. Elements from all but the last argument list are consed onto the last list. This is easier shown than said. Following each example of append below is the equivalent series of cons function calls:

```
> (append '(first list) '(second list) '(third list))
(first list second list third list)
> (cons 'first
    (cons 'list (cons 'second (cons 'list '(third list)))))
(first list second list third list)
> (append '((32)) '() '(((1 1 2 3))))
((32) ((1 2 3)))
> (cons '(32) '(((1 2 3))))
((32) ((1 2 3)))
```

```
> (append 4 '(3))
Error: Pair expected
```

The first example above shows how multiple lists appended together result in one new list with the elements of each list as elements of the new list. The second example of append shows that the empty list can be appended to other lists. By doing so, no elements are added. The last append is illegal, since all the arguments to append should be lists. ${ }^{5}$
cons, list, and append perform different tasks and return different lists when given the same arguments. Look at the following examples:

```
> (cons '(1) '(a))
((1) a)
> (list '(1)'(a))
((1) (a))
> (append '(1) '(a))
(1 a)
```

It may seem strange to have the functions cons, list, and append when it is easier to create lists by writing them out explicitly, as in
'(this ((list is) easy to make))
Sometimes the elements of a list are not known beforehand, since they must be computed. These computations may be numerical or may involve extracting information from other lists. These lists may be the values of variables, since variables can be bound to lists using define or used in functions as parameters. In these cases, such lists must be created using cons, list, or append. The following example shows the creation of a new list consisting of the first element of the list employee-list, and the value of salary increased by 10%.

```
(list (first employee-list) (* salary 1.10))
```

Here is another example showing the necessity of these functions. Let's write a function, add-to-end, that takes an item and a list and returns the list with item added to the end. For example,

```
> (add-to-end 'period '(end a sentence with a))
(end a sentence with a period)
> (add-to-end '(parenthetical remark) '(end a sentence with a))
(end a sentence with a (parenthetical remark))
```

To do this we'll have to append the elements in the list to a list of the item to add:

[^13]```
; Return a-list with item added to the end.
(define (add-to-end item a-list)
 (append a-list (list item)))
```


## Mistakes to Avoid

Suppose the variable people has the value 842 . To make a list of that number, the call

```
(people)
```

won't work, as it will treat people as a function. Instead use list as follows:

```
(list people)
```


## Mistakes to Avoid

Don't use list as the name of a parameter to a function. The parameter will shadow the function list.

```
> (define (add-to-end item list)
 (append list (list item)))
??
> (add-to-end 'bang '(end a sentence with a))
Error: Wrong type to apply: (end a sentence with a)
```


### 4.7.1 Exercises

4.19 What do the following expressions evaluate to? Some of them may produce errors.

```
(cons 3'(4)) (list 3 '(4)) (append 3'(4))
(cons '(3) '(4)) (list '(3) '(4)) (append '(3) '(4))
(list 3 4)
(list '(3) 4)
```

4.20 Assume that the following defines have been made:

```
(define numbers '(2 4 6))
(define letters '(q e d))
(define deep-list '(((13))))
```

Using only these three variables and the functions cons, list, and append, write expressions that will return the following lists:

```
(2 4 6 q e d ((13)))
((2 4 6) (q e d) ((13)))
(2 4 6 (q e d) ((13)))
((2 4 6) (q e d) (((13))))
((2 4 6) q e d ((13)))
```

4.21 Fill in the blanks with functions and arguments so that the output shown would be produced.

```
> (______ '(not created equal))
(alas all lists are not created equal)
> (____ '(not created equal))
((alas all lists are) not created equal)
> (___ '(not created equal))
(lists (not created equal))
> (___ '(not created equal))
((lists) (not created equal))
```

4.22 Write a function that takes a list a-list and returns a list of only the first element of $a$-list. Note: this is not the same as first or car. For example, given the list (an apple a day), your function should return (an).
4.23 Write a function add-third that takes two arguments, element and $a$-list, and returns $a$-list with element as the new third element. The original third element of $a$-list becomes the new fourth element, and so on for the remaining elements in a-list. For example, given the symbol eaten and the list (an apple a day), your function should return (an apple eaten a day). Assume that $a$-list has at least three elements.
4.24 Write a function remove-third that takes a list and returns the list without its third element. For example, given the list (an apple a day), your function should return (an apple day). Assume that the list has at least three elements.
4.25 Write a function switch-first-and-second that takes a list and returns the list with the first and second elements switched. For example, given the list (an apple a day), your function should return (apple an a day). Assume that the list has at least two elements.

Using lists to represent sentences

Sentence data abstraction

### 4.8 Representing and Manipulating Text with Lists

Lists are a natural data structure to represent text. Sentences can be represented as lists of words, and words as symbols; thus, the sentence "Kim likes to dance to Aretha Franklin tunes" can be represented by

```
(kim likes to dance to aretha franklin tunes)
```

If we wanted to play around with this sentence, we should first bind it to a symbol, as in

```
> (define sentence '(kim likes to dance to aretha franklin tunes))
??
```

To produce the sentence "Kim likes to dance in the dark" we can use the following expression:

```
> (append (subseq sentence 0 4) '(in the dark))
(kim likes to dance in the dark)
```

To produce the sentence "Kim dances to Aretha Franklin tunes," use the expression

```
> (cons (first sentence) (cons 'dances (subseq sentence 4)))
(kim dances to aretha franklin tunes)
or
> (append (list (first sentence) 'dances) (subseq sentence 4))
(kim dances to aretha franklin tunes)
```

The problem with these solutions is that they require prior knowledge of what the original sentence looks like. To work properly, the calls to subseq require knowledge of the number of words at the end and beginning of the sentence. A better solution would be to organize the sentence into parts-a noun phrase, verb phrase, and object phrase. The original sentence would be represented as

```
> (define noun-phrase '(kim))
??
> (define verb-phrase '(likes to dance))
??
> (define object-phrase '(to aretha franklin tunes))
??
```

To make the entire sentence, use

```
> (append noun-phrase verb-phrase object-phrase)
(kim likes to dance to aretha franklin tunes)
```

The other two sentences can be produced as follows:
> (append noun-phrase verb-phrase '(in the dark))
(kim likes to dance in the dark)
> (append noun-phrase '(dances) object-phrase)
(kim dances to aretha franklin tunes)

To make these solutions more general, functions could be made as follows:

```
; Return a sentence with noun-phrase, verb-phrase,
; and "in the dark."
(define (in-the-dark-sentence noun-phrase verb-phrase)
 (append
 noun-phrase
 verb-phrase
 '(in the dark)))
; Return a sentence with noun-phrase, "dances,"
; and object-phrase.
(define (dances-sentence noun-phrase object-phrase)
 (append
 noun-phrase
 '(dances)
 object-phrase))
```

These functions could be called with other phrases to produce new sentences.

```
> (in-the-dark-sentence '(little green creatures)
 '(are often seen))
(little green creatures are often seen in the dark)
> (dances-sentence '(a little purple creature)
 '(on her fingertips in my dreams))
(a little purple creature dances on her fingertips in my dreams)
```

Such sentences could not have been produced with the original solutions to this problem. By creating a more generic representation of a sentence, we ended up with more general and useful solutions.

### 4.8.1 Exercises

4.26 Why was the list ( kim ) used to represent a noun phrase instead of the symbol kim, which could be consed onto the verb and object phrases?
4.27 How might you further define a generic sentence to allow more variation in the sentences that could be produced?
4.28 Write a function add-words that takes sentence, a list representing a sentence, words, another list representing words to add to sentence, and position, a number denoting a position in sentence. add-words should return a list made by adding the words in words to sentence immediately before the word at position in sentence. For example,

```
> (add-words '(the dog barks loudly) '(with huge fangs) 2)
(the dog with huge fangs barks loudly)
```

Creating form letters

Representing names

Difficulties with names

### 4.8.2 Computer-Generated sweepstakes

How many times have you received mail telling you something like this:

# OLIVER GRILLMEYER <br> will receive $\$ 1,000,000$ <br> in the "Aren't We Cool" Sweepstakes <br> to be paid in yearly installments of $\$ 100,000$ <br> over the next 10 years or $\$ 50,000$ over the next 20 years <br> if you are the one-in-a-billion lucky person chosen in our random drawing. 

If you have gotten this letter, what are you doing with my junk mail?
Scheme can be used to create such form letters, given a list of names to send them to. To begin we need a representation for the names. One simple solution is to represent names as symbols in a list like

```
(John Q. Public)
```

The problem with such an approach is that our form letters may wish to extract the last name to print something like

Imagine your response when our representative comes to your door to say
"Congratulations Mr. Grillmeyer, you have won $\$ 1,000,000$."
To do this we need to extract the last name from a list. It may seem simple enough using subseq as follows:

```
> (subseq '(John Q. Public) 2)
(Public)
```

But what if the person has no middle name? Again you can be clever and just extract the last element of the list by determining how many elements to skip from the front based on the length of the list.

```
> (subseq '(Jane Doe) (- (length '(Jane Doe)) 1))
(Doe)
```

As an exercise, write a function that takes a list and returns the last name based on this approach. Does your function work on lists with any number of first or middle names?

There is another potential problem lurking here. The last symbol in a name list may not be the person's last name. For example,

| complete name | last name |
| :--- | :--- |
| Ludwig van Beethoven | van Beethoven |
| Myriam Roxanna Haynal M.D. | Haynal |
| Dr. Gino Cheng Esq. | Cheng |
| Carla Juanita de la Cruz III | de la Cruz |

A seemingly simple problem has opened up into a can of worms. To get around our current dilemma we can do one of three things:

1) Write Scheme code to deal with all of these special cases.
2) Represent names in a different way to disambiguously represent last names.
3) Ignore the issue and have our letters only print the person's entire name.

The third approach may seem like an invalid solution, but there are times when tasks just get too difficult and it is better to simplify the problem rather than implement it as originally desired. The pioneers in language translation learned this lesson the hard way. More on that in Chapter 15.

The first approach is possible if we have a handle on all the possible titles and prefixes to last names we may run across, and there are no ambiguities. It is left as an exercise to the reader.

The second approach is easiest, assuming we have control over the form of the data. This is not always the case for programmers. However, when it is an option, it is best to design your data representation to simplify your task. This is a frequently used technique in programming. In fact, there are entire texts devoted to program design as a split between data representation and algorithms. ${ }^{6}$

Another advantage is that we don't have to worry about future names that don't follow the conventions of which we are currently aware. There are plenty of nonconventional names you are probably aware of such as Madonna, Sting, the Edge, Plato, Socrates, and Aristotle (the ancient Greeks didn't have last names).

We can represent names as a list of five lists denoting the prefix, first, middle, last name, and suffixes of the person. Thus, Miss Carla Juanita de la Cruz III becomes

```
((Miss) (Carla) (Juanita) (de la Cruz) (III))
```

And Sting becomes

```
(() (Sting) () () ())
```

The last name is the fourth element of a name list. Below is a selector function to extract the last name from a name list:

```
```

; Return the last name, fourth element, from a name list.

```
```

; Return the last name, fourth element, from a name list.
(define (last-name name-list)
(define (last-name name-list)
(fourth name-list) )

```
```

    (fourth name-list) )
    ```
```

It may seem pointless to create a function as simple as this, but it is worthwhile because it makes our final program more readable. It is clearer what is happening when we use a function called last-name rather than fourth. Also, if we should decide to change the data representation, we need only change the selector function. We don't have to search through the entire program looking for calls to fourth and decide if they are extracting the last name or doing something else.

Let's return to the problem of writing form letters. A form letter can be viewed as a template in which the person's name is to be inserted in certain parts. One such form letter may be the following:

[^14]Data representations to simplify coding

Selector functions

## Dear Mr. Grillmeyer

This is your last chance to receive our mailings at the Grillmeyer residence. By ordering your personalized ceramic utensil set, we will enter the Grillmeyer family in our sweepstakes giveaway. Don't think any more, just do it.
To produce such a form letter we can generate a list of symbols for each line of actual text. An entire form letter will be a list of these lists. Here is an attempt to produce the above form letter:

```
; Return the prefix (first element) from a name list.
(define (prefix name-list)
 (first name-list))
; Produce a form letter addressed to name-list.
(define (make-form-letter name-list)
 (list
 (list 'Dear (prefix name-list) (last-name name-list))
 '()
 '(This is your last chance to receive our mailings at)
 (list 'the (last-name name-list) 'residence. 'By 'ordering
 'your 'personalized)
 (list 'ceramic 'utensil 'set, 'we 'will 'enter 'the
 (last-name name-list) 'family)
 '(in our sweepstakes giveaway. Don't think any more,)
 '(just do it.)))
```

However, when we enter this code into the Scheme interpreter, we get the following error:

Error: Comma not inside a quasiquote.
Recall from Chapter 3 that commas are not allowed in symbol names. Their use will be shown in the next section on quasiquoted lists. If we remove the commas from our lists and reenter the function, no error results. So let's try it out.

```
> (make-form-letter '((Mr.) (Michael) (Phillip) (Jagger) '()))
((DEAR (MR.) (JAGGER)) () (THIS IS YOUR LAST CHANCE TO RECEIVE OUR
MAILINGS AT) (THE (JAGGER) RESIDENCE. BY ORDERING YOUR PERSONALIZE
D) (CERAMIC UTENSIL SET WE WILL ENTER THE (JAGGER) FAMILY) (IN OUR
SWEEPSTAKES GIVEAWAY. DON 'T THINK ANY MORE) (JUST DO IT.))
```

This output is far from desirable. In Chapter 9 we cover a means of getting around this problem. For now, we can print one line at a time using functions like first or list-ref.

```
> (first (make-form-letter '((Mr.) (Michael) (Phillip) (Jagger) ())))
(DEAR (MR.) (JAGGER))
```

The remaining problem is to eliminate the extra parentheses. This can be done using append instead of list when creating our lists. Simply changing list to append will introduce another problem, because all the arguments to append
should be lists. Below is the correct solution:

```
; Produce a form letter addressed to name-list.
(define (make-form-letter name-list)
 (list
 (append '(Dear) (prefix name-list) (last-name name-list))
 '()
 '(This is your last chance to receive our mailings at)
 (append '(the) (last-name name-list)
 '(residence. By ordering your personalized))
 (append '(ceramic utensil set we will enter the)
 (last-name name-list) '(family))
 '(in our sweepstakes giveaway. Don't think any more,)
 '(just do it.)))
```


### 4.8.3 Exercises

4.29 Does the above solution give reasonable output when called with names like Sting or Madonna?
4.30 Write a function that generates your own personalized form letter.

### 4.9 Optional Section: Quasiquoted Lists

Another means of creating lists is to use the special form quasiquote. Rather than specifying the structure and contents of a list using combinations of cons, list, and append, quasiquote allows you to indicate the form of the list directly. quasiquote (abbreviated as "`") is an extension of the special form quote. It can be used to produce literal lists such as

```
> '(mary had a little lamb (or so the story goes))
(mary had a little lamb (or so the story goes))
```

To create lists that contain the values of variables or the results of computations, simply precede any expressions that you wish to be evaluated by a comma. This is a shorthand for unquote. Assume that the definitions below have been made:

```
(define person 'mary)
(define object '(a little lamb))
```

The list (mary had a little lamb (or so the story goes)) can be created with

```
`(,person had a little,(third object) (or so the story goes))
```

Notice what happens when a list is inserted.

```
> '(,person had ,object (or so the story goes))
(mary had (a little lamb) (or so the story goes))
```

Building lists with quasiquote

Evaluating parts of quasiquoted lists

There is an operator similar to comma-comma followed by the at-sign "@". This is a shorthand for unquote-splicing. The expression following the comma-at-sign pair should evaluate to a list, and this list is appended to the rest of the quasiquoted list. Thus,

```
> '(,person had, @object (or so the story goes))
(mary had a little lamb (or so the story goes))
```

In summary, to add an evaluated expression to a list, use
, expression
where you wish the evaluated expression to go. To insert the elements of a list obtained from evaluating an expression, use
, @expression
in the quasiquoted list at the position where these elements should go.

### 4.9.1 Exercises

4.31 Assume that the following defines have been made:

```
(define number 8.31)
(define name '(gino as in pizza))
```

What do the following expressions evaluate to?

```
`(number , number name , name)
`((+ number 100) ,@name)
`(,(+ number 1) ,@(cdr name))
```

4.32 Using the symbols defined in the previous exercise, write expressions that would produce the following lists:

```
(gino as in 8.31)
(gino as in (gino as in) pizza)
((8.31 gino (as in pizza)) 10.31)
```

4.33 Write a function that uses quasiquoted lists to create form letters as shown in the previous section.

### 4.10 Miscellaneous List Functions

A number of other functions work with lists. Below are some of these functions, the arguments that they take, and the values they return. member and reverse are built-in Scheme functions. The other functions will be defined in this section or in the appendix. They are given as exercises in Chapter 6. Other functions allow you to apply a function to each element in a list. These functions will be covered in Chapter 8.

```
function arguments return value
position element list the position of element in list (counting from zero),
 #f if element is not in list
member element list the rest of list starting with the first occurrence of
 element,#f if element is not in list
count element list the number of occurrences of element in list
remove element list list with all occurrences of element removed
reverse list the reverse of the top-level elements of list
```

The functions position, member, count, and remove search for elements within list. These elements can be numbers, symbols, or lists. This behavior can be seen in the following examples that show sample calls of the function position:

```
> (define my-list '(this list (will help) explain 6 list functions))
??
> (position 'list my-list)
1
> (position 6 my-list)
4
> (position 'word my-list)
#f
> (position '(will help) my-list)
2
> (position 'will my-list)
#f
```

The functions that search for the occurrence of element within list do not search sublists within list. The last function call resulted in \#f because position does not look within sublists to find matches. Calling member with 'will and the same list as arguments will yield \#f. Calling count with 'will and the same list as arguments will yield 0 . Similarly, calling remove with the same arguments will return the original list (no elements are removed).

Here are examples of the other functions:

```
> (member 6 my-list)
(6 list functions)
> (member 'list my-list)
(list (will help) explain 6 list functions)
> (count 6 my-list)
1
> (count 'list my-list)
2
```

Which elements get matched

Certain elements don't get matched

```
> (remove 6 my-list)
(this list (will help) explain list functions)
> (remove 'list my-list)
(this (will help) explain 6 functions)
> (reverse my-list)
(functions list 6 explain (will help) list this)
```

Writing count

Writing position

Notice that in the call to reverse, the sublist (will help) was not reversed. reverse only reverses the top-level elements.

We don't know enough to write the function remove; that material is covered in the sections on creating lists and filters in Chapter 6. We can write the function count (using remove) and we can write a simplified version of position. The number of times an item occurs in a list can be determined by subtracting the number of elements in the list from the number of elements that are left in the list after all occurrences of the item are removed. The number of items in a list is the length of that list. The function count follows:

```
; Return the number of times item occurs in a-list.
(define (count item a-list)
 (- (length a-list)
 (length (remove item a-list))))
```

The position of an item in a list can be determined using a similar technique as used in count. Taking member of the item and the list will return the list from item onwards. The difference between the length of the entire list and the list from member is the number of elements that occur before the item, which is the same as the position of the item. Here is the code to do this:

```
; Return the position of item in a-list.
(define (position item a-list)
 (- (length a-list)
 (length (member item a-list))))
```

Note: this version of position does not work if item does not occur in alist.

### 4.10.1 Exercises

4.34 Using the symbol my-1ist defined as

```
(this list (will help) explain 6 list functions)
```

and the functions in this section, write expressions that will return the following lists. You may use more than one function in each answer.

```
(explain 6 list functions)
3
((will help) explain 6 functions)
(explain (will help) list this)
```

```
(this list (will help))
((will help) explain)
(functions explain this)
```

4.35 Write a function with two parameters, element and a-list, that returns the position of the last occurrence of element in a-list. Assume that element is in a-list. Watch out for off-by-one errors-those in which the answer you get is one away from the answer you want.
4.36 Write a function that takes a list and returns the list with the first and last elements switched.
4.37 Write a function count-both that takes two atoms and a list and returns the number of times either of those atoms occurs in the list. Write two versions of this function: one using the function + and one without + . For example,

```
> (count-both 'a 'b '(a b r a c a d a b r a))
7
```

4.38 Suppose the following expressions have been entered into Scheme:

```
(define months
 '(jan feb mar apr may jun jul aug sep oct nov dec))
(define days
 '((\begin{array}{llllllllllll}{31}&{28}&{31}&{30}&{31}&{30}&{31}&{31}&{30}&{31}&{30}&{31))}\end{array})
```

Write a function num-days that takes a symbol representing a month and returns the number of days in that month. For example,
> (num-days 'jul)
31
4.39 Write a function whos-there that returns the names of people working on a certain day and time. whos-there has two parameters: schedule, a list representing the work schedule for some day, and time, an hour of the day (in military time, $0-23$ ). Here is a sample schedule for Monday:
(10 hiro 11 madelaine elizabeth 1213 kessie lou 14)
Given this schedule and the time 11 , whos-there should return the list (madelaine elizabeth). Called with the time 12, an empty list should be returned.

Hint: think how you can extract part of the schedule from a certain time till one hour past that time (e.g., that part of the list from 11 to 12), and then adjust this to get the names only. What assumptions about the schedule and hour passed in do you have to make to avoid getting errors when the function is called?

CD database

Finding the jazz artists

Finding a particular list of CDs

### 4.11 Representing a Database with Lists

Let's return to the example given earlier of maintaining a database of CDs. Recall that the data structure looked like the following:

```
(rock
 (Rolling_Stones
 (Black_and_Blue
 Its_Only_Rock_and_Roll))
jazz
 (Pat_Metheny
 (First_Circle)
 Andy_Narell
 (The_Hammer)))
```


### 4.11.1 Selecting items from the database

Let's write an expression to return all the jazz artists and CDs in the collection. We'll assume that the CDs may not be in the order shown above (i.e., rock CDs first, then jazz CDs). The order may be different or other music types may exist. Assume that the CD list has been bound to the symbol CD-list. The jazz artists and CDs are in the list following the top-level symbol jazz within CD-list. To get this list, a combination of list-ref and position can be used. position can be used with jazz to find the location of jazz in CD-list:

```
> (position 'jazz CD-list)
2
```

list-ref can use this result (with one added to it) to get the list of jazz artists and CDs:

```
> (list-ref CD-list (+ (position 'jazz CD-list) 1))
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer))
```

A slightly simpler solution uses member:

```
> (member 'jazz CD-list)
(jazz (Pat_Metheny (First_Circle) Andy_Narell (The_Hammer)))
```

Taking second of this list gives us the same list we got above:

```
> (second (member 'jazz CD-list))
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer))
```

We can go a level deeper and write an expression that returns Andy Narell's CDs. The technique used to return the jazz artists and CDs can be used to find the CDs of a particular artist. This is due to the the similarities between $\mathrm{CD}-1$ ist and the artist-CD lists. CD-list consists of pairs; each pair is a category and an artist-CD list. The artist-CD lists are similar in that they are pairs, where each pair has an artist name and a CD list. To illustrate this parallel, observe the following:

```
> (define jazz-artist-CD-list (second (member 'jazz CD-list)))
??
```

```
> jazz-artist-CD-1ist
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer))
> (second (member 'andy_narell jazz-artist-CD-1ist))
(The_Hammer)
```

Now let's write a general function that takes a musical category (e.g., rock, jazz) and an artist, and returns all the CDs from that artist. This can be accomplished by generalizing what we did above through the use of parameters instead of specific values. To improve the readability of the solution, the composition of second and member can be made into a function as follows:

```
; Return the element that follows selector in a-list.
(define (element-after selector a-list)
 (second (member selector a-list)))
```

Here are two example calls to this new function:

```
> (element-after 'rock CD-list)
(Rolling_Stones (Black_and_Blue Its_Only_Rock_and_Roll))
> (element-after 'Pat_Metheny jazz-artist-CD-list)
(First_Circle)
```

The main function can now be written:

```
; Return the CDs by artist and type in CD-list.
(define (artist-CD-list type artist CD-list)
 (element-after
 artist
 (element-after type CD-list)))
```

Here are some sample calls to this new function:

```
> (artist-CD-list 'jazz 'pat-metheny CD-list)
(First_Circle)
> (artist-CD-list 'rock 'rolling_stones CD-list)
(black_and_blue its_only_rock_and_roll)
```


### 4.11.2 Adding elements to the database

Now let's write a function to add new CDs to the above structure. The function will take four parameters: the CD to add, the category of music, the artist name, and the CD data structure. This problem involves taking apart and rebuilding lists. It can be thought of in the following steps:

- Get the list of existing CDs from $\mathrm{CD}-1$ ist, the CD data structure

Pseudo code to add

- Add the new CD to the head of that list CDs

Generalizing what we've done

Extracting a list of CDs

- Create a new artist-CD list using the new list of CDs
- Create a new overall CD list using the new artist-CD list

Changing an element in a list

Getting the elements before the item to be added

Let's refine these steps:

- Get the list of existing CDs from CD-1ist, the CD data structure:

This is exactly what the function artist-CD-list written above does.

- Add the new CD to the head of that list:

This involves calling cons with the new CD and the result from the above step.

- Create a new artist-CD list using the new list of CDs:

Before we refine this step, we should think of it in general terms to combine it with the next step.

- Create a new overall CD list using the new artist-CD list:

The last two steps involve creating a new list that has one element changed from the original list. A new element replaces the element immediately after the category or artist name in the list. The task is to write a function that takes a list, a-list, an element to add, element, and a category or artist name, selector, and returns a new list with element inserted in the position following selector in a-list. For example, the value returned from

```
(new-element jazz-artist-CD-list '(We_Live_Here First_Circle)
 'Pat_Metheny)
is
(Pat_Metheny (We_Live_Here First_Circle) Andy_Narell (The_Hammer))
```


## This function combines three lists:

- the items before the element to be added-the left side of the list
- the list of the new element
- the items after the element to be added-the right side of the list

Now our task is to refine these three steps.

- Step 1: the items before the element to be added-the left side of the list

To get the left side of a list, use subseq. subseq needs the position of the category or artist name to denote the last element (the end) of the left side. The start value is 0 . Putting this together in a function we get

```
; Return the elements up to and including selector in a-list.
(define (items-before a-list selector)
 (subseq
 a-list
 0
 (position selector a-list)))
```

Testing this new function yields

```
> (items-before jazz-artist-CD-list 'Pat_Metheny)
()
```

We wanted to have the list

Remember that subseq does not include the element at position end. We made an off-by-one error, which is easily fixed by adding one to the value that position returns. The corrected code is

```
; Return the elements up to and including selector in a-list.
(define (items-before a-list selector)
 (subseq
 a-list
 O
 (+ (position selector a-list) 1)))
```

Testing this new function yields

```
> (items-before jazz-artist-CD-list 'Pat_Metheny)
(Pat_Metheny)
```

- Step 2: the list of the new element

This is easily done using list. We must use the list of the element to add and not just the element because we are using append to build up the new list, and append takes lists of the elements that will be in the resulting list.

- Step 3: the items after the element to be added-the right side of the list

To return the tail end of a list, subseq can be used. Once again we know the position of the category or artist that is before the element that gets added. This position could be used with subseq. Since we want the tail end of the list, we can leave off the third argument, end, to subseq. The start value is the position of the first element that is returned. This is the position of the element that is two elements beyond the selector (we want to skip the selector and its matching valueeither a CD list or the remaining artist/CD list pairs). The code to return the elements after the new element added is

```
; Return the elements following the artist selector and her CDs.
(define (items-after a-list selector)
 (subseq
 a-list
 (+ (position selector a-list) 2)))
A test of this function yields
```

```
> (items-after jazz-artist-CD-list 'Pat_Metheny)
```

> (items-after jazz-artist-CD-list 'Pat_Metheny)
(Andy_Narell (The_Hammer))

```
(Andy_Narell (The_Hammer))
```

This is correct. Putting the three pieces together we can write the function newelement:

```
; Return a-list with element replacing the item after selector.
```

(define (new-element a-list element selector)
(append
(items-before a-list selector)
(list element)
(items-after a-list selector)) )

Getting the elements after the item to be added

Putting an element into a list

Putting a $C D$ in the CD data structure

Why so many functions?

A test of this function yields

```
> (new-element jazz-artist-CD-list '(We_Live_Here First_Circle)
 'Pat_Metheny)
(Pat_Metheny (We_Live_Here First_Circle) Andy_Narell (The_Hammer))
```

The final step is to put all the pieces listed below together to produce the function add-new-CD:

- Get the list of existing CDs from CD-list
- Add the new CD to the head of that list
- Create a new artist-CD list using the new list of CDs
- Create a new overall CD list using the new artist-CD list

```
; Return a new CD-list with a new CD added for artist in
; category.
(define (add-new-CD CD category artist CD-list)
 (new-element
 CD-1ist
 (new-element
 (element-after category CD-list)
 (cons
 CD
 (artist-CD-list category artist CD-list))
 artist)
 category))
```

Let's test this function:

```
> (add-new-CD 'Tattoo-you 'rock 'Rolling_Stones CD-list)
(rock
 (Rolling_Stones
 (Tattoo-you
 Black_and_Blue
 Its_OnlY_Rock_and_Roll))
 jazz
 (Pat_Metheny
 (First_Circle)
 Andy_Narell
 (The_Hammer)))
```

The actual output will not be indented as shown.
Each step in the pseudo code was carried out by a function. We did not need to use this many functions in the solution to this problem. The advantage to such an approach, however, is that each function can be tested individually. Then, when all the parts are put together, the chances of the entire solution being correct are much greater.

If the code is written as one large function and contains some error, a bug, it may be in any part of the function, and there is no easy way to narrow it down without looking through the entire large function.

Another advantage to having so many functions is they can act as building blocks to a larger program. Selecting or creating parts of the data structure can be done with these generic functions. Another real advantage is lurking here: should the data structure change, all that needs to be changed are these selector and creator functions. This topic is covered in depth in Chapter 7.

### 4.11.3 Exercises

4.40 Write items-before and items-after using member and some of the other functions presented earlier instead of subseq.
4.41 Write a function delete-CD that has the same parameters as add-new-CD, but instead of adding a new CD, delete-CD returns a CD list with $C D$ removed. Does your solution work if CD is not in the CD list?

### 4.12 Optional Section: Internal Representations of Lists

Scheme represents lists as sequences of cons cells. A cons cell has two components: the first indicates the next element of the list and the second indicates the rest of the list. The list ( $\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \text { ) consists of three cons cells. It can be drawn as }\end{array}$ follows:


Each box represents a cons cell. The left half of the box has an arrow that points to an element of the list. The right half of the box has an arrow that points to the rest of the list. In the case of the third cons cell, the rest of the list is (). This is represented as a box with a line through it. Scheme denotes the end of a list by having the right half of a cons cell point to ().? The arrows are called pointers. A pointer represents a location in the computer's memory. A pointer to a symbol is the location of that symbol in the computer. A list is represented as a pointer to the first cons cell in a cons cell chain. The pointer on the upper left in the above diagram represents the list ( $\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}$. Scheme prints out lists by sequencing through the chain of cons cells until a cons cell with a () right side is encountered. For each cons cell, the element pointed to by the left side pointer is printed out.

[^15]Cons cells: the building blocks of lists

Pointers

How cons cells make lists

Examples of cons cell diagrams

Cons cells are created and combined to make lists. The function cons creates a single cons cell. The two arguments to cons are the objects to which the left and right pointers of the new cons cell will point. Again, think of a list as being represented by a pointer to the first cons cell in the chain of cons cells that make up that list. This tells us that car is obtained by returning what the left half of that first cons cell points to, and cdr returns what the right half points to.

The diagrams below are illustrations of the lists shown in section 4.7. , "Creating Lists." Notice that the left side of the first cons cell points to the car of the list and the right side points to the cdr.

(apples and oranges)

( (some list) another list)


Thinking in terms of the internal representations of lists, cons, list, and append perform the following actions:

- cons adds a new cons cell to the front of the list.
- list creates a chain of cons cells-one for each argument with which it is called.
- append creates new cons cells that are connected to the list representing the last argument given to append. One cons cell is created for each element in each of the lists that is supplied as an argument to append, with the exception of the last argument.


### 4.13 Optional Section: Dotted Lists

If an object is consed onto an atom, a dotted list is returned.

```
> (cons 'something 'strange)
(something . strange)
> (cons '(some list) 'strange)
((some list) . strange)
```

The example,
(cons 'something 'strange)
shows what happens when a symbol is consed onto a symbol. The resultant object,

```
(something . strange)
```

is called a dotted list. The dot notation is used to differentiate a normal list-one with () as its final cdr-from a dotted list. The final cdr of a dotted list is not a cons cell or (). The diagram below shows the internal representation of this dotted list:


The final car points to the symbol strange.
The cars and cdrs of the results from the above calls to cons are the same as the arguments that were applied to cons:

What cons, list, and append really do

Representation of dotted lists

```
> (car '(something . strange))
something
> (cdr '(something . strange))
strange
> (car '((some list) . strange))
(some list)
> (cdr '((some list) . strange))
strange
```

Dotted lists can be produced by append when the last argument is an atom:

```
> (append '(4) 3)
(4 . 3)
```

This is equivalent to

```
> (cons 4 3)
(4 . 3)
```

Dotted lists can produce somewhat strange results when applied to some of the previously illustrated list functions:

```
```

> (first '(3 . 4))

```
```

> (first '(3 . 4))
3
3
> (second '(3 . 4))
> (second '(3 . 4))
Error: Pair expected
Error: Pair expected
> (length '(3 . 4))
> (length '(3 . 4))
Error: Pair expected
Error: Pair expected
>(member 3 (% . 4))
>(member 3 (% . 4))
(3 . 4)
(3 . 4)
> (member 4 '(3 . 4))
> (member 4 '(3 . 4))
Error: Pair expected

```
```

Error: Pair expected

```
```

Using dotted lists with list functions

Most of the list functions will produce errors if they try to go beyond the final cons cell in a dotted list. This is what happened in all of the cases that resulted in errors above. The call to first and the first call to member were successful because they did not attempt to go past that final cons cell. This may not be true in all implementations of Scheme.

As a general rule, you should avoid using most list functions with dotted lists. The list functions that will work with dotted lists are car, cdr, first, and rest.

### 4.14 Summary

- The three basic data structures in Scheme are numbers, symbols, and lists. Collectively, numbers and symbols are called atoms. Lists are ordered collections of atoms or lists. The items in lists are called the elements of the list.
- The empty list, one with no elements, is written as ' ().
- To stop the normal process of evaluation, the special form quote is used. quote is frequently used to stop the evaluation of lists as functions.
- Special forms are like functions, but they do not follow the evaluation rules for functions.
- To find the number of elements in a list, use length.
- To extract an element from a list whose position is known, use one of first through fifth.
- To extract elements from lists when their positions must be computed beforehand, use list-ref.
- To return all but the first element of a list, use rest or cdr.
- To return the head of a list, use subseq with 0 and end, where end is the last element number you want to include.
- To return the tail of a list, use subseq with start - 1 , where start is the first element number you want to include.
- To return any contiguous section of a list, use subseq with start - 1 and end, where start is the first element to include and end is the last.
- Compositions of car and car can be abbreviated by surrounding the as and ds in the car and car calls with $c$ and $r$.
- To return a list with a new first element, use cons.
- To create a list of many elements, use list.
- To put the elements of lists together into one list, use append.
- quasiquote can be used to create lists by specifying templates of the list. The elements are not evaluated unless they are preceded by a comma or a comma and at-sign, ", @". Forms preceded by a comma are evaluated and their return value used. Forms preceded by a comma-at-sign pair should evaluate to lists, and the elements of those lists are used.
- To return the position of an element, the number of times an element occurs, or the rest of the list starting from the element, use position, count, or member, respectively.
- To remove all occurrences of an element from a list, use remove.
- To get the reverse of a list, use reverse.
- The functions position, count, member, and remove do not search within sublists.
- Lists are composed of cons cell chains. Each cons cell has two pointers, which point to the next element in the list and the rest of the list.
- A dotted list is produced when an object is consed or appended onto an atom.
- Summary of functions introduced in this chapter:

function	arguments	return value
length	list	the number of elements in list
first	list	first element of list
rest	list	rest of list without the first element
car	list	same as first
cdr	list	same as rest
second	list	second element of list
third	list	third element of list
fourth	list	fourth element of list
fifth	list	fifth element of list
list-ref	list position	element at position pos in list
subseq	list 0 end	left part of list up to element end
subseq	list start	right part of list starting at element start +1
subseq	list start end	list with elements start +1 through end
random	num	randomly generated number between 0 and num-1
cons	element list	list with element inserted at the start
list	el1 el2 ... elN	the list (el1 el2 ... elN)
append	list1 list2 ... listN	the list formed by concatenating the elements of list1, list2, ..., listN.
position	element list	the position of element in list (counting from zero), \#f if element is not in list
member	element list	the rest of list starting with the first occurrence of element, $\# \mathrm{f}$ if element is not in list
count	element list	the number of occurrences of element in list
remove	element list	list with all occurrences of element removed
reverse	list	the reverse of the top-level elements of list

- Summary of special forms introduced in this chapter:

special form	arguments	return value
quote	expression	expression unevaluated
quasiquote	expression	expression unevaluated except for items preceded
		by "," or ", ©"

## CHAPTER 5

## CONDITIONALS

### 5.1 Control Through Conditional Expressions

In addition to operations performed upon numbers, symbols, and lists, Scheme has control operations. Recall from Chapter 1 that control operations are an important element that separates computers from simpler computational devices. Control operations allow decisions to be made. Different actions are taken based on the given conditions. Let's look at how Scheme handles control.

Scheme has a built-in special form, if, that checks a condition and returns one value if it's true and a different value if it's false. The general form of if is as follows:
(if condition
action
else-action)
where else-action is optional. To use this function, we need to learn how to create conditions that return true or false values in Scheme.

Predicates are functions that return true / false values. They can be used as con-

[^16]| predicate | arguments | returns true if and only if |
| :--- | :--- | :--- |
| $<$ | num1 ...numN | num1 <num $2<\ldots<n u m N$ |
| $>$ | num1 ...numN | num1 $>n u m 2>\ldots>n u m N$ |
| $=$ | num1 ...numN | num1 $=n u m 2=\ldots=n u m N$ |
| <= | num1 ...numN | num1 $\leq n u m 2 \leq \ldots \leq n u m N$ |
| $>=$ | num1 ...numN | num1 $\geq$ num $2 \geq \ldots \geq n u m N$ |
| zero? | num | num $=0$ |
| positive? | num | num $>0$ |
| negative? | num | num $<0$ |
| even? | num | num is an even number |
| odd? | num | num is an odd number |
| number? | num | num is a number (integer, real, or ratio) |
| real? | num | num is a real number |
| integer? | num | num is an integer |

In Scheme, the built-in symbol \#f represents false; anything else represents true. \#f is predefined in the language and cannot be changed. Such a symbol is called a constant.
There is another predefined constant, \#t, which is often used to represent true; however, any non-\#f value is considered true in Scheme.
As a simple example, suppose you want to add one to some value; yet that value may not be a number, in which case you want to return the value. This type of test is called type-checking. Type refers to the kind or type of value to which a variable may be bound (e.g., number, symbol, list). To test if something is a number, use the predicate number?. Below are some examples illustrating the use of number?:

```
> (number? -1)
#t
> (number? 'an-atom)
#f
> (number? '(some list))
#f
```

We can use this predicate as the condition of an if expression.

```
(if (number? item) ;item is the value being tested
 (+ item 1)
 item)
```

If item is a number, (+ item 1) is evaluated and item plus one is returned; otherwise item is evaluated and its value is returned.

An if is a special form because not all of its arguments are evaluated. The condition is always evaluated. Depending on the return value of condition, only one of action or else-action is evaluated and that value is returned as the return value of the if. If else-action is not included and condition is false, an undefined value is returned.

To see why this evaluation method is important, let's look at what happens if we evaluate all of the arguments to the previous if expression when called with a non-numerical value, (a list), for item. '(a list) will be substituted for item in the following expressions:

```
expression
 return value
(number? '(a list)) #f
(+'(a list) 1) Error: Expected INTEGER
'(a list) (a list)
```

If all the arguments to if were evaluated, we would have a problem if item were not bound to a number. Since if is a special form,

```
(+ item 1)
```

will be evaluated only if item represents a number, in which case it is safe to perform the addition.

The actions of an if can be any expression, even another if as the next exam-

[^17] ple will illustrate. To test if a number, num, is greater than 1 but less than 100, the following expression can be used:

```
(if (> num 1)
 (if (< num 100)
 #t
 #f)
 #f)
```

If num is not greater than 1, the condition of the first if fails and the else-action, $\# \mathbf{f}$ (the second $\# \mathbf{f}$ ) is evaluated. $\# \mathbf{f}$ evaluates to itself, thus $\# \mathbf{f}$ would be returned. If the first condition is satisfied, the action to evaluate is the inner if:
(if (< num 100)
\#t
\#f)
If the condition of this if,

```
(< num 100)
```

is satisfied, \#t is returned; otherwise \#f is returned. Thus, in order for \#t to be returned, both conditions must be true.

### 5.1.1 Exercises

5.1 Write an if expression that returns the value of the greater of two symbols, num1 and num2.
5.2 Write a function that returns the smaller of its two arguments.
5.3 What does the following expression return?

```
(if (= 3 4)
 3
 (if (= 2 2)
 2
 1))
```

5.4 The following list represents pets and their qualities:

```
(define qualities '(cat (independent lazy sleepy)
 dog (needy loyal) fish (wet slimy colorful) lion (dangerous)))
```

Complete the function characteristic that indicates if a certain animal has a particular characteristic according to the data in the list qualities. For example,

```
 > (characteristic 'dog 'loyal)
 (yes a dog is loyal)
 > (characteristic 'lion 'dull)
 (no a lion is not dull)
(define (characteristic animal quality)
(let ((animal-quality-list \(\longrightarrow\)))
 (if (—) ; animal has quality
 (—_) ; yes message
 (__()))) ; no message
```

5.5 Write a function that takes three numbers representing the lengths of the sides of a triangle. It should return true if the sides represent a right triangle-if the sum of the squares of the first two equals the square of the third. Assume that the arguments are in the proper order, in other words, that the third argument will represent the length of the hypotenuse, the longest side of the triangle.
5.6 Could you solve the above problem if you had to determine the longest side? If so, give a solution; if not, indicate why.
5.7 Write a function that takes two arguments and returns true if both arguments are equal to 0 :
5.8 Write a function that returns true if its one argument is equal to 1 or 0 .
5.9 Write a function that takes two arguments, num1 and num2, and returns the result of dividing num 1 by num2 if num2 is a nonzero number. If num1 or num2 are not numbers, your function should return the symbol non-number.

If num2 is zero, your function should return the symbol zero-divisor. What happens if you divide a number by zero in Scheme?
5.10 Write a function that takes one argument, number, and returns its square root if it is non-negative. If number is negative, your function should return the symbol negative. What happens if you take the square root of a negative number in Scheme?
5.11 If you divide two integers, the result will be an integer or a ratio (such as $2 / 3$ ). For example, dividing 2 and 3 results in $2 / 3$. Write a function that takes two integer arguments and returns their quotient as an integer or a real number (floating point number). If the first integer is evenly divisible by the second, your function should return an integer, otherwise it should return a real number. Called with 2 and 3 , your function should return the real number 0.667.

### 5.2 Cond Expressions

The special form cond is used as a more generalized means of testing conditions in Scheme. cond takes multiple condition-action pairs as arguments. Each condition is tested, in the order given, until a condition evaluating to true (a non-\#f result) is encountered. The action associated with this condition is then evaluated and that value is returned. Below is an example to clarify this rather involved special form:

```
(cond ((< num 10) (* num num))
 ((< num 100) (* num 2))
 ((< num 1000) (+ num 10))
 (else (/ num 3)))
```

In the following examples, the current condition-action pair will be in a box.

```
(cond ((< num 10) (* num num))
 ((< num 1000) (+ num 10))
 (else (/ num 3)))
```

The condition, (< num 10), is evaluated. If it is true, then the action, (* num num), is evaluated, and the product is returned as the value of the cond. If the condition is false, evaluation continues with the next condition-action pair:

```
(cond ((< num 10) (* num num))
 ((< num 100) (* num 2))
 (else (/ num 3)))
```

which is evaluated like the previous pair.
If the first three conditions are false, we arrive at the final pair:

Evaluation example
with cond
else: the fallout condition within cond

```
```

(cond ((< num 10) (* num num))

```
```

(cond ((< num 10) (* num num))
((< num 100) (* num 2))
((< num 100) (* num 2))
((< num 1000) (+ num 10))
((< num 1000) (+ num 10))
(else (/ num 3)))

```
```

    (else (/ num 3)))
    ```
```

The condition else is always true; therefore, (/ num 3) is returned as the value of the cond. This is the standard way of having an otherwise clause within a condition. It effectively means if all the above conditions are false, then perform this action.

The above cond can be expressed in English as
If num is less than 10 , return (* num num)
otherwise, if num is less than 100 , return (* num 2)
otherwise, if num is less than 1000, return ( + num 10)
otherwise, return (/ num 3)
The order of the condition-action pairs is important, because they are evaluated in the order listed. The location of any otherwise clause-one with else as its condition-is important. If it is the first pair, then its action is always performed and none of the other conditions are evaluated.

## Mistakes to Avoid

Do not put condition-action pairs after an else clause. The condition else is true, so once it is encountered, its action will be evaluated and returned and no further conditions will be examined. An else clause should always be the last condition-action pair in a cond.

### 5.2.1 Exercises

5.12 Assume that the cond expression in the section above had been written as

```
(cond ((< num 1000) (+ num 10))
 ((< num 100) (* num 2))
 ((< num 10) (* num num))
 (else (/ num 3)))
```

What value would be returned if num were equal to 37 ? What would the original cond have returned? What value(s) of num will yield the same results for both conds?
5.13 Write a function date-compare that takes two lists, each representing a date and returns the symbol less if the first is before the second, and \#f otherwise. A date is represented as a list of three elements: the month, day, and year. For example,

```
> (date-compare '(1 3 1984) '(1 4 1984))
less
```

5.14 Write a function that takes a single numerical parameter, num, and returns the symbol positive if num is greater than zero, negative if num is less than zero, and zero otherwise. Your function should use a single cond expression.
5.15 The previous "Exercises" section had a number of problems that asked you to write functions using if. Which of these could be more succinctly written using cond instead?
5.16 Modify your solution to exercise 5.4 so that it also tests if the animal is present in the list qualities. If it isn't, return a message indicating so. For example,

```
> (characteristic 'platypus 'strange)
(sorry a platypus is not a pet)
```


### 5.3 Testing Multiple Conditions and Negations

To test multiple predicates, the special forms and and or are used. Both of these take any number of arguments. When an and expression is evaluated, each argument is evaluated one at a time from left to right. If an argument is encountered that evaluates to \#f, the evaluation of the and stops and \#f is returned. If all the arguments evaluate to true, the result of the last argument is returned. In other words, an and returns a true value only if all of its arguments do not evaluate to \#f.

An or expression is evaluated in a similar fashion to and. If all the arguments to an or return $\# \mathrm{f}, \# \mathrm{f}$ is returned. If any of the arguments, evaluated from left to right, returns a true value, evaluation stops and that value is returned.

To test for the opposite, or negation, of a condition, use the function not. not and evaluation rules takes one argument and returns $\# \mathrm{f}$ if the argument is true, and \#t if it is false, \#f.

The special forms and and or can be used like conditional expressions. The previous if expression

```
(if (> num 1)
 (if (< num 100)
 #t
 #f)
 #f)
```

can be written using an and expression as follows:

```
(and (> num 1)
 (< num 100))
```

Evaluation of the and begins by testing if num is greater than 1. If it's not, \#f is returned. Otherwise evaluation continues by testing if num is less than 100 . If it's not, \#f is returned. Otherwise \#t is returned because it is the return value of the last condition, (< num 100).

Expressing complex conditions in Scheme

Using if, cond, and, or or

This and condition can be more simply expressed as

$$
\text { (< } 1 \text { num 100) }
$$

which is true if 1 is less than num (same as num is greater than 1 ) and num is less than 100.

Below are some examples of conditions and their Scheme representations using and, or, and not.

## Condition

 num is odd and divisible by 3 (and (odd? num)(= (remainder num 3) 0))
num $=3$ or num $=4$
num is even and (77 < num <100) (and (even? num) (< 77 num 100))
value is not a number (not (number? value))
num is not in 10,11,... 20 (not ( $<=10$ num 20))
This last example could be expressed as num is less than 10 or num is greater than 20. In Scheme this would be written as

```
(or (< num 10) (> num 20))
```

Not all if and cond expressions are easily written as and or or expressions, especially if they return values other than \#t or \#f. For example, the previous if expression

```
(if (number? item)
 (+ item 1)
 item)
```

can be written as

```
(or (and (number? item) (+ item 1))
 item)
```

The or has two arguments: one and expression and the expression
item
The and expression is evaluated first. The condition
(number? item)
is evaluated. If it returns a non-\#f value, evaluation continues with
(+ item 1)
which evaluates to a non-\#f value, and this value is the result of the and expression. This value will be the result of the or expression as it is a non-\#f result of the first argument to or. If the and expression evaluates to \#f, because the expression
(number? item)
evaluates to \#f, the final argument to or,
item
is evaluated. It evaluates to the value of the symbol item, and this value is returned as the return value of the or.

The original if expression is more understandable and readable, and would be preferred to the or / and equivalent.

In general, an if-then or $i f$-then-else expression with an else part returning \#f can be written using and. Similarly, nested if-then-else expressions can be written using an and if all the else parts return \#f. Other simple and nested if-then-else expressions are best written using if, cond, or nested ifs.

## Mistakes to Avoid

The opposite of "less than," <, is $>=$, not $>$. A simpler alternate is to use
(not (< num1 num2))
to express the opposite of "less than."

## Mistakes to Avoid

English typically uses "or" to indicate an alternative, as in: "You can
Exclusive versus inclusive or

## Mistakes to Avoid

Be careful in translating English to Scheme. For example, the condition "number is neither greater than 20 nor less than 10" is written in Scheme with an and, not an or as the English inclusive or statement implies. The correct interpretation is as follows:
(and (not (> number 20))
(not (< number 10)))
Similarly, it could be written as
(and (<= number 20)) (>= number 10)))
which can be simplified as
(s= 10 number 20)

De Morgan's laws
De Morgan, a nineteenth century logician, created laws that give equivalences for ands and ors with nots. They show that
(not (and condition1 condition2))
is the same as
(or (not condition1) (not condition2))
and that
(not (or condition1 condition2))
is the same as
(and (not condition1) (not condition2))
Thus the above and expression

```
(and (not (> number 20))
 (not (< number 10)))
```

can be written as
(not (or (> number 20) (< number 10)))
Sometimes it is preferable to transform a condition using De Morgan's laws to make it easier to read. For example, to test "if value is not a number or not zero," use
(or (not (number? value))
(not (zero? value)))
which can be written as

```
(not (and (number? value)
 (zero? value)))
```

which reads "if value is not the number zero."

### 5.3.1 Exercises

5.17 Rewrite the if expressions below without using if or cond. You may use and and or expressions, but try to use the fewest ands and ors possible.

```
(if (positive? number)
 #t
 #f)
(if (positive? number)
 'positive
 #f)
(if (positive? number)
 'positive
 'negative)
```

Which of these is more readable using and and or expressions?
5.18 Rewrite the following and and or expressions using if or cond expressions. In each case, use just a single if or cond expression.

```
(and (even? num) 'even)
(or (even? num) 'odd)
(or (and (zero? number) 'zero)
 (and (negative? number) 'negative)
 'positive)
```

5.19 Write a function that takes three arguments, element1 and element2, which are both bound to atoms, and $a$-list, a list. Your function should return true if element 1 occurs before element 2 in a-list. You may use the list functions from Chapter 4.
5.20 Write a function to perform your own tests for subseq (from Chapter 4) that takes three arguments, a list, $a$-list, and the start and end element numbers of the list. Your function should compare the values of start and end against the length of $a$-list and each other, and return some helpful error message if they are not legal. Otherwise your function should call subseq to return the appropriate sublist. Your error message should indicate which value is bad and what is wrong with it.

### 5.4 List and Atom Predicates

In addition to numerical predicates, Scheme provides predicates that work on lists and atoms. Below is a collection of some of the more common of these predicates:

## List and atom predicates

| predicate | arguments | returns true if and only if |
| :--- | :--- | :--- |
| list? | arg | arg is a list |
| atom? | arg | arg is an atom |
| symbol? | arg | arg is a symbol |
| null? | arg | arg is () |
| equal? | arg1 arg2 | arg1 is the same as arg2 |
| member | element list | element occurs in list |

The predicate atom? is not built into Scheme, but is easily defined as follows:

```
; Return true if item is a symbol or a number, false otherwise.
(define (atom? item)
 (or (symbol? item) (number? item)))
```

There are other functions that return true if an element occurs in a list (e.g., position). Usually member is used, as it is more readable in the context of a predicate, as in
(if (member 'anchovies pizza-toppings)
'(sorry i am not hungry)
'(sure i will have a slice))
Study the following evaluations to see how the above functions work:

```
> (list? '(this is a list with anchovies))
#t
> (atom? 'word)
#t
> (atom? 37)
#t
> (atom? '(this is a list with anchovies))
#f
> (symbol? 'word)
#t
> (symbol? 37)
#f
(equal? 'linguica 'linguica)
#t
> (equal? 'linguica 'anchovies)
#f
> (equal? 13 (+ 10 3))
#t
> (equal? '(a (hidden (anchovy))) '(a (hidden (anchovy))))
#t
```

```
> (equal? '(a (list)) '(a list))
#f
> (null? '())
#t
> (null? '(this list is not empty))
#f
```


### 5.4.1 Exercises

5.21 Exercise 4.16 from Chapter 4 asks you to debug the following function that takes a number and returns the month that corresponds to that number:

```
(define (month month-num)
 (list-ref '(January February March April May June July
 August September October November December)
 month-num))
```

Modify the debugged version of this function such that if called with an invalid value for month-num, the function returns the symbol bad-month.
5.22 Write a function element-after that takes two parameters, element and $a$ list, and returns the element that follows element in $a$-list. If element does not occur in a-list, element-after should return the symbol no-match. If element is the last element in $a$-list, your function should return the symbol at-end-of-list. For example, the call

```
(element-after 'your '(what is your favorite color))
```

should return the symbol favorite.
5.23 Write a version of position using the other built-in list functions from Chapter 4. It should return \#f if the element is not in the list.

### 5.5 Optional Section: All Equality Predicates Are Not Equal

The function = is used to test for numerical equivalence, and the function equal? is used to test for equivalence of atoms or lists. There are other equality predicates. Below is a list of the common ones. Each of these predicates takes two arguments, with the exception of $=$ which takes two or more arguments.
predicate returns true if and only if the arguments are
equal? numbers or symbols that are the same; lists that are or look the same eqv? numbers, symbols, or lists that are the same $=\quad$ numbers that are the same
equal? is the most general of these. If two objects are $=$ or eqv?, they are also equal?. Next in generality is eqv?, which is true for numbers that are = or symbols or lists that are identical. The most specific equality predicate is = which is true if the two objects being compared are the same numbers. = cannot be used

## Equality predicates used with lists

Creation of cons cells

When to use the different equality predicates
with symbols or lists. ${ }^{2}$
The functions eqv? and equal? differ in their comparisons with lists. eqv? is not true for lists or cons cells unless they refer to the same cons cell. The empty list, (), is always eqv? to itself. These functions compare the pointers that point to the first cons cell that describes a list. If these pointers point to the same cons cell, then the lists are eqv?. Cons cells are discussed in "Optional Section: Internal Representation of Lists" in Chapter 4. In order for two lists to be equal? they must look the same-have the same elements in the same order.

To understand eqv?, it is important to know when new cons cells get created, or when existing ones are used. Whenever a list is explicitly mentioned through quote or quasiquote as in

```
'(this is a new list that i am creating now)
```

a new set of cons cells is created. The following functions also create new cons cells: cons, list, append, subseq, remove, and reverse. When these functions are used the new cons cells that are created will not be eqv? to other lists even if they look the same.

Study the examples below carefully to get a better understanding of the differences between the equality predicates, especially when comparing lists. Remember symbols that are the same are equal? and eqv?. Numbers that are the same are $=$, equal?, and eqv?. Lists that are the same (same cons cells) are equal? and eqv?. Lists that look the same (not the same cons cells) are equal?.

```
> (equal? 3 (+ 1 2))
#t
>(eqv? 3 (+ 1 2))
#t
> (eqv? 'word 'word)
#t
> (equal? '(a list) '(a list))
#t
> (eqv? '(a list) '(a list)) ;each'(a list) creates new cons cells
#f
> (define my-list '(a list))
??
> (eqv? my-1ist my-1ist) ; both lists refer to the same cons cell
#t
```

[^18]```
> (eqv? my-list '(a list)) ;'(a list) creates new cons cells
#f
> (eqv? (cdr my-list) (cdr my-list)) ; no new cons cells are created
#t
> (eqv? (reverse my-list) (reverse my-list)) ; new cons cells are created
#f
> (eqv? (cons 4 my-list) (cons 4 my-list)) ; new cons cells are created
#f
> (equal? (cons 4 my-list) (cons 4my-list)) ; the two lists look the same
#t
```


5.6 A Musical Offering

In western music, the notes of the musical scale can be represented with the list
(A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp)

Each two consecutive notes are one half-step apart. There are names for the intervals or distances that any two notes are from one another. These names, in half-step increments between two notes, are given in the list below beginning with a zero half-step interval.

```
(unison minor-second major-second minor-third major-third
perfect-fourth diminished-fifth perfect-fifth augmented-fifth
major-sixth minor-seventh major-seventh)
```

From this table we see that a one half-step interval is called a minor-second, and a perfect-fifth is a 7 half-step interval.

5.6.1 Computing the intervals between notes

Using the two lists above we can construct a function that takes two notes and returns the interval between them. To do this, determine the number of half-steps between the two notes, then determine the interval that corresponds to that number of half-steps. There is one problem to avoid. The order in which the notes are given is important. The interval between C and G is a perfect-fifth (7 half-steps); however, the interval between a G and the next higher C (after Gsharp the notes continue with A again) is 5 half-steps, or a perfect-fourth. This makes the problem slightly more difficult. The number of half-steps between two notes is the difference in their positions in the scale-list if the second note comes after the first in the scale-list. If the first note comes after the second, then the interval is twelve minus the distance in their positions.

To make the code easier, we'll save the distance between the notes in a let variable. The code follows:

Musical scale

Names of note increments

```
; Return the musical interval between notel and note2.
(define (interval notel note2 scale-list interval-list)
    (let ( (distance (- (position note2 scale-list)
                            (position notel scale-list))) )
        (if (positive? distance)
                (list-ref interval-list distance)
                (list-ref interval-list (- 12 distance)))) )
```

Let's test this function. If we call the function with the notes C and D, and the above scale and interval lists, the let variable, distance, is bound to 2 . Taking list-ref of interval-list and 2 returns major-second. If we call the function with D and C, and the same scale and interval lists, distance is bound to -2 , and the function returns list-ref of interval-1ist and $12--2$, which is an error because there is not an element at position 14 in the list. The problem is that distance is negative and we should subtract the absolute value of distance. This bug is fixed by changing the else-action of the if expression to
(list-ref interval-list (- 12 (abs distance)))
or to
(list-ref interval-list (+ 12 distance))
Another good test to make is calling the function with the same note for note1 and note2. This would give distance a value of 0 , which is not true when applied to positive?; thus list-ref of interval-list and 12, or an error is returned. To fix this bug, the condition of the if should be changed to

```
(or (positive? distance) (zero? distance))
```

or the then and else actions can be switched and the condition changed to

```
(negative? distance)
```

A correct solution is

```
; Return the musical interval between note1 and note2.
(define (interval note1 note2 scale-list interval-list)
    (let ( (distance (- (position note2 scale-list)
                                (position note1 scale-list))) )
        (if (negative? distance)
            (list-ref interval-list (+ 12 distance))
            (list-ref interval-list distance))) )
```


5.6.2 Computing the note an interval beyond another note

Another useful function is one that takes a note and an interval and returns the note that is that interval amount above the original note. This function must determine the number of half-steps that defines the interval desired, then add that value to the position of the note in the scale, giving the position of the new note. The actual new note is computed by taking list-ref with this position and the scale-list.

If we try out this algorithm to determine the note a perfect-fifth above C, we find a perfect-fifth to be 7 half-steps, and C to be in position 3 in the scale-list.

Adding 7 and 3 gives 10 , and the note at position 10 is G. Thus, G is a perfect-fifth above C . This is correct.

However, what happens when we try to compute the perfect-fourth of G-it should be C . The number of half-steps in a perfect-fourth is 5 and the position of G is 10 , adding these yields 15 , but there is no note at position 15 in the scale-list. To keep the position between 0 and 11, take the remainder of the position and 12. This treats our scale-list as a circular list. Taking the remainder of 15 and 12 gives 3 , and the note in position 3 in the scale-list is C , which is correct.

The Scheme code for this function is

```
; Return the note an interval above note.
(define (higher-note note interval scale-list interval-list)
    (let ( (half-steps (position interval interval-list))
        (note-position (position note scale-list)) )
        (list-ref scale-list
                            (remainder (+ note-position half-steps) 12))) )
```


5.6.3 Exercises

5.24 The next two problems use a different approach than the previous functions did to handle the problem of exceeding the boundaries of the scale-list. This approach is to represent the scale-list as a longer list, as follows:

```
(A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp
A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp)
```

Below is an alternate solution to the function interval:

```
(define (interval-alt note1 note2 scale-list interval-list)
    (let ( (distance (- (position note2 (reverse scale-list))
                            (position notel scale-list))) )
            (list-ref interval-list distance)) )
```

Will this solution work? Why or why not?
5.25 Below is an alternate solution to the function higher-note using the scalelist given in the previous problem:

```
(define (higher-note-alt note interval scale-list interval-list)
    (let ( (half-steps (position interval interval-list))
            (note-position (position note scale-list)) )
        (list-ref scale-list (+ note-position half-steps))) )
```

Will this solution work? Why or why not?

5.7 Determining the Value of Poker Hands

Poker is a multiplayer card game in which each person has a total of five cards. These can be represented as a list, as in

Names of poker

 hands
Counting cards

Pseudo code for

 pokerThe order of the cards does not matter. The value of a player's cards (their hand) is based on the following ordering:

name	example hand
four-of-a-kind	(seven seven seven two seven)
full house	(two eight eight two two)
three-of-a-kind	(ace ace king four ace)
two pairs	(six seven two two seven)
one pair	(three five three king ace)

This is a simplification of the actual game of poker, which has other winning hands like straights and flushes. In this version of poker, four-of-a-kind is worth the most and one pair the least. A full house consists of one pair and three-of-akind.

To determine a hand value, we must count the number of times that each card occurs in the player's hand. Given the list

```
(jack seven queen jack jack)
```

we need to count the number of jacks, queens and sevens. Yet we don't know beforehand what cards exist in the hand. In reality what we will have to do is count the number of times the first card occurs in the hand, and the number of times the second card occurs, and so on. This gives us five totals. For the above example, we would get the totals $3,1,1,3$, and 3 for the first, second, third, fourth, and fifth elements of the list, respectively. The first 3 tells us that the first element occurred three times in the card list. From this information we can determine what the value of the hand is. For example, if any of the totals is 4 , then the hand is a four-of-a-kind. Rather than keeping these totals in five separate variables, or recomputing them each time they are needed, we can save them in a list and take advantage of the list predicates like member to determine if a particular total exists.

The highest value hands should be checked for first to avoid problems like calling a full house a pair or three-of-a-kind because that condition was satisfied first. The pseudo code for this function can be expressed as follows:

- compute and save the totals of each card in the hand in the variable countlist
- check for four-of-a-kind
- check for full house
- check for three-of-a-kind
- check for two pair
- check for one pair

The checks can be refined as follows:

- check for four-of-a-kind:
check if 4 is in count-list
- check for full house:
check if 3 and 2 are in count-list
- check for three-of-a-kind:
check if 3 is in count-list
- check for two pair:
check if 2 occurs four times in count-1ist
The reason 2 must occur four times in count-list is that if it occurs just twice, that denotes a single pair.
- check for one pair:
check if 2 is in count-list
Expressing this in Scheme gives

```
    ; Return the value of a poker hand.
```

 (define (poker-value hand)
 (let (count-list (list
 (count (first hand) hand)
 (count (second hand) hand)
 (count (third hand) hand)
 (count (fourth hand) hand)
 (count (fifth hand) hand))))
 (cond
 ((member 4 count-list)
 'four-of-a-kind)
 ((and (member 3 count-list) (member 2 count-list))
 'full-house)
 ((member 3 count-list)
 'three-of-a-kind)
 ((\(=4\) (count 2 count-list))
 'two-pair)
 ((member 2 count-list)
 'one-pair)
 (else 'nothing))))

5.7.1 Exercises

5.26 Suppose we had written the code to check the conditions in reverse order starting with one pair. What input hands to this new function would give erroneous results? What input hands would give correct results?
5.27 Write a function that takes two hands as arguments and returns the winning hand-that with the higher value. If the card values are the same, your function should return the symbol tie.
5.28 Modify the function poker-value so that it returns the names of the cards that participated in the pairs, full houses, etc. For example, if given
(king queen eight one queen)
your modified function should return

```
    (one-pair queen)
```

If called with
(king queen king king queen)
your modified function should return
(full-house king queen)
This is tricky for the case of two pair. Hint: use remove in your solution.
5.29 Combine your solutions to the previous two exercises so that your new function can pick the winning hand for similar hands by comparing the cards used in the hand. For example, your solution should be able to tell that three jacks would beat three nines.

5.8 Summary

- Predicates are functions that can be used as conditions in and, or, if, and cond expressions. Such predicates return \#f if they are false, and some non-\#f value if they are true.
- \#f and \#t represent false and true, respectively, in Scheme.

They are constants and cannot be changed.

- To test a condition and then take one of two actions depending on the outcome, use if.
- To test multiple conditions, use cond.
cond can perform multiple actions for each condition. As with functions, the return value of the cond is the result of the last action evaluated.
- To form compound conditions, use and or or.
- To test the negation of a condition, use not.
- To test if an expression evaluates to a list, an atom, a symbol, or the empty list, use list?, atom?, symbol?, or null?, respectively.
- To test if an atom occurs in a list, use member.
- To test if two atoms are the same or two lists look the same, use equal?.
- To test if two atoms (symbols or numbers) or two lists are the same, use eqv?.
- To test if two symbols or two lists are the same, use eq?.
- To test if two numbers are the same, use $=$.
- Summary of predicates introduced in this chapter:

predicate	arguments	returns true if and only if
not	arg	\arg is \#f
<	num1 ... numN	num1 < num2 < ... <numN
>	num1 ... numN	num1 > num2 > ... > numN
=	num1 ... numN	$n u m 1=n u m 2=\ldots=n u m N$
く=	num1 ... numN	num1 \leq num $2 \leq \ldots \leq n u m N$
>=	num1 ... numN	num $1 \geq$ num $2 \geq \ldots \geq$ num N
zero?	num	num $=0$
positive?	num	num >0
negative?	num	num <0
even?	num	$n u m$ is an even number
odd?	num	$n u m$ is an odd number
number?	num	num is a number (integer, real, or ratio)
real?	num	num is a real number
integer?	num	$n u m$ is an integer
list?	arg	arg is a list
atom?	arg	arg is an atom
symbol?	arg	arg is a symbol
null?	arg	arg is ()
member	element list	element occurs in list
equal?	arg1 arg2	arg1 looks the same as arg2
eqv?	arg1 arg2	arg1 is the same as arg2
=	num1 num2	num1 is the same as num2

- Summary of special forms introduced in this chapter:
(if condition action [else-action])
If condition is true, returns action. If condition is false, returns else-action. If condition is false and there is no else-action, returns an undefined value.
(cond (condition action1 action2 ... actionN)
(condition action1 action2 ... actionN)
(else action 1 action 2 ... actionN)
Evaluates conditions in order and returns the last action, actionN, corresponding to the first condition that is true. If the are no actions, condition is returned. If all conditions are false, returns actionN corresponding to else. If all conditions are false and there is no else clause, cond returns an undefined value.
(and condition1 condition2 ... conditionN)
Evaluates conditions until a false condition is found or all conditions are true. Returns \# f if a false condition is found, otherwise returns conditionN.
(or condition1 condition 2 ... conditionN)
Evaluates conditions until a true condition is found or all conditions are false.
Returns first true condition found or \#f if all conditions are false.

REPETITION THROUGH RECURSION

6.1 Recursion

There are times when a sequence of actions should be repeated. We may want to apply a function to all the elements of a list. We may want to add the first twenty numbers in a list. We may want to return the first symbol in a list. To carry out such actions the technique of recursion can be used. It is essential to master recursion, as it is commonly used in Scheme programming. There are different types of recursion that we will explore individually. The important thing is not to just memorize the general form for each type of recursion illustrated, but to get a thorough understanding of the process of writing recursive functions. Recursion is a skill that you improve on with practice. Use the examples to guide you, then practice, practice, practice.

6.1.1 Example: Finding a number in a list that exceeds a threshold value

Recursion is often used with lists. The following example illustrates many of the

Recursion through lists basic ideas used when recursing through lists. Recursion involves having some code that needs to be repeated and some way of deciding when you are done.

The code to repeat for this first example is a test if a number in a list exceeds some threshold. We are done when we find a value that exceeds the threshold, and we return that number.

This can be expressed in Scheme as

```
(if (> (first a-list) threshold)
    (first a-list)
    else-action)
```

Recursive definitions

Recursive functions
and recursive calls

If the above condition is met, (first a-list) is evaluated and the desired element is returned. The else-action is the important missing piece. It must find the element we are looking for if it's not the first element of the list. This can be viewed as finding the element that exceeds the threshold in the rest of the list, which can be expressed as
(if (> (second a-list) threshold)
(second a-list)
; Find the element that exceeds threshold in the rest of the rest of a-list and so forth.

If we attempted to write this in Scheme, we would get the neverending sequence

```
(if (> (first a-list) threshold)
    (first a-list)
    (if (> (second a-list) threshold)
        (second a-list)
        (if (> (third a-list) threshold)
            (third a-list)
```

Writing such code that works for any length list would be impossible. Yet so far, the only means we have seen of invoking a section of code is by typing it into the interpreter or by calling a function that embodies that code. The first choice is impractical, as we have just seen. If we attempt the second alternative, wouldn't we run into the same senseless repetition as above?

The key here is to look back at the earlier definition of the problem.

> To return the element in a list that exceeds the threshold:
> if the first element of the list is greater than the threshold return that first element
> otherwise,
> return the element in the rest of the list that exceeds the threshold

This definition is recursive because it uses the term being defined within its definition, namely the step in the otherwise clause that tells us to perform a problem identical to the one being defined, except with the rest of the list instead of the entire list. The definition has an indication of when to stop-when an element greater than the threshold is found.

The function can be written using an if expression that implements the above pseudo code in Scheme. This function has two parameters, threshold and alist. The otherwise clause has a call to the function we are defining; thus, it is a recursive call, which makes this a recursive function. This recursive call is with a different value for a-list-(rest a-list). This breaks the problem into a smaller, similar problem: namely, finding the element exceeding the threshold in the rest of the list. Defining the problem in terms of smaller, similar pieces is an important aspect of writing recursive functions. The resulting function would be

```
; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)
    (if (> (first a-list) threshold)
            (first a-list)
            (first-greater threshold (rest a-list))) )
```

If first-greater is called with a value of (first a-list) greater than the value of threshold, (first a-list) is returned. Otherwise, first-greater is called again, but this time (and this is the key point) with the rest of a-list. When this recursive call is evaluated, it checks the first of the list (which is the rest of the original a-list). Thus the second of the original list is checked. Each element in the list is checked in this fashion until we find an element that exceeds the threshold. That element is returned and the recursive repetition stops.

In the trace below a series of recursive calls is made. This is called a recursive descent.

```
(first-greater }\mp@subsup{3}{\downarrow}{\prime
```

; The first condition fails since 1 isn't >3.
; The otherwise clause is performed.
; The result of the call to (first-greater 3 '($\left.\begin{array}{llll}1 & 2 & 4 & 3\end{array}\right)$) is
; the result of this otherwise clause.
\downarrow

```
(first-greater 3'((2)4 3 5))
```

; Again the condition is false and the return value is ; the result of the otherwise clause.
\downarrow
(first-greater $3^{\downarrow}{ }^{\downarrow}\left(\begin{array}{lll}4 & 3 & 5\end{array}\right)$)
;The condition is true as $4>3$, thus 4 is returned.
\downarrow
4
The interpreter's output will be as follows:

```
> (first-greater 3 '(1 2 4 3 5))
4
```

Let's try another example:

```
> (first-greater 5 '(1 2 4 3 5))
```

Error: Pair expected

What happened? What should the function have returned? In this case there are no values in the given list that are greater than the threshold value, 5 . We wind up recursing through the list until we hit the end of the list. Yet we continue to make a recursive call with the empty list. This results in an error when we try to take the first of the empty list.

To fix this bug, we must add a test for an empty list and not recurse further. If we hit the end of the list, we should return some reasonable value. \#f is a good choice in this case. Below is the new code with the added test:

Putting exit cases in the proper order

```
; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)
    (cond ((> (first a-list) threshold)
            (first a-list))
            ((null? a-list)
                #f)
            (else
            (first-greater threshold (rest a-list)))) )
```

Let's try this new code out.

```
> (first-greater 5 '(1 2 4 3 5))
Error: Pair expected
```

We get the same error. In such situations be sure that you used the proper spelling of the function in its definition and all its calls. Sometimes what looks like a bug is just a renaming problem in which you end up defining a new function that calls your old function and produces the same error. Since we didn't make these mistakes, the function must have an error. The first thing the function does is compare the first of the list with the threshold value. After that we test if the list is empty. These two tests are in the wrong order. We must first check if the list is empty before comparing the first element. Below is the correct function and a sample call:

```
; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)
    (cond ((null? a-list)
            #f)
            ((> (first a-list) threshold)
                    (first a-list))
            (else
                            (first-greater threshold (rest a-list)))) )
>(first-greater 5 '(\begin{array}{llllll}{1}&{2}&{4}&{3}&{5}\end{array})
#f
```


Mistakes to Avoid

Before taking the first or rest of a list, be sure that the list is not empty (check if (null? a-list) is not true). In recursive functions that take lists, a check for an empty list is usually the first condition that should be tested.

By evaluating recursive calls as we have evaluated nonrecursive function calls, the outcome of a sample invocation can be traced easily. The important observations to make in the case of first-greater are

- Whenever the exit condition is not met, the function is called recursively with a new value for a-list.
- Eventually one of the exit conditions (> (first a-list) threshold) or (null? a-list) will be met and the recursion will end.

In general, recursive functions have

- exit or termination cases that return values that do not involve recursive calls.
- recursive cases in which a recursive call is made.

In these recursive cases, the recursive call is made with a smaller part of the problem to be solved. Recursion works by breaking the problem down into smaller pieces that eventually lead to exit conditions that terminate the recursion.

6.1.2 Example: Investing in your best interest

This example explores your monetary growth when investing a fixed amount monthly over many years with interest compounded daily. You can use this to do financial planning for your retirement or to calculate how much you would have to invest each month to put a kid through college.

To model these investment scenarios we will need to repeat a section of code a certain number of times. Three important elements are needed:

- The block of code to repeat
- A counter to indicate how many repetitions have been made
- A check to determine if we are done

The block of code to repeat must determine the new balance (balance plus balance times daily interest rate). In addition, every month we add an additional amount to the balance.

To model interest compounded daily, we must perform 365 repetitions (we'll ignore leap years). A counter variable can keep track of the current day we are calculating. We'll need to examine the counter variable to determine if we must add the additional amount to our balance (every 30 days to model making an increment once each month). This counter will get incremented with each repetition of the code. The termination check will be a simple if or cond expression checking the value of the counter.

Let's refine what we have above and let the counter, which will be called counter, start with the value one and increment until it is greater than the number of days days. This means we are done when counter is greater than days. The refined pseudo code follows:
if counter is greater than days, return the current balance
otherwise, make a recursive call with counter plus 1 and a new balance (based on the old balance balance and the interest rate rate) and a possible increment increment.
The function has five parameters, balance, counter, days, rate, and increment. The recursive call breaks the problem into a smaller problem by passing different values for counter and balance. The recursive call computes the new balance for the days counter plus 1 to days. Eventually counter will exceed days and the recursion will stop. Expressing this in Scheme gives

Exit and recursive cases

Modeling investment scenarios

Pseudo code for investment modeling

Helper function to reduce the number of parameters

```
; Compute growth of investment given start balance, time period,
; and daily interest rate with increment added every 30 days.
(define (new-balance balance counter days rate increment)
    (cond ((> counter days)
            balance)
            ((zero? (remainder counter 30))
            (new-balance
                    (+ (* balance rate) balance increment)
                    (+ counter 1) days rate increment))
        (else
            (new-balance
                    (+ (* balance rate) balance)
                    (+ counter 1) days rate increment))) )
```

This function has two parameters that are only needed for the recursive computations (counter and balance), and three parameters that make the function general but do not change in the recursive calls (days, rate, and increment). This screams for a helper function that takes fewer arguments and calls newbalance with initial values for counter and balance.

We can go a step further and write a function investment that will make it easier to model investments over many years. Rather than take the number of days we are investing and the daily interest rate, it will take the number of years we'll invest and the annual interest rate. We'll need one extra parameter, the amount to invest each month. Here is the code for investment:

```
; Compute annual investment given annual interest rate, years,
; and monthly investment amount.
(define (investment years rate increment)
    (new-balance 0 1 (* 365 years) (/ rate 365) increment) )
```

Below is a trace of the function new-balance to model 1% interest gained each day over three days on an initial investment of $\$ 1000$.

```
(new-balance 100,0 1 3 0.01 0)
    \downarrow
```

; The exit condition fails, as 1 isn't >3.
; The otherwise clause is performed and its action is evaluated.
\downarrow
(new-balance 1010230.010)
\downarrow
; The exit condition fails again.
\downarrow
(new-balance 1020.1330 .010)
\downarrow
(new-balance 1030.301430 .010)
\downarrow
; The exit condition is true, as $4>3$
\downarrow
1030.301

The next example is a call to calculate how much we'd make investing $\$ 100$ a month for three months, with an initial investment of $\$ 1000$ with 1% interest daily (don't we wish).

```
>(new-balance 1000 1 90 0.01 100)
2865.09
```

Now let's call investment to model some more realistic, long-term investments:

```
> (investment 10 0.05 200) ; invest $200 monthly over 10 years
31372.45
> (investment 20 0.05 100) ; invest $100 monthly over 20 years
41690.72
```

In both of these examples the same amount is invested (about $\$ 24,000$) but the gains are much larger by starting earlier. So start investing now.

6.1.3 Example: Summing digits

Let's write another recursive function. This function returns the sum of the digits within number, where number is an argument to the function.

Some examples will help to illustrate what the function should do:
the sum of the digits in 1 is 1
the sum of the digits in 342 is 9
the sum of the digits in 1989 is 27
To solve this problem, think of the definitional pseudo code ${ }^{1}$ to the function. Definitional pseudo code is pseudo code that provides definitions for what the function should return based on the arguments with which it is called. Such a description takes on the following form:

If condition- 1 is true, the function returns return-value-1.
Otherwise, if condition-2 is true, the function returns return-value-2.

Otherwise, the function returns return-value-N.
From such a description, the actual Scheme code can be easily written using if or cond conditional expressions. Part of the definitional pseudo code to a recursive function is a recursive call that breaks the problem into smaller parts. In addition, there should be return values that do not involve recursive calls. These are the actions matching the exit conditions.

Below is the definitional pseudo code to the sum of the digits problem:

[^19]Pseudo code for adding digits

The sum of the digits in number is number if number has only one digit otherwise, the sum of the digits is the first (leftmost) digit of number plus the sum of the rest of the digits in number.
Another possible definition is
The sum of the digits in number is number if number has only one digit
otherwise, the sum of the digits is the last (rightmost) digit of number plus the sum of the rest of the digits in number.
Both of these solutions have the same terminating condition-when number has only a single digit. In the recursive case, they both break the problem into smaller pieces, namely considering the sum of the digits to be the sum of one digit and the sum of the rest of the digits. Computing the sum of the rest of the digits will be the recursive call in our solution. Eventually this will yield a onedigit number, satisfying the exit condition.

In deciding which of the two above definitions to use, we should look into which is easier to do: extract the first (leftmost) digit and all but the first digit of a number, or extract the last (rightmost) digit and all but the last digit. Without knowing how many digits the number is, the first digit is difficult to extract, whereas the last digit is the remainder of the number when divided by ten. The rest of the digits (the remaining digits to the left) are obtained by dividing the number by ten and then removing any fractional part. This is done with the function truncate, which returns the integer part of real numbers (the digits to the left of the decimal point).

For example, the last digit of 347 is
(remainder 347 10) $\rightarrow 7$
and the first digits are
(truncate (/ 347 10)) $\rightarrow 34$
Lastly, a number is one digit long (our exit condition) if dividing it by ten and truncating the result evaluates to zero. The two examples below illustrate this:

```
(zero? (truncate (/ 9 10))) -> #t
    however,
(zero? (truncate (/ 347 10))) -> #f
```

At this point we can create the definitional pseudo code to our summing digits problem:

```
if number is a one-digit number, then
    return number
otherwise
    return the sum of the last digit in number
        and
```

 the sum of the digits of the rest of number without the last digit.
 Rewriting this in Scheme, we get

```
; Return sum of the digits in number.
(define (sum-digits number)
    (if (zero? (truncate (/ number 10)))
        number
        (+ (remainder number 10)
            (sum-digits (truncate (/ number 10))))) )
```

To make this function more readable and eliminate the two identical calls to truncate, a let expression can be used as follows:

```
; Return sum of the digits in number.
(define (sum-digits number)
    (let ( (last-digit (remainder number 10))
            (rest-of-number (truncate (/ number 10))) )
        (if (zero? rest-of-number)
                number
                (+ last-digit
                        (sum-digits rest-of-number)))) )
```

Follow the recursive descent in the trace of this code:

```
(sum-digits 526)
    \downarrow
; last-digit is bound to 6
; rest-of-number is bound to 52, which is not zero, so the else action is evaluated
    \downarrow
(+ 6 (sum-digits 52))
    \downarrow
    ; last-digit is bound to 2
    ; rest-of-number is bound to 5
        \downarrow
    (+ 2 (sum-digits 5))
        \downarrow
        ; last-digit is bound to 5
        ; rest-of-number is bound to 0, satisfying our exit condition
            \downarrow
            5
```

Two recursive calls are made, each one embedded as one of the values that must be summed with the current last digit. Once the last recursive call

```
(sum-digits 5)
```

has been made, these sums can be determined. This can be viewed as climbing out of the recursive descent. This is called a recursive unwind.

```
(sum-digits 526)
    \downarrow
(+ 6 (sum-digits 52))
    (+ 2 (sum-digits 5))
        \downarrow
        5
    \downarrow
    7
\downarrow
13
```

Starting at the last recursive call in the above diagram, the value of

```
(sum-digits 5)
```

which is 5 is added to 2 to give the value of

```
(sum-digits 52)
```

In a similar fashion, that result, 7 , is added to 6 , yielding 13, the return value of

```
(sum-digits 526)
```

Future traces will show both the downward recursive calls and the return values from the recursive steps in one diagram, as in

```
(sum-digits 526)
    \downarrow
; last-digit is bound to 6
; rest-of-number is bound to 52, which is not zero, so the else action is evaluated
    \downarrow
(+ 6 (sum-digits 52))
            \downarrow
    ; last-digit is bound to 2
    ; rest-of-number is bound to 5
        \downarrow
    (+ 2 (sum-digits 5))
        ; last-digit is bound to 5
        ; rest-of -number is bound to 0, satisfying our exit condition
            \downarrow
                5
        \downarrow
        7
\downarrow
13
```

Prescriptive method for writing recursive functions

6.1.4 General rules for writing recursive functions

Let's review the steps in writing a recursive function:

- Think of the exit cases-the simplest conditions in which an immediate answer is known without taking any recursive steps. What are the return
values in these cases?
- Think of the recursive cases-those involving recursive calls. The recursive calls should break the problem up into similar, smaller pieces. How can the results of the recursive calls be used to get the desired return result?
- Write out the definitional pseudo code to the function using the exit and recursive cases.
- Refine any steps so that the ideas can be stated in Scheme.
- Verify that your solution works in a simple example where only one recursive call is needed. If there are problems, rethink your return values for your exit and recursive cases. Examine the exit conditions, as they may not be appropriate either.
- Write the Scheme code using your definitional pseudo code to guide you.
- Test out your code on the computer or by hand using traces.

6.1.5 Example: Testing if the digits in a number are in increasing order

Let's use the guidelines given above to solve the next recursive problem. The problem is to check if the digits in a number are in increasing order from left to right. For example, the number 1234 has digits that are in increasing order from left to right; however, 647 does not.

This problem can be viewed as determining if the digits are in decreasing order from right to left. As we saw in the last problem, it is easier to sequence through a number in a right to left fashion, so the problem will be restated as such.

First the exit cases-one will be when there are no more digits to compare against in the number, in which case we return \#t. Another exit case is when a digit is encountered that is greater than the previous digit (the digit to the right of it). In this case \#f is returned.

The recursive case occurs when there are more digits to check and the current digit is less than or equal to the previous digit. In this case we need to compare against the remaining digits (those to the left) recursively.

Now put these cases together as the definitional pseudo code to the problem and refine any areas that do not easily translate into Scheme.
if there are no more digits to check, return \#t
otherwise, if the current digit is greater than the digit to the right of it, return \#f
otherwise, return the result of a recursive call with the leftmost digits.
Some of these steps need refinement. First, how do we know if there are no more digits to check? Presumably we will be stripping off the last digit with each recursive call, and eventually we will reach zero. As was illustrated in the sumdigits function, when a one-digit number is divided by ten and truncated, zero is returned, as in

Pseudo code to test order of digits

Refinement of pseudo code

Thus, there are no more digits to examine when the number to check is zero.
Another aspect that needs refinement is the notion of comparing the current digit against the digit to the right of it. This can be viewed as comparing the last digit (rightmost) with the next to last digit (the one to its immediate left).

We can use a let expression to name the last digit, next to last digit, and the rest of the number (without the last digit). Since we can use the value of the rest of the number to more easily compute the next to last digit, we'll use a let*.

Now that the refinements have been made, we can express the solution in Scheme as follows:

```
; Return true if the digits in number are increasing
; from left to right.
(define (increasing-digits number)
    (let* ( (last-digit (remainder number 10))
        (rest-of-number (truncate (/ number 10)))
        (next-to-last-digit (remainder rest-of-number 10)) )
        (cond ((zero? rest-of-number) #t)
            ((> next-to-last-digit last-digit) #f)
        (else (increasing-digits rest-of-number)))) )
```

Follow the trace below to see how this function works:

```
(increasing-digits 812)
    \downarrow
; last-digit is bound to the value of (remainder 812 10) }->
; rest-of-number is bound to the value of (truncate (/ 812 10)) }->8
; next-to-last-digit is bound to the value of (remainder 81 10) }->
;81 is not zero, nor is 1>2, thus the otherwise action is performed
    \downarrow
(increasing-digits 81)
    \downarrow
;last-digit is bound to the value of (remainder 81 10) }\boldsymbol{->
; rest-of-number is bound to the value of (truncate (/ 81 10)) }->\mathbf{8
; next-to-last-digit is bound to the value of (remainder 8 10) }->
;8 is not zero, but 8> 1, so #f is returned.
    \downarrow
    #f
```


6.1.6 Exercises

6.1 Another way of testing if a number is a one-digit number is by checking if it is less than ten; however, this does not work for negative numbers. Does the function sum-digits work for negative numbers? What about the function increasing-digits? If not, how would you fix these functions so that they do work when called with negative numbers?
6.2 Write a function sum-evens with two parameters, start and end. The function should return the sum of the even numbers between start and end
inclusive.
6.3 Explain what this modification to new-balance does.

```
(define (new-balance balance counter days rate period increment)
    (cond ((> counter days)
                balance)
            ((zero? (remainder counter period))
                (new-balance
                            (+ (* balance rate) balance increment)
                            (+ counter 1)
                    days rate period increment))
            (else
                (new-balance
                    (+ (* balance rate) balance)
                    (+ counter 1)
                    days rate period increment))) )
```

Give a sample call to show how much is gained if you invest $\$ 50$ at the end of each week for a year (52 weeks). Then make a call to see how much is made if you invest the same amount, $\$ 2600$, by quarters ($\$ 650$ is invested at the end of each quarter - every 13 weeks). Use 7% as the annual interest rate in your calls. How much more do you make with weekly deposits versus quarterly deposits?
6.4 The following modification to the function new-balance allows different types of investment options.

```
(define (newer-balance balance counter days rate day-list
    increment)
(cond ((> counter days)
        balance)
    ((member (remainder counter 7) day-list)
            (newer-balance
                (+ (* balance rate) balance increment)
            (+ counter 1)
            days rate day-list increment))
    (else (newer-balance
                (+ (* balance rate) balance)
                    (+ counter 1)
                    days rate day-list increment))) )
```

Write function calls to model the following annual investments with 5\% annual interest (assume that the first week of the year begins on a Monday): a.) investing $\$ 10$ each weekday (Monday through Friday); b.) making equal investments twice a week on Mondays and Thursdays based on an annual investment total of $\$ 1000$; and c.) investing $\$ 5$ a day (except Sundays) starting with an initial balance of $\$ 250$.
6.5 Write a function with two parameters, digit, a single-digit number, and a positive number, number. The function should return \#t if digit is one of the digits in number, and \#f otherwise.
6.6 Write a function with one parameter, number, an integer value. The function should return the largest digit in number.
6.7 Modify the function increasing-digits to use an alternate approach for comparing the current digit with the previous digit-that of using an additional parameter to hold the previous digit. Each time the function is called recursively, the current digit value can be used as the previous digit argument. What value should this extra parameter be given for the initial call? Does your solution work for one-digit numbers? Do you prefer this new solution or the original one with one parameter?

6.2 Optional Section: Global Variables and Recursion

The function new-balance could have been written without using days, rate, and increment as parameters, instead treating them as free variables within newbalance. A free variable is a variable used in a function that is not a parameter or a local variable within a let or let*. Using these parameters as free variables may seem more logical because their values are not changed when making recursive calls. The new code to new-balance would look like the following:

```
; Compute growth of investment given start balance, time period,
; and daily interest rate with increment added every 30 days.
(define (alt-new-balance balance counter)
    (cond ((> counter days)
                balance)
            ((zero? (remainder counter 30))
                (alt-new-balance
                    (+ (* balance rate) balance increment)
                    (+ counter 1)))
            (else
                (alt-new-balance
                    (+ (* balance rate) balance)
                    (+ counter 1)))) )
```

Each time you want to invoke alt-new-balance, initial values of days, rate, and increment must be defined. The equivalent of the call to new-balance below,
(new-balance 1000130.010)
would be

```
(define days 3)
(define rate 0.01)
(define increment 0)
(alt-new-balance 1000 1)
```

This is not as desirable. You have to remember to set all the values each time you want to call alt-new-balance. A more serious problem occurs if there already is a variable with any of the names that were bound somewhere else in the code. It would lose its old value. Effectively, this means that you must carefully examine the code to avoid this and hope that the code will not change in the future and introduce problems.

The situation would be worse yet if counter were treated as a free variable in alt-new-balance. For that function to work as such, the value of counter would have to be changed within the function. As we saw in Chapter 3, this would affect the value of counter outside of the function, since it is a global variable. Once again, such side-effects are not considered to be good programming style and should be avoided. It is better to pass all the values that the function needs as arguments, as in the original function new-balance.

6.3 Optional Section: Different Types of Recursion

The functions first-greater, new-balance, and increasing-digits are tail recursive functions. Tail recursion is so named because in the recursive cases, when a recursive call is made, the last action taken is the recursive function call. There are no expressions that follow the recursive call, nor is the recursive call an argument to another function to which the result of the recursive call must be applied. In other words, there are no further evaluations necessary after the recursive call is complete.

Another type of recursion is embedded recursion. This is characterized by recursive cases in which the recursive call is placed so that there are more actions to take after the recursive call returns. The function sum-digits is an embedded recursive function. This is because the recursive call is used as an argument to the + function:

```
(+ last-digit
    (sum-digits rest-of-number))
```

After the recursive call returns its value, that value must be added to the last digit of the number.

6.3.1 Example: Factorial

Below is another example of embedded recursion-computing the factorial of a number:

Danger of using free variables instead of parameters

Tail recursion

Embedded recursion

Embedded recursive factorial

```
; Return max factorial.
(define (factorial max)
    (if (zero? max)
            1
            (* max
                (factorial (- max 1)))) )
```

Notice that the recursive call

```
(factorial (- max 1))
```

is an argument to the function *, and once it is evaluated it is multiplied by max. This product is the return value of the function. Therefore, there are delayed actions that can only be performed after the recursive call returns its value. A careful exploration of a trace of factorial will help show what this function does.

```
(factorial 3)
    \downarrow
(* 3 (factorial 2))
            \downarrow
    (* 2 (factorial 1))
                \downarrow
            (* 1 (factorial 0))
                                    \downarrow
                                    1
            \downarrow
            1
    \downarrow
    2
\downarrow
6
```

The value of (factorial 3) is the product of 3 and (factorial 2). To compute this product, (factorial 2) must first be determined. (factorial 2) is the product of 2 and (factorial 1), and (factorial 1) is 1 times (factorial 0). At this point we reach the exit condition in our recursion, when max equals 0 , and we return 1 . (factorial 0), 1 , is multiplied by 1 to get the value of (factorial 1). Now we return from our recursive descent. 1 is multiplied by 2 , giving 2 , the value of (factorial 2). This result is multiplied by 3 , yielding 6 , the value of (factorial 3), and we're done.

Compare the embedded recursion function factorial with the tail recursive function tail-factorial, below.

```
; Return max factorial (tail recursive).
(define (tail-factorial max total)
    (if (zero? max)
        total
        (tail-factorial (- max 1) (* max total))) )
```

Notice that tail-factorial has two parameters; however, it is functionally equivalent to the function factorial. It is often necessary to use extra parameters in a tail recursive solution. These parameters are often not necessary with embedded recursive solutions, because that information is contained in the delayed expressions that are evaluated when the recursion returns upon reaching the exit condition. In general, embedded recursive functions can be written as tail recursive functions.

The first parameter to tail-factorial, max, performs the same role as does the parameter max in factorial. The second parameter, total, stores the current partial product. In the initial call, total must be 1. At each step through the recursion, total represents the product of all the previous values of max. There are no expressions to return to. Once max is 0 , total contains the correct product, and that is the return value. Below is a trace of tail-factorial:

```
(tail-factorial 3 1)
    \downarrow
(tail-factorial 2 3)
    \downarrow
(tail-factorial 1 6)
    \downarrow
(tail-factorial 0 6)
    \downarrow
    6
```

One of the disadvantages of tail recursive solutions is the need for extra parameters to store partial results. There is a nice way to hide these extra parameters so that the user of the function need not worry about them. A helper function can be written that has the number of parameters we would like to have. This function calls the actual recursive function (which has additional parameters), filling in the initial values for the other parameters. As an example, the function below allows us to effectively call tail-factorial with one parameter:

```
; Return max factorial (helper function).
(define (fact max)
    (tail-factorial max 1))
```

As you can see, these functions are easy to write.

[^20]Extra parameters with tail recursion

Helper functions with tail recursion

6.3.2 Exercises

6.8 Why was tail-factorial called with 1 as the initial value for total?
6.9 Does the call (tail-factorial 0 1) give the desired results?
6.10 What happens if the call (tail-factorial -2 1) is made?
6.11 How would you fix the code to handle any problems that may exist in the two exercises above?
6.12 Write a tail recursive function with one parameter, \max, that computes the sum of the even numbers from 1 to max.
6.13 Write a function with a single parameter, num, that sums every number between 1 and num that is evenly divisible by 4 . Write your function without using remainder.

Recursive breakdown on lists

6.4 Using Recursion to Sequence Through Lists

Lists and recursion go hand-in-hand. It is fairly simple to create recursive functions that sequence through lists, or create lists. Most recursive functions that take lists terminate (with an exit case) when called with an empty list. In the recursive cases, the problem is usually broken down into performing some action with the first element of the list and the result of the recursive call with the rest of the list.

6.4.1 Example: Adding up numbers in a list

Let's write a function, sum-list, that computes the sum of the numbers in a list that only contains numbers. To begin, consider an exit case-if we have an empty list, the sum is zero. In the recursive case we need to break up the problem into a similar, smaller problem. The recursive action can be viewed as adding the first number in the list to the sum of the rest of the numbers in the list. The sum of the rest of the numbers in a list is just a recursive call to this function with the rest of the list.

The first element of the list and the rest of the elements in a list were chosen as operations to break the problem down because they are simple, fast operations in Scheme. Computing the first and rest of a list is much more efficient than computing the last element and taking a subseq to get all but the last element of a list. Since the order in which the elements in the list are added doesn't matter, we might as well be efficient about it.
sum-list can be expressed in definitional pseudo code as follows:
if the list is empty, return 0
otherwise, return the sum of the first element and sum-list of the rest of the list.
Finally, refinements of this pseudo code should be made:
A list is empty if null? of that list is \#t.
The Scheme solution is

```
; Return sum of numbers in number-list.
(define (sum-list number-list)
    (if (null? number-list)
        0
            (+ (first number-list)
                (sum-list (rest number-list)))) )
```

A trace of the function will show how it works:

```
(sum-list '(-3 4 5))
    \downarrow
(+ -3 (sum-list '(4 5)))
    (+4 (sum-list '(5)))
            \downarrow
            (+ 5 (sum-list '()))
                        \downarrow
                        0
            \downarrow
            5
        \downarrow
        9
\downarrow
6
```


6.4.2 Example: Checking if a list consists entirely of numbers

The function sum-list will not work if given a list that has non-numeric elements. To check for that, we will create a predicate function, all-numbers?, that sequences through a list and verifies that all the elements are numbers.

One exit condition for such a function is an empty list. If given an empty list, should all-numbers? return \#t or \#f? To answer this, you must think of how the recursion will work in the recursive case, where the recursive call will be with a smaller list, and eventually with the empty list.

For a list to be all numbers, the first element must be a number and the rest of the list must be all numbers. If the function returned \#f when called with the empty list, the function would always return \#f because anything and \#f is \#f in Scheme.
all-numbers? should return \#f if an element is encountered that is not a number. This should be another exit case-if the first element of the list is not a number, return \#f.

Eliminating redundancy

Our definitional pseudo code looks like the following:
if the list is empty, then return true otherwise, if the first element is not a number, return false otherwise, return true if the first element is a number and the rest of the list is all numbers-the recursive call.
The only detail to refine is testing if the first element of the list is a number. This can be done with the function number?, which returns true if given a numerical argument, false otherwise.

It's a good idea to review your pseudo code and look for missing pieces, or redundant pieces. In this case, redundancy is the problem. Twice there is a test to determine if the first element of the list is a number. The second test that would be part of an and function call is not necessary because once you have reached that point in the code, you know that the first element in the list is a number. Thus, the code can be simplified as
if the list is empty, then return true
otherwise, if the first element is not a number, return false otherwise, return the result of the recursive call on the rest of the list.
There are some additional observations to make in the above pseudo code. Since there are two conditions to test, and an otherwise clause in case both are false, a cond is easier to use than two ifs. The test to determine if the list is empty should be performed before testing if the first element is a number.

In Scheme, the code would be as follows:

```
; Return true if all elements of a-list are numbers.
(define (all-numbers? a-list)
    (cond ((null? a-list)
                #t)
            ((not (number? (first a-list)))
                    #f)
                (else
                    (all-numbers? (rest a-list)))) )
```

Below are two traces of this function:

```
(all-numbers? '(3 frogs 4 you))
    \downarrow
(all-numbers? '(frogs 4 you))
    \downarrow
    #f
```

Notice how the recursion stopped as soon as a non-number was found. The next trace continues recursing until the empty list is encountered:

```
(all-numbers? '(25 0 624))
    \downarrow
(all-numbers? '(0 624))
    \downarrow
(all-numbers? '(624))
    \downarrow
(all-numbers? '())
    \downarrow
    #t
```

Now we can use all-numbers? to create a safer version of sum-list:

```
; Add all numbers in a-list unless some are not numbers.
(define (safe-sum a-list)
    (if (all-numbers? a-list)
            (sum-list a-list)
            'bad-list) )
```


6.4.3 Exercises

6.14 Show a sample call to abc that will return a value and one that will enter an infinite loop.

```
(define (abc xyz)
    (cond ((first xyz) (rest xyz))
        (else (abc xyz))) )
```

6.15 Show a sample call to def that will return a value and one that will produce an error.

```
(define (def uvw)
    (or (zero? (first uvw)) (def (rest uvw))) )
```

6.16 Write a function that takes a single list and returns true if any elements in the list are numbers.
6.17 Write a function that takes a list of numbers and returns the maximum number in the list.
6.18 Below is an alternate solution to all-numbers?:

```
(define (all-numbers-alt? a-list)
    (if (null? a-list)
        #t
        (and (number? (first a-list))
                            (all-numbers-alt? (rest a-list)))) )
```

Does this solution work? If so, will it stop as soon as it encounters a nonnumber, as all-numbers? did? If not, can you fix it so it does work?
6.19 Below is an alternate solution to all-numbers?:

```
(define (all-numbers-alt? a-list)
    (if (null? a-list)
                #t
            (and (all-numbers-alt? (rest a-list))
                (number? (first a-list)))) )
```

Does this solution work? If so, will it stop as soon as it encounters a nonnumber, as all-numbers? did? If not, can you fix it so it does work?
6.20 What does the function below do? Give a meaningful sample call to this function.

```
(define (unknown a-list c1 c2 c3)
    (cond ((null? a-list)
        (1ist c1 c2 c3))
        ((number? (first a-list))
            (unknown (rest a-list) (+ c1 1) c2 c3))
        ((symbol? (first a-list))
            (unknown (rest a-list) c1 (+ c2 1) c3))
        ((list? (first a-list))
            (unknown (rest a-list) c1 c2 (+ c3 1)))
        (else
            (unknown (rest a-list) c1 c2 c3))) )
```

6.21 Write a function that takes a list consisting of numbers and returns true if the numbers are in increasing order.
6.22 Write a function that takes a list consisting of zeroes and ones and returns true if the zeroes and ones alternate, as in the list ($\left.\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}\right)$.
6.23 Write a function that takes a list consisting of numbers, symbols, and possibly sublists, and returns the sum of all the numbers in the list. You should ignore numbers that occur within sublists.
6.24 Write your own version of the function position using recursion.
6.25 Write your own version of the function count using recursion.
6.26 Write your own version of the function length using recursion.
6.27 Write your own version of the function member using recursion.
6.28 Write your own version of the function list-ref using recursion.
6.29 Write your own recursive version of the function subseq that takes a list and an integer, start, denoting the start position of the resulting list.
6.30 The function below follows a path through a list.

```
(define (mystery a-list)
    (cond ((null? a-list) #f)
                ((atom? a-list) a-list)
                ((symbol? (first a-list)) (first a-list))
                (else
                    (mystery (list-ref a-list (first a-list))))) )
```

What would the following two calls return?

```
(mystery '(3 (a b c) (3 x y z) (2 be or not 2 be) answer))
(mystery '(2 one (1 (3 4 ((2)) (1 short list) bye))))
```

6.31 Given the two functions below

```
(define (abc lst)
    (cond ((null? lst) lst)
        ((>= (def (car lst)) (def (abc (cdr lst))))
                        (car lst))
            (else (abc (cdr lst)))) )
(define (def lst)
    (if (null? lst)
            0
            (+ 1 (def (cdr lst)))) )
```

What do the following calls return?
(def '(1 $\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$)
(abc '((1) $\left.\left.\left.\begin{array}{l}1 \\ 2\end{array} \quad 3\right)\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)(a \quad b)\right)\right)$
If the $>=$ in abc were changed to $<$, what would the following call return? Be careful-this question is deceptively tricky.

6.32 Suppose abc (from the previous exercise) were modified to be:

```
(define (abc lst)
    (cond ((null? lst) 0)
        ((>= (def (car lst)) (abc (cdr lst))) (def (car lst)))
        (else (abc (cdr lst)))))
```

What would the following call return?

```
(abc '((1 2 3) (1 2 3 4) (a b)))
```

6.33 Write a function that takes a list and returns the first symbol in the list, or \#f if no symbols exist in the list.
6.34 Write a function that takes a list and returns the last positive number in the list, or \# \mathfrak{f} if no positive numbers exist in the list.

Mapping functions and filters

6.5 Using Recursion to Create New Lists

Recursion can be used to construct lists. Mapping functions and filters are common examples of such functions. A mapping function applies a function to each element in a list and returns a list of the results. A filter is a function that sequences through a list and returns a list of only those elements that satisfy a certain condition. Whereas mapping functions return a list of the same size as their argument list, filters may return shorter lists.

The function cons is typically used in the recursive cases of functions that create lists to build up the resultant lists.

6.5.1 Example: A mapping function to take the square roots of numbers in a list

Let's begin with a function that takes a list of numbers and returns a list of the square roots of those numbers. We will sequence through the list in the same manner as the functions sum-list and all-numbers? did; thus, eventually we will reach the empty list.

We can think about the solution to this problem starting with the exit case. Next we look at cases that involve a single recursive call, then two recursive calls, and so on until we are convinced that our idea is sound. Such a build up technique-starting with the exit case and building up to larger examples-is a common means of creating recursive solutions.

For the current problem, if we are given an empty list, () is the proper return value-the square roots of an empty list of numbers is an empty list. Given a list of one element, the square root of that element can be combined using cons with the square roots of the rest of the elements, (), to produce a list of one square root. This technique works with larger lists too. With two elements we cons the square root of the first element onto the recursive call of the rest of the list, which we just showed is a list of one square root. This produces a list of the two square roots of the argument list in the proper order.

Given any size list, consing the square root of the first element onto the result of the recursive call with the rest of the list gives us back a list of square roots in the proper order.

The leap of faith method is an alternate means of formulating recursive solutions. Using the leap of faith you begin with a more complicated example input to your function and assume that the recursive call produces the correct output. This is the leap of faith because at this point you haven't written a recursive solution. You just assume it exists and works. Next you determine how to use the result of the recursive call to create the final return value given your input to the function.

Let's try this approach with the current problem. Given the list (49 16 100), assume that the recursive call with the rest of the list, (16 100), produces the list (410). To get the desired result, (7410), we cons the square root of 49 onto the recursive call. This is the action we take in the recursive case.

Our definitional pseudo code follows:
if the list is empty, return the empty list
otherwise, return the result of consing the square root of the first element onto the recursive call of the rest of the elements.
In Scheme, the code is as follows:

```
; Return a list of the square roots of the numbers in a-list.
(define (square-roots a-list)
    (if (null? a-list)
            '()
            (cons (sqrt (first a-list))
                    (square-roots (rest a-list)))) )
```

A trace reveals the following:

```
(square-roots '(49 16 100))
    \downarrow
(cons (sqrt 49) (square-roots '(16 100)))
        7.0 \
                (cons (sqrt 16) (square-roots '(100)))
                    4.0
                                    (cons (sqrt 100) (square-roots '()))
                                    10.0
                                    ()
                                \downarrow
                                (10.0)
                                \downarrow
            (4.0 10.0)
    \downarrow
(7.0 4.0 10.0)
```


6.5.2 Example: A filter to extract positive numbers from a list

The next example is a filter that constructs a list of all the positive numbers in its argument list. The exit case for this function is once again the empty list, and the return value in this case is the empty list. The difference between filters and mapping functions is that an additional test is needed to check if the next element of the list should be placed in the resultant list or not. For this problem, the test checks if the number is positive. If so, that element should be added to the resultant list; otherwise, skip that value and return the positive numbers in the rest of the list.

The definitional pseudo code is
if the list is empty, return the empty list
otherwise, if the first element of the list is a positive number,
return the cons of the first element and
the recursive call with the rest of the list
otherwise, return the recursive call with the rest of the list.
In Scheme,

```
; Return a list of the positive numbers in a-list.
(define (positive-filter a-list)
    (cond ((null? a-list)
            '())
            ((positive? (first a-list))
                (cons (first a-list)
                    (positive-filter (rest a-list))))
            (else
                (positive-filter (rest a-list)))) )
```

Here is a trace of positive-filter:
(positive-filter '(3-1 2))
\downarrow
(cons 3 (positive-filter '(-1 2)))
\downarrow
(positive-filter '(2))
\downarrow
(cons 2 (positive-filter '()))
()
\downarrow
(2)
\downarrow
(32)

6.5.3 Exercises

6.35 Write a function that takes a list of numbers and returns a list of pairs of numbers, where a pair is a list of the number and its square. Given the list

$$
\left(\begin{array}{lll}
3 & 4 & 5
\end{array}\right)
$$

your function should produce the list

```
((3 9) (4 16) (5 25))
```

6.36 Write a function that takes a number and returns a list of all the integer multiples of that number from 1 to 10 . Given the number 3, your function should return the list
6.37 Write a filter function that takes a list of numbers and two integers, low and high. The function should return only those numbers that are between low and high, exclusive.
6.38 Write a function that takes two arguments, start and end, and returns a list of all the odd integers between start and end.
6.39 Write a simplified version of the function append that only takes two lists.
6.40 The function switch-em takes a list and should return the list with pairs of top-level elements switched. For example,

```
> (switch-em '((i am) just another (run of the mill) list)
(just (i am) (run of the mill) another list)
```

There are one or more bugs in this function. Find the bugs and fix them.

```
(define (switch-em a-list)
    (if (null? a-list)
        '()
        (append
            (second a-list)
            (first a-list)
            (switch-em (cdr a-list)))) )
```

6.41 Write your own version of the function remove.
6.42 Write your own version of the function reverse.
6.43 Write a function substitute that takes a list and two atoms, old and new. The function should return a new list with all top-level occurrences of old replaced with new. For example,
(substitute '(me but (not me)) 'me 'you)
should produce the list
(you but (not me))
6.44 Write your own version of the function subseq that takes three arguments, the list, the start, and the end values. Assume that the start and end values are legal.
6.45 Does the function positive-filter work if called with a list in which some elements are not numbers? If not, modify the function so that it does work with such a list.

Linear versus tree recursion
car-cdr recursion

Leap of faith with tree recursion

6.6 Sequencing Through Nested Lists with car-cdr Recursion

All of the recursive functions shown have been linear recursive functions. A linear recursive function is one that has at most one recursive call in any of its recursive cases. Functions can have more than one recursive call in their recursive cases. Such functions are termed nonlinear or tree recursive. They may be called deep or multiple recursive as well. Tree recursion is a very powerful type of recursion, in that a small amount of code can perform seemingly impossible or difficult tasks. There is a price that must be paid for this power: tree recursive functions are somewhat more difficult to write, trace, and debug than their linear recursive siblings.

A common type of tree recursion in Scheme is car-cdr recursion. It is so named because a recursive call is made with both the car and the cdr of the list. This is used when dealing with lists that have sublists, so that all the sublists can be sequenced through. With the linear recursive functions we have used so far, only the top-level elements have been examined.

6.6.1 Example: Counting all the atoms in a list

An example to begin with is the function count-atoms that takes a list and counts the number of atoms in that list and all of its sublists. Below are some examples to show what this function returns:

```
(count-atoms '(1 2 a)) -> 3
(count-atoms '((1 (2 a)))) -> 3
(count-atoms '((1 2 (a b c) d) 10 (((word))))) -> 8
```

We begin by considering the exit cases. Once again, the empty list is an exit condition. The number of atoms in the empty list is zero.

In the recursive cases of some of our previous list recursive functions, we applied the car of the list to some function, and called the cdr recursively. The results of these two function calls were then combined using some other function. Let's try the same technique with this problem. The car of the list may be an atom or a list. If it is an atom, then the number of atoms to return is one. Otherwise, the car is a list, and since we are writing a function to count the number of atoms in a list, the function should be called recursively with the car of the list. We need to include the car of the list as well by calling it recursively.

At this point we can use the leap of faith strategy. If we believe that our recursive function will produce the proper answers for the car and the cdr of the list, then if we add these results together, we will have the total number of atoms in the list. For example, if given the list

$$
((23) 4 \quad(5 \text { numbers }))
$$

the recursive calls with the car and cdr of the list yield

```
(count-atoms '(2 3)) -> 2
(count-atoms '(4 (5 numbers))) -> 3
```

Adding these results yields 5 , the number of atoms in the original list. This technique also works with lists in which the car is an atom. In this case, the number of atoms is one plus the number of atoms in the cdr of the list. Thus,

```
(count-atoms '(2 4 (5 numbers))) }
    1 + (count-atoms '(4 (5 numbers)))
```

We can express the solution in definitional pseudo code as follows:
if the list is empty, return 0
otherwise, if the car of the list is an atom, return one plus
the recursive call with the cdr of the list
otherwise, return the sum of the recursive calls with the car and the cdr of the lists.
If you feel uneasy about this solution, perhaps because you didn't buy the leap of faith approach, then you should test out your solution using your definitional pseudo code. Let's test out the solution with the above example list:

```
((2 3) 4 (5 numbers))
```

We really need to verify if the recursive calls with the car and the cdr of this list work to add faith to our leap of faith. Beginning with the car, (2 3),

Verifying the leap of faith
and
(count-atoms '(3)) $\rightarrow 1+$ (count-atoms '())
and
(count-atoms '()) $\rightarrow 0$
This results in 2, which is correct. Notice that since the car of the list was an atom in each case, we performed linear recursion to get this partial result.

Moving on to the cdr we have

```
(count-atoms '(4 (5 numbers))) }
        1 + (count-atoms '((5 numbers)))
```

and

```
(count-atoms '((5 numbers))) }
    (count-atoms '(5 numbers)) + (count-atoms '())
```

Continuing with these two recursive calls

```
(count-atoms '(5 numbers)) }->
```

because it is a two-atom list like (count-atoms '(2 3)).
Next
(count-atoms '()) $\rightarrow 0$
Adding up these results, 2 and 0 , yields 2 , which is added to 1 (from the atom 4), yielding 3. Lastly, adding 3 to 2 from (count-atoms ' ($\left.\begin{array}{ll}2 & 3\end{array}\right)$) gives 5 ; thus, our pseudo code performs correctly.

Now we can write out the Scheme function.

```
; Return the number of atoms that occur anywhere in a-list.
(define (count-atoms a-list)
    (cond ((null? a-list)
                        0)
            ((atom? (car a-list))
                            (+ 1 (count-atoms (cdr a-list))))
            (else
                            (+ (count-atoms (car a-list))
                                    (count-atoms (cdr a-list))))) )
```

Below is a trace of this function:

```
(count-atoms '(a (b (c))))
(+ 1 (count-atoms '((b (c)))))
    (+ (count-atoms '(b (c)))
                \downarrow
                (count-atoms '()))
                \downarrow
                        \downarrow
            (+ 1 (count-atoms '((c))))
                            (+ (count-atoms '(c))
                                    (count-atoms '()))
                                    \downarrow
                                    \downarrow
                                    \downarrow 0
                                (+ 1 (count-atoms '()))
                        \downarrow
                                    0
                                    \downarrow
                                    1
                \downarrow
                1
            \downarrow
            2
        \downarrow
        2
\downarrow
3
```


6.6.2 Example: Deep reverse of a list

Another function that uses car-cdr recursion is a deep reverse of a list. In a deep reverse, all the atoms, even those within sublists, should be reversed. Given the list

```
((a b) (2 (3 4)))
```

the function should return

$$
\left(\left(\left(\begin{array}{lll}
4 & 3) & 2) \\
(b a)
\end{array}\right)\right.\right.
$$

Contrast this with the built-in function reverse:

```
> (reverse '((a b) (2 (3 4))))
((2 (3 4)) (a b))
```

Once again, as with all the recursive list functions we have created, an exit condition is the empty list. Since we are returning a list, if we are passed the empty list, we should return ().

As with the count-atoms function, if the first item in the list is a list, its elements must be reversed, and then that list should be put into the resultant list in the proper location. Assembling the lists from the recursive calls can get tricky.

To make matters simpler, we can think about how to do a top-level reverse, as the built-in function reverse performs. The first element in the list must become the last element. To do this, imagine appending the reverse of the rest of the list onto the list of the first element. For example, given the list
$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
the reverse of the rest of the list is
(3 2)
and the list of the first element is
(1)

Appending these together yields
$\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$
which is the reverse of the original list. Note that the reason we used the list of the first element, as opposed to just the first element, is because append constructs lists from lists, so both arguments to append should be lists.

We are using the leap of faith strategy and assuming that the recursive step works, and then determining how to use the results from the recursive calls to produce the desired result. We should verify that the leap of faith idea works. This can be done using the build up approach. This approach starts by testing the function with arguments that satisfy an exit condition. Next test the function with a call that requires a single recursive call. Then build up to calls with more recursive calls until you are convinced the function works (or doesn't work).

We will try the build up approach now. First we must create the definitional pseudo code. Remember, this is for a top-level reverse, not a deep reverse.
if the list to reverse is empty, return the empty list
otherwise, return the result of appending the reverse of the rest of the list onto the list of the first element.
Now the test starting with an exit case

```
(reverse '())
    \downarrow
    ()
```

Verifying code with the build up approach

With one recursive call, we get

```
(reverse '(2))
(2)
```

We can go further and try a call that requires an additional recursive step:

```
(reverse '(1 2))
    \downarrow
(append (reverse '(2)) (list 1))
    \downarrow \downarrow
    (2)
\downarrow
(2 1)
```

Once again, the proper result is obtained. This adds the faith to the leap of faith.
The same technique used in a top-level reverse can be used in a deep reverse, with the added condition that the elements within sublists should be reversed using the deep-reverse function recursively. If these sublists have sublists, they should be reversed, and so on.

Just as with the count-atoms function, we only deal with sublists when checking the car of the list. If the car is a list, we call it recursively. Combining this idea with the top-level reverse pseudo code we can construct the following definitional pseudo code:
if the list given to deep-reverse is empty, return ' ()
otherwise, if the first item in the list is an atom, return the
append of the deep-reverse of the rest of the list onto
the list of that atom
otherwise, return the
append of the deep-reverse of the rest of the list onto
the deep-reverse of the first element (which is a list).
This can be written in Scheme as:

```
; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-reverse a-list)
    (cond ((null? a-list)
                            '())
                ((atom? (car a-list))
                            (append (deep-reverse (cdr a-list))
                            (list (car a-list))))
                (else
                            (append (deep-reverse (cdr a-list))
                            (deep-reverse (car a-list))))) )
```

Below is a trace of deep-reverse. To keep things clearer, only the boxed recursive calls will be expanded. After this trace the other recursive calls will be
traced out individually, and then all the results will be combined.

```
(deep-reverse '((a 3) (b 2) c))
    \downarrow
(append (deep-reverse '(lll 2) c)) (deep-reverse '(a 3)))
    (append (deep-reverse '(c)) (deep-reverse '(b 2)))
            (append (deep-reverse'()) (list 'c))
                                    ()
                            (c)
    \downarrow
    (c)
```

```
(deep-reverse '(b 2))
```

(deep-reverse '(b 2))
\downarrow
\downarrow
(append (deep-reverse '(2)) (list 'b))
(append (deep-reverse '()) (list 2)) (b)
\downarrow
(2)
\downarrow
(2b)

```

Similarly,
(deep-reverse '(a 3))
will return
(3a)
Putting it all together, we get

```

 \(\downarrow\)
 (append (deep-reverse '((b 2) c))
\downarrow
\downarrow
(deep-reverse '(a 3)))
\downarrow
(3a)
(deep-reverse '(bll))
\downarrow
(c)
\downarrow
(2b)
\downarrow
(c2b)
\downarrow
(c2b3a)

```

Oops. What went wrong? We got the proper order of symbols, but lost our nested list structure. Since the order of the symbols is correct, we are probably making the recursive calls in the correct location, but we are combining the results of these recursive calls improperly. Looking back at the code, notice that
in the last recursive case, we append the deep-reverse of the rest of the list onto the deep-reverse of the first of the list. Imagine that the first element is
(a 3)
The deep-reverse of that list will be
(3 a)
Appending the list ( 3 a) to another list merely adds the two elements, 3 and a, to that list rather than adding the list ( 3 a ). To preserve the list structure, append the list of the deep-reverse of the car of the list. This is similar to the recursive case when the car is an atom-we append to the list of the car. Thus our new code is
```

; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-reverse a-list)
(cond ((null? a-list)
'())
((atom? (car a-list))
(append (deep-reverse (cdr a-list))
(list (car a-list))))
(else
(append (deep-reverse (cdr a-list))
(list (deep-reverse (car a-list)))))))

```

Perform a trace of this code to verify that it works.

\subsection*{6.6.3 Exercises}
6.46 Below is an alternate solution to the count-atoms function. Does it work?
```

(define (count-atoms a-list)
(cond ((null? a-list)
0)
((atom? a-list)
1)
(else
(+ (count-atoms (car a-list))
(count-atoms (cdr a-list))))))

```
6.47 Below is another possible solution to the deep-reverse function. Does it work?
```

(define (deep-reverse a-list)

```
    (cond ((null? a-list)
'())
((atom? a-list)
a-list)
(else
(append (deep-reverse (cdr a-list))
(list (deep-reverse (car a-list)))))) )
6.48 The function unknown takes a nested list as an argument.
```

(define (unknown a-list)
(cond ((null? a-list) '())
((number? a-list) (list a-list))
((symbol? a-list) '())
(else
(append
(unknown (car a-list))
(unknown (cdr a-list))))))

```

What would the following call return?
```

(unknown '(2 (3 words) ((4 more))))

```
6.49 Write a function that performs a deep member function on a list. All the atoms, even those within sublists, should be examined. Given the call
```

(deep-member 2 '(((a b 2))))

```
your function should return a true value. Do not use the built-in function member in your solution.
6.50 Write a function that returns true if two lists look the same in form. The atoms may be different, but the parentheses should be the same. The following two lists look the same:
\(\left(\begin{array}{llll}\left(\begin{array}{lll}a & b & (c) \\ \left(\begin{array}{lll}1\end{array}\right. & e\end{array}\right) \\ \left(\begin{array}{lll}3 & 4\end{array}\right) & 5\end{array}\right)\)
6.51 Given the function below
(define (mystery unknown)
(if (or (null? unknown) (atom? unknown)) unknown
(cons (mystery (car unknown)) (mystery (cdr unknown)))) )
What does the call (mystery ' (1 (2) 3)) return?
6.52 Write a function that returns the total sum of all the numbers in all its sublists. Given the list
```

(((4 3) b) (2 a))

```
your function should return 9 .
6.53 Write a function that returns the smallest number that occurs anywhere in a list. Given the list
( ( \(\left(\begin{array}{ll}4 & 3)\end{array}\right)(2\) a) )
your function should return 2.
6.54 Write a function that takes a list and returns a flattened version of it-one with no sublists. Given the list
```

(((4 3) b) (2 a))

```
your function should return the list
(4 3 b 2 a)
6.55 Write your own version of the function equal?. Use the function eqv? to compare atoms.

\subsection*{6.7 Nested Loops or Recursion Within Recursion}

Loops and nested Linear recursive functions (those with one recursive call in the recursive case) loops repetition is called a loop. This is because the actions are performed, then the computer loops back to the first of those actions and performs the actions again. It is possible to have loops within loops-such code is called a nested loop. Nested loops are used to repeat actions that have repeated steps themselves.

\subsection*{6.7.1 Example: Sum of factorials}

Calculating the sum of all the factorials from one to number is an example of a nested loop. To calculate the factorial of a number, a loop is required. To add up these factorials, another loop is required. The inner loop would be the loop computing factorials. The outer loop would be the loop summing the factorials.

In Scheme, nested loops are created using two recursive functions. One function, the inner loop, calls itself recursively. The outer loop is another function that calls itself recursively, and calls the inner loop function.

For our example, we'll begin with the inner loop-factorial. The code is as follows:
```

; Return max factorial.
(define (factorial max)
(if (zero? max)
1
(* max
(factorial (- max 1)))))

```

The outer function must call itself and factorial. It has an exit case when the number of factorials to sum is zero-in this case the sum is zero. The recursive case requires the addition of the current factorial of number to the sum of all the factorials less than number.

This can be expressed in definitional pseudo code as
if number is 0 , return 0
otherwise, return the sum of the factorial of number and
the sum of all the factorials from 1 to number minus 1
In Scheme, the function is written as
```

; Return sum of 0 through number factorial.
(define (sum-facts number)
(if (zero? number)
0
(+ (factorial number)
(sum-facts (- number 1)))))

```

A trace of the function reveals
```

(sum-facts 3)
\downarrow
(+ (factorial 3) (sum-facts 2))
6
\downarrow
(+ (factorial 2) (sum-facts 1))
\downarrow \
(+ (factorial 1) (sum-facts 0))
\downarrow \downarrow
1 0
\downarrow
1
\downarrow
3
\downarrow
9

```

\subsection*{6.7.2 Example: Sequencing through a database using nested loops}

Below is an alternate representation for the CD data structure from Chapter 4. This data structure is a list of music categories (rock, jazz, classical, etc.) and the music within them. Each music category is a list of artists and their CDs. These artist and CD lists have the artist's name as the first element of the list, and the CDs make up the rest of the list. The artist names and the CD names are lists. The new data structure looks like the following list:
```

((rock
((Rolling Stones)
(Black and Blue)
(Its Only Rock and Roll)))
(jazz
((Pat Metheny)
(First Circle))
((Andy Narell)
(The Hammer))))

```

This CD database can be searched to find the CDs composed by a particular artist, or to find the occurrence of a particular CD. We will use a nested loop to
    New CD data struc-

New CD data structure

Nested loop to find CDs find the CDs written by a particular artist. This will be a list of CDs. The outer loop will sequence through the music categories. These categories are elements of

Inner loop to find CDs

Outer loop to find the artist
the list that makes up our entire database. The inner loop sequences through the artists within a particular category. We need both loops because we are trying to find a particular artist and we may not know which music category the artist is in. Let's build the inner loop first. It will take as an argument a music category list like the following:
```

(jazz
((Pat Metheny)
(First Circle))
((Andy Narell)
(The Hammer)))

```

To simplify the code in the inner loop, we can write the outer loop so that it calls the inner loop with a list without the category name-the rest of the category list, like the following:
```

(((Pat Metheny)
(First Circle))
((Andy Narell)
(The Hammer)))

```

The pseudo code we need is
if the list of artists is empty, return \#f to signal the outer function that the artist is not in this category
otherwise, if the first artist in the list is the desired one, return the
CDs of that artist
otherwise, check the rest of the artists recursively.
To check if the first artist in the list is the one we want, we can use
(equal? (first (first artist-list)) artist-name)
The Scheme code for the inner function is
```

; Find the CDs of artist-name within a music category list.
(define (CDs-within-category artist-list artist-name)
(cond ((null? artist-list)
\#f)
((equal? (first (first artist-list)) artist-name)
(rest (first artist-list)))
(else
(CDs-within-category (rest artist-list) artist-name))))

```

The outer loop takes the entire CD database as an argument and sequences through the music categories until a category in which the artist exists is found, or all the categories have been searched. The outer function will call the inner function to determine if an artist occurs within a musical category. The inner function returns the CD list if it finds the artist and \(\# \mathrm{f}\) if not. The outer function needs an exit case to handle the case in which the artist does not occur in the database-it needs to check for an empty database.

The definitional pseudo code for the outer loop is
if the list of categories is empty, return \#f—the artist was not found otherwise, if the first category contains that artist, return the

CDs of that artist
otherwise, check the rest of the categories recursively.
The Scheme code for the outer function is
```

; Find the CDs of artist-name within the entire CD-collection.
(define (CDs CD-collection artist-name)
(cond ((null? CD-collection)
\#f)
((CDs-within-category (rest (first CD-collection))
artist-name)
(CDs-within-category (rest (first CD-collection))
artist-name))
(else
(CDs (rest CD-collection) artist-name))))

```

This could be written more efficiently as
```

; Find the CDs of artist-name within the entire CD-collection.
(define (CDs CD-collection artist-name)
(cond ((null? CD-collection)
\#f)
(else
(or (CDs-within-category
(rest (first CD-collection))
artist-name)
(CDs (rest CD-collection) artist-name)))))

```

This new definition avoids having to call CDs-within-category twice if a match is found. \({ }^{3}\)

We can go one level further and look for a particular CD in the CD database. This will require a third innermost loop that sequences through a list of CDs of a certain artist. The outer function can stay as it is written with the exception that artist-name should be replaced with \(C D\)-name. The inner function will need a slight change-instead of checking for a match in the artist's name and returning a CD list, it should look more like the outer function and have an otherwise clause that returns the or of a call to the innermost function and a recursive call with the rest of the artists in that category.

The new inner function will be

\footnotetext{
3. Another way of doing this is to change the first version of CDs so that the clause that calls CDs -within-category looks like
((CDs-within-category (rest (first CD-collection)) artist-name))
}

There is no action associated with this condition. This is legal in Scheme; the return value for a true condition without an action is the return value of that condition.

An innermost loop to find a particular \(C D\)
```

; Find CD-name by an artist within a music category list.
(define (CDs-within-category artist-list CD-name)
(cond ((null? artist-list)
\#f)
(else
(or (CD-within-CD-list
(rest (first artist-list))
CD-name)
(CDs-within-category
(rest artist-list) CD-name)))))

```

The innermost function gets a CD list like
```

((Black and Blue)
(Its Only Rock and Roll))

```
and looks for a match of the CD being searched for. If the CD is found, it should be returned; otherwise \#f should be returned. This function is similar to the original CDs-within-category function.

The innermost function is
```

; Find CD-name within a list of CDs.
(define (CD-within-CD-list CD-list CD-name)
(cond ((null? CD-list)
\#f)
((equal? (first CD-list) CD-name)
CD-name)
(else
(CD-within-CD-list (rest CD-list) CD-name))))

```

Note: this function could have been implemented using member, as follows:
; Find CD-name within a list of CDs.
(define (CD-within-CD-list CD-list CD-name)
    (let ( (found-name (member CD-name CD-list)) )
        (if found-name
            (first found-name)
            \#f)) )

\subsection*{6.7.3 Example: Poker revisited}

Our version of poker from Chapter 5 did not know about straights like
(four five six seven eight)
A straight is much easier to recognize if it is in order than if it is unordered, as in
```

(six eight five four seven)

```

If we can sort the hand we are passed, we can test if it matches a subsequence of a list of the ordered cards. These cards can be saved in the variable cardordering.
```

(define card-ordering
'(two three four five six seven eight nine ten
jack queen king ace))

```

Sorting data is a frequently performed operation in computer programming. There are books on the subject and numerous sorting algorithms. We will use a method known as insertion sort. The idea behind this sort technique is to build a sorted list beginning with an empty list and inserting elements one at a time in the proper place in the list until a complete sorted list is obtained. There are two loops. The inner loop places an element in the sorted list. The outer loop calls the inner loop to place all the elements.

The inner loop takes two parameters, sorted-list, the sorted list, and element, the element to insert in sorted-list. The definitional pseudo code to the inner loop is as follows:
if sorted-list is empty, return the list of element
otherwise, if element is less than the first element in sorted-list, return the list obtained from consing element onto sorted-list
otherwise, return the cons of the first element of sorted-list and the recursive call of element and the rest of sorted-list.
We must refine what we mean by one card being less than another. A card is "less than" another card if it occurs earlier in card-ordering. This can be determined by comparing the position of the two cards within card-ordering. The function below does this:
```

; Return true if card1 is lower in value than card2.
(define (lower-card? card1 card2)
(< (position cardl card-ordering)
(position card2 card-ordering)))

```

The Scheme code for the inner loop is
```

; Insert card in sorted order into sorted-list.
(define (insert-card element sorted-list)
(cond ((null? sorted-list)
(list element))
((lower-card? element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert-card element (rest sorted-list))))))

```

The outer loop that sorts an unsorted list has the following definitional pseudo code:

Insertion sort

Adding an element to a sorted list
if the list to sort is empty, return ' ()
otherwise, insert the first element of the list into the recursive call
of the rest of the list

Outer loop to sort a list

In Scheme, this is written
```

; Perform insertion sort on a-list.
(define (sort-hand a-list)
(if (null? a-list)
'()
(insert-card
(first a-list)
(sort-hand (rest a-list)))))

```

Let's see how this code works with the trace below:
```

(sort-hand '(seven two three))
\downarrow
(insert-card 'seven (sort-hand '(two three)))
\downarrow
(insert-card 'two (sort-hand '(three)))
\downarrow
(insert-card 'three (sort-hand '()))
\downarrow
()
\downarrow
(three)
\downarrow
(two three)
\downarrow
(two three seven)

```
    And let's trace the final call to insert-card:
(insert-card 'seven '(two three))
    \(\downarrow\)
(cons 'two (insert-card 'seven '(three)))
                            \(\downarrow\)
            (cons 'three (insert-card 'seven '()))
                                    \(\downarrow\)
                                    (seven)
                \(\downarrow\)
            ( three seven)
    \(\downarrow\)
( two three seven )

Now we can sort our hand and determine if we have a straight. Once the hand is sorted we want to compare it with a subsequence of card-ordering, starting with the low card in our hand. To avoid unnecessary testing we can add another test to see if our low card is less than a jack. If it's not, we cannot have a straight.
```

; Return true if hand is a straight.
(define (is-straight? hand card-ordering)
(let* ((sorted-hand (sort-hand hand))
(low-card (first sorted-hand)))
(and (lower-card? low-card 'jack)
(equal?
sorted-hand
(subseq
(member low-card card-ordering)
0 5)))),

```

\subsection*{6.7.4 Exercises}
6.56 Modify the functions from the CD example so that the entire database is searched when looking for a particular artist, as opposed to the present scheme in which the search stops when the first artist match is found. Return a list of all CDs by the artist from all categories.
6.57 Does the below alternate definition for cDs work? If not, fix it so it does work properly.
```

(define (CDs CD-collection artist-name)
(or
(null? CD-collection)
(CDs-within-category (rest (first CD-collection))
artist-name)
(CDs (rest CD-collection) artist-name)))

```
6.58 Modify the function poker-value from Chapter 4 so that instead of returning nothing for a nonwinning hand, it returns the high card in the hand. For example, if given the hand
(seven jack three five two)
your function should return jack.
6.59 Write a function tables that produces a list of multiplication tables. For example
(tables 3 4)
would produce the list
\(\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\)
\(\left(\begin{array}{llll}2 & 4 & 6 & 8\end{array}\right)\)
( \(\left.\begin{array}{llll}3 & 6 & 9 & 12\end{array}\right)\)

\subsection*{6.8 Summary}
- When writing recursive functions, begin by considering the exit cases. Next think about the recursive cases that break the problem down into similar, smaller subproblems that eventually reach exit cases.
- Tail recursive functions have recursive cases in which the return value is a recursive call.
- Embedded recursive functions have recursive cases in which the return value has a recursive call that is an argument to another function. Another type of embedded recursive function is one in which there is an expression that follows the recursive call in the action of a recursive case.
- Recursive functions that sequence through lists typically have an exit case that checks for an empty list. Such functions usually perform some test or action with the first of the list and make a recursive call with the rest of the list.
- Mapping and filter functions typically construct lists using cons.
- car-cdr recursion is a type of recursion that involves recursive calls to both the car and the cdr of a list.
- Nested loops can be written with multiple recursive functions in which the outer loop functions call themselves and the inner loop functions.

\section*{DATA STRUCTURES}

\subsection*{7.1 Why Data Structures?}

We have looked at Scheme's most common data structure, the list. We have seen how ordered lists and hierarchies can be represented. The focus in this chapter is on using data structures like these and other more abstract data structures in programs.

Niklaus Wirth, the creator of the programming language Pascal, wrote a book entitled Algorithms + Data Structures = Programs. In this classic computer science text, he shows that algorithms alone do not make programs; data structures play an important role in the design of programs. This is still true today, and is true for the language Scheme. Just as we are able to write complex programs by abstracting the steps or algorithm necessary, we can create elegant programs by creating abstract data structures to represent the information that our program uses.

Perhaps the biggest flaw that beginning programmers make is to ignore the importance of data structures in their programs. It is common to see beginners create the simplest structure that comes to mind or no structure whatsoever, and then create large amounts of code to get the program to work. This approach can yield working programs, but usually they are hard to maintain and modify. By spending some time up front carefully considering how the data in your program will be used and designing the best structure to meet those needs, you can save a great deal of time later in coding.

Enough preaching from the soap box. Let's examine some real examples.

\subsection*{7.1.1 Example: Breaking secret codes}

Remember when you were a kid and had a secret decoder ring that you got when you mailed in three box tops of Sugar, Starch, and Sucrose Cereal? It was effectively a list of letter pairs that you used to translate English words into a secret code or

\footnotetext{
O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998
}

Importance of data structures
vice versa. It was fun at first, but after a while it just became too tedious. Of course what you really needed was a computer to do the work for you. So we'll create a program that will translate English to secret code and secret code to English. We'll make two functions to do so, english-to-code and code-toenglish. Both functions will take lists of single-letter symbols that represent letters in words and return similar lists. For example,
```

(english-to-code '(a p p l e))

```
might return
```

(f z z y r)

```

In which case,
```

(code-to-english '(f z z y r))

```
would return
```

(a p p l e)

```

Without using data structures other than the lists that are passed as arguments to these functions, we may be tempted to write the code as a large cond that matches letters in English to their secret code equivalents. The solution to go from a letter of secret code, letter, to its English equivalent might look like this:
```

(cond ((equal? letter 'a) 'f)
((equal? letter 'b) 'g)
((equal? letter 'z) 'e)
(else 'unknown-letter))

```

Two such conds would be necessary-one to go from an English letter to code, and another to go from code to the equivalent English letter.
Data integrity

Mapping English to code

This solution involves a good deal of coding and is difficult to modify. For example, if you wanted to change the secret code, you would have to change both conds. It would be easy to have inconsistencies between the two conds. This creates a data integrity problem.

The solution is to have only one mapping between English and the secret code. Mapping is used in the mathematical sense here-a one-to-one mapping is one that relates one item uniquely to another item. This mapping must be structured in such a way that would allow us to translate either way-English to code, or code to English. A list of two-element lists would do the job. Each of these sublists represents an English letter and its equivalent in the secret code. One reason that a list of sublists is used instead of one large list is that it ensures that we have an even number of elements. Another reason is that it is easier to see which elements match and which are English letters versus code letters without having to count elements.

Below is what the data structure would look like:
```

((a f)
(b g)
(c t)
(z e))

```

To go from English to code involves sequencing through the list recursively, comparing the first of each sublist (an English letter) with the English letter to match. When a match is found, the second of the sublist is returned. This process is repeated for each letter in the argument list given to the english-to-code function.

To go from code to English is similar, except the seconds of the sublists are compared against the code letter to match, and the first of the matching pair is returned.

The function to translate a single English letter to its code equivalent follows. It has two parameters: the letter to search for, letter, and the data structure of letter pairs, match-list.
```

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(let ((letter-pair (first match-list)))
(if (equal? letter (first letter-pair))
(second letter-pair)
(english-letter-to-code letter (rest match-list)))))

```

This function can be used in the function english-to-code that takes a list of English letters and returns the list representing their code equivalent.
```

; Encode letter-list.
(define (english-to-code letter-list match-list)
(if (null? letter-list)
'()
(cons (english-letter-to-code (first letter-list) match-list)
(english-to-code (rest letter-list) match-list))))

```

\subsection*{7.1.2 Exercises}
7.1 Write functions to translate code to English.
7.2 How would the functions above that translate from English to code have to be modified if you wished to switch the order in the sublists so that each sublist was a code letter followed by an English letter?
7.3 What happens if english-to-code is called with a list that has nonletters (i.e., ( \(\left.\begin{array}{lll}\mathrm{t} & 4 & 2\end{array}\right)\) )? Modify the previous functions so that they do something reasonable in such a situation.
7.4 Suppose we eliminated the inner parentheses and made our mapping of English to code one long list as follows:
(a f b g ct. . . ze)

Does the following version of english-letter-to-code work?
```

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(second (member letter match-list)))

```

If so, write an analogous function that translates code letters into English letters. If not, explain why.

\subsection*{7.2 Association Lists}

Association lists and pairs
assoc and rassoc

Another data structure that is used to make a list of related pairs is an association list. An association list is a list of nonempty lists. A nonempty list is often called a cons or a pair.

Scheme has one built-in function that works with association lists: assoc. Another function, rassoc, is not built-in, but added as an extension.
function arguments return value assoc element assoc-list the first pair in assoc-list whose car is element rassoc element assoc-list the first pair in assoc-list whose cdr is element
With both assoc and rassoc, if element does not match any of the pairs in assoclist, \# f is returned.

The function rassoc can be defined using recursion as follows:
```

; Like assoc but returns the first pair whose cdr matches elt.
(define (rassoc elt assoc-list)
(cond ((null? assoc-list) \#f)
((equal? (cdar assoc-list) elt) (car assoc-list))
(else (rassoc elt (cdr assoc-list)))))

```

Look at the following examples that use a partial mapping of English to code:
```

> (define eng-to-code
'((a f) (b g) (c t)))
??
> (assoc 'b eng-to-code)
(b g)
> (assoc 'f eng-to-code)
\#f
> (rassoc 't eng-to-code)
\#f
> (rassoc '(t) eng-to-code)
(c t)

```

Notice that rassoc must be called with the list of the code letter to match the corresponding English letter.

\section*{Mistakes to Avoid}

Remember that rassoc finds matches with the cdrs of the pairs. To match the pair ( b g ), the following call can be made:
```

> (rassoc '(g) '((a f) (b g) (c t)))
(b g)

```

With two-element pairs the cdrs are one-element lists, not atoms.
Similarly the function assoc must be called with lists to find pairs whose cars are lists. For example,
```

> (assoc '(a b) '(((a a) 1) ((a b) 2) ((a c) 3)))
((a b) 2)

```

Since assoc returns the pair whose car matches the element being searched for, to get the value associated with that car, the cdr or second of the pair is taken. In the case of converting English to code, we would take the second of the pair to get the corresponding code letter. The same applies to rassoc, except the car of rassoc is used.

We can write english-letter-to-code and code-to-english-letter using assoc and rassoc. Instead of forcing the user to call code-to-englishletter with the list of the code letter (to match the cdrs of the pairs), we'll write the function to call rassoc with the list of the letter.
```

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(second (assoc letter match-list)))
; Decode the symbol letter.
(define (code-to-english-letter letter match-list)
(car (rassoc (list letter) match-list)))

```

\subsection*{7.2.1 Optional section: Association lists with dotted lists}

A dotted list is formed when an atom or list is consed onto an atom. See the section entitled "Optional Section: Dotted Lists" in Chapter 4 for an introduction to dotted lists. An association list can be made up of dotted lists and then used with the functions assoc and rassoc. For example,
```

```
> (define complementary-colors
```

```
> (define complementary-colors
    '((red . green) (blue . orange) (yellow . purple)))
    '((red . green) (blue . orange) (yellow . purple)))
??
??
> (assoc 'blue complementary-colors)
> (assoc 'blue complementary-colors)
(blue . orange)
(blue . orange)
> (cdr (assoc 'blue complementary-colors))
> (cdr (assoc 'blue complementary-colors))
orange
orange
> (rassoc 'purple complementary-colors)
> (rassoc 'purple complementary-colors)
(yellow . purple)
```

```
(yellow . purple)
```

```

Translation with assoc and rassoc
```

> (car (rassoc 'purple complementary-colors))
yellow

```

Notice that rassoc is called with an atom because the cdrs of the dotted lists are atoms. For relationships between atoms, an association list of dotted lists is often used because it is simpler to use and uses less memory (less cons cells are required).

To create an association list for the English-letter-to-secret-code letter list, the sublists like (a f) would be changed to dotted lists like (a . f). The new list would look like the following:
\begin{tabular}{|c|c|}
\hline ( \({ }^{\text {a }}\) & f) \\
\hline (b) & g) \\
\hline (c) & . t) \\
\hline & \\
\hline (z & e)) \\
\hline
\end{tabular}

We can create new versions of the english-letter-to-code and code-to-english-letter functions that take association lists of this form. To find a code letter, the call to assoc is the same, but the code letter is the cdr of the result instead of the second. To get the English letter, rassoc must be called with the code letter as an atom.
```

; Encode the symbol letter from an association list of dotted lists.
(define (english-letter-to-code letter match-list)
(cdr (assoc letter match-list)))
; Decode the symbol letter from an association list of dotted lists.
(define (code-to-english-letter letter match-list)
(car (rassoc letter match-list)))

```

\subsection*{7.2.2 Exercises}
7.5 Write a program that determines the value of a BlackJack hand. The cards can be represented using the symbols below:
ace two three four five six seven eight nine ten jack queen king
Aces are worth 1, and jacks, queens, and kings are worth 10 . The hand can be represented as a list of card names, such as
(jack three five)

This hand has a value of 18 .
Create an association list to match the card names with the card values, which are
```

1

```
respectively. This assumes that aces are always worth one. Your program should include a function that takes a BlackJack hand (a list of card names) and the association list, and returns the value of the hand.
7.6 Modify the program above so that aces are worth either 1 or 11. Choose 11 unless that will make the hand worth more than 21 , in which case the ace should be considered worth 1. Your solution should work if given a hand with more than one ace.
Hint: Only one ace can be worth 11 in a hand; two aces worth 11 each would give a hand value of 22 . Thus, you need only worry about making one ace worth 11.
7.7 Write a function that takes a card hand (see above problems) and returns \#t if you should hit-ask for another card from the dealer. You can use the following simple algorithm: if the hand is worth less than 15, hit. Or use your own algorithm, perhaps based on the one dealer's card that is showingthis card can be passed to your function as an additional parameter.
7.8 Write a function that checks if the mapping from English to secret code is a one-to-one mapping-each letter of the English list maps onto a unique letter of the secret code list.

\subsection*{7.3 Design for Modifiability}

The form of the data structures used in programs tends to be modified over time. Sometimes different forms are used to allow new information to be represented in the data structure. Sometimes the change is made to allow improvements in the speed of data retrieval. It would be ideal if there were an easy way to minimize the changes that have to be made in the program when the data structure takes on a new form.

Imagine that we changed the data structure of the English-letter-to-code example to a single list as shown below:
```

(a f b g c t . . . z e)

```

This would entail changing the existing code, which becomes more of an ordeal if the program is much larger with many parts accessing the data structure. However, there is a way to assure that the data structure and the program can be independent entities. The key is to create functions that access and modify the data structure and use these functions throughout the program instead of directly accessing or changing the data structure. These selector and creator functions would have to be modified if the database changed; however, the rest of the program would not have to be changed. An example of a selector function for the previous nested list data structure would be the function english-letter-tocode. It represents the simplest form of data access we wish. The function english-to-code uses this function and does not need to be changed if the data structure is changed. Only english-letter-to-code and code-to-englishletter would have to be changed.

If we did change the data structure to the non-nested list form above, we could still use english-to-code if we write a new version of english-letter-to-code, as follows:

Data structures are dynamic

Selector and creator functions
```

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)
(if (equal? letter (first match-list))
(second match-list)
(english-letter-to-code letter (cddr match-list))))

```

\subsection*{7.3.1 Exercises}
7.9 Write a new version of the function code-to-english-letter that use the above single list of atoms form of the data structure.
7.10 Suppose that instead of an association list for the English-letter-to-code mapping, there were a mapping of English letters to two different codes so that the new data structure looked like the following:
```

($(\mathrm{a} f \mathrm{f})$
(b g f)
(c t m)
(z e g))

```

The first letter in each three-element sublist is the English letter; the second element is the first code letter; and the third is the second code letter. Write a selector function that takes such a mapping list and an English letter and returns a code letter from the first code list. Similarly, write selectors to go from English to the second set of code letters, and from the first code letters to the second code letters.

\subsection*{7.4 Sets}

Lists can be used to represent sets of values. A set is an unordered collection of elements with no repeated elements. Sets can be used to represent collections of numbers or names, such as the names of all the presidents of the United States. Below is the set of all prime numbers less than 20:
\[
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19
\end{array}\right)
\]

The order of the elements is not important. The same set could be represented by the list
\(\left(\begin{array}{lllllllll}3 & 7 & 11 & 1 & 19 & 17 & 2 & 5 & 13\end{array}\right)\)
A list is a convenient representation for a set because it can grow and shrink and be examined easily with many of the built-in functions in Scheme.

Sets are used often in mathematics. The most common operations performed on sets are the following:
\begin{tabular}{lll} 
function & arguments & operation \\
\hline member & element set & does element occur in set? \\
union & set1 set2 & set of elements in either set1 or set2 \\
intersection & set1 set 2 & set of elements in both of set1 and set2 \\
null? & set & is set empty? \\
set-difference & set1 set 2 & set of elements in set1 that are not in set2 \\
adjoin & element set & add element to set if it's not already in set \\
subset? & set1 set2 & are all the elements of set1 in set2? \\
length & set & the number of elements in set-the cardinality
\end{tabular}

A valid set is a list with no repeated elements. If the set functions are called with lists having repeated elements, the return values may have repeated elements as well. The function adjoin should be used to add elements to a set, since it only adds an element if it doesn't already exist in the set. The elements of a set are usually atoms, but if they are lists, the set functions will still work properly.

We have used member and null? to determine if an element is in a list and if a list is the empty list, respectively. These are both useful operations with sets.

Two sets can be combined by creating a set of all items they have in common-their intersection. Another combination of sets is the set of all items that exist in either of two sets, not including any items more than once-the union of the sets. The elements that exist in one set but not another can be found using set-difference. Adding an element to a set can be performed with adjoin, which conses the element to the list representing the set if that element is not already in the set. Lastly, subset? is used to determine if one set is a subset of another set-every element of the first set must be a member of the second set.

The functions union, intersection, set-difference, adjoin, and subset? are not built into Scheme, but are added in our extensions. We can define these functions. adjoin is the simplest to define.
```

; Return set with item added unless it already exists in set. adjoin
(define (adjoin item set)
(if (member item set)
set
(cons item set)))

The remaining functions can be defined using recursion and member. For each set function, we recurse through the first set. The following table shows what result should be returned depending on whether the first element of that set is or isn't in the second set.

function	if element is in set2	if element isn't in set2
union	don't include element	include element
intersection	include element	don't include element
set-difference	don't include element	include element
subset?	check remaining elements	return \#f

Different actions should be taken when set 1 or set 2 are empty. Observe the subtle differences between these function definitions:

Set functions

Rules for valid sets

```
; Return the set of items in either set1 or set2.
(define (union set1 set2)
    (cond ((null? set1)
                set2)
            ((member (car set1) set2)
                (union (cdr set1) set2))
            (else
                (cons (car set1) (union (cdr set1) set2)))) )
intersection ; Return the set of items in both set1 and set2.
(define (intersection set1 set2)
    (cond ((or (null? set1) (null? set2))
                '())
            ((member (car set1) set2)
                (cons (car set1) (intersection (cdr set1) set2)))
            (else
                (intersection (cdr set1) set2))) )
set-difference ; Return the set of items in set1 but not in set2.
(define (set-difference set1 set2)
    (cond ((null? set2)
                set1)
            ((null? set1)
                '())
            ((member (car set1) set2)
                (set-difference (cdr set1) set2))
            (else
                (cons (car set1) (set-difference (cdr set1) set2)))) )
subset? ; Return #t if all elements in set1 are also in set2, #f otherwise.
(define (subset? set1 set2)
    (cond ((null? set1)
        #t)
            ((null? set2)
                #f)
            (else
                (and (member (car set1) set2)
                    (subset? (cdr set1) set2)))) )
```


7.4.1 Example: Using sets to represent locations traveled to

An example application of sets is creating sets of the exotic places that you and your friends have visited. You could create sets as follows:

```
(define places-i-have-been
    '(turkey belize thailand indonesia india))
    (define places-brett-has-been
    '(south-dakota thailand))
```

```
define places-lisa-has-been
    '(yugoslavia thailand belize turkey india))
```

You can compare these sets to determine the places that any two people have both visited using intersection.

```
> (intersection places-i-have-been places-brett-has-been)
(thailand)
> (intersection places-i-have-been places-lisa-has-been)
(turkey belize thailand india)
```

Notice that no elements were repeated in the resultant lists. This is true for sets-they do not have repeated elements. The actual order of the elements in the returned lists may differ depending on the implementation of Scheme used. It's not the order of the elements that matters in a set, but the contents of that set.

The function union can be used to find all the places that either of two people have visited:

```
> (union places-brett-has-been places-lisa-has-been)
(south-dakota yugoslavia thailand belize turkey india)
```

To determine the places that one person has been and another hasn't, use set-difference. For example,

```
> (set-difference places-i-have-been places-lisa-has-been)
(indonesia)
> (set-difference places-lisa-has-been places-i-have-been)
(yugoslavia)
```

Combining these lists with union gives the places that either one, but not both, of two people have been to.

```
> (union (set-difference places-i-have-been places-lisa-has-been)
    (set-difference places-lisa-has-been places-i-have-been))
(indonesia yugoslavia)
```

Another possibility is to take the set-difference of the union and the intersection. This deletes the places where two people have both been (the intersection) from the union of the places where they have been. This leaves only those places that either one has gone to, but not both.

```
> (set-difference (union places-i-have-been places-lisa-has-been)
    (intersection places-lisa-has-been places-i-have-been))
(indonesia yugoslavia)
```

To determine if someone has been to a particular place, member is used:

```
> (member 'portugal places-brett-has-been)
#f
```

subset? can be used to check if one person has been to all the places that another has been. For example, has Brett been to all the places that Lisa has?

```
> (subset? places-brett-has-been places-lisa-has-been)
#f
```

Set equality subset? can be used to determine if two sets have the same elements. This will be the case if both sets are subsets of one another:

```
> (and (subset? places-brett-has-been places-lisa-has-been)
    (subset? places-lisa-has-been places-brett-has-been))
#f
```

The function equal? cannot be used to determine set equality, because equal? is true only if the lists have the same elements in the same order, whereas set equality is defined by the members of the sets, and not their order.

7.4.2 Exercises

7.11 Write a version of union using the other set functions but without recursion, or indicate why it is impossible. Assume that the lists passed as arguments to your function are valid sets. The two lists may have elements in common, yet your resultant list should have no duplicates.
7.12 Write a version of intersection using the other set functions but without recursion, or indicate why it is impossible. Assume that the argument lists are valid sets.
7.13 Write a version of subset? using the other set functions but without recursion, or indicate why it is impossible. Assume that you are given valid sets.
7.14 Write a version of set-difference using the other set functions but without recursion, or indicate why it is impossible. Assume that you are given valid sets.
7.15 subset? was used earlier to determine if two sets are equal; in other words, to determine if they have the same elements. Come up with a different means of determining if two sets are the same.
7.16 Assume that you have variables bound to the following values:
seniors the first names of the students in the senior class juniors the first names of the students in the junior class physics-majors the first names of the declared physics majors english-majors the first names of the declared English majors german-majors the first names of the declared German majors forestry-majors the first names of the declared forestry majors
Also assume that each student has a unique first name. Give expressions that could be typed into the interpreter to produce the following sets:

- Seniors majoring in physics
- Juniors majoring in both physics and English
- Seniors and juniors majoring in either English or German
- Seniors and juniors majoring in neither English nor German
- Forestry majors who are not juniors

7.5 Trees

Trees are a very common data structure used in computer science. A computer science tree has a root, leaves, and branches, just like a real tree; however, these trees are drawn upside-down. Here is an example:

This tree represents the arithmetic expression $(3 \times 4)+(2-1)$. To evaluate this expression in Scheme, we would write it as

```
(+ (* 3 4) (- 2 1))
```

which is how this tree may be represented in list form.
Trees have nodes and branches. A branch is shown as a / or a \; anything else is a node. There are three types of nodes: the root, inner nodes, and leaves. The root is the uppermost node. There is only one root, and in this example it is.$+ \times$ and are inner nodes. A node with no branches below it is called a leaf. 3, 4, 2, and 1 are leaves. The root and inner nodes have branches descending below them. These branches go to smaller sections of the tree which are called the subtrees. The roots of these subtrees are the children of the node above them. Similarly, the node immediately above a node is the parent.

If each node of a tree has two or less branches (or children), it is called a binary tree. A complete binary tree has zero or two children for each node (as the previous tree does). Trees with nodes having three or less branches are called ternary trees. N-ary trees are trees with up to N branches below each node.

A complete binary tree can be represented as a list of three elements. The first element is the root, and the second and third elements are the left and right subtrees. The subtrees may be leaves or complete trees. If the subtrees are trees, then they are represented as lists. Leaves are represented as atoms. This representation may seem recursive in nature, and it is. Recursion provides a wonderful means of dealing with these structures, as we will soon explore.

The previous example tree has root + , and the left and right subtrees are

The left subtree has \times as its root, and the leaves 3 and 4 are its children. This subtree can be represented as the list (* 3 4). Similarly, the right subtree can be represented as (-21). Thus, the entire tree is represented as

Parts of trees

Types of trees

Tree representations

```
(+ (* 3 4) (- 2 1))
```

With such a representation, children that are leaves are represented as atoms, and children that are inner nodes are lists. It may not seem obvious why such a representation is used instead of simpler forms like

```
(+ * 3 4 - 2 1)
    Or
(3 * 4 + 2 - 1)
```

The first representation, (+ * 3 - 4 - 1), can be used if we assume that nonleaf nodes are operators (e.g.,,$+ *$) and the leaves are numbers. However, it isn't as easy to access the children with this representation as it is using the representation (+ (* 3 4) (-21)). As the next examples will show, being able to easily access the children of a tree is a very common operation that we will want to perform. The list ($3 * 4+2-1$) is ambiguous. It could represent many different trees. Here are some possible examples:

Here is a different tree that is more complex:

This tree would be represented using the following list:

$$
(+(-(* 6(-71)) 4)(/ 23))
$$

The root of this tree is + , the left subtree is $\left(\begin{array}{lll}\left.-\left(\begin{array}{ccc}* & (-7 & 1\end{array}\right)\right) & 4) \text { and the right }\end{array}\right.$ subtree is (/ 23). These are easily obtained from the list; they are the second and third elements of the list.

7.5.1 Depth-First search

Trees can be used to hold a collection of values, as shown in the tree below which holds a collection of numbers:

How would we determine if a certain number occurred within a tree? We could start at the root and test it. If it's not the root, then we continue by testing the left and right sides of the tree. A question arises as to which order this traversal through the tree should take. We could test the entire left side before testing the right side; in other words, traverse $13,5,6,-1,45,7,18$. This is called a depthfirst traversal.

The tree above can be represented with the following list:

$$
\left(13 \quad\left(\begin{array}{lll}
5 & 6 & -1
\end{array}\right)\left(\begin{array}{lll}
45 & 7 & 18
\end{array}\right)\right.
$$

To perform a depth-first search through such a list, a recursive strategy is employed. Begin by comparing the element being searched for with the root of the tree-this is the first element of the list. If there is no match, continue searching recursively with the left side of the tree. The search is recursive because the left side of the tree may, as in this case, be a tree. If the left side recursive search fails, search the right side recursively. The left and right sides of the tree are the second and third elements of the list, respectively.

We are missing an exit case to check if the item is not in the tree. This can be added as a test to see if the tree is empty (an empty list), in which case the item being searched for cannot be in the tree, and \#f should be returned. Another case to consider is when the tree being examined is a leaf. The tree would be an atom in this case. The return value should be a test checking if that leaf is the item being searched for.

The pseudo code for a depth-first search is

if the tree is empty, return \#f

otherwise, if we are at a leaf, return the result of comparing that leaf with the item we are searching for
otherwise, if the root matches, return true
otherwise, if the left side contains the item (recursive call), return true
otherwise, return the result of checking the right side of the tree recursively

Depth-first search and depth-first traversal

Recursive algorithm for depth-first search

Different representations of trees

Tree selector functions

The Scheme code follows:

```
; Use depth-first search to find item in tree.
(define (depth-first-search item tree)
    (cond ((null? tree) #f) ;empty tree
    ((atom? tree) (equal? item tree)) ;leaf
            ((equal? item (first tree)) #t) ; test root
            ((depth-first-search item (second tree)) #t) ; test left side
            (else
                    (depth-first-search item (third tree)))) ) ; test right side
```

We have used prefix representation for trees. The root of the tree is the first item and it is followed by the children. The root may be between the children (infix) or after the children (postfix). Each of these representations for a tree is valid and has particular uses.

Function calls in Scheme are expressed in prefix notation:

```
(* (+ 1 2) -4)
```

In typical mathematical notation, infix is used:

```
(1 + 2) * -4
```

Postfix ${ }^{1}$ is used in some programming languages and handheld calculators. Parentheses are not needed when the number of operands is fixed according to the operator. ${ }^{2}$ This is one reason why some calculators use postfix notation. Our previous mathematical expression is written in postfix as

```
1 2 + -4 *
```

Any of these three representations can be used to represent a tree in Scheme. Extra parentheses (beyond those shown in the above examples) would be needed for the infix and postfix representations. In light of these different tree representations and according to the principle of design for modifiability, we should have selector functions for the root value of the tree and the left and right sides of the tree. This makes the code more readable as well.

```
; Return the root of tree.
(define (root tree)
    (first tree))
; Return the left subtree of tree.
(define (left-side tree)
    (second tree))
; Return the right subtree of tree.
(define (right-side tree)
    (third tree))
```

Another change that can be made is in the recursive step of depth-firstsearch; it can be thought of as

[^21]item is in tree if it is either in the left or the right side of tree.
The code using this recursive step and the selector functions is

```
; Use depth-first search to find item in tree.
(define (depth-first-search item tree)
    (cond ((null? tree) #f) ;empty tree
        ((atom? tree) (equal? item tree)) ;leaf
        ((equal? item (root tree)) #t) ; test root
        (else ; test left and right sides
            (or (depth-first-search item (left-side tree))
                (depth-first-search item (right-side tree))))) )
```

This solution is equivalent to the previous version. Both versions test the left side of the tree first in the recursive case, and only check the right side if item is not in the left side. Below is a sample trace:

```
(depth-first-search -1 '(13 (5 6 -1) (45 7 18)))
    \downarrow
(or (depth-first-search -1 '(5 6 -1))
    \downarrow (depth-first-search -1 '(45 7 18)))
    (or (depth-first-search -1 6) (depth-first-search -1 -1))
        \downarrow \downarrow
                        #f #t
    \downarrow
    #t
\downarrow
#t
```

The call (depth-first-search -1 ' (45 7 18)) was not expanded because it would not be evaluated. The or evaluates its arguments in left to right order. Since the first argument, (depth-first-search -1'(5 6 -1)), returns \#t, the or doesn't evaluate its second argument.

7.5.2 Breadth-First search

Another way to search through trees is to test the root, then its left child, and then its right child, continuing in the same manner with the children of the subtrees. Using the previous sample tree, this would be the traversal $13,5,45,6,-1$,

Breadth-first search and breadth-first traversal

7,18 . Such a path is called a breadth-first traversal.

Recursive algorithm for breadth-first search

A list is needed to keep track of the subtrees that must be returned to. When a node is reached, it is examined and its subtrees are added to the end of this search list and the search continues. Once the search list is empty, the search is complete. From this definition the pseudo code to perform a breadth-first search through a list can be created.
if the list of subtrees to search is empty, return \#f
otherwise, if the root of the first subtree in the search list matches the item being searched for, return \# t
otherwise, add the subtrees of the current subtree to the end of the search list and continue searching with the rest of the subtrees in the search list
The current subtree to search is used a few times in the pseudo code, so we'll save its value in the let variable current-tree. The code follows:

```
; Use breadth-first search to find item in search-list (a list of trees).
(define (breadth-first-search item search-list)
    (let ( (current-tree (first search-list)) )
        (cond ((null? search-list) #f)
            ((equal? item (root current-tree)) #t)
            (else
                (breadth-first-search
                item
                (append
                                    (rest search-list)
                                    (list
                                    (left-side current-tree)
                                    (right-side current-tree))))))) )
```

The function is called with a list of trees to search; thus, it is initially called with the list of the tree list we want to search. As each node is examined, its immediate subtrees are added to this search list to examine later. Below is a trace of a sample call to this function: The value of current-tree is underlined in the argument to breadth-first-search.

```
(breadth-first-search -1 '((13 (5 \(\left.6-1)\left(\begin{array}{lll}45 & 7 & 18\end{array}\right)\right)\) )
    \(\downarrow\)
(breadth-first-search -1 '((15 \(\left.\left.\begin{array}{lll}5 & -1\end{array}\right)\left(\begin{array}{lll}45 & 7 & 18\end{array}\right)\right)\)
    \(\downarrow\)
(breadth-first-search \(-1{ }_{\downarrow}^{\prime}\left(\begin{array}{llll}\left(\begin{array}{lll}45 & 7 & 18\end{array}\right) & 6 & -1\end{array}\right)\) )
(breadth-first-search -1 '( \(\underline{6}\)-1 7 18) )
    \(\downarrow\)
Error: Pair expected
```

Our solution did not handle the case in which we are looking at a leaf. This should be added as another case in the cond. If we are examining a leaf, the item is present if it matches that leaf or if it is in the remaining subtrees to be tested. The new solution is

```
; Use breadth-first search to find item in search-list (a list of trees).
(define (breadth-first-search item search-list)
    (let ( (current-tree (first search-list)) )
        (cond ((null? search-list) #f)
            ((atom? current-tree)
                            (or (equal? item current-tree)
                                (breadth-first-search item (rest search-list))) )
            ((equal? item (root current-tree)) #t)
                    (else
                                (breadth-first-search
                                item
                                (append
                                    (rest search-list)
                                    (list
                                    (left-side current-tree)
                                    (right-side current-tree)))) ))) )
```

With this new code, we get the following trace:

```
(breadth-first-search -1 '(\begin{array}{llll}{6}&{-1}&{7}&{18}\end{array})
(breadth-first-search -1 '(-1 7 18))
                            \downarrow
#t
```

In choosing test data, we should use situations to test all the exit cases. In this function we should test what happens when (null? search-list) is true. This will occur when the item being searched for is not in the tree:

```
(breadth-first-search -1 (( \(\left.\begin{array}{ll}5 & 6 \\ \downarrow\end{array}\right)\) ))
(breadth-first-search -1 ( 6 7))
    \(\downarrow\)
(breadth-first-search -1 (7))
    \(\downarrow\)
(breadth-first-search -1 '())
    \(\downarrow\)
Error: Pair expected
```

The error occurs when search-list is the empty list. Examining the code, we see that the let takes the first of search-list, which is (), and an error results. To fix this, either test for an empty list before the let or within the let. We'll take the second approach and change the let to

```
(let ( (current-tree
    (if (null? search-list)
        '()
        (first search-list))) )
```


7.5.3 Exercises

7.17 Is the function below equivalent to depth-first-search? Explain your answer.

```
(define (depth-first-search-2 item tree)
    (cond ((null? tree) #f)
        ((atom? tree) (equal? item tree))
        (else
                            (or (equal? item (root tree))
                                    (depth-first-search-2 item (left-side tree))
                                    (depth-first-search-2 item (right-side tree))))) )
```

7.18 Is the function below equivalent to depth-first-search? Explain your answer.

```
(define (depth-first-search-3 item tree)
    (or (not (null? tree))
            (equal? item tree)
            (equal? item (root tree))
            (depth-first-search-3 item (left-side tree))
            (depth-first-search-3 item (right-side tree))) )
```

7.19 Suppose the recursive call to breadth-first-search is changed so that the subtrees are added before the rest of search-list.

```
(breadth-first-search
    item
    (append
        (list
            (left-side current-tree)
            (right-side current-tree))
            (rest search-list)))
```

How would this affect the traversal through the tree?
7.20 Write a creator function that takes a node value, a left subtree, and a right subtree and returns a tree list of the form discussed in this section.
7.21 Write a Scheme expression that uses the creator function from the above problem to produce the tree below:

7.22 Write a function that takes a tree and prints out the nodes and leaves of the tree. Print out the root of the tree first, then the left side of the tree, and lastly the right side. Print the values on one line with single spaces between
them. Use the selector functions defined in this section in your solution.
7.23 Write a function that takes a tree and prints out only the leaves of the tree. Print the leaves on the left side of the tree first. The leaves should be printed on one line separated by spaces.
7.24 Write a function to determine the depth of a tree. The depth of a tree is the number of branches that must be descended before reaching the bottommost leaf of the tree. For example, the depth of the tree below is three.

Hints: The depth of a leaf is zero, and the depth of a tree is one plus the larger of the depths of the left and right subtrees of the tree. Use this method to determine the depth of the following trees: 13, ($\left.\begin{array}{lll}6 & 7 & 13\end{array}\right)$, and (6 ($\begin{array}{ll}1 & 2\end{array}$ 3) 13). Try to simplify your solution using the built-in function max. Recall that max returns the largest of its numeric arguments (e.g., ($\left.\max \begin{array}{lllll}3 & 4 & 7 & 2\end{array}\right)$ $\rightarrow 7$).
7.25 The function below takes a binary tree as an argument.

```
(define (who-knows tree)
    (cond ((null? tree) 0)
                ((symbol? tree) 0)
                ((number? tree) tree)
                (else (max
                                    (who-knows (left-side tree))
                                    (who-knows (right-side tree))))) )
```

What does the call below return?

```
(who-knows '(7 (4 3 a) (b 1 d)))
```

7.26 The function is-expression takes a binary tree, tree. is-expression should return \#t if all the leaves are numbers and all the nonleaf nodes are any of the symbols,,$+- *$, or $/$. If not, \#f should be returned. For example,

```
> (is-expression '(* (+ 1 2) (- 4 1)))
#t
> (is-expression '(* (+ 1 two) 14))
#f
```

This code was written with too much leap of faith and not enough thought. Fix the code so that it works.

```
(define (is-expression tree)
    (cond ((null? tree) #f)
                ((atom? tree) #t)
                (else (or
                            (eq? (first tree) '(+ - * /))
                            (number? (second tree))
                            (is-expression (third tree))))) )
```

7.27 The function path-finder takes a binary tree, tree, and a list, path. pathfinder follows the path through the tree specified in path-a list of the symbols left and right and returns the subtree in tree to which path takes it. If the path goes beyond the leaves of the tree, return the symbol error. For example,

```
>(path-finder '(3 (4 (5 1 2) 7) (6 9 8)) '(right))
(6 9 8)
>(path-finder '(3 (4 (5 1 2) 7) (6 9 8)) '(left left right))
2
> (path-finder '(3 (4 (5 1 2) 7) (6 9 8)) '(right left right))
error
```

Assume that path will not contain values other than the symbols left and right and that the function will not be called initially with an empty tree. Complete the function below.

```
(define (path-finder tree path)
    (cond ((null? __) _
        ((atom? _) __)
        ((equal? _-)
            (path-finder __))
        (else
            (path-finder __))) )
```


7.6 Sample Exercise with Trees and Sets

Trees as hierarchies Trees are often used to represent hierarchies of information. A tree can represent a family tree, with the nodes being parents, and the leaves, the current generation of children. Trees can represent the hierarchy of a company, with the president at the top, and the vice presidents, and so on, below.

Trees can be used to help decide to which restaurant to go. In deciding what restaurant you want to go to, you have some notion of conditions like what you want to eat, what you don't want to eat, how much you want to spend, how much time you want to take, what atmosphere you want, etc. Some of these criteria may be important and others may not.

The situation gets more complex when there are numerous people trying to agree on a restaurant. Imagine the following exchange:

CR: Anyone want to go get some spicy food?
Sandy: That sounds good by me, but I can't be gone too long.
Farzad: I don't like it too spicy, and I have to be back soon also.
Craig: How about Japanese food? I feel like splurging on raw fish today.
John: Yeah, we just got paid, let's blow some money, maybe go for margaritas too.
Patty: That doesn't sound quick to me.
Brett: Hey, my boss just left for the day, I'm up for a long lunch.
Paul: I have to finish something tonight, so margaritas are out for me.
Karineh: How about going to a new restaurant?
Dorothy: Are you guys still trying to decide? You need a restaurant expert.
Creating a program that can take such information and return the restaurant that is best suited to meet most of the requests would require a sophisticated, large program. However, we can make some simplifications and create a program that can help narrow the search of which restaurant to choose.

At first we can limit ourselves to the case of a single person deciding what to eat. For any particular type of food, she may be interested in eating it, or may not desire it, or may not care either way. In this program such information will be represented as two lists:
$\begin{array}{ll}\text { desired } & \text { Things that are desired } \\ \text { undesired } & \text { Things that are not desired }\end{array}$
Anything not in either of these lists is considered a don't care value.
The desired and undesired lists are sets that contain facts about what you want to eat and what you don't want to eat. They might look like the following:
desired-foods: (ethnic)
undesired-foods: (drive-in fast-food)
It may seem strange to have two lists-one for the desired foods, and one for the undesired foods. An alternative is using a single list, as in
desired-foods: (ethnic walk-in sit-down)
Anything not in this list would be considered a don't care value. With a single list, a mapping is needed to match items like walk-in and sit-down with the internal node values (the questions in the tree) drive-in and fast-food. This could be implemented using an association list.

```
(define opposites
    '((drive-in walk-in)
        (fast-food sit-down)
        (ethnic domestic)
            ))
```

With two lists an association list isn't needed because all the attributes in the lists correspond directly with the internal nodes of the restaurant tree. This will be the approach we use.

Desired and undesired foods

Alternate

 representationsRepresenting restaurants

Another data structure is needed to maintain the restaurants. These restaurants could be the leaves of a tree in which the internal nodes represent questions about what you want to eat. For each question node, the left branch of the tree contains restaurants that pertain if the question is satisfied. The right side of the tree contains restaurants that the person would want to go to if the question is not satisfied.

A restaurant tree may look like the following:
fast food?

All the restaurants on the left side of the root, fast food?, are fast food places, whereas the restaurants on the right side are slower, sit-down restaurants.

A list corresponding to the tree above is

```
(fast-food (drive-in in-and-out-burger (ribs flints tommys))
    (ethnic new-delhi-junction la-vals))
```

When deciding if a question is satisfied, the desired and undesired lists are used. For example, if the program is deciding upon fast-food or non fast-food restaurants, if fast-food exists in the desired list, then the program should continue with the questions on the left side of the tree. If fast-food is in the undesired list, then continue with the right side of the tree. If fast-food doesn't exist in any list, it is a don't care value, and both sides of the tree should be examined.

The program works by sequencing through the tree in the following manner:

> if you are at a leaf, you've reached a restaurant, return that restaurant, otherwise, you are at a decision junction,
> if the decision is met (the node occurs in the desired list), continue with the left side of the tree
> otherwise, if the decision is undesired (the node occurs in the undesired list), continue with the right side of the tree.
> otherwise, continue with both sides of the tree (don't care situation).

With the example tree above and the desired and undesired lists below,

desired-foods: (ethnic)

undesired-foods: (drive-in fast-food)
you begin at the root by checking if you want fast food. Since fast-food is in the undesired foods list, the program continues with the right side of the treeasking if you want ethnic foods. ethnic is in the desired list so we go to the left side of the tree. Here we find the leaf new-delhi-junction and return it.

Adhering to the principle of design for modifiability, we should use the selector functions we created earlier to access the nodes and subtrees of the tree. The function root returns the root of a tree. If it is given a subtree of the original tree,
it returns the root of that subtree, which is an inner node in the original tree. The function left-side returns the left subtree of a tree, and the function rightside returns the right subtree of a tree These functions perform the operations first, second, and third, respectively.

We can add another function to test if we are at a leaf in the tree:

```
; Return true if tree is a leaf (an atom).
(define (leaf? tree)
            (atom? tree))
```

We check both sides of the tree in don't care situations. This means that we may find more that one restaurant that satisfies the constraints. Thus, we should return a list of restaurants always. And when the restaurant tree is empty, we should return an empty list. In the case where restaurant-tree is an atom (a restaurant), the list of that restaurant is returned. The code for the restaurant advisor can be expressed in Scheme as follows:

```
; Return list of restaurants according to properties in desired
; and undesired lists.
(define (restaurant-advisor restaurant-tree desired undesired)
    (cond ((null? restaurant-tree) '())
            ((leaf? restaurant-tree) (list restaurant-tree))
            ((member (root restaurant-tree) desired)
                    (restaurant-advisor (left-side restaurant-tree)
                desired undesired))
            ((member (root restaurant-tree) undesired)
            (restaurant-advisor (right-side restaurant-tree)
                desired undesired))
            (else
            (append
                    (restaurant-advisor (left-side restaurant-tree)
                        desired undesired)
                    (restaurant-advisor (right-side restaurant-tree)
                        desired undesired)))) )
```

To handle information from multiple people, some means of combining the information is needed. In the case of two people, general desired and undesired lists are needed. These lists should reflect any desires or undesires that the two people have. If we look at the lists as sets, then taking the union of the desired lists will yield the set of all desires for those two people. The same can be done with the undesired lists to produce a general undesired list.

With more than one person, conflicts can arise. A conflict would involve having the same item in both the desired and undesired lists. We'll use intersection to check if the desired and undesired lists have any elements in common. If the intersection isn't (), the two lists have elements in common.

Many techniques can be used to handle conflicts. One way is to create a hierarchy of the people so that certain people's restaurant desires and undesires are given priority over other's desires and undesires.

A more democratic scheme is to give priority to either the desired lists or the undesired lists. If the desired lists have priority, then any conflicting elements in

Handling conflicts of interest
the undesired lists are ignored. As it is written, restaurant-advisor gives preference to items that occur in the desired list. This is because decision nodes are compared with the desired list first and the search continues down the left side of the tree if the node is in the desired list. To see this, look at the following trace. Suppose that the variable restaurants has been bound to the restaurant list

```
(fast-food (drive-in in-and-out-burger (ribs flints tommys))
```

 (ethnic new-delhi-junction la-vals))
 The trace produces the following:

```
(restaurant-advisor restaurants
    '(fast-food drive-in) '(fast-food drive-in))
        \downarrow
```

; the root of the tree fast-food is in desired
; so we continue with the left side of the tree
\downarrow
(restaurant-advisor '(drive-in in-and-out-burger (ribs flints tommys))
'(fast-food drive-in) '(fast-food drive-in))
\downarrow
; the root of the tree drive-in is in desired
; so we continue with the left side of the tree
\downarrow
(restaurant-advisor 'in-and-out-burger
'(fast-food drive-in) '(fast-food drive-in))
\downarrow
; the tree in-and-out-burger is a leaf
; so we return the list of it
\downarrow
(in-and-out-burger)

To give the undesired list priority, all the elements in the desired list that are also in the undesired list should be removed. This can be implemented using set-difference. The expression
(set-difference desired undesired)
returns the elements in the desired list that aren't in the undesired list.
Calling the function as

```
(restaurant-advisor restaurant-tree
    (set-difference desired undesired)
    undesired)
```

results in giving the undesired list priority over the desired list. Here is a sample trace using the same desired and undesired lists we used in the last trace.

```
(restaurant-advisor restaurants
    (set-difference '(fast-food drive-in) '(fast-food drive-in))
    '(fast-food drive-in))
                        \downarrow
; the set-difference returns '()
    \downarrow
(restaurant-advisor restaurants
    '() '(fast-food drive-in))
        \downarrow
; the root of the tree fast-food is in undesired
; so we continue with the right side of the tree
    \downarrow
(restaurant-advisor '(ethnic new-delhi-junction la-vals)
    '() '(fast-food drive-in))
; the root of the tree ethnic is not in desired or
; undesired so we continue with both sides of the tree
    \downarrow
(append
    (restaurant-advisor 'new-delhi-junction
        '() '(fast-food drive-in))
    (restaurant-advisor 'la-vals
            '() '(fast-food drive-in)))
                \downarrow
; the trees new-delhi-junction and la-vals are leaves
; so we return their list
                        \downarrow
(append
    '(new-delhi-junction)
    '(la-vals))
    (new-delhi-junction la-vals)
```


7.6.1 Exercises

7.28 Write a function that takes a list of many desired lists and produces one general desired list-the union of all the desired lists.
7.29 The following call to restaurant-advisor is an attempt to eliminate conflicts between the desired and undesired lists without giving priority to one of them.

```
(restaurant-advisor restaurant-tree
    (set-difference desired undesired)
    (set-difference undesired desired))
```

Will this solution work? Why or why not?
7.30 Rather than give preference to desired or undesired lists, conflicts can be resolved by a majority rule. If more people prefer a type of food or restaurant than do not, that type remains part of the desired list, but is removed from the undesired list. Write a function that takes a restaurant tree, desired and undesired lists, and calls restaurant-advisor with new desired and undesired lists that have all conflicts removed by majority rule. The original desired and undesired lists are not sets, but rather lists formed by appending various peoples' preferences together.

Hint: You only need to sequence through the desired list and maintain the elements that should be in that list. Then you can form a new undesired list given the new desired list.

7.7 Summary

- Association lists are lists of pairs (nonempty lists) where each pair maps one item with another.
- assoc is used to match the cars of association lists, and rassoc is used to match the cdrs. Both functions return the entire pair that was matched.
- Selector and creator functions are used to facilitate code modification and improve code readability.
- Sets are lists of unordered elements with no repeating elements.
- To test for set membership, use member.
- To find all the elements two sets have in common, use intersection.
- To find all the elements two sets have together, use union.
- To find the elements in one set that are not in another, use set-difference.
- To find if a set is empty, use null?.
- To add an element to a set, use adjoin.
- To find if one set is a subset of another, use subset?
- To find the number of elements of a set, use length.
- Trees are data structures that have a root value and left and right sides that are trees themselves.
- Depth-first and breadth-first search are two common means of traversing a tree data structure.
- Summary of functions introduced in this chapter:

function	arguments	return value
assoc	element assoc-list	the first pair in assoc-list whose car is element
rassoc	element assoc-list	the first pair in assoc-list whose cdr is element
member	element set	true if element occurs in set
null?	set	true if set is empty
length	set	the number of elements in set-the cardinality
union	set1 set2	set of elements in either set1 or set2
intersection	set1 set2	set of elements in both of set1 and set2
set-difference	set1 set2	set of elements in set1 that are not in set2
adjoin	element set	set with element added if its not already in set
subset?	set1 set2	true if all the elements of set1 are in set2?

FUNCTIONALS

8.1 Passing Functions as Arguments

In Scheme, functions can be passed as arguments to other functions, in the same fashion that data values like lists and atoms are passed. This enables different actions to be carried out depending on the function passed. Functions that take functions as arguments are called functionals. Another term for these functions is applicative operators.

8.1.1 Mapping functions

Applying a function to every element in a list is called a mapping, hence functions that do so are called mapping functions. To get a realworld context of mappings, think of how a map of a city or country is made. Each position in the threedimensional object (e.g., country) must be projected onto a two-dimensional piece of paper. Another way of saying this is that each position is mapped onto the paper. One of the most common mapping techniques used is the Mercator projection used in making flat world maps that artificially enlarge regions near the poles.
map is used to apply a function to every element in a list. The function passed to map should take one argument and should work when called with any element of the list. map returns a list of the results of those function applications.

A similar function is for-each, which is identical to map except that it does not return the results of the function applications. Thus, for-each is only used for the side-effects that are produced by the function mapped over the elements of the list. for-each returns an undefined value. One additional important difference: for-each guarantees that it applies the function to elements of the list in a left to right order. map makes no such guarantee.

[^22]map and for-each syntax

function	arguments	return value
map	function list	list of results from applying function to elements of list
for-each	function list	undefined, but applies function to elements of list

The square-roots function from Chapter 6 is an example of mapping a function over a list. The sqrt function is applied to all the elements in the list given to map, and the resulting list of square roots is returned. square-roots can be rewritten using map, as

```
; Return a list of the square roots of the numbers in a-list.
(define (square-roots-mapping a-list)
    (map sqrt a-list))
```

Below are two sample calls to square-roots-mapping:

```
> (square-roots-mapping '(49 64 100 36))
(7.0 8.0 10.0 6.0)
> (square-roots-mapping '())
()
```

The function deep-reverse from Chapter 6 can be written using map as follows:

```
; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-rev-map a-list)
    (if (atom? a-list)
            a-list
            (map deep-rev-map (reverse a-list))) )
```

The idea is to use map to invoke the function recursively on all the top-level elements of the reversed list. The check for an atom is very important; without it, the function will be called with atoms, and map will give an error if called with atoms instead of lists. Below are two traces of calls to deep-rev-map. Note that list is used in the expansion of map to simplify the trace:

```
(deep-rev-map '(a apple))
    \downarrow
(map deep-rev-map '(apple a))
    \downarrow
(list (deep-rev-map 'apple) (deep-rev-map 'a))
(list 'apple 'a))
(apple a)
```

Here is a more involved trace:

```
(deep-rev-map '((a apple) b bear))
(map deep-rev-map '(bear b (a apple)))
    \downarrow
(list (deep-rev-map 'bear) (deep-rev-map 'b) (deep-rev-map '(a apple)))
(list 'bear 'b (map deep-rev-map '(apple a)))
    \downarrow
(list 'bear 'b (list (deep-rev-map 'apple) (deep-rev-map 'a)))
(list 'bear 'b (list 'apple 'a))
    \downarrow
(list 'bear 'b '(apple a))
    \downarrow
(bear b (apple a))
```

A nice use of the function for-each is a function that prints out the elements of a list one element per line. This function is written in Chapter 9, section 9.1.1.

8.1.2 apply: A variation on the normal function application

There are times when you want to apply a function that takes a collection of apply arguments to a list of arguments. For example, in Chapter 6, we wrote the function sum-list that returns the sum of the numbers in a list. We could have written this function using apply, as follows:

```
; Return sum of numbers in number-list.
(define (sum-list-alt number-list)
    (apply + number-list) )
```

Here are some other examples using apply:

```
> (apply max '(3 1 -5 4 2))
4
> (apply append '((one list) (another) (a third list)))
(one list another a third list)
> (apply list '(1 2 3 4 5)) ; a useless function call
(1 2 3 4 5)
> (apply < '(1}1023\mp@code{4 5)
#t
> (apply * (map abs '(3 1 - -5 4 2)))
120
```

apply does not work when given special forms. This means that we cannot use apply to test if all the values in a list are true using the special form and. The
apply doesn't take special forms
following example, which attempts to test if all the elements in a list are numbers, illustrates this:

```
> (apply and (map number? (-3 4 one 2)))
Error: apply: Wrong type in argl: macro and
```


8.2 Writing Functions that Take Functions as Arguments

It is possible to create functions that take functions as arguments. Such functions can perform various operations on data depending on the functions with which they are called.

Sometimes you need to invoke the function passed as an argument directly. The function apply-to- 7 takes a function as an argument and returns the result of that function applied to the number 7.

```
; Apply }7\mathrm{ to func.
(define (apply-to-7 func)
    (func 7) )
```

Below are some example calls to this function:

```
> (apply-to-7 /)
1/7
> (apply-to-7 number?)
#t
```

To understand how apply-to-7 works, we must refine our simplified model of function evaluation from Chapter 3. Our new model must include one important distinction: when evaluating functions, both the function and its arguments are evaluated. Our previous model only indicated that the arguments were evaluated. The way the function was determined from its name was never addressed. Since we evaluate the item in the function position of a function call, we can do things like the following:

```
; Return a list of elt1 and elt2 using cons or list.
(define (listify elt1 elt2)
    ((if (list? elt2) cons list) elt1 elt2) )
> (listify 'a 'b)
(a b)
> (listify 'a '(b))
(a b)
```

The if expression returns the function cons or list depending on the type of elt2. This function is then applied to the evaluated arguments, elt1 and elt2.

The following function max-of-func takes a list and a function and returns the maximum result obtained when the function is applied to the elements of the list:

```
; Return the largest value of the mapping of function onto a-list.
(define (max-of-func function a-list)
    (apply max (map function a-list)) )
```

This function can be invoked as follows:

```
> (max-of-func abs '(3 -4 2))
4
> (max-of-func length '((73 64 2) ((1 2 3 4)) (a b) ((()))))
3
```


8.2.1 -if functions

The functions count and remove search for elements that match a given item within a list. It is helpful to have a means of searching for elements that satisfy a function. We can do this by creating functions we'll name count-if and remove-if. These functions are similar to their non-if ending counterparts with the exception that elements in the lists passed to these functions are tested against a predicate function, as opposed to being compared to some element. In addition, we'll create a function find-if that returns the first element in a list that satisfies the predicate function.

Below are some examples using these functions:

```
> (count-if even? '(3 5 6 4 7))
2
>(remove-if even? '(3 5 6 4 7))
(3 5 7)
> (find-if even? '(3 5 6 4 7))
6
```

The function count-if can be implemented using map. map applies the function to all the elements of the list and returns the results in a list. The number of true values in that return list is what count-if returns. To get a better picture of this, look at what map returns given the arguments used above to count-if.

```
> (map even? '(3 5 6 4 7))
(#f #f #t #t #f)
```

The number of \#ts is what count-if should return. If we remove the \#fs, we get a list of \#ts. Here is the code to count-if:

```
; Return the number of elements in a-list that satisfy func.
(define (count-if func a-list)
    (length (remove #f (map func a-list))) )
```

map also can be used to write find-if. The list element that is in the same position as the first true value from map is what find-if returns. Expressing this in Scheme, we get

```
; Return the first element in a-list that satisfies func, else #f.
(define (find-if func a-list)
    (list-ref a-list
        (position #t (map func a-list))) )
```

remove-if can be implemented using a recursive filter similar to the function positive-filter from Chapter 6.

```
    ; Return a-list without the elements that satisfy func.
```

 (define (remove-if func a-list)
 (cond ((null? a-list)
 ' ())
 ((func (first a-list))
 (cons (first a-list)
 (remove-if func (rest a-list))))
 (else
 (remove-if func (rest a-list)))))
 Let's test these functions. Assume the following function has been defined:

```
; Return true if a-list contain a 3 on the top level.
(define (has-3 a-list)
            (member 3 a-list))
> (find-if symbol? '((a list) 13 a-symbol five))
a-symbol
    > (count-if symbol? '((a list) 13 a-symbol five))
2
> (remove-if symbol? '((a list) 13 a-symbol five))
(a-symbol five)
> (find-if has-3 '((1 one) (2 two) (3 three)))
Error: list-ref: Wrong type in arg2 #f
> (count-if has-3 '((1 one) (2 two) (3 three)))
1
> (remove-if has-3 '((1 one) (2 two) (3 three)))
((3 three))
```

Well, at least count-if works. The problem with remove-if is that it is keeping the items it should remove and vice versa. To fix this, reverse the last two actions so that we do not include (remove) items that satisfy the function and keep those that do not satisfy the function.
find-if works with symbol?, but not with has-3. The error message indicates that list-ref had \#f as its second argument. This second argument is the result of a call to position that looks for the first occurrence of \#t in the result from map. Let's see what map returns.

```
> (map has-3 '((1 one) (2 two) (3 three)))
(#f #f (3 three))
```

There is no \#t in the result, but there is a true (non-\#f) value. Unfortunately, the functions we know up to this point won't help us to find the first true element in a list. We could write a recursive function to do so, but at that point we might as well write a recursive function to implement all of find-if. Let's do that.

The idea is to apply the function passed as an argument to successive elements in the list until a true value is returned. Then we return the list element that satisfied the function. The definitional pseudo code for this follows:
if the list is empty, return \#f
otherwise, if the first element satisfies the function, return it
otherwise, recursively check the rest of the list

```
; Return the first element in a-list that satisfies func, else #f. Fixed find-if
(define (find-if func a-list)
    (cond ((null? a-list) #f)
        ((func (first a-list)) (first a-list))
        (else (find-if func (rest a-list)))) )
```

Testing this on the two examples above, we see that our new solution works:

```
> (find-if symbol? '((a list) 13 a-symbol five))
a-symbol
> (find-if has-3 '((1 one) (2 two) (3 three)))
(3 three)
```

The new version of remove-if and sample calls follow:

```
; Return a-list without the elements that satisfy func.
(define (remove-if func list)
            (cond ((null? list)
                                '())
                                ((func (first list))
                        (remove-if func (rest list)))
                (else
                        (cons (first list)
                                    (remove-if func (rest list))))) )
> (remove-if symbol? '((a list) 13 a-symbol five))
((a list) 13)
> (remove-if has-3 '((1 one) (2 two) (3 three)))
((1 one) (2 two))

\subsection*{8.2.2 Exercises}
8.1 Write a function that takes a list of numbers and returns the average of the numbers.
8.2 Write a function that takes a list of numbers and returns the smallest number in the list.
8.3 Write a function associative? that takes a function (taking two arguments) and three additional arguments that could be applied to that function two at a time. associative? should return \#t if the function passed to it is associative for the three other arguments. The function is associative if
```

 (func (func arg1 arg2) arg3)
    ```
is equal to
```

(func arg1 (func arg2 arg3))

```
8.4 Write a function commutative? that takes a function (taking two arguments) and two additional arguments that could be applied to that function. commutative? should return \#t if the function passed to it is commutative for the two other arguments. The function is commutative if the order of the arguments does not effect the return value. In other words,
```

(func arg1 arg2) is equal to (func arg2 arg1)

```
8.5 Write a conditional map map-if that takes a function and a list just as map does, but in addition takes a predicate function. The predicate is applied to each element of the list, and only if a non-\#f value is returned should the function be applied to the element and that result returned in the answer list. For example,
```

(map-if - '(0 u 8 1 2) number?)

```
returns
\[
\left(\begin{array}{llll}
0 & -8 & -1 & -2
\end{array}\right)
\]

Notice that the resultant list does not have to be as long as the original list with which map-if is called.
8.6 Write a function deep-abs that takes a nested list and applies the function abs to every atom in the nested list and returns a similarly nested list of results. For example,
\[
\left(\text { deep-abs }{ }^{\prime}((3-4(-5))(6((-78))))\right)
\]
returns
\[
((34(5))(6((78))))
\]
8.7 Does the following version of count-if work?
```

(define (count-if func a-list)
(count \#t (map func a-list)))

```

\subsection*{8.2.3 -if-not functions}

To find the first nonpositive number in a list of numbers, we might try to use find-if with negative?, as in the following example:
```

>(find-if negative? '(2 3 3 0 - 3 4 4 -5))
-3

```

It doesn't return zero because zero is not negative. However, zero is nonpositive and is the answer we wanted. To fix this we could write a function that tests for
negative numbers or zero, and pass that to find-if. However, there is a more general solution.

We can create functions that end in -if-not that are identical to their counterparts ending in -if except that they perform their action on the elements that do not satisfy test. To find the first nonpositive number, we can use
```

> (find-if-not positive? '($$
\begin{array}{lllllll}{2}&{3}&{0}&{-3}&{4}&{-5}\end{array}
$$)
0

```

The function positive-filter from Chapter 6 can be written using remove-if-not. positive-filter takes a list and returns a list of all the positive numbers in the list. A better name for remove-if-not would be keep-if-we keep the elements of the list that satisfy the function.
```

; Return a list of the positive numbers in a-list.
(define (positive-filter-alt a-list)
(keep-if positive? a-list))

```

An example call to positive-filter-alt follows:
```

> (positive-filter-alt '(-5 15 6 -20 0 -1))
(15 6)

```

The table below shows the results of applying the -if and -if-not functions to the list ( 36 three (124)) and the function atom?, as in
```

> (count-if atom? '(36 three (124)))
2

```
\begin{tabular}{ll} 
function & return value \\
\hline count-if & 2 \\
find-if & 36 \\
remove-if & \(((124))\) \\
count-if-not & 1 \\
find-if-not & \((124)\) \\
keep-if & \((36\) three \()\)
\end{tabular}

Implementing count-if-not and find-if-not will be left as exercises. The first version of remove-if we wrote did what keep-if should.

Here is a summary of the if and if-not functions we have created. All the functions take a function test and a list list. test should take a single argument whose type matches that of the elements in list.
\begin{tabular}{llll} 
function & arguments & return value & Summary of -if and \\
\hline find-if & test list & first element in list that satisfies test & -if-not functions \\
count-if & test list & number of elements in list that satisfy test & \\
remove-if & test list & list without elements that satisfy test & \\
find-if-not & test list & first element in list that does not satisfy test & \\
count-if-not & test list & number of elements in list that do not satisfy test & \\
keep-if & test list & list of elements that satisfy test &
\end{tabular}

\section*{Mistakes to Avoid}

Remember that find-if returns the first element that satisfies the function, not the result of that function call. Similarly, keep-if returns a list of elements that satisfy the function, not a list of the return values.

\subsection*{8.2.4 Exercises}
8.8 Write expressions to compute the following results using the list values that has been bound to some list. Each question refers to the top-level elements in values:
- The numbers in values
- The non-numbers in values
- The number of non-numbers in values
- The first list in values
- The number of elements in the first list in values
- The list values without any symbols
8.9 Write the function find-if-not.
8.10 Write the function count-if-not.
8.11 Anna proposes the following idea to remove duplicate elements from a list to make it a legal set. She suggests combining the list of all the unique elements with the list of all the duplicate elements. The code should work like the example below:
> (remove-duplicates '(3 \(\left.4 \begin{array}{llll}3 & 3 & 2 & 4\end{array}\right)\)
\(\left(\begin{array}{lll}3 & 4 & 2\end{array}\right)\)
Here is Anna's code:
```

(define (remove-duplicates a-list)
(union
(remove-if (lambda (elt) (> (count elt a-list) 1)) a-list)
(keep-if (lambda (elt) (> (count elt a-list) 1)) a-list)))

```

Does her solution work. Why or why not?
8.12 Mike looks at Anna's code (from the previous exercise) and says that her idea is right, but her implementation is wrong. If she reversed the two arguments to union it would work. He bases this on the way union is written. Is Mike right? Why or why not?

\subsection*{8.2.5 every and any}

There are times when you want to test if every element of a list satisfies some function. Or you may want to test if some element satisfies a predicate function. Examples of this would be the following: are all the elements of a list even numbers, is a list a valid association list (i.e., it is a list of pairs), and is there a negative number in a list? We can do this by creating two new functions: every and any.

These functions are similar to map in that they apply a function to elements of a list. However, the return value is a true/false value instead of a list of results. One additional difference is that we don't always need to check all the values in the list. For example, if we are testing if all the elements in the list are numbers, and we encounter a non-number, we don't need to check further elements. Similarly, if we are checking if the list contains at least one number, we can stop examining elements once a number is found. In this sense these two functions behave like and and or.

Here are the complete definitions of the two functions. every returns a true value if applying the function to every successive element in the list returns a true value. In this case every returns the final true value encountered. If any application results in \(\# \mathrm{f}\), no further elements are tested and \(\# \mathrm{f}\) is returned. any applies the function to successive elements in the list. If any application returns a true value, no further elements are tested, and that true value is returned. If all applications result in \(\# \mathrm{f}, \# \mathrm{f}\) is returned.
\begin{tabular}{lll} 
function & arguments & return value \\
every & test list & final true return value if all elements in list satisfy test,
\end{tabular}\(\quad\) every and any

The following examples illustrate the use of these functions. Assume the function short-list? has been defined as follows:
```

; Return true if item is a short list (one or two elements).
(define (short-list? item)
(and
(list? item)
(member (length item) '(1 2))))
> (every short-list? '((one 1) (two 2) ()))
\#f
> (every short-list? '((one 1) (two 2) (3)))
(1 2)
> (every even? '(4 6 2))
\#t
> (any even? '(3 6 2))
\#t

```
```

> (any even? '(3 9 27))
\#f
> (any short-list? '((one 1) (two 2) (3)))
(2)

```

Let's write these two functions. We cannot use map because it will always evaluate all the elements in the list. We'll create recursive functions. To return the final true value, every should stop when it encounters a one-element list. The definitional pseudo code for every is
if the list is empty, return ??
if there is one element in the list, return the function applied to that element otherwise, return the and of the first element applied to the function and the result of a recursive call on the rest of the list.
What shall we return when we have an empty list? You might be inclined to think that \#f should be returned. However, we should be consistent with how and works; it returns \#t if called with no arguments.

The code for every follows:
```

; Return final true return value if all applications of func
; to the elements of a-list are true, otherwise return \#f.
(define (every func a-list)
(cond ((null? a-list) \#t)
((null? (rest a-list)) (func (first a-list)))
(else (and (func (first a-list))
(every func (rest a-list))))))

```

The code for any is very similar. Instead of checking for an item that does not satisfy the function as an exit case, we need a check for satisfying the function. In this case the true value is returned. Reaching the empty list means that none of the elements satisfied the function, so we should return \#f. We do not need to make a check for a one-element list.
```

; Return first true application of func to the elements of
; a-list, otherwise return \#f if no applications are true.
(define (any func a-list)
(if (null? a-list)
\#f
(or (func (first a-list))
(any func (rest a-list)))))

```

The function all-numbers? from Chapter 6 can be written using every. allnumbers? takes a list and returns \#t if all the elements in the list are numbers, and \#f otherwise.
```

; Return true if all elements of a-list are numbers.
(define (all-numbers-alt? a-list)
(every number? a-list))

```

Below are two example function calls using this function:
```

> (all-numbers-alt? '(3 4 2))
\#t
> (all-numbers-alt? '(3 four 2))
\#f

```

\subsection*{8.2.6 Exercises}
8.13 Given a list list1, write expressions to return the following values. You may need to define additional functions.
- true if there is at least one top-level symbol in list1
- true if each element of list1 is a two-element list
- true if list1 has no sublists
8.14 Explain the differences between any and find-if.
8.15 Which functional (e.g., map, find-if, every) would you use to find the following values? Note: if none of the functions appear to do the job, indicate how you would determine the value using other techniques.
- the first nested list in a list
- the second atom in a list
- the last number in a list
- the numbers greater than ten in a list of atoms
- a list without any sublists
- the average of a list of numbers
- the first three elements in a list
- the number of negative numbers in a list
- if a list has at least one number
- if a list has at least five numbers

\subsection*{8.2.7 Optional section: Using multiple lists with map, for-each, every, and any}
map can be used to apply functions taking multiple arguments to multiple lists. In this case, map takes more than one list. The function used must take the same number of arguments as there are lists passed to map. The lists must all be the same length.

The following examples show how map can be called with multiple lists:
```

> (map + '(3 6 2) '(4 20 -1))
(7 26 1)
> (map > '($$
\begin{array}{lll}{3}&{6}&{2}\end{array}
$$)'($$
\begin{array}{lll}{4}&{20}&{-1}\end{array}
$$)
(\#f \#f \#t)

```

Rewriting every and any to handle multiple lists
```

>(map list '(3 6 2) '(4 20 -1) '(a b c))
((3 4 a) (6 20 b) (2 -1 c))

```

Note: The last example transposed the elements in the lists. If the lists are viewed as rows of a matrix, then the function call transposes rows into a list of columns.
every and any can be written to take more than one list just as map does. The function given to every or any must take as many arguments as there are lists given. The function is applied to successive elements in each list:
```

> (every < '($$
\begin{array}{lll}{1}&{3}&{5}\end{array}
$$)'($$
\begin{array}{lll}{2}&{4}&{6}\end{array}
$$)
\#t
> (every < '(1 3 5 5) '(($$
\begin{array}{lll}{2}&{4}&{5}\end{array}
$$)
\#f

```
every and any stop evaluating at the end of the shortest list if called with functions taking more than one argument, and given arguments of uneven lengths. The following example shows this:
```

> (every > '($$
\begin{array}{llll}{3}&{9}&{4}&{1}\end{array}
$$)'($$
\begin{array}{lll}{2}&{7}&{2}\end{array}
$$)
\#t

```

To write the new versions of these functions, we need to use a variation of define that lets us create a function taking a variable number of arguments. This is covered in depth in Chapter 11. In this case we specify one regular parameter (the function), and then use a single parameter name for the remaining lists. That parameter, lists, will be a list of the remaining arguments (which should all be lists themselves). To extract the first element from each list, we can use map with first. Applying the function to the elements is trickier, as the elements are in a list and are not separate arguments. We can use apply to get around this problem. Making a recursive call will involve using apply, and we need to call the function recursively with the rests of all the lists. Before we apply every to the list of rests, we must add the function to this list because apply needs a list of all the arguments to every. The new code follows:
```

; every and any each take a variable number of lists as arguments
; and apply func to those lists. apply is used to convert a list of
; arguments into separate arguments.
; Return final true return value if all applications of func to
; successive elements in lists are true, otherwise return \#f.
(define (every func . lists)
(cond ((member \#t (map null? lists)) \#t)
((member \#t (map (lambda (lst) (null? (cdr lst))) lists))
(apply func (map car lists)))
(else
(and (apply func (map car lists))
(apply every (cons func (map cdr lists)))))))

```
```

; Return first true value from applying func to successive
; elements in lists, or \#f if no elements satisfy func.
(define (any func . lists)
(if (member \#t (map null? lists))
\#f
(or (apply func (map first lists))
(apply any (cons func (map rest lists))))))

```

The built-in function equal? can be written using every. This function newequal? must first test the types with which it is called. If the arguments are atoms, it checks if they are eqv?. If new-equal? is called with two lists, it calls another function that compares the lists. This function uses every with newequal? to compare the elements of the two lists. It must check the length of the two lists beforehand because every will stop when it hits the end of the shortest list.

Here are the functions that perform the above actions:
```

; Return true if elt1 and elt2 (lists or atoms) are equal.
(define (new-equal? elt1 elt2)
(cond ((and (atom? elt1) (atom? elt2)) (eqv? elt1 elt2))
((or (atom? elt1) (atom? elt2)) \#f)
(else (same elt1 elt2))))
; Return true if list1 and list2 are equal.
(define (same list1 list2)
(if (= (length list1) (length list2))
(every new-equal? list1 list2)
\#f))

```

We can trace the calls to these functions. Calls to every have been represented using and.
```

(new-equal? '(a (cat)) '(a (hat)))
\downarrow
(same '(a (cat)) '(a (hat)))
\downarrow
(and (new-equal? 'a 'a) (new-equal? '(cat) '(hat)))
\downarrow \downarrow
(and (eqv? 'a 'a) (same '(cat) '(hat)))
(and \#t (and (new-equal? 'cat 'hat)))
(and \#t (and (eqv? 'cat 'hat)))
(and \#t (and \#f))
and
\downarrow
\#f

```

\subsection*{8.2.8 Exercises}
8.16 Does the following version of new-equal? work when called with two lists? Why or why not?
```

(define (new-equal? elt1 elt2)
(if (atom? elt1)
(eqv? elt1 elt2)
(same elt1 elt2)))
(define (same list1 list2)
(if (= (length list1) (length list2))
(every new-equal? list1 list2)
\#f))

```
8.17 Alexandra proposes that the functions new-equal? and same can be switched and new-equal? will still work when called. Does her switch work like the old version? Why or why not?
```

(define (same elt1 elt2)
(cond ((and (atom? elt1) (atom? elt2)) (eqv? elt1 elt2))
((or (atom? elt1) (atom? elt2)) \#f)
(else (new-equal? elt1 elt2))))
(define (new-equal? list1 list2)
(if (= (length list1) (length list2))
(every same list1 list2)
\#f))

```
8.18 Here is yet another version of new-equal, but this one does not use same. Does it work? Why or why not?
```

(define (new-equal? elt1 elt2)
(cond ((and (atom? elt1) (atom? elt2)) (eqv? elt1 elt2))
((or (atom? elt1) (atom? elt2)) \#f)
(else
(and (= (length elt1) (length elt2))
(every new-equal? elt1 elt2)))))

```
8.19 Using functionals, write a function that returns true if two lists look the same in form. The atoms may be different, but the parentheses should be the same. The following two lists look the same:
```

((a b (c) d) e)
((1 2 (3) 4) 5)

```
8.20 Using functionals, write a function that takes two lists of atoms and produces an association list pairing subsequent atoms in each list. Given the lists (1 \(\left.\begin{array}{lll}1 & 2 & 3\end{array}\right)\) and (one two three), your function should return
((1 one) (2 two) (3 three))
8.21 To determine if any of the lists passed as arguments to every are empty, we test if any application of null? returns \#t using member and map. An alternate idea is to use any with null? as follows:
```

(define (every func . lists)
(if (any null? lists)
\#t
(and (apply func (map first lists))
(apply every (cons func (map rest lists))))))

```

Does this new version of every work? If any were changed in the same manner as every, would it work?

\subsection*{8.3 Lambda Expressions}

Lambda expressions provide another means of creating functions other than using define. A lambda expression is a list whose first element is the symbol lambda; the second element is a parameter list; and the remaining elements are the body of the function just as in a define. Unlike define, lambda does not take a name for the function being created; therefore, lambda can be looked at as a means of creating nameless functions.

Lambda expressions can be used in place of function names in functions calls. Thus, in one step we can define and use a function. Look at the following example:
```

> ((lambda (num) (< num 3)) 2)
\#t

```

This is functionally the same as doing the following two steps:
```

> (define (small-num num)
(< num 3))
??
> (small-num 2)
\#t

```

The example above has one important difference from the lambda exampleit binds the variable small-num to a function. We can use that function later referring to it by name.

The def ine above is equivalent to doing the following:
```

(define small-num (lambda (num) (< num 3)))

```

The following example shows this equivalence:
```

```
> (define small-num (lambda (num) (< num 3)))
```

```
> (define small-num (lambda (num) (< num 3)))
??
??
>(sma11-num 2)
>(sma11-num 2)
#t
```

```
#t
```

```

We define functions because we can refer to them by name instead of writing an entire lambda expression each time we want to invoke the function. Also, to write recursive functions we need a name to refer to the function.

Creating nameless functions on the fly

Alternate way of defining functions

\section*{Lambda expressions} with functionals

Lambda expressions are useful as arguments to functionals. This way custom functions do not have to be defined beforehand with define, but can be created as one-shot entities.

Below is an example using a lambda expression that returns elements in a list that are greater than or equal to 10 :
```

> (keep-if
(lambda (num)
(>= num 10))
'(4 18 7 10))
(18 10)

```

Another common use for lambda expressions is to create functions that combine other functions using and or or. For example, if you wanted to return the positive numbers in a list that might have non-numbers within it, you would get an error if you wrote
```

(keep-if positive? a-list)

```

This is because positive? results in an error if applied to a non-number. One solution is to use a lambda expression, as in
```

(keep-if
(lambda (element)
(and (number? element)
(positive? element)))
a-list)

```

The set functions union and intersection introduced in Chapter 7 can be written using functionals and lambda expressions. The union of set1 and set2 is set2 appended with the elements in set1 that are not in set2.
```

; Return the set of items in either set1 or set2.
(define (union-alt set1 set2)
(append
set2
(remove-if
(lambda (element)
(member element set2))
set1)))

```

The remove-if sequences through each element of set1 using a lambda expression. The lambda uses member to determine if the element in set1 being examined is in set 2 . If so, it is not included in the final list, which is appended to set 2 .

\section*{Mistakes to Avoid}

A lambda expression is needed in the above example. The call to remove-if could not have been written as
(remove-if member set1)
This is because member needs two arguments. This call would attempt to invoke member with one argument-successive elements of set.

Lambda expressions are used to call functionals like remove-if (that take one argument functions) with multiargument functions. The lambda expression creates a function taking one argument and calls the multiargument function with fixed values for the other arguments. In the above case, to use remove-if with member, the lambda expression creates a function that compares successive elements of set 1 with set 2 , the fixed argument to member.

We could not have written a separate function to compute the member, as in
```

(define (in-list element)
(member element set2))

```

This is because the scope of the parameter, set2, is the function unionalt, thus set 2 cannot be referenced outside of that function.

The intersection of set1 and set 2 is the elements in set 1 that are in set2. This is similar to what we did above with union-alt. However, in this case we want to keep the elements that satisfy the call to member, so we use keep-if.
```

```
; Return the set of items in both set1 and set2.
```

```
; Return the set of items in both set1 and set2.
(define (intersection-alt set1 set2)
(define (intersection-alt set1 set2)
    (keep-if
    (keep-if
        (lambda (element)
        (lambda (element)
            (member element set2) )
            (member element set2) )
        set1) )
```

```
        set1) )
```

```

The function assoc can be implemented using find-if. The test to apply to find-if is one that checks if the car of the current pair being examined is equal
to the element for which we are searching. find-if returns the first pair whose find-if is one that checks if the car of the current pair being examined is equal
to the element for which we are searching. find-if returns the first pair whose car is equal? to the element.

\footnotetext{
1. Some versions of Scheme allow functions to be defined within other functions. In that case we
}
```

; Return the first sublist in assoc-list whose car matches element.

```
; Return the first sublist in assoc-list whose car matches element.
(define (alt-assoc element assoc-list)
(define (alt-assoc element assoc-list)
    (find-if
    (find-if
        (lambda (pair)
        (lambda (pair)
            (equal? element (car pair)) )
            (equal? element (car pair)) )
        assoc-list) )
```

 assoc-list))
    ```

Using lambda expressions to get around scoping constraints

\section*{Mistakes to Avoid}

It's easy to forget one or more of the following parts of a lambda expression:
- The parameter list
- The right parenthesis that closes the lambda expression

\section*{Mistakes to Avoid}

When using lambda expressions with applicative operators, it is easy to forget to include the list through which to sequence. Always double check that you have passed in a list and that the elements of the list can be applied to the lambda expression.

\subsection*{8.3.1 Exercises}
8.22 Using functionals, write your own version of set-difference.
8.23 Using functionals, write your own version of subset?.
8.24 Using functionals, write your own version of rassoc.
8.25 Using functionals, write a function substitute that takes a list and two atoms old and new. The function should return a new list with all top-level occurrences of old replaced with new. For example,
(substitute '(me but (not me)) 'me 'you)
should produce the list
(you but (not me))
8.26 Write a function that takes a list and returns that list with all the odd numbers replaced with the even numbers one higher. Hint: use map. Given the list
(1 out of 3 likes \(U 2\) and \(U B 40\) )
your function should return
(2 out of 4 likes U 2 and \(U\) B 40)
8.27 Write a function apply-to-atoms that takes func, a function taking one argument, and a list a-list. apply-to-atoms should apply func to all the atoms in a-list. All the sublists should be left intact. apply-to-atoms returns a new list of these results. For example,
```

> (apply-to-atoms list '(2 (3) four (and (five))))
((2) (3) (four) (and (five)))

```
8.28 Write a function deep-map that takes a function and a nested list and applies the function to every atom in the nested list and returns a similarly nested list of results. For example,
```

(deep-map positive? '(3 (-14 (2)) 0 (((-7)))))

```
returns
```

(\#t (\#f (\#t)) \#f (((\#f))))

```

\subsection*{8.4 Combining Results with accumulate}

We will create a function accumulate to apply a binary function (one taking two arguments) to a list of arguments. The binary function is first applied to the first two elements of the list. Then the function is applied to this result and the third element of the list, then to this new result and the next element, and so on. The process continues until all elements in the list have been processed. In short, the function is applied to all the elements of the list in a left to right order.

If accumulate is called with an empty list, the return value is the result of calling the function with no arguments. If accumulate is called with a one-element list, the return value is the first element of that list.

The general form of accumulate is

\section*{(accumulate function list)}

The function sum-list from Chapter 6, which takes a list of numbers and returns their sum, can be written using accumulate as follows:
```

; Return sum of numbers in number-list.
(define (add-list number-list)
(accumulate + number-list))

```

Below is a sample call to add-list:
```

>(add-list '(8 2 -1 0 3))
12

```

In this example and many other cases accumulate and apply are interchangeable. When used with functions like + , *, max, min, and append, accumulate yields the same results as apply, as the following example shows:
```

> (accumulate append '((one list) (another list)
(yet (another list))))
(one list another list yet (another list))
> (apply append '((one list) (another list)
(yet (another list))))
(one list another list yet (another list))

```

The order that accumulate sequences through the arguments is important when using nonassociative functions such as -, as in
```

> (accumulate - '(1 1 2 3))
-4

```

Differences between accumulate and apply

The actions performed are
\[
\left(-\left(\begin{array}{lll}
- & 1 & 2
\end{array}\right)\right.
\]

\section*{Mistakes to Avoid}
accumulate must be called with a function that takes two arguments. That function should yield a result that can be applied to the function itself. For example,
```

(accumulate > '(3 5 -6))

```
would not work to determine if all the elements of the list were in increasing order because > returns \#t or \#f, which cannot be applied to >. In other words, (> (> 3 5) -6) produces an error.

There are cases where accumulate does more than apply. Suppose you want to sum the absolute values of a list of numbers. We can use the function sum-abs from Chapter 3 that returns the sum of the absolute values of two numbers:
```

; Return the sum of the absolute values of num1 and num2.
(define (sum-abs num1 num2)
(+ (abs num1) (abs num2)))

```

To sum the absolute values of a list of numbers, we pass this function and the list of numbers to accumulate:
```

> (accumulate sum-abs '(-2 3 -4 -1))
10

```

Alternatively, we could have done this using map and accumulate or apply:
```

> (accumulate + (map abs '(-2 3 -4 -1)))
10
> (apply + (map abs '(-2 3-4 -1)))
10

```

Here is a more practical application of accumulate. Given many-lists, a list of sublists, return the longest sublist:
```

(define many-lists '((1)

```

We can't use map with apply as follows:
```

> (apply max (map length many-lists))
5

```

This returns the length of the longest sublist. Instead we can write a function that takes two sublists and returns the longest one and then apply this function and many-lists to accumulate.
```

; Return the longest of list1 and list2.
(define (biggest list1 list2)
(if (> (length list1) (length list2))
list1
list2))
> (accumulate biggest many-lists)
(1)

```

How do we implement accumulate? Let's model the steps that accumulate
Writing accumulate takes when processing a list. The following call to accumulate
```

(accumulate + '((1 2 3 4))

```
is equivalent to the following expression:
```

(+(+(+1 2) 3) 4)

```

One possibility is to think of the recursive case as follows:
return the result of applying the function to
the recursive call of the list without the last element
and
the last element.
Getting the last element and the list without the last element is not as easy or fast to do as getting the rest of the list and the first element of the list. Can we view the recursion in a different fashion?

If we start with the innermost action, (+12), and then continue outward, we will be traversing the elements of the list in order. At each step we are applying the function to the result of the last computation and the current first element of the list. This value becomes the last computation value to use in the next iteration. We need an extra parameter to hold this last computation. When we reach the end of the list, that parameter should hold the final answer. This approach is tail-recursive. The code looks like
```

; Applies func to answer and first element of a-list, then to that
; result and next element of a-list and so on until a-list is empty.
; Returns final answer.
(define (accum-tail func a-list answer)
(if (null? a-list)
answer
(accum-tail func (rest a-list)
(func answer (first a-list)))))

```

What should be the initial value of answer? If the function is addition, 0 makes sense, but with multiplication it should be 1, and for append it should be ' (). A better approach is to pick a valid value for any function. The first element of the list will work. Then we recurse on the rest of the list. We need to verify the list is not empty first. Otherwise, we return the result of calling the function with no arguments. The helper function to do this follows:

Using accumulate properly
```

; Applies func to first two elements of a-list, then to that result
; and next element of a-list and so on until a-list is empty.
; Returns final answer.
(define (accumulate func a-list)
(if (null? a-list)
(func)
(accum-tail func (rest a-list) (first a-list))))

```

\section*{Mistakes to Avoid}

It is important to think about how the result of a computation will be combined by accumulate with other elements of the list. For example, to sum the squares of a list of numbers you might use a function sumsquares that returns the sum of the squares of two numbers.
```

; Returns the sum of the squares of num1 and num2.
(define (sum-squares num1 num2)
(+ (* num1 num1) (* num2 num2)))

```

And then pass this function to accumulate as follows:
```

> (accumulate sum-squares '(-2 3 -4 -1))
34226

```

The result is wrong (it should be 30). The problem is that we take the sum of the first two squares and then square that result and add it to the square of the third number and so on.

The first argument to sum-squares should be the total collected so far. Here is a new function that does that:
```

; Returns the sum of total and num squared.
(define (add-num-squared total num)
(+ total (* num num)))

```

Calling this new function with accumulate yields the following:
```

> (accumulate add-num-squared '(-2 3 -4 -1))
24

```

Another problem. We treated the first number as a total, meaning we added -2 to the sum of the squares of \(3,-4\), and -1 . The first value in the list should be a sum. A quick fix is to add zero to the start of the number list:
```

> (accumulate add-num-squared '(0 -2 3 3-4 -1))
30

```

It's probably better to use apply and map as follows:
```

> (apply +
(map (lambda (num) (* num num)) '(-2 3 3 -4 -1)))
3 0

```

\subsection*{8.4.1 Exercises}
8.29 Our first attempt to implement find-if failed when we couldn't find the first true element in a list. or will return the first true argument passed to it. This is almost what we want, except we have a list of values, not a collection of separate arguments. Can accumulate help us in this endeavor, as shown below?
```

(define (find-if func a-list)
(list-ref
a-list
(position
(accumulate
or
(map func a-list))
(map func a-list))))

```
8.30 Write a function union-of-many that takes a list of sets and returns the union of all of those sets.
8.31 Write a function combine-assoc-lists that takes a list of association lists and returns one association list containing all the pairs of all those association lists.
8.32 Write a function that takes a list with numbers, symbols, and lists and returns the average of the top-level numbers in the list. For example, given the list (3 (100) 5 ten), your function should return 4.
8.33 Write a function that takes a list of lists of numbers and returns the list with the largest number in it. Given the list
( \(\left(\begin{array}{lll}16 & 43 & 7\end{array}\right)\left(\begin{array}{lll}25 & 98\end{array}\right)\left(\begin{array}{lll}57 & 2 & 89\end{array}\right)\) ) your function should return the list (2598).
8.34 Write a function smallest that takes a function and a list and returns the number in the list that has the smallest value when the function is applied to it. For example,
```

(smallest abs '((-3 4 1 -2))

```
returns 1 .
8.35 The following function is supposed to flatten a list-remove all the inner parentheses. For example, (1 (2) (3) 4) 5) flattened is (1-12lll \(\left.\begin{array}{llll}1 & 2 & 4\end{array}\right)\). Does it work?
```

(define (flat a-list)
(if (atom? a-list)
a-list
(map flat (accumulate append a-list))))

```
8.36 The following function is supposed to flatten a list-remove all the inner parentheses. For example, (1 (2 (3) 4) 5) flattened is (1 \(\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\). Does it work?
```

(define (flatten a-list)
(if (atom? a-list)
(list a-list)
(accumulate append (map flatten a-list))))

```
8.37 Given a database of musical instruments and their prices, as follows,
```

((guitar 600)
(piano 2000)
(harmonica 10)
(trumpet 250)
(drums 700)
)

```
write expressions to return the following:
- The average cost of the instruments
- The price of the most expensive instrument
- The name of the least expensive instrument
- The instruments (and their prices) that cost less than \$100
- The number of instruments that cost more than \(\$ 1000\)

\subsection*{8.4.2 Sorting lists}

The function sort-hand was created in Chapter 6 to perform an insertion sort on a list of playing cards. It would be nice to have a sorting routine that could be used for sorting any list. To do so, we can use the structure of sort-hand and its auxiliary function insert-card, but replace the function lower-card? with a function that is passed in as an argument to our generic sorting function. The new sorting function takes a function on which to base its comparison and a list to sort.
```

; Perform insertion sort on a-list based on compare-func.
(define (sort compare-func a-list)
(if (null? a-list)
'()
(insert
(first a-list)
(sort compare-func (rest a-list))
compare-func)))

```
```

; Insert element in sorted order into sorted-list based on compare-func.
(define (insert element sorted-list compare-func)
(cond ((null? sorted-list)
(list element))
((compare-func element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert element (rest sorted-list) compare-func)))))

```

To sort numbers in increasing order, use
```

> (sort < '($$
\begin{array}{llllll}{5}&{3}&{1}&{2}\end{array}
$$)
(1)

```

To sort numbers in decreasing order, use
```

> (sort > '(5 3 4 1 2))
(5 4 3 2 1)

```

\subsection*{8.4.3 Example: Poker revisited, yet again}

Our previous versions of poker from Chapters 5 and 6 did not use the cards' suit information. Playing cards have four suits: diamonds, hearts, clubs, and spades. If we include suit information, we can check for flushes, straight flushes, and royal flushes. A flush is a hand in which all the cards are of the same suit (e.g., all diamonds). A straight flush is a straight with all cards of the same suit, and a royal flush is a straight flush with the cards ten through ace.

We can use an association list to represent card values and suits for a hand. Thus a possible hand may be
```

((jack spades) (ace diamonds) (three diamonds) (ace hearts)
(two clubs))

```

With such a representation our previous code no longer works. We can make it work with some slight modifications and new code to handle flushes, straight flushes, and royal flushes.

Selector and creator functions should be written to get the value and suit of a playing card and to create a card pair.

Card suits and flushes

Selector and creator functions for cards
```

; Return the value of card (e.g., ten or queen).
(define (card-value card)
(car card))
; Return the suit of card (e.g., diamonds or hearts).
(define (card-suit card)
(second card))
; Construct a card from its value and suit (e.g., (ten hearts)).
(define (create-card value suit)
(list value suit))

```

Once again, the ordering of the cards can be saved in the global symbol card-ordering.

Testing for straights

Alternate approaches to test for straights
```

```
(define card-ordering
```

```
(define card-ordering
    '(two three four five six seven eight nine ten
    '(two three four five six seven eight nine ten
        jack queen king ace))
```

```
        jack queen king ace))
```

```

We can use the new sort from the previous section, and pass it a function
is true if the first card comes before the second card. The previous lower-
rd? function (from Chapter 6) won't work with the new card data structure.
We can use the new sort from the previous section, and pass it a function
that is true if the first card comes before the second card. The previous lower-
card? function (from Chapter 6) won't work with the new card data structure.
We can use the new sort from the previous section, and pass it a function
that is true if the first card comes before the second card. The previous lower-
card? function (from Chapter 6) won't work with the new card data structure. The new version should be
```

```
; Return true if card1 is lower in value than card2.
```

```
; Return true if card1 is lower in value than card2.
(define (lower-value? card1 card2)
(define (lower-value? card1 card2)
    (< (position (card-value card1) card-ordering)
    (< (position (card-value card1) card-ordering)
            (position (card-value card2) card-ordering)) )
```

```
            (position (card-value card2) card-ordering)) )
```

```

We could write this function using member, as follows:
```

; Return true if cardl is lower in value than card2.

```
; Return true if cardl is lower in value than card2.
(define (lower-value? card1 card2)
(define (lower-value? card1 card2)
    (member (card-value card2)
    (member (card-value card2)
                            (rest (member (card-value card1) card-ordering))) )
```

 (rest (member (card-value card1) card-ordering))))
    ```

The function is-straight? needs some slight modification to reflect the new sorting we are using. We should compare card values only, so we must form a list of card values without the suit information. This is done easily using map. Below is the new version:
```

; Return true if hand represents a straight.
(define (is-straight-new? hand card-ordering)
(let* ((sorted-hand (sort lower-value? hand))
(low-card (first sorted-hand)))
(and (lower-value? low-card (create-card 'jack 'any-suit))
(equal?
(map card-value sorted-hand)
(subseq
(member (card-value low-card) card-ordering)
0 5)))))

```

We could have taken other approaches to determine if a hand is a straight. In these approaches we don't need to sort the cards in the hand, but do need to know the low card in the hand. One approach is to find the low card, and then using recursion or every, test that each subsequently higher card exists in the hand.

Another approach that uses recursion is to find the low card, remove it from the hand, find the low card in the remaining cards, and verify that it is one card higher. We do this until a bad low card is found (it's too high) or all the cards have been examined.

A third approach is to once again begin with the low card and use it to formulate the list of cards needed for a straight based on card-ordering, as we did in our solution above. Then, verify that each card (e.g., using every) in the list of cards needed is in the hand we have. It's important to sequence through the cards needed. If we check that all the cards in our hand are in the list of cards needed, we would get a true answer for hands like \(\left(\begin{array}{llll}2 & 2 & 3 & 3\end{array}\right)\) because they
are all in the list ( \(\left.\begin{array}{lllll}2 & 3 & 4 & 5 & 6\end{array}\right)\).
A function to check for a flush follows. It checks if the first card's suit matches the suit of the remaining four cards. If so, then that hand is a flush. Alternate techniques for determining if a hand is a flush are given as exercises in the next section.
```

; Return true if hand represents a flush.
(define (is-flush? hand)
(= 4
(count
(card-suit (first hand))
(map card-suit (rest hand)))))

```
map is used to return only the suit of each card. These suits are compared with the suit of the first card in the hand. If all of the suits match, is-flush returns true.

The next function is used to determine if the hand is a royal flush, assuming that it is known that the hand is a straight flush already. If the hand has an ace and is a straight flush, it must be a royal flush.
```

; Return true if hand represents a royal straight.
(define (is-royal-straight? hand)
(member 'ace (map card-value hand)))

```

Lastly, the new poker-value function follows. It first computes hand-values, the card values of the hand, and then computes count-list, the number of times each card appears in the hand. The previous code computed count-list by calling count five times. We can simplify this using a map, which sequences through the hand calling count to get the number of cards in the hand that match the current card being examined.

The hands with the highest value should be tested first to avoid problems like calling a full house a pair. The order of the hand values is as follows:
royal flush
straight flush
four-of-a-kind
full house
flush
straight
three-of-a-kind
two pair
one pair
Such a testing order can cause some inefficiencies. Namely, royal flushes
uld be tested for first because they are worth the most; however, to be
rient this test should be nested within tests that check for flushes and
true conflicts that may arise. As it turns out, there are very few. The counting
irme eliminates problems like calling a four-of-a-kind a three-of-a-kind or a

Hand ordering

Testing order conflicts
\begin{tabular}{ll} 
hand value & possible conflicts (with hands worth less) \\
\hline royal flush & straight flush, straight, flush \\
straight flush & straight, flush \\
full house & three-of-a-kind, one pair \\
flush & straight \\
two pair & one pair
\end{tabular}

The hand values on the left side of the above table should be tested for before their matching conflicting card values on the right side. One further conflict arises in that we would like to perform all the tests for royal flushes, straight flushes, straights, and flushes within the same nested conditional expression. This will eliminate unnecessary testing. The new function follows:
```

; Return the value of a poker hand.
(define (poker-value-new hand)
(let* ((hand-values (map card-value hand))
(count-list
(map
(lambda (card)
(count card hand-values))
hand-values)))
(cond ((is-straight-new? hand card-ordering)
(if (is-flush? hand)
(if (is-royal-straight? hand)
'royal-flush
'straight-flush)
'straight))
((is-flush? hand)
'flush)
((member 4 count-list)
'four-of-a-kind)
((and (member 3 count-list) (member 2 count-list))
'full-house)
((member 3 count-list)
'three-of-a-kind)
((= 4 (count 2 count-list))
'two-pair)
((member 2 count-list)
'one-pair)
(else
(nothing))))

```

\subsection*{8.4.4 Exercises}
8.38 The code above tests for straights before it tests for flushes. Yet flushes are worth more than straights. Does this mean the code has a bug? If so, fix it. If not, why do you think the code was written this way?
8.39 In determining if a hand is a flush, could the expression
```

(accumulate equal? (map card-suit hand))

```
be used?
8.40 Would this function correctly determine if a hand is a flush?
```

(define (is-flush? hand)
(let ((first-suit (card-suit (first-hand))))
(every (lambda (card)
(eqv? first-suit (card-suit card)))
(rest hand))))

```
8.41 Would this function correctly determine if a hand is a flush?
```

(define (is-flush? hand)
(let ((first-suit (card-suit (first-hand))))
(= 4
(count-if (lambda (card)
(eqv? first-suit (card-suit card)))
(rest hand)))))

```
8.42 Write a new version of the function is-royal-straight? that uses findif instead of member and map.
8.43 How would you change the code if the representation for a card were a dotted list like (queen . hearts) instead of a two-element list?
8.44 How would you modify the code to allow wild cards (jokers)? There are two jokers in a deck of cards.
8.45 In the game draw poker you are allowed to discard some of your cards and draw new cards once. Write a function that decides which cards to discard based on the value of the existing hand.
8.46 Selection sort is an alternate means of sorting lists. Imagine we are sorting numbers to produce the smallest to the largest numbers. The technique used in selection sort is to find the smallest number in the list and make it the first element in the solution. The rest of the solution is determined recursively using the list with that smallest number removed. Here is a sample call showing how selection sort should work.
```

> (sel-sort '($$
\begin{array}{llll}{3 2 1 4) <)}\end{array}
$$)
(1 2 3 4)

```

Does sel-sort below properly implement selection sort? Does it work with lists that have duplicates (e.g., ( \(\left.\begin{array}{llll}2 & 4 & 4 & 3\end{array}\right)\) )? If not, fix it so it does.
```

(define (sel-sort a-list compare)
(if (null? a-list)
'()
(let ((next-value (accumulate compare a-list)))
(cons next-value
(sel-sort (remove next-value a-list) compare)))))

```

\subsection*{8.5 Summary}
- Below is a table of the functionals covered in this chapter. function, test, and bin-func are functions that are passed as arguments. function and test should take a single argument whose type matches that of the elements in list. test should be a predicate function. bin-func must be a function that takes two arguments whose types match those of the elements in list. In addition, map, for-each, every, and any can be called with multiple lists. In this case, they should be called with a function that takes multiple arguments. The number of lists must match the number of arguments and the lists must all be the same length.
\(\left.\begin{array}{lll}\text { function } & \text { arguments } & \text { return value }\end{array}\right]\)\begin{tabular}{ll} 
map & function lists
\end{tabular} \begin{tabular}{l} 
list of results from applying function to \\
successive elements of lists \\
for-each
\end{tabular}\(\quad\) function lists \begin{tabular}{l} 
undefined, but applies function to successive \\
elements of lists
\end{tabular}
- lambda expressions are used to create specialized functions to use with functionals.

\section*{Chapter}

\section*{INPUT AND OUTPUT}

\subsection*{9.1 Input/Output}

Information going from the user to the computer is called input, and information from the computer to the user is output. We have used the default form of input/output (often abbreviated as I/O) in Scheme. Input is a product of the interpreter reading in our requests at the >prompt. Output is the results of evaluating our input Scheme expressions that the interpreter prints out.

\subsection*{9.1.1 Printing out additional information}

There are times when we wish to get more information from a function call than the evaluated result of the last expression. To display additional information during the course of the evaluation of a function, calls to output functions are necessary. Below is a list of some of these output functions:
\begin{tabular}{lllll} 
function & arguments & prints out & return value & newline, display, \\
\hline newline & none & a blank line & undefined & and write \\
display & expression & the value of expression & undefined & \\
write & expression & the value of expression & undefined &
\end{tabular}

Below are some examples of these functions:
```

> (newline)
??
> (display 3)
3??
> (write 3)
3??

```

Printing a list one element per line

The return value of newline, display, and write is undefined, and in fact it will probably appear on the same line as the value printed out, as shown in these examples. In actual usage the calls to these output functions would be placed within functions so that they are not the final expression, and thus the return value of the function call will be some other value. Below is an example of this:
```

; Print out num and return num squared.
(define (print-and-square num)
(display num)
(* num num))

```

A call to this function will print the value of the parameter num and its square:
```

> (print-and-square 7)
749

```

Use newline to get the output to appear on two lines:
```

; Print out num, move to the next line, and return num squared.
(define (print-and-square num)
(display num)
(newline)
(* num num))
> (print-and-square 7)
7
4 9

```

Using display, newline, and for-each, it is possible to write a short function that prints out the elements in a list, one element per line:
```

; Print elements of a-list one per line.
(define (one-per-line a-list)
(for-each
(lambda (item)
(display item)
(newline))
a-list))

```

Here is a call illustrating this handy function:
```

> (one-per-line '(linel (line 2 here) ((finally (line)) 3)))
linel
(line 2 here)
((finally (line)) 3)
??

```

The final return value is undefined because for-each returns an undefined value.

\section*{Text strings}

Text can be displayed by surrounding the desired text in double quotes, and passing that string to display or write. A string is a sequence of characters surrounded by double quotes. The results can be seen below:
```

> (display "hi there")
hi there??

```
```

> (write "hi there")
"hi there"??

```
display and write can print out symbol names and lists also:
```

> (display 'symbol)

```
symbol? ?
> (write '(a short list))
(a short list)??

The difference between the functions display and write is that display prints out strings without the surrounding double quotes.

\subsection*{9.1.2 Input}

To get information to functions, we have used parameters and passed the values as arguments in function calls. There are times when it is desirable to get extra information into a function. This can be done in Scheme with the function read. read reads in information from the user and returns that information. read reads in anything that looks like a Scheme expression-numbers, words, lists, and even strings.
```

> (read)
4 2
42
> (read)
fred
fred
> (read)
((some (arbitrary list)))
((some (arbitrary list)))
> (read)
"a string"
"a string"

```

When a read function call is evaluated, the interpreter waits for the user to enter a value that is read in and returned as the value of read. If more than one value is entered, the following values are interpreted as further commands to the interpreter, and are evaluated in the normal fashion:
```

> (read)
(+ 1 1) (+ 3 4)
(+ 1 1)
7

```

The following example illustrates how a value read in from the user can be used within a function:

Reading until a number is given
```

; Read in a value and return its square root.
(define (read-and-apply)
(sqrt (read)))

```

After the function read-and-apply is called, the interpreter waits for the user to enter a value, then it continues. Once the value is entered, its square root is computed and displayed:
```

> (read-and-apply)
4 9
7.0

```

The following function is supposed to ask the user for a number and read in a value. If the user enters a number, its square root should be returned. Otherwise the process repeats.
```

; Read in values until a number is entered; return its square root.
(define (get-number)
(display "Enter a number: ")
(if (number? (read))
(sqrt (read))
(get-number)))

```

There is a bug in the above code. Rather than return the square root of the number entered, the call to read in
(sqrt (read))
will force the user to enter another value before execution continues. The value read in when
```

(number? (read))

```
is evaluated is the value desired. To save this value a let can be used. The correct function looks like
```

; Read in values until a number is entered; return its square root.
(define (get-number)
(display "Enter a number: ")
(let ((number (read)))
(if (number? number)
(sqrt number)
(get-number))))

```

Below is a trace of this function:
```

> (get-number)
Enter a number: foo
Enter a number: (a list will not work either)
Enter a number: }12
11.0

```

\subsection*{9.2 Getting Yes/No Answers}

A useful function to create is one to get a "yes" or "no" answer to a question. The function should take a string that is the question to ask the user and print that string, along with an indication to answer yes or no.
```

; Read in values until a yes or no is entered; return \#t if
; yes is entered and \#f if no is entered.
(define (yes-no query)
(display query)
(display " (yes or no) ")
(let ((answer (read)))
(cond ((eqv? answer 'yes) \#t)
((eqv? answer 'no) \#f)
(else (yes-no query)))))

```

Below are examples illustrating this function:
```

> (yes-no "Do you want to continue?")
Do you want to continue? (yes or no) maybe
Do you want to continue? (yes or no) perhaps
Do you want to continue? (yes or no) no
\#f
> (yes-no "Are you sure you want to quit?")
Are you sure you want to quit? (yes or no) yup
Are you sure you want to quit? (yes or no) yes
\#t

```

\subsection*{9.3 Conditions with Multiple Actions}

The condition-action pairs in a cond can have more than one action. They are really condition-action(s) pairs. For the condition that is satisfied, all of its associated actions are evaluated, but only the return value of the last action is returned as the value of the cond. For this reason, just as with function definitions, there is usually only one action associated with each condition.

The usual reason for having more than one action in an action list is to allow side-effects to take place. With side-effects, it is not the return value that we are interested in so much as the particular side-effect that it causes. Binding a value to a variable using define is a commonly performed action that produces sideeffects. Another often used side-effect is printing out information. Since expressions always print their final return values, we have not used any other means of displaying information. However, there are times when it is desirable to do so.

Suppose you wish to write a cond that returns the number of times element occurs in \(a\)-list. In addition, you want to precede this number with a message.

If \(a\)-list is empty, return 0 and print the message
```

The list is empty

```

Reading until a yes/no answer is given

\section*{Side-effects}

If element did not occur in a-list, return 0 and print the message
The item did not occur in the list
Lastly, if element did occur in a-list, return the number of times it occurred, preceded by the message

The number of times item occurs in the list is
To get text as displayed above, the simplest way is to call display with the desired text surrounded in double quotes (").

Below is the code to do this:
```

; Count the number of times element occurs in a-list; print an
; informative message about the count and return the count.
(define (number-of-times element a-list)
(cond ((null? a-list)
(display "The list is empty ")
0)
((not (member element a-list))
(display "The item did not occur in the list ")
0)
(else
(display "The number of times item occurs in the list is ")
(count element a-list))))

```

If \(a\)-list is an empty list, the two actions
        (display "The list is empty ")
        0
are evaluated; the text is displayed, and 0 is returned.
If element is not in \(a\)-list, these two actions are evaluated:
(display "The item did not occur in the list ") 0

The message gets printed, and 0 is returned.
If element is in \(a\)-list, the actions
(display "The number of times item occurs in the list is ") (count element a-list)
are evaluated, the message is displayed, and the value of
(count element a-list)
is returned.
The sample evaluation of this code illustrates the values that get displayed.
```

> (number-of-times 'word '(word does occur in this word list))
The number of times item occurs in the list is 2

```

\subsection*{9.4 Example: Visualizing Chaos}

Ecologists sometimes use formulas to model the growth in a population of organisms in some ecosystem. The logistic difference equation is one such formula. It expresses the new population in terms of the old population and some growth rate constant. The formula is
new population \(=\) growth \(\times\) population \(\times(1-\) population \()\)
where population is between zero and one. A population of zero means extinction and one means the largest possible population that the ecosystem can support.

For small growth rates, the population typically dies out. Going beyond this threshold, the population reaches some stable value after a number of generations. Larger growth rates produce larger end population values. With a growth rate slightly above three, the population does not stabilize at one value, but jumps back and forth between two values (bifurcates). Beyond this, the splitting doubles again and again, but at some point the population jumps around in a seemingly random fashion-chaos emerges.

We can write a recursive Scheme function to model the change in population by printing out population values for a given number of iterations. For each iteration we print out the population and then make a recursive call with the new population. We'll need a counter variable to count the number of iterations. The function new-balance from Chapter 6 provides a model for what we need to do-repeat an action a given number of times. However, we can make one simplification. Rather than count up to the number of iterations, we can count down from the number of iterations to zero. Since we don't need to use the value of the counter, this approach works fine for this problem. It wouldn't have worked in new-balance because we used the counter in the function in deciding when to make incremental deposits.

The function takes three parameters: times, growth, and population.
```

; Model the growth of population organisms for times generations.
; growth is the growth rate.
(define (population-growth times growth population)
(cond ((= 0 times)
population)
(else
(display population)
(newline)
(population-growth (- times 1) growth
(* growth population (- 1 population))))))

```
    population-growth terminates when times is zero and returns a final popu- lation value. This means that times +1 populations are printed: the initial population (generation zero) and the next times generations. The recursive action prints the current population and calls population-growth with counter plus one and the new population value.

Logistic difference equation

Population stability and chaos

Modeling population growth

Here are some sample calls to population-growth: \({ }^{1}\)
```

> (population-growth 5 2.0 0.4)
0.4
0.48
0.4992
0.4999
0.4999
0.5
> (population-growth 5 2.0 0.9) ; same growth rate, larger population
0.9
0.18
0.2952
0.4161
0.4859
0.4996
> (population-growth 5 3.2 0.4) ;larger growth rate-bifurcation
0.4
0.768
0.5701
0.7842
0.5414
0.7945
> (population-growth 5 4.0 0.4) ;larger growth rate-chaos
0.4
0.96
0.1536
0.5200
0.9983
0.0064

```

\subsection*{9.4.1 Exercises}
9.1 Find growth rates for population-growth that lead to bifurcations (alternating sequences of populations). Find growth rates that produce alternating patterns with a period of 4,8 , or 16 (the pattern repeats after 4,8 , or 16 generations).
9.2 At what growth rate does chaos emerge?
9.3 For some growth rates beyond the point of chaos, stable populations with periods of three appear (patterns that repeat after three generations). Find these.

\footnotetext{
1. Only four digits of precision are shown in the output.
}
9.4 Sometimes it takes a number of generations before the population stabilizes. Modify population-growth so that it takes another parameter start denoting the number of initial generations to calculate, but not print. Thus, only generations start +1 to times are printed.
9.5 Write a function to compare the final population given different initial populations and a fixed growth rate. Your function should return true if all the populations are within some value (e.g., 0.0001 ) of the average population.
9.6 Some of the questions above asked you to find growth rates where period doubling or chaos occurs. Write a function that will help you determine these growth rates.
9.7 Kate wants to change population-growth so that it doesn't print the initial (generation zero) population. She proposes the following change:
```

(define (population-growth times growth population)
(cond ((= 0 times)
population)
(else
(population-growth (- times 1) growth
(* growth population (- 1 population)))
(display population)
(newline))))

```

Will this work?

\subsection*{9.5 Read-Eval-Print Loop}

The central component to the Scheme interpreter is the read-eval-print loop. Commands are read in, then evaluated. Finally the evaluated result is printed. In Scheme, the functions read, eval, and write do exactly this. \({ }^{2}\) We could write them out to perform a single read-eval-print step:
```

(write (eval (read)))

```
read returns whatever is read in from the user. eval takes one argument and returns its evaluated result. write takes this result and displays it on the screen. Since eval returns the evaluated result, we need not call write to print it out. Therefore, we don't need the write in the simple case of performing one evaluation. However, the evaluator is doing a read-eval-print loop. Because of this we need the write function call.

An infinite (nonending) read-eval-print loop could be written as follows:

\footnotetext{
\({ }^{2}\) It is called a read-eval-print loop instead of a read-eval-write loop because other, older dialects of Lisp use the function print.
}
```

; Print prompt, read input, print out evaluation, repeat.
(define (read-eval-print)
(display "-> ")
(write (eval (read)))
(newline)
(read-eval-print))

```

The solution below is an improvement, as it allows the user to exit when the symbol quit is entered.
```

; Print prompt, read input, print out evaluation, repeat until
; quit is entered.
(define (read-eval-print-with-exit)
(display " -> ")
(let ((command (read)))
(cond ((eqv? command 'quit)
'bye)
(else
(write (eval command))
(newline)
(read-eval-print-with-exit)))))

```

Below is an example call to read-eval-print-with-exit:
```

> (read-eval-print-with-exit)
-> 3
3
-> (* 3 4)
12
-> quit
bye

```

\subsection*{9.5.1 Exercises}
9.8 Given the following function,
```

(define (mystery num)
(cond ((zero? num) 0)
(else (display num)
(newline)
(mystery (- num 1)))))

```
what will the function call (mystery 3 ) display? What is the return value?
9.9 Given the following function,
```

(define (unknown num)
(cond ((zero? num) 0)
(else (unknown (- num 1))
(display num)
(newline))))

```
what will the function call (unknown 3) display? What is the return value?
9.10 Craig writes the following function to print both the sum and average of a list of numbers:
```

(define (average num-list)
(/ (display (accumulate + num-list))
(length num-list)))

```

Will Craig's function work?

\subsection*{9.6 Summary}
- To print a blank line, use newline.
- To print out a string (text surrounded by double quotes) without the double quotes, use display.
- To print symbols, numbers, or lists, use either display or write.
- To get a value from the user, use read.

Be sure to save the value read in using a let variable if it is used more than once.
- Summary of functions introduced in this chapter:
\begin{tabular}{llll} 
function & arguments & prints out & return value \\
\hline newline & none & a blank line & undefined \\
display & expression & the value of expression & undefined \\
write & expression & the value of expression & undefined \\
read & none & nothing & value entered by the user
\end{tabular}

\section*{Снартев 10}

\section*{REPETITION}

\section*{Through Iteration}

\subsection*{10.1 Iteration}

Iteration is a type of repetition that, like recursion, involves repeating a task a certain number of times, or for every element in a list, or more generally until some condition is met. Iterative functions provide a means of carrying out these commonly performed tasks without having to explicitly create recursive functions. In general, any linear recursive function (a function with a single recursive call in each of its recursive cases) can be written using an iterative function. Most of the examples in this chapter are iterative versions of the functions written using recursion in Chapter 6. You should compare the iterative solutions to their recursive counterparts and decide which seems more natural to you.

The big advantages of iteration over recursion are increased speed and reduced memory requirements. Making a function call is an expensive operation (time- and memory-wise) on a computer. It requires making provisions to save the parameters, the location to return to, and a host of additional information. Chapter 13 goes into the mechanism of function calls in great depth.

Saving information for function calls requires memory. Once a function returns, that memory can be reused. But a recursive solution that makes a great number of recursive calls may not be able to complete due to memory limitations. You can see this by calling an embedded recursive function with an infinite loop. Here is a very simple example:
```

; Infinite loop with embedded recursion.
(define (infinite)
(infinite)
0)

```

Speed and memory considerations

\footnotetext{
O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998
}

Stack overflow

Tail recursion and iteration
syntax for do

Calling this function results in a stack overflow error, meaning too much memory was used in making recursive calls. However, if you use a tail recursive function, as follows
```

; Infinite loop with tail recursion.
(define (infinite-iter)
(infinite-iter))

```
you will not have a stack overflow and the program will run until you interrupt it. This is because Scheme internally converts tail recursive functions to iterative loops. Actions are repeated without making recursive calls.

If you are concerned with speed or memory issues, you should use an iterative solution instead of a recursive solution. This means using tail recursive functions or calls to the iterative function do.

The syntax for do is outlined below. The values in square braces "[ ]" are optional.
```

(do ((variable1 initial-value1 [update-value1])
(variable2 initial-value2 [update-value2])
(variableN initial-valueN [update-valueN]))
(test exit-actions)
body)

```
exit-actions are zero or more expressions, similar to the actions in a conditionactions pair in a cond expression. body is zero or more expressions. The body of a do is somewhat analogous to the body of a function definition with one important distinction: none of the expressions in the body are returned. They are all only used for their side-effects, just like any expressions that proceed the final expression in the body of a function.
do begins by evaluating all the initial-values and then binding all the variables to those values. Thus the initial-values cannot refer to previous variables. This is identical to the way that a let binds its variables.

Next test is evaluated. If it returns a non-\#f result, the exit-actions are evaluated and the value of the last action is returned, much like how a cond with a single condition-actions pair would behave. If there are no exit-actions, do returns an undefined value. If test returns \#f, body is evaluated, the update-values are evaluated, and the variables take on those values. Then the entire process continues by evaluating test again. If no update-value is supplied for a variable, the variable keeps its current value.

The bindings of variables to the update-values follows the same rules as the bindings to the initial-values. Thus the update-values are all evaluated and then the variables are sequentially bound to those values. Any references to variables in update-values refer to the old bindings of those variables.
do may be better understood by showing its equivalent to other Scheme expressions. The following function, do-loop, is functionally equivalent to a do expression. The items in italics represent pieces of the do syntax shown above. The function do-loop would be called initially with the initial-values:
```

; Recursive equivalent to do.
(define (do-loop value1 value2 ... valueN)
(let ((variable1 value1)
(variable2 value2)
(variableN valueN))
(cond (test exit-actions)
(else body
(do-loop update-values)))))
(do-loop initial-values)

```

We can model a do without using let. In this case, imagine we call do-loop-2 with the initial-values of the variables:
```

; Recursive equivalent to do.
(define (do-loop-2 variable1 variable2 ... variableN)
(cond (test exit-actions)
(else body
(do-loop-2 update-values))))
(do-loop-2 initial-values)

```

Notice in both of these examples that body is the first action of the else clause of the cond. It is evaluated but its results are not returned.

\subsection*{10.2 Repeating Actions a Number of Times}

To repeat a body of code body a certain number of times, the following do template can be used. This template repeats body num-times times by incrementing the do variable counter with values from 1 to num-times.
```

(do ((counter 1 (+ counter 1)))
((> counter num-times) exit-actions)
body)

```

If we don't need to use the value of counter as it increments or we want counter to decrement (counting backwards), we can use the following template to repeat body num-times times:
```

(do ((counter num-times (- counter 1)))
((= counter 0) exit-actions)
body)

```

\subsection*{10.2.1 Example: Printing changing populations}

The function population-growth from Chapter 9 can be implemented easily using the second template given above. population-growth has three parameters; one is an integer, times, that corresponds to the number of populations to calculate and print. Here is a new version using iteration:

Template to repeat actions a number of times

Template to repeat actions counting backwards

Template to repeat actions for each element in a list
do with two exit cases
```

; Model the growth of population organisms for times generations.
; growth is the growth rate
(define (population-growth-iter times growth population)
(do ((counter times (- counter 1))
(pop population (* growth pop (- 1 pop))))
((= counter 0) pop)
(display pop)
(newline)))

```

Notice the use of the variable pop, which is initially bound to the starting population and then updated to the new population values. Evaluating this function yields the following:
```

> (population-growth-iter 5 4.0 0.4)
0.4
0.96
0.1536
0.5200
0.9983
0.0064

```

\subsection*{10.3 Repeating an Action for each Element in a List}

To repeat a section of code for every element in a list, the following do template can be used. This template repeats body for each element in \(a\)-list. The variable list-remaining is initialized to \(a\)-list and then set to successive rests of \(a\)-list each time through the do.
```

(do ((list-remaining a-list (rest list-remaining)))
((null? list-remaining) exit-actions)
body)

```

\subsection*{10.3.1 Example: Checking if a list consists of numbers only}

The template above can be used to implement the function all-numbers? from Chapter 6, which takes a list and returns \#t if all the elements in the list are numbers and \#f if not. The iteration through the list should stop when a nonnumber is encountered. This means there will be two exit cases, encountering an empty list (no more elements to process) and encountering an element that is a non-number. The return value depends on the exit case. The test and exit-actions of the do must check for both exit cases and return the proper value accordingly. There is no action to take in the body, so it isn't needed.
```

; Return true if all elements of a-list are numbers.
(define (all-numbers?-iter a-list)
(do ((current-list a-list (rest current-list)))
((or (null? current-list)
(not (number? (first current-list))))
(if (null? current-list)
\#t
\#f))))

```

Examine the evaluations below:
```

> (all-numbers?-iter '(3 4 2))
\#t
> (all-numbers?-iter '(3 four 2))
\#f

```

It is important to put the conditions of the or in the order they are given. If not, we may take the first of an empty list and get an error. The code above works because if current-list is empty, (null? current-list) is true and the or does not check the second condition. For the same reason, the if must check for an empty list instead of an element that is not a number.

\section*{Mistakes to Avoid}

In this do and many others, there is no body. If you are comparing iterative constructions in Scheme with those in other languages like Pascal or C, you may find this strange. In a loop in these languages the body contains the actions. However, in Scheme the body of a do loop is only used for side-effects (e.g., printing out values). As an example of this, let's change the function above as follows:
```

; Return true if all elements of a-list are numbers - buggy.
(define (all-numbers?-iter-bad a-list)
(do ((current-list a-list (rest current-list)))
((null? current-list) \#t)
(if (not (number? (first current-list)))
\#f)))
> (all-numbers?-iter-bad '(1 2 three))
\#t
> (all-numbers?-iter-bad '(one two three))
\#t

```

Regardless of the list all-numbers?-iter-bad is called with, it will always return \#t. This is because the if expression is part of the body of the do. It is evaluated, but its return value is never used. The do eventually ends when the list has been sequenced through and returns \#t, which is the exit action of the do.

Order of conditions in do

Improper uses of the body of a do

\subsection*{10.4 General Examples with do Loops}

The function do can be used for more than repeating actions a certain number of times or for each element in a list.

\subsection*{10.4.1 Example: Factorial}

An example use of do is the function factorial from Chapter 6, which takes an argument max and returns the product of the numbers from one to max. The product will be maintained in the variable prod.
```

; Return max factorial (with iteration).
(define (fact-iter max)
(do ((number max (- number 1))
(prod 1 (* number prod)))
((zero? number) prod)))

```

Below is a trace of the bindings of the variables number and prod for the function call (fact-iter 3):
number is bound to 3
prod is bound to 1
number is not zero, so the do continues.
number is bound to (-31) or 2
prod is bound to (* 3 1) or 3
Notice that the old value of number is used in the computation of prod. This is because the values are all evaluated before they are bound to the variables. Continuing on,
number is bound to (-21) or 1
prod is bound to (* 23 ) or 6
Continuing further,
number is bound to ( -11 ) or 0
prod is bound to (* 1 6) or 6
number is now zero. Thus, test is satisfied, and exit-actions are performed. In this case the one action, prod, is evaluated and returned, giving the result 6 .

\subsection*{10.4.2 Example: Adding up the digits in a number}

Another example using do is a new version of the function sum-digits from Chapter 6, which adds the digits in a number. The variables within the let in sum-digits: last-digit and rest-of-number will be used as variables within the do. last-digit is initialized to the last digit of the parameter number. After that it is bound to the last digit of rest-of-number. rest-of-number is initially the leftmost digits of the parameter number, and then the leftmost digits of its previous value. In addition, the variable answer will be used to accumulate the sum. answer is initialized to last-digit and updated by adding its old value to the current value of last-digit.
```

; Return sum of the digits in number.
(define (sum-digits-iter number)
(do ((last-digit (remainder number 10)
(remainder rest-of-number 10))
(rest-of-number (truncate (/ number 10))
(truncate (/ rest-of-number 10)))
(answer last-digit (+ answer last-digit)))
((zero? rest-of-number) answer)))

```

Note that sum-digits-iter and fact-iter have no body. Below is a trace of this function:
```

> (sum-digits-iter 749)
Undefined variable: last-digit

```

Recall that the variables in a do are like the variables in a let in that they cannot use the current values of other variables in the variable list. When last-

Caution with do variables digit is being evaluated, it has not been defined yet. This creates an undefined variable error. We can change the code as follows to fix this error:
```

; Return sum of the digits in number.
(define (sum-digits-iter number)
(do ((last-digit (remainder number 10)
(remainder rest-of-number 10))
(rest-of-number (truncate (/ number 10))
(truncate (/ rest-of-number 10)))
(answer 0 (+ answer last-digit)))
((zero? rest-of-number) answer)))

```

Here is a run of the new version:
```

> (sum-digits-iter 749)

```
13

We got rid of the error message, but got the wrong answer. Here is a trace of the bindings of the variables:
```

last-digit is bound to (remainder 749 10) or }
rest-of-number is bound to (truncate (/ 749 10)) or 74
answer is bound to 0

```

We continue,
last-digit is bound to (remainder 7410 ) or 4
rest-of-number is bound to (truncate (/74 10)) or 7
answer is bound to \((+09)\) or 9
Next,
last-digit is bound to (remainder 7 10) or 7
rest-of-number is bound to (truncate (/ 7 10)) or 0
answer is bound to (+94) or 13
Since rest-of-number is 0 , we exit returning answer, 13 .
To get around this problem we can change the exit action to return the answer plus the current last digit, ( + answer last-digit). Or we can use the last digits
directly by eliminating the variable last-digit and just use its value throughout. Let's try this approach:
```

; Return sum of the digits in number.
(define (sum-digits-iter number)
(do ((rest-of-number (truncate (/ number 10))
(truncate (/ rest-of-number 10)))
(answer (remainder number 10)
(+ answer (remainder rest-of-number 10))))
((zero? rest-of-number) answer)))

```

Let's try this new version using the previous call, (sum-digits-iter 749).
rest-of-number is bound to (truncate (/ 749 10)) or 74 answer is bound to (remainder 749 10) or 9
rest-of-number is not zero, so the variables are bound to the update values.
rest-of-number is bound to (truncate (/ 74 10)) or 7
answer is bound to ( +9 (remainder 74 10)) or 13
Again the variables are bound to the update values.
rest-of-number is bound to (truncate (/710)) or 0
answer is bound to (+ 13 (remainder 7 10)) or 20
rest-of-number is now 0 , and the value of answer, 20 , is returned.

\subsection*{10.5 Writing Mapping Functions and Filters Using Iteration}

All the different types of linear recursion functions covered in Chapter 6 have been shown, with the exception of functions that produce lists-namely the mapping functions and filters. It is possible to write such functions using an iterative construct, but it requires building up a list of results.

\subsection*{10.5.1 Example: A mapping function to take square roots in a list}

The function square-roots from Chapter 6 can be written using an iterative function. square-roots takes a list of numbers and returns the list of the square roots of those numbers. Since we must build up a list of results, do variables will be used to update that list and cdr down the list supplied as an argument.
```

; Return a list of the square roots of the numbers in a-list.
(define (square-roots-iter a-list)
(do ((current-list a-list (cdr current-list))
(answer '() (cons (sqrt (car current-list)) answer)))
((null? current-list) answer)))
A trace of the call (square-roots-iter ' ($\left.\begin{array}{lll}1 & 4 & 9\end{array}\right)$) follows:
current-list is bound to ($\left.\begin{array}{lll}1 & 4 & 9\end{array}\right)$
answer is bound to ()

```

Since current-list is not ( ), the iteration continues:
current-list is bound to (cdr '(14ll)) \(\rightarrow\left(\begin{array}{ll}4 & 9\end{array}\right)\)
answer is bound to (cons (sqrt (car \(\left.\left.{ }^{\prime}\left(\begin{array}{lll}1 & 4 & 9)\end{array}\right)\right)^{\prime}()\right) \rightarrow(1.0)\)
current-list is bound to (cdr '(49)) \(\rightarrow\) (9)
answer is bound to (cons (sqrt ( \(\left.\left.\left.\operatorname{car}^{\prime}(49)\right)\right)^{\prime}(1.0)\right) \rightarrow(2.01 .0)\)
current-list is bound to ( \(\mathbf{c d r} \mathbf{~ ' ~}^{\prime}(9)\) ) \(\rightarrow\) ()
answer is bound to (cons (sqrt (car \(\left.\left.\left.{ }^{\prime}(9)\right)\right)^{\prime}(2.01 .0)\right) \rightarrow(3.02 .01 .0)\)
current-list is now () and answer, (3.0 2.01 .0 ), is returned. This is the reverse of the desired result.

In writing the recursive solution to square-roots, consing the sqrt of the car of the list works because the conses don't take effect until we unwind from

Using append to build lists with do

\subsection*{10.5.2 Example: A filter to extract positive numbers from a list of numbers}

Filters can be written using iteration. The resultant list is created by conditionally consing elements onto a solution list. Once again we must reverse the final answer to get the elements in the proper order. The function positive-filter from Chapter 6 follows. positive-filter takes a list of numbers and returns a list of only the positive numbers in that list:
```

; Return a list of the positive numbers in a-list.
(define (positive-filter-iter a-list)
(do ((current-list a-list (cdr current-list))
(answer '() (if (positive? (car current-list))
(cons (car current-list) answer)
answer)))
((null? current-list) (reverse answer))))

```

Below is a trace of (positive-filter-iter ' \(\left(\begin{array}{lll}-12 & 13 & 14\end{array}\right)\) ):
current-list is bound to ( \(\left.\begin{array}{lll}-12 & 13 & 14\end{array}\right)\)
answer is bound to ()
current-list is not (), so evaluation continues
current-list becomes (13 14)
answer remains () because -12 is not positive
current-list becomes (14)
answer becomes (13) because 13 is positive
current-list becomes ()
answer becomes (14 13)
current-list is (), so the exit action (reverse answer), (13 14), is returned

\subsection*{10.5.3 Exercises}
10.1 Write your own version of the function length using an iterative function.
10.2 Using an iterative function, write a function substitute that takes a list and two atoms, old and new. The function should return a new list with all top-level occurrences of old replaced with new. For example, (substitute ' (me but (not me)) 'me 'you)
should produce the list
(you but (not me))
10.3 Write your own version of the function union using an iterative function.
10.4 Write your own version of the function intersection using an iterative function.
10.5 Write a function that removes numbers from a list using an iterative function.
10.6 Write your own version of the function keep-if using an iterative function.
10.7 Write your own version of the function count-if-not using an iterative function.
10.8 Write a function that takes a list and returns a list of the cubes of that list using an iterative function.

\subsection*{10.5.4 Example: Sorting a list}

In Chapters 6 and 8 we developed a function to sort a list. We can write a version of the enhanced sort from Chapter 8 using do. There are two functions. The main function sort-iter is similar to a mapping function, except instead of consing a function applied to the first of the list onto an answer, we call insert-iter to
put the first element of the list in the proper position in the answer. This means we won't have to reverse the answer at the very end.
```

; Perform insertion sort on a-list based on compare-func.
(define (sort-iter compare-func a-list)
(do ((current-list a-list (rest current-list))
(sorted-list '() (insert-iter (first current-list)
sorted-list compare-func)))
((null? current-list) sorted-list)))

```

The function insert-iter takes an element to add, a sorted list, and a comparison function, and returns a new sorted list with the element added. This function is somewhat like a mapping in that it sequences through the sorted list, and somewhat like a filter in that it must decide what to include in the answer (the element or the current list item). However, it has two exit conditions. If we satisfy the comparison function, we should return the list we have assembled (this time we have to reverse it) and the remaining elements we haven't looked at yet. The other exit condition is reaching an empty list. In this case we simply return the reverse of the answer:
```

; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)
(do ((sort-list sorted-list (rest sort-list))
(new-list '() (if (compare-func element (first sort-list))
(cons element new-list)
(cons (first sort-list) new-list))))
((or (null? sort-list)
(compare-func element (first sort-list)))
(if (null? sort-list)
(reverse new-list)
(append (reverse new-list) sort-list)))))

```

Let's test out these functions:
```

> (sort-iter < '(3 4 2 6 7 1))
()

```

Wow! We lost all the values. Before we look at the code, let's test insertiter individually. Remember insert-iter expects a sorted list as an argument.
```

> (insert-iter 3 '(1 2 4 6 7) <)
(1 2 4 6 7)
> (insert-iter 3 '(4 6 7) <)
(4 6 7)
> (insert-iter 3 '(1 2) <)
(1 2)

```

This clarifies the bug. Regardless of where the element must be inserted (middle, start, or end of the sorted list), it is not added. Since we never add elements, we wind up with an empty list when we call sort-iter.

The code seems to add the element to the new list in the update value for new-list. However, what winds up happening is that before the update value sees that the element satisfies the comparison function, the exit action is satisfied. This is because the old values for sort-list and new-list are used in the variable binding section of the do, but the new values are used in the test. This is similar to a problem we ran into when writing sum-digits-iter.

To fix the bug we can add element as part of the exit action. We don't need the code that adds the element in the update value, so we can change that to unconditionally add the first item in the sorted list:
```

; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)
(do ((sort-list sorted-list (rest sort-list))
(new-list '() (cons (first sort-list) new-list)))
((or (null? sort-list)
(compare-func element (first sort-list)))
(if (null? sort-list)
(reverse new-list)
(append (reverse new-list) (list element) sort-list)))))
> (insert-iter 3 '(1 2 4 6 7) <)
(1 2 3 4 6 7)
> (insert-iter 3 '(4 6 7) <)
($$
\begin{array}{llll}{3}&{4}&{6}&{7}\end{array}
$$)
> (insert-iter 3 '(1 2) <)
(1 2)

```

Two out of three of the cases worked. In the last case, we exit because we reach an empty list, and this case needs to add the element to the end of the new list as well. Here is the correct code:
```

; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)
(do ((sort-list sorted-list (rest sort-list))
(new-list '() (cons (first sort-list) new-list)))
((or (null? sort-list)
(compare-func element (first sort-list)))
(if (null? sort-list)
(reverse (cons element new-list))
(append (reverse new-list) (list element) sort-list)))))
> (insert-iter 3 '(1 2) <)
(1 2 3)
> (sort-iter < '(3 4 2 6 7 1))
(1 2 3 4 6 7)

```
```

> (sort-iter > '(3 4 2 6 7 1))
(7 6 4 3 2 1)

```

Not all functions with multiple exit cases are as burdensome to write as insert-iter. In fact, most of the difficulties stemmed from the binding of variables after all update values are evaluated. Common LISP gets around this by using a variation of do called do*, in which the variables are bound immediately as with let*. Scheme does not have this function, unfortunately.

Another way to simplify writing these problematic do loops is using the function call-with-current-continuation, which provides an alternate way to exit from within a do loop. This function is presented in Chapter 11 along with examples of how it can be used with do loops.

\subsection*{10.5.5 Exercises}
10.9 Write your own version of the function find-if using an iterative function.
10.10 Write your own version of the function position using an iterative function.
10.11 Write your own version of the function member using an iterative function.
10.12 Write your own version of the function assoc using an iterative function.

\subsection*{10.6 Nested Loops Using Iteration}

Nested loops can be written using iterative functions. Each loop is carried out by an iterative function. As an example, imagine a data structure that represents the structure of a particular company. This company consists of a number of divisions. Each division is a collection of departments. Each department is a collection of employees.

The company is represented as a list of division lists. The first element of each division list is the division name. The remaining elements are departments within that division. Departments are lists where the first element is the department name and the rest of the list is employee names. Below is an instance of such a company:
```

((far-east (engineering gino bill)
(advertising bernice yoshiro kumi))
(eastern (health ximena)
(technical eric seth))
(western (engineering brian ephram robert)
(investment stephen))
(european (management maria)
(sales hans)
(advertising jutta jurgen tiziana)))

```

Improvements with do

Nested loops to search within a company data structure

\section*{Sample company} database

\section*{Complications in} saving the inner loop value

To determine the division and department of a particular person in a company, a function find-employee can be written that takes a company list and a person. If that person exists in the company list, a list of their division and department is returned. If not, \#f is returned. The outer loop will sequence through the divisions, and the inner loop will sequence through the employees within a division.

We'll need two exit cases in both the outer and the inner loops. The inner loop should return \# \(\mathbf{f}\) if no match is found, or return the department name if a match is found. The outer loop should test the value returned by the inner loop and return the division and department names if the employee was found in the inner loop, or return \# \(\mathbf{f}\) if all divisions have been tested and no match was found. If neither of these conditions is true, the outer loop should continue.

Since the inner do loop value will be used twice in the outer do loop-once in the test and once in the exit-action to return the department name-we should save the inner loop value in a let variable. Unfortunately there is no good way to do this, as the value of the let variable must be computed within the outer do loop but used in different locations there. We can't compute the inner loop's value at the start of the outer loop; however, we can save the inner loop's value in a do variable in the outer loop. Here again we'll need two different calls to the inner loop-one for the initial value and another for the update value. We'll be better off implementing the inner loop as a separate function.

Helper functions to access the division name and department lists from a division, and the department name and employee list from a department, will make the code more readable and easier to update if the database structure changes.
```

; Return the name of division.
(define (division-name division)
(first division))
; Return the list of departments in division.
(define (department-list division)
(rest division))
; Return the name of dept.
(define (department-name dept)
(first dept))
; Return the list of employees in dept.
(define (employees dept)
(rest dept))

```

The rest of the code follows. First the outer loop:
```

; Return the division and department of person in company-list,
; \#f if person is not in company-list.
(define (find-employee company-list person)
(do ((company company-list (rest company))
(dept
(find-dept (department-list (first company-list)) person)
(find-dept (department-list (first company)) person)))
((or (null? company) dept)
(if (null? company)
\#f
(list (division-name (first company))
dept)))))

```

\section*{And the inner loop:}
```

; Return the department of person in dept-list, \#f if person is not
; in dept-list.
(define (find-dept dept-list person)
(do ((dept dept-list (rest dept)))
((or (null? dept)
(member person (employees (first dept))))
(if (null? dept)
\#f
(department-name (first dept))))))

```

Let's test these functions. Assume that the variable com is bound to the company data structure shown at the start of this example:
```

> (find-employee com 'bernice)
(far-east advertising)
> (find-employee com 'fred)
\#f
> (find-dept (rest (third com)) 'stephen)
investment
> (find-employee com 'stephen)
(european investment)

```

The last result should be (western investment). find-dept appears to be working though. The only problem seems to be that the wrong division is returned. The problem is subtle: the value of the do variable company is used when find-dept is called and when division-name is called. However, company has different values for these different calls. When find-dept is called, company still has its old value. It does not take on the new value until all the update-values have been computed. Thus, we wind up looking for the employee in one division and returning the division name of the next division. This does not happen if the person is in the first division, because find-dept is called with company-list.

To fix this bug, we can return to our first approach of calling the inner loop in the test and the exit-action parts of the outer loop. Here is the new version:
```

; Return the division and departluent of person in company-list,
; \#f if person is not in company-list.
(define (find-employee company-list person)
(do ((company company-list (rest company)))
((or (null? company)
(find-dept (department-list (first company)) person))
(if (null? company)
\#f
(list (division-name (first company))
(find-dept (department-list (first company))
person))))))
> (find-employee com 'bernice)
(far-east advertising)
> (find-employee com 'fred)
\#f
> (find-employee com 'stephen)
(western investment)
> (find-employee com 'hans)
(european sales)

```

Now the code works.

\subsection*{10.6.1 Exercises}
10.13 Write an iterative function that takes a company list of the above form and returns a list of the departments of the company.
10.14 Write an iterative version of the function sum-facts from Chapter 6. sumfacts takes an argument number and returns the sum of the factorials of one through number.
10.15 Here is an alternate fix to find-employee that requires a change to finddept as well. It has a subtle bug. Fix it, making as few changes as possible.
```

(define (find-employee company-list person)
(do ((company company-list (rest company))
(dept \#f
(find-dept (first company) person)))
((or (null? company) dept)
(if (null? company)
\#f
dept))))

```
```

(define (find-dept division person)
(do ((dept (department-list division) (rest dept)))
((or (null? dept)
(member person (employees (first dept))))
(if (null? dept)
\#f
(list (division-name division)
(department-name (first dept)))))))

```

\subsection*{10.7 Summary}
- To repeat an action a number of times, use the following template:
```

(do ((counter 1 (+ counter 1)))
((> counter num-times) exit-actions)
body)

```
body represents the action(s) to repeat. numtimes is the number of repetitions to take. counter increments from 1 to numtimes through the loop. exit-actions are the actions to take at the end of the loop.
- To repeat an action for every element of a list, use the following template:
(do ( (list-remaining a-list (rest list-remaining)) )
( (null? list-remaining) exit-actions)
body)
\(a\)-list is the list to sequence through. list-remaining is successive rests of that list. body represents the action(s) to repeat. exit-actions are the actions to take at the end of the loop.
- To perform general iteration, use do:
(do ( variable1 initial-value1 [update-value1])
(variable2 initial-value2 [ update-value2])
(variableN initial-valueN [ update-valueN ]) )
(test exit-actions)
body)
do sets variables like let does.
- Multiple exit cases can be handled by combining the exit cases in an or in the test of the do and then returning the proper value based on the specific condition that caused the exit. This is tested for in the exit-actions of the do.

\section*{Advanced Uses of Functions}

\subsection*{11.1 Writing Functions that Take a Variable Number of Arguments}

There are three legal ways to specify parameters in a function definition. We have used the simplest method in which each parameter is given a unique name that matches directly with an argument when the function is called. These functions must be called with a fixed number of arguments. We can create functions that take a variable number of arguments. This is done by specifying one parameter after the function name and a period (making a function heading that looks like a dotted list). When the function is called, the arguments will be in a list that is bound to the single parameter. Here is an example of this method:
```

; Return average of a variable amount of numbers.
(define (avg . nums)
(if (null? nums)
'no-average
(/ (apply + nums) (length nums))))
>(avg 3 4 5)
4
>(avg 1 2 3 4 4 5 6 7 7 8 9 10)
5.5
> (avg)
no-average

```

We can write functions that take some fixed arguments followed by a variable number of optional arguments. This is done by using a mix of the syntax from the method above and the standard syntax we have used to write functions. The required parameter names follow the function name in the header, then a period and a single parameter. The function must be called with at least enough

Writing functions that take zero or more arguments

Writing functions with both fixed and optional arguments

Defining functions with optional arguments using lambda

First class objects

Functions as arguments
arguments to match each fixed parameter. The final parameter is bound to a list of any additional arguments.

In the next example the function elts returns a list of selected elements from a list. It takes the list as a required argument and a variable number of element positions as optional arguments. It is an error to call elts with no arguments.
```

; Return list of elements specified by their positions.
(define (elts a-list . positions)
(map (lambda (pos) (list-ref a-list pos)) positions))
>(elts '(a b c d e f g) O 2 4)
(a c e)
> (elts '(a b c d e f g))
()
> (elts)
Error: Too few arguments: (elts)

```

These two additional forms of define are not required as part of the Scheme language specification. That means that your implementation of Scheme may not support them. You can get around this by using the following variations of lambda, which are required in Scheme. We could specify the above two functions as follows:
```

(define avg
(lambda nums
(if (null? nums)
'no-average
(/ (apply + nums) (length nums)))))
(define elts
(lambda (a-list . positions)
(map (lambda (pos) (list-ref a-list pos)) positions)))

```

\subsection*{11.2 Functions that Return Functions}

Functions are first class objects, meaning they can be used in expressions, stored in data structures, bound to variables, passed to functions, and returned from functions. In most programming languages functions are not first class objects, so it may seem that it is not important to give functions such an elevated status. However, there are some nice advantages to having functions as first class objects.

We have used functions as arguments in many cases. This allows us to write functions that can be used to perform a variety of tasks. For example, our insertion sort function from Chapter 8 is a big improvement over the original sort function we wrote in Chapter 6. By making the comparison function an argument, the same sort function can be used to sort objects of different types and to sort in increasing or decreasing order.

Allowing functions to return functions opens up more possibilities. In Chapter 16 the function make-fuzzy-triangle returns a function based on the arguments with which it is called. This function is created once and then used a number of times. The problem could have been solved without this approach, but it is easier to do this way.

Let's look at a simple example of a function that returns another function:
```

; Return function encapsulating info about a person.
(define (person-info name birth-date income job)
(lambda (request)
(cond ((eq? request 'name) name)
((eq? request 'age) (- current-year (third birth-date)))
((eq? request 'year) (third birth-date))
((eq? request 'month) (first birth-date))
((eq? request 'day) (second birth-date))
((eq? request 'income) income)
((eq? request 'broke) (< income 1000))
((eq? request 'rich) (> income 100000))
((eq? request 'occupation) job))))

```

The function person-info takes information about a person and returns a function that encapsulates that information. Encapsulation is maintaining local information within a function. This information is often called local state information. person-info encapsulates name, birth-date, income, and job. The return function has a single parameter, request. Let's use these functions:
```

```
(define dilbert
```

```
(define dilbert
    (person-info 'dilbert '(5 12 57) 45000 'programmer))
    (person-info 'dilbert '(5 12 57) 45000 'programmer))
> (dilbert 'name)
> (dilbert 'name)
dilbert
dilbert
> (dilbert 'month)
> (dilbert 'month)
5
5
> (dilbert 'rich)
> (dilbert 'rich)
#f
```

```
#f
```

```

The first two examples do not offer much more than a simple data structure with selector functions would offer. The third example goes a bit beyond the simple access of information.

But what happens to dilbert if we create another person? Does dilbert's information change? Let's see.

Dilbert's data remained intact. Each time person-info is called, it creates a
\(w\) function with unique values. This information is maintained in what is new function with unique values. This information is maintained in what is
```

(define dogbert (person-info 'dogbert '(7 9 90) 0 'philosopher))

```
(define dogbert (person-info 'dogbert '(7 9 90) 0 'philosopher))
> (dogbert 'name)
> (dogbert 'name)
dogbert
dogbert
> (dilbert 'name)
> (dilbert 'name)
dilbert
```

dilbert

```

Functions as return values

Encapsulation

\section*{Extent of closures}

Changing values in a closure
called a lexical closure (typically referred to as a closure). A closure is a function that contains additional information about the environment in which it was created. The environment in this case refers to variables and their bindings that affect the function. These variables are within the scope of the function that is created. Scope in Scheme is determined lexically according to the position in the code in which variables are defined. For example, when dogbert is defined by calling person-info, the function returned has access to the parameters name, birth-date, income, and year. These are maintained in an environment and are not accessible in any way other than through the closure once the function person-info finishes.

A closure stays in existence (its extent) as long as there is some way to access it. In this example that is as long as the variables dilbert and dogbert are bound to the function, or any other variable or data structure that includes the closures exists. For example, we can create a clone for Dilbert named Studbert:
```

(define studbert dilbert)
> (studbert 'name)
dilbert

```

Studbert has access to Dilbert's values because Studbert is defined to be what Dilbert is. Even if we change dilbert's binding, studbert maintain's the values.
```

(define dilbert 'programmer)
> (dilbert 'name)
Error: Operator is not a function: programmer
> (studbert 'name)
dilbert

```

The values within closures can be changed. The following example illustrates this. Notice that the function returned takes one required argument and optional arguments after that:
```

; Return function encapsulating job information.
(define (job-info name income job)
(lambda (request . value)
(cond ((eq? request 'name) name)
((eq? request 'income) income)
((eq? request 'broke) (< income 1000))
((eq? request 'rich) (> income 100000))
((eq? request 'occupation) job)
((eq? request 'raise)
(set! income (+ income (first value))))
((eq? request 'new-occupation)
(set! job (first value))))))
(define ratbert (job-info 'ratbert 1000 'pest))
> (ratbert 'income)
1000

```
```

> (ratbert 'raise 100000)
??
> (ratbert 'income)
101000
> (ratbert 'rich)
\#t

```

We have created a means of changing information stored within a closure. We can represent an entire company and give everyone a raise fairly easily using the function job-info:
```

(define larry (job-info 'larry 10000 'stooge))
(define moe (job-info 'moe 11000 'stooge))
(define curly (job-info 'curly 12000 'stooge))
(define emps (list larry moe curly))
> (for-each (lambda (emp) (emp 'raise 500)) emps)
??
> (map (lambda (emp) (emp 'income)) emps)
(10500 11500 12500)

```

The list emps is a list of employees (represented as closures) that can be sequenced through using for-each and map.

\subsection*{11.2.1 Exercises}
11.1 Write a function last that has one required parameter a-list and an optional parameter number. If last is called with a-list alone, it returns the last element of a-list; otherwise, last returns a list of the last number elements of a-list.
11.2 Write a function ncons that takes a variable number of arguments and conses them together into a new list.
(ncons 'a 'b '(c d) '(e f))
is equivalent to
```

(cons 'a (cons 'b (cons '(c d) '(e f))))

```
11.3 Write a function make-power that takes a number num and returns a function that takes a single argument and raises it to the numth power. For example,
```

(make-power 3)

```
returns a function that cubes its argument. Show a single expression using make-power that computes 25 to the 6th power.
11.4 Write a new version of accumulate that does not take a list of elements to be accumulated, but instead takes them as separate arguments. For

Objects

Programming paradigms
example,
```

(new-accum cons 'a 'b 'c)

```
should return the same value as
```

(accumulate cons '(a b c))

```
11.5 What does the following function do?
```

(define (weird func)
(lambda args (list (apply func args))))

```

What do the following expressions return?
```

((weird abs) 3)
((weird max) 3 4 5 6)
((weird accumulate) list '(3 4 5))

```

\subsection*{11.3 Object-Oriented Programming}

Using closures we have created objects like those used in object-oriented programming. An object is a data structure that has data and programs associated with it. It is possible to retrieve the data in an object directly or to get information resulting from computations on the object's data.

Object-oriented programming (OOP) is a style or paradigm of programming. There are four major programming paradigms: imperative programming, functional programming, logic programming, and object-oriented programming. Languages like Pascal and C follow imperative programming. Scheme is based on functional programming. PROLOG uses logic programming that involves programming by creating facts, rules, and queries. Object-oriented programming languages include Smalltalk, C++, and Java. Look at each of these as a style of programming. Certain tasks may be easier using a particular style, but any style is general enough such that a program written in one style could be rewritten using another style.

Instance and class variables
Classes and instances

Objects are just one part of object-oriented programming. In addition there are classes, which specify the types of information that objects contain and the operations they can perform. A class is similar to a data type and an object is an instance of a class similar to a variable. For example, we may have a class for cars (called auto) and then define some instances of cars, like my-car, your-car, and fast-car.

A class defines the information that the instances of the class have. This information is maintained in instance variables or fields. For example our auto class may have instance variables for the make and model of the car, the number of doors, and the color. Class variables represent information that is shared between

\footnotetext{
1. This is different from what we are accustomed to in Scheme. Scheme does not specify types for its variables, as many other programming languages do. Types are associated with the values themselves.
}
all instances in a class. This may be a common, fixed piece of information, such as the number of wheels in all cars, or it may be a shared variable such as a counter of the number of cars, in which every time a new car is created the counter is increased.

Classes can be based on other classes. For example, our car class may be based on the class vehicle. The class vehicle is a superclass of auto, which is the subclass. There may be numerous subclasses of vehicle like motorcycle and truck. Instance variables in the superclass can be used in the subclasses. For example, we could put the instance variables for make, model, and color in the superclass vehicle and still access them from the auto subclass. A subclass inherits the instance variables of its superclass. This simplifies the creation of programs. We can still have instance variables for subclasses if needed. For example, auto and truck would still have the number-of-doors instance variable, but motorcycle wouldn't.

Some object systems allow inheritance from more than one superclass. This is called multiple inheritance. It gives more flexibility but has more complications in handling situations where conflicts in methods may arise.

Code can be part of objects and it is specified in the class definitions. Such code is called a method. For example, our auto class could have a method to keep track of miles per gallon. Imagine we had instance variables for the number of miles driven and the number of gallons purchased. A simple method could divide these and return miles per gallon. Methods are invoked by message passing. An object is sent a message that invokes a method. The selection of the method is called dispatching.

Object-oriented programming provides a convenient means for handling polymorphic functions-functions that take different types of arguments. The same message can be sent to different types of objects and handled by different methods that perform the proper actions based on the object class. This is one way of handling polymorphic functions. The programmer does not need to worry about the type of the object. She can focus on the messages to the object.

The benefits of object-oriented programming are in the simplification of complex structures, especially those that are hierarchical in nature and in ease of reuse of code and code modifiability. The methods associated with objects are well defined and easy to use. Through message passing, you can focus on the actions you want performed and not on the details of how they must be done, which allows polymorphic functions to be used easily. If you ask for the color of a vehicle, you don't have to worry if it is a motorcycle or a truck. The language provides features to eliminate a great deal of the overhead.

There is cost associated with the creation of classes, instance variables, methods, and instances. So for small programs, this creation overhead might not be worthwhile. But for large programs it is a big plus. The widespread growth of \(\mathrm{C}++\) and the design of Java to be object-oriented are testimony to the advantages that object-oriented programming offers.

Superclasses, subclasses, and inheritance

\section*{Multiple inheritance}

Methods and message passing

\section*{Polymorphism}

Object-oriented
programming plusses

\section*{Macros}

Creating code and evaluating it later

Creating class definitions

\subsection*{11.3. How to write in the object style}

We will develop a simple example that illustrates some of the things that can be done using object-oriented programming. The creation of the classes and instances in these examples is more complex than you would normally encounter in an object-oriented programming language. This is because Scheme itself does not support objects. Therefore, we have to explicitly take all the steps required to produce classes, instances, methods, inheritance, and dispatching.

It is not possible to write code that handles the class and instance creation overhead to make an OOP system, as our examples will have. This is because some of the functions that must be created do not follow the normal evaluation rules. They would be passed arguments that are class and instance names and methods that should not be evaluated. Essentially we must create special forms. This can be done by either modifying the interpreter or using an implementation of Scheme that allows the creation of macros. Macros are similar to functions except instead of being evaluated, they are translated into equivalent function compositions and then evaluated. Macros can be used to define special forms that do not follow the normal evaluation rules. Without macros we would be unable to write class and instance creation special forms.

The above paragraph is not entirely true. We could write functions to create classes and instances and provide the OOP features we need. But the special information needed by these functions (i.e., instance variable names, methods, superclass names) would have to be quoted or part of quoted lists. Then we build the functions we need, adding all the overhead to support OOP and embedding the information we passed in (e.g., class and instance variable names). Finally, we eval this newly created function. Techniques like this are used in some of the later chapters where code is adjusted and then evaled. It is much nicer to be able to use macros where you can more freely design the structure of the function calls and specify special evaluation rules.

Some implementations of Scheme have extensions that support OOP. For example, STK has extensions that support both objects and the graphics toolkit of \(\mathrm{Tcl} / \mathrm{Tk}\), which provides support for creating graphical user interfaces (GUIs). If you are using a version of Scheme that supports objects, you should learn how to use the functions that are provided to create classes, instances, and methods. Then you can create an example similar to the one given below. You'll most likely find that your version is much shorter and easier to write.

The example we will build will illustrate some of the features of objects, in particular the use of class and instance variables, methods, and inheritance from a superclass. Let's look into these properties individually to see how they can be implemented.

To create a class definition, we can define a function that returns another function. The function returned is an instance of that class. So we are combining class definition with instance creation. Most OOP systems make these separate operations. This return function encapsulates the instance variables of the object. Here is an example:
```

; Create simple car class.
(define (auto make model)
(lambda (req)
(cond ((eq? req 'make) make)
((eq? req 'model) model)
(else 'bad-request))))

```

This defines a simple class for cars. The return value of auto is a function that is used as an instance of the auto class. There are two instance variables: make and model. Here is an example using this function:
```

(define fast (auto 'porsche 928))
(define small (auto 'plymouth 'arrow))
> (fast 'make)
porsche
> (small 'model)
arrow

```

The instances are functions and the messages sent as arguments to the functions retrieve instance variables or invoke methods. In some object systems the message names are the functions and their arguments are the objects. This fits in with the idea of viewing functions as action doers and objects as things acted upon, and works nicely with polymorphism especially when it extends over into built-in functions. For example, we could have a display method for the auto class. With our system we would have to invoke it as
```

(fast 'display)

```

With other object systems we would enter
```

(display fast)

```

Let's add methods to change instance variables. The method paint changes the instance variable color and the method add augments the instance variable accessories. These methods will take additional arguments, so we'll modify the return function to take additional, optional arguments:
```

```
; Create car class with modifiable instance variables.
```

```
; Create car class with modifiable instance variables.
(define (auto make model color accessories)
(define (auto make model color accessories)
    (lambda (req args)
    (lambda (req args)
        (cond ((eq? req 'make) make)
        (cond ((eq? req 'make) make)
            ((eq? req 'model) model)
            ((eq? req 'model) model)
            ((eq? req 'color) color)
            ((eq? req 'color) color)
            ((eq? req 'paint) (set! color (first args)) color)
            ((eq? req 'paint) (set! color (first args)) color)
            ((eq? req 'accessories) accessories)
            ((eq? req 'accessories) accessories)
            ((eq? req 'add)
            ((eq? req 'add)
                    (set! accessories (append args accessories))
                    (set! accessories (append args accessories))
                    accessories)
                    accessories)
                (else 'bad-request)) ) )
```

```
                (else 'bad-request)) ) )
```

```

When we create a car, we will specify an initial color and accessory list:

Creating instances

Handling messages

Creating class variables

Instance variables versus class variables
```

(define fast (auto 'porsche 928 'red '(stereo fat-tires)))
(define small (auto 'plymouth 'arrow 'white '()))
> (fast 'color)
red
> (fast 'paint 'bright-red)
bright-red
> (fast 'color)
bright-red
> (small 'accessories)
()
> (small 'add 'radio 'clock 'alarm-system)
(radio clock alarm-system)

```

We can add a class variable to our initial auto class that is shared among all cars. To do this the variable will have to be defined outside of the return function but within the definition of the class so that it is not simply a global variable that can be affected by any part of the program. Putting a let variable between the class definition and the return function will solve this. The shared variable all-repair-cost keeps track of the total repair cost for all the cars.

Another variable repaired is unique for each car, but is not a parameter to auto. It acts like an instance variable in that it is unique for each instance; however, it is not specified as an argument when the object is created. The repair method takes an item to be repaired and its cost. It will add the repaired item to the repaired instance variable and update the total cost in the all-repair-cost class variable. Notice the difference in the placement of the two lets:
```

; Create car class with class and instance variables.
(define (auto make model)
(let ((all-repair-cost 0))
(lambda (req . args)
(let ((repaired'()))
(cond ((eq? req 'make) make)
((eq? req 'model) model)
((eq? req 'cost) all-repair-cost)
((eq? req 'repair)
(set! all-repair-cost
(+ (second args) all-repair-cost))
(set! repaired (cons (first args) repaired))
repaired)
(else 'bad-request))))))
(define fast (auto 'porsche 928))
(define small (auto 'plymouth 'arrow))
> (fast 'repair 'brakes 129)
(brakes)

```
```

> (fast 'cost)
129
> (small 'repair 'fender 300)
(fender)
> (small 'cost)
300
> (fast 'cost)
129

```

Our shared variable isn't being shared. The problem is not with the placement of the let outside of the return function. Instead it is in the definition of the auto function before the let. Each time auto is called, it invokes the outer let expression which creates a new all-repair-cost variable. Each instance created calls auto and thus gets a unique all-repair-cost variable. To fix this, the let must be defined before the auto function.

We should test our second let variable, repaired, as well:
```

> (small 'repair 'hood 600)
(hood)
> (small 'cost)
900

```

The repaired instance variable did not maintain the previous repair, fender. Once again this let is in the wrong position in relation to the inner lambda. The variable all-repair-cost is keeping a proper running total for the individual cars. The inner let should be relocated to the position where the outer let is. Here is a new version of auto with both of these bugs hopefully fixed:
```

; Create car class with class and instance variables.
(define auto
(let ((all-repair-cost 0)) ; class variable
(lambda (make model) ; auto function header
(let ((repaired '())) ; instance variable
(lambda (req . args) ; parameters for methods
(cond ((eq? req 'make) make)
((eq? req 'model) model)
((eq? req 'cost) all-repair-cost)
((eq? req 'repair)
(set! all-repair-cost
(+ (second args) all-repair-cost))
(set! repaired (cons (first args) repaired))
repaired)
(else 'bad-request)))))))
(define fast (auto 'porsche 928))
(define small (auto 'plymouth 'arrow))

```

Fixing bugs in our class and instance variables
```

> (fast 'repair 'brakes 129)
(brakes)
> (fast 'cost)
129
> (small 'repair 'fender 300)
(fender)
> (small 'cost)
4 2 9
> (fast 'cost)
4 2 9
> (small 'repair 'hood 600)
(hood fender)
> (small 'cost)
1029

```

Creating inheritance

Passing methods to the superclass

It works! The final object-oriented feature we'll include is inheritance. We will define a superclass to auto called vehicle. It will contain the make and model instance variables that auto had. The auto subclass will contain an instance variable for the number of doors the car has. The make and model information for a car will be inherited from the vehicle superclass. This is done by creating an instance of the superclass whenever an instance of auto is created. Any method requests that the instance of auto does not know about are sent to the superclass.

In creating the instance of the superclass, certain arguments may be needed. These can be named explicitly as parameters in the subclass or by using a variable number of arguments. This latter solution makes for code that is easier to write and to modify. Notice how the parameter list of auto specifies its parameters and takes a variable number for the vehicle superclass. Also notice how the instance of vehicle is created and how it is invoked when the subclass cannot handle the request.
```

; Create vehicle superclass.
(define (vehicle make model)
(lambda (req)
(cond ((eq? req 'make) make)
((eq? req 'model) model)
(else 'bad-request))))
; Create car subclass.
(define (auto num-doors . args)
(let ((parent (apply vehicle args))) ; create vehicle instance
(lambda (req . args)
(cond ((eq? req 'num-doors) num-doors)
(else ; send message to parent
(apply parent (cons req args)))))))

```
```

(define fast (auto 3 'porsche 928))
(define small (auto 2 'plymouth 'arrow))
> (fast 'make)
porsche
> (small 'model)
arrow
> (fast 'num-doors)
3

```

Now that we have explored some aspects used in object-oriented programming, we can put all the pieces together into a larger example. We will have a vehicle superclass with auto and motorcycle subclasses. These subclasses have instance variables unique to their classes. Most of the instance variables are in the vehicle class including the type of the vehicle, which is automatically passed to the vehicle function when the instance is created. This is done by simply consing the appropriate type (car or motorcycle) onto the list of arguments applied to vehicle. An instance of vehicle can be created directly without going through a subclass. The van object is an example of that.

Another feature that an object system may support is the ability to run some code when an instance is created. We model this to keep track of the total vehicle count. The variable num is used in vehicle to maintain this count. Each vehicle or subclass of vehicle can access the count using the method count. When a vehicle is created, num is incremented to count the new vehicle.
```

; Create vehicle superclass.
(define vehicle
(let ((num 0))
(lambda (type make model year color owner)
(set! num (+ num 1))
(lambda (req . args)
(cond ((eq? req 'type) type)
((eq? req 'make) make)
((eq? req 'model) model)
((eq? req 'year) year)
((eq? req 'color) color)
((eq? req 'owner) owner)
((eq? req 'buy) (set! owner (car args)) owner)
((eq? req 'count) num)
(else 'bad-request))))))
; Create car subclass.
(define (auto num-doors . args)
(let ((parent (apply vehicle (cons 'car args))))
(lambda (req . args)
(cond ((eq? req 'num-doors) num-doors)
(else (apply parent (cons req args)))))))

```
```

; Create motorcycle subclass.
(define motorcycle
(let ((num-bikes 0))
(lambda args
(set! num-bikes (+ num-bikes 1))
(let ((parent (apply vehicle (cons 'motorcycle args))))
(lambda (req . args)
(cond ((eq? req 'num-bikes) num-bikes)
(else (apply parent (cons req args)))))))))

```

Below are five instances of these classes that are all put into the list all so we can send messages to all the instances in a single mapping:
```

(define my-car (auto 4 'vw 'jetta 1984 'blue 'oliver))
(define her-car (auto 3 'mazda 323 1990 'blue 'myriam))
(define old-bike (motorcycle 'yamaha 'XS400 1988 'white 'oliver))
(define new-bike (motorcycle 'kawasaki 'KZ650 1996 'red 'gino))
(define van (vehicle 'utility 'nissan 'quest 1996 'silver 'hans))
(define all (list my-car her-car old-bike new-bike van))
> (map (lambda (veh) (veh 'make)) all)
(vw mazda yamaha kawasaki nissan)
> (map (lambda (veh) (veh 'count)) all)
(5 5 5 5 5)
> (map (lambda (veh) (veh 'type)) all)
(car car motorcycle motorcycle utility)
> (map (lambda (veh) (veh 'num-bikes)) all)
(bad-request bad-request 2 2 bad-request)
> (map (lambda (veh) (veh 'num-doors)) all)
(4 3 bad-request bad-request bad-request)
> (map (lambda (veh) (veh 'owner)) all)
(oliver myriam oliver gino hans)
> (new-bike 'buy 'alex)
alex
> (map (lambda (veh) (veh 'owner)) all)
(oliver myriam oliver alex hans)

```

Notice that the vehicle counts are the same for all instances, because the count is in a shared variable. The methods num-bikes and num-doors only work with the motorcycle and auto classes. For all other classes, bad-request is returned.

\subsection*{11.3.2 Exercises}
11.6 Why is the name auto used to define the car class instead of car?
11.7 Extend the example above to calculate miles driven and gasoline used for each car. Provide methods to take mileage and gasoline amounts and keep them in running totals for each vehicle. Write another method to compute and return the miles per gallon. Then extend this to support shared variables for total miles driven and gas used by all the vehicles. Provide a method that returns the average mileage per gallon of all the vehicles.
11.8 Design the class structure for a library. For books keep track of their title, author, subject, publisher, page count, and publishing year. For periodicals store some general information about the magazine (title, subject, which years are in the collection) and specific information for each issue (article titles, authors, and subjects). How would you structure the classes to allow inheritance of information from superclasses?
11.9 Given the library class structure from the previous problem, add classes for newspapers and videos. Is this an easy extension or did you have to redesign parts of your structure?
11.10 Build the actual class and instance functions for the library described above, supporting books and periodicals only.
11.11 Create classes, instances, and methods to model a problem of your choosing. Try to use class and instance variables, methods that take multiple arguments, inheritance, and instance or class variables with values that can be updated.

\subsection*{11.4 Forcing Exits with call-with-current-continuation}

Scheme provides a powerful function that can be used to leave a section of code and jump to a predefined area. This can be used to exit from deep within a composition of functions or within a recursive call or a do loop. Any remaining actions that were to be done are left forever. These bypassed actions are a continuation. The function that allows us to exit from a continuation is call-with-current-continuation. Before we talk about this complex and powerful function, let's look at continuations.

In Chapter 3 we looked at the evaluation of composed (one expression inside
Continuations another) Scheme expressions. Before we apply the outermost function, we must evaluate its arguments. This sets up a continuation-an action that must be returned to. For example, when the interpreter begins to evaluate the first subexpression,
```

(* new 4)

```
in the expression
(list (* new 4) old)
call-with-currentcontinuation
it makes a continuation to evaluate old and to list the two subexpressions. All actions in Scheme involve continuations, even simple top-level calls: once they are evaluated, the results are printed and the next command is read in. Continuations can be bypassed using call-with-current-continuation.
call-with-current-continuation allows you to exit from a continuation (typically a loop) and return a certain value. Leaving a continuation is done simply by calling a predefined exit function with a value that the prematurely exited continuation will return. Evaluation continues with the expression after call-with-current-continuation.
call-with-current-continuation takes a function of one argument. That argument names the exit function. The body of the function contains the expression(s) from which we wish to be able to exit. \({ }^{2}\) call-with-currentcontinuation is best explained with examples.

The following two recursive functions print strings before and after making recursive calls. Both test their one argument. When the argument exceeds three, vanilla returns done. However, strawberry forces an exit by calling stop (the exit function set by call-with-current-continuation). See how this affects the remaining displays:
```

; Print messages during recursive descent and unwind.
(define (vanilla arg)
(cond ((> arg 3) 'done)
(else
(display "before recursion")
(newline)
(vanilla (+ arg 1))
(display "after recursion")
(newline))))
; Print messages during recursive descent only.
(define (strawberry arg)
(call-with-current-continuation
(lambda (stop)
(define (inner-berry arg)
(cond ((> arg 3) (stop 'done))
(else
(display "before recursion")
(newline)
(inner-berry (+ arg 1))
(display "after recursion")
(newline))))
(inner-berry arg))))

```

\footnotetext{
2. We can exit from a wider range of continuations than those immediately defined in the body of the function argument to call-with-current-continuation. This will be covered in the upcoming examples.
}
```

> (vanilla 1)
before recursion
before recursion
before recursion
after recursion
after recursion
after recursion
??
> (strawberry 1)
before recursion
before recursion
before recursion
done
> (list (strawberry 1) 'already)
before recursion
before recursion
before recursion
(done already)

```

In vanilla three recursive calls are made. The final one, with arg equal to four, satisfies the exit condition and done is returned. However, this is not the final return value. The recursive call is followed by another display and newline. These must be done for each recursive call made. The final return value is the return value of the last expression in the else action-a call to newline. This value is unspecified in Scheme.

In strawberry the exit function stop is called when the exit case of the recursion is reached. This means we immediately exit from the call-with-currentcontinuation and do not return to any of the recursive calls (the continuation) like vanilla did. done is returned as the value of the call-with-currentcontinuation and strawberry. The continuation does not include the call to list as the last function call shows. So the call to list is evaluated and the list (done already) is returned.

The exit function can be passed as an argument to other functions. This allows an exit to occur in a function that is not defined within the call-with-current-

Regular recursion

Exiting from a recursive descent

Passing exit functions as arguments
continuation. Look at the following variation of strawberry:
```

; Set up exit function and pass to nonberry.
(define (chocolate arg)
(call-with-current-continuation
(lambda (stop)
(nonberry arg stop))))

```

Saving the exit function in a global variable
```

; Print messages during recursive descent only.
(define (nonberry arg exit-func)
(cond ((> arg 3) (exit-func 'done))
(else
(display "before recursion")
(newline)
(nonberry (+ arg 1) exit-func)
(display "after recursion")
(newline))))
> (chocolate 1)
before recursion
before recursion
before recursion
done

```
chocolate defines stop as an exit function and then calls nonberry with stop. When exit-func (which is bound to stop) is called in nonberry, it forces an immediate exit from the recursion, and done is returned. chocolate behaves just like strawberry. \({ }^{3}\)

The exit function can be saved in a global variable. The global variable must be set within the call-with-current-continuation. If we use a define, it can't be used outside of the call-with-current-continuation because it creates a variable local to the call-with-current-continuation. To create a global variable, we must first create the global variable using define on the top level outside the call-with-current-continuation, and then change its value inside the call-with-current-continuation using set!. This can be done as follows:
```

(define bail-out 'nothing-yet)
(call-with-current-continuation
(lambda (stop)
(set! bail-out stop)))

```
bail-out is now a global exit function. The call-with-currentcontinuation is defined at the top level, so calling bail-out causes evaluation to continue at the top-level read-eval-print loop. Here are some examples showing how bail-out can be used:
```

> (bail-out 2)
2
>(* 4 (+ 3 (bail-out 2) 5))
2
> (list 'before (bail-out 2) 'after)
2

```

\footnotetext{
3. But it tastes quite different.
}
```

> (list (display "before ") (bail-out 2) (display "after "))
before 2

```

The second and third examples show how an exit function nested within a function call causes the return value to be that of the exit function. The exit function supersedes the continuation in place. The last example shows that nested functions are called up to the point of the exit function, and then the exit function's value is returned. The string before gets displayed, but after doesn't because the second display (the continuation) does not get evaluated.

\subsection*{11.4.1 Using call-with-current-continuation to exit from a do loop}

Many iterative functions using do can be simplified using call-with-currentcontinuation. This is especially true for do loops with multiple exit conditions (e.g., all-numbers?-iter and insert from Chapter 10).

Below is a function that implements subset?. It has two exit conditions: testing for a nonmatch and testing for an empty list. We need to check each element of the first list and test if it occurs in the second list. If it doesn't, we needn't test any further and should exit from the testing loop and return \#f. Our do will use a single exit case testing for an empty list. The call-with-current-continuation will set up an exit function for the second exit case-an element that does not occur in the second list.
```

```
; Return #t if all elements in set1 are also in set2, #f otherwise.
```

```
; Return #t if all elements in set1 are also in set2, #f otherwise.
(define (subset?-iter set1 set2)
(define (subset?-iter set1 set2)
    (call-with-current-continuation
    (call-with-current-continuation
        (lambda (exit)
        (lambda (exit)
            (do ( (test-set set1 (rest test-set)) )
            (do ( (test-set set1 (rest test-set)) )
                ((null? test-set) #t)
                ((null? test-set) #t)
                    (if (not (member (first test-set) set2))
                    (if (not (member (first test-set) set2))
                        (exit #f))))) )
```

```
                        (exit #f))))) )
```

```

The return value will be \#f if (first test-set) is ever not a member of set 2 , or \# t when test-set is empty-all elements have been checked.

Below is a trace of the call (subset?-iter '(2lll \(\left.\begin{array}{lll}2 & 3 & 4\end{array}\right)^{\prime}\left(\begin{array}{lll}4 & 2 & 5\end{array}\right)\) ): test-set is bound to ( \(\left.\begin{array}{lll}2 & 3 & 4\end{array}\right)\)
(first test-set) is in set2, (4 2 5), so we continue. test-set is bound to (rest ' \(\begin{array}{ll}2 & 3\end{array}\) 4) ) or ( 3 4)
(first test-set) is not in set2. Thus exit is called, passing the value \#f back to call-with-current-continuation, which it returns. Hence subset?-iter returns \#f.

Writing subset? with do and call-with-currentcontinuation
    Below is a trace of the call (subset?-iter' \(\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)^{\prime}\left(\begin{array}{ll}4 & 2\end{array}\right)\) ):
        test-set is bound to ( \(\left.\begin{array}{lll}2 & 3 & 4\end{array}\right)\)
    test-set is bound to (rest '(2 3 4 4 ) ) or ( \(\left.\begin{array}{ll}3 & 4\end{array}\right)\)
(first test-set) is not in set2. Thus exit is called, passing the value \#f back
returns \#f.

Finding employees using do and call-with-currentcontinuation

The function find-employee from Chapter 10 can be written using call-with-current-continuation. call-with-current-continuation sets up an exit function to jump out of either do loop. As before, the outer do loop sequences through the divisions of the company, and the inner do loop sequences through the departments of each division. If a match is found, the division and department of that employee is returned by calling return, the exit function, with a list of the division and department names. If none of the people in the departments matches person, then the inner do loop returns no-match. Since the inner do loop is the body of the outer do, the outer do continues with the next division. If the department lists in all divisions do not match person, (null? company) will be true and \#f will be returned.

We are using the definitions of department-list, employees, divisionname, and department-name from Chapter 10.
```

; Return the division and department of person in company-list,
; \#f if person is not in company-list.
(define (find-employee company-list person)
(call-with-current-continuation
(lambda (return)
(do ((company company-list (rest company)))
((null? company) \#f)
(do ((dept (department-list (first company)) (rest dept)))
((null? dept) 'no-match)
(if (member person (employees (first dept)))
(return (list (division-name (first company))
(department-name (first dept))))))))))

```

Here are tests of this new version using the definition of com from Chapter 10:
```

> (find-employee com 'bernice)
(far-east advertising)
> (find-employee com 'fred)
\#f
> (find-employee com 'stephen)
(western investment)
> (find-employee com 'hans)
(european sales)

```

\subsection*{11.4.2 Exercises}
11.12 Does the following version of strawberry work like the previous one from page 276?
```

(define (strawberry arg)
(call-with-current-continuation
(lambda (stop)
(cond ((> arg 3) (stop 'done))
(else
(display "before recursion")
(newline)
(strawberry (+ arg 1))
(display "after recursion")
(newline))))))

```
11.13 Write a new version of all-numbers?-iter from Chapter 10 that uses do and call-with-current-continuation.
11.14 Write a new version of insert from Chapter 10 that uses do and call-with-current-continuation.
11.15 Write your own version of the function any using do and call-with-current-continuation.
11.16 Write your own version of the function every using do and call-with-current-continuation.
11.17 Write your own version of the function find-if using do and call-with-current-continuation.
11.18 Write your own version of the function assoc using do and call-with-current-continuation.

\subsection*{11.5 Summary}
- To write a function that takes a variable number of arguments (zero or more), use one of the following templates:
```

(define (function . optional-args)
body)
(define function
(lambda optional-args
body))

```

The arguments are stored in a list named optional-args.
- To write a function that takes some required and some optional arguments, use one of the following templates:
```

(define (function required-args . optional-args)
body)

```
```

(define function
(lambda (required-args . optional-args)
body))

```
- Functions are first class objects. They can be used in expressions, stored in data structures, bound to variables, passed to functions, and returned from functions.
- A closure is a function that encapsulates information in existence when the function is created. Closures can be used to keep local state information instead of using global variables.
- Object-oriented programming is a style of programming based on the use of objects that maintain data and code, and messages that send information or make requests of objects.
- Classes specify the type of information in an object. The individual objects are called instances. The information maintained in objects is called instance variables. Class variables hold information that is shared among all the instances of a particular class.
- Methods specify code associated with an object. They may be a function of some of the instance variables or change the values of these variables or even invoke other objects sending them messages.
- Classes can be based on other classes through inheritance. A subclass inherits the instance variables and methods of its superclass. Multiple inheritance is the use of instance variables and methods from more than one superclass.
- Object-oriented programming languages provide support to facilitate the creation of classes, instances, and methods.
- call-with-current-continuation is used to create a function that when called returns to the continuation where it was defined. A continuation represents the actions that must be returned to or continued in a composition of functions, recursive call, or do loop.
- The exit function created by call-with-current-continuation can be used within the body of the call-with-current-continuation, or passed as an argument to another function, or bound to a global variable to create a global exit function.
- call-with-current-continuation can be used to allow early exits from iterative functions. This is perhaps the simplest way to deal with multiple exit cases when using iterative functions.

\subsection*{11.6 Additional Reading}

Booch, G. (1994). Object-Oriented Analysis and Design with Applications, Second edition, Benjamin Cummings, Redwood City, CA.

Budd, T. (1997). An Introduction to Object-Oriented Programming, Second edition, Addison-Wesley, Reading, MA.

Keene, S.E. (1989). Object-Oriented Programming in Common LISP: A Programmer's Guide to CLOS, Addison-Wesley, Reading, MA.

Kiczales, G., Des Rivieres, J., and Bobrow, D.G. (1991). The Art of the Metaobject Protocol, MIT Press, Cambridge, MA.

Taylor, D.A. (1990). Object-Oriented Technology: A Manager's Guide, AddisonWesley, Reading, MA.

Wilkinson, N.M. (1995). Using CRC Cards: An Informal Approach to Object-Oriented Development SIGS Books, New York, NY.

Winblad, A.L., Edwards, S.D., and King, D.R. (1990). Object-Oriented Software, Addison-Wesley, Reading, MA.

\section*{ститтв 12}

\section*{DATABASE MANAGEMENT SYSTEMS}

\subsection*{12.1 Database Systems}

A database is a collection of information, such as facts about countries, statistics on demographics, a store's inventory, and phone lists. A database system allows one to access, insert, delete, and modify information stored within a computer system. The term computer system is used as opposed to computer because external memory may be needed. Database systems often require large amounts of memory that greatly exceed the storage capacities of the computer's main memory. The database management system (DBMS) performs operations on the information stored within a database. The DBMS is a program that contains a query language that allows database updates and retrievals. A DBMS can be viewed as a layer or abstraction built upon the computer system. The diagram below shows the pieces of a database system:

Databases and database systems

There are many ways in which database systems organize data. A table is one
way, as the following example of American beers illustrates. We'll refer to this
There are many ways in which database systems organize data. A table is one
way, as the following example of American beers illustrates. We'll refer to this table as brew.

brew relation
\begin{tabular}{l} 
Relations, tuples, and \\
attributes
\end{tabular}

Query languages and SQL

Sample SQL query

SELECT, FROM, and where
\begin{tabular}{llll} 
name & type & rating & brewery \\
\hline Blue Whale & ale & 9 & Oakland \\
A.V. Oatmeal & stout & 10 & Boonville \\
Sierra Nevada & ale & 9 & Chico \\
Big Foot & barley-wine & 10 & Chico \\
Liberty & ale & 9 & San Francisco \\
Augsburger & lager & 4 & Milwaukee \\
Pabst & lager & 1 & Milwaukee \\
Schlitz & malt-liquor & 2 & Milwaukee
\end{tabular}

Tables, like the one above, are the primary data structure in relational database systems. Tables are called relations and rows in a relation are tuples. For example,
Liberty ale 9 San Francisco
is a tuple. The columns in a relation are called attributes. Each tuple has information about one member of the relation and each attribute describes one particular aspect of that tuple (e.g., name or rating).

A query language is similar to a programming language except it is tailored to the specific task of handling updates and accesses to data. It is possible to make rather sophisticated retrievals of information using a query language without having to know how the data is stored. The below query retrieves all the beers in the brew relation that are from Milwaukee or those that have a rating above nine. It is written in the query language SQL, an acronym for Structured Query Language. SQL is pronounced "sequel."
```

SELECT brew.name
FROM brew
WHERE brew.brewery = 'Milwaukee'
or brew.rating > 9;

```

The result would be
```

brew. name
A.V. Oatmeal
Big Foot
Augsburger
Pabst
Schiltz

```

When a query is performed, the tuples in the relation are sequenced through and the specified attributes of those tuples that satisfy the condition are returned. The select clause specifies which attributes are desired. Attribute names are formed by joining the relation name to the attribute name with a period making them one symbol. The from clause specifies the relations to examine. The where clause gives the condition against which each tuple is tested.

New data is added using the inSERT clause. To insert Lucky Lager into the database, the following command is used:

INSERT
INTO brew
VALUES ('Lucky', 'lager', 1, 'Milwaukee');
More than one relation can be used. For example, a relation of establishments, bar, and the beers they serve can be created.
\begin{tabular}{lll} 
name & beer & location \\
\hline Pacific Coast & Blue Whale & Oakland \\
Pacific Coast & A.V. Oatmeal & Oakland \\
Pacific Coast & Sierra Nevada & Oakland \\
Brickskeller & Sierra Nevada & Wash. D.C. \\
Brickskeller & Big Foot & Wash. D.C. \\
Brickskeller & Liberty & Wash. D.C. \\
Brickskeller & Augsburger & Wash. D.C. \\
Brickskeller & Pabst & Wash. D.C. \\
Bent Elbow & Pabst & Terre Haute \\
Bent Elbow & Schlitz & Terre Haute
\end{tabular}

With the new relation, queries can be made such as the following which finds all bars that serve local beers and lists the names of those locally brewed beers.

Queries with two relations
```

SELECT bar.name, bar.location, brew.name
FROM bar, brew
WHERE bar.location = brew.brewery;

```

The name and location attributes of the bar relation and the name attribute from the brew relation are returned.
```

bar.name bar.location brew.name
Pacific Coast Oakland Blue Whale

```

Notice that the from clause specifies both the bar and brew relations. These are combined in an operation called a join. A join appends each tuple in one relation with all the tuples in another relation. This is one type of join; there are other types which are discussed later in section 12.3, "Implementing a Relational Database in Scheme."

Below are two queries that find all the bars that serve beers with a rating of seven or more:
```

SELECT bar.name
FROM bar, brew
WHERE bar.beer = brew.name
and brew.rating >= 7;

```
or
```

SELECT bar.name
FROM bar
WHERE bar.beer IN
(SELECT brew.name
FROM brew
WHERE brew.rating >= 7);

```

The result from either query is
```

bar.name
Pacific Coast
Brickskeller

```

The first example searches through the tuples in the join of the bar and brew relations. For each tuple, if the beer attribute in the bar relation matches the name attribute in the brew relation and the beer has a rating of seven or more, the tuple is eliminated.

\section*{Nested queries}

Closure in SQL
The second example is a nested selection. Since selections return relations, they can be used as input to other selections. In this case the inner SELECT
```

(SELECT brew.name
FROM brew
WHERE brew.rating >= 7);

```
searches through the brew relation and returns a relation of beer names that have ratings of seven or more. This relation is
```

brew.name
Blue Whale
A.V. Oatmeal
Sierra Nevada
Big Foot
Liberty

```

Next the outer SELECT
```

SELECT bar.name
FROM bar
WHERE bar.beer IN
inner SELECT

```
searches through the bar relation and returns the names of bars that match beers from the inner selection relation, namely those with ratings of seven or more.
```

bar.name
Pacific Coast
Brickskeller

```

Nested queries are possible because SELECTS return relations. In fact, all three of the relational operators we have seen, SELECT, FROM, and WHERE, return relations. When a function or operator returns a type that it accepts as input, it is closed over that function or operation. Many Scheme functions such as + , rest, and subseq exhibit this very useful property. The following function calls illustrate how closed functions can be inputs to calls of the same function:
```

(+ (+ 3 4) 5)
(rest (rest (rest '(many numeric and list functions are closed))))

```

\footnotetext{
1. This type of closure is an algebraic closure and should not be confused with the lexical closure of functions as discussed in Chapter 11.
}

Another possible structure for the above database of bar and brew relations is to combine them in one relation, as shown below:
\begin{tabular}{llllll} 
name & beer & location & type & rating & brewery \\
\hline Pacific Coast & Blue Whale & Oakland & ale & 9 & Oakland \\
Pacific Coast & A.V. Oatmeal & Oakland & stout & 10 & Boonville \\
Pacific Coast & Sierra Nevada & Oakland & ale & 9 & Chico \\
Brickskeller & Sierra Nevada & Wash. D.C. & ale & 9 & Chico \\
Brickskeller & Big Foot & Wash. D.C. & barley-wine & 10 & Chico \\
Brickskeller & Liberty & Wash. D.C. & ale & 9 & San Francisco \\
Brickskeller & Augsburger & Wash. D.C. & lager & 4 & Milwaukee \\
Brickskeller & Pabst & Wash. D.C. & lager & 1 & Milwaukee \\
Bent Elbow & Pabst & Terre Haute & lager & 1 & Milwaukee \\
Bent Elbow & Schlitz & Terre Haute & malt-liquor & 2 & Milwaukee
\end{tabular}

This may seem conceptually easier than having two separate relations. However, there is a problem with maintaining data values when tuples are deleted. For example, suppose that the Brickskeller stops serving Liberty ale and that tuple is deleted. All the information about Liberty ale would be lost. By having two relations, bar and brew, the tuple
```

Brickskeller Liberty Wash. D.C.

```
can be deleted from the relation bar and the tuple maintaining information about Liberty ale is retained in the brew relation.
```

Liberty ale 9 San Francisco

```

Thus, queries about Liberty ale can still be made. Much repetition is eliminated when two relations are used. For example, the information about Pabst and Sierra Nevada beers is maintained only once instead of twice.

In general, relations should be set up to reflect simple, complete chunks of information. Another possibility for our database would be to use three relations: one for beers, one for bars and the beers they have, and another for bars and their location. This would eliminate much of the redundancy that currently exists in the bar relation. This process of restructuring the form of the database to eliminate redundancy and dependencies is called normalization.

Database theory specifies different degrees of normalization to produce databases of different normal forms. The simplest is called first normal form (1NF) and the most rigorous and best from a database design perspective is fifth normal form ( 5 NF ). For example, if we restructure the database as mentioned above and split the bar relation into two relations: one matching bars with locations and another matching bars to the beers they serve, we would convert the bar relation from second normal form to third normal form. Normal forms are covered in depth in C.J. Date's text which is referenced in "Additional Reading" at the end of this chapter.

Alternate data structure

\section*{Disadvantages to} large relations

\author{
Use simple relations
}

Normalization and normal forms

Goals of early database systems

Hierarchical database systems and records

\subsection*{12.1.1 Exercises}
12.1 Write a SQL query to find the names and brewery locations of beers that are ales.
12.2 Write a SQL query to find the names and locations of bars that serve beers that are lagers with ratings above six.
12.3 Write the query below without using a nested select.
```

SELECT beer.name, beer.rating
FROM beer
WHERE beer.name IN
(SELECT bar.brew, bar.location
FROM bar
WHERE bar.location = 'Oakland');

```

\subsection*{12.2 Historical Background}

Early databases focused on business applications such as banking, record keeping, and reservation systems. These early systems had four major goals:
Efficiency: Fast access and modifications to large amounts of data
Resilience: Survive hardware crashes and software errors
Access control: Simultaneous multiuser access
Persistence: Ensure data exists for long periods without the program running

\subsection*{12.2.1 First generation: Hierarchical and network database systems}

The first generation of database systems were hierarchical and network systems. A hierarchical system is set up as a collection of trees. Each tree represents an implicit relationship between the parent and its zero or more children. Data is maintained in structures called records. The parent is a certain record type (holds certain values) and the children are of potentially different types. For example, to represent information about companies, the parent record type might contain information about a company like the name of the company and when it was established. A child type below the company root might represent the different departments within the company where each member holds the department name, working budget, person in charge, etc. Below this department record type there could be different children record types. One child type could hold information about the employees of that department with such facts as the names, dates hired, employee identification numbers, salary, and so on. Another child type might contain information about the products of the department. A picture of this follows:


These boxes represent the different record types in the database. The root box, Company, would contain information about a single company. The Department box would be relaced by a number of records containing information about the different departments of the company. Below each department box would be any number of employee and product records, each containing information about employees and products within that department. It is not necessary to specify explicitly which department an employee works in; that fact is implicit from the tree structure of the database.

We would run into problems if we tried to represent our beer/bars relationship as a hierarchical system. We cannot set up a relationship with a hierarchical system in which bars are children of beers (i.e., a beer is available from a number of different bars) and beers are children of bars (a bar serves a number of beers). This will be further explored below.

In a network system, a child can have more than one parent. This is the distinguishing feature between hierarchical and network systems. And this makes the network system more flexible than the hierarchical system. Network databases comprise records and sets. Records maintain the information about individual items in the database. They are similar to tuples within a relational database. Sets are ordered collections of records. Each set has an owner and various members. In considering our example database of bars and beers, we can imagine having a set of beers for each bar representing the beers that each bar carries. This is a 1 to \(N\) relationship, in which there is one owner (a bar) and many members (the beers). For such relationships, network systems provide a natural model. Sets are represented as an ordered sequence of records starting at the owner, going through all the members, and ending back at the owner. A picture of such a relation follows. The owner is the bar Brickskeller and the members are the beers that the Brickskeller sells.

Limitations of hierarchical systems

Network database systems and sets


Limitations of network systems

Dummy records

A complication arises if different owners share the same members in the same set type. This would happen in our beer/bar database with the beers Pabst and Sierra Nevada, which are each served in more than one bar. The problem is that multiple paths are needed and there are ambiguities as to which path to follow when sequencing through the set. Such a situation is called an \(N\) to \(M\) relationship ( N owners and M members). The following diagram illustrates this more complex database.

The problem with this next database becomes clear when you try to follow a path (see page 293). For example, starting at the Bent Elbow an arrow goes up and left to Pabst. However, two arrows leave Pabst, one to Schlitz, and another to the Brickskeller.

There is a way to get around this ambiguity. Another record type is needed (sometimes called a dummy record). Each dummy record represents a beer available at a particular bar. In our database there are eight different beers, two of which are served in different bars; thus there are ten unique beer/bar combinations. This means there will be ten instances of this new dummy record type.


This new record will be called bar-beers; it will have two parents, the bar and brew records. This is not allowed in a hierarchical system where each record can have only one parent. This gives network systems an advantage. Below is a diagram of the record structure for this new database:


Below is the diagram of this new structure with the actual record values. The empty small boxes are records of the type bar-beers. The solid arrows to/from the top and bottom of the boxes connect members of the bar set. The dashed arrows to/from the sides of the boxes connect members of the beer set.


Writing queries in network systems

To make queries in a network system, we can write programs that sequence through sets until the desired information is obtained. The current set and record provide a frame of reference for operations. Certain commands are provided such as the following:
\begin{tabular}{ll} 
command & action \\
MOVE & \begin{tabular}{l} 
establishes the field name of a record for searches \\
finds a record in a set according to the field name established \\
with a MOVE command
\end{tabular} \\
FIND & \begin{tabular}{l} 
go to the next member of the current set
\end{tabular} \\
FIND-NEXT \\
FIND-OWNER & \begin{tabular}{l} 
go to the owner (record) of the current set \\
add a new record in the current set
\end{tabular} \\
INSERT & \begin{tabular}{l} 
delete the current record from the current set \\
DELETE
\end{tabular} \\
MODIFY & \begin{tabular}{l} 
change the contents of the current record
\end{tabular} \\
CONNECT & \begin{tabular}{l} 
connect the current record to the current set \\
disconnect the current record from the current set
\end{tabular} \\
DISCONNECT & dict
\end{tabular}

As an example, we'll try to find the beers sold at the Brickskeller that have ratings above seven. To do so we need to sequence through all the beers in the Brickskeller's beer set. This set comprises five bar-beer records that each connect to a beer record containing the rating information we must check. FIND-NEXT is used to sequence through the set. When the end of the set is reached (the owner is reached), FIND-NEXT returns fail. Here are the instructions for this query:
```

MOVE "Brickskeller" to name in bar
FIND bar
Loop: FIND-NEXT in bar-beers
if fail
exit
FIND-OWNER in beer
if rating in beer > 7
PRINT name in bar
GOTO LOOp

```

The move command specifies that we are interested in the record with the name "Brickskeller." The FIND finds the Brickskeller record in the bar set. Loop specifies a location (label) in the program that we can come back to with a сото. The FIND-NEXT finds the next record in the bar-beers set. The first time it is called it finds the first record in that set. After the last record has been found, FIND-NEXT returns fail. The if statement checks for fail and exits from the query if all records have been searched. If there are more records to search, the FINDOWNER is performed, which finds the record in the beer set that corresponds to the current record in the bar-beers set. If the rating of this record is greater than seven, the name is printed. Next we go back to the statement at the Loop label and continue searching with the next record in the bar-beers set.

Queries are written in an algorithmic fashion in which you must specify how the database is traversed. Therefore you must know how the data is structured, in particular which sets connect to which records.

Setting up the structure of such a database is a difficult task, and it involves having knowledge of how the database will be used to allow queries to be easily and optimally made. If a database is changed, the queries that access the data usually must be changed. This is a major difficulty with network systems.

Relationships between queries and data structures

Separating storage details from the data structure

Data independence

Data integrity

\subsection*{12.2.2 Second generation: Relational database systems}

The second generation of database systems uses the relational approach that we saw in the beginning of this chapter. The relational viewpoint to database systems was proposed as a simplification to network database systems. Rather than view the database as an interconnected collection of sets, the relational view is that a database is a collection of relations.

In relational database systems there are no storage details that are implicit in the structure of the database, as with network databases. All information is made explicitly in the relations. This often requires more effort in entering the data initially, but it doesn't require that queries be rewritten if the data structure changes. The order of the tuples and attributes in any table is not important. How relations are stored internally is invisible to the user; in fact, all the internal storage details are hidden from the user. The result is a simpler system from the user's perspective. The price to be paid is that relational systems require more work in the DBMS, which is more complex. Relational systems tend to be slower as well.

\subsection*{12.2.3 Considerations database systems must address}

Data independence and data integrity are two key problems that all database systems must consider. Data independence involves designing database systems that can perform even when their structure changes via the addition or deletion of information in the database. This is a difficulty in network database systems since the form that a query takes depends on how the data is organized.

Data integrity concerns maintaining consistency in the database so that no items that should be the same are different. This can be solved by eliminating all redundancy in the database. Data integrity is difficult in relational database systems, as relations tend to have redundancy. Normalization techniques can be used to eliminate the redundancy.

\subsection*{12.3 Implementing a Relational Database in Scheme}

To get a better understanding of database systems, we'll implement a minirelational database system in Scheme. Before beginning such an endeavor, it is important to have a good understanding of the commands that must be implemented and the data structures upon which those commands act. In the case of a relational database, the primary data structure is the relation. A relation consists of tuples (rows) and attributes (columns). Before deciding how to represent relations, let's look at how they are used. The commands that we have seen are
```

SELECT

```

FROM
WHERE
The operations that are performed involve both tuples and attributes. SELECT extracts attributes from relations, as in

SELECT bar. name, bar.location
WHERE chooses certain tuples from relations, as in
```

WHERE bar.name = "Pacific Coast"

```

FROM specifies the relations that will be used in the query. This is important when
Unconstrained join more than one relation is specified, as those relations must be combined in some fashion. This is done with what is termed a join. An unconstrained join (also called a Cartesian product) such as
```

SELECT bar.name, brew.name
FROM bar, brew;

```
forms all combinations of bar and beer names. There are three bars and eight beers. Thus there are \(3 \times 8=24 \mathrm{bar} /\) beer combinations altogether. The resulting relation would look like the following:
```

bar.name brew.name
Pacific Coast Blue Whale
Pacific Coast A.V. Oatmeal
Pacific Coast Sierra Nevada
Pacific Coast Big Foot
Pacific Coast Liberty
Pacific Coast Augsburger
Pacific Coast Pabst
Pacific Coast Schlitz
Brickskeller Blue Whale
Brickskeller A.V. Oatmeal
Brickskeller Sierra Nevada
Brickskeller Big Foot
Brickskeller Liberty
Brickskeller Augsburger
Brickskeller Pabst
Brickskeller Schlitz
Bent Elbow Blue Whale
Bent Elbow A.V. Oatmeal
Bent Elbow Sierra Nevada
Bent Elbow Big Foot
Bent Elbow Liberty
Bent Elbow Augsburger
Bent Elbow Pabst
Bent Elbow Schlitz

```

This example is somewhat misleading, as it gives the impression that all three bars serve all eight beers, which is not the case. An accurate list is formed by explicitly requesting only those beers that are served in the bars, as in the following query:
```

SELECT bar.name, brew.name
FROM bar, brew
WHERE bar.beer = brew.name;

```

This will result in a constrained join (also called theta join), as the where clause specifies a join condition. The resulting relation yields the bars and the beers that they serve:
\begin{tabular}{ll} 
bar.name & brew. name \\
Pacific Coast & Blue Whale \\
Pacific Coast & A.V. Oatmeal \\
Pacific Coast & Sierra Nevada \\
Brickskeller & Sierra Nevada \\
Brickskeller & Big Foot \\
Brickskeller & Liberty \\
Brickskeller & Augsburger \\
Brickskeller & Pabst \\
Bent Elbow & Pabst \\
Bent Elbow & Schlitz
\end{tabular}

This relation is a subset of the previous relation. The where clause restricts the tuples of a relation according to some condition.

\subsection*{12.3.1 Deciding on a data structure}

Now that the commands of the SQL subset we have been looking at have been examined, we can start thinking in terms of which Scheme structures would be most effective.

A select is an operation based on attributes-keeping the desired ones. where and from are based on tuples-keeping desired tuples and joining tuples. Also printing out relations involves printing a tuple per line. The emphasis is on tuple operations; therefore, a list of tuples will be a good choice for a data structure to represent relations. The attribute names can be placed in the first sublist of each relation. To represent the brew relation, we can use the following list:
\begin{tabular}{llll}
\begin{tabular}{c} 
(define brew ' ( \\
(brew. name
\end{tabular} & brew.type & brew.rating & brew.brewery) \\
(Blue_Whale & ale & 9 & Oakland) \\
(A.V._Oatmeal & stout & 10 & Boonville) \\
(Sierra_Nevada & ale & 9 & Chico) \\
(Big_Foot & barley-wine & 10 & Chico) \\
(Liberty & ale & 9 & San_Francisco) \\
(Augsburger & lager & 4 & Milwaukee) \\
(Pabst & lager & 1 & Milwaukee) \\
(Schlitz & malt-liquor & 2 & Milwaukee) \\
)) & &
\end{tabular}

Notice the use of underscores and dashes to tie words together as single symbols. The column indentation is just for our readability.

\subsection*{12.3.2 Implementing the WHERE clause}

A where clause is an operation that takes a list of tuples and returns a subset of that list based on some condition. This can be implemented using a keep-if with a function that returns true for any of the tuples that are desired and \#f for those not wanted. To retrieve the ales from the brew relation, the following Scheme function call could be made:
```

(keep-if
(lambda (beer-tuple) (eqv? (second beer-tuple) 'ale))
brew)

```

A function that performs the operation of a wHERE clause needs a condition and a relation. The condition will have references to attributes such as brew. name. These references must be converted to the appropriate attribute values from within the tuple before the condition can be evaluated. This can be done in two ways. One way is to replace the attribute references in the condition with the actual attribute values for each tuple. A second way is to change the condition such that all attribute references are replaced with function calls that extract the correct attribute values when called with a tuple.

The first approach is easier to write; however, it involves an extra step for each tuple. The second method only requires that the condition be changed. Given this new condition, it can be directly called with each tuple to decide if the tuple should remain. In the interest of simplicity, let's try the first approach. The second method will be left as an exercise.

The function convert takes a condition and a tuple and returns a new condition with all attribute references replaced with the appropriate tuple values. convert is called with each tuple in the relation. The converted condition is then evaluated to determine if that particular tuple should be part of the new relationship or not. As an example, consider the following condition and tuple:
original condition: (and (> brew.rating 7) (equal? brew.type 'ale)) tuple: (Liberty ale 9 San_Francisco) attribute names: (brew.name brew.type brew.rating brew.brewery) converted condition: (and (> 97) (equal? 'ale 'ale))

The convert function needs the condition, the current tuple being examined, and the list of attribute names for that tuple. convert sequences through the condition and replaces references to attributes with the actual values from the current tuple. Two additional functions will be helpful: a predicate function attribute-name?, that checks for attribute references, and a function attribute-value, that returns the appropriate values.

The function attribute-name? checks if the element being examined is an attribute-a member of the list of attribute names. The function follows:

Replacing condition attributes with tuple values

Checking for attribute names
```

; Return true if element is an attribute in attrib-names.
(define (attribute-name? element attrib-names)
(member element attrib-names))

```

\section*{Getting attribute values}

\section*{Deep conversion of attributes}

Evaluating the converted condition

The function attribute-value gets the value from the tuple that corresponds to the attribute reference. attribute-value needs the attribute name list and the tuple being checked. The position of the attribute in the attribute name list is also the position of the actual value in the tuple. For example, given the attribute name list and tuple below,
attribute name list: (brew.name brew.type brew.rating brew.location) tuple: (Liberty ale 9 San_Francisco)
brew.rating is the third element in the attribute name list. Thus its value is the third element in the tuple, 9 . The code for attribute-value follows:
```

; Return the attribute named element within tuple given a list
; of attribute names, attrib-names.
(define (attribute-value element attrib-names tuple)
(list-ref tuple (position element attrib-names)))

```

Now that the auxiliary functions attribute-name? and attribute-value have been defined, we can write convert. convert must look deep inside the condition to find attribute names. A simple mapping will not work, as only the top-level elements would be checked. Instead, either a car-cdr recursive function could be built or we could use a map that has a conditional clause that checks if the element being examined is a list. If so, we handle it recursively. The code to do this follows:
```

; Given condition, tuple, and attrib-names, a list of attributes,
; return a new condition with attributes replaced by actual values.
(define (convert condition tuple attrib-names)
(map (lambda (element)
(cond ((list? element)
(convert element tuple attrib-names))
((attribute-name? element attrib-names)
(attribute-value element attrib-names tuple))
(else element)))
condition))

```

Let's test this function.
```

> (convert '(and (> brew.rating 7) (equal? brew.type 'ale))
'(Pabst lager 1 Milwaukee)
'(brew.name brew.type brew.rating brew.brewery))
(and (> 1 7) (equal? lager 'ale))

```

Lastly, the function where can be written. where sequences through the tuples of the relation comparing them against the condition. For each tuple a new condition is formed based on the values in the tuple. This new condition is tested to determine if the tuple should remain. To test the condition, we need an extra level of evaluation. This is because the function convert returns a condition as a list (as the examples above illustrate). To evaluate that condition list, an eval is needed. The examples below will help illustrate this important point:
```

> (convert '(> brew.rating 7) '(Pabst lager 1 Milwaukee)
'(brew.name brew.type brew.rating brew.brewery))
(> 1 7)
> (if (convert '(> brew.rating 7) '(Pabst lager 1 Milwaukee)
'(brew.name brew.type brew.rating brew.brewery))
'OK
'not_OK)
OK
> (eval (convert '(> brew.rating 7) '(Pabst lager 1 Milwaukee)
'(brew.name brew.type brew.rating brew.brewery)))
\#f

```

The function where can be written using a call to keep-if. Only the tuples should be tested and not the attribute name list (the first sublist of the relation); thus, keep-if should be called with the rest of the relation. However, we do want to return a relation with an attribute name list; therefore we must cons the attribute name list onto the resulting relation from the keep-if.

Selector functions for the attribute name lists and the tuples of a relation will changed:
```

; Return the attribute names of a relation.
(define (attributes relation)
(first relation))
; return the list of tuples of a relation
(define (tuples relation)
(rest relation))

```

And finally, the function where:
```

; Return all the tuples in relation that satisfy condition.
(define (where condition relation)
(cons
(attributes relation)
(keep-if
(lambda (tuple)
(eval (convert condition tuple (attributes relation))))
(tuples relation))))

```

Below are some tests of this function. The resulting relations have been shown one tuple per line with attributes lined up in columns. The real output would look different.


What happened? It's easy to jump to conclusions and think that the Scheme interpreter made a mistake. After all, ale is quoted and shouldn't be treated as a variable. Let's examine the functions that where calls. First let's see what convert returns for the above condition and the first tuple in the brew relation.
```

> (convert '(and (> brew.rating 7) (equal? brew.type 'ale))
'(Blue_Whale ale 9 Oakland)
'(brew.name brew.type brew.rating brew.brewery))
(and (> 9 7) (equal? ale 'ale))

```

If we try to eval this expression, we get an error because the first reference to ale is not quoted. To get around this problem, we could either change the function convert such that it inserts a call to quote before any replaced value, or we could quote all attribute names in conditions passed to where. The second approach is easier but less intuitive for the user, as attribute names are more like variables than constant symbols. So we'll opt for the first approach and modify convert as follows:
```

; Given condition, tuple, and attrib-names, a list of attributes,
; return a new condition with attributes replaced by actual values.
(define (convert condition tuple attrib-names)
(map (lambda (element)
(cond ((list? element)
(convert element tuple attrib-names))
((attribute-name? element attrib-names)
(list 'quote
(attribute-value element attrib-names tuple)))
(else element)))
condition))

```

Here are tests of the convert and where functions:
```

> (convert '(and (> brew.rating 7) (equal? brew.type 'ale))
'(Blue_Whale ale 9 Oakland)
'(brew.name brew.type brew.rating brew.brewery))
(and (> (quote 9) 7) (equal? (quote ale) 'ale))

```
```

> (where '(and (> brew.rating 7) (equal? brew.type 'ale)) brew)
((brew.name brew.type brew.rating brew.brewery)
(Blue_Whale ale 9 Oakland)
(Sierra_Nevada ale 9 Chico)
(Liberty ale 9 San_Francisco))

```

\subsection*{12.3.3 Implementing the select clause}

A select clause returns a relation with a subset of the attributes in the original relation. To get a better idea of this, imagine the query
```

SELECT brew.name, brew.rating
FROM brew;

```

This would return the brew relation without the type and brewery attributes.
\begin{tabular}{ll} 
name & rating \\
Blue_Whale & 9 \\
A.V._Oatmeal & 10 \\
Sierra_Nevada & 9 \\
Big_Foot & 10 \\
Liberty & 9 \\
Augsburger & 4 \\
Pabst & 1 \\
Schlitz & 2
\end{tabular}

For each tuple in the relation we must return a tuple with just the name and rating attribute values. To do this we can construct a new list from each tuple and then combine these lists to form a new relation. We can sequence through the list of desired attribute names using the attribute-value function to produce a list of attribute values from each tuple.

Another method is to construct tuples using access functions derived from the desired attribute list. For each desired attribute we create an access function. Then we apply these access functions to each tuple to form the list of attributes we want. This can be done with a sequence of maps: one sequences through the attribute list to form access functions; another sequences through the access functions and produces a new tuple; and the third sequences through all the tuples.

Another problem is converting attribute names into access functions, for example converting brew.name into first or the equivalent function. This second approach is more involved than the first approach. Both approaches must sequence through the entire relation and the list of desired attributes. The second approach must sequence through the access functions that are formed as well.

Let's make life easier and use the first approach. The desired attributes and the relation are passed directly to select. We can use the selector function attributes to get the attribute list from the relation.

To create the desired tuple from the original tuple, we can use a map that calls attribute-value for each attribute in the list of desired attributes. The code follows:
```

(map
(lambda (attribute)
(attribute-value attribute (attributes relation) tuple))
desired-attributes)

```
tuple corresponds to the current tuple. All the tuples will have to undergo this step and be put together to make a new relation. To do this another map can be used. (attributes relation) is the list of attribute names in the relation. Rather than calling attributes many times in the map, the result can be saved in a let variable. The final function is
```

; Return a relation with only the attributes in desired-attributes.
(define (select desired-attributes relation)
(let ((attribute-list (attributes relation)))
(map
(lambda (tuple)
(map
(lambda (attribute)
(attribute-value attribute attribute-list tuple))
desired-attributes))
relation)))

```

The outer map generates a new relation by creating new tuples from the original tuples in the original relation. This map sequences through all the sublists of the relation including the first, which is the attribute list.

The inner map returns individual tuples by forming a list of attributes; one for each element in the desired attributes list. Each attribute is the result of calling attribute-value with the tuple.

Below is a sample call to select. Once again, the output is displayed one tuple per line for readability.
\begin{tabular}{ll} 
> (select ' (brew. & name brew.type) brew) \\
( \begin{tabular}{l} 
(brew. name
\end{tabular} & brew.type) \\
(Blue_Whale & ale) \\
(A.V._Oatmeal & stout) \\
(Sierra_Nevada & ale) \\
(Big_Foot & barley-wine) \\
(Liberty & ale) \\
(Augsburger & lager) \\
(Pabst & lager) \\
(Schlitz & malt-liquor) )
\end{tabular}

\subsection*{12.3.4 Implementing the \(\operatorname{FROM}\) clause}

Implementing join
To handle the \(\operatorname{FrOm}\) clause, a join operation must be implemented. To join two relations, each tuple in the first relation is appended to every tuple in the second relation. To join three relations, first join the first two, then join that result to the third relation. This method can be generalized using accumulate to join any number of relations. Below is a simple example showing a join of two relations:
```

(join
'((name home)
(pig1 straw)
(pig2 twigs)
(pig3 bricks))
'((disaster symptoms effects)
(earthquake shaking bricks)
(fire burning twigs)
(wolf puffing straw)))

```

The result should be the following relation:
\begin{tabular}{lllll} 
( \(n a m e\) & home & disaster & symptoms & effects) \\
(pig1 & straw & earthquake & shaking & bricks) \\
(pig1 & straw & fire & burning & twigs) \\
(pig1 & straw & wolf & puffing & straw) \\
(pig2 & twigs & earthquake & shaking & bricks) \\
(pig2 & twigs & fire & burning & twigs) \\
(pig2 & twigs & wolf & puffing & straw) \\
(pig3 & bricks & earthquake & shaking & bricks) \\
(pig3 & bricks & fire & burning & twigs) \\
(pig3 & bricks & wolf & puffing & straw) )
\end{tabular}

The attribute names are appended and all combinations of the tuples from the two relations are made. This is an unconstrained join. Another possibility is to produce a constrained join by combining the join operation with the where operation and conditionally forming tuples. This is more complex and is left as an exercise.

We can use a nested loop to produce these tuples. The inner loop sequences through the tuples in the second relation, appending them onto the end of the

Nested loop to make a join current tuple in the first relation. The outer loop sequences through the tuples in the first relation. This nested loop can be built using nested maps:
```

; Return an unconstrained join of relation1 and relation2.
(define (join relation1 relation2)
(map
(lambda (tuple1)
(map
(lambda (tuple2)
(append tuple1 tuple2))
relation2))
relation1))

```

Given the previous sample call to join, this new function would produce the following list:
\begin{tabular}{rlll} 
( (name home & disaster & symptoms & effects) \\
(name home & earthquake & shaking & bricks) \\
(name home & fire & burning & twigs) \\
(name home & wolf & puffing & straw) ) \\
( pig1 straw & disaster & symptoms & effects) \\
(pig1 straw & earthquake & shaking & bricks) \\
(pig1 straw & fire & burning & twigs) \\
(pig1 straw & wolf & puffing & straw) ) \\
(pig2 twigs & disaster & symptoms & effects) \\
(pig2 twigs & earthquake & shaking & bricks) \\
(pig2 twigs & fire & burning & twigs) \\
(pig2 twigs & wolf & puffing & straw) ) \\
( pig3 bricks & disaster & symptoms & effects) \\
(pig3 bricks & earthquake & shaking & bricks) \\
(pig3 bricks & fire & burning & twigs) \\
(pig3 bricks & wolf & puffing & straw) ) )
\end{tabular}

We have two problems. The attribute names are included too many times because we treated them like tuples instead of as a special case. Secondly, there is an extra level of nesting. Instead of getting one attribute name list and nine tuples, we got four lists of lists. This is an artifact of the way map works: namely if we call map with a list of four elements, we get a list of four elements back.

What we really want is to call the maps with lists of tuples without the attribute name sublist. Then we convert the list of lists of tuples into a flat list of tuples. This is done by flattening the list one level by appending the tuple lists together. Since there are many tuple lists, the append should be used in conjunction with apply or accumulate. The following example shows how this can work:
```

> (apply append
'((tuple1 tuple2 tuple3)
(tupleA tupleB tupleC)
(tupleX tupleY tupleZ)))
(tuplel tuple2 tuple3 tupleA tupleB tupleC tuplex tupleY tuplez)

```

The attribute name list should be created outside of the map loops and consed to the new tuples. The resulting corrected join function follows:
```

; Return an unconstrained join of relation1 and relation2.
(define (join relation1 relation2)
(cons
(append (attributes relation1) (attributes relation2))
(apply append
(map
(lambda (tuple1)
(map
(lambda (tuple2)
(append tuple1 tuple2))
(tuples relation2)))
(tuples relation1)))))

```

Since join takes two relations and returns a single relation, to perform multiple joins accumulate can be used. This then fully implements the FROM clause:
```

; Return an unconstrained join on relations in relation-list.
(define (from relation-list)
(accumulate join relation-list))

```

To test the function from, assume that the following relations have been defined. The artists Rolling Stones and Grateful Dead have been abbreviated as Stones and Dead.
\begin{tabular}{|c|c|c|}
\hline name & relation & \\
\hline flower & \begin{tabular}{cl} 
((flower & color) \\
(rose & red) \\
(violet & blue))
\end{tabular} & \\
\hline song & \begin{tabular}{l}
( (song \\
(Dandelion \\
(Scarlet_Begonias \\
(Sugar_Magnolias
\end{tabular} & \begin{tabular}{l}
artist) \\
Stones) \\
Dead) \\
Dead))
\end{tabular} \\
\hline album & ( (album (Black_and_Blue (White_Album & \begin{tabular}{l}
artist) \\
Stones) \\
Beatles))
\end{tabular} \\
\hline
\end{tabular}

Below is a sample call to the function from:
```

> (from '(flower song album))
Error: Pair expected

```

This error message or something similar, depending on the implementation of Scheme that you are using, occurs when you try to perform an operation that requires a list on a nonlist object. from calls accumulate, which calls join with the first two elements of the list passed to from. These two elements are not evaluated, but are passed directly to join. This produces the call
(join 'flower 'song)
and results in an error because flower and song are symbols, not lists.
To fix this problem we could modify join so that it does an eval on its two arguments and uses those results throughout. A let form would be helpful to do this. A second solution would be to change from such that it evals the relations before calling accumulate. This can be done with a map on relation-list. A third solution would be to leave the functions as they are and call from as follows:
(from (list flower song album))
This forces the evaluation of the three relations because they are arguments to list.

Either solution is viable; however, the first involves the most work, and the third is a bit ugly from the user's perspective when making queries. Thus, we'll opt for the second choice-modifying the function from. The new code is
```

; Return an unconstrained join on relations in relation-list.
(define (from relation-list)
(accumulate join (map eval relation-list)))

```

Below is the same sample call to the new version of from. Note: to get each tuple to fit on a line, some of the attributes have been abbreviated.
\begin{tabular}{llllll} 
( (from & (flower & song album)) & & & \\
((flower & color & song & artist & album & artist) \\
(rose & red & dandelion & stones & black_n_blue & stones) \\
(rose & red & dandelion & stones & white_album & beatles) \\
(rose & red & scarlet_beg & dead & black_n_blue & stones) \\
(rose & red & scarlet_beg & dead & white_album & beatles) \\
(rose & red & sugar_magno & dead & black_n_blue & stones) \\
(rose & red & sugar_magno & dead & white_album & beatles) \\
(violet & blue & dandelion & stones & black_n_blue & stones) \\
(violet & blue & dandelion & stones & white_album & beatles) \\
(violet & blue & scarlet_beg & dead & black_n_blue & stones) \\
(violet & blue & scarlet_beg & dead & white_album & beatles) \\
(violet & blue & sugar_magno & dead & black_n_blue & stones) \\
(violet & blue & sugar_magno & dead & white_album & beatles))
\end{tabular}

\subsection*{12.3.5 Putting it all together}

Translating SQL into Scheme

The final step is to put the pieces together and decide how queries can be made using these new functions. One approach would be to use the existing form of SQL queries and transform the comma-separated lists in SELECT and from clauses into lists of attribute and relation names, respectively. The conditions in where clauses will have to be transformed into Scheme conditions. The order in which the operations are performed is important. The FROM clause defining any joins should be done first, then the where clause which eliminates certain tuples from the joined relation. Finally the SELECT, which returns a subset of the attributes from the tuples desired, should be performed. Actually the where and SELECT could be reversed, but due to the order in which they occur in SQL, it is easier to perform the select last. Thus,
```

SELECT bar.name, brew.rating
FROM bar, brew
WHERE bar.beer = brew.name
and brew.rating > 7;

```
becomes
```

(select '(bar.name brew.rating)
(where '(and (equal? bar.beer brew.name) (> brew.rating 7))
(from '(bar brew))))

```
select takes two arguments, the list of desired attributes and the relation from where. where takes two arguments also, the condition to test tuples and the relation from the call to from. from has one argument, the list of relations to join.

Executing the query above produces the following:
```

> (select '(bar.name brew.rating)
(where '(and (equal? bar.beer brew.name) (> brew.rating 7))
(from '(bar brew))))
((bar.name brew.rating)
(pacific_coast 9)
(pacific_coast 10)
(pacific_coast 9)
(brickskeller 9)
(brickskeller 10)
(brickskeller 9))

```

\subsection*{12.3.6 Some extras}

Two additional functions would improve our simple relational database program. The first is to pretty print relations such that there is only one tuple per line and the attributes line up in columns. Another function would allow us to insert new tuples into existing relations (implementing the SQL INSERT clause).

A print function is easy to implement using nested calls to map. One loop will sequence through the tuples and another will process the attributes within the tuples. To print strings out in a tabular fashion, we can write a function that determines the length of its argument. This can be done by converting symbols or numbers into strings using symbol->string or number->string, respectively. Then we can count the characters in that string using the function stringlength. If this is longer than our fixed field width, say sixteen spaces, we just print the first sixteen characters of the string. Otherwise we print the string and enough extra blanks to position the cursor at the start of the next field.

Just as subseq returns part of a list, substring returns part of a string. substring takes a string and start and end position, as subseq does. Printing a number of blanks can be done using a loop of some sort, or more simply using the function make-string, which takes a number and a character and returns a string consisting of that many repetitions of that character. Use \# \(\backslash\) space to refer to the space character.
```

; Print out attribute and spaces to fill 16 characters.
(define (fixed-print attribute)
(let ((string
(cond ((symbol? attribute) (symbol->string attribute))
((number? attribute) (number->string attribute))
(else attribute))))
(cond ((< (string-length string) 16)
(display string)
(display
(make-string (- 16 (string-length string)) \#\space)))
(else (display (substring string 0 16))))))

```

Let's try printing out three attributes. To combine multiple calls to fixedprint in one expression, list is used. We are interested in the values displayed

Pretty printing relations
for-each Versus map

Inserting into relations
before the return value-a list of undefined values.
```

> (list (fixed-print 'left-stuff)
(fixed-print "more than 16 characters")
(fixed-print 18))
left-stuff more than l6 chal8 (?? ?? ??)

```

Since we are printing out values using fixed-print and we don't care what value the function that sequences through the attributes or tuples returns, we can use the function for-each to sequence through these lists. for-each is identical to map in that it applies a function to elements of a list. The exceptions are that for-each guarantees that the elements in the list are applied in left to right order and that the return value is undefined. for-each is used when we only care about the side-effects that the function produces, such as setting or printing variables.

The complete print function is below:
```

; Print out relation formatted in columns 16 characters wide.
(define (print-relation relation)
(for-each
(lambda (tuple)
(for-each fixed-print tuple)
(newline))
relation))

```

Below is a sample call to print-relation:
\begin{tabular}{llcc} 
> (print-relation (where & (< brew.rating 7) & brew)) \\
brew.name & brew.type & brew.rating & brew.brewery \\
augsburger & lager & 4 & milwaukee \\
pabst & lager & 1 & milwaukee \\
schlitz & malt-liquor & 2 & milwaukee
\end{tabular}

To implement the INSERT clause, we'll add the new tuple after the first element in the relation. Recall that the first element in a relation is the list of attribute names. To make this addition, it is better to destructively change the list. The reason for this is that we would like to refer to this new relation by name without having to get the result from a call to an insert function each time we want to use the relation.

The list can be changed using define or set!; however, it is necessary to change the list internally. A subtle mistake to avoid is the following oversimplification:
```

; Return relation with tuple added as the new first tuple.
(define (insert-tuple relation tuple)
(define relation
(cons (first relation)
(cons tuple (rest relation)))))

```

This results in changing the value of the parameter relation and does not affect the actual argument with which the function is called, as the following example illustrates:
```

> (define small-relation '((name favorite-color) (arthur blue)))
??
> (insert-tuple small-relation '(lancelot yellow))
??
> small-relation
((name favorite-color) (arthur blue))

```

To fix this problem the list has to be changed internally. This can be done using set-car! or set-cdr!. These functions change the first or rest of a list.
set-car! and setcdr! For example,
```

> (define colors '(red yellow green))
??
> (set-car! colors 'black)
??
> colors
(black yellow green)
> (set-cdr! colors '(and blue))
? ?
> colors
(black and blue)

```

To add a new element between the first and second elements of a list use set-cdr!. Instead of the original rest of the list, a new list is created comprising the tuple we wish to add followed by the rest of the original list. The first of the list is not changed. The correct code is
```

; Return relation with tuple added as the new first tuple.
(define (insert-tuple relation tuple)
(set-cdr! relation
(cons tuple (rest relation))))

```
Below is a sample call to insert-tuple:
> flower
((flower color) (rose red) (violet blue))
> (insert-tuple flower '(poppies orange))
\(3 ?\)
> flower
((flower color) (poppies orange) (rose red) (violet blue))

\subsection*{12.3.7 Exercises}
12.4 Express the queries below in Scheme.
```

SELECT brew.name
FROM brew
WHERE brew.brewery = 'Milwaukee'
or brew.rating > 9;
SELECT bar.name
FROM bar
WHERE bar.beer IN
(SELECT brew.name
FROM brew
WHERE brew.rating >= 7) ;

```
12.5 The functions where and select call the function attribute-value to retrieve certain attributes from tuples. Another method discussed involved creating an access function that given a tuple returned the desired attribute. Use this method to write new versions of where and select. where will create a general condition that can be used for each tuple rather than converting the condition for each tuple. The idea is to replace attribute names in the original condition with functions and then test each tuple against this general condition. select will create access functions for each requested attribute. Think about how and when these access functions are to be evaluated.
12.6 The function select can use the idea of removing unwanted attributes from tuples instead of building up new tuples based on the desired attributes. It will be helpful to have a means of finding the position of attributes and having a function, remove-nth, that takes a number, num, and a list and removes the numth element from that list. Write the function remove-nth and the new select function.
12.7 The function join forms the Cartesian product of the two relations it takes as arguments. This creates very large relations especially when many relations are joined together. Write a new version of join that is a merger with the where function. This new function takes the condition from the where function call. Only those tuples that satisfy this condition are appended to the new relation. This is called a theta-join. The tricky part is deciding how to deal with attribute names that are not in the two relations that are being joined, but refer to other relations. This is often the case when more than two relations are joined.
12.8 The function below takes a relation and a tuple. Explain what it does.
```

(define (unknown relation tuple)
(set-cdr! (subseq relation (- (length relation) 1))
(list tuple)))

```
12.9 Write a function delete-attrib that takes a relation, an attribute name, name, and an attribute value, value. The function should destructively change the relation such that all tuples are removed whose name attribute is value. For example, given the original flower relation of roses and violets, the call
```

(delete-attrib flower 'color 'red)

```
should change the relation flower to be
```

((flower color)
(violet blue))

```
12.10 Write a function thin that takes a relation and an attribute name and returns a new relation such that the attribute specified is removed from all tuples. For example, given the original flower relation of roses and violets, the call
```

(thin flower 'color)

```
should return the relation
```

((flower)
(rose)
(violet))

```
12.11 Write a function fatten that takes a relation and a list comprising an attribute name and values for that attribute for each tuple. The function should return a new relation such that it now includes the extra attribute for each tuple. For example, given the original flower relation of roses and violets, the call
```

(fatten flower '(rhyme hose file_it))

```
should return the relation
((flower color rhyme)
(rose red hose)
(violet blue file_it))
12.12 SQL supports a number of aggregate functions that can be used to answer queries such as "what is the average rating of the ales in the brew relation?" Aggregates return single values and are implemented as part of the SELECT clause. An aggregate is followed by an attribute to indicate the value to which the aggregate function should be applied. MAX, MIN, SUM, AVG are four aggregate functions that return the maximum, minimum, sum, and average, respectively, of attribute values. The attribute should be a numeric value. For example, the SQL query to find the average rating of ales is

\section*{Object-oriented database systems}

\section*{Intelligent databases}

Knowledge discovery in databases and data mining
```

SELECT AVG (brew.rating)
FROM brew
WHERE brew.type = 'ale'

```

The return value would be 9 .
Decide on a means of expressing this query in Scheme and modify the function select to support calls to the aggregate functions MAX, MIN, AVG, and sum. Assume that only one aggregate function with one attribute is allowed in a select clause. You will probably find it helpful to use the existing version of SELECT to get all the attributes desired, a vertical slice of the relation, and then apply the aggregate function to this list.

\subsection*{12.4 Future Trends}

New database systems support more sophisticated types of data such as multimedia data like sound, images, video, and graphics. The applications of database systems will be enlarged to include CASE, Computer-Aided Software Engineering, CAD, Computer-Aided Design, CAM, Computer-Aided Manufacturing, graphics, and knowledge representation for artificial intelligence applications. Along with supporting these richer types of data, the query languages will have to be enhanced to allow queries to be made of this data.

The paradigms for future database systems are object oriented and extended relational. Object-oriented databases have DBMSs that are extensions of or use the ideas of object-oriented programming languages. This allows the data objects to have procedural attachments (functions) so that they can send and receive messages from one another. It allows inheritance that will let subtypes of objects inherit the properties of their parent types. Extended relational systems add extensions to existing DBMSs.

Another idea is to create PROLOG-like DBMSs based on logic programming. PROLOG supports operations that are similar to database searches. The idea is to extend PROLOG to incorporate other ideas that are important to database environments.

Work is being done to create "intelligent" databases in which certain data values have rules associated or built into them. These rules can provide constraints for the values of the data object, for example, a rule that will not allow an employee's salary to be negative or greater than a certain value. Rules can perform management tasks like print a message or update the prices of certain items if a tax amount increases.

Knowledge discovery in databases (KDD) is a new challenge for large database systems. KDD is the problem of finding associations, gaining insight, or making sense of very large databases that may not be structured. One method of doing this is called data mining. The challenges to this field are intelligently handling huge amounts of data that may have little or no structure and finding interesting structure or correlations in the data. These results are often implicit in the data and must be made explicit. Plus the data may not be exact and data mining techniques may have to handle imprecision.

\subsection*{12.5 Summary}
- A database is a collection of information that is stored within a computer system.
- A database system comprises a user, software to access a database, a computer and external memory in which the data is stored, and the data itself.
- A database management system, DBMS, is software that accesses a database and provides a language to make queries to the database.
- A relation is a tabular data structure that maintains a collection of information about various objects. Rows in relations are called tuples and columns are attributes. Tuples hold information about a certain member of the database, for example, an employee. Attributes represent the individual values within that tuple, for example, the employee's age.
- Relational databases maintain all information explicitly in relations.
- Hierarchical databases consist of records that are arranged in trees with implicit relations between the parent record and the child records.
- Network databases are like hierarchical databases with the exception that a child record can have more than one parent record. Network databases are thought of as sets of records, where any record can belong to a number of sets. One to many ( 1 to N ) relationships are easily created with network databases, but many to many ( N to M ) relationships are more difficult to build.
- SQL is a query language used in relational database systems. Queries are made by specifying the attributes desired in a SELECT clause, the relations to examine in a from clause, and the tuples in a where clause. If more than one relation is specified, they are combined through a join operation in which all combinations of tuples are appended together.
- Future databases will support multimedia data types and support areas such as CAD, CAM, and CASE. These new systems will incorporate ideas from object-oriented programming.
- Knowledge discovery in databases and data mining techniques can be used to learn more about large, unstructured databases.

\subsection*{12.6 Additional Reading}

Date, C.J. (1995). An Introduction to Database Systems, Volume I, Sixth Edition, Addison-Wesley, Reading, MA.

Ulman, J.D. (1988). Principles of Database and Knowledge-Base Systems, Volume I, Computer Science Press, Rockville, MD.

Ulman, J.D. (1989). Principles of Database and Knowledge-Base Systems, Volume II: The New Technologies, Computer Science Press, Rockville, MD.

Special Issue on Database Systems, Communications of the ACM, Oct. 1991, Volume 34, Number 10.

\subsection*{12.7 Code Listing}

Below is the complete Scheme code for the simple relational database including the bar and brew relations from this chapter:
```

(define brew '(
(brew.name brew.type brew.rating brew.brewery)
(Blue_Whale ale 9 Oakland)
(A.V._Oatmeal stout 10 Boonville)
(Sierra_Nevada ale 9 Chico)
(Big_Foot barley-wine 10 Chico)
(Liberty ale 9 San_Francisco)
(Augsburger lager 4 Milwaukee)
(Pabst lager 1 Milwaukee)
(Schlitz malt-liquor 2 Milwaukee)))
(define bar '(
(bar.name bar.beer bar.location)
(Pacific_Coast Blue_Whale Oakland)
(Pacific_Coast A.V._Oatmeal Oakland)
(Pacific_Coast Sierra_Nevada Oakland)
(Brickskeller Sierra_Nevada Wash.D.C.)
(Brickskeller Big_Foot Wash.D.C.)
(Brickskeller Liberty Wash.D.C.)
(Brickskeller Augsburger Wash.D.C.)
(Brickskeller Pabst Wash.D.C.)
(Bent_Elbow Pabst Terre_Haute)
(Bent_Elbow Schlitz Terre_Haute)))
; Return true if element is an attribute in attrib-names.
(define (attribute-name? element attrib-names)
(member element attrib-names))
; Return the attribute named element within tuple given a list
; of attribute names, attrib-names.
(define (attribute-value element attrib-names tuple)
(list-ref tuple (position element attrib-names)))
; Return the attribute names of a relation.
(define (attributes relation)
(first relation))
; return the list of tuples of a relation
(define (tuples relation)
(rest relation))

```
```

; Given condition, tuple, and attrib-names, a list of attributes,
; return a new condition with attributes replaced by actual values.
(define (convert condition tuple attrib-names)
(map (lambda (element)
(cond ((list? element)
(convert element tuple attrib-names))
((attribute-name? element attrib-names)
(list 'quote
(attribute-value element attrib-names tuple)))
(else element)))
condition))
; Return all the tuples in relation that satisfy condition.
(define (where condition relation)
(cons
(attributes relation)
(keep-if
(lambda (tuple)
(eval (convert condition tuple (attributes relation))))
(tuples relation))))
; Return a relation with only the attributes in desired-attributes.
(define (select desired-attributes relation)
(let ((attribute-list (attributes relation)))
(map
(lambda (tuple)
(map
(lambda (attribute)
(attribute-value attribute attribute-list tuple))
desired-attributes))
relation)))
; Return an unconstrained join of relation1 and relation2.
(define (join relation1 relation2)
(cons
(append (attributes relation1) (attributes relation2))
(apply append
(map
(lambda (tuple1)
(map
(lambda (tuple2)
(append tuple1 tuple2))
(tuples relation2)))
(tuples relation1)))))
; Return an unconstrained join on relations in relation-list.
(define (from relation-list)
(accumulate join (map eval relation-list)))

```
```

; Print out attribute and spaces to fill 16 characters.
(define (fixed-print attribute)
(let ((string
(cond ((symbol? attribute) (symbol->string attribute))
((number? attribute) (number->string attribute))
(else attribute))))
(cond ((< (string-length string) 16)
(display string)
(display
(make-string (- 16 (string-length string)) \#\space)))
(else (display (substring string 0 16))))))
; Print out relation formatted in columns 16 characters wide.
(define (print-relation relation)
(for-each
(lambda (tuple)
(for-each fixed-print tuple)
(newline))
relation))
; Return relation with tuple added as the new first tuple.
(define (insert-tuple relation tuple)
(set-cdr! relation
(cons tuple (rest relation))))

```

\section*{Chapter 13}

\section*{COMPILERS AND INTERPRETERS}

\subsection*{13.1 Compilers Versus Interpreters}

A compiler is a program that translates statements in one language into equivalent statements in another language. Typically, compilers translate programs written in a high-level language into programs that perform that same task in machine language. These machine-language programs can then be run on the computer. A cross-compiler produces machine language that is to be run on a different machine than the one on which the compiler runs. This is helpful when the computer for which the machine language is being produced is not readily available (e.g., a developmental machine).

An interpreter interprets statements in a language so that the actions of the statements can be simulated on a computer. An interpreter does not produce results that can be performed on another machine, so cross-interpreters do not exist. Interpreters are easier to produce than compilers; however, interpreted code runs slower than compiled code.

Many applications use ideas that come from compiler research. Such applications include language-based editors. These editors are tailored to particular programming languages. They have knowledge of the language and can do simple checks such as counting the number of arguments, examining the structure of the statements, and checking for balanced parentheses. Pretty printers print out programs in a standard formatted manner. They need information about the language being printed. Text formatters are similar to pretty printers, but they print out text rather than programs. Text formatters have commands embedded in the text. The commands dictate how the text should be printed; certain commands are analyzed using ideas from compiler theory.

A compiler is made up of four basic components: a lexical analyzer, a parser, a semantic checker, and a code generator. These different components are joined, as the following diagram illustrates. The compiler in this example takes high-level code as input and produces the machine-language equivalent of that code.

Compilers and crosscompilers

Interpreters

Parts of a compiler

\footnotetext{
O. Grillmeyer, Exploring Computer Science with Scheme
(C) Springer Science+Business Media New York 1998
}


\section*{Tokens}

\section*{Regular expressions}

\subsection*{13.2 Lexical Analysis}

Lexical analysis is the process of reading in a program and classifying its components. A program is read in as a sequence of characters and converted into a sequence of tokens. Tokens are the fundamental lexical items of a language. Examples of tokens in Scheme are delimiters such as parentheses, special operators such as the quote symbol, " \(\quad\) ", and identifiers such as symbol and function names. A lexical item is one that can be easily identified using simple rules without having to know about its meaning or use in the language.

Regular expressions can be used to describe the tokens of a language. Regular expressions indicate exactly how tokens are formed out of single-character objects, letters, digits, and punctuation marks or special characters like parentheses. For example, below is a regular expression describing real numbers consisting of an optional plus or minus sign followed by zero or more digits, followed by an optional decimal point and one or more digits:
\[
\text { [+|-] digit } \left.{ }^{*} \text { [. digit }{ }^{+}\right]
\]

Braces, "[ ]", denote optional items. Vertical bars, " \(\mid\) ", denote that either of the items surrounding The vertical bar may be used. The notation item* means that zero or more occurrences of item are allowed, whereas the notation item \(^{+}\)denotes one or more occurrences of item. digit refers to one of the digits 0-9.

\subsection*{13.2.1 Exercises}
13.1 Write a regular expression to describe integers.
13.2 Write a regular expression to describe symbol names. Assume that letter represents one of the letters \(\mathrm{A}-\mathrm{z}\) or \(\mathrm{a}-\mathrm{z}\).

\subsection*{13.2.2 Tokens and symbol tables}

Suppose we have defined the following tokens for a subset of Scheme:
\begin{tabular}{ll} 
token & meaning \\
\hline number & a real or integer number \\
id & a symbol name \\
define & the symbol define \\
( & a left parenthesis \\
) & a right parenthesis
\end{tabular}

Applying lexical analysis to the Scheme function
```

(define (seconds-to-minutes seconds)

```
    (/ seconds 60.0) )
yields the following stream of tokens:
```

(define (id id) (id id number))

```

All the blanks, tab indents, and carriage returns are eliminated. The spaces separating the tokens are just for our readability. This simplified form of the original Scheme function makes it easier to do the next phase of compiling: parsing.

One question that arises at this point is how the different id tokens are distinguished. Looking at the above list of tokens, it is impossible to surmise their meaning. For parsing, all that is needed is simple tokens such as id or number. It is only in the last phase of compilation, code generation (or while printing descriptive error messages), that the actual identifier names are needed.

The names that correspond to id tokens are saved in a symbol table, which is simply a list of symbol names. When a symbol is encountered, the token id is returned along with its position in the symbol table. As a new symbol is read in, the symbol table is searched for it. If it is found, the matching position in the symbol table is returned; otherwise, the symbol is added to the symbol table and that position is returned.

\subsection*{13.3 Parsing}

Parsing or syntactical analysis is used to check if the tokens formed during lexical analysis represent legal statements within the language. The grammar of a language defines the set of legal statements in the language. Looking at English for an analogy, there are grammar rules specifying what constitutes a properly formed sentence in English. Below are three grammar rules for a subset of simple English sentences:
sentence \(\rightarrow\) noun-phrase verb-phrase
```

noun-phrase }->\mathrm{ article noun

```
verb-phrase \(\rightarrow\) verb

\section*{Symbol table}

\section*{Terminals and nonterminals}

Parse trees

Simple Scheme grammar

Recursive grammars

Such rules of a grammar are called productions or rules. Items in courier are terminals; they represent tokens from the lexical analyzer. Items in italics are nonterminals-names that represent a collection of nonterminals or terminals. The statements in a language are derived by replacing nonterminals on the left side of productions with the terminals and nonterminals on the right side of productions. The arrow, " \(\rightarrow\) ", separates the left and right sides of productions. The derivation of symbols begins at the start symbol, which in this example is the nonterminal sentence.

During parsing, tokens are grouped into parse trees, which represent the structure of the token group. The start symbol is the root of the parse tree. Given the following tokens,
```

article noun verb

```
parsing would yield the parse tree below:


Below are some productions for a Scheme grammar. The start symbol is the nonterminal expr-list. The name expr stands for expression.
production
1. expr-list \(\rightarrow\) expr

2 expr-list \(\rightarrow\) expr expr-list
2. expr-list \(\rightarrow\) expr expr-list
3. expr \(\rightarrow\) ( if expr expr )
4. expr \(\rightarrow\) ( if expr expr expr )
5. expr \(\rightarrow\) ( define ( id id-list ) expr-list )
6. expr \(\rightarrow\) ( id expr-list )
7. id-list \(\rightarrow\) id
8. id-list \(\rightarrow\) id id-list
description
single expression more than one expression
if-then expression if-then-else expression function definition function call single identifier more than one identifier

Most grammars are recursive; they have elements in the left side of productions that also appear in the right side, as in
\[
\text { expr-list } \rightarrow \text { expr expr-list }
\]

This production is recursive because expr-list appears on both the left and right sides of the production. If many expressions make up an expr-list, production 2 must be invoked several times. Production 2 is a right recursive production - the left side nonterminal is on the right end of the right side of the production. An equivalent left recursive production would be
\[
\text { expr-list } \rightarrow \text { expr-list expr }
\]

The next sections illustrate two types of parsing.

\subsection*{13.3.1 Top-Down parsing}

There are two major classes of parsers: top-down and bottom-up. These names refer to the way in which the parse tree is formed. Top-down parsers build a parse tree starting at the root and work down to the leaves. Bottom-up parsers build a parse tree starting at the leaves and work up to the root.

With top-down parsers, at each node the appropriate production is chosen based on the current nonterminal that is being expanded and the lookahead token-the current token that is being examined from the input of the lexical analyzer. If the lookahead token can always unambiguously indicate which production is to be applied, then the parser is called a predictive parser. If the lookahead token is not sufficient to determine the production to use next, then alternative productions must be tried. This is backtracking-backing up to try a different approach. A recursive descent parser uses recursive functions to search through different production possibilities and handle recursive grammars like the one used above.

Top-down parsers cannot handle left recursive productions, though. They tend to get stuck in infinite loops. For example, parsing expr-list, using the left recursive production
\[
\text { expr-list } \rightarrow \text { expr-list expr }
\]
expands to
expr-list expr
which starts with expr-list, which expands to
expr-list expr
which starts with expr-list which ... You get the idea. Such productions must be rewritten to eliminate left recursion.

Let's parse the token list that was produced in the previous section after lexically analyzing the function seconds-to-minutes. The tokens from this function definition are repeated below:
```

(define (id id) (id id number))

```

We begin parsing with the start symbol, expr-list. Using production 1, expr-list expands to expr. The new goal is to derive the parse tree from the nonterminal expr. Starting with production 3, the right side is an if-then expression. This matches the first input token, " (." However, the next part of the right side if does not match the next input token, define. Thus, using production 3 to expand expr fails. So we backtrack and return to satisfying the right side of production 1, expr. When we backtrack, we reset the lookahead token. In this case we return to the first left parenthesis. We continue, now trying to satisfy production 4. This will fail also, so we backtrack and try production 5 . The input matches the right side of production 5 up to the nonterminal id-list. This becomes the new subgoal to satisfy. The diagram below represents the steps in parsing the input tokens. The lookahead token (shown as an arrow pointing to the input), current nonterminal to satisfy, and production matched is given at each step of the parse. The unsuccessful steps (as in trying productions 3 and 4 above) have been eliminated

Top-down versus bottom-up parsing

Lookahead token. Types of top-down parsers: predictive and recursive descent

Top-down parsing example
\begin{tabular}{|c|c|c|}
\hline input and lookahead token & nonterminal & production \\
\hline ```
( define ( id id ) ( id id number ) )
``` & expr-list & 1 \\
\hline \[
(\text { define (id id) (id id number)) }
\] & expr & 5 \\
\hline (define (id id) (id id number)) & id-list & 7 \\
\hline (define (id id) \({ }_{\uparrow}^{(i d}\) id number)) & expr-list & 1 \\
\hline (define (id id) (id id number)) & expr & 6 \\
\hline (define (id id) (id id number)) \(\uparrow\) & expr-list & 2 \\
\hline (define (id id) (id id number)) & expr & ? \\
\hline
\end{tabular}

The lookahead token is id, which does not match the expected nonterminal, expr. Backtracking to production 2 would fail because it also tries to match expr.

At this point an error would be produced saying something to the effect of id found while expr was expected. The actual identifier, seconds, would typically be displayed. But we input a valid Scheme expression. What happened?

The production for define looks correct. What about the productions for expr-list? The productions indicate that an expr-list is one or more expressions. This also seems correct. What about the productions for exprs? An expr is an if, a define, or a function call. However, recall that symbols and numbers are also valid inputs to the Scheme interpreter; thus, they are valid expressions. We must modify the grammar to include these by adding the following two productions:
\begin{tabular}{ll}
production & description \\
9. expr \(\rightarrow\) id & identifier \\
10. expr \(\rightarrow\) number & number
\end{tabular}

Now we can continue parsing from where we left off:

The second to last right parenthesis matches the end of production 6 . The final parenthesis matches the right parenthesis in production 5 and the parse is complete.

Another way to view the process of parsing is to look at the formation of the parse tree. The parse tree begins with the start symbol, expr-list. After production 1 is performed, the parse tree is

Once the lookahead symbol is define, production 5 is selected and the parse tree is expanded. The parentheses have been eliminated because they are redundant information-the levels of the parse tree itself reflect the same information as parentheses.

We advance the lookahead as long as it matches the next leaf of the parse tree. When the lookahead symbol is the second id, the nonterminal id-list in the parse tree must be expanded. Production 7 is selected, resulting in the new parse tree below:

This process continues until the entire input has been processed. The final parse tree follows:

Predictive parsers

LL grammars

Grammar for a predictive parser

\subsection*{13.3.2 Predictive parsing}

The above grammar can be modified so that backtracking is not necessary. This greatly speeds up the parsing process. Recall that a top-down parser that can unambiguously decide which production to take based on the current token is called a predictive parser. To change the above grammar so that a predictive parser can be used, all productions that have the same terminal or nonterminal at the start of their right sides must be rewritten.

An \(L L(1)\) grammar can be used for predictive parsing. A parser for an LL(1) grammar scans the input tokens from left to right, forms a leftmost derivation for the input, and uses one lookahead token. A leftmost derivation is one in which the leftmost nonterminal is replaced first. A grammar that can be parsed this way is called an LL(1) grammar. The next example shows how we can transform our previous grammar into an LL(1) grammar. Below is the previous grammar:
\begin{tabular}{ll}
production & description \\
1. expr-list \(\rightarrow\) expr & single expression \\
2. expr-list \(\rightarrow\) expr expr-list & more than one expression \\
3. expr \(\rightarrow\) (if expr expr) & if-then expression \\
4. expr \(\rightarrow\) (if expr expr expr) & if-then-else expression \\
5. expr \(\rightarrow\) (def ine (id id-list) expr-list) & function definition \\
6. expr \(\rightarrow\) id expr-list) & function call \\
7. id-list \(\rightarrow\) id & single identifier \\
8. id-list \(\rightarrow\) id id-list & more than one identifier \\
9. expr \(\rightarrow\) id & identifier \\
10. expr \(\rightarrow\) number & number
\end{tabular}

Productions 1 and 2 both have expr as the first nonterminal in their right side. Similarly, productions \(3,4,5\), and 6 all begin with a left parenthesis and productions 7,8 , and 9 begin with the terminal id. Below is a grammar that eliminates these duplicate right side beginnings. The symbol " \(\varepsilon\) " represents nothing (no token is matched).
production
1. expr-list \(\rightarrow\) expr more-exprs one or more expressions
2. more-exprs \(\rightarrow \varepsilon\)
3. more-exprs \(\rightarrow\) expr-list
4. expr \(\rightarrow\) (func)
5. expr \(\rightarrow\) id
6. expr \(\rightarrow\) number
7. func \(\rightarrow\) if expr expr rest-of-if
8. func \(\rightarrow\) define (id id-list) expr-list
9. func \(\rightarrow\) id expr-list
10. rest-of-if \(\rightarrow \varepsilon\)
11. rest-of-if \(\rightarrow\) expr
12. id-list \(\rightarrow\) id more-ids
13. more-ids \(\rightarrow \varepsilon\)
14. more-ids \(\rightarrow\) id-list

\section*{description} no more expressions more expressions function call identifier number if expression function definition function call if-then expression if-then-else expression one or more identifiers no more identifiers more identifiers

With this grammar it is possible to unambiguously decide which production to use based on the current input tokens. But how does \(\varepsilon\) get matched? Nothing \((\varepsilon)\) is matched if the lookahead token matches the next terminal or nonterminal of the previous right side. For example, suppose the lookahead token is) and the input is
```

( define ( id id ) ( id id number ) )

```

At this point the nonterminal more-ids must be matched. It can be \(\boldsymbol{\varepsilon}\) (nothing) or \(i d\)-list. The lookahead token does not match id-list (it would have to be id to do so), but it does match the symbol following id-list in the right side of the func production. That is the production that precedes id-list.

To review, a grammar describes the set of legal statements in a language. A grammar comprises productions. Productions have terminals and nonterminals. Terminals (written in courier) represent individual tokens in the input. Nonterminals (written in italics) represent zero (matching \(\varepsilon\)) or more tokens in the input. Each production indicates a transformation rule in which the left side nonterminal is satisfied if the right side (terminals and nonterminals) is matched. This process constructs a parse tree that shows the syntactic structure of the input tokens.

\subsection*{13.3.3 Bottom-Up parsing}

The second major class of parsers is the bottom-up parsers. Bottom-up parsers also generate parse trees, but from the leaves up to the root and not from the root to the leaves, as with top-down parsers. A general method of bottom-up parsing is through \(L R\) parsers, which read the input tokens from left to right, but produce a rightmost derivation-the rightmost nonterminal is replaced first when processing a production with several nonterminals. A grammar is LR if it can be parsed with an LR parser.

Shift-reduce parsing is a frequently used type of LR parsing in which the input tokens are reduced to the start symbol of the grammar. Shift-reduce parsers get their name because they either reduce a sequence of tokens to a nonterminal symbol or they read another token (a shift in the input). A reduce operation occurs when the right side of a production has been found and can be collapsed to the left-side nonterminal.

A table is used to decide which operation to make (shift or reduce) based on the current input token and state. The state of a parsing system depends on the input that has been seen before that. Shift-reduce tables are usually generated using programs that take as input the grammar of the language being parsed. One such tool is called yacc.

Let's look at a very simple grammar and its shift-reduce parsing table. The grammar is a subset of our prior Scheme grammar.

\footnotetext{
1. yacc, Yet Another Compiler Compiler, is available under the UNIX operating system. The shiftreduce table in this example was produced using yacc.
}

\section*{Matching \(\varepsilon\)}

\section*{Ovenview of top-down parsing}

Bottom-up and LR parsers

Shift-reduce parsers

Shift-reduce tables

Shift-reduce table for a simple grammar

Bottom-up parsing example
\begin{tabular}{ll}
production & description \\
1. id-list \(\rightarrow\) id & single identifier \\
2. id-list \(\rightarrow\) id id-list & more than one identifier
\end{tabular}

Here is the shift-reduce parsing table for this grammar:
\begin{tabular}{llll}
state & \begin{tabular}{l}
input \\
id
\end{tabular} & end & \begin{tabular}{l}
goto \\
id-list
\end{tabular} \\
\hline 0 & shift 2 & & 1 \\
1 & & accept & \\
2 & shift 2 & reduce 1 & 3 \\
3 & & reduce 2 &
\end{tabular}

This shift-reduce table shows that there are two inputs: id and nothing (end of input). Depending on the state and the input, a shift, reduce, or accept action is taken. The number after the shift is the new state. The number after reduce is the production to use when reducing. The goto column is used with reduce operations to determine the next state. There is a goto column for each nonterminal in the grammar.

The table below shows the steps taken in parsing the input id id. The parser maintains a stack of the states and shifted and reduced values. Each step either shifts a new value and state onto the stack, or reduces one or more values to a nonterminal value and state. The values and new states at each step are shown together in parentheses:
\begin{tabular}{lll}
input & stack & action \\
\hline id id & 0 & shift 2 \\
id & \(0(\) id 2) & shift 2 \\
& \(0(\) id 2) (id 2) & reduce 1 \\
& \(0(\) id 2) (id-list 3) & reduce 2 \\
& \(0(\) id-list 1) & accept
\end{tabular}

Parsing begins at state 0 . The input token is the first id, which in state 0 corresponds with the action shift 2 . This means the parser shifts to the next token and goes to state 2. Now the input token is the second id, which in state 2 is a shift 2 operation. There is no more input, so the action corresponding to "end" in state 2 is done, which is reduce 1 . The number after the reduce is the production that gives the reduce step. In this case id is reduced to id-list. The second id entry and its state, (id 2), are removed from the stack. The next state is determined by the goto column. This state is looked up according to the nonterminal reduced to (id-list) and the state on the top of the stack (state 2). Looking across the state 2 row and down the id-list column, state 3 is found. Continuing from state 3 with "end" as input, the action is reduce 2 . Production 2 replaces id id-list with id-list. (id 2) and (id-list 3) are removed from the stack. Now the goto state for \(i d\)-list is looked up under state 0 ; it is state 1 . State 1 gives an accept action for the end of the input. This terminates the parsing.

The entire ten production grammar from the prior section on top-down parsing can be represented with a shift-reduce table with 26 states.

With shift-reduce parsers, ambiguities can arise when deciding whether to reduce values or shift the next token. Such errors are called shift/reduce conflicts. Similarly there are reduce/reduce conflicts in which multiple productions may be applied and one must be chosen. The parser must disambiguate these or the grammar must be changed to eliminate these problems.

Scheme makes extensive use of parentheses to group objects and provide structure to the language. Because of this, Scheme is not prone to shift/reduce conflicts. A classic shift/reduce conflict that occurs in other programming languages is the dangling else clause in nested if-then-else statements. If Scheme allowed if expressions to be written without the surrounding parentheses, we could recreate this shift/reduce conflict.

The ambiguity begins to arise when the first action of an if expression is another if expression. Imagine the following statement, which returns the largest of two numbers after first verifying that they are both numbers:
```

if (and (number? num1) (number? num2))
if (> num1 num2)
num1
num2

```

Alternatively, num 2 could be interpreted as the else action for the first condition. The following indentation shows this:
```

if (and (number? num1) (number? num2))
if (> num1 num2)
num1
num2

```

These two interpretations return different values when the first condition is false or when the first condition is true but the second isn't. However, while parsing, spaces (indentation) do not matter in the input. The parser only sees tokens such as if, (, and). This means that to a parser the two examples above look identical. To which if expression does num2 belong? When the num2 expression is reached, there is not enough information to decide whether to reduce the inner if expression to an if without an else action or to shift and consider num 2 the else action. This is a shift/reduce conflict.

Shift/reduce conflicts are resolved by modifying the grammar of the language to specify explicitly which action to take when a shift/reduce conflict arises. Most parsers will have a default action to take if this isn't specified. In the case of nested if expressions, the usual action is to associate the dangling else with the innermost if. This means a shift action would be performed.

A reduce/reduce conflict could come about if we used the grammar below, which treats function calls as it does special forms, namely as an id followed by an expr-list.

Shitt/reduce conflicts

\section*{Dangling else clause}

Resolving shitt/reduce conflicts

Reduce/reduce conflicts

\section*{Resolving} reduce/reduce conflicts

Advantages of bottom-up parsers

\section*{Type checking}

\section*{Polymorphism}
1. expr-list \(\rightarrow\) expr
2. expr-list \(\rightarrow\) expr expr-list
3. expr \(\rightarrow\) id
4. expr \(\rightarrow\) number
5. expr \(\rightarrow\) function-call
6. expr \(\rightarrow\) special-form
7. function-call \(\rightarrow\) (id expr-list)
8. special-form \(\rightarrow\) (id expr-list)

Productions 7 and 8 have identical right sides, so given the same input, it is ambiguous as to which reduction should be made. In other words, if (id exprlist , is encountered, the productions do not indicate whether they should reduce to a function-call or to a special-form. This is a reduce/reduce conflict.

Reduce/reduce conflicts are removed by fixing the grammar or by relying on the default behavior of the parser, which is usually to choose the first reduction specified in the grammar.

In general, LR (bottom-up) parsers are used for the following reasons:
- they can recognize almost all programming languages where a grammar can be written to describe the language;
- they require no backtracking (as recursive descent top-down parsers do);
- they can parse a larger set of grammars than predictive (top-down) parsers;
- they can detect syntax errors as soon as possible while scanning the input tokens;
- parser building tools exist to automatically construct a parser given a grammar;
- LR grammars can describe more languages than LL grammars.

\subsection*{13.4 Semantic Analysis}

The third phase of compiling is semantic analysis. The input to the semantic analyzer is a parse tree and the output is a refined parse tree. The refinements that are made involve type-checking and checking the validity of the location of certain statements in the program, such as the use of parameters or let variables outside of their scope. Other tasks are carried out by semantic analyzers; however, many do not apply to Scheme. In general, semantic analysis performs the checks that parsing could not make because parsing does not look into the meanings (semantics) of the tokens being read.

For example, a semantic analyzer might check the types of the arguments given in a call to the function remainder to make sure that they are both integers. In Scheme this cannot be done always at compile time, since a symbol or function call may be given as an argument to remainder, and that value is not known until the program runs.

Semantic analysis is used to handle polymorphic functions: functions that take arguments of different types. The arithmetic functions + , -, *, and / are all
polymorphic. These functions take arguments that are integers or real numbers or a mixture of the two. Scheme supports rational numbers like \(4 / 5\) and complex numbers like \((2+3 i)\). The four functions above accept rational and complex numbers as well.

Many polymorphic functions are overloaded; that is, they perform different operations depending on the types of the arguments given or the context in which the functions are used. The function + is overloaded. If called with integers, + performs integer arithmetic. If called with real numbers, + performs real arithmetic producing real number results. Another example of overloading occurs in some languages in which function calls and array \({ }^{2}\) accesses are both performed using the parenthesis operator, as in \(F(n)\). During semantic analysis, the type of the token preceding the parentheses is checked and the parse tree is modified to indicate whether the operation is an array access or a function call.

To summarize, semantic analysis adds information to the parse tree to assist with code generation. This information specifies the operations that overloaded functions must perform in that particular instance. Semantic analysis looks at the types of the objects to disambiguate parts of the language that parsing cannot.

\subsection*{13.5 Code Generation}

The final phase of compilation is code generation. Code generation involves the creation of statements in the language being compiled to. The input to the code generator is the parse tree that has been updated by the semantic analyzer. As stated at the start of this chapter, most compilers produce machine language code. To clarify this point somewhat, what is actually produced is assembly language code that uses mnemonic names to express the same information that machine language does with numbers. Assembly language is much easier for us to read and can be joined (linked) with other assembly language programs.

\subsection*{13.5.1 Mini Scheme}

In this chapter we will create a Scheme compiler. Building a compiler for all of Scheme would be a rather formidable task. Instead we will develop a compiler for a small subset of Scheme consisting of the following functions:
\begin{tabular}{ll}
category & functions \\
arithmetic & + (with two arguments),, (with one or two arguments) \\
comparison & \(=, /=\) (not equal), \(>,\langle\rangle=,,\langle=\) (with two arguments) \\
conditional & if (with then and optional else action) \\
definition & define of functions (allowing recursive functions)
\end{tabular}

Function calls to user-defined functions are allowed. The only type of data allowed is integer.

\footnotetext{
\({ }^{2 .}\) An array can be viewed as a fixed length list with elements all of the same type.
}

\author{
Overloading
}

\section*{Producing assembly language}

Scheme functions supported by our compiler

Parts of a compiler

Memory: RAM and ROM

\subsection*{13.5.2 A simple computer}

To understand code generation it is necessary to understand assembly language, and to understand assembly language you should understand some basics of computer hardware. The following diagram shows a very simple computer:

These pieces make up the core of a computer. Below are brief descriptions of the functions they perform:
machine part operation performed
Data Numerical information
Instructions Instructions for the computer to perform
Registers Store temporary values or results from computations for rapid access
Arithmetic Logic Performs the mathematical and logical functions
Unit (ALU)
Comparator
Indicates if the last arithmetic computation is equal to, not equal to, less than, or greater than 0
Program Counter Location of the current instruction being executed Data Stack Stack Pointer Location of the top of the data stack

Programs are placed in the data and instructions area. This area is part of the main memory of the computer. It is memory that can be read or changed (written). Such memory is called RAM, random access memory. There is also ROM, read-only memory, which can be read but not changed. Each memory location has a unique address which specifies its location. A computer address is similar to a house address.

The registers comprise a special set of memory locations that can be accessed very rapidly. However, there are a limited number of registers. Careful use of registers can produce assembly code that runs faster. Most modern machines have a special area of memory called cache that is rapidly accessible like registers, but much larger in storage potential.

The program counter contains the address of the next instruction to run. Before a program can be run, its instructions must be loaded into the machine's main memory and the program counter set to the location of the first instruction of the program. That instruction is executed and the program counter is incremented. Then the next instruction is executed. This process continues until the program completes. The operating system plays a major role in this process; it is discussed in depth in Chapter 14.

The stack pointer is the address of the top of the stack. The stack is used to hold information for short periods of time. One of the most common uses is to save the values of registers and parameters to functions. Before a function is called, the registers in use can be saved on the stack. When the function ends, the registers can be restored by retrieving their values from the stack. To pass arguments to a function, they can be put on the stack and when the function is called it can access its parameters from the stack values. When the function finishes, the stack pointer is moved past the arguments to effectively remove the arguments from the stack.

The ALU does arithmetic and logical operations like addition, subtraction, and logical and, or, and not operations. The ALU and comparator are used to make comparisons. When an arithmetic operation is performed, information about the result is saved. This information includes if the result of the computation is zero, less than zero, greater than zero, or negative. This data is examined when branching instructions are made. A branch is a conditional jump to a different instruction. If the condition is true the program counter is changed. For example, if two numbers are subtracted and the result is negative and the next instruction is branch if less than, the branch is done. The output from the ALU can be stored in a register or the main data.

\subsection*{13.5.3 Assembly language}

An assembly language program is an ordered collection of instructions that are executed in sequence. In this sense assembly language is similar to Scheme, in which expressions are evaluated in order. The similarity ends there. Instead of evaluating functions and passing results to other functions, assembly instructions save results of computations in registers or in the machine's RAM. Thus both data and instructions coexist in the computer's main memory. This is an important idea that dates back to the earliest computers. Such a design in which the machine memory comprises data and instructions is called a Von Neumann architecture, named after the creator of the idea. Von Neumann was a pioneer in the early years of computer science.

Registers

Program counter

Stack and stack pointer

\section*{ALU and comparator}

\section*{Von Neumann architecture}

Operands and literals

Our assembly
language

Addressing modes

Representing memory and addressing

Our hypothetical machine will use an assembly language with only eleven instructions. Most computers have more instructions, but this sparse set is adequate for our needs. The operands (items upon which the instructions work) src, des, and loc stand for source, destination, and location, respectively. These represent addresses in the computer's memory. src may represent a literal, a numeric value. This is written as a pound sign, "\#", followed by a number, as in \#42.
\begin{tabular}{lll}
name & operands & description \\
\hline MOV & \(s r c\), des & copy (move) src to des \\
ADD & \(s r c, d e s\) & add \(s r c\) to des, saving the result in des \\
SUB & \(s r c, d e s\) & subtract \(s r c\) from des, saving the result in des \\
NEG & \(d e s\) & negate des, saving the result in des \\
JMP & \(l o c\) & jump to \(l o c\) in the computer's memory \\
BEQ & \(l o c\) & branch to \(l o c\) if comparator is equal to zero \\
BNE & \(l o c\) & branch to \(l o c\) if comparator is not equal to zero \\
BLT & \(l o c\) & branch to \(l o c\) if comparator is less than zero \\
BGT & \(l o c\) & branch to \(l o c\) if comparator is greater than zero \\
JFN & \(l o c\) & jump to \(l o c\) (to call a function) \\
RET & & return from a function
\end{tabular}

The instructions ADD, SUB, and NEG set the comparator for subsequent branching instructions.

Memory locations can be referenced in many ways; the three our assembly language uses are absolute, indirect, and indexed. These are addressing modes. An absolute reference specifies the address of the data to use. In other words, the contents of the given memory location are used. An indirect reference specifies a location whose contents are the location of the data. This means that an extra level of address lookup is used. An indexed reference adds an index value to the contents of a location and uses that as the address of the data.

To understand this better, look at the computer's memory as a long list of integers. Each element is a unique value, which can be accessed or modified. Each of the elements has an address specifying its location. Addresses are numbers, just as the contents of the addresses (the value of the elements in our list) are numbers.

Any piece of memory can be accessed using list-ref. The call
(list-ref memory SP)
is an absolute reference. SP is the address, and the value returned is the contents of the location at that address.
```

(list-ref memory (list-ref memory SP))

```
is an indirect reference. The address is (list-ref memory SP). An indexed reference would be
```

(list-ref memory (+ index (list-ref memory SP)))

```

In addition to these three modes, we will use two variations on indirect addressing: post-increment and pre-decrement indirect addressing. Post-increment
and pre-decrement modes do two levels of address lookup. In addition, they increment or decrement the contents of the address given. This means that the next indirect address request using the same address will retrieve the neighboring data value. Post-increment gets the location from the address given and then increments the address. Pre-decrement decrements the address given first and then uses the contents of the decremented address as the location.

The table below shows how these addressing modes are written in assembly language. A literal value is referred to as an immediate address.
\begin{tabular}{ll}
mode & example \\
\hline immediate & \(\# 42\) \\
absolute & SP \\
indirect & \((S P)\) \\
indexed & \(3(S P)\) \\
post-increment & \((S P)+\) \\
pre-decrement & \(-(S P)\)
\end{tabular}

SP is the address of the top of the stack and (SP) is the contents of the location at that address, or the value at the top of the stack. - (SP) decrements the stack pointer before a value is added to or read from the stack. And (SP) + reads or puts a value on the stack and then increments the stack pointer.

Below are some examples that use our assembly language. Assume that these commands are performed in sequence and that memory location 4 contains the value 100, location 5 contains 25 , and location 7 contains 86 . value and temp are addresses.
\begin{tabular}{ll}
assembly & actions \\
MOV \#4, VALUE & store 4 into VALUE \\
MOV VALUE, TEMP & store 4 into TEMP \\
MOV (VALUE), TEMP & store 100 into TEMP \\
MOV 3(VALUE), TEMP & store 86 into TEMP \\
MOV (VALUE),+ TEMP & store 100 into TEMP and 5 into VALUE \\
MOV -1(VALUE), TEMP & store 100 into TEMP \\
MOV (VALUE), TEMP & store 25 into TEMP \\
MOV -(VALUE), TEMP & store 4 into VALUE and 100 into TEMP
\end{tabular}

Literal addresses can be used with \(s r c\) addresses only. The other addressing modes are allowed with \(s r c\), des, and loc addresses.

An example will help show how assembly language is written. Suppose we wish to add 4 and number and save the result in answer. In Scheme we could express this as
```

(define answer (+ number 4))

```

In assembly language, the same code is expressed as
```

MOV NUMBER, ANSWER
ADD \#4, ANSWER

```

The first instruction copies the contents of the memory location labeled NUMBER to memory location ANSWER. The next instruction adds the literal value 4 (written as \(\# 4)\) to the contents of the memory location labeled ANSWER. Below is a variation of

Addressing modes in assembly language

Sample assembly instructions

Mathematical expressions and variable binding in assembly

Creating assembly code that is functionally equivalent to the Scheme code

\section*{Function composition} in assembly
these operations:
ADD \#4, NUMBER
MOV NUMBER, ANSWER
At first, it might seem that these two sets of instructions are equivalent, but there is an important difference. The value of memory location NUMBER is not changed in the first example, whereas in the second example it is incremented by four. The Scheme expression does not change the value of number, so the first assembly language version is the preferred choice.

In general, to produce a value such as
(+ number 4)
the result of the computation should be saved in a separate memory location, preferably a register. By storing such partial results in registers, additional memory locations are not needed, and there is a speed improvement because it is faster to access and update a register than a memory location in RAM. Thus,
```

(+ number 4)

```
could be expressed in assembly language as
MOV NUMBER, RO
ADD \#4, R0
RO is register 0 , which is where the result of the computation is held.
If the result of this computation were needed for another computation, for example if the actual Scheme expression were
```

(- (+ number 4) 2)

```
the sum (+ number 4) is obtained from Ro. The assembly language for this Scheme expression would be
```

MOV NUMBER, RO
ADD \#4, R0
SUB \#2, R0

```

The final result is once again in register \(0, \mathrm{RO}\).

\subsection*{13.5.4 Conditional expressions in assembly language}

\section*{Branching instructions}

To express a Scheme if expression in assembly language, a conditional branch is used. A conditional branch jumps to a different section of code if a condition is met. For example, to express the following Scheme expression,
\[
\begin{aligned}
& \text { (if (< num 3) } \\
& \text { (- num 1) } \\
& \text { (- num)) }
\end{aligned}
\]
in assembly language, the commands below can be used. A brief explanation in English follows each instruction. These comments, preceded by semicolons, are optional.
```

    MOV NUM, R0 ; store NUM in R0
    SUB #3, R0 ; subtract 3 from R0 and set the comparator
    BLT THEN ;if less-than-0 is set (num < 3) jump to THEN
MOV NUM, RO ; else part: store NUM in R0
NEG RO ; negate R0
JMP DONE ; skip then part of if-then-else
THEN MOV NUM, R0 ; store NUM in RO
SUB \#1, R0 ; subtract 1 from R0
DONE next instruction

```

At the end of this sequence, the return value of the if expression is in register 0 , ro. The words then and done are labels. They represent addresses in the computer memory. The assembly language version only performs one of the then or else parts of the if, just like the actual Scheme expression would.

\subsection*{13.5.5 Function definitions and calls in assembly language}

Function definitions are performed by creating the code for the function and then associating the start location of those instructions with the function name. A call to a function is a jump to the function's start location. Function arguments and return values are covered later in this section.

Below is a function definition in Scheme:
```

(define (the-ultimate-answer)
(+ 21 21) )

```

The instructions JFN and RET are used to call and return from functions. JFN saves the location of the following address on the stack and then jumps to the address that specifies the start of a function. RET is called at the end of the function. It uses the address saved on the stack to return to the instruction after the function call. The function the-ultimate-answer, abbreviated TUA, is called with JFN TUA ; call the-ultimate-answer
The function the-ultimate-answer is expressed in assembly as
TUA
MOV \#21, R0 ; store 21 in R0
ADD \#21, R0 ; add 21 to the contents of R0
RET ; return to the caller
The first statement is labeled TUA. Following the function's instructions a Ret instruction is performed to return to the location following the one from which the function call was made. The return value of the function is held in register 0 , RO. This may seem fine, but there are some important details that have been left out. First, what happens if register 0 is being used at the time this function is being called? It is impossible to know at compile time exactly which functions will be active when another function is called. This is illustrated in the following example, where the number of functions called depends on a value passed to two-choices.

Labels

JFN and RET

Saving return values

Maintaining values on the stack

Saving register values

Dedicating register 0 for return values
```

```
(define (two-choices num)
```

```
(define (two-choices num)
 (if (> num 0)
 (if (> num 0)
 (+ num (the-ultimate-answer))
 (+ num (the-ultimate-answer))
 (+ (another-function) (the-ultimate-answer))))
```

```
 (+ (another-function) (the-ultimate-answer))))
```

```

If both another-function and the-ultimate-answer use R0 as their return values, then both return values cannot be maintained. As a further complication, function two-choices might use R0, in which case that value is lost when the other functions are called. To get around this problem, all the registers can be saved before a function is called and then restored when the function returns. This storage happens on the stack-a space within main memory that can be viewed as a pile of numbers in which numbers are added and removed. The last number to be added to the stack is the first number that will be removed. For an analogy, think of a stack of plates in which you always place and take plates from the top of the stack.

Saving all the registers is time consuming. Other solutions exist, such as saving only those registers currently in use. Either the caller of the function or the function being called is given the responsibility of saving and restoring any registers that it needs. Another possibility is to use register windows, in which sections of memory represent different collections of registers, which can be switched by changing the address holding their starting location. Hybrid solutions exist in which certain registers are allocated to the caller and certain ones to the callee (the function that is called). Any of these solve the basic problem of saving values in a limited number of registers when functions are called.

We will have the caller assume responsibility of saving the registers it uses before it calls a function and then restoring those values when the function finishes. This way the function being called is free to use any registers without conflicts arising. An alternate strategy would be to have the callee push the register values for the registers it will use. This requires an initial pass through the callee's code to determine which registers it will use. In general, it is better to give the callee more responsibility during a function call, because the callee's code is only generated once, whereas the caller's code is generated for each function call.

The return value from functions can be placed on the stack. A simpler solution would be to place the value in a register, but as we saw earlier we cannot know beforehand which registers will be free. However, a register could be dedicated to hold the return value from function calls. Register number 0 will be used for this purpose.

If multiple function calls must be made, prior return values can be moved to other registers. For example, if the function that calls the-ultimate-answer must save the return value in register 2 , it must include a mOV instruction after the JFN to copy the return value of the function into \(R 2\).
\(\begin{array}{ll}\text { JFN TUA } & \text {; call function the-ultimate-answer } \\ \text { MOV R0, R2 } & \text {; copy the return value into R2 }\end{array}\)

Functions that take arguments need space for the parameters within the function that hold the argument values. The arguments cannot be kept in specific registers because the function may be called recursively, in which case multiple copies of those arguments must be maintained. The arguments should be held on the stack. Each time the function is called recursively, the new arguments are added to the top of the stack.

When parameters are referenced in the function being called, they can be fetched relative to the stack pointer. However, subsequent function calls shift the position of the stack pointer so we can no longer look up values relative to the stack pointer. Instead, the values are held relative to the frame pointer. The frame pointer is similar to the stack pointer except that it points to the bottom of the current stack of parameters on the stack. When a function is called, the parameters are pushed on the stack and the frame pointer is set to the address of the first parameter. The stack pointer moves as parameters and other values are added to the stack, but the frame pointer stays. All references to parameters made in the function are relative to the frame pointer. The indexed addressing mode is a convenient means of doing this.

As functions terminate, their parameters are no longer needed and they can be deleted from the stack. The previous frame pointer must be restored then. This means the old frame pointer should be saved on the stack as well. In addition, the return address is needed on the stack when making recursive calls. The JFN instruction and RET push and pop the return address from the stack.

To clarify all these steps, here is a table summarizing the steps that the caller and callee take:
\begin{tabular}{ll}
location & action performed \\
\hline caller & save registers in use \\
caller & push arguments \\
caller & JFN pushes return address \\
callee & push frame pointer \\
callee & set frame pointer to first argument \\
callee & execute code in callee routine \\
callee & put return value in register 0 \\
callee & restore (pop) old frame pointer \\
callee & RET pops return address \\
caller & save return value in proper register \\
caller & increment stack pointer past arguments \\
caller & pop registers
\end{tabular}

The following diagrams show the stack at each step taken by the caller and callee as a function is called and returned from. Imagine a function is being executed and it is about to call another function. Before the call is made, the stack contains the values shown in diagram 1. SP and FP refer to the stack and frame pointers, respectively. The frame pointer points to the location of the first argument of the function and the stack pointer points to the return address, which is the last value added on the stack.

Saving space for parameters

\section*{Frame pointer}

Summary of caller and callee responsibilities

\section*{Diagram 1}
\(\mathrm{SP} \rightarrow\) return address
argumentN
\(\mathrm{FP} \rightarrow\) argument1
Before the function is called, the caller saves the registers it is using.
```

Diagram 2
SP $\rightarrow$ registerM
register1
return address
argument $N$
FP $\rightarrow$ argument 1

```

Then the caller evaluates the arguments and saves them on the stack. The callee will access these relative to the frame pointer which the callee will move to the first argument.
```

Diagram 3
SP->argumentL
argument1
registerM
register1
return address
argumentN
FP}->\mathrm{ argument1

```

The call to JFN pushes the return address on the stack and the callee code is executed.
```

Diagram 4
SP}->\mathrm{ return address
argumentL
argument1
registerM
register1
return address
argumentN
FP}->\mathrm{ argument1

```

Before the callee executes any of the code specific to its actions, it must save the frame pointer used by the caller on the stack and then move the frame pointer for its uses to the first argument to the callee. The callee accesses the arguments relative to the frame pointer. When the callee has computed its return value, it stores it in RO.
```

Diagram 5
SP}->\mathrm{ frame pointer
return address
argumentL
FP}->\mathrm{ argument1
registerM
register1
return address
argumentN
argument1

```

Once the callee has executed its code, it must restore the old frame pointer. The stack looks like diagram 4 then. Lastly the callee calls RET to return to the caller. The return address is on top of the stack. Now the stack looks like diagram 3.

The caller continues; it must adjust the stack pointer past the arguments. The stack looks like diagram 2 now. Then the caller pops the saved registers from the stack, returning the stack to diagram 1.

Let's try a function with arguments:
```

(define (pints-to-cups pints)
(+ pints pints) )

```

The arguments and the frame pointer will be saved on the stack. The equivalent of this function in assembly language is
PTC MOV FP, - (SP) ; push frame pointer on the stack
MOV SP, FP ; set frame pointer to the stack pointer
ADD \#2, FP ; adjust frame pointer to first argument position
MOV (FP), RO ; store parameter pints in RO
ADD RO, RO ;add pints to pints saving result in RO
MOV (SP) +, FP ; restore old frame pointer
RET ; return to the caller
The calling instructions for the expression
```

(+ (pints-to-cups 2) 3)

```
are
MOV \#2, - (SP) ; push argument value, 2, on the stack
JFN PTC ; call function pints-to-cups (result will go into R0)
ADD \#1, SP ; skip past argument on stack
ADD \#3, R0 ; add 3 to R0, (pints-to-cups 2), saving result in R0
R0 contains the return value of this expression.
We can execute this program by hand, simulating the actions of the machine, by writing out the stack and register values as we go through the assembly code. Assume that R0 and FP are initially 100 and 200 . Going through the instructions for (+ (pints-to-cups 2) 3) up to JFN PTC (including pushing the return address on the stack but before executing the code at PTC) yields the following values:

Sample function

Sample function call

Trace of the stack and register values

Sample recursive function and call
```

stack contents
SP->return address
2

register	value
RO	100
FP	200

```

\section*{stack contents}
```

$\mathrm{SP} \rightarrow$ return address
2

```

The stack and registers look as follows after the instructions in pints-tocups up to and including the ADD instruction are executed:
```

stack contents
SP->200
return address
FP}->\mathbf{2

```
register value
```

register value

```
register value
R0 initially 2 from (FP), then 4 after the ADD instruction
```

```
R0 initially 2 from (FP), then 4 after the ADD instruction
```

```
R0 initially 2 from (FP), then 4 after the ADD instruction
```

```

Once the function has finished and the RET instruction is executed, the stack and registers are as follows:

\section*{stack contents}
\(\mathrm{SP} \rightarrow 2\)
\begin{tabular}{ll}
register & value \\
\hline RO & 4 \\
FP & 200
\end{tabular}

Continuing with the instructions after JFN PTC, the stack is empty and the registers are
\begin{tabular}{ll}
register & value \\
\hline RO & 7 \\
FP & 200
\end{tabular}

Now let's try a recursive function definition and a call to it. The function below multiplies two positive numbers using a sequence of additions. Following the definition is a call to the function:
```

(define (mult num1 num2)
(if (= num1 1)
num2
(+ num2 (mult (- num1 1) num2))) )
(mult 2 3)

```

Putting all the ideas from this section in mind, let's write the assembly code for mult. The function has two parameters: the first will be at the frame pointer and the second will be in the address preceding the frame pointer. A recursive
function will contain the instructions for both the caller and callee. Notice that ro is used in this function before the recursive call, but its value is not saved on the stack. This is because the value is not needed after the recursive call. A good optimizing compiler will make such tests to reduce the amount of code generated.
```

MULT MOV FP, - (SP) ; push frame pointer on the stack
MOV SP, FP ; set frame pointer to the stack pointer
ADD \#3, FP ; adjust frame pointer to first argument position
MOV (FP), R0 ; initialize R0 to the first parameter-num1
evaluate condition }->\mathrm{ (= num1 1)
SUB \#1, R0 ; subtract 1 from R0, num1, to test for equality
test condition
BEQ THEN ;if that value is 0,(num1 = 1), so jump to THEN
else action }->\mathrm{ (+ num2 (mult (- num1 1) num2))
MOV RO, -(SP) ; push (- num1 1) on stack (first argument)
MOV -1(FP), - (SP) ; push num2 on stack (second argument)
JFN MULT ; call mult function
ADD \#2, SP ; skip past arguments on stack
ADD -1(FP), R0 ; add second parameter num2 to return value from mult
JMP DONE ; skip then part of if-then-else
then action }->\mathrm{ num2
THEN MOV -1(FP), R0 ; store return value, num2, in R0
DONE MOV (SP)+, FP ; restore old frame pointer
RET

```

The following assembly code is for the call (mult 2 3):
MOV \#2, - (SP) ; push 2 on stack (first argument)
MOV \#3, - (SP) ; push 3 on stack (second argument)
JFN MULT ; call mult function; result saved in R0
ADD \#2, SP ; skip past arguments on stack
To see how this works, produce a stack and register trace like the one made above for the call to (+ (pints-to-cups 2) 3).

\subsection*{13.6 Historical Background and Current Trends}

The first compilers marked the advent of high-level computer languages. Before compilers existed, programs were written in machine language or assembly language, which is easily translated into machine language. FORTRAN was one of the first languages for which a compiler was written. This was considered a monumental task; it took eighteen person-years to complete. The FORTRAN compiler was an existence proof that it was possible to write programs in highlevel languages and have them run on machines. This radically changed the productivity of programmers and made way for the current proliferation of programming languages.

Much has been learned since the late 1950's, when compilers started appearing. Tools have been created that generate lexical analyzers and parsers. In the UNIX environment, lex and yacc are two such tools. Lex takes descriptions of the

FORTRAN compiler

Lex
input in regular expression form, rules to indicate how the different tokens should be handled (e.g., identifiers should be added to the symbol table), and auxiliary functions that are needed (such as a function to install an identifier in the symbol table). This description is input to lex, which produces a lexical analyzer program in the language \(C\). This can then be linked with the rest of the compiler.

Yacc stands for Yet Another Compiler Compiler. It produces a parser program that can be linked with the rest of the compiler in the same fashion as lex is linked. Yacc takes the names of the tokens from the lexical analyzer, translation rules describing grammar rules and the actions to take based on those inputs, and lastly the lexical analyzer and any error recovery functions. Yacc produces an LR parser complete with a shift-reduce table as described in the section on bottom-up parsers. Yacc has built-in rules for disambiguating shift/reduce and reduce/reduce conflicts, which can be superseded if needed.

Using these two tools, all that is left is semantic analysis and code generation. Here, too, shortcuts can be made. For example, if compilers were needed to translate a high-level language into three assembly languages for three different computers, the same lexical analyzer, parser, and semantic analyzer could potentially be used. Even the majority of the code generation could be used by all three compilers if an intermediate form of assembly language were used. The three different compilers would share those pieces. A program taking the intermediate assembly code and translating it to the final assembly language would have to be written for each machine. Such practices simplify the task of updating compilers for multiple machines when language specifications change.

\subsection*{13.6.1 Compiling the compiler}

Perhaps the most powerful form of compiler creation involves a technique known as compiling the compiler. In this technique a compiler program itself is given as input to another compiler. To illustrate this idea we'll use a concrete example. It is important to keep the following three components straight:
- the language being compiled (translated)
- the language produced
- the machine on which the compiler runs

Let's suppose we have a compiler that runs on a Pentium machine and compiles the language C into Pentium assembly language. The Pentium is a microprocessor built by Intel. If we want to produce a Scheme compiler for the Pentium, we could write the compiler in Pentium assembly language. This would be extremely tedious. A simpler way would be to write a compiler in C that takes Scheme code as input and produces Pentium assembly language. Then, use this compiler as input to the existing C compiler to produce a compiler that runs on the Pentium that takes Scheme as input and produces Pentium assembly as output. The diagram below illustrates this:

Now suppose we want a Scheme compiler for the PowerPC (PPC)-a microprocessor made by Motorola. To complicate matters, let's assume that we don't have a C compiler for the PowerPC. Thus, we cannot take the path used above. To further complicate matters, let's assume that we have no compilers for the PowerPC. Where do we start? It looks like we have to build a compiler in PowerPC assembly language.

This is where the true power of compiling compilers comes through. We begin by writing a compiler in Scheme that takes Scheme and produces PowerPC code. Next, we give this compiler as input to the compiler created above that takes Scheme and produces Pentium code. This compiler runs on a Pentium. The result is a cross-compiler that runs on a Pentium, takes Scheme, and returns PowerPC assembly code. A cross-compiler is a compiler that produces assembly code for a different machine than the one on which it runs. The diagram below illustrates this:
\begin{tabular}{|c|c|}
\hline Scheme-to-PPC \\
compiler \\
written in Scheme
\end{tabular} input to \(\xrightarrow{\substack{\text { Scheme-to-Pentium } \\
\text { compiler } \\
\text { in Pentium }}} \xrightarrow{\text { produces }}\)\begin{tabular}{|c|}
\begin{tabular}{c}
Scheme-to-PPC \\
cross-compiler \\
in Pentium
\end{tabular} \\
\hline
\end{tabular}

Now repeat the process, but this time the Scheme compiler we wrote is input to the cross-compiler produced above. The cross-compiler runs on a Pentium, but produces PowerPC code; thus, sending it a Scheme-to-PowerPC compiler will produce a Scheme-to-PowerPC compiler that runs on a PowerPC. This is illustrated in the diagram below:

To recap, start with a C-to-Pentium compiler that runs on a Pentium. Write a Scheme-to-Pentium compiler in C and compile that compiler to produce a Scheme-to-Pentium compiler that runs on a Pentium. Next, write a Scheme-to-Scheme-to-Pentium compiler that runs on a Pentium. Next, write a Scheme-to-
PowerPC compiler in Scheme and compile that compiler once (on the Scheme-to-Pentium compiler) to produce a Scheme-to-PowerPC cross-compiler running
on a Pentium, and again (on the cross-compiler) to give a Scheme-to-PowerPC to-Pentium compiler) to produce a Scheme-to-PowerPC cross-compiler running
on a Pentium, and again (on the cross-compiler) to give a Scheme-to-PowerPC compiler running on a PowerPC machine.

Cross-compilers

\author{
Lexical analysis
}

\section*{Parsing}

\author{
Semantic analysis
}

Error checking

\section*{Code generation}

\subsection*{13.7 Implementing a Simple Scheme Compiler in Scheme}

To implement a Scheme compiler in Scheme we will take many shortcuts. For example, we do not need to read in the input as individual characters, but can read in Scheme objects like numbers, symbols, and lists directly. This eliminates the majority of the work done by the lexical analyzer. All that is left is to convert numbers into the token number, and symbol and function names into the token id, and store their names in a symbol table. In fact, we can even bypass some of these steps.

The majority of the parser's task is not needed because Scheme code has an extremely simple syntax. This structure provides a natural parse tree for Scheme statements. The only change to the structure of basic Scheme is adding nodes to label the subtree types, for example, adding expr as the parent node to a Scheme expression, or id-list as the parent to parameter lists. In our mini-Scheme version, we can get by without the extra nodes and simply use the existing structure of Scheme expressions.

Semantic analysis is needed to deal with the types of arguments given to overloaded functions, assuming that we can determine the types at compile time (when the compiler processes the code). In a strongly typed language, where all variables must be declared, this can be done. However, in Scheme or other languages where variables are not typed, the compiled code must include tests for the types and then perform the appropriate actions. This makes for slower execution times and is one of the major criticisms of Scheme. Some dialects of LISP allow the programmer to specify the type of a variable to improve runtime speed.

We will need semantic analysis to properly interpret calls to the negationsubtraction function, "-." If - is called with one argument, negation should be performed instead of subtraction. In assembly language, this translates into using NEG instead of SUB.

Error checking is done during lexical analysis, parsing, and semantic analysis. We will perform minimal error checking, making the assumption that we are given valid input so that we can ignore fully robust error checking. If we make this assumption and ignore the addition of extra nodes in the parse tree, we can skip lexical analysis, parsing, and semantic analysis altogether. We will include the tests for negation/subtraction in the code generation section.

Code generation is the remaining task. It involves sequencing through Scheme expressions and producing assembly language. To make things simpler we will only allow the simple set of Scheme functions previously shown in section 13.5.1 and only support integer typed values. This provides a reasonable idea of what is involved in code generation without getting bogged down in all the details that would arise in compiling the full set of Scheme functions and allowing multiple types.

Section 13.5, "Code Generation," gives examples of assembly code broken down by different expression types. Using a similar approach we can address each type of expression allowed in our mini-Scheme and generate the assembly code for that expression. We won't always produce code that is as streamlined as
that shown in the examples from section 13.5. Producing efficient assembly code is one of the most difficult elements of compiler design.

One issue that will come up throughout the process of code generation is the use of registers. Registers are a finite resource and should be used as much as possible, as they are rapidly accessible by the CPU. Whenever registers can be re-used, we should try to do so. This involves realizing when values must be saved and when they need not be saved.

Another issue that will come up is the return value of expressions. A complex expression may involve many subexpressions, whose values must be combined to produce a final return value. We will need a mechanism to save these different return values.

A final theme is handling symbols. The values of symbols used as parameters must be saved somewhere. We will use the stack to do so, along with a symbol table that links symbols with their location on the stack.

Employing top-down design, we start with the top-most function, which compiles a list of expressions. This function takes the list of expressions, a list of register names that the computer supports, and the symbol table. For each expression in the expression list, this function simply calls another function that generates code for a single expression. Since each expression is independent and the results computed by each expression need not be saved, except for the last one, the register list for each expression can be reused.
```

; Generate code for a list of expressions.
(define (code-gen-expr-list expr-1ist reg-list symbol-table)
(for-each
(lambda (expr)
(code-gen-expr expr reg-list symbol-table) )
expr-list) )

```

The function code-gen-expr, the heart of the code generator, generates code or calls functions to generate code for each type of expression with which it might be called. The return value of an expression may be required in another computation. For example, when evaluating a function call, code-gen-expr must be called recursively to generate the code for the arguments. The results for each argument must be saved somewhere and then applied to the function being called. The first register in the register list can be used to represent the location where the result of the current expression should be put. The remaining registers are free for use in computing that value.

Error handling may occur deep within our code. Rather than try to recover from errors, we'll immediately bail out of the code generation process and return a string indicating what caused the error. The easiest way to bail out from anywhere in a collection of functions is by calling an exit function established with call-with-current-continuation. Examples of this function are covered in Chapter 11, "Forcing Exits with call-with-current-continuation." The following two expressions establish fatal-error as an exit function.

\footnotetext{
(define fatal-error 'not-yet)
}

Efficient use of registers

\section*{Return values}

Symbols

Compiling expression lists

\section*{Compiling single} expressions

\author{
Error handling
}

Printing out assembly instructions
```

(call-with-current-continuation
(lambda (stop)
(set! fatal-error stop)))

```

To output assembly instructions, we use a function output that takes a symbol representing the instruction and optional arguments representing additional information that may be needed, such as the src, des, and loc values. Instructions are indented so that labels (which aren't indented) stand out. The tricky part is dealing with the commas that precede all but the first optional argument.
```

; Print out instruction and operands.
(define (output instruc . addrs)
(display " ")
(display instruc)
(cond ((not (null? addrs))
(display " ")
(display (first addrs))
(for-each
(lambda (addr)
(display ", ")
(display addr) )
(rest addrs))))
(newline) )

```

We need another function to look up the symbol in the symbol table (an association list) to find the register or position on the stack (in the case of parameters) holding its value. If the symbol does not exist in the symbol table, code generation terminates.
```

; Lookup address of symbol in symbol table.
(define (symbol-address symbol symbol-table)
(let ( (address (assoc symbol symbol-table)) )
(if address
(cdr address)
(fatal-error
(string-append
"Undefined variable:"
(symbol->string symbol))))) )

```

Finally, here is the code to handle a single expression. It handles six different types of expressions: symbols, numbers, if-then-else expressions, function definitions, calls to built-in functions, and calls to user-defined functions. The result from each expression is saved in the first register in reg-list. To deal with symbols, this function will need the symbol table, so it is a parameter.
```

; Generate code for a single expression saving return value in the
; first register of reg-list.
(define (code-gen-expr expr reg-list symbol-table)
(let ( (result (first reg-list)) )
(cond ((symbol? expr)
(output 'MOV (symbol-address expr symbol-table) result))
((number? expr)
(output 'MOV (literal expr) result))
((is-if? expr)
(code-gen-if expr reg-list symbol-table))
((is-func-def? expr)
(code-gen-func-def expr reg-list symbol-table))
((is-built-in-func? expr)
(code-gen-built-in-func expr reg-list symbol-table))
(else ; otherwise it's a user-defined function call
(code-gen-user-func expr reg-list symbol-table)))) )

```

The auxiliary functions used in code-gen-expr must be written. We'll start with the functions that check the expression type:
```

; Test if expr is an if expression.
(define (is-if? expr)
(eqv? (first expr) 'if) )
; Test if expr is a function definition.
(define (is-func-def? expr)
(eqv? (first expr) 'define) )
; Test if expr is a call to a built-in function.
(define (is-built-in-func? expr)
(member (first expr) '(+ - < > = /= <= >=)) )

```

We could have placed the code for these conditions directly in code-genexpr. Writing separate functions adheres to data abstraction principles, which minimize changes that have to be made to the code when the data structure changes. For example, our data structure would change if a parser were used that produced a parse tree with a different form than the Scheme input we presently receive.

When a number is evaluated, its literal value, an immediate address (represented as the character " \(\#\) " followed by the number), must be produced. The function literal does this by appending the string "\#" to the string representation of the number.
```

; Generate a string representing a literal.
(define (literal number)
(string-append "\#" (number->string number)) )

```

While we are dealing with addresses, let's create functions to generate different addresses. These functions will be given a symbol and possibly a number (indexed address).

Data abstraction

Forming literals

Forming different addressing modes

Steps to produce an if expression

Mutual recursion

Selector functions for if
```

; Generate a string representing an indirect address.
(define (indirect address)
(string-append "(" (symbol->string address) ")") )
; Generate a string representing an indexed address.
(define (indexed address index)
(string-append (number->string index) (indirect address)) )
; Generate a string representing a post-increment address.
(define (post-inc address)
(string-append (indirect address) "+") )
; Generate a string representing a pre-decrement address.
(define (pre-dec address)
(string-append " -" (indirect address)) )

```

\subsection*{13.7.1 Generating code for if expressions}

For an if expression, the basic steps in generating assembly code are as follows:
1. Generate code for the conditional test.
2. Create a branch to the then label if the test passes (jump to then action).
3. Generate code for the else action.
4. Create a branch to a label following the then action (end of if expression).
5. Insert a label for the then action.
6. Generate code for the then action.
7. Insert a label for the end of the if expression.

This can get complex if the conditions or actions are themselves complex collections of function calls or even other if expressions. This is not as bad as it may sound if we take advantage of the powers of recursion. Each step that generates code can be handled by making a call to code-gen-expr. This is a type of recursion known as mutual recursion in which one function calls another, which in turn calls the first.

As mentioned earlier, data abstraction is important in writing compilers. We have written functions to test the types of expressions. We should write selector functions to access the different parts of expressions. For an if expression, data selector functions for the condition, then-action, and else-action are needed. These are written below:
```

; Return the condition of an if expression.
(define (get-condition if-expr)
(second if-expr) )
; Return the then-action of an if expression.
(define (get-then-action if-expr)
(third if-expr) )

```
```

; Return the else-action of an if expression.
(define (get-else-action if-expr)
(fourth if-expr) )

```

Making recursive calls to code-gen-expr will take care of parts 1, 3, and 6 of
Creating labels handling an if expression. Parts 2 and 4 involve jumping to labels and parts 5 and 7 involve inserting those labels in the assembly code produced. Creating labels has a subtle difficulty associated with it: each label must be unique. In the previous examples we had a rather cavalier attitude toward label names. If there are several if expressions, the label else cannot be used to signify the start of each else action. Labels produced by compilers are often written as a letter followed by a number (e.g., L7). Each label that is needed gets a larger number. Thus, we need a counter as either a global variable that is updated each time we create a label or as a variable in a lexical closure in a label-producing function that is incremented each time the closure is invoked. This technique is presented in Chapter 11 in the section called "Functions that Return Functions."

The first approach is not desirable stylistically because it uses a global variable that gets redefined in different functions throughout the code generator. The second approach is more complex but is better from a programming style viewpoint. We'll use it. We need two functions. The primary function gentemp produces a unique symbol given a prefix string, like "L." gentemp is produced by the second function make-gentemp, which maintains the local state (using a let variable) of the counter variable used to produce the unique symbols.
```

; Return a function that generates unique address labels.
(define (make-gentemp)
(let ( (n 0) )
(lambda (prefix)
(set! n (+ n 1))
(string->symbol
(string-append prefix (number->string n))) )) )
(define gentemp (make-gentemp))

```

Below are some examples:
```

> (gentemp "L")
L1
> (gentemp "L")
L2

```

Since both labels will have to be used twice in the assembly code-once as a jump instruction and once as a label-their values should be saved in a let expression. To output labels, we use a function output-label, which we will write later.

The condition (part 2) uses the register list first, and the registers don't need to be saved for the then or else actions (parts 3 and 6), so the actions will use the entire register list as well. Since only one action will be performed, there is no conflict here. The then and else actions define the return value of the if expression.

Forming the branch instruction

Part 2 requires a conditional branch. This could be BEQ, BNE, BGT, BLT, or a combination of these. For example, the assembly equivalent of Scheme's \(>=\) is

BEQ then-label
BGT then-label
If either condition is met, a jump is made to the then-action. Producing the branching instructions will be done by the function conditional-test.

At this point, we can put the entire if-then-else function together. The auxiliary functions will be defined later.
```

; Generate code for an if expression.
(define (code-gen-if if-expr reg-list symbol-table)
(let ( (then-label (gentemp "L"))
(end-label (gentemp "L")) )

```
 ; 1. generate code for conditional test
 (code-gen-expr (get-condition if-expr) reg-list symbol-table)
 ; 2. create a branch to label if test passes (jump to then action)
 (conditional-test (get-condition if-expr) then-label)
 ; 3. generate code for the else action
 (code-gen-expr (get-else-action if-expr) reg-list symbol-table)
 ; 4. create a branch to a label following then action (end of if expression)
 (output 'JMP end-label)
 ; 5 . insert a label for then action
 (output-label then-label)
 ; 6. generate code for then action
 (code-gen-expr (get-then-action if-expr) reg-list symbol-table)
 ; 7. insert a label for end of if expression
 (output-label end-label)))

The function conditional-test produces code for comparison functions such as = and \(>\). An association list *condition-assem* is used to map Scheme conditions with assembly instructions:
```

; Generate conditional branch to label.
(define (conditional-test condition label)
(let ( (assem (assoc (first condition) *condition-assem*)) )
(if (not assem)
(fatal-error (string-append "bad-instruction: "
(symbol->string (first condition))))
(for-each
(lambda (instruction)
(output instruction label) )
(cdr assem)))) )

```
```

(define *condition-assem* '(
(> BGT)
(< BLT)
(= BEQ)
(/= BNE)
(>= BGT BEQ)
(<= BLT BEQ)) )

```

The function output-label follows. It prints out a label without indentation.

\section*{Printing labels}
```

; Generate a label for a subsequent instruction.
(define (output-label label)
(display label) )

```

The code we have created is for if expressions with else actions. What about if expressions without else actions? Let's see what happens if we try the existing function with an if-then expression. The test is generated and a branch is made to the then label if the test passes. Next, the code for the else action is generated. The function get-else-action will return an error if called with an if-then expression. To allow for if-then expressions, we modify get-else-action to return \#f if no else action exists and modify code-gen-if to test the return value of get-else-action.
```

; Return the else-action of an if expression or \#f if none exists.
(define (get-else-action if-expr)
(if (not (null? (cdddr if-expr)))
(fourth if-expr)
\#f) )

```
; Generate code for an if expression.
(define (code-gen-if if-expr reg-list symbol-table)
 (let ((then-label (gentemp "L"))
 (end-label (gentemp "L"))
 (else-action (get-else-action if-expr)))
 ; 1. generate code for conditional test
 (code-gen-expr (get-condition if-expr) reg-list symbol-table)
 ; 2. create a branch to label if test passes (jump to then action)
 (conditional-test (get-condition if-expr) then-label)
 ; 3. generate code for the else action if one exists
 (if else-action
 (code-gen-expr else-action reg-1ist symbol-table))
 ; 4. create a branch to a label following then action (end of if expression)
 (output 'JMP end-label)
 ; 5. insert a label for then action
 (output-label then-label)
 ; 6. generate code for then action
 (code-gen-expr (get-then-action if-expr) reg-list symbol-table)
 ; 7. insert a label for end of if expression
 (output-label end-label)))

Handling if expressions without else actions

Steps to handle
function definitions

Getting return value into register 0

Making an association list for parameter names and values

\subsection*{13.7.2 Generating code for define expressions}

To create a function, we must put all the assembly code that makes up the function into the memory space of the virtual machine and then label the start of those instructions with the symbol name for the function, so that when the function is called, JFN jumps to that label and begins executing the function's instructions.

To refine this further, the assembly code needed for a function definition is as follows:
1. Generate label for the start of the function, using function name.
2. Save (push) the current frame pointer on the stack.
3. Set the new frame pointer to the first parameter.
4. Generate code for the body of the function.
5. Save the return value in register 0 .
6. Restore (pop) the old frame pointer from the stack.
7. Generate a RET instruction.

The first step can be implemented using output-label. The second, third, and sixth steps are conditional; if the function has no parameters, these steps can be ignored. To set the frame pointer to the location of the first parameter in the third step, set the frame pointer to the top of the stack and then increment it past the return address and the other parameters. The fourth step can be handled by calling code-gen-expr-list with the expressions comprising the body of the function, the available registers, and a symbol table mapping the parameters to their addresses. The fifth and seventh steps are straightforward.

Selector functions to extract the function name, parameter list, and body from a function definition will be useful, and we'll define them later.

There is an additional subtlety to step five. We must know which register holds the function's return value. Each expression uses the entire register list when calling code-gen-expr, and the return value of the expression is saved in the first register of that list. Since the return value of a function is the result of the final expression, the function's return value will be in the first register. If the first register is RO 0 , then we can skip this instruction to avoid creating the useless instruction
```

MOV R0, RO

```

The parameter names must be saved in the symbol table. There they are matched with locations on the stack relative to the frame pointer. The function make-table will create the table, taking a list of parameter names and returning a symbol table (an association list) that maps parameters to their offsets from the frame pointer. Recall that the first parameter is at the frame pointer, the second parameter is one address preceding the frame pointer, and so on. For example, given the parameter list
```

(size width height)

```
make-table should produce the following association list:
```

((size . "(FP)")
(width . "-1(FP)")
(height . "-2(FP)"))

```

Notice how the offset from the frame pointer is the negative of the position of the parameter in the parameter list. We will use this relationship in writing make-table:
```

; Create a symbol table for the parameters to a function.

```
(define (make-table parameter-list)
 (if (nulls parameter-list)
 ()
 (cons
 (cons (first parameter-list) (indirect 'FP))
 (map
 (lambda (parameter)
 (cons
 parameter
 (indexed 'FP (- (position parameter parameter-list)))))
 (rest parameter-list)))))

Here is the code for code-gen-func-def:
```

; Generate code for a function definition.

```
(define (code-gen-func-def expr reg-list symbol-table)
\(; 1\). Generate label for the start of the function, using function name.
(output-label (get-func-name expr))
(cond ((not (null? (get-params expr))) ; if function has parameters
; 2 . Save (push) the current frame pointer on the stack.
(output 'MOV 'FP (pre-dec 'SP))
; 3 . Set the new frame pointer to the first parameter.
(output 'MOV 'SP 'FP)
(output 'ADD
(literal (+ (length (get-params expr)) 1)) 'FP)))
; 4. Generate code for the body of the function.
(code-gen-expr-list (get-body expr) reg-list (make-table (get-params expr)))
; 5 . Save the return value in register 0 .
(if (not (eq? (first reg-list) 'RO)) (output 'MOV (first reg-list) 'RO))
; 6. Restore (pop) the old frame pointer from the stack.
(if (not (null? (get-params expr))) (output 'MOV (post-inc 'SP) 'FP))
; 7. Generate a RET instruction.
(output 'RET))
The selector functions are defined below:
```

; Return function name from function definition.
(define (get-func-name func)
(caadr func) )

```

Selector functions for function definitions

Steps to take before calling functions

Steps to take after returning from functions

Pushing and popping values onto the stack
```

; Return parameter list from function definition.
(define (get-params func)
(cdadr func) )
; Return body from function definition.
(define (get-body func)
(subseq func 2) )

```

\subsection*{13.7.3 Generating code for calls to user-defined functions}

Before a user-defined function (one created using define) is called, a number of operations must be performed:
1. Save (push) the registers currently in use on the stack.
2. Generate code for the arguments and push the results on the stack.
3. Call the JFN instruction.

After the function returns, the following steps must be taken:
4. Save the return value in the first register if it's not already there.
5. Increment the stack pointer past the arguments.
6. Restore (pop) the registers from the stack.

We could simplify things if we had functions that pushed values onto the stack and popped values from the stack. These functions will take a list that indicates which addresses to pop the stack values into or which values to push onto the stack. These functions, push-vals and pop-vals, are defined below:
```

; Generate code to push values in address-list on stack.
(define (push-vals address-list)
(for-each
(lambda (address)
(output 'MOV address (pre-dec 'SP)) )
address-list) )
; Generate code to pop values from stack into address-list addresses.
(define (pop-vals address-list)
(for-each
(lambda (address)
(output 'MOV (post-inc 'SP) address) )
address-list) )

```

Be careful when pushing and popping values onto the stack. If registers RO , R1, and R2 are pushed on the stack using
(push-vals '(R0 R1 R2))
the top of the stack is R2. Hence, the registers should be popped in the reverse order like this:
```

(pop-vals '(R2 R1 R0))

```

Most of the steps outlined above involve pushing or popping values or producing simple instructions. Step two requires generating code for the arguments. We cannot use code-gen-expr-list to do this because each argument's value
must be pushed on the stack after it is determined. Instead we can use multiple calls to code-gen-expr and push-vals to push the results onto the stack.

One further complication exists: how do we know which registers should be saved? reg-list indicates the registers that can be used. We need a complete list of registers with which to compare reg-list. A global variable can do this:
(define *all-regs* '(R0 R1 R2 R3 R4 R5 R6 R7))
Below is the code to call user-defined functions, code-gen-user-func. Once again, selector functions are used to get the arguments and function name.
```

; Generate code to call user-defined functions.
(define (code-gen-user-func expr reg-list symbol-table)

```
; 1 . Save (push) the registers currently in use on the stack.
(push-vals (set-difference *all-regs* reg-list))
;2. Generate code for the arguments and push the results on the stack.

\section*{(for-each}
(lambda (arg)
(code-gen-expr arg reg-list symbol-table)
(push-vals (subseq reg-list 0 1)))
(get-args expr))
; 3. Call the JFN instruction.
(output 'JFN (get-call-name expr))
; 4. Save the return value in the first register if it's not already there.
(if (not (eq? (first reg-list) 'R0))
(output 'MOV 'R0 (first reg-list)))
; 5 . Increment the stack pointer past the arguments.
(if (not (null? (get-args expr)))
(output 'ADD (literal (length (get-args expr))) 'SP))
; 6. Restore (pop) the registers from the stack.
(pop-vals (reverse (set-difference *all-regs* reg-list))))
Our selector functions are defined below:
```

; Return arguments from a function call.
(define (get-args expr)
(rest expr) )
; Return function name from a function call.
(define (get-call-name expr)
(first expr) )

```

\subsection*{13.7.4 Generating code for calls to built-in functions}

The final step is to write a function that generates assembly language for calls to built-in functions. We have to handle the following function calls:
\begin{tabular}{ll}
category & functions \\
arithmetic & + (with two arguments), - (with one or two arguments) \\
comparison & \(=, /=,\rangle,\langle\rangle=,,\langle=\) (with two arguments)
\end{tabular}

Steps to call built-in functions

Proper register usage

Predicate functions that test for the type of function call will be helpful. These will be defined later. To call a built-in function, the steps are as follows:
1. Generate code for the arguments, saving the results in registers.
2. Perform the operation of the function using the values (saved in registers) from the above step.
3. Save the result in the appropriate register.

The function that carries out these actions will be given an expression and a list of available registers. The first register in this list denotes the location of the return value. All other registers can be used to hold temporary values such as argument values. Examine the following call:
```

(+ 4 num)

```

Code would first be generated for the arguments. Assuming that the result of this addition operation is saved in register 1, the argument values could be placed in registers 2 and 3 . The final step would be to do an ADD instruction and a MOV to put the result in register 1 as follows:
```

ADD R2, R3
MOV R3, R1

```

This mOV instruction can be avoided if registers 1 and 2 hold the values of the arguments. Then a single instruction can do the same operation.
```

ADD R2, R1

```

Conveniently, this works for subtraction too. Given the call
```

(-4 3)

```
and storing 4 in register 1 and 3 in register 2, the assembly instruction to save the result in register 1 is
```

SUB R2, R1

```

This properly subtracts 3 from 4, leaving 1 in register 1.
Below is the code for generating assembly language for calls to built-in functions:
```

; Generate code for calls to built-in functions.
(define (code-gen-built-in-func expr reg-list symbol-table)
(code-gen-expr (get-first-arg expr) reg-list symbol-table)
(if (has-two-args? expr)
(code-gen-expr
(get-second-arg expr) (rest reg-list) symbol-table))
(cond ((is-negation? expr)
(output 'NEG (first reg-list)))
((is-addition? expr)
(output 'ADD (second reg-list) (first reg-list)))
((or (is-subtraction? expr) (is-comparison? expr))
(output 'SUB (second reg-list) (first reg-list)))) )

```

Below are the auxiliary functions to test the type of function call being made and extract the arguments:
```

```
; Test if function call has two arguments.
```

```
; Test if function call has two arguments.
(define (has-two-args? expr)
(define (has-two-args? expr)
 (= (length expr) 3))
 (= (length expr) 3))
; Test if function call is a call to unary - (negation).
; Test if function call is a call to unary - (negation).
(define (is-negation? expr)
(define (is-negation? expr)
 (and (eqv? (first expr) '-)
 (and (eqv? (first expr) '-)
 (= (length expr) 2)))
 (= (length expr) 2)))
; Test if function call is a call to + (addition).
; Test if function call is a call to + (addition).
(define (is-addition? expr)
(define (is-addition? expr)
 (and (eqv? (first expr) '+)
 (and (eqv? (first expr) '+)
 (= (length expr) 3)))
 (= (length expr) 3)))
; Test if function call is a call to binary - (subtraction).
; Test if function call is a call to binary - (subtraction).
(define (is-subtraction? expr)
(define (is-subtraction? expr)
 (and (eqv? (first expr) '-)
 (and (eqv? (first expr) '-)
 (= (length expr) 3)))
 (= (length expr) 3)))
; Test if function call is a call to a comparison function.
; Test if function call is a call to a comparison function.
(define (is-comparison? expr)
(define (is-comparison? expr)
 (and (member (first expr) '(> < >= <= = /=))
 (and (member (first expr) '(> < >= <= = /=))
 (= (length expr) 3)))
 (= (length expr) 3)))
; Return first argument to function call.
; Return first argument to function call.
(define (get-first-arg expr)
(define (get-first-arg expr)
 (second expr))
 (second expr))
; Return second argument to function call.
; Return second argument to function call.
(define (get-second-arg expr)
(define (get-second-arg expr)
 (third expr))
```

```
 (third expr))
```

```

\subsection*{13.7.5 Testing our compiler}

As an example to test out the preceding code, let's try to compile the recursive function mult and a call to it. This will test most pieces of our compiler. The call
```

```
(code-gen-expr
```

```
(code-gen-expr
 '(define (mult num1 num2)
 '(define (mult num1 num2)
 (if (= num1 1)
 (if (= num1 1)
 num2
 num2
 (+ num2 (mult (- num1 1) num2))))
 (+ num2 (mult (- num1 1) num2))))
 all-regs '())
```

```
 all-regs '())
```

```
produces the following assembly instructions. English explanations of the assembly are given as well but are not produced by our compiler.

Auxiliary functions for calling built-in functions

Comparing our handcoded assembly with the computergenerated assembly
\begin{tabular}{|c|c|}
\hline assembly & description \\
\hline mult mov fp, -(sp) & push frame pointer on stack \\
\hline mov sp, fp & set frame pointer to \\
\hline add \#3, fp & location of first argument \\
\hline mov (fp), r0 & move num1 into register 0 \\
\hline mov \#1, r1 & \\
\hline sub r1, r0 & produce (- num1 1) \\
\hline beq L1 & if (\(=\) num1 1) go to then action \\
\hline mov -1(fp), r0 & move num2 into register 0 \\
\hline mov r0, -(sp) & push R0 on stack (save register) \\
\hline mov (fp), r1 & move num1 into register 1 \\
\hline mov \#1, r2 & \\
\hline sub r2, r1 & produce (- num1 1) \\
\hline mov r1, -(sp) & push this value on the stack (first argument) \\
\hline mov -1(fp), r1 & move num2 into register 1 \\
\hline mov r1, -(sp) & push it on the stack (second argument) \\
\hline jfn mult & jump to mult function \\
\hline mov r0, r1 & save return value from mult in R 1 \\
\hline add \#2, sp & increment past the two arguments on the stack \\
\hline mov (sp) +, r0 & restore register 0, num2 \\
\hline add r1, r0 & add num2 to return value \\
\hline jmp L2 & jump past then action \\
\hline L1 mov-1(fp), r0 & move num2 into register 0 \\
\hline L2 mov (sp)+, fp & restore old frame pointer \\
\hline ret & \\
\hline
\end{tabular}

This is quite a bit longer than our hand-coded version. There are some steps where two instructions could be reduced to one. The value (- num1 1) was computed twice, requiring an additional two instructions. Register 0 was used to hold the value of num 2 as the first argument to the function + . This forced register 0 to be saved on the stack before calling the function and to be restored afterwards.

Calling mult yields better results, but the arguments could have been put onto the stack in two instructions instead of four:
```

(code-gen-expr '(mult 2 3) *all-regs* '())
assembly description
mov \#2, r0
mov r0, - (sp) push first argument, 2, on the stack
mov \#3, r0
mov r0, - (sp) push second argument, 3, on the stack
jfn mult jump to mult function
add \#2, sp increment past the two arguments on the stack

```

\subsection*{13.7.6 Exercises}
13.3 Could make-gentemp be defined as a variable instead of as a function, as follows?
```

(define make-gentemp
(let ( (n 0) )
(lambda (prefix)
(set! n (+ n 1))
(string->symbol
(string-append prefix (number->string n))) )) )

```

If so, what are the advantages/disadvantages of this approach? If not, why not?
13.4 The function code-gen-if does not produce code for an else action if one does not exist. What will the generated code return in this case when the condition is false? Does this value make sense? If not, modify the function to return a more meaningful value.
13.5 No checks are made in this compiler to determine if registers are left in reg-list. What happens when all the registers are used up? Or is this a situation that can never arise? Indicate why all the registers cannot be used up or give an example expression that uses up all the registers and indicate how to modify the code to deal with this situation in some reasonable way.
13.6 Build a simulator that models the actions of a machine running assembly language instructions. This is a big but very useful exercise in verifying our compiler. The simulator will be a virtual machine that models the main memory, stack space, frame and stack pointers, registers, ALU, and comparator. The simulator will take a list of instructions where each instruction is a list, such as
```

((START MOV (literal 21) R0)
(SUB (literal 20) RO)
(BLT L1)
(MOV (literal 3) RO)
(JMP L2)
(L1 MOV (literal 4) R0)
(L2 HALT))

```

The first instruction to simulate is labeled START, and instructions should be processed until a HALT instruction is encountered. This way instructions that make up functions can exist in the instructions. Addressing modes (other than absolute) will be specified using lists like
```

(indexed FP - 3)

```

Everything else is represented with symbols.
You'll need to create data structures for the registers, data stack, and stack and frame pointers. You'll also need to simulate the actions of the ALU and comparator. You will need a controller that sequences through

Representing different types

Discerning objects of different types

Representing lists
the instructions, determines the type of instruction, and takes the appropriate actions. After each instruction, print out the values of the registers.

\subsection*{13.8 Extending Our Compiler}

We have created a compiler for a simple subset of Scheme. Our mini-Scheme has two special forms (if and define), one data type (integer), and two arithmetic and six comparison functions. Let's explore what must be done to extend our compiler to incorporate more of Scheme. The focus is on five major areas: data types, functions, special forms, scope, and code optimization.

\subsection*{13.8.1 Adding more data types to our compiler}

In this text, we have looked at six types of Scheme objects: numbers (which are further divided into integers, reals, ratios, and complex numbers), symbols, lists, booleans (\#t and \#f), functions, and strings. \({ }^{3}\) All of these are represented as numbers in digital computers. This brings up two big questions: How are they represented and how are they distinguished? Floating point numbers, ratios, and complex numbers can be represented as two numbers. Symbols are addresses pointing to a symbol table entry giving the value of the symbol and its name. Booleans are represented as numbers (0 can be false and anything else is true). Functions are a collection of assembly language instructions. These instructions can be written in machine language (numbers). Strings are a series of numbers. Each number represents one or more characters of the string. A character can be represented as a number between 0 and 127.

But this brings up some ambiguities, namely how do we know if a number refers to an integer, part of a string, a machine language function, or something else? We can address this problem by representing each data type as two numbers; one number indicates what type the data is and the other is the data itself. For example if 0 denotes a number, then " 02364 " would represent the number 2,364 . Such a structure is called a record and the individual parts of it are called fields.

How do we represent a list using numbers? Before answering this, review "Optional Section: Internal Representations of Lists" from Chapter 4. This section presents lists as sequences of cons cell structures. A cons cell comprises two pointers: one to the first element of the list and a second to the rest of the list.

We can represent a cons cell as two records (the car and cdr of the list). This is a new data type, so we will have to extend our types to include a cons cell type that has three fields: the type, the car record, and the cdr record. For example, if a cons cell type is denoted by the number 7, the series of numbers "70402" would represent the dotted list (4.2).

\footnotetext{
\({ }^{3 .}\) Scheme has two additional types: vectors and characters. Vectors are like lists but they cannot change size after they are created. Vectors typically require less memory space than lists and have faster access times for individual elements than lists do. Strings are made up of characters.
}

Another data type is needed to represent a list. A list is a pointer to the first cons cell in the cons cell chain making up the list. The list record has two fields, the list type and the address of the first cons cell. The address 0 can represent an empty list. If 8 denotes the list type, " 80 " is an empty list. The sequence " 812463 " represents a list with a cons cell at address 12463 . If this address is the start of the series "7 0280 ," that represents the list (2). " 823489 " is the list (4 2) if address 23489 starts the series "704812463."

\subsection*{13.8.2 Adding more functions to our compiler}

The function car returns the car field of the cons cell record; cdr returns the cdr field. The functions first through fifth, list-ref, and rest can be written using car and cdr. To create lists, cons is the fundamental function. cons takes two records and creates the series " 7 record1 record2" in some memory locations in the machine. list, append, and subseq can be written using cons.

The various type-checking predicate functions such as null? and number? are easily written by checking the type field of the record with which they are called. eq? compares the type and value of records and, if they are the same, returns true. eqv? is a subtle variation on this that doesn't apply to our compiler but would to one that represents numbers as an address of their location. Two identical numbers may not be eq? because they are not at the same location even though both locations hold the same value. They should be eqv?, however. equal? can be written using a recursive function that uses eq?.

Applicative functions such as map and accumulate can be implemented using recursive functions and the primitives mentioned above.

\subsection*{13.8.3 Adding more special forms and handling scope in our compiler}

Each special form has its own evaluation rules, so we will have to write a function to handle each one. Some of these, like define for defining a variable and quote, are fairly easy to implement. Others (like let, cond, or do) are more involved. Special forms like let and do define variables with limited scope. define defines global variables if used on the top level. We will have to see how our scoping rules allow for these situations. A global variable can be created by adding an entry to the symbol table. let can be handled by treating it as a function definition followed by a function call. For example,
(let ((a 1) (b 2)) (* a b))
is the same as the two expressions

\footnotetext{
4. There is one important distinction: defining a function creates code that can be jumped to, so the function should be given a name that is not likely to be used by the programmer.
}

Adding list functions

Adding type checking

Adding functionals

Scoping issues

Peephole optimization

Saving results from prior computations
```

(define (temp a b)
(* a b))
(temp 1 2)

```

Chapter 10 shows how a do can be written as a recursive function with a let and a cond.

In Scheme functions are first class objects. This means they can be assigned to a variable (function definition), passed to a function (as in applicative operators), and returned by a function. We can pass a function by passing its label. Returning a function created by a lambda can be done by creating an internal name for the nameless lambda function and returning that name. When creating functions that aren't on the top level, scope issues are important when functions use variables that aren't parameters. The variables in the scope of a function must be maintained. This is called an environment.

\subsection*{13.8.4 Code Optimization}

Our compiler could produce more streamlined code. This is known as code optimization. Code is optimized to reduce the number of statements or to reduce the time required to run the code. These are both measures of how effective an optimizer is.

There are many methods used to improve the code generated by a compiler. Some of these look at a few neighboring instructions at a time. This is called peephole optimization, because only a small part of the code is being examined at any time, like looking at the world through a peephole. Peephole optimization can handle reducing two instructions like
```

MOV \#3, R0
MOV RO, -(SP)

```
to one instruction:
```

MOV \#3, -(SP)

```

Other global optimization techniques require examining large segments of the code. Such techniques can handle cases like saving partial results that are used more than once in registers. For example, our code for the function mult generated (- numl 1) twice. In the hand-generated version, this computation was computed once and then saved in a register.

One should play close attention to loops (sections of code that are repeated) to assure there are no unnecessary instructions. Registers should be used frequently to improve the time to run since it is typically much faster to access a value held in a register than in main memory. Careful attention to addressing modes and the time taken to access the actual address they refer to can result in improved code performance.

\subsection*{13.9 Future Trends}

Many pieces that make up a compiler are well understood and stable. With tools like lex and yacc, lexical analyzers and parsers are fairly easy to create. Code generation and optimization techniques are subject to change as new generations of hardware are introduced. For example, early computer systems ran much slower than today's computers, so if a computation could be saved by storing it in memory, that was done. Nowadays many processors are so fast compared to memory accesses that it's quicker to compute a value twice than to compute it once, save it in memory, and look it up.

Other hardware advances have radically changed the way compilers are created. Parallel machines that have more than one processor should have compilers that take advantage of the extra processors and keep as many of them occupied as possible. This can be done by executing different instructions in parallel as long as it is not necessary to run them sequentially. For example, the instructions
```

(define a (* b c))
(define d (/ e (* f g)))

```
can be executed in parallel, but
```

(define a (* b c))
(define b (/ a (* f g)))

```
can be partially run in parallel. (\(* \mathrm{~b}\) c) and (\(* \mathrm{f} \mathrm{g}\)) can be run in parallel, but (\(* \mathrm{~b}\) c) must be computed and saved in the variable a before a is divided by (* f g). Compilers must detect these dependencies.

New programming languages that embody new ideas or paradigms in programming involve new ideas in compiler creation. Object-oriented and logic programming languages have ideas and features that must be implemented in assembly language by the compiler writer. Some parallel languages are designed to run on parallel machines. New languages will always be created and compiler writers will always have new challenges in implementing these on different machines.

\subsection*{13.10 Summary}
- A compiler translates code in one language into functionally equivalent code in another language.
- An interpreter simulates the execution of code in some language on a machine.
- A cross-compiler translates code into a language that is understood by a different machine than the one on which the cross-compiler runs. It typically produces assembly language for a different machine.
- Lexical analysis (scanning) converts the individual characters that compose a program into a sequence of tokens (like number, identifier, define).
- Parsing takes the sequence of tokens and organizes them into a parse tree according to the syntax (structural rules) of the language.

\section*{Parallel machines}
- Semantic analysis checks the semantics (meaning) of the parse tree to disambiguate things that look the same but mean different things based on the types of the identifiers.
- Code generation takes the modified parse tree and produces a sequence of statements in the language being compiled into (target language).
- Machine language is a numeric language-each instruction is a number-that runs directly on the hardware.
- Assembly language is a symbolic representation of machine language.
- The program counter is the location of the next instruction to be executed.
- The stack is a space in the machine where values are added to or deleted from one at time at the top of the stack.
- The stack pointer indicates the top of the stack.
- The frame pointer indicates the location on the stack of the first parameter to a function.
- Registers are locations that can be quickly accessed; they are useful for storing results of computations.
- The arithmetic logic unit (ALU) does the computations (e.g., addition or negation).
- The comparator is used to examine the status of the last computation (e.g., was the result negative or zero).

\subsection*{13.11 Additional Reading}

Aho, A.V., Sethi, R., and Ullman, J.D. (1986). Compilers, Principles, Techniques, and Tools, Addison-Wesley, Reading, MA.

Aho, A.V. and Ullman, J.D. (1977). Principles of Compiler Design, Addison-Wesley, Reading, MA.

Wilhelm, R. and Maurer, D. (1995). Compiler Design, Addison-Wesley, Harlow, England.

Wirth, N. (1996). Compiler Construction, Addison-Wesley, Harlow, England.

\subsection*{13.12 Code Listing}
```

; Generate code for a list of expressions.
(define (code-gen-expr-list expr-list reg-list symbol-table)
(for-each
(lambda (expr)
(code-gen-expr expr reg-list symbol-table) )
expr-list) )
(define fatal-error 'not-yet)

```
```

(call-with-current-continuation
(lambda (stop)
(set! fatal-error stop)))
; Print out instruction and operands.
(define (output instruc . addrs)
(display " ")
(display instruc)
(cond ((not (null? addrs))
(display " ")
(display (first addrs))
(for-each
(lambda (addr)
(display ", ")
(display addr) )
(rest addrs))))
(newline) )
; Lookup address of symbol in symbol table.
(define (symbol-address symbol symbol-table)
(let ( (address (assoc symbol symbol-table)) )
(if address
(cdr address)
(fatal-error
(string-append
"Undefined variable:"
(symbol->string symbol))))) )
; Generate code for a single expression saving return value in the
; first register of reg-list.
(define (code-gen-expr expr reg-list symbol-table)
(let ( (result (first reg-list)) )
(cond ((symbol? expr)
(output 'MOV (symbol-address expr symbol-table) result))
((number? expr)
(output 'MOV (literal expr) result))
((is-if? expr)
(code-gen-if expr reg-list symbol-table))
((is-func-def? expr)
(code-gen-func-def expr reg-list symbol-table))
((is-built-in-func? expr)
(code-gen-built-in-func expr reg-list symbol-table))
(else ; otherwise it's a user-defined function call
(code-gen-user-func expr reg-list symbol-table)))) )
; Test if expr is an if expression.
(define (is-if? expr)
(eqv? (first expr) 'if) )

```
```

; Test if expr is a function definition.
(define (is-func-def? expr)
(eqv? (first expr) 'define) )
; Test if expr is a call to a built-in function.
(define (is-built-in-func? expr)
(member (first expr) '( + - < > = /= <= >=)) )
; Generate a string representing a literal.
(define (literal number)
(string-append "\#" (number->string number)) )
; Generate a string representing an indirect address.
(define (indirect address)
(string-append "(" (symbol->string address) ")") )
; Generate a string representing an indexed address.
(define (indexed address index)
(string-append (number->string index) (indirect address)) )
; Generate a string representing a post-increment address.
(define (post-inc address)
(string-append (indirect address) "+") )
; Generate a string representing a pre-decrement address.
(define (pre-dec address)
(string-append " -" (indirect address)) )
; Return the condition of an if expression.
(define (get-condition if-expr)
(second if-expr) )
; Return the then-action of an if expression.
(define (get-then-action if-expr)
(third if-expr) )
; Return the else-action of an if expression or \#f if none exists.
(define (get-else-action if-expr)
(if (not (null? (cdddr if-expr)))
(fourth if-expr)
\#f) )
; Return a function that generates unique address labels.
(define (make-gentemp)
(let ( (n 0) )
(lambda (prefix)
(set! n (+ n 1))
(string->symbol
(string-append prefix (number->string n))) )) )
(define gentemp (make-gentemp))

```
```

(define *Condition-assem* '(
(> BGT)
(< BLT)
(= BEQ)
(/= BNE)
(>= BGT BEQ)
(<= BLT BEQ)) )
; Generate conditional branch to label.
(define (conditional-test condition label)
(let ( (assem (assoc (first condition) *condition-assem*)) )
(if (not assem)
(fatal-error (string-append "bad-instruction: "
(symbol->string (first condition))))
(for-each
(lambda (instruction)
(output instruction label) )
(cdr assem)))) )
; Generate a label for a subsequent instruction.
(define (output-label label)
(display label) )
; Generate code for an if expression.
(define (code-gen-if if-expr reg-list symbol-table)
(let ( (then-label (gentemp "L"))
(end-label (gentemp "L"))
(else-action (get-else-action if-expr)) )
; 1. generate code for conditional test
(code-gen-expr (get-condition if-expr) reg-list symbol-table)
; 2. create a branch to label if test passes (jump to then action)
(conditional-test (get-condition if-expr) then-label)
; 3. generate code for the else action if one exists
(if else-action
(code-gen-expr else-action reg-list symbol-table))
;4. create a branch to a label following then action (end of if expression)
(output 'JMP end-label)
; 5. insert a label for then action
(output-label then-label)
; 6. generate code for then action
(code-gen-expr (get-then-action if-expr) reg-list symbol-table)
; 7. insert a label for end of if expression
(output-label end-label)) )

```
```

; Create a symbol table for the parameters to a function.
(define (make-table parameter-list)
(if (null? parameter-list)
'()
(cons
(cons (first parameter-list) (indirect 'FP))
(map
(lambda (parameter)
(cons
parameter
(indexed 'FP (- (position parameter parameter-list)))) )
(rest parameter-list)))) )
; Generate code for a function definition.
(define (code-gen-func-def expr reg-list symbol-table)
; 1. Generate label for the start of the function, using function name.
(output-label (get-func-name expr))
(cond ((not (null? (get-params expr))) ; if function has parameters
; 2. Save (push) the current frame pointer on the stack.
(output 'MOV 'FP (pre-dec 'SP))
; 3. Set the new frame pointer to the first parameter.
(output 'MOV 'SP 'FP)
(output 'ADD
(literal (+ (length (get-params expr)) 1)) 'FP)))

```
; 4. Generate code for the body of the function.
(code-gen-expr-list (get-body expr) reg-list (make-table (get-params expr)))
; 5. Save the return value in register 0.
(if (not (eq? (first reg-list) 'R0)) (output 'MOV (first reg-list) 'RO))
; 6. Restore (pop) the old frame pointer from the stack.
(if (not (null? (get-params expr))) (output 'MOV (post-inc 'SP) 'FP))
; 7. Generate a RET instruction.
(output 'RET))
; Return function name from function definition.
(define (get-func-name func)
(caadr func))
; Return parameter list from function definition.
(define (get-params func)
(cdadr func))
; Return body from function definition.
(define (get-body func)
(subseq func 2))
```

; Generate code to push values in address-list on stack.
(define (push-vals address-list)
(for-each
(lambda (address)
(output 'MOV address (pre-dec 'SP)) )
address-list) )
; Generate code to pop values from stack into address-list addresses.
(define (pop-vals address-list)
(for-each
(lambda (address)
(output 'MOV (post-inc 'SP) address) )
address-list) )
(define *all-regs* '(R0 R1 R2 R3 R4 R5 R6 R7))
; Generate code to call user-defined functions.
(define (code-gen-user-func expr reg-list symbol-table)
;1. Save (push) the registers currently in use on the stack.
(push-vals (set-difference *all-regs* reg-list))
;2. Generate code for the arguments and push the results on the stack.
(for-each
(lambda (arg)
(code-gen-expr arg reg-list symbol-table)
(push-vals (subseq reg-list 0 1)) )
(get-args expr))
;3. Call the JFN instruction.
(output 'JFN (get-call-name expr))
;4.Save the return value in the first register if it's not already there.
(if (not (eq? (first reg-list) 'RO))
(output 'MOV 'RO (first reg-list)))
;5. Increment the stack pointer past the arguments.
(if (not (null? (get-args expr)))
(output 'ADD (literal (length (get-args expr))) 'SP))
;6. Restore (pop) the registers from the stack.
(pop-vals (reverse (set-difference *all-regs* reg-list))) )
; Return arguments from a function call.
(define (get-args expr)
(rest expr) )
; Return function name from a function call.
(define (get-call-name expr)
(first expr) )

```
```

; Generate code for calls to built-in functions.
(define (code-gen-built-in-func expr reg-list symbol-table)
(code-gen-expr (get-first-arg expr) reg-list symbol-table)
(if (has-two-args? expr)
(code-gen-expr
(get-second-arg expr) (rest reg-list) symbol-table))
(cond ((is-negation? expr)
(output 'NEG (first reg-1ist)))
((is-addition? expr)
(output 'ADD (second reg-list) (first reg-list)))
((or (is-subtraction? expr) (is-comparison? expr))
(output 'SUB (second reg-list) (first reg-list)))) )
; Test if function call has two arguments.
(define (has-two-args? expr)
(= (length expr) 3) )
; Test if function call is a call to unary - (negation).
(define (is-negation? expr)
(and (eqv? (first expr) '-)
(= (length expr) 2)) )
; Test if function call is a call to + (addition).
(define (is-addition? expr)
(and (eqv? (first expr) '+)
(= (length expr) 3)) )
; Test if function call is a call to binary - (subtraction).
(define (is-subtraction? expr)
(and (eqv? (first expr) '-)
(= (length expr) 3)) )
; Test if function call is a call to a comparison function.
(define (is-comparison? expr)
(and (member (first expr) '(> < >= <= = /=))
(= (length expr) 3)) )
; Return first argument to function call.
(define (get-first-arg expr)
(second expr) )
; Return second argument to function call.
(define (get-second-arg expr)
(third expr) )

```

\section*{Снартев 14}

\section*{Operating SYstems}

\subsection*{14.1 Operating Systems}

The operating system serves a number of functions in a computer system. It acts as an abstraction level between the hardware and the software to facilitate access to programs existing in the computer system. The operation system provides a simpler means of dealing with the resources that programs must use such as memory, printers, and input and output (I/O) devices (terminals, keyboards, and mouse). The operating system handles the information stored within the computer system; this information is typically maintained as a file system. The operating system takes care of the computer system memory, handling its distribution to programs running on the computer, and protection such that one program cannot corrupt another program. The operating system manages the programs running on the computer system to best utilize the resources of the computer; this is called process management. Each of these areas is discussed in more depth below. However, to better understand the workings of an operating system, it is important to understand the different pieces composing a computer system.

Computer systems consist of various interconnected parts each serving a specialized purpose. Let's review some of these pieces that were introduced in earlier chapters. The central processing unit, or CPU, is the "brains" of the computer system. It does all the arithmetic and logical computations, comparisons, and jumps to different instructions. The CPU understands machine language instructions only. It is directly connected to the main system memory, consisting of RAM (random access memory) and ROM (read only memory). RAM can be read from and written to, but ROM can be only read from. Both RAM and ROM can be randomly accessed meaning any location can be jumped to quickly. There are also sequential access memory devices in which the memory must be accessed in a sequence. Think of the difference in going to the start of a song using a CD player versus with a tape deck. A tape deck has sequential access only, whereas the CD player has random access allowing you to jump to the start of another song.

Role of the operating system

\footnotetext{
O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998
}

\section*{Early computers}

Peripheral devices and device drivers

In addition to main memory, the CPU is connected to secondary storage, which consists of tape drives (usually used for backups) and disk drives, which are like CDs that can be read from and written to. The CPU can access peripheral devices, like printers, keyboards, mice, and terminals for displaying information. A computer system comprises all of these different components. It is important not to confuse the CPU with the entire computer system. The operating system exists in main memory, runs on the CPU, and controls the entire computer system.

\subsection*{14.2 Historical Background}

The first computers were programmed by entering binary instructions directly into the machine one instruction at a time. With such a computer system, an operating system was not necessary. Only one person could use the computer at a time running only one program. There were no terminals, keyboards, window systems, or mice (except fuzzy ones). There were no files or directories. All memory was accessible to the programmer and there were no other peripheral devices that an operating system would have to handle. The machine would display results via a row of lights representing one binary word in the machine's memory. Each light corresponded to one bit; if it was on it was a 1 , otherwise a 0.

As advances in computers began, the need for operating systems arose. Toggling instructions directly into the computer gave way to paper card readers that used punch cards to hold instructions. Line printers were developed to facilitate getting output from the computer. Tape drives were used to save programs so they didn't have to be loaded in from cards each time. Each of these peripheral devices required programs called device drivers that enabled the CPU to access and use the devices. At first these device drivers were loaded in with the programs to be run. Later they became part of the operating system.

With card readers came the advent of batch processing in which users would submit their programs (a stack of cards) and then come back later to get the results (output from the line printer). The cards contained the program as well as special job control cards. Job control cards indicated the start and end of different jobs (user programs) and the start of the data for the programs (if any). A program called a monitor recognized these control cards, loaded the programs into the computer, and started running the programs. The monitor contained device drivers to handle peripheral devices.

Disk drives provided a more flexible means of data storage than magnetic tape. Tape is read and written sequentially and one cannot rapidly jump to a particular section of a tape. Disks, on the other hand, give random access. Information can be read from one part of the disk by a program, and new information can be written to another part of the disk in a rapid manner. Random access allows one to move rapidly to a new memory location, for example jumping from song to song on a CD versus using the (not so) fast forward button on a tape deck.

Another big improvement in computer throughput came about through the use of multiprogramming and timesharing in computer systems. Multiprogramming involves switching between jobs when the CPU is idle. A computing system spends its time doing CPU work and I/O work. CPU work is the time that that CPU is executing instructions (e.g., doing computations, comparisons, and jumping to different instructions). I/O work is reading and writing information from and to sources like card readers, keyboards, line printers, and terminals. A job is termed I/O-bound if it does a great deal of I/O work and CPU-bound if it primarily does CPU work. When a job is doing an I/O operation the CPU sits idle while the I/O device waits for the desired information to be input or displayed. This can involve seconds or much longer in the case of an I/O-bound job with a great number of I/O operations. This is a very long period of time for a CPU, which may be capable of executing hundreds of millions of instructions per second. Even a slow processor (by today's standards) performs on the order of ten million instructions per second. In the few seconds it takes to respond to a query, this relatively slow CPU could have performed millions of instructions.

Rather than wait for I/O events to finish or arrive, a multiprogramming system will switch to a different job and let that job run until it finishes or gets an I/O event. This gives better usage of the CPU and means that more jobs can be run in the same amount of time.

Timesharing is an extension of multiprogramming. With multiprogramming and batch processing, jobs are submitted and the output is ready some time later when the job finishes. In a timesharing system each user has a terminal where they can communicate with the operating system and submit jobs directly. The job's output can be seen on the terminal as the job is being run, instead of at the end of the job in batch systems.

\footnotetext{
1. The instructions per second of a machine is a function of the CPU's clock speed in cycles per second (typically given in megahertz) and the number of cycles per instruction, which varies depending on the CPU and maybe even the instructions themselves.
}

Batch processing and monitors

\section*{Disk drives}

\section*{Multiprogramming}

Timesharing

Network operating systems

Distributed operating systems

To provide more equity among CPU-bound jobs, timesharing systems switch jobs after a job has run for a certain period of time without an I/O request. This time period is called a quantum. Even with many people using the computer at a time, multiprogramming gives each job some CPU time while the other jobs are waiting for I/O requests to finish or have used their quantum. If there aren't too many jobs contending for the CPU at a time, the user has the illusion that she is the only person using the computer. This illusion rapidly disappears as the number of users and jobs grows.

With the advent of networks interconnecting computers, network operating systems developed. At first simple changes were made to the operating system to support networks. These changes allowed users to send messages to other machines via e-mail, copy files to or from other machines, and remotely log on to machines. Later more sophisticated systems like SUN's network file system (NFS) were developed to make remote file acquisition invisible to the user. With NFS, computers with no local disks (diskless nodes) could be used in a network. These diskless nodes would get all their files from a file server.

Access to other CPUs in a network is typically not allowed without special permission or a password. And even if you can access another computer on the network you are on, you are in effect running a job on that computer just as a user who is connected directly to that computer would.

Distributed operating systems make the use of multiple CPUs in a network as invisible as network file systems make remote file access. A distributed operating system decides on which CPU (or CPUs) to run your job. This involves a great deal of changes to the operating system. The process scheduler (which decides which job to run) must be changed to support multiple CPUs. This gets more complex if different CPUs have specialized hardware or resources (for example, a fast floating point unit or high resolution color laser printer). If a job is run on multiple CPUs at the same time, the operating system must know where a job can be split to run in parallel and which parts must be run serially, or when one CPU must wait for another to finish before starting. The way that memory in a job is handled is tricky as well. Some distributed systems use the idea of shared memory and others use a message passing system.

Now let's look at the jobs that the operating system does in more detail.

\subsection*{14.3 Resource Allocation}

The resources of a computer system are devices that the operating system or programs may use. These include printers, tape drives, I/O devices, and memory. The CPU is a resource as well. The goals associated with resource allocation are outlined below:

Resource allocation goals
- Get the best usage of the system resources.
- Provide a simple means of allowing programs to get access to resources.
- Provide protection such that one program cannot interfere with another program's use of nonshareable resources.
- Assure that the system avoids deadlock, which occurs when two or more programs cannot continue because they are waiting for resources being used by other programs.
One commonly used technique to increase CPU utilization is spooling, which involves writing information for peripheral devices to areas of memory (buffers). The CPU is much faster than most peripheral devices and to best utilize it, we should keep it occupied at all times, not waiting for slower devices to finish doing what they need to do. For an analogy, imagine a teacher in an introductory foreign language class giving the class an exercise to translate a sentence. She can go to each student one at a time giving each a few words and then patiently wait for their slow response before giving more words. Or she can write the sentence on the board (a buffer) where each student can read and translate the words at their own rates. The students can write their translations on paper (more buffers), whereupon the teacher can check the translations, examining many words at a time rather than the slow one-word-at-a-time stream from each student as they are translating.

Rather than have the CPU wait for peripheral devices to be ready to receive data, it is best to send that data to a buffer. The CPU can write information to a disk or RAM buffer much faster than to most peripheral devices. Then the device can read the data from the buffer directly at its own leisurely rate. Some devices that take input also produce output. These devices may spool their output to a buffer as well. This reduces the number of times the device must interrupt the CPU for each little part of the output it produces. Imagine how wasteful it would be if the teacher had to run to each student every time they produced a single word to verify it was correct. It is much more efficient to process many words at a time. These spooling techniques are used for devices that are slow and nonshareable, like printers and tape drives.

The operating system provides a means to access system resources. This saves programmers a great deal of headaches and hassles. Dealing with peripheral devices involves knowing a lot of specialized communication protocols, rules for how to "talk" to the device. If the operating system takes care of these low-level communication details and provides functions that the programmer can use to access the peripheral devices, the programmer's job is much easier and less prone to error.

Using functions provided by the operating system to access peripherals helps make programs more portable. A program that runs on the Macintosh operating system can run on many different types of Macintosh and Macintosh-clone computers. The machines must have the same CPU or the same family of CPU because the programs are delivered in the object code of the CPU. The object code is what the compiler produces and is what the underlying machine understands. The operating system can handle the differences between the various types of printers, monitors, keyboards, and hard drives that exist on these systems.

Protection is another advantage of using operating system functions for resource access. If programs had complete access to all of the system's memory, or to printers and tape drives, chaos and possibilities of corruption would ensue.

\author{
Spooling to buffers
}

\section*{Simplifying} programming

\section*{Portability}

\section*{Protection}

\section*{Deadlock}

\section*{Critical sections}

One could write a program that could write into the same memory space that another program was using. Or if two programs were using the printer at the same time, the output of both programs would be interspersed. The operating system can prevent this by only allowing programs to use the part of the memory that they have been allocated, and to control access of peripheral devices such that nonshareable devices (like printers and tape drives) cannot be used by more than one process at a time.

Deadlock is a subtle but crippling problem that the operating system must prevent. Deadlock can happen when two or more processes are in contention for the same nonshareable resources. Imagine that process1 is using the printer and process2 is using the tape drive, hence each process has acquired a nonshareable resource. Now suppose that process1 needs to use the tape drive and process2 needs the printer. They will both request these resources, which, of course, are being used. Both processes will wait until those resources are available, but in waiting they cannot continue. Thus they cannot release the resources they have already acquired. Since each process is waiting for resources that cannot be freed, the system is locked up-deadlock.

The classic example of deadlock is the dining philosophers problem from Edsger Dijkstra. Here is a slight variation on that problem. The situation is this: There are five philosophers sitting at a round table in a Chinese restaurant doing what philosophers do, namely eating food and thinking. This restaurant has cut down costs and only gives each philosopher one chopstick instead of two. To eat, a philosopher must pick up the chopstick to her left and then the one to her right. When done eating the philosopher replaces the chopsticks. If her neighbors are thinking instead of eating, this works fine, but if one or both are eating, then she must wait. A deadlock situation arises when all philosophers are hungry at the same time and each picks up the chopstick to their left and then wants to grab the right chopstick. All five philosophers will be stuck waiting for a second chopstick.

There are a number of means to prevent deadlock. One method is to require that processes acquire all the resources that they will need before they begin running. This can make for a very inefficient system, however. Another means is to try to stop deadlock before it occurs. This can be done by defining certain regions of the code as critical sections, those in which shared resources are used. By only allowing one process in a critical section at a time and carefully structuring the way that requests for resources are allowed, deadlock can be avoided. For example, deadlock can be avoided in the dining philosophers problem by only allowing one philosopher at a time to decide if the two neighboring chopsticks are available. If they are, then the philosopher takes them and eats. Any neighboring philosopher who attempts to eat then will have to wait because both chopsticks are not available.

In general, preventing deadlock is more involved and requires some tradeoffs. One solution is to numerically order all the resources and require processes to acquire resources in order. This means that a process can never obtain a resource and then request one numbered less. Making all nonshareable resources
shareable through techniques such as spooling, where devices write to disk rather than the device itself, is another way of preventing deadlock.

\subsection*{14.4 Process and Memory Management}

The CPU is the most valuable resource of the computer system, and a good operating system will try to keep the CPU in use at all times. Getting the best usage of the CPU is handled primarily by the part of the operating system that deals with process management. A process is a program or application running on the computer. The term job is often used for processes. Process management techniques vary depending on the hardware and type of the operating system. The heart of process management is the scheduler, which decides when processes are run and temporarily stopped (blocked). Different scheduling algorithms are shown in sections 14.8 and 14.9.

Processes can be in one of three states: running, ready to run, or waiting (or blocked) for some I/O request to finish. Process management concerns itself with the movement of processes between these three states. The following diagram illustrates this:

When a user submits a job to be run it goes to the ready queue. The scheduler picks jobs from the ready queue so they are run. A job stays running until it requests I/O or uses up its quantum. \({ }^{2}\) If a job requests \(I / O\) it moves to the wait state until its I/O request has been serviced. Once serviced the job is moved to the ready queue. If a job uses up its quantum, it returns to the ready queue.

Process scheduling can be measured using many criteria. Some of these criteria are mutually exclusive-improving one diminishes another. Seven criteria are summarized in the table below:

\footnotetext{
2. A job stays running based on these reasons in a preemptive scheduler. In a nonpreemptive scheduler there are no quantum time outs, and in a batch scheduler, there is no blocking for I/O.
}

Process management: improving CPU utilization

\section*{Process states} scheduling

Response time, wait
time, and CPU usage

Turnaround time and throughput

Memory management

Virtual memory and demand paging
\begin{tabular}{ll}
criterion & measures \\
response time & the time a job waits before it gets to start running \\
wait time & the time that each job spends waiting to be run \\
CPU usage & percent of time that the CPU spends executing jobs \\
turnaround time & the time it takes for a job to finish \\
priorities & the turnaround time of high priority jobs \\
equality & the variation in turnaround time between jobs \\
throughput & the number of jobs run in a given time
\end{tabular}

Minimizing response time is important in timesharing systems because the sooner a job starts, the sooner some output can be seen. The CPU can produce output faster than it can be displayed and much faster than it can be read, so giving users at least a little output early on keeps them happy and busy. Wait time measures the response time from the time a job is loaded into memory ready to be run and all the additional times it is waiting in the ready queue to be run again after using its quantum or blocking for an I/O request. These are really the times that are affected by the scheduler, rather than the time spent doing processing or handling I/O. Wait times should be minimized. CPU usage looks at the time the CPU spends processing jobs. The time spent servicing I/O requests or waiting to be run is not included in this measurement. CPU usage should be maximized.

Turnaround time is the sum of the wait time, CPU time, and I/O time of a job. It is the measurement that the users are aware of as they wait for their jobs to finish in either a batch or timesharing system. Turnaround should be minimized. There are three variations on how turnaround figures can be used: focusing on high-priority jobs at the expense of low-priority jobs; keeping turnaround as constant as possible in a no-priority environment; and throughput. Throughput is a good overall measurement of a scheduler. Throughput is the number of jobs that complete in a certain time period. Dividing this overall time by the throughput gives an average turnaround figure. Throughput should be maximized.

Processes exist in the main memory (RAM) of the computer when they are run. The simplest approach to handling the memory of a process is to load all of a process into the memory before it starts running and keep it there until the process finishes. However, this means that no process can be larger than the available memory on the machine. This approach becomes more problematic if the operating system allows more than one process to be run at the same time.

Virtual memory allows programs that do not fit in their entirety in the computer's main memory to be run on the computer. In a computer system that supports virtual memory, the operating system must support demand paging. With demand paging, an entire process is not loaded into memory. Instead only part of the process is loaded; other parts are loaded only if they are needed and are not present. This may require that part of the same or another process be moved out of the computer's memory to make room. The operating system must take care of this movement (swapping) as well, deciding what is best to swap out to keep the system performing well and avoid thrashing. Thrashing occurs when the operating system spends all of its time switching between parts of processes in memory. The parts of a program that are moved are called pages, which is
where the term demand paging comes from.

\subsection*{14.5 File Systems}

Information saved on the computer is organized into files and directories. Together, these make up the computer's file system. The operating system usually maintains the file system. Files represent information such as a cooking recipe, a Scheme program, a list of addresses, a letter to a friend, a saved screen image, a digitally encoded song, or even part of an operating system.

Files are organized into structures called directories. Directories can be viewed as drawers in a file cabinet and files as file folders in those drawers. What is written on the papers in a file folder is the contents of the file. The name on the tag of the file folder is the name of the file. Directories are used to organize collections of files into groups just as you might organize file folders into different drawers of a file cabinet. The file cabinet metaphor falls apart, though, as directories can have other directories within them. This would be like opening up a file cabinet drawer and finding other file cabinet drawers within it.

Files can be created from scratch, added to, changed (edited), merged with other files, searched through, sorted, shared, and printed (just to name a few operations). Some of these are operations that the operating system performs and some are operations that programs that work with files support. With many microcomputer operating systems, certain file operations (such as searching, creating, editing, and printing) are performed by separate software applications, such as word processors or database management systems. The operating system performs organizational operations like creating directories, moving files within directories, copying files, and deleting files. In larger computer systems like workstations or minicomputers, the operating system is usually more sophisticated and provides many file and directory functions. These operating systems usually have editors, text processing systems, and tools to search for patterns in files or make changes to files based on matched patterns.

Most files are collections of characters (text files) or binary information (binary files). Text files are used to hold human readable information. Each character is represented internally as a number using some standard that specifies a mapping between numbers and characters. ASCII or EBCDIC are two such standards. Binary files hold computer code that the CPU can understand. When a program is compiled into machine language, the result is a binary file (an object file) that can be executed on a machine.

Files can take on other forms as well. Files can hold information in some special proprietary format-many programs save their data this way. Files can be encrypted such that they are secure. Files can be encoded according to some standard such that they can be made available to other computer systems that use different operating systems or CPUs and have different text and binary representations. Files can be compressed using compression programs to take up less disk space, and entire directory structures can be represented as single files. All of these different representations serve particular needs and have advantages and

The file system and files

\author{
Directories
}

\section*{Operations on files}

\section*{Logical}
representations of files

Physical representations of files

\section*{Example utilities}

Synchronous and asynchronous communication
disadvantages.
All of the above differences aside, there is a distinction between how a user views a file and how the computer system stores a file. The user sees the file as text, a movie, a screen display, or music. The computer system represents the file in a very different form. The vast majority of today's computers are binary computers. They only deal with binary numbers, thus the representation of files is as binary information (a collection of zeroes and ones). A single zero or one is called a bit. A single character is represented using eight bits (a byte).

The human view of the file represents pieces of the file as logical records, and the machine's representation is as physical records. These physical records are stored as blocks. A block is a fixed amount of space, typically 512, 1,024, or 2,048 bytes long. \({ }^{3}\) In most instances the logical record differs in size from the physical record. A text file uses a character (one byte) as its logical record. In a system that uses 1,024-byte blocks, each block holds 1,024 characters and a file with one character in it would use one block of space-as much as a thousand-character file would.

\subsection*{14.6 Utilities}

Most operating systems provide a great number of utility programs. One set of commonly available utilities let the user create and manipulate information stored on the computer. We have discussed some of these in section 14.5 above. File utilities allow users to create files from scratch, edit existing files, concatenate (join) files, sort files, merge sorted files together, search for patterns in files, compare files, share files with other users, and print files. Some operating systems provide utilities that are miniature programming languages (UNIX's awk and perl) to perform complex operations on files.

Operating systems usually provide operations to display information on terminals and print to printers. These seemingly simple-sounding operations are complicated because there are few standards for terminals or printers. The operating system must know how to "talk to" different terminals and printers to produce the desired results. Ideally, the difficult parts are kept invisible from the user.

Facilities to communicate with other users are another commonly provided operating system feature. Communication can be synchronous or asynchronous. The telephone is an example of a synchronous communication device. Both parties are actively participating in the dialogue at the same time. Writing letters and sending them via the postal service is an example of asynchronous communication. Communication happens at a slower speed, but both parties need not be present at the same time to get messages across. Electronic mail (e-mail) uses asynchronous communication. There are utilities (e.g., talk in UNIX) that allow users to talk to one another at the same time (synchronous communication) even

\footnotetext{
3. These numbers are based on the size of sectors in the disk. Sectors are physical sections of disks that are typically \(512,1,024\), or 2,048 bytes long. These numbers are all powers of 2.
}
across the planet.
Other communication protocols exist like USENET-a huge collection of special interest groups to which individuals can read and write-and other bulletin boards and information sources like Gopher, WWW (World Wide Web), and WAIS (Wide Area Information Service). Browsers are programs that enable users to retrieve information and search through large databases. Netscape Navigator and Microsoft Internet Explorer are two popular browsers to search through the World Wide Web. This network allows images, movies, sound, and text to be retrieved. Browsers may not be part of an operating system, but the operating system takes care of many of the communication details that browsers use to link to different machines.

\subsection*{14.7 Types of Operating Systems}

The simplest type of operating system is a single-user/single-job system. Such a system only allows one person to use the computer at a given time and run only one job at a time. The earliest computers and the early microcomputers used this type of system. In the case of early computers, there was no operating system at all.

Another type of operating system is a batch system. In a batch operating system there may be many users who have access to the computer, but the computer runs only one job at a time. Jobs are typically run in a first-come, first-served fashion, and the turnaround time, the time between submitting your job to the computer and getting the results back, can vary dramatically (anywhere from minutes to hours to days).

Interactive operating systems are systems that support many users running many jobs at roughly the same time. The operating system switches between jobs to best utilize the CPU and share it among all the jobs waiting to be run.

Realtime operating systems guarantee that jobs will run at a certain speed. Such systems are important whenever timing issues are critical. If you need to measure the time it takes for an event to occur, you need to guarantee that your process is not interrupted. In a timesharing system an interrupt may happen. Music environments, control systems, and medical systems are examples where realtime systems are needed.

A computer network is created by connecting computers together with cables, allowing information to be sent and received between computers. There are both short-range networks called local area networks or LANs, and long-distance networks called wide area networks or WANs. The computers hooked up to such networks need some way to communicate and share information with other computers on the networks. The network operating system typically provides some level of support for this. In network operating systems each machine is autonomous, having its own unique running operating system.

Messages (e-mail) and files may be sent between machines in networked systems. To exchange files with remote machines, a network operating system provides a mechanism to explicitly send files. In addition to file access, networked operating systems typically support remote access to other machines such that a

Single-job system

Batch systems

Interactive systems

Realtime systems

Networks and Network operating systems

File server and clients

\section*{Distributed operating} systems
user can connect directly via the network to a remote machine.
The exact location of a user's files can be made invisible to the user. They may exist on a different machine from the one the user is connected to, the same machine, or even on a collection of machines. File access is sometimes explicitly made or can be invisible to the user such that the operating system gives the illusion that files are on the local machine when in reality they are on a different machine or file server. A file server maintains files for other machines (clients). The advantage of such a system is that files only need to be maintained on the file server so each client has smaller local disk storage requirements. In the case of the latter, from the user's perspective the files are all local.

Each computer does not need to be connected to all the other computers in the network. Information may go from one computer to another through various other computers along the way to its destination. A network operating system supports the transmission of information among computers connected to one another via some type of network.

Distributed operating systems work with many machines connected together via a network or through shared memory. In distributed systems the user has the illusion of using the local machine when in reality she may be using a remote machine or many at once. As in network systems, files can be accessed remotely. In addition, processes may run on any machine(s) on the network to best utilize the available CPU resources. Performance from the user's point of view is greatly enhanced when a job is run on the least loaded CPU or split up to run on many CPUs at the same time.

Distributed systems are a lot more complex than single CPU systems and creating operating systems, compilers, and software that best utilize multiple CPUs is a challenge. However, distributed systems offer great improvements in speed (splitting the job load among many processors), reliability (if one CPU fails, there are still others that can be used), and division of labor or resource handling (each CPU can specialize on certain tasks or handle certain peripherals that can be shared among all the CPUs in the distributed system).

\subsection*{14.8 How a Scheduler Works}

Before running a job, the operating system must load the job into memory and then put that job into the ready queue of jobs waiting for the CPU. Once the job is started, a timer must be set allocating the maximum time limit, quantum, for that job until the next job waiting may run. If the job makes any I/O requests, the operating system must handle them. While the job is being serviced with an I/O request, it is blocked until the I/O request is complete. Once complete, the job is put into the ready queue again.

Let's examine the internals of the scheduler in a multitasking operating system. Multitasking is another term used for multiprogramming and typically refers to an operating system with the ability to switch between processes (also called tasks) that are initiated by a single user. In a multitasking system the scheduler decides which job in the ready queue should be run next. The scheduler must
make its decision to provide the highest degree of throughput possible. Many different algorithms can be used. The simplest approach is first-come, first-served scheduling. In this approach the job that is first in the ready queue is the one the scheduler chooses. This approach is easy to implement, but tends to be inefficient as it is a nonpreemptive algorithm. A nonpreemtive scheduler does not allow another job to replace (or preempt) an existing, running job unless it requests I/O. This means that other jobs in the queue will wait if a large CPU-bound job comes before them in the ready queue.

Another scheduling algorithm is to base the choice of which job to run next upon job priority or type of job. If a job is given a high priority, it will be run before other jobs. A low-priority job will not be run unless the system is relatively empty. This is beneficial in terms of getting better performance for those users who have high-priority jobs, but certain jobs may wait a long time if their priority is set too low.

Choosing a job based on its type (CPU- or I/O-bound) can result in overall system performance improvement. If I/O-bound jobs are chosen first, the average response time and turnaround time improves. I/O-bound jobs will be blocked when they do I/O requests, enabling other jobs to run while the I/O request is being serviced. If CPU-bound jobs are run first, the I/O-bound jobs must wait for their completion before starting, and then the CPU will sit idle while the I/O-bound jobs are getting their I/O requests serviced. The average waiting time will be greater. For CPU-bound jobs, choosing shorter jobs first will result in shorter average response times-the time it takes for a job to get started.

Round-robin scheduling is another technique that is like first-come, first-served scheduling, except it is preemptive; it adds a time limit to the CPU time. Each job is given a time slice (quantum), and once that has been used up, the job times out and another job runs. This approach works well in timesharing operating systems.

\subsection*{14.9 Implementing a Scheduler in Scheme}

We will implement two schedulers in Scheme. One is for batch jobs and the other for multitasking environments. The scheduling algorithm will be a function that is passed (as a parameter named select) to our schedulers. This way we don't have to write a different scheduler for each algorithm we wish to use. We need only write a different scheduling algorithm function. Part of the scheduler's job will be to measure the efficiency of the scheduling algorithm used. This will enable us to compare different scheduling algorithms.

We will need a representation for jobs that are waiting to be run. These job descriptions will be arguments to our scheduler function. They should provide enough information about the jobs such that the different scheduling algorithms can be used. We need to indicate job priority and CPU and I/O times used.

To measure job timing we will need time constants for the quantum used (*quantum*), and the time it takes to do a switch from one job to another, context switch (*context-switch*). The context switch involves saving and restoring

\section*{Quantum and context switch times}

Representing jobs

Loops

Measuring the effectiveness of our scheduler
registers and certain data structures used in the operating systems to keep track of processes and their memory. It also includes the time that the scheduler takes in making the choice of which job to run next. We'll use one tenth of a second (100,000 microseconds) for our quantum and 100 microseconds as the time to do a context switch.

\subsection*{14.9.1 Deciding on a data structure}

The main data structure is for jobs. Each job can be represented as a list-a job description. A collection of jobs can be represented as a list of job descriptions. We should have some means of indicating when jobs arrive (are ready to run) at the computer system. Let's make the ready time the first item in the job description list. The second element is the priority of the job ranging from 1 to 10 , with 10 being the highest priority. If the priority is not needed, \(\# \mathrm{f}\) will be used instead of a priority number. The next items in the job description are the times required for CPU and I/O. I/O times will be prefaced with the symbol io. In general, a job description looks like the following.
(ready-time priority times)
Many jobs have loops, and rather than repeat CPU and I/O times in the loops, we can use a list to represent a loop. The first element of the list is the number of iterations of the loop. The remaining elements are the CPU and I/O times. All CPU and I/O times are expressed in microseconds. One second is one million microseconds and one millisecond is one thousand microseconds. For example, the list
(2000000 \#f 1000 io 1000000600 (4 io 100000 500))
represents a job arriving (ready) after 2 seconds with no priority. The job spends 1 millisecond of CPU time and then 1 second of I/O time, followed by 600 microseconds of CPU time, and then enters a loop 4 times. Each time through the loop the job performs a 100 millisecond I/O request followed by 500 microseconds of CPU time.

Such job descriptions, along with a scheduling algorithm, are passed to our scheduler which returns performance measurements of the scheduling algorithm. We can make use of applicative operators to run job lists against a variety of scheduling algorithms to test which scheduling algorithm works best for those jobs. Another useful thing would be to test each scheduling algorithm against different job lists. We can determine if certain scheduling algorithms work best in general or work best for CPU-bound jobs or I/O-bound jobs.

Section 14.4 presented various ways of measuring scheduling algorithm effectiveness. Response time (the time a job waits to be run) and wait time (the total of all times a job spends in the ready queue waiting to be run) are good measures because they don't take into account the CPU and I/O times of the jobs, like turnaround time and throughput do. However, these measures don't tell us about CPU utilization. CPU utilization is a good measure because it focuses only on the CPU, which is the resource for which the scheduler is trying to maximize usage. However, CPU utilization can be high but the overall system performance can be
suboptimal if the scheduling algorithm switches between jobs too often by using a low quantum. Ideally, most jobs should finish their CPU bursts within the given quantum for improved efficiency. Throughput (the number of jobs completed in some amount of time) is a convenient measure to use because it gives an overall picture of the operating system's performance. Given a fixed job list, we can use throughput as a measure of scheduling algorithm efficiency because the CPU and I/O times are constant, so they won't affect the results when doing comparisons between scheduling algorithms.

\subsection*{14.9.2 Building a batch scheduler}

The scheduler, as we have been describing it, takes a list of job descriptions and a scheduling algorithm. The scheduling algorithm decides which job to choose given a job description list, whereas the goal of the scheduler is to handle the timing. The scheduler must keep track of the time the CPU and I/O devices spend handling parts of a job and the time that each job spends waiting to be run. The exact time figure we return depends on which measure of scheduler performance we choose, or we can be flexible and return different performance measures. Our scheduler will be flexible and return a list of CPU, I/O, and wait times. These times can be used to compute the average wait time, CPU utilization percentage, percent of time spent handling I/O, and total time spent to complete all the jobs. In addition, the scheduler will print out each job as it is run, along with its start time and the amount of CPU, I/O, and wait time the job used. This information is useful in verifying that the scheduler is working properly.

To save the running totals for wait, CPU, and I/O times, we can use different variables that we change using set!. We can avoid setting global variables by using variables defined in a let. Another way would be to use additional parameters in our function and change these as we make recursive calls with smaller portions of the job lists. This final solution is cleaner.

To start we'll create a batch scheduler that takes a job description list and decides which job to invoke based on the scheduling algorithm, which uses information like the order in which the jobs arrive in the ready queue and the priority of the jobs. Once a single job has been chosen, it can be processed by a separate function. This provides a nice breakdown of our overall problem. The function that processes a job takes a job description list and recurses through it adding the job's CPU and I/O times to running totals. It is best to call this function using a job description with the ready time and job priority stripped off, since we will recurse only on the CPU and I/O times. The function times will do this.

The extra parameters for the total CPU and I/O times must be incremented based on the current time value being processed in the job description list. This is complicated by loops that are represented as sublists. However, if we take advantage of the recursion, we can handle such sublists.

Below is a first attempt at the code to run a batch job to completion.

Maintaining CPU, I/O, and wait times

Processing a single job
```

; Simulate running a batch job - version 1.
(define (run-batch-job job-times CPU-time I/O-time)
(cond ((null? job-times) (list CPU-time I/O-time))
((number? (car job-times)) ; CPU time
(run-batch-job (cdr job-times)
(+ CPU-time (car job-times)) I/O-time))
((symbol? (car job-times)) ; I/O time
(run-batch-job (cddr job-times) CPU-time
(+ I/O-time (second job-times))))
(else ; loop
(run-batch-job (car job-times) CPU-time I/O-time))) )
Let's test this code:

```
```

> (run-batch-job '(700 io 3000 550 (3 1000 io 4000) 500) 0 0)

```
> (run-batch-job '(700 io 3000 550 (3 1000 io 4000) 500) 0 0)
(2253 7000)
```

(2253 7000)

```

The answer we wanted is (475015000). One problem with the code is that times that follow a loop are ignored. We must make a recursive call with the cdr of the job list as well. The tricky part then is how we combine these results, as both will be lists. We must add the corresponding elements of each returned list and return a list of the sums. This can be done using map.

Another problem is that the loops aren't handled properly. The first element of the loop list is the number of repetitions of the loop. We are treating this value as a CPU time. If we compute the CPU and I/O times for one pass through the loop and then multiply each time by the number of iterations through the loop, we get the CPU and I/O times we need. We can do this by treating lists as a special case in run-batch-job. Another approach is to preprocess the job description lists and eliminate the loops (sublists). For example, the job description
\[
(700 \text { io } 3000550 \text { (3 } 1000 \text { io 4000) 500) }
\]
should be translated to

\section*{(700 io 30005503000 io 12000 500)}

We'll take the approach of preprocessing the list in the interest of keeping run-batch-job simple. Here is the code for these functions:
```

; Return a job time list without loops (the times in a loop are
; multiplied by the number of repetitions of the loop).
(define (no-loops job-times)
(cond ((null? job-times) '())
((atom? (car job-times))
(cons (car job-times) (no-loops (cdr job-times))))
(else
(append
(map (lambda (time) (if (number? time)
(* time (caar job-times))
time) )
(cdar job-times))
(no-loops (cdr job-times))))) )

```
```

; Simulate running a batch job - version 2.
(define (run-batch-job job-times CPU-time I/O-time)
(cond ((null? job-times) (list CPU-time I/O-time))
((number? (car job-times)) ; CPU time
(run-batch-job (cdr job-times)
(+ CPU-time (car job-times)) I/O-time))
((symbol? (car job-times)) ; I/O time
(run-batch-job (cddr job-times) CPU-time
(+ I/O-time (second job-times))))
(else ; ignore other items
(run-batch-job (cdr job-times) CPU-time I/O-time))) )

```

Let's try these new functions:
```

>(no-loops '(700 io 3000 550 (3 1000 io 4000) 500))
(700 io 3000 550 3000 io 12000 500)
> (run-batch-job
(no-loops '(700 io 3000 550 (3 1000 io 4000) 500)) 0 0)
(4750 15000)

```

The batch scheduler must choose the most appropriate job based on the scheduling algorithm it uses. This algorithm is passed in as an argument. Only the jobs that are currently ready to run should be examined by the scheduling algorithm. The function ready-jobs will filter out the jobs ready to run. It compares the time the job is ready to run (obtained from the selector function ready-time) with the current time, which is maintained as the parameter time in the scheduler.

Once a job has been chosen, it is run using run-batch-job to compute its CPU and I/O times. The time a job had to wait before it was run can be determined by taking the difference of the job's ready time and the time it was chosen. This time is appended to the CPU and I/O times that are returned from run-batch-job. The scheduler returns a list of these three times.

The scheduler must be called recursively on the remaining jobs. When we recurse, the current time is incremented adding the CPU and I/O times of the last job. The recursive result is combined with the times from the current job using map. After a job runs, it must be removed from from the job queue. We shouldn't use the function remove to do so, as it will remove all jobs that are identical to the last one run. Instead we'll write a function remove1 that returns a list without the first occurrence of an item. To help us understand our scheduler, we'll call the function info to print out the job selected, its start time, and the times the job took to run. Here is the code for the scheduler and its auxiliary functions:

Choosing a job
```

; Simulate running a collection of jobs in batch fashion using
; select as the scheduling algorithm.
(define (batch-scheduler job-collection select time)
(if (null? job-collection)
'(0 0 0) ; zero times
(let* ( (next-job (select (ready-jobs job-collection time)))
(wait-time (- time (ready-time next-job)))
(time-spent
(append
(run-batch-job (no-loops (times next-job)) 0 0)
(list wait-time))) )
(info next-job time time-spent)
(map +
time-spent
(batch-scheduler
(remove1 next-job job-collection)
select
(+ time (first time-spent) (second time-spent)))))) )
; Print job description and job timing information.
(define (info job start-time time-spent)
(display job)
(newline)
(display " start: ")
(display start-time)
(display ", spent: ")
(display time-spent)
(newline) )
; The time when a job is first ready to run.
(define (ready-time job-desc)
(first job-desc) )
; The job's priority.
(define (priority job-desc)
(second job-desc) )
; Job description without the ready-time and priority.
(define (times job-desc)
(subseq job-desc 2) )
; The collection of jobs that is ready to run.
(define (ready-jobs job-collection time)
(keep-if
(lambda (job) (<= (ready-time job) time) )
job-collection) )

```
```

; Remove the first occurrence of job from job-collection.
(define (removel job job-collection)
(let ( (pos (position job job-collection)) )
(append (subseq job-collection 0 pos)
(subseq job-collection (+ pos 1)))) )

```

We can test out this scheduler with a collection of jobs. We'll create these jobs with various priorities and times in which they are ready to run. Here are some CPU- and I/O-bound jobs:
```

(define cpul '(0 8 50000 io 1000 30000 io 1000))
(define iol '(0 6 1000 io 500000 10000 io 30000))
(define cpu2 '(30000 10 200000))
(define io2 '(60000 7 10000 io 250000 (2 5000 io 10000) 7000))

```

We can use the function first as the scheduling algorithm, meaning jobs are selected according to the order in which they enter the ready queue. As described earlier, this is called first-come, first-served scheduling.
```

> (batch-scheduler (list cpu1 io1 cpu2 io2) first 0)
(0 8 50000 io 1000 30000 io 1000)
start: 0, spent: (80000 2000 0)
(0 6 1000 io 500000 10000 io 30000)
start: 82000, spent: (11000 530000 82000)
(30000 10 200000)
start: 623000, spent: (200000 0 593000)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)
start: 823000, spent: (27000 270000 763000)
(318000 802000 1438000)

```

The final list is the total CPU, I/O, and wait times. Adding the CPU and I/O times gives the turnaround time of all the jobs. This totals to \(1,120,000\) microseconds or 1.12 seconds. Dividing the total CPU time by this figure gives us the CPU utilization: about \(\mathbf{2 8 . 4 \%}\). This is not that good.

\subsection*{14.9.3 Building a multitasking scheduler}

The above scheduler is a batch-oriented scheduler; once a job is selected it is run in its entirety. This is contrasted with multiprogramming, in which a job is blocked when it makes an I/O request and another job is started. This tends to keep the CPU occupied. Multiprogramming systems have nonpreemptive and preemptive schedulers. Jobs run in a nonpreemptive scheduler get run in their entirety unless they make I/O requests. With a preemptive scheduler jobs can be switched after an I/O request or after a job has used up its time slice in a timesharing environment.

To handle preemptive multiprogramming schedulers (multitasking schedulers), we need to be able to switch jobs after I/O requests or after time slices have elapsed. The function that runs the jobs, run-mt-job, will run a job until it is blocked (does an I/O request or uses up its quantum) or finishes. If a job blocks, it must be returned to the ready queue by the scheduler. A function passed as a parameter insert will be used to put the job back in the ready queue. To do this,

First-come, firstserved batch scheduling

\section*{Multitasking schedulers}

Handling loops in the multitasking scheduler
run-mt-job will return the new job description to the scheduler along with the elapsed CPU and I/O times for that job. The scheduler then calls itself recursively with this new job description, saved in the let variable returned-job, replacing the old job description that was just run.

Jobs waiting for I/O are returned to the ready queue using the length of time for the I/O requested as the time to wait until the job is ready to run (the first element of the job description list). This makes the assumption that I/O requests are handled in the time given in the job description list. In reality it may take longer due to multiple jobs competing for the same resources. Jobs that have timed out (exhausted their quantum) are put onto the ready queue immediately ready to run again. The function make-job takes the remaining CPU and I/O times of a job and adds the ready time and priority back to reform a proper job description list.
```

; Return a job description to be inserted back in the ready queue.
(define (make-job time time-spent priority new-job-times)
(cons (+ time (first time-spent) (second time-spent))
(cons priority new-job-times)) )

```

We must create a new function to preprocess loops, as no-loops simply multiplies the CPU and I/O times by the number of repetitions. We need to model the exact sequence of CPU and I/O events. We'll need a function that takes a list like
(100 (3 200 io 1000) 500)
and produces the list
(100 200 io 1000200 io 1000200 io 1000500)
The function expand does this with the help of repeat, which repeats an item a given number of times.
```

; Return job times without loops (loops are replaced with a series
; of the times in the loop).
(define (expand job-times)
(cond ((null? job-times) '())
((atom? (car job-times))
(cons (car job-times) (expand (cdr job-times))))
(else
(append
(repeat (caar job-times) (cdar job-times))
(expand (cdr job-times))))) )
; Return a list of the times in time-list repeated number times.
(define (repeat number time-list)
(if (<= number 0)
'()
(append time-list (repeat (- number 1) time-list))) )

```

In a multitasking system, wait times are indicators of how well the scheduling algorithm is performing. Just as with the batch scheduler, wait times are added to a running total each time a process gets scheduled to run. The multitask-
```

scheduler function follows:
; Simulate running a collection of jobs in a multitasking fashion.
; select is the scheduling algorithm. insert indicates how jobs are
; to be replaced in the ready queue.
(define (multitask-scheduler job-collection select insert time)
(if (null? job-collection)
'(0 0 0) ; zero times
(let* ((next-job (select (ready-jobs job-collection time)))
(wait-time (- time (ready-time next-job)))
(job-vals
(run-mt-job (expand (times next-job)) 0 *quantum*))
(returned-job (first job-vals))
(time-spent
(append (rest job-vals) (list wait-time))))
(info next-job time time-spent)
(map +
time-spent
(multitask-scheduler
(if (null? returned-job) ; if job is done
(remove1 next-job job-collection)
(insert
(make-job time time-spent
(priority next-job) returned-job)
(remove1 next-job job-collection)))
select insert
(+ time (first time-spent) ; add CPU time and
*context-switch*))))) ) ; context switch time

```

With multitasking, jobs may not run to completion. Thus, run-mt-job must be written such that when a job exceeds its quantum or does an I/O request, it is blocked and exits run-mt-job. This routine calls itself recursively until the job blocks. It returns a list of a new job description (to be added to the ready queue) and the elapsed CPU and I/O times.
```

; Simulate running a job in a multitasking environment returning
; a list of the remaining job times and elapsed CPU and I/O times.
(define (run-mt-job job-times CPU-time quantum)
(cond ((null? job-times) (list '() CPU-time 0)) ; job is done
((number? (car job-times)) ; CPU-time
(if (< (car job-times) quantum) ; enough time
(run-mt-job (cdr job-times)
(+ CPU-time (car job-times))
(- quantum (car job-times)))
(list (cdr job-times) (+ CPU-time quantum) 0)))
((symbol? (car job-times)) ; I/O-time
(list (cddr job-times) CPU-time (second job-times)))
(else ; ignore other items
(run-mt-job (cdr job-times) CPU-time quantum))) )

```

Running a job in the multitasking scheduler

First-come, firstserved scheduling

All that is left to do is define the scheduling algorithms. The simplest algorithm to define is first-come, first-served scheduling. Given a list of jobs, this algorithm simply returns the first job in the job list. That job is run to completion, meaning first-come, first-served scheduling is nonpreemptive; time limits are not used. A running job will only block if it requests I/O. We cannot use our batch processor to implement this because it never blocks; we can use the multitasking scheduler if we choose a very large quantum. If a job blocks on I/O, it should be added to the end of the ready queue so the next job is selected to run. Adding a job to the end of a list will be implemented with the following function:
```

; Add a job to the end of the ready queue.
(define (to-end job job-collection)
(append job-collection (list job)) )
(define *quantum* 1000000000)
; First-come, first-served scheduling algorithm.
(define (fcfs-scheduling job-collection)
(multitask-scheduler job-collection first to-end 0) )

```

We must define the context switching time as well:
(define *context-switch* 100)
Now we can try our multitasking scheduler with the first-come, first-served scheduling algorithm:
```

> (fcfs-scheduling (list cpu1 cpu2 io1 io2))
(0 8 50000 io 1000 30000 io 1000)
start: 0, spent: (50000 1000 0)
(30000 10 200000)
start: 50100, spent: (200000 0 20100)
(0 6 1000 io 500000 10000 io 30000)
start: 250200, spent: (1000 500000 250200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)
start: 251300; spent: (10000 250000 191300)
(51000 8 30000 io 1000)
start: 261400, spent: (30000 1000 210400)
Error: Pair expected

```

The scheduler went through all the jobs at least partially. The second job finished, and the other three blocked waiting for I/O. The first job ran again and blocked for another I/O request. But look at the I/O times of the third and fourth jobs. They are much longer than the elapsed time. Unfortunately, the code in multitask-scheduler does not handle the situation when no jobs are ready to run. It will try to pick the first (our scheduling selection) job from an empty list, and here lies the bug. To fix this bug, we should have the scheduler update its elapsed time parameter time to the minimum ready time of the jobs in the ready queue when there are no jobs that are ready to run.

The other change we should make to the scheduler is printing the elapsed time. For our batch scheduler we used the sum of the total CPU and I/O times. In a multitasking scheduler this will most likely not be the turnaround time for all
the jobs, since CPU times can happen in parallel with I/O times (when jobs block for I/O), and there may be dead time in which no jobs are ready to run (because they are waiting for their I/O requests to be serviced). The elapsed time value is the time in which the next process could run. It does not include the final I/O times to be serviced. Here is the new multitasking scheduler:
```

; Simulate running jobs in a multitasking fashion. select is the
; scheduling algorithm. insert replaces jobs in the ready queue.
(define (multitask-scheduler job-collection select insert time)
(cond ((null? job-collection) (display "elapsed time -> ")
(display time) (newline) '(0 0 0)) ; return zero times
((null? (ready-jobs job-collection time))
(multitask-scheduler job-collection select insert
(apply min (map ready-time job-collection))))
(else
(let* ((next-job
(select (ready-jobs job-collection time)))
(wait-time (- time (ready-time next-job)))
(job-vals (run-mt-job (expand (times next-job))
0 *quantum*))
(returned-job (first job-vals))
(time-spent
(append (rest job-vals) (list wait-time))))
(info next-job time time-spent)
(map + time-spent
(multitask-scheduler
(if (null? returned-job) ; if job is done
(remove1 next-job job-collection)
(insert (make-job time time-spent
(priority next-job) returned-job)
(remove1 next-job job-collection)))
select insert
(+ time (first time-spent) ; add CPU time and
*context-switch*)))))) ) ; context switch time
> (fcfs-scheduling (list cpu1 cpu2 io1 io2))
(0 8 50000 io 1000 30000 io 1000)
start: 0, spent: (50000 1000 0)
(30000 10 200000)
start: 50100, spent: (200000 0 20100)
(0 6 1000 io 500000 10000 io 30000)
start: 250200, spent: (1000 500000 250200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)
start: 251300, spent: (10000 250000 191300)
(51000 8 30000 io 1000)
start: 261400, spent: (30000 1000 210400)
(511300 7 5000 io 10000 5000 io 10000 7000)
start: 511300, spent: (5000 10000 0)
(526300 7 5000 io 10000 7000)
start: 526300, spent: (5000 10000 0)

```

Round-robin scheduling
```

(541300 7 7000)
start: 541300, spent: (7000 0 0)
(751200 6 10000 io 30000)
start: 751200, spent: (10000 30000 0)
elapsed time -> }76130
(318000 802000 672000)

```

The CPU utilization is \(318,000 / 761,300\) or \(41.77 \%\), which is quite better than with batch scheduling. Another big improvement is in wait time reduction. If there were more CPU processes waiting to be run, we would see an even bigger improvement in CPU utilization in the multitasking scheduler than in the batch scheduler.

The preemptive version of first-come, first-served scheduling in multitasking environments is round-robin scheduling. Recall that in round-robin scheduling, once a job has used up its quantum it is moved to the end of the job queue and the next job is started. It is called round-robin because long jobs each get a turn in sequence, round-robin. This algorithm is the same as first-come, first-served but uses a much smaller quantum so jobs with long CPU bursts will be preempted to allow other jobs to run.
```

(define *quantum* 100000)
; Round-robin scheduling algorithm.
(define (round-robin job-collection)
(multitask-scheduler job-collection first to-end 0) )
> (round-robin (list cpu1 cpu2 io1 io2))
(0 8 50000 io 1000 30000 io 1000)
start: 0, spent: (50000 1000 0)
(30000 10 200000)
start: 50100, spent: (100000 0 20100)
(0 6 1000 io 500000 10000 io 30000)
start: 150200, spent: (1000 500000 150200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)
start: 151300, spent: (10000 250000 91300)
(51000 8 30000 io 1000)
start: 161400, spent: (30000 1000 110400)
(411300 7 5000 io 10000 5000 io 10000 7000)
start: 411300, spent: (5000 10000 0)
(426300 7 5000 io 10000 7000)
start: 426300, spent: (5000 10000 0)
(441300 7 7000)
start: 441300, spent: (7000 0 0)
(651200 6 10000 io 30000)
start: 651200, spent: (10000 30000 0)
elapsed time -> 661300
(218000 802000 372000)

```

Looking at the final result, notice that the total CPU time (218 milliseconds) is less than the total CPU time returned by the first-come, first-served scheduler (318 milliseconds). Also notice that the second job ran for half of its CPU burst
(100 milliseconds) and then was preempted, but the second half was never finished. This accounts for the missing 100 milliseconds.

Something is wrong with our code. It is probably in the section where we have CPU times that are greater than the quantum. This happens in run-mt-job. When the CPU time is greater than or equal to the quantum, we return the rest of the job times and the elapsed CPU and I/O times for that burst. This means that the remaining CPU time (that exceeding the quantum) is silently eliminated. We should make the recursive call with a modified CPU time subtracting the quantum from the original CPU time. If the quantum is equal to the CPU time, we don't want to return a CPU time of 0 , so we should change the test condition to be \(<=\). The new code follows:
```

; Simulate running a job in a multitasking environment returning
; a list of the remaining job times and elapsed CPU and I/O times.
(define (run-mt-job job-times CPU-time quantum)
(cond ((null? job-times) (list '() CPU-time 0)) ; job is done
((number? (car job-times)) ; CPU-time
(if (<= (car job-times) quantum) ; enough or exact time
(run-mt-job (cdr job-times)
(+ CPU-time (car job-times))
(- quantum (car job-times)))
(list
(cons (- (car job-times) quantum) (cdr job-times))
(+ CPU-time quantum) 0)))
((symbol? (car job-times)) ; I/O-time
(list (cddr job-times) CPU-time (second job-times)))
(else ; ignore other items
(run-mt-job (cdr job-times) CPU-time quantum))) )
> (round-robin (list cpu1 cpu2 io1 io2))
(0 8 50000 io 1000 30000 io 1000)
start: 0, spent: (50000 1000 0)
(30000 10 200000)
start: 50100, spent: (100000 0 20100)
(0 6 1000 io 500000 10000 io 30000)
start: 150200, spent: (1000 500000 150200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)
start: 151300, spent: (10000 250000 91300)
(51000 8 30000 io 1000)
start: 161400, spent: (30000 1000 110400)
(150100 10 100000)
start: 191500, spent: (100000 0 41400)
(411300 7 5000 io 10000 5000 io 10000 7000)
start: 411300, spent: (5000 10000 0)
(426300 7 5000 io 10000 7000)
start: 426300, spent: (5000 10000 0)
(441300 7 7000)
start: 441300, spent: (7000 0 0)
(651200 6 10000 io 30000)
start: 651200, spent: (10000 30000 0)

```

Priority scheduling
```

elapsed time -> 661300
(318000 802000 413400)

```

The elapsed time dropped by 100 milliseconds because we broke up the large CPU job into two bursts. This allowed the other I/O-bound jobs to start earlier and once they block, the waiting CPU processes can start earlier resulting in an overall turnaround savings. This can be seen in the reduced wait time as well. Now the CPU utilization is \(318,000 / 661,300\), or \(48.09 \%\), which is an improvement over first-come, first-served scheduling.

A different approach is to choose jobs based on their priority. Recall that a job's priority is obtained using the selector function priority. Priorities are numbers in which the largest number represents the highest priority. We can extract the job priorities as a list of numbers from the job collection using map with priority. Applying accumulate to max and this priority list will return the highest priority. However, we need to get the job that has that highest priority, not just the number. Instead of writing a function that searches through the job collection list to find the job that matches the largest priority number, we can use accumulate with the job collection list and a comparison function that matches the priorities of jobs. The job with the highest priority is returned at each comparison. When accumulate finishes, it returns the job with the largest priority. Jobs with no priorities are given a \#f as their priority. These will be considered as the lowest priorities. If two jobs with no or identical priorities are compared, the first one wins. The function follows:
```

; Return the job with the highest priority value.
(define (pick-highest job-collection)
(accumulate
(lambda (job1 job2)
(cond ((not (priority job2)) job1)
((not (priority job1)) job2)
((>= (priority job1) (priority job2)) job1)
(else job2)) )
job-collection) )
; Priority scheduling algorithm.
(define (priority-scheduling job-collection)
(multitask-scheduler job-collection pick-highest cons 0) )
> (priority-scheduling (list cpu1 cpu2 io1 io2))
(0 8 50000 io 1000 30000 io 1000)
start: 0, spent: (50000 1000 0)
(30000 10 200000)
start: 50100, spent: (100000 0 20100)
(150100 10 100000)
start: 150200, spent: (100000 0 100)
(51000 8 30000 io 1000)
start: 250300, spent: (30000 1000 199300)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)
start: 280400, spent: (10000 250000 220400)
(0 6 1000 io 500000 10000 io 30000)

```
```

    start: 290500, spent: (1000 500000 290500)
    (540400 7 5000 io 10000 5000 io 10000 7000)
start: 540400, spent: (5000 10000 0)
(555400 7 5000 io 10000 7000)
start: 555400, spent: (5000 10000 0)
(570400 7 7000)
start: 570400, spent: (7000 0 0)
(791500 6 10000 io 30000)
start: 791500, spent: (10000 30000 0)
elapsed time -> 801600
(318000 802000 730400)

```

The CPU utilization dropped to \(39.67 \%\) and the wait time increased significantly compared to the round-robin scheduling. Our jobs are ranked positively by CPU demand and negatively by I/O usage. So with these priorities we favor the CPU-bound jobs. Let's see what happens if we favor the I/O-bound jobs.

Another scheduling algorithm is to choose the job with the shortest CPU time demand. In the case where jobs consist of only CPU times, choosing the shortest jobs will reduce the average response and wait times for all the jobs. If jobs contain a mixture of CPU and I/O bursts, we can still choose the job with the shortest upcoming CPU time requirement. If there is a job waiting for I/O, it can take priority to free up the CPU for another process to run while the I/O request is being serviced. This algorithm can be implemented as follows:
```

; Return the first job requesting I/O or the job with the
; shortest CPU request.
(define (shortest-CPU-time job-collection)
(accumulate
(lambda (job1 job2)
(let ((time1 (third job1))
(time2 (third job2)))
(cond ((symbol? time1) job1) ; if i/o job, choose it
((symbol? time2) job2)
((<= time1 time2) job1) ; else use shortest CPU job
(else job2))) )
job-collection) )
; I/O or shortest CPU first scheduling algorithm.
(define (short-CPU-scheduling job-collection)
(multitask-scheduler job-collection shortest-CPU-time cons 0) )
> (short-CPU-scheduling (list cpu1 cpu2 io1 io2))
(0 6 1000 io 500000 10000 io 30000)
start: 0, spent: (1000 500000 0)
(0 8 50000 io 1000 30000 io 1000)
start: 1100, spent: (50000 1000 1100)
(30000 10 200000)
start: 51200, spent: (100000 0 21200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)
start: 151300, spent: (10000 250000 91300)

```
```

(52100 8 30000 io 1000)
start: 161400, spent: (30000 1000 109300)
(151200 10 100000)
start: 191500, spent: (100000 0 40300)
(411300 7 5000 io 10000 5000 io 10000 7000)
start: 411300, spent: (5000 10000 0)
(426300 7 5000 io 10000 7000)
start: 426300, spent: (5000 10000 0)
(441300 7 7000)
start: 441300, spent: (7000 0 0)
(501000 6 10000 io 30000)
start: 501000, spent: (10000 30000 0)
elapsed time -> 511100
(318000 802000 263200)

```

This is a big improvement over all the other scheduling algorithms. CPU utilization increased to \(62.22 \%\) and wait times dropped 263.2 milliseconds. Favoring I/O and short CPU jobs is very beneficial.

\subsection*{14.9.4 Exercises}
14.1 The function expand could be written without using repeat. The idea is to break a job time list like
```

(3000 (3 io 5000 500) 7000)

```
into this
```

(3000 io 5000 500 (2 io 5000 500) 7000)

```

This process continues until the number of repetitions is 0 . Write a new version of expand using this idea.
14.2 Write new versions of no-loops and expand that support loops that are nested within loops, such as
\[
\text { (5000 (3 } 200 \text { (4 io } 3000 \text { 5000) io 2000)) }
\]

Write your functions so that they work with arbitrarily deep nesting.
14.3 To compute the CPU usage of the batch scheduler, we divided the total CPU time by the sum of the total CPU and I/O times. This is problematic in that it assumes that there is no dead time in which no jobs are ready to run. Fix batch-scheduler so that it can properly handle dead time and have it print the true elapsed run time.
14.4 Create your own scheduling algorithm and write functions to implement it. Test it using the four jobs used above.
14.5 Modify multitask-scheduler and/or run-mt-job so that they also display the CPU utilization, average turnaround time, average response time, and average wait time for the jobs entered.
14.6 Make some experiments with the multitasking scheduler to see the effects that different quantum and context switch times have on the different scheduling algorithms. You may want to create some different job description lists to test against.

\subsection*{14.10 Future Trends}

Computer networks are becoming more prevalent and larger. More and more information is being transmitted over local and wide area networks. Operating systems must provide some level of support to handle the increasing traffic in terms of not just more people sending more information, but multimedia information that is much larger in size than simple text.

With a distributed operating system, transparent computational operations are allowed just as networked operating systems allow transparent file access. Computations may be run on other machines or perhaps multiple machines without having to explicitly request this. Running computations on other machines is often easier and quicker than transferring the files to the local machine. For example, if you wanted to find the sizes of all the files and directories on a remote machine, it would be quicker to run the command on the other machine instead of transferring all the files and directories over to the local machine.

If processes can be run on other machines, then this can create a large savings in speed. If the operating system can pick the machine with the lightest load and run the next job there, the job will execute faster, resulting in better turnaround time. The machines in a network may be of different types or configurations, so a job that was invoked on one machine may run faster on a different machine that has more appropriate hardware for that process (e.g., faster processor or more main memory). Even if all the machines in a network are of the same type and configuration, they may have different software; a distributed operating system may use this knowledge to direct processes to the most appropriate machine in the network.

Creating distributed operating systems is a difficult endeavor. There are communication issues: should the machines send messages to one another or interact through some shared memory space? There are timing issues: each machine has its own CPU with its own clock. This creates difficult synchronization and deadlock problems. Handling deadlock on distributed systems is much more complicated than on single CPU systems. It is not practical to prevent, so it must be detected and then recovered from. Scalability is a question: is it possible to add CPUs to a distributed operating system in a simple fashion, and what happens when the number of CPUs grows very large (e.g., in the billions)? Can reliability be provided? Can a distributed system be built that degrades gracefully as CPUs go down? Distributed systems with central control will fail at this, as the entire network of machines may be crippled when the controlling CPUs go down. Can true transparency of files and computations be given? There are solutions to file transparency but this is on networks with machines running the same

Distributing jobs over a network

\section*{Building distributed} operating systems

\section*{Multiprocessor systems}

\section*{Multithreaded} processes
or a few operating systems. It would be nice to have simple access to nonprotected files existing on a variety of hardware platforms across the network. Can computation be handled similarly such that jobs are dispatched to the most appropriate machines in a network to maximize turnaround? A huge software infrastructure must be built: software that utilizes multiple CPUs in distributed systems is very difficult to create. Compilers that produce code that takes advantage of multiple CPUs is a good example of this.

As CPUs get cheaper and cheaper, the number of multiple CPU systems grows. Such multiprocessor systems have special requirements that the operating system must meet. In multiprocessor systems, operating systems have many of the same issues to address as in networked systems. Distributed operating systems are more the norm in multiprocessor systems; in fact, there is typically only one copy of the operating system running. It must decide how to best allocate jobs to the different processors to get the highest throughput. There has been research in how individual jobs may be split up and run on different processors. Some jobs lend themselves to this splitting up, or parallelization, as they have separate, autonomous segments that can be run independently in parallel on different processors. Other jobs are more sequential in nature and difficult to parallelize. The goal is to automate this process to best make use of multiprocessor systems.

Using multiple threads is one way to parallelize a process. Before defining threads, let's take a closer look at processes. A process is a program that can be run on a machine. It has its own set of instructions that it executes, its data stack, register values, and program counter. Each process may have a part of the main memory set aside for its use as well. Such a process is called a heavyweight process. A heavyweight process cannot be broken up into smaller entities that can run on the CPU.

There are tasks in which we would like to be able to split a process into smaller processes that can independently handle subtasks. Such a miniature process is called a thread. The threads of a single process all use the instructions and memory of that process; however, each thread has its own program counter, register values, and data stack. This way a thread acts as a separate process with some shared memory in common with other threads from the same parent process. A thread is a lightweight process-it is easy and fast to switch from one thread to another.

For an example of an application where threads would be nice, imagine an interactive program in which the user makes requests and the system performs them. This may be a library query system where someone requests information about books or periodicals. These requests may be time-consuming searches, and waiting for the user to enter a request is also slow. To speed things up we can have one thread handle requests while another gets requests from the user. The operating system will switch from one to another just as jobs are switched in a multitasking environment. However, the context switch time for threads is less

\footnotetext{
\({ }^{4 .}\) These terms were introduced in Chapter 13.
}
than for heavyweight processes, so they are more efficient. Also the threads all share the same memory (variables and data structures), so the thread that gets a request from a user reads that request into the same variable that the thread that processes the request uses.

As more programmers see the usefulness of threads, more operating systems will support them. There are some difficulties associated with threads, however. Multithreaded operating systems need schedulers that handle different types of context switches (switching between threads of the same process versus switching between threads of different processes). The same problems that arose with shareable resources also exist with threads because they share a process's memory space. For example, one thread may set a variable and be preempted, and then another thread may reset that variable before the first thread is able to use it. Some means of handling such critical section problems must be implemented and supported by the operating system.

\subsection*{14.11 Summary}
- Operating systems handle resource allocation, process and memory management, provide access to the file system, and provide various utilities to perform a myriad of tasks.
- The first computers had no operating systems. Instead programs were loaded directly into the computer.
- Peripheral devices such as line printers and card readers were added to computers. These devices were controlled with programs called device drivers.
- Batch systems were used in the early operating systems. They ran one job at a time to completion.
- To better utilize the CPU, multiprogramming schedulers were built that switched between jobs when the running job was doing an I/O operation.
- Multiprogramming led to multitasking, where jobs would be preempted if they ran beyond some time limit, quantum. This allowed timesharing systems to come about in which multiple users could each share one CPU.
- Computer networks brought about network operating systems, which added support for file transmission between computers and remote access to computers.
- Distributed operating systems extend the ideas of transparent file access to transparent computer usage in which jobs are run on local, remote, or a combination of machines to best utilize the network CPU resources.
- Spooling involves sending or receiving information from a memory buffer instead of waiting for a slow device to be ready. It helps keep the CPU betterused.
- Deadlock occurs when two or more processes are unable to continue because they are both waiting for resources that the other already has and won't give up. It is typically either detected and recovered from or prevented by not allowing the conditions that lead up to deadlock to occur.
- Process management is the control of job sequencing to best utilize the CPU.
- The scheduler chooses which job to run according to the scheduling algorithm. There are various criteria for making this choices, including maximizing CPU usage and throughput (the number of jobs completed in a given time), and minimizing the response time (the time before a job starts) and the turnaround time (the time a job takes to complete).
- Some common scheduling algorithms include first-come, first-served (jobs are run in the order in which they reach the scheduler until they block for I/O); round-robin (jobs are run in order until they are preempted for I/O or using their CPU quantum); and I/O-bound jobs first (jobs with I/O demands or small CPU demands are run first).
- Batch schedulers run jobs until they finish. Multiprogramming schedulers run jobs until they block for I/O only (nonpreemptive schedulers) or either I/O or quantum expiration (preemptive schedulers).
- Memory management deals with providing and securing the computer's main memory among the running processes.
- Virtual memory allows jobs to run even if they need more memory than is available.
- Demand paging is the process of bringing sections (pages) of memory that have been held on the disk back into the main memory when they are needed.
- A file is a collection of information.
- File systems are collections of files that can be accessed by one or more computers.

\subsection*{14.12 Additional Reading}

Nutt, G.J. (1992). Centralized and Distributed Operating Systems, Prentice Hall, Englewood Cliffs, NJ.

Silberschatz, A. and Galvin, P.B. (1994). Operating System Concepts, Fourth edition, Addison-Wesley, Reading, MA.

Tanenbaum, A.S. (1992). Modern Operating Systems, Prentice Hall, Englewood Cliffs, NJ.

Tanenbaum, A.S. (1995). Distributed Operating Systems, Prentice Hall, Englewood Cliffs, NJ.

\subsection*{14.13 Code Listing}

Job collection:
```

(define cpu1 '(0 8 50000 io 1000 30000 io 1000))
(define io1 '(0 6 1000 io 500000 10000 io 30000))
(define cpu2 '(30000 10 200000))
(define io2 '(60000 7 10000 io 250000 (2 5000 io 10000) 7000))

```

Batch scheduler:
```

; Return a job time list without loops (the times in a loop are
; multiplied by the number of repetitions of the loop).
(define (no-loops job-times)
(cond ((null? job-times) '())
((atom? (car job-times))
(cons (car job-times) (no-loops (cdr job-times))))
(else
(append
(map (lambda (time) (if (number? time)
(* time (caar job-times))
time) )
(cdar job-times))
(no-loops (cdr job-times))))) )
; Simulate running a batch job - version 2.
(define (run-batch-job job-times CPU-time I/O-time)
(cond ((null? job-times) (list CPU-time I/O-time))
((number? (car job-times)) ; CPU time
(run-batch-job (cdr job-times)
(+ CPU-time (car job-times))
I/O-time))
((symbol? (car job-times)) ; I/O time
(run-batch-job (cddr job-times) CPU-time
(+ I/O-time (second job-times))))
(else ; ignore other items
(run-batch-job (cdr job-times) CPU-time I/O-time))) )

```
```

; Simulate running a collection of jobs in batch fashion using
; select as the scheduling algorithm.
(define (batch-scheduler job-collection select time)
(if (null? job-collection)
'(0 0 0) ; zero times
(let* ( (next-job (select (ready-jobs job-collection time)))
(wait-time (- time (ready-time next-job)))
(time-spent
(append
(run-batch-job (no-loops (times next-job)) 0 0)
(list wait-time))) )
(info next-job time time-spent)
(map +
time-spent
(batch-scheduler
(remove1 next-job job-collection)
select
(+ time (first time-spent) (second time-spent)))))) )
; Print job description and job timing information.
(define (info job start-time time-spent)
(display job)
(newline)
(display " start: ")
(display start-time)
(display ", spent: ")
(display time-spent)
(newline) )
; The time when a job is first ready to run.
(define (ready-time job-desc)
(first job-desc) )
; The job's priority.
(define (priority job-desc)
(second job-desc) )
; Job description without the ready-time and priority.
(define (times job-desc)
(subseq job-desc 2) )
; The collection of jobs that is ready to run.
(define (ready-jobs job-collection time)
(keep-if
(lambda (job) (<= (ready-time job) time) )
job-collection) )

```
```

; Remove the first occurrence of job from job-collection.
(define (remove1 job job-collection)
(let ( (pos (position job job-collection)) )
(append (subseq job-collection 0 pos)
(subseq job-collection (+ pos 1)))) )

```

\section*{Multitasking scheduler:}
```

; Return a job description to be inserted back in the ready queue.
(define (make-job time time-spent priority new-job-times)
(cons (+ time (first time-spent) (second time-spent))
(cons priority new-job-times)) )
; Return job times without loops (loops are replaced with a series
; of the times in the loop).
(define (expand job-times)
(cond ((null? job-times) '())
((atom? (car job-times))
(cons (car job-times) (expand (cdr job-times))))
(else
(append
(repeat (caar job-times) (cdar job-times))
(expand (cdr job-times))))) )
; Return a list of the times in time-list repeated number times.
(define (repeat number time-list)
(if (<= number 0)
'()
(append time-list (repeat (- number 1) time-list))) )
; Simulate running a job in a multitasking environment returning
; a list of the remaining job times and elapsed CPU and I/O times.
(define (run-mt-job job-times CPU-time quantum)
(cond ((null? job-times) (list '() CPU-time 0)) ; job is done
((number? (car job-times)) ; CPU-time
(if (<= (car job-times) quantum) ; enough or exact time
(run-mt-job (cdr job-times)
(+ CPU-time (car job-times))
(- quantum (car job-times)))
(list
(cons (- (car job-times) quantum) (cdr job-times))
(+ CPU-time quantum) 0)))
((symbol? (car job-times)) ; I/O-time
(list (cddr job-times) CPU-time (second job-times)))
(else ; ignore other items
(run-mt-job (cdr job-times) CPU-time quantum))) )

```
```

; Simulate running jobs in a multitasking fashion. select is the
; scheduling algorithm. insert replaces jobs in the ready queue.
(define (multitask-scheduler job-collection select insert time)
(cond ((null? job-collection) (display "elapsed time -> ")
(display time) (newline) '(0 0 0)) ; return zero times
((null? (ready-jobs job-collection time))
(multitask-scheduler job-collection select insert
(apply min (map ready-time job-collection))))
(else
(let* ((next-job
(select (ready-jobs job-collection time)))
(wait-time (- time (ready-time next-job)))
(job-vals (run-mt-job (expand (times next-job))
0 *quantum*))
(returned-job (first job-vals))
(time-spent
(append (rest job-vals) (list wait-time))))
(info next-job time time-spent)
(map + time-spent
(multitask-scheduler
(if (null? returned-job) ; if job is done
(remove1 next-job job-collection)
(insert (make-job time time-spent
(priority next-job) returned-job)
(remove1 next-job job-collection)))
select insert
(+ time (first time-spent) ; add CPU time and
*context-switch*)))))) ) ; context switch time

```

\section*{Scheduling algorithms:}
```

; Add a job to the end of the ready queue.
(define (to-end job job-collection)
(append job-collection (list job)) )
(define *quantum* 1000000000)
; First-come, first-served scheduling algorithm.
(define (fcfs-scheduling job-collection)
(multitask-scheduler job-collection first to-end 0) )
(define *context-switch* 100)
(define *quantum* 100000)
; Round-robin scheduling algorithm.
(define (round-robin job-collection)
(multitask-scheduler job-collection first to-end 0) )

```
```

; Return the job with the highest priority value.
(define (pick-highest job-collection)
(accumulate
(lambda (job1 job2)
(cond ((not (priority job2)) job1)
((not (priority job1)) job2)
((>= (priority job1) (priority job2)) job1)
(else job2)) )
job-collection) )
; Priority scheduling algorithm.
(define (priority-scheduling job-collection)
(multitask-scheduler job-collection pick-highest cons 0) )
; Return the first job requesting I/O or the job with the
; shortest CPU request.
(define (shortest-CPU-time job-collection)
(accumulate
(lambda (job1 job2)
(let ((time1 (third job1))
(time2 (third job2)))
(cond ((symbol? time1) job1) ; if i/o job, choose it
((symbol? time2) job2)
((<= timel time2) job1) ; else use shortest CPU job
(else job2))) )
job-collection) )
; I/O or shortest CPU first scheduling algorithm.
(define (short-CPU-scheduling job-collection)
(multitask-scheduler job-collection shortest-CPU-time cons 0) )

```

\section*{Chapter 15}

\section*{Artificial InTELLIGENCE}

\subsection*{15.1 Artificial Intelligence}

Artificial intelligence is perhaps the most talked about field within computer science. This is not due to the number of researchers or proponents within the field, or to number of accomplishments. Artificial intelligence, or AI as it is usually referred to, is so popular because it is the most controversial field within computer science. AI is threatening to some people and exciting to others. Some say it is an idea that is a few years away from becoming reality, while others say it will never be a possibility. Some say it's hip; others, hype. How can one field elicit such disparate beliefs? The answer lies in what AI attempts to do.

Artificial intelligence is the study of creating computers and software that can perform intelligent actions. This very broad definition might not seem worthy of the controversy that it has stirred. It is the nature and degree of the intelligent actions that causes the problems. If by "intelligent" we mean programs that can multiply 20 -digit numbers faster than humans can, then that goal has been met and most people are not bothered or impressed. If we are talking about a program that can recognize a joke, that is an extremely difficult and impressive endeavor. Many people find the notion of a machine embodying such intelligence a frightening prospect. Intelligence is revered; it is the thing that separates us humans from the rest of life on the planet. When AI researchers started making claims that programs would exist that could outperform humans, it made many people uncomfortable. Others became excited and enthusiastic. Still others felt it could not and would not ever happen.

What really defines the intelligence that AI is trying to embody in computers? The answer depends on whom you ask. Most researchers in AI focus on specific problems or commercial applications. The days of claiming that computers will outsmart humans in so many years are over. Modeling human intelligence is a tough problem.

Intelligence

\footnotetext{
O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998
}

Rather than existing as a single unified field, AI is a collection of subfields, each with its own unique problems and accomplishments. We'll look at these subfields and some general themes that exist across them, such as searching and knowledge representation.

\subsection*{15.1.1 Subfields of artificial intelligence}

The major subfields of AI include the following:
- Natural Language Processing Natural language processing (NLP) addresses the problems of understanding human spoken languages (natural languages) so that they can be translated, summarized, used in communication between humans and computers, and used in tasks that involve some degree of language comprehension.
- Machine Learning

Machine learning studies how computers can learn new information from existing knowledge and beliefs.
- Problem Solving and Planning

Problem solvers and planners solve tasks within realworld environments.
- Expert Systems

Expert systems are programs that embody the knowledge of experts in a particular domain.
- Robotics

Robotics is the creation of robots that can move about and function in real environments.
- Vision

Vision involves recognizing three-dimensional objects given two-dimensional images from still or motion pictures.

\subsection*{15.2 Historical Background}

Different perspectives of AI

The history of AI can be looked at through many lenses. A philosophical viewpoint is shown in the dialogue between AI advocates and protagonists. Books like What Computers Can Do, What Computers Can't Do, and What Computers Still Can't Do exemplify the disparate beliefs between the different camps. A businessperson might look at the introduction and growth of AI in the marketplace. A sociologist will look at changes in a population's views and beliefs of AI. A linguist may look at how machine intelligence is used in text and speech. An engineer will see how AI techniques can be used to solve problems or improve designs.

In all these areas, there has been a growth in the interest and awareness of AI. However, the big question of whether it is possible to create machines that are as intelligent as humans still remains. Some of the early AI pioneers thought that machines would outperform humans in a short period of time. Now AI researchers are more modest in their claims. Some AI researchers believe that machines will never reach human mental capabilities but still do research because a lot of
improvement can be made that will result in higher quality and easier-to-use computers.

Let's look at some of the early work in AI. Allen Newell and Herbert Simon, two of the pioneers of AI, built two well-known AI programs. Their Logic Theorist (LT) could prove logic theories and even produced a proof shorter than one Bertrand Russell had in his classic logic text Principia Mathematica. Newell and Simon's General Problem Solver (GPS) was intended to solve any type of problem. It modeled human problem solving methods using means-ends analysis, in which the system looked at which operator could be applied to achieve the end result. If the conditions of that operator were not present, then they became new subgoals to be solved recursively. Later programs were built to solve algebra word problems and prove theorems in geometry.

Some programs could "understand" some amount of human language. Terry Winograd's SHRDLU \({ }^{1}\) could answer questions about a world consisting of colored blocks. It could answer questions like "Can the red block be moved on top of the yellow block?" The answer to this depended on whether the blocks had objects above them.

There were failures in natural language processing as well. A large effort in translating Russian to English in the early cold war period from the mid 1950s to the mid 1960s was one of AI's biggest blunders. Researchers thought the task was possible using grammar parsing techniques and dictionary lookup. Words in Russian would be searched in a Russian-to-English dictionary built into the program, and the English equivalent was returned. Translating English to Russian and then back into English resulted in transformations like
"Out of sight, out of mind" \(\rightarrow\) "Invisible insanity" and
"The spirit is willing but the flesh is weak" \(\rightarrow\) "The vodka is strong but the meat is rotten"
After ten years of research, a study reported that the language translation efforts, even with human assistance to clean up the translations, were not effective. Even with foreseeable increases in computing power, translation efforts were seen as impossible.

Many fields within AI were running into limits. The toy problems that the AI programs could solve so well did not scale up to realworld domains. Programs like GPS turned out to be not so general after all.

AI made its recovery by limiting its research agenda to solving particular aspects of problems. Rather than translate entire natural languages, work was done on modeling small aspects of language understanding, like inference or planning. Problem solvers moved from general problems to specific problems. This brought about the field of expert systems, which saw a large degree of commercial success.

\footnotetext{
1. The letters in SHRDLU are the seventh through twelfth most common letters used in English words. The letters in ETAOIN are the first through sixth most common letters. These twelve letters make up a row in a popular typesetting terminal.
}

Logic Theorist and
General Problem
Solver

SHRDLU

Failures in AI

Al moves to attainable goals

Expert systems

\section*{Al hardware}

\section*{Chess}

Work on expert systems started at Stanford in the late 1960s with DENDRAL. Hundreds of large expert systems were developed. The table below lists some of the early, well-known expert systems:
DELTA aids in troubleshooting and repairing diesel electric locomotive engines, (Diesel Electric Locomotive Troubleshooting Aid)
DENDRAL determines the molecular structure of chemicals given mass spectrometry data, (DENDRitic ALgorithm)
MACSYMA simplifies, solves, and integrates algebraic expressions using symbolic manipulation, (MIT's Project MAC-Machine-Aided Cognition-SYmbolic MAthematics)
MYCIN diagnoses and treats infectious diseases, (from the suffix of antibiotics like erythromycin, streptomycin, and neomycin)
PROSPECTOR finds mineral deposits
SOPHIE teaches students how to troubleshoot faulty electric circuits, (SOPHisticated Instructional Environment)
XCON determines the layout of VAX computer systems, (eXpert CONfigurer)
Many expert system businesses grew in the early 1980s and then faded almost as quickly in the late 1980s and early 1990s.

As AI software grew, so did AI hardware. Specialized LISP workstations were built that helped speed up what was then a rather slow language in comparison to other commonly used languages. Symbolics, Texas Instruments, LISP Machines Inc., and Xerox all made custom LISP computers that ran LISP code faster than general purpose computers. However, with the advent of faster, general purpose computers and LISP compilers and optimizers, many of these specialized LISP workstations have become a thing of the past.

\subsection*{15.2.1 Game playing and puzzle solving programs}

Some of the earliest AI programs were game playing programs in which a person competed against a computer or in puzzle solving programs, where a program tried to solve some type of logic or reasoning puzzle. Many of these problems have become "classic" AI problems and are used to test new searching or problem solving algorithms for their generality, expressiveness, speed, and efficiency.

One of the oldest and hardest problems is to create a program that can play chess at the grand master level. The journal ACM (Association for Computing Machinery) sponsors an annual contest in which different chess programs compete against one another. Programs are pitted against people quite often as well. At the writing of this book, some programs could occasionally beat grand masters in chess, but no program could do this consistently.

Most chess programs pick moves based on a success measure that compares all possible moves (assuming the opponent makes the best counter move). To be successful, these programs must look ahead many moves of play. This involves a lot of reduction in the space of possibilities (pruning of the search tree). Successful AI programs check many moves in parallel and eliminate poor moves early
on in the search. Only the most promising moves are searched further.
Other games and puzzles are easier than chess and are often used as benchmarks for testing new searching algorithms. Here are some of these.

The 8 -queens problem is played on a chessboard. The goal is to place all 8 queens on the chessboard with the constraint that no queens can attack one another.

The 8-puzzle is a game played on a 3-by-3 square with sliding tiles. Each tile is numbered from 1 to 8 . One part of the puzzle has no tile and is the spot in which a neighboring tile can be moved. The goal is to arrange the numbered tiles in some sequence, such as

The 15 -puzzle is a larger variation on this puzzle with 15 numbered tiles on a 4 -by-4 square.

Cryptarithmetic is a puzzle in which letters represent single digit numbers. The letters are arranged like a math equation. For example,
\[
\begin{array}{r}
\text { S END } \\
+ \text { M ORE } \\
\hdashline------ \\
\text { M O N E Y }
\end{array}
\]

Here, the sum of the digits represented by the letters in SEND plus the digits in more equals the digits in money. The goal is to figure out which digits match which letters in the puzzle. It breaks down into solving a series of equations with many variables. For example,
```

D + E = Y
N + R + carry from above = E
etc.

```

The traveling salesman problem exists in many businesses. The goal is to find the least expensive route that visits a collection of locations. Imagine having to fly to twenty different cities. Each flight costs some amount, and there is a best route that hits every city at the smallest total cost.

This problem is well known in computer science theory. It is an NP-hard problem, meaning that no known algorithm can solve this problem in polynomial time. Polynomial time grows according to some polynomial equation such as the sum of the cube plus double the square of the number of cities to visit. NP-hard problems take exponential time to solve. In the case of the traveling salesman problem, this means the time is some amount raised to the number of cities to visit. As the number of cities grows, the time to solve the problem grows

\footnotetext{
2. This is the current belief. However, someone may create such an algorithm, which would be a major find, since then the entire class of NP-hard problems would be solvable in polynomial time.
}

8-queens

8-puzzle

15-puzzle
Cryptarithmetic

Traveling salesman problem

Polynomial versus exponential time problems

\section*{Missionaries and cannibals}

\section*{Search paths}

Traversing the search space
extremely large.
The traveling salesman problem is a good test case to measure the quality of new search techniques used in AI. Problems that grow exponentially can be solved using AI techniques, but they require a great deal of pruning of the search space or making choices that might not produce the best solution, but a reasonable one. With NP-hard problems, a fairly good solution is an excellent realworld compromise, since no one wants to wait an eternity for the best solution.

Another puzzle is the missionaries and cannibals problem. The goal is to get three missionaries and three cannibals across a river using a boat that can hold only one or two of them at a time. There is a constraint: at no time can the cannibals outnumber the missionaries on either shore or in the boat. We will solve this puzzle in a later section of this chapter.

\subsection*{15.3 Common Problems}

A number of problem areas exist in most, if not all, the subfields of AI. We'll look at them individually before focusing on the different subfields. The four problems we'll look at are searching, knowledge representation, reasoning, and world or commonsense knowledge.

\subsection*{15.3.1 Searching}

Searching involves finding a path from an initial state to a final or goal state. A state is a description of the environment at some point in time. In addition, there are operators that describe transformations from one state to another; these are the actions that can be taken to change the state.

Sometimes the path taken to the goal is the information that is needed. For example, in the missionaries and cannibals problem, we are looking for a sequence of moves to get all the people across the river. Each move affects the arrangement of people and therefore changes the state in this puzzle. Sometimes we only care about reaching the goal state and not how it was reached. In chess, if we know that a move will result in a win, we want to take that move. We don't care about the path there because it makes estimates of what the opponent will do and we must recalculate each move based on the exact move the opponent took. Some problems have many paths to the goal, but we want to find the cheapest one or a relatively inexpensive solution even though it may not be the absolute best one. The traveling salesman problem is an example of this. The same is true if you are shopping around for a good price. You will call some places, but not every single store that may carry the item even though it may be cheaper elsewhere. It just takes too much time.

Search is often discussed in terms of movement through a search space that is a tree or network of some sort. Each node in the tree or network represents some state, and branches from the node represent operators that can be taken to move to another node. With a search tree, the initial state is the root of the tree and the goal state is typically one of the leaves. There are numerous ways to search. Two of the simplest search algorithms were presented in Chapter 7: depth-first and
breadth-first search. Both of these are exhaustive search approaches since they can search the entire search space. Depending on how the information is represented and where the goal is in the search tree, one approach will yield better results than the other. Depth-first moves quickly toward the leaves, whereas breadth-first covers a wider space of initial moves earlier on.

Uniform-cost search, a variation of breadth-first search, chooses the node with the least expensive cost from the start state to that node. Hence, it follows the cheapest alternative at all times. If that path gets more expensive than another path, the cheaper path is followed. This process continues until the goal is found. The idea is that if the cheapest path is followed and a solution is found, there cannot be a cheaper path that leads to the solution.

Hill-climbing, a variation of depth-first search, involves always choosing the best node to search next. This is akin to climbing a hill by always moving along the steepest path at every junction of many alternative paths. Hill-climbing is often faster than depth-first search because it limits the number of paths it searches (it is not exhaustive). However, hill-climbing can get stuck at local maxima and not find the desired global maximum. A local maxima is a high point relative to other points, but is not necessarily the overal maximum which is called the global maximum. If a path takes us to the top of a side hill that is lower than the overall hill we want to climb, we get stuck there. Hill-climbing does not back up and try another path.

Best-first search is like hill-climbing in that it has a means of ranking the nodes to determine their distance to the goal state. Rather than following only one path and choosing the best child from the current node of that path, many alternative paths are considered. The most promising path is followed. If that path fails, best-first search can backtrack, thereby avoiding the problem hill-climbing has of getting stuck at a local maxima.
\(A^{*}\) search (pronounced A star) looks at the overall search picture to make decisions of which path to follow. A* search combines the cost that has already been incurred from the start state to the current state with the predicted cost of following a given path to the goal state. Thus \(\mathrm{A}^{*}\) search is a mix of uniform-cost search and best-first search. If the predicted cost from the current node to the goal doesn't overestimate the actual cost, \(\mathrm{A}^{*}\) will find the minimal cost path to the goal. Ideally, to reduce the amount of unnecessary searching, the predicted cost should be close to the actual cost. If the predicted-cost function underestimates too much, then \(\mathrm{A}^{*}\) starts to perform like uniform-cost search, which bases its decisions only on the cost of the path taken so far.
\(A^{*}\) search is expressed using the following equation, where \(f\) is the overall cost (to be minimized), \(g(n)\) is the cost incurred so far to get to node \(n\), and \(h(n)\) is the estimated cost of going from node \(n\) to the goal.
\[
f=g(n)+h(n)
\]

The following table shows the different search strategies of the above search methods. The table differentiates the strategies with two categories: the cost of the path taken so far and the cost to the goal. The costs are expressed as either not used (shown as an underscore), measured by the next node, or measured by the

Uniform-cost search

Hill-climbing

Best-first search
\(A^{*}\) search

Comparison of search strategies

\author{
Minimax search
}

\author{
Alpha-beta pruning
}

Heuristic search
path cost or estimate.
\begin{tabular}{lll}
method & cost so far & cost to goal \\
\hline depth-first & - & - \\
breadth-first & - & - \\
hill-climbing & - & node \\
uniform-cost & path & - \\
best-first & - & path \\
A \(^{*}\) & path & path
\end{tabular}

For game search, minimax searching is used. Minimax involves using one tree to represent moves by both players. The first player tries to maximize its situation, while the second player tries to minimize the first player's situation. In light of this, the first player must always think ahead to what the second player can do in response to its move. For example, in tic-tac-toe, if the first player makes a move to get two pieces in a row, but neglects to block a column in which the second player already has two pieces, the first player will end up loosing. Similarly, in chess, moving the queen to put the other player's king in check may seem like a good move, but if the other player can respond by capturing the queen, the move was not good.

To reduce the search space of two-player game problems like the minimax search above, alpha-beta pruning is used. Alpha-beta pruning involves keeping track of best-case and worst-case situations at different nodes in the search space and removing paths that are too costly. As the minimax search tree is examined, there are times when a given move would be too costly because of an opponent's response. There is no point in checking alternative responses by the opponent or checking the following moves we could make. For example, a move that would cause a valuable piece to be lost is not worth exploring further. The search continues exploring other safe or less costly moves. By keeping track of the costs already evaluated at different levels in the tree, it is possible to know when other paths are worthwhile for further exploration or not.

A heuristic is a strategy or rule-of-thumb that is applicable in certain situations. Using heuristics in addition to straight search methods may lead to a solution more quickly. Heuristic search uses additional information about the tree or certain nodes that enables pruning the search tree or making decisions to pursue a given node ahead of alternative nodes. For example, the first move may be defined by a heuristic because it is known to be a strong move. This may be done in tic-tac-toe or chess. Rather than search through the space of possible moves, a heuristic defines a move to take in a certain situation. Search can be done purely with heuristics. Expert systems are an example of this.

To better understand search, let's explore two search algorithms in detail. First, here is a function that implements best-first search:
```

; Parameters: goal-func, a function returning true if a goal has
been met; choices, a list of paths to search; cost-func, a cost
function to order new states; and next-states, a function that
generates new states from a current path.
; Return the first path encountered that satisfies goal-func.
; The list of path choices is printed each time through the code.
(define (best-first-search goal-func choices cost-func next-states)
(display choices)
(newline)
(cond ((null? choices) \#f) ; no more choices
((goal-func (first choices)) (first choices))
(else
(best-first-search goal-func
(add-paths
(rest choices)
(make-paths (next-states (first choices))
(first choices))
cost-func)
cost-func
next-states))) )

```

The function next-states takes the current path from choices and returns the possible valid states below that. These should be returned in a list, which will be empty if there are no further states below the current state. These states are converted into paths by make-paths. Then add-paths joins them to the existing paths in the proper order based upon the cost function cost-func. Paths are formed by adding the new state to the end of the list representing the current path. The function make-paths removes empty lists from the list of new states from next-states. This is to allow more flexibility and ease in writing nextstates. For example, empty branches of a tree can be represented as empty lists. Rather than test and conditionally add these to the list of new states to process, we can always add them and they will be removed by make-paths. The function add-paths calls insert (from section 8.4.2, "Sorting lists" in Chapter 8). It is included here to ease the burden of jumping through the text.
```

; Return a new sorted list with element inserted into sorted-list
; based on compare-func.
(define (insert element sorted-list compare-func)
(cond ((null? sorted-list)
(list element))
((compare-func element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert element (rest sorted-list) compare-func)))) )

```

Using best-first search to write depth-first and breadth-first search
```

; Add paths in new-choices to old paths, old-choices, in sorted
; order based on cost-func.
(define (add-paths old-choices new-choices cost-func)
(if (null? new-choices)
old-choices
(insert (first new-choices)
(add-paths old-choices (rest new-choices) cost-func)
cost-func)) )
; Given a list of new states, remove the empty lists and convert
; the states into complete paths.
(define (make-paths new-states current-path)
(map (lambda (state) (append current-path (list state)))
(remove '() new-states)) )

```

The function best-first-search can be used to perform a depth-first or breadth-first search. The initial choice is a path representing the starting state, the root of the tree. To make the root a path we make it a list, and since we need to pass a list of path choices, we must apply list once again. To add new paths to the start of the list of path choices, we use a cost function that always returns true. Lastly, the next states are the left and right children of the current node in the tree, which can be found by following the current path to get there. The function find does this by traversing through a tree based on the search path.
```

; Depth-first search implemented using best-first search.
(define (depth-first-alt goal-func tree)
(best-first-search goal-func (list (list (root tree)))
(lambda (path1 path2) \#t)
(lambda (path)
(list (left-child (find path tree))
(right-child (find path tree))))) )

```

Breadth-first search is similar except the new states are added to the end of the path choices, so the cost function must always return false. The function passed to the parameter next-states must form a list with the right child first to work properly for breadth-first search, because the new paths are added to the end of the list in reverse order. The last child in the list is added to the end of the search path list first. The first child in the list of new states will be the final value added to the end of the path list.
```

; Breadth-first search implemented using best-first search.
(define (breadth-first-alt goal-func tree)
(best-first-search goal-func (list (list (root tree)))
(lambda (path1 path2) \#f)
(lambda (path)
(list (right-child (find path tree))
(left-child (find path tree))))) )

```
```

; Return the subtree in tree based on path.
(define (find path tree)
(cond ((null? tree) \#f) ; problem
((and (null? (cdr path))
(equal? (root tree) (car path))) tree)
((null? (cdr path)) \#f) ; problem
((equal? (left-child tree) (second path))
(find (cdr path) (left-side tree)))
((equal? (right-child tree) (second path))
(find (cdr path) (right-side tree)))
(else \#f)) ) ; problem
; Selector functions for parts of trees.
(define root first)
(define left-side second)
(define right-side third)
(define (left-child tree)
(if (null? (second tree)) '() (caadr tree)))
(define (right-child tree)
(if (null? (third tree)) '() (caaddr tree)))

```

Let's make calls to these functions to see how they work. First we'll define a tree to traverse:
(define tree \({ }^{\prime}(2(4(1)())(3()()))(6(2)()\)

Now we call our functions with the tree and a goal function that tests for a path with nodes that add up to more than seven.
```

> (depth-first-alt (lambda (path) (> (apply + path) 7)) tree)
((2))
((2 4) (2 6))
((2 4 1) (2 4 3) (2 6))
((2 4 3) (2 6))
(2 4 3)
> (breadth-first-alt (lambda (path) (> (apply + path) 7)) tree)
((2))
((2 4) (2 6))
((2 6) (2 4 1) (2 4 3))
(2 6)

```

The function best-first-search prints the available choices in each iteration through the search. Notice how the two search techniques use a different search ordering and produce different results in this example.

\section*{A \(^{*}\) search through} trees

A* search in general

Next let's explore \(A^{*}\) search beginning with a variation on \(A^{*}\) search that works only on trees. Our \(A^{*}\) search is an extension of best-first search.
```

; A* search of tree implemented using best-first search.
; g is a function that returns the cost incurred so far and
; h is a function returning the expected cost to reach the goal.
(define (a*-tree-search goal-func tree g h)
(best-first-search goal-func (list (list (root tree)))
(lambda (path1 path2)
(<= (+ (g path1) (h path1)) (+ (g path2) (h path2))))
(lambda (path)
(list (left-child (find path tree))
(right-child (find path tree))))) )

```

Here is another version of \(\mathrm{A}^{*}\) search that works on data structures other than trees or in situations where it is easier to express the successor states with a function rather than by creating a tree. This is the case in many problems, such as the two problems in the following sections:
```

; General a* search implemented using best-first search.
; start-path is the path to the start state.
; successors is a function that returns the next states.
; g is a function that returns the cost incurred so far and
; h is a function returning the expected cost to reach the goal.
(define (a*search goal-func start-path successors g h)
(best-first-search goal-func (list start-path)
(lambda (path1 path2)
(<= (+ (g path1) (h path1)) (+ (g path2) (h path2))))
successors) )

```

\subsection*{15.3.2 Scheduling problem solved with \(\mathbf{A}^{*}\) search}

Let's look at an example of how \(A^{*}\) search works. Imagine the following problem. We are trying to fill time slots during the day with people who are available to work at those times. Each person can work a maximum of two hours in a day. We'll represent the times we want to fill as a list of numbers representing the hour of the day (each time slot is one hour long starting and ending on the hour). For each person in our problem, we have a list representing the times that they are available to work listed in order of their preferences. We'll use a twenty-four hour clock to avoid dealing with A.M. and P.M.

There are two variations of this problem. One is to return a solution that merely fills all the time slots. As long as all the time slots get filled and no one works more than two hours, this problem is satisfied. The second solution fills up all the required time slots but also attempts to give each person their preferred time requests. The first problem has potentially many solutions, whereas the second has one optimal solution (or some number of ties).

To solve the first variation of the problem, we have to fill a collection of time slots. In \(A^{*}\) search we are trying to minimize the function
\[
f=g(n)+h(n)
\]

Here, the function \(g(n)\) represents the number of time slots already filled. If the path has one node for each time slot, the length of the path corresponds to \(g\). The function \(h(n)\) is an estimate of the number of slots that remain to be filled. At best, the remaining time slots will be filled by making the proper choices each time. Since \(h\) should not overestimate the number of steps, we can use this simple measure for \(h\) : the number of slots remaining.

Here is the list of times to fill and hours people can work:
```

(define times-to-fill '(8 9 10 11 12 13 14 15 16 17))
(define people '(
(myriam 8 9 10 11 12)
(nate 12 13 14 16 17)
(alisa 8 9 10 15 16 17)
(wayne 11 13 14 15)
(therese 9 10 11 14 15 16)))

```

The function possible-choices returns a list of people who can work at a given time given the current schedule. It limits each person to two hours of work.
```

; Given list of times, people, and people already scheduled, path,
; return list of people who can work at time.
(define (possible-choices time path)
(map car
(keep-if (lambda (person-times)
(and (member time (cdr person-times))
(< (count (car person-times) path) 2)))
people)) )

```

Here is the call to a*search to solve the first version of our problem:
```

(a*search
(lambda (path) (= (length path) (length times-to-fill)))
'()
(lambda (path)
(possible-choices (list-ref times-to-fill (length path)) path))
length
(lambda (path) (- (length times-to-fill) (length path))))
This call returns
(myriam myriam alisa wayne nate nate wayne therese therese alisa)

```

Take a look at the values returned. The first seven people are the first choices in the list people for those times (remember that each person can only work two hours). For 3:00 P.M. (15) Alisa is the first person who can work and the first choice made by the program. This path fails, since Thérèse cannot work the final hour. The next alternative is to have Thérèse work at 3:00 P.M. This path has one problem when the first choice, Alisa, is chosen to work at 4:00. The next alternative is having Thérèse work at 4:00, and then the final step can be reached in which Alisa works at 5:00.

Calculating g and \(h\) functions for \(A^{*}\) search

Scheduling with priorities

Creating a good \(h\) function

For the second version of this scheduling problem, we want to optimize the choice based on the work preferences given by each person. This changes the functions \(g\) and \(h\), which must now reflect the quality of the times chosen. The new functions are based on the position of the times in the time-preference lists, where the lower the position, the better the choice. The function \(g\) is the sum of the costs incurred so far. For each person in the path, the position of the time they work is computed. This list of numbers is added to get the total cost of the path so far.

For the function \(h\) we can compute the sum of the costs of the people who will work in the remaining time slots to fill. Since there can be many people who can work at a given time slot, we can compute the costs for each available person and use the minimum cost. Finally, we sum all the minimum costs for each remaining time to get the cost to reach the goal. This will not take into account the true list of those who can work because that would involve knowledge of all the people working earlier. So the function \(h\) underestimates the actual cost.

Using the \(h\) function from the first version of this scheduling problem (that doesn't look at time preferences) will not work, because it may overestimate the cost function. For example, if there are two slots to fill, the first \(h\) function returns a cost of 2 . However, if there are people available whose first choice matches those times, then the actual cost is 0 . If the converse is true and the remaining times slots are all later choices in the preference lists, then the first \(h\) function will greatly underestimate the actual cost, and \(\mathrm{A}^{*}\) search will behave more like uniform-cost search instead. \({ }^{3}\)

Here is the call to a*search to choose people according to their time preferences. The function \(g\) totals the list from a mapping across the people in the current path and the corresponding times that they work. The function mapped computes the position of the given time in the person's time preference list. The function \(h\) is more complex. For the remaining times to find people to work, \(h\) computes a list of the preferences for the people who can work then. The minimum of these preferences is used, and all the preference minimums for each time to fill are added:

\footnotetext{
3. I tried using the first \(h\) function, and the search to fill the ten time slots took a lot longer to return a final answer. It took around one hour as opposed to one to two minutes! The return value was a different (but still optimal) list:
}
(myriam myriam therese wayne nate wayne therese alisa alisa nate)
```

(a*search
(lambda (path) (= (length path) (length times-to-fill)))
'()
(lambda (path)
(possible-choices (list-ref times-to-fill (length path)) path))
(lambda (path)
(apply +
(map (lambda (person time)
(position time (cdr (assoc person people))) )
path (subseq times-to-fill 0 (length path)))))
(lambda (path)
(apply +
(map (lambda (time)
(apply min
(map (lambda (person)
(position time (cdr (assoc person people))) )
(possible-choices time path))) )
(subseq times-to-fill (length path))))))

```

There is a bug, which can lead to an error when no one can work in a given time slot. We cannot take the minimum cost of no costs. The apply with min will return an error with an empty list. To fix the bug, we can test the result of the call to possible-choices and return some large cost if nobody can work then (we don't want to take a path that is a deadend). An alternative solution is to use a custom version of min that can handle no arguments, in which case it returns a very large value. Opting for the first fix, here is the new call to a*search:
```

(a*search
(lambda (path) (= (length path) (length times-to-fill)))
'()
(lambda (path)
(possible-choices (list-ref times-to-fill (length path)) path))
(lambda (path)
(apply +
(map (lambda (person time)
(position time (cdr (assoc person people))))
path (subseq times-to-fill 0 (length path)))))
(lambda (path)
(apply +
(map (lambda (time)
(if (not (null? (possible-choices time path)))
(apply min
(map (lambda (person)
(position time
(cdr (assoc person people))))
(possible-choices time path)))
1000)) ; return a large cost
(subseq times-to-fill (length path))))))

```

Data representation
for missionaries and cannibals

Refining the data representation

Problem
characteristics

The result of this call is
(myriam therese myriam wayne nate wayne therese alisa nate alisa)

\subsection*{15.3.3 The missionaries and cannibals problem solved with \(A^{*}\) search}

We can use \(\mathrm{A}^{*}\) search to solve the missionaries and cannibals problem. We need a data representation for the problem. The most obvious representation (in terms of matching the mind's eye picture of the problem) is three lists. The first list represents the people on the initial river bank, the second list represents people in the boat and the boat's location, and the third list represents people on the opposite shore. The initial state can be represented as the list
```

((m m m c c c) (left) ())

```

The m's are missionaries and c's are cannibals. The left denotes that the boat is at the left bank, where the people are. Of course the order of the people does not matter, so to make life easier in verifying that we haven't violated the conditions of the puzzle or in generating new states, we can use numbers instead. The first number is the number of missionaries. Now our initial state is
```

((3 3) (left) (0 0))

```

We don't need to keep track of the people in the boat with a list. There are at most five possible configurations of people in the boat and they are all legal (i.e., the missionaries are never outnumbered). All we really need to keep track of is where the boat is. Here is a new representation for the initial state:
```

((3 3) left (0 0))

```

The goal state is the list
```

((0 0) right (3 3))

```

This process of refinement of the data structure is common during the design phase of computer programs. We could even go further and eliminate the list representing the people on the right bank. It can be computed from the numbers in the first list (the people on the left bank). For now we'll skip that change to the data structure and keep both left and right bank lists.

Before reading the solution to this problem, take some time and try to solve the problem by hand. Do this now.

You may have noticed some interesting things about the problem. First, it's not that easy. Second, most states don't have many possible moves because they are illegal (i.e., the missionaries get eaten) or they return to a previous state visited earlier. Third, it's a slow process taking two steps forward and then one step backward.

Now let's build a solution using A* search. We'll be dealing with paths in which each path is a list of the states taken to get to that point in the solution. New moves are a function of the current state, which is the last entry in the path list. The function last (repeated from Chapter 4) returns the last element in a list; we will use it to get the current state:
```

; Return the last element in a-list.
(define (last a-list)
(list-ref a-list (- (length a-list) 1)))

```

The function move-people generates a list of legal moves that can be taken from the current state. We can check both lists (each side of the river) or take a quicker approach and test only the first list (the left bank) by making the following realizations:
a move is legal if the number of missionaries on the left side is zero
(because the other side has three missionaries and they aren't outnumbered) or there are three missionaries
(the other side will have zero)
or the number of missionaries equals the number of cannibals
(the numbers will be equal on the other side as well)
Otherwise the move is illegal. For example, two missionaries and one cannibal on the left side means one missionary and two cannibals are on the right side, which is illegal.

To test for valid states, keep-if is used to individually check each possible state. To generate all possible successor states, map is called to perform a transformation of the current state to the successors. This transformation is done by adding and subtracting the number of missionaries and cannibals that can be moved. The list below represents the numbers of missionaries and cannibals that can go in the boat:
```

((1 0) (0 1) (2 0) (0 2) (1 1))

```

The first element denotes one missionary and no cannibals going across in the boat. If we map across this list with the current state, we can form a list of the successor states. We need to check which side the boat is on to decide if we must add or subtract the people in the boat.
```

; Given state, the current position of people, return a list of
; legal successor states.
(define (move-people state)
(keep-if
(lambda (new-state)
(or (= (caar new-state) 0)
(= (caar new-state) 3)
(= (caar new-state) (cadar new-state))) )
(map (lambda (trans)
(if (eq? (second state) 'left)
(list (map - (first state) trans)
'right
(map + (third state) trans))
(list (map + (first state) trans)
'left
(map - (third state) trans))) )
'((1 0) (0 1) (2 0) (0 2) (1 1)))) )

```

\section*{Legal configurations}

Generating successor states
\(g\) and \(h\) functions for missionaries and cannibals

Here is a sample call to move-people:
```

> (move-people '((3 3) left (0 0)))
((() 3 2) right (0 1)) (($$
\begin{array}{ll}{3}&{1}\end{array}
$$) right (0 2)) (($$
\begin{array}{ll}{2}&{2}\end{array}
$$) right (1 1)))

```

This shows that there are three legal states from the initial state. The other two possible states from the initial state are illegal since the missionaries are outnumbered on one side of the river. The function move-people must be augmented to not include states that already have been visited in the path. Calling setdifference with the states from move-people and the current path can handle this.

Lastly, we must write the functions \(g\) and \(h\) for \(\mathrm{A}^{*}\) search. The cost \(g\) already incurred is the length of the path. The estimated cost \(h\) to the goal can be represented as the number of people remaining to add to the other side. This is the number of people on the left bank, which is determined easily by adding the elements in that list using apply.

The call to a*search follows:
```

(a*search
(lambda (path) (equal? (last path) '((0 0) right (3 3))))
'(((3 3) left (0 0)))
(lambda (path) (set-difference (move-people (last path)) path))
length
(lambda (path) (apply + (first (last path)))))

```

The results (formatted to look nice) are as follows:
```

(((3 3) left (0 0)) ((2 2) right (1 1)) (($$
\begin{array}{ll}{2}&{2) left (0 1))}\end{array}
$$)=($$
\begin{array}{ll}{0}\end{array}
$$)
((3 0) right (0 3)) (($$
\begin{array}{ll}{(1) left (0 2)) ((lll}\end{array}
$$) right (2 2))
((2 2) left (1 1)) ((0 2) right ($$
\begin{array}{ll}{0}&{1}\end{array}
$$)) (($$
\begin{array}{ll}{0}&{3}\end{array}
$$) left (3 0))
((0 1) right (3 2)) ((1 1 1) left (2 2)) ((0 0) right (3 3)))

```

The answer is found in eleven steps. This took less than a second to run. Taking out the check for states that have already been encountered in the path (the set-difference of the call to move-people) produces the same result, but it takes about six minutes to run! \(\mathrm{A}^{*}\) search should internally test for repeated states. In the interest of simplicity this was left out, but for the missionaries and cannibals problem it is important to include.

\subsection*{15.3.4 Exercises}
15.1 Show a call to a*search that calculates a variation on the missionaries and cannibals problem with four missionaries and four cannibals. You may have to make changes to move-people.
15.2 Create a data representation and \(g\) and \(h\) functions for the 8 -puzzle.
15.3 Think of what constitutes a state in 8-puzzle and write a function that computes the next states that are allowed from a given state.
15.4 Design a data representation for cryptarithmetic. It should be general so it works for any cryptarithmetic problem.
15.5 Describe \(g\) and \(h\) functions for cryptarithmetic.
15.6 Indicate what states in cryptarithmetic look like and write a function that returns all possible successor states of a given state.

\subsection*{15.3.5 Knowledge representation}

One of the most important decisions to make in programming is deciding the form of the data structure. Chapter 7 presented examples to help illustrate this concept. Data structures are important in AI programming as well. Here data structures are often used as representations of knowledge within the program. Knowledge representation is the problem of designing a structure for data that represents knowledge in a program. Below are some common choices.

Conceptual dependencies are used to represent sentences. They are presented in section 15.7, "Natural Language Processing."

Semantic networks are graphs (a collection of connected nodes) in which each node represents some object and the connection between the nodes represents the relationship between the objects it connects. A graph is more general than a tree, in that a graph can have connections to any node, not just the ones immediately above or below it.

Here is an example of a semantic net that represents information about animals:

\section*{Semantic networks}

The ellipses represent nodes and the arrows between them are the connections. The connections represent the relationship that a node has to the node to tions. The connections represent the relationship that a node has to the node to
which it is pointing. For example, "dog is a mammal" is represented by an arrow labeled "is a" that goes from the dog node to the mammal node. The "is a"

Relations in semantic networks

\section*{Frames}

Inheritance

First-order predicate calculus
relationship specifies that a node is a subset of another node to represent facts like all dogs are mammals. Property inheritance gives the subset the same properties as the superset, thus dogs will have all the properties of mammals. To indicate the properties that a node may have, the "has" relation is used. Another relationship is "instance," which says that a particular object is a member of a node. For example, we could specify the cat "Ruby" as an instance of the node cat. For other specific relationships, the nature of the association between the nodes is used (e.g., chases or eats).

Frames are similar to semantic networks. Instead of a collection of nodes with labeled arrows, a frame has objects and their properties (called slots). A frame may have code (procedural information) as well. For example, there may be code specifying how to compute the value for a given slot.

Here is an example of a frame for dogs. Below the frame name is a list of slots and their values:
```

dog frame
is-a mammal
has sharp-teeth
eats meat

```

Frames support inheritance, in which a frame inherits the properties of the frame of which it is a member. For example, if there is a mammal frame, then, since dogs are mammals, they would inherit all the properties of mammals.

With a few extensions from first-order logic, \({ }^{4}\) predicate calculus provides an expressive form of representing information. A predicate is a relation between objects that is either true or false. Predicate calculus defines a language for describing and using predicates. Predicates represent facts about the data being modeled. We can combine predicates with the logical operators and, or, if-then, equivalence, and not. We can also use functions that we define that return information about objects.

Below is a list of predicates and their arguments representing the animal structure defined above:
```

is-a (dog, mammal)
is-a (cat, mammal)
is-a (duck, bird)
has (bird, wings)
has (dog, sharp-teeth)
has (cat, sharp-teeth)
eats (dog, meat)
eats (cat, meat)
chases (dog, cat)
chases (cat, duck)

```

\footnotetext{
4. These additions include functions that return values that aren't necessarily true or false and the predicate "equals" to test if two things are the same.
}

Predicate calculus includes a means of quantifying predicates, which allows us to form statements like
some dogs chase ducks
This would be represented as
There exists an x such that: is-a (\(\mathrm{x}, \mathrm{dog}\)) and chases (x , ducks)
This quantifier is called an existential quantifier. There is also a universal quantifier that can be used to represent statements like
all dogs are mammals
This statement is expressed as
For all \(x\), if is-a (\(x, \operatorname{dog}\)) then is-a (\(x\), mammal)
Since we can define general rules with predicate calculus, we can put in information about the system we are modeling and then ask questions or perform calculations based on particular examples. For example, if we have established the rules
all mammals have hair, and
all cats are mammals
and then determine that Ruby is a cat, we can determine that Ruby has hair by first realizing that she is a mammal and then since she is a mammal, she must have hair. The next section goes into more detail into the reasoning process.

\subsection*{15.3.6 Reasoning}

A dictionary definition of reasoning may mention logical thought, decision making, inference, rational thought, and judgment as part of reasoning. Reasoning is important in AI because it provides a means to obtain new information or make conclusions given information. Reasoning provides not only a means, but an ability to explain how the new information or conclusions were obtained. The simplest type of reasoning involves drawing a conclusion based on direct facts that match the desired goal. Unfortunately, many problems involve combining information in some way using different types of reasoning. Below are four of the commonly used reasoning techniques.

Induction is a type of reasoning that involves generalization. If we have enough examples of some phenomenon, we may induce that it is generally applicable. Medicine often works by induction. If researchers see enough cases of some symptom along with some disease, they start believing that it is more than correlation, but causation. Inductive reasoning may go as follows:

Twenty-five sailors didn't eat any form of vitamin \(C\) and contracted scurvy. Ten patients didn't get vitamin C in their diets and contracted scurvy.
Therefore, if one doesn't get vitamin C, they'll contract scurvy.
This type of reasoning is not always correct and can lead to false conclusions.

Existential and universal quantifiers

\section*{Deductive reasoning}

Probabilistic
reasoning

Deduction is one of the most powerful forms of reasoning. Syllogisms are examples of deduction. For example,
"All men are mortal,"
"Socrates is a man,"
Therefore, "Socrates is mortal."
This type of deduction involves specification. We go from a general statement, "All men are mortal," to a specific conclusion: "Socrates is mortal."

Deduction is most easily shown with if-then statements in which we know the antecedent (the condition part of an if-then statement) is true, so we can deduce the consequent (the then part). For example, parents often tell their children statements like

If you eat your dinner, then you'll get dessert.
If the child eats her dinner, then we deduce that she will get dessert.
Abduction is similar to deduction, except it works by taking an if-then statement and its consequent (the then part), and concluding that the antecedent (the condition) is true. Taking the above example, we begin with

If you eat your dinner, then you'll get dessert.
Given the knowledge that the child got dessert, we conclude that the child must have eaten her dinner. This seems reasonable, but is not logically true. If the consequent in an if-then is true, the antecedent need not be true in order for the ifthen statement to be logically true.

The opposite is not the case. If the antecedent in an if-then is true, the consequent must be true in order for the if-then statement to be true. Deduction works by knowing the antecedent is true, and then logically concluding that the consequent must be true. Abduction takes the consequent as its true information and tries to explain why it is true. If there is a causality between the consequent and the antecedent, abduction may be correct to some degree. If no other antecedent causally leads to the consequent, then that relationship becomes an if-and-only-if relation in which case abduction holds. For example,

If and only if you eat your dinner, then you'll get dessert.
If we know that the child got dessert, then we can conclude that the child ate her dinner.

It is often the case that many relationships exist with probabilities of one event occurring or conditional probabilities of one event occurring given knowledge that another event occurred. The probability that a child ate dinner given the fact that she got dessert is a conditional probability, and is written as \(P\) (dinner |dessert). We can calculate this conditional probability given the unconditional probability that the child gets dessert (written as \(P\) (dessert)), the unconditional probability that the child eats dinner, \(P\) (dinner), and the conditional probability that the child gets dessert given that the child ate dinner, \(P\) (dessert |dinner). This is calculated using Bayes' rule, as follows:
\[
P(\text { dinner } \mid \text { dessert })=\frac{P(\text { dessert } \mid \text { dinner }) P(\text { dinner })}{P(\text { dessert })}
\]

Given the statement "if you eat your dinner, then you'll get dessert," we know that the child will get dessert if she ate dinner (from deductive reasoning), so \(P\) (dessert |dinner) is 1 . Let's assume that \(P\) (dinner) is 0.6 and \(P\) (dessert) is 0.8 . The conditional probability that the child ate dinner given the fact that she got dessert is 0.75 .

If there are other probabilities we know about, such as the conditional probability that the child gets dessert given the fact that she cleaned her room and the probability that the child cleans her room, we can calculate which event (eating dinner or cleaning the room) is more likely to have explained why the child got dessert. Techniques like this are used to find the most likely causes of events given only probabilistic knowledge of the world.

\subsection*{15.3.7 World or commonsense knowledge}

Most AI programs are first developed within a small domain. Within such "toy" worlds, or microworlds, the programs perform impressively. The difficulty lies in scaling the worlds up to the real world in which we live. In a small or abstract domain it is possible to encode all the details and information about the domain that the program must know. Trying to encapsulate all the information about the world is a different matter altogether. This is the problem of representing world knowledge or commonsense knowledge.

World knowledge or commonsense knowledge is very large and is something that we learn with years of growing up in the world, observing the behavior and actions of objects around us. To get an idea of how difficult it is to learn such general knowledge, think about learning the culture of a foreign country or of a different age or socioeconomic group in your own country. In fact, just try to understand the opposite sex and you find that the interpretations and viewpoints of the world can be very different. This confounds the problem of gathering world knowledge as well, since there is a context associated with it. One person's humor is another person's insult. For example,

Question: What do lawyers use for birth control?
Answer: Their personalities.
may be humorous to many but offensive to lawyers. Of course, a great deal of world knowledge is constant across all people and places. We are all affected by the laws of physics. Gravity and friction exist in all countries throughout the planet.

A program whose domain is the world has to deal with any type of situation that the world and the laws of physics can throw at it, so it must understand how the world and physics work. We may think that understanding how the world works isn't that difficult. We deal with it every day and do just fine (more or less). But physics, now that is hard stuff. For a program however, it's the other way around. Newtonian physics can be explained fairly nicely, given a handful of rules and some constants. For most realworld problem solving, our program

Scaling up to the real world

Knowledge context

\section*{CYC}
won't have to try to perform a grand unification of all the forces of nature or deal with relativity, quarks, superstrings, or any of a host of issues that nuclear and high energy physicists deal with. As long as it knows about simple physics (e.g., gravity, force, inclined planes, pulleys, electricity, and magneticism), then it is in good shape.

Explaining what happens in a television show is much more complex. The program would have to know about family relationships, economics, sociology, romance, appropriate and inappropriate behavior, and so on. We have learned this over the course of many years of watching and being in the world. If we spent as much time studying physics or Scheme, we may find that they come as naturally and simply as watching television.

Even if one could create a set of all the minute facts about the world, how would one represent them in a computer program? How would all the interconnections be made? How would inferences be made? Would one have to represent all facts, such as humans cannot walk through walls, or it's a bad idea to eat anything larger than your head?

A team lead by Doug Lenat is developing a system called CYC \({ }^{5}\) that is trying to amass world and commonsense knowledge. CYC is a huge knowledge base of concepts, assertions, and heuristics for reasoning over them. An assertion in CYC is a commonsense fact about the world such as "you have to be awake to eat." In just over ten years CYC has grown to include millions of assertions based on a hundred thousand fundamental concepts.

About a million assertions were entered by people and coded in CYC's representation language, which is based on first-order predicate logic with some extensions. Other assertions have been produced by the system based on how it reasons and infers with its knowledge base. This has resulted in the addition of millions of new assertions. The hope is that more and more of the system will be self-generated.

CYC's assertions are assumed to be true in some given context. For example, in the context of naive physics there would be an assertion about objects coming to rest eventually. In the physicist context, we would find a different assertion about objects tending to stay in motion if they are in motion. CYC reasons within a specific context or contexts. This helps to reduce the search space of assertions dramatically and also handle contradictions between assertions. The two motion assertions are contradictory but wouldn't pose a problem to CYC because only one would apply, given a question like "Would a physicist have difficulty understanding how an air hockey game works?"

CYC is still in its development phase but is being linked with other programs to extend their capabilities. At this point, it is too early to tell if a project like CYC

\footnotetext{
5. The name CYC comes from enCYClopedia.
6. These numbers are somewhat deceptive, since CYC contains some general assertions that encompass many individual assertions.
7. When CYC was first developed, its assertions were weighted (given a degree of belief). This proved to be problematic and the notion of assertions dependent on context was developed.
}
will succeed. No one knows if CYC will be able to solve AI problems where they have not scaled up due to a lack of world knowledge.

\subsection*{15.4 Problem Solvers and Planners}

Problem solving is one of the fundamental goals of AI. Most AI programs are attempts at solving some problem, whether it is medical diagnosis, object or speech recognition, grasping an object, or playing a game of chess. Much of AI's early work centered around building systems that could solve a class of problems (e.g., the Logic Theorist) or general problems (GPS). What emerged from this was a series of programs that focused on planning to reach some end goal.

We already introduced GPS, Newell and Simon's General Problem Solver. It did solve problems, but it was far from general. The big problem with any attempt at building a general problem solver is dealing with world knowledge. And as we saw above and could have imagined before, this is no easy task.

Putting world knowledge aside, let's take a closer look at how GPS works. GPS uses a collection of operators that each represent some action that can be taken in the world being modeled. For example, an operator might represent moving from one location to another, picking something up, or putting something down. Each operator has preconditions that must be satisfied before the operator can be applied and effects that the operator produces. For example, to pick something up the preconditions may be that your hands are empty, that you are at the object, that the object is not under other objects, and that the object is not too heavy. The effects of carrying out the operation are that the object's location has moved and that your hands are no longer empty.

GPS uses means-ends analysis to reach its goal by trying to reduce the differences in its current state and its goal state. If some action produces the desired goal but cannot be performed because its preconditions have not been met, then those preconditions become the new goals. This hopefully reduces the difference between the current state and the goal state. If the goal can be solved, then eventually all the preconditions will be met and the sequence of steps taken defines a means to the goal. If a condition is reached that is not met and no goal specifies it as its outcome, then the goal cannot be reached with those operators.

The original GPS was modified by Richard Fikes and Nils Nilsson in 1971. Their version was called STRIPS (Stanford Research Institute Problem Solver). STRIPS had a more restricted language for defining operators and had add and delete lists to model the effects of actions. To model an operation, the items in the add list would be added to the current state and the items in the delete list would be removed from the current state. For example, the operation of moving from location1 to location2 would involve adding the state at-location 2 and deleting the state at-locationl.

Further refinements were made to problem solvers. One was to add critics that help in the selection of actions or reduce the amount of backtracking needed by making the correct decisions early on. Another strategy was to abstract the problem such that it could be solved in a hierarchical fashion, ignoring the details

GPS operators and preconditions

Means-ends analysis

STRIPS

\section*{Production systems}

Conflict resolution and conflict resolution strategies
at first. These models improved the original GPS, but none wound up producing a true general problem solver.

\subsection*{15.5 Expert Systems}

The grandiose claims made about general problem solvers were never realized. Instead of trying to continue along that path, some AI researchers shifted to solve more limited and specialized problems. Out of this arose expert systems. The early expert systems were in the areas of chemical structure analysis from mass spectroscopy data (DENDRAL, 1965) and identification of infectious diseases (MYCIN, 1976).

The foundation for expert systems came from the idea of production systems, developed by Emil Post in the early 1940s. A production system is a collection of production rules, current state information, and an interpreter. Production rules are situation-action pairs. They model some specific fact about the world as a rule in the form of
"if some situation is true, perform the following actions"
The current state information is called working memory since production systems started as a psychological model of the mind. The interpreter chooses productions whose situations match the current working memory and performs the corresponding actions. The actions add information to working memory, remove information, print information, or indicate that the system should stop.

When more than one rule is applicable, conflict resolution is used to choose one to apply. There are many possible conflict resolution schemes. One scheme chooses a rule according to some priority. The rules can be prioritized or the situations or actions of the rules can be prioritized. For example, the situation engine-overheating and the action engage-brake may have very high priorities. Another typical conflict resolution scheme is to choose the most specific of the applicable rules. For example, consider the following two rules:
```

if pan-is-hot then add-oil-to-pan
if pan-is-hot and garlic-is-golden-brown and onions-are-golden then
add-vegetables-to-pan

```

The second rule should have priority over the first; otherwise, we will keep adding oil to the pan and end up with a vat of hot oil instead of a vegetable stirfry.

Choosing the rule whose situations were most recently satisfied can be used to influence some control over the sequence of rules that are chosen. Not choosing a rule if it has been recently chosen is used to avoid having rules run continuously. Perhaps the simplest conflict resolution scheme is to choose the first rule encountered that is satisfied and then continue evaluating rules starting with the next rule. This allows the rule writer to sequence rules to have a great degree of control and understanding of the interaction of rules.

The conflict resolution scheme has a large impact on the order in which rules are chosen. Sometimes the rule writer wants control over the rule ordering, but there are times when this is not wanted. In fact, expert systems started as a move away from traditional control. The problem with controlled systems is that it is difficult to model highly interconnected domains. Think of a medical system. Even though the body comprises various systems (e.g., circulatory and respiratory), it is highly interconnected. If we wrote separate rules for each system, many rules would be repeated in the rulebases for different body systems, or jumps from one rulebase to another would be needed. In the end, the control would look like a tangled web of rules. In programming this is referred to as spaghetti code.

Production systems offer a different approach: Produce rules that ideally can stand alone, each representing some independent fact about the system. The rule ordering no longer matters. Rules are invoked when their conditions are met. Conflict resolution gives an ordering to rules so that the most important rule happens first. For example, given a collection of rules for an object avoidance system in an aircraft, we might want to have the rules invoked in the following order:
```

if on-collision-course then turn left
if on-collision-course then light "fasten seat belt" sign
if on-collision-course then send message to other aircraft

```

Some expert systems give an explanation of their reasoning process. These explanations are useful in debugging the rulebase. They are essential in a field where someone is using an expert system to augment their own expertise. For example, a doctor receiving advice from a program will want to know why the advice was given. This can be done fairly easily by producing a trace of the rules that were evaluated. Some expert systems have a question/answer interface in which the user can ask for explanations about the expert system analysis.

An expert system has three parts: the rulebase, the database, and the inference engine. The rulebase is the collection of rules that represent the expert knowledge. The database is a collection of known facts about the system being modeled. It may change as the rules are evaluated to reflect changes in the system. The inference engine sequences through the rules and finds those that are satisfied according to the information in the database. The inference engine includes the conflict resolution mechanism that chooses one rule from those that are satisfied. Then that rule's actions are performed. This is called firing a rule.

Just as software engineering is the process of developing, testing, debugging, and maintaining programs, knowledge engineering is the process of creating, verifying, and refining expert systems. Two pieces of an expert system must be created: the inference engine and the rules that make up the knowledge base. The inference engine makes up the shell of an expert system. In fact expert system shells can be purchased to simplify the creation of an expert system; you just add the rules. The real knowledge is in the rulebase.

The process of obtaining the rules is called knowledge acquisition. This is a process of interviewing experts and trying to formulate concrete, independent rules

Control in production systems

Explanatory abilities

\section*{Parts of an expert} system

Knowledge engineering

Knowledge acquisition

Forward and
backward chaining expert systems

Stopping rules from being continuously chosen
from their explanations. This process can be extremely difficult because much of human reasoning is tacit. The expert has spent years forming knowledge, which typically is not in the form of neat, concise rules. During knowledge acquisition, the expert's knowledge must be brought out and manipulated into rules compatible with the inference engine.

\subsection*{15.6 Implementing an Expert System in Scheme}

There are two general kinds of expert systems: forward chaining and backward chaining. A forward chaining (also called data driven) expert system iteratively chooses a rule from the rulebase with conditions that are satisfied, and performs its actions. A backward chaining (or goal driven) expert system looks at the actions of the rules in search of one that will satisfy the desired goal. If the conditions corresponding to the action are true, the system finishes. Otherwise those conditions become new goals to satisfy. This is the same idea behind means-ends analysis.

We will build a generic expert system shell that does forward chaining. It can be an expert in many domains depending on the rulebase and database it is given. Rather than having a fixed conflict resolution scheme, we'll allow a function to handle that. Given a list of applicable rules (those with conditions that have been met), this function will choose one to apply.

We need to assure that once a rule is chosen, it does not get chosen constantly. This can be handled by having the rules put or remove something in the database that is tested in the condition. However, this makes the rule writing an uglier process. Another way is to test if the rule's actions have already occurred; in other words, if the items that the rule adds to the database are already in the database, the rule is ignored. The parameter redundant? will take a function that checks for this.

We also need some way of knowing when to stop sequencing through rules. The parameter finished takes a function that takes the database as an argument and determines if the system should terminate.

To make our code more readable, we'll create let variables to hold the list of satisfied rules, the satisfied rules that haven't already been invoked (the nonredundant ones), and the rule chosen by the conflict resolution function. We won't include the database as a parameter because during the processing of the rules it must be changed. It could be changed as a parameter, but it is a lot more work than treating it as a global variable and destructively changing it. This global database is named database.
```

Given rule-list, a list of rules, redundant?, a function to test
if a rule is redundant (i.e., its actions have already occurred),
; conflict-func, to handle conflict resolution, and finished, to
; test for termination, iteratively choose an applicable rule and
; apply it until finished is true.
(define (expert-shell rule-list redundant? conflict-func finished)
(let* ( (satisfied-rules (keep-if satisfied? rule-list))
(valid-rules (remove-if redundant? satisfied-rules))
(rule-to-apply (conflict-func valid-rules)) )
(apply-rule rule-to-apply)
(if (finished database)
'finished
(expert-shell rule-list redundant? conflict-func
finished))) )

```

Our expert system shell needs the following additional functions:
```

; Test if condition of rule is true.
(define (satisfied? rule)
(eval (condition rule)) )
; Apply all the actions of rule.
(define (apply-rule rule)
(for-each eval (actions rule)) )
; Selector function to return condition of rule.
(define (condition rule)
(first rule) )
; Selector function to return actions of rule.
(define (actions rule)
(rest rule) )

```

\subsection*{15.6.1 An expert in Mille Bornes}

We have created an expert system shell. It is generic in that it can be given rules dealing with a variety of problem domains. The real expert knowledge is in the rulebase. Let's take the next step and define a rule base. The rules will provide moves in playing the card game Mille Bornes.

The object of Mille Bornes is to drive a car 700 miles before your opponent does. You gain distance by playing mileage cards if you are able to drive. There are hazard cards, which affect your ability to drive (e.g., stop, speed limit, and out-of-gas), repair cards that fix hazards (e.g., go, end-of-limit, and gasoline), and safety cards that prevent you from receiving hazards (e.g., right-of-way or driving ace).

Players hold six cards in their hand. To play, a player draws a card from the deck and then plays a card or discards a card. The goal is to play enough mileage cards to total exactly 700 miles. Mileage cards can be played only if you do not have a hazard and you have played a go or right-of-way safety. There are five different mileage amounts: \(200,100,75,50\), and 25 . If your opponent puts a speed

Summary of hazard, repair, and safety cards

\section*{Playing strategies}

Mille Bornes database

Sample database

Selector functions
limit on you, you are limited to 50 or 25 mile distances. The hazards have corresponding repairs and protection (safeties). The table below shows these:
\begin{tabular}{lll}
hazard & repair & safety \\
\hline flat tire & spare tire & puncture proof \\
accident & repairs & driving ace \\
out of gas & gasoline & extra tank \\
speed limit & end of limit & right of way \\
stop & go & right of way
\end{tabular}

The scoring of the game is somewhat complicated. This is saved as one of the exercises at the end of this section. A true Mille Bornes expert system would include rules to maximize the score earned per game. Our simplified rulebase will try only to win the game by getting 700 miles before the opponent does.

Playing the game is fairly simple, but certain strategies can be used to improve the chances of winning. For example, a player may be aggressive by playing hazard cards on the opponent whenever possible or focus on gaining distance by playing large mileage cards. A player may not play a go card to move until she has accumulated, in her hand, the mileage needed to win (toward the end of the game). By keeping track of the played and discarded cards, a player can make good decisions about which cards to discard when none in her hand can be played.

There are two players: a person and the computer driven by the expert system. The database of the expert system is the cards in the computer's hand and the player's hand (the computer won't "look" at the player's cards), the computer's and player's state (e.g., accident or go), the computer's and player's accumulated mileage, the cards that the computer has seen (those that it has drawn and those that the person has played or discarded), and a repository for miscellaneous information used in the rulebase, which we'll call the blackboard (abbreviated as bb). \({ }^{8}\) Each of these different miniature databases is a category of our big database. Here is a snapshot of how the database may look during the game. It is represented as an association list of categories and their values.
```

((hand1 go stop 25 50 100 end-of-limit)
(hand2 stop 75 75 100 extra-tank accident)
(state1 flat-tire)
(state2)
(mileage1 . 150)
(mileage2 . 0)
(deck go stop stop ...)
(seen go stop 25 25 50 75 75 100 ...)
(bb))

```

We'll need functions to access the database. The function pair will return a pair from the database (e.g., (state1 flat-tire)). The function pair is called by the function data to access the data alone (e.g., flat-tire) and by add-to

\footnotetext{
8. Some expert systems used the idea of a blackboard as a place to store generally accessible and pertinent information.
}
and delete to change the data. Since pair is used in all of these functions, it will do the error checking for a bad category. When such an error is encountered, the program will stop running. This can be handled using call-with-currentcontinuation, which is covered in Chapter 11 under "Forcing Exits with call-with-current-continuation." The following two expressions establish error as an exit function:
```

(define error 'not-yet)
(call-with-current-continuation
(lambda (stop)
(set! error stop)))
; Return the pair associated with name.
(define (pair name)
(let ((data-pair (assoc name database)))
(if data-pair
data-pair
(error (append '(bad category given) (list name))))) )
; Return the data associated with name.
(define (data name)
(cdr (pair name)) )

```

The functions add-to and delete add and delete cards destructively from the database. To restore a category to an empty value, reset is used:
```

; Add a card to a category pair in the database.
(define (add-to category card)
(set-cdr! (pair category) (cons card (data category))) )
; Remove a card from a category in the database.
(define (delete category card)
(set-cdr! (pair category) (remove-one card (data category))) )

```

The function remove-one is like remove 1 from Chapter 14 except it tests if the item occurs in the list.
```

; Remove one occurrence of item from a-list.
(define (remove-one item a-list)
(let ((location (position item a-list)))
(if location
(append (subseq a-list 0 location)
(subseq a-list (+ 1 location)))
a-list)) )
; Reset category to an empty list.
(define (reset category)
(set-cdr! (pair category) '()) )

```

To simplify the rules, we use a couple additional functions that test if a certain set of cards (e.g., our hand) contains a particular card or one of a set of cards. We can then inquire if the opponent's state is stop or if we have any mileage cards.

Testing for redundant actions

Testing if a move is complete

Handling cards for the player and computer
```

; Return true if value occurs within the category name.
(define (contains? name value)
(member value (data name)) )
; Return true if any element in set occurs within the category
; name.
(define (contains-any? name set)
(not (null? (intersection set (data name)))) )

```

We can now create the function that tests for redundant actions (those that have already taken place) to avoid endlessly repeating the same action. We can do this by testing all the add-to actions of a rule. If the category contains the value to be added, the action has already taken place. We must apply eval to the category and its value because they are quoted in the rules, and the quote must be eliminated. See what happens when you leave out the eval in repeataction?.
```

; Test if the add-to actions in a rule have already been performed.
(define (repeat-action? rule)
(every
(lambda (action)
(if (eq? (first action) 'add-to)
(contains? (eval (second action)) (eval (third action)))
\#f) )
(actions rule)) )

```

The expert shell function needs a function to test if the selection of rules is complete. In Mille Bornes, a move is complete when a card is played or discarded. These are the actions in the rules. When we write the code to handle these actions, we can include a step to add the symbol done to the blackboard to denote that the move is complete. Our function to test when a move is finished simply tests for done in the blackboard.
```

; Test if a single move in mille bornes is complete.
(define (move-done? database)
(contains? 'bb 'done) )

```

The following functions take care of the actions of drawing, discarding, and playing cards for the computer and player. Both will need to take similar actions, but there will be some differences. For example, when the computer draws a card, it should mark it as seen; however, only when the player discards or uses a card can the computer see it. The computer must add done to the blackboard when it plays or discards.
```

; Computer picks a card from the deck and marks it as seen.
(define (draw-card)
(add-to 'seen (draw 'hand1)) )

```
```

; Computer discard: remove card from hand and mark move as done.
(define (discard card)
(display "Computer discards ")
(display card)
(newline)
(add-to 'bb 'done)
(delete 'handl card) )
; Computer play: process card and mark move as done.
(define (play-card card)
(display "Computer plays ")
(display card)
(newline)
(add-to 'bb 'done)
(play card 'hand1 'state1 'state2 'mileage1) )

```

To play a card, the actions taken depend on the card type (mileage, hazard, repair, or safety). The player and computer can share the following function:
```

; Perform the actions needed when playing a card.
(define (play card hand statel state2 mileage)
(cond ((member card '(200 100 75 50 25))
(set-cdr! (pair mileage) (+ card (data mileage))))
((member card '(stop accident flat-tire out-of-gas))
(delete state2 'go)
(add-to state2 card))
((eq? card 'speed-limit)
(add-to state2 card))
((eq? card 'go)
(delete statel 'stop))
((eq? card 'end-of-limit)
(delete statel 'speed-limit))
((eq? card 'right-of-way)
(delete statel 'stop)
(delete statel 'speed-limit)
(delete state1 'go))
((member card '(repairs driving-ace))
(delete state1 'accident))
((member card '(spare-tire puncture-proof))
(delete state1 'flat-tire))
((member card '(gasoline extra-tank))
(delete statel 'out-of-gas))
(else
(display (append '(illegal card:) (list card)))))
(if (member card '(go right-of-way driving-ace puncture-proof
extra-tank))
(add-to statel card))
(delete hand card) )

```

The player and computer can share the following function as well, which picks a card from the deck:
```

; Pick a card at random from the deck and add it to hand.
(define (draw hand)
(let* ((card-num (random (length (data 'deck))))
(card (list-ref (data 'deck) card-num)))
(add-to hand card)
(delete 'deck card)
card) )

```

\subsection*{15.6.2 The Mille Bornes rulebase}

Here is a rule set that covers some of the previously mentioned strategies. It is not the best possible player that can be created, but it should give you an idea of how an expert rule base looks. The rules are in sections, and each section is prefaced with a brief description of what it tries to accomplish.
Mille Bornes rules
(define mille-rules '(
Draw cards if needed.
```

( (< (length (data 'hand1)) 7)
(draw-card))

```

Go if not going and no hazard exists.
```

( (and (not (contains-any? 'statel
'(go right-of-way accident out-of-gas flat-tire)))
(contains? 'hand1 'go))
(play-card 'go))

```

Play big mileage if possible.
```

( (contains-any? 'state1 '(go right-of-way))
(add-to 'bb 'can-go))
( (and (contains? 'hand1 200)
(<= (data 'mileagel) 500)
(not (contains? 'state1 'speed-limit)))
(add-to 'bb 'use-200))
( (and (contains? 'handl 100)
(<= (data 'mileage1) 600)
(not (contains? 'state1 'speed-limit)))
(add-to 'bb 'use-100))
( (and (contains? 'bb 'can-go)
(contains? 'bb 'use-200))
(play-card 200))
( (and (contains? 'bb 'can-go)
(contains? 'bb 'use-100))
(play-card 100))

```

\section*{Attacking moves.}
```

( (and (contains-any? 'state2 '(go right-of-way))
(not (contains-any? 'state2
'(out-of-gas flat-tire accident)))
(contains-any? 'hand1
'(out-of-gas flat-tire accident stop)))
(add-to 'bb 'attack))
( (and (contains? 'bb 'attack)
(contains? 'hand1 'out-of-gas)
(not (contains? 'state2 'extra-tank)))
(play-card 'out-of-gas))
( (and (contains? 'bb 'attack)
(contains? 'handl 'flat-tire)
(not (contains? 'state2 'puncture-proof)))
(play-card 'flat-tire))
( (and (contains? 'bb 'attack)
(contains? 'hand1 'accident)
(not (contains? 'state2 'driving-ace)))
(play-card 'accident))
( (and (contains? 'bb 'attack)
(contains? 'hand1 'stop)
(not (contains? 'state2 'right-of-way)))
(play-card 'stop))
( (and (contains? 'hand1 'speed-limit)
(not (contains-any? 'state2 '(right-of-way speed-limit))))
(play-card 'speed-limit))

```

Play smaller mileage if possible.
```

( (and (contains? 'hand1 75)
(<= (data 'mileage1) 625)
(not (contains? 'state1 'speed-limit)))
(add-to 'bb 'use-75))
( (and (contains? 'hand1 50)
(<= (data 'mileage1) 650))
(add-to 'bb 'use-50))
( (and (contains? 'hand1 25)
(<= (data 'mileage1) 675))
(add-to 'bb 'use-25))
( (and (contains? 'bb 'can-go)
(contains? 'bb 'use-75))
(play-card 75))

```
```

( (and (contains? 'bb 'can-go)
(contains? 'bb 'use-50))
(play-card 50))
( (and (contains? 'bb 'can-go)
(contains? 'bb 'use-25))
(play-card 25))

```

\section*{Apply remedy or safety if stopped.}
```

( (and (contains? 'state1 'out-of-gas)
(contains? 'handl 'extra-tank))
(play-card 'extra-tank))
( (and (contains? 'statel 'flat-tire)
(contains? 'hand1 'puncture-proof))
(play-card 'puncture-proof))
( (and (contains? 'state1 'accident)
(contains? 'hand1 'driving-ace))
(play-card 'driving-ace))
( (and (contains-any? 'state1 '(stop speed-limit))
(contains? 'hand1 'right-of-way))
(play-card 'right-of-way))
( (and (contains? 'state1 'out-of-gas)
(contains? 'hand1 'gasoline))
(play-card 'gasoline))
( (and (contains? 'state1 'flat-tire)
(contains? 'hand1 'spare-tire))
(play-card 'spare-tire))
( (and (contains? 'statel 'accident)
(contains? 'hand1 'repairs))
(play-card 'repairs))
( (and (contains? 'state1 'stop)
(contains? 'hand1 'go))
(play-card 'go))
( (and (contains? 'statel 'speed-limit)
(contains? 'hand1 'end-of-limit))
(play-card 'end-of-limit))

```

Play safeties if can't play another card.
((contains? 'hand1 'extra-tank) (play-card 'extra-tank))
((contains? 'hand1 'puncture-proof) (play-card 'puncture-proof))
```

( (contains? 'hand1 'driving-ace)
(play-card 'driving-ace))
( (contains? 'hand1 'right-of-way)
(play-card 'right-of-way))

```

Discard card if can't move. First try to discard unnecessary cards.
```

( (and (contains? 'hand1 'end-of-limit)
(or (contains? 'statel 'right-of-way)
(= (count 'speed-limit (data 'seen)) 3)))
(discard 'end-of-limit))
( (and (contains? 'hand1 'go)
(or (contains? 'state1 'right-of-way)
(= (count 'stop (data 'seen)) 4)))
(discard 'go))
( (and (contains? 'hand1 'repairs)
(or (contains? 'statel 'driving-ace)
(= (count 'accident (data 'seen)) 2)))
(discard 'repairs))
( (and (contains? 'hand1 'gasoline)
(or (contains? 'statel 'extra-tank)
(= (count 'out-of-gas (data 'seen)) 2)))
(discard 'gasoline))
( (and (contains? 'hand1 'spare-tire)
(or (contains? 'statel 'puncture-proof)
(= (count 'flat-tire (data 'seen)) 2)))
(discard 'spare-tire))
( (and (contains? 'hand1 'stop)
(contains? 'state2 'right-of-way))
(discard 'stop))
( (and (contains? 'handl 'speed-limit)
(contains? 'state2 'right-of-way))
(discard 'speed-limit))
( (and (contains? 'hand1 'accident)
(contains? 'state2 'driving-ace))
(discard 'accident))
( (and (contains? 'hand1 'flat-tire)
(contains? 'state2 'puncture-proof))
(discard 'flat-tire))
( (and (contains? 'hand1 'out-of-gas)
(contains? 'state2 'extra-tank))
(discard 'out-of-gas))

```
```

( (and (contains? 'hand1 200)
(> (data 'mileage1) 500))
(discard 200))
( (and (contains? 'handl 100)
(> (data 'mileage1) 600))
(discard 100))
( (and (contains? 'hand1 75)
(> (data 'mileage1) 625))
(discard 75))
( (and (contains? 'hand1 50)
(> (data 'mileage1) 650))
(discard 50))

```

If no cards are unnecessary, try to discard cards with the least value.
((and (contains? 'hand1 75)
(contains? 'state1 'speed-limit))
(discard 75))
((and (contains? 'hand1 100)
(contains? 'state1 'speed-limit))
(discard 100))
((and (contains? 'hand1 200)
(contains? 'state1 'speed-limit))
(discard 200))
((contains? 'hand1 25)
(discard 25))
((contains? 'hand1 50)
(discard 50))
((contains? 'hand1 75)
(discard 75))
((contains? 'hand1 100) (discard 100))
((contains? 'hand1 200) (discard 200))
((contains? 'hand1 'go) (discard 'go))
((contains? 'hand1 'stop)
(discard 'stop))
((contains? 'hand1 'end-of-limit) (discard 'end-of-limit))
```

( (contains? 'hand1 'speed-limit)
(discard 'speed-limit))
( (contains? 'handl 'gasoline)
(discard 'gasoline))
( (contains? 'hand1 'spare-tire)
(discard 'spare-tire))
( (contains? 'hand1 'repairs)
(discard 'repairs))
( (contains? 'hand1 'out-of-gas)
(discard 'out-of-gas))
( (contains? 'hand1 'flat-tire)
(discard 'flat-tire))
( (contains? 'hand1 'accident)
(discard 'accident)) ) )

```

\subsection*{15.6.3 Building a driver for Mille Bornes}

The current set of rules represent the strategic aspects of the game-those things that involve "expertise" in deciding which actions to take. We need some control features to handle the play between each player. We have two choices when building the rest of the Mille Bornes system. One choice is to build additional rules to take care of the sequencing of moves (e.g., stopping the game when one player wins) and the details of shuffling, dealing, and discarding cards. The other approach is to build functions that handle these actions. The second approach will be easier, especially in terms of handling the flow of control of the play. Rule-based systems don't lend themselves to handling complex flow of control. They work best with large collections of independent rules, which may apply at any time.

The additional functions will act as a driver calling the expert system, which will sequence through the rules until an action (play or discard) is performed. Then the driver will read a move from the second player. This sequence of actions continues until one player wins.
```

; Main driver to alternate computer's and player's move until
; game is complete.
(define (mille)
(reset 'bb)
(expert-shell mille-rules repeat-action? first move-done?)
(cond ((= (data 'mileage1) 700)
'(sorry the computer beat you))
(else
(get-action)
(if (= (data 'mileage2) 700)
'(congratulations you won)
(mille)))) )

```

Representing the card deck

As a variation we could change the driver to invoke another expert system for the second player with a different strategy and compare the two strategies.

The function get-action will display information to the user, showing her hand, state, and mileage and the computer's state and mileage. It calls play-ordiscard to get a move from the user.
```

; Print current state and get a move from the user.
(define (get-action)
(draw 'hand2)
(newline)
(display "Your mileage: ")
(display (data 'mileage2))
(display " Your state: ")
(display (data 'state2))
(newline)
(display "Computer mileage: ")
(display (data 'mileage1))
(display " Computer state: ")
(display (data 'state1))
(newline)
(display "Your hand: ")
(display (data 'hand2))
(newline)
(play-or-discard) )
; Read in a play or discard move from the user.
(define (play-or-discard)
(newline)
(display "What would you like to do: ")
(let* ((input (read))
(card (if (member input '(discard play))
(read))))
(cond ((eq? input 'discard)
(add-to 'seen card)
(delete 'hand2 card))
((eq? input 'play)
(add-to 'seen card)
(play card 'hand2 'state2 'state1 'mileage2))
(else
(display "Illegal move. ")
(display "Please 'discard card' or 'play card'")
(newline)
(play-or-discard)))) )

```

The cards are entered as a list, and multiple cards are sublists containing the card name and the number of occurrences of that card. This makes it easier to enter the cards and to make changes if we decide to. The functions expand-deck and repeat-card (based on the functions expand and repeat from Chapter 14) will turn this compressed list into a flat list from which we can choose random elements. Contrast repeat-card which is written using do with repeat.
```

; The mille bornes deck in compressed form.
(define compressed-cards
'((go 14) (stop 4) (200 4) (100 12) (75 10) (50 10) (25 10)
(gasoline 6) (out-of-gas 2) extra-tank (spare-tire 6)
(flat-tire 2) puncture-proof (repairs 6) (accident 2)
driving-ace (end-of-limit 6) (speed-limit 3) right-of-way))
; Expand a compressed list into a flat list with repeated elements.
(define (expand-deck compressed)
(cond ((null? compressed) '())
((list? (car compressed))
(append (repeat-card (caar compressed) (cadar compressed))
(expand-deck (cdr compressed))))
(else
(cons (car compressed) (expand-deck (cdr compressed))))) )
; Return a list of times occurrences of card.
(define (repeat-card card times)
(do ((count 0 (+ count 1))
(ans '() (cons card ans)))
((= count times) ans)) )

```

We can test expand-deck with a small sample list:
```

> (expand-deck '((go 3) stop (gasoline 2)))
(go go go stop gasoline gasoline)

```

We'll save the actual list of cards in the variable mille-cards.
```

(define mille-cards (expand-deck compressed-cards))

```
```

> (length mille-cards)

```
101

Lastly, we need to initialize the database so that the deck is a full set of cards and that both players begin with six cards. This should be done before each

Initializing the database game, so a function to do this is handy. We need to define the database on the top level and then redefine it in this function using set!.
```

(define database '())
; Reset initial database.
(define (initialize)
(set! database '(
(hand1) (hand2)
(deck) (seen)
(mileage1 . 0) (mileage2 . 0)
(state1) (state2)
(bb)))
(set-cdr! (pair 'deck) mille-cards)
(do ((count 1 (+ count 1)))
((> count 6) 'done)
(draw-card)
(draw 'hand2)) )

```

Testing the game

Sample game

After getting the program running, I tried a game against the computer. I easily beat it. In fact, the computer never got started. After looking more carefully at its actions I noticed that it had discarded go cards. I realized that one rule said if you are stopped, play a go, but no rule said that you need to initially play a go to get moving in the first place. I added this one rule, and then played another game. The computer won. This felt good in that the program was working well, but also rather strange in that a machine I had programmed with my knowledge and strategy beat me. Of course there is an element of luck, so I got up my nerve and tried it again. This time the machine shut me out! I did finally manage to beat it, but many games turned out like the one shown in the trace below. Notice the series of attacks the computer made to keep me from gaining mileage.
```

> (initialize)
done
> (mille)
Computer plays go
Your mileage: 0 Your state: ()
Computer mileage: 0 Computer state: (go)
Your hand: (end-of-limit 75 200 end-of-limit go 50 50)
What would you like to do: play go
Computer plays flat-tire
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 0 Computer state: (go)
Your hand: (repairs end-of-limit 75 200 end-of-limit 50 50)
What would you like to do: discard end-of-limit
Computer plays }7
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 75 Computer state: (go)
Your hand: (100 repairs 75 200 end-of-limit 50 50)
What would you like to do: discard 50
Computer plays }7
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 150 Computer state: (go)
Your hand: (gasoline 100 repairs 75 200 end-of-limit 50)
What would you like to do: discard 50
Computer plays 200
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 350 Computer state: (go)
Your hand: (25 gasoline 100 repairs 75 200 end-of-limit)

```
```

What would you like to do: discard 25
Computer plays 25
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 375 Computer state: (go)
Your hand: (100 gasoline 100 repairs 75 200 end-of-limit)
What would you like to do: discard 75
Computer plays 200
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 575 Computer state: (go)
Your hand: (100 100 gasoline 100 repairs }200\mathrm{ end-of-limit)
What would you like to do: discard 100
Computer plays 100
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 675 Computer state: (go)
Your hand: (50 100 gasoline 100 repairs 200 end-of-limit)
Time passes.

```
```

Your mileage: 0 Your state: (flat-tire)

```
Your mileage: 0 Your state: (flat-tire)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (puncture-proof go go gasoline 100 repairs 200)
Your hand: (puncture-proof go go gasoline 100 repairs 200)
What would you like to do: play puncture-proof
What would you like to do: play puncture-proof
Computer plays speed-limit
Computer plays speed-limit
Your mileage: 0 Your state: (speed-limit puncture-proof)
Your mileage: 0 Your state: (speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (100 go go gasoline 100 repairs 200)
Your hand: (100 go go gasoline 100 repairs 200)
What would you like to do: play go
What would you like to do: play go
Computer plays out-of-gas
Computer plays out-of-gas
Your mileage: 0 Your state: (out-of-gas speed-limit puncture-proof)
Your mileage: 0 Your state: (out-of-gas speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (50 100 go gasoline 100 repairs 200)
Your hand: (50 100 go gasoline 100 repairs 200)
What would you like to do: play gasoline
What would you like to do: play gasoline
Computer discards repairs
Computer discards repairs
Your mileage: 0 Your state: (speed-limit puncture-proof)
Your mileage: 0 Your state: (speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (100 50 100 go 100 repairs 200)
Your hand: (100 50 100 go 100 repairs 200)
What would you like to do: play go
What would you like to do: play go
Computer discards repairs
```

Computer discards repairs

```

```

Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (extra-tank gasoline gasoline 100 100 100 200)
What would you like to do: play extra-tank
Computer plays 25
(sorry the computer beat you)

```

\subsection*{15.6.4 Exercises}
15.7 Try your hand at knowledge engineering. Choose someone you know who is an expert in some domain. This person does not have to be an expert in a technical area with a wall full of degrees. Pick someone who has a good deal of experience doing some task (e.g., fixing bikes, moving lawns, baking cookies, changing diapers). Interview this expert and build a set of rules to represent their expert knowledge.
15.8 Modify the expert system shell so that it stops if no rules are applicable and returns the symbol no-matches.
15.9 Change the Mille Bornes code and data structures so that it uses the functions expand and repeat from Chapter 14 instead of the new versions expand-deck and repeat-card.
15.10 The real game of Mille Bornes awards a bonus for playing a safety immediately after receiving the corresponding hazard and before drawing a card. This is called a coup foure. Also, whenever a safety is played (whether it qualifies as a coup foure or not), the player gets an extra turn. Modify the rules to incorporate this. You may need to make changes to some of the functions that drive the Mille Bornes program.
15.11 The Mille Bornes player's moves are not checked, so the player can make illegal moves, like playing mileage when stopped. Add tests to disallow illegal moves.
15.12 Modify the rules to improve the discard policy. Some rules test if cards are unnecessary (e.g., a repair card is not needed if two accidents have been seen or if we have a driving ace card). Other rules unconditionally eliminate cards according to some ordering in the rules. Create more discard rules that test for things like discarding go if the player has many of them in her hand or discarding additional repairs if one is already in the hand and an accident has been played (there are only two accidents in the deck and if one has been played, only one is needed as protection).
15.13 Each safety played is worth bonus points. Modify the rules to play any safeties still in the hand just before winning the game (assuming the opponent isn't too close to winning).

The importance of semantics
15.14 Modify the rules and driver to support extensions to the game. A player with 700 miles can choose to extend the game to 1000 miles. Then the first player to 1000 miles wins the game.
15.15 Modify the Mille Bornes functions to keep track of special bonuses that are included in the real game. These are
\begin{tabular}{lll}
bonus & points & explanation \\
\hline safety & 100 each & \begin{tabular}{l}
playing a safety \\
coup foure
\end{tabular} \\
300 each & playing safety immediately after hazard \\
trip completed & 400 & getting 700 or 1000 miles first \\
safe trip & 300 & \begin{tabular}{l}
completing trip without using 200 mile cards \\
delayed action
\end{tabular} \\
\hline 300 & completing trip after the deck is finished \\
extension & 200 & completing 1000 mile trip \\
shut-out & 500 & completing trip before opponent plays mileage
\end{tabular}
15.16 Modify the rules to improve the strategy for playing mileage near the end of the game. Instead of immediately playing miles, wait until the exact mileage to win is held in the hand. This avoids problems like getting 675 miles and then having to wait for 25 miles to win (this is what happened to the computer in the game shown).

\subsection*{15.7 Natural Language Processing}

Natural language processing (NLP) was introduced in section 15.2, "Historical Background." To recap, the early work in NLP attempted language translation based on syntactical rules and dictionary lookup of words. This failed miserably, and for many years little was done in NLP research. One of the lessons learned is that semantics are necessary for understanding. This can be seen in examples such as
"The pen is in the box" versus
"The box is in the pen"
These two sentences are syntactically equivalent, but the usual interpretation of "pen" is different in each sentence. In the first sentence one pictures a pen like a ballpoint writing pen. In the second sentence "pen" becomes a large containment pen, like a playpen. Syntax alone cannot give us this insight, but the semantics of what being in another object requires tells us that the pen cannot be a writing pen in the second sentence (unless we picture a very small box).

When NLP resurfaced, researchers didn't make big claims but instead worked on smaller, specific problems. Rather than attempting complete language translation, work was done on translation within specific domains of discourse such as traffic reports or database queries.

The focus in NLP changed to the individual pieces of human language abilities that make up full understanding. One such ability is making inferences given
incomplete information. This work was done with a program called SAM (script applier mechanism). For example, you might be told the following:

Sam goes to Sante Fe Bar and Grill
He orders a salad
He leaves Sante Fe Bar and Grill
After a program receives this information, it can answer questions like the following:

Did Sam eat a salad?
Did Sam pay for a salad?
The program can infer the answers to these questions even though the story never explicitly indicated that Sam ate a salad (only that he ordered a salad) or that Sam paid for the salad. The program can make inferences by having knowledge of what typically happens in restaurants. This knowledge is represented as scripts (like movie or story scripts), which dictate a specific sequence of actions that are usually taken. These scripts are abstracted using variables instead of specific people, places, and items. A simple restaurant script may look like the following:

\section*{person goes to restaurant \\ person orders food \\ person eats food \\ person pays for food \\ person leaves restaurant}

SAM has a collection of such scripts representing events like eating in restaurants, driving to work, and buying clothes. When given some sentences as input, SAM tries to match these with the scripts in its script database. The specific instances (names, places, items) are matched with the variables in the script. For example, given our previous sentences

\section*{Sam goes to Sante Fe Bar and Grill}

He orders a salad
He leaves Sante Fe Bar and Grill
these match with the first, second, and last lines of the script
person goes to restaurant
person orders food
person leaves restaurant
The variable person matches Sam, restaurant matches Sante Fe Bar and Grill, and food matches a salad. The remaining lines of the script are changed to reflect the variable values as follows:

Sam eats a salad
Sam pays for a salad
Now it is easy to answer questions like

Inference

Restaurant script

Conceptual
dependency

Actions in CD

Sentences in CD

\section*{Did Sam eat a salad?}

Did Sam pay for a salad?
SAM was written in the mid 1970s. However, the idea behind scripts resurfaced in the world-knowledge program CYC (presented in section 15.3.7). CYC's contexts, when reduced to specific events, can be viewed as scripts. Instead of writing a list of sentences of the events within a script, CYC maintains a collection of assertions that are typically true in a given context. CYC might have a restaurant context with assertions like "people typically pay for the food they order and eat."

\subsection*{15.7.1 Representing natural languages}

SAM did not use English to represent its scripts and sentences. A simplified language called Conceptual Dependency (CD) was used. In CD, about a dozen different primitive actions are defined. These actions correspond roughly to English verbs. Many possible actions are not included because they are modeled by combining two or more actions or they are represented as changes to an object's state. For example, "Mickey upset Minnie" would be represented as a change in Minnie's state, becoming upset, caused by some action that Mickey did. The actions are outlined below.
\begin{tabular}{lll}
action & description & example \\
\hline ATRANS & transfer of possession of object & Fred gave Fran a rose \\
MTRANS & information is transferred & Fred read a book \\
PTRANS & physical transformation & Fred went to the store \\
PROPEL & applying a force & Fran kicked the ball \\
MBUILD & creating mental information & Fran thought about the game \\
ATTEND & to focus attention on something & Fred looked at the rock \\
SPEAK & to make a sound & Fran yelled "Duck!" at Fred \\
GRASP & to grasp an object & Fred grabbed the bag \\
MOVE & to move a body part & Fred lifted his arm \\
INGEST & to take an object into the body & Fran sipped her Chardonnay \\
EXPEL & to release an object from the body & Fred cried
\end{tabular}

In addition to actions, there are actors (the things that do the acting), objects (the things that are acted upon), and directions (the orientation of the action). These are represented as slots in a data structure. Together they represent one event. For example, the sentence "Sam went to Santa Fe Bar and Grill" can be represented as follows:
```

((actor Sam)
(action PTRANS)
(object Sam)
(direction (to Santa Fe Bar and Grill) (from unknown)))

```

The sentence "Sam eats a salad" would be
```

((actor Sam)
(action INGEST)
(object salad)
(direction (to Sam's mouth) (from plate)))

```

We could add other events to represent the movement of the salad to Sam's mouth, Sam grasping a fork to grab the salad, and the movement of Sam's hand to move the fork and salad from the plate to his mouth. Such events are not necessarily correct, however. Sam may be eating the salad with a spoon (it could be a potato or fruit salad), or with his hands and injera (an Ethiopian pancakelike bread) at an Ethiopian restaurant. The salad may not be on a plate but could be in a bowl. Sam may be a baby and "eating" the salad by wiping it in the general vicinity of his face, his clothes, and the most expensive furniture in the room.

One of the advantages of CD representations is that different sentences with the same fundamental meaning can be represented with identical CDs. The following sentences can all be represented with the same CD.

John gave Mary a book.
John handed a book to Mary.
Mary received a book from John.
A book was given to Mary by John.
John presented Mary with a book.
John transferred a book from his possession to Mary's.
Mary, hereinafter known as the recipient, came into possession of said book, exhibit A, given to her by the defendant, John.
A transferral of a book initiated by John directed toward Mary resulted in the set of items constituting Mary's possessions being augmented to include a book that previously was a member of the set of John's possessions.
The CD representation clearly labels all the different parts of the sentence: the actor, the recipient, the action, and so on. This helps in the process of summarizing, paraphrasing, answering questions, and in translation. Look at the following two sentences. The first is in the active voice and the second in the passive voice.

The fish ate the shrimp.
The shrimp was eaten by the fish.
Both sentences would be represented as the same CD event diagram
```

((actor the fish)
(action INGEST)
(object the shrimp)
(direction (to the fishes' mouth) (from unknown)))

```

With such a representation, it is easy to answer questions like "What ate the shrimp?" or "What did the fish eat?" It is clear that the fish did the eating and not the shrimp. Translation is partially a matter of looking up the corresponding word knowing its context.

The context of the word is important because it dictates the meaning to use
Context in NLP when a word has more than one meaning. For example,

Canonical representation

Look at all the stars!
means different things depending on the context. It could be an utterance made while gazing at the heavens on a cloudless night away from the city. Or it could be a comment made at the Academy Awards presentations. The meaning of such a sentence cannot be determined outside of its context.

\section*{World knowledge in NLP}

\section*{Plans and goals}

Many sentences cannot be translated or understood without semantic information. For example,
He went wild, charging everything in sight: the cologne, the suit, the watch. He went wild, charging everything in sight: the matador, the picador, the walls.
It is clear that in the first sentence "charging" refers to buying items with a credit card. In the second example, the subject is most likely a bull who is charging at its antagonists in the bullring. The semantics can explain this without knowledge of the surrounding context in which the sentence occurs. One does not normally charge into cologne, suits, or watches, nor does one buy matadors, picadors, or walls with a credit card. To know this requires knowledge of objects in the world and the typical behavior of actors in the world.

We have looked at how scripts can assist in making inferences about unspecified events in a story. Having a model that includes plans and goals is also important. A story contains a goal or goals that the actor or actors are attempting to achieve. To meet these goals a script may be followed or plans may be used. Recognizing goals, scripts, and plans facilitates understanding.

A script is a stereotypical solution to achieve a goal. The restaurant script meets the goal of satisfying hunger. Planning is a more fundamental and general mechanism that is necessary because not all goals can be met using scripts. A plan defines some course of action that attempts to achieve some goal. In addition, plans are used to link scripts or parts of a dialogue together to support goals. Here is a simple story with a goal and a plan:

Tom was getting hungry.
He picked up the book Yummy, Yummy, Yummy Quick Dishes.
Tom's goal is to satisfy his hunger, but its clear from the second sentence that the restaurant script is not being followed. Instead Tom is following a plan to find a recipe in a cookbook and make food. We know, or at least hope, that Tom isn't picking up the cookbook to eat it. An NLP system would need knowledge of typical goals, plans, and the outcomes of plans. The system would need to know that a cookbook provides recipes that are used to prepare food and that the cookbook itself is not edible.

Sometimes goals and plans are not obvious, as this next story illustrates.
A man went to bar and asked for a glass of water.
The bartender pulled a gun on him.
The man thanked the bartender and left.
To understand stories like this that don't have scripts because they aren't common events, one must understand goals and plans. Goals may not be readily apparent, or an incorrect goal may be surmised. The goal of the man appears to
be to quench his thirst. He makes a plan to ask for a glass of water to meet that goal. Instead of giving him water, the bartender pulls a gun on him. This seems like the bartender does not understand the man's goal. However, the man thanks the bartender, so it appears that his goal is satisfied. The task now is to think of a goal that makes sense in the context of the whole story. In this case that goal is to stop the man's hiccups. The man had the plan of drinking water to stop the hiccups. The bartender, hearing the hiccups, had a different plan of scaring the man to stop the hiccups. This plan worked and the man showed appreciation.

One other mechanism was used in understanding the above sentencecoherence. Stories must be coherent to be understood. The above story was not, until we discovered a new plan. Coherency checks help us in verifying that our goals, plans, and understanding are going well. These checks can happen within a sentence. Take the following example:

The old man's glasses were filled with sherry.
As we read or listen to this sentence, a common interpretation upon hearing the noun phrase "the old man's glasses" is to first think that "glasses" refers to spectacles or reading glasses. Then, when we encounter the rest of the sentence, we realize that spectacles cannot hold sherry (incoherence) so we change them to drinking glasses.

\subsection*{15.7.2 Current uses of NLP}

The complete goal of natural language processing has not been attained, and the immediate future offers no promise of doing so. In the meantime, NLP research continues but often with smaller scale projects. There are many domains in which the discourse is usually limited and language understanding systems can be built. NLP techniques have been used to provide front-ends to databases so that queries can be made in English rather than in the query language of the database system. These front-ends translate the English query into a query suitable for the database system. The result from the query can be translated to an English answer. Another example is generating reports from information stored in some fairly typical form with a limited vocabulary. For example, the U.S. Geological Service provides weather information. This can be translated into a more readable form or into a format for a database on weather information.

Digital libraries present a large area of research and NLP promise. With the growing number of texts digitally encoded, we are able to rapidly search for information from a huge number of sources. This data is in a database that is readily accessible through the proper queries. Information retrieval and filtering techniques are used to extract information. The difficulty is often in knowing how to simplify requests for information so that they are not too specific or too general. NLP techniques may offer some improvement here.

\footnotetext{
9. Another possible interpretation (the one that I made upon first hearing this example) is to maintain the spectacles interpretation of "glasses," but view "sherry" as a woman named Sherry who is being ogled by the old man so intently that all he sees is Sherry.
}

\section*{Coherence}

\author{
NLP front-ends
}

\section*{Digital libraries,} information retrieval, and information filtering

Intelligent spell checkers

\section*{Speech synthesis}

Word processors can use NLP techniques to improve their spelling and grammar checkers. An intelligent spelling checker may be able to correct words that are spelled correctly but used improperly. For example, the sentence

Marry through there bawl threw the whole in the read wall.
produces no spelling errors but makes no sense. Given knowledge of words that are similar and typical misuses of words, a program may be able to find the sentence

Mary threw their ball through the hole in the red wall.
This would take a very sophisticated program that had extensive knowledge of English grammar rules and knowledge about the semantics of words. For example, you can throw a ball through a hole, but it makes no sense to throw a bawl through a whole.

Two fields related to natural language processing are speech recognition and speech synthesis. Speech recognition is the process of producing written text from spoken text. Read the above two sentences about Mary/Marry aloud-both sound the same. To understand which of many homonyms to use requires an understanding of the semantics of the words. Sometimes it's not a matter of deciding between homonyms but between groups of words that have the same pronunciation. For example,
"It's hard to recognize speech"
versus
"It's hard to wreck a nice beach"
The words "recognize speech" sound the same as "wreck a nice beach" when spoken fast and slurred a bit. In speech recognition, individual syllables must be processed to determine if they are part of the current word or the next. Gaps in speech cannot always be used because sometimes the gaps between syllables in a word are bigger than the gaps between words. This is made very dramatic if you record a sentence and then play it backwards. You'll notice the true gaps in sound more clearly, because you won't have recognizable words to give you mental word gaps.

Speech synthesis is challenging as well. Its task is to take text in some language and produce the corresponding sounds of the text. This may sound easy but is complicated, especially in the case of a nonphonetic language like English, in which identical spellings are pronounced differently, like

\section*{You must read the book versus \\ Yesterday he read the book}
wild
versus
wilderness
Most pronunciations can be handled with less than 1,000 rules that map spellings to sounds. To do a perfect job would require a degree of language understanding
to discern, as in the above example, the proper pronunciation of the word "read" based on its use as a command in the present tense or a past tense action.

Additionally, prosody is important when speaking text. Prosody is the use of intonation, timing, and sound intensity when speaking. When asking a question, the last word often ends on a rising tone. For example,

You did what?
A sequence of numbers is often ended with the final number voiced over a longer period of time. Phone number information services (dialing 411) use speech synthesis, and the final number in the prefix and suffix are elongated. Ignoring prosody results in stale and strange-sounding speech. Tone is critical for understanding-actually producing different words and meanings-in tonal languages like Thai.

\subsection*{15.8 Robotics}

Robots are machines that interact with the real world to carry out particular tasks. Many robots are autonomous in that they can act without human intervention. Much of what robots do involves recognition, planning, and acting. Robots must recognize their world to grab objects or know when to stop moving toward an object. They must make plans to deal with going from a given initial state to the desired goal state, for example to determine how to grab a nut and later tighten it onto a bolt that is moving along an assembly line. Lastly, the robot must take action to carry out the task.

Recognition is extremely important because of all the difficulties entailed in being in the real world. Even a robot doing a task as seemingly simple as stapling a stack of papers will run into problems if the papers are not lined up properly or are not where the robot expects them to be. Robots can never rely \(100 \%\) on receiving the material they will work on at a given location. Think of how a xerox machine can get stuck when the paper jams.

Recognition is not necessarily done only through visual systems. It may be a tactile input to pressure-sensitive devices. A robot that picks up objects may need tactile feedback to know if it is grabbing the object tightly enough and also that it is not grabbing it too tightly. The robot must be aware of its location and the location of all of its moving parts. This proprioceptive sense is one we don't think about too much, but it is crucial for robots, since they must know where they are in the three-dimensional world to avoid colliding with other objects or themselves.

We often think of robots in two ways: either as sophisticated futuristic devices that can communicate, reason, move about, and interact with the world (like the robots from the movie Star Wars) or as machines that simply follow the same sequence of actions tirelessly and endlessly like welding robots in an automobile factory. For certain robots that take on the same task without ever adjusting to a changing environment, there is no need for planning. The robot is really just a mindless machine. However, if the robot is taking in inputs about its world and is supposed to be able to respond to changes in its world, planning is necessary. Robots interacting with the real world must deal with a constantly changing

Prosody

\section*{Recognition}

Planning

\section*{Movement and degrees of freedom}

Actions and effectors

Recognizing objects

\section*{Edge detection}
environment. This makes planning much more difficult since the world conditions are dynamic. Imagine a robot that is supposed to follow an object that is also moving. The robot must constantly adjust its actions according to the change in relative position between it and the object it is following and the surrounding objects.

Robots move in a variety of ways: they have treads, wheels, and legs. They have appendages that can move independently. These may move linearly (back and forth or up and down) or by rotating. Each movement (linear or rotational) effects a degree of freedom. With six degrees of freedom, a robot or robot arm can be at any position and orientation to grab or move an object. To plug in a toaster, the end of the electrical cord must be directly in front of the outlet. This position component has three subcomponents: distance to the outlet, height relative to the outlet, and horizontal position left or right of the outlet. The cord has an orientation in three axes. The cord can be pointing up or down instead of toward the outlet, it can be pointing left or right as well, and finally the cord can be rotated along its length. Once the cord is in the proper position and orientation, it can be plugged into the outlet. More sophisticated robots have more degrees of freedom. This allows the robot more flexibility in taking action in an environment with a lot of obstacles. More degrees of freedom comes at a price, however. It requires more moving parts and the control and sensing mechanisms for them. It also complicates calculating if part of the robot will collide with another object because more movements and potential collisions are possible.

Once a plan of action has been made, a robot must take action. The robot needs some way of interacting with the world by using effectors, things that have an effect on the world. Devices that grab, push, screw, cut, and weld are all effectors. The robot must move using legs, wheels, and motors that extend limbs and effectors and rotators that rotate all or parts of the robot. The movements are initiated by instructions from the robot's "brain"-the program that controls the robot. These instructions are converted into electrical signals to control the motors that perform the mechanical activity of moving the robot.

\subsection*{15.9 Vision}

The challenge of computer vision is to find the location, orientation, distance, color, and size of objects in an image; in short, to recognize objects. The input to a vision system is a two-dimensional image that is a representation of our threedimensional world. These images may be from a photograph, drawing, or TV screen. From this we must determine three-dimensional objects in the view and information about the objects, such as the surfaces, textures, sizes versus distances, and whether they are obscuring or obscured by other objects. Doing this is not simple and involves getting information in many ways.

Vision begins by taking the output from some device that captures an image (such as a CCD-charge-coupled device-from a video camera) and finding the edges. Edges define boundaries between different objects in the image or can indicate where an object changes shape or has a certain texture. An edge may
denote an area where one object occludes another object. Further analysis is required to determine the meaning of edges. For example, edges may denote shadow regions of objects.

Much of the low-level recognition work involves mathematical analysis of the two-dimensional (2-D) image. David Marr, the late vision researcher, took an approach that involved a series of steps going from a 2-D representation to a primal sketch or \(2.5-\mathrm{D}\) representation to a 3-D representation. The primal sketch determines some of the edges and information about how edges relate to one another.

Knowledge about objects in the physical world is used in visual systems. A visual system can make interpretations that are not physically possible. Many of M.C. Escher's paintings use the fact that it is possible to draw objects in two dimensions (what a visual system would perceive) that are impossible in three dimensions (or only possible with cleverly constructed models viewed from particular angles and with a carefully chosen light source). Escher plays with depth and perspective to give the illusion that water runs uphill or a rooftop can be circumnavigated in either a neverending upward climb or a downward descent. If a visual system does not know how to perceive angles and corners as convex or concave based on physical world possibilities, improper visual analysis will be the result.

The Necker cube in the diagram below has two legal interpretations. One has the face labeled "back" (with vertices A, B, C, and D) as the nearest face and the other has it as the furthest face from the observer. A visual system may interpret corners in ways that are impossible. For example, the vertex near the label "back" may be viewed as closer than the vertex labeled " A " and the vertex labeled " B " may be seen as being in front of the vertex "back." This is impossible with a three-dimensional cube shown from this perspective. Given knowledge about what types of shapes are possible in the real world and how vertices that share edges relate, these misinterpretations can be avoided.

World knowledge in vision

Necker cube

Depth and stereo disparity

Light information

Shading and
highlighting

Vision on the highway

Additional information is used to determine more about the objects in an image. Depth information can be obtained from stereo disparity clues. Stereo disparity refers to the differences in the perceived location of the same object when viewed from different vantage points by separate lenses. Our eyes provide a perfect tool for doing this task. They are separated by a small distance, but this is large enough to produce disparity. You'll easily notice this by holding a pen or a book in front of you, looking at it with one eye only and then observing how it jumps when you rapidly switch eyes to view it with the other eye. The pen hasn't moved, only our perception of its location. The closer the object, the larger the disparity, and this is how depth information is computed from the inputs of both eyes. The brain combines the two disparate images into one cohesive image with depth information.

Light color (hue), brightness, surface material, texture, and angle of the light with respect to the viewer and the object are all used in determining the actual color of objects. Factors such as angles of light, texture, and surface material may not seem important, but the perceived hue varies with all of these factors. Think of the glitter of a shiny new car or the shaded area that is darker in perceived hue than the color in direct light.

Objects can be discovered using texture, hue, and motion information. Many objects tend to have the same texture and/or color. So the borders of textures or colors often are the borders of objects. Motion against a constant background can indicate the outline of objects.

Shading can give clues as to the contours of an object. If we know from other analysis that an object is constant color, then perceived differences in color will be due to changes in the contour of the object. Changes in angles of reflectance from the light source result in various degrees of shading. Direct line of sight reflection causes specular highlights, which are bright and may reflect the color of the light source back to the observer. Varying degrees of partial reflection give varying degrees of light intensity and hence perceived color. The completely shaded regions will be dark. Using this information and the rates of change over the object, the contours of the object can be analyzed. A sharp change in light intensity usually means an edge of the object; a gradual change would denote a curved object.

Visual systems have become sophisticated enough to take on tasks like recognizing lanes on a highway scene and the location and distance of other vehicles. With systems like this and robotic controls to guide the vehicle, unmanned cars on the highway are a reality!

\subsection*{15.10 Is Artificial Intelligence Possible?}

Hopefully, this chapter has given you a sense of what AI researchers have done. It is a long way from full intelligence. Will AI ever fully succeed in its end goals? Some researchers think so and some do not. The arguments for point to the progress that has been made and feel that scaling up to larger problems is just a matter of time and addition of more information into AI systems. The arguments
against point to the failures of AI and indicate that no major changes have taken place to get around the big problems of world knowledge and combinatorial explosions of data.

In addition to these arguments, there is the philosophical outlook. One philosophical argument in favor of AI follows a functionalist view of the mind. This view holds that it's the functions of the mind that matter, not the means in which they are realized. Given this viewpoint, it doesn't matter whether intelligence comes from neuronal activity in a brain or electrical activity in a computer. This is a viewpoint that computer scientists can relate to because of the idea that programs can run on many different computer platforms. A program may compile into different instructions on different machines (see Chapter 13), but the running program behaves the same.

A philosophical argument against AI claims that a computer is just a simulation of intelligence, but there is no real intelligence there. The only thing that is really happening in an AI program is that symbols are being manipulated, and there is no grounding of those symbols to reality. This grounding issue is a sticky one, since some argue that it is the relationships that symbols have with one another that define grounding, whereas others argue that no matter how many relationships are specified, the emotional content is lost in a symbol manipulation system. In other words, a computer cannot feel or experience emotions, and this is necessary for true intelligence.

Is a simulation of intelligence good enough or is it lacking? Music from a CD player can be viewed as a simulation of the original sounds. The CD does not have a physical representation of sound waves like a record or cassette tape does via grooves or a magnetized tape. It is just a collection of samples-numbers that represent the sound amplitude at specific instances in time. Given enough of these samples of the sound, a reasonable equivalent of the original sound is produced. For most of us, a CD is perfectly adequate. For some audiophiles it isn't. If the sample rate is dropped, the sound does diminish to a point where most would feel it is not adequate, and if the sample rate increases, even the audiophiles are happy. Is intelligence the same-just a matter of degree of the quality of the simulation of mental activity?

The philosopher John Searle created the following thought experiment, known as the Chinese room. Imagine being in a sealed room and given a Chinese text. Also imagine that you do not read Chinese, \({ }^{10}\) so to you the Chinese text is completely meaningless. Later you are given more Chinese text and some English instructions that explain how to relate the two Chinese texts to one another without translating the texts into English. Later you get another Chinese text and more English instructions explaining how to formulate responses in Chinese based on the three texts you have received. You follow the instructions and write down some Chinese characters and pass them to the people outside the room.

The three Chinese texts represent a script (a la SAM), a story that is pieces of a script with real objects instead of variables (e.g., "Marcy went to Rivoli," "Marcy

\footnotetext{
\({ }^{10 .}\) If you do read Chinese, pick an alphabet you don't read to make this experiment more meaningful.
}

Philosophical views

Simulation versus the real thing

Searle's Chinese room experiment

Neuron replacement thought experiment

\section*{Turing test}

\section*{Eliza and Parry}
ate Ahi tuna," ...), and questions (e.g., "What did Marcy order?"). The English instructions represent the rules the program SAM uses. Searle's argument is that to an outside observer the person in the room appears to understand Chinese, since she can respond to questions in Chinese with responses in Chinese. To the person inside, the Chinese is just meaningless squiggles and she is merely following the English instructions, which only explain which symbols to write given the symbols that are shown. Or to summarize Searle's point-symbol manipulation is not understanding.

Many people have argued against Searle, giving reasons such as it is the system composed of the person and the room along with the texts that understands. Another argument says if the English program given to the person in the room were a true simulation of the actions that take place in a human brain that understands Chinese, then the person would understand Chinese just as a Chinese speaker would. Yet another argument says that if, instead of a person in the room, there were a robot or a program that actually learned the rules of how the symbols are to be manipulated, then it would have the same knowledge as a Chinese reader because it had internalized the knowledge to produce Chinese output. Others have argued that Searle is missing the whole point and has confused different conceptual levels. You must decide for yourself who is correct.

Another thought experiment is to imagine that an electronic device exists that can carry on the same activity as a single neuron in the brain. We replace a single neuron in someone's brain with this device. Does this affect the person's intelligence? Now replace some more neurons with additional copies of this device. At some point does the person start loosing intelligence or the grounding of concepts or the emotional quality of thoughts?

Obviously the neuron replacement test cannot be done. Would you volunteer? Even if it could, how could we know if we were observing a simulation of intelligence where after a while, the person would slowly loose her sense of self. Another test is needed to measure intelligence. The classic test is the Turing test named after Alan Turing, one of the pioneers of computer science.

The Turing test works as follows. Two computer terminals are used. One is connected to a computer running the AI program being tested and the other is connected to a person. Another person (the experimenter) types in text to either of the terminals and gets responses from the computer or person. The computer program tries to convince the experimenter that it is the human. The premise of the Turing test is that if the experimenter cannot tell which terminal is connected to the computer and which to the person, then that computer program has passed the Turing test and exhibits intelligence. To date, no program has passed the Turing test.

One program, Eliza or Doctor, has fooled some people briefly. It simulates a psychologist using the Rogerian method of analysis, which involves rephrasing the patient's comments into questions to force introspection. Another program called Parry has been more successful. It emulates a paranoid schizophrenic patient and it has fooled some psychiatrists who could not discern Parry from a real paranoid schizophrenic. While it has fooled people, Parry does not truly pass
the Turing test, because paranoid schizophrenia is a somewhat limited type of behavior. Parry and Eliza were once connected to one another over the Internet. The resulting conversation is quite hilarious. Parry was much more convincing than Eliza.

\subsection*{15.11 Summary}
- Artificial intelligence is a collection of subfields that share a common interest in trying to build systems that model some aspect of natural intelligence.
- The early work in AI consisted of small, fairly well-defined problems. Its success gave false hopes of solving bigger problems, but the solutions to these "toy" problems did not scale up to realworld problems.
- Searching is important in many fields within AI. There are numerous search algorithms including uninformed methods (breadth-first and depth-first search), algorithms that look at the cost incurred so far (uniform-cost search), algorithms that look at the cost to reach the goal (hill-climbing, best-first search) and \(A^{*}\) search, which looks at the cost already incurred and the expected cost to the goal.
- Knowledge representation is another fundamental issue in AI. The knowledge in an AI system is often maintained in data structures. These must be constructed in a fashion that facilitates the types of queries and reasoning that AI systems make. Semantic networks, frames, and first-order predicate calculus are commonly used representations for knowledge.
- AI systems often must reason with the information they have to formulate an answer to a question. Inductive, deductive, and abductive reasoning methods can be used.
- The difficulty that many AI programs have in scaling up to solve larger problems is handling world or commonsense knowledge. To reason properly in the world, a program must know about the world. The problem is that there is a lot to know and the information is highly interconnected and often context-specific. CYC is a project to collect all world knowledge in one huge database and provide a means to query and reason within the database.
- Problem solvers are programs that have knowledge about items in the world and their effect on other items, and can indicate how to use these items to reach certain goals. Programs that can solve any problem have been unsuccessful in large part due to the world-knowledge problem. Some problem solving techniques are used in AI, in particular planning is used in robotic and natural language processing systems.
- Expert systems embody the knowledge of an expert in a given field to carry out specific tasks. Expert systems are typically built on a model in which the expertise is encoded in if-then rules that are examined to determine which are applicable. One rule is chosen and its actions are performed. This process continues until a solution has been found or no rules are applicable.
- Natural language processing attempts to understand human spoken languages so they may be translated, paraphrased, or used as a frontend to
systems as a more natural interface. Early efforts in machine translation did syntactical transformations and dictionary translation of words. They did not scale up however, because to do complete translation, semantics (the meaning of words) is necessary. Later NLP systems attempted simpler parts of language understanding such as making inferences or handling limited domains of discourse.
- Robotics involves the control of mechanical objects that interact with the world. It requires recognition of the world and the robot's position, planning to carry out a sequence of steps that will attain the desired goal, and acting out the necessary steps.
- Vision entails recognizing objects given a two-dimensional representation of them (e.g., a photograph or video information). Vision systems begin with very low-level analysis of the image (line and edge detection) and reason about which edges make up parts or boundaries of shapes. Shapes can appear quite different depending on their orientation, lighting, and occlusion by other objects. This complicates the task of computer vision.

\subsection*{15.12 Additional Reading}

Norvig, P. (1992). Paradigms of Artificial Intelligence Programming: Case Studies in Common LISP, Morgan Kaufmann, San Mateo, CA.

Rich, E. and Knight, K. (1991). Artificial Intelligence, Second edition, McGraw-Hill, New York, NY.

Russell, S.J. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach, Prentice Hall, Englewood Cliffs, NJ.

Winston, P.H. (1992). Artificial Intelligence, Third edition, Addison-Wesley, Reading, MA.

AI references and historical coverage
Barr, A. and Feigenbaum, E.A., editors (1981). The Handbook of Artificial Intelligence, Volume 1, William Kaufman Inc., Los Altos, CA.

Barr, A. and Feigenbaum, E.A., editors (1982). The Handbook of Artificial Intelligence, Volume 2, William Kaufman Inc., Los Altos, CA.

Barr, A., Cohen, P.R., and Feigenbaum, E.A., editors (1989). The Handbook of Artificial Intelligence, Volume 4, Addison-Wesley, Reading, MA.

Cohen, P.R. and Feigenbaum, E.A., editors (1982). The Handbook of Artificial Intelligence, Volume 3, William Kaufman Inc., Los Altos, CA.

Shapiro, S.C., editor (1992). Encyclopedia of Artificial Intelligence, Second edition, Volumes 1 and 2, John Wiley \& Sons, New York, NY.

Books specific to AI subfields
Gazdar, G. and Mellish, C.S. (1989). Natural Language Processing in LISP: An Introduction to Computational Linguistics, Addison-Wesley, Reading, MA.

Horn, B.K.P. (1986). Robot vision, MIT Press, Cambridge, MA.
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, W.H. Freeman, San Francisco, CA.

Murray, R.M., Li, Z., and Sastry, S.S. (1994). A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton.

Parsaye, K. and Chignell, M. (1988). Expert Systems for Experts, John Wiley \& Sons, New York, NY.

Schank, R.C. and Riesbeck, C.K. (1981). Inside Computer Understanding: Five Programs Plus Miniatures, Lawrence Erlbaum Associates, Hillsdale, NJ.

Waterman, D.A. (1986). A Guide to Expert Systems, Addison-Wesley, Reading, MA.

Philosophical issues
Dreyfus, H.L. (1992). What Computers Still Can't Do: A Critique of Artificial Reason, MIT Press, Cambridge, MA.

Hofstadter, D.R. and Dennett, D.C. (1981). The Mind's I, Basic Books, New York, NY.

Minsky, M.L. (1986). The Society of Mind, Simon and Schuster, New York, NY.
Penrose, R. (1989). The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics, Oxford University Press, New York, NY.

Searle, J.R. (1984). Minds, Brains, and Science, Harvard University Press, Cambridge, MA.

\subsection*{15.13 Code Listing}

Code for searching:
```

; Parameters: goal-func, a function returning true if a goal has
; been met; choices, a list of paths to search; cost-func, a cost
; function to order new states; and next-states, a function that
; generates new states from a current path.
; Return the first path encountered that satisfies goal-func.
; The list of path choices is printed each time through the code.
(define (best-first-search goal-func choices cost-func next-states)
(display choices)
(newline)
(cond ((null? choices) \#f) ; no more choices
((goal-func (first choices)) (first choices))
(else
(best-first-search goal-func
(add-paths
(rest choices)
(make-paths (next-states (first choices))
(first choices))
cost-func)
cost-func
next-states))) )
; Return a new sorted list with element inserted into sorted-list
; based on compare-func.
(define (insert element sorted-list compare-func)
(cond ((null? sorted-list)
(list element))
((compare-func element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert element (rest sorted-list) compare-func)))) )
; Add paths in new-choices to old paths, old-choices, in sorted
; order based on cost-func.
(define (add-paths old-choices new-choices cost-func)
(if (null? new-choices)
old-choices
(insert (first new-choices)
(add-paths old-choices (rest new-choices) cost-func)
cost-func)) )
; Given a list of new states, remove the empty lists and convert
; the states into complete paths.
(define (make-paths new-states current-path)
(map (lambda (state) (append current-path (list state)))
(remove '() new-states)) )

```

\section*{Depth-first and breadth-first search using best-first search:}
```

; Depth-first search implemented using best-first search.
(define (depth-first-alt goal-func tree)
(best-first-search goal-func (list (list (root tree)))
(lambda (path1 path2) \#t)
(lambda (path)
(list (left-child (find path tree))
(right-child (find path tree))))) )
; Breadth-first search implemented using best-first search.
(define (breadth-first-alt goal-func tree)
(best-first-search goal-func (list (list (root tree)))
(lambda (path1 path2) \#f)
(lambda (path)
(list (right-child (find path tree))
(left-child (find path tree))))) )
; Return the subtree in tree based on path.
(define (find path tree)
(cond ((null? tree) \#f) ; problem
((and (null? (cdr path))
(equal? (root tree) (car path))) tree)
((null? (cdr path)) \#f) ; problem
((equal? (left-child tree) (second path))
(find (cdr path) (left-side tree)))
((equal? (right-child tree) (second path))
(find (cdr path) (right-side tree)))
(else \#f)) ) ; problem

```
; Selector functions for parts of trees.
(define root first)
(define left-side second)
(define right-side third)
(define (left-child tree)
 (if (null? (second tree)) '() (caadr tree)))
(define (right-child tree)
 (if (null? (third tree)) ' () (caaddr tree)))
\(A^{*}\) search through trees using best-first search:
; A* search of tree implemented using best-first search.
; \(g\) is a function that returns the cost incurred so far and
; \(h\) is a function returning the expected cost to reach the goal.
(define (a*-tree-search goal-func tree g h)
 (best-first-search goal-func (list (list (root tree)))
 (lambda (path1 path2)
 (<= (+ (g path1) (h path1)) (+ (g path2) (h path2))))
 (lambda (path)
 (list (left-child (find path tree))
 (right-child (find path tree))))))

\section*{Generic A* search:}
```

; General a* search implemented using best-first search.
; start-path is the path to the start state.
; successors is a function that returns the next states.
; g is a function that returns the cost incurred so far and
; h is a function returning the expected cost to reach the goal.
(define (a*search goal-func start-path successors g h)
(best-first-search goal-func (list start-path)
(lambda (path1 path2)
(<= (+ (g path1) (h path1)) (+ (g path2) (h path2))))
successors) )

```

\section*{Expert system shell code:}
```

; Given rule-list, a list of rules, redundant?, a function to test
; if a rule is redundant (i.e., its actions have already occurred),
; conflict-func, to handle conflict resolution, and finished, to
; test for termination, iteratively choose an applicable rule and
; apply it until finished is true.
(define (expert-shell rule-list redundant? conflict-func finished)
(let* ( (satisfied-rules (keep-if satisfied? rule-list))
(valid-rules (remove-if redundant? satisfied-rules))
(rule-to-apply (conflict-func valid-rules)) )
(apply-rule rule-to-apply)
(if (finished database)
'finished
(expert-shell rule-list redundant? conflict-func
finished))) )
; Test if condition of rule is true.
(define (satisfied? rule)
(eval (condition rule)) )
; Apply all the actions of rule.
(define (apply-rule rule)
(for-each eval (actions rule)) )
; Selector function to return condition of rule.
(define (condition rule)
(first rule) )
; Selector function to return actions of rule.
(define (actions rule)
(rest rule) )

```

\section*{}

\section*{SOFT COMPUTING: FUZZY LOGIC, NEURAL NETWORKS, AND Genetic Algorithms}

\subsection*{16.1 Soft Computing}

Soft computing is a relatively new field within computer science. It is a conglomeration of fuzzy logic, neural networks, and probabilistic reasoning. Probabilistic reasoning is further divided into belief networks, genetic algorithms, and chaos theory. What all of these subfields share is an adherence to nonexact computation. Up until now, we have been using formal Boolean logic, which says that something is either true or false, yes or no, black or white. There are no shades of gray with this type of logic.

Soft computing supports degrees of precision, certainty, belief, and truth. Instead of using Boolean logic with two truth values, multivalued logic is used in which something can have more than a true or false value. The difficulty lies in how multivalued items can be combined logically. For example, suppose we represent information dealing with a washing machine. We want to be able to ask questions like the following:
- In a washing machine, how long should the clothes be rinsed if they are still fairly soapy and the rinse water is very hot?
- How much additional soap or agitation time during the wash cycle should be used if the clothes are moderately dirty and the water is slightly soapy?
To make statements like these, we need a way of logically expressing and combining descriptions like "long," "fairly soapy," "very hot," and "moderately

\footnotetext{
O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998
}

Fuzzy sets and membership grades
dirty." Each subfield in soft computing has a way of handling this.
This chapter will not address all the subfields that compose soft computing, but instead focus on those that have been most influential recently. Of these, fuzzy logic has had perhaps the biggest success due to its growing role in our day-to-day life.

\subsection*{16.2 Fuzzy Logic}

Fuzzy logic provides a formal way to represent multivalued logical valuesvalues that aren't just 0 or 1, but represent degrees of belief, fit, or agreement. Fuzzy logic provides a way to express notions like very high, fast, and comfortable. These are not crisp values, but fuzzy values. The notion tall cannot be simply represented as true for anyone \(6^{\prime} 2^{\prime \prime}\) (or 1.88 meters) tall and false for those who are shorter. There is a spectrum of values and they have different degrees of satisfying the notion tall. To represent such notions, fuzzy sets are used.

For example, if we want to represent a fuzzy set like tall we could do so with a table, as shown below. Each height has a corresponding membership grade or degree of fit in the fuzzy set. The larger the membership grade, the better the height describes or fits the notion of tall. A membership grade of 0 means definitely not tall and a membership grade of 1 means definitely tall.
\begin{tabular}{ll}
actual height & membership grade \\
\hline \(5^{\prime} 3^{\prime \prime}\) or less & 0 \\
\(5^{\prime} 6^{\prime \prime}\) & 0.25 \\
\(5^{\prime} 9^{\prime \prime}\) & 0.5 \\
\(6^{\prime}\) & 0.75 \\
\(6^{\prime} 3^{\prime \prime}\) or more & 1
\end{tabular}

Fuzzy sets can be represented as functions that represent thresholds (as above), triangles, or trapezoids. These are called \(L\) (decreasing threshold), \(\Gamma\) (increasing threshold), \(\Lambda\), and \(\Pi\) functions due to the similarity the name of the function has with the actual shape of the function.

For example, tall could be expressed as an increasing threshold (\(\Gamma\)) function as follows (\(h\) represents the actual height value):
\begin{tabular}{ll}
actual height & membership grade \\
\hline\(h<5^{\prime} 3^{\prime \prime}\) & 0 \\
\(5^{\prime} 3^{\prime \prime}<=h<=6^{\prime} 3^{\prime \prime}\) & \(\left(h-5^{\prime} 3^{\prime \prime}\right) / 12^{\prime \prime}\) \\
\(h>6^{\prime} 3^{\prime \prime}\) & 1
\end{tabular}

Fuzzy sets are clearly subjective. A tall person might have a very different fuzzy set for tall than a short person would. However, a fuzzy set like the above
fuzzy set would be more agreeable to most people than a crisp set would. A crisp set would have a single cut off point with everyone shorter than that considered as definitely not tall, and everyone above that considered definitely tall.

Linguistic variables are variables that take on fuzzy sets as values instead of numerical or logical values. Height can be a linguistic variable that can take values such as short, tall, medium, huge, etc.

A hedge is a modifier that can be applied to a fuzzy set. Very is a hedge that can modify a fuzzy set like tall to produce a new fuzzy set, very tall. Somewhat, rarely, and more or less are other examples of hedges. A hedge reduces or increases the membership grades of a fuzzy set. For example, the hedge very reduces the membership grades of a fuzzy set by squaring them. Look at the difference between the fuzzy set tall and the fuzzy set very tall:
\begin{tabular}{lll}
actual height & tall membership grade & very tall membership grade \\
\hline \(5^{\prime} 3^{\prime \prime}\) or less & 0 & 0 \\
\(5^{\prime} 6^{\prime \prime}\) & 0.25 & 0.0625 \\
\(5^{\prime} 9^{\prime \prime}\) & 0.5 & 0.25 \\
\(6^{\prime}\) & 0.75 & 0.5625 \\
\(6^{\prime} 3\) ' or more & 1 & 1
\end{tabular}

\subsection*{16.2.1 Fuzzy expert systems}

Most often fuzzy sets are used in conjunction with rule-based systems forming fuzzy expert systems. With fuzzy expert systems, one can express statements like
if the temperature is very high, then set the fan speed to fast
if the temperature is fine, then turn the fan off
In addition, fuzzy expert systems provide a means of combining conditions such that rules like the following can be expressed:
if the temperature is fine and the humidity is high, then set the fan speed to medium
if the temperature is very high or the humidity is high, then set the fan speed to fast
These rules can be acted upon as well. Here is an overview of a fuzzy expert system that controls the speed of a fan. Imagine we have fuzzy sets to represent the following linguistic variables: temperature, humidity, fan speed. These fuzzy sets represent temperatures like cool and hot, humidities such as high and very low, and speeds: medium and fast. Sensors will measure crisp input values (temperature and humidity). These are fuzzified-for each applicable fuzzy set, the membership grade is calculated. Next the rules are evaluated based on the fuzzy values. All the rules with fuzzy sets with membership grades greater than 0 are applicable. If there are multiple conditions in a rule, these are combined to get an overall rule strength. All the applicable rules are combined to produce a final fuzzy set that represents each applicable rule's effect on the action. Lastly, this new fuzzy set is defuzzified to produce a crisp output value-a fan speed like 325 revolutions per minute.

Linguistic variables

Hedges

Fuzzy fan controller

\section*{Fuzzify inputs}

Rule inferencing

To summarize, the steps are
- Fuzzify crisp inputs
- Find applicable rules
- Combine rules according to membership grades to produce output fuzzy set
- Defuzzify output fuzzy set to get crisp value

Now let's look at a fuzzy system in more detail. The inputs to the system are usually crisp values. In our example we'll have a temperature and humidity percentage. We compare these inputs with our fuzzy sets. For example, look at the following five fuzzy sets:

Given an input temperature of 71 degrees, we compare this value with our fuzzy sets and we see that it is within the fine and warm fuzzy sets. Computing the membership grades for these two fuzzy sets, we find that 71 degrees has a degree of membership of 0.5 in fine and 0.167 in warm. For all other temperature fuzzy sets, the membership degree is 0 .

Let's assume that there are three humidity fuzzy sets (low, medium, and high), and that the humidity is \(65 \%\), which has a 0.8 degree of membership in medium and 0.3 in high.

All the rule premises are examined one at a time. For example, suppose we have the following four fuzzy rules:
if the temperature is cool, then set the fan speed to slow
if the temperature is warm, then set the fan speed to fast
if the temperature is fine and the humidity is high, then set the fan speed to medium
if the temperature is warm or the humidity is medium, then set the fan speed to medium
The first rule is not satisfied because cool has a membership degree of 0 . The second rule applies, but the action (set the fan speed to fast) is weighted according to the membership degree of warm, 0.167 . The third rule has two conditions joined with an and. We use the minimum membership degree in this case. Seventy-one degrees has membership grade of 0.5 in fine and \(75 \%\) humidity is high with membership grade of 0.3 . We use the minimum value 0.3 to weigh the action (set the fan speed to medium). Lastly, the fourth rule has two conditions joined with or, so the maximum of the membership grades is used. The temperature's membership grade in warm is 0.167 and the humidity in medium is 0.8 . Thus the strength of this action (set the fan speed to medium) is 0.8 .

Each rule's actions take effect according to the degree of membership of the premise. The second rule specifies setting the fan speed to fast by \(16.7 \%\). The
third rule sets the speed to medium by \(30 \%\) and the fourth rule also sets the fan speed to medium, but by \(80 \%\). This percentage adjustment is performed by either multiplying the fuzzy sets by the percentage or by using the percentage as a cutoff on the fuzzy set. Here are the three fuzzy sets for the fan speed. The speeds are in revolutions per minute (RPM).

When the fuzzy sets are weighted, we get three new fuzzy sets that look like this:

\(30 \%\) medium

\(80 \%\) medium

\(16.7 \%\) fast

The final step in the evaluation of fuzzy rules is to combine the fuzzy sets produced by each rule into one fuzzy set. This is done by either summing all the fuzzy sets, or choosing the maximum value among each fuzzy set for each possible input, and constructing a new fuzzy set from that. We'll use the maximum method to get the following fuzzy set:

Most fuzzy systems need to produce a crisp value. In this case we want an amount for the fan speed. There are a number of schemes to do this. The most common technique is to find the center of mass or center of gravity of the fuzzy set and return the crisp value that corresponds to it. Another technique to defuzzify a fuzzy set is to choose the weighted average of the output values that yield the largest degree of membership values. This technique is called average of maximums. It is computationally simpler than the center of mass method, so we will use it. In the example above the fan speed with the largest membership grade for the medium fuzzy set is 200 RPM and 300 RPM for the fast fuzzy set. The weighted average is
\[
\frac{\sum_{1}^{n} \text { maxValue }_{i} \times \text { strength }_{i}}{\sum_{1}^{n} \text { strength }_{i}}
\]

In this example, it is
\[
\frac{200 \times 0.8+300 \times 0.167}{0.8+0.167}
\]

The result is 217.233 RPM.
Notice that the sum of the three membership grades (\(80 \%, 30 \%\), and \(16.67 \%\)) is greater than \(100 \%\). This would not be allowed in a probability system. With probability, the rule of extended middle says that the individual outcome probabilities of an event must not add up to greater than 1.0 or \(100 \%\). They must be exclusive of one another. Fuzzy logic systems do not have this restriction; they can and do overlap. Grade of membership should not be looked at as being the probability that a linguistic variable (e.g., fan speed) equals a certain crisp value (e.g., 200 RPM), but rather the possibility or degree of fit that the linguistic variable can take on that crisp value. In other words, it does not make sense to say that the probability that 57 degrees is cool is \(70 \%\) and the probability that 57 degrees is cold is \(40 \%\), because the probabilities of the possible outcome states must not exceed \(100 \%\). However, it is acceptable to say that 57 degrees feels \(70 \%\) cool, and at the same time it feels \(40 \%\) cold. This is what is meant by a possibility value in fuzzy logic.

\subsection*{16.2.2 History of fuzzy logic}

Fuzzy logic got its beginnings in the 1920s through the work of Jan Lukasiewicz in multivalued logic. In 1965, Lotfi Zadeh published a paper that laid the groundwork for fuzzy logic. Zadeh defined a working mathematics for fuzzy sets that provided a formalism upon which fuzzy systems could be built. Ten years later the first application of fuzzy systems, a fuzzy controller for a steam engine, was developed. The first major industrial application of fuzzy systems was established in 1982. This is a fuzzy expert system that controls the mixing and grinding of cement for a cement kiln. The most celebrated fuzzy system is a fuzzy controlled subway system that outperforms humans. It went into production in 1986 in Japan and has improved rider comfort and decreased ride times and running costs.

The number of fuzzy systems has grown dramatically in recent years. In 1986, there were eight commercial and industrial applications of fuzzy systems. That has more than doubled each year to reach 300 applications by 1991 and 1500 applications in 1993. Fuzzy systems are used mainly in control systems ranging from cars to commercial/industrial uses to household applications. In cars, fuzzy systems were first used for cruise controls in 1991. Now they are used in transmissions, brakes, and engines. Fuzzy controlled helicopters have been built that respond to voice commands to hover, turn, go up, and land. Video cameras use fuzzy logic for auto-focus, exposure settings, and anti-jitter stabilization. Fuzzy washing machines adjust the wash cycle using about ten rules. Fuzzy vacuum cleaners measure dust flow for energy savings. There are fuzzy microwave ovens, refrigerators, and even rice cookers. Fuzzy systems have been used to evaluate credit applications for lenders, estimate performance on the
stock market, and design plans for patients in hospitals.
To speed up fuzzy applications, custom microprocessors, or chips, have been built that process fuzzy rules (make fuzzy inferences). The first such fuzzy microprocessor built in 1985 could process 80,000 rules per second, or 0.08 million rules per second. Fuzzy chips are measured in terms of FLIPs, fuzzy logic inferences per second. In 1993, chips capable of 2 million FLIPs had been built. That corresponds to a performance increase of 25 times in speed in just eight years, or more than a doubling of performance every two years.

\subsection*{16.2.3 A fuzzy expert system in Scheme}

To build a complete fuzzy expert system, we need to represent fuzzy sets or membership functions, linguistic variables, hedges, and fuzzy rules. We must provide some type of inference engine that evaluates rules and determines fuzzy outcomes. Lastly, if we want to input or output crisp numbers, we'll need a way to fuzzify inputs and defuzzify outputs.

We've seen two different representations of membership functions, as lists of pairs or as functions. Membership functions are typically represented as functions modeling triangular or trapezoidal shapes (\(\Lambda\) and \(\Pi\) functions). This system will represent membership functions as functions that correspond to triangles. The input to such a function should be simple. We can represent a triangle as three numbers corresponding to the position on the x -axis where the triangle hits 0 and 1 membership degree values (in other words the left, middle, and right parts of the triangle). For example, to represent a triangle that is 0 below 40, reaches 1 at 60 , and then returns to 0 at 80 , we could use the three numbers 40, 60 , and 80.

The function that creates a triangular fuzzy set should return a function that we can plug crisp numbers into and get membership grade values back. For inputs below the left or above the right values, the function should return 0 . For values between left and right, the function should return a value corresponding to the input's height along the triangle.

In addition to computing membership grades, we will need to return the maximum value of a fuzzy set (the value that has a membership grade of 1). We'll need this when we defuzzify the final actions of the rules. We can use the ideas of message passing to do this. If we call the fuzzy set with the message max, it will return the middle value of the triangle.
```

; Create a function returning the membership grade of a crisp value.
(define (make-fuzzy-triangle left mid right)
(lambda (crisp-num)
(cond ((eq? crisp-num 'max) mid)
((or (< crisp-num left) (> crisp-num right)) 0)
((< crisp-num mid) (/ (- crisp-num left) (- mid left)))
(else (/ (- right crisp-num) (- right mid))))) )

```

To fuzzify a crisp number, we simply have to invoke the function that the fuzzy set represents with that crisp number. This is easily implemented as follows:

Fuzzy
microprocessors

\section*{Representing fuzzy} sets

Returning maximum of fuzzy sets

Working with fuzzy sets

\section*{Representing rules}

Representing the actual inputs into the rules

\section*{Evaluating rules}
```

; Fuzzify crisp-number based on fuzzy-set.
(define (fuzzify crisp-number fuzzy-set)
(fuzzy-set crisp-number))

```

Here is an example creating a fuzzy set for the fine temperatures:
```

(define fine (make-fuzzy-triangle 62 68 74))

```

Calling this new function with a temperature yields its membership grade:
```

> (fuzzify 71 fine)
0.5
> (fuzzify 61 fine)
0
> (fuzzifY 'max fine)
68

```

All of the details of the method outlined before are somewhat difficult to model, as the functions we are using are not continuous functions. They compute different functions depending on the range of inputs given. This makes it difficult to compute minimum, maximum, sums, and products of fuzzy sets. Computing the center of mass to defuzzify is rather difficult, as it involves computing integrals. However, if we don't produce a representation of the final output fuzzy set and we defuzzify our output using the average of maximums method instead of the center of mass method, we can avoid these problem areas.

Fuzzy rules can be represented in two parts in lists. The first element represents the condition of the rule. Each condition is a pair-a list of the linguistic variable and its fuzzy set value. Multiple conditions can be combined using and and or. The rest of the rule list is the rule's actions. It is a list of pairs of linguistic variables and their fuzzy set values. Here are two rules and their representations. Note: symbols beginning with "?" represent linguistic variables that will be replaced by actual input values when the rules are inferenced.
if the temperature is cool, then set the fan speed to slow
if the temperature is warm or the humidity is medium, then set the fan speed to medium
((?temperature cool) (?fan-speed slow))
((or (?temperature warm) (?humidity medium)) (?fan-speed medium))
The rules have variables that must be replaced with the actual crisp input values. We can create a variable to input value mapping that can be represented as an association list. Here is an example mapping of the temperature 71 degrees and the humidity \(75 \%\) :
((?temperature . 71) (?humidity . 75))
The next step is to sequence through the rules and get a list of all actions that apply, along with the corresponding degree to which they should be applied. Given a list of fuzzy rules, we want to find those with conditions that have been satisfied and the overall membership degree of the condition. We don't need the complete rules, only the actions and the membership degrees. Therefore, we'll
return a list of sublists with these values. Each sublist consists of a membership degree followed by the rule's actions. In addition, let's create two selector functions to get the condition and actions of the rules:
```

; Return the condition of a rule.
(define (condition rule)
(first rule))
; Return the actions of a rule.
(define (actions rule)
(rest rule))
; Return list of applicable actions and the degree to which they
; should be applied.
(define (outputs rule-list input-values)
(keep-if
(lambda (evaled-rule)
(not (zero? (car evaled-rule))))
(map (lambda (rule)
(cons
(membership-grade (condition rule) input-values)
(actions rule)))
rule-list)) )
The function membership-grade takes a condition and the input values and returns the overall membership grade:

```
```

; Return overall membership grade of condition based on input-values.

```
; Return overall membership grade of condition based on input-values.
(define (membership-grade condition input-values)
(define (membership-grade condition input-values)
 (cond ((eq? (car condition) 'and)
 (cond ((eq? (car condition) 'and)
 (apply min (map (lambda (clause)
 (apply min (map (lambda (clause)
 (membership-grade clause input-values))
 (membership-grade clause input-values))
 (rest condition))))
 (rest condition))))
 ((eq? (car condition) 'or)
 ((eq? (car condition) 'or)
 (apply max (map (lambda (clause)
 (apply max (map (lambda (clause)
 (membership-grade clause input-values))
 (membership-grade clause input-values))
 (rest condition))))
 (rest condition))))
 (else
 (else
 (fuzzify (cdr (assoc (first condition) input-values))
 (fuzzify (cdr (assoc (first condition) input-values))
 (second condition)))))
```

                (second condition)))) )
    ```

Let's test these functions. We'll create some fuzzy sets, rules, and inputs first: Testing our code
```

(define warm (make-fuzzy-triangle 70 76 82))
(define cool (make-fuzzy-triangle 54 60 66))
(define medium (make-fuzzy-triangle 69 74 79))
(define rule1 '((?temperature cool) (?fan-speed slow)))
(define rule2 '((or (?temperature warm) (?humidity medium))
(?fan-speed medium)))
(define input '((?temperature . 71) (?humidity . 75)))
> (membership-grade (condition rule1) input)
Error: Wrong type to apply: cool

```

The function cool is passed to fuzzify. This seems to be okay. Let's try some more explicit calls:
```

> (fuzzify (cdr (assoc (first (condition rule1)) input))
(second (condition rulel)))
Error: Wrong type to apply: cool
> (cdr (assoc (first (condition rule1)) input))
71
> (second (condition rule1))
cool
> (fuzzify 71 cool)
O

```

This probably seems strange unless you have figured out the bug. Calling fuzzify directly with the arguments 71 and cool works, but not when the arguments are evaluated based on rulel. The problem here is a subtle one. Here is a hint:
```

> (fuzzify 71 'cool)
Error: Wrong type to apply: cool

```

We managed to replicate the bug. The issue is the difference between a symbol and a function. Quoting cool returns the symbol cool, not the function. Without the quote, cool returns the function bound to the variable cool. Since rule1 is a quoted list, none of its elements are evaluated, so the cadar of rule1 is the symbol cool. There are two ways we can fix this. One is to define the rules using quasiquoted lists and evaluating the fuzzy sets like cool. A second way is to add an eval to the function membership-grade. We'll opt for that approach. Here is the new function membership-grade:
```

; Return overall membership grade of condition based on input-values.
(define (membership-grade condition input-values)
(cond ((eq? (car condition) 'and)
(apply min (map (lambda (clause)
(membership-grade clause input-values))
(rest condition))))
((eq? (car condition) 'or)
(apply max (map (lambda (clause)
(membership-grade clause input-values))
(rest condition))))
(else
(fuzzify (cdr (assoc (first condition) input-values))
(eval (second condition))))) )
> (membership-grade (condition rule1) input)
O
> (membership-grade (condition rule2) input)
0.8

```
```

> (outputs (list rule1 rule2) input)
((0.8 (?fan-speed medium)))

```

The final step is to take the outputs and their strengths and create a crisp output value for each output variable. To simplify that operation, we should make two changes to our list of actions. One is to break apart multiple actions from the same rule into different lists. Rules with multiple actions will yield lists like these:
```

((0.8 (?distance close) (?fan-speed medium))
(0.4 (?fan-speed medium) (?distance little-closer)))

```

These actions should be transformed into a simpler list, like this:
```

    ((0.8 ?distance close)
    (0.8 ?fan-speed medium)
    (0.4 ?fan-speed medium)
    (0.4 ?distance little-closer))
    ; Split multiple actions in action-list to list of single actions.
(define (transform action-list)
(if (null? action-list)
'()
(append
(map (lambda (action) (cons (caar action-list) action) )
(cdar action-list))
(transform (rest action-list)))) )

```

The second operation is to only keep the action with the largest strength when there are multiple actions with the same linguistic variable and fuzzy set. For example, given the above four actions
we would like to get the actions

This can be done by sequencing through the action list finding all actions that match the current first action. We should only compare the rests of the actions, ignoring the strengths. Given a list of matching actions, we form a new action using the largest strength in the list. Then we must recurse with a new action list
with all the actions we just processed removed. This can be done simply using using the largest strength in the list. Then we must recurse with a new action list
with all the actions we just processed removed. This can be done simply using set-difference.
```

((0.8 ?distance close)

```
((0.8 ?distance close)
 (0.8 ?fan-speed medium)
 (0.8 ?fan-speed medium)
 (0.4 ?fan-speed medium)
 (0.4 ?fan-speed medium)
 (0.4 ?distance little-closer))
```

    (0.4 ?distance little-closer))
    ```
```

((0.8 ?distance close)

```
((0.8 ?distance close)
 (0.8 ?fan-speed medium)
 (0.8 ?fan-speed medium)
 (0.4 ?distance little-closer))
```

    (0.4 ?distance little-closer))
    ```

Combining fuzzy actions to produce crisp outputs

Eliminating unnecessary actions
```

; Reduce duplicate actions to one with the largest strength.
(define (no-duplicates action-list)
(if (null? action-list)
'()
(let ((duplicates
(keep-if (lambda (action)
(equal? (rest action) (cdar action-list)))
action-list)))
(if (null? (rest duplicates))
(cons (first action-list)
(no-duplicates (rest action-list)))
(cons (cons (apply max (map first duplicates))
(cdar action-list))
(no-duplicates
(set-difference action-list duplicates)))))) )

```

Defuzzifying actions

Once we have the actions in this form, we can defuzzify them into crisp outputs. We'll use a method similar to that used in no-duplicates to get a list of actions with the same linguistic variable. Then we'll make a list of the variable name and its crisp value. This is done for each variable. To compute the crisp value we use the formula given previously-the sum of the products of the rule strengths and the maximum values of the fuzzy sets divided by the sum of the rule strengths. To get the maximum value of a fuzzy set, we call fuzzify with the message (symbol) max:
```

; Defuzzify actions in action-list returning crisp values.
(define (defuzzify action-list)
(if (null? action-list)
'()
(let ((same-var
(keep-if (lambda (action)
(equal? (second action)
(cadar action-list)))
action-list)))
(cons
(list
(second (first same-var))
(/ (apply + (map (lambda (action)
(* (first action)
(fuzzify 'max
(eval (third action)))))
same-var))
(apply + (map first same-var))))
(defuzzify (set-difference action-list same-var))))) )

```

We can try a contrived example to verify that these functions work. We'll use the fuzzy sets cool and warm that we defined previously. Their maximum values are 60 and 76 , respectively.
```

> (transform
'((0.8 (?x cool))
(0.3 (?y warm) (?x cool))
(0.6 (?x warm) (?y warm))
(0.4 (?y cool) (?x cool))))
((0.8 ?x cool) (0.3 ?y warm) (0.3 ?x cool) (0.6 ?x warm)
(0.6 ?y warm) (0.4 ?y cool) (0.4 ?x cool))
> (no-duplicates
'((0.8 ?x cool) (0.3 ?y warm) (0.3 ?x cool) (0.6 ?x warm)
(0.6 ?y warm) (0.4 ?y cool) (0.4 ?x cool)))
((0.8 ?x cool) (0.6 ?y warm) (0.6 ?x warm) (0.4 ?y cool))
> (defuzzify
'((0.8 ?x cool) (0.6 ?y warm) (0.6 ?x warm) (0.4 ?y cool)))
((?x 66.857) (?y 69.6))

```

Finally, let's put all the pieces together into one function that takes a list of fuzzy rules and an association list of input values and returns a list of crisp outputs:
```

; Evaluate rules using inputs to produce crisp results.
(define (fuzzy-eval rules inputs)
(defuzzify
(no-duplicates
(transform
(outputs rules inputs)))) )

```

An alternate inferencing technique comes from Takagi, Sugeno, and Kang. I will refer to this as the TSK method. Premises of rules with the TSK method are the same as was presented earlier, namely nonfuzzy inputs are compared to fuzzy sets. Crisp inputs are compared to fuzzy sets. In the case of multiple conditions in a rule, the membership degrees are multiplied together. This gives the rule strength. The outcomes of the rules do not produce fuzzy sets, but crisp values that are assigned to an output for each rule. This output is the sum of the products of the rule inputs and a collection of parameters. These parameters are adjusted as the rules are developed to produce a working set of rules.

Below are some example rules in TSK:
if temperature is high and humidity is low, then output \({ }_{1}=p_{0}^{1}+p_{1}^{1}\) temperature +
\(p_{2}^{1}\) humidity
if temperature is medium, then output \({ }_{2}=p_{0}^{2}+p_{1}^{2}\) temperature
where \(p_{0}^{1} \cdots p_{n}^{1}\) are the parameters to the first rule.

\subsection*{16.2.4 Fuzzy cheesecake}

Let's build a fuzzy logic system to bake a cheesecake. Our system will have two

\footnotetext{
\({ }^{1 .}\) Mike Clancy provided the inspiration for this problem, along with many delicious cheesecakes.
}

TSK inferencing and rules

Sample problem: baking cheesecake

\section*{Cheesecake rules}

Oven temperature
fuzzy sets

Knife cleanliness fuzzy sets
inputs: the temperature of the oven and the cleanliness of a knife that we insert into the cheesecake. If the knife comes out coated with cheesecake, then it's not ready. If it's clean, then the cake is ready. There are two outputs: the temperature at which the oven should be set, and the time interval between our measurements of the oven's temperature and the knife's cleanliness. We are assuming that we don't use a constant temperature and rely on the oven's thermostat to maintain it, as you normally would do when baking a cheesecake.

Here are the rules to the system. Fuzzy sets are in italics.
1) if the temperature is cool, turn the oven up a lot and wait a long time
2) if the temperature is warm, turn the oven up a little and wait a while
3) if the temperature is very hot, turn the oven down and wait a short time
4) if the temperature is hot and the knife is coated, keep the oven the same and wait a while
5) if the temperature is hot and the knife is slightly coated, keep the oven the same and wait a short time
6) if the knife is clean, turn the oven down and wait a short time

Here are the rules' Scheme equivalents:
```

(define rules '(
((?temperature cool) (?oven up-a-lot) (?wait long-time))
((?temperature warm) (?oven up-a-little) (?wait while))
((?temperature very-hot) (?oven down) (?wait short-time))
((and (?temperature hot) (?knife coated))
(?oven the-same) (?wait while))
((and (?temperature hot) (?knife slightly-coated))
(?oven the-same) (?wait short-time))
((?knife clean) (?oven down) (?wait short-time))))

```

We need four collections of fuzzy sets for the different linguistic variables. Here are four fuzzy sets for the temperature input. The numbers are in degrees Fahrenheit.

Here are three fuzzy sets for the knife input. The numbers are on a scale from 0 to 10 of cleanliness, where 0 is very clean and 10 is very coated.

```

(define clean (make-fuzzy-triangle -3 0 3))
(define slightly-coated (make-fuzzy-triangle 2 5 8))
(define coated (make-fuzzy-triangle 7 10 13))

```

Here are four fuzzy sets for setting the oven temperature. The numbers indicate the amount in degrees Fahrenheit that the temperature should be changed.

Change in oven temperature fuzzy sets

Wait time fuzzy sets

Here are three fuzzy sets for the time to wait between measurements. The numbers are in minutes.

```

(define short-time (make-fuzzy-triangle 0 2 4))
(define while (make-fuzzy-triangle 3 5 7))
(define long-time (make-fuzzy-triangle 6 8 10))

```

To make our fuzzy system more meaningful, we'll build a simulator that simulates the baking of a cheesecake. It will keep track of time and oven temperature and model the energy that goes into the cheesecake. This energy will determine when the cheesecake is done and affect the cleanliness of the knife being stuck in the cheesecake. This won't be an exact system and we'll make many simplifications. Using a cooking temperature of 350 degrees and a time of 30 minutes and multiplying these together, we create an energy amount of 10,500 . When the total energy exceeds \(10,500(350 \times 30)\), the cheesecake is done and the

Oven simulator
knife cleanliness reaches zero. The simulator will add a temperature change at each minute to a running energy total. This temperature change is limited to ten degrees each minute.

The process of simulation works as follows:
- Evaluate the fuzzy rules with the current inputs (temperature and cleanliness).
- Adjust the oven temperature according to the oven output variable.
- Wait until the wait output variable time has elapsed.
- During that wait time, model the temperature changes and energy to the cheesecake.
```

; Model the baking of a cheesecake using fuzzy rules given initial
; temp and energy. time counts the minutes.
(define (cheesecake rules temp energy time)
(if (zero? (done energy))
'eat
(let* ((output
(fuzzy-eval rules
'((?temperature . ,temp)
(?knife . ,(done energy)))))
(oven (second (assoc '?oven output)))
(wait (second (assoc '?wait output))))
(display `(fuzzy output: oven ,oven wait ,wait))
(newline)
(let* ((result (bake oven (+ time (truncate wait)) temp
energy time))
(new-temp (first result))
(new-energy (second result)))
(cheesecake rules new-temp new-energy
(+ time (truncate wait)))))) )

```
; Model baking a cheesecake until time equals stop-time. oven is
; the temperature change; temp and energy are the current
; temperature and energy levels.
(define (bake oven stop-time temp energy time)
 (if (>= time stop-time)
 (list temp energy)
 (let* ((temp-change
 (if (positive? oven) (min 10 oven) (max - 10 oven)))
 (new-energy
 (+ energy (/ (+ temp temp temp-change) 2))))
 (display '(time ,time temp ,(+ temp temp-change)
 energy, new-energy knife, (done new-energy)))
 (newline)
 (bake (- oven temp-change) stop-time (+ temp temp-change)
 new-energy (+ time 1)))))
```

; Helper function for cheesecake.
(define (baking rules oven-temp)
(cheesecake rules oven-temp 0 1))
; Compute the cleanliness of the knife as a number between 0 and 10.
(define (done energy)
(- 10 (min 10 (truncate (/ energy 1050)))))

```

Let's run the cheesecake simulator with an initial oven temperature of 300
Baking simulation degrees.
```

> (baking rules 300)
(fuzzy output: oven 25.0 wait 5.0)
(time 1 temp 310.0 energy 305.0 knife 10)
(time 2 temp 320.0 energy 620.0 knife 10)
(time 3 temp 325.0 energy 942.5 knife 10)
(time 4 temp 325.0 energy 1267.5 knife 9)
(time 5 temp 325.0 energy 1592.5 knife 9)
(fuzzy output: oven 0.0 wait 5.0)
(time 6 temp 325.0 energy 1917.5 knife 9)
(time 7 temp 325.0 energy 2242.5 knife 8)
(time 8 temp 325.0 energy 2567.5 knife 8)
(time 9 temp 325.0 energy 2892.5 knife 8)
(time 10 temp 325.0 energy 3217.5 knife 7)
(fuzzy output: oven 0.0 wait 2.0)
(time ll temp 325.0 energy 3542.5 knife 7)
(time 12 temp 325.0 energy 3867.5 knife 7)
(fuzzy output: oven 0.0 wait 2.0)
(time 13 temp 325.0 energy 4192.5 knife 7)
(time 14 temp 325.0 energy 4517.5 knife 6)
(fuzzy output: oven 0.0 wait 2.0)
(time 15 temp 325.0 energy 4842.5 knife 6)
(time 16 temp 325.0 energy 5167.5 knife 6)
(fuzzy output: oven 0.0 wait 2.0)
(time 17 temp 325.0 energy 5492.5 knife 5)
(time 18 temp 325.0 energy 5817.5 knife 5)
(fuzzy output: oven 0.0 wait 2.0)
(time 19 temp 325.0 energy 6142.5 knife 5)
(time 20 temp 325.0 energy 6467.5 knife 4)
(fuzzy output: oven 0.0 wait 2.0)
(time 21 temp 325.0 energy 6792.5 knife 4)
(time 22 temp 325.0 energy 7117.5 knife 4)
(fuzzy output: oven 0.0 wait 2.0)
(time 23 temp 325.0 energy 7442.5 knife 3)
(time 24 temp 325.0 energy 7767.5 knife 3)
(fuzzy output: oven 0.0 wait 2.0)
(time 25 temp 325.0 energy 8092.5 knife 3)
(time 26 temp 325.0 energy 8417.5 knife 2)
(fuzzy output: oven -25.0 wait 2.0)
(time 27 temp 315.0 energy 8737.5 knife 2)
(time 28 temp 305.0 energy 9047.5 knife 2)

```

\section*{Evaluation of simulation results}

New knife cleanliness fuzzy sets
```

(fuzzy output: oven -6.25 wait 3.125)
(time 29 temp 298.75 energy 9349.375 knife 2)
(time 30 temp 298.75 energy 9648.125 knife 1)
(time 31 temp 298.75 energy 9946.875 knife 1)
(fuzzy output: oven -10.874 wait 2.848)
(time 32 temp 288.75 energy 10240.625 knife 1)
(time 33 temp 287.876 energy 10528.938 knife 0)
eat

```

Let's examine the rules that fired during the simulation. Rule \#2 fired first which brought the oven up to 325 degrees, then rule \#4 fired once and rule \#5 fired eight times. The oven temperature remained constant here. Finally the knife became clean and rule \#6 fired which lowered the temperature by 25 degrees. This made the oven warm so rule \#2 fired next along with rule \#6, and the last two examples showed an interaction between two rules with the system moving toward some balance of temperature reduction and wait time.

There is very little interaction between the rules. Our problem is that the fuzzy sets are not overlapping enough to give interesting interactions. Instead we are invoking one rule at a time for the most part. Let's change the knife fuzzy sets so they have more overlap.

```

(define coated (make-fuzzy-triangle 6 10 14))
(define slightly-coated (make-fuzzy-triangle 1 5 9))
(define clean (make-fuzzy-triangle -4 0 4))

```

Second run
Running our simulator again produces the following output:
```

```
> (baking rules 300)
```

```
> (baking rules 300)
(fuzzy output: oven 25.0 wait 5.0)
(fuzzy output: oven 25.0 wait 5.0)
(time 1 temp 310.0 energy 305.0 knife 10)
(time 1 temp 310.0 energy 305.0 knife 10)
(time 2 temp 320.0 energy 620.0 knife 10)
(time 2 temp 320.0 energy 620.0 knife 10)
(time 3 temp 325.0 energy 942.5 knife 10)
(time 3 temp 325.0 energy 942.5 knife 10)
(time 4 temp 325.0 energy 1267.5 knife 9)
(time 4 temp 325.0 energy 1267.5 knife 9)
(time 5 temp 325.0 energy 1592.5 knife 9)
(time 5 temp 325.0 energy 1592.5 knife 9)
(fuzzy output: oven 0.0 wait 5.0)
(fuzzy output: oven 0.0 wait 5.0)
(time 6 temp 325.0 energy 1917.5 knife 9)
(time 6 temp 325.0 energy 1917.5 knife 9)
(time 7 temp 325.0 energy 2242.5 knife 8)
(time 7 temp 325.0 energy 2242.5 knife 8)
(time 8 temp 325.0 energy 2567.5 knife 8)
(time 8 temp 325.0 energy 2567.5 knife 8)
(time 9 temp 325.0 energy 2892.5 knife 8)
(time 9 temp 325.0 energy 2892.5 knife 8)
(time 10 temp 325.0 energy 3217.5 knife 7)
(time 10 temp 325.0 energy 3217.5 knife 7)
(fuzzy output: oven 0.0 wait 3.0)
(fuzzy output: oven 0.0 wait 3.0)
(time 11 temp 325.0 energy 3542.5 knife 7)
(time 11 temp 325.0 energy 3542.5 knife 7)
(time 12 temp 325.0 energy 3867.5 knife 7)
```

```
(time 12 temp 325.0 energy 3867.5 knife 7)
```

```
```

(time 13 temp 325.0 energy 4192.5 knife 7)
(fuzzy output: oven 0.0 wait 3.0)
(time 14 temp 325.0 energy 4517.5 knife 6)
(time 15 temp 325.0 energy 4842.5 knife 6)
(time 16 temp 325.0 energy 5167.5 knife 6)
(fuzzy output: oven 0.0 wait 2.0)
(time 17 temp 325.0 energy 5492.5 knife 5)
(time 18 temp 325.0 energy 5817.5 knife 5)
(fuzzy output: oven 0.0 wait 2.0)
(time 19 temp 325.0 energy 6142.5 knife 5)
(time 20 temp 325.0 energy 6467.5 knife 4)
(fuzzy output: oven 0.0 wait 2.0)
(time 21 temp 325.0 energy 6792.5 knife 4)
(time 22 temp 325.0 energy 7117.5 knife 4)
(fuzzy output: oven 0.0 wait 2.0)
(time 23 temp 325.0 energy 7442.5 knife 3)
(time 24 temp 325.0 energy 7767.5 knife 3)
(fuzzy output: oven -8.333 wait 2.0)
(time 25 temp 316.667 energy 8088.333 knife 3)
(time 26 temp 316.667 energy 8405.0 knife 2)
(fuzzy output: oven -12.5 wait 2.429)
(time 27 temp 306.667 energy 8716.667 knife 2)
(time 28 temp 304.167 energy 9022.083 knife 2)
(fuzzy output: oven -9.211 wait 2.882)
(time 29 temp 294.956 energy 9321.645 knife 2)
(time 30 temp 294.956 energy 9616.601 knife 1)
(fuzzy output: oven -10.699 wait 2.858)
(time 31 temp 284.956 energy 9906.557 knife 1)
(time 32 temp 284.257 energy 10191.163 knife 1)
(fuzzy output: oven -7.399 wait 3.056)
(time 33 temp 276.857 energy 10471.721 knife 1)
(time 34 temp 276.857 energy 10748.578 knife 0)
(time 35 temp 276.857 energy 11025.436 knife 0)
eat

```

Here we see much more interaction between the actions of the rules. The first two fuzzy outputs involve the same rules, but then we see interactions between rules \#4 and \#5 producing a wait time of three minutes. Then rule \#5 alone fires until the knife becomes clean, which happens earlier in this simulation than it did in the last simulation. The last five outputs involve interaction between combinations of rules \#2, \#5, and \#6, which result in nonlinear changes to the wait times and oven temperature changes.

Now let's change the oven temperature fuzzy sets and see what happens. Here are new fuzzy sets for the oven temperature with more overlap between the sets.

Evaluation of second run

New oven temperature fuzzy sets

Third run
The results with these new fuzzy sets and the new knife cleanliness fuzzy sets are shown below:
```

> (baking rules 300)
(fuzzy output: oven 25.0 wait 5.0)
(time 1 temp 310.0 energy 305.0 knife 10)
(time 2 temp 320.0 energy 620.0 knife 10)
(time 3 temp 325.0 energy 942.5 knife 10)
(time 4 temp 325.0 energy 1267.5 knife 9)
(time 5 temp 325.0 energy 1592.5 knife 9)
(fuzzy output: oven 8.333 wait 5.0)
(time 6 temp 333.333 energy 1921.667 knife 9)
(time 7 temp 333.333 energy 2255.0 knife 8)
(time 8 temp 333.333 energy 2588.333 knife 8)
(time 9 temp 333.333 energy 2921.667 knife 8)
(time 10 temp 333.333 energy 3255.0 knife 7)
(fuzzy output: oven 6.25 wait 3.0)
(time 11 temp 339.583 energy 3591.458 knife 7)
(time 12 temp 339.583 energy 3931.042 knife 7)
(time 13 temp 339.583 energy 4270.625 knife 6)
(fuzzy output: oven 3.049 wait 2.366)
(time 14 temp 342.632 energy 4611.733 knife 6)
(time 15 temp 342.632 energy 4954.365 knife 6)
(fuzzy output: oven 2.236 wait 2.268)
(time 16 temp 344.868 energy 5298.115 knife 5)
(time 17 temp 344.868 energy 5642.983 knife 5)
(fuzzy output: oven 1.352 wait 2.162)
(time 18 temp 346.221 energy 5988.528 knife 5)
(time 19 temp 346.221 energy 6334.749 knife 4)
(fuzzy output: oven 1.199 wait 2.144),
(time 20 temp 347.420 energy 6681.569 knife 4)
(time 21 temp 347.420 energy 7028.989 knife 4)
(fuzzy output: oven 0.831 wait 2.100)
(time 22 temp 348.251 energy 7376.825 knife 3)
(time 23 temp 348.251 energy 7725.076 knife 3)
(fuzzy output: oven -7.574 wait 2.101)
(time 24 temp 340.678 energy 8069.541 knife 3)

```
```

(time 25 temp 340.678 energy 8410.218 knife 2)
(fuzzy output: oven -12.060 wait 2.471)
(time 26 temp 330.678 energy 8745.896 knife 2)
(time 27 temp 328.617 energy 9075.543 knife 2)
(fuzzy output: oven -7.423 wait 2.899)
(time 28 temp 321.195 energy 9400.449 knife 2)
(time 29 temp 321.195 energy 9721.644 knife l)
(fuzzy output: oven -11.125 wait 2.832)
(time 30 temp 311.195 energy 10037.838 knife 1)
(time 31 temp 310.069 energy 10348.470 knife 1)
(fuzzy output: oven -7.628 wait 3.042)
(time 32 temp 302.441 energy 10654.725 knife 0)
(time 33 temp 302.441 energy 10957.166 knife 0)
(time 34 temp 302.441 energy 11259.607 knife 0)
eat

```

The first output involves rule \#2 only. All others are combinations of rule \#2 and other rules. The system increases the oven temperature gradually but less and less each time until the knife becomes clean. In the last five outputs the oven temperature changes oscillate between -7.423 and -12.060 . This is a nice example of control in a fuzzy system producing a state of relative equilibrium.

One interesting thing to note is that the cheesecake finished first in the last simulation. At 32 minutes the cheesecake energy exceeded 10,500 . The first simulation finished after 33 minutes and the second took 34 minutes. The third simulation finished first because the oven temperature was increased steadily until the knife was clean. The second simulation took the longest because the definition of a clean knife (the fuzzy set) was changed, so the fuzzy system started reducing the oven temperature earlier than the first simulation did.

\subsection*{16.2.5 Exercises}
16.1 Modify the cheesecake scenario so that the system stops once the cheesecake is done (i.e., the energy exceeds 10,500) even though there is more wait time in the system. Thus, the three examples would stop at 33, 34, and 32 minutes, respectively. You could do this one of three ways: modify the fuzzy sets dealing with wait times; add new wait time and knife cleanliness fuzzy sets and rules that use them when the cheesecake is almost ready; or modify the driver functions to exit when the energy exceeds 10,500 regardless of the amount of wait time left. Rate the three approaches in implementation difficulty and build a new cheesecake model using one of them.
16.2 Write functions that represent trapezoid or threshold membership functions (those staying at degree of membership 1 after reaching a point).
16.3 What happens in our fuzzy logic system if no rules are applicable? Modify the code so that it returns the symbol no-rules-apply in that case.

Evaluation of third run

Comparison of three trials
16.4 Create fuzzy sets and rules to model some realworld objects. Once you have created these, write a controller that evaluates the fuzzy rules and provides some feedback to the modeled object.
16.5 Modify the fuzzy system to allow hedges to be used in the rules. A hedge is a word or descriptor like very or more or less that modifies a fuzzy set. Assume that very squares the membership grades and that somewhat and more or less perform a square root on the membership grades. Think of some other hedges and mathematical operations that can be applied to the fuzzy sets that make sense given the semantics of the hedge.
16.6 It is possible to take the negation of a fuzzy set, for example, not tall. This is implemented by subtracting the fuzzy set from one. For example, look at the membership grades for the fuzzy sets tall and not tall.
\begin{tabular}{lll}
actual height & tall membership grade & not tall membership grade \\
\hline \(5^{\prime} 3^{\prime \prime}\) or less & 0 & 1 \\
\(5^{\prime} 6^{\prime \prime}\) & 0.25 & 0.75 \\
\(5^{\prime} 9^{\prime \prime}\) & 0.5 & 0.5 \\
\(6^{\prime}\) & 0.75 & 0.25 \\
\(6^{\prime} 3^{\prime \prime}\) or more & 1 & 0
\end{tabular}

Modify the fuzzy rule system so that it accepts negations of fuzzy sets.

\subsection*{16.3 Neural Networks}

Units and connection weights

Neural networks model the activity of neurons in brains. A neural network (or neural net) simulates a collection of neurons. These artificial neurons are called units or nodes. Units are highly interconnected with other units to various degrees of strength called connection weights. Neural networks take inputs and produce outputs acting like functions in Scheme. However, instead of having Scheme code that maps inputs to outputs, they compute the outputs by propagating information up through the network. The output is a function of the input and the weights inside the network. What makes neural networks interesting is the properties they share with brains: the ability to learn, generalize, categorize, and be robust in the face of changes to the network.

Neural nets are often called artificial neural networks, as they are artificial models of neurons. Connectionist models and parallel distributed processing systems are other names that have been used to describe neural networks. The differences are subtle for our level of understanding. In fact, many people tend to use the terms interchangeably.
Layers
Neural networks are typically organized in layers, where each layer consists of a group of units. Each unit in a layer is typically not connected to the units in that layer but is connected to all the units in the layers immediately above and below it. In some neural nets the units connect to units in additional layers as well. Look at the following diagram of a simple three-layer network.

Neural networks are made up of three types of units. Input units take values from outside the neural net and pass those values up to other units. Hidden units take inputs from input units or other hidden units and pass values to other units. Output units take input from input units (in two-layer networks) or hidden units (in three- or more layer networks) and pass values as the output result of the network.

The processing of information through a network is called propagation. Propagation begins with a collection of input values that are sent to the units of the first or input layer of the network. The other layers (hidden and output) are given new values in a different manner. All the inputs to each of these units are multiplied by connection weights and these products are summed together to make the net input to the unit. This is best understood with a diagram.

\section*{Types of units}

\section*{Propagation through networks}

\section*{Activation level and sigmoidal function}

Bias and thresholds

Propagation method and formula

Adjusting connection weights

The net input is converted to an activation level that will be used to produce the output value that the unit sends to the layer of units above it. This conversion typically involves a function that restricts the value of the activation level. A sigmoidal function does this, and drawn out, it looks like

We will use a sigmoidal function that restricts the activation level to be a value between zero and one. Positive net inputs are greater than 0.5 and negative inputs are less than 0.5 .

Some neural networks use a threshold function in which the unit does not send its activation level to other units unless it exceeds the threshold level. Another method is to use a bias value that is associated with each unit and is added to the net input to produce the total input to the unit. A negative bias reduces the inputs from lower units and a positive bias increases it. This acts very much like a threshold function.

When the unit has calculated its activation level, it is sent out to the units it is connected to in the layer above. The activation level is multiplied by each connection weight to the units above and these products are summed with the inputs from other units to form the net inputs to the next layer of units.

The following equation computes unit j's input, input \({ }_{j}\). We assume that this unit has \(n\) units that connect to it. Their activation levels are referred to as activation \(_{i}\). weight \(t_{j i}\) is the connection weight between \({u n i t_{i}}\) and unit \(t_{j}\) above.
\[
\text { input }_{j}=\sum_{i=1}^{n} \text { weight }_{j i} \times \text { activation }_{i}+\text { bias }_{j}
\]

Activation levels are positive numbers between zero and one. Biases and connection weights can be positive or negative and any size. A negative connection weight means that the connection between those two units is inhibitory. A positive weight makes an excitatory connection.

\subsection*{16.3.1 Learning in neural nets}

A neural network learns through a process of gradual adjustments of the connection weights between units. An increase in a connection weight means that a unit will send a larger value to the node it connects to via that connection weight. A decrease in the connection weight means a smaller value will be sent. Negative connection weights mean negative amounts will be sent that subtract from the net input to the node. Adjusting connection weights changes the effects that nodes have on one another and affects the final output of the network.

The two most common forms of learning are Hebbian learning and back propagation. Hebbian learning is a simple rule that strengthens the connection between nodes that are simultaneously excited (both have positive activation levels) and weakens connections between units that are simultaneously opposite (different activation levels).

Back propagation, or back-prop as it is often called, is a more complex type of learning. It reduces the error between the actual output of the network and the desired output by changing the connection weights and biases in such a way that they move slowly toward the correct values. Back-prop is so named because it works in the opposite fashion as the propagation of inputs to outputs we have already seen. Back-prop learning starts at the output nodes comparing the results obtained from forward propagation of inputs to outputs with the desired results. The connection weights and biases are adjusted relative to this difference. A big difference involves a bigger adjustment than a small difference.

Back-prop sequences down the network layer by layer using an error measurement calculated from the nodes above. For output units the error measurement is the difference between the actual output of that unit and the desired output value. For input and hidden units, this error measurement is the sum of all the error measurements in the layer above times the respective connection weights between the units.

It takes more than one change of connection weights and biases via back propagation for a network to learn. A training process happens in which a series of forward and back propagations take place. For each of these iterations the accuracy of the network is tested and the weights and biases are adjusted until the difference between outputs and desired results is within some tolerance.

Neural networks can be trained to learn a collection of patterns. There is an input set representing all the inputs and a target set representing all of the desired outputs. Each input is propagated through the network and back propagation is used to update the connection weights and biases. There are different schemes as to when back propagation is done and when the connection weights and biases are changed. Back-prop can be done after each input pattern is propagated through the network, and at each step new connection weights and biases can be calculated. In this scheme the inputs can be presented in a fixed order or they can be presented in a random order. Another approach is to delay the changing of connection weights and biases until all the input patterns have been presented. Then the sums of all the weight and bias changes are calculated and the network weights and biases are adjusted accordingly.

One of these learning schemes is used for each pass through the input set, an epoch. This entire process continues until the total or average of the differences between actual and desired outcomes is less than some threshold.

As a network learns it goes through a process of adjusting weights and biases, settling those values toward some optimum set of values. One can visualize this process as movement along a bumpy terrain. The goal is to go to the lowest spot in this terrain. However, there is always a danger of reaching a low spot that is not the overall low spot. A network can tend to get stuck here in this local

Hebbian learning

Back propagation learning

Training a network

Training methods

Learning failures

\section*{Failing to learn}

\section*{Overfitting}

\section*{Neural network} plusses

Contrast of fuzzy systems with neural networks

\section*{Symbolic versus subsymbolic systems}
minimum and only partially learn the desired patterns.
There is always a danger that a network cannot learn a collection of patterns. If the network is too small, i.e., it does not have enough hidden units, then it may not be able to learn a pattern just because it is impossible to construct the weights to get the desired outputs. For a simple example of this, imagine that two very similar input patterns are supposed to produce very different outputs. The learning steps conflict with one another so that as the network learns one pattern, it unlearns another. This can be remedied by modifying the network to incorporate enough hidden units or layers to allow the inputs to be differentiated. In general, adding more hidden units allows more complex or larger input sets to be learned. A network with more hidden units can often learn an input set faster (in less training epochs) than a a smaller network can.

There is a down side to using large numbers of hidden units. A large network tends to specialize, or overfit, learning its input-to-output mappings exactly. This reduces the network's ability to generalize, producing reasonable outputs given similar inputs to those on which it was trained. The features of neural networks are discussed in the next section.

There is a positive side to learning in neural networks. Neural networks usually don't unlearn all they have learned when they learn new information, especially when there is some reinforcement of their previous knowledge. This makes neural networks robust. They tend to have a degree of redundancy so if some weights change or even if some units are removed, the system can still perform close to its prior level. The human mind is similarly robust. As we learn new information, we still maintain old information. We don't forget much considering we loose thousands of neurons each day.

\subsection*{16.3.2 Comparing neural nets with other systems}

Neural networks, like fuzzy logic systems, take crisp inputs and produce crisp outputs. Both systems can deal with imprecise values or information and perform reasonably. However, the two systems work in very different ways. Fuzzy logic systems use rules and fuzzy sets that represent vague information. A fuzzy system is developed with general concepts in mind and adjusted to work with specific examples. Similar inputs will produce similar results because of the tolerance inherent in the system.

A neural network has features that tend to smooth out the rough edges that crisp values have. The sigmoidal function that collapses values and the bias that acts as a threshold factor both contribute to this tolerance for a degree of imprecision. Like fuzzy systems, a neural network will yield reasonable results given inputs with which it hasn't been trained but which are similar to trained patterns.

As fuzzy logic systems are contrasted with crisp systems, neural networks are contrasted with symbolic systems. Symbolic systems represent information as symbols, such as words like fish and eat, or query, which could be bound to
```

((interrogative what) (verb is) (noun Mike) (verb saying)
(prep-phrase (prep to) (article the) (noun computer)))

```

Neural nets are sometimes called subsymbolic systems. They work on a level that lies below symbols, dealing with entities that, when combined, can be looked at as more concrete values like symbols. Instead of a specific piece of a neural net representing information like a symbol does, information is distributed throughout many parts of the neural network. If a symbol's value changes, it can have a huge effect on a symbolic system. However, if one weight in a neural network changes, the system performs at about the same level.

Information in a neural network is maintained in a distributed fashion. Don't think of a neural network as a collection of nodes where each node represents a specific piece of information that you can label, such as the height of a person or the number of cars in a city. Instead look at information in a neural network as a certain pattern of activation levels in the nodes. These levels taken as a whole represent information. This is what is meant by information maintained in a distributed fashion. Since no one unit represents an entire fact or concept, neural networks have flexibility in that more than one combination of patterns may produce the same result. And as we've already seen, one network can be trained to learn a collection of patterns because the connection weights between the units each play a partial role in obtaining the final output. Generalization, categorization, handling incomplete inputs, and graceful degradation (performing well even after some of the internal structure has been changed) are all things that neural networks do well but that purely symbolic systems have difficulties with.

Let's look at the properties in which neural networks excel. Neural networks can generalize. Once trained, a network will produce similar outputs for patterns that are close to the learned patterns. If a network is exposed to related patterns during its training, it improves in its ability to generalize. A network is not limited to learning one collection of inputs that map to a particular output. It can learn multiple categories and then classify inputs. The input to a network may be incomplete. For example, if a network is used to recognize patterns of zeroes and ones, there may be a pattern in which we are unsure of some of the digits. Given enough of the input, the proper outcome may still be produced. Lastly, if a unit's weights change or if a unit is removed from a network, the other units and weights may be able to provide enough information to produce the proper results for the trained inputs.

The reason that networks can do these things is due to the distributed nature of the knowledge they maintain and the redundancy in the system. You can view each unit in the network as providing a piece of the eventual answer. If it is slightly wrong or even missing, the other pieces can make up for this because they perform redundant operations or they can make up for the one erroneous or missing piece. In a symbolic system redundancy is rarely built in. Each part is designed to do a specific task with a high degree of precision. There is no room for error; in fact, allowing for a margin of error is a difficult thing to incorporate in a symbolic system.

The artificial intelligence community has been in a raging debate for many years over symbolic versus subsymbolic techniques. Both approaches have their advantages and disadvantages. The debate goes on. In the end neither approach

\author{
Distributed knowledge
}

Properties of neural networks

Redundancy

Arguments supporting
subsymbolic systems

Arguments supporting symbolic systems

\section*{Perceptrons}

PDP group
may win out overall, but both may coexist, each suited for a particular class of applications. Here are some of the arguments for each approach.

The camp supporting neural networks argues that networks can learn any function given a large enough network and enough training sets. The resulting trained network will be able to generalize such that new or incomplete data can be presented to the network and correctly classified. Another advantage to neural nets is that one does not need to analyze the input in any way to custom order or tailor it, categorize it, or in any way understand it as one would have to do when building a decision tree, expert system, or fuzzy logic system.

The symbolic AI camp points out that neural networks don't always reach the best decisions (they get stuck in local minima when they learn), or they may never converge on a set of weights. Nets may overfit the data, meaning they represent the inputs more or less exactly and lose their ability to generalize or match incomplete inputs. Even when neural nets settle on a working set of weights, one cannot examine the weights and see how the network structured the training data to formulate its categorization. The opacity of the system prevents this. In many systems there is some degree of existing knowledge about the structure of the system to be modeled. It is difficult to represent this like one can in a symbolic system.

\subsection*{16.3.3 History of neural networks}

Research with neural nets began with Warren McCullogh and Walter Pitts in the early 1940s. They showed how networks could be used to make calculations. In the late 1940s Donald Hebb theorized that neural networks learned by changing their connection weights. Hebb's learning idea (now referred to as the Hebbian rule) was biologically plausible as well. Simply stated, in Hebbian learning the connection weight between two active units is strengthened.

In the early 1960s Frank Rosenblatt made very boastful claims about what could be done with perceptrons-a simple neural network that has only two layers. He essentially said that a perceptron could learn to perform any type of computation. In response to these strong claims, Marvin Minsky and Seymour Papert wrote a book called Perceptrons in 1969. Through rigorous mathematical proofs they showed the limitations of perceptrons. They proved that a perceptron couldn't even solve a problem as simple as an exclusive or (often abbreviated as XOR). \({ }^{2}\) Minsky and Papert challenged researchers to create a network that could solve this simple problem. Perceptrons all but shut down research in neural nets until the mid 1980s.

The resurgence of neural networks came about in large part due to the work of the PDP (Parallel Distributed Processing) group-a collection of researchers from U.C. San Diego, including David Rumelhart, James McClelland, Donald Norman, and many other researchers who now form a who's who list of neural

\footnotetext{
\({ }^{2 .}\) An exclusive or is a logical operation that is true if only one of its arguments is true and false if both are true or both are false.
}
net researchers and cognitive scientists. The group wrote a three-volume text that came with software to experiment with neural networks that had hidden layers and learning algorithms. They showed that with a single hidden layer, they were able to answer Minsky and Papert's challenge showing a very simple network that solves the XOR problem. We will now develop a neural network that solves this problem as well.

\subsection*{16.3.4 A neural network in Scheme}

To best see how neural networks work and get a deeper understanding of their abilities and limitations, we'll build a working model of a network that can learn. A neural network requires a great deal of iteration and this makes it an interesting problem, especially if we take advantage of the capabilities of the applicative operators. The techniques we will use are not the most efficient in terms of memory and speed. If you plan on using this system for large problems, you may consider rewriting it using vectors and destructive operators.

Our system will work with multilayer networks but our examples will be with a simple three-layer network. One layer will be an input layer, another a hidden layer, and the third will be the output layer.

There are many possible representations of a neural network. Nested lists will be the best structure to use to exploit the applicative operators. Each unit can be represented by its activation level (a real number). Each layer is represented as a list of activation levels of the units in that layer. The entire network is a list of layers. By breaking up layers into separate lists, it is easier to apply the output of a given unit to all the units in the next layer up. It will also be easier to implement the learning algorithm.

Connection weights can be represented as lists as well. Since we will need to reference all the weights that connect to each individual unit to sum up its collective inputs, it will be best to use a nested list structure, where each sublist contains all the connection weights between a given unit and the units in the layer below. The biases can be stored in a separate list or within the weight lists. It makes things a bit easier if biases are stored with the weights, especially when returning new weights and biases. The biases will be the first value in each unit's weight list and the weights will make up the rest of the list.

We will rely on mapping functions to multiply the outputs of units by their connection weights and to sum these products. As long as there is a one-to-one correspondence of units to connection weights, we don't have to worry about accessing individual weights by their positions in lists. We just sequence through elements of lists.

To get a more concrete idea of what the representation looks like and how it will be used, we'll create an example network. This sample network has three input units, four hidden units, and two output units. The numbers in the circles are the biases of the units. The numbers next to the arrows are the connection weights.

\section*{Representation of units}

\section*{Representing} connection weights and biases

\section*{Sample network}

And here is the data representation we can use to model this network:
inputs values:
(0.7 0.4 0.6)
connection weights and biases for hidden units:
\[
\left.\begin{array}{l}
((.42-.25 \\
(.17 \\
(.24
\end{array} .23 \quad .14 \quad .34\right)\left(\begin{array}{llllll}
(-.37 & -.20 & .15 & .37)
\end{array}\right)
\]
connection weights and biases for output units:
\[
((-.57 \quad .54-.77-.67 \quad .45)(.47 \quad .57 \quad .74-.63 .49))
\]

The activation levels of the input layer are set to the inputs. Once we have the activation levels of the input layer, we can compute the outputs that the units in this layer will send up to the next layer. A threshold function is sometimes used that does not send an output unless it is greater than some threshold. We will leave this out and always send the activation level as the output for our neural network.

\section*{Computing net inputs}

To compute the net input to units in subsequent layers, we must combine the outputs from all the units in the layer below, multiplying each by the connection weight that joins them. This sum is added to the bias of that unit to get the total input to the unit. For example, the total input to unit 7 is calculated as follows:
```

> (+ . 69 (apply + (map * '(.7 . 4 . 6) '(. 28 -. 13 -. 33))))
.636

```

Notice that both lists supplied to map are the same length and that the activation of unit \(1,0.7\), is multiplied by 0.28 , the connection weight between unit 1 and unit 7 , and so on for the other units in the input layer.

Let's generalize this to create a function that computes the total input for a hidden or output unit:
```

; Return weighted sum of inputs to a single unit plus bias.
(define (total-input inputs weights)
(+ (car weights) (apply + (map * inputs (cdr weights)))) )

```

To compute the activation levels of hidden and output layers, we apply the limiting sigmoidal function to the total input to the unit. The sigmoidal function looks like this:
\[
\text { output }_{i}=\frac{1}{1+e^{- \text {totalllnput }_{i}}}
\]

This can be expressed in Scheme with the following function:
```

; Apply the limiting sigmoidal function that restricts the total
; input to be a value between 0 and 1.
(define (sig total-input)
(/ 1 (+ 1 (expt 2.71828 (- total-input)))) )
>(sig (total-input '(.7 . 4 .6) '(. 69 . 28 -. 13 -. 33)))
. }65

```

The following function computes the activation levels for all the nodes within a layer. The second parameter, layer-weights, represents a list of connection weights for a given layer in the network. It will be a list like the two shown above for hidden or output layer connection weights.
```

; Return list of activations to nodes in a layer.
(define (act-layer inputs layer-weights)
(map (lambda (weights) (sig (total-input inputs weights)) )
layer-weights) )

```

Lastly, we need to propagate activation levels up through all levels of the network starting with inputs to the network. The inputs are passed directly to the input units as their activation levels. Further levels are computed using actlayer. A recursive solution works best. Each pass through the recursion computes the activation levels of one layer. We'll need two pieces of information: the weights for all layers of the network and the inputs to the current layer. The weights, all-weights, is simply a list of the weights for each layer, which, as shown above, are lists of sublists with weights for each unit. The first item in all-weights is the weights between the input layer and the next layer of the network.

The parameter acts is a list of the activation levels to be propagated to the next level. The input for each layer (other than the first) is the output of the previous layer (the activation levels of that layer). As the activation level is computed

Computing activation levels

Computing activation levels for entire layers

Propagating activation throughout the network

Implementing backprop

Weight change formula

Learning rate and momentum
for each layer, it is passed on as the input to the next layer in each recursive call. When the list all-weights is empty, acts contains the activation levels of the output units.
```

; Return a list of the activation levels in a network beginning with
; the input layer.
(define (propagate all-weights acts)
(if (null? all-weights)
(list acts)
(cons
acts
(propagate
(rest all-weights)
(act-layer acts (first all-weights))))) )

```

Using the weights, biases, and input from the previous picture, we can call propagate to compute the activation levels for the network:
```

(define weights '(
((. 42 -. 25 . 17 . 30) (-. 37 -. 20 . 15 . 37)
(.24 . 23 . 14 . 34) (.69 . 28-. 13 -. 33))
((-.57 . 54 -. .77 -. . 67 .45) (.47 . 57 . . 74 -. .63 .49))))
(define input '(.7 .4 .6))
> (propagate weights input)
((.7 .4 .6) (.621 . 443 . 659 . 654) (. . 327 . 742))

```

The output from this network is 0.327 and 0.742 . The next step is to train the network to produce different outputs. Suppose we would like the network to produce 0.4 and 0.9 , given the same inputs and initial weights. Through the process of back propagation (back-prop), we can slowly adjust the weights and biases to get the desired outputs.

We won't explain the mathematical derivations of the formulas that backprop uses. If you are interested in the math, the first volume of the PDP books (see the reference section) gives a good explanation.

The change in weights of any node in a network is computed using the following formula:
\[
\begin{aligned}
\text { weightChange }_{i j}= & \text { learningRate } \times \text { errorSignal } \times \text { output }_{j} \\
& + \text { momentum } \times \text { old Weight Change }_{i j}
\end{aligned}
\]

The subscript \(i j\) denotes the weight between \(u_{n i t}{ }_{i}\) and \(u n i t_{j}\), where \(u n i t_{i}\) is in the layer above unit \(j_{j}\). The learningRate is the speed at which learning takes place. The larger the value of the learning rate, the greater the weights change. However, using a learning rate that is too big can cause the weights to bounce around too much and never converge on a solution. Using 0.5 or 0.25 is a safe starting point for a learning rate. The momentum term allows the old weight change to play a role in determining the new weight change. This tends to smooth out oscillations that sometimes occur as the weights move toward the proper values. This term is optional, but with it learning speeds up a lot. A good start value for momentum is 0.9 . Since the learning rate and momentum terms are constants through the
back-prop process, we'll make them global variables rather than pass them to a series of functions.
```

(define learn-rate 0.5)
(define momentum 0.9)

```

The error signal represents the difference between the value that the unit should have to produce the output and the actual value it has. errorSignal is the error signal of the unit in the upper layer. output \({ }_{j}\) is the output of the unit in the lower layer. The error signal of an output unit is the product of two values. The first is the difference between the output we want (the target) and the output we get from propagating the input through the network. The second value is the derivative of the sigmoidal function with respect to its input, which is
\[
\text { output }_{i}\left(1-\text { output }_{i}\right)
\]

The error signal of output unit \(i\) is
\[
\text { errorSignal }_{i}=\left(\text { target }_{i}-\text { output }_{i}\right) \text { output }{ }_{i}\left(1-\text { output }_{i}\right)
\]

The error signal of a hidden unit is the sum of all the error signals of the units in the layer above multiplied by their connection weights, all multiplied by the derivative of the activation (sigmoidal) function. For unit \(j\), the error signal is
\[
\text { errorSignal }_{j}=\text { output }_{j}\left(1-\text { output }_{j}\right) \sum_{i=1}^{n} \text { errorSignal }_{i} \times \text { weight }_{i j}
\]

The change in a bias is very similar to the change in a weight. It is
biasChange \(_{i}=\) learningRate \(\times\) errorSignal \({ }_{i}+\) momentum \(\times\) oldBiasChange \({ }_{i}\)
Back propagation begins with the weights connecting the output nodes and moves down layer by layer, ending at the bottom hidden layer's weights. Each hidden layer uses the error signal in the layer above in determining the change in weight. Since we'll need the error signals to compute both the weight change within a layer and the error signals in the layer below, we'll write a function that computes the error signals of a layer and returns them in a list. The output layer's error signals are computed as follows. targets is a list of the desired outputs and outputs is a list of the actual outputs from the network.
```

; Compute error signals for output layer units.
(define (error-sig-output targets outputs)
(map (lambda (target output)
(* (- target output) output (- 1 output)) )
targets outputs) )

```

One important consideration to make is that the weights are accessed differently when doing forward propagation through the network versus backward propagation. In forward propagation when we calculate the total input to a hidden or output layer, we are looking at the weights that feed into that layer from below. With back-prop we are examining the weights that go to the layer above. To make it easier to write the code for back-prop, we should transpose the weights so they are structured as lists of weights to the above layer. We can leave out the biases, as they are not used in computing error signals or bias change values. Looking back at the picture of the network for this example, what we

Error signal

Change in bias

Computing error signals for output layers

Transposing weights

Computing error signals for hidden layers

Performing back propagation
need is a list that looks like the following:
```

(((.54 . 57) (-.77 .74) (-.67 -. 63) (.45 .49))
((-. 25-. 20 . 23 . 28) (.17 . 15 . 14 -. 13) (. 30 . . 37 . . 34-.33)))

```

The first sublist is a list of the weights that extend above the units in the highest hidden unit to the units in the output unit. To form such a list, we can write a function that transposes the weights and removes the biases. Look at the current form of the weights and biases: ((\(.42-.25\). 17 .30) (-. \(37-.20\). 15 .37)
(. 24 . 23 . 14 .34) (. \(69.28-.13-.33\)))
((-. 57 . \(54-.77-.67 .45)(.47 .57 .74-.63\).49)))
If we map list across all the weights in each unit of a layer, we will form new lists of the first elements in each list, the second elements, and so on. Since the weight sublists are in lists for each layer and the number of these sublists varies, the easiest way to construct this mapping is by using apply with the list of the weight sublists. The one trick here is that the function list must be inserted into the list that apply will call map with. Another mapping will perform this operation for each layer and will remove the biases. Lastly, we want the weights of the uppermost hidden layer first, so we must reverse the final list we get. The following function does all of this:
```

; Transpose the weights for back-prop.
(define (transpose weights)
(reverse
(map (lambda (layer) (cdr (apply map (cons list layer))) )
weights)) )

```

Testing this function, we get the following result:
```

> (transpose weights)
(().54 . 57) (-.77 .74) (-.67 -. 63) (.45 .49))
((-.25 -. 20 . 23 . 28) (.17 . 15 . 14 -. 13) (. 30 . 37 . . 34 -. .33)))

```

For hidden layers the error signal is a function of the weights feeding out of the layer, layer-weights, the error signals in the layer above, error-signals, and the outputs of the units in the layer, outputs.
```

; Compute error signals for hidden layer units.
(define (error-sig-inner error-signals layer-weights outputs)
(map (lambda (output weights)
(* (apply + (map * error-signals weights))
output (- 1 output)) )
outputs layer-weights) )

```

The process of back propagation involves computing the error signal of the output nodes and then passing those values down through the network to calculate the error signals in the lower layers. As the error signals are calculated, the change in weights and biases can be determined. The function back-prop calls error-sig-output to determine the error signals of the output layer and passes those values to descent, which moves down through the network calculating error signals and changes in connection weights and biases. The arguments to back-prop are the desired outputs, targets, the actual outputs from propagate,
the transposed weights, trans-weights, and the prior weight and bias changes, old-changes. To facilitate updating the weights and biases, back-prop should return the weight and bias changes in the form of the original weights and biases (i.e., not as a transposed list).
```

; Perform back propagation on a network and returns a list of weight
; and bias changes in the form of the original weights and biases.
(define (back-prop target outputs trans-weights old-changes)
(if (null? outputs)
'no-outputs
(reverse
(descent (error-sig-output target (first outputs))
(rest outputs) trans-weights old-changes))) )

```

The function descent recurses through the network a layer at a time, initially being called with the topmost hidden layer. It calls calc-weights to compute the changes in weights connecting the current layer to the one below it. Then it recurses with the error signals of the next layer and continues to compute weights for the layers below. descent returns a list of the connection weight and bias changes.
```

; Recurse through a network to compute error signals and return
; connection weight and bias changes.
(define (descent error-signals outputs trans-weights old-changes)
(if (null? outputs)
'()
(cons (calc-weights error-signals (first outputs)
(first old-changes))
(descent (error-sig-inner error-signals
(first trans-weights) (first outputs))
(rest outputs) (rest trans-weights)
(rest old-changes)))) )

```

Calculating the change in connection weights and biases is a straightforward process, given the error signals and the inputs to the units in a layer. We'll use a nested loop where the outer loop handles each node in the layer and the inner loop calculates a weight change for each input going into the node.
```

```
; Compute change in connection weights and biases for all units in
```

```
; Compute change in connection weights and biases for all units in
; one layer. inputs are the activation levels of the units in the
; one layer. inputs are the activation levels of the units in the
; layer below.
; layer below.
(define (calc-weights error-signals inputs old-change)
(define (calc-weights error-signals inputs old-change)
 (map (lambda (error change)
 (map (lambda (error change)
 ; insert new bias change
 ; insert new bias change
 (cons (+ (* learn-rate error) (* momentum (car change)))
 (cons (+ (* learn-rate error) (* momentum (car change)))
 (map (lambda (input old-weight-change)
 (map (lambda (input old-weight-change)
 (+ (* learn-rate error input)
 (+ (* learn-rate error input)
 (* momentum old-weight-change)))
 (* momentum old-weight-change)))
 inputs (cdr change))))
 inputs (cdr change))))
 error-signals old-change))
```

```
 error-signals old-change))
```

```

Back propagation through the network

Weight and bias changes for a single layer

Computing new
weights and biases

Proper learning

Test if finished

Implementing a training function

Once the change in weights and biases is determined, we must calculate new connection weights and biases. This is fairly straightforward with a nested loop that adds the appropriate change values to the current weights and biases.
```

; Add the new weight and bias changes to the current weights and
; biases and returns the new weights and biases.
(define (update old-weights weight-change)
(map (lambda (weight-layer change-layer)
(map (lambda (weight-unit change-unit)
(map + weight-unit change-unit) )
weight-layer change-layer) )
old-weights weight-change) )

```

That concludes the process of adjusting weights and biases. But back-prop only does a single pass that makes a very small adjustment. If the system makes large adjustments, it can easily overshoot the goal or worse yet, it may undo (or forget) information that it learned earlier because the weights and biases were adjusted so dramatically. The key to learning in a neural network is to make small adjustments and iterate through back propagation many times until the output of the network is within some tolerance of the targets.

To determine when an output has been learned, we'll call avg-square-test, which takes the actual outputs and the desired targets and returns true if they are close enough. If the average of the squares of the differences of the actual and desired outputs is less than .05 squared (.0025), it returns true.
```

; Test if outputs are close enough to target values.
(define (avg-square-test outputs targets)
(< (/ (apply + (map (lambda (outcome desired)
(expt (- outcome desired) 2) )
outputs targets))
(length outputs))
0025) )

```

We will create a function that learns to produce outputs from inputs. This function takes a list of input patterns, input-set, and a list of corresponding output patterns, target-set, and trains the network to learn all of them. This input and output set is called a training set. Once the network has learned the training set, it returns the final connection weights and biases and the number of iterations through the training set, epochs, it took to learn. To observe the learning process, we will display the inputs and corresponding outputs from the network and indicate which inputs have been learned. A parameter frequency controls how often this information is displayed.

Our training function will need seven parameters altogether: the input set; the target set; the initial weights and biases; the prior weight and bias changes; learn-func, a function that controls the order in which back-prop is applied to the input set and when the weights are updated; frequency, how often output values are displayed; and the epoch counter. We'll use a helper function that only takes five of these values and sets the old weights and bias changes and the current epoch to zero.

To create a set of weight and bias changes equal to zero, we'll use the function net-change that returns a new network with each unit adjusted according to the function passed as an argument.
```

; Return new network with units changed according to func.
(define (net-change func weights)
(map (lambda (layer)
(map (lambda (unit) (func unit) ) layer) )
weights) )

```

Creating the function net-change is an example of programming abstraction. We could have created a function that only returns a network with weights and biases equal to zero. But with net-change we can do much more than this. For example, we can call net-change with car to get a list of biases in a network or with cdr to get a list of weights alone.

Here is the code to teach a network a training set. Pay close attention to how learn-func is used. It is passed the entire training set and calls back-prop to get weight and bias changes. Different variations on learn-func will vary the order in which the training set is processed and when the weights and biases are updated. In addition to returning the new weight and bias values, learn-func must return the most recent weight and bias changes.
```

; Helper function for trainer.
(define (train input-set target-set weights learn-func frequency)
(trainer input-set target-set weights
(net-change (lambda (unit)
(map (lambda (weight) 0) unit) ) weights)
learn-func frequency 0) )
Given training set of inputs and targets, initial weights and
biases, old weight and bias changes, learning function, display
frequency, and epoch counter - return the number of epochs to
train and the new connection weights and biases after learning.
; Print outputs each frequency epochs.
(define (trainer input-set target-set weights old-changes
learn-func frequency count)
(let* ((act-set
(map (lambda (input)
(reverse (propagate weights input)) )
input-set))
(output-set (map first act-set)))
(if (zero? (remainder count frequency))
(print-outputs count input-set output-set target-set))
(if (every avg-square-test output-set target-set)
(list count weights)
(let* ((results (learn-func target-set act-set weights
old-changes))
(weights (first results))
(changes (second results)))
(trainer input-set target-set weights changes
learn-func frequency (+ count 1))))) )

```

Initializing weight and bias changes

Programming abstraction

\section*{Printing outputs}

Different learning functions

The function below prints the current outputs:
```

; Print the current output value for each input and indicate if
; that input has been learned.
(define (print-outputs count input-set output-set target-set)
(display count)
(newline)
(for-each (lambda (input output target)
(display input)
(display " -> ")
(display output)
(display " learned: ")
(display (avg-square-test output target))
(newline) )
input-set output-set target-set) )

```

The following functions can be passed to trainer as learning functions. They vary in the order they call back-prop with the inputs in the training set and in the time the weights and biases are updated. adjust-during processes inputs in the order they occur in the training set and updates the weight and bias changes after each call to back-prop. \({ }^{3}\) adjust-after processes inputs in the order they occur in the training set and accumulates the weight and bias changes and does not adjust the weights or biases until all inputs have gone through back-prop with the original weights and biases.
```

; Pass through the target set and actual outputs using back-prop
; and adjust the weights after each call to back-prop.
(define (adjust-during target-set output-set weights old-changes)
(if (null? target-set)
(list weights old-changes)
(let ((changes (back-prop (first target-set)
(first output-set) (transpose weights)
(reverse old-changes))))
(adjust-during (rest target-set) (rest output-set)
(update weights changes) changes))) )
; Pass through the target set and actual outputs using back-prop
; and adjust the weights after the entire epoch is complete.
(define (adjust-after target-set output-set weights old-changes)
(after target-set output-set (transpose weights) weights
old-changes))

```

\footnotetext{
3. Technically, there is a slight bug in trainer when used with adjust-during: propagate is called with the original weights instead of the updated weights. I fixed this and found that with the exclusive or problem, it takes a few more epochs to reach an answer with this "fixed" code. Since the difference is so slight and the code is less efficient because propagate is called extra times, I opted to leave the code with this slight bug.
}
```

(define (after target-set output-set trans-weights new old-changes)
(if (null? target-set)
(list new old-changes)
(let ((changes (back-prop (first target-set)
(first output-set) trans-weights
(reverse old-changes))))
(after (rest target-set) (rest output-set) trans-weights
(update changes new) changes))) )

```

Rather than assign initial weights and biases, most networks begin with randomly chosen values. Here are functions to create random weights and biases, given the configuration of the network (the number of nodes in each layer):
```

; Given a description of a network - a list of numbers indicating
; how many nodes are in each layer beginning with the input layer,
; return a list of random initial connection weights and biases.
(define (random-net net-desc)
(if (or (null? net-desc) (null? (cdr net-desc)))
'()
(cons (make-layer-weights (car net-desc) (second net-desc))
(random-net (cdr net-desc)))) )
; Return random weights and biases for a layer in a network.
(define (make-layer-weights nodes-below nodes-above)
(make-list nodes-above
(lambda (n) (bias-\&-weights nodes-below) )) )
; Return random bias and weights for a node in a network.
; The values are in the range -1 to 1.
(define (bias-\&-weights num-nodes)
(make-list (+ num-nodes 1)
(lambda (n) (- (/ (random 1000) 500) 1) )) )
; Make a list of num-items elements with values based on func.
(define (make-list num-items func)
(do ((num num-items (- num 1))
(new-list '() (cons (func num) new-list)))
((<= num 0)
new-list)) )

```

Now we can demonstrate learning in a neural network. We'll train the network we defined earlier to learn the outputs 0.4 and 0.9 . Here are the current weights and biases:

Let's save the activation levels after propagating the inputs \(0.7,0.4\), and 0.6 through the network.
```

(define out (propagate weights '(.7 .4 .6)))

```

Creating networks with random weight and bias values

Learning trials
```

> weights

```
> weights
(((.42 -. 25 . 17 . 30) (-. 37 -. 20 . 15 . 37)
(((.42 -. 25 . 17 . 30) (-. 37 -. 20 . 15 . 37)
 (.24 . 23 . 14 . 34) (.69 . . 28 -. 13 -.33))
 (.24 . 23 . 14 . 34) (.69 . . 28 -. 13 -.33))
 ((-.57 . 54 -. 77 -. 67 .45) (.47 . 57 . 74 -.63 .49)))
```

    ((-.57 . 54 -. 77 -. 67 .45) (.47 . 57 . 74 -.63 .49)))
    ```

\section*{Training cases}

Turning momentum off

These activations are
```

> out
((.7 .4 . 6) (.621 . 443 . 659 . 654) (. . 327 . 742))

```

Now we can call back-prop to get the weight and bias changes after one epoch. The activation levels from propagate must be reversed for back-prop and the weights must be transposed. The prior weight and bias changes must be initialized to zero, which is what the call to net-change does. This list must be reversed as well.
```

> (back-prop '(.4 .9) (reverse out) (transpose weights)
(reverse (net-change
(lambda (unit)
(map (lambda (weight) 0) unit)) weights)))
(().003054 .002138 .001222 .001833)
(.001226 .000858 .000490 .000736)
(-.003353 -.002347 -.001341 -.002012)
(.002498 .001749 .000999 .001499))
((.008073 .005012 .003578 .005324 .005279)
(.015114 .009383 .006699 .009967 .009882)))

```

The weight and bias changes are very small. Now let's call train to iterate through many epochs until the network has learned. We must list the input and target because train takes input and target sets to learn multiple patterns. The last two arguments specify the method with which the weights and biases should be adjusted and the frequency with which epochs should be displayed. We'll adjust the weights after each pattern and print out the outputs after each epoch.
```

> (train '((.7 .4 .6)) '((.4 .9)) weights adjust-during 1)
0
(.7 . 4 . 6) -> (. 327 . 742) learned: \#f
1
(.7 .4 .6) -> (.331 . 750) learned: \#f
2
(.7 .4 .6) -> (.340 . 763) learned: \#f
3
(.7 .4 .6) -> (.352 . 780) learned: \#f
4
(.7 .4 .6) -> (.367 . 800) learned: \#f
5
(.7 .4 .6) -> (.383 . 819) learned: \#f
6
(.7 .4 .6) -> (.399 . 838) learned: \#t
(6 (().466 -. 218 . 188 . 327) (-. 351 -. 187 . 158 . 382)
(.193 . 197 . 121 . 312) (.728 . 306 -. .115 -. 307))
((-.454 . 612 -. 718 -. 594 . 526) (. 690 . 707 . . 388 -. 486 . 635))))

```

The targets are learned after six epochs. It's easy to see how the output values slowly move toward the targets. Notice that the changes increase in magnitude from the initial epoch's changes. This is the effect of the momentum term. To see how much longer it takes to learn without the momentum term, let's turn it off.

We will reduce the amount of output by using a larger frequency, 100 .
```

(define momentum 0)
> (train '((.7 . 4 . 6)) '((.4 .9)) weights adjust-during 100)
0
(.7 .4 .6) -> (.327 . 742) learned: \#f
(23 (().462 -. 220 . 187 . 325) (-. 349 -. 185 . 158 . 382)
(.200 . 202 . 124 . 316) (.725 . 305 -. 116 -. 309))
((-.472 . 602 -. 726 -. 606 . 515) (.671 . 697 . 830 -.499 . 623))))

```

With no momentum term the learning slowed down by about a factor of four.
Let's try some larger examples that require learning multiple patterns. We'll
XOR trials start with exclusive or, XOR. First let's reset the momentum term and create a random network with two input nodes, two hidden nodes, and one output.
```

(define momentum 0.9)
(define w (random-net '(2 2 1)))
> W
(((-.536 -. 712 -. 126) (-. 352 -. 734 .086)) ((.604 -. 994 -. 796)))

```

The input and target sets consist of 0 s and 1 s corresponding to logical false and true. Since 0 and 1 are the extreme values of a node's activation, learning these values is time-consuming. We can speed things up by using 0.1 as 0 and 0.9 as 1 .
```

> (train '((0.1 0.1) (0.1 0.9) (0.9 0.1) (0.9 0.9))
'((0.1) (0.9) (0.9) (0.1)) w adjust-during 100)

```
0
(.1 .1) -> (.485) learned: \#f
(.1 .9) -> (.487) learned: \#f
(.9 .1) -> (.540) learned: \#f
(.9 .9) -> (.541) learned: \#f
100
(.1 .1) -> (.275) learned: \#f
(.1 .9) -> (.577) learned: \#f
(.9 .1) -> (.578) learned: \#f
(.9 .9) -> (.621) learned: \#f
200
(.1 .1) -> (.181) learned: \#f
(.1 .9) -> (.713) learned: \#f
(.9 .1) -> (.713) learned: \#f
(.9 .9) -> (.408) learned: \#f
(266 (() \(2.715-6.175-6.159)(4.644-3.452-3.451))\)
 ((-2.853-6.735 6.460))))

After 266 epochs XOR is learned. Let's test the other learning method, which adjusts the weights and biases after each epoch:
```

> (train '((0.1 0.1) (0.1 0.9) (0.9 0.1) (0.9 0.9))
'((0.1) (0.9) (0.9) (0.1)) w adjust-after 100)
0
(.1 .1) -> (.485) learned: \#f
(.1 .9) -> (.487) learned: \#f

```

\section*{Counting-ones trials}
```

(.9 .1) -> (.540) learned: \#f
(.9 .9) -> (.541) learned: \#f
100
(.1 .1) -> (.277) learned: \#f
(.1 .9) -> (.578) learned: \#f
(.9 .1) -> (.578) learned: \#f
(.9 .9) -> (.618) learned: \#f
200
(.1 .1) -> (.156) learned: \#f
(.1 .9) -> (.806) learned: \#f
(.9 .1) -> (.807) learned: \#f
(.9 .9) -> (.244) learned: \#f
(244 (()2.652-6.015 -5.985) (4.692 -3.473 -3.470))
((-2.856 -6.736 6.442))))

```

In this example adjusting the weights and biases after each epoch produces faster learning. This is not always the case.

Notice that the final weights and biases are about the same with both learning methods. However, this may not always be true. There are many bias and weight configurations that will produce a working XOR solution.

Here is a different problem-count-ones. The input set consists of permutations of 0 s and 1 s (represented as 0.1 and 0.9). The targets are counts (in binary) of the number of 1 s in the corresponding input. The numbers 0 through 3 in binary are \(00,01,10\), and 11 . This learning task, as well as learning XOR, is difficult because similar inputs produce dissimilar outputs.
```

(define input-set '((0.1 0.1 0.1) (0.1 0.1 0.9) (0.1 0.9 0.1)
(0.1 0.9 0.9) (0.9 0.1 0.1) (0.9 0.1 0.9) (0.9 0.9 0.1)
(0.9 0.9 0.9)))
(define target-set '((0.1 0.1) (0.1 0.9) (0.1 0.9) (0.9 0.1)
(0.1 0.9) (0.9 0.1) (0.9 0.1) (0.9 0.9)))
> (train input-set target-set (random-net '(3 4 2))
adjust-during 200)
O
(.1 .1 .1) -> (.445 .706) learned: \#f
(.1 .1 .9) -> (.425 .666) learned: \#f
(.1 .9 .1) -> (.431 .673) learned: \#f
(.1 .9 .9) -> (.411 .637) learned: \#f
(.9 .1 .1) -> (.443 .724) learned: \#f
(.9 .1 .9) -> (.419 .682) learned: \#f
(.9 .9 .1) -> (.430 .691) learned: \#f
(.9 .9 .9) -> (.409 .652) learned: \#f
200
(.1 .1 .1) -> (.005 . 286) learned: \#f
(.1 .1 .9) -> (.112 .993) learned: \#f
(.1 .9 .1) -> (.109 .992) learned: \#f
(.1 .9 .9) -> (.931 . 352) learned: \#f
(.9 .1 .1) -> (.108 .992) learned: \#f
(.9 .1 .9) -> (.929 . 344) learned: \#f
(.9 .9 .1) -> (.930 . 337) learned: \#f

```
```

(.9 .9 .9) -> (.980 . 855) learned: \#f
4 0 0
(.1 .1 .l) -> (.004 .099) learned: \#f
(.1 .1 .9) -> (.109 .904) learned: \#t
(.1 .9 .1) -> (.100 . 899) learned: \#t
(.1 .9 .9) -> (.890 .101) learned: \#t
(.9 .1 .1) -> (.099 . 899) learned: \#t
(.9 .1 .9) -> (.891 .101) learned: \#t
(.9 .9 .1) -> (.899 .101) learned: \#t
(.9 .9 .9) -> (.951 . 896) learned: \#t
60
(.1 .1 .1) -> (.009 . 100) learned: \#f
(.1 .1 .9) -> (.107 .904) learned: \#t
(.1 .9 .1) -> (.103 .900) learned: \#t
(.1 .9 .9) -> (.893 .100) learned: \#t
(.9 .1 .l) -> (.102 .899) learned: \#t
(.9 .1 .9) -> (.893 .100) learned: \#t
(.9 .9 .1) -> (.899 .100) learned: \#t
(.9 .9 .9) -> (.919 . 896) learned: \#t
(797 (((11.377 -5.812 -5.799 -5.595) (11.131 -7.700 -7.761 -8.281)
(1.441 -1.207-1.287-2.179) (1.767 -5.712 -5.597-4.592))
((2.210-.120 -4.901 .760 -2.274)
(2.441 -6.924 8.768-2.890 -7.994))))

```

In other learning trials of count-ones, I found that the time to learn count-ones varied greatly depending on the initial weights and biases. The bottleneck was always in learning the first output of the first pattern. As in this example, the value gets very small and then slowly grows. It's painful to watch but it increases by a slightly larger amount each time.

\subsection*{16.3.5 Exercises}
16.7 Compare the effects of adjusting the weights after each epoch versus after each pattern in count-ones. Perform different trials and have something to read or do while you wait for the output. Back-prop is very computeintensive and slow. Which method gives a better learning rate?
16.8 Try improving the speed of learning in the XOR or count-ones problems by changing the momentum and learning rates. At some point you may see big oscillations in the output values when the learning goes too fast.
16.9 Write a function that can be used as an argument to train that sequences through the inputs in a random order calling back-prop and adjusting weights after each pattern. How does this function compare to adjustduring and adjust-after in learning XOR or count-ones?
16.10 When more hidden units are added to a hidden layer, learning rates often increase. Test this with XOR and count-ones.

Populations, chromosomes, genotypes, and phenotypes

\author{
Evolutionary process
}

Fitness and selection
16.11 Create some interesting input sets and targets and test if they can be learned. Can you create patterns that cannot be learned?
16.12 Modify the learning function and trainer so that they incorporate the following two changes: adjust the weights before propagating the next input (this fixes the bug mentioned earlier in the text), and apply back-prop only to outputs that need to be adjusted. Here is an outline of this new approach:
- Propagate the input value to produce an output.
- Compare this output with the target and if it is within the tolerance, continue with the next input in the input set.
- If the output is not close enough to the target, perform back-prop and adjust the weights and biases, then continue with the next input.
- Repeat these steps once all inputs in the pattern have been tested, stopping once all inputs are within the tolerance.
Compare this learning approach with the original trainer and adjustduring.

\subsection*{16.4 Genetic Algorithms}

Genetic algorithms are models of learning based on evolutionary ideas from biology. These systems represent information on a collection of individual members that make up a population. An individual in a genetic system (or evolutionary system) is maintained as an artificial chromosome. A chromosome is effectively a list of values that encodes information about a particular individual in the population. For example, a chromosome can represent a path to take to reach a goal, as in the traveling salesman problem or the missionaries and cannibals problem. It may represent the membership grades of a fuzzy set or the weights in a neural network. There are many possibilities. It is important to understand that the chromosome is a coded representation of the actual information (e.g., path or weights) in which we are interested. This actual information is called the phenotype and the encoded chromosome represents the genotype. These terms come from biology.

A genetic algorithm begins with an initial (usually randomly chosen) population. This population goes through a process of evolution in which members of the population are chosen according to some fitness test and selection process and changed by either crosslinking or mutation. The most fit of these offspring and their parents become the next generation of the system. This process continues until some measure of fitness has been reached-some members of the population evolve to perform some task at a certain level.

The fitness test or fitness measurement is a function that is applied to a chromosome to give it a numerical value of how good it is-its fitness. This depends on the particular problem that the genetic algorithm is trying to solve. Once the fitness of chromosomes is determined, the best chromosomes can be chosen for crosslinking or to be passed directly to the next generation. This is the selection
process. Selection may based solely on fitness, hard selection, or may be probabilistically determined (based on fitness and random luck)--soft selection.

Crosslinking is done by taking two individuals from the population (also called the gene pool) and choosing a random split point between two genes in their chromosomes. A gene is a part of a chromosome. Two new offspring will be produced, each having one piece of one parent's original chromosome. The offspring may be better or worse than their parents. The following diagram shows how crosslinking works. The two parents on the left are crosslinked to produce the two new offspring on the right. The dashed line denotes the crossover point in each parent.

Mutation happens by simply changing a gene of a chromosome to a new randomly chosen value. The value of a gene is called an allele. This is a smaller change to a chromosome than crosslinking but can have a large impact in that it inserts a random value that may or may not be beneficial. The following diagram illustrates mutation:

Let's take a closer look at the steps taken in a generation of a genetic algorithm. The first step is to evaluate the members of the population according to the fitness measurement that gives each member a ranking (fitness) in the population. Then members from the population are selected to be parents to produce a new generation. An individual may be used only once as a parent or may be replaced in the population such that it can be a parent more than once in a given generation.

Crosslinking

Mutation

Steps taken in one generation

\section*{Stopping the process}

Encoding problems into chromosomes

Once a collection of parents is created, they are randomly paired up and then "bred" to produce the new generation. Crosslinking is performed to combine one part of one parent's chromosome with another part of another parent's chromosome. Each pair of parents produces a pair of children.

Some parents may pass directly to the next generation. This is called asexual reproduction. The number of chromosomes that pass directly to the next generation and the number of chromosomes that are crosslinked are both factors that can be adjusted in a genetic algorithm system.

Mutation may be performed in addition to crosslinking and asexual reproduction. Mutation involves the simple switching of a gene from its current state to another possible state. Only one individual is needed in mutation, unlike crosslinking which requires two. Mutation is usually performed on a smaller part of the population than crosslinking and asexual reproduction.

Crosslinking, asexual reproduction, and mutation form a collection of new chromosomes. These may be used directly as the next generation, or may be compared with the parent generation and the best members continue on as the next generation. This process of selecting parents, generating new offspring via crosslinking and mutation, and choosing the new generation continues until an offspring is produced that has a large enough fitness to satisfy some stopping criterion. For some problems this is a clear measure and in some problems it isn't. For example, in the missionaries and cannibals problem a chromosome that solves the problem would constitute a stopping criterion. For a problem like the traveling salesman problem in which the cost of the best path is not known, we either have to pick a reasonable guess or stop after a certain number of generations and return the chromosome with the best fit and declare that the best path. Another stopping point occurs when the population has converged, when the vast majority of each gene in each chromosome contains the same value (allele). At this point the population does not change much and may have settled to some maximal value.

\subsection*{16.4.1 Building a genetic algorithm in Scheme}

Before we begin to create the code for a genetic algorithm, let's look into how a problem can be encoded into a chromosome representation. For example, if we want to train a neural network using a genetic algorithm instead of backpropagation, our chromosome would be an encoding of the network weights and biases. We cannot directly use the weight structure as a chromosome because a chromosome should be a flat structure, not a nested list. If we flatten the weight and bias list, we form a list of numbers that can be used as a chromosome which can be crosslinked and mutated. Reconstructing the proper list structure reforms the weights and biases so inputs can be propagated to test the fitness compared to the target.

A chromosome does not have to consist of numbers. Characters and symbols can be used. Regardless of which type of gene is used, the legal values for the gene must be specified. This is needed when the initial population is created and when mutation occurs. If this is not done it may be impossible to evaluate the
fitness of the offspring.
There are other problems that may arise when evaluating offspring. If our chromosome is a path of cities to visit, crosslinking may produce offspring that include multiple copies of the same city and miss other cities. In a problem like this where genes cannot be repeated in the chromosome, special measures must be taken to fix or ignore such offspring.

Another option to avoid repeating genes is to use different reproduction methods instead of crosslinking. Reordering and inversion are two such reproductive methods and they require only a single parent. Reordering, as the name suggests, reorders the genes in a chromosome. Inversion reverses the genes in a section of a chromosome. Both of these methods change a chromosome without adding or deleting any of the existing genes and are good for problems in which the exact genes must remain in the chromosomes.

Let's move on to the code. The first step is to create an initial population. We can use make-list (defined in the neural network section) which takes a number of elements and a function of one argument that defines what the elements should be. Using a function instead of a value to define the elements of the list makes make-list a very general function that can be used in many contexts. The function make-list is a good example of procedural abstraction facilitating code reuse. One call to make-list will produce all the chromosomes, and another nested call will produce the genes in a chromosome. The argument create is a function that produces an allele.
```

; Randomly create a population of pop-size individuals.
(define (random-pop pop-size chromosome-length create)
(make-list pop-size
(lambda (n) (make-list chromosome-length create) )) )
>(random-pop 4 5 (lambda () (random 10)))
((4 3 3 9 7) (9 4 5 3 7) ((2 7 2 1 8) (7 3 6 0 7 ) )

```

Our random population can be passed to a function that simulates a generation in our genetic system. In calculating each generation we must carry out the following actions:
- sort the population according to the fitness measure
- test if we have reached our exit criterion with the best individual
- if so, return the generation number and the individual
- otherwise, select the parents to produce the next generation
- perform crosslinking on the parents
- perform mutation according to the mutation probability m-prob
- select the best members from this new generation and the prior generation and pass those along as the next generation

\section*{Reordering and} inversion

Creating an initial population

Actions for one generation
```

; Main function for performing genetic algorithms.
(define (generation sorted-pop fitness done? select m-prob create
count)
(display sorted-pop)
(newline)
(if (done? (first sorted-pop) count)
(list count (first sorted-pop))
(let* ((parents (select sorted-pop))
(children (mutate (crosslink parents) m-prob create))
(new-pop (subseq (sort fitness
(append sorted-pop children))
0 (length sorted-pop))))
(generation new-pop fitness done? select m-prob create
(+ count 1)))) )

```

A helper function is a good idea to save the user the bother of passing in the initial counter and sorting the initial random population.
```

; Helper function for generation - sorts population.
(define (gen-algo population fitness done? select m-prob create)
(generation (sort fitness population) fitness done? select m-prob
create 0) )

```

Sorting the population

Selecting parents

Now let's write the additional functions we need. To sort the population we can use the insertion sort function from Chapter 8, which is repeated here:
```

; Perform insertion sort on a-list according to compare-func.
(define (sort compare-func a-list)
(if (null? a-list)
'()
(insert
(first a-list)
(sort compare-func (rest a-list))
compare-func)) )
; Insert element into sorted-list using compare-func.
(define (insert element sorted-list compare-func)
(cond ((null? sorted-list)
(list element))
((compare-func element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert element (rest sorted-list) compare-func)))) )

```

The selection function will use two global variables: cross\%, the percentage of the population that should be crosslinked, and best\%, the percentage of the parents that come from the best of the population ordered by fitness (the remainder are chosen randomly from the rest of the population). From these percentages we can calculate the exact number of parents and the number of parents that come from the best of the sorted population. In making these calculations we should round off the results instead of truncating them. Scheme has a built-in

\section*{function round that can be used for this purpose.}
```

; Select parents from the sorted population.
(define (select-parents sorted-pop)
(let* ((num-parents (round (* (length sorted-pop) cross%)))
(num-best (round (* num-parents best%))))
(append (subseq sorted-pop 0 num-best)
(choose-from (subseq sorted-pop num-best)
(- num-parents num-best)))) )

```

The function choose-from takes a population and a number and randomly picks that many individuals from the population. It does not pick the same individual more than once. To assure this it recurses with the population of all individuals except the one just selected.
```

; Choose num individuals randomly from population.
(define (choose-from pop-list num)
(if (= 0 num)
'()
(let ((elt-pos (random (length pop-list))))
(cons (list-ref pop-list elt-pos)
(choose-from (append (subseq pop-list 0 elt-pos)
(subseq pop-list (+ elt-pos 1)))
(- num 1))))) )

```

Let's test these functions choosing a crosslink percentage of \(60 \%\) and taking \(75 \%\) of the parents for crosslinking from the best (most fit) individuals and the remainder from the rest of the population.
```

(define cross% 0.6) ; crosslink 60% of the population
(define best% 0.75) ; 75% of the parents are the best individuals
> (select-parents '((4 5) (2 2) (2 6) (3 0) (3 9) (2 3)))
((4 5) (2 2) (2 6) (3 9))

```

Sixty percent of the population (four individuals) are selected and \(75 \%\) (three) of these are from the head of the population list. The fourth individual is randomly chosen from the remaining three individuals in the population list, either (3 0), (3 9), or (2 3).

After selecting a set of parents, we must pair and crosslink them. The pairs should be randomly chosen. We can either choose individuals from the population one by one and pair them, or rearrange the entire population and then take pairs in order from this shuffled population. Which approach do you think is easier?

In the first approach, choose-from can be used to get one or two random individuals, but then we'll have to write a "remove one instance" function that removes only one item from the population (there may be duplicates). This sounds easier than shuffling the entire population. However, we can shuffle the population with a single call to choose-from using the population size as the number of items to choose. Sometimes the functions we create can have surprising extra benefits. Finally, we must create another function crosspair that forms pairs and crosslinks them.

Implementing crosslinking
```

; Reorder population then call crosspair to perform crosslinking.
(define (crosslink population)
(crosspair (choose-from population (length population))) )
; Sequence through pop applying crossover to successive pairs.
(define (crosspair pop)
(cond ((null? pop) '())
((null? (cdr pop)) pop)
(else (append (crossover (first pop) (second pop))
(crosspair (cddr pop))))) )

```

The crossover point is randomly chosen. We can randomly pick a position in the chromosome and then use subseq to split the chromosomes around the crossover point.
```

; Generate two new offspring by crosslinking two chromosomes.
(define (crossover chromosome1 chromosome2)
(let ((cross-pos (random (length chromosome1))))
(list
(append (subseq chromosome1 0 cross-pos)
(subseq chromosome2 cross-pos))
(append (subseq chromosome2 0 cross-pos)
(subseq chromosome1 cross-pos)))) )

```

Trying out these new functions, we get the following results:
```

> (crosslink '((a b c) (d e f) (1 2 3) (4 5 6)))
((4 b c) (a 5 6) (1 2 3) (d e f))

```

The first pair of genes results from crosslinking (acc) and (4 \(\left.\begin{array}{llll}4 & 5 & 6\end{array}\right)\). The second pair is from crosslinking (\(d\) e f) and (llll \(\begin{array}{ll}1 & 2\end{array}\)). It looks like a crossover did not occur in the second pair, but it did; however, the position was 0 , so the crosslinking combines an empty list with the entire second parent. We should fix this by restricting the crossover point to be between 1 and the length of the list minus 1 inclusive. Here is the new code and another trial run:
```

```
; Generate two new offspring by crosslinking two chromosomes.
```

```
; Generate two new offspring by crosslinking two chromosomes.
(define (crossover chromosomel chromosome2)
(define (crossover chromosomel chromosome2)
 (let ((cross-pos (+ 1 (random (- (length chromosome1) 1)))))
 (let ((cross-pos (+ 1 (random (- (length chromosome1) 1)))))
 (list
 (list
 (append (subseq chromosome1 0 cross-pos)
 (append (subseq chromosome1 0 cross-pos)
 (subseq chromosome2 cross-pos))
 (subseq chromosome2 cross-pos))
 (append (subseq chromosome2 0 cross-pos)
 (append (subseq chromosome2 0 cross-pos)
 (subseq chromosome1 cross-pos)))))
 (subseq chromosome1 cross-pos)))))
 > (crosslink '((a b c) (de f) (1 2 3) (4 5 6)))
 > (crosslink '((a b c) (de f) (1 2 3) (4 5 6)))
 ((1 e f) (d 2 3) (a b 6) (4 5 c))
```

```
 ((1 e f) (d 2 3) (a b 6) (4 5 c))
```

```

Try some additional examples to convince yourself that this code actually works.
Mutation involves sequencing through all the genes in the population and randomly deciding if they should change according to the mutation probability.

Implementing mutation
 \(y\) some additional examples to convince yourself that this code actually works.
Mutation involves sequencing through all the genes in the population and
randomly deciding if they should change according to the mutation probability.
```

; Mutate random genes in population according to probability.
; Use create to produce a new allele.
(define (mutate population probability create)
(map (lambda (individual)
(map (lambda (gene)
(if (< (random 100) (* probability 100))
(create)
gene) )
individual) )
population) )

```

Let's try a sample call with a very high mutation rate of \(50 \%\).
```

> (mutate '((4 5) (2 2) (2 6) (3 0) (3 9) (2 3)) 0.50
(lambda () (random 10)))
((4 8) (2 2) (3 1) (9 0) (0 3) (2 3))

```

Now we are ready to try a sample problem. The task is to find a chromosome with numbers that add up to thirty exactly. Our population size is four and our alleles are numbers between zero and nine. The function to determine if we are done is easy to create.
```

; Test if genes in individual sum to 30.
(define (thirty? individual generation)
(= (apply + individual) 30) )

```

The fitness function should compare the absolute values of the differences between the actual sum in the chromosome and thirty. This way, going over thirty is treated the same as being under thirty.
```

; Fitness comparison between chromosomes c1 and c2.
(define (fit c1 c2)
(<= (abs (- (apply + c1) 30))
(abs (- (apply + c2) 30))) )

```

Let's try our genetic algorithm out using a four-member population with chromosomes that are four genes long. We'll use \(1 \%\) as the mutation rate.
```

> (gen-algo (random-pop 4 4 (lambda () (random 10))) fit thirty?
select-parents 0.01 (lambda () (random 10)))
((5 5 9 9) (5 1 4 8) (1 6 3 3) (0 1 1 5))
((5 5 9 9) (5 1 9 9) ($$
\begin{array}{llll}{5}&{4}&{8}\end{array}
$$)($$
\begin{array}{llll}{5}&{1}&{4}&{8}\end{array}
$$))
((5 7 9 9) (5 5 9 9) (5 1 9 9) (5 1 9 9))
(2 (5 7 9 9))

```

Given the values of cross\% and best\%, the first two chromosomes will be crosslinked each time. In the first generation (\(\left.\begin{array}{cccc}5 & 5 & 9 & 9\end{array}\right)\) and (\(\left.\begin{array}{llll}5 & 1 & 4 & 8\end{array}\right)\) are crosslinked and (\(\left.\begin{array}{cccc}5 & 1 & 9 & 9\end{array}\right)\) and (\(5 \begin{gathered}5 \\ 5\end{gathered}\) 8) are produced. In the next generation
 Notice that regardless of the crosspoint, the children will be clones of the parents. However, there was a visible mutation and (\(\left.5 \begin{array}{llll}5 & 9 & 9\end{array}\right)\) became (\(\left.\begin{array}{cccc}7 & 9 & 9\end{array}\right)\), which totals thirty. This was very lucky. In twelve trials the average time to complete was two-hundred generations.

Sample problem:
finding a chromosome that totals thirty

Gene and population convergence

In the next example we weren't as lucky as we were in the first trial:
```

> (gen-algo (random-pop 4 4 (lambda () (random 10))) fit thirty?
select-parents 0.01 (lambda () (random 10)))
((8 6 9 6) (9 7 3 6) (5 9 5 2) (2 4 0 2))
((8 6 9 6 6)(9 7 9 6) (9 7 3 6) (8 6 3 6))
((8 6 9 6) (9 7 9 6) (9 7 9 6 f) (8 6 9 6))
((8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6))
((8 6 9 6 ) (9 7 9 6) (9 7 9 6 ) (8 6 9 6 %))
((8 6 9 6 ) (9 7 9 6) (9 7 9 6 % (8 6 9 6))
((8 6 9 6 ) (9 7 7 9 6) (9 7 7 9 6 6) (8 6 9 6 6))
((8 6 9 6 ) (9 7 9 6) (9 7 9 6 % ( (8 6 9 6 6))
((8 6 9 6 6) (9 7 9 6) (9 7 9 6 6) (8 6 9 6 6))
((8 7 9 6) (9 6 9 6) (8 6 9 6) (9 7 9 6 6))
(9 (8 7 9 6))

```

This trial is a good example of gene convergence. After one generation the last gene in the entire population has the same allele, six. When \(95 \%\) of the population has the same gene, that gene has converged. After two generations the third and fourth genes have converged. In many of the other trials I ran the entire population converged-all the genes had converged. Crosslinking cannot change the values of these genes, only mutation can.

In the ninth generation (86968\()\) and (97ll \(\left.\begin{array}{lll}9 & 9 & 6\end{array}\right)\) crosslink between the first two genes, producing (8796) and (9 696 6 which both add to thirty. This trial wasn't too bad. One trial took 552 generations to get the answer.

There are a couple problems lurking here. One is that we have no way to safeguard against population convergence. If we choose larger populations, we can slow this process down because more individuals participate in the crosslinking. In our simple example above only the first two elements of the sorted population are used each time as parents. We can take another measure which is to take the union of the old and new generation in generation instead of appending the two populations. The order of the arguments to union is very important. Look at the code for union in section 7.4 of Chapter 7. It adds elements from the first set onto the second if they don't exist in the second set. We should call union with the offspring as the first argument and the old population as the second argument.
```

; Main function for performing genetic algorithms.
(define (generation sorted-pop fitness done? select m-prob create
count)
(display sorted-pop)
(newline)
(if (done? (first sorted-pop) count)
(list count (first sorted-pop))
(let* ((parents (select sorted-pop))
(children (mutate (crosslink parents) m-prob create))
(new-pop (subseq (sort fitness
(union children sorted-pop))
0 (length sorted-pop))))
(generation new-pop fitness done? select m-prob create
(+ count 1)))) )

```

Below is a trial with this new code. Notice that there are no duplicates in the population.
```

> (gen-algo (random-pop 4 4 (lambda () (random 10))) fit thirty?
select-parents 0.01 (lambda () (random 10)))
((9 3 8 9) (8 6 5 7) (7 9 6 0) (8 4 2 2))
((9 3 8 9 9) ((8 3 8 9 9) (9 6 5 5 7) (8 6 5 7 7) )
((9 3 8 9 9) (8 3 8 8 9) (% 6 5 5 7) (8 6 5 7 %)
((9 3 8 9 9) (8 3 8 8 9) ((9 6 5 5 7) (8 6 5 7 7))
((9 3 8 9 9) (8 3 8 8 9) ((9 6 5 5 7) (8 6 5 7 7) )
((9 3 8 9 9) (8 3 8 8 9) ((9 6 5 5 7) (8 6 5 7 7))

```

```

((9 3 9 9) (8 3 9 9) (9 3 8 8 9) (8 3 8 8 9) )
(7 (9 3 9 9) )

```

This again is one of the faster cases. The average time to reach a solution was just a bit less than with the earlier version of generation.

Do genetic algorithms provide an improvement over just randomly generating lists? Let's test this out. Here is a simple, but generic, function that generates and tests chromosomes until a completion test is satisfied. The chromosomes are generated given their size and a gene creation function.
```

; Randomly make chromosomes until done? is true. chromosome-size
; and create define the size and gene makeup of the chromosomes.
(define (guess count chromosome-size create done?)
(let ((try (make-list chromosome-size create)))
(if (done? try count)
(list count try)
(guess (+ count 1) chromosome-size create done?))) )

```

This function is called as follows:
```

(guess 0 4 (lambda (n) (random 10)) thirty?)

```

In sample runs guess found the solution in about half the number of cycles or generations as gen-algo. So what is the use of creating a genetic algorithm? It has been shown that genetic algorithms should perform better than random trials. We should take a more careful look at our control parameters.

With this problem and the crosslinking parameters used, mutation often plays a big role in generating the final solution. Selection and crosslinking get us close very early on. But crosslinking only the best two members of the population limits the offspring possibilities. We can increase the crosslinking by changing the cross\% and best\% values to be \(100 \%\), as follows:
```

(define cross% 1.0)
(define best% 1.0)

```

There are other possibilities as well. Rather than increase the crosslinking rate by changing the crosslinking variables, we can increase the population and use the old crosslinking values. This will increase the number of crosslinking operations. Or we can take a completely different approach and instead of increasing, the crosslinking, we can increase the mutation rate. The table below gives average figures based on a dozen trials for each different configuration. Unless

Retrial of totaling thirty

Comparison with randomly generated chromosomes

Adjusting the crosslinking rate

Adjusting other parameters

Summary of trial results

Magic square

\section*{Chromosome representation}

Converting from genotype to phenotype
indicated, assume the crosslinking is \(60 \%\) and the mutation rate is \(1 \%\).
\begin{tabular}{ll}
description of GA & average generations to reach goal \\
\hline original generation & 200 \\
new generation & 189 \\
random guess & 94 \\
\(100 \%\) crosslinking & 47 \\
\(10 \%\) mutation & 24 \\
population \(=10\) & 7 \\
all three above & 4
\end{tabular}

These numbers are somewhat misleading, as they count generations, and with larger population sizes more individuals are tested in each generation. Plus the random guess trials only test one individual at each generation.

Let's try a different example that is a variation on the magic square problem. Imagine a three-by-three matrix of numbers like this:
\begin{tabular}{|l|l|l|}
\hline 4 & 6 & 5 \\
\hline 7 & 5 & 3 \\
\hline 4 & 4 & 7 \\
\hline
\end{tabular}

The goal of this puzzle is to pick numbers for each box such that the sum of each row, column, and diagonal is fifteen. In this example every row and column sums to fifteen, but one diagonal sums to sixteen and the other to fourteen.

To build a genetic algorithm to solve this, we'll need to create a fitness function, a function that tests if we are done, and an encoding of the box phenotype into a chromosome. We can take the numbers in row-order (row-by-row) without any nesting and make that our chromosome representation. The example above would be
\(\left(\begin{array}{lllllllll}4 & 6 & 5 & 7 & 5 & 3 & 4 & 4 & 7\end{array}\right)\)
The fitness and completion functions are similar to the functions in the sum-tothirty problem except eight sums must be examined. To add up the rows, it is easier to use the phenotype representation
\[
\left(\left(\begin{array}{llllll}
4 & 6 & 5
\end{array}\right)\left(\begin{array}{llll}
7 & 5 & 3
\end{array}\right)\left(\begin{array}{lll}
4 & 4 & 7
\end{array}\right)\right)
\]

To convert from the genotype to the phenotype, we can use the following function that uses make-list and produces the proper positions of the numbers in the puzzle. This function is general and can work with any size puzzle.
```

; Convert chromosome genotype to phenotype nested list.
(define (decode genotype size)
(make-list size
(lambda (row)
(make-list size
(lambda (elt) (list-ref genotype
(+ (* (- row 1) size) (- elt 1))) )) )) )
>(decode '($$
\begin{array}{lllllllllll}{4}&{6}&{5}&{7}&{5}&{3}&{4}&{4}&{7}\end{array}
$$)}3
((4 6 5) (7 5 3) (4 4 7))

```

The following function returns a list of the sums of the rows:
```

; Return list of sums of all rows in puzzle.
(define (sum-rows puzzle)
(map (lambda (row) (apply + row) ) puzzle) )
>(sum-rows '((4 6 5) (7 5 3) (4 4 7 7)))
(15 15 15)

```

We can use the same function to add up the columns if we convert our puzzle to a list of columns. This can be done with a simplification of the function transpose that we used to transpose the weights and biases of a neural network.
```

; Convert puzzle from list of rows to list of columns.
(define (row-to-col puzzle)
(apply map (cons list puzzle)) )
>(row-to-col '((4 6 5) (7 5 3) (4 4 7 7)))
((4 7 4) (6 5 4) (5 3 7))
> (sum-rows (row-to-col '((4 6 5) (7 5 3) (4 4 7))))
(15 15 15)

```

To add the diagonals, we can either access the appropriate elements from the chromosome or we can convert the puzzle into a list of two diagonals and pass that to sum-rows. The second approach is slightly more work but is better because our code will be general and can be used for any size puzzle (e.g., four-by-four). We can sequence through the rows using map and extract the proper element from each row. This can be done by constructing a list of positions (0 to the size minus 1).
```

; Convert puzzle from list of rows to list of diagonals.
(define (row-to-diag puzzle)
(let ((pos-list (make-list (length puzzle) (lambda (n) (- n 1)))))
(list
(map (lambda (pos row) (list-ref row pos) )
pos-list puzzle)
(map (lambda (pos row) (list-ref row pos) )
(reverse pos-list) puzzle))) )
>(row-to-diag '((4 6 5) (7 5 3) (4 4 7)))
((4 5 7) (5 5 4))
> (sum-rows (row-to-diag '((4 6 5) (7 5 3) (4 4 7))))
(16 14)

```

We can put all of these functions together in one function that returns a fitness value for a puzzle.

\section*{Summing columns}

Fitness and completion measurements
```

; Return fitness measure for puzzle - sum of absolute values of
; differences between each row, column, and diagonal and 15.
(define (sum-diffs puzzle)
(apply +
(map (lambda (sum)
(abs (- sum 15)) )
(append (sum-rows puzzle) (sum-rows (row-to-col puzzle))
(sum-rows (row-to-diag puzzle))))) )

```

Using the fitness measurement, we can write functions to compare two chromosomes and to test if we are done:
```

; Fitness function for chromosomes c1 and c2.
(define (fit8 c1 c2)
(<= (sum-diffs (decode c1 (truncate (sqrt (length c1)))))
(sum-diffs (decode c2 (truncate (sqrt (length c2)))))) )
; Test if puzzle's rows, columns, and diagonals all sum to 15.
(define (all-fifteen? puzzle generation)
(= (sum-diffs
(decode puzzle (truncate (sqrt (length puzzle)))))
0) )

```

Sample trials

Comparison with randomly generated squares

Now let's call gen-algo to solve this problem. We'll use a population of size twenty and crosslink \(75 \%\) (fifteen individuals) of the population choosing \(60 \%\) (nine individuals) from the best of the population. The mutation rate is \(1 \%\).
```

(define cross% 0.75)
(define best% 0.6)
(gen-algo (random-pop 20 9 (lambda () (random 10))) fit8
all-fifteen? select-parents 0.01 (lambda () (random 10)))

```

Here are some of the resulting solutions:
\begin{tabular}{lllllllllllllllllllll}
5 & 5 & 5 & 3 & 7 & 5 & 6 & 5 & 4 & 4 & 7 & 4 & 4 & 4 & 7 & 6 & 1 & 8 & 4 & 3 & 8 \\
5 & 5 & 5 & 7 & 5 & 3 & 3 & 5 & 7 & 5 & 5 & 5 & 8 & 5 & 2 & 7 & 5 & 3 & & 9 & 5 \\
5 & 5 & 5 & 5 & 3 & 7 & 6 & 5 & 4 & 6 & 3 & 6 & 3 & 6 & 6 & 2 & 9 & 4 & 2 & 7 & 6
\end{tabular}

The leftmost result is the simplest solution to this problem. Moving to the right the solutions use three, five, seven, and nine different numbers. The last two solutions are solutions to the true magic square problem in which each number is used only once.

Given a sample of forty trials, the average number of generations to reach a solution was about 150 generations. Once again we can compare our genetic algorithm with completely randomly generated chromosomes using the guess function. These can be generated using the following call:
```

(guess 0 9 (lambda (n) (random 10)) all-fifteen?)

```

If you decide to run this, don't wait for the answer unless you feel really lucky. There are a billion possible chromosomes that can be generated and not too many correct solutions. This call took about ten days (yes days, not minutes) to run and it finally got an answer after 22,651,059 attempts generating the
chromosome (\(\left.\begin{array}{lllllllll}4 & 5 & 6 & 7 & 5 & 3 & 4 & 5 & 6\end{array}\right)\). Compare this with another probability game-your chances of winning the California lottery where you choose six numbers out of 51 are one in 18,009,460 (not repeating any numbers, and order does not matter). If you are starting to think that soft computing techniques can be used to pick lottery numbers, it is already being done for lottery numbers, stock markets, and international currencies.

\subsection*{16.4.2 Exercises}
16.13 The second version of generation took the union of the offspring and the old population. Why does the order of these two arguments matter in the call to union?
16.14 Write functions to carry out reordering and inversion of chromosomes. Define two variables to represent the reordering and inversion rates and change the generation function to invoke these for the proper number of parents.
16.15 None of the solutions to the simplified magic square problem had the number zero in the answer. Why do you think this is so?
16.16 All of the solutions to the simplified magic square problem had the number five as the middle gene. Why do you think this is so?
16.17 What do you predict will be the effect of increasing the mutation rate on the simplified magic square problem? Test your hypothesis.
16.18 Do you think that doubling the population will cut the number of generations to solve the simplified magic square problem in half? What about halving the population-will that double the average number of generations to reach a solution?
16.19 Create a new problem and design a way of decoding the phenotypes into chromosomes. Next create gene creation, chromosome fitness, and completion functions and then test out your problem with a genetic algorithm. Compare the solution time using a genetic algorithm to using a call to the function guess, which generates purely random chromosomes.

\subsection*{16.5 Mixing Metaphors to Create Better Systems}

It is possible to combine fuzzy logic, neural networks, and genetic algorithms to produce systems that perform better than their nonmixed equivalents. Systems are usually mixed to overcome difficult areas that exist within each system.

A fuzzy logic system has difficulties working well until its fuzzy sets are tuned. In the case of TSK systems, the parameters must be tuned as well. This is a

Difficulties in fuzzy logic
difficult process that cannot always be done by human intuition alone. Often a lot

\section*{Difficulties in neural networks}

Difficulties in genetic algorithms

\section*{Neuro-fuzzy systems}

Fuzzy-genetic systems
of tweaking (making fine adjustments) is necessary. This becomes a long, tedious process.

Neural networks may be slow in learning (forming a set of connection weights and biases that enable inputs to produce the desired outputs). This is a very time-consuming, compute-intensive process, and for some inputs and desired outputs, the system may never converge on a working set of connection weights.

Genetic algorithms have limitations in their ability to evolve to a desirable population. This happens because the crosslinking and mutations may take a great deal of time to yield a good population. When genes or entire chromosomes converge, learning by crosslinking and asexual reproduction slows down and mutation becomes the driving force, but mutation is typically kept to small frequencies for best results when convergence does not occur.

In all the combinations one system takes on the primary or leading role and the other system or systems take on supporting roles. For example, a neuro-fuzzy system may use either the neural network or the fuzzy logic system as its primary model and the other system to support some aspect to make up for the weaknesses in the primary system.

A fuzzy logic system can be combined with a neural network to produce a neuro-fuzzy system. One example of this is a fuzzy expert system that uses a neural network to learn fuzzy set values or parameter values (in the case of TSK systems). For example, a neural network can be trained to learn the relationship of some values and their corresponding membership grades. Then other membership grades for the same fuzzy set can be obtained by passing in their values as inputs and getting the membership grades as outputs from the neural net. The ability of neural nets to generalize is being used to interpolate membership grades.

A different approach is to represent the fuzzy sets as weights in a neural network and update them according to how far the fuzzy system veers from its desired outputs. The weights should not be initialized to random values, but have values based on reasonable estimates. Back propagation will slowly adjust the weights. Rather than propagate inputs forward, the test for correction is to run the inputs through the fuzzy logic system and determine how well the system performs. This is a supervised learning approach.

Another possibility is to use unsupervised learning approaches. These take advantage of neural net's abilities to generalize and categorize. Networks are provided with numerous training sets of expert behavior within the realm that the fuzzy system is trying to perform. Eventually the system groups and categorizes these inputs that are pairs of inputs to the fuzzy system and the outputs desired. By carefully examining these groupings and their degree of fuzziness, fuzzy sets can be created.

Ideas from fuzzy logic and genetic algorithms can be combined to produce fuzzy-genetic systems. Genetic algorithms can use fuzzy rules to choose the parameters of the genetic algorithm like crossover and mutation rate and population size. Another use of fuzzy rules is measuring the fitness of individuals in a
population.
Instead of adjusting fuzzy sets or parameters in TSK systems by hand, genetic algorithms can be used in which the fuzzy sets or parameters are chromosomes that undergo crosslinkings and mutations to evolve into better fuzzy sets/parameters. Even entire fuzzy rules can be encoded as chromosomes and adjusted using a genetic algorithm. Their performance is measured by the quality of the fuzzy system.

Just as fuzzy rules can be used to decide crossover and mutation rates, neural networks can be developed to do the same, resulting in neuro-genetic systems.

A neural net can genetically learn connection weights instead of using Hebbian or back-prop learning approaches. A population of networks is used and the best networks survive. Since genetic algorithms tend to move quickly toward reasonable solutions, this may be a means of speeding up learning in neural networks. After a number of generations, the best weight set can be fine-tuned using a traditional neural network learning approach.

Genetic algorithms can be used to optimize the characteristics of a neural network: the number of units, layers, learning rate, momentum, or tolerance factor in deciding when the actual outputs are close enough to the desired outputs.

\subsection*{16.6 Future Trends}

Since soft computing is such a new field, a great deal of the research has been and continues to be in testing soft computing techniques against traditional methods in specific problem areas. This has provided a great deal of information into the general applicability of these techniques. Where weaknesses are encountered, attempts are made to combine soft computing techniques to get around the problems. General methods for doing this are still not well understood.

Fuzzy logic is used in many commercial products. We should expect to see fuzzy logic become more of a buzz word and be accepted technology in many of our consumer electronics goods, although marketing people may find challenges selling fuzzy camera focus mechanisms. The process of creating fuzzy sets is still a difficult problem and a strong contender for improvement through research efforts.

Two extensions of fuzzy logic are information granulation and computing with words. Information granulation can be thought of as fuzzy partitioning, taking objects and dividing them into smaller pieces or into similar or functionally equivalent parts. Granulation can be crisp or fuzzy. For example, a house can be divided into specific rooms (living room, dining room) or into clean rooms versus messy rooms. This second division is fuzzy because clean and messy are fuzzy concepts. For many problems, fuzzy granulation is more practical or natural than crisp granulation.

Computing with words is computation using words as the driving factor. Fuzzy systems take numbers and fuzzify them, then defuzzify the final outcome into crisp values. Computing with words takes fuzzy values and produces fuzzy values. For example, the question "How wealthy is she?" can result in a fuzzy

\section*{Neuro-genetic systems}

Fuzzy logic in commercial products

Information
granulation

Computing with words

\section*{Neural network futures}

Genetic algorithm futures
answer (e.g., very rich) instead of a crisp answer like \(\$ 1,547,842.34\). Computing with words converts the fuzzy value wealthy into the fuzzy amount very rich.

Neural networks have not had the commercial success that fuzzy logic systems have, but have done well in complex areas in which the relationships between inputs and outputs are not well understood and do not lend themselves to symbolic representation techniques. Although neural nets can solve such problems, there is great interest in being able to understand networks so that rules can be extracted. There are techniques to do this, but they tend to be complex and limited in how well they work. Rule insertion is desired as well. There are problems that are understood and instead of building a network from random values, being able to create initial approximate weights based on existing knowledge of the system is desired.

Genetic algorithms are perhaps the least exploited of the soft computing fields. They offer great promise as a search technique or as a generation mechanism to create novel solutions. For example, genetic algorithms have been used to make computer paint brushes to create artistically appealing textures. The difficulties with genetic algorithms are in the adjustment of the parameters to get the best performance and in the creation of good fitness functions. As more problems are attempted with genetic algorithms, we should develop better heuristics for using them in a variety of contexts.

\subsection*{16.7 Summary}
- Soft computing is a mix of fuzzy logic, neural networks, and probabilistic reasoning of which genetic algorithms is a subfield.
- Fuzzy logic is an extension of conventional logic that allows values that lie between true and false.
- Fuzzy sets represent uncrisp concepts like tall, rich, and fast. A fuzzy set is a mapping between real values like six feet and membership grades that are between zero and one. Membership grades give the degree to which a value represents a fuzzy set.
- Linguistic variables have fuzzy sets as values; for example, height is a linguistic variable that can take values like tall or short.
- Fuzzy expert systems use fuzzy sets and fuzzy rules to represent expert knowledge. They take crisp values and fuzzify them, then find all applicable fuzzy rules and combine them according to the membership grades and produce a new fuzzy set. This fuzzy set is defuzzified to return crisp output values.
- Neural networks are models inspired by neurons in the brain. These networks contain a number of highly interconnected neurons or units. The strength of the connection between two units is called a connection weight.
- Units are organized into layers where the units in each layer are connected to all the units in the layers immediately above and below. The input layer takes inputs and passes them into the network, hidden layers lie between input and output layers, and the output layer gets input from an input or hidden layer
and passes values as the output of the network.
- Propagation is the passing of information through the network from the inputs to the input layer, then to each subsequent layer until the output layer.
- The input to a unit is the sum of all the outputs from the units in the layer below multiplied by the connection weights joining them. This sum is added to the unit's bias and applied to a sigmoidal function to form the activation level of the unit.
- Back propagation and Hebbian learning are used to teach a network to map a collection of inputs to a collection of outputs. Back propagation makes small adjustments to the connection weights and biases until the inputs produce the desired outputs.
- Genetic algorithms are inspired by theories of evolution and genetics. Potential solutions to a problem are encoded as chromosomes (a fixed length list of numbers or characters). Chromosomes are made up of genes.
- The population is ordered according to a fitness measurement. A set of parents is selected from the population and combined via crosslinking.
- Crosslinking switches the genes of two chromosomes around a switch point to form two new chromosomes.
- Mutation changes a single gene in a chromosome.
- Reordering reorders the genes in a chromosome and inversion reverses the genes in a section of a chromosome.
- After the chromosomes are updated through some combination of crosslinking, mutation, reordering, and/or inversion, a new population is chosen based on the fitness measurement of the new offspring and the old population. Then the whole process continues with the new population.
- The genetic algorithm finishes when some member of the population meets a stopping criterion.

\subsection*{16.8 Additional Reading}

Fuzzy Logic
Cox, E.D. (1995). Fuzzy Logic for Business and Industry, Charles River Media Inc., Rockland, MA.

Kosko, B. (1993). Fuzzy Thinking: The New Science of Fuzzy Logic, Hyperion, New York, NY.

Von Altrock, C. (1995). Fuzzy Logic and NeuroFuzzy Applications Explained, Prentice Hall PTR, Englewood Cliffs, N.J.

Neural Networks
Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ.

McClelland, J.L., Rumelhart, D.E., and the PDP Research Group (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 2: Psychological and Biological Models, MIT Press, Cambridge, MA.

Rumelhart, D.E., McClelland, J.L., and the PDP Research Group (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, MIT Press, Cambridge, MA.

\section*{Genetic Algorithms}

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Third revision and extended edition, Springer-Verlag, Berlin, Germany.

\subsection*{16.9 Code Listing}

Fuzzy expert system code:
```

; Create a function returning the membership grade of a crisp value.
(define (make-fuzzy-triangle left mid right)
(lambda (crisp-num)
(cond ((eq? crisp-num 'max) mid)
((or (< crisp-num left) (> crisp-num right)) 0)
((< crisp-num mid) (/ (- crisp-num left) (- mid left)))
(else (/ (- right crisp-num) (- right mid))))) )
; Fuzzify crisp-number based on fuzzy-set.
(define (fuzzify crisp-number fuzzy-set)
(fuzzy-set crisp-number))
; Return the condition of a rule.
(define (condition rule)
(first rule))
; Return the actions of a rule.
(define (actions rule)
(rest rule))

```
```

; Return list of applicable actions and the degree to which they
; should be applied.
(define (outputs rule-list input-values)
(keep-if
(lambda (evaled-rule)
(not (zero? (car evaled-rule))))
(map (lambda (rule)
(cons
(membership-grade (condition rule) input-values)
(actions rule)))
rule-list)) )
; Return overall membership grade of condition based on input-values.
(define (membership-grade condition input-values)
(cond ((eq? (car condition) 'and)
(apply min (map (lambda (clause)
(membership-grade clause input-values))
(rest condition))))
((eq? (car condition) 'or)
(apply max (map (lambda (clause)
(membership-grade clause input-values))
(rest condition))))
(else
(fuzzify (cdr (assoc (first condition) input-values))
(eval (second condition))))) )
; Split multiple actions in action-list to list of single actions.
(define (transform action-list)
(if (null? action-list)
'()
(append
(map (lambda (action) (cons (caar action-list) action) )
(cdar action-list))
(transform (rest action-list)))) )
; Reduce duplicate actions to one with the largest strength.
(define (no-duplicates action-list)
(if (null? action-list)
'()
(let ((duplicates
(keep-if (lambda (action)
(equal? (rest action) (cdar action-list)))
action-list)))
(if (null? (rest duplicates))
(cons (first action-list)
(no-duplicates (rest action-list)))
(cons (cons (apply max (map first duplicates))
(cdar action-list))
(no-duplicates
(set-difference action-list duplicates)))))) )

```
```

; Defuzzify actions in action-list returning crisp values.
(define (defuzzify action-list)
(if (null? action-list)
'()
(let ((same-var
(keep-if (lambda (action)
(equal? (second action)
(cadar action-list)))
action-list)))
(cons
(list
(second (first same-var))
(/ (apply + (map (lambda (action)
(* (first action)
(fuzzify 'max
(eval (third action)))))
same-var))
(apply + (map first same-var))))
(defuzzify (set-difference action-list same-var))))) )
; Evaluate rules using inputs to produce crisp results.
(define (fuzzy-eval rules inputs)
(defuzzify
(no-duplicates
(transform
(outputs rules inputs)))) )

```
Neural network and back propagation code:
(define learn-rate 0.5)
(define momentum 0.9)
; Return weighted sum of inputs to a single unit plus bias.
(define (total-input inputs weights)
 (+ (car weights) (apply + (map * inputs (cdr weights)))))
; Apply the limiting sigmoidal function that restricts the total
; input to be a value between 0 and 1.
(define (sig total-input)
 (/ 1 (+ 1 (expt 2.71828 (- total-input)))))
; Return list of activations to nodes in a layer.
(define (act-layer inputs layer-weights)
 (map (lambda (weights) (sig (total-input inputs weights)))
 layer-weights))
```

; Return a list of the activation levels in a network beginning with
; the input layer.
(define (propagate all-weights acts)
(if (null? all-weights)
(list acts)
(cons
acts
(propagate
(rest all-weights)
(act-layer acts (first all-weights))))) )
; Compute error signals for output layer units.
(define (error-sig-output targets outputs)
(map (lambda (target output)
(* (- target output) output (- 1 output)) )
targets outputs) )
; Transpose the weights for back-prop.
(define (transpose weights)
(reverse
(map (lambda (layer) (cdr (apply map (cons list layer))) )
weights)) )
; Compute error signals for hidden layer units.
(define (error-sig-inner error-signals layer-weights outputs)
(map (lambda (output weights)
(* (apply + (map * error-signals weights))
output (- 1 output)) )
outputs layer-weights) )
; Perform back propagation on a network and returns a list of weight
; and bias changes in the form of the original weights and biases.
(define (back-prop target outputs trans-weights old-changes)
(if (null? outputs)
'no-outputs
(reverse
(descent (error-sig-output target (first outputs))
(rest outputs) trans-weights old-changes))) )
; Recurse through a network to compute error signals and return
; connection weight and bias changes.
(define (descent error-signals outputs trans-weights old-changes)
(if (null? outputs)
'()
(cons (calc-weights error-signals (first outputs)
(first old-changes))
(descent (error-sig-inner error-signals
(first trans-weights) (first outputs))
(rest outputs) (rest trans-weights)
(rest old-changes)))) )

```
```

; Compute change in connection weights and biases for all units in
; one layer. inputs are the activation levels of the units in the
; layer below.
(define (calc-weights error-signals inputs old-change)
(map (lambda (error change)
; insert new bias change
(cons (+ (* learn-rate error) (* momentum (car change)))
(map (lambda (input old-weight-change)
(+ (* learn-rate error input)
(* momentum old-weight-change)) )
inputs (cdr change))) )
error-signals old-change) )
; Add the new weight and bias changes to the current weights and
; biases and returns the new weights and biases.
(define (update old-weights weight-change)
(map (lambda (weight-layer change-layer)
(map (lambda (weight-unit change-unit)
(map + weight-unit change-unit) )
weight-layer change-layer) )
old-weights weight-change) )
; Test if outputs are close enough to target values.
(define (avg-square-test outputs targets)
(< (/ (apply + (map (lambda (outcome desired)
(expt (- outcome desired) 2) )
outputs targets))
(length outputs))
.0025) )
; Return new network with units changed according to func.
(define (net-change func weights)
(map (lambda (layer)
(map (lambda (unit) (func unit) ) layer) )
weights) )
; Helper function for trainer.
(define (train input-set target-set weights learn-func frequency)
(trainer input-set target-set weights
(net-change (lambda (unit)
(map (lambda (weight) 0) unit) ) weights)
learn-func frequency 0) )

```
```

; Given training set of inputs and targets, initial weights and
; biases, old weight and bias changes, learning function, display
; frequency, and epoch counter - return the number of epochs to
; train and the new connection weights and biases after learning.
; Print outputs each frequency epochs.
(define (trainer input-set target-set weights old-changes
learn-func frequency count)
(let* ((act-set
(map (lambda (input)
(reverse (propagate weights input)) )
input-set))
(output-set (map first act-set)))
(if (zero? (remainder count frequency))
(print-outputs count input-set output-set target-set))
(if (every avg-square-test output-set target-set)
(list count weights)
(let* ((results (learn-func target-set act-set weights
old-changes))
(weights (first results))
(changes (second results)))
(trainer input-set target-set weights changes
learn-func frequency (+ count 1))))) )
; Print the current output value for each input and indicate if
; that input has been learned.
(define (print-outputs count input-set output-set target-set)
(display count)
(newline)
(for-each (lambda (input output target)
(display input)
(display " -> ")
(display output)
(display " learned: ")
(display (avg-square-test output target))
(newline) )
input-set output-set target-set) )
; Pass through the target set and actual outputs using back-prop
; and adjust the weights after each call to back-prop.
(define (adjust-during target-set output-set weights old-changes)
(if (null? target-set)
(list weights old-changes)
(let ((changes (back-prop (first target-set)
(first output-set) (transpose weights)
(reverse old-changes))))
(adjust-during (rest target-set) (rest output-set)
(update weights changes) changes))) )

```
```

; Pass through the target set and actual outputs using back-prop
; and adjust the weights after the entire epoch is complete.
(define (adjust-after target-set output-set weights old-changes)
(after target-set output-set (transpose weights) weights
old-changes))
(define (after target-set output-set trans-weights new old-changes)
(if (null? target-set)
(list new old-changes)
(let ((changes (back-prop (first target-set)
(first output-set) trans-weights
(reverse old-changes))))
(after (rest target-set) (rest output-set) trans-weights
(update changes new) changes))) )
; Given a description of a network - a list of numbers indicating
; how many nodes are in each layer beginning with the input layer,
; return a list of random initial connection weights and biases.
(define (random-net net-desc)
(if (or (null? net-desc) (null? (cdr net-desc)))
'()
(cons (make-layer-weights (car net-desc) (second net-desc))
(random-net (cdr net-desc)))) )
; Return random weights and biases for a layer in a network.
(define (make-layer-weights nodes-below nodes-above)
(make-list nodes-above
(lambda (n) (bias-\&-weights nodes-below) )) )
; Return random bias and weights for a node in a network.
; The values are in the range -1 to 1.
(define (bias-\&-weights num-nodes)
(make-list (+ num-nodes 1)
(lambda (n) (- (/ (random 1000) 500) 1) )) )
; Make a list of num-items elements with values based on func.
(define (make-list num-items func)
(do ((num num-items (- num 1))
(new-list '() (cons (func num) new-list)))
((<= num 0)
new-list)) )

```

\section*{Genetic algorithm code:}
```

; Randomly create a population of pop-size individuals.

```
; Randomly create a population of pop-size individuals.
(define (random-pop pop-size chromosome-length create)
(define (random-pop pop-size chromosome-length create)
 (make-list pop-size
 (make-list pop-size
 (lambda (n) (make-list chromosome-length
 (lambda (n) (make-list chromosome-length
 (lambda (n) (create))))))
```

                            (lambda (n) (create) )) )) )
    ```
```

; Main function for performing genetic algorithms.
(define (generation sorted-pop fitness done? select m-prob create
count)
(display sorted-pop)
(newline)
(if (done? (first sorted-pop) count)
(list count (first sorted-pop))
(let* ((parents (select sorted-pop))
(children (mutate (crosslink parents) m-prob create))
(new-pop (subseq (sort fitness
(union children sorted-pop))
0 (length sorted-pop))))
(generation new-pop fitness done? select m-prob create
(+ count 1)))) )
; Helper function for generation - sorts population.
(define (gen-algo population fitness done? select m-prob create)
(generation (sort fitness population) fitness done? select m-prob
create 0) )
; Perform insertion sort on a-list according to compare-func.
(define (sort compare-func a-list)
(if (null? a-list)
'()
(insert
(first a-list)
(sort compare-func (rest a-list))
compare-func)) )
; Insert element into sorted-list using compare-func.
(define (insert element sorted-list compare-func)
(cond ((null? sorted-list)
(list element))
((compare-func element (first sorted-list))
(cons element sorted-list))
(else
(cons (first sorted-list)
(insert element (rest sorted-list) compare-func)))) )
; Select parents from the sorted population.
(define (select-parents sorted-pop)
(let* ((num-parents (round (* (length sorted-pop) cross%)))
(num-best (round (* num-parents best%))))
(append (subseq sorted-pop 0 num-best)
(choose-from (subseq sorted-pop num-best)
(- num-parents num-best)))) )

```
```

; Choose num individuals randomly from population.
(define (choose-from pop-list num)
(if (= 0 num)
'()
(let ((elt-pos (random (length pop-list))))
(cons (list-ref pop-list elt-pos)
(choose-from (append (subseq pop-list 0 elt-pos)
(subseq pop-list (+ elt-pos 1)))
(- num 1))))) )
(define cross% 0.6) ; crosslink 60% of the population
(define best% 0.75) ; 75% of the parents are the best individuals
; Reorder population then call crosspair to perform crosslinking.
(define (crosslink population)
(crosspair (choose-from population (length population))) )
; Sequence through pop applying crossover to successive pairs.
(define (crosspair pop)
(cond ((null? pop)'())
((null? (cdr pop)) pop)
(else (append (crossover (first pop) (second pop))
(crosspair (cddr pop))))) )
; Generate two new offspring by crosslinking two chromosomes.
(define (crossover chromosome1 chromosome2)
(let ((cross-pos (+ 1 (random (- (length chromosome1) 1)))))
(list
(append (subseq chromosome1 0 cross-pos)
(subseq chromosome2 cross-pos))
(append (subseq chromosome2 0 cross-pos)
(subseq chromosome1 cross-pos)))) )
; Mutate random genes in population according to probability.
; Use create to produce a new allele.
(define (mutate population probability create)
(map (lambda (individual)
(map (lambda (gene)
(if (< (random 100) (* probability 100))
(create)
gene) )
individual) )
population) )

```

\section*{APPENDIX}

\section*{1 Scheme Resources}

Two items that are helpful for programming in any language are a reference manual and a compiler or interpreter. The reference manual for Scheme is called R4RS (Revised \({ }^{4}\) Report on Scheme). It is very terse but covers the entire language. Scheme interpreters and compilers are available commercially or for free. You can get these items and a host of additional information about Scheme by checking out either the following \(\mathrm{ftp}^{1}\) site or web sites.
```

ftp: swiss-ftp.ai.mit.edu
web: swissnet.ai.mit.edu/scheme-home.html
www.cs.indiana.edu/scheme-repository/home.html

```

Connect to the ftp site by specifying "anonymous" as a name and your name as a password. Under the pub directory, you will find various Scheme files and directories including reports on Scheme such as R4RS and implementations of Scheme including scm, PC-Scheme, and MIT Scheme.

The web sites are easier to explore. They have free implementations of Scheme and R4RS in postscript and HTML. In these sites or links from these sites you can find numerous free implementations of Scheme and information about Scheme including a FAQ (frequently asked questions) on Scheme.

Through these different resources you should find Scheme interpreters that run on Windows 3.1, Windows 95, Windows NT, MacOS, Linux and many UNIX platforms.

The code from the examples in this text including the extensions are available on the Web at www.springer-ny.com/supplements/grillmeyer. There you can also find corrections to any errors that were found in the text.

You can reach me (Oliver Grillmeyer) via e-mail at topramen@cs . berkeley .edu.

\footnotetext{
1. FTP stands for file transfer protocol and is a way of remotely connecting to a computer and receiving or sending information (e.g., programs, text, images).
}

\section*{2 Scheme Reference}

As a convenience, the standard Scheme functions including those not covered in this text are listed below by category. Following this section is a listing of the extensions to Scheme used in this text and their implementation.

\subsection*{2.1 Mathematical functions}
\begin{tabular}{|c|c|c|}
\hline function & arguments & return value \\
\hline + & 0 or more nums & sum of arguments \\
\hline - & 1 or more nums & difference of arguments in left to right order \\
\hline * & 0 or more nums & product of arguments \\
\hline 1 & 1 or more nums & quotient of arguments in left to right order \\
\hline < & 2 or more nums & num1 < num2 < ... <numN \\
\hline > & 2 or more nums & num1 > num2 > ... > numN \\
\hline \(=\) & 2 or more nums & num1 \(=\) num2 \(=\ldots=n u m \mathrm{~N}\) \\
\hline <= & 2 or more nums & num1 \(\leq\) num \(2 \leq \ldots \leq n u m N\) \\
\hline \(\rangle=\) & 2 or more nums & num1 \(\geq\) num \(2 \geq \ldots \geq\) num \\
\hline zero? & num & test if \(n u m=0\) \\
\hline positive? & nит & test if \(n u m>0\) \\
\hline negative? & nит & test if \(n u m<0\) \\
\hline even? & num & test if num is an even number \\
\hline odd? & num & test if \(n u m\) is an odd number \\
\hline number? & num & test if num is a number (integer, real, or ratio) \\
\hline real? & num & test if num is a real number \\
\hline integer? & num & test if \(n u m\) is an integer \\
\hline complex? & num & test if num is a complex number \\
\hline rational? & num & test if num is a rational number \\
\hline exact? & num & test if num is an exact number \\
\hline inexact? & num & test if num is an inexact number \\
\hline quotient & num1 num2 & integer division of num1 and num2 \\
\hline max & 1 or more nums & maximum of arguments \\
\hline min & 1 or more nums & minimum of arguments \\
\hline truncate & num & integer part of num (digits to the left of the decimal) \\
\hline round & num & rounds num to nearest integer \\
\hline floor & num & nearest integer that is less than num \\
\hline ceiling & num & nearest integer that is greater than num \\
\hline sqrt & num & square root of num, \(\sqrt{\text { num }}\) \\
\hline abs & num & absolute value of num, \(\mid\) num \(\mid\) \\
\hline expt & num power & exponentiation (num raised to power), num \(^{\text {power }}\) \\
\hline remainder & num1 num2 & remainder of num1 when divided by num2 \\
\hline modulo & num1 num2 & like remainder but differs with negative numbers \\
\hline numerator & num & numerator of num \\
\hline denominator & num & denominator of num \\
\hline rationalize & num1 num2 & simplest rational number within num2 of num1 \\
\hline gcd & 0 or more nums & greatest common divisor of arguments \\
\hline
\end{tabular}
\begin{tabular}{lll}
lcm & O or more nums & \begin{tabular}{l}
least common multiple of arguments \\
exp
\end{tabular} \\
log & num & \begin{tabular}{l}
e (2.71828) to the num power, \(e^{\text {num }}\)
\end{tabular} \\
sin & num & natural log of num \\
cos & num & sine of num \\
tan & num & cosine of num \\
asin & num & tangent of num \\
acos & num & arcsine of num \\
atan & num & arccosine of num \\
exact->inexact & num & arctangent of num \\
inexact->exact & num & inexact representation of num \\
make-rectangular & num1 num2 & exact representation of num \\
real-part & num & complex number num1 + num2i \\
imag-part & num & real part of complex number num \\
make-polar & num1 num2 & imaginary part of complex number num \\
magnitude & num & complex number num1 \(\times e^{\text {inum2 }}\) \\
angle & num & magnitude of complex number num
\end{tabular}

\subsection*{2.2 Atom and symbol functions}
\begin{tabular}{lll}
predicate & arguments & return value \\
define & variable value & undefined, binds variable to value \\
set! & variable value & undefined, rebind variable to value \\
eqv? & arg1 arg2 & test if atoms arg1 and arg2 are the same \\
eq? & arg1 arg2 & test if symbols arg1 and arg2 are the same \\
symbol? & arg & test if arg is a symbol
\end{tabular}

\subsection*{2.3 List functions}
\begin{tabular}{|c|c|c|}
\hline function & arguments & return value \\
\hline length & list & the number of elements in list \\
\hline car & list & first element of list \\
\hline cdr & list & rest of list \\
\hline list-ref & list position & element at position pos in list \\
\hline list-tail & list num & list without the first num elements \\
\hline cons & element list & list with element inserted at the start \\
\hline list & el1 ... elN & the list (el1 ...elN) \\
\hline append & list1 ... listN & the list formed by concatenating the elements of list1 through listN \\
\hline member & element list & the rest of list starting with the first occurrence of element, \# f if element is not in list \\
\hline memq & element list & like member but uses eq? for comparisons \\
\hline memv & element list & like member but uses eqv? for comparisons \\
\hline reverse & list & the reverse of the top-level elements of list \\
\hline assoc & element assoc-list & the first pair in assoc-list whose car is element \\
\hline assq & element assoc-list & like assoc but uses eq? for comparisons \\
\hline
\end{tabular}
\begin{tabular}{lll}
assv & element assoc-list & like assoc but uses eqv? for comparisons \\
equal? & arg1 \(\arg 2\) & test if \(\arg 1\) looks the same as \(\arg 2\) \\
list? & arg & test if \(\arg\) is a list \\
null? & arg & test if \(\arg\) is () \\
pair? & arg & test if \(\arg\) is a pair \\
set-car! & list value & undefined, rebind car of list to value \\
set-cdr! & list value & undefined, rebind cdr of list to value
\end{tabular}

In addition there are combinations of up to four car and cdr function calls abbreviated with \(\mathrm{a}^{\prime} \mathrm{s}\) and d's sandwiched between a " c " and an " r " (e.g., cdar, cdadr, cadaar).

\subsection*{2.4 Control special forms}
(if condition
action
[else-action])
If condition is true, return action. If condition is false, return else-action. If condition is false and there is no else-action, return an undefined value.
```

(cond (condition action1 action2 ... actionN)
(condition action1 action2 ... actionN)
(else action1 action2 ... actionN)

```

Evaluates conditions in order and returns the last action, actionN, corresponding to the first condition that is true. If the are no actions, condition is returned. If all conditions are false, returns actionN corresponding to else. If all conditions are false and there is no else clause, cond returns an undefined value.
```

(case key
((values1) action1 action2 ... actionN)
((values2) action1 action2 ... actionN)
(else action1 action2 ... actionN)

```

Evaluates key and compares it to values which are nonquoted atoms (treated literally). If key matches any atom in values, the corresponding actions are evaluated and the last action, actionN, is returned. If none of the atoms in any of valuess matches key, actionN of the else is returned. Otherwise if there are no matches and no else clause, case returns an undefined value.
(and condition1 condition2 ... conditionN)
Evaluates conditions until a false condition is found or all conditions are true. Returns \#f if a false condition is found, otherwise returns conditionN.

\section*{(or condition1 condition2 ... conditionN)}

Evaluates conditions until a true condition is found or all conditions are false. Returns first true condition found or \#f if all conditions are false.

\subsection*{2.5 String and character functions}
\begin{tabular}{lll}
function & arguments & return value \\
\hline string-length & string & number of characters in string \\
string-ref & string pos & the character at position pos in string \\
string & 0 or more chars & \begin{tabular}{l}
string consisting of chars
\end{tabular} \\
make-string & num char & string consisting of num copies of char \\
string-copy & string & a copy of string \\
substring & string start end & like subseq but returns part of string \\
string-append & 0 or more strings & like append but with strings \\
string? & arg & test if arg is a string \\
string=? & str1 str2 & test if str1 and str2 are the same \\
string<? & str1 str2 & test if str1 is less than (alphabetically) str2 \\
string>? & str1 str2 & test if str1 is greater than (alphabetically) str2 \\
string<=? & str1 str2 & test if str1 is less than or equal to str2 \\
string>=? & str1 str2 & test if str1 is greater than or equal to str2 \\
string-set! & string pos char & undefined, rebind element at position pos of string to char \\
string-fill! & string char & undefined, rebind every element of string to char \\
char-upcase & char & the upper case version of char \\
char-downcase & char & the lower case version of char \\
char? & arg & test if arg is a character \\
char=? & char1 char2 & test if char1 and char2 are the same \\
char<? & char1 char2 & test if char1 is less than (alphabetically) char2 \\
char>? & test if char1 is greater than (alphabetically) char2 \\
char<=? & char1 char2 & test if char1 is less than or equal to char2 \\
char>=? & test if char1 is greater than or equal to char2 \\
char-alphabetic? & char char2 & test if char is alphabetic \\
char-numeric? & char & test if char is numeric \\
char-whitespace? & char & test if char is a whitespace character \\
char-upper-case? & char & test if char is upper case \\
char-lower-case? & char & test if char is lower case
\end{tabular}

There are versions of the ten string and character comparison functions (e.g., string=? and char>=?) that ignore the case of the letters. The letters "-ci" (for case insensitive) are attached to the function names as in string-ci=? and char-ci>=?.

\subsection*{2.6 Vector functions}
\begin{tabular}{lll}
function & arguments & return value \\
\hline vector-length & vector & number of elements in vector \\
vector-ref & vector pos & the element at position pos in vector \\
vector & 0 or more elts & vector consisting of elts \\
make-vector & num elt & vector consisting of num copies of elt \\
vector? & arg & test if arg is a vector \\
vector-set! & vector pos value & undefined, rebind element at position pos of vector to value \\
vector-fill! & vector value & undefined, rebind every element of vector to value
\end{tabular}

\subsection*{2.7 Conversion functions}
\begin{tabular}{lll}
function & arguments & return value \\
\hline symbol->string & symbol & string equivalent of symbol \\
string->symbol & string & symbol equivalent of string \\
number->string & number & string equivalent of number \\
string->number & string & number equivalent of string \\
list->string & list & string version of the characters in list \\
string->list & string & list of characters in string \\
integer->char & integer & character equivalent of integer \\
char->integer & char & integer equivalent of char \\
list->vector & list & vector equivalent of the elements of list \\
vector->list & vector & list equivalent of the elements in vector
\end{tabular}

\subsection*{2.8 Functionals}
function arguments return value
\begin{tabular}{lll}
map & function lists & list of results from applying function to successive elements of lists \\
for-each & function lists & undefined, apply function to successive elements of lists \\
apply & function list & result of applying function to elements of list
\end{tabular}

\subsection*{2.9 Additional special forms and functions within Scheme}
\begin{tabular}{|c|c|c|}
\hline item & arguments & return value and side-effects \\
\hline let & var-value-pairs body & bind vars to values and evaluate body \\
\hline let* & var-value-pairs body & bind vars to values in order and evaluate body \\
\hline letrec & var-value-pairs body & like let except vars can be bound to functions which can be recursive or mutually recursive \\
\hline quote & expression & expression unevaluated \\
\hline quasiquote & expression & expression unevaluated except for items preceded by "," or ", @" \\
\hline not & arg & the logical opposite of arg \\
\hline boolean? & arg & test if arg is a boolean (\#t or \#f) \\
\hline procedure? & arg & test if arg is a procedure \\
\hline begin & 1 or more expressions & evaluate expressions returning result of last one \\
\hline delay & expression & a promise to evaluate expression when forced \\
\hline force & promise & result from evaluating promise (from a delay) \\
\hline load & string & undefined, load contents of file named string \\
\hline transcript-on & string & undefined, save the Scheme interaction in file named string \\
\hline transcript-off & none & undefined, stop saving the Scheme interaction \\
\hline
\end{tabular} define can be used to create functions. The syntax for doing this is as follows:
(define (function-name parameter-list)
body)

The syntax of let, let*, and letrec is as follows:
```

(let ( (variable-1 value-1)
(variable-2 value-2)

```
 (variable- \(N\) value- \(N\)))
 body)
(lambda (parameters) body)

Creates a function (closure) taking parameters with body as its actions.
```

(call-with-current-continuation function)

```

The parameter of function names an exit function. The body of function is evaluated and returns a normal result, unless the exit function is called in which case the argument to the exit function is returned.

\subsection*{2.10 Iteration}
```

(do ( (variable1 initial-value1 [update-value1])
(variable2 initial-value2 [ update-value2 ])
(variableN initial-valueN [ update-valueN ]) )
(test exit-actions)
body)

```

The variables are bound to initial-values as in let. Next test is evaluated and if true exit-actions are evaluated and the final action is returned. Otherwise body is evaluated and the do repeats the sequence, however variables are bound to update-values on subsequent iterations through the do.

\subsection*{2.11 I/O functions}

Input functions
\begin{tabular}{lll}
input function & arguments & return value \\
\hline read & none & the value entered by the user \\
read-char & none & the character entered by the user \\
peek-char & none & the next character ready to be read
\end{tabular}

Output functions
\begin{tabular}{llll}
function & arguments & prints out & return value \\
\hline newline & none & a blank line & undefined \\
display & expression & the value of expression & undefined \\
write & expression & the value of expression & undefined \\
write-char & char & char & undefined
\end{tabular}

\subsection*{2.12 File functions}
\begin{tabular}{|c|c|c|}
\hline function & arguments & return value \\
\hline open-input-file & string & open file named string for input and return port \\
\hline open-output-file & string & open file named string for output and return port \\
\hline current-input-port & none & the current input port \\
\hline current-output-port & none & the current output port \\
\hline call-with-input-file & string function & call function with the input port for string if it can be opened \\
\hline call-with-output-file & string function & call function with the output port for string if it can be opened \\
\hline with-input-from-file & string function & call function with no arguments after opening the file named string for input \\
\hline with-output-from-file & string function & call function with no arguments after opening the file named string for output \\
\hline close-input-port & port & undefined, close input file associated with port \\
\hline close-output-port & port & undefined, close output file associated with port \\
\hline input-port? & arg & test if arg is an input-port \\
\hline output-port? & arg & test if arg is an output-port \\
\hline eof-object? & arg & test if arg is an eof object \\
\hline char-ready? & port & test if if there is a character ready to read on port \\
\hline
\end{tabular}

\section*{3 Functions Added as Extensions to Scheme}

The following functions are not standard to Scheme, but have been added in this text. They are grouped by the categories used above for the standard functions.

\subsection*{3.1 Mathematical functions}

The following two functions have been changed in this text's extensions to always return an exact number even if called with an inexact number.
\begin{tabular}{lll}
function & arguments & return value \\
\hline truncate & num & exact integer part of num (digits to the left of the decimal) \\
round & \(n u m\) & rounds num to nearest exact integer
\end{tabular}

\subsection*{3.2 List functions}
\begin{tabular}{lll}
function & arguments & return value \\
\hline first & list & first element of list \\
second & list & second element of list \\
third & list & third element of list \\
fourth & list & fourth element of list \\
fifth & list & fifth element of list \\
rest & list & rest of list without the first element \\
subseq & list start & list with elements start +1 to the end of list
\end{tabular}
\begin{tabular}{lll}
\begin{tabular}{l}
subseq \\
position
\end{tabular} & \begin{tabular}{l}
list start end \\
element list
\end{tabular} & \begin{tabular}{l}
list with elements start + 1 through end \\
the position of element in list (counting from zero), \\
\#f if element is not in list
\end{tabular} \\
count & \begin{tabular}{l}
element list \\
the number of occurrences of element in list
\end{tabular} \\
remove & \begin{tabular}{l}
element list \\
rassoc
\end{tabular} & \begin{tabular}{l}
list with all occurrences of element removed
\end{tabular} \\
element assoc-list & the first pair in assoc-list whose cdr is element
\end{tabular}

\subsection*{3.3 Atom and symbol functions}
\begin{tabular}{lll}
function & arguments & return value \\
\hline atom? & arg & arg is an atom
\end{tabular}

\subsection*{3.4 Functionals}
\begin{tabular}{|c|c|c|}
\hline function & arguments & return value \\
\hline find-if & test list & first element in list that satisfies test \\
\hline find-if-not & test list & first element in list that does not satisfy test \\
\hline count-if & test list & number of elements in list that satisfy test \\
\hline count-if-not & test list & number of elements in list that do not satisfy test \\
\hline remove-if & test list & list without elements that satisfy test \\
\hline keep-if & test list & list of elements that satisfy test \\
\hline every & test lists & final true return value if all successive elements in lists satisfy test, \#f otherwise \\
\hline any & test lists & first true value from applying test to successive elements in lists, \#f otherwise \\
\hline accumulate & bin-func list & result of applying bin-func to the elements in list two at a time \\
\hline
\end{tabular}

\subsection*{3.5 Additional functions}
\begin{tabular}{lll}
function & arguments & return value \\
\hline random & num & randomly generated number between 0 and num -1 \\
union & set1 set2 & set of elements in either set1 or set2 \\
intersection & set1 set2 & set of elements in both of set1 and set2 \\
set-difference & set1 set2 & set of elements in set1 that are not in set2 \\
adjoin & element set & set with element added if its not already in set \\
subset? & set1 set2 & true if all the elements of set1 are in set2?
\end{tabular}

\section*{4 Implementation of Extensions}

The definitions of the following extensions differ slightly from those given in the text. The extensions save the values of the functions they use in let variables and the extension itself is defined as a lambda within the let. This way, even if the functions that these extensions use internally are changed, the extensions maintain the old bindings to the functions and they continue to work. For
example, if the function length were redefined, the extension subseq would still work even though it uses length because it has saved the initial definition of length.
```

Library files for Exploring Computer Science with Scheme
Oliver Grillmeyer
Version 1.5, 10/7/97
Contents
truncate (redefined to give exact number)
round (redefined to give exact number)
first, second, third, fourth, fifth, rest
subseq
position, remove, count (all use equal? for comparison)
atom?
find-if, find-if-not, count-if, count-if-not, remove-if, keep-if
rassoc (uses equal? for comparison)
every, any
accumulate
intersection, union, set-difference, subset?, adjoin
random, init-random
Add the following code if error does not exist in your version of Scheme
(define error-setup 'init)
(call-with-current-continuation
(lambda (stop)
(set! error-setup stop)))
Print an error message made up of the arguments to the function.
(define error
(let ( (newline newline) (display display) (car car) (cdr cdr)
(for-each for-each) (error-setup error-setup) )
(lambda vals
(newline)
(display "Error: ")
(display (car vals))
(for-each (lambda (val) (display " ") (display val)) (cdr vals))
(error-setup '.) )) )
; Redefine truncate to return an exact integer.
(set! truncate
(let ( (truncate truncate) (inexact->exact inexact->exact) )
(lambda (number)
(inexact->exact (truncate number)) )) )

```
```

; Redefine round to return an exact integer.
(set! round
(let ( (round round) (inexact->exact inexact->exact) )
(lambda (number)
(inexact->exact (round number)) )) )
; Return the first element of a list.
(define first car)
; Return the second element of a list.
(define second cadr)
; Return the third element of a list.
(define third caddr)
; Return the fourth element of a list.
(define fourth cadddr)
; Return the fifth element of a list.
(define fifth
(let ( (car car) (cddddr cddddr) )
(lambda (lst)
(car (cddddr lst)) )) )
; Return the rest of a list.
(define rest cdr)
; Return lst without last num elements.
(define list-head
(let ( (>= >=) (length length) (= =) (cons cons) (car car)
(cdr cdr) )
(lambda (lst num)
(cond ((>= num (length lst)) '())
((= num 0) lst)
(else (cons (car lst) (list-head (cdr lst) num)))) )) )
; Return subsection of lst from positions start to end-1.
(define subseq
(let ( (length length) (null? null?) (not not) (<= <=)
(error error) (list-head list-head) (list-tail list-tail) )
(lambda (lst start . args)
(let* ( (len (length lst))
(end (if (null? args) len (car args))) )
(cond ((not (<= 0 start len))
(error "Improper start value for subseq:" start))
((not (<= 0 start end len))
(error "Improper end value for subseq:" end))
(else
(list-head (list-tail lst start) (- len end))))) )) )

```
```

; Return the position (base 0) of the first occurrence of elt in lst.
(define position-helper
(let ( (null? null?) (equal? equal?) (car car) (cdr cdr) (+ +) )
(lambda (elt lst num)
(cond ((null? lst) \#f)
((equal? elt (car lst)) num)
(else (position-helper elt (cdr lst) (+ num 1)))) )) )
(define position
(let ( (position-helper position-helper) )
(lambda (elt lst)
(position-helper elt lst 0) )) )
; Return lst with all occurrences of elt removed.
(define remove
(let ( (null? null?) (equal? equal?) (car car) (cdr cdr)
(cons cons) )
(lambda (elt lst)
(cond ((null? lst) '())
((equal? elt (car lst)) (remove elt (cdr lst)))
(else (cons (car lst) (remove elt (cdr lst))))) )) )
; Return the number of times elt occurs in lst.
(define count
(let ( (null? null?) (equal? equal?) (car car) (cdr cdr) (+ +) )
(lambda (elt lst)
(cond ((null? lst) 0)
((equal? elt (car lst)) (+ 1 (count elt (cdr lst))))
(else (count elt (cdr lst)))) )) )
; Return \#t if item is a symbol or a number, \#f otherwise.
(define atom?
(let ( (symbol? symbol?) (number? number?) )
(lambda (item)
(or (symbol? item) (number? item)) )) )
; Return the first element in lst that satisfies func, or \#f if no
; elements satisfy func.
(define find-if
(let ( (null? null?) (car car) (cdr cdr) )
(lambda (func lst)
(cond ((null? lst) \#f)
((func (car lst)) (car lst))
(else (find-if func (cdr lst)))) )) )

```
```

; Return the first element in lst that does not satisfy func, or \#f
; if all elements satisfy func.
(define find-if-not
(let ( (null? null?) (not not) (car car) (cdr cdr) )
(lambda (func lst)
(cond ((null? lst) \#f)
((not (func (car lst))) (car lst))
(else (find-if-not func (cdr lst)))) )) )
; Return the number of elements in lst that satisfy func.
(define count-if
(let ( (null? null?) (car car) (cdr cdr) (+ +) )
(lambda (func lst)
(cond ((null? lst) 0)
((func (car lst)) (+ 1 (count-if func (cdr lst))))
(else (count-if func (cdr lst)))) )) )
; Return the number of elements in lst that do not satisfy func.
(define count-if-not
(let ( (null? null?) (not not) (car car) (cdr cdr) (+ +) )
(lambda (func lst)
(cond ((null? lst) 0)
((not (func (car lst)))
(+ 1 (count-if-not func (cdr lst))))
(else (count-if-not func (cdr lst)))) )) )
; Return lst with all elements satisfying func removed.
(define remove-if
(let ( (null? null?) (car car) (cdr cdr) (cons cons) )
(lambda (func lst)
(cond ((null? lst) '())
((func (car lst))
(remove-if func (cdr lst)))
(else
(cons (car lst) (remove-if func (cdr lst))))) )) )
; Return lst with all elements satisfying func.
(define keep-if
(let ( (null? null?) (not not) (car car) (cdr cdr) (cons cons) )
(lambda (func lst)
(cond ((null? lst) '())
((not (func (car lst)))
(keep-if func (cdr lst)))
(else
(cons (car lst) (keep-if func (cdr lst))))) )) )

```
```

; Like assoc but return the first pair whose cdr matches elt.
(define rassoc
(let ( (find-if find-if) (equal? equal?) (cdr cdr) )
(lambda (elt assoc-list)
(find-if (lambda (dotted-pair)
(equal? (cdr dotted-pair) elt) )
assoc-list) )) )
; every and any each take a variable number of lists as arguments
; and apply the function to those N lists using apply and map.
; To make the recursive call, apply is used to convert a list of
; argument lists into separate arguments.
; Return final true return value if all successive elements in lists
; satisfy func, \#f otherwise.
(define every
(let ( (null? null?) (car car) (cdr cdr) (apply apply) (map map)
(cons cons) (member member) )
(lambda (func . lists)
(cond ((member \#t (map null? lists)) \#t)
((member \#t (map (lambda (lst) (null? (cdr lst))) lists))
(apply func (map car lists)))
(else
(and (apply func (map car lists))
(apply every (cons func (map cdr lists)))))) )) )
; Return the first true value from applying func to successive
; elements in lists, or \#f if no elements satisfy func.
(define any
(let ( (null? null?) (car car) (cdr cdr) (apply apply) (map map)
(cons cons) (member member) )
(lambda (func . lists)
(if (member \#t (map null? lists))
\# f
(or (apply func (map first lists))
(apply any (cons func (map rest lists))))) )) )
; Return result of applying func to elements of lst in the following
; manner: func is applied to the first two elements of lst then to
; that result and the third element, then to that result and the
; fourth element, and so on until all elements have been applied.
(define accum-tail
(let ( (null? null?) (car car) (cdr cdr) )
(lambda (func lst answer)
(if (null? lst)
answer
(accum-tail func (cdr lst) (func answer (car lst)))) )) )

```
```

(define accumulate
(let ( (null? null?) (car car) (cdr cdr) (accum-tail accum-tail) )
(lambda (func lst)
(if (null? lst)
(func)
(accum-tail func (cdr lst) (car lst))) )) )
; Return the elements that set1 and set2 have in common.
(define intersection
(let ( (null? null?) (member member) (car car) (cdr cdr)
(cons cons) )
(lambda (set1 set2)
(cond ((or (null? set1) (null? set2))
())
((member (car set1) set2)
(cons (car set1) (intersection (cdr set1) set2)))
(else
(intersection (cdr set1) set2))) )) )
; Return the elements that exist in either set1 or set2.
(define union
(let ( (null? null?) (member member) (car car) (cdr cdr)
(cons cons) )
(lambda (set1 set2)
(cond ((null? set1)
set2)
((member (car set1) set2)
(union (cdr set1) set2))
(else
(cons (car set1) (union (cdr set1) set2)))) )) )
; Return the elements that exist in set1 but not in set2.
(define set-difference
(let ( (null? null?) (member member) (car car) (cdr cdr)
(cons cons) )
(lambda (set1 set2)
(cond ((null? set2)
set1)
((null? set1)
'())
((member (car set1) set2)
(set-difference (cdr set1) set2))
(else
(cons (car set1)
(set-difference (cdr set1) set2)))) )) )

```
```

; Return \#t if all the elements in set1 exist in set2.
(define subset?
(let ( (null? null?) (member member) (car car) (cdr cdr) )
(lambda (set1 set2)
(cond ((null? set1)
\#t)
((null? set2)
\#f)
(else
(and (member (car set1) set2)
(subset? (cdr set1) set2)))) )) )

```
```

; Return a new set of item and the elements in set if item does not

```
; Return a new set of item and the elements in set if item does not
; exist in set, otherwise return set.
; exist in set, otherwise return set.
(define adjoin
(define adjoin
 (let ((member member) (cons cons))
 (let ((member member) (cons cons))
 (lambda (item set)
 (lambda (item set)
 (if (member item set)
 (if (member item set)
 set
 set
 (cons item set)))))
 (cons item set)))))
; The following code is a modification of a random function used by
; Brian Harvey and Matt Wright in their text "Simply Scheme" which
; they obtained from an old version of the Scheme Library (SLIB)
written by Aubrey Jaffer.
; random has been modified to allow an initial seed to be created
; using init-random.
(define random 0)
(define (init-random seed)
 (set! random
 (let ((*seed* seed) (quotient quotient) (modulo modulo)
 (+ +) (- -) (* *) (> >))
 (lambda (x)
 (let* ((hi (quotient *seed* 127773))
 (low (modulo *seed* 127773))
 (test (- (* 16807 low) (* 2836 hi))))
 (if (> test 0)
 (set! *seed* test)
 (set! *seed* (+ test 2147483647))))
 (modulo *seed* x)))))
(init-random 1)
```


## INDEX

+,31-32
-, 31-32
*,31-32
/,31-32
', 62

- 87
<, 104, 111
$<=104$
>, 104, 111
$>=104$
$=, 104,115-116$
1 to N relationship, 291
8 -puzzle, 415
8 -queens, 415
15-puzzle, 415


## A

A* search, 417-418, 422, 426
abduction, 432
abs, 31
absolute address, 334-335
abstraction, 15, 38, 285, 511, 521
accum-tail, 221
accumulate, 219-222
ACM, 414
actions, 439, 483
activation level, 498
act-layer, 505
add-list, 219
add-new-CD, 96
add-paths, 420
address, 66, 332, 334, 337
addressing modes, 334
add-to, 441
add-to-end, 80
adjoin, 177
adjust-after, 512
adjust-during, 512
after, 513
AI , see artificial intelligence
allele, 519
all-fifteen?, 530
all-numbers, 144
all-numbers-alt?, 210
all-numbers?-iter, 247
all-numbers?-iter-bad, 247
alpha-beta pruning, 418
alt-assoc, 217
alt-new-balance, 138
ALU, see arithmetic logic unit
anchovy, 114
and, 109-112
evaluation rules, 109
antecedent, 432
any, 209-210, 213
with multiple lists, 212
append, 77-79, 99-100
applicative operators, see also
functionals, 199, 503
apply, 35, 201
apply, 201, 219-220, 222
apply-rule, 439
apply-to-7, 202
argument, 27, 30
arithmetic functions, 31
arithmetic logic unit, 332-333
array, 331
artificial intelligence, 8,411
philosophy, 467
subfields, 412
artificial neural networks, 496
artificial neuron, see unit
artist-CD-list, 93
ASCII, 381
a*search, 422
asexual reproduction, 520
assembly language, 331, 334
conditional expressions, 336-337
function calls, 337,341
function definitions, 337, 341
numerical expressions, 335-336
recursive function calls, 342-343
recursive function definitions, 342-343
assoc, 172-173, 217
Association for Computing
Machinery, 414
association list, 172-173
asynchronous communication, 382
atom, 61
atom?, 114
a*-tree-search, 422
attribute-name?, 299
attribute-value, 300
attributes, 286
attributes, 301
auto, 269-273
average of maximums, 479, 482
avg, 261-262
avg-square-test, 510
awk, 382

## B

back propagation, 499, 506-508
back-prop, see back propagation
back-prop, 509
backtracking, 323
backward chaining expert system, 438
bake, 490
baking, 491
batch operating system, 383
batch processing, 375
batch scheduler implementation, 387
batch-scheduler, 390
Bayes' rule, 432
beer, 285
best-first search, 417-418
best-first-search, 419
bias, 498, 507
bias-\&-weights, 513
bifurcation, 237-238
biggest, 221
binary computers, 382
binary file, 381
binary function, 219
binary instructions, 374
binary numbers, 516
binding, 40-41
biology, 518
bit, 374, 382
blackboard, 440
blocked process, 379
blocks
of memory, 382
bottom-up design, 37-38
bottom-up parser, 323, 327, 330
branch, 333, 336, 352
in a tree, 181
breadth-first search, 185, 417-418, 420
breadth-first traversal, 185
breadth-first-alt, 420
breadth-first-search, 186-187
browser, 4, 383
buffers, 377
build up approach, see recursion, build up approach
byte, 382

## C

C, 266
C++, 266-267
cache, 333
CAD, see computer-aided design calc-weights, 509
caller/callee responsibilities, 339
call-with-current-continuation, 255, 275-276, 279, 347, 441
CAM, see computer-aided manufacturing
car, 67, 98-99
car and cdr
combinations, 67, 75-76
origin of names, 66
pronunciation, 76
card readers, 374-375
card-suit, 225
card-value, 225
Cartesian product, 297, 312
CASE, see computer-aided software engineering
case insensitive, 42
$C D$, see conceptual dependency or compact disk
cdr, 67, 98-99
CDs, 163
CDs-within-category, 162, 164
CD-within-CD-list, 164
center of gravity, 479
center of mass, 479, 482
central processing unit, see CPU
chaos, 237-238
cheesecake, 487
cheesecake, 490
chess, $414,416,418$
children, 181
Chinese room, 467-468
chips, 481
chocolate, 277
choose-from, 523
chromosome, 9,518
encoding, 520
selection, 519
class variable, 267, 271
classes, 266
clients, 384
closure, 264
in functions, 288
code generation, 331
code modifiability, 267
code optimization, 364
code reuse, 267,521
code-gen-built-in-func, 358
code-gen-expr, 349
code-gen-expr-list, 347
code-gen-func-def, 355
code-gen-if, 352-353
code-gen-user-func, 357
code-to-english-letter, 173-174
coherence, 461
comma operator, 87
comma-at-sign operator, 88
comments
in code, 31
Common Lisp, 255
commonsense knowledge, 433
communication protocols, 377
compact disk (CD), 64
data structure, 161
database, 92
comparator, 332-334
comparisons
with more than two items, 110
compiler, 7, 319
components, 319-320
compiling compilers, 344
compressed file, 381
computer, 1
internals, 332
computer architecture, 10
computer graphics, 9
computer science, 5
computer system, 3-4, 285, 373-374
computer vision, see vision
computer-aided design, 314
computer-aided manufacturing, 314
computer-aided software
engineering, 314
computing with words, 533
conceptual dependency, 429, 458
cond, 107-108, 110-111, 235
with multiple actions, 235
condition
without action, 163
condition, 439, 483
condition-action pairs, 107
conditional expressions, 103
conditional probability, 432
conditional-test, 352
conflict resolution, 436-437
connection weights, 496, 498
connectionist models, 496
cons, 172
cons, 77, 79, 98-99, 148
cons cells, 97-98, 116, 362-363
when created, 116
consequent, 432
constant, 104
constrained join, 298, 305
contains?, 442
contains-any?, 442
context switch, 385-386, 403
continuation, 275, 279
control in expert systems, 436-437
control operations, 103
convergence, see also population
convergence and gene
convergence, 520
convert, 300,302
count, 89-90
count-atoms, 153
count-if, 203, 207
count-if-not, 207
counting backward, 245
CPU, 10, 14, 373-374, 376
CPU usage, 379-380
CPU utilization, 386, 391
CPU work, 375
CPU-bound, 375

CPU-bound jobs, 385
create-card, 225
creator function, 175
crisp versus fuzzy values, 476
critical sections, 378
cross-compiler, 319, 345
crosslink, 524
crosslinking, 9, 518-520
crossover, 524
crossover point, 519
crosspair, 524
cryptarithmetic, 415
curly, 265
CYC, 434, 458
assertions, 434
concepts, 434

## D

dances-sentence, 83
dangling else, 329
data, 61
data, 441
data abstraction, 349-350
data driven expert system, 438
data independence, 296
data integrity, 170, 296
data mining, 314
data representation, 362
data structure, 61, 169
using lists, 64
database, 7, 285
database management system, 7, 285
database system, 285
DBMS, see database management system
De Morgan, 112
deadlock, 377-378
in distributed systems, 401
preventing, 378-379
decode, 528
deduction, 432
deep-reverse, 156, 158
deep-rev-map, 200
define, 40, 43-44, 63, 278
definition
function versus variable, 45
definitional pseudo code, 131, 135
defuzzify, 477, 479, 482, 486
defuzzify, 486
degrees of freedom, 464
delete, 441
DELTA, 414
demand paging, 380-381
DENDRAL, 414, 436
department-list, 256
department-name, 256
depth, 466
depth-first search, 183, 417-418, 420
depth-first traversal, 183
depth-first-alt, 420
depth-first-search, 184-185
derivation, 322
leftmost, 326
rightmost, 327
descent, 509
design
for modifiability, 175, 184
destructive operators, 503
device drivers, 374
difference, 51
digital libraries, 461
Dijkstra, Edsger, 378
dilbert, 263
dining philosophers problem, 378
directories, 381
discard, 443
disk drive, 6, 374-375
diskless node, 376
dispatching, 267
display, 231-233
distributed information, see distributed knowledge
distributed knowledge, 501
distributed operating system, 376, 384, 401
division-name, 256
do, 244, 279
body, 247
evaluation, 244
general uses, 248
recursive equivalent, 245
repeating actions, 245
repetition through lists, 246
syntax, 244
Doctor, 468
dogbert, 263
do-loop, 245
do-1oop-2, 245
done, 491
dotted list, 99-100, 173
internal representation, 99
draw, 444
draw-card, 442
dummy record, 292

## E

EBCDIC, 381
edge detection, 464
editing, 381
effectors, 464
electronic mail, 4, 382
element-after, 93
Eliza, 468
else, 108
elts, 262
e-mail, see electronic mail embedded recursion, 139, 243
employees, 256
empty list, 61-62
encapsulation, 263
encrypted file, 381
english-letter-to-code, 171, 173-174, 176
english-to-code, 171
environment, 264, 364
epoch, 499, 510
eq?, 116
equal?, 114-116
equality predicates, 115
eqv?, 115-116
error measurement, 499
error messages, 33
error signal, 507-508
error-sig-inner, 508
error-sig-output, 507
Escher, M.C., 465
eval, 239, 268, 300
evaluation
stopping, 62
evaluation rules, 35, 40, 268
evaluator, 35
even?, 104
events, 458
every, 209-210, 212
with multiple lists, 212
evolutionary system, 518
excitatory connection, 498
exclusive or, 111, 502-503, 515
exhaustive search, 417
existential quantifier, 431
exit case, 129, 134
exit function, 276-279
expand, 392
expand-deck, 451
expert system, $8,412,414,418$,
436-437
actions, 436
control, 436-437
database, 437
explanations, 437
implementation, 438
expert system shells, 437
expert-shell, 439
exponential time, 415
expression, 35
expt, 31
extended relational database system, 314
extent, 49
global variable, 49
parameter, 49

## F

\#f, 104
fact, 141
fact-iter, 248
factorial, 140, 160
false, 104
fast, 269-271, 273
fault tolerance, 10
fcfs-scheduling, 394
field
of record, 362
fifth, 67
Fikes, Richard, 435
file, 381
binary, see binary file
compressed, see compressed file
encrypted, see encrypted file
object, see object file
text, see text file
file access, 383-384
file server, 376, 384
file system, 373, 381
filter, 148-149, 250-251
find, 421
find-dept, 257
find-employee, 257-258, 280
find-if, 203, 205, 207, 217
find-if-not, 207
firing rules, 437
first, 66-67, 128
first class object, 262, 364
first-come, first-served scheduling, 383, 385, 391, 394
first-greater, 127-128
fit, 525
fit8, 530
fitness, 518-519
fitness measurement, see fitness test
fitness test, 518
fixed-print, 309
FLIP, see fuzzy logic inferences per second
floating point unit, 376
for-each, 199-201, 232, 265, 310
form letters, 84
FORTRAN, 343
compiler, 343
forward chaining expert system, 438
forward propagation, see propagation
fourth, 67
frame pointer, 339, 354
frames, 430
Franklin, Aretha, 82
free variable, 138
FROM, 286, 297
implementation, 304
from, 307-308
function, 29, 262
as argument, 199, 202, 262
as return value, 263
binary, 219
creating, 43-44
definition versus call, 45
evaluation, 44
helper, 141
shadowing, 51
user-defined, 43
with variable number of parameters, 212, 261
function calls
versus lists, 62
function composition, 35
function definition, 43, 261
functional programming, viii, 266
functionalist, 467
functionals, 199, 503
writing, 202
fuzzify, 477-478
fuzzify, 482
fuzzy applications, 480
fuzzy expert system, see also fuzzy
system, 477, 480
implementation, 481
fuzzy granulation, 533
fuzzy inferencing, 478, 481
fuzzy logic, $8,476,533$
fuzzy logic inferences per second, 481
fuzzy logic system
problems, 531
fuzzy microprocessor, 481
fuzzy rules, 478
representation, 482
fuzzy sets, 476, 518
combining, 479
representation, 481
fuzzy subway system, 480
fuzzy system, see also fuzzy expert system, 478
compared with neural networks, 500
extensions, 531-532
fuzzy versus crisp values, 476
fuzzy-eval, 487
fuzzy-genetic systems, 532

## G

g cost function, 417, 423-424, 428
$\Gamma$ (gamma) functions, 476
game playing, 414
gen-algo, 522
gene, 519
gene convergence, 526
gene pool, 519
General Problem Solver, 413, 435
operators, 435
preconditions, 435
generation, 518, 521
generation, 522, 527
genetic algorithm, 9, 518, 534
extensions, 531-533
problems, 532
genotype, 518, 528
gentemp, 351
get-action, 450
get-args, 357
get-body, 356
get-call-name, 357
get-condition, 350
get-else-action, 351, 353
get-first-arg, 359
get-func-name, 356
get-number, 234
get-params, 356
get-random-element, 73
get-second-arg, 359
get-then-action, 350
global maximum, 417
global variable, 49, 138
goal driven expert system, 438
goal state, 416
goals, see natural language
processing, goals
Gopher, 383
GPS
see General Problem Solver, 413
grammar, 321
LL, 330
LL(1), 326
LR, 327, 330
productions, 322
recursive, 322-323
rules, 322
start symbol, 322
graphical user interface, 268
graphics, 314
graphics toolkit, 268
graphs, 429
versus trees, 429
grounding of symbols, 467
guess, 527
GUI, see graphical user interface

## H

h cost function, 417, 423-424, 428
Hapkido, xi
hard selection, 519
hardware, 3
has-3, 204
has-two-args?, 359
heavyweight process, 402
Hebb, Donald, 502
Hebbian learning, 499, 502
Hebbian rule, 502
hedge, 477
helper function, 141
heuristic, 418
heuristic search, 418
hidden layer, 497
hidden units, 497
hierarchical database system, 290, 293
hierarchical representation, 190
higher-note, 119
high-level language, 6, 319, 343
hill-climbing, 417-418
HTML, 4
hypertext, 4

## I

if, 103, 110-111
nested, 105, 111
immediate address, 335
imperative programming, viii, 266
inclusive or, 111
increasing-digits, 136
indexed, 350
indexed address, 334-335
indirect, 350
indirect address, 334-335
induction, 431
inference, 457
inference engine, 437
infinite, 243
infinite loop, 243
infinite-iter, 244
infix, 184
info, 390
information filtering, 461
information granulation, 533
information retrieval, 461
inheritance, 267, 272, 430
inhibitory connection, 498
initial state, 416
initialize, 452
injera, 459
inner loop, 160
inner node
in a tree, 181
inner-berry, 276
input, 231, 233
input devices, see I/O devices
input layer, 497
input set, 499
input units, 497
INSERT, 286
insert, 225, 419, 522
insert-card, 165
insert-iter, 253-254
insert-tuple, 310-311
insertion sort, 165, 224
instance, 266
instance variable, 266-267, 271
integer?, 104
integer division, 33
intelligence, 411
interactive operating system, 383
international currencies, 531
Internet, 4,469
interpreter, 7, 30, 319, 436
intersection, 177
intersection, 177-178, 216-217
intersection-alt, 217
interval, 118
in-the-dark-sentence, 83
inversion, 521
investment, 130
I/O, 231
I/O devices, 373, 376
I/O work, 375
I/O-bound, 375
I/O-bound jobs, 385
is-addition?, 359
is-built-in-func?, 349
is-comparison?, 359
is-flush?, 227
is-func-def?, 349
is-if?, 349
is-negation?, 359
is-royal-straight?, 227
is-straight?, 167
is-straight-new?, 226
is-subtraction?, 359
items-after, 95
items-before, 94-95
iteration, 243
Scheme versus Pascal and C, 247
iterative loops, 244

## J

Java, 266-267
JFN, 337, 354
job, see also process, 375
job control cards, 375
job priority scheduling, 385
job-info, 264
join
on relations, 287, 297, 304
join, 305, 307
join condition, 298
junk mail, 84

## K

KDD, see knowledge discovery in databases
keep-if, 207, 217
keyboards, 373-374
keyword, 42
knowledge acquisition, 437
knowledge discovery in databases, 314
knowledge engineering, 437
knowledge representation, 314, 429

## L

L functions, 476
$\Lambda$ (lambda) functions, 476
label, 337, 351
lambda, 215, 262, 364
lambda expressions, 215-216, 218
LAN, see local area network
language-based editor, 319
larry, 265
last, 68-69, 427
lawyers, 433
layer
in neural network, 496
leaf, 181
leaf?, 193
leap of faith, see recursion, leap of faith
learning
in neural networks, 498
learning failures, 499
learning rate, 506-507
left-child, 421
leftmost derivation, 326
left-side, 184, 421
Lenat, Doug, 434
length, 66, 177
let, 53, 63
syntax, 53
let expressions, 53
let*,55, 63
lex, 344
lexical analysis, 320
lexical closure, see also closure, 264, 351
light
in vision, 466
lightweight process, 402
line printers, 374
linguistic variables, 477, 482
list, 61
creating, 76
element, 61
elements versus function arguments, 73
extracting element from, 68
extracting random element from, 72
extracting section of, 69
internal representation, 97
number of top-level elements, 66
templates, 87
top-level element, 65-66
versus function call, 62
list, 77-80,99
list?, 114
listify, 202
list-ref, 68
list-tail, 69
literal, 334
literal, 349
LL grammar, 330
LL(1) grammar, 326
local area network, 383
local maxima, 417
local minima, 500, 502
local state, 263
local variable, 53
logic programming, 266
Logic Theorist, 413
logical records, 382
logistic difference equation, 237
lookahead token, 323
loop, 160
lottery, 531
lower-card?, 165
lower-value?, 226
LR grammar, 327, 330
LR parser, 327, 330
LISP, 29, 62, 66
LISP workstations, 414
Lukasiewicz, Jan, 480

## M

machine language, $6,15,331,373$
machine learning, 8, 412
Macintosh operating system, 377
macros, 268
MACSYMA, 414
magic square problem, 528, 530
magnetic tape, 375
main system memory, 373
make-form-letter, 86-87
make-fuzzy-triangle, 481
make-gentemp, 351
make-job, 392
make-layer-weights, 513
make-list, 513
make-paths, 420
make-string, 309
make-table, 355
map, 199-200, 203
with multiple lists, 211
mapping, 170
mapping function, 148, 199-200, 250, 503
Marr, David, 465
max, 31-32
max-of - func, 202
McClelland, James, 502
McCullogh, Warren, 502
means-ends analysis, $413,435,438$
member, 89, 114, 177
membership grade, 476
membership-grade, 483-484
memory, 373, 376
memory management, 380
memory protection, 373,377
Mercator projection, 199
message passing, 267, 376, 401, 481
Metheny, Pat, 64-65, 92, 161
method, 267
microprocessors, 481
microsecond, 386
Microsoft Internet Explorer, 383
microworlds, 433
mille, 450
Mille Bornes, 439
database, 440
driver, 449
rulebase, 444
sample run, 452
millisecond, 386
min, 31-32
mini Scheme, 331
minimax, 418
Minsky, Marvin, 502-503
missionaries and cannibals, 416,426 , 518, 520
data representation, 426
moe, 265
momentum, 506-507, 514-515
monitor, 375
motherboard, 10
motorcycle, 274
mouse, 373-374
move-done?, 442
move-people, 427
multimedia, 401
multiple inheritance, 267
multiprocessor system, 402
multiprogramming, 375
multitasking operating system, 384
multitasking scheduler
implementation, 391
multitask-scheduler, 393, 395
multithreaded operating system, 402-403
multivalued logic, 8, 475
musical intervals, 117
musical scale, 117
mutate, 525
mutation, 9, 518-520
MYCIN, 414, 436

## N

N to M relationship, 292
Narell, Andy, 64-65, 92, 161
natural language, 6, 412
natural language processing, 8,412 , 456
current uses, 461
goals, 460
plans, 460-461
translating Russian to English, 413
Necker cube, 465
negative?, 104
nested if, 105, 111
nested list, 64
nested loop, 160-161, 255
net input, 497
net-change, 511
Netscape Navigator, 383
network, 4, 10, 383, 401
network database system, 291
queries, 294
network file system, 376
network operating system, 376, 383-384
neural net, see neural network
neural network, $8,496,518,534$
advantages, 502
categorization, 501-502, 532
classification, 501-502
compared with fuzzy systems, 500
disadvantages, 502
extensions, 531-533
generalization, 500-502,532
graceful degradation, 501
handling incomplete data, 501-502
implementation, 503
learning, 498
problems, 532
representation, 503-504
training, 499, 520
tuning, 533
neuro-fuzzy system, 532
neuro-genetic system, 533
neuron replacement, 468
neurons, 496, 500
new-balance, 130
new-element, 95
Newell, Allen, 413, 435
new-equal?, 213
newline, 231-232
Nilsson, Nils, 435
NLP, see natural language processing
node
in a tree, 181
in neural network, see unit
no-duplicates, 486
no-loops, 388
nonberry, 278
non-\#f, 104
nonpreemptive scheduler, 379
nonpreemptive scheduling, 385, 391, 394
nonterminals, 322
normal forms, 289
normalization, 289, 296
Norman, Donald, 502
not, 109-110, 112
NP-hard problems, 415-416
null?, 114, 128, 177
number?, 104
number-of-times, 236
numbers
in Scheme, 29
number->string, 309
numerical functions, 31

## 0

object code, 377
object file, 381
object-oriented database system, 314
object-oriented programming, 266
benefits, 267
objects, 266
odd?, 104
off-by-one errors, 71
one-per-line, 232
OOP, see object-oriented programming
operand, 334
operating system, 3,5,373
operator, 416
optional arguments, 261, 264
or, 109-112
evaluation rules, 109
otherwise clause, 108
outer loop, 160
output, 231
output, 348
output devices, see I/O devices
output layer, 497
output units, 497
output-label, 353
outputs, 483
overfit, 500, 502
overloading, 331

## P

$\Pi$ (pi) functions, 476
pages, 380
pair, 172
pair, 441
Pair expected error, 67-68, 70, 78, 100, 127-128
Papert, Seymour, 502-503
parallel distributed processing, 496, 502
parallel machines, 365
parallel processor, 10
parallelization, 402
parameter, 26, 43, 261
parent, 181
Parry, 468
parse tree, 322, 325
parsing, 321, 323
bottom-up, see bottom-up parser
predictive, see predictive parser
recursive descent, see recursive descent parser
shift-reduce, see shift-reduce parser
top-down, see top-down parser
Pascal, 169, 266
pattern of activation, 501
PDP, see parallel distributed processing
peephole optimization, 364
Perceptrons, 502
perceptrons, 502
peripheral device, 6, 374
perl, 382
person-info, 263
phenotype, 518, 528
physical records, 382
physics, 433
pick-highest, 398
Pitts, Walter, 502
pizza, 114
planning, 412, 463
plans, see natural language
processing, plans
play, 443
play-card, 443
play-or-discard, 450
pointer, 97, 116, 363
poker, 119, 164, 225
hand order, 227
poker-value, 121
poker-value-new, 228
polymorphic functions, 267, 330-331
polynomial time, 415
population, 518
population convergence, 520, 526
population growth, 237
population-growth, 237
population-growth-iter, 246
pop-vals, 356
portability, 377
position
versus element number, 68
position, 89-90, 114
positive?, 104
positive-filter, 150
positive-filter-alt, 207
positive-filter-iter, 251
possibility, 480
versus probability, 480
possible-choices, 423
Post, Emil, 436
postfix, 184
post-inc, 350
post-increment indirect address, 334-335
pre-dec, 350
pre-decrement indirect address, 334-335
predicate in logic, 430
predicate calculus, 430
predicate function, 103
predicted-cost function, 417
predictive parser, 323, 326
preemptive scheduler, 379
preemptive scheduling, 385, 391, 396
prefix, 184
pretty printer, 319
primal sketch, 465
print-and-square, 232
printers, 373-374, 376
print-outputs, 512
print-relation, 310
priority, 390
priority of jobs, 385-386, 398
priority scheduling, 398
priority-scheduling, 398
probabilistic reasoning, 432, 475
probability, 432, 480
versus possibility, 480
problem solvers
abstract, 435
critics, 435
problem solving, 8, 412-413, 435
procedure, 30
process, 379, 402
process management, 373, 379
process scheduler, see scheduler
process states, 379
processor, 10
production
recursive, 322
production rules, 436
production systems, 436
program counter, 332-333
programming language, 15
programming paradigms, 266
programming style, 51, 139
PROLOG, 266
PROLOG-like database systems, 314
prompt, 31
propagate, 506
propagation, 496-497,505
property inheritance, 430
proprioceptive sense, 463
prosody, 463
PROSPECTOR, 414
protection, see memory protection and resource protection
pruning, 414
pseudo code, 20
punch cards, 374
push-vals, 356

## Q

quantum, 376, 384-386
quasiquote, 87
query language, 285-286
quote, 62-63
quoting lists, 62
quoting variables, 63

## R

RAM, see random access memory random, 72-73
random access, 373, 375
random access memory, 332, 373
random-net, 513
random-pop, 521
rassoc, 172-173
ratbert, 264
read, 233-234, 239
read only memory, 373
read-and-apply, 234
read-eval-print, 240
read-eval-print loop, 239
read-eval-print-with-exit, 240
read-only memory, 332
ready queue, 379,384
ready time, 386
ready-jobs, 390
ready-time, 390
real?, 104
realtime operating system, 383
reasoning, 431
recognition, 463
record
in database system, 290-291
record structure, 362
record type
in database system, 290
recursion, see also recursion, 125-127, 181
build up approach, 148, 155-156
car-cdr, 152, 154
embedded, 139, 243
leap of faith, 148, 152-153, 155
linear, 152
nonlinear, 152
prescriptive method, 134
tail, 139-140, 244
through lists, 142-143
through numbers, 131, 135
to create lists, 148-149
tree, 152
recursive call, 126, 131
recursive case, 129, 135
recursive definition, 35,126
recursive descent, 127, 133, 140
recursive descent parser, 323
recursive function, 126, 129, 131, 134
recursive unwind, 133
reduce, see also shift/reduce, 327
reduce/reduce conflict, 329-330
redundancy, 501
refinement, 23, 38, 135
register windows, 338
registers, 333
conflicts, 337
saving, 338
regular expressions, 320
relational database system, 286, 296
implementation, 296
relations, 286, 296
representation, 298
remainder, 31, 33
remote access, 384
remove, 89
remove1, 391
remove-if, 203-205, 207, 216
remove-if-not, see keep-if, 207
remove-one, 441
reordering, 521
repeat, 392
repeat-action?, 442
repeat-card, 451
repeating actions, 245
repetition through lists, 246
reset, 441
resource protection, 377
resources, 376
response time, 379-380, 385-386
rest, 66-68, 128
restaurant-advisor, 193
RET, 337
return value, 338
returning functions, 263
reverse, 89-90
reverse Polish notation, 184
right-child, 421
rightmost derivation, 327
right-side, 184, 421
robot commands, 16
robotics, 8, 412
robots, 463
acting, 463-464
movement, 464
planning, 463
recognition, 463
Rolling Stones, 64-65, 92, 161

ROM, see read only memory
root, 181
root, 184, 421
Rosenblatt, Frank, 502
round, 523
round-robin, 396
round-robin scheduling, 385, 396
row-to-col, 529
row-to-diag, 529
R.P.N., 184

Ruby, 431
rule of extended middle, 480
rulebase, 437
rule-of-thumb, 418
Rumelhart, David, 502
run-batch-job, 388-389
run-mt-job, 393, 397
Russell, Bertrand, 413

## S

safe-sum, 145
SAM, 457-458, 467
same, 213
satisfied?, 439
scheduler, 376, 379, 384, 387
implementation, 385
scheduling algorithms, 379, 385, 387
scheduling problem, 422
Scheme, 266
Scheme compiler, 346
adding new functions, 363
adding new types, 362
adding special forms, 363
built-in function calls, 357
code generation, 346
define expressions, 354
error checking, 346
error handling, 347
function calls, 356
handling scope, 363
if expressions, 350
lexical analyzer, 346
parser, 346
registers, 347, 357
return value, 347-348
semantic analysis, 346
symbol table, 348,354
symbols, 347
Schwarzenegger, Arnold, 72
scope, 49
global variable, 49
let variable, 53
parameter, 49
scripts, 457,460
search, 416
A* search, see $A^{*}$ search best-first, see best-first search breadth-first, see breadth-first search
comparison, 418
depth-first, see depth-first search
exhaustive, see exhaustive search
heuristic, see heuristic search
hill-climbing, see hill-climbing minimax, see minimax
uniform-cost, see uniform-cost search
search path, 416
search space, 416
search tree, 416
Searle, John, 467-468
second, 67
secondary storage, 374
Select, 286, 296
implementation, 303
select, 304
selection process, 518
selector function, 175, 184, 301
select-parents, 523
semantic analysis, 330-331
semantic networks, 429
relations, 429
semantics, $73,456,460$
sequential access, 373
set, 176-178
in database system, 291
set!, 41, 278
set-car!, 311
set-cdr!, 311
set-difference, 177-178
s-expression, 35
shading
in vision, 466
shadowing, 49-51
shared memory, 376, 384, 401
shared variable, 267, 270-271
shift, 327
shift/reduce conflict, 329
shift-reduce parser, 327, 329
shift-reduce parsing, 328
shift-reduce table, 327-328
short-CPU-scheduling, 399
shortest CPU time scheduling, 399
shortest-CPU-time, 399
short-list?, 209
SHRDLU, 413
side-effects, $51,139,235,244,247$, 310-311
sig, 505
sigmoidal function, 498, 505
Simon, Herbert, 413, 435
simulation, 467-468
versus reality, 467
single-job operating system, 383
situation-action pairs, 436
slots, 430,458
small, 269-271, 273
Smalltalk, 266
soft computing, 8,475
soft selection, 519
software, 3
SOPHIE, 414
sort
insertion, 165, 224
sort, 224, 522
sort-hand, 165
sorting, 165, 224
sort-iter, 253
soup
cream of asparagus, 13
spaghetti code, 437
special form, $63,104,107,109,201$, 268
speech recognition, 462
speech synthesis, 462
spooling, 377
SQL, see structured query language sqrt, 31
square, 44
square-roots, 149
square-roots-iter, 250
square-roots-iter-correct, 251
square-roots-mapping, 200
stack, 332-333, 338-339
stack overflow, 244
stack pointer, 332-333, 339
state, 416
stereo disparity
in vision, 466
stock market, 531
stopping evaluation, 62
strawberry, 276
string, 232
string-length, 309
STRIPS, 435
structured query language, 286
STк, 268
studbert, 264
style, 56
subclass, 267, 272
sublist, 62
subseq, 69-71
templates, 72
subset?, 177-178
subset?-iter, 279
substring, 309
subsymbolic system, 501-502
subtree, 181
sum-abs, 45,220
sum-diffs, 530
sum-digits, 133
sum-digits-iter, 249-250
sum-facts, 161
sum-list, 143
sum-list-alt, 201
sum-rows, 529
SUN, 376
superclass, 267, 272
supervised learning, 532
swapping, 380
sweepstakes, 84
syllogism, 432
symbol, 29, 42, 63
naming rules, 42
versus function name, 484
symbol?, 114
symbol table, 321
symbol-address, 348
symbolic system, 500-502
symbol->string, 309
synchronous communication, 382-383
syntactical analysis, 321

## T

\#t, 104
tactile feedback, 463
tactile input, 463
tail recursion, 139-140, 244
tail-factorial, 140
Takagi, Sugeno, and Kang, see TSK
talk, 382
tape drives, 374,376
target set, 499
task
see process, 384
tax-amount, 46, 48, 53-55
tax-rate, 48
Tcl/Tk, 268
terminals, 322, 373-374
Terminator, 72
text file, 381
text formatter, 319
theory, 5
theta join, see constrained join
third, 67
thirty?, 525
thrashing, 380
thread, 402
threshold function, 498, 504
throughput, 375, 379-380, 386-387
tic-tac-toe, 418
time sharing, 6
time slice, see quantum
times, 390
timesharing, 375
timesharing operating system, 375, 380, 383, 385
to-end, 394
token, 320-321
top-down design, 38
top-down parser, 323
top-down parsing, 327
top-level element, 65-66
total-input, 505
toy worlds, 433
train, 511
trainer, 512
training, 499
training set, 510
trans form, 485
transpose, 507
transpose, 508
traveling salesman problem, 415-416, 518, 520
tree, 181, 290
binary, 181
complete binary, 181
hierarchical information, 190
N -ary, 181
representations, 181-182, 184
ternary, 181
true, 104
true/false values, 103
truncate, 31, 132
TSK, 487
TSK systems, 532-533
problems, 531
tuples, 286
tuples, 301
Turing, Alan, 468
Turing test, 468-469
turnaround time, 379-380, 383, 385-386, 391
tweaking, 532
type clash, 33
type-checking, 73, 104, 330

## $\mathbf{U}$

unbound variable, 40
unconditional probability, 432
unconstrained join, 297, 305
undefined variable, 41
uniform-cost search, 417-418
union, 177
union, 177-178, 216
union-alt, 216
unit
in neural network, 496
universal quantifier, 431
UNIX, 382
unquote, 87
unquote-splicing, 88
unsupervised learning, 532
update, 510
USENET, 383
utilities, 382

## V

vanilla, 276
variable, $16,29,40$
changing the value, 41
free, 138
global, 49, 138
local, 53
negate, 41
shadowing, 49-51
undefined, 41
vectors, 503
vehicle, 272-273
virtual memory, 380
vision, 8, 412, 464
world knowledge, 465
Von Neumann, 333
architecture, 333
W
WAIS, see Wide Area Information Service
wait time, 379-380, 386

WAN, see wide area network
Web, see World Wide Web
WHERE, 286, 297-298
implementation, 299
where, 301
Wide Area Information Service, 383
wide area network, 383
Winograd, Terry, 413
Wirth, Niklaus, 85, 169
word, 374
word processors, 462
working memory, 436
world knowledge, 433, 460, 465
World Wide Web, 4, 383
write, 231-233, 239
writing style, 56
WWW, see World Wide Web

## X

XCON, 414
XOR, see exclusive or
Y
yacc, 327,344
yes-no, 235
Yet Another Compiler Compiler, see
yacc
Z
Zadeh, Lotfi, 480
zero?, 104

## COLOPHON

I originally wrote the beginning chapters of this book using Common Lisp. For a programming language, Common LISP offers a great deal. However, Scheme is better suited and more popular for a first language. Many of the extensions I added to Scheme's built-in functions are based on Common Lisp functions.

Rather than rewrite all the examples in the text, I wrote a filter using a UNIX sed script to translate the Common Lisp code into Scheme. Where language differences existed or language style required a different approach, I used conditional text within the book's source. Thus I produced two books at the same time; one in Common LISP and another in Scheme. If there is a demand in the future, I will publish the Common Lisp version.

This text was typeset using troff, eqn, and pic on a Sun Enterprise server. These tools are challenging to use, but by creating a sound collection of macros, the text was relatively easy to produce and adjust stylistically. However, if I had to do it all over again, I'd use different tools.

UNIX utilities were used extensively to produce this text. All the code examples are preprocessed to embolden the built-in functions and extensions to the language. Each chapter was processed through a series of filters to produce postscript output. Index and table of contents information was redirected to one file and postscript output to another. A makefile was used to handle the complexities of formatting issues. Here is an example to format one chapter:

```
sed -f scheme-translation chapter | sed -f embolden-functions |
pic | eqn | troff -ms 2> index-file > postscript-output
```

The index was produced using a series of UNIX utilities. A multikey sort arranged the index entries in the proper order and then an awk script produced the final index file to be typeset with troff.

The main body of the text is typeset in 10 point Palatino. The code examples and function names are given in 9 point Courier. Section headings and margin notes are set in Helvetica. The page headers are in 10 point Times bold italic. Chapter titles are in 24 point Bookman.


[^0]:    ${ }^{1 .}$ The underlying mechanism (electronic components or gears) of a computer is not important in terms of the computer's abilities. It is important in terms of the speed of the computer.
    ${ }^{2}$ This does not mean that the calculator can store only one number. Rather, it means that the person using it can save and retrieve only one number.

[^1]:    Tradeoffs

[^2]:    ${ }^{3}$. There are, however, custom hardware components like Digital Signal Processors that perform higher-level functions. These components are not for general computing use. For general computing, there has been a movement towards even smaller, simpler instructions. These designs, RISCs (Reduced Instruction Set Computers), are designed to have a small number of commonly used instructions, but run at very high speeds.

[^3]:    O. Grillmeyer, Exploring Computer Science with Scheme
    © Springer Science+Business Media New York 1998

[^4]:    1. The operating system normally plays a role in this diagram as well, acting between the computer and interpreter. It was left out to keep the focus on the interpreter.
[^5]:    2. This formula comes from Bruce A. Bolt's book, Earthquakes.
[^6]:    3. The limitation here is implementation dependent. It depends on such factors as available memory on the computer, and the implementor's design decisions and whims.
[^7]:    4. The preferred way to change a variable that has already been defined is using the function set!. For example:
[^8]:    5. In some programming languages this is not allowed-whenever a function is called or used within another function, it must be defined beforehand. Such a language would require tax-rate to be defined before tax-amount.
    6. This would give a negative tax reducing the total tax we must pay. A novel plan to help lowincome people, but something the government would surely object to.
[^9]:    7. The function read gets a value from the user-it is discussed in Chapter 9. random is used to generate random numbers-it is discussed in Chapter 4.
[^10]:    1. Scheme is a dialect of LisP, which has been facetiously referred to as standing for Lots of Irritating Single Parentheses.
    2. Your version of Scheme may return the function quote instead of the shorthand " " as shown.
    
[^11]:    ${ }^{\text {3. }}$ Some may argue that there is no such thing as too much Rolling Stones.

[^12]:    4. If the second argument is not a list, the result will be a dotted list. Dotted lists are discussed in the optional section on dotted lists at the end of this chapter.
[^13]:    5. The last argument to append can be an atom. If so, the result will be a dotted list. Dotted lists are discussed in the optional section on dotted lists at the end of this chapter.
[^14]:    6. Niklaus Wirth's text Programs = Algorithms + Data Structures is a classic example and is a good text, despite the fact that the title is an equation.
[^15]:    7. In the case of dotted lists, the end of a list is a cons cell whose right side points to an atom. Dotted lists are covered in the next section.
[^16]:    ${ }^{1 .}$ This is termed an if-then-else statement in many other programming languages.

[^17]:    Nestedifs

[^18]:    2. A fourth equality predicate, eq?, is identical to eqv? except when comparing numbers, in which case they may or may not be eq? depending on the implementation of Scheme used. This predicate is used when comparison speed is important and only symbols or lists are being compared.
[^19]:    ${ }^{1 .}$ This is a term I have coined and is not standard in computer science.

[^20]:    2. This is true for a class of embedded recursive functions known as linear recursive functions. These are functions that use only one recursive call in their recursive cases. In contrast, tree recursive functions have more than one recursive call. These recursive calls are combined in some fashion to produce a return value for the function. Tree recursive functions are embedded recursive functions. However, writing tree recursive functions as tail recursive functions often involves going through a good deal of effort, and isn't really that much fun.
[^21]:    ${ }^{1 .}$ Typically postfix is referred to as R.P.N.-Reverse Polish Notation.
    ${ }^{2}$. This is true for prefix as well. Scheme needs parentheses because many functions take a variable number of arguments.

[^22]:    O. Grillmeyer, Exploring Computer Science with Scheme
    © Springer Science+Business Media New York 1998

