
UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Springer Science+Business Media, LLC

Editors
David Gries

Fred B. Schneider

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beid/er, Data Structures and Aigorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Brooks, C Programming: The Essentials for Engineers and Scientists

Dandamudi, Introduction to Assembly Language Programming

Grillmeyer, Exploring Computer Science with Scheme

Ja/ote, An Integrated Approach to Software Engineering, Second Edition

Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeig/er, Objects and Systems

Oliver Grillmeyer

Exploring Computer
Science with Scheme

, Springer

Oliver Grillmeyer
Department of Computer Science
University of Califomia at Berkeley
Berkeley, CA 94720
USA

Series Editors
David Gries
Fred B. Schneider
Department of Computer Science
Comell University
Upson Hall
Ithaca, NY 14853-7501
USA

Microsoft Windows, Windows 3.1, and Windows 95 are registered trademarks ofMicrosoft
Corporation.
Macintosh is a registered trademark of Apple Computer, Inc.
Netscape and Netscape Navigator are registered trademarks of Netscape Communications
Corporation.
PowerPC is a registered trademark ofintemational Business Machines Corporation.
Intel Pentium is a registered trademark ofintel Corporation.

Library of Congress Cataloging-in-Publication Data
Grillmeyer, Oliver.

Exploring computer science with Scheme / Oliver Grillmeyer
p. cm.-(Undergraduate texts in computer science)

Includes index.

ISBN 978-1-4419-2855-9 ISBN 978-1-4757-2937-5 (eBook)
DOI 10.1007/978-1-4757-2937-5

I. Computer science. I. Title. 11. Series.
QA76.G723 1997
004-dc21 97-24294

Printed on acid-free paper.

© 1998 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc in 1998.
Softcover reprint of the hardcover 1 st edition 1998

All rights reserved. This work may not be translated or copied in whole or in part without the written permis
sion of the publisher Springer Science+Business Media, LLC, ex-
cept for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of in
formation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar method
ology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are
not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Terry Komak; manufacturing supervised by Joe Quatela.
Photocomposed copy prepared by the author in TROFF.

9 8 7 6 5 4

To my parents, Hans and Maria,
and my wife, Myriam.

PREFACE

1 Computer Science
Most introductory computer science textbooks teach the reader how to write pro
grams in a particular programming language. The student may get the impres
sion that there isn't much more to computer science than just learning different
programming languages. Hence, the more languages you know, the more capa
ble you are of solving a greater variety of problems. A student may think that
with a number of programming languages under her belt, she can solve most any
problem.

As most computer scientists would agree, there is a lot more to the field than
just learning different languages-just as architecture involves a lot more than
leaming how to draw different straight lines and shapes. One of the goals of this
book is to present the reader with an understanding of what computer science
really iso This is done by presenting the subfields into which computer science is
broken, giving explanations and sampie programs for each.

It is still important to do some programming to get a deeper understanding of
computer science. There are books that discuss computer science and give excel
lent overviews of the field, but do not involve any programming. This approach
quite often leaves the reader wondering how the computer actually does all the
powerful tasks that it can do. Such books give an idea of what computers are
used for and what the areas of study under computer science are, but not how
the computer performs these tasks.

This book will mix theory with applications. The reader will learn the "sci
ence" of computer science and then see actual applications thereof. This will help
demystify the theories and ideas presented.

It's more than just
programming

viii Preface

Advantages of
Scheme

Imperative versus
functional
programming

Developing problem
solving skills

2 Language Used
Scheme, a dialect of LISP, will be used. With today's faster, more powerful, and
less expensive new machines, languages like Scheme that have typically been in
the educational arena in schools of higher education are entering the home user's
world. Using Scheme, the programmer can solve many problems much easier
and with much less writing and effort than with the more conventional
languages used in introductory texts, such as Pascal, BASIC, C, C++, and Java.

The family of LISP languages are sometimes criticized for use as introductory
programming languages because they are not used as widely by programmers in
the workplace as languages like Pascal, C, or C++. However, it is important to
remember that the purpose of an introductory computer science text should be to
teach computer science and not just a particular programming language. It is
easier to leam programming concepts using Scheme than with these other more
popular languages. This is due to the overhead these languages impose on the
leamer. Scheme is easy to leam, so more time can be spent on programming and
computer science concepts than on language idiosyncrasies. Programming tech
niques and concepts transfer from one language to another, so after learning
Scheme students can leam Pascalor C relatively quickly.

3 Functional Programming
Typically, students leam to program using an imperative approach. This para
digm is used with languages such as FORTRAN, Pascal, C, and BASIC. The
imperative approach involves programming by focusing on the sequences of
steps that are necessary to perform a task. Such programs tend to consist of inter
dependent and highly interconnected pieces.

This book uses the functional approach to programming. The functional
approach concentrates on the creation of simple functions that are applied to
values to obtain desired results. These functions are composed (combined) to
achieve the desired programming goal. Such simple functions are easily tested
individually. This greatly helps in producing programs that work right the first
time.

One is not limited to imperative programming when using Pascal-like
languages, but these languages lend themselves to such techniques. Similarly,
one can use imperative programming techniques in Scheme, but the language is
better suited to functional programming.

4 Problem Solving
A major goal of this book is to teach fundamental problem-solving skills. These
skills can be applied to any problem-solving task using any programming
language. Many new students leam how to program through analogy without
ever getting a deep understanding of the concepts. Such students perform very
poorly when given new types of problems that cannot be solved using the tem
plates they have been religiously following. Like memorizing recipes in a

Pedagogical Techniques ix

cookbook, if you can make chocolate chip cookies you can make raisin cookies,
but not cheesecake unless you know more of the concepts of cooking.

This book illustrates techniques to aid in the writing of programs. Such tech
niques indude abstracting the problem into the domain of Scheme, creating
pseudo code as an intermediate solution, using top-down and bottom-up design,
building procedural and data abstractions, developing defensive, safe-coding
skills, and writing testable, modular programs. In addition, heuristics are given
that help determine good test cases to test your code.

5 Pedagogical Techniques
Throughout the book I have tried to present material in adear, condse manner,
using numerous Scheme examples. Common mistakes that students make as
they are learning programming are presented in boxes like this:

Mistakes to Avoid
Remember that rest returns a list with a11 but the first element. A com
mon mistake is to think that

(rest '(a (b»)

returns (b) instead of the true value returned: ((b)).

Other boxes are used to point out important issues that deserve to be brought
to the readers attention. Margin notes are used throughout the text as a reference
tool to help the reader find material in the text and to highlight the important
issues presented.

Most programming examples are presented in a case study fashion in which
the thought process, design dedsions, false starts, and alternative programming
choices are presented. This gives the reader a much better understanding of what
is involved in programming and helps to make normally tadt programming
ski11s explidt such that the reader can more easily learn them.

Each chapter has numerous exerdses to help readers test their understanding
of the material. All chapters end with a summary of the entire chapter, which is
good for a quick reference or refresher.

Many functions are introduced to augment the built-in functions of Scheme.
Most of these functions come from Common LISP and are chosen because they
provide useful extensions to Scheme and are used in many of the subsequent
programming examples. Wherever possible, these new functions are immedi
ately defined giving the reader a dear understanding of how they work and what
they do. Motivation for the creation of the new functions is given to avoid
presenting the functions without a context for their use. This helps readers know
when to use the functions and how they might consider extending Scheme to
meet their needs.

Aids to understanding
the text

Extensions to Scheme

x Preface

6 Goals
To recap, the major goals of this text are to:

• Develop an understanding of computer science as a discipline.
• Leam computer programming using the functional programming paradigm

and Scheme as the language of choice.
• Develop problem-solving and good programming skills.
• Present the material in a way that facilitates learning.

7 Acknowledgements
First and foremost I thank Michael Clancy for his numerous invaluable sugges
tions on this book. In addition to commenting on each version of the manuscript,
Mike provided help in everything from font selection, layout, and publisher
advice to specific examples, functions, and exercises to incorporate in the text. As
an author of many textbooks, Mike could empathize with my concerns and
difficulties. He was always present to answer a myriad of questions or just listen
to my current accomplishments or struggles.

The first ten chapters of this text were used nine terms in courses I taught at
V.c. Berkeley. In addition the text is being used in the self-paced courses at V.c.
Berkeley. Over the years I received numerous comments from students using this
text. I thank all the students who have made suggestions for improvements or
just praised the text and brought a smile to my face. Many teaching assistants
and readers who have worked with me have commented on the text. I thank
them all and give special thanks to Steve Lumetta, Glenn Von Tersch, Mike
Schiff, and Tom Boegel.

Thanks to the computer science faculty, graduate students, and support staff
at u.c. Berkeley for all the knowledge they have imparted to me over the years.
In particular I thank Robert Wahbe, Seth Teller, Paul Hilfinger, Brian Harvey, and
Lotfi Zadeh. Kevin Mullally, Fran Rizzardi, and Ruben Zelwer provided techni
cal and formatting support.

Martin Gilchrist from Springer-Verlag was very helpful, giving me
encouragement and flexibility in the design and contents of the text. I thank
Springer-Verlag's series editor David Gries for his careful and thorough review
of the manuscript and the extensive comments and enthusiasm he provided.
Thanks to Terry Komak, production editor, and Chrisa Hotchkiss who proofread
the text. They both helped smooth out the rough edges. Karen Phillips was the
design supervisor who helped bring my ideas for the cover of the book into real
ity. Thanks to Chris Dovolis for his helpful review of the text.

Special thanks to Gino Cheng and Brett DeSchepper for providing company
and laughs during all the late night trips to Cafe Milano, Tripie Rock, and Flint's,
and for providing sanity through frisbee therapy. Thanks to Brian Peterson for
listening to my concerns and all the slices of Blondies. Thanks to Jean Root, Tedi
Diaz, Liza Gabato, and Kate Capps for their constant support. KathrynJones pro
vided font examples and suggestions. The layout of the text is due in large part to
the suggestions and advice of Yoshiro Soga who also keeps me abreast of all the

Acknowledgements xi

changes in the worlds of personal computers and football. Thanks to everyone in
the V.c. Berkeley Hapkido club who helped me recharge after long days of work
on thebook.

My family provided support throughout the writing of the book; they were
always excited over any progress (even smalI) that was made. Thanks Robert,
Stephen, Maria, and Hans for the encouragement.

Thank you Myriam for bearing all the late nights I spent working on the book
and for tolerating me bringing work on our trips to India, Sri Lanka, and Mexico.
Thanks for listening to the day-to-day sagas during the book's creation. The book
is complete. 1'11 cook dinner tonight.

CHAPTERS

1 Introduction to Computer Science .. 1

2 Problem Solving and Problem Abstraction .. 13

3 Programming the Computer .. 29

4 Lists: The Basic Data Structure .. 61

5 Conditionals .. 103

6 Repetition Through Recursion .. 125

7 Data Structures ... 169

8 Functionals .. 199

9 Input and Output ... 231

10 Repetition Through Iteration .. 243

11 Advanced Uses of Functions .. 261

12 Database Management Systems ... 285

13 Compilers and Interpreters .. 319

14 Operating Systems ... 373

15 Artificial Intelligence .. 411

16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic
Algorithms ... 475

BRIEF CONTENTS

1 Introduction to Computer Science .. 1
1.1 What Is a Computer? ... 1
1.2 A Look Inside the Computer .. 3
1.3 Connections Between Computers ... 4
1.4 What Is Computer Science? .. 5
1.5 Subfields Within Software .. 5
1.6 Subfields Within Hardware .. 10
1.7 Subfields Within both Software and Hardware .. 10
1.8 Summary ... 11
1.9 Additional Reading ... 12

2 Problem Solving and Problem Abstraction .. 13
2.1 Problem Solving ... 13
2.2 What Computers Can Do ... 14
2.3 Computer Languages .. 15
2.4 Problem Abstraction .. 15
2.5 Pseudo Code ... 20
2.6 Using Memorized Sequences ... 22
2.7 Adding Parameters to Memorized Sequences .. 26
2.8 Summary ... 28

xvi BriefContents

3 Programming the Computer .. 29
3.1 The Scheme Environment ... 29
3.2 Numerical Functions ... 31
3.3 The Evaluator ... 35
3.4 Bottom-Up Design ... 37
3.5 Top-Down Design .. 38
3.6 Variables .. 40
3.7 User-Defined Functions .. 43
3.8 Scope and Extent .. 48
3.9 Shadowing .. 49
3.10 Programming Style .. 51
3.11 Using let to Create Local Variables ... 53
3.12 Writing Styles ... 56
3.13 Summary ... 57

4 Lists: The Basic Data Structure .. 61
4.1 Lists in Scheme ... 61
4.2 Stopping Evaluation with quote ... 62
4.3 Special Forms .. 63
4.4 Using Lists as Data Structures ... 64
4.5 Taking Lists Apart ... 65
4.6 Combining carS and cdrs ... 75
4.7 Creating Lists .. 76
4.8 Representing and Manipulating Text with Lists ... 82
4.9 Optional Section: Quasiquoted Lists ... 87
4.10 Miscellaneous List Functions ... 88
4.11 Representing a Database with Lists .. 92
4.12 Optional Section: Internal Representations of Lists .. 97
4.13 Optional Section: Dotted Lists ... 99
4.14 Summary ... 101

5 Conditionals .. 103
5.1 Control Through Conditional Expressions .. 103
5.2 Cond Expressions .. 107
5.3 Testing Multiple Conditions and Negations .. 109
5.4 List and Atom Predicates .. 113
5.5 Optional Section: All Equality Predicates Are Not Equal .. 115
5.6 A Musical Offering .. 117
5.7 Determining the Value of Poker Hands ... 119
5.8 Summary ... 122

Brief Contents xvii

6 Repetition Through Recursion .. 125
6.1 Recursion ... 125
6.2 Optional Section: Global Variables and Recursion ... 138
6.3 Optional Section: Different Types of Recursion .. 139
6.4 Using Recursion to Sequence Through Lists ... 142
6.5 Using Recursion to Create New Lists ... 148
6.6 Sequencing Through Nested Lists with car-cdr Recursion ... 152
6.7 Nested Loops or Recursion Within Recursion .. 160
6.8 Summary ... 168

7 Data Structures ... 169
7.1 Why Data Structures? .. 169
7.2 Association Lists .. 172
7.3 Design for Modifiability .. 175
7.4 Sets ... 176
7.5 Trees ... 181
7.6 Sampie Exercise with Trees and Sets .. 190
7.7 Summary ... 196

8 Functionals .. 199
8.1 Passing Functions as Arguments ... 199
8.2 Writing Functions that Take Functions as Arguments ... 202
8.3 Lambda Expressions .. 215
8.4 Combining Results with accumulate ... 219
8.5 Summary ... 230

9 Input and Output ... 231
9.1 Input/Output ... 231
9.2 Getting Yes/No Answers ... 235
9.3 Conditions with Multiple Actions ... 235
9.4 Example: Visualizing Chaos ... 237
9.5 Read-Eval-Print Loop .. 239
9.6 Summary ... 241

10 Repetition Through Iteration .. 243
10.1 Iteration ... 243
10.2 Repeating Actions a Number of Times ... 245
10.3 Repeating an Action for each Element in a List ... 246
10.4 General Examples with da Loops .. 248
10.5 Writing Mapping Functions and Filters Using Iteration .. 250
10.6 Nested Loops Using Iteration .. 255

xviii BriefContents

10.7 Summary ... 259

11 Advanced Uses of Functions .. 261
11.1 Writing Functions that Take a Variable Number of Arguments .. 261
11.2 Functions that Return Functions .. 262
11.3 Object-Oriented Programming .. 266
11.4 Forcing Exits with call-with-current-continuation ... 275
11.5 Summary ... 281
11.6 Additional Reading ... 282

12 Database Management Systems ... 285
12.1 Database Systems ... 285
12.2 Historical Background .. 290
12.3 Implementing a Relational Database in Scheme ... 296
12.4 Future Trends ... 314
12.5 Summary ... 315
12.6 Additional Reading ... 315
12.7 Code Listing .. 316

13 Compilers and Interpreters .. 319
13.1 Compilers Versus Interpreters ... 319
13.2 Lexical Analysis .. 320
13.3 Parsing ... 321
13.4 Semantic Analysis .. 330
13.5 Code Generation .. 331
13.6 Historical Background and Current Trends .. 343
13.7 Implementing a Simple Scheme Compiler in Scheme .. 346
13.8 Extending Our Compiler .. 362
13.9 Future Trends ... 365
13.10 Summary ... 365
13.11 Additional Reading ... 366
13.12 Code Listing .. 366

14 Operating Systems ... 373
14.1 Operating Systems ... 373
14.2 Historical Background .. 374
14.3 Resource Allocation ... 376
14.4 Process and Memory Management ... 379
14.5 File Systems .. 381
14.6 Utilities .. 382
14.7 Types of Operating Systems ... 383

BriefContents xix

14.8 How a Scheduler Works ... 384
14.9 Implementing a Scheduler in Scheme ... 385
14.10 Future Trends ... 401
14.11 Summary ... 403
14.12 Additional Reading ... 404
14.13 Code Listing .. 405

15 Artificial Intelligence .. 411
15.1 Artificial Intelligence ... 411
15.2 Historical Background .. 412
15.3 Common Problems .. 416
15.4 Problem Sol vers and Planners ... 435
15.5 Expert Systems ... 436
15.6 Implementing an Expert System in Scheme ... 438
15.7 Natural Language Processing .. 456
15.8 Robotics ... 463
15.9 Vision ... 464
15.10 Is Artificial Intelligence Possible? .. 466
15.11 Summary ... 469
15.12 Additional Reading ... 470
15.13 Code Listing .. 472

16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic
Algorithms ... 475

16.1 Soft Computing .. 475
16.2 Fuzzy Logic ... 476
16.3 Neural Networks ... 496
16.4 Genetic Algorithms .. 518
16.5 Mixing Metaphors to Create Better Systems .. 531
16.6 Future Trends ... 533
16.7 Summary ... 534
16.8 Additional Reading ... 535
16.9 Code Listing .. 536

CONTENTS

1 Introduction to Computer Science .. 1
1.1 What Is a Computer? ... 1

-definitions and introduction 0/ a simple machine model
1.1.1 Example: Balancing your checkbook .. 2

1.2 A Look Inside the Computer .. 3
-examining the components o[a computer system

1.3 Connections Between Computers ... 4
-expanded abilities [rom interconnected computers

1.4 What Is Computer Science? .. 5
-a science in its own right

1.5 Subfields Within Software .. 5
-list o[fields with introductory discussions
1.5.1 Operating systems ... 5
1.5.2 Compilers, interpreters, and programming languages .. 6
1.5.3 Database management systems ... 7
1.5.4 Artificial intelligence ... 8
1.5.5 Soft computing ... 8
1.5.6 Graphics .. 9
1.5.7 Exercises .. 9

1.6 Subfields WithinHardware .. 10
-list 0/ three fields with introductory discussions

1.7 Subfields Within both Software and Hardware .. 10
-introduction to three fields that border hardware and software
1.7.1 Exercises .. 11

1.8 Summary ... 11
1.9 Additional Reading ... 12

xxii Contents

2 Problem Solving and Problem Abstraction .. 13
2.1 Problem Solving ... 13

-the problem with problem solving
2.2 What Computers Can 00 ... 14

-the capabilities o[the CPU
2.3 Computer Languages .. 15

-the added power o[computer languages
2.4 Problem Abstraction .. 15

-a new way to think o[problems
2.4.1 Example: Move the yellow block up three meters .. 18
2.4.2 Ambiguities ... 18

2.5 Pseudo Code ... 20
-a step between the problem and the solution
2.5.1 Example: Draw a two-by-two meter square around the yellow block 20
2.5.2 Exercises .. 22

2.6 Using Memorized Sequences ... 22
-organizing programs into logical units
2.6.1 Example: Write the robot's name-BOB .. 22
2.6.2 Refinement of pseudo code .. 23
2.6.3 Exercises .. 26

2.7 Adding Parameters to Memorized Sequences .. 26
-allowing variability in memorized sequences
2.7.1 Exercises .. 27

2.8 Summary ... 28

3 Programming the Computer .. 29
3.1 The Scheme Environment ... 29

-parts o[the Scheme environment
3.1.1 Example: Determining the price of an item with 6% tax added 30

3.2 Numerical Functions ... 31
-built-in functions that work on numbers
3.2.1 Common errors when calling functions ... 33
3.2.2 Exercises .. 34
3.2.3 Function composition .. 35

3.3 The Evaluator ... 35
-the heart o[Scheme
3.3.1 Exercises .. 36
3.3.2 Example: Compute your income tax ... 36

3.4 Bottom-Up Design ... 37
-thinking about small details first

3.5 Top-Down Design .. 38
-going [rom the abstract to the concrete
3.5.1 Exercises .. 39

3.6 Variables .. 40

Contents xxiii

-a means 01 naming values
3.6.1 Symbol and variable names ... 42

3.7 User-Defined Functions .. 43
-writing your own functions

3.8 Scope and Extent .. 48
-where and when symbols are valid

3.9 Shadowing .. 49
-will the real symbol please step forward

3.10 Programming Style .. 51
-avoiding code that will cause problems later
3.10.1 Exercises .. 52

3.11 Using let to Create Local Variables ... 53
-using let and let* within functions to save partial results and help break up computations
3.11.1 Exercises .. 56

3.12 Writing Styles ... 56
-different ways 01 presenting your code to enhance readability

3.13 Summary ... 57

4 Lists: The Basic Data Structure .. 61
4.1 Lists in Scheme ... 61

-lists as collections olobjects and as function calls
4.2 Stopping Evaluation with quote ... 62

-stopping the evaluator to treat things literally
4.3 Special Forms .. 63

-exceptions to normal evaluation
4.3.1 Exercises .. 63

4.4 Using Lists as Data Structures ... 64
-taking advantage 01 the structural possibilities 01 lists
4.4.1 Exercises .. 65

4.5 Taking Lists Apart ... 65
-functions that return elements or sections 01 lists
4.5.1 Example: Extracting random elements from a data structure 72
4.5.2 Exercises .. 74

4.6 Combining carS and cdrs ... 75
-shorthands for these often used functional compositions

4.7 Creating Lists .. 76
-functions that create lists
4.7.1 Exercises .. 80

4.8 Representing and Manipulating Text with Lists ... 82
-programming example illustrating basic concepts 01 handling sentence structures
4.8.1 Exercises .. 83
4.8.2 Computer-Genera ted sweepstakes ... 84
4.8.3 Exercises .. 87

4.9 Optional Section: Quasiquoted Lists ... 87

xxiv Contents

-a simple means of creating lists with evaluated and literal objects
4.9.1 Exercises .. 88

4.10 Miscellaneous List Functions ... 88
-functions that return information about lists
4.10.1 Exercises ...•............ 90

4.11 Representing a Database with Lists .. 92
-programming example using lists to represent a complex database
4.11.1 Selecting items from the database ... 92
4.11.2 Adding elements to the database .. 93
4.11.3 Exercises .. 97

4.12 Optional Section: Internal Representations of Lists .. 97
-a model of how lists are represented inside the computer

4.13 Optional Section: Dotted Lists ... 99
-what you get when you cons something onto an atom

4.14 Summary ... 101

5 Conditionals .. 103
5.1 Control Through Conditional Expressions .. 103

-numerical predicate functions, and the if special form
5.1.1 Exercises .. 105

5.2 Cond Expressions .. 107
-making decisions with cond
5.2.1 Exercises .. 108

5.3 Testing Multiple Conditions and Negations .. 109
-using and, or, and not tomake more complex conditions
5.3.1 Exercises .. 113

5.4 List and Atom Predicates .. 113
-predicates that work with lists and atoms
5.4.1 Exercises .. 115

5.5 Optional Section: All Equality Predicates Are Not Equal .. 115
-differences between the predicates that check for equality

5.6 A Musical Offering .. 117
-programming example that uses musical scales and intervals
5.6.1 Computing the intervals between notes ... 117
5.6.2 Computing the note an interval beyond another note ... 118
5.6.3 Exercises .. 119

5.7 Determining the Value of Poker Hands ... 119
-programming example for the card game poker
5.7.1 Exercises .. 121

5.8 Summary ... 122

Contents

6 Repetition Through Recursion .. 125
6.1 Recursion ... 125

-the basics 01 writing recursive functions
6.1.1 Example: Finding a number in a list that exceeds a threshold value 125
6.1.2 Example: Investing in your best interest .. 129
6.1.3 Example: Summing digits ... 131
6.1.4 General rules for writing recursive functions .. 134
6.1.5 Example: Testing if the digits in a number are in increasing order 135
6.1.6 Exercises .. 136

6.2 Optional Section: Global Variables and Recursion ... 138
-how not to write recursive code

6.3 Optional Section: Different Types of Recursion .. 139
-tail versus embedded recursion
6.3.1 Example: Factorial ... 139
6.3.2 Exercises .. 142

6.4 Using Recursion to Sequence Through Lists ... 142
-solutions to various recursive list problems
6.4.1 Example: Adding up numbers in a list ... 142
6.4.2 Example: Checking if a list consists entirely of numbers ... 143
6.4.3 Exercises .. 145

6.5 Using Recursion to Create New Lists ... 148
-recursive functions that cons up new lists
6.5.1 Example: A mapping function to take the square roots of numbers in a list 148
6.5.2 Example: A filter to extract positive numbers from a list .. 149
6.5.3 Exercises .. 150

6.6 Sequencing Through Nested Lists with car-cdr Recursion ... 152
-complex tree recursive functions
6.6.1 Example: Counting all the atoms in a list ... 152
6.6.2 Example: Deep reverse of a list .. 154
6.6.3 Exercises .. 158

6.7 Nested Loops or Recursion WithinRecursion .. 160
-implementing nested loops using multiple recursive functions
6.7.1 Example: Sum of factorials ... 160
6.7.2 Example: Sequencing through a database using nested loops 161
6.7.3 Example: Poker revisited .. 164
6.7.4 Exercises .. 167

6.8 Summary ... 168

7 Data Structures ... 169
7.1 Why Data Structures? .. 169

-adding computational power with data structures
7.1.1 Example: Breaking secret codes ... 169
7.1.2 Exercises .. 171

7.2 Association Lists .. 172

xxvi Contents

-creating simple pairings with association lists
7.2.1 Optional seetion: Association lists with dotted lists ... 173
7.2.2 Exercises .. 174

7.3 Design for Modifiability .. 175
-using selector and creator functions to access and modify your data structure
7.3.1 Exercises .. 176

7.4 Sets ... 176
-using lists to represent unordered information
7.4.1 Example: Using sets to represent locations traveled to .. 178
7.4.2 Exercises .. 180

7.5 Trees ... 181
-using lists to represent hierarchically ordered information
7.5.1 Depth-First search .. 183
7.5.2 Breadth-First search ... 185
7.5.3 Exercises .. 188

7.6 Sampie Exercise with Trees and Sets .. 190
-programming example using trees and sets to help choose a restaurant
7.6.1 Exercises .. 195

7.7 Summary ... 196

8 Functionals .. 199
8.1 Passing Functions as Arguments ... 199

-functions taking functions as arguments
8.1.1 Mapping functions ... 199
8.1.2 apply: A variation on the normal function application ... 201

8.2 Writing Functions that Take Functions as Arguments ... 202
-extending the capabilities of Scheme by creating functions that take functions
8.2.1 -if functions .. 203
8.2.2 Exercises .. 205
8.2.3 -if-not functions .. 206
8.2.4 Exercises .. 208
8.2.5 every and any ... 209
8.2.6 Exercises .. 211
8.2.7 Optional seetion: Using multiple lists withmap, for-each, every, and any 211
8.2.8 Exercises .. 214

8.3 Lambda Expressions .. 215
-creating nameless functions on the fiy
8.3.1 Exercises .. 218

8.4 Combining Results with accumulate ... 219
-applying binary functions to elements of a list
8.4.1 Exercises .. 223
8.4.2 Sorting lists ... 224
8.4.3 Example: Poker revisited, yet again .. 225
8.4.4 Exercises .. 228

Contents xxvii

8.5 Summary ... 230

9 Input and Output ... 231
9.1 Input/Output ... 231

-definitions
9.1.1 Printing out additional information .. 231
9.1.2 Input ... 233

9.2 Getting Yes/No Answers ... 235
-writing some simple functions to get simple yeslno responses from the user

9.3 Conditions with Multiple Actions ... 235
-using cond with expressions producing side-effects

9.4 Example: Visualizing Chaos ... 237
-modeling a simple non linear equation to see chaos
9.4.1 Exercises .. 238

9.5 Read-Eval-Print Loop .. 239
-the fundamentalloop within Scheme's interpreter
9.5.1 Exercises .. 240

9.6 Summary ... 241

10 Repetition Through Iteration .. 243
10.1 Iteration•.. 243

-functions used to repeat actions in a nonrecursive fashion
10.2 Repeating Actions a Number of Times ... 245

-repetition for a fixed number of times
10.2.1 Example: Printing changing populations ... 245

10.3 Repeating an Action for each Element in a List ... 246
-repetition through a list
10.3.1 Example: Checking if a list consists of numbers only .. 246

10.4 General Examples with do Loops .. 248
-a general form of iteration
10.4.1 Example: Factorial ... 248
10.4.2 Example: Adding up the digits in a number .. 248

10.5 Writing Mapping Functions and Filters Using Iteration .. 250
-example functions to carry out these common actions with iteration
10.5.1 Example: A mapping function to take square roots in a list 250
10.5.2 Example: A filter to extract positive numbers from a list of numbers 251
10.5.3 Exercises .. 252
10.5.4 Example: Sorting a list ... 252
10.5.5 Exercises .. 255

10.6 Nested Loops Using Iteration .. 255
-writing nested loops using iterative functions
10.6.1 Exercises .. 258

10.7 Summary ... 259

xxvüi Contents

11 Advanced Uses of Functions .. 261
11.1 Writing Functions that Take a Variable Number of Arguments .. 261

-variations on function ereation and use
11.2 Functions that Return Functions .. 262

-returning functions to ereate objects with loeal state
11.2.1 Exercises .. 265

11.3 Object-Oriented Programming .. 266
-a brief introduction to the object programming paradigm
11.3.1 How to write in the object style ... 268
11.3.2 Exercises .. 274

11.4 Forcing Exits withca11-with-current-continuation ... 275
-a means of prematurely exiting from continuations
11.4.1 Using ca11-with-current-continuation to exit from a do loop 279
11.4.2 Exercises .. 280

11.5 Summary ... 281
11.6 Additional Reading ... 282

12 Database Management Systems ... 285
12.1 Database Systems ... 285

-creating, maintaining, and querying large data struetures
12.1.1 Exercises .. 290

12.2 Historical Background .. 290
-a look baek at the developments in database systems
12.2.1 First generation: Hierarchical and network database systems 290
12.2.2 Second generation: Relational database systems .. 296
12.2.3 Considerations database systems must address ... 296

12.3 Implementing a Relational Database in Scheme ... 296
-case study: designing and writing a relational database system
12.3.1 Deciding on a data structure .. 298
12.3.2 Implementing the WHERE dause ... 299
12.3.3 Implementing the SELECT dause ... 303
12.3.4 Implementing the FROM clause ... 304
12.3.5 Putting it all together ... 308
12.3.6 Some extras ... 309
12.3.7 Exercises .. 312

12.4 Future Trends ... 314
-a look forward at future database systems

12.5 Summary ... 315
12.6 Additional Reading ... 315
12.7 Code Listing .. 316

Contents xxix

13 Compilers and Interpreters .. 319
13.1 Compilers Versus Interpreters ... 319

-translation versus simulation
13.2 Lexical Analysis .. 320

-characters to symbols
13.2.1 Exercises .. 320
13.2.2 Tokens and symbol tables ... 321

13.3 Parsing ... 321
-symbols to structure
13.3.1 Top-Down parsing ... 323
13.3.2 Predictive parsing .. 326
13.3.3 Bottom-Up parsing .. 327

13.4 Semantic Analysis .. 330
-structure to meaning

13.5 Code Generation .. 331
-meaning translated
13.5.1 Mini Scheme ... 331
13.5.2 A simple computer .. 332
13.5.3 Assembly language .. 333
13.5.4 Conditional expressions in assembly language ... 336
13.5.5 Function definitions and calls in assembly language ... 337

13.6 Historical Background and Current Trends .. 343
-early compilers and compiler building tools and techniques
13.6.1 Compiling the compiler .. 344

13.7 Implementing a Simple Scheme Compiler in Scheme .. 346
-case study: building a code generator for a subset of Scheme
13.7.1 Generating code for if expressions .. 350
13.7.2 Generating code for define expressions .. 354
13.7.3 Generating code for calls to user-defined functions ... 356
13.7.4 Generating code for calls to built-in functions .. 357
13.7.5 Testing our compiler ... 359
13.7.6 Exercises .. 361

13.8 Extending Our Compiler .. 362
-what it would take to incorporate more of Scheme in our compiler
13.8.1 Adding more data types to our compiler ... 362
13.8.2 Adding more functions to our compiler .. 363
13.8.3 Adding more special forms and handling scope in our compiler 363
13.8.4 Code Optimization .. 364

13.9 Future Trends ... 365
-building compilers for parallel machines and for different types of languages

13.10 Summary ... 365
13.11 Additional Reading ... 366
13.12 Code Listing .. 366

xxx Contents

14 Operating Systems ... 373
14.1 Operating Systems ... 373

-the link between human and machine
14.2 Historical Background .. 374

-the development and changes in operating systems
14.3 Resource Allocation ... 376

-handling all the system resources
14.4 Process and Memory Management ... 379

-getting the best usage of the CPU and keeping the memory secure
14.5 File Systems .. 381

-maintaining large structures of information across computers
14.6 Utilities .. 382

-a host of specialized programs that perform a myriad of tasks
14.7 Types of Operating Systems ... 383

-[rom simple batch systems to distributed operating systems
14.8 Howa Scheduler Works ... 384

-looking at the details of process management
14.9 Implementing a Scheduler in Scheme ... 385

-case study: building two schedulers and testing different scheduling algorithms
14.9.1 Deciding on a data structure .. 386
14.9.2 Building a batch scheduler ... 387
14.9.3 Building a multitasking scheduler .. 391
14.9.4 Exercises .. 400

14.10 Future Trends ... 401
-looking into distributed, parallel, and threaded operating systems

14.11 Summary ... 403
14.12 Additional Reading ... 404
14.13 Code Listing .. 405

15 Artificial Intelligence .. 411
15.1 Artificial Intelligence ... 411

-making machines smart
15.1.1 Subfields of artificial intelligence ... 412

15.2 Historical Background .. 412
-[rom great expectations to toy solutions
15.2.1 Game playing and puzzle solving programs ... 414

15.3 Common Problems .. 416
-problems that exist in most fields of AI
15.3.1 Searching ... 416
15.3.2 Scheduling problem solved with A'" search ... 422
15.3.3 The missionaries and cannibals problem solved with A'" search 426
15.3.4 Exercises .. 428
15.3.5 Knowledge representation ... 429
15.3.6 Reasoning .. 431

Contents xxxi

15.3.7 World or commonsense knowledge ... 433
15.4 Problem Solvers and Planners ... 435

-programs that find solutions and plan strategies
15.5 Expert Systems ... 436

-programs that model expert behavior in a specific task
15.6 Implementing an Expert System in Scheme ... 438

-case study: building an expert system shell
15.6.1 An expert in Mille Bornes ... 439
15.6.2 The Mille Bornes rulebase ... 444
15.6.3 Building a driver for Mille Bornes ... 449
15.6.4 Exercises .. 455

15.7 Natural Language Processing .. 456
-understanding human languages
15.7.1 Representing naturallanguages .. 458
15.7.2 Current uses of NLP .. 461

15.8 Robotics ... 463
-moving around and grasping objects in the real world

15.9 Vision ... 464
-recognizing objects from pictures or video images

15.10 Is Artificial Intelligence Possible? .. 466
-some arguments for and against AI

15.11 Summary ... 469
15.12 Additional Reading ... 470
15.13 Code Listing .. 472

16 Soft Computing: Fuzzy Logic, Neural Networks, and Genetic
Algorithms ... 475

16.1 Soft Computing .. 475
-computing with uncertain information

16.2 Fuzzy Logic ... 476
-logic that isn 't just true or false but has degrees of certainty
16.2.1 Fuzzy expert systems .. 477
16.2.2 History of fuzzy logic .. 480
16.2.3 A fuzzy expert system in Scheme .. 481
16.2.4 Fuzzy cheesecake ... 487
16.2.5 Exercises .. 495

16.3 Neural Networks ... 496
-systems that model the mechanism of the brain
16.3.1 Learning in neural nets ... 498
16.3.2 Comparing neural nets with other systems ... 500
16.3.3 History of neural networks .. 502
16.3.4 A neural network in Scheme .. 503
16.3.5 Exercises .. 517

16.4 Genetic Algorithms .. 518

xxxii Contents

-programs that evolve over time
16.4.1 Building a genetic algorithrn in Scheme ... 520
16.4.2 Exercises .. 531

16.5 Mixing Metaphors to Create Better Systems .. 531
-the benefits of combining fuzzy logic, neural networks, and genetic algorithms

16.6 Future Trends ... 533
-the growth of soft computing in the future

16.7 Summary ... 534
16.8 Additional Reading ... 535
16.9 Code Listing .. 536

Appendix .. 545

Index .. 561

Colophon .. 581

CHAPTER 1

INTRODUCTION TO
COMPUTER SCIENCE

1.1 What Is a Computer?
A computer can be defined as a machine capable of performing a set of well
defined functions. Modern computers are electronic devices. However, the first
computing devices were mechanical in nature! It's the particular set of functions
that the computer performs that separates it from microwave ovens or stereos,
which are also electronic devices that perform well-defined functions.

A very simple computer that you have probably used is a four-function calcu
lator. These calculators perform a set of well-defined functions, namely basic
arithmetic functions (+, -, X, +). Such calculators may be called simple computers
but not general purpose computers. Calculators lack some essential functionality,
namely control functions. These control functions are used to make decisions
based on certain conditions. Many calculators lack the ability to be programmed.
You must enter all the necessary key strokes each time you wish to perform any
calculation. Programmable calculators are an exception-they allow you to save
a sequence of keystrokes that can be recalled. Calculators have limited memory,
often just one memory key~

All of these factors, control functions, programmability, and extra memory
are important parts of a general purpose computer. To get a better idea why
these features are useful, let's try a simple problem using a calculator.

t. The underlying mechanism (electronic components or gears) of a computer is not important in
terms of the computer's abilities. It is important in terms of the speed of the computer.

2. This does not mean that the calculator can store only one number. Rather, it means that the person
using it can save and retrieve only one number.

Features important to
computers

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

2 Chapter 1: Introduction to Computer Science

Using a ca/cu/ator

Using a computer

1.1.1 Example: Balancing your checkbook
You may have done this numerous times already using a calculator. Focus on the
differences between using a calculator and using a computer to perform this task.

With a calculator you might use the following approach:

Enter your starting balance (since the last time you balanced).
Call this your current balance.
For each entry in your checkbook do the following:

If it is a deposit,
add it to the current balance.

Otherwise, if it is a withdrawal (or finance charge),
subtract it from the current balance.

Otherwise, it is a check, so
subtract it from the current balance.

Your current balance now reflects your final balance.

If you want to get a total of your deposits, withdrawals, and checks paid, you
must recompute that information, or modify the above approach to keep running
totals of the three amounts. These running totals would be maintained on paper
or in other memory keys on the calculator if such existed.

The above steps can be converted into a computer program. Computing the
totals of the deposits, withdrawals, and checks paid can be easily incorporated.
The computer would execute or run this program. This means that the computer
follows the given steps. We want the computer to make the decisions and calcu
lations so that our job is as easyas possible. Ideally we would only enter the
amounts and their types. For example, we might enter

$5789.25 start balance
$100 deposit
$25.37 withdrawal
$50.67 check
$120.45 withdrawal
end

The computer will read this information and decide what calculations to per
form based on the transaction type. Once finished, it could give us results like the
following:

Initial balance $5789.25

1 deposit totaling $100.00
2 withdrawals totaling $145.82
1 check paid totaling $50.67

Final balance $5692.76

1.2 A Look Inside the Computer 3

All we had to do was enter the transaction amounts and types. The computer
did the right things with them, and then gave us the information we wanted. For
the computer to do this, it must have control functions to perform actions based
on the type of transaction received-check, deposit, withdrawal, or initial bal
ance. Extra memory is necessary to save the deposit, withdrawal, and checks
paid subtotals. Lastly, programmability is necessary to provide the computer
with the steps needed. Writing such programs will be the topic of later chapters.

Using a computer to balance a checkbook can easily provide more informa
tion than using a calculator would. However, using a computer necessitates the
creation of a working program. This tradeoff is one that must be considered
whenever contemplating the writing of a program to reduce the amount of
human work required to perform a certain task. Writing a program does take
time and thought, but it can be repaid in saved labor, less boredom (Le., balanc
ing your checking account), and less human error.

1.2 A Look Inside the Computer
The computer can be divided into two parts, hardware and software. The hardware
is the "machine" part of the computer. In an electronic computer, the hardware
consists of the electronics that enable the computer to perform its basic functions.
This hardware cannot be altered, hence the term hardware. As we have seen in
the checkbook example, for a computer to do a specific task, a program is neces
sary. The programs that one writes are instances of software. Software, unlike
hardware, is easily changed.

How do we get the hardware to follow the steps dictated by the software?
Hardware alone does nothing. It is like a calculator sitting on a desk. Software
alone does nothing. It is like a person who has a sequence of calculations in mind
but no calculator on which to run them. With the calculator and person, the miss
ing pieces are the numberpad and display. They act as an interface between the
person and the electronics inside. The picture is more complex with a computer.

An operating system is used to run programs on the hardware of the machine.
Running a program entails having the computer hardware follow the steps given
in the program. The operating system controls the hardware and allows the user
of the computer to run programs (software) on that computer. A simplified
diagram of a computer system looks like this:

Why computers need
control functions,
memory, and
programmability

Tradeoffs

Hardware versus
software

Operating systems

4 Chapler 1: Introduction 10 ComputerScience

Networks

Internet and World
Wide Web

Person 1 Operating 2
Hardware

System

3
5 4

Software

The person (or user) sends commands to the operating system, and gets infor
mation back [1]. The operating system gives instructions to the hardware and the
hardware returns results to the operating system [2]. The person creates pro
grams (software) [3], which can be run on the hardware [4]. The operating sys
tem is used to invoke programs such that they may be run on the hardware [5].

The focus of this book is not on machine hardware or operating systems, but
on the creation of software. Only a simple version of machine hardware will be
shown in the later chapters. Operating systems are covered in Chapter 14.

1.3 Connections Between Computers
Computers can be connected to other computers in what is termed a network.
Computers connected together can send and receive information to one another.
There are extensive networks linking computers around the world. Users can
send electronic mail (e-mail) to other users on different machines or read messages
over computer bulletin boards from people in numerous countries. One such bul
letin board forum, USENET, covers thousands of topics and extends to millions
of computers around the world.

The extensive networking of computers grew into the present day Internet, a
network that links millions of computers. The Internet was used originally by
onlya small percentage of computer users primarily for electronic mail and data
transfer. This changed with the development of the World Wide Web project in
1990. This project included the creation of a new language, HTML, to create
hypertext documents-documents that have links to other sections of the document
or to other documents. Browsers were developed to provide simple access to data
on the World Wide Web (also called the Web or WWW) and support multimedia
data (pictures, movies, and sounds).

The Web has created an explosive growth in the computer industry by pro
viding a simple means of presenting and receiving information from other peo
pIe throughout the world. Computer usage on the Web is growing exponentially.
Two hundred million people are expected to be using the WWW by the year
2002.

1.5 Subjields Within Software 5

1.4 What Is Computer Science?
Computer science can be defined as the study of computers-their design, capa
bilities, and limitations. Most of computer science falls into the domains of
hardware or software. There is one other domain, theory, that is primarily associ
ated with software but can involve hardware. Theory addresses issues of com
plexity, algorithms (ways of doing things), efficiency, and limitations of algo
rithms and computers, among other things. Some elements of computer theory
will be explored in later chapters.

Teaching you how to create programs is one of the goals of this book. How
ever, do not be misled. Just as there is more to math than arithmetic, and more to
music than writing circ1es and lines on a staff, there is more to computer science
than writing computer programs. Computer science is a discipline in its own
right with theories, goals, beliefs, and limitations. This text will give the reader a
taste of what the discipline of computer science is by going beyond simple pro
gramming and looking into problem solving, design, and abstraction. The major
subfields of computer science will be explored individually in this text showing
each field's accomplishments and goals. The main focus will be on the fields
within software.

1.5 Subfields Within Software
Within software a number of subfields have arisen as computer science has
matured. Below is a list of these subfields:

• Operating systems
• Compilers, interpreters, and programming language design
• Database management systems
• Artificial intelligence
• Soft computing
• Graphics

1.5.1 Operating systems
Operating systems provide a link between the user, the hardware, and the
software. The operating system creates an environment with specialized com
mands that let the user perform various sophisticated actions. Exactly what this
environment looks like and what actions are supported depend on the particular
operating system. Some of these actions may inc1ude

• displaying information on terminals or printing on printers
• sorting, searching, and restructuring information
• hiding or making available information to others using the same computer
• modifying or creating information
• getting instructions on using the operating system itself
• providing access to programs that perform a wide array of tasks
• accessing or sending information to other computers

Theory

Going beyond
programming

Functions o(operating
systems

6 Chapler 1: Introduction 10 Computer Science

Peripherals

Time sharing

Machine language
versus high-level
programming
languages

• sending information to other people on the same or different computers

Operating systems perform other functions. Computers have keyboards (or
other input deviees such as a mouse or writing pad) and terminals that allow people
to send and receive information to and from the computer. There are other peri
pheral devices, such as line or laser printers that produce paper copies of informa
tion stored in the computer, and disk drives that give the computer access to large
amounts of information. The operating system controls all of these resources.

Larger computer systems allow more than one person to use the computer
simultaneously. The operating system tries to give each person the illusion that
he or she is the only one using the machine. This is termed time sharing. This is
done by having the computer split its attention among the different users, some
what like a parent dealing with many children at the same time. The operating
system allocates the computer's resources, such as line printers and disk drives,
among the people using the computer.

Operating systems may provide support for network features such as elec
troniemail or access to bulletin boards. Transmitting data across networks to or
from other computers is sometimes handled by the operating system as well.

1.5.2 Compilers, interpreters, and programming languages
Hardware performs a limited number of simple functions. This is because
hardware design makes a tradeoff between simple, fast functions (or instruc
tions) and complex, slower instructions. Designers have opted for simple, fast
instructions due to the performance improvements given to the computer. Hav
ing many complex, esoteric functions (like square root or logarithm) built into the
hardware is not worthwhile due to their relative infrequency of use and the
overall system performance decline they cause~

It is possible to write programs using only the instructions that the hardware
can perform. This hardware language is called machine language. Writing large,
sophisticated programs in machine language is a tedious and rather unexciting
process. This is due to the simple nature of machine languages. It is like trying to
discuss your feelings about something important to you and only using
kindergarten-level words. To remedy this, high-level programming languages were
developed as a link between the hardware and programmers. Human or natural
languages do not make good programming languages as they are very ambiguous
and highly context sensitive. Words mean different things depending on their
position or use in a sentence. Look at the following sentence's use of the word
"can."

3. There are, however, custom hardware components like Digital Signal Processors that perform
higher-Ievel functions. These components are not for general computing use. For general
computing, there has been a movement towards even smaller, simpler instructions. These designs,
RISCs (Reduced Instruction Set Computers), are designed to have a small number of commonly
used instructions, but run at very high speeds.

1.5 Subfields Within Software 7

Can the boss can me from the can factory because I can no longer can cans
as fast as she can?

High-level programming languages are somewhat of a compromise between
human-spoken languages and machine languages.

Compilers (translators) and interpreters (simulators) enable the computer to
understand programs written in a high-level programming language. Compilers
translate programs in these new languages into the machine language that the
computer understands. Interpreters do not produce translated programs like
compilers, but instead simulate the execution of programs to produce the desired
results. This simulation results in slower execution of the programs as compared
to a compiled program. Compilers and interpreters are programs that are written
in a language that the machine already understands. Therefore, one can build
languages on top of other existing languages. Look at mathematics for an anal
ogy. Once you know the language of addition, subtraction, and so forth, you can
build up to algebra, and then you can build calculus upon your knowledge of
algebra and basic math operations.

The transition of programs to computer "understandable" machine language
is diagramed below.

t---~ Compiler t---~

Details on how interpreters and compilers are written will be covered in
Chapter 13.

1.5.3 Database management systems
Another subfield of computer science is database management systems. One of the
major uses of computers is in storing, retrieving, and updating information
(data). A collection of data is referred to as a database. Just as operating systems
act as an environment for users, database management systems are programs
that provide an environment that is taiIored for the creation, modification, and
access of data. This new environment is often less flexible than one that a com
piler or interpreter creates with a new language. However, the database manage
ment environment has many specialized features that are unique to the problems
that you encounter when dealing with large amounts of data. Using such a sys
tem, you can easily make complex queries of the data, add new information, or
change existing information.

For example, you may have a database of a1l the friends that you have with
information on each person indicating their address, phone number, birth date,

Compilers and
interpreters

Database systems

8 Chapter 1: Introduction to Computer Science

Artificial intelligence

Soft computing

Fuzzy logic

Neural networks

association to you, and other pertinent information. With a database manage
ment system you need not worry about how that information is represented in
the machine. There are still some things you must decide about the representa
tion, but they are all on a very high level. You could easily make queries into
such a database to print all your friends who have a birthday this month, or print
everyone who is between the ages of twenty and twenty-five, in the hiking club,
and living in San Francisco or New York. More useful actions can be performed,
such as easily removing everyone who lives in Los Angeles.

Database management systems will be covered in Chapter 12.

1.5.4 Artificial intelligence
The most controversial field of computer science is artificial intelligence. Artificial
intelligence deals with the simulation or modeling of "intelligence" on computers.
It comprises many subfields that each address some aspect of intelligence. These
include
• Naturallanguage processing:

Understanding, translating, and paraphrasing spoken languages such as
English or German

• Machine learning:
Learning new information from existing or newly obtained knowledge

• Problem solving:
Solving tasks within realworld environments

• Expert systems:
Embodying the knowledge of experts in a particular domain

• Robotics:
Creating robots that can move about and function in real environments

• Vision:
Recognizing three-dimensional objects given two-dimensional images
Chapter 15 will focus on each of these subfields, touching upon their prob

lems and accomplishments.

1.5.5 Soft computing
Soft computing deals with nonexact or subsymbolic information. The field
comprises various fields, of which fuzzy logic, neural networks, and genetic algo
rithms are the most noteworthy.

Fuzzy logic extends familiar, two-value logic that supports only true or false
values, and extends it to incorporate multivalued logic. Multivalued logic lets one
specify degrees of belief such that fuzzy concepts like tall, heavy, and small can
be expressed more naturally. Fuzzy logic is primarily used to build fuzzy expert
systems that are used often in control devices like antilock car brakes, washing
machines, and subways.

Neural networks are loose simulations of neurons in the brain. They offer an
alternate way of representing information from that used in traditional artificial
intelligence, which uses symbols to represent knowledge. Neural networks

1.5 Subjields Within Software 9

represent information subsymbolically. Information is distributed throughout the
network. This has advantages and disadvantages over symbolic, exact represen
tations.

Genetic algorithms simulate the process of evolutionary change. Information
is represented as chromosomes that can change through crosslinking (two chromo
somes splitting to form two new chromosomes) and mutation (a piece of a chro
mosome changing). The chromosomes that perform better are kept, and the sys
tem evolves over time to yield a good solution to the problem at hand. Genetic
algorithms work by going through aseries of evolutionary changes until the sys
tem performs at a certain level.

Chapter 16 covers these subfields of soft computing, giving examples of each
inScheme.

1.5.6 Graphics
Computer graphics involves modeling and simulating two- and three-dimensional
objects on the computer. Examples of objects that have been modeled in simu
lated environments include aircraft in flight, ships, automobile aerodynamics,
stress and metal fatigue, CAT (Computer Axial Tomography) and MRI (Mag
netic Resonance Imaging) for medical examination of bones and tissues.

The field of computer-aided design (CAD), which helps people with the
design of anything from buildings to bolts, depends on computer graphics.
Architects use CAD tools to design buildings and show clients how the building
will look once it is completed. In fact some of these tools even allow you to do a
virtual walk-through of the building to get a feel for the space and the lighting.

Much work is done in graphics for the movie industry. This work may
involve augmenting realworld scenes with Iifelike, realistic special effects.
Another avenue is creating fantastic special effects that would be impossible to
create in the physical world, such as flying faster than the speed of light or des
cending into a black hole.

1.5.7 Exercises
1.1 Describe the following terms in your own words:

computer
hardware
software
operating system
compiler
database management system
artificial intelligence
soft computing
graphics

Genetic algorithms

Computer graphics

10 Chapter 1: Introduction to Computer Science

Hardware

Parallel programming

Network issues

Fault tolerance

1.6 Subfields Within Hardware
The following list gives some of the major subfields within hardware:

• Integrated circuit design and manufacturing
• Circuit design
• Computer architecture

The electronics of modem day computers are made up of integrated circuits.
These are small electronic devices that perform very specialized functions.
Integrated circuits are made from silicon that is microscopically etched. The heart
of most computers, the central processing unit, is typically a single integrated cir
cuit.

Circuit design involves the combination of integrated circuits and simpler
electronic components to create electronic circuitry that can perform more
sophisticated functions. Computers are made up of integrated circuits and other
simpler electronic devices that are joined on a circuit board-sometimes called a
motherboard.

Computer architecture deals with the design of electronic circuits to create
functioning computers. There are numerous design decisions that affect the capa
bilities, cost, and speed of the computer.

1.7 Subfields Within both Software and Hardware
There are areas within computer science that are closely tied to both hardware
and software. These include

• Parallel processing and concurrent programming
• Networks and communication
• Fault tolerance

The part of the computer that does the calculations and decision making is
called the processor. Parallel processors are computers that have more than one
processor. This enables calculations to occur simultaneously (in parallel). Con
current programming addresses the problems of creating computer programs
that take advantage of these parallel architectures. The parts of programs that can
be run simultaneously are sent to different processors, such that they can all be
run in less time than if they were run sequentially on a single processor.

The widespread growth of networks such as the Internet (introduced in sec
tion 1.3) has placed demands on researchers to improve the capabilities of net
works. There are both hardware concerns dealing with the electronics and circui
try of the connections between the machines, and software concerns focusing on
the communication of information from machine to machine. Speed, security,
and information integrity are areas of concern in network hardware and
software. In addition, there are theoretical aspects of networks concentrating on
efficient routing and layout of the networks.

Fault tolerance deals with the creation and testing of hardware and software
that can handle erroneous or unexpected situations gracefully. Such robustness is
critical with many applications, especially when lives depend on the proper

1.9 Additional Reading 11

functioning of the system, such as computer-controlled antilock brake systems in
cars or air traffic control systems in airports.

1.7.1 Exercises
1.2 List some applications for which computer networks would be useful.

1.3 List some products using computers that must be fault tolerant systems.

1.4 List some applications where parallel processors would be beneficial in
improving the performance of the system.

1.8 Summary
• General purpose computers can be programmed, have control functions to

make decisions, can perform numerical calculations, and have a great deal of
memory.

• Hardware makes up the electronics of computers.
• The programs that can run on computers are referred to as software.
• Operating systems provide a level of abstraction allowing various useful

actions to be easily performed.
• Operating systems handle many of the peripheral devices and shared

resources of computer systems such as terminals, keyboards, line printers,
and disk drives.

• Compilers translate high-Ievellanguages into machine language that can be
run on the computer.

• Interpreters simulate the execution of programs written in high-level
languages.

• Database management systems provide a specialized environment for organ
izing and searching through large amounts of data.

• Artificial intelligence includes those aspects of software that involve the simu
lation of some aspect of cognition.

• Soft computing involves the representation of multivalued and subsymbolic
information that is needed to handle information that is not sharply definable.

• Computer graphics is concerned with modeling two- and three-dimensional
objects.

• Hardware subfields cover the spectrum from the creation of integrated cir
cuits to the design of computers using such components.

• Parallel processing, networking, and fault tolerance are three fields that cross
the boundaries into both hardware and software.

12 Chapter 1: 1ntroduction 10 ComputerScience

1.9 Additional Reading
Brookshear, J.G. (1997). Computer Science: an Overview, Fifth Edition, Addison
Wesley, Reading, MA.

Goldschlager, L. and Lister, A. (1988). Computer Science: a Modern Introduction.
Second edition, Prentice Hall, Englewood Cliffs, NJ.

CHAPTER2

PROBLEM SOLVING AND
PROBLEM ABSTRACTION

2.1 Problem Solving
People spend a great deal of time solving problems, often without consciously
tbinking about them. For example, when you go grocery shopping, you may
encounter and solve a number of problems without paying attention to them.
You might be looking for cream of asparagus soup. You have techniques that you
use to find this particular flavor of soup. You probably don't look for it among
the frozen pizzas. You may ask someone where it can be found to narrow your
search. You might ask, "Where is the cream of asparagus soup?" and be told, "The
soups are on aisle four," in wbich case you would go there and search among the
soups. You probably wouldn't respond with, "That's fine, but I want to know
where the cream o[asparagus soup is!"

There are countless examples of problem-solving situations that seem trivial.
There are other circumstances that we might actually consider problems because
they involve more thought. These include solving math word problems, such as
"if 12 ounces of soup costs 59 cents and 20 ounces of the same soup costs one dol
lar, wbich is a better bargain?"

Computers have less general knowledge than humans do. This is why it is
necessary to supply incredibly detailed information to instruct computers to
carry out even seemingly simple or obvious tasks. What you should try to
develop in tbis chapter are the skills involved in taking an English problem
description and solving it by creating a detailed set of instructions that a macbine
can follow. The rest of tbis book will show the specifics of creating computer pro
gram solutions to problems, in other words, going from problem descriptions in
English to working computer solutions.

A typical problem
solving situation

Being specific

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

14 Chapter 2: Problem Solving and Problem Abstraction

Understanding the
system

Central processing
unit

The first requirement in problem solving is a thorough knowledge of the
capabilities of the system with which you are trying to solve the problem. You
typically need not know how the system works, just what it can do. For example,
you can instruct a friend to get to your house without having the foggiest idea
about how her brain works. You do know, however, the level of instructions she
can follow. The instructions that you would give to a two-year-old differ from
those you would give to an adult. SimHarly, you need to know what computers
can do and what they can understand before you begin to instruct them to carry
out specific tasks.

2.2 What Computers Can Do
For the most part, computers are stupid machines. They can perform only a lim
ited number of simple operations, usually on the order of fifty to a few hundred.
Examples of such computer operations or instructions include addition, subtrac
tion, checking if a number is less than zero, and repeating a collection of instruc
tions. Most of these operations deal with numerical computations or control
deciding what to do next. Even multiplication may not be a standard operation
but instead be implemented as aseries of additions.

At this point it may seem a wonder computers do the things that they do.
After all, computers help people make business decisions, predict the weather,
and compute square roots of large numbers in less time than it takes us to write
the numbers on a piece of paper. How can this be?

The picture of the computer that many people have is that of a sophisticated,
powerful machine. However, the picture that has been painted here is that of a
rather dismal idiot savant. What has been illustrated is the core of the computer,
the central processing unit or CPU. You don't normally see this low level of the
machine; instead, you see a much different environment, which is the result of
various levels buHt upon the basic CPU. Each level allows more complex, special
ized actions to be performed. As discussed in Chapter 1, an operating system is
one such level of abstraction that can be buHt upon the underlying CPU. This
provides a new environment with a new means of communicating with the
hardware. Computers such as Macintoshes, PCs, and video games (that have
computers) all have environments that are buHt upon the hardware. These
environments make the computer appear powerful and sophisticated.

Our mental development can provide an analogy. As infants, we had fewer
capabilities, but each year we leamed more and more, adding levels of
knowledge. One such level was language, which gave us the ability to communi
cate and to read this textbook. If we look at the brain as a CPU, as infants, our
brains performed only simple actions. The more we leamed, the more abstract
and powerful our brains became.

2.4 Problem Abstraction 15

2.3 Computer Languages
Just as humans understand language, so do computers. And computers, like
humans, can understand more than one language. Computers typically use two
levels of language. The lowest level is the machine language. This language is used
to instruct the computer hardware to carry out its basic CPU functions. The next
level consists of languages that are built up from the machine language. These
languages have particular characteristics and capabilities just as our spoken
languages do. Some African languages do not have words for concepts like own
ership. Indonesian has many different greetings/blessings to say to someone
depending on the time of day. Similarly, each computer language has its areas of
specialty and weakness. A computer language has a particular mind set or pro
gramming style. If you speak more than one language, you know that there are
different ways of thinking or expressing concepts or ideas in each language. Simi
larly, two solutions to the same problem, each solved using a different computer
language, can be different in form and approach.

Computer languages are becoming more powerful and sophisticated; how
ever, no computer language approaches human spoken language. The ambiguity
and complexity of our spoken languages has made it extremely difficult to create
a computer program that can understand them. This creates a gap that must be
bridged. How do we go from English problems to computer language solutions?
The next section will focus on this issue.

Let's review what has been covered:

• CPUs perform only a set of very simple operations.
• Levels of abstraction built upon the CPU make computers more powerful and

easier to use.
• Programming languages are a level of abstraction that provide an environ

ment that is closer to the way we think.
• It is from this programming language environment that we will build pro

grams to solve our needs and to extend the computer's capabiIities further.

2.4 Problem Abstraction
The first step in going from English problems to computer solutions is thinking
about the problem in terms of the environment in which we will solve the prob
lem. This environment may be some programming language environment. It
may be the lowest-Ievel machine language. It may be a database management
system. Regardless of the environment, we must think of the problem in terms of
what the environment allows and understands. To do this, we need to have a
solid understanding of the environment.

The environment in which we will begin problem solving exercises is a robot
simulation. This robot, named Bob, lives in an artificial world that contains
colored blocks. The blocks are movable and stackable. The robot understands the
following commands:

Machine language

Summary

Knowing the problem
domain

16 Chapter 2: Problem Solving and Problem Abstraction

Robot commands • move forward distance meters
• turn left number degrees
• turn right number degrees
• pick up object
• drop object
• look
• lowerpen
• raise pen
• memorize sequence-name instruction-sequence
• perform sequence-name

The words in italies represent variables-actual values would be used in their
place in commands to the robot.

The goal is to instruct the robot to carry out simple tasks in this world. The
first task is to move one of the objects in this artificial world.

It's a good idea to leam the capabilities and limitations of the system in which
you must program. Let's try some of the commands and see what effect they
have. In the robot sessions that follow, our requests to the robot will be shown in
italics. The robot's replies will be shown inbo1dface.

request: look
green b10ck at 0 degrees, 3 meters away
ye110w b10ck at 90 degrees, 2 meters away

The robot returns the position of the blocks in a standard way, telling us the color
of the block and its position in degrees and meters from the robot. In this world,
o degrees is straight up (north), 90 degrees is right (east), 180 degrees is down
(south), and 270 degrees is left (west).

The diagram below illustrates the initial robot world. The robot is facing up
(north).

2.4 Problem Abstraction 17

Let' s try some more commands:

request: pick up green block

Error: green block is not reachable

request: drop yellow block
Error: yellow block is not in my possession

request: turn right 90 degrees
right turn complete

request: look

green block at 270 degrees 3 meters away
yellow block at 0 degrees 2 meters away

request: turn left 90 degrees
left turn complete

request: move forward 2 meters
move complete

request: look

green block at 0 degrees 1 meter away
yellow block at 135 degrees 2.83 meters away

The memorize command is used to name a sequence of steps that we wish the
robot to perform later. This is useful to abbreviate an often-needed sequence or to
create a logical collection of steps that help make the overall program more read
able. The memorized sequence of commands is performed when aperform com
mand is issued.

request: memorize go-back-2-turnaround-look

turn left 180 degrees
move forward 2 meters
turn left 180 degrees
look
end

okay

request: perform go-back-2-turnaround-look
left turn complete
move complete
left turn complete
green block at 0 degrees 3 meters away
yellow block at 90 degrees 2 meters away

The robot world looks the same at the end of this sequence of commands as it
did at the start.

The robot was instructed to turn to the right, look, then turn back, then move
up towards the green block. After that the robot memorized a sequence to turn
around to the left, move two meters, turn back around, and look. Next the robot

Memorized
sequences

18 Chapter 2: Problem Solving and Problem Abstraction

Recognizing
ambiguities

performed these memorized steps, thereby retuming the robot to its starting
position.

Now that we have an idea of what the robot can do, let's get back to the task
at hand-making the robot move an object.

2.4.1 Example: Move the yellow block up three meters
This problem can be thought of as a sequence of operations:

• move to the yellow block
• pick up the yellow block
• move up three meters
• drop the yellow block
lnitially the robot is facing up towards the green block. To move the robot to

the yellow block, the robot must face in that direction.
Moving to the yellow block entails the following:

turn right 90 degrees
move forward 2 meters

Picking up the yellow block can be done with one command:
pick up yellow block

Moving up three meters is done as
turn left 90 degrees
move forward 3 meters

Dropping the yellow block is expressed as
drop yellow block

Putting it all together, we get
turn right 90 degrees
move forward 2 meters
pick up yellow block
turn left 90 degrees
move forward 3 meters
drop yellow block

2.4.2 Ambiguities
The above problem presented a subtle ambiguity. The problem was to move the
yellow block up three meters. The ambiguity lies in the problem statement and in
the operations of the robot. First, in the problem statement, no mention is made
as to whether the yellow block could be shifted to the left or right when it is
moved up three meters. Second, the description of how the robot picks up and
drops objects was not very detailed. Does the robot need to be touching the
object to pick it up? Does the robot need to be facing the object to pick it up?
Does the robot drop the object in the reverse manner as it was picked up, or
below, behind, or to the side? Before we can respond to any clarification in the
problem statement, we must be certain of these questions about the robot.

2.4 Problem Abstraction 19

Let's assume that the robot must be touching and facing the object before it
can be picked up and that the object is dropped in front of the robot. We'll refine
the problem statement to be moving the yellow block such that it is three meters
directly above its previous position; hence, there should be no final left or right
shifting of the block. Now do we have enough information to solve the problem?

We can review the steps we took. Moving to the yellow block is still okay, as
is picking up the yellow block. Moving up three meters seems okay, but there is
an ambiguity lurking here. Does the object stay in front of the robot as it moves
and turns?

Let's assume that it does. By turning left, the block is moved so that it is no
longer to the right but above the robot. When the robot moves three meters, the
block has moved more than three meters from its original position, because the
robot's turning the block moved it up an amount equal to the diameter of the
robot. The diagram below should help you visualize what is going on. The dotted
block labeled block start represents the yellow block's initial position. The robot
has moved next to it from its initial position. The different dashed shapes
represent different positions of the yellow block during its movements.

green

block

robot

start

i-I
after

I move I
L:.--;-,-+_-----,

, - - - ,
I after I

I I

I turn I

L _ - -.I.
after

move

right

desired

spot

block

start

The block moves immediately above the robot to the position labeled after
turn after the robot rotates left. Next the robot moves up taking the block ahead
of it. If the robot drops the yellow block after moving it up three meters, it ends
up in the location indicated by the dashed box labeled after move. The position
where we would like the block to be dropped is labeled desired spot. To get to this
position, the robot must turn to the right by 90 degrees, effectively undoing the
left turn taken before the robot moved up three meters.

20 Chapter 2: Problem Solving and Problem Abstraction

Representing
solutions in pseudo
code

The corrected commands are given below:
turn right 90 degrees
move forward 2 meters
pick up yellow block
turn left 90 degrees
move forward 3 meters
turn right 90 degrees
drop yellow block

2.5 Pseudo Code
Sometimes a problem is difficult to think of in terms of the commands of the sys
tem being used. In this ca se, we use an intermediary language known as pseudo
code. Pseudo code lies between English and the environment in which we want
our solution to be. There are no definite mIes for how pseudo code must look. It
is merely adescription of the problem that comes closer to the desired solution.
In the previous problem, our pseudo code was

move to the yellow block
pick up the yellow block
move up three meters
drop the yellow block

The following two problems give more examples of using pseudo code.

2.5.1 Example: Draw a two-by-two meter square around the yellow
block

Before we begin this problem, we need to know the position of the robot in rela
tion to the yellow block, the size of the robot and the yellow block, and the posi
tion of the robot's pen relative to the robot. Assume that the robot is facing up
directly in front of the yellow block. Also assume that the blocks are one meter
wide by one meter deep, that the robot is one meter in diameter, and that the pen
is in the center of the robot. Thus the robot must follow a path immediately
around the edge of the yellow box to make a two meter by two meter square. The
steps to follow for this problem are

• have the robot lower the pen
• move the robot left one meter
• move the robot up two meters
• move the robot right two meters
• move the robot down two meters
• move the robot left one meter
• have the robot raise the pen

2.5 Pseudo Code 21

Trace out the robot's movements on the diagram below.

yellow

Below are the commands to move the robot. Above each command is a
comment (a line beginning with a semicolon ";") that indicates the step
involved. Comments are not interpreted as part of the program.

; have the robot lower the pen
lower pen

; move the robot (currently facing north) left one meter
turn left 90 degrees
move forward 1 meter

; move the robot (currently facing west) up two meters
turn right 90 degrees
move forward 2 meters

; move the robot (currently facing north) right two meters
turn right 90 degrees
move forward 2 meters

; move the robot (currently facing east) down two meters
turn right 90 degrees
move forward 2 meters

; move the robot (currently facing south) left one meter
turn right 90 degrees
move forward 1 meter

; have the robot (now facing west) raise the pen

raise pen

The diagram below shows the trace of the robot' s motions. The robot is
shown in the end position. He is facing left. The dashed line represents the
path the robot followed.

22 Chapter 2: Problem Solving and Problem Abstraction

Simplifying code with
memorized
sequences

~ - - - - - - - -:>J
I I

yellow

2.5.2 Exercises
2.1 How would you change the above program to have the robot travel coun

terclockwise?

2.2 Write a sequence of steps that instructs the robot to draw a triangle around
the yellow block. Assurne that the robot starts in the same position as in the
last example. Make the triangle six meters on each side.

2.3 Assurne that the robot is between the two blocks with the green block to the
immediate left and the yellow block to the immediate right. In other words,
the three objects are in a line, with both blocks touching the robot. Write a
sequence of steps to command the robot to draw a rectangle around both
blocks. What assumptions are you making in your solution?

2.6 Using Memorized Sequences
Memorized sequences provide a way to break down a problem into subprob
lems. This is extremely helpful with larger problems, since they can rapidly
become incomprehensible. Also, collections of commands that need to be
repeated in the solution can be repeated by invoking the memorized sequence
multiple times. This saves a great deal of writing and helps eliminate errors.

2.6.1 Example: Write the robotts name-BOB
For this problem, let's assurne that the robot is in an empty world, so we don't
need to worry about running into blocks. Also assurne that the robot begins at
the lower left corner of what will become the "B" and that the robot is facing up.
The diagram below shows what the name "BOB" should look like.

2.6 Using Memorized Sequences 23

BOB
The initial pseudo code for this problem folIows:

• draw the first "B"
• move into position for the "0"
• draw the "0"
• move into position for the second "B"
• draw the second "B"

Since we will be drawing two "B"s and they are fairly complex, the commands
to draw a "B" should be memorized. Positioning the robot to draw the next letter
can be implemented with a single memorized sequence if we design the drawing
of letters such that the robot ends up in the same position relative to the letter
being drawn each time. This makes it easier to join different parts of the program
without having to worry about where the robot is and which direction he is fac
ing. We will make sure that the robot is facing up and is at the left side of the
baseline (lower left corner) of the letter at the start and end of printing each letter.

2.6.2 Refinement of pseudo code
Going from the above pseudo code to actual robot commands is more difficult in
this problem than in the previous problems. The problem is sufficiently complex
that we should do another pass through the pseudo code and refine it, adding
more details.

A good place to start is to look for repetition and see whether memorized
sequences would help. The top half of the "B" is the same as the bottom, so the
commands to draw half a "B" can be a memorized sequence. Similarly, the same
sequence can be used to draw the left and right halves of the "0" along a diago
nal. Below are diagrams representing these pieces.

o
N ow we can refine our previous pseudo code:

Looking tor repetition

24 Chapter 2: Problem Solving and Problem Abstraction

• draw the first "B"
- draw the bottom half of the "B"
- move into position for the upper half
- draw the upper half of the "B"
- move to the original starting position and direction

• move right to draw the next letter
• draw the "0"

- draw the left half of the "0"
- move into position for the right half
- draw the right half of the "0"
- move to the original starting position and direction

• move right to draw the next letter
• repeat the steps for the first "B"

The high-level steps (bulleted steps) can be implemented as memorized
sequences. They provide a logical breakdown of the problem and eliminate the
repetition in drawing "B"s and moving the robot into position to draw the next
letter. Similarly, the commands to draw letter halves can be memorized
sequences. We will begin with these half-letter sequences.

Just as we must insure that the robot is in proper position and orientation
before drawing each letter, we must assume some standard before each letter
half is drawn. Let's assume that the robot is in the proper position and facing the
direction of the first line to draw; hence, the first action of a draw half-letter
sequence will be to lower the pen and start drawing. It will be the job of the
whole-Ietter drawing sequences to insure that the robot is in the proper position
and orientation before invoking each memorized half-letter sequence.

; Robot is initially facing north, with the pen up.
memorize draw-half-of-B

end

lower pen
move forward 0.5 meters
turn right 90 degrees
move forward 0.4 meters
turn right 45 degrees
move forward 0.2 meters
turn right 45 degrees
move forward 0.25 meters
turn right 45 degrees
move forward 0.2 meters
turn right 45 degrees
move forward 0.4 meters
raise pen

2.6 Using Memorized Sequences 25

; Robot is oriented to draw the first line, with the pen up.
memorize draw-half-of-O

end

lower pen
move forward 0.2 meters
turn right 45 degrees
move forward 0.8 meters
turn right 45 degrees
move forward 0.2 meters
turn right 45 degrees
move forward 0.4 meters
raise pen

Next, we can write memorized sequences to draw the "B" and "0" and move
the robot into position for the next letter.

; Robot is initially at the lower left corner of the "B"
; facing north, with the pen up.
memorize draw-B

end

draw lower half of "B" first
perform draw-half-of-B

set up for upper half of "B"
turn right 90 degrees
move forward 0.5 meters

draw upper half of "B"
per form draw-half-of-B

return to starting position and direction
turn left 90 degrees
move forward 0.5 meters
turn left 180 degrees

; Robot is initially at the lower left corner of the "0"
; facing north, with the pen up.
memorize draw-O

end

set up for left half of "0"
turn left 45 degrees
per form draw-half-of-O

set up for right half of "0"
turn right 45 degrees
perform draw-half-of-O

return to starting position and direction
turn right 90 degrees

Notice that after each letter is drawn the robot ends up facing north, so he
must turn to the right to move to the proper position for the next letter and then
face north again to draw the next letter. We can write a memorized sequence to
implement these steps.

26 Chapter 2: Problem Solving and Problem Abstraction

Using parameters to
make memorized
sequences more
general

; Move robot to draw next letter.
memorize adjust-position

turn right 90 degrees
move forward 1 meter
turn left 90 degrees

end

Putting the whole thing together, we have:
; Assume that the robot is facing up at the lower left corner
; of the first "B" with the pen up.
perform draw-B
perform adjust-position
per form draw-O
perform adjust-position
perform draw-B
per form adjust-position

2.6.3 Exercises
2.4 How could memorized sequences be used in the previous problem (draw

ing a box around the yellow block) to improve the solution?

2.5 Write pseudo code to write out the numbers zero through nine. Think of
how memorized sequences could make the task easier.

2.6 What memorized sequences would be helpful in writing out the letters of
the alphabet?

2.7 Write a memorized sequence to stack the yellow block on top of the green
block. What assumptions must you make?

2.8 Write commands to switch the order of two blocks that are stacked one
upon the other. Try to use memorized sequences to simplify things.

2.9 Think of some other commands that would give the robot more flexibility.

2.7 Adding Parameters to Memorized Sequences
Some of the robot's commands allow us to specify additional information, such
as a distance to move or a number of degrees to turn. By making a simple change
to the way we write memorized sequences, we can allow sequences that take
such information. These additional values need names by which they can be
referred within the definition of the sequence. These names are called parameters.
For example, imagine the following new version of the sequence adj ust
pos i tion from the previous problem:

2.7 Adding Parameters to Memorized Sequences 27

; Move robot (facing up) distance meters to the right.
memorize metric-move-right (distance) meters

end

turn right 90 degrees
move forward distance meters
turn left 90 degrees

This new memorized sequence has a parameter, distance, that indicates how
many meters to move to the right. To invoke tbis new sequence to move four
meters, use the following command:

perform metric-move-right 4 meters

This will perform the steps withinmetric-move-right, substituting the value
4 for the parameter distance. In this example, 4 is the argument to the performed
sequence.

To enhance our system further, we can add mathematical functions to our
commands. This way we could write sequences like the following:

; Move robot (facing up) distance feet to the right.
memorize nonmetric-move-right (distance) feet

end

turn right 90 degrees
move forward distance + 3.28 meters
turn left 90 degrees

There are approximately 3.28 feet in one meter, so dividing a distance given in
feet by 3.28 gives the equivalent distance in meters such that move forward
(which takes meters) can be invoked with the appropriate value.

The following command results in a move of 3 + 3.28 = 0.915 meters:
perform nonmetric-move-right 3 feet

2.7.1 Exercises
2.10 Assume that the command turn left no longer works. Write a memorized

sequence to perform a left turn using the command turn right.

2.11 Write a sequence that draws a square around a block in which the length of
the side of a square is a parameter to the sequence. Assume that the value
given will be large enough to draw a square around the block. Also assume
that the robot is immediately below the middle of the block and is facing up.

2.12 Write aversion of draw-B that takes a parameter for the height of the "B".

2.13 Describe the robot's actions when the following commands are invoked:

Mathematical
functions

28 Chapter 2: Problem Solving and Problem Abstraction

memorize mystery (number)
turn left 90 degrees

end

move forward number meters
perform mystery number

perform mystery 2

2.14 What actions does the robot take when performing the sequence fractal?

memorize fractal (number)

end

move forward number meters
turn left 45 degrees
perform fractal number + 3
turn right 90 degrees
perform fractal number + 3
turn left 45 d~grees
move forward number meters

Hint: assume that the robot ignores the sequence fractal when number is less
than 1. Try starting with numberequal to 2, then try 6, and then 18.

2.8 Summary
The major issues of this chapter involve the steps to take when solving problems.
• Begin by disambiguating the problem.

Any aspects that are not clearly defined should be resolved.
• Think of a solution to the problem using a sequence of abstract steps.

These steps can be expressed as pseudo code.
• Refine the steps to the level of sophistication of the system on which your

solution will run. This may involve several passes, each taking the solution
closer to the level of the commands understood by the system.

CHAPTER3

PROGRAMMING TBE COMPUTER

3.1 The Sehe me Environment
At this point we begin to use areal programming language to perform tasks and
solve problems. The programming language used is Scheme, which is a dialect of
LISP. LISP is an acronym for LISt Processing. We will define what a list is and
how Scheme goes about processing lists in Chapter 4.

Programming languages were introduced in Chapters 1 and 2 as environ
ments that fill the gap between machine languages and naturallanguages, like
English and Serbo-Croatian. In this chapter, we begin to explore the Scheme
environment and what can be done within it. First we must develop an under
standing of the Scheme environment.

Let's begin with four basic elements within Scheme: numbers, symbols, vari
ables, and functions.

Numbers in Scheme are like the numbers with which you are familiar.
Scheme has integers such as 42 and -87, real numbers such as 3.1415 and -2.69,
and ratios such as f (written in Scheme as 2/3).

Symbols are names. They can have values or can be used merely for their
name. For example, j ahn is a symbol. A sentence can be constructed in Scheme
by joining symbols together, where each symbol represents a word in the sen
tence. Scheme is a symbolic processing language, meaning it is good at perform
ing operations on symbols such as creating, transforming, and comparing sym
bols and collections of symbols.

Variables are symbols that have values associated with them. Remember
when you worked on algebra problems that started with "let x be the number of
goats in Farmer Bob's ranch"? In Scheme, x would be a variable. We can use the
symbol myriam as a variable by giving it a value. Later we can reference or
change the value of the variable myriam.

Functions perform operations. They are Scheme's equivalent to the com
mands of the robot world of Chapter 2. Some of the robot commands took

Basic components of
Scheme

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

30 Chapter 3: Programming the Computer

Scheme interpreter

Calfing functions

arguments (e.g., move forward and turn left). Scheme functions can take argu
ments as weIl. This enables functions to give different resuIts according to their
arguments.

Most functions perform operations on values (arguments) and return a result.
The basic four operators (+, -, X, +) in calculators are analogous to Scheme func
tions, and the numbers to which these operators are applied correspond to argu
ments within Scheme. When we instruct the computer to carry out the actions of
a function, we are invoking or calling the function.

Some texts refer to Scheme functions as procedures. Most programming
languages use functions to denote objects that return one value when invoked,
whereas procedures do not return a value explicitly. This book follows this nam
ing convention, considering functions as objects that return only one value.

The core of Scheme is the interpreter. The computer does not directly under
stand Scheme. It is only by virtue of the Scheme interpreter that the computer can
respond to our Scheme requests and return understandable results. Requests are
typed on the computer's keyboard. The interpreter receives the requests and
sends the appropriate information to the computer, which performs the neces
sary operations and sends information back to the interpreter. The interpreter
prints this information as a result that we can understand on the terminal screen.
The following diagram illustrates these components~

Scheme
Interpreter

machine requests
Person Computer

English results
(a program)

machine results

An analogy can be drawn to the way a human interpreter interacts with two
speakers who do not speak each other's languages. In the example below an
English and a French speaker communicate via an interpreter.

English English words
Interpreter

French words French
speaker English words

(ahuman)
French words speaker

3.1.1 Example: Determining the price of an item with 6% tax added
To compute a tax amount, a function that can multiply numeric arguments
together is needed. Fortunately, such a function exists and is called *. We need to
know how to invoke functions with arguments and how to obtain the resuIts.

Invoking (or caIling) a function is done by encIosing the function name fol
lowed by its arguments in parentheses. Hence, the function call (* 7.95 1.06)

multiplies 7.95 by 1.06 and returns the product, 8.42.

1. The operating system normally plays a role in this diagram as weil, acting between the computer
and interpreter. It was left out to keep the foeus on the interpreter.

3.2 Numerical Functions 31

Before function calls can be typed into the computer, the Scheme interpreter
must be invoked. Consult your instructor, system administrator, (or Scheme
software manual if you have a personal computer and a Scheme interpreter) to
determine how to start up Scheme. There is no standard way to exit from
Scheme. Try entering (exi t) or (qui t) or checking if there is a menu command
to exit Scheme.

Once the interpreter has been invoked, a prompt is displayed. The prompt
indicates that the interpreter is ready to receive requests. This book uses the
greater-than sign, >, as a prompt. Your prompt may be different. Throughout this
book, the prompt and the interpreter' s responses will be shown in boldface. The
user's input will be displayed in i ta1ics. Comments appear as text following a
semicolon. The comments shown are merely to provide information to the
reader. They do not need to be entered for these examples to work.

When (* 7.95 1.06) is entered in the interpreter, the product is printed.
What you will see is

> (* 7.95 1.06)
8.42

Mistakes to A void
Don't forget the space between the function name and its arguments
(the values upon which the function acts). Thus,

(*7.95 1.06)

results in an error. Try it on your computer.

3.2 Numerical Functions
Scheme supports the four basic math operators found on calculators, as weIl as a
host of other arithmetic functions. The table below is a partial list of these func
tions and the operations they perform.

function arguments return value
+ Oormore sum of arguments

1 or more difference of arguments in left to right order

* Oormore product of arguments
/ 1 or more quotient of arguments in left to right order
max 1 or more maximum of arguments
min 1 or more minimum of arguments
truncate num integer part of num 1igits to the left of the decimal)
sqrt num square root of num, num
abs num absolute value of num, I num I
expt numpower exponentiation (num raised to power), numpower
remainder numl num2 remainder of numl when divided by num2

Starting and stopping
Scheme

Interacting with
Scheme

Simple arithmetic
functions

32 Chapter 3: Programming the Computer

Note: the functions - and / take at most two arguments in some implementa
tions of Scheme. If + and * are called with no arguments, 0 and 1 (the arithmetic
and multiplicative identities) are returned respectively. Given one argument,
they merely return that argument. If given one argument, - returns its negation,
and / returns its reciprocal. When min or max are called with one argument, that
argument is returned. To get a better idea of how these functions work, look at
the following examples:

> (*)

1

> (+)

o

> (+ 3)

3

> (* 4.56)
4.56

> (- 3)

-3

> (/ 4)

1/4

> (- 2 3 4)
-5

> (/ 2 3 4)
1/6

> (max -24 8 -3 -62)
8

> (min -24 8 -3 -62)
-62

> (truncate 18.5)
18

> (truncate -8.7)
-8

> (sqrt 49)
7.0

> (expt 2 3)

8

> (remainder 5 3)
2

; a ratio is retumed

; computes 2 - 3 - 4

; computes 2 / 3 / 4
; ratios are always reduced to lowest terms

3.2 Numerical Functions 33

> (remainder 3 4)
3

The last example may be confusing. It involves understanding integer divi
sion, which requires that the answer be an integer. This is done by truncating the
real division answer. Dividing 3 by 4 gives us 0.75, which when truncated is O.
This means that we must subtract 0 x 4 from 3, leaving 3; hence, the remainder is
3. If we were to make a diagram of this, it would look like

Orem3
41 3

-0
3

3.2.1 Common errors when calling functions
Many types of errors can occur, even at this early stage of learning to program. It
is easy to get frustrated thinking that the machine doesn't work when an error
message is given. Rather than give up, hit the computer, wish you had never
taken a computer dass, or try to get your day job back, it's best to take a deep
breath and actually read the error message. Not everything in the message may
be helpful, but often you can leam what caused the problem. Since each imple
mentation of Scheme has its own way of handling error messages, it is impossible
to give all possible errors that you might encounter. The important thing is to be
aware of the types of errors that can arise and be familiar with the error messages
given by your system.

Some of the more common errors that can occur and the reasons they occur
are given below:

• Too many arguments:
This is often caused by having amistaken understanding of the arguments
that the function takes or forgetting a parenthesis after the last argument.

• Too few arguments:
This can be caused by amistaken understanding of the arguments that the
function takes or by induding an extra parenthesis before the last argument.

• Invalid function name:
This is most often a spelling mistake or simply using the wrong name for a
function (e.g., using power instead of expt).

• Type dash:
A type dash is amismatch of the value types (e.g., integer or real) that a func
tion allows. For example, remainder works with integers and not real
numbers.

• No output:
This is most likely due to missing right parentheses. Try entering one or more
right parentheses until you get aresponse.

Below are examples of these errors.

Integer division and
remainders

Error messages

34 Chapter 3: Programming the Computer

> (abs 3 4)
Error: Too many arguments: (abs 3 4)

> (-)
Error: Too fewarguments: (-)

> (power 3 4)

Error: Unbound variable: POWER

> (remainder 3 4.2)
Error: Expected INTEGER

> (+ 3 (* 4 5)

For this last input, the interpreter will not return a value, nor will it print
another prompt. This is because it is waiting for the second right parenthesis to
end the + function call. As a general rule if you are waiting a long time for a
response, try typing in some right parentheses.

Not all error messages are as readable as those given above. Leaming how to
read complex error messages is an important skill; it can save you a great deal of
frustration and was ted time.

3.2.2 Exercises
3.1 What do the function calls below return when typed into the Scheme inter~

preter?
(- 4)

(/ 4)

(+ 4 2 3)

(- 4 2 3)

(- 4 -2 - 3)

(/ 24 6 2)

(expt 4 3)

(remainder 7 3)

(remainder 3 7)

3.2 What do the function calls below return? Some of them may produce errors.
(sqrt 9 16)

(sqrt 9 + 16)

(- 2 4)

(*2 3 4)

(+)

(-)

(*)

3.3 The Evaluator 35

(/)

(+ 3)

(remainder 4.2 1.7)

3.2.3 Function composition
Functions can be composed (combined). For example, the price with 6% tax on the
sum of $12.69, $186.34, and $2.74 can be expressed in Scheme as follows:

> (* (+ 12.69 186.34 2.74) 1.06)
213.8762

The three prices are added first, and then their sum is multiplied by 1.06.
Only one value, the product, is retumed as the value of the function call. Notice
that the sum is not printedi it is only computed as part of the final multiplication
calculation.

In most instances, wherever an argument is expected, a function call can take
its place. The outermost function is calculated last and its value is printed. This
mechanism will be explained in the next section on the evaluator.

3.3 The Evaluator
Function calls, variables, and numbers all can be entered into the interpreter and
evaluated. The generic name for anything that can be evaluated is an expression.
Another name used instead of expression is s-expression. This stands for symbolic
expression.

We've already written some simple expressions in Scheme. Now let's get a
better understanding of how Scheme works and leam more about existing
features of the system.

The Scheme evaluator is the heart of every Scheme system. The evaluator gets
your input requests and evaluates them according to the following rules:
• numbers evaluate to themselves
• function calls are evaluated in the following manner:

the arguments are evaluatedi
if errors occur, an error message is printedi
otherwise,

the function is applied to the evaluated argumentsi
the result is retumed

Notice that in defining the evaluation of a function, one of the steps is to
evaluate the arguments to the function. Evaluating the arguments allows us to
use function calls as arguments to functions. If Scheme only allowed numbers as
arguments, it could have much simpler evaluation mIes. The definition we have
used includes the term it is definingi this is a recursive definition. We examine
recursion in Chapter 6.

Another term to pay attention to in the definition of evaluate is apply. Apply
ing a function to its evaluated arguments means that the action of the function is
performed on the arguments. This yields a result, which is then retumed as the

Composing functions

Expressions and
s-expressions

The workings of the
evaluator

Evaluating arguments

Applying the function

36 Chapter 3: Programming the Computer

value of the function call.
Let's use some examples to see what goes on in the evaluator. Once again, the

user's input is in italies, the computer's output is in boldface, and explana
tions of what the evaluator does is in regular type preceded by semicolons.

> 42
42

> -18.4
-18.4

> (+ 1 2)
3

> (+ (* 2 3) 4)
10

3.3.1 Exercises

; numbers evaluate to themselves

; negative and real numbers are numbers too

; this is a function call, and + is a valid function
; 1 evaluates to 1, and 2 to 2
; applying + to 1 and 2 yields 3

; this is a function call, and + is a valid function
; (* 2 3) is the first argument to be evaluated

; * is a valid function
; its arguments 2 and 3 evaluate to 2 and 3
; applying * to 2 and 3 yields 6

; the second argument, 4, evaluates to 4
; lastly, + is applied to 6 and 4, yielding 10

3.3 Write out the steps the evaluator takes when evaluating the following func
tioncalls:

(sqrt (+ 9 7»

(* -3 (+ (* 2 3) 4»

3.4 To what do the function calls below evaluate? Some of them may produce
errors.

(+ 4 (- 3) - 2)

(+ (- 3) (/2»

(+ (* 2 3) (- 8»

3.3.2 Example: Compute your income tax
To compute income tax, assuming a fixed tax rate of 15%, we'll use the following
formula:

tax = (work-income + interest-income - standard-deduction) x 0.15
- (withholding + tax-credits)

Assume the actual values for this formula are

3.4 Bottom-Up Design 37

work-income
interest-income
standard-deduction
withholding
tax-credits

$25,174.65
$132.67

$6,050.00
$3,673.83

$125.00

We can write the formula in Scheme in one of two ways. One way is to think
of the exact sequence of steps that must be taken, beginning with the first opera
tion, then the second, and so on. Alternatively, we may view the computation
more abstractly, beginning with the highest-Ievel operation to be performed, then
continuing with a sequence of refinements leading to simple operations that can
be entered into the interpreter.

These are such common means for problem solving that they have special
names, bottom-up and top-down design, respectively. One approach is not neces
sarily better than the other for all problems, but for certain problems one
approach may lead to a solution with less mental effort than the other approach
would. Often it is a matter of what works best for the individual programmer.
For complex tasks, both techniques are often used together. We will see examples
of this when we begin writing larger programs.

3.4 Bottom-Up Design
Let's create a bottom-up solution. We start with the bottommost items, in other
words, with the first actions that must be performed. The first computation is to
determine the taxable income. In Scheme, we would write

> (+ 25174.65 132.67 -6050)
19257.3

Notice that we didn't use commas when entering numbers. Commas are never
used with numbers in Scheme; however, the decimal point is needed. We entered
a negative number for the standard deduction because it is subtracted from the
two income amounts. Scheme allows a mixture of real numbers and integers.

Next, the tax to pay (tax debit) is the product of the total taxable income and
the lax rate. Recall that the arguments to a function may be function calls them
selves.

> (* (+ 25174.65 132.67 -6050) 0.15)
2888.6

The next step is to determine the total credits.
> (+ 3673.83 125)
3798.83

Lastly, we subtract the total credits from the total debits.
> (- (* (+ 25174.65 132.67 -6050) 0.15) (+ 3673.83 125»
-910.232

We get $910.23 back!

Design approaches

Specifying numbers in
Scheme

38 Chapter 3: Programming the Computer

Abstraction

Refinement

A bottom-up approach involves building up to the solution, using each step
along the way as part of the next step toward the solution. We did not have to
enter each of these lines into the interpreter. All of the preliminary work could
have been done on paper. The partial results returned at each step could have
been used directly in obtaining the next result, so that the last step could have
been

> (- 2888.6 3798.83)
-910.23

A longer approach was shown so that each step along the way could be seen
and partial results could be generated to confirm that no mistakes (especially
with parentheses) were made along the way.

The parentheses are extremely important. You can't use extra parentheses to
make it look nicer, or fewer because it already looks too ugly.

3.5 Top-Down Design
Now let's try the top-down approach. In top-down design, the problem is first
looked at from higher levels beginning with the most abstract definition that can
succinctly describe the solution. In this case, it breaks down to looking at the
amount of tax due as being equivalent to the difference of total debits and total
credits. In other words,

tax-due = total-debits - total-credits

Next, a process of refinement is employed to add more details to the solution.
We need to define total-debits and total-credits. total-debits is the product of
taxable-income and the tax rate, 0.15. total-credits is the sum of withholding and tax
credits.

tax-debits = taxable-income x 0.15
tax-credits = withholding + tax-credits

We know what all these values are except taxable-income, which is the sum of
work-income and (interest-income minus standard-deduction). In the bottom-up
example above we simply added three values rather than express a sum and a
difference. The same can be done here.

Putting everything together and typing it into the evaluator yields
> (- (* (+ 25174.65 132.67 -6050) 0.15) (+ 3673.83 125))
-910.232

Top-down design starts with an abstract definition of the problem. The final
solution is reached by refining this to the level of Scheme. This approach lets you
ignore the details of the problem at first.

The differences between top-down and bottom-up design and the advantages
of one over another will become more apparent as the problems get more com
plex. Try out both approaches to develop your understanding of them.

3.5 Top-Down Design 39

3.5.1 Exercises
3.5 What are some of the advantages of bottom-up design?

3.6 What are some of the advantages of top-down design?

3.7 Do you prefer bottom-up or top-down design?

3.8 Develop solutions in Scheme to the problems below. Try using both top
down and bottom-up approaches.
• Quadratic formula:

-b +..Jb2 -4ac -b -..Jb2 -4ac
root 1 = 2a and root 2 = 2a

where a = 3, b = 6, and c = 2.

• Distance between two points:
distance = "''-(X-I---X"""'''2)"2 -+-:(Y-I---Y-2)""2

where Xl = 5, X2 = -4, YI = -3, and Y2 = 6.

• Pythagorean theorem:
hypotenuse = ..Jside12 +side22

where sidel = 3.7 and side2 = 5.4.

• Evaluating polynomials:

Y =2x3 -4x2 +8x-2

wherex =6.

3.9 Earthquakes are measured using the Richter scale. Values on the Richter
scale can be translated into seismic energy (in ergs) using the following for
mula:2

1001.8+ 1.5Richter _value)

Calcu1ate the strength (in ergs) of the 1906 San Francisco earthquake, which
measured approximately 8.25 on the Richter scale.

3.10 Dividing the seismic energies of earthquakes, one finds that an increase of
one unit on the Richter scale corresponds to a 31.6 time increase in seismic
energy. Thus, an earthquake reading 4.4 on the Richter scale is 31.6 times
stronger than a 3.4 earthquake. Another way of looking at this is that it takes
31.6 earthquakes that measure 3.4 on the Richter scale to equal one 4.4

2. This formula comes from Bruce A. Bolt's book, Earthquakes.

40 Chapter 3: Programming the Computer

define

Binding values to
variables

Evaluator rules tor
variables
Unbound variables

earthquake in seismic energy.
Compute the number of 5.0 earthquakes it takes to equal one 8.25 earth
quake. The formula to compute the order of magnitude difference in seismic
energy between two earthquakes is:

31.6(big_quake - smalCquake)

3.11 Compute the time it would take to reach the moon if you could drive
straight there at 130 kilometers per hour. The moon is 384,000 kilometers
from the Earth. Assurne that you don't need to stop for gas along the way.

3.12 Compute the time it would take to walk around the Earth along the equator.
The Earth is 12,640 kilometers in diameter and the circumference of a sphere
is the diameter times 1t, which is approximately 3.1416. Assurne an average
walking speed of 3 kilometers per hour and that it is possible to walk
around the Earth.

3.6 Variables
In a calculator, the memory key stores a value that can be retrieved. In computer
programming, it is useful to have many such memory keys; they are called vari
ables. To keep track of which variable holds which value, each must be named in
some fashion. You can create a virtually unlimited number of variables~

To create a variable, use define. It takes a variable name and its value as
arguments. For example, to create a variable called tax-rate with value 0.15, use

> (define tax-rate 0.15)
??

define binds a variable to a value. Binding associates a value with a variable
so that the value can be referenced by name using the variable name. define
returns an undefined value, which is shown as ?? in this text. Your version of
Scheme may return a different value. Some Scheme interpreters return the vari
ablename.

Once a variable has been defined, its value can be retrieved by simply enter
ing the name of the variable.

> tax-rate
0.15

This extends our definition of the evaluator to inc1ude that variables evaluate to
their current bound values.

If an unbound variable is evaluated, an error message will occur. It may look
like

3. The limitation here is implementation dependent. It depends on such factors as available memory
on the computer, and the implementor's design decisions and whims.

> taxrate
Error: Unbound variable: taxrate

Your version of Scheme may print Undefined variable or some similar mes
sage.

Mistakes to Avoid
Undefined variable errors are fairly common. If you don't und erstand
why an error message was given, be sure to check the spelling of the
variable you are trying to evaluate as weH as the call to define used to
create it. Chances are you misspeHed the variable in one of those
instances.

It is possible to rebind a variable. This is convenient if you bound it to the
wrong value beforehand or want to change the value to get different results. The
define above bound tax - ra te to 0.15. We can change this binding as foHows:

> (define tax-rate 0.10)
??

> tax-rate
0.10

In this case, 0.10 is returned. Each successive define to the same variable
rebinds that variable~

To get the negative of a variable's value you cannot simply put a - in front of
the variable name to make it negative. Instead, use the function - with your vari
able as in: (- debt). The examples below illustrate what happens:

> (define debt 49)
??

> -debt
Error: Unbound variable: -debt

> - debt
<Procedure: ->
49

> (- debt)
-49

> debt
49

4. The preferred way to change a variable that has already been defined is using the function set!.

For example:

(set! tax-rate 0.10)

3.6 Variables 41

Redefining variables

Negating variables

42 Ch.apter 3: Programming the Computer

Rules 'or symbol
names

Case insensitive

Keywords

Choosing variable
names

How variables are
evaluated

3.6.1 Symbol and variable names
Symbols are the names of variables. Symbol names can be made up of upper- or
lower-case letters, numbers, and any of the characters given below:

+ */$% & <> ?

Scheme is case insensitive; it treats upper- and lower-case characters in sym
bols as the same. Therefore, the names foo, FOO, and FoO all refer to the same
symbol. A symbol name cannot begin with a number or aperiod. For example,
lOOOOrnaniacs, 3 .14pies, and .5bite are not valid symbol names. However,
a1110000rnaniacs, three . 14pies, and half -a - bi te are legal symbol names.

A keyword is a symbol that has a special meaning in Scheme; a keyword can
not be used as a variable name. Examples of keywords are define, and, or,
beg in, case, cond, if, else, delay, do, lambda, let, quote, and unquote. There
are a few others, but they are not English words.

It is best to use meaningful variable names, rather than one-Ietter names or
names that do not explain what the variable represents. Such mnemonic names
help make your Scheme code more readable and understandable. Here are some
examples of good mnemonic names:

> (define sum-of-squares (+ (expt 3 2) (expt 4 2)))

??

> (define length-of-hypotenuse (sqrt sum-of-squares))
??

> (define the-ultimate-answer 42)
??

Mistakes to Avoid
Some beginning Scheme programmers may think that each time a

variable is evaluated, the value to which it is bound must be reca1cu
lated. For example, if you view length -of - hypotenuse above as having
the value (sqrt surn-of-squares) instead of 5.0, then you might
believe that each time length -of - hypotenuse is evaluated, (sqrt
surn-of-squares) is recomputed. This is not the case. length-of
hypotenuse is bound to 5.0. Each time length-of-hypotenuse is
evaluated, 5.0 is retumed regardless of what happens to surn-of
squares; no other ca1culations are necessary. To see this, imagine that
the definition of surn-of-squares were changed. The variable length
of - hypotenuse would maintain its value.

> (define sum-of-squares (+ (expt 6 2) (expt 8 2)))

??

> length-of-hypotenuse
5.0

3.7 User-DeJined Functions 43

Sometimes it is desirable to have a result that changes based on a variable' s
value. This can be accomplished by writing functions.

3.7 User-Defined Functions
Until now, we've used the built-in functions of Scheme. There are around a hun
dred built-in functions, but often it is desirable to create our own functions. By
creating functions, we in effect extend the language to allow new tasks to be per
formed easily. Later, more abstract and sophisticated functions can be built upon
these newly defined functions. This building up to sophisticated functions pro
vides a convenient means of solving large, difficult programming tasks.

Another motivation for creating functions is to save a great deal of extra typ
ing. As an example, let' s revisit the tax formula

tax = (work-income + interest-income - standard-deduction) x 0.15
- (withholding + tax-credits)

Without having a function to perform this task, each time we would have to
enter
(- (* (+ work-incorne interest-incorne (- standard-deduction» 0.15)

(+ withho1ding tax-credits»

where work-incorne, interest-incorne, standard-deduction, withholding,
and tax - credi ts are replaced by their actual values.

If there were a function, tax - arnount, that took our amounts as arguments
and computed the tax, we could write

(tax-arnount work-incorne interest-incorne standard-deduction
withholding tax-credits)

wherever we wished the tax to be computed, again substituting the real values in
place of the variable names above.

Using functions not only saves a great deal of typing, it reduces the potential
for errors and makes the program more readable and understandable. Someone
can read the code and surmise that a tax amount is being computed. If uncertain,
the reader can always examine the comment or code in the function tax-arnount
itself. Using mnemonic, meaningful function names further clarifies your pro
grams. Calling the above function t or c - t would not be as understandable as
naming it tax-arnount.

Functions are defined using a variation of define. This variation needs three
items: the name of the function being defined, the names of the parameters of the
function, and the body of the function. The body consists of the action(s) that the
function is to perform and specifies what the function will return when invoked
(called). Parameters are names that correspond to the arguments given in a call to
the function. The names of the parameters are the names by which these argu
ment values are referenced inside the body of the function. Another way of say
ing this is that parameters are place holders for argument values.

Another analogy comes from the sequences presented in Chapter 2. The com
mand rnernorize performs the same task for robot commands as define does for

Motivation for creating
functions

Defining functions and
function parameters

44 Chapter 3: Programming the Computer

define syntax

Evaluating function
calls

Scheme expressions. perform is used to call memorized sequences with argu
ments that are passed to parameters. The same thing happens when a Scheme
function is called. The arguments are evaluated and their values are passed to the
parameters, binding the parameters to the evaluated argument values.

The general form of adefine for functions is
(define (function-name parameter-list)

lbodyl)
where parameter-list is zero or more symbols (naming parameters) and body is one
or more expressions.

In adefine, the first argument consists of the function name and the parame
ter names enclosed in parentheses. The remaining arguments make up the body
of the function.

To illustrate definitions and invocations of functions, we'll define a simpler
function that computes the square of a value. To begin, the number of parameters
and their meaning should be made explicit, as weIl as what the function does and
what it returns. This function, called square, will have one parameter, called
nurnber; it represents the value we wish to square. This result is the return value
of square.

The definition of square along with abrief comment describing the function
follows:

; Return the square of a nurnber.
(define (square nurnber)

(* nurnber nurnber))

When you type this into the interpreter, the return value is undefined.
When a function is caIled, each expression in the body of the function is

evaluated. The return value is the evaluated result of the last expression. In the
case of square, there is only one expression defining the body:

(* nurnber nurnber)

This expression is evaluated and that result is the return value of the function
call.

An example function call to square is
> (square 3)

9

The number 3 is the argument that is sent to the function. It is evaluated
before that function uses it. This result, 3, is the value to which the parameter
nurnber is bound. Next, the body of the function is evaluated using the new bind
ing of nurnber. Hence, when

(* nurnber nurnber)

is evaluated, nurnber evaluates to 3 and * is applied to 3 and 3. This results in 9,
which is the return value of the function caIl, and is what the interpreter prints.

The call

(square (+ 1 2»

3.7 User-Defined Functions 45

also results in 9. The argument (+ 1 2) evaluates to 3, so nurnber is bound to 3.
The rest of the evaluation is the same as in the example above.

Mistakes to A void
Don't confuse function definitions with function calls (invocations). To
define (create) a function, use define. To call (invoke) a function,
enc10se the name of the function and the arguments in parentheses.

Mistakes to A void
Don't confuse function definitions with variable definitions.

(define (length-of-hypotenuse) (sqrt surn-of-squares»

is a function definition. To get the length, use (length - of

hypotenuse). The answer depends on the current value of surn-of

squares. Contrast that with the following:
(define length-of-hypotenuse (sqrt surn-of-squares»

This define sets the variable length-of-hypotenuse. To access that
value later, use length -of - hypotenuse. The return value is based on
the value surn-of-squares had when the define was made. This was
illustrated previously at the end of section 3.6, "Variables."

Mistakes to A void
When defining functions, be sure to enc10se the function name and all
the parameter names in one set of parentheses. The function surn - abs,

which takes two numbers and returns the sum of their absolute values,
would be written as:

(define (surn-abs nurnl nurn2)
(+ (abs nurnl) (abs nurn2»

notas:

; proper heading

(de fine s um - ab s (n urnl n urn2) ; improper heading
(+ (abs nurnl) (abs nurn2»

The function and parameter names in a function definition look like
function calls in terms of the placement of the parentheses and the
number of items. For example, to find the sum of the absolute values of
-3 and 4, we would write (surn - abs - 3 4). This has the same form as
the function definition (surn-abs nurnl nurn2).

The next example shows the function definition for the tax problem presented
previously. Recall that the three elements needed for a function definition are

Function definitions
versus variable
definitions

46 Chapter 3: Programming the Computer

the name of the function
the parameter list
the body of the function

The name of the function is tax-amount. The parameter list contains names for
the numbers needed, as shown below:

work - income income from jobs
interest - income income from interest
standard - deduction standard deduction
wi thholding withholding tax already paid
tax - credi ts any credits to be deducted from the tax to pay

The body of the function looks like
(- (* (+ work-income interest-income (- standard-deduction»

0.15)
(+ withholding tax-credits»

The entire function is
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction

withholding tax-credits)
(- (* (+ work-income interest-income (- standard-deduction»

0.15)
(+ withho1ding tax-credits»)

To invoke this new function with the values below

work-income
interest-income
standard-deduction
withholding
tax-credits

use the function call

$25,174.65
$132.67

$6,050.00
$3,673.83

$125.00

(tax-amount 25174.65 132.67 6050.00 3673.83 125.00)

The parameters in the function definition are bound to the values of the argu
ments in the function call. These bindings are shown below:

parameter is bound to
work-income
interest-income
standard-deduction

withholding
tax-credits

25174.65
132.67

6050.00
3673.83
125.00

Using these bindings, what gets computed is
(- (* (+ 25174.65 132.67 (- 6050» 0.15) (+ 3673.83 125»

The result of the above computation is -910.232.

3.7 User-Dejined Functions 47

User-defined functions can be used within other user-defined functions, as
long as the functions are defined before they are invoked. In other words, before a
call to a function can be made, both the function and all functions used within it
must be defined.1f tax-amount calls another function (say tax-rate, to compute
a tax rate based on the income), both tax-rate and tax-amount would have to
be defined before tax-amount can be called. The order in which functions are
defined is not important aside from this restriction. Thus, tax-amount can be
defined before any of the functions that it calls are defined~ We will take advan
tage of this fact throughout this book, especially when using top-down design.

Let's illustrate this with a concrete example. Suppose we wanted to build a
more complex tax model in which the taxable income is taxed at different levels
depending on the amount of income. The first $20;000 is taxed at 15%. The next
$30,000 at 25%, and anything above $50,000 is taxed at 50%.1t seems like we need
some way of making decisions to solve this problem, but we can write this func
tion using max and min.

Let's look at this problem in a top-down fashion. The idea is to add up three
products. Each product is the amount of income in a particular tax bracket (e.g.,
$20,000-$50,000) times the tax rate for that bracket. The amount of income in the
lowest bracket ($20,000 or less) is the minimum of the income and 20,000.

(min income 20000)

The income in the $20,000-$50,000 bracket is more complicated to compute. The
calculation

(min income 50000)

returns a maximum of 50,000. Subtracting 20,000 from this gives the income over
$20,000. But what if the income is less than $20,OOO? We would get a negative
amount~ To remedy this we can take the maximum of the difference we just com
puted and zero. The entire calculation is

(max (- (min income 50000) 20000) 0)

The remaining value is the income above $50,000. We don't need to worry about
a limit on the income; the only concern is that there is income over $50,000. Sub
tracting 50,000 from the income and taking the maximum of that difference and
zero gives us the desired value:

(max (- income 50000) 0)

Now that we have determined how to compute the amounts in the three
brackets, we must multiply each by the corresponding tax rate and add up the
three products to get a total tax amount. This will be the body of our function.
The function has a single parameter, the taxable income:

5. In some programming languages this is not allowed-whenever a function is called or used within
another function, it must be defined beforehand. Such a language would require tax-rate to be
defined before tax-amount.

6. This would give a negative tax reducing the total tax we must pay. A novel plan to help low
income people, but something the govemment would surely object to.

Order of function
definitions

Tax brackets

48 Chapter 3: Programming the Computer

; Compute tax based on three income brackets.
(define (tax-rate income)

(+ (* (min income 20000) 0.15)
(* (max (- (min income 50000) 20000) 0) 0.25)
(* (max (- income 50000) 0) 0.5»)

Here are some exarnple calls to show that this fundion works:

> (tax-rate 10000)
1500.0

> (tax-rate 20000)
3000.0

> (tax-rate 30000)
5500.0

> (tax-rate 50000)
10500.0

> (tax-rate 80000)
25500.0

The final step is to rnodify tax-amount to use tax-rate. Here is the new ver
sion:
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction

withh01ding tax-credits)
(- (tax-rate

(+ work-incorne interest-income (- standard-deduction»)
(+ withholding tax-credits»

The tax on our old figures is now
> (tax-amount 25174.65 132.67 6050.00 3673.83 125.00)
-910.232

This is the same amount we got with the previous function. Notice, however, that
the taxable income is less than $20,000, so it is taxed at 15%.

3.8 Scope and Extent
Each time square is called, its parameter number is bound to the value of the
argument. When square returns, nurnber is no longer defined. To illustrate this,
observe the following example:

> (square 4)
16

> number
Undefined variable - number

We have previously seen that by creating a variable with define, that variable
can be later accessed. However, in the above case, number cannot be accessed
outside of the function.

Two important aspects of a variable must be understood: its scope and its
extent. The scope of a variable refers to that part of the program in which a vari
able may be accessed; its extent refers to the times during the execution of a pro
gram when a variable may be accessed. In simpler terms, scope is where a vari
able can be used, and extent is when a variable can be used.

We have seen two types of variables: global variables and parameters. The vari
able tax-rate used in section 3.6, "Variables", is an example of a global variable.
It was created by calling define, as shown below:

> (define tax-rate 0.15)
??

Global variables can be accessed anywhere or any time after they have been
created. The scope of a global variable is the part of the program after the point
of its creation. The extent of a global variable is any time after its creation while
the interpreter is still active.

Parameters are created when a function is defined and can be accessed oniy
within the body of that function. They have a more limited scope, namely the
body of the function. The extent of a parameter is not limited to the time that the
function is being invoked. However, accessing a parameter outside the normal
call to that function is a somewhat tricky process. It will be covered in Chapter
11, when lexical closures are introduced. To simplify the picture without creating
a false story, we'll concern ourselves with scope oniy. Thus, the reason why the
variable number could not be accessed in the previous example is that its scope is
the body of the function square. Therefore, it cannot be accessed outside of the
body of the function.

3.9 Shadowing
Shadowing also affects the scope of variables. Global variables with the same
name always refer to the same variable and its one current binding. In Scheme, if
the same name is used for a global variable and a function parameter, then that
name refers to different variables and they each have their own unique bindings.
Look at the example below to get a better understanding of the implications of
this.

> (define number 4)
??

> number
4

> (define (double number)
(* 2 number))

??

> (double 7)
14

; numberis a global variable

; access the global variable number

; n umber is a parameter

3.9 Shadowing 49

Scope and extent o(

global variables

Scope and extent o(

parameters

50 Chapter 3: Programming the Computer

Precedence 01
parameters over
global variables

Functions taking no
arguments

Shadowing 01
lunctions

) number
4

; access the global variable n umber

The first two expressions, (deUne number 4) and number, refer to the global
variable number. The third expression, a function definition, refers to number as a
parameter. When the function is called with (double 7), the parameter number

is bound to 7. The body of the function evaluates to 14, which is the return value
of the function. The last expression, number, returns the value of the global vari
able number, which is still 4. There is no way in this example to access the param
eter number from outside the function double. This is what scope defines.

How was it that Scheme decided to use the parameter number within the
function and not the global variable number? Within functions, parameters take
precedence over global variables with the same name. This is what is meant by
shadowing. The parameter number shadows the global variable number inside the
function double.

If number had not been defined as a parameter in double, then the following
would have happened:

) number
4

) (define (new-double)
(* 2 number))

??

) (new-double)
8

) number
4

; access the global variable number (still 4)

; a function with no arguments
; use the global variable n umber

; access the global variable number

Notice that new-double has no parameters. To create a function that takes no
arguments, simply put a right parenthesis after the function name in the
definition. A call to a function taking no arguments is made by enc10sing the
function name within parentheses.

In this example, number refers to the global variable throughout. When new

double is called, the global variable number is used, so 8 is returned.
Typically, shadowing is the effect that is desired; in other words, the

parameter's value is the desired one and not a global variable with the same
name. However, be careful when choosing parameter names not to use the name
of a Scheme function. Look at what happens in the following example, which
computes the difference between the largest and smallest of three numbers with
the constraint that they must be between a certain minimum and maximum
threshold range. To get the largest number we use the function max. Calling max

with the minimum threshold value in addition to the three numbers assures that
the numbers aren't too smalI. Otherwise, the minimum threshold value is
returned. The same is done in finding the minimum value.

3.10 Programming Style 51

; Return difference between the largest and smallest of three
; numbers within the range min to max.
(define (difference numl num2 num3 min max)

(- (max numl num2 num3 min) (min numl num2 num3 max»)

> (difference 24 13 20 0 100)
Error: Operator is not a function

This tells us that one of the functions we used was not legal. One version of
Scheme gave the following error message:

Wrong type to apply: 100

This is a rather confusing error message. It sounds like a type dash-IOD is used,
but some other type (noninteger) is expected. The error also mentions "apply."
Functions are applied, so the error message means that the wrong type was given
when a function was expected.

At a first glance the code looks okaYi however, we are using min and max as
parameters. Just as parameters shadow global variables, they shadow functions.
Instead of using the function max, we wound up using the number 100 as a func
tion. This caused the error.

Mistakes to A void
Be sure not to use parameter names that are also function names.

3.10 Programming Style
Before continuing with further examples of function definitions, the issue of good
programming practice should be discussed. The examples given throughout this
book will adhere to "good" programming practice. This is measured by readabil
ity, modifiability, conciseness, robustness, and other factors. A common
programrning-style error occurs when rnisusing define. Below is such an exam
pIe:

; Redefine number to be twice as large.
(define (bad-double)

(define number (* 2 number»)

The violation is in the use of define in the function bad-double. The define
has a side-effect of making a change elsewhere in the program: the value of the
global variable number is changed. If this weren't expected, for example, if new
double had been written by someone else, and you were not aware of this partic
ular side-effect, then tracking down the cause of the change in number's value
could be a difficult task, especially if the program involved was lengthy.

If bad -double had been written with number as a parameter, only that param
eter would have changed. The global variable number would not have changed
since it would have been shadowed by the parameter number, and there would be
no effect outside of the function. This is relatively harmless. However, if all we

Good programming
practices

Problems with define

inside functions

52 Chapter 3: Programming the Computer

want is a function that doubles its argument, the first version of the funetion,
double on page 49, is the preferred one.

As a simple rule to avoid problems, remember the following:

I Don't use define within funetions·1

3.10.1 Exercises
3.13 Write a funetion that takes three numbers and returns their average.

3.14 Write a funetion that takes five numbers and returns the average of the mid
dIe three (dropping the highest and lowest values).

3.15 Write a funetion that returns the result of eonverting a temperature in Fahr
enheit to its equivalent in Celsius. Use the formula

Celsius = (Fahrenheit - 32) x 5/9.

3.16 Write a funetion that returns the result of eonverting a temperature in Cel
sius to Fahrenheit. See the previous problem for the Fahrenheit to Celsius
formula.

3.17 Chinese years eorrespond to animals in a twelve-year eyde. Write a funetion
that returns the next year of the dragon. To eompute this year you will need
to know a previous year of the dragon. 1964, 1976, and 1988 were all previ
ous years of the dragon. Your funetion will take one previous year of the
dragon and the current year as arguments. Write your funetion so that it
does not matter with whieh previous year of the dragon you eall it.

3.18 Assume you have ealculated your spending by how mueh you typically
spend daily (food and daily needs), weekly (transportation eosts, entertain
ment, ete.), and monthly (rent, loans, eredit eards, ete.). Write a function to
eompute your annual spending. Your funetion should have three parame
ters eorresponding to the three spending amounts.

3.19 Write a funetion that eomputes how many years you eould live on a quan
tity of money. This quantity will be the one parameter of this funetion. You
should use the funetion you defined in the previous problem to solve this
problem.

3.20 One Thai Baht is worth about 4 U.S. cents. Write a funetion that takes an
amount in Baht and eonverts it into dollars. How expensive is a 400 Baht
shirt? How many dollars are there to one Baht?

3.11 Using let to Create Local Variables 53

3.11 Using let to Create Loeal Variables
Parameters are one way to create variables that have limited scope--the body of
the function in which they are defined. let expressions are another means of
creating variables with limited scope. Such variables are often called loeal vari
ables, because their scope is loeal to a certain part of the program. let expressions
are often used within functions to create additionallocal variables. As an exam
pIe, recall the tax computation presented earlier in this chapter. In the top-down
solution, the tax amount was

(- total-debits total-credits)

This eventually led to the complete solution given below:
; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction

withholding tax-credits)
(- (* (+ work-income interest-income (- standard-deduction»

0.15)
(+ withho1ding tax-credits»)

This solution is not as readable as the first step in the top-down approach above.
We could make the function more readable by using the variables total-debits

and tota1-credits, and somehow binding them to the proper values. These
variables act as abbreviations for the values that they hold. The variables must be
bound within the function because they get their values

(* (+ work-income interest-income (- standard-deduction» 0.15)
and

(+ withholding tax-credits)

from the parameters, work- income, interest - income, standard -deduction,

wi thholding, and tax - credi ts of the function.
Using adefine within the function violates the principle of programming

style discussed in the previous section, namely another global variable with that
same name would lose its binding. To get around this problem, a let expression
isused.

The general form of let is as folIows:
(let ((variable-l value-l)

(variable-2 value-2)

(variable-N value-N)

lbodyl)
The first argument to let is a list of variable-value pairs. Each of these pairs con
sists of a variable name and a value (some expression) for that variable. The body
of the let is like the body of a function-it can be any number of expressions and
the value returned by the let is the return value of the last expression.

The variables defined in the let can be used only within the body of the
let-their scope is the body of the let. let variables shadow global variables
and parameters defined outside of the let.

Local variables

let syntax

Variable-value pairs

Scoping Oflet

variables

54 Chapter 3: Programming the Computer

Evaluation rules tor
let

A let expression is evaluated as folIows. The values (value-l ... value-N) are
evaluated (in some undefined order) and the results are saved. The local vari
ables (variable-I ... variable-N) are then bound to the saved results. The expres
sions in the body of the let areevaluated and the result of the final expression is
returned.

Mistakes to A void
Since a let expression evaluates the values (value-l ... value-N) first

and then binds the variables (variable-I ... variable-N) to those results, the
values should not refer to other variables defined within the let. In
other words, the variables in a let are valid only within the body of the
let.

The new function to compute the tax is
Return amount of tax given income, deductions, and tax credits.

(define (tax-amount work-income interest-income standard-deduction
withholding tax-credits)

(let ((total-debits (* (+ work-income interest-income
(- standard-deduction»

0.15»
(total-credits (+ withholding tax-credits»

(- total-debits total-credits»)

Thevalues
(* (+ work-income interest-income (- standard-deduction» 0.15)

and
(+ withholding tax-credits)

are evaluated and then total- debi ts and total- credits are bound to the
results. The expression

(- total-debits total-credits)

makes up the entire body of the let. Its return value is the return value of the
let.

You could add the variable taxable- income to represent the sum of the work
and interest incomes minus the standard deduction. This would reflect the
thought process of the bottom-up design of the code, namely

Determine the taxable income.
Determine the total debits by multiplying the taxable income by the tax rate.
Determine the total credits.
Subtract the total credits from the total debits.

The new let would be

3.11 Using let 10 Create Local Variables 55

(let ((taxable-income (+ work-income interest-income
(- standard-deduction»)

(total-debits (* taxable-income 0.15»
(total-credits (+ withholding tax-credits»

(- total-debits total-credits))

Evaluating this code produces an undefined variable error message indicating
that taxable- income is undefined. This is because variables defined in a let can
not be used as values that define subsequent variables in a let. The variable
value pair that causes this problem is

(total-debits (* taxable-income 0.15»

To get around this difficulty, Scheme provides a variant of let called let*.
let* evaluates the values of the variable-value pairs one at a time like let; how
ever, let* binds each variable to its corresponding value, once that value is
determined, then proceeds to the next variable-value pair. Therefore, the expres
sions that represent the values of variables can refer to variables previously
defined within the variable-value pair list.

Below is a working version of the function tax-amount, using let*:

; Return amount of tax given income, deductions, and tax credits.
(define (tax-amount work-income interest-income standard-deduction

withholding tax-credits)
(let* (taxable-income (+ work-income interest-income

(- standard-deduction»)
(total-debits (* taxable-income 0.15»
(total-credits (+ withholding tax-credits»

(- total-debits total-credits»)

This solution is doser to an imperative approach to programming in which par
tial results leading to a solution are saved in variables, which are combined to
yield a final result. This approach has the advantage in this case of being some
what more readable than the original definition of tax-amount given at the start
of this section. The disadvantage is that this new solution is somewhat longer.
However, in a tradeoff between readability and length of code, you should favor
readability.

In general, let and let* expressions should be used

• To make a function more readable by breaking the final result into partial
computations with results saved in mnemonie variable names.

• To avoid computing the same values several times withln a function.
• To save values that cannot be recomputed (for example, calls to read or ran

dom)~

7. The function read gets a value from the user-it is discussed in Chapter 9. random is used to
generate random numbers-it is discussed in Chapter 4.

Using let* to
reference previously
defined loeal variables

Imperative
programming

When to use let and
let*

56 Chapter 3: Programming the Computer

Mistakes to A void
Forgetting the parentheses around the variable-value pairs of a let
expression is a very common syntactical mistake. This is easily done
when there is a single variable-value pair as the example below shows.

(let (n umber 16) ; improper code
(sqrt number))

To fix this code, another set of parentheses is needed around the
variable-value pair.

(let ((number 16)
(sqrt n umber))

3.11.1 Exercises

; correct code

3.21 Write a function that takes a single number that represents a century. Your
function should return the year in that century that is a palindrome--
something that reads the same forward as it does backward. For example
given 20, your function should return 1991. Use a let or let* expression in
your solution. Does your function work for centuries beyond the 101st?
What about the first century?

3.22 The function piggy - bank takes a number that represents how many pennies
we have. It should return the equivalent number of quarters, nickels, and
pennies as a number where the last digit is the number of pennies, the
second to last digit is the number of nickels, and the first digits are the
number of quarters. The amounts of quarters and nickels should be maxim
ized (i.e., there shouldn't be more than 4 nickels or 4 pennies in the answer).
(piggy-bank 42) should return 132

(define (piggy-bank pennies)
(let «quarters (truncate (/ pennies 25»)

(nickels (truncate (/ pennies 5»)
(left-over-pennies (remainder pennies 1»)

(+ (* quarters 100) (* nickels 10) 1eft-over-pennies»)

What does piggy-bank return when called with 42? If this is the wrong
answer, fix piggy- bank but keep as much of the structure of the program as
possible.

3.12 Writing Styles
The code examples in this text follow one particular style. There are many other
styles. Discussions about which programming styles and languages are the best
often turn into religious arguments, in which the parties argue furiously over the
merits of their style or language. People have debated over issues as trivial as
whether one should indent three spaces or four. No one style is the "right" style.

You should choose a style that is the most readable to you and use it consistently.
Here are some possibilities:

(define (this-books-style argl arg2)
(let ((varl valuel)

(var2 value2))
(+ (some-very-long-function with lots of arguments)

3»)
(define (line-up-parens-style2 argl arg2)

(let ((varl valuel)
(var2 value2)

(+ (some-very-long-function with lots of arguments)
3

(define
(arguments-on-lines-below-style argl arg2)
(let

((varl valuel)
(var2 value2)

(+
(some-very-long-function

with
lots
of
arguments)

3)))

3.13 Summary
• Function calls are made by enclosing the function name followed by the argu

ments to the function in parentheses.
• Bottom-up design is a means of solving problems in which you begin with the

small details that must be computed first. These first computations will be the
innermost arguments of the final Scheme expression.

• Top-down design, another means of problem solving, entails thinking of the
problem in abstract terms and then refining these terms to Scheme functions.
This approach results in the creation of Scheme code in much the same order
as it is written in the final solution.

• Numbers evaluate to themselves.
• Variables evaluate to the values to which they are currently bound.
• Function calls are evaluated by first evaluating the arguments. Then the func

tion is applied to the evaluated arguments and the result is displayed. If the
function is not builtin or defined previously, an error message is printed.

3.13 Summary 57

58 Chapter 3: Programming the Computer

• Variables are bound to values using define.

• Functions are defined using define.

• The scope of a variable is the part of the program in which the variable is
defined.

• The scope of a global variable is from its creation point to the end of the pro
gram.

• The scope of a parameter is the body of the function in which it is defined.
• Extent is the time during the execution of a program in which a variable is

defined.
• Shadowing occurs when a parameter's scope supersedes the scope of aglobai

variable with the same name.
• let and let* express ions can be used to create local variables. Creating such

variables can make a program more readable since they provide names for
partial results in the final computation. The scope of a let variable is the body
of the let or let*. A let variable shadows parameters and global variables
of the same name defined outside the let or let* expression.

• Summary of functions introduced in this chapter:

function arguments return value
+ o or more sum of arguments

1 or more difference of arguments in left to right order
* o or more product of arguments
/ 1 or more quotient of arguments in left to right order
max 1 or more maximum of arguments
min 1 or more minimum of arguments
truncate num integer part of num ~igits to the left of the decimal}
sqrt num square root of num, num
abs num absolute value of num, I num I
expt num power exponentiation (num raised to power), numPower
remainder numl num2 remainder of numl when divided by num2

• Summary of other objects introduced in this chapter:

object arguments return value
define variable value binds variable to value
define (function params) body creates function
let var-value-pairs body binds vars to values and evaluate body
let* var-value-pairs body binds vars to values in order and evaluate body

• The syntax of define for function definitions is as folIows:

(define (function-name parameter-list)

I body I)

• The syntax of let and let* is as follows:
(let ((variable-l value-l)

(variable-2 value-2)

(variable-N value-N)

Ibodyl)

3.13 Summary 59

CHAPTER4

LISTS:
TBE BASIC DATA STRUCTURE

4.1 Lists in Scheme
Information stored within a computer system is called data. The types of data we
have seen are numbers and symbols. Collectively, these are called atoms.

When a collection of data is organized in some fashion, it is referred to as a
data structure. The fundamental data structure used in Scheme is the list. A list
specifies an ordered collection of information. Lists are written in Scheme as a
left parenthesis followed by the information desired in the list and closed with a
right parenthesis. The list of even numbers between 1 and 7 is written in Scheme
as

(2 4 6)

The numbers 2, 4, and 6 are the elements of the list. The order of the elements
within the list is importanti the lists (6 4 2) and (2 4 6) are different.

The elements of a list can be any atoms (numbers or symbols) or lists. The fol
lowing lists are all legal within Scheme:

list contains
(are you my mother) four elements, all symbols

(4 score and 7 years ago) six elements, all atoms

() no elements, an empty list

((a b c) (1 2 3» two elements, both lists of three elements

(() 18.54 1/2 « 3) » four elements: two lists and two numbers

(sqrt 4) two elements: a symbol and a number

Atoms

Data structures and
lists

Elements o(lists

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

62 Chapter 4: Lists: The Basic Data Structure

Sub/ist

Function calls versus
fists as data

quote

A list that is an element of a list is a sublist. In section 4.4 we look at the advan
tages of lists of sublists.

The list (sqrt 4) has two elements: the symbol sqrt, which is the name of a
built-in Scheme function, and the number 4. We have been using lists to make
function calls all along. This brings up an interesting dilemma. How do we dif
ferentiate function calls from lists of information? After aIl, in Scheme they look
the same. However, if you were to enter a list that was not a valid function caIl,
you would see something like the following:

) (a b c)

Error: Unbound variable: a

4.2 Stopping Evaluation with quote
To force the evaluator not to evaluate a list as a function caIl, use quote, as in

) (quote (a b cl)
(a b c)

quote takes one expression and returns it. Therefore, it prevents the evalua
tion of its argument. This is the case even if the argument is a list that looks like a
function caIl:

) (quote (+ 2 3))

(+ 2 3)

quote is used so often that a special shorthand (the " , "symbol) exists for it.
) '(+ 2 3)

(+ 2 3)

This notation is functionally equivalent to (quote (+ 2 3». It saves a lot of typ
ing and helps reduce the number of parentheses, which is always a blessing in
Scheme~

A common mistake is to overquote lists. Since quote stops the evaluation of
its one argument, it is not necessary to quote lists within other quoted lists as in
the following example:

) '('(a b c) '(1 2 3))
('(a b c) '(1 2 3)

Notice how this differs from
) '((abc) (123))
«abc) (123»)

The empty list must be quoted as weIl.

1. Scheme is a dialect of LISP, which has been facetiously referred to as standing for Lots of Irritating
Single Parentheses.

2. Your version of Scheme may retum the function quote instead of the shorthand .. , .. as shown.
This would produce the return value ((quote (a b c» (quote (1 2 3»).

4.3 Special Forms 63

> '()
()

As we have already seen, typing the name of a variable into the interpreter
returns the value to which the variable is currently bound. Sometimes we wish to
refer to the variable name, and not its value. In this case, we are interested in the
symbol itself, so we quote it:

> (quote num)
num

The " , "shorthand can be used, as in
> 'num
num

Mistakes to Avoid
Don't quote variables that you wish to bind using deHne. For example,

(define 'value 2112)

results in an error. deHne does not evaluate its first argument. The next
seetion discusses the cases when the normal evaluation rules are not
used.

4.3 Special Forms
quote simply returns its argument. Yet how does this argument escape from the
normal evaluation that happens to arguments of functions? Applying the rules of
function evaluation to the example above, the argument num must be evaluated
before quote is applied to it. This evaluation should result in the value to which
num is currently bound. quote would then be applied to that value.

The normal evaluation mechanism is not used for quote. Instead, the argu
ment to quote is not evaluated but simply retumed. Objects that look like func
tions but do not obey the normal evaluation rules are called special forms. As you
can guess, quote is a special form. Special forms are not functions.

For each special form, the evaluator has a rule for how it should be evaluated.
One of the goals of Scheme is to minimize the number of special forms. We have
encountered four special forms already: deHne, 1et, 1et*, and quote.

4.3.1 Exercises
4.1 Why are deHne, 1et, and 1et* implemented as special forms instead of

regular functions?

4.2 Which arguments to deHne and 1et are evaluated and which arguments
are not evaluated?

Special 'arms use
special evaluation
rules

64 Chapter 4: Lists: The Basic Data Structure

Nested fists

4.3 What do the following expressions evaluate to? Some of them may produce
errors. Test your answers on the computer.
, , (a b c)

('a 'b 'cl

'('a 'be)

(quote a (1 2»

(quote '(1 2»

()

«+ 1 2»

4.4 Using Lists as Oata Structures
Lists can be used to represent sets of values such as the prime numbers less than
10:

(1 2 3 5 7)

Lists can represent more complex data structures, like an address:

(John Ooe)
(14 Main street)
(Anytown Anystate 12345))

This structure uses nested lists Oists that contain lists as elements) to break up the
address into three parts: name, street, and city-town-zip. It need not be entered
into the computer on multiple lines as shown; this is merely for readability.

Nested lists provide a natural way of organizing data, or creating hierarchies.
Suppose you want a list of the titles of your compact disk collection. You could
create a large non-nested structure like

(Rolling_Stones Its_Only_Rock_and_Roll Pat_Metheny First_Circle
Rolling_Stones Black_and_Blue Andy_Narell The_Hammer)

Such a list would be difficult to understand, especially if it were long. The data
structure does not separate the artists from the CDs, nor does it provide any
categories by which you might wish to organize music. It also has unnecessary
repetition (Rolling Stones twice):

A much better data structure for a CD collection might be

3. Some may argue that there is no such thing as too much Rolling Stones.

4.5 Talcing Lists Apart 65

(rock
(Rolling_Stones

(Black_and_Blue
Its_OnlY_Rock_and_ROll»

jazz
(Pat_Metheny

(First_Circle)
Andy_Narell

(The_Hammer)))

This data structure can be illustrated with the following hierarchy:

CD collection

Black and Blue First Circle

Ifs Only Rock and Roll

TheHammer

With such a data structure, the CDs are arranged according to musical
category, (e.g., rock, jazz, classical). Each category of music is followed by a list of
artists and their works. These artists-works lists are lists of artist-name and CD
list pairs. This ensures no ambiguity as to artist or CD name and eliminates
repetition of artist names.

This is by no means the only representation that could be used to maintain
such information.

4.4.1 Exercises
4.4 What other ways can you think of to organize a collection of CDs?

4.5 What advantages and/or disadvantages does your data structure have com
pared to this one?

4.6 Design a data structure that you could use to maintain information on stu
dents: name, student ID number, year in school, address, grades, grade
point average, etc.

4.5 Taking Lists Apart
Many of the functions that will be introduced in this chapter perform operations
on the top-level elements of lists only. The atoms and lists that make up a list are
the top-level elements of that list. For example,

«a list) an-atom (a (nested list»)

CD data structure

Counting top-Ievel
elements

66 Chapter 4: Lists: The Basic Data Structure

1ength

Simple /ist functions

History of car and cdr

has three top-level elements: two are lists and one is an atom.
To determine the number of top-level elements in a list, use the function

length.

function argument return value
length list the number of elements in list

Here are some example function calls using length.

> (length '(1 two (three (not-four nor-five))))
3

> (length '((just an) ((ordinary)) (((list) not))))
3

> (length '())
o

The elements in the first example are 1, two, and (three (not-four nor
f i ve) } which is considered one element even though it contains a symbol and a
list of two symbols itself. When counting top-level elements, a list up to its clos
ing right parenthesis is considered a single top-level element. The three elements
in the second example are (j ust an), ((ordinary) }, and (((list) not}}.

In Chapter 3, we said that LISP, of which Scheme is a dialect, is an acronym
for LISt Processing. This is because LISP has a number of functions to take apart,
create, sequence through, and even restructure lists. The buHt-in functions car

and cdr are the fundamental functions used to return parts of lists. car returns
the first element of a list, and cdr returns the list without the the first element.

The names car and cdr date back to the first implementation of LISP on the
IBM 704 computer. A computer consists of a large collection of numbers, called
words. On the IBM 704 computer, each word could be accessed by specifying its
location (address) in one of a number of index registers. Each word had different
components that could be individually examined. Two of these, the address and
decrement parts, could be used to reference other words. These parts were used
to hold the first element and the rest of a list. The names car and cdr come from
abbreviations of the instructions used to get these different components. car

stands for Contents of the Address part of Register number and cdr for Contents
of the Decrement part of Register number. These names have stuck through time,
although many versions of LISP now have additional, more mnemonie names for
these functions such as first and rest.

We can easHy write the functions first and rest as follows:
; Return the first element of a list.
(define (first a-list)

(car a-list) }

; Return the rest of a list.
(define (rest a-list)

(cdr a-list) }

4.5 Taking Lists Apart 67

In addition, we can use combinations of car and cdr to create functions to
extract the second, third, fourth, and fifth elements of a list:

; Return the second element of a list.
(define (second a-list)

(car (cdr a-list»)

; Return the third element of a list.
(define (third a-list)

(car (cdr (cdr a-list»))

You get the idea. Each subsequent cdr returns a list with one less element.
The implementation of the functions fourth and fifth is left as an exercise for
the reader.

Below is a table of the functions used to return parts of lists. All these func
tions take a single argument that must be a list.

function argument return value
first list first element of list
rest
car

list
list

rest of list without the first element
same as first

cdr list same as rest
second list second element of list
third list third element of list
fourth list fourth element of list
fifth list fifth element of list

The following examples illustrate uses of these functions:
> (first '((z e r 0) 1 (2) ((3))))
(z e r 0)

> (rest '((z e r 0) 1 (2) ((3))))
(1 (2) «3»)

> (second '((z e r 0) 1 (2) ((3))))
1

> (third '((z e r 0) 1 (2) ((3))))
(2)

> (fourth '((z e r 0) 1 (2) ((3))))

«3 »
> (fifth '((z e r 0) 1 (2) ((3))))
Error: Pair expected

> (car (cdr '((z e r 0) 1 (2) ((3)))))
1

> (cdr (car ' ((zer 0) 1 (2) ((3)))))

(e r 0)

first ~ fifth, rest,

car, cdr

68 Chapter 4: Lists: The Basic Data Structure

Getting any element
trom a list

list-ref

Finding the last
element ot a list

> (cdr (cdr 'fez e r 0) 1 (2) ((3»»)
«2) «3»)

The call to fif~h above resulted in an error because the list has only four ele
ments. Similarly, if ear, cdr, first, or rest is applied to ' (), an error will result.

Mistakes to A void
Remember that rest returns a list with all but the first element. A com
mon mistake is to think that

(rest I (a b»

returns b instead of the actual value returned: (b). Similarly,

(rest I (a (b»)

returns ((b)) and not (b).

The simplest way to determine the return value of rest is to cross
out the first element of the list. What's left is the rest of the list.

Scheme provides a more general means of extracting elements from lists. This
is useful when the exact element number is not known beforehand; for example,
when it is the result of some computation.

function arguments return value
list-ref list position element at position in list

list-ref takes two arguments: a list and the position of the desired element
in the list. The position of elements in a list is numbered, in order, starting at zero
and continuing up to one less than the length of the list. Thus, the positions of the
elements in a list of three elements are 0, 1, and 2.

If list-ref is called with a position larger than or equal to the number of ele
ments in list, an error will result.

Mistakes to A void
Positions are not the same as element numbers used in functions like
first and seeond. The first element of a list is at position 0 and not 1.
Thus, to return the fifth element of the list my-list, use

(list-ref my-list 4)

Let's write a function that returns the last element of a list. We can use list

ref with the length of the list minus 1. Here is an attempt at this function:

; Return the last element in a-list.
(define (last a-list)

(list-ref la-list (- (length la-list) 1»)

> (last '(the buck stops here»
Error: Pair expected

4.5 Taking Lists Apart 69

By quoting a-list, the literal symbol a-list is used instead of the parame
ter. Here is another attempt:

; Return the last element in a-list.
(define (last a-list)

(list-ref (a-list) (- (lenqth (a-list» 1»)

> (last '(the buck stops here))
Error: Wronq type to apply: (the buck stops here)

This error occurred because the value of a-list, (the buck stops here),
was treated like a function. It is a list and cannot be applied as a function. Quot
ing it will get rid of that error as seen below:

; Return the last element in a-list.
(define (last a-list)

(list-ref ' (a-list) (- (lenqth ' (a-list» 1»)

> (last '(the buck stops here))
a-list

No error this time, but we didn't get the answer we wanted either. By quoting
(a-list), we get the literallist (a-list). The length of that list is 1, so we end
up taking list-ref of the list (a-list) and 0, which is the symbol a-list. To
fix this, we need to use the value of the parameter a -list. This is obtained by
using a -list direct1y without parentheses or quotes.

; Return the last element in a-list.
(define (last a-list)

(list-ref a-list (- (lenqth a-list) 1»)

> (last '(the buck stops here))
here

It works! It is essential in Scheme to understand the meaning of quotes and
parentheses. Quoting a symbol or list returns its literal value. Putting parentheses
around a symbol treats that symbol as if it were a function. A symbol without
quotes or parentheses is a variable (or parameter) and it returns its current value.
If you understand these ideas, you will reduce the number of errors you get
when writing Scheme code.

Scheme has a built-in function that returns the tail end of a list, list-tail. It
would be nice to have a more general function that returns a variable-sized, con
tiguous piece from the head, tail, or middle of a list. We'll call this function sub
seq (short for subsequence). subseq returns a contiguous subsequence from any
where within a list. It can be used to return the tail end of a list so the function
list-tail isn't necessary. You'll be able to write subseq in Chapter 6.

The following table shows different ways that subseq can be used to return
different parts of a list:

When to use quotes
and parentheses and
when notto

Getting sections of a
list

70 Chapter 4: Lists: The Basic Data Structure

subseq

Understanding subseq

function arguments return value
subseq list, 0, end
subseq list, start
subseq list, start, end

left part of list up to element end
right part of list starting at element start + 1
list with elements start + 1 through end

subseq can be used with two or three arguments. With two arguments sub

seq uses the length of the list as the value for end. With three arguments subseq

takes a list, a start element number, start, and an end element number, end, and
returns a list starting with element number start + 1 up to element number end.
start must be an integer between 0 and the number of elements in the list. end
must be an integer between start and the number of elements in the list. The list
returned will have end minus start elements. An alternate way of looking at sub

seq is that start indicates the number of elements to skip from the front of the list
and end is the last element number to inc1ude in the list.

Below are examples to help c1arify these functions:
> (length '((z e r 0) 1 (2) ((3))))
4

> (list-ref '((z e r 0) 1 (2) ((3))) 0)
(z e r 0)

> (list-ref '((z e r 0) 1 (2) ((3))) 3)
((3))

> (list-ref '((z e r 0) 1 (2) ((3))) 4)
Error: Pair expected

> (subseq '((z e r 0) 1 (2) ((3))) 0)
«z e r 0) 1 (2) «3)))

> (subseq '((z e r 0) 1 (2) ((3))) 3)
«(3)))

> (subseq '((z e r 0) 1 (2) ((3))) 5)
Error: Improper start value for subseq

> (subseq '((z e r 0) 1 (2) ((3))) 0 1)
«z e r 0))

> (subseq '((z e r 0) 1 (2) ((3))) 1 3)
(1 (2))

> (subseq '((z e r 0) 1 (2) ((3))) 2 2)
()

> (subseq '((z e r 0) 1 (2) ((3))) 1 0)
Error: Improper end value for subseq

> (subseq '((z e r 0) 1 (2) ((3))) 1 5)
Error: Improper end value for subseq

; position 0 is the first element

; position 4 is too large

; list of the first element onward

; list of the fourth element

; start value is too large

; list of the first element

; list of the 2nd and 3rd elements

; list of 2-2 = 0 elements

; end is less than start

; end is too large

4.5 Taking Lists Apart 71

Mistakes to Avoid
The list functions we've examined don't change their arguments. The
functions rest and cdr return the tail end of lists, leaving the original
lists intact. The function subseq actually creates a new list without alter
ing the list supplied as an argument in the function calls. Thus, if subseq

is called with a symbol that is bound to a list, a new list is returned and
the symbol is still bound to the original list. This can be seen in the fol
lowing example:

> (define my-list '(this is my very own list))
??

> (subseq my-list 2 4)
(my very)

> my-list
(this is my very own list)

Mistakes to Avoid
In determining the starting element of a return list, subseq starts with
the element that follows the value of start given. But the ending element
is included. Therefore, to get the list of the second through fifth elements
of my-list, use

(subseq my-list 1 5)

Another device that you can use to help get the start argument to
subseq straight is to think of it as the number of elements that will be
skipped from the head of the list. Thus, (subseq my-list 1) skips the
first element returning the second element onward.

You may have wondered why subseq uses such a strange scheme for its
arguments. Part of the reason for this is to reduce the number of off-by-one situa
tions that arise. When a value is one away from its desired value, it is called off
by-one. As it is written, subseq requires few off-by-one adjustments to be made.

Functions that return element positions can be used with subseq. The func
tion position (which is presented in section 4.10) returns the position of an ele
ment in a list. We can use the result from a call to position to specify astart
value for subseq. This means that subseq would need to use positions of ele
ments like list-ref does instead of element numbers. The start argument to
subseq does this. The end value to subseq doesn't, however. This is to make it
easier to refer to end positions relative to the last element of the list. The element
number of the last element is the length of the list.

The following chart should help clarify the above explanation by showing
how few off-by-one situations arise. You can use it as a quick reference for tem
plates when using subseq.

Method in the
madness-reducing
off-by-one situations

72 Chapter 4: Lists: The Basic Data Structure

Templates for subseq

When to use which list
function

Modeling bureaucratic
responses

Getting a random
element from a list

part of list desired
First N elements
Last N elements

call to subseq
(subseq a-list
(subseq a-list
(subseq a-list

o N)
(- (length a-list) N»
N) List without first N elements

List without last N elements
List of elements N through M
List from position P onwards

(subseq a-list 0 (- (length a-list) N»
(subseq a-list (- N 1) M)

(subseq a-list P)

List from position P through Q (subseq a -list P (+ Q 1»
To summarize, use first (or car) through fifth to return a particular ele

ment from a list. There are times when the element number must be computed.
In this case, use the function list-ref. To return a list with all but the first ele
ment, use rest (or cdr). To return a section of a list (the head, taH, or middle of a
list), use subseq following the chart above for specific guidance.

4.5.1 Example: Extracting random elements from a data structure
Those of you Arnold Schwarzenegger fans who saw Terminator know that the
Terminator had lists of responses from which he could choose to decide the most
appropriate retort for any given situation. If you've ever dealt with a true
bureaucrat you know that they too seem to be functioning by virtue of simply
responding to anything you say with one of a few responses. This type of
behavior can easily be modeled in Scheme. Suppose that you have a list contain
ing responses to be used by a particular person such as a bank teller, post office
clerk, or police officer. To simplify references to this response list, imagine that it
has been bound to the symbol retort, using define as shown below:

(define retort
'«i am sorry but we are closed now)

(talk to the person at the end of the hall)
(you need form 1044-tx8 and not 1044-fg4)
(we cannot take personal checks)
(i am sorry we need exact change)
(oh you only had to fill out this one form not those 20 others»)

The task is to write a function that randomly chooses a retort from a retort
list. An extension to Scheme called random will be helpful; (random num) returns
a random number between 0 and num - 1. Thus,

(random 3)

returns either 0, 1, or 2.
This result works very nicely in conjunction with list-ref, which takes a

number between 0 and the length of a list minus one. The call

(list-ref ' (a b c) (random 3»

returns a, b, or c.
In general, to return a random element from any list, the following function

can beused:

; Return a random element from the list a-list.
(define (get-random-element a-list)

(list-ref
a-list
(random (length a-list»))

4.5 Taking Lists Apart 73

get-random-element can be applied to retort to get a random retort. Each
call to random generates a new random number, so each time get-random
element is called, a potentially different retort will be retumed.

Mistakes to Avoid
Scheme does not attach any semantics (meaning) to parameter or vari
able names. The way a parameter is used dictates its type requirements.
Thus, naming the parameter above a-list does not mean that it must
be a list. However, the way we use a -list as arguments to length and
list-ref means that a-list must be a list. If not, we will get an error
when the function is called. It is the responsibility of the person who
calls get-random-element to assure that it is called with the proper
argument types.

This does not make for secure code that you would want to let just
anybody use. To remedy this, there are ways of doing type-checking:
checking the types of variables. This is covered in Chapter 5.

Mistakes to Avoid
Don't confuse arguments to a function with elements of a list. Look at
the following examples, which compute the average of three values:

(define (averagel numl num2 num3)
(I (+ numl num2 num3) 3))

(define (average2 num-list)
(I (+ (first num-list) (second num-list)

(third num-list» 3))

The first function averagel takes three arguments (which should be
numbers) and returns their average. The, second function average2
takes one argument (which should be a list of at least three numbers)
and returns the average of the first three numbers in the list.

74 Chapter4: Lists: The Basic Data Structure

4.5.2 Exercises
4.7 What do the following expressions return? Test your answers on the com-

puter. Some of them may produce errors.
(car '(»

(cdr '(»

(third (subseq '«4 5) 1/3 67.89 (78) va1ue) 1»

(rest (subseq '(how (strange) «(this» may) seem) 1 4»

(length '(' a '(1 :2»)

(length '«3 elements here»)

(length '«yet «another» strange (list»»

(car '«yet «another» strange (list»»

(cdr '«yet «another» strange (list»»

(car (car '«yet «another» strange (list»»)

(car (cdr (car '«yet «another» strange (list»»»

(car (cdr (cdr (car '«yet «another» strange (list»»»)

4.8 Assurne that the function extract below will be called with a 'list of lists of
atoms (e.g., « abc) (1 :2 3»). Fill in the blank such that the function
returns a.) the first list of atoms or b.) the first atom.

(define (extract 1ist-of-lists)
(list-of-lists»

4.9 Write an expression that returns the third element of the list a-list.

4.10 Write an expression that returns element number (+ value :2) of the list a
list.

4.11 Write an expression that returns the list of CDs from the second jazz artist in
the CD data structure presented earlier.

4.12 Write your own version of list-ref using the other list functions we have
discussed. Be careful that your function returns item number num and not
the list of the numth item.

4.13 Write a function but-last that takes two arguments, a-list and num, and
returns a list of all but the last num elements of a-list. Use the other list func
tions from this section in your solution.

4.14 Write a function called start that takes two arguments, a-list and num, and
returns the first num elements from a-list. Use the other list functions from

4.6 Combining carS and cdrs 75

this section in your solution.

4.15 Write a function end that takes two arguments, a-list and num, and returns
the last num elements from a-list. Use the other list functions from this sec
tion in your solution.

4.16 The function month below returns the month corresponding to month-num.

Does the function work correctly? If not, fix it.
(define (month month-num)

(list-ref '(January February March April May June July
August September October November December)

month-num))

4.17 The function replace-element below takes a-list, a list, position, a position
in a-list, and element, an atom that will replace the element at position in a
list. For example,

> (replace-element '(this list is very mundane) 4 'exciting)
(this list is very exciting)

Find and fix any bugs in the function below. Note: append combines the ele
ments of many lists into one list. See section 4.7 for a detailed explanation.

(define (replace-element a-list position element)
(append

(subseq a-list 0 position)
element
(subseq a-list position»)

4.18 Fill in the blanks with functions and arguments so that the output shown
would be produced. Each line may have zero or more arguments.

> ('fa list of sorts)
(a list)

> ('fa list of sorts)
(list of)

> ('fa list of sorts)
(of sorts)

> ('fa list of sorts)
list

4.6 Combining carS and cdrS

There are times when you have a rather complex list data structure, with many
sublists (elements that are lists themselves). To extract particular elements from
sublists, combinations of carS and cdrs can be used as shown in exercise 4.7.
Because such constructions are used so often in Scheme, abbreviations have been

Abbreviations o(car

and cdr compositions

76 Chapter 4: Lists: The Basic Data Structure

car cdr pronunciation

created to compose up to four levels of car and cdr function calls. The expres
sion

(car (cdr '«Sam Smith) 23000 (August 5 1967»»

can be abbreviated as

(cadr ' «Sam Smith) 23000 (August 5 1967»)

This particular expression returns the second element from the list given; hence it
could be expressed as

(second ' «Sam Smith) 23000 (August 5 1967»)

Abbreviations of car and cdr combinations are made by taking the a's and d's
from up to four adjacent car and cdr function calls and enclosing them between
c and r. This is easier shown than said. Below are more examples of car and cdr
combinations and their abbreviations.

longhand abbreviation
(cdr (car my-list» (cdar my-list)
(car (car (cdr my-list» (caadr my-list)
(car (cdr (car (cdr my-list»» (cadadr my-list)

One major problem with car and cdr and the various combinations of abbre
viations thereof is their correct pronunciation. The table below should help you
with this.

function ~ronunciation rhymes with or sounds like
car klir car
cdr k\l'-dar footer
caar ka-lir' the 'r'
cadr ka'-dar fatter
cdar k\l-dlir' foot tar
cddr k\l-di'-dar could litter
cadar ka-dlir' the tar
cadadr ka-da'-dar cadaver
cddadr k\l-di-da' -dar could it matter

/i as in car, a as in cDuld, a as in the or cut, aas in cat.

4.7 Creating Lists
We have created lists by writing them out explicitly, as in

(this is a list)

We have used functions that return parts of lists, possibly creating new lists in
the process. Sometimes we need even more flexibility.

Lists can be created using the functions cons, list, and append.

4.7 Creating Lists 77

function
cons
list
append

arguments
element list
eil ei2 ... eiN
listl list2 ... listN

return value
list with element inserted at the start
the list (el1 el2 ... eiN)
the list formed by concatenating the elements of
listl list2 ... listN.

Functions to build fists

cons takes two arguments and returns a new list that has element as its first cons

element and list as the rest of the list. The first argument, element, can be a list or
an atom, but the second argument, list, should be a list~

Below are some examples of what cons returns and what the car and cdr of
those return values look like.

> (cons 'samething '())
(something)

> (car '(samething))
something

> (cdr '(samething))
()

> (cons 'apples '(and oranges))
(apples and oranges)

> (car '(apples and oranges))
apples

> (cdr '(apples and oranges))
(and oranges)

> (cons '(some list) '(another list))
«some list) another list)

> (car '((some list) another list))
(some list)

> (cdr '((some list) another list))
(another list)

Notice in each of the above cases that the first argument to cons is the car of the
resultant list and the second argument is the cdr of the resultant list. This is true
for cons in general.

The first example,

(cons 'something '(»

shows how to create a list of one element by inserting (consing) that element into

4. If the second argument is not a list, the result will be a dotted list. Dotted lists are discussed in the
optional section on dotted Iists at the end of this chapter.

cons as opposite of
car andcdr

78 Chopter 4: Lists: The Basic Data Structure

list

append

an empty list.
The second example,

(cons 'apples '(and oranges»

shows the addition of an atom to the front of an existing list.
The third example,

(cons '(some list) '(another list»

demonstrates that lists can be added as elements.

Using cons to create a list of three elements involves three calls to cons:

> (cons 'a (cons 'b (cons 'c '())))
(a b c)

1ist provides a more convenient means of creating lists of many elements.
1ist takes as arguments the elements of the desired list and returns a new list of
those elements. The order of the arguments corresponds to the order of the ele
ments in the resultant list. The arguments to 1ist can be atoms or lists. Below are
some examples showing how 1ist works. Note that the arguments to 1ist must
be quoted if they are lists or symbols and are to be interpreted as such.

> (list 'a 'b 'c)
(a b c)

> (list '(a list) 'a-symbo14 '())
«a 1ist) a-symbo1 4 (»

Another way to create lists is to use append. append takes all the top-level ele
ments of its argument lists and forms a new list of those elements. In other
words, append concatenates the top-Ievel elements from all of its arguments into
a new list. Internally, append works by performing aseries of conses. Elements
from all but the last argument list are consed onto the last list. This is easier
shown than said. Following each example of append below is the equivalent
series of cons function calls:

> (append '(first list) '(second list) '(third list))
(first 1ist second 1ist third 1ist)

> (cons 'first
(cons 'list (cons 'second (cons 'list '(third list)))))

(first 1ist second 1ist third 1ist)

> (append '((32)) '() '(((123))))
«32) «1 2 3»)

> (cons '(32) '(((1 2 3))))
«32) «1 2 3»)

4.7 Creating Lists 79

> (append 4 '(3))
Error: Pair expected

The first example above shows how multiple lists appended together result in
one new list with the elements of each list as elements of the new list. The second
example of append shows that the empty list can be appended to other lists. By
doing so, no elements are added. The last append is illegal, since all the argu
ments to append should be lists~

cons, list, and append perform different tasks and return different lists
when given the same arguments. Look at the following examples:

> (cons '(1) '(a))
«1) a)

> (list '(1) 'fa))
«1) (a»

> (append '(1) 'fa))
(1 a)

It may seem strange to have the functions cons, list, and append when it is
easier to create lists by writing them out explicitly, as in

'(this «list is) easy to makel)

Sometimes the elements of a list are not known beforehand, since they must be
computed. These computations may be numericalor may involve extracting
information from other lists. These lists may be the values of variables, since vari
ables can be bound to lists using define or used in functions as parameters. In
these cases, such lists must be created using cons, list, or append. The following
example shows the creation of a new list consisting of the first element of the list
employee-list, and the value of salary increased by 10%.

(list (first employee-list) (* salary 1.10»

Here is another example showing the necessity of these functions. Let's write
a function, add - to - end, that takes an item and a list and returns the list with item
added to the end. For example,

> (add-to-end 'period '(end a sentence with a))
(end a sentence with aperiod)

> (add-to-end '(parenthetical remark) '(end a sentence with a))
(end a sentence with a (parenthetical remark»

To do this we'll have to append the elements in the list to a list of the item to
add:

5. The last argument to append can be an atom. If so, the result will be a dotted list. Dotted lists are
discussed in the optional section on dotted lists at the end of this chapter.

Differences with cons,

list, and append

Literal versus
constructed Iists

Adding to the end of a
list

80 Chapter 4: Lists: The Basic Data Structure

; Return a-list with item added to the end.
(define (add-to-end item a-list)

(append a-list (list item»)

Mistakes to A void
Suppose the variable people has the value 842. To make a list of that
number, the call

(people)

won't work, as it will treat people as a function. Instead use list as fol
lows:

(list people)

Mistakes to A void
Don't use list as the name of a parameter to a function. The parameter
will shadow the function list.

> (define (add-to-end item list)
(append list (list item)))

??

> (add-to-end 'bang '(end a sentence with a))
Error: Wrong type to apply: (end a sentence with a)

4.7.1 Exercises
4.19 What do the following expressions evaluate to? Some of them may produce

errors.
(cons 3 ' (4))

(cons ' (3) , (4))

(list 3 ' (4))

(list ' (3) I (4))

(list 3 4)

(list ' (3) 4)

(append 3 '(4»

(append ' (3) , (4))

4.20 Assume that the following defines have been made:

(define numbers '(2 4 6»
(define letters '(q e d»
(define deep-list '(((13»»

4.7 Creating Lists 81

Using only these three variables and the functions cons, list, and append,
write expressions that will return the following lists:

(2 4 6 q e d «13»)

«2 4 6) (q e d) «13»)

(2 4 6 (q e d) «13»)

«2 4 6) (q e d) «(13»»

«2 4 6) q e d «13»)

4.21 Fill in the blanks with functions and arguments so that the output shown
would be produced.

> (------------ ------------ '(not created equal))
(alas all lists are not created equal)

> ('(not created equal))
«alas all lists are) not created equal)

> (------------- ------------ '(not created equal))
(lists (not created equal))

> (------------- ------------ '(not created equal))
«lists) (not created equal))

4.22 Write a function that takes a list a-list and returns a list of only the first ele
ment of a-list. Note: this is not the same as first or car. For example, given
the list (an apple a day), your function should return (an).

4.23 Write a function add -third that takes two arguments, element and a-list, and
returns a-list with element as the new third element. The original third ele
ment of a-list becomes the new fourth element, and so on for the remaining
elements in a-list. For example, given the symbol eaten and the list (an
apple a day), your function should return (an apple eaten a day).
Assume that a-list has at least three elements.

4.24 Write a function remove-third that takes a list and returns the list without
its third element. For example, given the list (an apple a day), your func
tion should return (an apple day). Assume that the list has at least three
elements.

4.25 Write a function switch-first-and-second that takes a list and returns the
list with the first and second elements switched. For example, given the list
(an apple a day), your function should return (apple an a day).
Assume that the list has at least two elements.

82 Chapter 4: Lists: The Basic Data Structure

Using fists to
represent sentences

Sentence data
abstraction

4.8 Representing and Manipulating Text with Lists
Lists are a natural data structure to represent text. Sentences can be represented
as lists of words, and words as symbols; thus, the sentence "Kim likes to dance to
Aretha Franklin tunes" can be represented by

(kim likes to dance to aretha franklin tunes)

If we wanted to play around with this sentence, we should first bind it to a
symbol, as in
> (define sentence '(kim likes to dance to aretha franklin tunes))
??

To produce the sentence "Kim likes to dance in the dark" we can use the follow
ing expression:
> (append (subseq sentence 0 4) '(in the dark))
(kim likes to dance in the dark)

To produce the sentence "Kim dances to Aretha FrankIin tunes," use the
expression

or

> (cons (first sentence) (cons 'dances (subseq sentence 4)))
(kim dances to aretha franklin tunes)

> (append (list (first sentence) 'dances) (subseq sentence 4))
(kim dances to aretha franklin tunes)

The problem with these solutions is that they require prior knowledge of
what the original sentence looks like. To work properly, the calls to subseq
require knowledge of the number of words at the end and beginning of the sen
tence. A better solution would be to organize the sentence into parts-a noun
phrase, verb phrase, and object phrase. The original sentence would be
represented as

> (define noun-phrase '(kim))
??

> (define verb-phrase '(likes to dance))
??

> (define object-phrase '(to aretha franklin tunes))
??

To make the entire sentence, use
> (append noun-phrase verb-phrase object-phrase)
(kim likes to dance to aretha franklin tunes)

The other two sentences can be produced as folIows:
> (append noun-phrase verb-phrase '(in the dark))
(kim likes to dance in the dark)

> (append noun-phrase '(dances) object-phrase)
(kim dances to aretha franklin tunes)

4.8 Representing and Manipulating Text with Lists 83

To make these solutions more general, functions could be made as follows:

; Return a senten ce with noun-phrase, verb-phrase,
; and "in the dark."
(define (in-the-dark-sentence noun-phrase verb-phrase)

(append
noun-phrase
verb-phrase
, (in the dark»

Return a sentence with noun-phrase, "dances,"
and object-phrase.

(define (dances-sentence noun-phrase object-phrase)
(append

noun-phrase
, (dances)
object-phrase)

These functions could be called with other phrases to produce new sentences.

> (in-the-dark-sentence '(little green creatures)
'(are often seen»

(little green creatures are often seen in the dark)

> (dances-sentence '(a little purpie creature)
'(on her fingertips in my dreams»

(a little purpie creature dances on her fingertips in my dreams)

Such sentences could not have been produced with the original solutions to
this problem. By creating a more generic representation of a sentence, we ended
up with more general and useful solutions.

4.8.1 Exercises
4.26 Why was the list (kirn) used to represent a noun phrase instead of the sym

bol kirn, which could be consed onto the verb and object phrases?

4.27 How might you further define a generic sentence to allow more variation in
the sentences that could be produced?

4.28 Write a function add-words that takes sentence, a list representing a sen
tence, words, another list representing words to add to sentence, and position,
a number denoting a position in sentence. add -words should return a list
made by adding the words in words to sentence immediately before the word
at position in sentence. For example,

> (add-words '(the dog barks loudly) '(with huge fangs) 2)
(the dog with huge fangs barks loudly)

84 Chapter 4: Lists: The Basic Data Structure

Creating form letters

Representing names

Oifficulties with names

4.8.2 Computer-Generated sweepstakes
How many times have you received mail telling you something like this:

OLIVER GRILLMEYER
will receive $1,000,000
in the Arenl t We Cool" Sweepstakes
to be paid in yearly installments of $100,000
over the next 10 years or $50,000 over the next 20 years
if you are the one-in-a-billiOn lucky person chosen in our random drawing.

If you have gotten tbis letter, what are you doing with my junk mai!?
Scheme can be used to create such form letters, given a list of names to send

them to. To begin we need a representation for the names. One simple solution is
to represent names as symbols in a list like

(John Q. Public)

The problem with such an approach is that our form letters may wish to
extract the last name to print something like

lmagine your response when our representative comes to your door to say
"Congratulations Mr. Grillmeyer, you have won $1,000,000."

To do this we need to extract the last name from a list. It may seem simple
enough using subseq as follows:

> (subseq '(John Q. Pub1ic) 2)
(Public)

But what if the person has no middle name? Again you can be clever and just
extract the last element of the list by determining how many elements to skip
from the front based on the length of the list.

> (subseq , (Jane Doe) (- (length , (Jane Doe)) 1))
(Doe)

As an exercise, write a function that takes a list and returns the last name
based on this approach. Does your function work on lists with any number of
first or middle names?

There is another potential problem lurking here. The last symbol in a name
list may not be the person' s last name. For example,

complete name last name
Ludwig van Beethoven van Beethoven
Myriam Roxanna Haynal M.D. Haynal
Dr. Gino Cheng Esq. Cheng
Carla Juanita de la Cruz m de la Cruz

A seemingly simple problem has opened up into a can of worms. To get
around our current dilemma we can do one of three things:

1) Write Scheme code to deal with all of these special cases.
2) Represent names in a different way to disambiguously represent last names.

4.8 Representing and Manipulating Text with Lists 85

3) Ignore the issue and have our letters only print the person's entire name.

The third approach may seem like an invalid solution, but there are times
when tasks just get too difficult and it is better to simplify the problem rather
than implement it as originally desired. The pioneers in language translation
learned this lesson the hard way. More on that in Chapter 15.

The first approach is possible if we have a handle on all the possible titles and
prefixes to last names we may run across, and there are no ambiguities. It is left
as an exercise to the reader.

The second approach is easiest, assuming we have control over the form of
the data. This is not always the case for programmers. However, when it is an
option, it is best to design your data representation to simplify your task. This is
a frequently used technique in programming. In fact, there are entire texts
devoted to program design as a split between data representation and algo
rithms~

Another advantage is that we don't have to worry about future names that
don't follow the conventions of which we are currently aware. There are plenty
of nonconventional names you are probably aware of such as Madonna, Sting,
the Edge, Plato, Socrates, and Aristotle (the ancient Greeks didn't have last
names).

We can represent names as a list of five lists denoting the prefix, first, middle,
last name, and suffixes of the person. Thus, Miss Carla Juanita de la Cruz III
becomes

«Miss) (Carla) (Juanita) (de la Cruz) (111»

And Sting becomes

«) (Sting) () () (»

The last name is the fourth element of a name list. Below is aselector function
to extract the last name from a name list:

; Return the last name, faurth element, fram a name list.
(define (last-name name-list)

(fourth name-list))

It may seem pointless to create a function as simple as this, but it is
worthwhile because it makes our final program more readable. It is dearer what
is happening when we use a function called last-name rather than fourth. Also,
if we should decide to change the data representation, we need only change the
selector function. We don't have to search through the entire program looking for
calls to fourth and decide if they are extracting the last name or doing something
else.

Let's return to the problem of writing form letters. A form letter can be
viewed as a template in which the person's name is to be inserted in certain parts.
One such form letter may be the following:

6. Niklaus Wirth's text Programs = Algorithms + Data Structures is a classic example and is a good text,
despite the fact that the title is an equation.

Data representations
to simplify coding

Selector functions

86 Chapter 4: Lists: The Basic Data Structure

Dear Mr. Grillmeyer

This is your last chance to receive our mailings at
the Grillmeyer residence. By ordering your personalized
ceramic utensil set, we will enter the Grillmeyer family
in our sweepstakes giveaway. Don't think any more,
just do it.

To produce such a form letter we can generate a list of symbols for each line
of actual text. An entire form letter will be a list of these lists. Here is an attempt
to produce the above form letter:

; Return the prefix (first element) from a name list.
(define (prefix name-list)

(first name-list))

; Produce a form letter addressed to name-list.
(define (make-form-letter name-list)

(list
(list 'Dear (prefix name-list) (last-name name-list»
'()
'(This is your last chance to receive our mailings at)
(list 'the (last-name name-list) 'residence. 'By 'ordering

'your 'personalized)
(list 'ceramic 'utensil 'set, 'we 'will 'enter 'the

(last-name name-list) 'family)
'(in our sweepstakes giveaway. Don't think any more,)
, (just do it.»)

However, when we enter this code into the Scheme interpreter, we get the fol
lowing error:

Error: Comma not inside a quasiquote.

Recall from Chapter 3 that commas are not allowed in symbol names. Their
use will be shown in the next section on quasiquoted lists. If we remove the com
mas from our lists and reenter the function, no error results. So let's try it out.
> (make-form-letter '((Mr.) (Michael) (Phillip) (Jagger) '(»)
«DEAR (MR.) (JAGGER» () (THIS IS YOUR LAST CHANCE TO RECEIVE OUR
MAILINGS AT) (THE (JAGGER) RESIDENCE. BY ORDERING YOUR PERSONALIZE
D) (CERAMIC UTENSIL SET WE WILL ENTER THE (JAGGER) FAMILY) (IN OUR
SWEEPSTAKES GIVEAWAY. DON 'T THINK ANY MORE) (JUST DO IT.»

This output is far from desirable. In Chapter 9 we cover a means of getting
around this problem. For now, we can print one line at a time using functions
like first or list-ref.

> (first (make-form-letter '((Mr.) (Michael) (Phillip) (Jagger) (»»
(DEAR (MR.) (JAGGER»

The remaining problem is to eliminate the extra parentheses. This can be done
using append instead of list when creating our lists. Simply changing list to
append will introduce another problem, because all the arguments to append

4.9 Optional Section: Quasiquoted Lists 87

should be lists. Below is the correct solution:

; Produce a form letter addressed to name-list.
(define (make-form-letter name-list)

(list
(append '(Dear) (prefix name-list) (last-name name-list»
'()
'(This is your last chance to receive our mailings at)
(append '(the) (last-name name-list)

'(residence. By ordering your personalized»
(append '(ceramic utensil set we will enter the)

(last-name name-list) '(family»
'(in our sweepstakes giveaway. Don't think any more,)
, (j ust do i t. »)

4.8.3 Exercises
4.29 Does the above solution give reasonable output when called with names

like Sting or Madonna?

4.30 Write a function that generates your own personalized form letter.

4.9 Optional Section: Quasiquoted Lists
Another means of creating lists is to use the special form quasiquote. Rather
than specifying the structure and contents of a list using combinations of cons,
list, and append, quasiquote allows you to indicate the form of the list direct1y.
quasiquote (abbreviated as ""') is an extension of the special form quote. It can
be used to produce literallists such as

> '(mary had a little lamb (or so the story goes))
(mary bad a little lamb (or so tbe story qoes»

To create lists that contain the values of variables or the results of computa
tions, simply precede any expressions that you wish to be evaluated by a comma.
This is a shorthand for unquote. Assume that the definitions below have been
made:

(define person 'mary)

(define object '(a little lamb»

Thelist(mary had a little lamb (or so the story goes»canbecreated
with

'(,person had a little ,(tbird object) (or so the story goes»

Notice what happens when a list is inserted.

> '(,person had ,object (or so the story goes))
(mary bad (a little lamb) (or so tbe story qoes»

Building lists with
quasiquote

Evaluating parts o(

quasiquoted lists

88 Chapter 4: Lists: The Basic Data Structure

unquote-splicing There is an operator similar to comma-comma followed by the at-sign n@n.

This is a shorthand for unquote-splicing. The expression following the
comma-at-sign pair should evaluate to a list, and this list is appended to the rest
of the quasiquoted list. Thus,

) '(,person had ,@object (or so the story goes))
(mary had a little lamb (or so the story goes»

In summary, to add an evaluated expression to a list, use
, expression

where you wish the evaluated expression to go. To insert the elements of a list
obtained from evaluating an expression, use

, @expression

in the quasiquoted list at the position where these elements should go.

4.9.1 Exercises
4.31 Assurne that the following defines have been made:

(define number 8.31)
(define name , (gino as in pizza»

What do the following expressions evaluate to?
'(number ,number name ,name)

'«+ number 100) ,@name)

'(,(+ number 1) ,@(cdr name»

4.32 Using the symbols defined in the previous exercise, write expressions that
would produce the following lists:

(gino as in 8.31)

(gino as in (gino as in) pizza)

«8.31 gino (as in pizza» 10.31)

4.33 Write a function that uses quasiquoted lists to create form letters as shown
in the previous section.

4.10 Miscellaneous List Functions
A number of other functions work with lists. Below are some of these functions,
the arguments that they take, and the values they return. member and reverse are
built-in Scheme functions. The other functions will be defined in this seetion or in
the appendix. They are given as exercises in Chapter 6. Other functions allow you
to apply a function to each element in a list. These functions will be covered in
Chapter8.

4.10 Miscellaneous List Functions 89

function
position

member

count
remove
reverse

arguments
element list

element list

element list
element list
list

return value
the position of element in list (counting from zero),
#f if element is not in list
the rest of list starting with the first occurrence of
element, #f if element is not in list
the number of occurrences of element in list
list with all occurrences of element removed
the reverse of the top-level elements of list

The functions position, member, count, and remove search for elements
within list. These elements can be numbers, symbols, or lists. This behavior can
be seen in the following examples that show sampie calls of the function posi
tion:

> (define my-list '(this list (will help) explain 6 list functions))
??

> (position 'list my-list)
1

> (position 6 my-list)
4

> (position 'word my-list)
#f

> (position '(will help) my-list)
2

> (position 'will my-list)
#f

The functions that search for the occurrence of element within list do not
search sublists within list. The last function call resulted in #f because position
does not look within sublists to find matches. Calling member with I will and the
same list as arguments will yield #f. Calling count with I will and the same list
as arguments will yield O. Similarly, calling remove with the same arguments will
return the original list (no elements are removed).

Here are examples of the other functions:
> (member 6 my-list)
(6 1ist functions)

> (member 'list my-list)
(1ist (wi11 he1p) exp1ain 6 list functions)

> (count 6 my-list)
1

> (count 'list my-list)
2

Which elements get
matched

Certain elements don't
getmatched

90 Chapter 4: Lists: The Basic Data Structure

Writing count

Writing position

> (remove 6 my-list)
(this list (will help) explain list functions)

> (remove 'list my-list)
(this (will help) explain 6 functions)

> (reverse my-list)
(functions list 6 explain (will help) list this)

Notice that in the call to reverse, the sublist (will help) was not reversed.
reverse only reverses the top-level elements.

We don't know enough to write the function remove; that material is covered
in the sections on creating lists and filters in Chapter 6. We can write the function
count (using remove) and we can write a simplified version of position. The
number of times an item occurs in a list can be determined by subtracting the
number of elements in the list from the number of elements that are left in the list
after all occurrences of the item are removed. The number of items in a list is the
length of that list. The function count folIows:

; Return the number of times item occurs in a-list.
(define (count item a-list)

(- (length a-list)
(length (remove item a-list»)

The position of an item in a list can be determined using a similar technique
as used in count. Taking member of the item and the list will return the list from
item onwards. The difference between the length of the entire list and the list
from member is the number of elements that occur before the item, which is the
same as the position of the item. Here is the code to do this:

; Return the position of item in a-list.
(define (position item a-list)

(- (length a-list)
(length (member item a-list»)

Note: this version of position does not work if item does not occur in a
list.

4.10.1 Exercises
4.34 Using the symbol my -1 ist defined as

(this list (will help) explain 6 list functions)

and the functions in this section, write expressions that will return the fol
lowing lists. You may use more than one function in each answer.
(explain 6 list functions)

3

«will help) explain 6 functions)

(explain (will help) list this)

(this list (will help»

«will help) explain)

(functions explain this)

4.10 Miscelloneous List Functions 91

4.35 Write a function with two parameters, element and a-list, that returns the
position of the last occurrence of element in a-list. Assurne that element is in
a-list. Watch out for off-by-one errors-those in which the answer you get is
one away from the answer you want.

4.36 Write a function that takes a list and returns the list with the first and last
elements switched.

4.37 Write a function count-both that takes two atoms and a list and returns the
number of times either of those atoms occurs in the list. Write two versions
of this function: one using the function + and one without +. For example,

> (count-both 'a 'b '(a b r a c a d a b r a))
7

4.38 Suppose the following expressions have been entered into Scheme:
(define months

'(jan feb mar apr may jun jul aug sep oct nov dec»
(define days

'(31 28 31 30 31 30 31 31 30 31 30 31»

Write a function num-days that takes a symbol representing a month and
returns the number of days in that month. For example,

> (num-days 'jul)
31

4.39 Write a function whos-there that returns the names of people working on a
certain day and time. whos - there has two parameters: schedule, a list
representing the work schedule for some day, and time, an hour of the day
(in military time, 0-23). Here is a sampie schedule for Monday:

(10 hiro 11 madelaine elizabeth 12 13 kessie lou 14)

Given this schedule and the time 11, whos - there should return the list
(madelaine elizabeth). Called with the time 12, an empty list should be
returned.

Hint: think how you can extract part of the schedule from a certain time
till one hour past that time (e.g., that part of the list from 11 to 12), and then
adjust this to get the names only. What assumptions about the schedule and
hour passed in do you have to make to avoid getting errors when the func
tion is called?

92 Chapter 4: Lists: The Basic Data Structure

COdatabase

Finding the jazz arfists

Finding a parficular list
ofCDs

4.11 Representing a Database with Lists
Let' s return to the example given earlier of maintaining a database of CDs. Recall
that the data structure looked like the following:

(rock
(Rolling_Stones

(Black_and_Blue
Its_Only_Rock_and_Roll»

jazz
(Pat_Metheny

(First_Circle)
Andy_Narell

(The_Hammer»)

4.11.1 Selecting items from the database
Let's write an expression to return all the jazz artists and CDs in the collection.
We'll assurne that the CDs may not be in the order shown above (Le., rock CDs
first, then jazz CDs). The order may be different or other music types may exist.
Assurne that the CD list has been bound to the symbol CD-list. The jazz artists
and CDs are in the list following the top-level symbol jazz within CD-list. To
get this list, a combination of list-ref and position can be used. position can
be used with jazz to find the location of jazz in CD-list:

> (position 'jazz CD-list)
2

list-ref can use this result (with one added to it) to get the list of jazz artists
andCDs:

> (list-ref CD-list (+ (position 'jazz CD-list) 1))
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer»

A slightly simpler solution uses member:

> (member 'jazz CD-list)
(jazz (Pat_Metheny (First_Circle) Andy_Narell (The_Hammer»)

Taking second of this list gives us the same list we got above:
> (second (member 'jazz CD-list))
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer»

We can go a level deeper and write an expression that returns Andy Narell's
CDs. The technique used to return the jazz artists and CDs can be used to find
the CDs of a particular artist. This is due to the the similarities between CD-list
and the artist-CD lists. CD-list consists of pairs; each pair is a category and an
artist-CD list. The artist-CD lists are similar in that they are pairs, where each
pair has an artist name and a CD list. To illustrate this parallel, observe the fol
lowing:

> (define jazz-artist-CD-list (second (member 'jazz CD-list)))
??

4.11 Representing a Database with Lists 93

> jazz-artist-CD-list
(Pat_Metheny (First_Circle) Andy_Narell (The_Hammer»

> (second (member 'andy_narell jazz-artist-CD-list))
(The_Hammer)

Now let's write a general function that takes a musical category (e.g., rock,
jazz) and an artist, and returns all the CDs from that artist. This can be accom
plished by generalizing what we did above through the use of parameters
instead of specific values. To improve the readability of the solution, the compo
sition of second and member can be made into a function as follows:

; Return the element that follows selector in a-list.
(define (element-after selector a-list)

(second (member selector a-list»)

Here are two example calls to this new function:
> (element-after 'rock CD-list)
(Rolling_stones (Black_and_Blue Its_Only_Rock_and_Roll»

> (element-after 'Pat_Metheny jazz-artist-CD-list)
(First_Circle)

The main function can now be written:
; Return the COs by artist and type in CD-list.
(define (artist-CO-list type artist CD-list)

(element-after
artist
(element-after type CD-list»)

Here are some sampie calls to this new function:
> (artist-CD-list 'jazz 'pat-metheny CD-list)
(First_Circle)

> (artist-CD-list 'rock 'rolling_stones CD-list)
(black_and_blue its_only_rock_and_roll)

4.11.2 Adding elements to the database
Now let's write a function to add new CDs to the above structure. The function
will take four parameters: the CD to add, the category of music, the artist name,
and the CD data structure. This problem involves taking apart and rebuilding
lists. It can be thought of in the following steps:

• Get the list of existing CDs from CD-list, the CD data structure
• Add the new CD to the head of that list
• Create a new artist-CD list using the new list of CDs
• Create a new overall CD list using the new artist-CD list

Generalizing what
we'vedone

Extracting a list o(
CDs

Pseudo code to add
CDs

94 Chapter 4: Lists: The Basic Data Structure

Changing an element
in a list

Getting the elements
before the item to be
added

Let' s refine these steps:

• Get the list of existing CDs from CD-list, the CD data structure:
This is exactly what the function artist - CD-list written above does.

• Add the new CD to the head of that list:
This involves calling cons with the new CD and the result from the above
step.

• Create a new artist-CD list using the new list of CDs:
Before we refine this step, we should think of it in general terms to combine it
with the next step.

• Create a new overall CD list using the new artist-CD list:

The last two steps involve creating a new list that has one element changed
from the original list. A new element replaces the element immediately after the
category or artist name in the list. The task is to write a function that takes a list,
a -list, an element to add, element, and a category or artist name, selector,

and returns a new list with element inserted in the position following selector

in a -list. For example, the value returned from
(new-element jazz-artist-Co-list , (We_Live_Here First_Circle)

'Pat_Metheny)

is
(Pat_Metheny (We_Live_Here First_Circle) Andy_Narell (The_Hammer»

This function combines three lists:

• the items before the element to be added-the left side of the list
• the list of the new element
• the items after the element to be added-the right side of the list

Now our task is to refine these three steps.

• Step 1: the items before the element to be added-the left side of the list
To get the left side of a list, use subseq. subseq needs the position of the

category or artist name to denote the last element (the end) of the left side. The
start value is O. Putting this together in a function we get

; Return the elements up to and including selector in a-list.
(define (items-before a-list selector)

(subseq
a-list
o
(position selector a-list»)

Testing this new function yields
> (items-before jazz-artist-CD-list 'Pat_Metheny)
()

We wanted to have the list
(Pat_Metheny)

4.11 Representing a Database with Lists 95

Remember that subseq does not inc1ude the element at position end. We made an
off-by-one error, which is easily fixed by adding one to the value that position
returns. The corrected code is

; Return the elements up to and including selector in a-list.
(define (items-before a-list selector)

(subseq
a-list
o
(+ (position selector a-list) 1»

Testing this new function yields
> (items-before jazz-artist-CD-list 'Pat_Metheny)
(Pat_Metheny)

• Step 2: the list of the new element
This is easily done using 1ist. We must use the list of the element to add and

not just the element because we are using append to build up the new list, and
append takes lists of the elements that will be in the resulting list.

• Step 3: the items after the element to be added-the right side of the list
To return the tail end of a list, subseq can be used. Once again we know the

position of the category or artist that is before the element that gets added. This
position could be used with subseq. Since we want the tail end of the list, we can
leave off the third argument, end, to subseq. The start value is the position of the
first element that is returned. This is the position of the element that is two ele
ments beyond the selector (we want to skip the selector and its matching value
either a CD list or the remaining artist/CD list pairs). The code to return the ele
ments after the new element added is
; Return the elements fo11owing the artist se1ector and her CDs.
(define (items-after a-list selector)

(subseq
a-1ist I
(+ (position se1ector a-1ist) 2»)

A test of this function yields
> (items-after jazz-artist-CD-list 'Pat_Metheny)
(Andy_Nare11 (The_Hammer))

This is correct. Putting the three pieces together we can write the function new
element:

; Return a-list with element replacing the item after se1ector.
(define (new-element a-list element selector)

(append
(items-before a-list selector)
(1ist element)
(items-after a-list selector»

Getting the elements
after the item to be
added

Putting an element
into a list

96 Chapter 4: Lists: The Basic Data Structure

Putting a CD in the
CD data strueture

Whysomany
tunetions?

A test of this function yields
> (new-element jazz-artist-CD-list , (We_Live_Here First_Circle)

, Pa t_Metheny)
(Pat_Metheny (We_Live_Here First_Circ1e) Andy_Nare11 (The_Hammer»

The final step is to put all the pieces listed below together to produce the func
tion add -new-CO:

•
•
•
•

Get the list of existing CDs from CD-list
Add the new CD to the head of that list
Create a new artist-CD list using the new list of CDs
Create a new overall CD list using the new artist-CD list

; Return a new CD-list with a new CD added for artist in
; category.
(define (add-new-CD CD category artist CD-list)

(new-element
CD-list
(new-element

(element-after category CD-list)
(cons

CD
(artist-CO-list category artist CD-list))

artist)
category))

Let' s test this function:
> (add-new-CD 'Tattoo-you 'rock 'Rolling_Stones CD-list)
(rock

(Ro11ing_Stones
(Tattoo-you
B1ack_and_B1ue
Its_On1y_Rock_and_Ro11»

jazz
(Pat_Metheny

(First_Circ1e)
Andy_Nare11

(The_Hammer»)

The actual output will not be indented as shown.
Each step in the pseudo code was carried out by a function. We did not need

to use this many functions in the solution to this problem. The advantage to such
an approach, however, is that each function can be tested individually. Then,
when all the parts are put together, the chances of the entire solution being
correct are much greater.

If the code is written as one large function and contains some error, a bug, it
may be in any part of the function, and there is no easy way to narrow it down
without looking through the entire large function.

4.12 Optional Seetion: Internal Representations 0/ Lists 97

Another advantage to having so many functions is they can act as building
blocks to a larger program. Selecting or creating parts of the data structure can be
done with these generic functions. Another real advantage is lurking here: should
the data structure change, all that needs to be changed are these selector and
creator functions. This topic is covered in depth in Chapter 7.

4.11.3 Exercises
4.40 Write iterns-before and iterns-after using member and some of the other

functions presented earlier instead of subseq.

4.41 Write a function delete-CD that has the same parameters as add-new-CD,

but instead of adding a new CD, delete-CD returns a CD list with CD

removed. Does your solution work if CD is not in the CD list?

4.12 Optional Section: Internal Representations of Lists
Scheme represents lists as sequences of cons cells. A cons cell has two com
ponents: the first indicates the next element of the list and the second indicates
the rest of the list. The list (a b c) consists of three cons cells. It can be drawn as
follows:

(a b c)

a b c

Each box represents a cons cello The left half of the box has an arrow that
points to an element of the list. The right half of the box has an arrow that points
to the rest of the list. In the case of the third cons cell, the rest of the list is (). This
is represented as a box with a line through it. Scheme denotes the end of a list by
having the right half of a cons cell point to (): The arrows are called pointers. A
pointer represents a location in the computer's memory. Apointer to a symbol is
the location of that symbol in the computer. A list is represented as apointer to
the first cons cell in a cons cell chain. The pointer on the upper left in the above
diagram represents the list (a b c). Scheme prints out lists by sequencing
through the chain of cons cells until a cons cell with a () right side is encoun
tered. For each cons cell, the element pointed to by the left side pointer is printed
out.

7. In the case of dotted lists, the end of a list is a cons cell whose right side points to an atom. Dotted
lists are covered in the next section.

Gons cells: the
building blocks o(/ists

Pointers

98 Chapter 4: Lists: The Basic Data Structure

How cons cells make
lists

Examples of cons cell
diagrams

Cons cells are created and eombined to make lists. The function cons creates a
single cons cell. The two arguments to cons are the objeets to whieh the left and
right pointers of the new cons eell will point. Again, think of a list as being
represented by apointer to the first cons eell in the ehain of cons cells that make
up that list. This teIls us that car is obtained by returning what the left half of
that first cons cell points to, and cdr returns what the right half points to.

The diagrams below are illustrations of the lists shown in section 4.7. , "Creat
ing Lists." Notice that the left side of the first cons cell points to the car of the list
and the right side points to the cdr.

(something)

something

(apples and oranges)

apples and oranges

«some list) another list)

another list

some list

4.13 Optional Seetion: Dotted Lists 99

Thinking in terms of the internal representations of lists, cons, list, and
append perform the following aetions:
• cons adds a new eons eell to the front of the list.
• list ereates a ehain of eons eells-one for eaeh argument with whieh it is

ealled.
• append ereates new eons eells that are eonnected to the list representing the

last argument given to append. One eons eell is ereated for eaeh element in
eaeh of the lists that is supplied as an argument to append, with the exeeption
of the last argument.

4.13 Optional Section: Dotted Lists
If an object is consed onto an atom, a dotted list is returned.

> (cons 'samething 'strange)
(something . strange)

> (cons '(same list) 'strange)
«some list) . strange)

The example,
(cons 'something 'strange)

shows what happens when a symbol is consed onto a symbol. The resultant
objeet,

(something . strange)

is ealled a dotted list. The dot notation is used to differentiate anormal list-one
with () as its final cdr-from a dotted list. The final cdr of a dotted list is not a
eons eell or (). The diagram below shows the interna I representation of this dot
ted list:

(something . strange)

something strange

The final cdr points to the symbol strange.
The carS and cdrS of the results from the above ealls to cons are the same as

the arguments that were applied to cons:

VVhatcons,list,and
append real/y do

Dotted lists

Representation o(

dotted lists

100 Chapter 4: Lists: The Basic Data Structure

Using dotted lists with
list functions

> (car '(something strange))
something

> (cdr '(something . strange))
strange

> (car '((some list)
(some list)

strange))

> (cdr '((some list) . strange))
strange

Dotted lists can be produced by append when the last argument is an atom:

> (append '(4) 3)
(4 • 3)

This is equivalent to
> (cons 4 3)

(4 • 3)

Dotted lists can produce somewhat strange results when applied to some of
the previously illustrated list functions:

> (first '(3 . 4))
3

> (second '(3 . 4))
Error: Pair expeeted

> (length '(3 . 4))
Error: Pair expeeted

> (member 3 '(3 4))
(3 • 4)

> (member 4 '(3 . 4))
Error: Pair expeeted

Most of the list functions will produce errors if they try to go beyond the final
cons cell in a dotted list. This is what happened in all of the cases that resulted in
errors above. The call to first and the first call to member were successful
because they did not attempt to go past that final cons cello This may not be true
in all implementations of Scheme.

As a general rule, you should avoid using most list functions with dotted lists.
The list functions that will work with dotted lists are ear, edr, first, and rest.

4.14 Summary
• The three basic data struetures in Scheme are numbers, symbols, and lists.

Collectively, numbers and symbols are ealled atoms. Lists are ordered eollee
tions of atoms or lists. The items in lists are ealled the elements of the list.

4.14 Summary 101

• The empty list, one with no elements, is written as ' ().
• To stop the normal proeess of evaluation, the special form quote is used.

quote is frequently used to stop the evaluation of lists as funetions.
• Special forms are like funetions, but they do not follow the evaluation rules

for funetions.
• To find the number of elements in a list, use length.
• To extraet an element from a list whose position is known, use one of first

through fifth.
• To extraet elements from lists when their positions must be eomputed before

hand, use list-ref.
• To return all but the first element of a list, use rest or cdr.
• To return the head of a list, use subseq with 0 and end, where end is the last

element number you want to include.
• To return the tail of a list, use subseq with start - 1, where start is the first ele

ment number you want to include.
• To return any eontiguous seetion of a list, use subseq with start - 1 and end,

where start is the first element to include and end is the last.
• Compositions of car and cdr ean be abbreviated by surrounding the aS and

ds in the car and cdr ealls with c and r.
• To return a list with a new first element, use cons.
• To ereate a list of many elements, use list.
• To put the elements of lists together into one list, use append.
• quasiquote ean be used to ereate lists by specifying templates of the list.

The elements are not evaluated unless they are preeeded by a eomma or a
eomma and at-sign, ", @". Forms preeeded by a eomma are evaluated and
their return value used. Forms preeeded by a eomma-at-sign pair should
evaluate to lists, and the elements of those lists are used.

• To return the position of an element, the number of times an element oeeurs,
or the rest of the list starting from the element, use position, count, or
member, respeetively.

• To remove all oecurrenees of an element frorn a list, use remove.
• To get the reverse of a list, use reverse.
• The funetions position, count, member, and remove do not seareh within

sublists.
• Lists are eomposed of eons eell ehains. Eaeh eons eell has two pointers, whieh

point to the next element in the list and the rest of the list.
• A dotted list is produeed when an object is consed or appended onto an atom.

102 Chapter4: Lists: The Basic Data Structure

• Summary of functions introduced in this chapter:

function
length
first
rest
car
cdr
second
third
fourth
fifth
list-ref
subseq
subseq
subseq
random
cons
list
append

position

member

count
remove
reverse

arguments
list
list
list
list
list
list
list
list
list
list position
list 0 end
list start
list start end
num
element list
el1 el2 ... eiN
listl list2 ... listN

element list

element list

element list
element list
list

return value
the number of elements in list
first element of list
rest of list without the first element
same as first
same as rest
second element of list
third element of list
fourth element of list
fifth element of list
element at position pos in list
left part of list up to element end
right part of list starting at element start + 1
list with elements start + 1 through end
randomly genera ted number between 0 and num - 1
list with element inserted at the start
the list (el1 el2 ... eiN)
the list formed by concatenating the elements
of listl, list2, ... , listN.
the position of element in list (counting from
zero), #f if element is not in list
the rest of list starting with the first occurrence
of element, #f if element is not in list
the number of occurrences of element in list
list with all occurrences of element removed
the reverse of the top-level elements of list

• Summary of special forms introduced in this chapter:

special form
quote
quasiquote

arguments
expression
expression

return value
expression unevaluated
expression unevaluated except for items preceded
by 11, 11 or ", @"

CHAPTER5

CONDITIONALS

5.1 Control Through Conditional Expressions
In addition to operations performed upon numbers, symbols, and lists, Scheme
has control operations. Recall from Chapter 1 that control operations are an
important element that separates computers from simpler computational dev
ices. Control operations allow decisions to be made. Different actions are taken
based on the given conditions. Let's look at how Scheme handles control.

Scheme has a built-in special form, if, that checks a condition and returns one
value if it's true and a different value if it's false~ The general form of if is as fol
lows:

(i f condition
action
else-action)

where else-action is optional. To use this function, we need to learn how to create
conditions that return true or false values in Scheme.

Predicates are functions that return true / false values. They can be used as con
ditions within if special forms. Many of these functions are easily identifiable
because their names end in ? Below is a list of some of the common predicate
functions that work on numbers and their meanings:

1. This is termed an if-then-else statement in many other programming Ianguages.

Control operations

if

Predicates

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

104 Chapter 5: Conditionals

False values

True values

Type-checking

if is a special form

~redicate arguments returns true if and on!y if
< numl ... numN numl < num2 < ... < numN
> numl ... numN numl > num2 > ... > numN

numl ... numN numl = num2 = ... = numN
<= numl ... numN numl ~ num2 ~ ... ~ numN
>= numl ... numN numl ~ num2 ~ ... ~ numN
zero? num num=O
positive? num num>O
negative? num num<O
even? num num is an even number
odd? num num is an odd number
number? num num is a number (integer, real, or ratio)
real? num num is areal number
integer? num num is an integer

In Scheme, the buHt-in symbol #! represents [alse; anything else represents
tTue. #f is predefined in the language and cannot be changed. Such a symbol is
called a constant.

There is another predefined constant, #t, which is often used to represent tTue;
however, any non-#! value is considered tTue in Scheme.

As a simple example, suppose you want to add one to some value; yet that
value may not be a number, in which case you want to return the value. This type
of test is called type-checking. Type refers to the kind or type of value to which a
variable may be bound (e.g., number, symbol, list). To test if something is a
number, use the predicate number? Below are some examples illustrating the use
ofnumber?:

> (number? -1)
#t

> (number? 'an-atom)
#f

> (number? '(some list))
#f

We can use this predicate as the condition of an if expression.

(i f (number? i tem) ; item is the value being tested
(+ item 1)

item)

If i tem is a number, (+ i tem 1) is evaluated and i tem plus one is returned; oth
erwise i tem is evaluated and its value is returned.

An if is a special form because not all of its arguments are evaluated. The
condition is always evaluated. Depending on the return value of condition, only
one of action or else-action is evaluated and that value is returned as the return
value of the if. If else-action is not included and condition is [alse, an undefined
value is returned.

5.1 Control Through Conditional Expressions 105

To see why this evaluation method is important, let's look at what happens if
we evaluate all of the arguments to the previous if expression when called with
a non-numerical value, (a list), for item. '(a list) will be substituted for
i tem in the following expressions:

expression return value
(number? '(a list» if
(+ '(a list) 1) Error: Expected INTEGER
'(a list) (a list)

If all the arguments to if were evaluated, we would have a problem if i tem were
not bound to a number. Since if is a special form,

(+ item 1)

will be evaluated only if i tem represents a number, in which case it is safe to per
form the addition.

The actions of an if can be any expression, even another if as the next exam
pIe will illustrate. To test if a number, num, is greater than 1 but less than 100, the
following expression can be used:

(if (> num 1)
(if « num 100)

#t
if)

if)

If num is not greater than I, the condition of the first if fails and the else-action,
if (the second u) is evaluated. U evaluates to itself, thus u would be returned.
If the first condition is satisfied, the action to evaluate is the inner if:

(if « num 100)
#t
U)

If the condition of this if,
« num 100)

is satisfied, #t is retumed; otherwise if is retumed. Thus, in order for #t to be
retumed, both conditions must be true.

5.1.1 Exercises
5.1 Write an if expression that returns the value of the greater of two symbols,

num1 and num2.

5.2 Write a function that returns the smaller of its two arguments.

5.3 What does the following expression return?

Nestedifs

106 Chapter 5: Conditionals

(if (= 3 4)
3
(if (= 2 2)

2
1))

5.4 The following list represents pets and their qualities:
(define qualities '(cat (independent lazy sleepy)

dog (needy loyal) fish (wet slimy colorful) lion (dangerous)))

Complete the function characteristic that indicates if a certain animal has
a particular characteristic according to the data in the list qua li ties. For
example,

> (characteristic 'dog 'loyal)
(yes a dog is loyal)

> (characteristic 'lion 'duli)
(no a lion is not dull)

(define (characteristic animal quality)

(let «animal-quality-list ______________________________))

(if animal has quality

yes message

_____________________________)))) ; no message

5.5 Write a function that takes three numbers representing the lengths of the
sides of a triangle. It should return true if the sides represent a right
triangle-if the sum of the squares of the first two equals the square of the
third. Assume that the arguments are in the proper order, in other words,
that the third argument will represent the length of the hypotenuse, the
longest side of the triangle.

5.6 Could you solve the above problem if you had to determine the longest
side? If so, give a solution; if not, indicate why.

5.7 Write a function that takes two arguments and returns true if both argu
ments are equal to 0;

5.8 Write a function that returns true if its one argument is equal to 1 or O.

5.9 Write a function that takes two arguments, numl and num2, and returns the
result of dividing nu ml by num2 if num2 is a nonzero number. If nu ml or
num2 are not numbers, your function should return the symbol non - number.

5.2 Cond Expressions 107

If num2 is zero, your function should return the symbol zero-divisor.

What happens if you divide a number by zero in Scheme?

5.10 Write a function that takes one argument, number, and returns its square
root if it is non-negative. If number is negative, your function should return
the symbol negative. What happens if you take the square root of a nega
tive number in Scheme?

5.11 If you divide two integers, the result will be an integer or a ratio (such as
2/3). For example, dividing 2 and 3 results in 2/3. Write a function that
takes two integer arguments and returns their quotient as an integer or a
real number (floating point number). If the first integer is evenly divisible by
the second, your function should return an integer, otherwise it should
return areal number. Called with 2 and 3, your function should return the
real number 0.667.

5.2 Cond Expressions
The special form cond is used as a more generalized means of testing conditions
in Scheme. cond takes multiple condition-action pairs as arguments. Each condi
tion is tested, in the order given, until a condition evaluating to true (a non-if
result) is encountered. The action associated with this condition is then evaluated
and that value is returned. Below is an example to clarify this rather involved
special form:

(cond «< num 10) (* num num»
«< num 100) (* num 2»
«< num 1000) (+ num 10»
(else (I num 3»)

In the following examples, the current condition-action pair will be in a ~
(cond 1«< num 10) (* num num» I

«< num 100) (* num 2»
(« num 1000) (+ num 10»
(else (I num 3»)

The condition, « num 10), is evaluated. If it is true, then the action, (* num

num), is evaluated, and the product is returned as the value of the cond. If the
condition is [alse, evaluation continues with the next condition-action pair:

(cond «< num 10) (* num num»
I (« num 100) (* num 2» I
«< num 1000) (+ num 10»
(else (I num 3»)

which is evaluated like the previous pair.
If the first three conditions are false, we arrive at the final pair:

cond

Evaluation example
withcond

108 Chapter5: Conditionals

else: the fallout
condition within cond

(cond « < num 10) (* num num»
«< num 100) (* num 2»
«< num 1000) (+ num 10»

1 (else (/ num 3» I)
The condition else is always true; therefore, (/ num 3) is returned as the

value of the cond. This is the standard way of having an otherwise clause within a
condition. It effectively means if all the above conditions are false, then perform
this action.

The above cond can be expressed in English as

If num is less than 10, return (* num num)
otherwise, if num is less than 100, return (* num 2)
otherwise, if num is less than 1000, return (+ num 10)
otherwise, return (/ n um 3)

The order of the condition-action pairs is important, because they are
evaluated in the order listed. The location of any otherwise clause-one with else
as its condition-is important. If it is the first pair, then its action is always per
formed and none of the other conditions are evaluated.

Mistakes to A void
00 not put condition-action pairs after an else clause. The condition
else is true, so once it is encountered, its action will be evaluated and
returned and no further conditions will be examined. An else clause
should always be the last condition-action pair in a cond.

5.2.1 Exerclses
5.12 Assume that the cond expression in the seetion above had been written as

(cond « < num 1000) (+ num 10»
«< num 100) (* num 2»
«< num 10) (* num num»
(else (/ num 3»)

What value would be returned if num were equal to 37? What would the ori
ginal cond have returned? What value(s) of num will yield the same results
for both condS?

5.13 Write a function date-compare that takes two lists, each representing a date
and returns the symbol1ess if the first is before the second, and #f other
wise. A date is represented as a list of three elements: the month, day, and
year. For example,

> (date-compare '(1 3 1984) '(1 4 1984))
less

5.3 Testing Multiple Conditions and Negations 109

5.14 Write a function that takes a single numerical parameter, num, and returns
the symbol positive if num is greater than zero, negative if num is less
than zero, and zero otherwise. Your function should use a single cond
expression.

5.15 The previous "Exercises" seetion had a number of problems that asked you
to write functions using if. Which of these could be more succinctly written
using cond instead?

5.16 Modify your solution to exercise 5.4 so that it also tests if the animal is
present in the list qualities. If it isn't, return a message indicating so. For
example,

) (characteristic 'platypus 'strange)
(sorry a platypus is not a pet)

5.3 Testing Multiple Conditions and Negations
To test multiple predicates, the special forms and and or are used. Both of these
take any number of arguments. When an and expression is evaluated, each argu
ment is evaluated one at a time from left to right. If an argument is encountered
that evaluates to H, the evaluation of the and stops and H is returned. If all the
arguments evaluate to true, the result of the last argument is returned. In other
words, an and returns a true value only if all of its arguments do not evaluate to
H.

An or expression is evaluated in a similar fashion to and. If all the arguments
to an or return H, H is returned. If any of the arguments, evaluated from left to
right, returns a true value, evaluation stops and that value is returned.

To test for the opposite, or negation, of a condition, use the function not. not
takes one argument and returns H if the argument is true, and tt if it is false, #f.

The special forms and and or can be used like conditional expressions. The
previous if expression

(if () num 1)
(if « num 100)

#t
H)

#f)

can be written using an and expression as follows:
(and (> num 1)

« num 100»

Evaluation of the and begins by testing if num is greater than 1. If it's not, #f is
returned. Otherwise evaluation continues by testing if num is less than 100. If it's
not, #f is returned. Otherwise #t is returned because it is the return value of the
last condition, « num 100).

and evaluation rules

or evaluation rules

not

110 Chapter5: Conditionals

Expressing comp/ex
conditions in Scheme

Using if, cond, and,

oror

This and condition can be more simply expressed as

« 1 num 100)

which is true if 1 is less than num (same as num is greater than 1) and num is less
than 100.

Below are some examples of conditions and their Scheme representations
using and, or, and not.

Condition Scheme version
num is odd and divisible by 3 (and (odd? num)

(= (remainder num 3) 0»
num = 3 or num = 4 (or (= n um 3) (= n um 4»

numisevenand (77 < num < 100) (and (even? nurn) « 77 nurn 100»
value is not a number (not (number? val ue))

num is not in 10,11, ... ,20 (not «= 10 num 20»

This last example could be expressed as nurn is less than 10 or nurn is greater
than 20. In Scheme this would be written as

(or « nurn 10) (> num 20»

Not all if and cond expressions are easily written as and or or expressions,
especially if they return values other than #t or #f. For example, the previous if
expression

(if (number? item)

(+ item 1)

itern)

can be written as
(or (and (number? item) (+ item 1»

item)

The or has two arguments: one and expression and the expression
item

The and expression is evaluated first. The condition
(number? item)

is evaluated. If it returns a non-#f value, evaluation continues with
(+ item 1)

which evaluates to a non-#f value, and this value is the result of the and expres
sion. This value will be the result of the or expression as it is a non-#f result of
the first argument to or. If the and expression evaluates to #f, because the expres
sion

(number? item)

evaluates to #f, the final argument to or,

item

is evaluated. It evaluates to the value of the symbol i tem, and this value is
returned as the return value of the or.

5.3 Testing Multiple Conditions and Negations 111

The original if expression is more understandable and readable, and would
be preferred to the or / and equivalent.

In general, an if-then or if-then-else expression with an else part returning #f
can be written using and. Similady, nested if-then-else expressions can be written
using an and if a11 the else parts return u. Other simple and nested if-then-else
expressions are best written using if, cond, or nested ifS.

Mistakes to Avoid
The opposite of "less than," <, is >=, not >. A simpler alternate is to use

(not « numl num2»

to express the opposite of "less than."

Mistakes to Avoid
English typically uses "or" to indicate an alternative, as in: "You can
have ice cream or beer for dessert." This is called an exclusive or-one of
the two items is true, but not both. Scheme uses an inclusive or. One or
both items must be true for the or to be true. To test if either of two
numbers is zero, but not both,

(or (zero? numl) (zero? num2»

will not work, as it will be true if both numbers are zero as weil. Instead
use

or

(or (and (zero? numl) (not (zero? num2»)
(and (zero? num2) (not (zero? numl»»

(and (not (and (zero? num2) (zero? numl»)
(or (zero? numl) (zero? num2»)

This second form is used in situations in which you want to return one
value if both items are true, another value if one but not both are true,
and another value if both are not true. This can be expressed nicely
using a cond:

(cond « and conditionl condition2) , both)
«or conditionl conditionl) 'only-one)
(else 'neither»

When to use H, cond,

Ofand

Exclusive versus
inclusive Of

112 Chapter 5: Conditionals

Oe Morgan's laws

Mistakes to A void
Be careful in translating English to Scheme. For example, the condition
"number is neither greater than 20 nor less than 10" is written in Scheme
with an and, not an or as the English inclusive or statement implies. The
correct interpretation is as folIows:

(and (not (> number 20»
(not « number 10»)

Similarly, it could be written as

(and «= number 20»
(>= number 10»)

which can be simplified as

«= 10 number 20)

Oe Morgan, a nineteenth century logician, created la ws that give
equivalences for ands and orS with notS. They show that

(not (and conditionl condition2))

is the same as

(or (not conditionl) (not condition2))

and that

(not (or conditionl condition2))

is the same as

(and (not conditionl) (not condition2))

Thus the above and expression

(and (not (> number 20»
(not « number 10»)

can be written as

(not (or (> number 20)
« number 10»)

Sometimes it is preferable to transform a condition using Oe Morgan' s
laws to make it easier to read. For example, to test "if value is not a
number or not zero," use

(or (not (number? va1ue»
(not (zero? va1ue»)

which can be written as

(not (and (number? va1ue)
(zero? va1ue»)

which reads "if value is not the number zero. "

5.4 List and Atom Predicates 113

5.3.1 Exercises
5.17 Rewrite the if expressions below without using if or cond. You may use

and and or expressions, but try to use the fewest ands and orS possible.
(if (positive? number)

#t
#f)

(if (positive? number)
'positive
#f)

(if (positive? number)
'positive
'negative)

Which of these is more readable using and and or expressions?

5.18 Rewrite the following and and or expressions using if or cond expressions.
In each case, use just a single if or cond expression.

(and (even? num) 'even)

(or (even? num) 'odd)

(or (and (zero? number) 'zero)
(and (negative? number) 'negative)
'positive)

5.19 Write a function that takes three arguments, elementl and element2, which
are both bound to atoms, and a-list, a list. Your function should return true
if elementl occurs before element2 in a-list. You may use the list functions
from Chapter 4.

5.20 Write a function to perform your own tests for subseq (from Chapter 4) that
takes three arguments, a list, a-list, and the start and end element numbers of
the list. Your function should compare the values of start and end against the
length of a-list and each other, and return some helpful error message if they
are not legal. Otherwise your function should call subseq to return the
appropriate sublist. Your error message should indicate which value is bad
and what is wrong with it.

5.4 List and Atom Predicates
In addition to numerical predicates, Scheme provides predicates that work on
lists and atoms. Below is a collection of some of the more common of these predi
cates:

114 Chapter5: Conditionals

List and atom predi
cates

predicate arguments returns true if and only if
list? arg arg is a list
atom? arg arg is an atom
symbol? arg arg is a symbol
null? arg arg is ()
equal? argl arg2 argl is the same as arg2
member element list element occurs in list

The predicate atom? is not buHt into Scheme, but is easily defined as folIows:
; Return true if item is a symbol or a number, false otherwise.
(define (atom? item)

(or (symbol? item) (number? item»

There are other functions that return true if an element occurs in a list (e.g.,
position). Usually member is used, as it is more readable in the context of a
predicate, as in

(if (member 'anchovies pizza-toppings)
'(sorry i am not hungry)
'(sure i will have a slice»

Study the following evaluations to see how the above functions work:

> (list? '(this is a list with anchovies))
#t

> (atom? 'word)
#t

> (atom? 37)
#t

> (atom? '(this is a list with anchovies))
#f

> (symbol? 'word)
#t

> (symbol? 37)
#f

> (equal? 'linguica 'linguica)
#t

> (equal? 'linguica 'anchovies)
#f

> (equal? 13 (+ 10 3))
#t

> (equal? '(a (hidden (anchovy))) 'fa (hidden (anchovy))))
#t

5.5 Optional Seetion: All Equality Predicates Are Not Equal 115

) (equal? '(a (list)) '(a list»
#f

) (null? '())
#t

) (null? '(this list is not empty»
#f

5.4.1 Exercises
5.21 Exercise 4.16 from Chapter 4 asks you to debug the following function that

takes a number and returns the month that corresponds to that number:
(define (month month-num)

(1ist-ref '(January February March April May June July
August September October November December)

month-num))

Modify the debugged version of this function such that if called with an in
valid value for month-num, the functionreturns the symbol bad-month.

5.22 Write a function element-after that takes two parameters, element and a
list, and returns the element that follows element in a-list. If element does not
occur in a-list, element-after should return the symbol no-match. If element is
the last element in a-list, your function should return the symbol at-end

of -list. For example, the call
(element-after 'your '(what is your favorite color»

should return the symbol favorite.

5.23 Write aversion of position using the other buHt-in list functions from
Chapter 4. It should return #f if the element is not in the list.

5.5 Optional Section: All Equality Predicates Are Not Equal
The function = is used to test for numerical equivalence, and the function equa1?

is used to test for equivalence of atoms or lists. There are other equality predi
cates. Below is a list of the common ones. Each of these predicates takes two
arguments, with the exception of = which takes two or more arguments.

predicate returns true if and only if the arguments are
equa1? numbers or symbols that are the same; lists that are or look the same
eqv? numbers, symbols, or lists that are the same
= numbers that are the same

equa1? is the most general of these. If two objects are = or eqv?, they are also
equa1? Next in generality is eqv?, which is true for numbers that are = or sym
bols or lists that are identical. The most specific equality predicate is = which is
true if the two objects being compared are the same numbers. = cannot be used

Equality predicates

116 Chapter5: Conditionals

Equality predicates
used with lists

Creation of cons cells

When to use the
different equality
predicates

with symbols or lists:
The functions eqv? and equal? differ in their comparisons with lists. eqv? is

not true for lists or cons cells unless they refer to the same cons cello The empty
list, (), is always eqv? to itself. These functions compare the pointers that point
to the first cons cell that describes a list. If these pointers point to the same cons
cell, then the lists are eqv? Cons cells are discussed in "0ptional Section: Inter
nal Representation of ListsOl in Chapter 4. In order for two lists to be equal? they
must look the same--have the same elements in the same order.

To understand eqv?, it is important to know when new cons cells get created,
or when existing ones are used. Whenever a list is explicitly mentioned through
quote or quasiquote as in

'(this is a new list that i arn creating now)

a new set of cons cells is created. The following functions also create new cons
cells: cons, list, append, subseq, remove, and reverse. When these functions
are used the new cons cells that are created will not be eqv? to other lists even if
they look the same.

Study the examples below carefully to get a better understanding of the
differences between the equality predicates, especially when comparing lists.
Remember symbols that are the same are equa1? and eqv? Numbers that are the
same are =, equal?, and eqv? Lists that are the same (same cons cells) are equal?

and eqv? Lists that look the same (not the same cons cells) are equal?

> (equal? 3 (+ 1 2))
#t

> (eqv? 3 (+ 1 2))
#t

> (eqv? 'ward 'ward)
#t

> (equal? '(a list) '(a list))
#t

> (eqv? ' (a list) , (a list))
#f

> (define my-list '(a list))
??

> (eqv? my-list my-list)
#t

; each '(a list) creates new cons cells

; both lists refer to the same cons cell

2. A fourth equality predicate, eq?, is identical to eqv? except when comparing numbers, in which
case they may or may not be eq? depending on the implementation of Scheme used. This
predicate is used when comparison speed is important and only symbols or lists are being
compared.

5.6 A MusicalOffering 117

> (eqv? my-list 'la list))
#f

> (eqv? (edr my-list) (edr my-list))
#t

i '(a list) creates new cons cells

i no new cons cells are created

> (eqv? (reverse my-list) (reverse my-list)) i newconscellsarecreated
#f

> (eqv? (eans 4 my-list) (eans 4 my-list)) inewconscellsarecreated
#f

> (equal? (eans 4 my-list) (eans 4 my-list)) i thetwolists lookthe same
#t

5.6 A Musical Offering
In western music, the notes of the musical scale can be represented with the list

(A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp)

Each two consecutive notes are one half-step apart. There are names for the
intervals or distances that any two notes are from one another. These names, in
half-step increments between two notes, are given in the list below beginning
with a zero half-step interval.

(unison minor-second rnajor-second rninor-third rnajor-third
perfect-fourth dirninished-fifth perfect-fifth augrnented-fifth
rnajor-sixth rninor-seventh rnajor-seventh)

From this table we see that a one half-step interval is called a minor-second, and
a perfect-fifth is a 7 half-step interval.

5.6.1 Computing the intervals between notes
Using the two lists above we can construct a function that takes two notes and
returns the interval between them. To do this, determine the number of half-steps
between the two notes, then determine the interval that corresponds to that
number of half-steps. There is one problem to avoid. The order in which the
notes are given is important. The interval between C and G is a perfect-fifth (7
half-steps); however, the interval between a G and the next higher C (after G
sharp the notes continue with A again) is 5 half-steps, or a perfect-fourth. This
makes the problem slightly more difficult. The number of half-steps between two
notes is the difference in their positions in the scale-list if the second note comes
after the first in the scale-list. If the first note comes after the second, then the
interval is twelve minus the distance in their positions.

To make the code easier, we'll save the distance between the notes in a 1et
variable. The code folIows:

Musical scale

Names 01 note incre
ments

118 Chapter 5: Conditionals

; Return the musical interval between note1 and note2.
(define (interval note1 note2 scale-list interval-list)

(let ((distance (- (position note2 scale-list)
(position note1 scale-1ist»)

(if (positive? distance)
(list-ref interval-list distance)
(list-ref interval-list (- 12 distance»»

Lefs test this function. If we call the function with the notes C and 0, and the
above scale and intervallists, the let variable, distance, is bound to 2. Taking
list-ref of interval-list and 2 returns major-second. If we call the function
with 0 and C, and the same scale and intervallists, distance is bound to -2, and
the function returns list-ref of interval-list and 12 - -2, which is an error
because there is not an element at position 14 in the list. The problem is that dis
tance is negative and we should subtract the absolute value of distance. This
bug is fixed by changing the else-action of the if expression to

(list-ref interval-list (- 12 (abs distance»)

or to
(list-ref interval-list (+ 12 distance»

Another good test to make is calling the function with the same note for
note1 and note2. This would give distance a value of 0, which is not true when
applied to positive?; thus list-ref of interval-1ist and 12, or an error is
returned. To fix this bug, the condition of the if should be changed to

(or (positive? distance) (zero? distance»

or the then and else actions can be switched and the condition changed to
(negative? distance)

A correct solution is

; Return the musical interva1 between note1 and note2.
(define (interva1 note1 note2 scale-list interval-list)

(let ((distance (- (position note2 scale-list)
(position note1 scale-list»)

(if (negative? distance)
(list-ref interval-list (+ 12 distance»
(list-ref interval-list distance»))

5.6.2 Computing the note an interval beyond another note
Another useful function is one that takes a note and an interval and returns the
note that is that interval amount above the original note. This function must
determine the number of half-steps that defines the interval desired, then add
that value to the position of the note in the scale, giving the position of the new
note. The actual new note is computed by taking list-ref with this position and
the scale-list.

If we try out this algorithm to determine the note a perfect-fifth above C, we
find a perfect-fifth to be 7 half-steps, and C to be in position 3 in the scale-list.

5.7 Determining the Value 0/ Poker Bands 119

Adding 7 and 3 gives 10, and the note at position 10 is G. Thus, G is a perfect-fifth
above C. This is correct.

However, what happens when we try to compute the perfect-fourth of G-it
should be C. The number of half-steps in a perfect-fourth is 5 and the position of
G is 10, adding these yields 15, but there is no note at position 15 in the scale-list.
To keep the position between 0 and 11, take the remainder of the position and 12.
This treats our scale-list as a circular list. Taking the remainder of 15 and 12 gives
3, and the note in position 3 in the scale-list is C, which is correct.

The Scheme code for this function is
; Return the note an interval above note.
(define (higher-note note interval scale-list interval-list)

(let ((half-steps (position interval interval-list»
(note-position (position note scale-list»)

(list-ref scale-list
(remainder (+ note-position half-steps) 12»))

5.6.3 Exercises
5.24 The next two problems use a different approach than the previous functions

did to handle the problem of exceeding the boundaries of the scale-list. This
approach is to represent the scale-list as a longer list, as folIows:

(A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp
A A-sharp B C C-sharp D D-sharp E F F-sharp G G-sharp)

Below is an alternate solution to the function interval:

(define (interval-alt note1 note2 scale-list interva1-1ist)
(let ((distance (- (position note2 (reverse scale-list»

(position note1 scale-1ist»))
(list-ref interval-list distance»)

Will this solution work? Why or why not?

5.25 Below is an alternate solution to the function higher-note using the scale
list given in the previous problem:
(define (higher-note-alt note interval scale-list interval-list)

(let ((half-steps (position interval interval-list»
(note-position (position note scale-list»)

(list-ref scale-list (+ note-position half-steps»)

Will this solution work? Why or why not?

5.7 Determining the Value of Poker Hands
Poker is a multiplayer card game in which each person has a total of five cards.
These can be represented as a list, as in

(jack queen queen jack three)

120 Chopter 5: Conditionals

Names ot poker
hands

Counting cards

Pseudo code tor
poker

The order of the cards does not matter. The value of a player's cards (their hand)
is based on the following ordering:

name example hand
four-of-a-kind (seven seven seven two seven)
full house (two eight eight two two)
three-of-a-kind (ace ace king four ace)
two pairs (six seven two two seven)
one pair (three five three king ace)

This is a simplification of the actual game of poker, which has other winning
hands like straights and flushes. In this version of poker, four-of-a-kind is worth
the most and one pair the least. A full house consists of one pair and three-of-a
kind.

To determine a hand value, we must count the number of times that each card
occurs in the player' s hand. Given the list

(jack seven queen jack jack)

we need to count the number of jacks, queens and sevens. Yet we don' t know
beforehand what cards exist in the hand. In reality what we will have to do is
count the number of times the first card occurs in the hand, and the number of
times the second card occurs, and so on. This gives us five totals. For the above
example, we would get the totals 3, 1, 1, 3, and 3 for the first, second, third,
fourth, and fifth elements of the list, respectively. The first 3 teIls us that the first
element occurred three times in the card list. From this information we can deter
mine what the value of the hand iso For example, if any of the totals is 4, then the
hand is a four-of-a-kind. Rather than keeping these totals in five separate vari
ables, or recomputing them each time they are needed, we can save them in a list
and take advantage of the list predicates like member to determine if a particular
total exists.

The highest value hands should be checked for first to avoid problems like
calling a full house a pair or three-of-a-kind because that condition was satisfied
first. The pseudo code for this function can be expressed as follows:

• compute and save the totals of each card in the hand in the variable count-
list

• check for four-of-a-kind
• check for full house
• check for three-of-a-kind
• check for two pair
• check for one pair

The checks can be refined as follows:

• check for four-of-a-kind:
check if 4 is in count -list

• check for full house:
check if 3 and 2 are in count -list

• check for three-of-a-kind:
check if 3 is in count -list

• check for two pair:
check if 2 occurs four times in count-list

5.7 Determining the Value 0/ Poker Hands 121

The reason 2 must occur four times in count -list is that if it occurs just
twice, that denotes a single pair.

• check for one pair:
check if 2 is in count -list

Expressing this in Scheme gives
i Return the value of a poker hand.
(define (poker-value hand)

(1et ((count-list (list

(cond

(count (first hand) hand)
(count (second hand) hand)
(count (third hand) hand)
(count (fourth hand) hand)
(count (fifth hand) hand»)

«member 4 count-list)
'four-of-a-kind)

«and (member 3 count-list) (member 2 count-list»
'full-house)

«member 3 count-list)
'three-of-a-kind)

«= 4 (count 2 count-list»
'two-pair)

«member 2 count-list)
'one-pair)

(e1se 'nothing»))

5.7.1 Exercises
5.26 Suppose we had written the code to check the conditions in reverse order

starting with one pair. What input hands to this new function would give
erroneous results? What input hands would give correct results?

5.27 Write a function that takes two hands as arguments and returns the winning
hand-that with the higher value. If the card values are the same, your func
tion should return the symbol tie.

5.28 Modify the function poker-value so that it returns the names of the cards
that participated in the pairs, full houses, etc. For example, if given

(king queen eight one queen)

your modified function should return

122 Chapter 5: Conditionals

(one-pair queen)

If called with

(king queen king king queen)

your modified function should return

(full-house king queen)

This is tricky for the case of two pair. Hint: use remove in your solution.

5.29 Combine your solutions to the previous two exercises so that your new
function can pick the winning hand for similar hands by comparing the
cards used in the hand. For example, your solution should be able to tell
that three jacks would beat three nines.

5.8 Summary
• Predicates are functions that can be used as conditions in and, or, if, and

cond expressions. Such predicates return #f if they are [alse, and some non-#{
value if they are true.

• #{ and #t represent [alse and true, respectively, in Scheme.
They are constants and cannot be changed.

• To test a condition and then take one of two actions depending on the out
come, use if.

• To test multiple conditions, use cond.
cond can perform multiple actions for each condition. As with functions, the
return value of the cond is the result of the last action evaluated.

• To form compound conditions, use and or or.
• To test the negation of a condition, use not.
• To test if an expression evaluates to a list, an atom, a symbol, or the empty

list, use list?, atom?, symbol?, or null?, respectively.
• To test if an atom occurs in a list, use member.
• To test if two atoms are the same or two lists look the same, use equal?
• To test if two atoms (symbols or numbers) or two lists are the same, use eqv?
• To test if two symbols or two lists are the same, use eq?
• To test if two numbers are the same, use =.

• Summary of predicates introduced in this chapter:

~redicate arguments returns true if and onl! if
not arg arg is #f
< numl ... numN numl < num2 < ... < numN
> numl ... numN numl > num2 > ... > numN
= numl ... numN numl = num2 = ... = numN
<= numl ... numN numl :5; num2 :5; ••• :5; numN
>= numl ... numN numl ~ num2 ~ ... ~ numN
zero? num num=O
positive? num num>O
negative? num num<O
even? num num is an even number
odd? num num is an odd number
number? num num is a number (integer, real, or ratio)
real? num num is areal number
integer? num num is an integer
list? arg arg is a list
atom? arg arg is an atom
symbol? arg arg is a symbol
null? arg arg is ()
member element list element occurs in list
equal? argl arg2 argllooks the same as arg2
eqv? argl arg2 argl is the same as arg2
= numl num2 numl is the same as num2

• Summary of special forms introduced in this chapter:
(if condition

action
[else-action 1)

If condition is true, returns action. If condition is false, returns else-action. If con
dition is false and there is no else-action, returns an undefined value.

(cond (condition action1 actionl ... actionN)
(condition action1 actionl ... actionN)

(else action1 action2 ... actionN)

Evaluates conditions in order and returns the last action, actionN, correspond
ing to the first condition that is true. If the are no actions, condition is returned.
If an conditions are false, returns actionN corresponding to else. If an condi
tions are false and there is no else dause, cond returns an undefined value.

(and condition1 condition2 ... conditionN>

Evaluates conditions until a false condition is found or an conditions are true.
Returns #f if a false condition is found, otherwise returns conditionN.

5.8 Summary 123

124 Chapter 5: Conditionals

(or conditionl condition2 ... conditionN)

Evaluates conditions until a true condition is found or all conditions are false.
Returns first true condition found or #f if all conditions are false.

CHAPTER6

REPETITION
THROUGH RECURSION

6.1 Recursion
There are times when a sequence of actions should be repeated. We may want to
applya function to all the elements of a list. We may want to add the first twenty
numbers in a list. We may want to return the first symbol in a list. To carry out
such actions the technique of recursion can be used. It is essential to master recur
sion, as it is commonly used in Scheme programming. There are different types
of recursion that we will explore individually. The important thing is not to just
memorize the general form for each type of recursion illustrated, but to get a
thorough understanding of the process of writing recursive functions. Recursion
is a skill that you improve on with practice. Use the examples to guide you, then
practice, practice, practice.

6.1.1 Example: Finding a number in a list that exceeds a threshold
value

Recursion is often used with lists. The following example illustrates many of the
basic ideas used when recursing through lists. Recursion involves having some
code that needs to be repeated and some way of deciding when you are done.

The code to repeat for this first example is a test if a number in a list exceeds
some threshold. We are done when we find a value that exceeds the threshold,
and we return that number.

This can be expressed in Scheme as
(if (> (first a-list) threshold)

(first a-list)
else-action)

Recursion through
fists

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

126 Chapter 6: Repetition Through Recursion

Recursive definitions

Recursive functions
and recursive calls

If the above condition is met, (first a-list) is evaluated and the desired
element is returned. The else-action is the important missing piece. It must find
the element we are looking for if it' s not the first element of the list. This can be
viewed as finding the element that exceeds the threshold in the rest of the list,
which can be expressed as

(if (> (second a-list) threshold)
(second a-list)
i Find the element that exceeds threshold in the rest of the rest of a-list

and so forth.
If we attempted to write this in Scheme, we would get the neverending

sequence
(if (> (first a-list) threshold)

(first a-list)
(if (> (second a-list) threshold)

(second a-list)
(if (> (third a-list) threshold)

(third a-list)

Writing such code that works for any length list would be impossible. Yet so
far, the only means we have seen of invoking a section of code is by typing it into
the interpreter or by calIing a function that embodies that code. The first choice is
impractical, as we have just seen. If we attempt the second alternative, wouldn't
we run into the same senseless repetition as above?

The key here is to look back at the earlier definition of the problem.

To return the element in a list that exceeds the threshold:
if the first element of the list is greater than the threshold

return that first element
otherwise,

return the element in the rest of the list that exceeds the threshold

This definition is recursive because it uses the term being defined within its
definition, namely the step in the otherwise dause that teIls us to perform a prob
lem identical to the one being defined, except with the rest of the list instead of
the entire list. The definition has an indication of when to stop-when an element
greater than the threshold is found.

The function can be written using an if expression that implements the above
pseudo code in Scheme. This function has two parameters, threshold and a
list. The otherwise dause has a call to the function we are definingi thus, it is a
recursive call, which makes this a recursive function. This recursive call is with a
differentvalue for a-list-(rest a-list). This breaks the problem into a smaller,
similar problem: namely, finding the element exceeding the threshold in the rest
of the list. Defining the problem in terms of smaller, similar pieces is an impor-
tant aspect of writing recursive functions. The resulting function would be '

; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)

(if (> (first a-list) threshold)
(first a-list)
(first-greater threshold (rest a-list»)

If first - grea ter is called with a value of (first a -list) greater than the
value of threshold, (first a-list) is returned. Otherwise, first-greater is
called again, but this time (and this is the key point) with the rest of a -list.

When this recursive call is evaluated, it checks the first of the list (which is the
rest of the original a -list). Thus the second of the original list is checked. Each
element in the list is checked in this fashion until we find an element that exceeds
the threshold. That element is returned and the recursive repetition stops.

In the trace below aseries of recursive calls is made. This is called a recursive
descent.

(first-greater 3 '(1 2 4 3 5»
J.

; The first condition fails since 1 isn't> 3.
; The otherwise dause is performed.
; The result of the call to (first-greater 3 '(1 2 4 3 5» is
; the result of this otherwise dause.

J.
(first-greater 3 '(2 4 3 5»

J.
; Again the condition is false and the return value is
; the result of the otherwise dause.

J.
(first-greater 3 '(4 3 5»

J.
; The condition is true as 4 > 3, thus 4 is returned.

J.
4

The interpreter's output will be as folIows:
> (first-greater 3 '(1 2 4 3 5))
4

Let's try another example:
> (first-greater 5 '(1 2 4 3 5))
Error: Pair expected

What happened? What should the function have returned? In this case there
are no values in the given list that are greater than the threshold value, 5. We
wind up recursing through the list until we hit the end of the list. Yet we con
tinue to make a recursive call with the empty list. This results in an error when
we try to take the first of the empty list.

To fix this bug, we must add a test for an empty list and not recurse further.1f
we hit the end of the list, we should return some reasonable value. #f is a good
choice in this case. Below is the new code with the added test:

6.1 Recursion 127

Recursive descent

Recursing too (ar

128 Chapter 6: Repetition Through Recursion

Putting exit cases in
the proper order

; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)

(cond «> (first a-list) threshold)
(first a-list»

«null? a -list)
#f)

(else
(first-greater threshold (rest a-list»»)

Let's try this new code out.
> (first-greater 5 '(1 2 4 3 5))
Error: Pair expected

We get the same error. In such situations be sure that you used the proper
spelling of the function in its definition and all its calls. Sometimes what looks
like a bug is just a renaming problem in which you end up defining a new func
tion that calls your old function and produces the same error. Since we didn't
make these mistakes, the function must have an error. The first thing the function
does is compare the first of the list with the threshold value. After that we test
if the list is empty. These two tests are in the wrong order. We must first check if
the list is empty before comparing the first element. Below is the correct function
and a sampIe call:

; Return the first number greater than threshold in a-list.
(define (first-greater threshold a-list)

(cond «null? a-list)
U)

«> (first a-list) threshold)
(first a-list»

(else
(first-greater threshold (rest a-list»»)

> (first-greater 5 '(1 2 4 3 5))
#f

Mistakes to A void
Before taking the first or rest of a list, be sure that the list is not
empty (check if (null? a -list) is not true). In recursive functions that
take lists, acheck for an empty list is usually the first condition that
should be tested.

By evaluating recursive calls as we have evaluated nonrecursive function
calls, the outcome of a sampIe invocation can be traced easily. The important
observations to make in the case of first-greater are

• Whenever the exit condition is not met, the function is called recursively with
a new value for a -list.

• Eventually one of the exit conditions (> (first a -list) threshold) or
(null? a -lis t) will be met and the recursion will end.

In general, recursive functions have

• exit or termination cases that return values that do not involve recursive calls.
• recursive cases in which a recursive call is made.

In these recursive cases, the recursive call is made with a smaller part of the
problem to be solved. Recursion works by breaking the problem down into
smaller pieces that eventually lead to exit conditions that terminate the recursion.

6.1.2 Example: Investing in your best interest
This example explores your monetary growth when investing a fixed amount
monthly over many years with interest compounded daily. You can use this to
do financial planning for your retirement or to calculate how much you would
have to invest each month to put a kid through college.

To model these investment scenarios we will need to repeat a section of code
a certain number of times. Three important elements are needed:

• The block of code to repeat
• A counter to indicate how many repetitions have been made
• Acheck to determine if we are done

The block of code to repeat must determine the new balance (balance plus
balance times daily interest rate). In addition, every month we add an additional
amount to the balance.

To model interest compounded daily, we must perform 365 repetitions (we'll
ignore leap years). A counter variable can keep track of the current day we are
calculating. We'll need to examine the counter variable to determine if we must
add the additional amount to our balance (every 30 days to model making an
increment once each month). This counter will get incremented with each repeti
tion of the code. The termination check will be a simple if or cond expression
checking the value of the counter.

Let's refine what we have above and let the counter, which will be called
counter, start with the value one and increment until it is greater than the
number of days days. This means we are done when counter is greater than
days. The refined pseudo code folIows:

if counter is greater than days,
return the current balance

otherwise,
make a recursive call with counter plus 1 and
a new balance (based on the old balance balance
and the interest rate rate) and a possible
increment increment.

The function has five parameters, balance, counter, days, rate, and incre
ment. The recursive call breaks the problem into a smaller problem by.passing
different values for counter and balance. The recursive call computes the new
balance for the days counter plus 1 to days. Eventually counter will exceed
days and the recursion will stop. Expressing this in Scheme gives

6.1 Recursion 129

Exit and recursive
cases

Modeling investment
scenarios

Pseudo code tor
investment modeling

130 Chapter 6: Repetüion Through Recursion

He/per function to
reduce the number of
parameters

; Compute growth of investment given start balance, time period,
; and daily interest rate with increment added every 30. days.
(define (new-balance balance counter days rate increment)

(cond «> counter days)
balance)

«zero? (remainder counter 30.»
(new-balance

(+ (* balance rate) balance increment)
(+ counter 1) days rate increment»

(else
(new-balance

(+ (* balance rate) balance)
(+ counter 1) days rate increment»)

This function has two parameters that are only needed for the recursive com
putations (counter and balance), and three parameters that make the function
general but do not change in the recursive calls (days, rate, and increment).
This screams for a helper function that takes fewer arguments and calls new
balance with initial values for counter and balance.

We can go a step further and write a function investment that will make it
easier to model investments over many years. Rather than take the number of
days we are investing and the daily interest rate, it will take the number of years
we'll invest and the annual interest rate. We'll need one extra parameter, the
amount to invest each month. Here is the code for investment:

; Compute annua1 investment given annual interest rate, years,
; and monthly investment amount.
(define (investment years rate increment)

(new-balance 0. 1 (* 365 years) (I rate 365) increment))

Below is a trace of the function new- balance to model 1 % interest gained
each day over three days on an initial investment of $1000.

(new-ba1ance 10.0.0. 1 3 0..0.1 0.)
.1

; The exit condition fails, as 1 isn't > 3.
; The otherwise dause is performed and its action is evaluated .

.1
(new-balance 10.10. 2 3 0..0.1 0.)

.1
; The exit condition fails again .

.1
(new-balance 10.20..1 3 3 0..0.1 0.)

.1
(new-balance 10.30..30.1 4 3 0..0.1 0.)

.1
; The exit condition is true, as 4 > 3

.1
1030.301

The next example is a call to calculate how much we' d make investing $100 a
month for three months, with an initial investment of $1000 with 1 % interest
daily (don't we wish).

> (new-ba1ance 1000 1 90 0.01 100)
2865.09

Now let's call investment to model some more realistic, long-term invest
ments:

> (investment 10 0.05 200)
31372.45

invest $200 month1y over 10 years

> (investment 20 0.05 100) ; invest $100 month1y over 20 years
41690.72

In both of these examples the same amount is invested (about $24,000) but the
gains are much larger by starting earlier. So start investing now.

6.1.3 Example: Summing digits
Let' s write another recursive function. This function returns the sum of the

digits within number, where number is an argument to the function.
Some examples will help to illustrate what the function should do:

the sum of the digits in 1 is 1
the sum of the digits in 342 is 9
the sum of the digits in 1989 is 27

To solve this problem, think of the definitional pseudo code l to the function.
Definitional pseudo code is pseudo code that provides definitions for what the
function should return based on the arguments with which it is called. Such a
description takes on the following form:

If condition-l is true, the function returns return-value-l.
Otherwise, if condition-2 is true, the function returns return-value-2.

Otherwise, the function returns return-value-N.

From such adescription, the actual Scheme code can be easily written using
i f or cond conditional expressions. Part of the definitional pseudo code to a
recursive function is a recursive call that breaks the problem into smaller parts. In
addition, th~re should be return values that do not involve recursive calls. These
are the actions matching the exit conditions.

Below is the definitional pseudo code to the sum of the digits problem:

1. This is a term I have coined and is not standard in computer science.

6.1 Recursion 131

Definitional pseudo
code

132 Chapter 6: Repetition Through Recursion

Pseudo code (ar
adding digits

The sum of the digits in number is
number if number has only one digit
otherwise, the sum of the digits is

the first (leftmost) digit of number plus
the sum of the rest of the digits in number.

Another possible definition is

The sum of the digits in number is
number if number has only one digit
otherwise, the sum of the digits is

the last (rightmost) digit of number plus
the sum of the rest of the digits in number.

Both of these solutions have the same terminating condition-when number
has only a single digit. In the recursive case, they both break the problem into
smaller pieces, namely considering the sum of the digits to be the sum of one
digit and the sum of the rest of the digits. Computing the sum of the rest of the
digits will be the recursive call in our solution. Eventually this will yield a one
digit number, satisfying the exit condition.

In deciding which of the two above definitions to use, we should look into
which is easier to do: extract the first (leftmost) digit and all but the first digit of a
number, or extract the last (rightmost) digit and all but the last digit. Without
knowing how many digits the number is, the first digit is difficult to extract,
whereas the last digit is the remainder of the number when divided by ten. The
rest of the digits (the remaining digits to the left) are obtained by dividing the
number by ten and then removing any fractional part. This is done with the func
tion truncate, which returns the integer part of real numbers (the digits to the
left of the decimal point).

For example, the last digit of 347 is
(remainder 347 10) ~ 7

and the first digits are
(truncate (I 347 10» ~ 34

Lastly, a number is one digit long (our exit condition) if dividing it by ten and
truncating the result evaluates to zero. The two examples below illustrate this:

(zero? (truncate (I 9 10») ~ #t
however,

(zero? (truncate (I 347 10») ~ #f

At this point we can create the definitional pseudo code to our summing
digits problem:

if number is a one-digit number, then
return number

otherwise
return the sum of the last digit in number

and
the sum of the digits of the rest of number without the last digit.

Rewriting this in Scheme, we get
; Return sum of the digits in number.
(define (sum-digits number)

(if (zero? (truncate (I number 10»)
number
(+ (remainder number 10)

(sum-digits (truncate (I number 10»»))

To make this function more readable and eliminate the two identical calls to
truncate, a let expression can be used as folIows:

; Return sum of the digits in number.
(define (sum-digits number)

(let ((last-digit (remainder number 10»
(rest-of-number (truncate (/ number 10»))

(if (zero? rest-of-number)
number
(+ last-digit

(sum-digits rest-of-number»»)

Follow the recursive descent in the trace of this code:
(sum-digits 526)

j,

; last-digit is bound to 6
; rest-of-number is bound to 52, which is not zero, so the else actionis evaluated

j,

(+ 6 (sum-digits 52»
j,

; last-digit is bound to 2
; rest -of -number is bound to 5

j,

(+ 2 (sum-digits 5»
j,

; last-digit is bound to 5
; rest -of -number is bound to 0, satisfying our exit condition

j,

5

Two recursive calls are made, each one embedded as one of the values that must
be summed with the current last digit. Once the last recursive call

(sum-digits 5)

has been made, these sums can be determined. This can be viewed as climbing
out of the recursive descent. This is called a recursive unwind.

6.1 Recursion 133

Recursive unwind

134 Chapter 6: Repetition Through Recursion

Prescriptive method
for writing recursive
functions

(sum-digits 526)
J,

(+ 6 (sum-digits 52»
J,

J,
13

(+ 2 (sum-digits 5»

J,
7

J-
5

Starting at the last recursive call in the above diagram, the value of
(sum-digits 5)

which is 5 is added to 2 to give the value of
(sum-digits 52)

In a similar fashion, that result, 7, is added to 6, yielding 13, the return value of
(sum-digits 526)

Future traces will show both the downward recursive calls and the return
values from the recursive steps in one diagram, as in
(sum-digits 526)

J,
; last-digit is bound to 6
; rest-of-number is bound to 52, whichis not zero, so the else action is evaluated

J,
(+ 6 (sum-digits 52»

J,
13

J,
; last-digit is bound to 2
; rest-of-number is bound to 5

J,
(+ 2 (sum-digits 5»

J,
7

J,
; last-digit is bound to 5
; rest-of-number is bound to 0, satisfying our exitcondition

J,
5

6.1.4 General rules for writing recursive functions
Let's review the steps in writing a recursive function:

• Think of the exit cases-the simplest conditions in which an immediate
answer is known without taking any recursive steps. What are the return

values in these ca ses?
• Think of the recursive cases-those involving recursive calls. The recursive

calls should break the problem up into similar, smaller pieces. How can the
results of the recursive calls be used to get the desired return result?

• Write out the definitional pseudo code to the function using the exit and
recursive cases.

• Refine any steps so that the ideas can be stated in Scheme.
• Verify that your solution works in a simple example where only one recursive

call is needed. If there are problems, rethink your return values for your exit
and recursive cases. Examine the exit conditions, as they may not be
appropriate either.

• Write the Scheme code using your definitional pseudo code to guide you.
• Test out your code on the computer or by hand using traces.

6.1.5 Example: lesting if the digits in a number are in increasing
order

Let's use the guidelines given above to solve the next recursive problem. The
problem is to check if the digits in a number are in increasing order from left to
right. For example, the number 1234 has digits that are in increasing order from
left to right; however, 647 does not.

This problem can be viewed as determining if the digits are in decreasing
order from right to left. As we saw in the last problem, it is easier to sequence
through a number in a right to left fashion, so the problem will be res ta ted as
such.

First the exit cases-one will be when there are no more digits to compare
against in the number, in which case we return #t. Another exit case is when a
digit is encountered that is greater than the previous digit (the digit to the right of
it). In this case #f is returned.

The recursive ca se occurs when there are more digits to check and the current
digit is less than or equal to the previous digit. In this case we need to compare
against the remaining digits (those to the left) recursively.

Now put these cases together as the definitional pseudo code to the problem
and refine any areas that do not easily translate into Scheme.

if there are no more digits to check, return #t
otherwise, if the current digit is greater than the digit to the right of it,

return #f
otherwise, return the result of a recursive call with the leftmost digits.

Some of these steps need refinement. First, how do we know if there are no
more digits to check? Presumably we will be stripping off the last digit with each
recursive call, and eventually we will reach zero. As was illustrated in the surn

digi ts function, when a one-digit number is divided by ten and truncated, zero
is returned, as in

(truncate (I 7 10» ~ 0

6.1 Recursion 135

Pseudo code to test
order o(digits

Refinement o(pseudo
code

136 Chapter 6: Repetition Through Recursion

Thus, there are no more digits to examine when the number to check is zero.
Another aspect that needs refinement is the notion of comparing the current

digit against the digit to the right of it. This can be viewed as comparing the last
digit (rightmost) with the next to last digit (the one to its immediate left).

We can use a let expression to name the last digit, next to last digit, and the
rest of the number (without the last digit). Since we can use the value of the rest
of the number to more easily compute the next to last digit, we'll use a let *.

Now that the refinements have been made, we can express the solution in
Scheme as follows:

; Return true if the digits in number are increasing
; from left to right.
(define (increasing-digits number)

(let* ((last-digit (remainder number 10»
(rest-of-number (truncate (I number 10»)
(next-to-last-digit (remainder rest-of-number 10»)

(cond «zero? rest-of-number) #t)
«> next-to-1ast-digit last-digit) #f)
(else (increasing-digits rest-of-number»»

Follow the trace below to see how this function works:

(increasing-digits 812)
J,

;last-digitisboundtothevalueof (remainder 812 10) ~ 2
;rest-of-numberisboundtothevalueof(truncate (/812 10» ~ 81
;next-to-last-digitisboundtothevalueof (remainder 81 10) ~ 1
; 81 is not zero, nor is 1 > 2, thus the otherwise action is performed

J,
(increasing-digits 81)

J,
; last -digi t is bound to the value of (remainder 81 10) ~ 1
;rest-of-numberisboundtothevalueof(truncate (/81 10» ~ 8
;next-to-last-digitisboundtothevalueof (remainder 8 10) ~ 8
; 8 is not zero, but 8 > I, so #f is returned.

J,
#f

6.1.6 Exercises
6.1 Another way of testing if a number is a one-digit number is by checking if it

is less than ten; however, this does not work for negative numbers. Does the
function sum-digits work for negative numbers? What about the function
increasing-digits? If not, how would you fix these functions so that they
do work when called with negative numbers?

6.2 Write a function sum-evens with two parameters, start and end. The func
tion should return the sum of the even numbers between start and end

6.1 Recursion 137

inclusive.

6.3 Explain what this modification to new- balance does.
(define (new-balance balance counter days rate period increment)

(cond «> counter days)
balance)

«zero? (remainder counter period»
(new-balance

(e1se

(+ (* balance rate) balance increment)
(+ counter 1)
days rate per iod increment»

(new-balance
(+ (* balance rate) balance)
(+ counter 1)
days rate period increment»)

Give a sampie call to show how much is gained if you invest $50 at the end
of each week for a year (52 weeks). Then make a call to see how much is
made if you invest the same amount, $2600, by quarters ($650 is invested at
the end of each quarter~very 13 weeks). Use 7% as the annual interest rate
in your calls. How much more do you make with weekly deposits versus
quarterly deposits?

6.4 The following modification to the function new- balance allows different
types of investment options.
(define (newer-balance balance counter days rate day-list

increment)
(cond «> counter days)

balance)
«member (remainder counter 7) day-list)

(newer-balance
(+ (* balance rate)'balance increment)
(+ counter 1)
days rate day-list increment»

(e1se (newer-balance
(+ (* balance rate) balance)
(+ counter 1)
days rate day-list increment»)

Write function calls to model the following annual investments with 5%
annual interest (assume that the first week of the year begins on a Monday):
a.) investing $10 each weekday (Monday through Friday); b.) making equal
investments twice a week on Mondays and Thursdays based on an annual
investment total of $1000; and c.) investing $5 a day (except Sundays) start
ing with an initial balance of $250.

138 Chapter 6: Repetition Through Recursion

Free variables

6.5 Write a function with two parameters, digit, a single-digit number, and a
positive number, number. The function should return #t if digit is one of the
digits in number, and #f otherwise.

6.6 Write a function with one parameter, number, an integer value. The function
should return the largest digit in number.

6.7 Modify the function increasing-digits to use an alternate approach for
comparing the current digit with the previous digit-that of using an addi
tional parameter to hold the previous digit. Each time the function is called
recursively, the current digit value can be used as the previous digit argu
ment. What value should this extra parameter be given for the initial call?
Does your solution work for one-digit numbers? Do you prefer this new
solution or the original one with one parameter?

6.2 Optional Section: Global Variables and Recursion
The function new-balance could have been written without using days, rate,
and increment as parameters, instead treating them as free variables within new

balance. A free variable is a variable used in a function that is not a parameter or
a local variable within a let or let*. Using these parameters as free variables
may seem more logical because their values are not changed when making recur
sive calls. The new code to new- balance would look like the following:

; compute growth of investment given start balance, time period,
; and daily interest rate with increment added every 30 days.
(define (alt-new-balance balance counter)

(cond «> counter days)
balance)

«zero? (remainder counter 30»
(alt-new-balance

(+ (* balance rate) balance increment)
(+ counter 1»)

(else
(alt-new-balance

(+ (* balance rate) balance)
(+ counter 1»»)

Each time you want to invoke alt-new-balance, initial values of days, rate,
and increment must be defined. The equivalent of the call to new- balance
below,

(new-balance 1000 1 3 0.01 0)

would be

6.3 Optional Seetion: Different Types of Recursion 139

(define days 3)
(define rate 0.01)
(define incrernent 0)
(alt-new-balance 1000 1)

This is not as desirable. You have to remember to set a11 the values each time
you want to ca11 alt-new-balance. A more serious problem occurs if there
already is a variable with any of the names that were bound somewhere else in
the code. It would lose its old value. Effectively, this means that you must care
fully examine the code to avoid trus and hope that the code will not change in the
future and introduce problems.

The situation would be worse yet if counter were treated as a free variable in
al t - new- balance. For that function to work as such, the value of counter would
have to be changed within the function. As we saw in Chapter 3, this would
affect the value of counter outside of the function, since it is a global variable.
Once again, such side-effects are not considered to be good programming style
and should be avoided. It is better to pass all the values that the function needs as
arguments, as in the original function new- balance.

6.3 Optional Section: Different Types of Recursion
The functions first - grea ter, new- balance, and increas ing - dig i ts are tail
recursive functions. Tail recursion is so named because in the recursive cases,
when a recursive call is made, the last action taken is the recursive function call.
There are no expressions that foIIow the recursive caII, nor is the recursive call an
argument to another function to which the result of the recursive call must be
applied. In other words, there are no further evaluations necessary after the
recursive call is complete.

Another type of recursion is embedded recursion. This is characterized by recur
sive ca ses in which the recursive call is placed so that there are more actions to
take after the recursive call returns. The function surn-digits is an embedded
recursive function. This is because the recursive caII is used as an argument to the
+ function:

(+ last-digit
(surn-digits rest-of-nurnber»

After the recursive call returns its value, that value must be added to the last
digit of the number.

6.3.1 Example: Factorial
Below is another example of embedded recursion-computing the factorial of a
number:

Danger o(using (ree
variables instead o(

parameters

Tail recursion

Embedded recursion

140 Chapter 6: Repetition Through Recursion

Embedded recursive
factorial

Tail recursive factorial

; Return max factorial.
(define (factorial max)

(if (zero? max)
1

(* max
(factorial (- max 1»»)

Notiee that the recursive eall
(factorial (- max 1»

is an argument to the funetion *, and onee it is evaluated it is multiplied by max.
This produet is the return value of the funetion. Therefore, there are delayed
aetions that ean only be performed after the recursive eall returns its value. A
eareful exploration of a traee of factorial will help show what this funetion
does.

(factorial 3)
J-

(* 3 (factoria1 2))
J-

(* 2 (factorial 1))
J-

(* 1 (factorial 0))

J-
1

J-
1

J-
2

J.
6

The value of (factorial 3) is the produet of 3 and (factoria1 2). To eom
pute this produet, (factorial 2) must first be determined. (factorial 2) is
the product of 2 and (factoria1 1), and (factorial 1) is 1 times (factorial
o) . At this point we reach the exit eondition in our reeursion, when max equals 0,
and we return 1. (factorial 0),1, is multiplied by 1 to get the value of (fac
toriall). Now we return from our recursive deseent. 1 is multiplied by 2, giv
ing 2, the value of (factorial 2). This result is multiplied by 3, yielding 6, the
value of (factorial 3), and we're done.

Compare the embedded reeursion funetion factorial with the tail recursive
function tail- factorial, below.

; Return max factorial (tail recursive).
(define (tail-factorial max total)

(if (zero? max)
total
(tail-factorial (- max 1) (* max total»))

6.3 Optional Seetion: Different Types of Recursion 141

Notice that tail- factorial has two parameters; however, it is functionally
equivalent to the function factorial. It is often necessary to use extra parame
ters in a tail recursive solution. These parameters are often not necessary with
embedded recursive solutions, because that information is contained in the
delayed expressions that are evaluated when the recursion returns upon reaching
the exit condition. In general, embedded recursive functions can be written as tail
recursive functions~

The first parameter to tail- factorial, max, performs the same role as does
the parameter max in factorial. The second parameter, total, stores the current
partial product. In the initial call, total must be 1. At each step through the
recursion, total represents the product of all the previous values of max. There
are no expressions to return to. Once max is 0, total contains the correct product,
and that is the return value. Below is a trace of tail- factorial:

(tail-factorial 3 1)
J,

(tail-factorial 2 3)
J,

(tail-factorial 1 6)
J,

(tail-factorial 0 6)
J,
6

One of the disadvantages of tail recursive solutions is the need for extra
parameters to store partial results. There is a nice way to hide these extra param
eters so that the user of the function need not worry about them. A helper function
can be written that has the number of parameters we would like to have. This
function calls the actual recursive function (which has additional parameters),
filling in the initial values for the other parameters. As an example, the function
below allows us to effectively call tail- factorial with one parameter:

; Return max factorial (helper function).
(define (fact max)

(tail-factorial max 1»

As you can see, these functions are easy to write.

2. This is true for a dass of embedded recursive functions known as linear recursive functions. These
are functions that use only one recursive call in their recursive cases. In contrast, tree recursive
functions have more than one recursive call. These recursive calls are combined in some fashion to
produce areturn value for the function. Tree recursive functions are embedded recursive functions.
However, writing tree recursive functions as tail recursive functions often involves going through a
good deal of effort, and isn't really that much fun.

Extra parameters with
tail recursion

He/per functions with
tail recursion

142 Chapter 6: Repetition Through Recursion

Recursive breakdown
on fists

6.3.2 Exercises
6.8 Why was tail- factorial called with 1 as the initial value for total?

6.9 Does the call (tail- factorial 0 1) give the desired results?

6.10 Whathappensifthecall (tail-factorial -2 1) ismade?

6.11 How would you fix the code to handle any problems that may exist in the
two exerdses above?

6.12 Write a tail recursive function with one parameter, max, that computes the
sum of the even numbers from 1 to max.

6.13 Write a function with a single parameter, num, that sums every number
between 1 and num that is evenly divisible by 4. Write your function
without using remainder.

6.4 Using Recursion to Sequence Through Lists
Lists and recursion go hand-in-hand. It is fairly simple to create recursive func
tions that sequence through lists, or create lists. Most recursive functions that
take lists terminate (with an exit case) when called with an empty list. In the
recursive cases, the problem is usually broken down into performing some action
with the first element of the list and the result of the recursive call with the rest of
the list.

6.4.1 Example: Adding up numbers in a list
Let's write a function, sum-list, that computes the sum of the numbers in a list
that only contains numbers. To begin, consider an exit case-if we have an empty
list, the sum is zero. In the recursive case we need to break up the problem into a
similar, smaller problem. The recursive action can be viewed as adding the first
number in the list to the sum of the rest of the numbers in the list. The sum of the
rest of the numbers in a list is just a recursive call to this function with the rest of
the list.

The first element of the list and the rest of the elements in a list were chosen as
operations to break the problem down because they are simple, fast operations in
Scheme. Computing the first and rest of a list is much more effident than
computing the last element and taking a subseq to get all but the last element of a
list. Since the order in which the elements in the list are added doesn't matter, we
might as weIl be effident about it.

sum-list can be expressed in definitional pseudo code as folIows:

6.4 Using Recursion to Sequence Through Lists 143

if the list is empty, return 0
otherwise, return the sum of the first element and

sum-list of the rest of the list.

Finally, refinements of this pseudo code should be made:

A list is empty if null? of that list is #t.

The Scheme solution is
; Return sum of numbers in number-list.
(define (sum-list number-list)

(if (nu11? number-list)
o
(+ (first number-list)

(sum-list (rest number-list»»

A trace of the function will show how it works:
(sum-list '(-3 4 5»

J,
(+ -3 (sum-list '(4 5)))

J,
(+ 4 (sum-list ' (5)))

J,
(+ 5 (sum-list ' ()))

J,
0

J,
5

J,
9

J,
6

6.4.2 Example: Checking if a list consists entirely of numbers
The function sUI!l-list will not work if given a list that has non-numeric ele
ments. To check for that, we will create a predicate function, all-numbers?, that
sequences through a list and verifies that all the elements are numbers.

One exit condition for such a function is an empty list. If given an empty list,
should all-numbers? return #t or u? To answer this, you must think of how the
recursion will work in the recursive case, where the recursive call will be with a
smaller list, and eventually with the empty list.

For a list to be all numbers, the first element must be a number and the rest of
the list must be all numbers. If the function returned #f when called with the
empty list, the function would always return U because anything and U is #f in
Scheme.

all-numbers? should return #f if an element is encountered that is not a
number. This should be another exit case-if the first element of the list is not a
number, return #f.

144 Chapter 6: Repetition Through Recursion

Eliminating
redundancy

Our definitional pseudo code looks like the following:

if the list is empty, then return true
otherwise, if the first element is not a number, return talse
otherwise, return true if the first element is a number and

the rest of the list is all numbers-the recursive call.

The only detail to refine is testing if the first element of the list is a number.
This can be done with the function number?, which returns true if given a numeri
cal argument, talse otherwise.

11' s a good idea to review your pseudo code and look for missing pieces, or
redundant pieces. In this case, redundancy is the problem. Twice there is a test to
determine if the first element of the list is a number. The second test that would
be part of an and function call is not necessary because once you have reached
that point in the code, you know that the first element in the list is a number.
Thus, the code can be simplified as

if the list is empty, then return true
otherwise, if the first element is not a number, return false
otherwise, return the result of the recursive call on the rest of the list.

There are some additional observations to make in the above pseudo code.
Since there are two conditions to test, and an otherwise clause in case both are
false, a cond is easier to use than two ifs. The test to determine if the list is empty
should be performed before testing if the first element is a number.

In Scheme, the code would be as folIows:
; Return true it all elements ot a-list are numbers.
(define (all-numbers? a-list)

(cond «nu11? a-list)
it)

«not (number? (first a-list»)
if)

(e1se
(all-numbers? (rest a-list»»)

Below are two traces of this function:
(all-numbers? '(3 trogs 4 you»

!
(all-numbers? '(trogs 4 you»

!
U

Notice how the recursion stopped as soon as a non-number was found. The
next trace continues recursing until the empty list is encountered:

6.4 Using Recursion to Sequence Through Lists 145

(all-numbers? '(25 0 624»
J.

(all-numbers? '(0 624»
J.

(all-numbers? '(624»
J.

(all-numbers? '(»
J.
ftt

Now we can use all-numbers? to create a safer versionof sum-list:

; Add all numbers in a-list unless some are not numbers.
(define (safe-sum a-list)

(if (all-numbers? a-list)
(sum-list a-list)
'bad-list))

6.4.3 Exercises
6.14 Showa sampie call to abc that will return a value and one that will enter an

infinite loop.
(define (abc xyz)

(cond «first xyz) (rest xyz»
(else (abc xyz»))

6.15 Showa sampie call to def that will return a value and one that will produce
anerror.

(define (def uvw)
(or (zero? (first uvw» (def (rest uvw»))

6.16 Write a function that takes a single list and returns true if any elements in
the list are numbers.

6.17 Write a function that takes a list of numbers and returns the maximum
number in the list.

6.18 Below is an alternate solution to all-numbers?:

(define (all-numbers-alt? a-list)
(if (null? a-list)

#t
(and (number? (first a-list»

(all-numbers-alt? (rest a-list»»

Does this solution work? If so, will it stop as soon as it encounters a non
number, as all- numbers? did? If not, can you fix it so it does work?

146 Chapter 6: Repetition Through Recursion

6.19 Below is an alternate solution to all-numbers?:

(define (all-numbers-alt? a-list)
(if (null? a-list)

#t
(and (all-numbers-alt? (rest a-list»

(number? (first a-list»»)

Does this solution work? If so, will it stop as soon as it encounters a non
number, as all- numbers? did? If not, can you fix it so it does work?

6.20 What does the function below do? Give a meaningful sampIe call to this
function.

(define (unknown a-list cl c2 c3)
(cond «null? a-list)

(list cl c2 c3 »
((number? (first a-list»

(unknown (rest a-list) (+ cl 1) c2 c3 »
«symbol? (first a-list»

(unknown (rest a-list) cl (+ c2 1) c3 »
((list? (first a-list»

(unknown (rest a-list) cl c2 (+ c3 1»)
(else

(unknown (rest a-1ist) cl c2 c3)))

6.21 Write a function that takes a list consisting of numbers and returns true if
the numbers are in increasing order.

6.22 Write a function that takes a list consisting of zeroes and ones and returns
true if the zeroes and ones alternate, as in the list (0 1 0 1 0).

6.23 Write a function that takes a list consisting of numbers, symbols, and possi
bly sublists, and returns the sum of aII the numbers in the list. You should
ignore numbers that occur within sublists.

6.24 W rite your own version of the function pos i tion using recursion.

6.25 Write your own version of the function count using recursion.

6.26 Write your own version of the function length using recursion.

6.27 Write your own version of the function member using recursion.

6.28 Write your own version of the function list-ref using recursion.

6.29 Write your own recursive version of the function subseq that takes a list
and an integer, start, denoting the start position of the resulting list.

6.4 Using Recursion to Sequence Through Lists 147

6.30 The function below follows a path through a list.
(define (mystery a-list)

(cond «null? a-list) #f)
«atom? a-list) a-list)
«symbol? (first a-list» (first a-list»
(else

(mystery (list-ref a-list (first a-list»»)

What would the following two calls return?

(mystery '(3 (a b c) (3 x Y z) (2 be or not 2 bel answer»

(mystery , (2 one (1 (3 4 «2» (1 short list) bye»»

6.31 Given the two functions below

(define (abc 1st)
(cond «null? 1st) 1st)

«>= (def (car 1st» (def (abc (cdr 1st»»
(car 1st»

(else (abc (cdr 1st»»)

(define (def 1st)
(if (nul1? 1st)

o
(+ 1 (def (cdr 1st»»

What do the following calls return?

(def ' (1 2 3 4»

(abc' «1 2 3) (1 2 3 4) (a b»)

If the >= in abc were changed to <, what would the following call return? Be
careful-this question is deceptively tricky.

(abc' «1 2 3) (1 2 3 4) (a b»)

6.32 Suppose abc (from the previous exercise) were modified to be:

(define (abc 1st)
(cond «null? 1st) 0)

«>= (def (car 1st» (abc (cdr 1st»)
(else (abc (cdr 1st»»)

What would the following call return?

(abc' «1 2 3) (1 2 3 4) (a b»)

(def (car 1st»)

6.33 Write a function that takes a list and returns the first symbol in the list, or #f
if no symbols exist in the list.

6.34 Write a function that takes a list and returns the last positive number in the
list, or #f if no positive numbers exist in the list.

148 Chapter 6: Repetition Through Recursion

Mapping functions
andfilters

Build up approach

Leap of faith

6.5 Using Recursion to Create New Lists
Recursion can be used to construct lists. Mapping functions and filters are common
examples of such functions. A mapping function applies a function to each ele
ment in a list and returns a list of the results. A filter is a function that sequences
through a list and returns a list of only those elements that satisfy a certain condi
tion. Whereas mapping functions return a list of the same size as their argument
list, filters may return shorter lists.

The function cons is typically used in the recursive cases of functions that
create lists to build up the resultant lists.

6.5.1 Example: A mapping function to take the square roots of
numbers in a list

Let's begin with a function that takes a list of numbers and returns a list of the
square roots of those numbers. We will sequence through the list in the same
manner as the functions sum-list and a11-numbers? did; thus, eventually we
will reach the empty list.

We can think about the solution to this problem starting with the exit case.
Next we look at cases that involve a single recursive call, then two recursive calls,
and so on until we are convinced that our idea is sound. Such a build up
technique-starting with the exit case and building up to larger examples-is a
common means of creating recursive solutions.

For the current problem, if we are given an empty list, () is the proper return
value-the square roots of an empty list of numbers is an empty list. Given a list
of one element, the square root of that element can be combined using cons with
the square roots of the rest of the elements, (), to produce a list of one square
root. This technique works with larger lists too. With two elements we cons the
square root of the first element onto the recursive call of the rest of the list, which
we just showed is a list of one square root. This produces a list of the two square
roots of the argument list in the proper order.

Given any size list, consing the square root of the first element onto the result
of the recursive call with the rest of the list gives us back a list of square roots in
the proper order.

The leap of faith method is an alternate means of formulating recursive solu
tions. Using the leap of faith you begin with a more complicated example input
to your function and assurne that the recursive call produces the correct output.
This is the leap of faith because at this point you haven't written a recursive solu
tion. You just assurne it exists and works. Next you determine how to use the
result of the recursive call to create the final return value given your input to the
function.

Let' s try this approach with the current problem. Given the list (49 16 100),

assurne that the recursive call with the rest of the list, (16 100), produces the list
(4 10). To get the desired result, (7 4 10), we cons the square root of 49 onto
the recursive call. This is the action we take in the recursive case.

Dur definitional pseudo code follows:

6.5 Using Recursion to Create New Lists 149

if the list is empty, return the empty list
otherwise, return the result of consing the square root of the first

element onto the recursive call of the rest of the elements.

In Scheme, the code is as folIows:

; Return a list of the square roots of the numbers in a-list.
(define (square-roots a-list)

(if (null? a-list)
, ()

(cons (sqrt (first a-list»
(square-roots (rest a-list»»

A trace reveals the following:

(square-roots ' (49 16 100»
J.

(cons (sqrt 49) (square-roots ' (16 100»)
J. J.

7.0 J.
(cons (sqrt 16) (square-roots '(100»)

J.
(4.0 10.0)

J.
(7.0 4.0 10.0)

J. J,
4.0 J,

(cons (sqrt 100) (square-roots '(»)

J.
(10.0)

J. J,
10.0 ()

6.5.2 Example: A filter to extract positive numbers from a list
The next example is a filter that constructs a list of all the positive numbers in its
argument list. The exit case for this function is once again the empty list, and the
return value in this case is the empty list. The difference between filters and map
ping functions is that an additional test is needed to check if the next element of
the list should be placed in the resultant list or not. For this problem, the test
checks if the number is positive. If so, that element should be added to the resul
tant list; otherwise, skip that value and return the positive numbers in the rest of
the list.

150 Chapter 6: Repetition Through Recursion

The definitional pseudo code is

if the list is empty, return the empty list
otherwise, if the first element of the list is a positive number,

return the cons of the first element and
the recursive call with the rest of the list

otherwise, return the recursive call with the rest of the list.

InScheme,
; Return a list of the positive nurnbers in a-list.
(define (positive-filter a-list)

(cond «null? a-list)
, ())

«positive? (first a-list»
(cons (first a-list)

(positive-filter (rest a-list»»
(else

(positive-filter (rest a-list»»)

Here is a trace of pos i ti ve - filter:

(positive-filter '(3 -1 2»
J,

(cons 3 (positive-filter' (-1 2»)

J,
(3 2)

J,
(positive-filter' (2»

J,
(cons 2 (positive-filter' (»)

J,
(2)

J,
()

6.5.3 Exercises
6.35 Write a function that takes a list of numbers and returns a list of pairs of

numbers, where a pair is a list of the number and its square. Given the list

(3 4 5)

your function should produce the list

«3 9) (4 16) (5 25»

6.36 Write a function that takes a number and returns a list of all the integer mul
tiples of that number from 1 to 10. Given the number 3, your function
should return the list

(3 6 9 12 15 18 21 24 27 30)

6.5 Using Recursion to Create New Lists 151

6.37 Write a filter function that takes a list of numbers and two integers, low and
high. The function should return only those numbers that are between low
and high, exc1usive.

6.38 Write a function that takes two arguments, start and end, and returns a list
of all the odd integers between start and end.

6.39 Write a simplified version of the function append that only takes two lists.

6.40 The function switch-em takes a list and should return the list with pairs of
top-level elements switched. For example,

> (switch-em '((i am) just another (run of the mill) list)
(just (i am) (run of the mill) another list)

There are one or more bugs in this function. Find the bugs and fix them.
(define (switch-em a-list)

(if (null? a-list)
'()
(append

(second a-list)
(first a-list)
(switch-em (cdr a-list»»)

6.41 Write your own version of the function remove.

6.42 Write your own version of the function reverse.

6.43 Write a function substitute that takes a list and two atoms, old and new.
The function should return a new list with all top-level occurrences of old
replaced with new. For example,

(substitute '(me but (not me» 'me 'you)

should produce the list
(you but (not me»

6.44 Write your own version of the function subseq that takes three arguments,
the list, the start, and the end values. Assume that the start and end values
are legal.

6.45 Does the function positive-filter work if called witha list in which some
elements are not numbers? If not, modify the function so that it does work
with such a list.

152 Chapter 6: Repetition Through Recursion

Linear versus tree
recursion

car-cdr recursion

Leap of faith with tree
recursion

6.6 Sequencing Through Nested Lists with car-cdr Recur-
sion

All of the recursive functions shown have been linear recursive functions. A linear
recursive function is one that has at most one recursive call in any of its recursive
cases. Functions can have more than one recursive call in their recursive cases.
Such functions are termed nonlinear or tree recursive. They may be called deep or
multiple recursive as weIl. Tree recursion is a very powerful type of recursion, in
that a small amount of code can perform seemingly impossible or difficult tasks.
There is aprice that must be paid for this power: tree recursive functions are
somewhat more difficult to write, trace, and debug than their linear recursive
siblings.

A common type of tree recursion in Scheme is car-cdr recursion. It is so
named because a recursive call is made with both the car and the cdr of the list.
This is used when dealing with lists that have sublists, so that all the sublists can
be sequenced through. With the linear recursive functions we have used so far,
only the top-level elements have been examined.

6.6.1 Example: Counting all the atoms in a list
An example to begin with is the function count-atoms that takes a list and counts
the number of atoms in that list and all of its sublists. Below are some examples
to show what this function returns:

(count-atoms '(1 2 a» -7 3
(count-atoms '((1 (2 all»~ -7 3
(count-atoms' ((1 2 (a b c) d) 10 (((word»») -7 8

We begin by considering the exit cases. Once again, the empty list is an exit
condition. The number of atoms in the empty list is zero.

In the recursive cases of some of our previous list recursive functions, we
applied the car of the list to some function, and called the cdr recursively. The
results of these two function calls were then combined using some other func
tion. Let' s try the same technique with this problem. The car of the list may be an
atom or a list. If it is an atom, then the number of atoms to return is one. Other
wise, the car is a list, and since we are writing a function to count the number of
atoms in a list, the function should be called recursively with the car of the list.
We need to include the cdr of the list as weIl by calling it recursively.

At this point we can use the leap of faith strategy. If we believe that our recur
sive function will produce the proper answers for the car and the cdr of the list,
then if we add these results together, we will have the total number of atoms in
the list. For example, if given the list

((2 3) 4 (5 numbers»

the recursive calls with the car and cdr of the list yield

(count-atoms '(2 3» -7 2
(count-atoms '(4 (5 numbers») -7 3

6.6 Sequencing Through Nested Lists with ear-edr Recursion 153

Adding these results yields 5, the number of atoms in the original list. This tech
nique also works with lists in which the ear is an atom. In this case, the number
of atoms is one plus the number of atoms in the edr of the list. Thus,

(count-atoms '(2 4 (5 numbers») ~

1 + (count-atoms '(4 (5 numbers»)

We can express the solution in definitional pseudo code as folIows:

if the list is empty, return 0
otherwise, if the ear of the list is an atom, return one plus

the recursive call with the edr of the list
otherwise, return the sum of the recursive calls with the ear and

the edr of the lists.

If you feel uneasy about this solution, perhaps because you didn't buy the
leap of faith approach, then you should test out your solution using your
definitional pseudo code. Let's test out the solution with the above example list:

((2 3) 4 (5 numbers»

We really need to verify if the recursive calls with the ear and the edr of this
list work to add faith to our leap of faith. Beginning with the ear, (2 3),

(count-atoms' (2 3» ~ 1 + (count-atoms '(3»

and
(count-atoms '(3» ~ 1 + (count-atoms 'Cl)

and
(count-atoms 'Cl) ~ 0

This results in 2, which is correct. Notice that since the ear of the list was an
atom in each case, we performed linear recursion to get this partial result.

Moving on to the edr we have
(count-atoms '(4 (5 numbers») ~

1 + (count-atoms '«5 numbers»)

and
(count-atoms '«5 numbers») ~

(count-atoms '(5 numbers» + (count-atoms 'Cl)

Continuing with these two recursive calls
(count-atoms '(5 numbers» ~ 2

because it is a two-atom list like (count - atoms '(2 3».
Next

(count-atoms 'Cl) ~ 0

Adding up these results, 2 and 0, yields 2, which is added to 1 (from the atom 4),
yielding 3. Lastly, adding 3 to 2 from (count-atoms '(2 3» gives 5; thus, our
pseudo code performs correctly.

Verifying the leap of
faith

154 Chapter 6: Repetition Through Recursion

Now we can write out the Scheme function.

; Return the number of atoms that occur anywhere in a-list.
(define (count-atoms a-list)

(cond «null? a-list)
0)

«atom? (car a-list»
(+ 1 (count-atoms (cdr a-list»»

(else
(+ (count-atoms (car a-list»

(count-atoms (cdr a-list»»)

Below is a trace of this function:
(count-atoms '(a (b (c»»

J..
(+ 1 (count-atoms' «b (c»»)

J..
(+ (count-atoms '(b (c») (count-atoms '(»)

J..
J..

(+ 1 (count-atoms '«c»»
J..

(+ (count-atoms ' (c))
J..
J..

(+ 1 (count-atoms
J..
a

J..
1

J..
1

J..
2

J..
2

J..
3

6.6.2 Example: Deep reverse of a list

, (»)

J..
a

(count-atoms' (»)
J..
a

Another function that uses car-cdr recursion is a deep reverse of a list. In a deep
reverse, all the atoms, even those within sublists, should be reversed. Given the
list

«a b) (2 (3 4»)

the function should return

«(4 3) 2) (b a»

6.6 Sequencing Through Nested Lists with car-cdr Recursion 155

Contrast this with the built-in function reverse:

> (reverse '(ra b) (2 (3 4))))
«2 (3 4» (a b»

Once again, as with all the recursive list functions we have created, an exit
condition is the empty list. Since we are retuming a list, if we are passed the
empty list, we should return ().

As with the count-atoms function, if the first item in the list is a list, its ele
ments must be reversed, and then that list should be put into the resultant list in
the proper location. Assembling the lists from the recursive calls can get tricky.

To make matters simpler, we can think about how to do a top-Ievel reverse, as
the built-in function reverse performs. The first element in the list must become
the last element. To do this, imagine appending the reverse of the rest of the list
onto the list of the first element. For example, given the list

(1 2 3)

the reverse of the rest of the list is
(3 2)

and the list of the first element is
(1)

Appending these together yields
(3 2 1)

which is the reverse of the original list. Note that the reason we used the list of
the first element, as opposed to just the first element, is because append con
structs lists from lists, so both arguments to append should be lists.

We are using the leap of faith strategy and assuming that the recursive step
works, and then determining how to use the results from the recursive calls to
produce the desired result. We should verify that the leap of faith idea works.
This can be done using the build up approach. This approach starts by testing the
function with arguments that satisfy an exit condition. Next test the function with
a call that requires a single recursive call. Then build up to calls with more recur
sive calls until you are convinced the function works (or doesn't work).

We will try the build up approach now. First we must create the definitional
pseudo code. Remember, this is for a top-level reverse, not a deep reverse.

if the list to reverse is empty, return the empty list
otherwise, return the result of appending the reverse of the rest of the list

onto the list of the first element.

Now the test starting with an exit case
{reverse I (»

J,
()

Top-Ievel reverse

Verifying code with
the build up approach

156 Chapter 6: Repetition Through Recursion

Deep reverse

With one recursive call, we get

(reverse '(2»
J,

(append (reverse '(» (list 2»

J,
(2)

J, J,
() (2)

We can go further and try a call that requires an additional recursive step:

(reverse' (1 2»
J,

(append (reverse '(2 » (list 1»

J,
(21)

J, J,
(2) (1)

Once again, the proper result is obtained. This adds the faith to the leap of faith.
The same technique used in a top-level reverse can be used in a deep reverse,

with the added condition that the elements within sublists should be reversed
using the deep-reverse function recursively. If these sublists have sublists, they
should be reversed, and so on.

Just as with the count-atoms function, we only deal with sublists when
checking the car of the list. If the car is a list, we call it recursively. Combining
this idea with the top-level reverse pseudo code we can construct the following
definitional pseudo code:

if the list given to deep-reverse is empty, return' ()
otherwise, if the first item in the list is an atom, return the

append of the deep-reverse of the rest of the list onto
the list of that atom

otherwise, return the
append of the deep-reverse of the rest of the list onto

the deep-reverse of the first element (which is a list).

This can be written in Scheme as:
; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-reverse a-list)

(cond «null? a-list)
, ()

«atom? (car a-list»
(append (deep-reverse (cdr a-list»

(list (car a-list»»
(else

(append (deep-reverse (cdr a-list»
(deep-reverse (car a-list»»)

Below is a trace of deep-reverse. To keep things clearer, only the Iboxedl
recursive calls will be expanded. After this trace the other recursive calls will be

6.6 Sequencing Through Nested Lists with car-cdr Recursion 157

traeed out individually, and then all the results will be eombined.
(deep-reverse '(Ca 3) (b 2) c»

J,
(append I (deep-reverse '«b 2) c))1 (deep-reverse '(a 3»)

J,
(append I (deep-reverse '(c»1 (deep-reverse '(b 2»)

J,
(append I(deep-reverse '(»I (list 'c»

J,
(e)

(deep-reverse '(b 2»
J,

J, J,
o (e)

(append (deep-reverse '(2»
J,

(append (deep-reverse '(» (list 2»

J,
(2 b)

Similarly,

J,
(2)

(deep-reverse '(a 3»

will return
(3 a)

J, J,
o (2)

Putting it all together, we get
(deep-reverse '«a 3) (b 2) c»

J,

(list 'b»
J,

(b)

(append (deep-reverse '«b 2) c» (deep-reverse '(a 3»)

(e2b3a)

J,
J,
J,

(append (deep-reverse '(c»
J,

(e)

(e 2 b)

J,
(3 a)

(deep-reverse '(b 2»)
J,

(2 b)

Oops. What went wrong? We got the proper order of symbols, but lost our
nested list strueture. Sinee the order of the symbols is eorreet, we are probably
making the recursive ealls in the correet loeation, but we are eombining the
results of these recursive ealls improperly. Looking baek at the code, notice that

158 Chapter 6: Repetition Through Recursion

in the last recursive case, we append the deep-reverse of the rest of the list onto
the deep-reverse of the first of the list. Imagine that the first element is

(a 3)

The deep-reverse of that list will be

(3 a)

Appending the list (3 a) to another list merely adds the two elements, 3 and a,

to that list rather than adding the list (3 a). To preserve the list structure,
append the list of the deep-reverse of the car of the list. This is similar to the
recursive case when the car is an atom-we append to the list of the car. Thus
our new code is

; Return the deep reverse of a-list (reverses all sub-lists).
(define (deep-reverse a-list)

(cond «null? a-list)
, (»

«atom? (car a-list»
(append (deep-reverse (cdr a-list»

(list (car a-list»»
(else

(append (deep-reverse (cdr a-list»
(list (deep-reverse (car a-list»»»

Perform a trace of this code to verify that it works.

6.6.3 Exercises
6.46 Below is an alternate solution to the count-atoms function. Does it work?

(define (count-atoms a-list)
(cond «null? a-list)

0)
«atom? a-list)

1)
(else

(+ (count-atoms (car a-list»
(count-atoms (cdr a-list»»)

6.47 Below is another possible solution to the deep - reverse function. Does it
work?

(define (deep-reverse a-list)
(cond «null? a-list)

, (»
«atom? a-list)

a-list)
(else

(append (deep-reverse (cdr a-list»
(list (deep-reverse (car a-list»»»

6.6 Sequencing Through Nested Lists with car-cdr Recursion 159

6.48 The function unknown takes a nested list as an argument.
(define (unknown a-list)

(cond «nu11? a-list) 'Cl)
«number? a-list) (1ist a-list»
«symbo1? a-list) 'Cl)
(e1se

(append
(unknown (car a-list»
(unknown (cdr a-list»»)

What would the following call return?

(unknown '(2 (3 words) « 4 more»»

6.49 Write a function that performs a deep member function on a list. All the
atoms, even those within sublists, should be examined. Given the call

(deep-member 2 '«~Ca b 2»»

your function should return a true value. 00 not use the buHt-in function
member in your solution.

6.50 Write a function that returns true if two lists look the same in form. The
atoms may be different, but the parentheses should be the same. The follow
ing two lists look the same:

«a b (c) d) e)

«1 2 (3) 4) 5)

6.51 Given the function below
(define (mystery unknown)

(if (or (nu11? unknown) (atom? unknown»
unknown
(cons (mystery (car unknown» (mystery (cdr unknown»»)

What does the call (mystery '(1 (2) 3» return?

6.52 Write a function that returns the total sum of all the numbers in all its sub
lists. Given the list

«(4 3) b) (2 a»
your function should return 9.

6.53 Write a function that returns the smallest number that occurs anywhere in a
list. Given the list

«(4 3) b) (2 a»

your function should return 2.

6.54 Write a function that takes a list and returns a flattened version of it-one
with no sublists. Given the list

160 Chapter 6: Repetition Through Recursion

Loops and nested
loops

Inner and outer loops

«(4 3) b) (2 a»

your function should return the list
(4 3 b 2 a)

6.55 Write your own version of the function equal? Use the function eqv? to
compare atoms.

6.7 Nested Loops or Recursion Within Recursion
Linear recursive functions (those with one recursive call in the recursive case)
perform a sequence of similar actions. In many programming languages, such
repetition is called a loop. This is because the actions are performed, then the
computer loops back to the first of those actions and performs the actions again.
It is possible to have loops within loops-such code is called a nested loop. Nested
loops are used to repeat actions that have repeated steps themselves.

6.7.1 Example: Sum of factorials
Calculating the sum of all the factorials from one to number is an example of a
nested loop. To calculate the factorial of a number, a loop is required. To add up
these factorials, another loop is required. The inner loop would be the loop com
puting factorials. The outer loop would be the loop summing the factorials.

In Scheme, nested loops are created using two recursive functions. One func
tion, the inner loop, calls itself recursively. The outer loop is another function that
calls itself recursively, and calls the inner loop function.

For our example, we'll begin with the inner loop-factorial. The code is as fol
lows:

; Return max factorial.
(define (factorial max)

(if (zero? max)
1

(* max
(factoria1 (- max 1»»)

The outer function must call itself and factorial. It has an exit case when the
number of factorials to sum is zero-in this case the sum is zero. The recursive
case requires the addition of the current factorial of number to the sum of all the
factorials less than number.

This can be expressed in definitional pseudo code as

if number is 0, return 0
otherwise, return the sum of the factorial of number and

the sum of all the factorials from 1 to number minus 1

In Scheme, the function is written as

6.7 Nested Loops or Recursion Within Recursion 161

; Return surn of 0 through nurnber factorial.
(define (surn-facts nurnber)

(if (zero? nurnber)
o
(+ (factorial nurnber)

(surn-facts (- nurnber 1»»)

A trace of the function reveals
(surn-facts 3)

J,
(+ (factorial 3) (surn-facts 2»

J, J,
6 J,

(+ (factorial 2) (surn-facts 1»
J, J,
2 J,

(+ (factorial 1) (surn-facts 0»

J,
9

J,
3

J,
1

J, J,
1 o

6.7.2 Example: Sequencing through a database using nested
loops

Below is an alternate representation for the CD data structure from Chapter 4.
This data structure is a list of music categories (rock, jazz, classical, etc.) and the
music within them. Each music category is a list of artists and their CDs. These
artist and CD lists have the artist's name as the first element of the list, and the
CDs make up the rest of the list. The artist names and the CD names are lists. The
new data structure looks like the following list:

((rock
(Rolling Stones)
(Black and Blue)
(Its Only Rock and Roll)))

jazz
((Pat Metheny)

(First Circle)
(Andy Narell)
(The Hammer))

This CD database can be searched to find the CDs composed by a particular
artist, or to find the occurrence of a particular CD. We will use a nested loop to
find the CDs written by a particular artist. This will be a list of CDs. The outer
loop will sequence through the music categories. These categories are elements of

New CD data struo
ture

Nested loop to find
CDs

162 Chapter 6: Repetition Through Recursion

Inner loop to find CDs

Outer loop to find the
artist

the list that makes up our entire database. The inner loop sequences through the
artists within a particular category. We need both loops because we are trying to
find a particular artist and we may not know which music category the artist is
in. Let' s build the inner loop first. It will take as an argument a music category
list like the fo11owing:

(jazz
(Pat Metheny)
(First Circle)
(Andy Narell)
(The Hammer))

To simplify the code in the inner loop, we can write the outer loop so that it ca11s
the inner loop with a list without the category name-the rest of the category
list, like the fo11owing:

(((Pat Metheny)
(First Circle)
(Andy Narell)
(The Hammer))

The pseudo code we need is

if the list of artists is empty, return #f to signal the outer function
that the artist is not in this category

otherwise, if the first artist in the list is the desired one, return the
CDs of that artist

otherwise, check the rest of the artists recursively.

To check if the first artist in the list is the one we want, we can use
(equal? (first (first artist-list)) artist-name)

The Scheme code for the inner function is
Find the CDs of artist-name within a music category list.

(define (CDs-within-category artist-list artist-name)
(cond «null? artist-list)

#f)
«equal? (first (first artist-list)) artist-name)

(rest (first artist-list)))
(else

(CDs-within-category (rest artist-list) artist-name))))

The outer loop takes the entire CD database as an argument and sequences
through the music categories until a category in which the artist exists is found,
or a11 the categories have been searched. The outer function will ca11 the inner
function to determine if an artist occurs within a musical category. The inner
function returns the CD list if it finds the artist and #f if not. The outer function
needs an exit case to handle the case in which the artist does not occur in the
database-it needs to check for an empty database.

The definitional pseudo code for the outer loop is

6.7 Nested Loops or Recursion Within Recursion 163

if the list of categories is empty, return ftf-the artist was not found
otherwise, if the first category contains that artist, return the

CDs of that artist
otherwise, check the rest of the categories recursively.

The Scheme code for the outer function is
Find the CDs of artist-name within the entire CD-collection.

(define (CDs CD-collection artist-name)
(cond «null? CD-collection)

ltf)

«CDs-within-category (rest (first CD-collection»
artist-name)

(CDs-within-category (rest (first CD-collection»
artist-name»

(else
(CDs (rest CD-collection) artist-name»)

This could be written more efficiently as
Find the CDs of artist-name within the entire CD-collection.

(define (CDs CD-collection artist-name)
(cond «null? CD-collection)

#f)
(else

(or (CDs-within-category
(rest (first CD-collection»
artist-name)

(CDs (rest CD-collection) artist-name»»

This new definition avoids having to call CDs-within-category twice if a
match is found~

We can go one level further and look for a particular CD in the CD database.
This will require a third innermost loop that sequences through a list of CDs of a
certain artist. The outer function can stay as it is written with the exception that
artist-name should be replaced with CD-name. The inner function will need a
slight change--instead of checking for a match in the artist's name and retuming
a CD list, it should look more like the outer function and have an otherwise
clause that returns the or of a call to the innermost function and a recursive call
with the rest of the artists in that category.

The new inner function will be

3. Another way of doing this is to change the first version of CDs so that the clause that calls CDs

within-category looks like

«CDs-within-category (rest (first CD-collection» artist-name»

There is no action associated with this condition. This is legal in Scheme; the return value for a true
condition without an action is the return value of that condition.

An innermost loop to
find a particular CD

164 Chapter 6: Repetition Through Recursion

Straights in poker

; Find CD-name by an artist within a music category list.
(define (CDs-within-category artist-list CD-name)

(cand «null? artist-list)
#f)

(else
(ar (CD-within-CD-list

(rest (first artist-list»
CD-name)

(CDs-within-category
(rest artist-list) CD-name»»

The innermost function gets a CD list like
((Black and Blue)

(Its Only Rock and Roll))

and looks for a match of the CD being searched for. If the CD is found, it should
be returned; otherwise u should be returned. This function is similar to the ori
ginal CDs-within-category function.

The innermost function is
; Find CD-name within a list of CDs.
(define (CD-within-CD-list CD-list CD-name)

(cand «null? CD-list)
U)

«equal? (first CD-list) CD-name)
CD-name)

(else
(CD-within-CD-list (rest CD-list) CD-name»))

Note: this function could have been implemented using member, as follows:
Find CD-name within a list of CDs.

(define (CD-within-CD-list CD-list CD-name)
(let ((found-name (member CD-name CD-list»

(if found-name
(first found-name)
#f»)

6.7.3 Example: Poker revisited
Our version of poker from Chapter 5 did not know about straights like

(four five six seven eight)

A straight is much easier to recognize if it is in order than if it is unordered, as
in

(six eight five four seven)

If we can sort the hand we are passed, we can test if it matches a subsequence
of a list of the ordered cards. These cards can be saved in the variable card
ordering.

6.7 Nested Loops or Recursion Within Recursion 165

(define card-ordering
'(two three four five six seven eight nine ten

jack queen king ace»

Sorting data is a frequently performed operation in computer programming.
There are books on the subject and numerous sorting algorithms. We will use a
method known as insertion sort. The idea behind this sort technique is to build a
sorted list beginning with an empty list and inserting elements one at a time in
the proper place in the list until a complete sorted list is obtained. There are two
loops. The inner loop places an element in the sorted list. The outer loop calls the
inner loop to place all the elements.

The inner loop takes two parameters, sorted-list, the sorted list, and element,
the element to insert in sorted-list. The definitional pseudo code to the inner loop
is as follows:

if sorted-list is empty, return the list of element
otherwise, if element is less than the first element in sorted-list,

return the list obtained from consing element onto sorted-list
otherwise, return the cons of the first element of sorted-list

and the recursive call of element and the rest of sorted-list.

We must refine what we mean by one card being less than another. A card is
"less than" another card if it occurs earlier in card-ordering. This can be deter
mined by comparing the position of the two cards within card-ordering. The
function below does this:

; Return true if cardl is lower in value than card2.
(define (lower-card? cardl card2)

« (position cardl card-ordering)
(position card2 card-ordering»

The Scheme code for the inner loop is
; Insert card in sorted order into sorted-list.
(define (insert-card element sorted-list)

(cond «nu11? sorted-list)
(1ist element»

«lower-card? element (first sorted-list»
(cons element sorted-list»

(e1se
(cons (first sorted-list)

(insert-card element (rest sorted-list»»))

The outer loop that sorts an unsorted list has the following definitional
pseudo code:

if the list to sort is empty, return' ()
otherwise, insert the first element of the list into the recursive call

of the rest of the list

Insertion sort

Adding an element to
a sorted list

Outer loop to sort a
list

166 Chapter 6: Repetition Through Recursion

In Scheme, this is written
; Perform insertion sort on a-list.
(define (sort-hand a-list)

(if (nu11? a-list)
, ()
(insert-card

(first a-list)
(sort-hand (rest a-list»»)

Let' s see how this code works with the trace below:
(sort-hand , (seven two three»

J.
(insert-card 'seven (sort-hand , (two three»)

J.
(insert-card 'two (sort-hand '(three»)

J.
(insert-card 'three (sort-hand ' (»)

J.
(two three seven)

J.
(two three)

J.
(three)

And let's trace the final call to insert-card:

(insert-card 'seven , (two three»
J.

(cons 'two (insert-card 'seven '(three»)
J.

(cons 'three (insert-card 'seven '(»)
J.

(seven)
J.

(three seven)
J.

(two three seven)

J.
()

Now we can sort our hand and determine if we have a straight. Once the
hand is sorted we want to compare it with a subsequence of card-ordering,
starting with the low card in our hand. To avoid unnecessary testing we can add
another test to see if our low card is less than a jack. If it's not, we cannot have a
straight.

6.7 Nested Loops or Recursion Within Recursion 167

; Return true if hand is a straight.
(define (is-straight? hand card-ordering)

(let* ((sorted-hand (sort-hand hand»
(low-card (first sorted-hand»

(and (lower-card? low-card 'jack)
(equal?

sorted-hand
(subseq

6.7.4 Exercises

(member low-card card-ordering)
o 5»»)

6.56 Modify the functions from the CD example so that the entire database is
searched when looking for a particular artist, as opposed to the present
scheme in which the search stops when the first artist match is found. Re
turn a list of all CDs by the artist from all categories.

6.57 Does the below alternate definition for CDs work? If not, fix it so it does
work properly.
(define (CDs CD-collection artist-name)

(or
(null? CD-collection)
(CDs-within-category (rest (first CD-collection»

artist-name)
(CDs (rest CD-collection) artist-name»)

6.58 Modify the function poker-value from Chapter 4 so that instead of retum
ing nothing for a nonwinning hand, it returns the high card in the hand. For
example, if given the hand

(seven jack three five two)

your function should return j ack.

6.59 Write a function tables that produces a list of multiplication tables. For
example

(tables 3 4)

would produce the list
«1 2 3 4)

(2 4 6 B)
(3 6 9 12»

168 Chapter 6: Repetition Through Recursion

6.8 Summary
• When writing recursive functions, begin by considering the exit cases. Next

think about the recursive cases that break the problem down into similar,
smaller subproblems that eventually reach exit cases.

• Tail recursive functions have recursive cases in which the return value is a
recursive call.

• Embedded recursive functions have recursive cases in which the return value
has a recursive call that is an argument to another function. Another type of
embedded recursive function is one in which there is an expression that fol
lows the recursive call in the action of a recursive case.

• Recursive functions that sequence through lists typically have an exit case
that checks for an empty list. Such functions usually perform some test or
action with the first of the list and make a recursive call with the rest of the
list.

• Mapping and filter functions typically construct lists using cons.
• car-cdr recursion is a type of recursion that involves recursive calls to both

the car and the cdr of a list.
• Nested loops can be written with multiple recursive functions in which the

outer loop functions call themselves and the inner loop functions.

CHAPTER 7

DATA STRUCTURES

7.1 Why Data Structures?
We have looked at Scheme's most common data structure, the list. We have seen
how ordered lists and hierarchies can be represented. The focus in this chapter is
on using data structures like these and other more abstract data structures in pro
grams.

Niklaus Wirth, the creator of the programming language Pascal, wrote a book
entitled Algorithms + Data Structures = Programs. In this classic computer science
text, he shows that algorithms alone do not make programs; data structures play
an important role in the design of programs. This is still true today, and is true
for the language Scheme. Just as we are able to write complex programs by
abstracting the steps or algorithm necessary, we can create elegant programs by
creating abstract data structures to represent the information that our program
uses.

Perhaps the biggest flaw that beginning programmers make is to ignore the
importance of data structures in their programs. It is common to see beginners
create the simplest structure that comes to mind or no structure whatsoever, and
then create large amounts of code to get the program to work. This approach can
yield working programs, but usually they are bard to maintain and modify. By
spending some time up front carefully considering how the data in your program
will be used and designing the best structure to meet those needs, you can save a
great deal of time later in coding.

Enough preaching from the soap box. Let's examine some real examples.

7.1.1 Example: Breaking secret codes
Remember when you were a kid and bad a secret decoder ring that you got when
you mailed in three box tops of Sugar, Stareh, and Sucrose Cereal? It was effectively
a list of letter pairs that you used to translate English words into a secret code or

Importance o(data
structures

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

170 Chapter 7: Data Structures

Data integrity

Mapping English to
code

vice versa. It was fun at first, but after a while it just became too tedious. üf
course what you really needed was a computer to do the work for you. So we'll
create a program that will translate English to secret code and secret code to
English. We'll make two functions to do so, english-to-code and code-to

english. Both functions will take lists of single-letter symbols that represent
letters in words and return similar lists. For example,

(english-to-code '(a p pie»

might return

(f z z y r)

In which case,

(code-to-english '(f z z y r»

would return

(a p pie)

Without using data structures other than the lists that are passed as argu
ments to these functions, we may be tempted to write the code as a large cond
that matches letters in English to their secret code equivalents. The solution to go
from a letter of secret code, letter, to its English equivalent rnight look like this:

(cond «equal? letter 'a) 'f)
«equal? letter 'b) 'g)

«equal? letter 'z) 'e)
(else 'unknown-letter»

Two such conds would be necessary-one to go from an English letter to
code, and another to go from code to the equivalent English letter.

This solution involves a good deal of coding and is difficult to modify. For
example, if you wanted to change the secret code, you would have to change
both conds. It would be easy to have inconsistencies between the two conds. This
creates a data integrity problem.

The solution is to have only one mapping between English and the secret code.
Mapping is used in the mathematical sense here--a one-to-one mapping is one
that relates one item uniquely to another item. This mapping must be structured
in such a way that would allow us to translate either way-English to code, or
code to English. A list of two-element lists would do the job. Each of these sub
lists represents an English letter and its equivalent in the secret code. One reason
that a list of sublists is used instead of one large list is that it ensures that we have
an even number of elements. Another reason is that it is easier to see which ele
ments match and which are English letters versus code letters without having to
count elements.

Below is what the data structure would look like:

7.1 Why Data Structures? 171

((a f)

(b g)
(c t)

(z e»

To go from English to code involves sequencing through the list recursively,
comparing the first of each sublist (an English letter) with the English letter to
match. When a match is found, the second of the sublist is retumed. This process
is repeated for each letter in the argument list given to the english-to-code
function.

To go from code to English is similar, except the seconds of the sublists are
compared against the code letter to match, and the first of the matching pair is
retumed.

The function to translate a single English letter to its code equivalent folIows.
It has two parameters: the letter to search for, letter, and the data structure of
letter pairs, match-list.

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)

(let ((letter-pair (first match-list»)
(if (equal? letter (first letter-pair»

(second letter-pair)
(english-letter-to-code letter (rest match-list»»)

This function can be used in the function english-to-code that takes a list of
English letters and returns the list representing their code equivalent.

; Encode letter-list.
(define (english-to-code letter-list match-list)

(if (null? letter-list)
'()

Translating English to
code

Translating code to
English

(cons (english-letter-to-code (first letter-list) match-list)
(english-to-code (rest letter-list) match-list»))

7.1.2 Exercises
7.1 Write functions to translate code to English.

7.2 How would the functions above that translate from English to code have to
be modified if you wished to switch the order in the sublists so that each
sublist was a code letter followed by an English letter?

7.3 What happens if english-to-code is called with a list that has nonletters
(i.e., (t 4 2))? Modify the previous functions so that they do something
reasonable in such a situation.

172 Chapter 7: Data Structures

Association fists and
pairs

assoc and rassoc

7.4 Suppose we eliminated the inner parentheses and made our mapping of
English to code one long list as follows:

(a f b g c t ... z e)

Does the following version of english-letter-to-code work?
; Encode the symbol letter.
(define (english-letter-to-code letter match-list)

(second (member letter match-list»)

If so, write an analogous function that translates code letters into English
letters. If not, explain why.

7.2 Association Lists
Another data structure that is used to make a list of related pairs is an association
list. An association list is a list of nonempty lists. A nonempty list is often called a
cons or a pair.

Scheme has one buHt-in function that works with association lists: assoc.
Another function, rassoc, is not built-in, but added as an extension.

function arguments return value
assoc element assoc-list the first pair in assoc-list whose car is element
rassoc element assoc-list the first pair in assoc-list whose cdr is element

With both assoc and rassoc, if element does not match any of the pairs in assoc
list, #f is returned.

The function rassoc can be defined using recursion as follows:
; Like assoc but returns the first pair whose cdr matches elt.
(define (rassoc elt assoc-list)

(cond «null? assoc-list) #f)
«equal? (cdar assoc-list) elt) (car assoc-list»
(else (rassoc elt (cdr assoc-list»»)

Look at the following examples that use a partial mapping of English to code:
> (define eng-ta-code

'((a f) (b g) (c t)))

??

> (assoc 'b eng-ta-code)
(b 9)

> (assoc 'f eng-ta-code)
#f

> (rassoc 't eng-ta-code)
#f

> (rassoc '(tl eng-ta-code)
(c t)

Notice that rassoc must be called with the list of the code letter to match the
corresponding English letter.

7.2 Association Lists 173

Mistakes to Avoid
Remember that rassoe finds matches with the edrs of the pairs. To
match the pair (b g), the following call can be made:

> (rassoe '(g) '(fa f) (b g) (e t)))
(b g)

With two-element pairs the edrs are one-element lists, not atoms.
Similarly the function assoe must be called with lists to find pairs

whose earS are lists. For example,
> (assoe '(ab) '(((a a) 1) ((ab) 2) ((a e) 3)))

«ab) 2)

Since assoe returns the pair whose ear matches the element being searched
for, to get the value assoeiated with that ear, the edr or seeond of the pair is
taken. In the case of converting English to code, we would take the seeond of the
pair to get the corresponding code letter. The same applies to rassoe, except the
ear of rassoe is used.

We can write english-letter-to-code and code-to-english-letter

using assoe and rassoc. Instead of foreing the user to call code-to-english
letter with the list of the code letter (to match the cdrs of the pairs), we'll write
the function to call rassoc with the list of the letter.

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)

(second (assoe letter match-list»)

; Decode the symbol letter.
(define (code-to-english-letter letter match-list)

(car (rassoe (list letter) match-list»)

7.2.1 Optional section: Association lists with dotted lists
A dotted list is formed when an atom or list is consed onto an atom. See the sec
tion entitled "Optional Section: Dotted Lists" in Chapter 4 for an introduction to
dotted lists. An assoeiation list can be made up of dotted lists and then used with
the functions assoc and rassoc. For example,

> (define eomplementary-eolors
'«red. green) (blue . orange) (yellow . purpie)))

??

> (assoe 'blue eomplementary-eolors)
(blue . orange)

> (edr (assoe 'blue eomplementary-colors))
orange

> (rassoe 'purpie eomplementary-eolors)
(yellow . purpie)

Translation with assoc

andrassoc

174 Chapter 7: Data Structures

> (car (rassoc 'purpie complementary-colors))
yellow

Notice that rassoc is called with an atom because the cdrS of the dotted lists
are atoms. For relationships between atoms, an association list of dotted lists is
often used because it is simpler to use and uses less memory (less cons cells are
required).

To create an association list for the English-Ietter-to-secret-code letter list, the
sublists like (a f) would be changed to dotted lists like (a . f). The new list
would look like the following:

((a f)

(b g)

(c t)

(z e))

We can create new versions of the english-letter-to-code and code-to
english -letter functions that take association lists of this form. To find a code
letter, the call to assoc is the same, but the code letter is the cdr of the result
instead of the second. To get the English letter, rassoc must be ca lIed with the
code letter as an atom.
; Encode the symbol letter from an association list of dotted lists.
(define (english-letter-to-code letter match-list)

(cdr (assoc letter match-list»)

; Decode the symbol letter from an association list of dotted lists.
(define (code-to-english-letter letter match-list)

(car (rassoc letter match-list»)

7.2.2 Exercises
7.5 Write a program that determines the value of a BlackJack hand. The cards

can be represented using the symbols below:
ace two three four five six seven eight nine ten jack queen king

Aces are worth 1, and jacks, queens, and kings are worth 10. The hand can
be represented as a list of card names, such as

(jack three five)

This hand has a value of 18.
Create an association list to match the card names with the card values,
whichare

1 2 3 4 5 6 7 8 9 10 10 10 10

respectively. This assumes that aces are always worth one. Your program
should include a function that takes a BlackJack hand (a list of card names)
and the association list, and returns the value of the hand.

7.3 Designfor Modifiability 175

7.6 Modify the program above so that aces are worth either 1 or 11. Choose 11
unless that will make the hand worth more than 21, in which case the ace
should be considered worth 1. Your solution should work if given a hand
with more than one ace.
Hint: Only one ace can be worth 11 in ahand; two aces worth 11 each would
give a hand value of 22. Thus, you need only worry about making one ace
worth 11.

7.7 Write a function that takes a card hand (see above problems) and returns #t
if you should hit-ask for another card from the dealer. You can use the fol
lowing simple algorithm: if the hand is worth less than 15, hit. Or use your
own algorithm, perhaps based on the one dealer's card that is showing
this card can be passed to your function as an additional parameter.

7.8 Write a function that checks if the mapping from English to secret code is a
one-to-one mapping-each letter of the English list maps onto a unique
letter of the secret code list.

7.3 Design for Modifiability
The form of the data structures used in programs tends to be modified over time.
Sometimes different forms are used to allow new information to be represented
in the data structure. Sometimes the change is made to allow improvements in
the speed of data retrieval. It would be ideal if there were an easy way to minim
ize the changes that have to be made in the program when the data structure
takes on a new form.

Imagine that we changed the data structure of the English-Ietter-to-code
example to a single list as shown below:

(a f b 9 c t z e)

This would entail changing the existing code, which becomes more of an
ordeal if the program is much larger with many parts accessing the data struc
ture. However, there is a way to assure that the data structure and the program
can be independent entities. The key is to create functions that access and modify
the data structure and use these functions throughout the program instead of
directly accessing or changing the data structure. These selector and creator func
tions would have to be modified if the database changed; however, the rest of the
program would not have to be changed. An example of aselector function for the
previous nested list data structure would be the function english-letter-to
code. It represents the simplest form of data access we wish. The function
english-to-code uses this function and does not need to be changed if the data
structure is changed. Only english-letter-to-code and code-to-english
letter would have to be changed.

If we did change the data structure to the non-nested list form above, we
could still use english-to-code if we write a new version of english-letter
to - code, as folIows:

Data structures are
dynamic

Se/ector and creator
functions

176 Chapter 7: Data Structures

; Encode the symbol letter.
(define (english-letter-to-code letter match-list)

(if (equal? letter (first match-list»
(second match-list)
(english-letter-to-code letter (cddr match-list»))

7.3.1 Exercises
7.9 Write a new version of the function code-to-english-letter that use the

above single list of atoms form of the data structure.

7.10 Suppose that instead of an association list for the English-Ietter-to-code
mapping. there were a mapping of English letters to two different codes so
that the new data structure looked like the following:

«a f s)
(b g f)
(c t m)

(z e g»
The first letter in each three-element sublist is the English letter; the second
element is the first code letter; and the third is the second code letter. Write
a selector function that takes such a mapping list and an English letter and
returns a code letter from the first code list. Similarly, write selectors to go
from English to the second set of code letters, and from the first code letters
to the second code letters.

7.4 Sets
Lists can be used to represent sets of values. A set is an unordered collection of
elements with no repeated elements. Sets can be used to represent collections of
numbers or names, such as the names of all the presidents of the United States.
Below is the set of all prime numbers less than 20:

(1 2 3 5 7 11 13 17 19)

The order of the elements is not important. The same set could be represented by
the list

(3 7 11 1 19 17 2 5 13)

A list is a convenient representation for a set because it can grow and shrink and
be examined easHy with many of the buHt-in functions in Scheme.

Sets are used often in mathematics. The most common operations performed
on sets are the following:

function arguments operation
member element set does element occur in set?
union setl set2 set of elements in either setl or set2
intersection setl set2 set of elements in both of setl and set2
nu 11 ? set is set empty?
set-difference setl set2 set of elements in setl that are not in set2
adjoin element set add element to set if it's not already in set
subset? setl set2 are all the elements of setl in set2?
1ength set the number of elements in set-the cardinality

A valid set is a list with no repeated elements. If the set functions are called with
lists having repeated elements, the return values may have repeated elements as
weIl. The function adjoin should be used to add elements to a set, since it only
adds an element if it doesn't already exist in the set. The elements of a set are
usually atoms, but if they are lists, the set functions will still work properly.

We have used member and nu11? to determine if an element is in a list and if a
list is the empty list, respectively. These are both useful operations with sets.

Two sets can be combined by creating a set of all items they have in
common-their intersection. Another combination of sets is the set of all items
that exist in either of two sets, not including any items more than once-the union
of the sets. The elements that exist in one set but not another can be found using
set-difference. Adding an element to a set can be performed with adjoin,
which conses the element to the list representing the set if that element is not
already in the set. Lastly, subset? is used to determine if one set is a subset of
another set--every element of the first set must be a member of the second set.

The functions union, intersection, set-difference, adjoin, and subset?
are not buHt into Scheme, but are added in our extensions. We can define these
functions. adjoin is the simplest to define.

; Return set with item added unless it already exists in set.
(define (adjoin item set)

(if (member item set)
set
(cons item set»)

The remaining functions can be defined using recursion and member. For each
set function, we recurse through the first set. The following table shows what
result should be returned depending on whether the first element of that set is or
isn' t in the second set.

function if element is in set2 if element isn't in set2

union don't include element include element
intersection include element don't include element
set-difference don't include element include element
subset? check remaining elements return #f

Different actions should be taken when setl or set2 are empty. Observe the
subtle differences between these function definitions:

7.4 Sets 177

Set functions

Ru/es for valid sets

adjoin

178 Chapter 7: Data Structures

union

intersection

set-difference

subset?

; Return the set of items in either setl or set2.
(define (union setl set2)

(cond «null? setl)
set2)

«member (car setl) set2)
(union (cdr setl) set2»

(else
(cons (car setl) (union (cdr setl) set2»»

; Return the set of items in both setl and set2.
(define (intersection setl set2)

(cond «or (null? setl) (null? set2»
, ())

«member (car setl) set2)
(cons (car setl) (intersection (cdr setl) set2»)

(else
(intersection (cdr setl) set2»))

; Return the set of items in setl but not in set2.
(define (set-difference setl set2)

(cond «null? set2)
setl)

«null? setl)
, (»

«member (car setl) set2)
(set-difference (cdr setl) set2»

(else
(cons (car setl) (set-difference (cdr setl) set2»»)

; Return #t if all elements in setl are also in set2, #f otherwise.
(define (subset? setl set2)

(cond «null? setl)
#t)

«null? set2)
#f)

(else
(and (member (car setl) set2)

(subset? (cdr setl) set2»»

7.4.1 Example: Using sets to represent locations traveled to
An example application of sets is creating sets of the exotic places that you and
your friends have visited. You could create sets as follows:

(define places-i-have-been
'(turkey belize thailand indonesia india»

(define places-brett-has-been
'(south-dakota thailand»

(define places-lisa-has-been
, (yugoslavia thailand belize turkey india»

You can compare these sets to determine the places that any two people have
both visited using intersection.

> (intersection places-i-have-been places-brett-has-been)
(thailand)

> (intersection places-i-have-been places-lisa-has-been)
(turkey belize thailand india)

Notice that no elements were repeated in the resultant Iists. This is true for
sets-they do not have repeated elements. The actual order of the elements in the
retumed Iists may differ depending on the implementation of Scheme used. It's
not the order of the elements that matters in a set, but the contents of that set.

The function union can be used to find an the places that either of two people
have visited:

> (union places-brett-has-been places-lisa-has-been)
(south-dakota yugoslavia thailand belize turkey india)

To determine the places that one person has been and another hasn't, use
set-difference. For example,

> (set-difference places-i-have-been places-lisa-has-been)
(indonesia)

> (set-difference places-lisa-has-been places-i-have-been)
(yugoslavia)

Combining these Iists with union gives the places that either one, but not
both, of two people have been to.
> (union (set-difference places-i-have-been places-lisa-has-been)

(set-difference places-lisa-has-been places-i-have-been»
(indonesia yugoslavia)

Another possibility is to take the set-difference of the union and the
intersection. This deletes the places where two people have both been (the
intersection) from the union of the places where they have been. This leaves only
those places that either one has gone to, but not both.
> (set-difference (union places-i-have-been places-lisa-has-been)

(intersection places-lisa-has-been places-i-have-been»
(indonesia yugoslavia)

To determine if someone has been to a particular place, member is used:
> (member 'portugal places-brett-has-been)

U

subset? can be used to check if one person has been to an the places that
another has been. For example, has Brett been to an the places that Lisa has?

> (subset? places-brett-has-been places-lisa-has-been)
U

7.4 Sets 179

180 Chapter 7: Data Structures

Set equality subset? can be used to determine if two sets have the same elements. This will
be the ca se if both sets are subsets of one another:

> (and (subset? places-brett-has-been places-lisa-has-been)
(subset? places-lisa-has-been places-brett-has-been))

#f

The function equal? cannot be used to determine set equality, because equal? is
true only if the lists have the same elements in the same order, whereas set equal
ity is defined by the members of the sets, and not their order.

7.4.2 Exercises
7.11 Write aversion of union using the other set functions but without recursion,

or indicate why it is impossible. Assume that the lists passed as arguments
to your function are valid sets. The two lists may have elements in common,
yet your resultant list should have no duplicates.

7.12 Write aversion of intersection using the other set functions but without
recursion, or indicate why it is impossible. Assume that the argument lists
are valid sets.

7.13 Write aversion of subset? using the other set functions but without recur
sion, or indicate why it is impossible. Assume that you are given valid sets.

7.14 Write aversion of set-difference using the other set functions but
without recursion, or indicate why it is impossible. Assume that you are
given valid sets.

7.15 subset? was used earlier to determine if two sets are equal; in other words,
to determine if they have the same elements. Come up with a different
means of determining if two sets are the same.

7.16 Assume that you have variables bound to the following values:

seniors
juniors
physics-majors
english-majors
german-majors
forestry-majors

the first names of the students in the senior dass
the first names of the students in the junior dass
the first names of the dedared physics majors
the first names of the dedared English majors
the first names of the dedared German majors
the first names of the dedared forestry majors

Also assume that each student has a unique first name. Give expressions
that could be typed into the interpreter to produce the following sets:

• Seniors majoring in physics
• Juniors majoring in both physics and English
• Seniors and juniors majoring in either English or German

• Seniors and juniors majoring in neither English nor German
• Forestry majors who are not juniors

7.5 Trees
Trees are a very common data structure used in computer science. A computer
science tree has a root, leaves, and branches, just like areal tree; however, these
trees are drawn upside-down. Here is an example:

+

~ ---x
/""- /""-
3 4 2 1

This tree represents the arithmetic expression (3 x 4) + (2 - 1). To evaluate this
expression in Scheme, we would write it as

(+ (* 3 4) (- 2 1»

which is how this tree may be represented in list form.
Trees have nodes and branches. A branch is shown as a / or a \; anything else

is anode. There are three types of nodes: the root, inner nodes, and leaves. The root
is the uppermost node. There is only one root, and in this example it is +. x and -
are inner nodes. Anode with no branches below it is called a leaf. 3, 4, 2, and 1
are leaves. The root and inner nodes have branches descending below them.
These branches go to smaller sections of the tree which are called the subtrees. The
roots of these subtrees are the children of the node above them. Similarly, the
node immediately above anode is the parent.

If each node of a tree has two or less branches (or children), it is called a
binary tree. A complete binary tree has zero or two children for each node (as the
previous tree does). Trees with nodes having three or less branches are called ter
nary trees. N-ary trees are trees with up to N branches below each node.

A complete binary tree can be represented as a list of three elements. The first
element is the root, and the second and third elements are the left and right sub
trees. The subtrees may be leaves or complete trees. If the subtrees are trees, then
they are represented as lists. Leaves are represented as atoms. This representa
tion may seem recursive in nature, and it iso Recursion provides a wonderful
means of dealing with these structures, as we will soon explore.

The previous example tree has root +, and the left and right subtrees are

left subtree
x

/""-
3 4

right subtree

/""-
2 1

The left subtree has x as its root, and the leaves 3 and 4 are its children. This
subtree can be represented as the list (* 3 4). Similarly, the right subtree can be
represented as (- 2 1). Thus, the entire tree is represented as

7.5 Trees 181

Parts o(trees

Types o(trees

Tree representations

182 Chapter 7: Data Structures

(+ (* 3 4) (- 2 1»

With such a representation, children that are leaves are represented as atoms,
and children that are inner nodes are lists. It may not seem obvious why such a
representation is used instead of simpler forms like

(+ * 3 4 - 2 1)
or

(3 * 4 + 2 - 1)

The first representation, (+ * 3 4 - 2 1), can be used if we assume that
nonleaf nodes are operators (e.g., +, *) and the leaves are numbers. However, it
isn't as easy to access the children with this representation as it is using the
representation (+ (* 3 4) (- 2 1». As the next examples will show, being
able to easily access the children of a tree is a very common operation that we
will want to perform. The list (3 * 4 + 2 - 1) is ambiguous. It could represent
many different trees. Here are some possible examples:

x
~ -----..
3 /"'" + 1 /"'" 4 2

---- ----+ 1
~ -----..
x 2

/"'" 3 4

Here is a different tree that is more complex:

+ ---- ---~
x

/"'"
6

/
7

\
1

.----/-----..

4 2 3

This tree would be represented using the following list:
(+ (- (* 6 (- 7 1» 4) (/ 2 3»

The root of this tree is +, the left subtree is (- (* 6 (- 7 1» 4) and the right
subtree is (/ 2 3). These are easily obtained from the list; they are the second

and third elements of the list.

7.5.1 Depth-First search
Trees can be used to hold a collection of values, as shown in the tree below which
holds a collection of numbers:

13

~ ----5 45
/ ~ / ~
6 -1 7 18

How would we determine if a certain number occurred within a tree? We
could start at the root and test it. If it's not the root, then we continue by testing
the left and right sides of the tree. A question arises as to which order this traver
sal through the tree should take. We could test the entire left side before testing
the right side; in other words, traverse 13, 5, 6, -I, 45, 7, 18. This is called a depth
first traversal.

The tree above can be represented with the following list:
(13 (5 6 -1) (45 7 18»

To perform a depth-first search through such a list, a recursive strategy is
employed. Begin by comparing the element being searched for with the root of
the tree-this is the first element of the list. If there is no match, continue search
ing recursively with the left side of the tree. The search is recursive because the
left side of the tree may, as in this case, be a tree. If the left side recursive search
fails, search the right side recursively. The left and right sides of the tree are the
second and third elements of the list, respectively.

We are missing an exit case to check if the item is not in the tree. This can be
added as a test to see if the tree is empty (an empty list), in which case the item
being searched for cannot be in the tree, and #f should be returned. Another case
to consider is when the tree being examined is a leaf. The tree would be an atom
in this case. The return value should be a test checking if that leaf is the item
being searched for.

The pseudo code for a depth-first search is

if the tree is empty, return #f
otherwise, if we are at a leaf, return the result of comparing that leaf with

the item we are searching for
otherwise, if the root matches, return true
otherwise, if the left side contains the item (recursive call), return true
otherwise, return the result of checking the right side of the tree recursively

7.5 Trees 183

Depth-first search and
depth-first traversal

Recursive algorithm
for depth-first search

184 Chapter 7: Data Structures

Different
representations of
trees

Tree selector func
tions

The Scheme code follows:

; Use depth-first search to find item in tree.
(define (depth-first-search item tree)

(cond «null? tree) #f)
«atom? tree) (equal? item tree»
«equal? item (first tree» #t)
«depth-first-search item (second tree» #t)
(else

; empty tree
; leaf
; test root
; test left side

(depth - first - search i tem (third tree»» ; test right side

We have used prefix representation for trees. The root of the tree is the first
item and it is followed by the children. The root may be between the children
(infix) or after the children (postfix). Each of these representations for a tree is
valid and has particular uses.

Function calls in Scheme are expressed in prefix notation:
(* (+ 1 2) -4)

In typical mathematical notation, infix is used:

(1 + 2) * -4

Postfix 1 is used in some programming languages and hand held calculators.
Parentheses are not needed when the number of operands is fixed according to
the operator: This is one reason why some calculators use postfix notation. Our
previous mathematical expression is written in postfix as

1 2 + -4 *
Any of these three representations can be used to represent a tree in Scheme.

Extra parentheses (beyond those shown in the above examples) would be needed
for the infix and postfix representations. In light of these different tree representa
tions and according to the principle of design for modifiability, we should have
selector functions for the root value of the tree and the left and right sides of the
tree. This makes the code more readable as weIl.

; Return the root of tree.
(define (root tree)

(first tree»

; Return the left subtree of tree.
(define (left-side tree)

(second tree»

; Return the right subtree of tree.
(define (right-side tree)

(third tree»

Another change that can be made is in the recursive step of depth - first
search; it can be thought of as

1. Typically postfix is referred to as R.P.N.-Reverse Polish Notation.
2. This is true for prefix as weil. Scheme needs parentheses because many functions take a variable

number of arguments.

i tem is in tree if it is either in the left or the right side of tree.

The code using this recursive step and the selector functions is
; Use depth-first search tü find item in tree.
(define (depth-first-search item tree)

(cond « null? tree) # f) ; empty tree
((atom? tree) (equal? item tree)) ; leaf
((equal? i tem (rüüt tree)) #t) ; testroot
(else ; test left and right sides

(or (depth-first-search item (left-side tree))
(depth-first-search item (right-side tree)))))

This solution is equivalent to the previous version. Both versions test the left
side of the tree first in the recursive case, and only check the right side if i tem is
not in the left side. Below is a sampIe trace:

(depth-first-search -1 '(13 (5 6 -1) (45 7 18)))
J-

(or (depth-first-search -1 '(5 6 -1))

J
#t

J- (depth-first-search -1 '(45 7 18)))
J-

(or (depth-first-search -1 6) (depth-first-search -1 -1))

J
#t

J- J-
#f #t

The call (depth - first - search -1 '(45 7 18)) was not expanded because
it would not be evaluated. The or evaluates its arguments in left to right order.
Since the first argument, (depth - first - search -1 '(5 6 -1)), returns #t, the
or doesn't evaluate its second argument.

7.5.2 Breadth-First search
Another way to search through trees is to test the root, then its left child, and
then its right child, continuing in the same manner with the children of the sub
trees. Using the previous sampIe tree, this would be the traversal 13, 5, 45, 6, -1,
7, 18. Such a path is called a breadth-first traversal.

~
13

~ ------5 45
,/ '31

<: ---------/---->-..,
Z -1 7 18

>

7.5 Trees 185

Breadth-first search
and breadth-first
traversal

186 Chapter 7: Data Structures

Recursive algorithm
tor breadth-first
search

A list is needed to keep track of the subtrees that must be returned to. When a
node is reached, it is examined and its subtrees are added to the end of this
search list and the search continues. Once the search list is empty, the search is
complete. From this definition the pseudo code to perform a breadth-first search
through a list can be created.

if the list of subtrees to search is empty, return ftf

otherwise, if the root of the first subtree in the search list matches the item
being searched for, return ftt

otherwise, add the subtrees of the current subtree to the end of the search list
and continue searching with the rest of the subtrees in the search list

The current subtree to search is used a few times in the pseudo code, so we'll
save its value in the 1et variable curren t - tree. The code folIows:
i Use breadth-first search to find item in search-list (a list of trees).
{define (breadth-first-search item search-list)

{1et { {current-tree (first search-list»)
{cond ({nu11? search-list) ftf)

{{equa1? item (root current-tree» ftt)
{e1se

{breadth-first-search
item
{append

(rest search-list)
{1ist

(left-side current-tree)
(right-side current-tree»»»)

The function is called with a list of trees to search; thus, it is initially called
with the list of the tree list we want to search. As each node is examined, its
immediate subtrees are added to this search list to examine later. Below is a trace
of a sampie call to this function: The value of current-tree is underlined in the
argument to breadth - first - search.

{breadth-first-search -1 '{{13 (5 6 -1) (45 7 18»»
J.

{breadth-first-search -1 '({56 -1) (45 7 18»)
J.

{breadth-first-search -1 '({45 7 18) 6 -1»
J.

{breadth-first-search -1 '(~ -1 7 18»
J.

Error: Pair expected

Dur solution did not handle the case in which we are looking at a leaf. This
should be added as another case in the cond. If we are examining a leaf, the item
is present if it matches that leaf or if it is in the remaining subtrees to be tested.
The new solution is

7.5 Trees 187

; Use breadth-first search tü find item in search-list (a list üf trees).
(define (breadth-first-search item search-list)

(let ((current-tree (first search-list»
(cond «null? search-list) #f)

«atom? current-tree)
(or (equal? item current-tree)

(breadth-first-search item (rest search-list»))
«equal? item (rüüt current-tree» #t)
(else

(breadth-first-search
item
(append

(rest search-list)
(list

(left-side current-tree)
(right-side current-tree»» »))

With this new code, we get the following trace:
(breadth-first-search -1 '(6 -1 7 18»

J,
(breadth-first-search -1 '(-1 7 18»

J,
#t

In choosing test data, we should use situations to test all the exit cases. In this
function we should test what happens when (null? search-list) is true. This
will occur when the item being searched for is not in the tree:

(breadth-first-search -1 '«5 6 7»)
J,

(breadth-first-search -1 '(6 7»
J,

(breadth-first-search -1 '(7»
J,

(breadth-first-search -1 '(»
J,

Errür: Pair expected

The error occurs when search -list is the empty list. Examining the code, we
see that the let takes the first of search -list, which is (), and an error
results. To fix this, either test for an empty list before the let or within the let.
We'll take the second approach and change the let to

(let ((current-tree
(if (null? search-list)

, ()

(first search-list»)

188 Chapter 7: Data Structures

7.5.3 Exercises
7.17 Is the function below equivalent to depth-first-search? Explain your

answer.

(define (depth-first-search-2 item tree)
(cond «null? tree) #f)

«atom? tree) (equal? item tree»
(else

(or (equal? item (root tree»
(depth-first-search-2 item (left-side tree»
(depth-first-search-2 item (right-side tree»»)

7.18 Is the function below equivalent to depth-first-search? Explain your
answer.
(define (depth-first-search-3 item tree)

(or (not (null? tree»
(equal? item tree)
(equal? item (root tree»
(depth-first-search-3 item (left-side tree»
(depth-first-search-3 item (right-side tree»)

7.19 Suppose the recursive call to breadth-first-search is changed so that the
subtrees are added before the rest of search -1 ist.

(breadth-first-search
item
(append

(list
(left-side current-tree)
(right-side current-tree»

(rest search-1ist»)

How would this affect the traversal through the tree?

7.20 Write a creator function that takes anode value, a left subtree, and a right
subtree and returns a tree list of the form discussed in this section.

7.21 Write a Scheme expression that uses the creator function from the above
problem to produce the tree below:

23

~ ------7 5

/"" 9 88

7.22 Write a function that takes a tree and prints out the nodes and leaves of the
tree. Print out the root of the tree first, then the left side of the tree, and
lastly the right side. Print the values on one line with single spaces between

them. Use the selector functions defined in this section in your solution.

7.23 Write a function that takes a tree and prints out only the leaves of the tree.
Print the leaves on the left side of the tree first. The leaves should be printed
on one line separated by spaces.

7.24 Write a function to determine the depth of a tree. The depth of a tree is the
number of branches that must be descended before reaching the bottom
most leaf of the tree. For example, the depth of the tree below is three.

13

------ ------5 45

/ "" / "" 6 -1 7 18
/ \
2 3

Hints: The depth of a leaf is zero, and the depth of a tree is one plus the
larger of the depths of the left and right subtrees of the tree. Use this method
to determine the depth of the following trees: 13, (6 7 13), and (6 (1 2

3) 13). Try to simplify your solution using the built-in function max. Recall
that max returns the largest of its numeric arguments (e.g., (max 3 4 7 2)

~ 7).

7.25 The function below takes a binary tree as an argument.

(define (who-knows tree)
(cond «null? tree) 0)

«symbol? tree) 0)
«number? tree) tree)
(else (max

(who-knows (left-side tree»
(who-knows (right-side tree»»)

What does the call below return?

(who-knows '(7 (43 a) (b 1 d»)

7.26 The function is-expression takes a binary tree, tree. is-expression
should return #t if all the leaves are numbers and all the nonleaf nodes are
any of the symbols +, -, *, or /. If not, #f should be returned. For example,

> (is-expression '(* (+ 1 2) (- 4 1)))

#t

> (is-expression '(* (+ 1 two) 14))
#f

This code was written with too much leap of faith and not enough thought.
Fix the code so that it works.

7.5 Trees 189

190 Chapter 7: Data Structures

Trees as hierarchies

{define (is-expression tree)
{cond ({null? tree) #f)

({atom? tree) #t)
{else {or

{eq? (first tree) '(+ - * I»
{number? (second tree»
{is-expression (third tree»»)

7.27 The function path-finder takes a binary tree, tree, and a list, path. path

finder follows the path through the tree specified in path-a list of the sym
bols left and right and returns the subtree in tree to which path takes it. If
the path goes beyond the leaves of the tree, return the symbol error. For
example,

> (path-finder '(3 (4 (5 1 2) 7) (6 9 8)) '(right))
(6 9 8)

> (path-finder '(3 (4 (5 1 2) 7) (6 9 8)) '(left left right))
2

> (path-finder '(3 (4 (5 1 2) 7) (6 9 8)) , (right left right))
error

Assurne that path will not contain values other than the symbols left and
right and that the function will not be called initially with an empty tree.
Complete the function below.
{define (path-finder tree path)

{cond {{null? ________ _
{{atom? ________ _
{{equal? ____________ _

(path-finder ________________ »

{else
(path-finder ________________ »)

7.6 Sampie Exercise with Trees and Sets
Trees are often used to represent hierarchies of information. A tree can represent
a family tree, with the nodes being parents, and the leaves, the current generation
of children. Trees can represent the hierarchy of a company, with the president at
the top, and the vice presidents, and so on, below.

Trees can be used to help decide to which restaurant to go. In deciding what
restaurant you want to go to, you have some notion of conditions like what you
want to eat, what you don't want to eat, how much you want to spend, how
much time you want to take, what atmosphere you want, etc. Some of these cri
teria may be important and others may not.

The situation gets more complex when there are numerous people trying to
agree on a restaurant. Imagine the following exchange:

7.6 Sampie Exercise with Trees and Sets 191

CR:
Sandy:
Farzad:
Craig:
John:

Anyone want to go get some spiey food?
That sounds good by me, but I can't be gone too long.
I don't like it too spiey, and I have to be back soon also.
How about Japanese food? I feellike splurging on raw fish today.
Yeah, we just got paid, let's blow some money, maybe go for margari-
tas too.

Patty: That doesn't sound quiek to me.
Brett: Hey, my boss just left for the day, I'm up for a long lunch.
Paul: I have to finish something tonight, so margaritas are out for me.
Karineh: How about going to a new restaurant?
Dorothy: Are you guys still trying to decide? You need a restaurant expert.

Creating a program that can take such information and return the restaurant
that is best suited to meet most of the requests would require a sophisticated,
large program. However, we can make some simplifications and create a pro
gram that can help narrow the search of which restaurant to choose.

At first we can limit ourselves to the case of a single person deciding what to
eat. For any particular type of food, she may be interested in eating it, or may not
desire it, or may not care either way. In this program such information will be
represented as two lists:

desired Things that are desired
undesired Things that are not desired

Anything not in either of these lists is considered a don't care value.
The desired and undesired lists are sets that contain facts about what you

want to eat and what you don't want to eat. They might look like the following:

desired-foods: {ethnic}
undesired-foods: {drive-in fast-food}

It may seem strange to have two lists-one for the desired foods, and one for
the undesired foods. An alternative is using a single list, as in

desired-foods: {ethnic walk-in sit-down}

Anything not in this list would be considered a don't care value. With a single list,
a mapping is needed to match items like walk - in and si t -down with the internal
node values (the questions in the tree) drive-in and fast-food. This could be
implemented using an association list.

{define opposites
'{{drive-in walk-in}

{fast-food sit-down}
{ethnic domestic}

}}

With two lists an association list isn't needed because all the attributes in the
lists correspond directly with the internal nodes of the restaurant tree. This will
be the approach we use.

Desiredand
undesired (oods

Alternate
representations

192 Chapter 7: Data Structures

Representing
restaurants

Another data structure is needed to maintain the restaurants. These restau
rants could be the leaves of a tree in which the internal nodes represent questions
about what you want to eat. For each question node, the left branch of the tree
contains restaurants that pertain if the question is satisfied. The right side of the
tree contains restaurants that the person would want to go to if the question is
notsatisfied.

A restaurant tree may look like the following:

fast food? ---- ----drive-in food? ethnic food?

------ ------ ------ ------In and Out Burger ribs?

~ --- New Delhi Junction La Vals

Flint's Tommy's

All the restaurants on the left side of the root, fast food?, are fast food places,
whereas the restaurants on the right side are slower, sit-down restaurants.

A list corresponding to the tree above is
{fast-food {drive-in in-and-out-burger (ribs flints tommys»

(ethnic new-delhi-junction la-vals»

When deciding if a question is satisfied, the desired and undesired lists are
used. For example, if the program is deciding upon fast-food or non fast-food
restaurants, if fast - food exists in the desired list, then the program should con
tinue with the questions on the left side of the tree. If fast - food is in the
undesired list, then continue with the right side of the tree. If fast-food doesn't
exist in any list, it is a don't care value, and both sides of the tree should be exam
ined.

The program works by sequencing through the tree in the following manner:

if you are at a leaf, you've reached a restaurant, return that restaurant,
otherwise, you are at adecision junction,

if the decision is met (the node occurs in the desired list),
continue with the left side of the tree

otherwise, if the decision is undesired (the node occurs in the
undesired list), continue with the right side of the tree.

otherwise, continue with both sides of the tree (don't care situation).

With the example tree above and the desired and undesired lists below,

desired-foods: (ethnic)

undesired-foods: (drive-in fast-food)

you begin at the root by checking if you want fast food. Since fast- food is in the
undesired foods list, the program continues with the right side of the tree
asking if you want ethnic foods. ethnic is in the desired list so we go to the left
side of the tree. Here we find the leaf new-delhi - j unction and return it.

Adhering to the principle of design for modifiability, we should use the selec
tor functions we created earlier to access the nodes and subtrees of the tree. The
function root returns the root of a tree. If it is given a subtree of the original tree,

7.6 Sam pie Exercise with Trees and Sets 193

it returns the root of that subtree, which is an inner node in the original tree. The
function left-side returns the left subtree of a tree, and the function right
side returns the right subtree of a tree These functions perform the operations
first, second, and third, respectively.

We can add another function to test if we are at a leaf in the tree:
; Return true if tree is a leaf (an atom).
(define (leaf? tree)

(atom? tree»

We check both sides of the tree in don't care situations. This means that we
may find more that one restaurant that satisfies the constraints. Thus, we should
return a list of restaurants always. And when the restaurant tree is empty, we
should return an empty list. In the case where restaurant - tree is an atom (a
restaurant), the list of that restaurant is returned. The code for the restaurant
advisor can be expressed in Scheme as folIows:
; Return list of restaurants according to properties in desired
; and undesired lists.
(define (restaurant-advisor restaurant-tree desired undesired)

(cond «null? restaurant-tree) '(»
«leaf? restaurant-tree) (list restaurant-tree»
«member (root restaurant-tree) desired)

(restaurant-advisor (left-side restaurant-tree)
desired undesired»

«member (root restaurant-tree) undesired)
(restaurant-advisor (right-side restaurant-tree)

desired undesired»
(else

(append
(restaurant-advisor (left-side restaurant-tree)

desired undesired)
(restaurant-advisor (right-side restaurant-tree)

desired undesired»»)

To handle information from multiple people, some means of combining the
information is needed. In the case of two people, general desired and undesired
lists are needed. These lists should reflect any desires or undesires that the two
people have. If we look at the lists as sets, then taking the union of the desired
lists will yield the set of all desires for those two people. The same can be done
with the undesired lists to produce a general undesired list.

With more than one person, conflicts can arise. A conflict would involve hav
ing the same item in both the desired and undesired lists. We'll use intersee
tion to check if the desired and undesired lists have any elements in common. If
the intersection isn' t (), the two lists have elements in common.

Many techniques can be used to handle conflicts. One way is to create a
hierarchy of the people so that certain people's restaurant desires and undesires
are given priority over other's desires and undesires.

A more democratic scheme is to give priority to either the desired lists or the
undesired lists. If the desired lists have priority, then any conflicting elements in

Handling conflicts o(

interest

194 Chapter 7: Data Structures

the undesired lists are ignored. As it is written, restaurant - advisor gives
preference to items that occur in the desired list. This is because decision nodes
are compared with the desired list first and the search continues down the left
side of the tree if the node is in the desired list. To see this, look at the fo11owing
trace. Suppose that the variable restaurants has been bound to the restaurant
list

(fast-food (drive-in in-and-out-burger (ribs flints tommys»
(ethnic new-delhi-junction la-vals»

The trace produces the fo11owing:

(restaurant-advisor restaurants
'(fast-food drive-in) '(fast-food drive-in»

J-
; the root of the tree fast - food is in desired
; so we continue with the left side of the tree

J-
(restaurant-advisor '(drive-in in-and-out-burger (ribs flints tommys»

'(fast-food drive-in) '(fast-food drive-in»
J-

; the root of the tree drive- in is in desired
; so we continue with the left side of the tree

J-
(restaurant-advisor 'in-and-out-burger

'(fast-food drive-in) '(fast-food drive-in»
J-

; the tree in-and-out-burger is a leaf
; so we return the list of it

J-
(in-and-out-burger)

To give the undesired list priority, a11 the elements in the desired list that are
also in the undesired list should be removed. This can be implemented using
set-difference. The expression

(set-difference desired undesired)

returns the elements in the desired list that aren't in the undesired list.
Calling the function as

(restaurant-advisor restaurant-tree
(set-difference desired undesired)
undesired)

results in giving the undesired list priority over the desired list. Here is a sampie
trace using the same desired and undesired lists we used in the last trace.

7.6 Sampie Exercise with Trees and Sets 195

(restaurant-advisor restaurants
(set-difference '(fast-food drive-in) '(fast-food drive-in»
'(fast-food drive-in»

J,
; the set-difference returns' ()

J,
(restaurant-advisor restaurants

'() '(fast-food drive-in»
J,

; the root of the tree fast - food is in undesired
; so we continue with the right side of the tree

J,
(restaurant-advisor '(ethnic new-delhi-junction la-vals)

'() '(fast-food drive-in»
J,

; the root of the tree ethnic is not in desired or
; undesired so we continue with both sides of the tree

J,
(append

(restaurant-advisor 'new-delhi-junction
'() '(fast-food drive-in»

(restaurant-advisor 'la-vals
'() '(fast-food drive-in»)

J,
; the trees new- delhi - j unction and la -vals are leaves
; so we return their list

J,
(append

'(new-delhi-junction)
'(la-vals))

J,
(new-delhi-junction la-vals)

7.6.1 Exercises
7.28 Write a function that takes a list of many desired lists and produces one

general desired list-the union of all the desired lists.

7.29 The following call to restaurant-advisor is an attempt to eliminate
conflicts between the desired and undesired lists without giving priority to
oneofthem.

(restaurant-advisor restaurant-tree
(set-difference desired undesired)
(set-difference undesired desired»

Will this solution work? Why or why not?

196 Chapter 7: Data Structures

7.30 Rather than give preference to desired or undesired lists, conflicts can be
resolved by a majority rule. If more people prefer a type of food or restau
rant than do not, that type remains part of the desired list, but is removed
from the undesired list. Write a function that takes a restaurant tree, desired
and undesired lists, and ca11s restaurant-advisor with new desired and
undesired lists that have a11 conflicts removed by majority rule. The original
desired and undesired lists are not sets, but rather lists formed by append
ing various peoples' preferences together.

Hint: You only need to sequence through the desired list and maintain
the elements that should be in that list. Then you can form a new undesired
list given the new desired list.

7.7 Summary
• Association lists are lists of pairs (nonempty lists) where each pair maps one

item with another.
• assoc is used to match the carS of association lists, and rassoc is used to

match the cdrs. Both functions return the entire pair that was matched.
• Selector and creator functions are used to facilitate code modification and

improve code readability.
• Sets are lists of unordered elements with no repeating elements.
• To test for set membership, use member.
• To find a11 the elements two sets have in common, use intersection.
• To find a11 the elements two sets have together, use union.
• To find the elements in one set that are not in another, use set-difference.
• To find if a set is empty, use null?
• To add an element to a set, use adj oin.
• To find if one set is a subset of another, use subset?
• To find the number of elements of a set, use length.
• Trees are data structures that have a root value and left and right sides that

are trees themselves.
• Depth-first and breadth-first search are two common means of traversing a

tree data structure.

7.7 Summary 197

• Summary of functions introduced in this chapter:

function
assoc
rassoc
member
null?
length
union
intersection
set-difference
adjoin
subset?

arguments
element assoc-list
element assoc-list
element set
set
set
setl set2
setl set2
setl set2
element set
setl set2

return value
the first pair in assoc-list whose car is element
the first pair in assoc-list whose cdr is element
true if element occurs in set
true if set is empty
the number of elements in set-the cardinality
set of elements in either setl or set2
set of elements in both of setl and set2
set of elements in setl that are not in set2
set with element added if its not already in set
true if all the elements of setl are in set2?

CHAPTERB

FuNCTIONALS

8.1 Passing Functions as Arguments
In Scheme, functions can be passed as arguments to other functions, in the same Functionals
fashion that data values like lists and atoms are passed. This enables different
actions to be carried out depending on the function passed. Functions that take
functions as arguments are called functionals. Another term for these functions is
applicative operators.

8.1.1 Mapping functions
Applying a function to every element in a list is called a mapping, hence functions Mapping
that do so are called mapping functions. To get a realworld context of mappings,
think of how a map of a city or country is made. Each position in the three
dimensional object (e.g., country) must be projected onto a two-dimensional
piece of paper. Another way of saying this is that each position is mapped onto
the paper. One of the most common mapping techniques used is the Mercator
projection used in making flat world maps that artificially enlarge regions near
the poles.

map is used to apply a function to every element in a list. The function passed map

to map should take one argument and should work when called with any element
of the list. map returns a list of the results of those function applications.

A similar function is for-each, which is identical to map except that it does for-each

not return the results of the function applications. Thus, for-each is only used
for the side-effects that are produced by the function mapped over the elements
of the list. for-each returns an undefined value. One additional important differ-
ence: for-each guarantees that it applies the function to elements of the list in a
left to right order. map makes no such guarantee.

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

200 Chapter 8: Functionals

map and for-each

syntax
function arguments return value
map function list
for-each function list

list of results from applying function to elements of list
undefined, but applies function to elements of list

The square - reets function from Chapter 6 is an example of mapping a func
tion over a list. The sqrt function is applied to all the elements in the list given to
map, and the resulting list of square roots is retumed. square - reets can be
rewritten using map, as

; Return a list ef the square reets of the numbers in a-list.
(define (square-reets-mapping a-list)

(map sqrt a-list»

Below are two sampie calls to square - reets -mapping:

> (square-roots-mapping '(49 64 100 36))
(7.0 8.0 10.0 6.0)

> (square-roots-mapping '())
()

The function deep-reverse from Chapter 6 can be written using map as fol
lows:

; Return the deep reverse ef a-list (reverses all sub-lists).
(define (deep-rev-map a-list)

(if (atom? a-list)
a-list
(map deep-rev-map (reverse a-list»))

The idea is to use map to invoke the function recursively on all the top-level ele
ments of the reversed list. The check for an atom is very importanti without it,
the function will be called with atoms, and map will give an error if called with
atoms instead of lists. Below are two traces of calls to deep-rev-map. Note that
list is used in the expansion of map to simplify the trace:
(deep-rev-map '(a apple»

J,
(map deep-rev-map '(apple a»

J,
(list (deep-rev-map 'apple) (deep-rev-map 'al)

J, J,
(list 'apple 'a))

J,
(apple a)

8.1 Passing Functions as Arguments 201

Here is a more involved trace:
(deep-rev-map '(Ca apple) b bear»

J.
(map deep-rev-map '(bear b (a apple»)

J.
(list (deep-rev-map 'bear) (deep-rev-map 'b) (deep-rev-map '(a apple»)

J. J. J.
(list 'bear 'b (map deep-rev-map '(apple all)

J.
(list 'bear 'b (list (deep-rev-map 'apple) (deep-rev-map 'al»~

J. J.
(list 'bear 'b (list 'apple , a»

J.
(list 'bear 'b '(apple a»

J.
(bear b (apple a»

A nice use of the function fo:r-each is a function that prints out the elements
of a list one element per line. This function is written in Chapter 9, seetion 9.1.1.

8.1.2 app1y: A variation on the normal function application
There are times when you want to apply a function that takes a collection of
arguments to a list of arguments. For example, in Chapter 6, we wrote the func
tion sum -list that returns the sum of the numbers in a list. We could have writ
ten this function using apply, as folIows:

; Return sum of numbers in number-list.
(define (sum-list-alt number-list)

(apply + number-list))

Here are some other examples using apply:

> (apply max '(3 1 -5 4 2))
4

> (applyappend '((one list) (another) (a third list)))
(one list anothe:r a thi:rd list)

> (apply list '(1 2 3 4 5))
(1 2 3 4 5)

> (apply< '(1 2 3 4 5))
ft

a useless function call

> (apply * (map abs '(3 1 -5 4 2)))
120

apply does not work when given special forms. This means that we cannot
use apply to test if all the values in a list are true using the special form and. The
following example, which attempts to test if all the elements in a list are numbers,
illustrates this:

app1y

app1y doesn't take
special (orms

202 Chapter 8: Functionals

Function names are
evaluated

> (applyand (map number? (-3 4 one 2)))
Error: apply: Wrong type in arg1: macro and

8.2 Writing Functions that Take Functions as Arguments
It is possible to create functions that take functions as arguments. Such functions
can perform various operations on data depending on the functions with which
they are called.

Sometimes you need to invoke the function passed as an argument directly.
The function apply-to-7 takes a function as an argument and returns the result
of that function applied to the number 7.

; Apply 7 to fune.
(define (apply-to-7 fune)

(fune 7))

Below are some example calls to this function:
> (apply-to-7 /)
1/7

> (apply-to-7 number?)
#t

To understand how apply-to-7 works, we must refine our simplified model
of function evaluation from Chapter 3. Our new model must include one impor
tant distinction: when evaluating functions, both the function and its arguments
are evaluated. Our previous model only indicated that the arguments were
evaluated. The way the function was determined from its name was never
addressed. Since we evaluate the item in the function position of a function call,
we can do things like the following:

; Return a list of elt1 and elt2 using eons or list.
(define (listify eltl elt2)

«if (list? elt2) eons list) eltl elt2))

> (listify 'a 'b)
(a b)

> (listify 'a '(b))
(a b)

The if expression returns the function cons or list depending on the type of
el t2. This function is then applied to the evaluated arguments, el tl and el t2.

The following function max-of-fune takes a list and a function and returns
the maximum result obtained when the function is applied to the elements of the
list:
; Return the largest value of the mapping of funetion onto a-list.
(define (max-of-fune funetion a-list)

(apply max (map funetion a-list»)

8.2 Writing Functions that Take Functions as Arguments 203

This function can be invoked as folIows:
> (max-of-func abs '(3 -4 2))

4

> (max-of-func length '((73 64 2) ((123 4)) (a b) ((()))))
3

8.2.1 -if functions
The functions count and remove search for elements that match a given item
within a list. It is helpful to have a means of searching for elements that satisfy a
function. We can do this by creating functions we'll name count-if and
remove-if. These functions are similar to their non -if ending counterparts with
the exception that elements in the lists passed to these functions are tested against
a predicate function, as opposed to being compared to some element. In addition,
we'H create a function find-if that returns the first element in a list that satisfies
the predicate function.

Below are some examples using these functions:
> (count-if even? '(3 5 6 4 7))
2

> (remove-if even? '(3 5 6 4 7))
(3 5 7)

> (find-if even? '(3 5 6 4 7))
6

The function count-if can be implemented using map. map applies the func
tion to all the elements of the list and returns the results in a list. The number of
true values in that return list is what count-if returns. To get a better picture of
this, look at what map returns given the arguments used above to count-if.

> (map even? '(3 5 6 4 7))
(#f #f #t #t #f)

The number of #ts is what count-if should return. If we remove the Hs, we
get a list of #ts. Here is the code to count-if:

; Return the number of elements in a-list that satisfy fune.
(define (count-if fune a-list)

(lenqth (remove #f (map fune a-list»))

map also can be used to write find-if. The list element that is in the same
position as the first true value from map is what find-if returns. Expressing this
in Scheme, we get
; Return the first element in a-list that satisfies fune, else #f.
(define (find-if fune a-list)

(list-ref a-list
(position #t (map fune a-list»)

count-if

find-if

204 Chapter 8: Functionals

remove-if remove-if can be implemented using a recursive filter similar to the function
pos i ti ve - filter from Chapter 6.

; Return a-list without the elements that satisfy fune.
(define (remove-if fune a-list)

(cond «null? a-list)
, (»

«fune (first a-list»
(cons (first a-list)

(remove-if fune (rest a-list»»
(else

(remove-if fune (rest a-list»»)

Let' s test these functions. Assurne the following function has been defined:
; Return true if a-list eontain a 3 on the top level.
(define (has-3 a-list)

(member 3 a-list»

> (find-if symbol? '(ra list) 13 a-symbol five))
a-symbol

> (count-if symbol? '(ra list) 13 a-symbol five))
2

> (remove-if symbol? '(ra list) 13 a-symbol five))
(a-symbol five)

> (find-if has-3 '«1 one) (2 two) (3 three)))
Error: list-ref: Wrong type in arg2 #f

> (count-if has-3 '«1 one) (2 two) (3 three)))
1

> (remove-if has-3 '«1 one) (2 two) (3 three)))
«(3 three))

WeIl, at least count-H works. The problem with remove-if is that it is keep
ing the items it should remove and vice versa. To fix this, reverse the last two
actions so that we do not include (remove) items that satisfy the function and
keep those that do not satisfy the function.

find-H works with symbol?, but not with has-3. The error message indi
cates that list-ref had u as its second argument. This second argument is the
result of a call to position that looks for the first occurrence of #t in the result
from map. Let's see whatmap returns.

> (map has-3 '«1 one) (2 two) (3 three)))
(#f #f (3 three))

There is no #t in the result, but there is a true (non-u) value. Unfortunately,
the functions we know up to this point won't help us to find the first true element
in a list. We could write a recursive function to do so, but at that point we might
as weIl write a recursive function to implement all of find-Ho Let's do that.

8.2 Writing Functions that Take Functions as Arguments 205

The idea is to apply the function passed as an argument to successive ele
ments in the list until a true value is returned. Then we return the list element
that satisfied the function. The definitional pseudo code for this follows:

if the list is empty, return #f
otherwise, if the first element satisfies the function, return it
otherwise, recursively check the rest of the list

Return the first element in a-list that satisfies fune, else #f.
(define (find-if fune a-list)

(cond «null? a-list) #f)
«fune (first a-list» (first a-list»
(else (find-if fune (rest a-list»»)

Testing this on the two examples above, we see that our new solution works:
> (find-if symbol? '(Ca list) 13 a-symbol five))
a-symbol

> (find-if has-3 '((1 one) (2 twO) (3 three)))
(3 three)

The new version of remove-if and sampie calls follow:
; Return a-list without the elements that satisfy fune.
(define (remove-if fune list)

(cond «null? list)
, (»

«fune (first list»
(remove-if fune (rest list»)

(else
(cons (first list)

(remove-if fune (rest list»»))

> (remove-if symbol? '(Ca list) 13 a-symbol five))
«a list) 13)

> (remove-if has-3 '((1 one) (2 two) (3 three)))
((1 one) (2 two»

8.2.2 Exercises
8.1 Write a function that takes a list of numbers and returns the average of the

numbers.

8.2 Write a function that takes a list of numbers and returns the smallest
number in the list.

8.3 Write a function assoeiative? that takes a function (taking two argu
ments) and three additional arguments that could be applied to that func
tion two at a time. associative? should return #t if the function passed to
it is associative for the three other arguments. The function is associative if

Fixed find - if

Fixed remove-if

206 Chapter 8: Functionals

(fune (fune arg1 arg2) arg3)

is equal to
(fune arg1 (fune arg2 arg3»

8.4 Write a function eomrnutative? that takes a function <taking two arguments>
and two additional arguments that could be applied to that function. eomrnu
tative? should return #t if the function passed to it is commutative for the
two other arguments. The function is commutative if the order of the argu
ments does not effect the return value. In other words,

(fune arg1 arg2) is equal to (fune arg2 arg1)

8.5 Write a conditional map map- if that takes a function and a list just as map
does, but in addition takes a predicate function. The predicate is applied to
each element of the list, and only if a non-ftf value is returned should the
function be applied to the element and that result returned in the answer
list. For example,

(map-if - '(0 u 8 1 2) number?)

returns
(0 -8 -1 -2)

Notice that the resultant list does not have to be as long as the original list
with whichmap-if is called.

8.6 Write a function deep -abs that takes a nested list and applies the function
abs to every atom in the nested list and returns a similarly nested list of
results. For example,

(deep-abs '«3 -4 (-5» (6 «-7 8»»)

returns

«3 4 (5» (6 «7 8»»

8.7 Does the following version of eount-if work?
(define (count-if fune a-1ist)

(count #t (map fune a-list»)

8.2.3 -if-not functions
To find the first nonpositive number in a list of numbers, we might try to use
find-if withnegative?, as in the following example:

> (find-if negative? '(2 3 0 -3 4 -5))
-3

It doesn't return zero because zero is not negative. However, zero is nonpositive
and is the answer we wanted. To fix this we could write a function that tests for

8.2 Writing Functions that Take Functions as Arguments 207

negative numbers or zero, and pass that to find-if. However, there is a more
general solution.

We can create functions that end in -if-not that are identical to their coun
terparts ending in -if except that they perform their action on the elements that
do not satisfy test. To find the first nonpositive number, we can use

> (find-if-not positive? '(2 3 0 -3 4 -5))
o

The function pos i ti ve - filter from Chapter 6 can be written using remove
if-not. positive-filter takes a list and returns a list of all the positive
numbers in the list. A better name for remove-if-not would be keep-if-we
keep the elements of the list that satisfy the function.

; Return a list of the positive numbers in a-list.
(define (positive-filter-alt a-list)

(keep-if positive? a-list))

An example call to pos i ti ve - f i 1 ter -al t follows:
> (positive-filter-alt '(-5 15 6 -20 0 -1))
(15 6)

The table below shows the results of applying the -if and -if-not functions
to the list (36 three (124» and the function atom?, as in

> (count-if atom? '(36 three (124)))
2

function return value
count-if 2
find-if 36

remove-if ((124))

count-if-not 1

find-if-not (124)

keep-if (36 three)

Implementing count-if-not and find-if-not will be left as exercises. The
first version of remove-if we wrote did what keep-if should.

Here is a summary of the if and if-not functions we have created. All the
functions take a function test and a list list. test should take a single argument
whose type matches that of the elements in list.

function arguments
find - if test list
count-if test list
remove-if test list
find-if-not test list
count-if-not test list
keep-if test list

return value
first element in list that satisfies test
number of elements in list that satisfy test
list without elements that satisfy test
first element in list that does not satisfy test
number of elements in list that do not satisfy test
list of elements that satisfy test

if -not functions

Summary of -if and
-if-not functions

208 Chapter 8: Functionals

Mistakes to A void
Remember that find-if returns the first element that satisfies the func
tion, not the result of that function call. Similarly, keep-if returns a list
of elements that satisfy the function, not a list of the return values.

8.2.4 Exercises
8.8 Write expressions to compute the following results using the list values

that has been bound to some list. Each question refers to the top-level ele
ments in values:

- The numbers in values
- The non-numbers in values
- The number of non-numbers in values
- The first list in va lues
- The number of elements in the first list in values

- The list values without any symbols

8.9 Write the function find-if-not.

8.10 Write the function count-if-not.

8.11 Anna proposes the following idea to remove duplicate elements from a list
to make it a legal set. She suggests combining the list of all the unique ele
ments with the list of all the duplicate elements. The code should work like
the example below:

> (remove-duplicates '(3 4 3 2 4))
(3 4 2)

Here is Anna' s code:
(define (remove-duplicates a-list)

(union
(remove-if (lambda (elt) (> (count elt a-list) 1)) a-list)
(keep-if (lambda (elt) (> (count elt a-list) 1)) a-list»)

Does her solution work. Why or why not?

8.12 Mike looks at Anna's code (from the previous exercise) and says that her
idea is right, but her implementation is wrong. If she reversed the two argu
ments to union it would work. He bases this on the way union is written. Is
Mike right? Why or why not?

8.2 Writing Functions that Take Functions as Arguments 209

8.2.5 every and any
There are times when you want to test if every element of a list satisfies some
function. Or you may want to test if some element satisfies a predicate function.
Examples of this would be the following: are all the elements of a list even
numbers, is a list a valid association list (i.e., it is a list of pairs), and is there a
negative number in a list? We can do this by creating two new functions: every
andany.

These functions are similar to map in that they apply a function to elements of
a list. However, the return value is a true/false value instead of a list of results.
One additional difference is that we don't always need to check all the values in
the list. For example, if we are testing if all the elements in the list are numbers,
and we encounter a non-number, we don't need to check further elements. Simi
lady, if we are checking if the list contains at least one number, we can stop exa
mining elements once a number is found. In this sense these two functions
behave like and and or.

Here are the complete definitions of the two functions. every returns a true
value if applying the function to every successive element in the list returns a
true value. In this case every returns the final true value encountered. If any
application results in #f, no further elements are tested and #f is returned. any
applies the function to successive elements in the list. If any application returns a
true value, no further elements are tested, and that true value is returned. If all
applications result in #f, #f is returned.

function arguments return value
every test list final true return value if all elements in list satisfy test,

#f otherwise
any test list first true return value from applying test to elements

in list, #f otherwise

The following examples illustrate the use of these functions. Assume the func
tion short -list? has been defined as follows:

; Return true if item is a short list (one or two elements).
(define (short-list? item)

(and
(list? item)
(member (length item) '(1 2»))

> (every short-list? '((one 1) (two 2) ()))
#f

> (every short-list? '((one 1) (two 2) (3)))

(1 2)

> (everyeven? '(4 6 2))
#t

> (anyeven? '(3 6 2))
#t

every and any

210 Chapter8: Functionals

> (anyeven? '(3 9 27))
#f

> (any short-1ist? '((one 1) (two 2) (3)))
(2)

Let's write these two functions. We cannot use map because it will always
evaluate all the elements in the list. We'll create recursive functions. To return the
final true value, every should stop when it encounters a one-element list. The
definitional pseudo code for every is

if the list is empty, return ??
if there is one element in the list, return the function applied to that element
otherwise, return the and of the first element applied to the function

and the result of a recursive call on the rest of the list.

What shall we return when we have an empty list? You might be inclined to
think that #f should be returned. However, we should be consistent with how
and works; it returns #t if ca lied with no arguments.

The code for every folIows:

; Return final true return value if all applieations of fune
; to the elements of a-list are true, otherwise return #f.
(define (every fune a-list)

(cond «null? a-list) #t)
«null? (rest a-list» (fune (first a-list»)
(else (and (fune (first a-list»

(every fune (rest a-list»»))

The code for any is very similar. Instead of checking for an item that does not
satisfy the function as an exit case, we need acheck for satisfying the function. In
this case the true value is returned. Reaching the empty list means that none of
the elements satisfied the function, so we should return #f. We do not need to
make acheck for a one-element list.

; Return first true applieation of fune to the elements of
; a-list, otherwise return #f if no applieations are true.
(define (any fune a-list)

(if (null? a-list)
#f
(or (fune (first a-list»

(any fune (rest a-list»»

The function all-numbers? from Chapter 6 can be written using every. all
numbers? takes a list and returns #t if all the elements in the list are numbers,
and #f otherwise.

; Return true if all elements of a-list are numbers.
(define (all-numbers-alt? a-list)

(every number? a-list))

Below are two example function calls using this function:

> (a11-numbers-a1t? '(3 4 2))
ft

8.2 Writing Functions that Take Functions as Arguments 211

> (a11-numbers-a1t? '(3 four 2))
ff

8.2.6 Exercises
8.13 Given a list listl, write expressions to return the following values. You

may need to define additional functions.

- true if there is at least one top-level symbol in listl

- true if each element of list! is a two-element list
- true if listl has no sublists

8.14 Explain the differences between any and find-if.

8.15 Which functional (e.g., map, find-if, every) would you use to find the fol
lowing values? Note: if none of the functions appear to do the job, indicate
how you would determine the value using other techniques.

- the first nested list in a list
- the second atom in a list
- the last number in a list
- the numbers greater than ten in a list of atoms
- a list without any sublists
- the average of a list of numbers
- the first three elements in a list
- the number of negative numbers in a list
- if a list has at least one number
- if a list has at least five numbers

8.2.7 Optional section: Using multiple lists with map, for-each,
every, and any

map can be used to apply functions taking multiple arguments to multiple lists. In
this case, map takes more than one list. The function used must take the same
number of arguments as there are lists passed to map. The lists must all be the
same length.

The following examples show how map can be called with multiple lists:
> (map + '(362) '(420 -1))
(7 26 1)

> (map> '(3 62) '(4 20 -1))
(ff ff ft)

212 Chapter 8: Functionals

Rewriting every and
any to handle multiple
fists

> (map list '(362) '(4 20 -1) '(a b c))

«34 a) (620 b) (2 -1 c»

Note: The last example transposed the elements in the lists. If the lists are viewed
as rows of a matrix, then the function call transposes rows into a list of columns.

every and any can be written to take more than one list just as map does. The
function given to every or any must take as many arguments as there are lists
given. The function is applied to successive elements in each list:

> (every< '(I 3 5) '(2 4 6))
it

> (every< '(I 3 5) '(2 4 5))
U

every and any stop evaluating at the end of the shortest list if called with
functions taking more than one argument, and given arguments of uneven
lengths. The following example shows this:

> (every > '(3 9 4 1) '(2 7 2))
it

To write the new versions of these functions, we need to use a variation of
define that lets us create a function taking a variable number of arguments. This
is covered in depth in Chapter 11. In this case we specify one regular parameter
(the function), and then use a single parameter name for the remaining lists. That
parameter, lists, will be a list of the remaining arguments (which should all be
lists themselves). To extract the first element from each list, we can use map with
first. Applying the function to the elements is trickier, as the elements are in a
list and are not separate arguments. We can use app1y to get around this prob
lem. Making a recursive call will involve using app1y, and we need to call the
function recursively with the rests of all the lists. Before we apply every to the
list of rests, we must add the function to this list because app1y needs a list of all
the arguments to every. The new code follows:

every and any eaeh take a variable number of lists as arguments
and apply fune to those lists. app1y is used to eonvert a list of
arguments into separate arguments.

Return final true return value if all applications of fune to
sueeessive elements in lists are true, otherwise return if.

(define (every fune . lists)
(cond «member it (map null? lists» it)

«member it (map (lambda (1st) (nu11? (cdr 1st») lists»
(apply fune (map car lists»)

(else
(and (app1y fune (map ear lists»

(app1yevery (cons fune (map cdr lists»»»)

8.2 Writing Functions that Take Functions as Arguments 213

; Return first true value from applying fune to sueeessive
; elements in lists, or #f if no elements satisfy fune.
(define (any fune . lists)

(if (member #t (map null? lists»
if
(or (apply fune (map first lists»

(applyany (cons fune (map rest lists»»))

The buHt-in function equal? can be written using every. This function new
equal? must first test the types with which it is called. If the arguments are
atoms, it checks if they are eqv? If new- equal? is called with two lists, it calls
another function that compares the lists. This function uses every with new
equal? to compare the elements of the two lists. It must check the length of the
two lists beforehand because every will stop when it hits the end of the shortest
list.

Here are the functions that perform the above actions:

; Return true if eltl and elt2 (lists or atoms) are equal.
(define (new-equal? eltl elt2)

(cond «and (atom? eltl) (atom? elt2» (eqv? eltl elt2»
«or (atom? eltl) (atom? elt2» #f)
(else (same eltl elt2»))

Return true if listl and list2 are equal.
(define (same listl list2)

(if (= (length listl) (length list2»
(every new-equal? listl list2)
if))

We can trace the calls to these functions. Calls to every have been represented
usingand.

(new-equal? '(a (eat» '(a (hat»)
J,

(same' (a (eat» '(a (hat»)
J,

(and (new-equal? 'a 'a) (new-equal? ' (eat) '(hat»)
J, J,

(and (eqv? 'a ' a) (same '(eat) '(hat»)
J, J,

(and #t (and (new-equal? 'eat 'hat»)
J, J,

(and #t (and (eqv? 'eat 'hat»)
J, J,

(and #t (and if»
J, J,

(and #t if)
J,
#f

214 Chapter 8: Functionals

8.2.8 Exercises
8.16 Does the following version of new-equal? work when called with two lists?

Why or why not?
(define (new-equal? eltl elt2)

(if (atom? elt1)
(eqv? elt1 elt2)
(same elt1 elt2»

(define (same list1 list2)
(if (= (length list1) (length list2»

(every new-equal? list1 list2)
#f))

8.17 Alexandra proposes that the functions new-equal? and same can be
switched and new- equal? will still work when called. Does her switch work
like the old version? Why or why not?

(define (same elt1 elt2)
(cond «and (atom? elt1) (atom? elt2» (eqv? eltl elt2»

«or (atom? elt1) (atom? elt2» #f)
(else (new-equal? eltl elt2»))

(define (new-equal? list1 list2)
(if (= (length list1) (length list2»

(every same list1 list2)
#f))

8.18 Here is yet another version of new-equal, but this one does not use same.
Does it work? Why or why not?

(define (new-equal? eltl elt2)
(cond «and (atom? elt1) (atom? elt2» (eqv? elt1 elt2»

«or (atom? eltl) (atom? elt2» #f)
(else

(and (= (length eltl) (length elt2»
(every new-equal? eltl elt2»»

8.19 Using functionals, write a function that returns true if two lists look the
same in form. The atoms may be different, but the parentheses should be
the same. The following two lists look the same:

«a b (c) d) e)

«1 2 (3) 4) 5)

8.20 Using functionals, write a function that takes two lists of atoms and pro
duces an association list pairing subsequent atoms in each list. Given the
lists (1 2 3) and (one two three), your function should return

((1 one) (2 two) (3 three»

8.3 Lambda Expressions 215

8.21 To determine if any of the lists passed as arguments to every are empty, we
test if any application of null? returns it using member and map. An alter
nate idea is to use any with null? as follows:

(define (every fune . lists)
(if (any null? lists)

it
(and (apply fune (map first lists»

(applyevery (cons fune (map rest lists»»))

Does this new version of every work? If any were changed in the same
manner as every, would it work?

8.3 Lambda Expressions
Lambda expressions provide another means of creating functions other than using
define. A lambda expression is a list whose first element is the symbol lambda;
the second element is a parameter list; and the remaining elements are the body
of the function just as in adefine. Unlike define, lambda does not take a name
for the function being created; therefore, lambda can be looked at as a means of
creating nameless functions.

Lambda expressions can be used in place of function names in functions calls.
Thus, in one step we can define and use a function. Look at the following exam
pIe:

) ((lambda (num) « num 3)) 2)
it

This is functionally the same as doing the following two steps:
) (define (small-num num)

« num 3))

??

) (small-num 2)
it

The example above has one important difference from the lambda example
it binds the variable srnall- nurn to a function. We can use that function later refer
ring to it by name.

The def ine above is equivalent to doing the following:
(define srnall-nurn (lambda (nurn) « nurn 3»)

The following example shows this equivalence:
) (define small-num (lambda (num) « num 3)))
??

) (small-num 2)
it

We define functions because we can refer to them by name instead of writing
an entire lambda expression each time we want to invoke the function. Also, to
write recursive functions we need a name to refer to the function.

Creating nameless
functions on the fly

Alternate way of
defining functions

216 Chapter 8: Functionals

Lambda expressions
with functionals

Lambda expressions are useful as arguments to functionals. This way custom
functions do not have to be defined beforehand with define, but can be created
as one-shot entities.

Below is an example using a lambda expression that returns elements in a list
that are greater than or equal to 10:

> (keep-if
(lambda (num)

(>= num 10))

'(4 18 7 10))

(18 10)

Another common use for lambda expressions is to create functions that com
bine other functions using and or or. For example, if you wanted to return the
positive numbers in a list that might have non-numbers within it, you would get
an error if you wrote

(keep-if positive? a-list)

This is because positive? results in an error if applied to a non-number. One
solution is to use a lambda expression, as in

(keep-if
(lambda (element)

(and (number? element)
(positive? element»

a-list)

The set functions union and intersection introduced in Chapter 7 can be
written using functionals and lambda expressions. The union of setl and set2 is
set2 appended with the elements in setl that are not in set2.

; Return the set of items in either setl or set2.
(define (union-alt setl set2)

(append
set2
(remove-if

(lambda (element)
(member element set2))

setl»)

The remove-if sequences through each element of setl using a lambda
expression. The lambda uses member to determine if the element in setl being
examined is in set2. If so, it is not included in the final list, which is appended to
set2.

8.3 Lambda Expressions 217

Mistakes to Avoid
A lambda expression is needed in the above example. The call to
remove-if could not have been written as

(remove-if member setl)

This is because member needs two arguments. This call would attempt to
invoke member with one argument-successive elements of setl.

Lambda expressions are used to call functionals like remove-i! (that
take one argument functions) with multiargument functions. The
lambda expression creates a function taking one argument and calls the
multiargument function with fixed values for the other arguments. In
the above case, to use remove-if with member, the lambda expression
creates a function that compares successive elements of setl with set2,
the fixed argument to member.

We could not have written aseparate function to compute the
member, as in

(define (in-list element)
(member element set2»

This is because the scope of the parameter, set2, is the function union
al t, thus set2 cannot be referenced outside of that function~

The intersection of setl and set2 is the elements in setl that are in set2. This is
similar to what we did above with union-alt. However, in this case we want to
keep the elements that satisfy the call to member, so we use keep-i!.

; Return the set of items in both setl and set2.
(define (intersection-alt setl set2)

(keep-if
(lambda (element)

(member element set2))
setl))

The function assoc can be implemented using find-i!. The test to apply to
find-i! is one that checks if the car of the current pair being examined is equal
to the element for which we are searching. find-i! returns the first pair whose
car is equal? to the element.
; Return the first sublist in assoc-list whose car matches element.
(define (alt-assoc element assoc-list)

(find-i!
(lambda (pair)

(equal? element (car pair»)
assoc-list))

\. Some versions of Scheme allow functions to be defined within other functions. In that case we
could define in-list within union-alt, and call remove-if with in-list.

Using lambda expres
sions to get around
scoping constraints

218 Chapter8: Functionals

Mistakes to A void
It' s easy to forget one or more of the f01l0wing parts of a lambda expres
sion:
• The parameter list
• The right parenthesis that closes the lambda expression

Mistakes to A void
When using lambda expressions with applicative operators, it is easy to
forget to include the list through which to sequence. Always double
check that you have passed in a list and that the elements of the list can
be applied to the lambda expression.

8.3.1 Exercises
8.22 Using functionals, write your own version of set-difference.

8.23 Using functionals, write your own version of subset?

8.24 Using functionals, write your own version of rassoc.

8.25 Using functionals, write a function substitute that takes a list and two
atoms old and new. The function should return a new list with a1l top-level
occurrences of old replaced with new. For example,

(substitute '(me but (not me» 'me 'you)

should produce the list

(you but (not me»

8.26 Write a function that takes a list and returns that list with a1l the odd
numbers replaced with the even numbers one higher. Hint: use map. Given
the list

(1 out of 3 likes U 2 and U B 40)

your function should return

(2 out of 4 likes U 2 and U B 40)

8.27 Write a function apply-to-atoms that takes func, a function taking one
argument, and a list a-list. apply-to-atoms should apply func to a1l the
atoms in a-list. All the sublists should be left intact. apply-to-atoms

returns a new list of these results. For example,

> (apply-to-atoms list '(2 (3) four (and (five))))
«2) (3) (four) (and (five»)

8.4 Combining Results with accumulate 219

8.28 Write a function deep-map that takes a function and a nested list and applies
the function to every atom in the nested list and returns a similarly nested
list of results. For example,

(deep-map positive? '(3 (-14 (2» 0 «(-7»»)

returns
(#t (#f (#t» #f «(#f»»

8.4 Combining Results with accumulate
We will create a function accumulate to apply a binary function (one taking two
arguments> to a list of arguments. The binary function is first applied to the first
two elements of the list. Then the function is applied to this result and the third
element of the list, then to this new result and the next element, and so on. The
process continues until all elements in the list have been processed. In short, the
function is applied to all the elements of the list in a left to right order.

If accumulate is called with an empty list, the return value is the result of cal
ling the function with no arguments. If accumulate is called with a one-element
list, the return value is the first element of that list.

The general form of accumulate is
(accumulate function list)

The function sum-list from Chapter 6, which takes a list of numbers and
returns their sum, can be written using accumulate as follows:

; Return sum of numbers in number-list.
(define (add-list number-list)

(accumulate + number-list))

Below is a sampie call to add-list:

> (add-list '(8 2 -1 0 3))
12

In this example and many other cases accumulate and apply are interchange
able. When used with functions like +, *, max, min, and append, accumulate

yields the same results as apply, as the following example shows:
> (accumulate append '((one list) (another list)

(yet (another list))))
(one list another list yet (another list»

> (applyappend '((one list) (another list)
(yet (another list))))

(one list another list yet (another list»

The order that accumulate sequences through the arguments is important
when using nonassociative functions such as -, as in

> (accumulate - '(1 2 3))
-4

accumu1ate

Similarities 01
accumulate and
apply

220 Chapter 8: Functionals

Differences between
accumulate and
apply

The actions performed are
(- (- 1 2) 3)

Mistakes to A void
accumulate must be called with a function that takes two arguments.
That function should yield a result that can be applied to the function
itself. For example,

(accumulate> '(3 5 -6»

would not work to determine if all the elements of the list were in
increasing order because > returns #t or #f, which cannot be applied to
>. In other words, (> (> 3 5) - 6) praduces an errar.

There are cases where accumulate does more than apply. Suppose you want
to sum the absolute values of a list of numbers. We can use the function surn-abs

from Chapter 3 that returns the sum of the absolute values of two numbers:

; Return the surn of the absolute va1ues of nurn1 and nurn2.
(define (surn-abs nurn1 nurn2)

(+ (abs nurn1) (abs nurn2»)

To sum the absolute values of a list of numbers, we pass this function and the list
of numbers to accumulate:

> (accumulate sum-abs '(-2 3 -4 -1))
10

Alternatively, we could have done this using map and accumulate or apply:

> (accumu1ate + (map abs '(-2 3 -4 -1)))
10

> (apply + (map abs '(-2 3 -4 -1)))
10

Here is a more practical application of accumulate. Given rnany-1ists, a list
of sublists, return the longest sublist:

(define rnany-lists '«1 2 3) (1 2 3 4 5) (1 2 3 4) (1 2»)

We can't use map with apply as folIows:

> (apply max (map length many-lists))
5

This returns the length of the longest sublist. Instead we can write a function that
takes two sublists and returns the longest one and then apply this function and
rnany-1ists to accumulate.

8.4 Combining Results with accumulate 221

; Return the longest of list1 and list2.
(define (biggest list1 1ist2)

(if (> (length list1) (length list2»
list1
list2))

) (accumulate biggest many-lists)
(1 2 3 4 5)

How do we implement accumulate? Let's model the steps that accumulate
takes when processing a list. The following call to accumulate

(accumulate + '(1 2 3 4»

is equivalent to the following expression:
(+ (+ (+ 1 2) 3) 4)

One possibility is to think of the recursive case as follows:

return the result of applying the function to
the recursive call of the list without the last element

and
the last element.

Getting the last element and the list without the last element is not as easy or
fast to do as getting the rest of the list and the first element of the list. Can we
view the recursion in a different fashion?

If we start with the innermost action, (+ 1 2), and then continue outward,
we will be traversing the elements of the list in order. At each step we are apply
ing the function to the result of the last computation and the current first element
of the list. This value becomes the last computation value to use in the next itera
tion. We need an extra parameter to hold this last computation. When we reach
the end of the list, that parameter should hold the final answer. This approach is
tail-recursive. The code looks like

App1ies fune to answer and first element of a-list, then to that
; resu1t and next element of a-list and so on until a-list is empty.
; Returns final answer.
(define (aeeum-tai1 fune a-1ist answer)

(if (null? a-1ist)
answer
(aeeum-tai1 fune (rest a-list)

(fune answer (first a-1ist»»

What should be the initial value of answer? If the function is addition, 0
makes sense, but with multiplication it should be 1, and for append it should be
, (). A better approach is to pick a valid value for any function. The first element
of the list will work. Then we recurse on the rest of the list. We need to verify
the list is not empty first. Otherwise, we return the result of calling the function
with no arguments. The helper function to do this follows:

Writing accumulate

222 Chapter 8: Functionals

Using accumulate

properly

Applies fune to first two elements of a-list, then to that result
and next element of a-list and so on until a-list is empty.
Returns final answer.

(define (accumulate fune a-list)
(if (null? a-list)

(fune)
(aeeum-tail fune (rest a-list) (first a-list»))

Mistakes to A void
It is important to think about how the result of a computation will be
combined by accumulate with other elements of the list. For example,
to sum the squares of a list of numbers you might use a function sum
squares that returns the sum of the squares of two numbers.

; Returns the sum of the squares of numl and num2.
(define (sum-squares numl num2)

(+ (* numl numl) (* num2 num2»)

And then pass this function to accumulate as folIows:
> (accumulate sum-squares '(-2 3 -4 -1))
34226

The result is wrong (it should be 30). The problem is that we take the
sum of the first two squares and then square that result and add it to the
square of the third number and so on.

The first argument to sum-squares should be the total collected so
far. Here is a new function that does that:

; Returns the sum of total and num squared.
(define (add-num-squared total num)

(+ total (* num num»)

Calling this new function with accumulate yields the following:
> (accumulate add-num-squared '(-2 3 -4 -1))
24

Another problem. We treated the first number as a total, meaning we
added -2 to the sum of the squares of 3, -4, and -1. The first value in the
list should be a sumo A quick fix is to add zero to the start of the number
list:

> (accumulate add-num-squared '(0 -2 3 -4 -1))
30

It's probably better to use apply and map as folIows:
> (apply +

(map (lambda (num) (* num num)) '(-2 3 -4 -1)))
30

8.4 Combining Results with accumulate 223

8.4.1 Exercises
8.29 Our first attempt to implement find-if failed when we couldn't find the

first true element in a list. or will return the first true argument passed to it.
This is almost what we want, except we have a list of values, not a collection
of separate arguments. Can accumulate help us in this endeavor, as shown
below?

(define (find-if fune a-list)
(list-ref

a-list
(position

(accumulate
or
(map fune a-list»

(map fune a-list»))

8.30 Write a function union-of-many that takes a list of sets and returns the
union of all of those sets.

8.31 Write a function eombine-assoe-lists that takes a list of association lists
and returns one association list containing all the pairs of all those associa
tion lists.

8.32 Write a function that takes a list with numbers, symbols, and lists and
returns the average of the top-Ievel numbers in the list. For example, given
the list (3 (100) 5 ten), your function should return 4.

8.33 Write a function that takes a list of lists of numbers and returns the list with
the largest number in it. Given the list

«16 43 7) (25 98) (57 2 89 14»

your function should return the list (25 98).

8.34 Write a function smallest that takes a function and a list and returns the
number in the list that has the smallest value when the function is applied to
it. For example,

(smallest abs '(-3 4 1 -2»

returns 1.

8.35 The following function is supposed to flatten a list-remove all the inner
parentheses. For example, (1 (2 (3) 4) 5) flattened is (1 2 3 4 5). Does
itwork?

(define (flat a-list)
(if (atom? a-list)

a-list
(map flat (accumulate append a-list»))

224 Chapter 8: Functionals

A general sort function

8.36 The following function is supposed to flatten a list-remove all the inner
parentheses. For example, (1 (2 (3) 4) 5) flattened is (1 2 3 4 5). Does
itwork?

(define (flatten a-list)
(if (atom? a-1ist)

(list a-list)
(accumulate append (map flatten a-list»))

8.37 Given a database of musical instruments and their prices, as follows,
«guitar 600)
(piano 2000)
(harmonica 10)
(trumpet 250)
(drums 700)

write expressions to return the following:

- The average cost of the instruments
- The price of the most expensive instrument
- The name of the least expensive instrument
- The instruments (and their prices) that cost less than $100
- The number of instruments that cost more than $1000

8.4.2 Sorting lists
The function sort - hand was created in Chapter 6 to perform an insertion sort on
a list of playing cards. It would be nice to have a sorting routine that could be
used for sorting any list. To do so, we can use the structure of sort - hand and its
auxiliary function insert-card, but replace the function lower-card? with a
function that is passed in as an argument to our generic sorting function. The
new sorting function takes a function on which to base its comparison and a list
to sort.
i Perform insertion sort on a-list based on compare-func.
(define (sort compare-func a-list)

(if (null? a-list)
'()
(insert

(first a-list)
(sort compare-func (rest a-list»
compare-func»)

8.4 Combining Results with accumulate 225

; Insert element in sorted order into sorted-list based on compare-func.
(define (insert element sorted-list compare-func)

(cond «null? sorted-list)
(list element»

«compare-func element (first sorted-list»
(cons element sorted-list»

(else
(cons (first sorted-list)

(insert element (rest sorted-list) compare-func»»)

To sort numbers in increasing order, use
> (sort < '(5 3 4 1 2))
(1 2 3 4 5)

To sort numbers in decreasing order, use
> (sort> '(5 3 4 1 2))
(5 4 3 2 1)

8.4.3 Example: Poker revisited, yet again
Our previous versions of poker from Chapters 5 and 6 did not use the cards' suit
information. Playing cards have four suits: diamonds, hearts, clubs, and spades.
If we include suit information, we can check for flushes, straight flushes, and
royal flushes. A flush is a hand in which all the cards are of the same suit (e.g., all
diamonds). A straight flush is a straight with all cards of the same suit, and a
royal flush is a straight flush with the cards ten through ace.

We can use an association list to represent card values and suits for ahand.
Thus a possible hand may be
«jack spades) (ace diamonds) (three diamonds) (ace hearts)

(two clubs»

With such a representation our previous code no longer works. We can make
it work with some slight modifications and new code to handle flushes, straight
flushes, and royal flushes.

Selector and creator functions should be written to get the value and suit of a
playing card and to create a card pair.

; Return the value of card (e.g., ten or queen).
(define (card-value card)

(car card))

; Return the suit of card (e.g., diamonds or hearts).
(define (card-suit card)

(second card))

; Construct a card from its value and suit (e.g., (ten hearts».
(define (create-card value suit)

(list value suit))

Once again, the ordering of the cards can be saved in the global symbol
card -ordering.

Card suits and f1ushes

Selector and creator
tunctions tor cards

226 Chapter 8: Functionals

Testing tor straights

Alternate approaches
to test tor straights

(define card-ordering
'(two three four five six seven eight nine ten

jack queen king ace»

We can use the new sort from the previous section, and pass it a function
that is true if the first card comes before the second card. The previous lower
card? function (from Chapter 6) won't work with the new card data structure.
The new version should be

; Return true if cardl is lower in value than card2.
(define (lower-value? cardl card2)

« (position (card-value cardl) card-ordering)
(position (card-value card2) card-ordering»

We could write this function usingmember, as folIows:

; Return true if cardl is lower in value than card2.
(define (lower-value? cardl card2)

(member (card-value card2)
(rest (member (card-value cardl) card-ordering»))

The function is-straight? needs some slight modification to reflect the new
sorting we are using. We should compare card values only, so we must form a
list of card values without the suit information. This is done easily using map.
Below is the new version:

; Return true if hand represents a straight.
(define (is-straight-new? hand card-ordering)

(let* ((sorted-hand (sort lower-value? hand»
(low-card (first sorted-hand»)

(and (lower-value? low-card (create-card 'jack 'any-suit»
(equal?

(map card-value sorted-hand)
(subseq

(member (card-value low-card) card-ordering)
o 5»»)

We could have taken other approaches to determine if a hand is a straight. In
these approaches we don't need to sort the cards in the hand, but do need to
know the low card in the hand. One approach is to find the low card, and then
using recursion or every, test that each subsequently higher card exists in the
hand.

Another approach that uses recursion is to find the low card, remove it from
the hand, find the low card in the remaining cards, and verify that it is one card
higher. We do this until a bad low card is found (it's too high) or all the cards
have been examined.

A third approach is to once again begin with the low card and use it to formu
late the list of cards needed for a straight based on card -ordering, as we did in
our solution above. Then, verify that each card (e.g., using every) in the list of
cards needed is in the hand we have. It' s important to sequence through the
cards needed. If we check that all the cards in our hand are in the list of cards
needed, we would get a true answer for hands like (2 2 3 3 5) because they

8.4 Combining Results with accumulate 227

are all in the list (2 3 4 5 6).

A function to check for a flush follows. It checks if the first card's suit matches
the suit of the remaining four cards. If so, then that hand is a flush. Alternate
techniques for determining if a hand is a flush are given as exercises in the next
section.

; Return true if hand represents a flush.
(define (is-flush? hand)

(= 4
(count

(card-suit (first hand»
(map card-suit (rest hand»»

map is used to return only the suit of each card. These suits are compared with
the suit of the first card in the hand. If all of the suits match, is-flush returns
true.

The next function is used to determine if the hand is a royal flush, assuming
that it is known that the hand is a straight flush already. If the hand has an ace
and is a straight flush, it must be a royal flush.

; Return true if hand represents a royal straight.
(define (is-royal-straight? hand)

(member 'ace (map card-value hand»)

Lastly, the new poker-value function follows. It first computes hand-values,
the card values of the hand, and then computes count -list, the number of times
each card appears in the hand. The previous code computed coun t - li s t by cal
ling count five times. We can simplify this using a map, which sequences through
the hand calling count to get the number of cards in the hand that match the
current card being examined.

The hands with the highest value should be tested first to avoid problems like
calling a full house a pair. The order of the hand values is as follows:

royal flush
straight flush
four-of-a-kind
full house
flush
straight
three-of-a-kind
two pair
one pair

Such a testing order can cause some inefficiencies. Namely, royal flushes
should be tested for first because they are worth the most; however, to be
efficient this test should be nested within tests that check for flushes and
straights. Before getting too caught up in this dilemma, it' s good to think about
the true conflicts that may arise. As it turns out, there are very few. The counting
scheme eliminates problems like calling a four-of-a-kind a three-of-a-kind or a
pair. The conflicts that arise are listed below:

Testing (or flushes

Hand ordering

Testing order conflicts

228 Chapter 8: Functionals

hand value possible conflicts (with hands worth less)
royal flush
straight flush
full house
flush

straight flush, straight, flush
straight, flush
three-of-a-kind, one pair
straight

two pair one pair

The hand values on the left side of the above lable should be tested for before
their matching conflicting card values on the right side. One further conflict
arises in that we would like to perform all the tests for royal flushes, straight
flushes, straights, and flushes within the same nested conditional expression.
This will eliminate unnecessary testing. The new function follows:

; Return the value of a poker hand.
(define (poker-value-new hand)

(let* ((hand-values (map card-value hand»
(count-list

(map
(lambda (card)

(count card hand-values))
hand-values»)

(cond «is-straight-new? hand card-ordering)
(if (is-flush? hand)

(if (is-royal-straight? hand)
'royal-flush
'straight-flush)

'straight»
«is-flush? hand)

'flush)
«member 4 count-list)

'four-of-a-kind)
«and (member 3 count-list) (member 2 count-list»

'full-house)
«member 3 count-list)

'three-of-a-kind)
«= 4 (count 2 count-list»

'two-pair)
«member 2 count-list)

'one-pair)
(else

, nothing)))

8.4.4 Exercises
8.38 The code above tests for straights before it tests for flushes. Yet flushes are

worth more than straights. Does this mean the code has a bug? If so, fix it. If
not, why do you think the code was written this way?

8.4 Combining Results with accumulate 229

8.39 In determining if a hand is a flush, could the expression
(accumulate equal? (map card-suit hand»

beused?

8.40 Would this function correctly determine if a hand is a flush?
(define (is-flush? hand)

(let «first-suit (card-suit (first-hand»»
(every (lambda (card)

(eqv? first-suit (card-suit card»)
(rest hand»))

8.41 Would this function correct1y determine if a hand is a flush?
(define (is-flush? hand)

(let «first-suit (card-suit (first-hand»»
(= 4

(count-if (lambda (card)
(eqv? first-suit (card-suit card»)

(rest hand»»)

8.42 Write a new version of the function is-royal-straight? that uses find
if instead of member and map.

8.43 How would you change the code if the representation for a card were a dot
ted list like (queen . hearts) instead of a two-element list?

8.44 How would you modify the code to allow wild cards (jokers)? There are
two jokers in a deck of cards.

8.45 In the game draw poker you are allowed to discard some of your cards and
draw new cards once. Write a function that decides which cards to discard
based on the value of the existing hand.

8.46 Selection sort is an alternate means of sorting lists. Imagine we are sorting
numbers to produce the smallest to the largest numbers. The technique used
in selection sort is to find the smallest number in the list and make it the first
element in the solution. The rest of the solution is determined recursively
using the list with that smallest number removed. Here is a sampie call
showing how selection sort should work.

> (sel-sort '(3 2 1 4) <)

(1 2 3 4)

Does sel- sort below properly implement selection sort? Does it work with
lists that have duplicates (e.g., (2 4 4 3»? If not, fix it so it does.

230 Chapter 8: Functionals

(define (sel-sort a-list compare)
(if (null? a-list)

'()
(let «next-value (accumulate compare a-list»)

(cons next-value
(sel-sort (remove next-value a-list) compare»»

8.5 Summary
• Below is a table of the fundionals covered in this chapter. funetion, test, and

bin-fune are fundions that are passed as arguments. funetion and test should
take a single argument whose type matches that of the elements in list. test
should be a predicate function. bin-fune must be a function that takes two
arguments whose types match those of the elements in list. In addition, map,
for-each, every, and any can be ca11ed with multiple lists. In this case, they
should be ca11ed with a function that takes multiple arguments. The number
of lists must match the number of arguments and the lists must a11 be the
same length.

function arguments return value
map funetion lists list of results from applying function to

successive elements of lists
for-each function lists undefined, but applies function to successive

elements of lists
apply funetion list result of applying function to elements of list
every test lists final true return value if a11 successive

elements in lists satisfy test, #f otherwise
any test lists first true value from applying test to

successive elements in lists, #f otherwise
find-if test list first element in list that satisfies test
find-if-not test list first element in list that does not satisfy test
count-if test list number of elements in list that satisfy test
count-if-not test list number of elements in list that do not satisfy

test
remove-if test list list without elements that satisfy test
keep-if test list list of elements that satisfy test
accumulate bin-fune list result of applying bin-fune to the elements in

list two at a time

• lambda expressions are used to create specialized functions to use with func
tionals.

CHAPTER9

INPUT AND OUTPUT

9.1 Input/Output
Information going from the user to the computer is called input, and information 1/0
from the computer to the user is output. We have used the default form of
input/output (often abbreviated as 1/0) in Scheme. Input is a product of the
interpreter reading in our requests at the > prompt. Output is the results of
evaluating our input Scheme expressions that the interpreter prints out.

9.1.1 Printing out additional information
There are times when we wish to get more information from a function call than
the evaluated result of the last expression. To display additional information dur
ing the course of the evaluation of a function, calls to output functions are neces
sary. Below is a list of some of these output functions:

function arguments prints out
newline none a blank line
display expression the value of expression
write expression the value of expression

Below are some examples of these functions:

> (newline)

??

> (display 3)
3??

> (write 3)
3??

return value
undefined
undefined
undefined

newline,display,

andwrite

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

232 Chapter9: InputandOutput

Printing a list one
element per line

Text strings

The return value of newline, display, and write is undefined, and in fact it
will probably appear on the same line as the value printed out, as shown in these
examples. In actual usage the calls to these output functions would be placed
within functions so that they are not the final expression, and thus the return
value of the function call will be some other value. Below is an example of this:

; Print out num and return num squared.
(define (print-and-square num)

(display num)
(* num num))

A call to this function will print the value of the parameter num and its square:
> (print-and-square 7)
749

Use newline to get the output to appear on two lines:
; Print out num, move to the next line, and return num squared.
(define (print-and-square num)

(display num)
(newline)
(* num num))

> (print-and-square 7)
7

49

Using display, newline, and for-each, it is possible to write a short function
that prints out the elements in a list, one element per Une:

; Print elements of a-list one per line.
(define (one-per-line a-list)

(for-each
(lambda (item)

(display item)
(newline))

a-list))

Here is a call illustrating this handy function:
> (one-per-line '(linel (line 2 here) ((finally (line)) 3)))
linel
(line 2 here)
«finally (line» 3)

??

The final return value is undefined because for-each returns an undefined
value.

Text can be displayed by surrounding the desired text in double quotes, and
passing that string to display or write. A string is a sequence of characters sur
rounded by double quotes. The results can be seen below:

> (display "hi there")
hi there??

> (write "hi there")
"bi there"??

disp1ay and write can print out symbol names and lists also:
> (display 'symbol)
symbo1??

> (write '(a short list))
(a sbort 1ist)??

9.1 Input/Output 233

The difference between the functions disp1ay and write is that disp1ay
prints out strings without the surrounding double quotes.

9.1.2 Input
To get information to functions, we have used parameters and passed the values read
as arguments in function calls. There are times when it is desirable to get extra
information into a function. This can be done in Scheme with the function read.
read reads in information from the user and returns that information. read reads
in anything that looks like a Scheme expression-numbers, words, lists, and even
strings.

> (read)
42
42

> (read)
fred
fred

> (read)
((some (arbitrary list)))
«same (arbitrary 1ist»)

> (read)
"a string"
"a string"

When a read function call is evaluated, the interpreter waits for the user to
enter a value that is read in and retumed as the value of read. If more than one
value is entered, the following values are interpreted as further commands to the
interpreter, and are evaluated in the normal fashion:

> (read)
(+ 1 1) (+ 3 4)
(+ 1 1)
7

The following example illustrates how a value read in from the user can be
used within a function:

234 Chapter 9: Input and Output

Reading until a
number is given

; Read in a value and return its square root.
(define (read-and-apply)

(sqrt (read»)

After the function read-and-apply is called, the interpreter waits for the user to
enter a value, then it continues. Once the value is entered, its square root is com
puted and displayed:

) (read-and-apply)
49
7.0

The following function is supposed to ask the user for a number and read in a
value. If the user enters a number, its square root should be returned. Otherwise
the process repeats.
; Read in values until a number is entered; return its square root.
(define (get-number)

(display "Enter a number: ")
(if (number? (read»

(sqrt (read»
(get-number»)

There is a bug in the above code. Rather than return the square root of the
number entered, the call to read in

(sqrt (read»

will force the user to enter another value before execution continues. The value
readinwhen

(number? (read»

is evaluated is the value desired. To save this value a let can be used. The correct
function looks like
; Read in values until a number is entered; return its square root.
(define (get-number)

(display "Enter a number: ")
(let ((number (read»

(if (number? number)
(sqrt number)
(get-number»))

Below is a trace of this function:
) (get-number)
Enter a number: foo
Enter a number: (a list will not work either)
Enter a number: 121
11.0

9.3 Conditions with Multiple Actions 235

9.2 Getting Yes/No Answers
A useful function to create is one to get a "yes" or "no" answer to a question. The
function should take a string that is the question to ask the user and print that
string, along with an indication to answer yes or no.

; Read in values until a yes or no is entered; return #t if
; yes is entered and #f if no is entered.
(define (yes-no query)

(display query)
(display" (yes or no) ")
(let ((answer (read»

(cond «eqv? answer 'yes) #t)
«eqv? answer 'no) #f)
(else (yes-no query»»

Below are examples illustrating this function:
> (yes-no "Do you want to continue?")
Do you want to continue? (yes or no) maybe
Do you want to continue? (yes or no) perhaps
Do you want to continue? (yes or no) no
#f

> (yes-no "Are you sure you want to quit?")
Are you sure you want to quit? (yes or no) yup
Are you sure you want to quit? (yes or no) yes
#t

9.3 Conditions with Multiple Actions
The condition-action pairs in a cond can have more than one action. They are
really condition-action(s) pairs. For the condition that is satisfied, all of its associ
ated actions are evaluated, but only the return value of the last action is returned
as the value of the cond. For this reason, just as with function definitions, there is
usually only one action associated with each condition.

The usual reason for having more than one action in an action list is to allow
side-effects to take place. With side-effects, it is not the return value that we are
interested in so much as the particular side-effect that it causes. Binding a value
to a variable using define is a commonly performed action that produces side
effects. Another often used side-effect is printing out information. Since expres
sions always print their final return values, we have not used any other means of
displaying information. However, there are times when it is desirable to do so.

Suppose you wish to write a cond that returns the number of times element
occurs in a-list. In addition, you want to precede this number with a message.

If a-list is empty, return 0 and print the message
The list is empty

Reading until a yes/no
answer is given

Side-effects

236 Chapter9: InputandOutput

If element did not occur in a-list, return 0 and print the message
The item did not occur in the list

Lastly, if element did occur in a-list, return the number of times it occurred,
preceded by the message

The nurnber of times item occurs in the list is

To get text as displayed above, the simplest way is to call disp1ay with the
desired text surrounded in double quotes (").

Below is the code to do this:
; Count the number of times element occurs in a-list; print an
; informative message about the count and return the count.
(define (number-of-times element a-list)

(cond ((nu11? a-list)
(disp1ay "The list is empty ")
0)

((not (member element a-list»
(disp1ay "The item did not occur in the list ")
0)

(e1se
(disp1ay "The number of times item occurs in the list is ")
(count element a-list»))

If a-list is an empty list, the two actions
(disp1ay "The list is empty ")
o

are evaluated; the text is displayed, and 0 is returned.

If element is not in a-list, these two actions are evaluated:
(disp1ay "The item did not occur in the list ")
o

The message gets printed, and 0 is returned.

If element is in a-list, the actions
(disp1ay "The number of times item occurs in the list is ")
(count element a-list)

are evaluated, the message is displayed, and the value of
(count element a-list)

is returned.

The sampIe evaluation of this code illustrates the values that get displayed.
> (number-af-times 'ward '(ward daes occur in this ward list))
The number of times item occurs in the 1ist is 2

9.4 Example: Visualizing Chaos 237

9.4 Example: Visualizing Chaos
Ecologists sometimes use formulas to model the growth in a population of
organisms in some ecosystem. The logistic difference equation is one such formula.
It expresses the new population in terms of the old population and some growth
rate constant. The formula is

new population = growth x population x (1 - population)

where population is between zero and one. A population of zero means extinc
tion and one means the largest possible population that the ecosystem can sup
port.

For small growth rates, the population typically dies out. Going beyond this
threshold, the population reaches some stable value after a number of genera
tions. Larger growth rates produce larger end population values. With a growth
rate slightly above three, the population does not stabilize at one value, but
jumps back and forth between two values (bifurcates). Beyond this, the splitting
doubles again and again, but at some point the population jumps around in a
seemingly random fashion-chaos emerges.

We can write a recursive Scheme function to model the change in population
by printing out population values for a given number of iterations. For each itera
tion we print out the population and then make a recursive call with the new
population. We'll need a counter variable to count the number of iterations. The
function new- balance from Chapter 6 provides a model for what we need to
do-repeat an action a given number of times. However, we can make one
simplification. Rather than count up to the number of iterations, we can count
down from the number of iterations to zero. Since we don't need to use the value
of the counter, this approach works fine for this problem. It wouldn't have
worked in new- balance because we used the counter in the function in deciding
when to make incremental deposits.

The function takes three parameters: times, growth, and population.

; Model the growth of population organisrns for tirnes generations.
; growth is the growth rate.
(define (population-growth tirnes growth population)

(cond «= 0 times)
population)

(else
(display population)
(newline)
(population-growth (- tirnes 1) growth

(* growth population (- 1 population»»)

population-growth terminates when tirnes is zero and returns a final popu
lation value. This means that tirnes+l populations are printed: the initial popu
lation (generation zero) and the next tirnes generations. The recursive action
prints the current population and calls population-growth with counter plus
one and the new population value.

Logistic difference
equation

Population stability
andchaos

Modeling population
growth

238 Chapter 9: Input and Output

Here are some sampie calls to population - growth:1

> (population-growth 5 2.0 0.4)
0.4
0.48
0.4992
0.4999
0.4999
0.5

> (population-growth 5 2.0 0.9)
0.9
0.18
0.2952
0.4161
0.4859
0.4996

> (population-growth 5 3.2 0.4)
0.4
0.768
0.5701
0.7842
0.5414
0.7945

> (population-growth 5 4.0 0.4)
0.4
0.96
0.1536
0.5200
0.9983
0.0064

9.4.1 Exercises

i same growth rate, larger population

i larger growth rate--bifurcation

i larger growth rate--chaos

9.1 Find growth rates for population-growth that lead to bifurcations (alter
nating sequences of populations). Find growth rates that produce alternat
ing patterns with aperiod of 4, 8, or 16 (the pattern repeats after 4, 8, or 16
generations).

9.2 At what growth rate does chaos emerge?

9.3 For some growth rates beyond the point of chaos, stable populations with
periods of three appear (patterns that repeat after three generations). Find
these.

I. Only four digits of precision are shown in the output.

9.5 Read-Eval-Print Loop 239

9.4 Sometimes it takes a number of generations before the population stabilizes.
Modify popula tion - growth so that it takes another parameter start denot
ing the number of initial generations to calculate, but not print. Thus, only
generations start+l to times are printed.

9.5 Write a function to compare the final population given different initial
populations and a fixed growth rate. Your function should return true if all
the populations are within some value (e.g., 0.0001) of the average popula
tion.

9.6 Some of the questions above asked you to find growth rates where period
doubling or chaos occurs. Write a function that will help you determine
these growth rates.

9.7 Kate wants to change population-growth so that it doesn't print the initial
(generation zero) population. She proposes the following change:

(define (population-growth times growth population)
(cond «= 0 times)

population)
(else

Will this work?

(population-growth (- times 1) growth
(* growth population (- 1 population»)

(display population)
(newline) »)

9.5 Read-Eval-Print Loop
The central component to the Scheme interpreter is the read-eval-print loop. Com
mands are read in, then evaluated. Finally the evaluated result is printed. In
Scherne, the functions read, eval, and write do exactly this.2 We could write
them out to perform a single read-eval-print step:

(write (eval (read»)

read returns whatever is read in from the user. eval takes one argument and eval
returns its evaluated result. wri te takes this result and displays it on the screen.
Since eval returns the evaluated result, we need not call write to print it out.
Therefore, we don't need the write in the simple case of performing one evalua-
tion. However, the evaluator is doing a read-eval-print loop. Because of this we
need the wri te function call.

An infinite (nonending) read-eval-print loop could be written as folIows:

2. It is called a read-eval-print loop instead of a read-eval-write loop because other, older dialects of
LIsp use the function print.

240 Chapter 9: Input and Output

; Print prompt, read input, print out evaluation, repeat.
(define (read-eval-print)

(display "_> ")
(write (eval (read»)
(newline)
(read-eval-print))

The solution below is an improvement, as it allows the user to exit when the
symbol qui t is entered.

; Print prompt, read input, print out evaluation, repeat until
; quit is entered.
(define (read-eval-print-with-exit)

(display "-> ")
(let ((command (read»)

(cond «eqv? command 'quit)
'bye)

(else
(write (eval command»
(newline)
(read-eval-print-with-exit»»

Below is an example call to read-eval-print-with-exit:

> (read-eval-print-with-exit)
-> 3
3
-> (* 3 4)
12
-> quit
bye

9.5.1 Exercises
9.8 Given the following function,

(define (mystery num)
(cond «zero? num) 0)

(else (display num)
(newline)
(mystery (- num 1»»

what will the function call (mystery 3) display? What is the return value?

9.9 Given the following function,
(define (unknown num)

(cond «zero? num) 0)
(else (unknown (- num 1»

(display num)
(newline»))

what will the function call (unknown 3) display? What is the return value?

9.10 Craig writes the following function to print both the sum and average of a
list of numbers:

(define (average num-list)
(/ (disp1ay (accumu1ate + num-list»

(1ength num-list»)

Will Craig's function work?

9.6 Summary
• To print a blank line, use new1ine.
• To print out a string (text surrounded by double quotes) without the double

quotes, use disp1ay.

• To print symbols, numbers, or lists, use either disp1ay or write.
• To get a value from the user, use read.

Be sure to save the value read in using a 1et variable if it is used more than
once.

• Summary of functions introduced in this chapter:

function arguments ~rints out return value
new1ine none a blankline undefined
disp1ay expression the value of expression undefined
write expression the value of expression undefined
read none nothing value entered by the user

9.6 Summary 241

CHAPTER 10

REPETITION
TBROUGB ITERATION

10.1 Iteration
Iteration is a type of repetition that, like recursion, involves repeating a task a cer
tain number of times, or for every element in a list, or more generally until some
condition is met. Iterative functions provide a means of carrying out these com
monly performed tasks without having to explicitly create recursive functions. In
general, any linear recursive function (a function with a single recursive call in
each of its recursive cases) can be written using an iterative function. Most of the
examples in this chapter are iterative versions of the functions written using
recursion in Chapter 6. You should compare the iterative solutions to their recur
sive counterparts and decide which seems more natural to you.

The big advantages of iteration over recursion are increased speed and
reduced memory requirements. Making a function call is an expensive operation
(time- and memory-wise) on a computer. It requires making provisions to save
the parameters, the location to return to, and a host of additional information.
Chapter 13 goes into the mechanism of function calls in great depth.

Saving information for function calls requires memory. Once a function
returns, that memory can be reused. But a recursive solution that makes a great
number of recursive calls may not be able to complete due to memory limita
tions. You can see this by calling an embedded recursive function with an infinite
loop. Here is a very simple example:

; Infinite loop with embedded recursion.
(define (infinite)

(infinite)
o)

Speed and memory
considerations

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

244 Chapter 10: Repetition Through Iteration

Stack overflow

Tail recursion and
iteration

syntax for do

Evaluation rules for do

Calling this function results in a staek overflow error, meaning too much
memory was used in making recursive calls. However, if you use a tail recursive
function, as follows

; Infinite loop with tail recursion.
(define (infinite-iter)

(infinite-iter))

you will not have a stack overflow and the program will run until you interrupt
it. This is because Scheme internally converts tail recursive functions to iterative
loops. Actions are repeated without making recursive calls.

If you are concerned with speed or memory issues, you should use an itera
tive solution instead of a recursive solution. This means using tail recursive func
tions or calls to the iterative function do.

The syntax for do is outlined below. The values in square braces "[1" are
optional.

(do ((variablel initial-value1 [update-valuel])
(variable2 initial-value2 [update-value2])

(variableN initial-valueN [update-valueN])
(test exit-actions)
body)

exit-actions are zero or more expressions, similar to the actions in a condition
actions pair in a cond expression. body is zero or more expressions. The body of a
do is somewhat analogous to the body of a function definition with one impor
tant distinction: none of the expressions in the body are returned. They are aB
only used for their side-effects, just like any expressions that proceed the final
expression in the body of a function.

do begins by evaluating all the initial-values and then binding all the variables
to those values. Thus the initial-values cannot refer to previous variables. This is
identical to the way that a let binds its variables.

Next test is evaluated. If it returns a non-#f result, the exit-aetions are
evaluated and the value of the last action is returned, much like how a cond with
a single condition-actions pair would behave. If there are no exit-aetions, do
returns an undefined value. If test returns #f, body is evaluated, the update-va lues
are evaluated, and the variables take on those values. Then the entire process con
tinues by evaluating test again. If no update-value is supplied for a variable, the
variable keeps its current value.

The bindings of variables to the update-values follows the same rules as the
bindings to the initial-values. Thus the update-va lues are all evaluated and then the
variables are sequentially bound to those values. Any references to variables in
update-values refer to the old bindings of those variables.

do may be better understood by showing its equivalent to other Scheme
expressions. The following function, do-loop, is functionally equivalent to a do
expression. The items in italies represent pieces of the do syntax shown above.
The function do-loop would be called initially with the initial-values:

10.2 Repeating Actions a Number ofTimes 245

; Recursive equivalent to do.
(define (do-loop valuel value2 ... valueN)

(1et ((variablel valuel)
(variable2 value2)

(variableN valueN)
(cond (test exit-actions)

(e1se body
(do -loop update-values»»

(do-loop initial-values)

We can model a do without using 1et. In this case, imagine we call do-loop- 2

with the initial-values of the variables:
; Recursive equivalent to do.
(define (do-loop-2 variablel variable2 ... variableN)

(cond (test exit-actions)
(e1se body

(do-loop- 2 update-values»))

(do-loop- 2 initial-values)

Notice in both of these examples that body is the first action of the else clause
of the cond. It is evaluated but its results are not returned.

10.2 Repeating Actions a Number of limes
To repeat a body of code bodya certain number of times, the following do tem
plate can be used. This template repeats body num-times times by incrementing
the do variable counter with values from 1 to num-times.

(do ((counter 1 (+ counter 1»)
((> counter num-times) exit-actions)
body)

If we don't need to use the value of counter as it increments or we want
counter to decrement (counting backwards), we can use the following template to
repeat body num-times times:

(do ((counter num-times (- counter 1»)
((= counter 0) exit-actions)
body)

10.2.1 Example: Printing changing populations
The function population-growth from Chapter 9 can be implemented easily
using the second template given above. population - growth has three parame
ters; one is an integer, times, that corresponds to the number of populations to
calculate and print. Here is a new version using iteration:

Functional equivalent
Ofdo

Template to repeat
actions a number of
times

Template to repeat
actions counting back
wards

246 Chapter 10: Repetition Through Iteration

Template to repeat
actions tor each ele
ment in a list

do with two exit cases

; Model the growth of population organisms for times generations.
; growth is the growth rate
(define (population-growth-iter times growth population)

(do ((counter times (- counter 1»
(pop population (* growth pop (- 1 pop»))

«- counter 0) pop)
(display pop)
(newline»)

Notice the use of the variable pop, which is initially bound to the starting
population and then updated to the new population values. Evaluating this func
tion yields the following:

> (population-growth-iter 5 4.0 0.4)
0.4
0.96
0.1536
0.5200
0.9983
0.0064

10.3 Repeating an Action for each Element in a List
To repeat a section of code for every element in a list, the following do template
can be used. This template repeats body for each element in a-list. The variable
list-remaining is initialized to a-list and then set to successive rests of a-list each
time through the do.

(do ((list-remaining a-list (rest list-remaining»
((null? list-remaining) exit-actions)
body)

10.3.1 Example: Checklng if a list consists of numbers only
The template above can be used to implement the function all-numbers? from
Chapter 6, which takes a list and returns #t if all the elements in the list are
numbers and Itf if not. The iteration through the list should stop when a non
number is encountered. This means there will be two exit cases, encountering an
empty list (no more elements to process) and encountering an element that is a
non-number. The return value depends on the exit case. The test and exit-actions
of the do must check for both exit cases and return the proper value accordingly.
There is no action to take in the body, so it isn't needed.

10.3 Repeating an Actionfor each Element in a List 247

; Return true if all elements of a-list are numbers.
(define (all-numbers?-iter a-list)

(do ((current-list a-list (rest current-list»
«or (null? current-list)

(not (number? (first current-list»»
(if (null? current-list)

#t
#f»))

Examine the evaluations below:
> (all-numbers?-iter '(3 4 2))
#t

> (all-numbers?-iter '(3 four 2))
#f

It is important to put the conditions of the or in the order they are given. If
not, we may take the first of an empty list and get an error. The code above
works because if current-list is empty, (null? current-list) is true and the
or does not check the second condition. For the same reason, the if must check
for an empty list instead of an element that is not a number.

Mistakes to A void
In this do and many others, there is no body. If you are comparing

iterative constructions in Scheme with those in other languages like Pas
calor C, you may find this strange. In a loop in these languages the
body contains the actions. However, in Scheme the body of a do loop is
only used for side-effects (e.g., printing out values). As an example of
this, let' s change the function above as follows:
; Return true if all elements of a-list are numbers - buggy.
(define (all-numbers?-iter-bad a-list)

(do ((current-list a-list (rest current-list»
«null? current-list) #t)
(if (not (number? (first current-list»)

#f»)

> (all-numbers?-iter-bad '(1 2 three))
#t

> (all-numbers?-iter-bad '(one two three))
#t

Regardless of the list all- numbers? - Her - bad is called with, it will
always return #t. This is because the if expression is part of the body of
the do. It is evaluated, but its return value is never used. The do eventu
ally ends when the list has been sequenced through and returns it,
which is the exit action of the do.

Order of conditions in
do

Improper uses of the
bodyofado

248 Chapter 10: Repetition Through Iteration

10.4 General Examples with da Loops
The function do can be used for more than repeating actions a certain number of
times or for each element in a list.

10.4.1 Example: Factorial
An example use of do is the function factorial from Chapter 6, which takes an
argument rnax and returns the product of the numbers from one to rnax. The pro
duct will be maintained in the variable prod.

; Return rnax factorial (with iteration).
(define (fact-iter rnax)

(do ((nurnber rnax (- nurnber 1»
(prod 1 (* nurnber prod»)

«zero? nurnber) prod»)

Below is a trace of the bindings of the variables nurnber and prod for the func
tion call (fact - iter 3):

nurnber is bound to 3

prod is bound to 1

nurnber is not zero, so the do continues.

nurnber is bound to (- 3 1) or 2

prod is bound to (* 3 1) or 3

Notice that the old value of nurnber is used in the computation of prod. This is
because the values are all evaluated before they are bound to the variables. Con
tinuingon,

nurnber is bound to (- 2 1) or 1

prod is bound to (* 2 3) or 6

Continuing further,

nurnber is bound to (- 1 1) or 0

prod is bound to (* 1 6) or 6

nurnber is now zero. Thus, test is satisfied, and exit-actions are performed. In this
case the one action, prod, is evaluated and returned, giving the result 6.

10.4.2 Example: Adding up the digits in a number
Another example using do is a new version of the function surn-digits from
Chapter 6, which adds the digits in a number. The variables within the 1et in
surn-digits: last-digit and rest-of-nurnber will be used as variables within
the do. last-digit is initialized to the last digit of the parameter nurnber. After
that it is bound to the last digit of rest-of-nurnber. rest-of-nurnber is initially
the leftmost digits of the parameter nurnber, and then the leftmost digits of its
previous value. In addition, the variable answer will be used to accumulate the
sumo answer is initialized to last-digit and updated by adding its old value to
the current value of last-digit.

10.4 General Examples with do Loops 249

; Return sum of the digits in number.
(define (sum-digits-iter number)

(do ((last-digit (remainder number 10)
(remainder rest-of-number 10»

(rest-of-number (truncate (I number 10»
(truncate (I rest-of-number 10»)

(answer last-digit (+ answer last-digit»)
«zero? rest-of-number) answer»)

Note that sum-digits-iter and fact-iter have no body. Below is a trace of
this function:

> (sum-digits-iter 749)
Undefined variable: last-digit

Recall that the variables in a do are like the variables in a let in that they can
not use the current values of other variables in the variable list. When last
digit is being evaluated, it has not been defined yet. This creates an undefined
variable error. We can change the code as follows to fix this error:

; Return sum of the digits in number.
(define (sum-digits-iter number)

(do ((last-digit (remainder number 10)
(remainder rest-of-number 10»

(rest-of-number (truncate (I number 10»
(truncate (I rest-of-number 10»)

(answer 0 (+ answer last-digit»)
«zero? rest-of-number) answer»)

Here is a run of the new version:

> (sum-digits-iter 749)
13

We got rid of the error message, but got the wrong answer. Here is a trace of
the bindings of the variables:

last-digit is bound to (remainder 749 10) or 9
rest-of-numberisboundto(truncate (/749 10» Or74
answer is bound to 0

We continue,

last-digit is bound to (remainder 74 10) or 4
rest-of-number is bound to (truncate (/ 74 10» or 7
answer is bound to (+ 0 9) or 9

Next,

last-digit is bound to (remainder 7 10) or 7
rest-of-numberisboundto (truncate (/ 7 10» oro
answer is bound to (+ 9 4) or 13

Since rest-of-number is 0, we exit returning answer, 13.
To get around this problem we can change the exit action to return the answer

plus the current last digit, (+ answer last -digi t). Or we can use the last digits

Caution with do

variables

250 Chapter 10: Repetition Through Iteration

directly by eliminating the variable last-digit and just use its value
throughout. Let's try this approach:

; Return sum of the digits in number.
(define (sum-digits-iter number)

(do ((rest-of-number (truncate (I number 10»
(truncate (I rest-of-number 10»)

(answer (remainder number 10)
(+ answer (remainder rest-of-number 10»)

«zero? rest-of-number) answer»)

Let's try this new version using the previous call, (sum-digits - i ter 749).

rest -of - number is bound to (truncate (/ 749 10» or 74
answer is bound to (remainder 749 10) or 9

rest-of-number is not zero, so the variables are bound to the update values.

rest-of-numberis bound to (truncate (/ 74 10» or 7
answer is bound to (+ 9 (remainder 74 10» or 13

Again the variables are bound to the update values.

rest-of-numberisboundto(truncate (/7 10»OrO
answer is bound to (+ 13 (remainder 7 10» or 20

rest -of -number is now 0, and the value of answer, 20, is returned.

10.5 Writing Mapping Functions and Filters Using Iteration
All the different types of linear recursion functions covered in Chapter 6 have
been shown, with the exception of functions that produce lists-namely the map
ping functions and filters. It is possible to write such functions using an iterative
construct, but it requires building up a list of results.

10.5.1 Example: A mapping function to take square roots in a list
The function square -roots from Chapter 6 can be written using an iterative
function. square - roots takes a list of numbers and returns the list of the square
roots of those numbers. Since we must build up a list of results, do variables will
be used to update that list and cdr down the list supplied as an argument.

; Return a list of the square roots of the numbers in a-list.
(define (square-roots-iter a-list)

(do ((current-list a-list (cdr current-list»
(answer I () (cons (sqrt (car current-list» answer»)

«null? current-list) answer»)

A trace of the call (square - roots - i ter I (1 4 9» follows:

current -list is bound to (1 4 9)
answer is bound to ()

Since current -list is not (), the iteration continues:

10.5 Writing Mapping Functions and Filters Using Iteration 251

current-listisboundto(cdr '(14 9»~(4 9)
answer is bound to (cons (sqrt (car '(1 4 9») '(» ~ (1. 0)

current -list is bound to (cdr '(4 9» ~ (9)
answer is bound to (cons (sqrt(car '(4 9») '(1 . 0)) ~ (2 . 0 1. 0)

current -list is bound to (cdr '(9)) ~ ()
answer is bound to (cons (sqrt (car '(9) » '(2 .0 1. 0)) ~ (3 . 0 2.0 1. 0)

current -list is now () and answer, (3.0 2.0 1. 0), is returned. This is the
reverse of the desired result.

In writing the recursive solution to square -roots, consing the sqrt of the
car of the list works because the conseS don't take effect until we unwind from
the recursive descent. With an iterative solution, we are building the list starting
with the first element. Subsequent elements are consed after this. We can fix this
by appending the new item onto the end of the current list, as follows:

(append answer (list (sqrt (car current-list»»

Another, simpler approach is to change the exit action to return the reverse of
answer. This solution follows:

; Return a list of the square roots of the numbers in a-list.
(define (square-roots-iter-correct a-list)

(da ((current-list a-list (cdr current-list»
(answer '() (cons (sqrt (car current-list» answer»)

«null? current-list) (reverse answer»))

> (square-roots-iter-correct '(121 169 64 36))
(11.0 13.0 8.0 6.0)

10.5.2 Example: A filter to extract positive numbers from a list of
numbers

Filters can be written using iteration. The resultant list is created by conditionally
consing elements onto a solution list. Once again we must reverse the final
answer to get the elements in the proper order. The function positive-filter
from Chapter 6 follows. positive-filter takes a list of numbers and returns a
list of only the positive numbers in that list:

; Return a list of the positive numbers in a-list.
(define (positive-filter-iter a-list)

(da ((current-list a-list (cdr current-list»
(answer '() (if (positive? (car current-list»

(cons (car current-list) answer)
answer)))

«null? current-list) (reverse answer»))

Belowisatraceof(positive-filter-iter '(-12 13 14»:

current -list is bound to (-12 13 14)
answer is bound to ()

Using append to build
lists with da

252 Chapter 10: Repetition Through Iteration

current -list is not (), so evaluation continues

current -list becomes (13 14)

answer remains () because -12 is not positive

current -list becomes (14)
answer becomes (13) because 13 is positive

current -list becomes ()
answer becomes (14 13)

current -list is (), so the exit action (reverse answer), (13 14), is returned

10.5.3 Exercises
10.1 Write your own version of the function length using an iterative function.

10.2 Using an iterative function, write a function substitute that takes a list
and two atoms, old and new. The function should return a new list with all
top-level occurrences of old replaced with new. For example,

(substitute '(me but (not me» 'me 'you)

should produce the list
(you but (not me»

10.3 Write your own version of the function union using an iterative function.

10.4 Write your own version of the function intersection using an iterative
function.

10.5 Write a function that removes numbers from a list using an iterative func
tion.

10.6 Write your own version of the function keep-if using an iterative func
tion.

10.7 Write your own version of the function count-if-not using an iterative
function.

10.8 Write a function that takes a list and returns a list of the cubes of that list
using an iterative function.

10.5.4 Example: Sorting a list
In Chapters 6 and 8 we developed a function to sort a list. We can write aversion
of the enhanced sort from Chapter 8 using do. There are two functions. The main
function sort - i ter is similar to a mapping function, except instead of consing a
function applied to the first of the list onto an answer, we call insert - i ter to

10.5 Writing Mapping Functions and Filters Using Iteration 253

put the first element of the list in the proper position in the answer. This means
we won't have to reverse the answer at the very end.
; Per form insertion sort on a-list based on compare-func.
{define (sort-iter compare-func a-list)

{do { {current-list a-list (rest current-list»
{sorted-list '() {insert-iter (first current-list)

sorted-list compare-func»)
({null? current-list) sorted-list»)

The function insert - i ter takes an element to add, a sorted list, and a com
parison function, and returns a new sorted list with the element added. This
function is somewhat like a mapping in that it sequences through the sorted list,
and somewhat like a filter in that it must decide what to include in the answer
(the element or the current list item). However, it has two exit conditions. If we
satisfy the comparison function, we should return the list we have assembled
(this time we have to reverse it) and the remaining elements we haven't looked at
yet. The other exit condition is reaching an empty list. In this case we simply
return the reverse of the answer:
; Insert element in sorted order into sorted-list based on
; compare-func.
{define (insert-iter element sorted-list compare-func)

{do { {sort-list sorted-list (rest sort-list»
{new-list '() {if {compare-func element (first sort-list»

(cons element new-list)
{cons (first sort-list) new-list»)

{{or (null? sort-list)
{compare-func element (first sort-list»)

{if (null? sort-list)
(reverse new-list)
{append (reverse new-list) sort-list»»)

Let's test out these functions:
) (sort-iter< '(3 4 2 6 7 1))
()

Wow! We lost all the values. Before we look at the code, let's test insert

i ter individually. Remember insert - i ter expects a sorted list as an argument.
) (insert-iter 3 '(1 2 4 6 7) <)
(1 2 4 6 7)

) (insert-iter 3 '(4 6 7) <)
(4 6 7)

) (insert-iter 3 '(1 2) <)
(l 2)

This clarifies the bug. Regardless of where the element must be inserted (mid
dIe, start, or end of the sorted list), it is not added. Since we never add elements,
we wind up with an empty list when we call sort - i ter.

254 Chapter 10: Repetition Through Iteration

The code seems to add the element to the new list in the update value for
new-list. However, what winds up happening is that before the update value
sees that the element satisfies the comparison function, the exit action is satisfied.
This is because the old values for sort-list and new-list are used in the vari
able binding section of the do, but the new values are used in the test. This is
similar to a problem we ran into when writing sum-digits- iter.

To fix the bug we can add element as part of the exit action. We don't need
the code that adds the element in the update value, so we can change that to
unconditionaHyadd the first item in the sorted list:
; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)

(do ((sort-list sorted-list (rest sort-list»
(new-list '() (cons (first sort-list) new-list»

((or (null? sort-list)
(compare-func element (first sort-list»)

(if (null? sort-list)
(reverse new-list)
(append (reverse new-list) (list element) sort-list»»)

> (insert-iter 3 '(1 2 4 6 7) <)
(1 2 3 4 6 7)

> (insert-iter 3 '(4 6 7) <)
(3 4 6 7)

> (insert-iter 3 '(1 2) <)

(1 2)

Two out of three of the cases worked. In the last case, we exit because we
reach an empty list, and this case needs to add the element to the end of the new
list as weH. Here is the correct code:
; Insert element in sorted order into sorted-list based on
; compare-func.
(define (insert-iter element sorted-list compare-func)

(do ((sort-list sorted-list (rest sort-list»
(new-list '() (cons (first sort-list) new-list»

((or (null? sort-list)
(compare-func element (first sort-list»)

(if (null? sort-list)
(reverse (cons element new-list»
(append (reverse new-list) (list element) sort-list»»)

> (insert-iter 3 '(1 2) <)
(1 2 3)

> (sort-iter < '(3 4 2 6 7 1))
(1 2 3 4 6 7)

10.6 Nested Loops Using Iteration 255

> (sort-iter> '(3 4 2 6 7 1))
(7 6 4 3 2 1)

Not all functions with multiple exit cases are as burdensome to write as
insert-iter. In fact, most of the difficulties stemmed from the binding of vari
ables after all update values are evaluated. Common LISP gets around this by
using a variation of do called do*, in which the variables are bound immediately
as with let*. Scheme does not have this function, unfortunately.

Another way to simplify writing these problematic do loops is using the func
tion call-with-current-continuation, which provides an alternate way to
exit from within a do loop. Thls function is presented in Chapter 11 along with
examples of how it can be used with do loops.

10.5.5 Exercises
10.9 Write your own version of the function find-if using an iterative func

tion.

10.10 Write your own version of the function position using an iterative func
tion.

10.11 Write your own version of the functionmember using an iterative function.

10.12 Write your own version of the function assoc using an iterative function.

10.6 Nested Loops Using Iteration
Nested loops can be written using iterative functions. Each loop is carried out by
an iterative function. As an example, imagine a data structure that represents the
structure of a particular company. This company consists of a number of divi
sions. Each division is a collection of departments. Each department is a collec
tion of employees.

The company is represented as a list of division lists. The first element of each
division list is the division name. The remaining elements are departments
within that division. Departments are lists where the first element is the depart
ment name and the rest of the list is employee names. Below is an instance of
such a company:

«far-east (engineering gino bill)
(advertising berniee yoshiro kumi»

(eastern (health ximena)
(teehnieal erie seth»

(western (engineering brian ephram robert)
(investment stephen»

(european (management maria)
(sales hans)
(advertising jutta jurgen tiziana»)

Improvements with do

Nested loops to
search within a
company data
structure

Sampie company
database

256 Chapter 10: Repetition Through Iteration

Complications in
saving the inner loop
value

To determine the division and department of a particular person in a com
pany, a function find-employee can be written that takes a company list and a
person. If that person exists in the company list, a list of their division and
department is returned. If not, #f is returned. The outer loop will sequence
through the divisions, and the inner loop will sequence through the employees
within a division.

We'll need two exit cases in both the outer and the inner loops. The inner loop
should return #f if no match is found, or return the department name if a match
is found. The outer loop should test the value returned by the inner loop and
return the division and department names if the employee was found in the inner
loop, or return #f if all divisions have been tested and no match was found. If
neither of these conditions is true, the outer loop should continue.

Since the inner do loop value will be used twice in the outer da loop-once in
the test and once in the exit-action to return the department name--we should
save the inner loop value in a let variable. Unfortunately there is no good way to
do this, as the value of the let variable must be computed within the outer da
loop but used in different locations there. We can't compute the inner loop's
value at the start of the outer IOOPi however, we can save the inner loop's value
in a da variable in the outer loop. Here again we'll need two different calls to the
inner loop-one for the initial value and another for the update value. We'll be
better off implementing the inner loop as aseparate functlon.

Helper functions to access the division name and department lists from a
division, and the department name and employee list from a department, will
make the code more readable and easier to update if the database structure
changes.

; Return the name of division.
(define (division-name division)

(first division))

Return the list of departments in division.
(define (department-list division)

(rest division))

Return the name of dept.
(define (department-name dept)

(first dept))

Return the list of employees in dept.
(define (employees dept)

(rest dept))

The rest of the code folIows. First the outer loop:

10.6 Nested Loops Using Iteration 257

; Return the division and department of person in company-list,
; #f if person is not in company-list.
(define (find-employee company-list person)

(do ((company company-list (rest company»
(dept

(find-dept (department-list (first company-list» person)
(find-dept (department-list (first company» person»)

«or (null? company) dept)
(if (null? company)

#f
(list (division-name (first company»

dept»»

And the inner loop:
Return the department of person in dept-list, #f if person is not
in dept-list.

(define (find-dept dept-list person)
(do ((dept dept-list (rest dept»

«or (null? dept)
(member person (employees (first dept»»

(if (null? dept)
#f
(department-name (first dept»»))

Let' s test these functiollS. Assume that the variable com is bound to the com
pany data structure shown at the start of this example:

> (find-employee cam 'bernice)
(far-east advertising)

> (find-employee cam 'fred)
#f

> (find-dept (rest (third cam)) 'stephen)
investment

> (find-employee cam 'stephen)
(european investment)

The last result should be (western investment). find-dept appears to be
working though. The only problem seems to be that the wrong division is
retumed. The problem is subtle: the value of the do variable company is used
when find-dept is called and when division-name is called. However, company
has different values for these different calls. When find-dept is called, company
still has its old value. It does not take on the new value until all the update-values
have been computed. Thus, we wind up looking for the employee in one division
and returning the division name of the next division. This does not happen if the
person is in the first division, because find-dept is called with campany-list.

To fix this bug, we can return to our first approach of calling the inner loop in
the test and the exit-action parts of the outer loop. Here is the new version:

258 Chapter 10: Repetition Through Iteration

; Return the division and departlllcnt of person in company-list,
; #f if person is not in company-list.
(define (find-employee company-list person)

(da ((company company-list (rest company»
«ar (null? company)

(find-dept (department-list (first company» person»
(if (null? company)

#f
(list (division-name (first company»

(find-dept (department-list (first company»
person))) »)

> (find-employee com 'bernice)
(far-east advertising)

> (find-employee com 'fred)
#f

> (find-employee com 'stephen)
(western investment)

> (find-employee com 'hans)
(eurapean sales)

Now the code works.

10.6.1 Exercises
10.13 Write an iterative function that takes a company list of the above form and

returns a list of the departments of the company.

10.14 Write an iterative version of the function sum-facts from Chapter 6. sum
facts takes an argument number and returns the sum of the factorials of
one through number.

10.15 Here is an alternate fix to find-employee that requires a change to find
dept as weH. It has a subtle bug. Fix it, making as few changes as possible.

(define (find-employee company-list person)
(da ((company company-list (rest company»

(dept #f
(find-dept (first company) person»

«ar (null? company) dept)
(if (null? company)

#f
dept»))

(define (find-dept division person)
(do ((dept (department-list division) (rest dept»

«or (null? dept)
(member person (employees (first dept»»

(if (null? dept)
#f
(list (division-name division)

(department-name (first dept»»»

10.7 Summary
• To repeat an action a number of times, use the following template:

(do ((counter 1 (+ counter 1»)
((> counter num-times) exit-actions)
body)

body represents the action(s) to repeat. numtimes is the number of repetitions
to take. counter increments from 1 to numtimes through the loop. exit-actions
are the actions to take at the end of the loop.

• To repeat an action for every element of a list, use the following template:
(do ((list-remaining a-list (rest list-remaining»)

((null? list-remaining) exit-actions)
body)

a-list is the list to sequence through. list-remaining is successive rests of that
list. body represents the action(s) to repeat. exit-actions are the actions to take at
the end of the loop.

• To perform general iteration, use do:
(do ((variablel initial-value1 [update-value1 J)

(variable2 initial-value2 [update-value2 J)

(variableN initial-valueN [update-valueN J)
(test exit-actions)
body)

do sets variables like let does.
• Multiple exit cases can be handled by combining the exit cases in an or in the

test of the do and then returning the proper value based on the specific condi
tion that caused the exit. This is tested for in the exit-actions of the do.

10.7 Summary 259

CHAPTER 11

ADVANCED USES OF FuNCTIONS

11.1 Writing Functions that Take a Variable Number of Argu-
ments

There are three legal ways to specify parameters in a function definition. We have
used the simplest method in which each parameter is given a unique name that
matches directly with an argument when the function is called. These functions
must be called with a fixed number of arguments. We can create functions that
take a variable number of arguments. This is done by specifying one parameter
after the function name and aperiod (making a function heading that looks like a
dotted list). When the function is called, the arguments will be in a list that is
bound to the single parameter. Here is an example of this method:

i Return average of a variable amount of numbers.
(define (avg . nums)

(if (null? nums)
'no-average
(/ (apply + nums) (length nums»))

) (avg 3 4 5)
4

) (avg 1 2 3 4 5 6 7 8 9 10)
5.5

) (avg)

no-average

We can write functions that take some fixed arguments followed by a variable
number of optional arguments. This is done by using a mix of the syntax from
the method above and the standard syntax we have used to write functions. The
required parameter names follow the function name in the header, then aperiod
and a single parameter. The function must be called with at least enough

Writing functions that
take zero or more
arguments

Writing functions with
both fixed and
optional arguments

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

262 Chapter 11: Advanced Uses 0/ Functions

Defining functions with
optional arguments
using lambda

First class objects

Functions as
arguments

arguments to match each fixed parameter. The final parameter is bound to a list
of any additional arguments.

In the next example the function el ts returns a list of selected elements from
a list. It takes the list as a required argument and a variable number of element
positions as optional arguments. It is an error to call el ts with no arguments.

; Return list of elements specified by their positions.
(define (elts a-list . positions)

(map (lambda (pos) (list-ref a-list pos» positions))

> (eits '(a b c d e f g) 0 2 4)
(a c e)

> (eits '(a b c d e f g))
()

> (eI ts)
Error: Tao few arguments: (elts)

These two additional forms of define are not required as part of the Scheme
language specification. That means that your implementation of Scheme may not
support them. You can get around this by using the following variations of
lambda, which are required in Scheme. We could specify the above two functions
as folIows:
(define avg

(lambda nums
(if (null? nums)

'no-average
(I (apply + nums) (length nums»)))

(define elts
(lambda (a-list . positions)

(map (lambda (pos) (list-ref a-list POS)) positions)))

11.2 Functions that Return Functions
Functions are first dass objects, meaning they can be used in expressions, stored in
data structures, bound to variables, passed to functions, and returned from func
tions. In most programming languages functions are not first dass objects, so it
may seem that it is not important to give functions such an elevated status. How
ever, there are some nice advantages to having functions as first dass objects.

We have used functions as arguments in many cases. This allows us to write
functions that can be used to perform a variety of tasks. For example, our inser
tion sort function from Chapter 8 is a big improvement over the original sort
function we wrote in Chapter 6. By making the comparison function an argu
ment, the same sort function can be used to sort objects of different types and to
sort in increasing or decreasing order.

11.2 Functions that Return Functions 263

Allowing functions to return functions opens up more possibilities. In
Chapter 16 the function make-fuzzy-triangle returns a function based on the
arguments with which it is called. This function is created once and then used a
number of times. The problem could have been solved without this approach,
but it is easier to do this way.

Let's look at a simple example of a function that returns another function:

; Return function encapsulating info about aperson.
(define (person-info name birth-date income job)

(lambda (request)
(cond «eq? request 'name) name)

«eq? request 'age) (- current-year (third birth-date)))
«eq? request 'year) (third birth-date))
«eq? request 'month) (first birth-date))
«eq? request 'day) (second birth-date))
«eq? request 'income) income)
«eq? request 'broke) « income 1000))
«eq? request 'rich) (> income 100000))
«eq? request 'occupation) job))))

The function person - info takes information about a person and returns a
function that eneapsulates that information. Encapsulation is maintaining local
information within a function. This information is often called loeal state informa
tion. person-info encapsulates name, birth-date, income, and job. The return
function has a single parameter, request. Let's use these functions:

(define dilbert
(person-info 'dilbert '(5 12 57) 45000 'programmer))

> (dilbert 'name)
dilbert

> (dilbert 'month)
5

> (dilbert 'rieh)
#f

The first two examples do not offer much more than a simple data structure
with selector functions would offer. The third example goes a bit beyond the sim
ple access of information.

But what happens to dilbert if we create another person? Does dilbert's
information change? Let's see.

(define dogbert (person-info 'dogbert '(7 9 90) 0 'philosopher))

> (dogbert 'name)
dogbert

> (dilbert 'name)
dilbert

Dilbert's data remained intact. Each time person - info is called, it creates a
new function with unique values. This information is maintained in what is

Functions as return
values

Encapsulation

Closures

264 Chapter 11: Advanced Uses 0/ Functions

Extent o(closures

Changing values in a
closure

called a lexical closure (typically referred to as a closure). A closure is a function
that contains additional information about the environment in which it was
created. The environment in this case refers to variables and their bindings that
affect the function. These variables are within the scope of the function that is
created. Scope in Scheme is determined lexically according to the position in the
code in which variables are defined. For example, when dogbert is defined by
calling person - info, the function retumed has access to the parameters name,
birth -date, income, and year. These are maintained in an environment and are
not accessible in any way other than through the closure once the function
person - info finishes.

A closure stays in existence (its extent) as long as there is some way to access
it. In this example that is as long as the variables dilbert and dogbert are bound
to the function, or any other variable or data structure that includes the closures
exists. For example, we can create a clone for Dilbert named Studbert:

(define studbert dilbert)

> (studbert 'name)
dilbert

Studbert has access to Dilbert's values because Studbert is defined to be what
Dilbert iso Even if we change dilbert's binding, studbert maintain's the values.

(define dilbert 'programmer)

> (dilbert 'name)
Error: operator is not a function: programmer

> (studbert 'name)
dilbert

The values within closures can be changed. The following example illustrates
this. Notice that the function retumed takes one required argument and optional
arguments after that:

; Return function encapsulating job information.
(define (job-info name income job)

(lambda (request . value)
(cond «eq? request 'name) name)

«eq? request 'income) income)
«eq? request 'broke) « income 1000»
«eq? request 'rich) (> income 100000»
«eq? request 'occupation) job)
«eq? request 'raise)

(set! income (+ income (first value»»
«eq? request 'new-occupation)

(set! job (first value»»))

(define ratbert (job-info 'ratbert 1000 'pest»

> (ratbert 'income)
1000

> (ratbert 'raise 100000)
??

> (ratbert 'ineome)
101000

> (ratbert 'rieh)

*t

11.2 Functions that Return Functions 265

We have created a means of changing information stored within a closure. We
can represent an entire company and give everyone a raise fairly easily using the
function job-info:

(define larry (job-info 'larry 10000 'stooge»
(define moe (job-info 'moe 11000 'stooge»
(define eurly (job-info 'eurly 12000 'stooge»
(define emps (list larry moe eurly»

> (for-eaeh (lambda (emp) (emp 'raise 500)) emps)
??

> (map (lambda (emp) (emp 'ineome)) emps)
(10500 11500 12500)

The list emps is a list of employees (represented as closures) that can be
sequenced through using for-each and map.

11.2.1 Exercises
11.1 Write a function last that has one required parameter a -list and an op

tional parameter number. If last is called with a -list alone, it returns the
last element of a -list; otherwise, last returns a list of the last number ele
ments of a-list.

11.2 Write a function neons that takes a variable number of arguments and
conses them together into a new list.

(neons 'a 'b '(e d) '(e f»

is equivalent to
(cons 'a (cons 'b (cons '(e d) '(e f»»

11.3 Write a function make-power that takes a number num and returns a func
tion that takes a single argument and raises it to the numth power. For
example,

(make-power 3)

returns a function that cubes its argument. Show a single expression using
make-power that computes 25 to the 6th power.

11.4 Write a new version of accumulate that does not take a list of elements to
be accumulated, but instead takes them as separate arguments. For

266 Chapter 11: Advanced U ses 0/ Functions

Objects

Programming
paradigms

Classes and instances

Instance and class
variables

example,
(new-aeeurn eons 'a 'b 'e)

should return the same value as
(accumulate eons '(a b e»

11.5 What does the following function do?
(define (weird fune)

(lambda args (list (apply fune args»))

What do the following expressions return?
«weirdabs) 3)
«weird max) 3 4 5 6)
«weird aeeumulate) list' (3 4 5»

11.3 Object-Oriented Programming
Using dosures we have created objects like those used in object-oriented pro
gramming. An object is a data structure that has data and programs associated
with it. It is possible to retrieve the data in an object directly or to get information
resulting from computations on the object' s data.

Object-oriented programming (OOP) is a style or paradigm of programming.
There are four major programming paradigms: imperative programming, func
tional programming, logic programming, and object-oriented programming.
Languages like Pascal and C follow imperative programming. Scheme is based
on functional programming. PROLOG uses logic programming that involves
programming by creating facts, mIes, and queries. Object-oriented programming
languages indude Smalltalk, C++, and Java. Look at each of these as a style of
programming. Certain tasks may be easier using a particular style, but any style
is general enough such that a program written in one style could be rewritten
using another style.

Objects are just one part of object-oriented programming. In addition there
are classes, which specify the types of information that objects contain and the
operations they can perform. A dass is similar to a data type and an object is an
instance of a dass similar to a variable~ For example, we may have a dass for cars
(calIed auto) and then define some instances of cars, like my-ear, your-ear, and
fast-ear.

A dass defines the information that the instances of the dass have. This infor
mation is maintained in instance variables or fields. For example our auto dass
may have instance variables for the make and model of the car, the number of
doors, and the color. Class variables represent information that is shared between

1. This is different from what we are accustomed to in Scheme. Scheme does not specify types for its
variables, as many other programming languages do. Types are associated with the values
themselves.

11.3 Object-Oriented Programming 267

all instances in a dass. This may be a common, fixed piece of information, such as
the number of wheels in all cars, or it may be a shared variable such as a counter
of the number of cars, in which every time a new car is created the counter is
increased.

Classes can be based on other dasses. For example, our car dass may be
based on the dass vehicle. The dass vehicle is a superclass of auto, which is the
subelass. There may be numerous subdasses of vehicle like motorcycle and
truck. Instance variables in the superdass can be used in the subdasses. For
example, we could put the instance variables for make, model, and color in the
superdass vehicle and still access them from the auto subdass. A subdass
inherits the instance variables of its superdass. This simplifies the creation of pro
grams. We can still have instance variables for subdasses if needed. For example,
auto and truck would still have the number-of-doors instance variable, but
motorcycle wouldn't.

Some object systems allow inheritance from more than one superdass. This is
called multiple inheritanee. It gives more flexibility but has more complications in
handling situations where conflicts in methods may arise.

Code can be part of objects and it is specified in the dass definitions. Such
code is called a method. For example, our auto dass could have a method to keep
track of miles per gallon. lmagine we had instance variables for the number of
mHes driven and the number of gallons purchased. A simple method could
divide these and return miles per gallon. Methods are invoked by message passing.
An object is sent a message that invokes a method. The selection of the method is
called dispatehing.

Object-oriented programming provides a convenient means for handling
polymorphie funetions-functions that take different types of arguments. The same
message can be sent to different types of objects and handled by different
methods that perform the proper actions based on the object dass. This is one
way of handling polymorphie functions. The programmer does not need to
worry about the type of the object. She can focus on the messages to the object.

The benefits of object-oriented programming are in the simplification of com
plex structures, especially those that are hierarchical in nature and in ease of
reuse of code and code modifiability. The methods associated with objects are
well defined and easy to use. Through message passing, you can focus on the
actions you want performed and not on the details of how they must be done,
which allows polymorphie functions to be used easily. If you ask for the color of
a vehide, you don't have to worry if it is a motorcyde or a truck. The language
provides features to eliminate a great deal of the overhead.

There is cost associated with the creation of dasses, instance variables,
methods, and instances. So for small programs, this creation overhead might not
be worthwhile. But for large programs it is a big plus. The widespread growth of
C++ and the design of Java to be object-oriented are testimony to the advantages
that object-oriented programming offers.

Superclasses,
subclasses, and
inheritance

Multiple inheritance

Methodsand
message passing

Polymorphism

Object-oriented
programming plusses

268 Chapter 11: Advanced Uses 0/ Functions

11.3.1 How to write in the object style
We will develop a simple example that illustrates some of the things that can be
done using object-oriented programming. The creation of the dasses and
instances in these examples is more complex than you would normally encounter
in an object-oriented programming language. This is because Scheme itself does
not support objects. Therefore, we have to explicitly take all the steps required to
produce dasses, instances, methods, inheritance, and dispatching.

Macros It is not possible to write code that handles the dass and instance creation

Creating code and
evaluating it later

Creating class
definitions

overhead to make an OOP system, as our examples will have. This is because
some of the functions that must be created do not follow the normal evaluation
roles. They would be passed arguments that are dass and instance names and
methods that should not be evaluated. Essentially we must create special forms.
This can be done by either modifying the interpreter or using an implementation
of Scheme that allows the creation of macros. Macros are similar to functions
except instead of being evaluated, they are translated into equivalent function
compositions and then evaluated. Macros can be used to define special forms
that do not follow the normal evaluation mIes. Without macros we would be
unable to write dass and instance creation special forms.

The above paragraph is not entirely true. We could write functions to create
dasses and instances and provide the OOP features we need. But the special
information needed by these functions (Le., instance variable names, methods,
superdass names) would have to be quoted or part of quoted lists. Then we build
the functions we need, adding all the overhead to support OOP and embedding
the information we passed in (e.g., dass and instance variable names). Finally, we
eva1 this newly created function. Techniques like this are used in some of the
later chapters where code is adjusted and then eva1ed. It is much nicer to be able
to use macros where you can more freely design the structure of the function
calls and specify special evaluation roles.

Some implementations of Scheme have extensions that support OOP. For
example, STK has extensions that support both objects and the graphics toolkit of
Td/Tk, which provides support for creating graphical user interfaces (GUIs). If
you are using aversion of Scheme that supports objects, you should learn how to
use the functions that are provided to create dasses, instances, and methods.
Then you can create an example similar to the one given below. You'll most
likely find that your version is much shorter and easier to write.

The example we will build will illustrate some of the features of objects, in
particular the use of dass and instance variables, methods, and inheritance from
a superdass. Let's look into these properties individually to see how they can be
implemented.

To create a dass definition, we can define a function that returns another
function. The function returned is an instance of that dass. So we are combining
dass definition with instance creation. Most OOP systems make these separate
operations. This return function encapsulates the instance variables of the object.
Here is an example:

11.3 Object-Oriented Programming 269

; Create simple car class.
(define (auto make model)

(lambda (req)
(cond «eq? req 'make) make)

«eq? req 'model) model)
(else 'bad-request»))

This defines a simple dass for cars. The return value of auto is a function that
is used as an instance of the auto dass. There are two instance variables: make
and model. Here is an example using this function:

(define fast (auto 'porsche 928»
(define small (auto 'plymouth 'arrow»

> (fast 'make)
porsche

> (small 'model)
arrow

The instances are functions and the messages sent as arguments to the func
tions retrieve instance variables or invoke methods. In some object systems the
message names are the functions and their arguments are the objects. This fits in
with the idea of viewing functions as action doers and objects as things acted
upon, and works nicely with polymorphism especially when it extends over into
buHt-in functions. For example, we could have a display method for the auto
dass. With our system we would have to invoke it as

(fast 'display)

With other object systems we would enter
(display fast)

Let'S add methods to change instance variables. The method paint changes
the instance variable color and the method add augments the instance variable
accessories. These methods will take additional arguments, so we/ll modify the
return function to take additional, optional arguments:
; Create car class with modifiable instance variables.
(define (auto make model color accessories)

(lambda (req args)
(cond «eq? req 'make) make)

«eq? req 'model) model)
«eq? req 'color) color)
«eq? req 'paint) (set! color (first args» color)
«eq? req 'accessories) accessories)
«eq? req 'add)

(set! accessories (append args accessories»
accessories)

(else 'bad-request»))

When we create a car, we will specify an initial color and accessory list:

Creating instances

Handling messages

Creating methods

270 Chapter 11: Advanced Uses ofFunctions

Creating class
variables

Instance variables
versus class variables

(define fast (auto 'parsehe 928 'red '(stereo fat-tires»)
(define small (auto 'plymouth 'arrow 'white '(»)

> (fast 'color)
red

> (fast 'paint 'bright-red)
bright-red

> (fast 'color)
bright-red

> (small 'accessories)
()

> (small 'add 'radio 'clock 'alarm-system)
(radio clock alarm-system)

We can add a dass variable to our initial auto dass that is shared among all
cars. To do this the variable will have to be defined outside of the return function
but within the definition of the dass so that it is not simply a global variable that
can be affected by any part of the program. Putting a let variable between the
dass definition and the return function will solve this. The shared variable all
repair-cost keeps track of the total repair cost for all the cars.

Another variable repaired is unique for each car, but is not a parameter to
auto. It acts like an instance variable in that it is unique for each instance; how
ever, it is not specified as an argument when the object is created. The repair
method takes an item to be repaired and its cost. It will add the repaired item to
the repaired instance variable and update the total cost in the all-repair-cost
dass variable. Notice the difference in the placement of the two lets:

; Create car class with class and instance variables.
(define (auto make model)

(let «all-repair-cost 0»
(lambda (req . args)

(let «repaired '(»)
(cond «eq? req 'makel makel

«eq? req 'model) model)
«eq? req 'cast) all-repair-cost)
«eq? req 'repair)

(set! all-repair-cost
(+ (second args) all-repair-cost»

(set! repaired (cons (first args) repaired»
repaired)

(else 'bad-request») »

(define fast (auto 'parsehe 928»
(define small (auto 'plymouth 'arrow»

> (fast 'repair 'brakes 129)
(brakes)

11.3 Object-Oriented Programming 271

> (fast 'cast)
129

> (small 'repair 'fender 300)
(fender)

> (small 'cast)
300

> (fast 'cast)
129

Our shared variable isn't being shared. The problem is not with the placement
of the let outside of the return function. Instead it is in the definition of the auto
function before the let. Each time auto is caIled, it invokes the outer let expres
sion which creates a new all-repair-cost variable. Each instance created calls
auto and thus gets a unique all-repair-cost variable. To fix this, the let must
be defined before the auto function.

We should test our second let variable, repaired, as weIl:
> (small 'repair 'haod 600)
(hood)

> (small 'cost)
900

The repaired instance variable did not maintain the previous repair, fender.
Once again this let is in the wrong position in relation to the inner lambda. The
variable all-repair-cost is keeping a proper running total for the individual
cars. The inner let should be relocated to the position where the outer let iSo
Here is a new version of auto with both of these bugs hopefully fixed:
; Create car class with class and instance variables.
(define auto

(let «all-repair-cost 0» class variable
(lambda (make model) auto function header

(let «repaired '(») instance variable
(lambda (req . args) parameters for methods

(cond «eq? req 'makel makel
«eq? req 'model) model)
«eq? req 'cost) all-repair-cost)
«eq? req 'repair)

(set! all-repair-cost
(+ (second args) all-repair-cost»

(set! repaired (cons (first args) repaired»
repaired)

(else 'bad-request» » »

(define fast (auto 'porsche 928»
(define small (auto 'plymouth 'arrow»

Fixing bugs in Dur
cl ass and instance
variables

272 Chapter 11: Advanced Uses 0/ Functions

Creating inheritance

Passing methods to
the superelass

> (fast 'repair 'brakes 129)
(brakes)

> (fast 'cast)
129

> (small 'repair 'fender 300)
(fender)

> (small 'cast)
429

> (fast 'cast)
429

> (small 'repair 'hood 600)
(hood fender)

> (small 'cast)
1029

It works! The final object-oriented feature we/ll indude is inheritance. We will
define a superdass to auto called vehicle. It will contain the make and model
instance variables that auto had. The auto subdass will contain an instance vari
able for the number of doors the car has. The make and model information for a
car will be inherited from the vehicle superdass. This is done by creating an
instance of the superclass whenever an instance of auto is created. Any method
requests that the instance of auto does not know about are sent to the superclass.

In creating the instance of the superdass, certain arguments may be needed.
These can be named explicitly as parameters in the subdass or by using a vari
able number of arguments. This latter solution makes for code that is easier to
write and to modify. Notice how the parameter list of auto specifies its parame
ters and takes a variable number for the vehicle superdass. Also notice how the
instance of vehicle is created and how it is invoked when the subclass cannot
handle the request.
; Create vehicle superelass.
(define (vehicle make model)

(lambda (req)
(cond «eq? req 'makel makel

«eq? req 'model) model)
(else 'bad-request»))

; Create car subclass.
(define (auto num-doors . args)

(let «parent (apply vehicle args»)
(lambda (req . args)

; create vehicle instance

(cond «eq? req 'num-doors) num-doors)
(else ; send message to parent

(apply pa re nt (cons req args»» »)

11.3 Object-Oriented Programming 273

(define fast (auto 3 'porsche 928»
(define small (auto 2 'plymouth 'arrow»

> (fast 'make)
porsche

> (small 'model)
arrow

> (fast 'num-doors)
3

Now that we have explored some aspects used in object-oriented program
ming, we can put all the pieces together into a larger example. We will have a
vehicle superc1ass with auto and motorcycle subc1asses. These subc1asses have
instance variables unique to their dasses. Most of the instance variables are in the
vehicle dass inc1uding the type of the vehide, which is automatically passed to
the vehicle function when the instance is created. This is done by simply cons
ing the appropriate type (car or motorcycle) onto the list of arguments applied
to vehicle. An instance of vehicle can be created direct1y without going
through a subc1ass. The van object is an example of that.

Another feature that an object system may support is the ability to run some
code when an instance is created. We model this to keep track of the total vehic1e
count. The variable num is used in vehicle to maintain this count. Each vehide or
subc1ass of vehic1e can access the count using the method count. When a vehide
is created, num is incremented to count the new vehic1e.
; Create vehicle superelass.
(define vehicle

(let «num 0»
(lambda (type make model year color owner)

(set! num (+ num 1»
(lambda (req . args)

(cond «eq? req 'type) type)
«eq? req 'make) make)
«eq? req 'model) model)
«eq? req 'year) year)
«eq? req 'color) color)
«eq? req 'owner) owner)
«eq? req 'buy) (set! owner (car args» owner)
«eq? req 'count) num)
(else 'bad-request») »)

; Create car subclass.
(define (auto num-doors . args)

(let «parent (app1y vehicle (cons 'car args»»
(lambda (req . args)

(cond «eq? req 'num-doors) num-doors)
(else (app1y parent (cons req args»» »)

A large object
oriented example

274 Chapter 11: Advanced Uses ofFunctions

; Create motorcycle subclass.
(define motorcycle

(let «num-bikes 0»
(lambda args

(set! num-bikes (+ num-bikes 1»
(let «parent (apply vehicle (cons 'motorcycle args»»

(lambda (req . args)
(cond «eq? req 'num-bikes) num-bikes)

(else (apply parent (cons req args»» » »)

Below are five instances of these dasses that are all put into the list all so we
can send messages to all the instances in a single mapping:
(define my-car (auto 4 'vw 'jetta 1984 'b1ue 'oliver»
(define her-car (auto 3 'mazda 323 1990 'blue 'myriam»
(define old-bike (motorcycle 'yamaha 'XS400 1988 'white 'oliver»
(define new-bike (motorcyc1e 'kawasaki 'KZ650 1996 'red 'gino»
(define van (vehicle 'uti1ity 'nissan 'quest 1996 'si1ver 'hans»
(define all (list my-car her-car old-bike new-bike van»

> (map (lambda (veh) (veh 'make)) all)
(vw mazda yamaha kawasaki nissan)

> (map (lambda (veh) (veh 'count)) all)
(5 5 5 5 5)

> (map (lambda (veh) (veh 'type)) all)
(car car motorcycle motorcycle utility)

> (map (lambda (veh) (veh 'num-bikes)) all)
(bad-request bad-request 2 2 bad-request)

> (map (lambda (veh) (veh 'num-doors)) all)
(4 3 bad-request bad-request bad-request)

> (map (lambda (veh) (veh 'owner)) all)
(oliver myriam oliver qino hans)

> (new-bike 'buy 'alex)
alex

> (map (lambda (veh) (veh 'owner)) all)
(oliver myriam oliver alex hans)

Notice that the vehide counts are the same for all instances, because the count
is in a shared variable. The methods num-bikes and num-doors only work with
the motorcyde and auto dasses. For all other dasses, bad - request is returned.

11.3.2 Exercises
11.6 Why is the name auto used to define the car dass instead of car?

11.4 Forcing Exils with call-with-current-continuation 275

11.7 Extend the example above to calculate miles driven and gasoline used for
each car. Provide methods to take mileage and gasoline amounts and keep
them in running totals for each vehide. Write another method to compute
and return the miles per gallon. Then extend this to support shared vari
ables for total miles driven and gas used by all the vehides. Provide a
method that returns the average mileage per gallon of all the vehides.

11.8 Design the dass structure for a library. For books keep track of their title,
author, subject, publisher, page count, and publishing year. For periodicals
store some general information about the magazine (title, subject, which
years are in the collection) and specific information for each issue (artide
titles, authors, and subjects). How would you structure the dasses to allow
inheritance of information from superdasses?

11.9 Given the library dass structure from the previous problem, add dasses
for newspapers and videos. Is this an easy extension or did you have to
redesign parts of your structure?

11.10 Build the actual dass and instance functions for the library described
above, supporting books and periodicals only.

11.11 Create dasses, instances, and methods to model a problem of your choos
ing. Try to use dass and instance variables, methods that take multiple
arguments, inheritance, and instance or dass variables with values that can
beupdated.

11.4 Forcing Exits with call-with-current-continuation
Scheme provides a powerful function that can be used to leave a section of code
and jump to a predefined area. This can be used to exit from deep within a com
position of functions or within a recursive call or a do loop. Any remaining
actions that were to be done are left forever. These bypassed actions are a con
tinuation. The function that allows us to exit from a continuation is call-with
current-continuation. Before we talk about this complex and powerful func
tion, let's look at continuations.

In Chapter 3 we looked at the evaluation of composed (one expression inside
another) Scheme expressions. Before we apply the outermost function, we must
evaluate its arguments. This sets up a continuation-an action that must be
returned to. For example, when the interpreter begins to evaluate the first subex
pression,

(* new 4)

in the expression
(list (* new 4) old)

Continuations

276 Chapter 11: Advanced U ses 0/ Functions

call-with-current

continuation

it makes a continuation to evaluate old and to list the two subexpressions. All
actions in Scheme involve continuations, even simple top-level calls: once they
are evaluated, the results are printed and the next command is read in. Continua
tions can be bypassed using call-with-current-continuation.

call-with-current-continuation allows you to exit from a continuation
(typicallya loop) and return a certain value. Leaving a continuation is done sim
ply by calling a predefined exit function with a value that the prematurely exited
continuation will return. Evaluation continues with the expression after call
with-current-continuation.

call-with-current-continuation takes a function of one argument. That
argument names the exit function. The body of the function contains the
expression{s) from which we wish to be able to exit.2 call-with-current
continuation is best explained with examples.

The following two recursive functions print strings before and after making
recursive calls. Both test their one argument. When the argument exceeds three,
vanilla returns done. However, strawberry forces an exit by calling stop (the
exit function set by call-with-current-continuation). See how this affects the
remaining displayS:

; Print messages during recursive descent and unwind.
(define (vanilla arg)

(cond «> arg 3) 'done)
(else

(display "before recursion")
(newline)
(vanilla (+ arg 1»
(display "after recursion")
(newline»))

; Print messages during recursive des cent on1y.
(define (strawberry arg)

(call-with-current-continuation
(lambda (stop)

(define (inner-berry arg)
(cond «> arg 3) (stop 'done»

(else
(display "before recursion")
(newline)
(inner-berry (+ arg 1»
(display "after recursion")
(newline»))

(inner-berry arg»))

2. We can exit from a wider range of continuations than those immediately defined in the body of the
function argument to call-with-current-continuation. This will be covered in the upcoming
examples.

11.4 Forcing Exits with call-with-current-continuation 277

> (vanilla 1)
be fore recursion
be fore recursion
be fore recursion
after recursion
after recursion
after recursion
??

> (strawberry 1)
before recursion
be fore recursion
before recursion
done

> (list (strawberry 1) 'already)
be fore recursion
before recursion
be fore recursion
(done already)

In vanilla three recursive calls are made. The final one, with arg equal to
four, satisfies the exit condition and done is returned. However, this is not the
final return value. The recursive call is followed by another display and new
line. These must be done for each recursive call made. The final return value is
the return value of the last expression in the else action-a call to newline. This
value is unspecified in Scheme.

In strawberry the exit function stop is called when the exit case of the recur
sion is reached. This means we immediately exit from the call-with-current
continuation and do not return to any of the recursive calls (the continuation)
like vanilla did. done is returned as the value of the call-with-current
continuation and strawberry. The continuation does not indude the call to
list as the last function call shows. So the call to list is evaluated and the list
(done already) is returned.

The exit function can be passed as an argument to other functions. This allows
an exit to occur in a function that is not defined within the call-with-current
continuation. Look at the following variation of strawberry:

; Set up exit function and pass to nonberry.
{define (chocolate arg)

{call-with-current-continuation
{lambda (stop)

(nonberry arg stop»))

Regular recursion

Exiting (rom a
recursive descent

Passing exit (unctions
as arguments

278 Chapter 11: Advanced U ses 0/ Functions

Saving the exit
function in agiobai
variable

; Print messages during recursive des cent only.
(define (nonberry arg exit-func)

(cond «> arg 3) (exit-func 'done»
(else

(display "before recursion")
(newline)
(nonberry (+ arg 1) exit-func)
(display "after recursion")
(newline) »)

> (chocolate 1)
before recursion
before recursion
be fore recursion
done

chocolate defines stop as an exit function and then calls nonberry with
stop. When exit-func (which is bound to stop) is called in nonberry, it forces
an immediate exit from the recursion, and done is returned. chocolate behaves
just like strawberry~

The exit function can be saved in a global variable. The global variable must
be set within the call-with-current-continuation. If we use adefine, it can't
be used outside of the call-with-current-continuation because it creates a
variable local to the call-with-current-continuation. To create a global vari
able, we must first create the global variable using deHne on the top level out
side the call-with-current-continuation, and then change its value inside
the call-with-current-continuation using set!. This can be done as folIows:

(define bail-out 'nothing-yet)

(call-with-current-continuation
(lambda (stop)

(setl bail-out stop»)

bail-out is now aglobai exit function. The call-with-current
continuation is defined at the top level, so calling bail-out causes evaluation
to continue at the top-level read-eval-print loop. Here are some examples show
ing how bail-out can be used:

> (bail-out 2)
2

> (* 4 (+ 3 (bail-out 2) 5))
2

> (list 'before (bail-out 2) 'after)
2

3. But it tastes quite different.

11.4 Forcing Exits with call-with-current-continuation 279

> (list (display "before ") (bail-out 2) (display "after "))
before 2

The second and third examples show how an exit function nested within a
function call causes the return value to be that of the exit function. The exit func
tion supersedes the continuation in place. The last example shows that nested
functions are called up to the point of the exit function, and then the exit
function's value is returned. The string before gets displayed, but after doesn't
because the second display (the continuation) does not get evaluated.

11.4.1 Uslng call-with-current-continuation to exit from a do
loop

Many iterative functions using do can be simplified using call-with-current
continuation. This is especially true for do loops with multiple exit conditions
(e.g., all-numbers?-iter and insert from Chapter 10).

Below is a function that implements subset? It has two exit conditions: test
ing for a nonmatch and testing for an empty list. We need to check each element
of the first list and test if it occurs in the second list. If it doesn't, we needn't test
any further and should exit from the testing loop and return tf. Dur do will use a
single exit case testing for an empty list. The call-with-current-continuation
will set up an exit function for the second exit case-an element that does not
occur in the second list.
; Return #t if all elements in setl are also in set2, #f otherwise.
(define (subset?-iter setl set2)

(call-with-current-continuation
(lambda (exit)

(do ((test-set setl (rest test-set»
«null? test-set) #t)

(if (not (member (first test-set) set2»
(exit tf»»))

The return value will be tf if (first test-set) is ever not a member of
set2, or #t when test -set is empty-all elements have been checked.

Belowisatraceofthecall(subset?-iter '(2 3 4) '(425»:

test-setisboundto (2 3 4)

(first test -set) is in set2, (4 2 5), so we continue.

test -set is bound to (rest '(2 3 4» or (3 4)

(first test -set) is not in set2. Thus exi t is called, passing the value tf back
to call-with-current-continuation, which it returns. Hence subset?-iter
returns #f.

Writing subset? with
do andcall-with-

current

continuation

280 Chapter 11: Advanced Uses 0/ Functions

Finding employees
using do and cal.1-

with-current

continuation

The function find-employee from Chapter 10 can be written using call

with-current-continuation. ca11-with-current-continuation sem up an
exit function to jump out of either do loop. As before, the outer do loop sequences
through the divisions of the company, and the inner do loop sequences through
the departmenm of each division. If a match is found, the division and depart
ment of that employee is retumed by calling return, the exit function, with a list
of the division and department names. If none of the people in the departments
matches person, then the inner do loop returns no-match. Since the inner do loop
is the body of the outer do, the outer do continues with the next division. If the
department lism in all divisions do not match person, (nu11? company) will be
true and #f will be retumed.

We are using the definitions of department-list, employees, division
name, and department-name from Chapter 10.
; Return the division and department of person in company-list,
; #f if person is not in company-list.
(define (find-employee company-list person)

(ca11-with-current-continuation
(1ambda (return)

(do ((company company-list (rest company»)
«nu11? company) #f)
(do ((dept (department-list (first company» (rest dept»)

«nu11? dept) 'no-match)
(if (member person (employees (first dept»)

(return (1ist (division-name (first company»
(department-name (first dept»»») »)

Here are tests of this new version using the definition of com from Chapter 10:
> (find-employee com 'bernice)
(far-east advertising)

> (find-employee com 'fred)
#f

> (find-employee com 'stephen)
(western investment)

> (find-employee com 'hans)
(european sa1es)

11.4.2 Exercises
11.12 Does the following version of strawberry work like the previous one from

page 276?

11.5 Summary 281

(define (strawberry arg)
(call-with-current-continuation

(lambda (stop)
(cond « > arg 3) (stop 'done»

(else
(display "before recursion")
(newline)
(strawberry (+ arg 1»
(display "after recursion")
(newline» »))

11.13 Write a new version of all- numbers? - i ter from Chapter 10 that uses do
and call-wi th - current-continuation.

11.14 Write a new version of insert from Chapter 10 that uses do and call
with-current-continuation.

11.15 Write your own version of the function any using do and call-with
current-continuation.

11.16 Write your own version of the function every using do and call-with
current-continuation.

11.17 Write your own version of the function find-if using do and call-with
current-continuation.

11.18 Write your own version of the function assoc using do and call-with
current-continuation.

11.5 Summary
• To write a function that takes a variable number of arguments (zero or more),

use one of the following templates:
(define (function . optiona1-args)

body)

(define function
(lambda optiona1-args

body))

The arguments are stored in a list named optional-args.
• To write a function that takes some required and some optional arguments,

use one of the following templates:
(define (function required-args . optional-args)

body)

282 Chapter 11: Advanced Uses 0/ Functions

(define function
(lambda (required-args . optional-args)

body))

• Functions are first dass objects. They can be used in expressions, stored in
data structures, bound to variables, passed to functions, and returned from
functions.

• A dosure is a function that encapsulates information in existence when the
function is created. Closures can be used to keep local state information
instead of using global variables.

• Object-oriented programming is a style of programming based on the use of
objects that maintain data and code, and messages that send information or
make requests of objects.

• Classes specify the type of information in an object. The individual objects are
called instances. The information maintained in objects is called instance vari
ables. Class variables hold information that is shared among all the instances
of a particular dass.

• Methods specify code associated with an object. They may be a function of
some of the instance variables or change the values of these variables or even
invoke other objects sending them messages.

• Classes can be based on other dasses through inheritance. A subclass inherits
the instance variables and methods of its superclass. Multiple inheritance is
the use of instance variables and methods from more than one superclass.

• Object-oriented programming languages provide support to facilitate the
creation of dasses, instances, and methods.

• call-with-current-continuation is used to create a function that when
called returns to the continuation where it was defined. A continuation
represents the actions that must be returned to or continued in a composition
of functions, recursive call, or do loop.

• The exit function created by call-with-current-continuation can be used
within the body of the call-with-current-continuation, or passed as an
argument to another function, or bound to a global variable to create aglobai
exit function.

• call-with-current-continuation can be used to allow early exits from
iterative functions. This is perhaps the simplest way to deal with multiple exit
cases when using iterative functions.

11.6 Additional Reading
Booch, G. (1994). Object-Oriented Analysis and Design with Applications, Second
edition, Benjamin Cummings, Redwood City, CA.

Budd, T. (1997). An Introduction to Object-Oriented Programming, Second edition,
Addison-Wesley, Reading, MA.

11.6 Additional Reading 283

Keene, S.E. (1989). Object-Oriented Programming in Common LIsp: A Programmer's
Guide to CLOS, Addison-Wesley, Reading, MA.

Kiczales, G., Des Rivieres, J., and Bobrow, D.G. (1991). The Art 0/ the Metaobject
Protocol, MIT Press, Cambridge, MA.

Taylor, D.A. (1990). Object-Oriented Technology: A Manager's Guide, Addison
Wesley, Reading, MA.

Wilkinson, N.M. (1995). Using CRC Cards: An Informal Approach to Object-Oriented
Development SIGS Books, New York, NY.

Winblad, A.L., Edwards, S.D., and King, D.R. (1990). Object-Oriented Software,
Addison-Wesley, Reading, MA.

CHAPTER 12

DATABASE MANAGEMENT
SYSTEMS

12.1 Database Systems
A database is a collection of information, such as facts about countries, statistics
on demographics, a store's inventory, and phone lists. A database system allows
one to access, insert, delete, and modify information stored within a computer
system. The term computer system is used as opposed to computer because
external memory may be needed. Oatabase systems often require large amounts
of memory that greatly exceed the storage capacities of the computer's main
memory. The database management system (OBMS) performs operations on the
information stored within a database. The OBMS is a program that contains a
query language that allows database updates and retrievals. A OBMS can be
viewed as a layer or abstraction built upon the computer system. The diagram
below shows the pieces of a database system:

DBMS Computer External memory
query language IE-~ (data) IE-~ (more data)

There are many ways in which database systems organize data. A table is one
way, as the following example of American beers illustrates. We'll refer to this
table as brew.

Databases and
database systems

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

286 Chapter 12: Database Management Systems

brew relation

Relations, tupIes, and
attributes

Ouery languages and
SOL

SampIe SOL query

SELECT,FROM,and

WHERE

INSERT

name type rating brewery
BlueWhale ale 9 Oakland
A.V.Oatmeal stout 10 Boonville
Sierra Nevada ale 9 Chico
BigFoot barley-wine 10 Chico
Liberty ale 9 San Francisco
Augsburger lager 4 Milwaukee
Pabst lager 1 Milwaukee
Schlitz malt-liquor 2 Milwaukee

Tables, like the one above, are the primary data structure in relational database sys
tems. Tables are called relations and rows in a relation are tupies. For example,

Liberty ale 9 San Francisco

is a tuple. The columns in a relation are called attributes. Each tuple has informa
tion about one member of the relation and each attribute describes one particular
aspect of that tuple (e.g., name or rating).

A query language is similar to a programming language except it is tailored
to the specific task of handling updates and accesses to data. It is possible to
make rather sophisticated retrievals of information using a query language
without having to know how the data is stored. The below query retrieves all the
beers in the brew relation that are from Milwaukee or those that have a rating
above nine. It is written in the query language SQL, an acronym for Structured
Query Language. SQL is pronounced "sequel."

SELECT brew.name
FROM brew
WHERE brew.brewery = 'Milwaukee'

or brew.rating > 9;

The result would be

brew.name
A.V. Oatmeal
Big Foot
Augsburger
Pabst
Schiltz

When a query is performed, the tuples in the relation are sequenced through
and the specified attributes of those tuples that satisfy the condition are retumed.
The SELECT clause specifies which attributes are desired. Attribute names are
formed by joining the relation name to the attribute name with aperiod making
them one symbol. The FROM clause specifies the relations to examine. The WHERE
clause gives the condition against which each tuple is tested.

New data is added using the INSERT clause. To insert Lucky Lager into the
database, the following command is used:

12.1 Database Systems 287

INSERT
INTO brew
VALUES ('Lucky', 'lager', 1, 'Milwaukee');

More than one relation can be used. For example, a relation of establishments,
bar, and the beers they serve can be created.

name beer location
Pacific Coast Blue Whale Oakland
Pacific Coast A.V.Oatmeal Oakland
Pacific Coast Sierra Nevada Oakland
Brickskeller Sierra Nevada Wash. D.C
Brickskeller Big Foot Wash. D.C
Brickskeller Liberty Wash. D.C
Brickskeller Augsburger Wash. D.C
Brickskeller Pabst Wash. D.C
Bent Elbow Pabst Terre Haute
Bent Elbow Schlitz Terre Haute

With the new relation, queries can be made such as the following which finds
all bars that serve local beers and lists the names of those locally brewed beers.

SELECT bar. name, bar.location, brew.name
FROM bar, brew
WHERE bar.location = brew.brewery;

The name and location attributes of the bar relation and the name attribute from
the brew relation are returned.

bar. name
Pacific Coast

bar.location
Oakland

brew.name
Blue Whale

Notice that the FROM clause specifies both the bar and brew relations. These
are combined in an operation called a join. A join appends each tuple in one rela
tion with all the tuples in another relation. This is one type of join; there are other
types which are discussed later in seetion 12.3, "Implementing a Relational Data
base in Scheme."

Below are two queries that find all the bars that serve beers with a rating of
seven or more:

or

SELECT bar.name
FROM bar, brew
WHERE bar.beer = brew.name

and brew.rating >= 7;

SELECT bar. name
FROM bar
WHERE bar.beer IN

(SELECT brew.name
FROM brew
WHERE brew.rating >= 7) ;

bar relation

Queries with two
relations

Join operation

288 Chapter 12: Database Management Systems

Nested queries

Closure in SQL

The result from either query is
bar. name
Pacific Coast
Brickskeller

The first example searches through the tuples in the join of the bar and brew
relations. For each tuple, if the beer attribute in the bar relation matches the name
attribute in the brew relation and the beer has a rating of seven or more, the tuple
is eliminated.

The second example is a nested selection. Since selections return relations,
they can be used as input to other selections. In this case the inner SELECT

(SELECT brew.name
FROM brew
WHERE brew.rating >= 7);

searches through the brew relation and returns a relation of beer names that have
ratings of seven or more. This relation is

brew.name
Blue Whale
A.V. Oatmeal
Sierra Nevada
Big Foot
Liberty

Next the outer SELECT

SELECT bar.name
FROM bar
WHERE bar.beer IN

inner SELECT

searches through the bar relation and returns the names of bars that match beers
from the inner selection relation, namely those with ratings of seven or more.

bar.name
Pacific Coast
Brickskeller

Nested queries are possible because SELECTS return relations. In fact, all three
of the relational operators we have seen, SELECT, FROM, and WHERE, return rela
tions. When a function or operator returns a type that it accepts as input, it is
closed over that function or operation~ Many Scheme functions such as +, rest, and
subseq exhibit this very useful property. The following function calls illustrate
how c10sed functions can be inputs to calls of the same function:
(+ (+ 3 4) 5)

(rest (rest (rest , (many numeric and list functions are closed»»

\. This type of c10sure is an algebraic c10sure and should not be confused with the lexical closure o[
functions as discussed in Chapter 11.

12.1 Database Systems 289

Another possible structure for the above database of bar and brew relations is
to combine them in one relation, as shown below:

name beer loeation type rating brewerv
Pacific Coast BlueWhale Oakland ale 9 Oakland
Pacific Coast A.V. Oatmeal Oakland stout 10 Boonville
Pacific Coast Sierra Nevada Oakland ale 9 Chico
Brickskeller Sierra Nevada Wash.D.C. ale 9 Chico
Brickskeller BigFoot Wash.D.C. barley-wine 10 Chico
Brickskeller Liberty Wash.D.C. ale 9 San Francisco
Brickskeller Augsburger Wash.D.C. lager 4 Milwaukee
Brickskeller Pabst Wash.D.C. lager 1 Milwaukee
BentElbow Pabst Terre Haute lager 1 Milwaukee
BentElbow Schlitz Terre Haute malt-liquor 2 Milwaukee

This may seem conceptually easier than having two separate relations. How
ever, there is a problem with maintaining data values when tuples are deleted.
For example, suppose that the Brickskeller stops serving Liberty ale and that
tuple is deleted. All the information about Liberty ale would be lost. By having
two relations, bar and brew, the tuple

Brickskeller Liberty Wash. D.C.

can be deleted from the relation bar and the tuple maintaining information about
Liberty ale is retained in the brew relation.

Liberty ale 9 San Francisco

Thus, queries about Liberty ale can still be made. Much repetition is eliminated
when two relations are used. For example, the information about Pabst and
Sierra Nevada beers is maintained only once instead of twice.

In general, relations should be set up to reflect simple, complete chunks of
information. Another possibility for our database would be to use three relations:
one for beers, one for bars and the beers they have, and another for bars and their
location. This would eliminate much of the redundancy that currently exists in
the bar relation. This process of restructuring the form of the database to elim
inate redundancy and dependencies is called normalization.

Database theory specifies different degrees of normalization to produce data
bases of different normal forms. The simplest is called first normal form (1NF) and
the most rigorous and best from a database design perspective is fifth normal
form (5NF). For example, if we restructure the database as mentioned above and
split the bar relation into two relations: one matching bars with locations and .
another matching bars to the beers they serve, we would convert the bar relation
from second normal form to third normal form. Normal forms are covered in
depth in c.J. Date's text which is referenced in "Additional Reading" at the end of
this chapter.

Alternate data
structure

Disadvantages to
large relations

Use simple relations

Normalization and
normal (orms

290 Chapter 12: Database Management Systems

Goals 01 early
database systems

Hierarchical database
systems and records

12.1.1 Exercises
12.1 Write a SQL query to find the names and brewery locations of beers that

are ales.

12.2 Write a SQL query to find the names and locations of bars that serve beers
that are lagers with ratings above six.

12.3 Write the query below without using a nested SELECT.

SELECT beer.name, beer.rating
FROM beer
WHERE beer.name IN

(SELECT bar.brew, bar. IDeation
FROM bar
WHERE bar.Ioeation = 'OakIand');

12.2 Historical Background
Early databases focused on business applications such as banking, record keep
ing, and reservation systems. These early systems had four major goals:

Efficiency: Fast access and modifications to large amounts of data
Resilience: Survive hardware crashes and software errors
Access control: Simultaneous multiuser access
Persistence: Ensure data exists for long periods without the program run

ning

12.2.1 First generation: Hierarchical and network database sys-
tems

The first generation of database systems were hierarchical and network systems.
A hierarchical system is set up as a collection of trees. Each tree represents an
implicit relationship between the parent and its zero or more children. Data is
maintained in structures called records. The parent is a certain record type (holds
certain values) and the children are of potentially different types. For example, to
represent information about companies, the parent record type might contain
information about a company like the name of the company and when it was
established. A child type below the company root might represent the different
departments within the company where each member holds the department
name, working budget, person in charge, etc. Below this department record type
there could be different children record types. One child type could hold infor
mation about the employees of that department with such facts as the names,
dates hired, employee identification numbers, salary, and so on. Another child
type might contain information about the products of the department. A picture
of this folIows:

12.2 Historical Background 291

Employee Product

These boxes represent the different record types in the database. The root box,
Company, would contain information about a single company. The Department
box would be relaced by a number of records containing information about the
different departments of the company. Below each department box would be any
number of employee and product records, each containing information about
employees and products within that department. It is not necessary to specify
explicitly which department an employee works in; that fact is implicit from the
tree structure of the database.

We would run into problems if we tried to represent our beer/bars relation
ship as a hierarchical system. We cannot set up a relationship with a hierarchical
system in which bars are children of beers (i.e., a beer is available from a number
of different bars) and beers are children of bars (a bar serves a number of beers).
This will be further explored below.

In a network system, a child can have more than one parent. This is the distin
guishing feature between hierarchical and network systems. And this makes the
network system more flexible than the hierarchical system. Network databases
comprise records and sets. Records maintain the information about individual
items in the database. They are similar to tuples within a relational database. Sets
are ordered collections of records. Each set has an owner and various members.
In considering our example database of bars and beers, we can imagine having a
set of beers for each bar representing the beers that each bar carries. This is a 1 to
N relationship, in which there is one owner (a bar) and many members (the beers).
For such relationships, network systems provide a natural model. Sets are
represented as an ordered sequence of records starting at the owner, going
through all the members, and ending back at the owner. A picture of such a rela
tion follows. The owner is the bar Brickskeller and the members are the beers that
the Brickskeller sells.

Limitations o(

hierarchical systems

Network database
systems and sets

292 Chapter 12: Database Management Systems

Umitations o(network
systems

Dummy records

Brickskeller

A complication arises if different owners share the same members in the same
set type. This would happen in our beer/bar database with the beers Pabst and
Sierra Nevada, which are each served in more than one bar. The problem is that
multiple paths are needed and there are ambiguities as to which path to follow
when sequencing through the set. Such a situation is called an N to M relation
ship (N owners and M members). The following diagram illustrates this more
complex database.

The problem with this next database becomes dear when you try to follow a
path (see page 293). For example, starting at the Bent Elbow an arrow goes up
and left to Pabst. However, two arrows leave Pabst, one to Schlitz, and another to
the Brickskeller.

There is a way to get around this ambiguity. Another record type is needed
(sometimes called a dummy record). Each dummy record represents a beer avail
able at a particular bar. In our database there are eight different beers, two of
which are served in different bars; thus there are ten unique beer /bar combina
tions. This means there will be ten instances of this new dummy record type.

12.2 Historical Background 293

Pacific Coast

Brickskeller

BentElbow

This new record will be called bar-beers; it will have two parents, the bar

and brew records. This is not allowed in a hierarchical system where each record
can have only one parent. This gives network systems an advantage. Below is a
diagram of the record structure for this new database:

brew bar

bar-beers

294 Chopter 12: Database Management Systems

Writing queries in
network systems

Below is the diagram of this new structure with the actual record values. The
empty small boxes are records of the type bar-beers. The solid arrows to/from
the top and bottom of the boxes connect members of the bar set. The dashed
arrows to/from the sides of the boxes connect members of the beer set.

Pacific Coast

I Sierra Nevada l~ -_ ~ --

Liberty Brickskeller

Augsburger C ~ = ~ ~

Pabst l~-_~--
BentElbow

To make queries in a network system, we can write programs that sequence
through sets until the desired information is obtained. The current set and record
provide a frame of reference for operations. Certain commands are provided
such as the following:

12.2 Historical Background 295

command action
MOVE establishes the field name of arecord for searches
FIND finds arecord in a set according to the field name established

with a MOVE command
FIND-NEXT go to the next member of the current set
FIND-OWNER go to the owner (record) of the current set
INSERT add a new record in the current set
DELETE delete the current record from the current set
MODIFY change the contents of the current record
CONNECT connect the current record to the current set
DISCONNECT disconnect the current record from the current set

As an example, we'll try to find the beers sold at the Brickskeller that have rat
ings above seven. To do so we need to sequence through all the beers in the
Brickskeller's beer set. This set comprises five bar-beer records that each connect
to a beer record containing the rating information we must check. FIND-NEXT is
used to sequence through the set. When the end of the set is reached (the owner
is reached), FIND-NEXT returns fail. Here are the instructions for this query:

MOVE "Brickskeller" to name in bar

FIND bar
Loop: FIND-NEXT in bar-beers

if tail
exit

FIND-OWNER in beer

if rating in beer > 7

PRINT name in bar

GOTO Loop

The MOVE command specifies that we are interested in the record with the
name "Brickskeller." The FIND finds the Brickskeller record in the bar set. Loop

specifies a location (label) in the program that we can come back to with a GOTO.

The FIND-NEXT finds the next record in the bar-beers set. The first time it is
called it finds the first record in that set. After the last record has been found,
FIND-NEXT returns fail. The if statement checks for fail and exits from the query
if all records have been searched. If there are more records to search, the FIND

OWNER is performed, which finds the record in the beer set that corresponds to
the current record in the bar - beers set. If the rating of this record is greater than
seven, the name is printed. Next we go back to the statement at the Loop label
and continue searching with the next record in the bar - beers set.

Queries are written in an algorithmic fashion in which you must specify how
the database is traversed. Therefore you must know how the data is structured,
in particular which sets connect to which records.

Setting up the structure of such a database is a difficult task, and it involves
having knowledge of how the database will be used to allow queries to be easily
and optimally made. If a database is changed, the queries that access the data
usually must be changed. This is a major difficulty with network systems.

Relationships
between queries and
data structures

296 Chapter 12: Database Management Systems

Separating storage
details trom the data
structure

Data independence

Data integrity

12.2.2 Second generation: Relational database systems
The second generation of database systems uses the relational approach that we
saw in the beginning of this chapter. The relational viewpoint to database sys
tems was proposed as a simplification to network database systems. Rather than
view the database as an interconnected collection of sets, the relational view is
that a database is a collection of relations.

In relational database systems there are no storage details that are implicit in
the structure of the database, as with network databases. All information is made
explicitly in the relations. This often requires more effort in entering the data ini
tially, but it doesn't require that queries be rewritten if the data structure
changes. The order of the tuples and attributes in any table is not important. How
relations are stored internally is invisible to the user; in fact, all the internal
storage details are hidden from the user. The result is a simpler system from the
user's perspective. The price to be paid is that relational systems require more
work in the OBMS, which is more complex. Relational systems tend to be slower
as weIl.

12.2.3 Considei'ations database systems must address
Data independence and data integrity are two key problems that all database sys
tems must consider. Data independence involves designing database systems
that can perform even when their structure changes via the addition or deletion
of information in the database. This is a difficulty in network database systems
since the form that a query takes depends on how the data is organized.

Oata integrity concerns maintaining consistency in the database so that no
items that should be the same are different. This can be solved by eliminating all
redundancy in the database. Oata integrity is difficult in relational database sys
tems, as relations tend to have redundancy. Normalization techniques can be
used to eliminate the redundancy.

12.3 Implementing a Relational Database in Scheme
To get a better understanding of database systems, we'll implement a mlru
relational database system in Scheme. Before beginning such an endeavor, it is
important to have a good understanding of the commands that must be imple
mented and the data structures upon which those commands act. In the case of a
relational database, the primary data structure is the relation. A relation consists
of tuples (rows) and attributes (columns). Before deciding how to represent rela
tions, let's look at how they are used. The commands that we have seen are

SELECT
FROM
WHERE

The operations that are performed involve both tuples and attributes. SELECT
extracts attributes from relations, as in

12.3 lmplementing a Relational Database in Scheme 297

SELECT bar.name, bar.location

WHERE chooses certain tuples from relations, as in
WHERE bar.name = "Pacific Coast"

FROM specifies the relations that will be used in the query. This is important when
more than one relation is specified, as those relations must be combined in some
fashion. This is done with what is termed a join. An unconstrained join (also
called a Cartesian product) such as

SELECT bar.name, brew.name
FROM bar, brew;

forms all combinations of bar and beer names. There are three bars and eight
beers. Thus there are 3 X 8 = 24 bar/beer combinations altogether. The resulting
relation would look like the following:

bar. name
Pacific Coast
Pacific Coast
Pacific Coast
Pacific Coast
Pacific Coast
Pacific Coast
Pacific Coast
Pacific Coast
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Bent Elbow
Bent Elbow
Bent Elbow
Bent Elbow
Bent Elbow
Bent Elbow
Bent Elbow
Bent Elbow

brew.name
Blue Whale
A.V. Oatmeal
Sierra Nevada
Big Foot
Liberty
Augsburger
Pabst
Schlitz
Blue Whale
A.V. Oatmeal
Sierra Nevada
Big Foot
Liberty
Augsburger
Pabst
Schlitz
Blue Whale
A.V. Oatmeal
Sierra Nevada
Big Foot
Liberty
Augsburger
Pabst
Schlitz

This example is somewhat misleading, as it gives the impression that all three
bars serve all eight beers, which is not the case. An accurate list is formed by
explicitly requesting only those beers that are served in the bars, as in the follow
ingquery:

SELECT bar.name, brew.name
FROM bar, brew
WHERE bar.beer = brew.name;

Unconstrained join

298 Chapter 12: Database Management Systems

Constrained join This will result in a constrained join (also called theta join), as the WHERE clause
specifies a join condition. The resulting relation yields the bars and the beers that
theyserve:

bar. name
Pacific Coast
Pacific Coast
Pacific Coast
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Brickskeller
Bent Elbow
Bent Elbow

brew.name
Blue Whale
A.V. Oatmeal
Sierra Nevada
Sierra Nevada
Big Foot
Liberty
Augsburger
Pabst
Pabst
Schlitz

This relation is a subset of the previous relation. The WHERE clause restricts the
tuples of a relation according to some condition.

12.3.1 Deciding on a data structure
Now that the commands of the SQL subset we have been looking at have been
examined, we can start thinking in terms of which Scheme structures would be
most effective.

A SELECT is an operation based on attributes-keeping the desired ones.
WHERE and FROM are based on tuples-keeping desired tuples and joining tupIes.
Also printing out relations involves printing a tuple per line. The emphasis is on
tuple operations; therefore, a list of tuples will be a good choice for a data struc
ture to represent relations. The attribute names can be placed in the first sublist of
each relation. To represent the brew relation, we can use the following list:
(define brew I (

(brew.name brew.type brew.rating brew.brewery)
(Blue_Whale ale 9 Oakland)
(A.V._Oatmeal stout 10 Boonville)
(Sierra_Nevada ale 9 Chico)
(Big_Foot barley-wine 10 Chico)
(Liberty ale 9 San_Francisco)
(Augsburger lager 4 Mi1waukee)
(Pabst lager 1 Milwaukee)
(Schlitz malt-liquor 2 Milwaukee)

»
Notice the use of underscores and dashes to tie words together as single symbols.
The column indentation is just for our readability.

12.3 Implementing a Relational Database in Scheme 299

12.3.2 Implementing the WHERE clause
A WHERE dause is an operation that takes a list of tuples and returns a subset of
that list based on some condition. This can be implemented using a keep-if with
a function that returns true for any of the tuples that are desired and #f for those
not wanted. To retrieve the ales from the brew relation, the following Scheme
function call could be made:

(keep-if
(1ambda (beer-tuple) (eqv? (second beer-tuple) 'ale»
brew)

A function that performs the operation of a WHERE dause needs a condition
and a relation. The condition will have references to attributes such as
brew. name. These references must be converted to the appropriate attribute
values from within the tuple before the condition can be evaluated. This can be
done in two ways. One way is to replace the attribute references in the condition
with the actual attribute values for each tuple. A second way is to change the
condition such that all attribute references are replaced with function calls that
extract the correct attribute values when called with a tuple.

The first approach is easier to write; however, it involves an extra step for
each tuple. The second method only requires that the condition be changed.
Given this new condition, it can be directly called with each tuple to decide if the
tuple should remain. In the interest of simplicity, let's try the first approach. The
second method will be left as an exercise.

The function convert takes a condition and a tuple and returns a new condi
tion with all attribute references replaced with the appropriate tuple values. con

vert is called with each tuple in the relation. The converted condition is then
evaluated to determine if that particular tuple should be part of the new relation
ship or not. As an example, consider the following condition and tuple:

original condition: (and (> brew. rating 7) (equa1? brew. type 'ale»

tuple: (Liberty ale 9 San_Francisco)

attribute names: (brew . name brew. type brew. ra ting brew. brewery)

converted condition: (and () 9 7) (equa1? 'ale 'ale»

The convert function needs the condition, the current tuple being examined,
and the list of attribute names for that tuple. convert sequences through the con
dition and replaces references to attributes with the actual vaIues from the
current tuple. Two additional functions will be helpful: a predicate function
attribute-name?, that checks for attribute references, and a function
attribute-value, that returns the appropriate values.

The function attribute-name? checks if the element being examined is an
attribute--a member of the list of attribute names. The function folIows:

; Return true if element is an attribute in attrib-names.
(define (attribute-name? element attrib-names)

(member element attrib-names))

Replacing condition
attributes with tuple
values

Checking for attribute
names

300 Chapter 12: Database Management Systems

Getting attribute
values

Deep conversion o(

attributes

Evaluating the
converted condition

The function attribute-value gets the value from the tuple that corresponds
to the attribute reference. attribute-value needs the attribute name list and the
tuple being checked. The position of the attribute in the attribute name list is also
the position of the actual value in the tuple. For example, given the attribute
name list and tuple below,

attribute name list: (brew. name brew. type brew. rating brew.loeation)
tuple: (Liberty ale 9 San_Franeiseo)

brew. rating is the third element in the attribute name list. Thus its value is the
third element in the tuple, 9. The code for attribute-value folIows:

; Return the attribute named element within tuple given a list
; of attribute names, attrib-names.
(define (attribute-value element attrib-names tuple)

(list-ref tuple (position element attrib-names»)

Now that the auxiliary functions attribute-name? and attribute-value
have been defined, we can write eonvert. eonvert must look deep inside the
condition to find attribute names. A simple mapping will not work, as only the
top-level elements would be checked. Instead, either a car-cdr recursive func
tion could be buHt or we could use a map that has a conditional clause that checks
if the element being examined is a list. If so, we handle it recursively. The code to
do this folIows:
; Given condition, tuple, and attrib-names, a list of attributes,
; return a new eondition with attributes replaeed by aetual values.
(define (eonvert eondition tuple attrib-names)

(map (lambda (element)
(cond «list? element)

(eonvert element tuple attrib-names»
«attribute-name? element attrib-names)

(attribute-value element attrib-names tuple»
(else element»)

eondi tion))

Let' s test this function.
> (convert 'fand (> brew.rating 7) (equal? brew.type 'ale))

'(Pabst lager I Milwaukee)
'(brew.name brew.type brew.rating brew.brewery))

(and (> 1 7) (equal? lager 'ale»

Lastly, the function where can be written. where sequences through the tuples
of the relation comparing them against the condition. For each tuple a new condi
tion is formed based on the values in the tuple. This new condition is tested to
determine if the tuple should remain. To test the condition, we need an extra
level of evaluation. This is because the function convert returns a condition as a
list (as the examples above illustrate). To evaluate that condition list, an eval is
needed. The examples below will help illustrate this important point:

12.3 Impkmenting a Relational Database in Scheme 301

> (convert '(> brew.rating 7) '(Pabst lager 1 Milwaukee)
, (brew.name brew.type brew.rating brew.brewery))

(> 1 7)

> (if (convert '(> brew.rating 7) '(Pabst lager 1 Milwaukee)
, (brew.name brew.type brew.rating brew.brewery))

'OK
'not_OK)

OK

> (eval (convert '(> brew.rating 7) '(Pabst lager 1 Milwaukee)
, (brew.name brew.type brew.rating brew.brewery)))

u
The function where can be written using a call to keep-if. Only the tuples

should be tested and not the attribute name list (the first sublist of the relation);
thus, keep-if should be called with the rest of the relation. However, we do
want to return a relation with an attribute name list; therefore we must cons the
attribute name list onto the resulting relation from the keep-if.

Selector functions for the attribute name lists and the tuples of a relation will
make our code more readable and easier to modify if the structure of relations is
changed:

; Return the attribute names of a relation.
(define (attributes relation)

(first relation))

return the list of tuples of a relation
(define (tuples relation)

(rest relation))

And finally, the function where:

; Return all the tuples in relation that satisfy condition.
(define (where condition relation)

(cons
(attributes relation)
(keep-if

(lambda (tuple)
(eval (convert condition tuple (attributes relation»»

(tuples relation»))

Below are some tests of this function. The resulting relations have been shown
one tuple per line with attributes lined up in columns. The real output would
look different.

Selector functions

302 Chapter 12: Database Management Systems

> (where '(> brew.rating 7) brew)
((brew.name brew.type brew.rating

(B1ue_Wha1e ale 9
(A.V._Oatmea1 stout 10
(Sierra_Nevada ale 9
(Big_Foot bar1ey-wine 10
(Liberty ale 9

brew.brewery)
Oak1and)
Boonvi11e)
Chico)
Chico)
San_Francisco)

> (where 'fand (> brew.rating 7) (equal? brew.type 'ale)) brew)
Undefined variable: ale

What happened? It's easy to jump to conclusions and think that the 5cheme
interpreter made amistake. After all, ale is quoted and shouldn't be treated as a
variable. Let's examine the functions that where calls. First let's see what convert
returns for the above condition and the first tuple in the brew relation.

> (convert 'fand (> brew.rating 7) (equal? brew.type 'ale))
'(Blue_Whale ale 9 Oakland)
'(brew.name brew.type brew.rating brew.brewery))

(and (> 9 7) (equa1? ale 'ale»

If we try to eva1 this expression, we get an error because theiirst reference to
ale is not quoted. To get around this problem, we could either change the func
tion convert such that it inserts a call to quote before any replaced value, or we
could quote all attribute names in conditions passed to where. The second
approach is easier but less intuitive for the user, as attribute names are more like
variables than constant symbols. 50 we'll opt for the first approach and modify
convert as follows:
; Given condition, tuple, and attrib-names, a list of attributes,
; return a new condition with attributes replaced by actual values.
(define (convert condition tuple attrib-names)

(map (lambda (element)
(cond «list? element)

(convert element tuple attrib-names»
«attribute-name? element attrib-names)

(list 'quote
(attribute-value element attrib-names tuple»)

(else element»)
condition))

Here are tests of the convert and where functions:
> (convert 'fand (> brew.rating 7) (equal? brew.type 'ale))

'(Blue_Whale ale 9 Oakland)
'(brew.name brew.type brew.rating brew.brewery))

(and (> (quote 9) 7) (equa1? (quote ale) 'ale»

12.3 Implementing a Relational Database in Scheme 303

> (where ' (and (> brew.rating 7) (equal? brew.type 'ale)) brew)
((brew.name brew.type brew.rating brew.brewery)

(Blue_Whale ale 9 Oakland)
(Sierra_Nevada ale 9 Chico)
(Liberty ale 9 San_Francisco)

12.3.3 Implementing the SELECT clause
A SELECT clause returns a relation with a subset of the attributes in the original
relation. To get a better idea of this, imagine the query

SELECT brew.name, brew.rating
FROM brew;

This would return the brew relation without the type and brewery attributes.
name rating
Blue_Whale 9

A.V. Oatmeal 10 -
Sierra_Nevada 9
Big_Foot 10
Liberty 9
Augsburger 4
Pabst 1
Schlitz 2

For each tuple in the relation we must return a tuple with just the name and
rating attribute values. To do this we can construct a new list from each tuple
and then combine these lists to form a new relation. We can sequence through
the list of desired attribute names using the attribute-value function to pro
duce a list of attribute values from each tuple.

Another method is to construct tuples using access functions derived from
the desired attribute list. For each desired attribute we create an access function.
Then we apply these access functions to each tuple to form the list of attributes
we want. This can be done with a sequence of maps: one sequences through the
attribute list to form access functions; another sequences through the access func
tions and produces a new tuple; and the third sequences through aH the tupies.

Another problem is converting attribute names into access functions, for
exarnple converting brew. name into first or the equivalent function. This
second approach is more involved than the first approach. Both approaches must
sequence through the entire relation and the list of desired attributes. The second
approach must sequence through the access functions that are formed as weH.

Let's make life easier and use the first approach. The desired attributes and
the relation are passed direct1y to select. We can use the selector function
attributes to get the attribute list from the relation.

To create the desired tuple from the original tuple, we can use a map that caHs
attribute-va1ue for each attribute in the list of desired attributes. The code fol
lows:

Forming new tuples

304 Chapter 12: Database Management Systems

Creating a list of
tuples

Creating a single tuple

Implementing join

(map
(1ambda (attribute)

(attribute-value attribute (attributes relation) tuple»
desired-attributes)

tuple corresponds to the current tuple. All the tuples will have to undergo this
step and be put together to make a new relation. To do this another map can be
used. (attributes relation) is the list of attribute names in the relation.
Rather than calling attributes many times in the map, the result can be saved in
a 1et variable. The final function is
; Return a relation with only the attributes in desired-attributes.
(define (select desired-attributes relation)

(1et ((attribute-list (attributes relation»
(map

(1ambda (tuple)
(map

(1ambda (attribute)
(attribute-value attribute attribute-list tuple»

desired-attributes»
rela tion»)

The outer map generates a new relation by creating new tuples from the origi
nal tuples in the original relation. This map sequences through all the sublists of
the relation including the first, which is the attribute list.

The inner map returns individual tuples by forming a list of attributes; one for
each element in the desired attributes list. Each attribute is the result of calling
attribute-value with the tuple.

Below is a sampie call to select. Once again, the output is displayed one
tuple per line for readability.

> (select '(brew.name brew.type) brew)
((brew.name brew.type)

(B1ue_Wha1e a1e)
(A.V._Oatmeal stout)
(Sierra_Nevada ale)
(Big_Foot barley-wine)
(Liberty a1e)
(Augsburger 1ager)
(Pabst 1ager)
(Schlitz ma1t-liquor)

12.3.4 Implementing the FROM clause
To handle the FROM clause, a join operation must be implemented. To join two
relations, each tuple in the first relation is appended to every tuple in the second
relation. To join three relations, first join the first two, then join that result to the
third relation. This method can be generalized using accumu1ate to join any
number of relations. Below is a simple example showing a join of two relations:

12.3 Implementing a Relational Database in Scheme 305

(join
'«name

(pigl
(pig2
(pig3

horne)
straw)
twigs)
bricks))

'«disaster symptoms effects)
(earthquake shaking bricks)
(fire burning twigs)
(wolf puffing straw»)

The result should be the following relation:
((name horne disaster symptoms effects)

(pigl straw earthquake shaking bricks)
(pigl straw fire burning twigs)
(pigl straw wolf puffing straw)
(pig2 twigs earthquake shaking bricks)
(pig2 twigs fire burning twigs)
(pig2 twigs wolf puffing straw)
(pig3 bricks earthquake shaking bricks)
(pig3 bricks fire burning twigs)
(pig3 bricks wolf puffing straw»

The attribute names are appended and all combinations of the tuples from the
two relations are made. This is an unconstrained join. Another possibility is to
produce a constrained join by combining the join operation with the where
operation and conditionally forming tupies. This is more complex and is left as
an exercise.

We can use a nested loop to produce these tupies. The inner loop sequences
through the tupI es in the second relation, appending them onto the end of the
current tuple in the first relation. The outer loop sequences through the tuples in
the first relation. This nested loop can be buHt using nested maps:

; Return an unconstrained join of relation 1 and relation2.
(define (join relationl relation2)

(map
(lambda (tupIeI)

(map
(lambda (tuple2)

(append tuplel tuple2»
relation2»

relationl))

Given the previous sampie call to join, this new function would produce the fol
lowing list:

Nested loop to make a
join

306 Chapter 12: Database Management Systems

(((name horne disaster symptoms effects)
(name horne earthquake shaking bricks)
(name horne f ire burning twigs)
(name horne wolf puffing straw»
(pigl straw disaster symptoms effects)
(pigl straw earthquake shaking bricks)
(pigl straw fire burning twigs)
(pigl straw wolf puffing straw»
(pig2 twigs disaster symptoms effects)
(pig2 twigs earthquake shaking bricks)
(pig2 twigs fire burning twigs)
(pig2 twigs wolf puffing straw»
(pig3 bricks disaster symptoms effects)
(pig3 bricks earthquake shaking bricks)
(pig3 bricks fire burning twigs)
(pig3 bricks wolf puffing straw»

We have two problems. The attribute names are inc1uded too many times
because we treated them like tuples instead of as a special case. Secondly, there is
an extra level of nesting. Instead of getting one attribute name list and nine
tupies, we got four lists of lists. This is an artifact of the way map works: namely if
we call map with a list of four elements, we get a list of four elements back.

What we really want is to call the maps with lists of tuples without the attri
bute name sublist. Then we convert the list of lists of tuples into a flat list of
tupies. This is done by flattening the list one level by appending the tuple lists
together. Since there are many tuple lists, the append should be used in conjunc
tion with apply or aceumulate. The following example shows how this can
work:

> (apply append
'((tuplel tuple2 tuple3)

(tupleA tupleB tupleC)
(tupleX tupleY tupleZ)))

(tuplel tuple2 tuple3 tupleA tupleB tupleC tupleX tupleY tupleZ)

The attribute name list should be created outside of the map loops and eonsed
to the new tupies. The resulting corrected j oin function folIows:

; Return an unconstrained join of relationl and relation2.
(define (join relationl relation2)

(eons
(append (attributes relationl) (attributes relation2»
(apply append

(map
(lambda (tuplel)

(map
(lambda (tuple2)

(append tuplel tuple2»
(tuples relation2»)

(tuples relationl»»)

12.3 Implementing a Relational Database in Scheme 307

Since join takes two relations and returns a single relation, to perform multi
ple joins accumulate can be used. This then fully implements the FROM dause:

; Return an unconstrained join on relations in relation-list.
(define (from relation-list)

(accumulate join relation-list)

To test the function from, assume that the following relations have been
defined. The artists Rolling Stones and Grateful Dead have been abbreviated as
stones and Dead.

name
flower

song

album

relation
«flower
(rose
(violet

«song

color)
red)
blue))

artist)
(Dandelion Stones)
(Scarlet_Begonias Dead)
(Sugar_Magnolias Dead»

((album artist)
(Black_and_Blue Stones)
(White_Album Beatles»

Below is a sampie call to the function from:

> (from '(flower song album))
Error: Pair expected

This error message or something similar, depending on the implementation of
Scheme that you are using, occurs when you try to perform an operation that
requires a list on a nonlist object. from calls accumulate, which calls join with
the first two elements of the list passed to fram. These two elements are not
evaluated, but are passed directly to join. This produces the call

(join 'flower 'song)

and results in an error because flower and song are symbols, not lists.
To fix this problem we could modify j oin so that it does an eval on its two

arguments and uses those results throughout. A let form would be helpful to do
this. A second solution would be to change from such that it evalS the relations
before calling accumulate. This can be done with a map on relation -list. A
third solution would be to leave the functions as they are and call from as fol
lows:

(from (list flower song album»

This forces the evaluation of the three relations because they are arguments to
list.

Either solution is viable; however, the first involves the most work, and the
third is a bit ugly from the user's perspective when making queries. Thus, we'll
opt for the second choice--modifying the function from. The new code is

Multiple joins

308 Chapter 12: Database Management Systems

Transfating SQL into
Scheme

; Return an unconstrained join on relations in relation-list.
(define (trom relation-list)

(accumulate join (map eval relation-list»)

Below is the same sampie call to the new version of trom. Note: to get each
tuple to fit on a line, some of the attributes have been abbreviated.

> (from ' (flower song album))

«flower color song artist album artist)
(rose red dandelion stones black_n_blue stones)
(rose red dandelion stones white_album beatles)
(rose red scarlet_beg dead black_n_blue stones)
(rose red scarlet_beg dead white_album beatles)
(rose red sugar_magno dead black_n_blue stones)
(rose red sugar_magno dead white_album beatles)
(violet blue dandelion stones black_n_blue stones)
(violet blue dandelion stones white_album beatles)
(violet blue scarlet_beg dead black_n_blue stones)
(violet blue scarlet_beg dead white_album beatles)
(violet blue sugar_magno dead black_n_blue stones)
(violet blue sugar_magno dead white_album beatles»

12.3.5 Putting it all together
The final step is to put the pieces together and decide how queries can be made
using these new functions. One approach would be to use the existing form of
SQL queries and transform the comma-separated lists in SELECT and FROM
clauses into lists of attribute and relation names, respectively. The conditions in
WHERE clauses will have to be transformed into Scheme conditions. The order in
which the operations are performed is important. The FROM clause defining any
joins should be done first, then the WHERE clause which eliminates certain tuples
from the joined relation. Finally the SELECT, which returns a subset of the attri
butes from the tuples desired, should be performed. Actually the WHERE and
SELECT could be reversed, but due to the order in which they occur in SQL, it is
easier to perform the SELECT last. Thus,

SELECT bar.name, brew.rating
FROM bar, brew
WHERE bar.beer = brew.name

and brew.rating > 7;

becomes
(select ' (bar.name brew.rating)

(where ' (and (equal? bar.beer brew.name) (> brew.rating 7»
(trom '(bar brew»»

select takes two arguments, the list of desired attributes and the relation
from where. where takes two arguments also, the condition to test tuples and the
relation from the call to trom. trom has one argument, the list of relations to join.

12.3 Implementing a Relational Database in Scheme 309

Executing the query above produces the following:
> (select '(bar.name brew.rating)

(where '(and (equal? bar.beer brew.name) (> brew.rating 7»
(from '(bar brew»»

«bar.name brew.rating)
(pacific_coast 9)
(pacific_coast 10)
(pacific_coast 9)
(brickskeller 9)
(brickskeller 10)
(brickskeller 9»

12.3.6 Some extras
Two additional functions would improve our simple relational database pro
gram. The first is to pretty print relations such that there is only one tuple per line
and the attributes line up in columns. Another function would allow us to insert
new luples into existing relations Omplementing the SQL INSERT dause).

A print function is easy to implement using nested calls to map. One loop will
sequence through the tuples and another will process the attributes within the
tupies. To print strings out in a tabular fashion, we can write a function that
determines the length of its argument. This can be done by converting symbols or
numbers into strings using symbol->string or number->string, respectively.
Then we can count the characters in that string using the function string
length. If this is longer than our fixed field width, say sixteen spaces, we just
print the first sixteen characters of the string. Otherwise we print the string and
enough extra blanks to position the cursor at the start of the next field.

Just as subseq returns part of a list, substring returns part of a string. sub
string takes a string and start and end position, as subseq does. Printing a
number of blanks can be done using a loop of some sort, or more simply using
the function make-string, which takes a number and a character and returns a
string consisting of that many repetitions of that character. Use #\space to refer
to the space character.
; Print out attribute and spaces to fill 16 characters.
{define (fixed-print attribute)

{let { {string
{cond ({symbol? attribute) (symbol->string attribute»

({number? attribute) (number->string attribute»
(else attribute»))

{cond {{< (string-Iength string) 16)
(display string)
{display

{make-string {- 16 (string-Iength string» #\space»)
{else {display (substring string 0 16»»))

Let's try printing out three attributes. To combine multiple calls to fixed
print in one expression, list is used. We are interested in the values displayed

Pretty printing
relations

310 Chapter 12: Database Management Systems

for-each versus map

Inserting into relations

Local bindings

before the return value-a list of undefined values.
> (list (fixed-print 'left-stuff)

(fixed-print "more than 16 characters")
(fixed-print 18))

left-stuff more than 16 cha18 (11 11 11)

Since we are printing out values using fixed-print and we don't care what
value the function that sequences through the attributes or tuples returns, we can
use the function for-each to sequence through these lists. for-each is identical
to map in that it applies a function to elements of a list. The exceptions are that
for-each guarantees that the elements in the list are applied in left to right order
and that the return value is undefined. for-each is used when we only care
about the side-effects that the function produces, such as setting or printing vari
ables.

The complete print function is below:
; Print out relation formatted in columns 16 characters wide.
{define (print-relation relation)

{for-each
{lambda (tuple)

(for-each fixed-print tuple)
(newline))

relation))

Below is a sampie call to print-relation:

> (print-relation (where '« brew.rating 7) brew))
brew.name brew.type brew.rating brew.brewery
augsburger lager 4 milwaukee
pabst lager 1 milwaukee
schlitz malt-liquor 2 milwaukee
11

To implement the INSERT c1ause, we'll add the new tuple after the first ele
ment in the relation. Recall that the first element in a relation is the list of attri
bute names. To make this addition, it is better to destructively change the list.
The reason for this is that we would like to refer to this new relation by name
without having to get the result from a call to an insert function each time we
want to use the relation.

The list can be changed using deHne or set I; however, it is necessary to
change the list intemally. A subtle mistake to avoid is the following
oversimplification:

; Return relation with tuple added as the new first tuple.
{define (insert-tuple relation tuple)

{define relation
{cons (first relation)

{cons tuple (rest relation»»

This results in changing the value of the parameter relation and does not
affect the actual argument with which the function is called, as the following
example illustrates:

12.3 lmplementing a Relational Database in Scheme 311

> (define small-relation '((name favorite-eolor) (arthur blue)))
??

> (insert-tuple small-relation '(laneelot yellow))
??

> small-relation
«name favorite-color) (arthur blue))

To fix this problem the list has to be changed internally. This can be done
using set-car 1 or set-cdr I. These functions change the first or rest of a list.
For example,

> (define eolors '(red yellow green))
??

> (set-ear! eolors 'black)
??

> colors
(black yellow green)

> (set-cdr! colors 'fand blue))
??

> eolors
(black and blue)

To add a new element between the first and second elements of a list use
set-cdr 1. Instead of the original rest of the list, a new list is created comprising
the tuple we wish to add followed by the rest of the original list. The first of the
list is not changed. The correct code is

; Return relation with tuple added as the new first tuple.
(define (insert-tuple relation tuple)

{set-cdrl relation
{cons tuple (rest relation»)

Below is a sampie call to insert-tuple:

> flower
«flower color) (rose red) (violet blue))

> (insert-tuple flower '(poppies orange))
??

> flower
«flower color) (poppies orange) (rose red) (violet blue))

set-car! and set

cdrl

312 Chapter 12: Database Management Systems

12.3.7 Exercises
12.4 Express the queries below in Scheme.

SELECT brew.name
FROM brew
WHERE brew.brewery = , Milwaukee'

er brew.rating > 9;

SELECT bar. name
FROM bar
WHERE bar.beer IN

(SELECT brew.name
FROM brew
WHERE brew.rating >= 7) ;

12.5 The functions where and select call the function attribute-value to
retrieve certain attributes from tupies. Another method discussed involved
creating an access function that given a tuple returned the desired attri
bute. Use this method to write new versions of where and select. where

will create a general condition that can be used for each tuple rather than
converting the condition for each tuple. The idea is to replace attribute
names in the original condition with functions and then test each tuple
against this general condition. select will create access functions for each
requested attribute. Think about how and when these access functions are
to be evaluated.

12.6 The function select can use the idea of removing unwanted attributes
from tuples instead of building up new tuples based on the desired attri
butes. It will be helpful to have a means of finding the position of attributes
and having a function, remove-nth, that takes a number, num, and a list and
removes the numth element from that list. Write the function remove-nth
and the new select function.

12.7 The function j ein forms the Cartesian product of the two relations it takes
as arguments. This creates very large relations especially when many rela
tions are joined together. Write a new version of jein that is a merger with
the where function. This new function takes the condition from the where
function call. Only those tuples that satisfy this condition are appended to
the new relation. This is called a theta-join. The tricky part is deciding how
to deal with attribute names that are not in the two relations that are being
joined, but refer to other relations. This is often the case when more than
two relations are joined.

12.8 The function below takes a relation and a tuple. Explain what it does.

12.3 Implementing a Relational Database in Scheme 313

(define (unknown relation tuple)
(set-cdrl (subseq relation (- (1ength relation) 1»

(1ist tuple»)

12.9 Write a function delete-attrib that takes a relation, an attribute name,
name, and an attribute value, value. The function should destructively
change the relation such that all tuples are removed whose name attribute
is value. For example, given the original f lower relation of roses and
violets, the call

(delete-attrib flower 'color 'red)

should change the relation f lower to be
((flower color)
(violet blue»

12.10 Write a function thin that takes a relation and an attribute name and
returns a new relation such that the attribute specified is removed from all
tupies. For example, given the original f lower relation of roses and violets,
the call

(thin flower 'color)

should return the relation
((flower)
(rose)
(violet))

12.11 Write a function fatten that takes a relation and a list comprising an attri
bute name and values for that attribute for each tuple. The function should
return a new relation such that it now includes the extra attribute for each
tuple. For example, given the original f lower relation of roses and violets,
the call

(fatten flower '(rhyme hose file_it»

should return the relation
«flower color rhyme)
(rose red
(violet blue

hose)
file_it))

12.12 SQL supports a number of aggregate functions that can be used to answer
queries such as "what is the average rating of the ales in the brew relation?"
Aggregates return single values and are implemented as part of the SELECT

clause. An aggregate is followed by an attribute to indicate the value to
which the aggregate function should be applied. MAX, MIN, SUM, AVG are four
aggregate functions that return the maximum, minimum, sum, and aver
age, respectively, of attribute values. The attribute should be a numeric
value. For example, the SQL query to find the average rating of ales is

314 Chapter 12: Database Management Systems

Object-oriented
database systems

Intelligent databases

Knowledge discovery
in databases and data
mining

SELECT AVG (brew.rating)
FROM brew
WHERE brew.type = 'ale'

The return value would be 9.
Decide on a means of expressing this query in Scheme and modify the

function select to support calls to the aggregate functions MAX, MIN, AVG,

and SUMo Assume that only one aggregate function with one attribute is
allowed in a SELECT clause. You will probably find it helpful to use the
existing version of SELECT to get all the attributes desired, a vertical slice of
the relation, and then apply the aggregate function to this list.

12.4 Future Trends
New database systems support more sophisticated types of data such as mul
timedia data like sound, images, video, and graphics. The applications of data
base systems will be enlarged to include CASE, Computer-Aided Software
Engineering, CAD, Computer-Aided Design, CAM, Computer-Aided Manufac
turing, graphics, and knowledge representation for artificial intelligence applica
tions. Along with supporting these rieher types of data, the query languages will
have to be enhanced to allow queries to be made of this data.

The paradigms for future database systems are object oriented and extended
relational. Object-oriented databases have DBMSs that are extensions of or use the
ideas of object-oriented programming languages. This allows the data objects to
have procedural attachments (functions) so that they can send and receive mes
sages from one another. It allows inheritance that will let subtypes of objects
inherit the properties of their parent types. Extended relational systems add
extensions to existing DBMSs.

Another idea is to create PROLOG-like DBMSs based on logie programming.
PROLOG supports operations that are similar to database searches. The idea is to
extend PROLOG to incorporate other ideas that are important to database
environments.

Work is being done to create "intelligent" databases in which certain data
values have rules associated or built into them. These rules can provide con
straints for the values of the data object, for example, a rule that will not allow an
employee's salary to be negative or greater than a certain value. Rules can per
form management tasks like print a message or update the priees of certain items
if a tax amount increases.

Knowledge discovery in databases (KDD) is a new challenge for large database
systems. KDD is the problem of finding associations, gaining insight, or making
sense of very large databases that may not be structured. One method of doing
this is called data mining. The challenges to this field are intelligently handling
huge amounts of data that may have little or no structure and finding interesting
structure or correlations in the data. These results are often implicit in the data
and must be made explicit. Plus the data may not be exact and data mining tech
niques may have to handle imprecision.

12.6 AdditionalReading 315

12.5 Summary
• A database is a collection of information that is stored within a computer sys

tem.
• A database system comprises a user, software to access a database, a com

puter and external memory in which the data is stored, and the data itself.
• A database management system, DBMS, is software that accesses a database

and provides a language to make queries to the database.
• A relation is a tabular data structure that maintains a collection of information

about various objects. Rows in relations are called tuples and columns are
attributes. Tuples hold information about a certain member of the database,
for example, an employee. Attributes represent the individual values within
that tuple, for example, the employee's age.

• Relational databases maintain all information explicitly in relations.
• Hierarchical databases consist of records that are arranged in trees with

implicit relations between the parent record and the child records.
• Network databases are like hierarchical databases with the exception that a

child record can have more than one parent record. Network databases are
thought of as sets of records, where any record can belong to a number of
sets. One to many (1 to N) relationships are easily created with network data
bases, but many to many (N to M) relationships are more difficult to build.

• SQL is a query language used in relational database systems. Queries are
made by specifying the attributes desired in a SELECT clause, the relations to
examine in a FROM clause, and the tuples in a WHERE clause. If more than one
relation is specified, they are combined through a join operation in which all
combinations of tuples are appended together.

• Future databases will support multimedia data types and support areas such
as CAD, CAM, and CASE. These new systems will incorporate ideas from
object-oriented programming.

• Knowledge discovery in databases and data mining techniques can be used to
learn more about large, unstructured databases.

12.6 Additional Reading
Date, c.J. (1995). An Introduction to Database Systems, Volume I, Sixth Edition,
Addison-Wesley, Reading, MA.

Ulman, J.D. (1988). Principles of Database and Knowledge-Base Systems, Volume I,
Computer Science Press, Rockville, MD.

Ulman, J.D. (1989). Principles of Database and Knowledge-Base Systems, Volume 11:
The New Technologies, Computer Science Press, Rockville, MD.

Special Issue on Database Systems, Communications of the ACM, Oct. 1991,
Volume 34, Number 10.

316 Chapter 12: Database Management Systems

12.7 Code Listing
Below is the complete Scheme code for the simple relational database incIuding
the bar and brew relations from this chapter:
(define brew ' (

(brew.name
(Blue_Whale
(A.V._Oatmeal
(Sierra_Nevada
(Big_Foot
(Liberty
(Augsburger
(Pabst
(Schlitz

brew.type brew.rating brew.brewery)

(define bar ' (
(bar.name
(Pacific_Coast
(Pacific_Coast
(Pacific_Coast
(Brickskeller
(Brickskeller
(Brickskeller
(Brickskeller
(Brickskeller
(Bent_Elbow
(Bent_Elbow

ale
stout
ale
barley-wine
ale
lager
lager
malt-liquor

bar.beer
B1ue_Whale
A.V._Oatmea1
Sierra_Nevada
Sierra_Nevada
Big_Foot
Liberty
Augsburger
Pabst
Pabst
Schlitz

9
10
9
10
9
4

1
2

Oakland)
Boonvil1e)
Chico)
Chico)
San _Francisco)
Milwaukee)
Milwaukee)
Milwaukee))

bar.location)
Oakland)
Oakland)
Oakland)
Wash.D.C.)
Wash.D.C.)
Wash.D.C.)
Wash.D.C.)
Wash.D.C.)
Terre_Haute)
Terre_Haute»

Return true if element is an attribute in attrib-names.
(define (attribute-name? element attrib-names)

(member element attrib-names))

Return the attribute named element within tuple given a list
of attribute names, attrib-names.

(define (attribute-va1ue element attrib-names tuple)
(list-ref tuple (position element attrib-names»

Return the attribute names of a relation.
(define (attributes relation)

(first relation))

return the list of tupI es of a relation
(define (tupies relation)

(rest relation))

12.7 Code Listing 317

; Given condition, tuple, and attrib-names, a list of attributes,
; return a new condition with attributes replaced by actual values.
(define (convert condition tuple attrib-names)

(map (lambda (element)
(cond «list? element)

(convert element tuple attrib-names»
«attribute-name? element attrib-names)

(list 'quote
(attribute-value element attrib-names tuple»)

(else element»)
condi tion))

Return all the tuples in relation that satisfy condition.
(define (where condition relation)

(cons
(attributes relation)
(keep-if

(lambda (tuple)
(eval (convert condition tuple (attributes relation»»

(tuples relation»))

Return a relation-with only the attributes in desired-attributes.
(define (select desired-attributes relation)

(let ((attribute-list (attributes relation»
(map

(lambda (tuple)
(map

(lambda (attribute)
(attribute-value attribute attribute-list tuple»

desired-attributes»
relation»)

Return an unconstrained JOln of relationl and relation2.
(define (join relationl relation2)

(cons
(append (attributes relationl) (attributes relation2»
(apply append

(map
(lambda (tuplel)

(map
(lambda (tuple2)

(append tuplel tuple2»
(tuples relation2»)

(tuples relationi»»)

Return an unconstrained join on relations in relation-list.
(define (from relation-list)

(accumulate join (map eval relation-list»)

318 Chapter 12: Database Management Systems

; Print out attribute and spaces to fill 16 characters.
(define (fixed-print attribute)

(let ((string
(cond «symbol? attribute) (symbol->string attribute»

«number? attribute) (number->string attribute»
(else attribute»))

(cond «< (string-Iength string) 16)
(display string)
(display

(make-string (- 16 (string-Iength string» #\space»)
(else (display (substring string 0 16»»))

; Print out relation formatted in columns 16 characters wide.
(define (print-relation relation)

(for-each
(lambda (tuple)

(for-each fixed-print tuple)
(newline))

relation))

Return relation with tuple added as the new first tuple.
(define (insert-tuple relation tuple)

(set-cdr! relation
(cons tuple (rest relation»))

CHAPTER 13

COMPILERS AND INTERPRETERS

13.1 Compilers Versus Interpreters
A compiler is a program that translates statements in one language into equivalent
statements in another language. Typically, compilers translate programs written
in a high-level language into programs that perform that same task in machine
language. These machine-Ianguage programs can then be run on the computer. A
cross-compiler produces machine language that is to be run on a different machine
than the one on which the compiler runs. This is helpful when the computer for
which the machine language is being produced is not readily available (e.g., a
developmental machine).

An interpreter interprets statements in a language so that the actions of the
statements can be simulated on a computer. An interpreter does not produce
results that can be performed on another machine, so cross-interpreters do not
exist. Interpreters are easier to produce than compilers; however, interpreted
code runs slower than compiled code.

Many applications use ideas that come from compiler research. Such applica
tions include language-based editors. These editors are tailored to particular pro
gramming languages. They have knowledge of the language and can do simple
checks such as counting the number of arguments, examining the structure of the
statements, and checking for balanced parentheses. Pretty printers print out pro
grams in a standard formatted manner. They need information about the
language being printed. Text formatters are similar to pretty printers, but they
print out text rather than programs. Text formatters have commands embedded
in the text. The commands dictate how the text should be printed; certain com
mands are analyzed using ideas from compiler theory.

A compiler is made up of four basic components: a lexical analyzer, a parser, a
semantic checker, and a code generator. These different components are joined, as
the following diagram illustrates. The compiler in this example takes high-level
code as input and produces the machine-Ianguage equivalent of that code.

Compilers and cross
compilers

Interpreters

Parts o(a compiler

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

320 Chapter 13: Compilers and Interpreters

Tokens

Regular expressions

Lexical
analyzer

Parser

13.2 Lexical Analysis

Semantic
checker

Code
generator

Lexical analysis is the process of reading in a program and classifying its com
ponents. A program is read in as a sequence of characters and converted into a
sequence of toTeens. Tokens are the fundamental lexical items of a language.
Examples of tokens in Scheme are delimiters such as parentheses, special opera
tors such as the quote symbol, "''', and identifiers such as symbol and function
names. A lexical item is one that can be easily identified using simple rules
without having to know about its meaning or use in the language.

Regular expressions can be used to describe the tokens of a language. Regular
expressions indicate exactly how tokens are formed out of single-character
objects, letters, digits, and punctuation marks or special characters like
parentheses. For example, below is a regular expression describing real numbers
consisting of an optional plus or minus sign followed by zero or more digits, fol
lowed by an optional decimal point and one or more digits:

[+ 1-] digit' [. digit +]

Braces, "[1 ", denote optional items. Vertical bars, "I", denote that either of the
items surrounding The vertical bar may be used. The notation item' means that
zero or more occurrences of item are allowed, whereas the notation item+ denotes
one or more occurrences of item. digi t refers to one of the digits 0-9.

13.2.1 Exercises
13.1 Write a regular expression to describe integers.

13.2 Write a regular expression to describe symbol names. Assume that letter

represents one of the letters A-Z or a-z.

13.2.2 Tokens and symbol tables
Suppose we have defined the following tokens for a subset of Scheme:

loken meaning
number areal or integer number
id a symbol name
define the symbol define

a left parenthesis
a right parenthesis

Applying lexical analysis to the Scheme function
(define (seconds-to-minutes seconds)

(I seconds 60.0))

yields the following stream of tokens:

(define (id id) (id id number))

All the blanks, tab indents, and carriage returns are eliminated. The spaces
separating the tokens are just for our readability. This simplified form of the ori
ginal Scheme function makes it easier to do the next phase of compiling: parsing.

One question that arises at this point is how the different id tokens are dis
tinguished. Looking at the above list of tokens, it is impossible to surmise their
meaning. For parsing, all that is needed is simple tokens such as id or number. It
is only in the last phase of compilation, code generation (or while printing
descriptive error messages), that the actual identifier names are needed.

The names that correspond to id tokens are saved in a symbol table, which is
simply a list of symbol names. When a symbol is encountered, the token id is
retumed along with its position in the symbol table. As a new symbol is read in,
the symbol table is searched for it. If it is found, the matching position in the
symbol table is retumed; otherwise, the symbol is added to the symbol table and
that position is retumed.

13.3 Parsing
Parsing or syntactical analysis is used to check if the tokens formed during lexical
analysis represent legal statements within the language. The grammar of a
language defines the set of legal statements in the language. Looking at English
for an analogy, there are grammar rules specifying what constitutes a properly
formed sentence in English. Below are three grammar rules for a subset of simple
English sentences:

sentence ~ noun-phrase verb-phrase

noun-phrase ~ article noun

verb-phrase ~ verb

13.3 Parsing 321

Symbol table

Parsing grammars

322 Chapter 13: Compilers and Interpreters

Terminals and
nonterminals

Parse trees

Simple Scheme gram
mar

Recursive grammars

Such mIes of a grammar are called productions or rules. Items in courier are
terminals; they represent tokens from the lexical analyzer. Items in italies are
nonterminals--names that represent a collection of nonterminals or terminals. The
statements in a language are derived by replacing nonterminals on the left side of
productions with the terminals and nonterminals on the right side of productions.
The arrow, "~", separates the left and right sides of productions. The derivation
of symbols begins at the start symbol, which in this exampie is the nonterminal
sentence.

Ouring parsing, tokens are grouped into parse trees, which represent the struc
ture of the token group. The start symbol is the root of the parse tree. Given the
following tokens,

article noun verb

parsing would yield the parse tree below:

sentence --------noun-p.hrase verb-p'hrase _____ _____ I
article noun verb

Below are some productions for a Scheme grammar. The start symbol is the
nonterminal expr-list. The name expr stands for expression.

production description
1. expr-list ~ expr single expression
2. expr-list ~ expr expr-list more than one expression
3. expr ~ (i f expr expr) if-then expression
4. expr ~ i f expr expr expr) if-then-else expression
5. expr ~ define (id id-list) expr-list) function definition
6. expr ~ (id expr-list) function call
7. id-list ~ id single identifier
8. id-list ~ id id-list more than one identifier

Most grammars are recursive; they have elements in the left side of produc
tions that also appear in the right side, as in

expr-list ~ expr expr-list

This production is recursive because expr-list appears on both the Ieft and
right sides of the production. If many expressions make up an expr-list, produc
tion 2 must be invoked several times. Production 2 is a right recursive
production-the Ieft side nonterminal is on the right end of the right side of the
production. An equivalent left recursive production would be

expr-list ~ expr-list expr

The next sections illustrate two types of parsing.

13.3.1 Top-Down parsing
There are two major classes of parsers: top-down and bottom-up. These names
refer to the way in which the parse tree is formed. Top-down parsers bund a
parse tree starting at the root and work down to the leaves. Bottom-up parsers
bund a parse tree starting at the leaves and work up to the root.

With top-down parsers, at each node the appropriate production is chosen
based on the rurrent nonterminal that is being expanded and the lookahead
token-the current token that is being examined from the input of the lexical
analyzer.1f the lookahead token can always unambiguously indicate which pro
duction is to be applied, then the parser is called a predictive parser. If the looka
head token is not sufficient to determine the production to use next, then alterna
tive productions must be tried. This is backtracking-backing up to try a different
approach. A recursive descent parser uses recursive functions to search through
different production possibilities and handle recursive grammars like the one used
above.

Top-down parsers cannot handle left recursive productions, though. They
tend to get stuck in infinite loops. For example, parsing expr-list, using the left
recursive production

expr-list ~ expr-list expr
expandsto

expr-list expr
which starts with expr-list, which expands to

expr-list expr
which starts with expr-list which .. , You get the idea. Such productions must be
rewritten to eliminate left rerursion.

Let's parse the token list that was produced in the previous section after lexi
cally analyzing the function seconds-to-minutes. The tokens from this function
definition are repeated below:

(define (id id) (id id number))

We begin parsing with the start symbol, expr-list. Using production 1, expr-list
expands to expr. The new goal is to derive the parse tree from the nonterminal
expr. Starting with production 3, the right side is an if-then expression. This
matches the first input token, "(." However, the next part of the right side if
does not match the next input token, def ine. Thus, using production 3 to expand
expr fans. So we backtrack and return to satisfying the right side of production 1,
expr. When we backtrack, we reset the lookahead token. In this case we return to
the first left parenthesis. We continue, now trying to satisfy production 4. This
will fan also, so we backtrack and try production 5. The input matches the right
side of production 5 up to the nonterminal id-list. This becomes the new subgoal
to satisfy. The diagram below represents the steps in parsing the input tokens.
The lookahead token (shown as an arrow pointing to the input), current nonter
minal to satisfy, and production matched is given at each step of the parse. The
unsuccessful steps (as in trying productions 3 and 4 above) have been eliminated

13.3 Parsing 323

Top-down versus
bottom-up parsing

Lookahead token.
Types of top-down
parsers: predictive
and recursive descent

Top-down parsing
example

324 Chapter 13: Compüers and Interpreters

for simplicity.
inputandlookaheadtoken nonterminal production
(define (id id) (id id number expr-list 1
i

(define id id id id number expr 5
i

define id id id id number id-list 7
i

define id id (id id number expr-list 1
i

define id id (

i
id id number expr 6

define id id id id number
i

expr-list 2

define id id id id number expr ?
i

The lookahead token is id, which does not match the expected nonterminal,
expr. Backtracking to production 2 would fail because it also tries to match expr.

At this point an error would be produced saying something to the effect of id
found while expr was expected. The actual identifier, seconds, would typically be
displayed. But we input a valid Scheme expression. What happened?

The production for define looks correct. What about the productions for
expr-list? The productions indicate that an expr-list is one or more expressions.
This also seems correct. What about the productions for exprs? An expr is an H, a
define, or a function call. However, recall that symbols and numbers are also
valid inputs to the Scheme interpreter; thus, they are valid expressions. We must
modify the grammar to include these by adding the following two productions:

production description
9. expr ~ id identifier
10. expr ~ number number

Now we can continue parsing from where we left off:
input and lookahead loken nonlerminal production
(define (id id) (id id number 9 expr

i

define id id id id number 1 expr-list
i

define id id id id number 10 expr
i

The second to last right parenthesis matches the end of production 6. The final
parenthesis matches the right parenthesis in production 5 and the parse is com
plete.

Another way to view the process of parsing is to look at the formation of the
parse tree. The parse tree begins with the start symbol, expr-list. After production
1 is performed, the parse tree is

expr-list
I

expr

Once the lookahead symbol is define, production 5 is selected and the parse
tree is expanded. The parentheses have been eliminated because they are redun
dant information-the levels of the parse tree itself reflect the same information
as parentheses.

expr-list
I

~de~~"
define id l I-~ist expr- lst

We advance the lookahead as long as it matches the next leaf of the parse tree.
When the lookahead symbol is the second id, the nonterminal id-list in the parse
tree must be expanded. Production 7 is selected, resulting in the new parse tree
below:

expr-list
I

expr

~dl~" define id l -~lst expr- lSt
I

id

This process continues until the entire input has been processed. The final
parse tree folIows:

expr-list
I ef ~~.

define id ld- lSt expr-hst
I I

id e::e!

~--""""""'" id expr-rst

~~" exr expi- lSt

id exr

number

13.3 Parsing 325

Building a parse tree

326 Chapter 13: Compilers anti Interpreters

Predictive parsers

LLgrammars

Grammar for a
predictive parser

13.3.2 Predictive parsing
The above grammar can be modified so that backtracking is not necessary. This
greatly speeds up the parsing process. Recall that a top-down parser that can
unambiguously decide which production to take based on the current token is
called a predictive parser. To change the above grammar so that a predictive
parser can be used, all productions that have the same terminal or nonterminal at
the start of their right sides must be rewritten.

An LL(l) grammar can be used for predictive parsing. A parser for an LL(l)
grammar scans the input tokens from left to right, forms a leftmost derivation for
the input, and uses one lookahead token. A leftmost derivation is one in which
the leftmost nonterminal is replaced first. A grammar that can be parsed this way
is called an LL(I) grammar. The next example shows how we can transform our
previous grammar into an LL(l) grammar. Below is the previous grammar:

production description
1. expr-list ~ expr single expression
2. expr-list ~ expr expr-list more than one expression
3. expr ~ (i f expr expr) if-then expression
4. expr ~ if expr expr expr) if-then-else expression
5. expr ~ define (id id-list) expr-list) function definition
6. expr ~ (id expr-list) function call
7. id-list ~ id single identifier
8. id-list ~ id id-list more than one identifier
9. expr ~ id identifier
10. expr ~ number number

Productions 1 and 2 both have expr as the first nonterminal in their right side.
Similarly, productions 3, 4, 5, and 6 all begin with a left parenthesis and produc
tions 7, 8, and 9 begin with the terminal id. Below is a grammar that eliminates
these duplicate right side beginnings. The symbol "e" represents nothing (no
token is matched).

production
1. expr-list ~ expr more-exprs
2. more-exprs ~ e
3. more-exprs ~ expr-list
4. expr ~ (tune)
5.expr ~ id
6. expr ~ number

7. tune ~ if expr expr rest-of-if
8. tune ~ define (id id-list) expr-list
9. tune ~ id expr-list
10. rest-of-if ~ e
11. rest-of-if ~ expr
12. id-list ~ id more-ids
13. more-ids ~ e
14. more-ids ~ id-list

description
one or more expressions
no more expressions
more expressions
function call
identifier
number
if expression
function definition
function call
if-then expression
if-then-else expression
one or more identifiers
no more identifiers
more identifiers

With this grammar it is possible to unambiguously decide which production
to use based on the current input tokens. But how does E get matched? Nothing
(E) is matched if the lookahead token matches the next terminal or nonterminal of
the previous right side. For example, suppose the lookahead token is) and the
input is

(define (id id) (id id number))
i

At this point the nonterminal more-ids must be matched. It can be E (nothing)
or id-list. The lookahead token does not match id-list (it would have to be id to do
so), but it does match the symbol following id-list in the right side of the fune pro
duction. That is the production that precedes id-list.

To review, a grammar describes the set of legal statements in a language. A
grammar comprises productions. Productions have terminals and nonterminals.
Terminals (written in courier) represent individual tokens in the input. Nonter
minals (written in italies) represent zero (matching E) or more tokens in the input.
Each production indicates a transformation rule in which the left side nontermi
nal is satisfied if the right side (terminals and nonterminals) is matched. This pro
cess constructs a parse tree that shows the syntactic structure of the input tokens.

13.3.3 Bottom-Up parsing
The second major dass of parsers is the bottom-up parsers. Bottom-up parsers also
generate parse trees, but from the leaves up to the root and not from the root to
the leaves, as with top-down parsers. A general method of bottom-up parsing is
through LR parsers, which read the input tokens from left to right, but produce a
rightmost derivation-the rightmost nonterminal is replaced first when process
ing a production with several nonterminals. A grammar is LR if it can be parsed
with an LR parser.

Shift-reduee parsing is a frequently used type of LR parsing in which the input
tokens are redueed to the start symbol of the grammar. Shift-reduce parsers get
their name because they either reduce a sequence of tokens to a nonterminal
symbol or they read another token (a shift in the input). A reduce operation
occurs when the right side of a production has been found and can be collapsed
to the left-side nonterminal.

A table is used to decide which operation to make (shift or reduce) based on
the current input token and state. The state of a parsing system depends on the
input that has been seen before that. Shift-reduee tables are usually genera ted
using programs that take as input the grammar of the language being parsed.
One such tool is called yaee~

Let's look at a very simple grammar and its shift-reduce parsing table. The
grammar is a subset of our prior Scheme grammar.

1. yacc, Yet Another Compiler Compiler, is available under the UNIX operating system. The shift
reduce table in this example was produced using yacc.

13.3 Parsing 327

MatchingE

Overview o(top-down
parsing

Bottom-up and LR
parsers

Shift-reduce parsers

Shift-reduce tab/es

328 Chapter 13: Compilers and Interpreters

Shift-reduce table tor
a simple grammar

Bottom-up parsing
example

production description
1. id-list ~ id single identifier
2. id-list ~ id id-list more than one identifier

Here is the shift-reduce parsing table for this grammar:

state input goto
id end id-list

o shift2 1
1 accept
2 shift 2 reduce 1 3
3 reduce 2

This shift-reduce table shows that there are two inputs: id and nothing (end
of input). Depending on the state and the input, a shift, reduce, or accept action is
taken. The number after the shift is the new state. The number after reduce is the
production to use when reducing. The goto cohimn is used with reduce opera
tions to deterrnine the next state. There is a goto column for each nonterrninal in
the grammar.

The table below shows the steps taken in parsing the input id id. The parser
maintains a stack of the states and shifted and reduced values. Each step either
shifts a new value and state onto the stack, or reduces one or more values to a
nonterrninal value and state. The values and new states at each step are shown
together in parentheses:

input stack
id id 0
id 0 (id 2)

o (id 2) (id 2)

action
shift 2
shift 2
reduce 1

o (id 2) (id-list 3) reduce 2
o (id-list 1) accept

Parsing begins at state O. The input token is the first id, which in state 0
corresponds with the action shift 2. This means the parser shifts to the next token
and goes to state 2. Now the input token is the second id, which in state 2 is a
shift 2 operation. There is no more input, so the action corresponding to "end" in
state 2 is done, which is reduce 1. The number after the reduce is the production
that gives the reduce step. In this case id is reduced to id-list. The second id entry
and its state, (id 2), are removed from the stack. The next state is determined by
the goto column. This state is looked up according to the nonterminal reduced to
(id-list) and the state on the top of the stack (state 2). Looking across the state 2
row and down the id-list column, state 3 is found. Continuing from state 3 with
"end" as input, the action is reduce 2. Production 2 replaces id id-list with id-list.
(id 2) and (id-list 3) are removed from the stack. Now the goto state for id-list is
looked up under state 0; it is state 1. State 1 gives an accept action for the end of
the input. This terminates the parsing.

The entire ten production grammar from the prior section on top-down pars
ing can be represented with a shift-reduce table with 26 states.

With shift-reduce parsers, ambiguities can arise when deciding whether to
reduce values or shift the next token. Such errors are called shift/reduce conflicts.
Similarly there are reduce/reduce conflicts in which multiple productions may be
applied and one must be chosen. The parser must disambiguate these or the
grammar must be changed to eliminate these problems.

Scheme makes extensive use of parentheses to group objects and provide
structure to the language. Because of this, Scheme is not prone to shift/reduce
conflicts. A classic shift/reduce conflict that occurs in other programming
languages is the dangling else clause in nested if-then-else statements. If Scheme
allowed if expressions to be written without the surrounding parentheses, we
could recreate this shift/reduce conflict.

The ambiguity begins to arise when the first action of an if expression is
another if expression. Imagine the following statement, which returns the largest
of two numbers after first verifying that they are both numbers:

if (and (number? numl) (number? num2»
if (> numl num2)

numl
num2

Alternatively, num2 could be interpreted as the else action for the first condi
tion. The following indentation shows this:

if (and (number? numl) (number? num2»
if (> numl num2)

numl
num2

These two interpretations return different values when the first condition is false
or when the first condition is true but the second isn't. However, while parsing,
spaces (indentation) do not matter in the input. The parser only sees tokens such
as if, (, and). This means that to a parser the two examples above look identical.
To which if expression does num2 belong? When the num2 expression is reached,
there is not enough information to decide whether to reduce the inner if expres
sion to an if without an else action or to shift and consider num2 the else action.
This is a shift/reduce conflict.

Shift/reduce conflicts are resolved by modifying the grammar of the
language to specify explicitly which action to take when a shift/reduce conflict
arises. Most parsers will have adefault action to take if this isn't specified. In the
case of nested if expressions, the usual action is to associate the dangling else
with the innermost if. This means a shift action would be performed.

A reduce/reduce conflict could come about if we used the grammar below,
which treats function calls as it does special forms, namelyas an id followed by
an expr-list.

13.3 Parsing 329

Shiftlreduce confficts

Dangling else clause

Resolving shiftlreduce
conflicts

Reduce/reduce
conflicts

330 Chapter 13: Compilers and Interpreters

Resolving
reduce/reduce
conflicts

Advantages of
bottom-up parsers

Type checking

Polymorphism

1. expr-list -7 expr
2. expr-list -7 expr expr-list
3. expr -7 id

4. expr -7 number

5. expr -7 function-call
6. expr -7 special-form
7. function-call -7 (id expr-list)
8. special-form -7 (id expr-list)

Productions 7 and 8 have identical right sides, so given the same input, it is
ambiguous as to which reduction should be made. In other words, if (id expr
list) is encountered, the productions do not indicate whether they should
reduce to a function-call or to a special-form. This is a reduce/reduce conflict.

Reduce/reduce conflicts are removed by fixing the grammar or by relying on
the default behavior of the parser, which is usually to choose the first reduction
specified in the grammar.

In general, LR (botlom-up) parsers are used for the following reasons:

• they can recognize almost all programming languages where a grammar can
be written to describe the language;

• they require no backtracking (as recursive descent top-down parsers do);
• they can parse a larger set of grammars than predictive (top-down) parsers;
• they can detect syntax errors as soon as possible while scanning the input

tokens;
• parser building tools exist to automatically construct a parser given a gram

mari
• LR grammars can describe more languages than LL grammars.

13.4 Semantic Analysis
The third phase of compiling is semantic analysis. The input to the semantic
analyzer is a parse tree and the output is a refined parse tree. The refinements
that are made involve type-checking and checking the validity of the location of
certain statements in the program, such as the use of parameters or 1et variables
outside of their scope. Other tasks are carried out by semantic analyzers; how
ever, many do not apply to Scheme. In general, semantic analysis performs the
checks that parsing could not make because parsing does not look into the mean
ings (semantics) of the tokens being read.

For example, a semantic analyzer might check the types of the arguments
given in a call to the function remainder to make sure that they are both integers.
In Scheme this cannot be done always at compile time, since a symbol or function
call may be given as an argument to remainder, and that value is not known
until the program runs.

Semantic analysis is used to handle polymorphie functions: functions that take
arguments of different types. The arithmetic functions +, -, *, and I are all

13.5 Code Generation 331

polymorphie. These functions take arguments that are integers or real numbers
or a mixture of the two. Scheme supports rational numbers like 4/5 and complex
numbers like (2 + 3i). The four functions above accept rational and complex
numbers as well.

Many polymorphie functions are overloaded; that is, they perform different
operations depending on the types of the arguments given or the context in
which the functions are used. The function + is overloaded. If called with
integers, + performs integer arithmetic. If called with real numbers, + performs
real arithmetic producing real number results. Another example of overloading
occurs in some languages in which function calls and array 2 accesses are both
performed using the parenthesis operator, as in F (n). During semantic analysis,
the type of the token preceding the parentheses is checked and the parse tree is
modified to indicate whether the operation is an array access or a function call.

To summarize, semantic analysis adds information to the parse tree to assist
with code generation. This information specifies the operations that overloaded
functions must perform in that particular instance. Semantic analysis looks at the
types of the objects to disambiguate parts of the language that parsing cannot.

13.5 Code Generation
The final phase of compilation is code generation. Code generation involves the
creation of statements in the language being compiled to. The input to the code
generator is the parse tree that has been updated by the semantic analyzer. As
stated at the start of this chapter, most compilers produce machine language
code. To c1arify this point somewhat, what is actually produced is assembly
language code that uses mnemonic names to express the same information that
machine language does with numbers. Assembly language is much easier for us
to read and can be joined (linked) with other assembly language programs.

13.5.1 Mini Scheme
In this chapter we will create a Scheme compiler. Building a compiler for all of
Scheme would be a rather formidable task. Instead we will develop a compiler
for a small subset of Scheme consisting of the following functions:

category functions
arithmetic + (with two arguments), - (with one or two arguments)
comparison =, /= (not equal), >, <, >=, <= (with two arguments)
conditional if (with then and optional else action)
definition deHne of functions (allowing recursive functions)

Function calls to user-defined functions are allowed. The only type of data
allowed is integer.

2. An array can be viewed as a fixed length list with elements an of the same type.

Overloading

Producing assembly
language

Scheme functions
supported by aur com
piler

332 Chapter 13: Compilers and Interpreters

Parts 01 a compiler

Memory: RAM and
ROM

13.5.2 A simple computer
To understand code generation it is necessary to understand assembly language,
and to understand assembly language you should und erstand some basics of
computer hardware. The following diagram shows a very simple computer:

RAM: Data and Instructions

Stack
Pointer

Data
Stack

Registers
RO
Rl I---------t

ALUand
comparator

Program
Counter

instruction
data

output to RAM
and registers

These pieces make up the core of a computer. Below are brief descriptions of
the functions they perform:

machine part
Data
Instructions
Registers

Arithmetic Logic
Unit(ALU)
Comparator

Program Counter
Data Stack
Stack Pointer

operation performed
Numerical information
Instructions for the computer to perform
Store temporary values or results from computations for ra
pidaccess
Performs the mathematical and logical functions

Indicates if the last arithmetic computation is equal to, not
equal to, less than, or greater than 0
Location of the current instruction being executed
A seetion of data reserved for programs to save information
Location of the top of the data stack

Programs are placed in the data and instructions area. This area is part of the
main memory of the computer. It is memory that can be read or changed (writ
ten). Such memory is called RAM, random access memory. There is also ROM,
read-only memory, which can be read but not changed. Each memory location
has a unique address which specifies its location. A computer address is similar to
a house address.

13.5 Code Generation 333

The registers comprise a special set of memory locations that can be accessed
very rapidly. However, there are a limited number of registers. Careful use of
registers can produce assembly code that runs faster. Most modern machines
have a special area of memory called cache that is rapidly accessible like registers,
but much larger in storage potential.

The program counter contains the address of the next instruction to run.
Before a program can be run, its instructions must be loaded into the machine' s
main memory and the program counter set to the location of the first instruction
of the program. That instruction is executed and the program counter is incre
mented. Then the next instruction is executed. This process continues until the
program completes. The operating system plays a major role in this process; it is
discussed in depth in Chapter 14.

The stack pointer is the address of the top of the stack. The stack is used to
hold information for short periods of time. One of the most common uses is to
save the values of registers and parameters to functions. Before a function is
called, the registers in use can be saved on the stack. When the function ends, the
registers can be restored by retrieving their values from the stack. To pass argu
ments to a function, they can be put on the stack and when the function is called
it can access its parameters from the stack values. When the function finishes, the
stack pointer is moved past the arguments to effectively remove the arguments
from the stack.

The ALU does arithmetic and logical operations like addition, subtraction,
and logical and, or, and not operations. The ALU and comparator are used to
make comparisons. When an arithmetic operation is performed, information
about the result is saved. This information includes if the result of the computa
tion is zero, less than zero, greater than zero, or negative. This data is examined
when branching instructions are made. A branch is a conditional jump to a dif
ferent instruction. If the condition is true the program counter is changed. For
example, if two numbers are subtracted and the result is negative and the next
instruction is branch if less than, the branch is done. The output from the ALU
can be stored in a register or the main data.

13.5.3 Assembly language
An assembly language program is an ordered collection of instructions that are
executed in sequence. In this sense assembly language is similar to Scheme, in
which expressions are evaluated in order. The similarity ends there. Instead of
evaluating functions and passing results to other functions, assembly instructions
save results of computations in registers or in the machine's RAM. Thus both
data and instructions coexist in the computer's main memory. This is an impor
tant idea that dates back to the earliest computers. Such a design in which the
machine memory comprises data and instructions is called a Von Neumann archi
tecture, named after the creator of the idea. Von Neumann was a pioneer in the
early years of computer science.

Registers

Program counter

Stack and stack
pointer

ALU and comparator

Von Neumann
architecture

334 Chapter 13: Compilers and Interpreters

Operands and literals

Our assembly
language

Addressing modes

Representing memory
and addressing

Our hypothetieal maehine will use an assembly language with only eleven
instructions. Most computers have more instruetions, but this sparse set is ade
quate for our needs. The operands (items upon whieh the instructions work) src,
des, and loc stand for source, destination, and location, respectively. These
represent addresses in the computer's memory. src may represent a literal, a
numeric value. This is written as apound sign, "#", followed by a number, as in
#42.

name o~erands descri~tion
MOV src, des copy (move) src to des
ADD src, des add src to des, saving the result in des
SUB src, des subtract src from des, saving the result in des
NEG des negate des, saving the result in des
JMP loc jump to loc in the computer's memory
BEQ loc branch to loc if comparator is equal to zero
BNE loc braneh to loc if comparator is not equal to zero
BLT loc braneh to loc if eomparator is less than zero
BGT loc braneh to loc if eomparator is greater than zero
JFN loc jump to loc (to call a funetion)
RET return from a function

The instructions ADD, SUB, and NEG set the comparator for subsequent branching
instruetions.

Memory loeations can be refereneed in many ways; the three our assembly
language uses are absolute, indirect, and indexed. These are addressing modes. An
absolute referenee specifies the address of the data to use. In other words, the
contents of the given memory loeation are used. An indireet reference specifies a
loeation whose contents are the loeation of the data. This means that an extra
level of address lookup is used. An indexed referenee adds an index value to the
contents of a loeation and uses that as the address of the data.

To understand this better, look at the eomputer's memory as a long list of
integers. Eaeh element is a unique value, whieh ean be aeeessed or modified.
Eaeh of the elements has an address specifying its loeation. Addresses are
numbers, just as the contents of the addresses (the value of the elements in our
list) are numbers.

Any piece of memory ean be aeeessed using list-ref. The eall
(list-ref memory SP)

is an absolute referenee. SP is the address, and the value retumed is the contents
of the loeation at that address.

(list-ref memory (list-ref memory SP»

is an indireet referenee. The address is (list-ref memory SP). An indexed
referenee would be

(list-ref memory (+ index (list-ref memory SP»)

In addition to these three modes, we will use two variations on indirect
addressing: post-increment and pre-decrement indirect addressing. Post-inerement

13.5 Code Generation 335

and pre-decrement modes do two levels of address lookup. In addition, they
increment or decrement the contents of the address given. This means that the
next indirect address request using the same address will retrieve the neighbor
ing data value. Post-increment gets the location from the address given and then
incremenls the address. Pre-decrement decrements the address given first and
then uses the contents of the decremented address as the location.

The table below shows how these addressing modes are written in assembly
language. A literal value is referred to as an immediate address.

mode example
immediate
absolute
indirect
indexed

#42

SP
(SP)
3(SP)

post-increment (SP) +
pre-decrement - (SP)

SP is the address of the top of the stack and (SP) is the contents of the location
at that address, or the value at the top of the stack. - (SP) decrements the stack
pointer before a value is added to or read from the stack. And (SP) + reads or
puts a value on the stack and then increments the stack pointer.

Below are some examples that use our assembly language. Assume that these
commands are performed in sequence and that memory location 4 contains the
value 100, location 5 contains 25, and location 7 contains 86. VALUE and TEMP are
addresses.

assembly actions
MOV # 4, VALUE store 4 into VALUE

MOV VALUE, TEMP store 4 into TEMP

MOV (VALUE), TEMP store 100 into TEMP

MOV 3 (VALUE), TEMP store 86 into TEMP

MOV (VALUE) +, TEMP store 100 into TEMP and 5 into VALUE

MOV - 1 (VALUE), TEMP store 100 into TEMP

MOV (VALUE), TEMP store 25 into TEMP

MOV - (VALUE), TEMP store 4 into VALUE and 100 into TEMP

Literal addresses can be used with src addresses only. The other addressing
modes are allowed with src, des, and loc addresses.

An example will help show how assembly language is written. Suppose we
wish to add 4 and number and save the result in answer. In Scheme we could
express this as

(define answer (+ number 4»

In assembly language, the same code is expressed as
MOV NUMBER, ANSWER

ADD #4, ANSWER

The first instruction copies the contents of the memory location labeled NUMBER to
memory location ANSWER. The next instruction adds the literal value 4 (written as
#4) to the contents of the memory location labeled ANSWER. Below is a variation of

Addressing modes in
assembly language

Sampie assembly
instructions

Mathematical
expressions and
variable binding in
assembly

336 Chapter 13: Compilers and Interpreters

Creating assembly
code thatis
functionally equivalent
to the Scheme code

Function composition
inassembly

Branching instructions

these operations:
ADD #4, NUMBER
MOV NUMBER, ANSWER

At first, it might seem that these two sets of instructions are equivalent, but
there is an important difference. The value of memory location NUMBER is not
changed in the first example, whereas in the second example it is incremented by
four. The Scheme expression does not change the value of number, so the first
assembly language version is the preferred choice.

In general, to produce a value such as
(+ number 4)

the result of the computation should be saved in a separate memory location,
preferably a register. By storing such partial results in registers, additional
memory locations are not needed, and there is a speed improvement because it is
faster to access and update a register than a memory location in RAM. Thus,

(+ number 4)

could be expressed in assembly language as
MOV NUMBER, RO
ADD #4, RO

RO is register 0, which is where the result of the computation is held.
If the result of this computation were needed for another computation, for

example if the actual Scheme expression were
(- (+ number 4) 2)

the sum (+ number 4) is obtained from RO. The assembly language for this
Scheme expression would be

MOV NUMBER, RO
ADD #4, RO
SUB #2, RO

The final result is once again in register 0, RO.

13.5.4 Conditional expressions in assembly language
To express a Scheme if expression in assembly language, a conditional branch is
used. A conditional branch jumps to a different section of code if a condition is
met. For example, to express the following Scheme expression,

(if « num 3)
(- num 1)
(- num»

in assembly language, the commands below can be used. A brief explanation in
English follows each instruction. These comments, preceded by semicolons, are
optional.

13.5 Code Generation 337

MOV NUM, Ra

SUB #3, Ra

BLT THEN

MOV NUM, Ra

NEG Ra

JMP DONE

THEN MOV NUM, Ra

SUB #1, Ra

DONE next instruction

; store NUM in Ra

; subtract 3 from Ra and set the comparator
; if less-than-O is set (num < 3) jump to THEN

; else part: store NUM in Ra

; negate Ra

; skip then part of if-then-else
; store NUM in Ra

; subtract 1 from Ra

At the end of this sequence, the return value of the if expression is in register
0, Ra. The words THEN and DONE are labels. They represent addresses in the com
puter memory. The assembly language version only performs one of the then or
else parts of the if, just like the actual Scheme expression would.

13.5.5 Function definitions and calls in assembly language
Function definitions are performed by creating the code for the function and then
associating the start location of those instructions with the function name. A call
to a function is a jump to the function's start location. Function arguments and
return values are covered later in this section.

Below is a function definition in Scheme:
(define (the-ultimate-answer)

(+ 21 21))

The instructions JFN and RET are used to call and return from functions. JFN

saves the location of the following address on the stack and then jumps to the
address that specifies the start of a function. RET is called at the end of the func
tion. It uses the address saved on the stack to return to the instruction after the
function call. The function the - ul tima te - answer , abbreviated TUA, is called with

JFN TUA ; call the-ultimate-answer

The function the - ul tima te - answer is expressed in assembly as
TUA MOV #21, Ra ; store 21 in Ra

ADD # 21, Ra ; add 21 to the contents of Ra

RET ; return to the caller

The first statement is labeled TUA. Following the function's instructions a RET

instruction is performed to return to the location following the one from which
the function call was made. The return value of the function is held in register 0,
Ra. This may seem fine, but there are some important details that have been left
out. First, what happens if register 0 is being used ~t the time thls function is
being called? It is impossible to know at compile time exactly which functions
will be active when another function is called. This is illustrated in the following
example, where the number of functions called depends on a value passed to
two-choices.

Labels

JFN andRET

Saving return values

338 Chapter 13: Compilers and Interpreters

Maintaining values on
thestack

Saving register values

Dedicating register 0
for return values

(define (two-choices num)
(if (> num 0)

(+ num (the-ultimate-answer»
(+ (another-function) (the-ultimate-answer»)

If both another-function and the-ultimate-answer use RO as their return
values, then both return values cannot be maintained. As a further complication,
function two-choices might use RO, in which case that value is lost when the
other functions are called. To get around this problem, all the registers can be
saved before a function is called and then restored when the function returns.
This storage happens on the stack-a space within main memory that can be
viewed as a pile of numbers in which numbers are added and removed. The last
number to be added to the stack is the first number that will be removed. For an
analogy, think of a stack of plates in which you always place and take plates from
the top of the stack.

Saving all the registers is time consuming. Other solutions exist, such as sav
ing only those registers currently in use. Either the caller of the function or the
function being called is given the responsibility of saving and restoring any regis
ters that it needs. Another possibility is to use register windows, in which seetions
of memory represent different collections of registers, which can be switched by
changing the address holding their starting location. Hybrid solutions exist in
which certain registers are allocated to the caller and certain ones to the callee
(the function that is called). Any of these solve the basic problem of saving values
in a limited number of registers when functions are called.

We will have the caller assume responsibility of saving the registers it uses
before it calls a function and then restoring those values when the function
finishes. This way the function being called is free to use any registers without
conflicts arising. An alternate strategy would be to have the callee push the regis
ter values for the registers it will use. This requires an initial pass through the
callee's code to determine which registers it will use. In general, it is better to give
the callee more responsibility during a function call, because the callee's code is
only generated once, whereas the caller's code is generated for each function call.

The return value from functions can be placed on the stack. A simpler solu
tion would be to place the value in a register, but as we saw earlier we cannot
know beforehand which registers will be free. However, a register could be dedi
cated to hold the return value from function calls. Register number 0 will be used
for this purpose.

If multiple function calls must be made, prior return values can be moved to
other registers. For example, if the function that calls the-ultimate-answer
must save the return value in register 2, it must inc1ude a MOV instruction after the
JFN to copy the return value of the function into R2.

JFN TUA

MOV RO, R2
; call function the-ultimate-answer
; copy the return value into R2

13.5 Code Generation 339

Functions that take arguments need space for the parameters within the func
tion that hold the argument values. The arguments cannot be kept in specific
registers because the function may be called recursively, in which case multiple
copies of those arguments must be maintained. The arguments should be held on
the stack. Each time the function is called recursively, the new arguments are
added to the top of the stack.

When parameters are referenced in the function being called, they can be
fetched relative to the stack pointer. However, subsequent function calls shift the
position of the stack pointer so we can no longer look up values relative to the
stack pointer. Instead, the values are held relative to the frame pointer. The frame
pointer is similar to the stack pointer except that it points to the bottom of the
current stack of parameters on the stack. When a function is called, the parame
ters are pushed on the stack and the frame pointer is set to the address of the first
parameter. The stack pointer moves as parameters and other values are added to
the stack, but the frame pointer stays. All references to parameters made in the
function are relative to the frame pointer. The indexed addressing mode is a con
venient means of doing this.

As functions terminate, their parameters are no longer needed and they can
be deleted from the stack. The previous frame pointer must be restored then. This
means the old frame pointer should be saved on the stack as well. In addition, the
return address is needed on the stack when making recursive calls. The JFN

instruction and RET push and pop the return address from the stack.
To clarify all these steps, here is a table summarizing the steps that the caller

and callee take:

loeation aetion performed
caller save registers in use
caller push arguments
caller JFN pushes return address
callee push frame pointer
callee set frame pointer to first argument
callee execute code in callee routine
callee put return value in register 0
callee restore (pop) old frame pointer
callee RET pops return address
caller save return value in proper register
caller increment stack pointer past arguments
caller pop registers

The following diagrams show the stack at each step taken by the caller and
callee as a function is called and returned from. Imagine a function is being exe
cuted and it is about to call another function. Before the call is made, the stack
contains the values shown in diagram 1. sp and FP refer to the stack and frame
pointers, respectively. The frame pointer points to the location of the first argu
ment of the function and the stack pointer points to the return address, which is
the last value added on the stack.

Saving space tor
parameters

Frame pointer

Summary ot caller and
callee responsibilities

340 Chapter 13: Compilers and Interpreters

Diagram 1
sp~return address

argumentN
FP~argumentl

Before the function is called, the caller saves the registers it is using.

Diagram2
sp~registerM

registerl
return address
argumentN

FP~argumentl

Then the caller evaluates the arguments and saves them on the stack. The cal
lee will access these relative to the frame pointer which the callee will move to
the first argument.

Diagram3
sp~argumentL

argumentl
registerM
registerl
return address
argumentN

FP~argumentl

The call to JFN pushes the return address on the stack and the callee code is
executed.

Diagram4
sP~return address

argumentL
argumentl
registerM
registerl
return address
argumentN

FP~argumentl

Before the callee executes any of the code specific to its actions, it must save
the frame pointer used by the caller on the stack and then move the frame pointer
for its uses to the first argument to the callee. The callee accesses the arguments
relative to the frame pointer. When the callee has computed its return value, it
stores it in RO.

13.5 Code Generation 341

DiagramS
sp~frame pointer

return address
argumentL

FP~argumentl

registerM
registerl
return address
argumentN
argumentl

Once the callee has executed its code, it must restore the old frame pointer.
The stack looks like diagram 4 then. Lastly the callee calls RET to return to the
caller. The return address is on top of the stack. Now the stack looks like diagram
3.

The caller continues; it must adjust the stack pointer past the arguments. The
stack looks like diagram 2 now. Then the caller pops the saved registers from the
stack, retuming the stack to diagram 1.

Let' s try a function with arguments:
(define (pints-ta-cups pints)

(+ pints pints))

The arguments and the frame pointer will be saved on the stack. The equivalent
of this function in assembly language is
PTC MOV FP, - (SP) ; push frame pointer on the stack

are

MOV SP, FP ; set frame pointer to the stack pointer
ADD # 2, FP ; adjust frame pointer to first argument position
MOV (FP), RO ; store parameter pints in RO
ADD RO, RO ; add pints to pints saving result in RO
MOV (SP) +, FP ; restore old frame pointer
RET ; return to the caller

The calling instructions for the expression
(+ (pints-ta-cups 2) 3)

MOV #2, - (SP)
JFN PTC
ADD #1, SP
ADD #3, RO

; push argument value, 2, on the stack
; call function pints -ta- cups (result will go into RO)
; skip past argument on stack
; add 3 to RO, (pints - ta- cups 2), saving result in RO

RO contains the return value of this expression.
We can execute this program by hand, simulating the actions of the machine,

by writing out the stack and register values as we go through the assembly code.
Assume that RO and FP are initially 100 and 200. Going through the instructions
for (+ (pints-ta-cups 2) 3) up to JFN PTC (including pushing the return
address on the stack but before executing the code at PTC) yields the following
values:

SampIe function

SampIe function call

Trace of the stack and
register values

342 Chapter 13: Compilers and Interpreters

SampIe recursive
function and call

stack contents
sP~return address

2

register value
Ra 100
FP 200

The stack and registers look as follows after the instructions in pints-to
cups up to and inc1uding the ADD instruction are executed:

stack contents
sp~200

return address
FP~2

register value
Ra initially 2 from (FP), then 4 after the ADD instruction

Once the function has finished and the RET instruction is executed, the stack
and registers are as follows:

stack contents
sp~2

register value
Ra 4
FP 200

Continuing with the instructions after JFN PTC, the stack is empty and the
registers are

register value
Ra 7
FP 200

Now let's try a recursive function definition and a call to it. The function
below multiplies two positive numbers using a sequence of additions. Following
the definition is a call to the function:

(define (mult num1 num2)
(if (= num1 1)

num2
(+ num2 (mu1t (- numl 1) num2»))

(mult 2 3)

Putting all the ideas from this section in mind, let' s write the assembly code
for mu1 t. The function has two parameters: the first will be at the frame pointer
and the second will be in the address preceding the frame pointer. A recursive

13.6 Historical Background and Cu"ent Trends 343

function will contain the instructions for both the caller and callee. Notice that RO

is used in this function before the recursive call, but its value is not saved on the
stack. This is because the value is not needed after the recursive call. A good
optimizing compiler will make such tests to reduce the amount of code gen
erated.
MULT MOV FP, -(SP)

MOV SP, FP

ADD #3, FP

MOV (FP), RO
evaluate condition -7 (=

SUB #1, RO
test condition

; push frame pointer on the stack
; set frame pointer to the stack pointer
; adjust frame pointer to first argument position
; initialize RO to the first parameter-num1

num1 1)
; subtract 1 from RO, num1, to test for equality

BEQ THEN ; if that value is 0, (numl = 1), so jump to THEN

else action -7 (+ num2 (mul t (- num1 1) num2»
MOV RO, - (SP) ; push (- num1 1) on stack (first argument>
MOV -1 (FP), - (SP) ; push num2 on stack (second argument>
JFN MULT ; call mul t function
ADD # 2, S P ; skip past arguments on stack
ADD -1 (FP), RO ; add second parameter num2 to return value from mul t
JMP DONE ; skip then part of if-then-else

then action -7 num2
THEN MOV -1 (FP), RO ; store return value, num2, in RO
DONE MOV (SP) +, FP ; restore old frame pointer

RET

The following assembly code is for the call (mult 2 3):

MOV # 2, - (S P) ; push 2 on stack (first argument)
MOV # 3, - (S P) ; push 3 on stack (second argument>
JFN MULT ; call mul t function; result saved in RO
ADD # 2 , S P ; skip past arguments on stack

To see how this works, produce a stack and register trace like the one made
aboveforthecallto(+ (pints-ta-cups 2) 3).

13.6 Historical Background and Current Trends
The first compilers marked the advent of high-level computer languages. Before
compilers existed, programs were written in machine language or assembly
language, which is easily translated into machine language. FORTRAN was one
of the first languages for which a compiler was written. This was considered a
monumental task; it took eighteen person-years to complete. The FORTRAN
compiler was an existence proof that it was possible to write programs in high
levellanguages and have them run on machines. This radically changed the pro
ductivity of programmers and made way for the current proliferation of pro
gramming languages.

Much has been learned since the late 1950's, when compilers started appear
ing. Tools have been created that generate lexical analyzers and parsers. In the
UNIX environment, lex and yacc are two such tools. Lex takes descriptions of the

FORTRAN compiler

Lex

344 Chapter 13: Compilers and Interpreters

input in regular expression form, rules to indicate how the different tokens
should be handled (e.g., identifiers should be added to the symbol table), and
auxiliary functions that are needed (such as a function to instal1 an identifier in
the symbol table). This description is input to lex, which produces a lexical
analyzer program in the language C. This can then be linked with the rest of the
compiler.

Yacc Yacc stands for Yet Another Compiler Compiler. It produces a parser pro-
gram that can be linked with the rest of the compiler in the same fashion as lex is
linked. Yacc takes the names of the tokens from the lexical analyzer, translation
rules describing grammar rules and the actions to take based on those inputs,
and lastly the lexical analyzer and any error recovery functions. Yacc produces
an LR parser complete with a shift-reduce table as described in the section on
bottom-up parsers. Yacc has built-in rules for disambiguating shift/reduce and
reduce/reduce conflicts, which can be superseded if needed.

Using these two tools, all that is left is semantic analysis and code generation.
Here, too, shortcuts can be made. For example, if compilers were needed to
translate a high-Ievellanguage into three assembly languages for three different
computers, the same lexical analyzer, parser, and semantic analyzer could poten
tial1y be used. Even the majority of the code generation could be used by all three
compilers if an intermediate form of assembly language were used. The three dif
ferent compilers would share those pieces. A program taking the intermediate
assembly code and translating it to the final assembly language would have to be
written for each machine. Such practices simplify the task of updating compilers
for multiple machines when language specifications change.

13.6.1 Compiling the compiler
Perhaps the most powerful form of compiler creation involves a technique
known as compiling the compiler. In this technique a compiler program itself is
given as input to another compiler. To illustrate this idea we'll use a concrete
example. It is important to keep the following three components straight:

• the language being compiled (translated)
• the language produced
• the machine on which the compiler runs

Let' s suppose we have a compiler that runs on a Pentium machine and com
piles the language C into Pentium assembly language. The Pentium is a
microprocessor built by Intel. If we want to produce a Scheme compiler for the
Pentium, we could write the compiler in Pentium assembly language. This would
be extremely tedious. A simpler way would be to write a compiler in C that takes
Scheme code as input and produces Pentium assembly language. Then, use this
compiler as input to the existing C compiler to produce a compiler that runs on
the Pentium that takes Scheme as input and produces Pentium assembly as out
put. The diagram below illustrates this:

13.6 Historical Background and Cu"ent Trends 345

Scheme-to-Pentium inputto
C-to-Pentium

produces
Scheme-to-Pentium

compiler compiler compiler
writteninC written in Pentium inPentium

Now suppose we want a Scheme compiler for the PowerPC (PPC)-a
microprocessor made by Motorola. To complicate matters, let's assume that we
don't have a C compiler for the PowerPC. Thus, we cannot take the path used
above. To further complicate matters, let's assume that we have no compilers for
the PowerPC. Where do we start? lt looks like we have to build a compiler in
PowerPC assembly language.

This is where the true power of compiling compilers comes through. We
begin by writing a compiler in Scheme that takes Scheme and produces PowerPC
code. Next, we give this compiler as input to the compiler created above that
takes Scheme and produces Pentium code. This compiler runs on a Pentium. The
result is a cross-compiler that runs on a Pentium, takes Scheme, and returns
PowerPC assembly code. A cross-compiler is a compiler that produces assembly
code for a different machine than the one on which it runs. The diagram below
illustrates this:

Scheme-to-PPC inputto Scheme-to-Pentium produces
Scheme-to-PPC

compiler compiler cross-compiler
written in Scheme inPentium inPentium

Now repeat the process, but this time the Scheme compiler we wrote is input
to the cross-compiler produced above. The cross-compiler runs on a Pentium, but
produces PowerPC code; thus, sending it a Scheme-to-PowerPC compiler will
produce a Scheme-to-PowerPC compiler that runs on a PowerPC. This is illus
trated in the diagram below:

Scheme-to-PPC inputto
Scheme-to-PPC produces

Scheme-to-PPC
compiler cross-compiler compiler

written in Scheme inPentium inPowerPC

To recap, start with a C-to-Pentium compiler that runs on a Pentium. Write a
Scheme-to-Pentium compiler in C and compile that compiler to produce a
Scheme-to-Pentium compiler that runs on a Pentium. Next, write a Scheme-to
PowerPC compiler in Scheme and compile that compiler once (on the Scheme
to-Pentium compiler) to produce a Scheme-to-PowerPC cross-compiler running
on a Pentium, and again (on the cross-compiler) to give a Scheme-to-PowerPC
compiler running on a PowerPC machine.

Cross-compilers

346 Chapter 13: Compüers and Interpreters

Lexical analysis

Parsing

Semantic analysis

Error checking

Code generation

13.7 Implementing a Simple Scheme Compiler in Scheme
To implement a Scheme compiler in Scheme we will take many shortcuts. For
example, we do not need to read in the input as individual characters, but can
read in Scheme objects like numbers, symbols, and lists directly. This eliminates
the majority of the work done by the lexical analyzer. All that is left is to convert
numbers into the token nurnber, and symbol and function names into the token
id, and store their names in a symbol table. In fact, we can even bypass some of
these steps.

The majority of the parser's task is not needed because Scheme code has an
extremely simple syntax. This structure provides a natural parse tree for Scheme
statements. The only change to the structure of basic Scheme is adding nodes to
label the subtree types, for example, adding expr as the parent node to a Scheme
expression, or id-list as the parent to parameter lists. In our mini-Scheme version,
we can get by without the extra nodes and simply use the existing structure of
Scheme expressions.

Semantic analysis is needed to deal with the types of arguments given to
overloaded functions, assuming that we can determine the types at compile time
(when the compiler processes the code). In a strongly typed language, where all
variables must be declared, this can be done. However, in Scheme or other
languages where variables are not typed, the compiled code must include tests
for the types and then perform the appropriate actions. This makes for slower
execution times and is one of the major criticisms of Scheme. Some dialects of
LISP allow the programmer to specify the type of a variable to improve runtime
speed.

We will need semantic analysis to properly interpret calls to the negation
subtraction function, "-." If - is called with one argument, negation should be
performed instead of subtraction. In assembly language, this translates into using
NEG instead of SUB.

Error checking is done during lexical analysis, parsing, and semantic analysis.
We will perform minimal error checking, making the assumption that we are
given valid input so that we can ignore fully robust error checking. If we make
this assumption and ignore the addition of extra nodes in the parse tree, we can
skip lexical analysis, parsing, and semantic analysis altogether. We will include
the tests for negation/ subtraction in the code generation section.

Code generation is the remaining task. It involves sequencing through
Scheme expressions and producing assembly language. To make things simpler
we will only allow the simple set of Scheme functions previously shown in sec
tion 13.5.1 and only support integer typed values. This provides a reasonable
idea of what is involved in code generation without getting bogged down in all
the details that would arise in compiling the full set of Scheme functions and
allowing multiple types.

Section 13.5, "Code Generation," gives examples of assembly code broken
down by different expression types. Using a similar approach we can address
each type of expression allowed in our mini-Scheme and generate the assembly
code for that expression. We won't always produce code that is as streamlined as

13.7 Implementing a Simple Scheme Compiler in Scheme 347

that shown in the examples from section 13.5. Producing efficient assembly code
is one of the most difficult elements of compiler design.

One issue that will come up throughout the process of code generation is the
use of registers. Registers are a finite resource and should be used as much as
possible, as they are rapidly accessible by the CPU. Whenever registers can be
re-used, we should try to do so. This involves realizing when values must be
saved and when they need not be saved.

Another issue that will come up is the return value of expressions. A complex
expression may involve many subexpressions, whose values must be combined
to produce a final return value. We will need a mechanism to save these different
return values.

A final theme is handling symbols. The values of symbols used as parameters
must be saved somewhere. We will use the stack to do so, along with a symbol
table that links symbols with their location on the stack.

Employing top-down design, we start with the top-most function, which
compiles a list of expressions. This function takes the list of expressions, a list of
register names that the computer supports, and the symbol table. For each
expression in the expression list, this function simply calls another function that
generates code for a single expression. Since each expression is independent and
the results computed by each expression need not be saved, except for the last
one, the register list for each expression can be reused.

; Generate code for a list of expressions.
(define (code-gen-expr-list expr-list reg-list symbol-table)

(for-each
(lambda (expr)

(code-gen-expr expr reg-list symbol-table))
expr-list))

The function code - gen - expr, the heart of the code generator, generates code
or calls functions to generate code for each type of expression with which it
might be called. The return value of an expression may be required in another
computation. For example, when evaluating a function call, code - gen - expr must
be called recursively to generate the code for the arguments. The results for each
argument must be saved somewhere and then applied to the function being
called. The first register in the register list can be used to represent the location
where the result of the current expression should be put. The remaining registers
are free for use in computing that value.

Error handling may occur deep within our code. Rather than try to recover
from errors, we'll immediately bail out of the code generation process and return
a string indicating what caused the error. The easiest way to bail out from any
where in a collection of functions is by calling an exit function established with
call-with-current-continuation. Examples of this function are covered in
Chapter 11, "Forcing Exits with cal1-with-current-continuation." The fol
lowing two expressions establish fatal - error as an exit function.

(define fatal-error 'not-yet)

Efficient use of
registers

Return values

Symbols

Compiling expression
lists

Compiling single
expressions

E"or handling

348 Chapter 13: Compilers and Interpreters

Printing out assembly
instructions

Symbollookup

(call-with-current-continuation
(lambda (stop)

(set! fatal-error stop»)

To OUtput assembly instructions, we use a function output that takes a sym
bol representing the instruction and optional arguments representing additional
information that may be needed, such as the src, des, and loc values. Instructions
are indented so that labels (which aren't indented) stand out. The tricky part is
dealing with the commas that precede all but the first optional argument.

; Print out instruction and operands.
(define (output instruc . addrs)

(display" ")
(display instruc)
(cond «not (null? addrs»

(display" ")
(display (first addrs»
(for-each

(lambda (addr)
(display ", ")
(displayaddr)

(rest addrs»»
(newline))

We need another function to look up the symbol in the symbol table (an asso
ciation list) to find the register or position on the stack (in the case of parameters)
holding its value. If the symbol does not exist in the symbol table, code genera
tion terminates.

; Lookup address of symbol in symbol table.
(define (symbol-address symbol symbol-table)

(let ((address (assoc symbol symbol-table»
(if address

(cdr address)
(fatal-error

(string-append
"Undefined variable:"
(symbol->string symbol»»)

Finally, here is the code to handle a single expression. It handles six different
types of expressions: symbols, numbers, if-then-else expressions, function
definitions, calls to buHt-in functions, and calls to user-defined functions. The
result from each expression is saved in the first register in reg-list. To deal with
symbols, this function will need the symbol table, so it is a parameter.

13.7 1mplementing a Simple Scheme Compiler in Scheme 349

i Generate eode for a single expression saving return value in the
i first register of reg-list.
(define (eode-gen-expr expr reg-list symbol-table)

(1et ((result (first reg-list»)
(cond «symbo1? expr)

(output 'MOV (symbol-address expr symbol-table) result»
«number? expr)

(output 'MOV (literal expr) result»
«is-if? expr)

(eode-gen-if expr reg-list symbol-table»
«is-fune-def? expr)

(eode-gen-fune-def expr reg-list symbol-table»
«is-built-in-fune? expr)

(eode-gen-built-in-fune expr reg-list symbol-table»
(e1se i otherwise it's a user-defined funetion eall

(eode-gen-user-fune expr reg-list symbol-table»»)

The auxiliary functions used in eode-gen-expr must be written. We'll start
with the functions that check the expression type:

i Test if expr is an if expression.
(define (is-if? expr)

(eqv? (first expr) 'if))

i Test if expr is a funetion definition.
(define (is-fune-def? expr)

(eqv? (first expr) 'define))

i Test if expr is a eall to a built-in funetion.
(define (is-built-in-fune? expr)

(member (first expr) '(+ - < > = /= <= >=»)

We could have placed the code for these conditions directly in eode-gen
expr. Writing separate functions adheres to data abstraction principles, which
minimize changes that have to be made to the code when the data structure
changes. For example, our data structure would change if a parser were used that
produced a parse tree with a different form than the Scheme input we presently
receive.

When a number is evaluated, its literal value, an immediate address
(represented as the character "#" followed by the number), must be produced.
The function li teral does this by appending the string "#" to the string
representation of the number.

i Generate astring representing a literal.
(define (literal number)

(string-append "#" (number->string number»

While we are dealing with addresses, let's create functions to generate dif
ferent addresses. These functions will be given a symbol and possibly a number
(indexed address).

Data abstraction

Forming literals

Forming different
addressing modes

350 Chapter 13: Compüers and Interpreters

Steps to produce an
if expression

Mutual recursion

Selector functions for
if

; Generate astring representing an indirect address.
(define (indirect address)

(string-append "(" (symbol->string address) ")"))

; Generate astring representing an indexed address.
(define (indexed address index)

(string-append (number->string index) (indirect address»

; Generate astring representing a post-increment address.
(define (post-inc address)

(string-append (indirect address) "+"))

; Generate astring representing a pre-decrement address.
(define (pre-dec address)

(string-append 11_11 (indirect address»)

13.7.1 Generating code for if expressions
For an if expression, the basic steps in generating assembly code are as follows:

1. Generate code for the conditional test.
2. Create a branch to the then label if the test passes (jump to then action).
3. Generate code for the else action.
4. Create a branch to a label following the then action (end of if expression).
5. Insert a label for the then action.
6. Generate code for the then action.
7. Insert a label for the end of the if expression.

This can get complex if the conditions or actions are themselves complex col
lections of function calls or even other if expressions. This is not as bad as it may
sound if we take advantage of the powers of recursion. Each step that generates
code can be handled by making a call to code-gen-expr. This is a type of recur
sion known as mutual recursion in which one function calls another, which in turn
calls the first.

As mentioned earlier, data abstraction is important in writing compilers. We
have written functions to test the types of expressions. We should write selector
functions to access the different parts of expressions. For an if expression, data
selector functions for the condition, then-action, and else-action are needed.
These are written below:

; Return the condition of an if expression.
(define (get-condition if-expr)

(second if-expr))

; Return the then-action of an if expression.
(define (get-then-action if-expr)

(third if-expr))

13.7 Implementing a Simple Scheme Compiler in Scheme 351

; Return the else-action of an if expression.
(define (get-else-action if-expr)

(fourth if-expr))

Making recursive calls to code-gen-expr will take care of parts 1,3, and 6 of
handling an if expression. Parts 2 and 4 involve jumping to labels and parts 5
and 7 involve inserting those labels in the assembly code produced. Creating
labels has a subtle difficulty associated with it: each label must be unique. In the
previous examples we had a rather cavalier attitude toward label names. If there
are several if expressions, the label ELSE cannot be used to signify the start of
each else action. Labels produced by compilers are often written as a letter fol
lowed by a number (e.g., L7). Each label that is needed gets a larger number.
Thus, we need a counter as either a global variable that is updated each time we
create a label or as a variable in a lexical closure in a label-producing function
that is incremented each time the closure is invoked. This technique is presented
in Chapter 11 in the section called "Functions that Return Functions."

The first approach is not desirable stylistically because it uses a global vari
able that gets redefined in different functions throughout the code generator. The
second approach is more complex but is better from a programming style
viewpoint. We'll use it. We need two functions. The primary function gentemp
produces a unique symbol given aprefix string, like "L." gentemp is produced by
the second function make-gentemp, which maintains the local state (using a 1et
variable) of the counter variable used to produce the unique symbols.

; Return a function that generates unique address labels.
(define (make-gentemp)

(1et ((n 0))
(1ambda (prefix)

(set I n (+ n 1»
(string->symbo1

(string-append prefix (number->string n») »)

(define gentemp (make-gentemp»

Below are some examples:
> (gentemp "L")
Ll

> (gentemp "LU)

L2

Since both labels will have to be used twice in the assembly code-once as a
jump instruction and once as a label-their values should be saved in a 1et
expression. To output labels, we use a function output -label, which we will
write later.

The condition (part 2) uses the register list first, and the registers don't need
to be saved for the then or else actions (parts 3 and 6), so the actions will use the
entire register list as well. Since only one action will be performed, there is no
conflict here. The then and else actions define the return value of the if expres
sion.

Creating labels

352 Chapter 13: Compilers and Interpreters

Forming the branch
instruction

Part 2 requires a conditional branch. This could be BEQ, BNE, BGT, BLT, or a
combination of these. For example, the assembly equivalent of Scheme's >= is

BEQ then-label
BGT then-label

If either condition is met, a jump is made to the then-action. Producing the
branching instructions will be done by the function condi tional- test.

At this point, we can put the entire if-then-else function together. The auxiliary
functions will be defined later.
; Generate code for an if expression.
(define (code-gen-if if-expr reg-list symbol-table)

(let ((then-Iabel (gentemp "L"»
(end-label (gentemp "L"»)

; 1. genera te code for conditional test
(code-gen-expr (get-condition if-expr) reg-list symbol-table)

; 2. create a branch to label if test passes (jump to then action)
(conditional-test (get-condition if-expr) then-Iabel)

; 3. generate code for the else action
(code-gen-expr (get-else-action if-expr) reg-list symbol-table)

; 4. create a branch to a label following then action (end of if expression)
(output 'JMP end-label)

; 5. insert a label for then action
(output-label then-Iabel)

; 6. genera te code for then action
(code-gen-expr (get-then-action if-expr) reg-list symbol-table)

; 7. insert a label for end of if expression
(output-label end-label»)

The function conditional-test produces code for comparison functions
such as = and >. An association list *condition-assem* is used to map Scheme
conditions with assembly instructions:

; Generate conditional branch to label.
(define (conditional-test condition label)

(let ((assem (assoc (first condition) *condition-assem*»
(if (not assern)

(fatal-error (strinq-append "bad-instruction: "
(symbol->strinq (first condition»»

(for-each
(lambda (instruction)

(output instruction label))
(cdr assern) »))

13.7 Implementing a Simple Scheme Compiler in Scheme 353

(define *condition-assem* '(
(> BGT)
« BLT)
(= BEQ)
(/= BNE)
(>= BGT BEQ)
«= BLT BEQ»

The function output-label folIows. It prints out a label without indentation.
; Generate a label for a subsequent instruction.
(define (output-label label)

(display label))

The code we have created is for if expressions with else actions. What about
if expressions without else actions? Let's see what happens if we try the existing
function with an if-then expression. The test is generated and a branch is made to
the then label if the test passes. Next, the code for the else action is generated. The
function get-else-action will return an error if called with an if-then expres
sion. To allow for if-then expressions, we modify get-else-action to return ff if
no else action exists and modify code - gen - if to test the return value of get
else-action.

; Return the else-action of an if expression or #f if none exists.
(define (get-else-action if-expr)

(if (not (null? (cdddr if-expr»)
(fourth if-expr)
ff))

Generate code for an if expression.
(define (code-gen-if if-expr reg-list symbol-table)

(let ((then-Iabel (gentemp "L"»
(end-label (gentemp "L"»
(else-action (get-else-action if-expr»)

; 1. generate code for conditional test
(code-gen-expr (get-condition if-expr) reg-list symbol-table)

; 2. create a branch to label if test passes (jump to then action)
(conditional-test (get-condition if-expr) then-Iabel)

; 3. generate code for the else action if one exists
(if else-action

(code-gen-expr else-action reg-list symbol-table»

; 4. create a branch to a label following then action (end of if expression)
(output 'JMP end-label)

; 5. insert a label for then action
(output-label then-Iabel)

; 6. generate code for then action
(code-gen-expr (get-then-action if-expr) reg-list symbol-table)

; 7. insert a label for end of if expression
(output-label end-label»)

Printing labels

Handlingif
expressions without
else actions

354 Chapter 13: Compilers and Interpreters

Steps to handle
tunetion definitions

Getting return value
into register 0

Making an association
list tor parameter
names and values

13.7.2 Generating code for define expressions
To create a function, we must put all the assembly code that makes up the func
tion into the memory space of the virtual machine and then label the start of
those instructions with the symbol name for the function, so that when the func
tion is called, JFN jumps to that label and begins executing the function's instruc
tions.

To refine this further, the assembly code needed for a function definition is as
folIows:

1. Generate label for the start of the function, using function name.
2. Save (push) the current frame pointer on the stack.
3. Set the new frame pointer to the first parameter.
4. Generate code for the body of the function.
5. Save the return value in register O.
6. Restore (pop) the old frame pointer from the stack.
7. Generate a RET instruction.

The first step can be implemented using output -label. The second, third,
and sixth steps are conditional; if the function has no parameters, these steps can
be ignored. To set the frame pointer to the location of the first parameter in the
third step, set the frame pointer to the top of the stack and then increment it past
the return address and the other parameters. The fourth step can be handled by
calling code - gen - expr-list with the expressions comprising the body of the
function, the available registers, and a symbol table mapping the parameters to
their addresses. The fifth and seventh steps are straightforward.

Selector functions to extract the function name, parameter list, and body from
a function definition will be useful, and we'll define them later.

There is an additional subtlety to step five. We must know which register
holds the function' s return value. Each expression uses the entire register list
when calling code - gen - expr, and the return value of the expression is saved in
the first register of that list. Since the return value of a function is the result of the
final expression, the function's return value will be in the first register. If the first
register is RO, then we can skip this instruction to avoid creating the useless
instruction

MOV RO, RO

The parameter names must be saved in the symbol table. There they are
matched with locations on the stack relative to the frame pointer. The function
make - table will create the table, taking a list of parameter names and returning a
symbol table (an association list) that maps parameters to their offsets from the
frame pointer. Recall that the first parameter is at the frame pointer, the second
parameter is one address preceding the frame pointer, and so on. For example,
given the parameter list

(size width height)

make-table should produce the following association list:

13.7 lmplementing a Simple Scheme Compiler in Scheme 355

«size . "(FP)")
(width . "-l(FP)")
(height . "-2(FP)"»

Notice how the offset from the frame pointer is the negative of the position of
the parameter in the parameter list. We will use this relationship in writing
make - table:

; Create a symbol table for the parameters to a funetion.
(define (make-table parameter-list)

(if (null? parameter-list)
'()
(cons

(cons (first parameter-list) (indireet 'FP»
(map

(lambda (parameter)
(cons

parameter
(indexed 'FP (- (position parameter parameter-list»»)

(rest parameter-list»»)

Here is the code for eode-gen-fune-def:

Generate eode for a funetion definition.
(define (eode-gen-fune-def expr reg-list symbol-table)

; 1. Generate label for the start of the function, using function name.
(output-label (get-fune-name expr»
(cond «not (null? (get-params expr») ; if funetion has parameters

; 2. Save (push) the current frame pointer on the stack.
(output 'MOV 'FP (pre-dee 'SP»

; 3. Set the new frame pointer to the first parameter.
(output 'MOV 'SP 'FP)
(output 'ADD

(literal (+ (length (get-params expr» 1» 'FP»)

; 4. Generate code for the body of the function.
(eode-gen-expr-list (get-body expr) reg-list

(make-table (get-params expr»)

; 5. Save the return value in register O.
(if (not (eq? (first reg-list) 'RO»

(output 'MOV (first reg-list) 'RO»

; 6. Restore (pop) the old frame pointer from the stack.
(if (not (null? (get-params expr»)

(output 'MOV (post-ine 'SP) 'FP»

; 7. Generate a RET instruction.
(output 'RET))

The selector functions are defined below:
; Return funetion name from funetion definition.
(define (get-fune-name fune)

(caadr fune))

Selector functions for
function definitions

356 Chapter 13: Compilers and Interpreters

Steps to take betore
calling tunctions

Steps to take after
retuming trom
tunctions

Pushing and popping
values onto the stack

; Return parameter list from funetion definition.
(define (get-params fune)

(cdadr fune))

; Return body from funetion definition.
(define (get-body fune)

(subseq fune 2))

13.7.3 Generating code for calls to user-defined functions
Before a user-defined function (one created using define) is called, a number of
operations must be performed:

1. Save (push) the registers currently in use on the stack.
2. Generate code for the arguments and push the results on the stack.
3. Call the JFN instruction.

After the function returns, the following steps must be taken:

4. Save the return value in the first register if it's not already there.
5. Increment the stack pointer past the arguments.
6. Restore (pop) the registers from the stack.

We could simplify things if we had functions that pushed values onto the
stack and popped values from the stack. These functions will take a list that indi
cates which addresses to pop the stack values into or which values to push onto
the stack. These functions, push -vals and pop-vals, are defined below:
; Generate eode to push values in address-list on staek.
(define (push-vals address-list)

(for-each
(1ambda (address)

(output 'MOV address (pre-dee 'SP»)
address-list))

Generate eode to pop values from staek into address-list addresses.
(define (pop-vals address-list)

(for-each
(1ambda (address)

(output 'MOV (post-ine 'SP) address))
address-list))

Be careful when pushing and popping values onto the stack. If registers Ra,
Rl, and R2 are pushed on the stack using

(push-vals '(Ra Rl R2»

the top of the stack is R2. Hence, the registers should be popped in the reverse
order like this:

(pop-vals '(R2 Rl Ra»

Most of the steps outlined above involve pushing or popping values or pro
ducing simple instructions. Step two requires generating code for the arguments.
We cannot use eode-gen-expr-list to do this because each argument's value

13.7 Implementing a Simple Scheme Compiler in Scheme 357

must be pushed on the stack after it is determined. Instead we can use multiple
calls to code-gen-expr and push-vals to push the results onto the stack.

One further complication exists: how do we know which registers should be
saved? reg-list indicates the registers that can be used. We need a complete list
of registers with which to compare reg-list. A global variable can do this:

(define *all-regs* '(RO R1 R2 R3 R4 R5 R6 R7»

Below is the code to call user-defined functions, code-gen-user-func. Once
again, selector functions are used to get the arguments and function name.

; Generate code to call user-defined functions.
(define (code-gen-user-func expr reg-list symbol-table)

; 1. Save (push) the registers currently in use on the stack.
(push-vals (set-difference *all-regs* reg-list»

; 2. Generate code for the arguments and push the results on the stack.
(for-each

(lambda (arg)
(code-gen-expr arg reg-list symbol-table)
(push-vals (subseq reg-list 0 1»)

(get-args expr»

; 3. Call the JFN instruction.
(output 'JFN (get-call-name expr»

; 4. Save the return value in the first register if it's not already there.
(if (not (eq? (first reg-1ist) 'RO»

(output 'MOV 'RO (first reg-1ist»)

; 5. Increment the stack pointer past the arguments.
(if (not (null? (get-args expr»)

(output 'ADD (literal (length (get-args expr») 'SP»

; 6. Restore (pop) the registers from the stack.
(pop-vals (reverse (set-difference *all-regs* reg-list»)

Our selector functions are defined below:
; Return arguments from a function call.
(define (get-args expr)

(rest expr))

; Return function name from a function call.
(define (get-call-name expr)

(first expr))

13.7.4 Generating code for calls to built-in functions
The final step is to write a function that generates assembly language for calls to
buHt-in functions. We have to handle the following function calls:

category
arithmetic
comparison

functions
+ (with two arguments), - (with one or two arguments)
=, /=, >, <, >=, <= (with two arguments)

358 Chapter 13: Compilers and Interpreters

Steps to call built-in
functions

Proper register usage

Predicate functions that test for the type of function call will be helpful. These
will be defined later. To call a buHt-in function, the steps are as follows:

1. Generate code for the arguments, saving the results in registers.
2. Perform the operation of the function using the values (saved in registers)

from the above step.
3. Save the result in the appropriate register.

The function that carries out these actions will be given an expression and a
list of avaHable registers. The first register in this list denotes the location of the
return value. All other registers can be used to hold temporary values such as
argument values. Examine the following call:

(+ 4 nurn)

Code would first be generated for the arguments. Assuming that the result of
this addition operation is saved in register 1, the argument values could be
placed in registers 2 and 3. The final step would be to do an ADD instruction and
a MOV to put the result in register 1 as follows:

ADD R2, R3
MOV R3, Rl

This MOV instruction can be avoided if registers 1 and 2 hold the values of the
arguments. Then a single instruction can do the same operation.

ADD R2, Rl

Conveniently, this works for subtraction too. Given the call
(- 4 3)

and storing 4 in register 1 and 3 in register 2, the assembly instruction to save the
result in register 1 is

SUB R2, Rl

This properly subtracts 3 from 4, leaving 1 in register 1.
Below is the code for generating assembly language for calls to buHt-in func

tions:
; Generate code for calls to built-in functions.
(define (code-gen-built-in-func expr reg-list syrnbol-table)

(code-gen-expr (get-first-arg expr) reg-list syrnbol-table)
(if (has-two-args? expr)

(code-gen-expr
(get-second-arg expr) (rest reg-list) syrnbol-table»

(cond «is-negation? expr)
(output 'NEG (first reg-list»)

«is-addition? expr)
(output 'ADD (second reg-list) (first reg-list»)

«or (is-subtraction? expr) (is-cornparison? expr»
(output 'SUB (second reg-list) (first reg-list»»

13.7 Implementing a Simple Scheme Compüer in Scheme 359

Below are the auxiliary functions to test the type of function call being made
and extract the arguments:

; Test if function call has two arguments.
(define (has-two-args? expr)

(= (1ength expr) 3))

; Test if function call is a call to unary - (negation).
(define (is-negation? expr)

(and (eqv? (first expr) '-)
(= (1ength expr) 2»)

Test if function call is a call to + (addition).
(define (is-addition? expr)

(and (eqv? (first expr) '+)
(= (1ength expr) 3»)

Test if function call is a call to binary - (subtraction).
(define (is-subtraction? expr)

(and (eqv? (first expr) '-)
(= (1ength expr) 3»)

Test if function call is a call to a comparison function.
(define (is-comparison? expr)

(and (member (first expr) '(> < >= <= = /=»
(= (1ength expr) 3»)

Return first argument to function call.
(define (get-first-arg expr)

(second expr))

; Return second argument to function call.
(define (get-second-arg expr)

(third expr))

13.7.5 Testing our compiler
As an example to test out the preceding code, let's try to compile the recursive
function mul t and a call to it. This will test most pieces of our compiler. The call

(code-gen-expr
'(define (mult num1 num2)

(if (= num1 1)
num2
(+ num2 (mult (- num1 1) num2»))

all-regs '(»

produces the following assembly instructions. English explanations of the assem
bly are given as weil but are not produced by our compiler.

Auxiliary functions for
calling built-in
functions

360 Chapter 13: Compilers and Interpreters

Comparing our hand
coded assembly with
the computer
generated assembly

assembly description
mult mov fp, -(sp)

mov sp, fp
push frame pointer on stack
set frame pointer to

LI

add #3, fp
mov (fp), rO
mov #1, rl
sub rl, rO
beq LI
mov -1(fp), rO
movrO, -(sp)
mov (fp), rl
mov #1, r2
sub r2, rl
mov rl, -(sp)
mov -1(fp), rl
mov rl, -(sp)
jfn mult
mov rO, rl
add #2, sp
mov (sp)+, rO
add rl, rO
jmp L2

mov -1(fp) , rO

location of first argument
move numl into register 0

produce (- numl 1)
if (= numl 1) go to then action
move num2 into register 0
push RO on stack (save register)
move numl into register 1

produce (- numl 1)
push this value on the stack (first argument)
move num2 into register 1
push it on the stack (second argument)
jump to mul t function
save return value from mul t in Rl
increment past the two arguments on the stack
restore register 0, num2
add num2 to return value
jump past then action
move num2 into register 0

L2 mov (sp)+, fp restore old frame pointer
ret

This is quite a bit longer than our hand-coded version. There are some steps
where two instructions could be reduced to one. The value (- numl 1) was com
puted twice, requiring an additional two instructions. Register 0 was used to
hold the value of num2 as the first argument to the function +. This forced register
o to be saved on the stack before calling the function and to be restored after
wards.

Calling mul t yields better results, but the arguments could have been put onto
the stack in two instructions instead of four:

(code-gen-expr '(mult 2 3) *all-regs* '(»

assembly
mov #2,
mov rO,
mov #3,
mov rO,
jfn mult
add #2,

rO
-(sp)
rO
-(sp)

sp

description

push first argument, 2, on the stack

push second argument, 3, on the stack
jump to mul t function
increment past the two arguments on the stack

13.7 Implementing a Simple Scheme Compiler in Scheme 361

13.7.6 Exercises
13.3 Could make-gentemp be defined as a variable instead of as a function, as

follows?
(define make-gentemp

(let ((n 0))
(lambda (prefix)

(set! n (+ n 1»
(string->symbo1

(string-append prefix (number->string n») »)

If SO, what are the advantages/disadvantages of this approach? If not, why
not?

13.4 The function code - gen - if does not produce code for an else action if one
does not exist. What will the genera ted code return in this case when the
condition is false? Does this value make sense? If not, modify the function
to return a more meaningful value.

13.5 No checks are made in this compiler to determine if registers are left in
reg-list. What happens when all the registers are used up? Or is this a
situation that can never arise? Indicate why all the registers cannot be used
up or give an example expression that uses up all the registers and indicate
how to modify the code to deal with this situation in some reasonable way.

13.6 Build a simulator that models the actions of a machine running assembly
language instructions. This is a big but very useful exercise in verifying our
compiler. The simulator will be a virtual machine that models the main
memory, stack space, frame and stack pointers, registers, ALU, and com
parator. The simulator will take a list of instructions where each instruction
is a list, such as

«START MOV (literal 21) RO)
(SUB (literal 20) RO)
(BLT LI)
(MOV (literal 3) RO)
(JMP L2)
(LI MOV (literal 4) RO)
(L2 HALT»

The first instruction to simulate is labeled START, and instructions should
be processed until a HALT instruction is encountered. This way instructions
that make up functions can exist in the instructions. Addressing modes
(other than absolute) will be specified using lists like

(indexed FP -3)

Everything else is represented with symbols.
You'll need to create data structures for the registers, data stack, and

stack and frame pointers. You'll also need to simulate the actions of the
ALU and comparator. You will need a controller that sequences through

362 Chapter 13: Compilers and Interpreters

Representing different
types

Discerning objects o(

different types

Representing fists

the instructions, determines the type of instruction, and takes the appropri
ate actions. After each instruction, print out the values of the registers.

13.8 Extending Our Compiler
We have created a compiler for a simple subset of Scheme. Our mini-Scheme has
two special forms (if and define), one data type (integer), and two arithmetic
and six comparison functions. Let's explore what must be done to extend our
compiler to incorporate more of Scheme. The focus is on five major areas: data
types, functions, special forms, scope, and code optimization.

13.8.1 Adding more data types to our compiler
In this text, we have looked at six types of Scheme objects: numbers (which are
further divided into integers, reals, ratios, and complex numbers), symbols, lists,
booleans (#t and U), functions, and strings.3 All of these are represented as
numbers in digital computers. This brings up two big questions: How are they
represented and how are they distinguished? Floating point numbers, ratios, and
complex numbers can be represented as two numbers. Symbols are addresses
pointing to a symbol table entry giving the value of the symbol and its name.
Booleans are represented as numbers (0 can be false and anything else is true).
Functions are a collection of assembly language instructions. These instructions
can be written in machine language (numbers). Strings are aseries of numbers.
Each number represents one or more characters of the string. A character can be
represented as a number between 0 and 127.

But this brings up some ambiguities, namely how do we know if a number
refers to an integer, part of a string, a machine language function, or something
else? We can address this problem by representing each data type as two
numbers; one number indicates what type the data is and the other is the data
itself. For example if 0 denotes a number, then "0 2364" would represent the
number 2,364. Such a structure is called arecord and the individual parts of it are
called fields.

How do we represent a list using numbers? Before answering this, review
"Optional Section: Internal Representations of Lists" from Chapter 4. This section
presents lists as sequences of cons cell structures. A cons cell comprises two
pointers: one to the first element of the list and a second to the rest of the list.

We can represent a cons cell as two records (the car and cdr of the list). This
is a new data type, so we will have to extend our types to include a cons cell type
that has three fields: the type, the car record, and the cdr record. For example, if
a cons cell type is denoted by the number 7, the series of numbers "7 0 4 0 2"
would represent the dotted list (4 . 2).

3. Scheme has two additional types: vectors and characters. Vectors are like lists but they cannot
change size after they are created. Vectors typically require less memory space than lists and have
faster access limes for individual elements than lists do. Strings are made up of characters.

13.8 Extending Dur Compiler 363

Another data type is needed to represent a list. A list is apointer to the first
cons cell in the cons cell chain making up the list. The list record has two fields,
the list type and the address of the first cons cello The address 0 can represent an
empty list. If 8 denotes the list type, "8 0" is an empty list. The sequence "8 12463"
represents a list with a cons cell at address 12463. If this address is the start of the
series "7 0 2 8 0," that represents the list (2). "8 23489" is the list (4 2) if address
23489 starts the series "70 4 8 12463."

13.8.2 Adding more functions to our compiler
The function car returns the car field of the cons cell record; cdr returns the cdr

field. The functions first through fifth, list-ref, and rest can be written
using car and cdr. To create lists, cons is the fundamental function. cons takes
two records and creates the series "7 record1 record2" in some memory locations
in the machine. list, append, and subseq can be written using cons.

The various type-checking predicate functions such as null? and number? are
easily written by checking the type field of the record with which they are called.
eq? compares the type and value of records and, if they are the same, returns
true. eqv? is a subtle variation on this that doesn't apply to our compiler but
would to one that represents numbers as an address of their location. Two identi
cal numbers may not be eq? because they are not at the same location even
though both locations hold the same value. They should be eqv?, however.
equal? can be written using a recursive function that uses eq?

Applicative functions such as map and accumulate can be implemented using
recursive functions and the primitives mentioned above.

13.8.3 Adding more special forms and handling scope in our com-
piler

Each special form has its own evaluation rules, so we will have to write a func
tion to handle each one. Some of these, like define for defining a variable and
quote, are fairly easy to implement. Others (like let, cond, or do) are more
involved. Special forms like let and do define variables with limited scope.
define defines global variables if used on the top level. We will have to see how
our scoping rules allow for these situations. A global variable can be created by
adding an entry to the symbol table. let can be handled by treating it as a func
tion definition followed by a function call. For example,

(let ((a 1) (b 2» (* ab»

is the same4 as the two expressions

4. There is one important distinction: defining a function creates code that can be jumped to, so the
function should be given a name that is not likely to be used by the programmer.

Adding list functions

Adding type checking

Adding functionals

Scoping issues

364 Chapter 13: Compilers and Interpreters

Peephole optimization

Saving results 'rom
prior computations

(define (temp a b)
(*ab»

(temp 1 2)

Chapter 10 shows how a do can be written as a recursive function with a 1et and
a cond.

In Scheme functions are first dass objects. This means they can be assigned to a
variable (function definition), passed to a function (as in applicative operators),
and returned by a function. We can pass a function by passing its label. Return
ing a function created by a 1ambda can be done by creating an internal name for
the nameless 1ambda function and returning that name. When creating functions
that aren't on the top level, scope issues are important when functions use vari
ables that aren't parameters. The variables in -the scope of a function must be
maintained. This is called an environment.

13.8.4 Code Optimization
Our compiler could produce more streamlined code. This is known as code optim
ization. Code is optimized to reduce the number of statements or to reduce the
time required to run the code. These are both measures of how effective an
optimizer iso

There are many methods used to improve the code generated by a compiler.
Some of these look at a few neighboring instructions at a time. This is called
peephole optimization, because only a small part of the code is being examined at
any time, like looking at the world through a peephole. Peephole optimization
can handle reducing two instructions like

MOV #3, RO
MOV RO, -(SP)

to one instruction:
MOV #3, - (SP)

Other global optimization techniques require examining large segments of the
code. Such techniques can handle cases like saving partial results that are used
more than once in registers. For example, our code for the function mul t gen
erated (- numl 1) twice. In the hand-generated version, this computation was
computed once and then saved in a register.

One should play dose attention to loops (sections of code that are repeated) to
assure there are no unnecessary instructions. Registers should be used frequently
to improve the time to run since it is typically much faster to access a value held
in a register than in main memory. Careful attention to addressing modes and
the time taken to access the actual address they refer to can result in improved
code performance.

13.10 Summary 365

13.9 Future Trends
Many pieces that make up a compiler are weIl understood and stable. With tools
like lex and yacc, lexical analyzers and parsers are fairly easy to create. Code gen
eration and optimization techniques are subject to change as new generations of
hardware are introduced. For example, early computer systems ran much slower
than today' s computers, so if a computation could be saved by storing it in
memory, that was done. Nowadays many processors are so fast compared to
memory accesses that it's quicker to compute a value twice than to compute it
once, save it in memory, and look it up.

Other hardware advances have radically changed the way compilers are
created. Parallel machines that have more than one processor should have com
pilers that take advantage of the extra processors and keep as many of them
occupied as possible. This can be done by executing different instructions in
parallel as long as it is not necessary to run them sequentially. For example, the
instructions

(define a (* b Cl)
(define d (/ e (* f g»)

can be executed in parallel, but
(define a (* b cl)
(define b (/ a (* f g»)

can be partially run in parallel. (* b c) and (* f g) can be run in parallel, but
(* b c) must be computed and saved in the variable a before a is divided by (*

f g). Compilers must detect these dependencies.
New programming languages that embody new ideas or paradigms in pro

gramming involve new ideas in compiler creation. Object-oriented and logic pro
gramming languages have ideas and features that must be implemented in
assembly language by the compiler writer. Some parallellanguages are designed
to run on parallel machines. New languages will always be created and compiler
writers will always have new challenges in implementing these on different
machines.

13.10 Summary
• A compiler translates code in one language into functionally equivalent code

in another language.
• An interpreter simulates the execution of code in some language on a

machine.
• A cross-compiler translates code into a language that is understood by a dif

ferent machine than the one on which the cross-compiler runs. It typically
produces assembly language for a different machine.

• Lexical analysis (scanning) converts the individual characters that compose a
program into a sequence of tokens (like number, identifier, define).

• Parsing takes the sequence of tokens and organizes them into a parse tree
according to the syntax (structural rules) of the language.

Parallel machines

366 Chapter 13: Compilers and Interpreters

• Semantic analysis checks the semantics (meaning) of the parse tree to disam
biguate things that look the same but mean different things based on the
types of the identifiers.

• Code generation takes the modified parse tree and produces a sequence of
statements in the language being compiled into (target language).

• Machine language is a numeric language-each instruction is a number-that
runs directly on the hardware.

• Assembly language is a symbolic representation of machine language.
• The program counter is the location of the next instruction to be executed.
• The stack is aspace in the machine where values are added to or deleted from

one at time at the top of the stack.
• The stack pointer indicates the top of the stack.
• The frame pointer indicates the location on the stack of the first parameter to

a function.
• Registers are locations that can be quickly accessed; they are useful for storing

results of computations.
• The arithmetic logic unit (ALU) does the computations (e.g., addition or nega

tion).
• The comparator is used to examine the status of the last computation (e.g.,

was the result negative or zero).

13.11 Additional Reading
Aho, AV., Sethi, R., and Ullman, J.D. (1986). Compilers, Principles, Techniques, and
Tools, Addison-Wesley, Reading, MA

Aho, AV. and Ullman, J.D. (1977). Principles o[Compiler Design, Addison-Wesley,
Reading, MA

Wilhelm, R. and Maurer, D. (1995). Compiler Design, Addison-Wesley, Harlow,
England.

Wirth, N. (1996). Compiler Construction, Addison-Wesley, Harlow, England.

13.12 Code Listing
; Generate code for a list of expressions.
(define (code-gen-expr-list expr-list reg-list symbol-table)

(for-each
(lambda (expr)

(code-gen-expr expr reg-list symbol-table))
expr-list))

(define fatal-error 'not-yet)

(call-with-current-continuation
(lambda (stop)

(set! fatal-error stop»)

Print out instruction and operands.
(define (output instruc . addrs)

(display" ")
(display instruc)
(cond «not (null? addrs»

(display" ")
(display (first addrs»
(for-each

(lambda (addr)
(display", ")
(displayaddr)

(rest addrs»»
(newline))

Lookup address of symbol in symbol table.
(define (symbol-address symbol symbol-table)

(let ((address (assoc symbol symbol-table»
(if address

(cdr address)
(fatal-error

(string-append
"Undefined variable:"
(symbol->string symbol»»)

13.12 Code Listing 367

; Generate code for a single expression saving return value in the
; first register of reg-list.
(define (code-gen-expr expr reg-list symbol-table)

(let ((result (first reg-list»)
(cond «symbol? expr)

(output 'MOV (symbol-address expr symbol-table) result»
«number? expr)

(output 'MOV (literal expr) result»
«is-if? expr)

(code-gen-if expr reg-list symbol-table»
«is-func-def? expr)

(code-gen-func-def expr reg-list symbol-table»
«is-built-in-func? expr)

(code-gen-built-in-func expr reg-list symbol-table»
(else; otherwise it's a user-defined function call

(code-gen-user-func expr reg-list symbol-table»»)

; Test if expr is an if expression.
(define (is-if? expr)

(eqv? (first expr) 'if))

368 Chapter 13: Compilers and Interpreters

; Test if expr is a function definition.
(define (is-func-def? expr)

(eqv? (first expr) 'define)

Test if expr is a call to a built-in function.
(define (is-built-in-func? expr)

(member (first expr) '(+ - < > /= <= >=»

Generate astring representing a literal.
(define (literal number)

(string-append "jln (number->string number»

Generate astring representing an indirect address.
(define (indirect address)

(string-append "(" (symbol->string address) ,,)n))

Generate astring representing an indexed address.
(define (indexed address index)

(string-append (number->string index) (indirect address»

Generate astring representing a post-increment address.
(define (post-inc address)

(string-append (indirect address) "+"))

Generate astring representing a pre-decrement address.
(define (pre-dec address)

(string-append li_li (indirect address»)

Return the condition of an if expression.
(define (get-condition if-expr)

(second if-expr))

Return the then-action of an if expression.
(define (get-then-action if-expr)

(third if-expr))

Return the else-action of an if expression or if if none exists.
(define (get-else-action if-expr)

(if (not (null? (cdddr if-expr»)
(fourth if-expr)
if))

Return a function that gene rates unique address labels.
(define (make-gentemp)

(let ((n 0))
(lambda (prefix)

(set! n (+ n 1»
(string->symbol

(string-append prefix (number->string n») »)

(define gentemp (make-gentemp»

(define *condition-assern* '(
(> BGT)
« BLT)
(= BEQ)
(/= BNE)
(>= BGT BEQ)
«= BLT BEQ»

Generate conditional branch to label.
(define (conditional-test condition label)

(let ((assern (assoc (first condition) *condition-assern*»
(if (not assern)

(fatal-error (string-append "bad-instruction: "
(symbol->string (first condition»»

(for-each
(lambda (instruction)

(output instruction label))
(cdr assern»»

Generate a label for a subsequent instruction.
(define (output-label label)

(display label))

Generate code for an if expression.
(define (code-gen-if if-expr reg-list syrnbol-table)

(let ((then-Iabel (genternp "L"»
(end-label (genternp "L"»
(else-action (get-else-action if-expr»)

; 1. genera te code for conditional test

13.12 Code Listing 369

(code-gen-expr (get-condition if-expr) reg-list syrnbol-table)

; 2. create a branch to label if test passes (jump to then action)
(conditional-test (get-condition if-expr) then-Iabel)

; 3. generate code for the else action if one exists
(if else-action

(code-gen-expr else-action reg-list syrnbol-table»

; 4. create a branch to a label following then action (end of if expression)
(output 'JMP end-label)

; 5. insert a label for then action
(output-label then-Iabel)

; 6. genera te code for then action
(code-gen-expr (get-then-action if-expr) reg-list syrnbol-table)

; 7. insert a label for end of if expression
(output-label end-label»)

370 Chapter 13: Compilers and Interpreters

; Create a symbol table for the parameters to a function.
(define (make-table parameter-list)

(if (null? parameter-list)
'()
(cons

(eons (first parameter-list) (indireet 'FP»
(map

(lambda (parameter)
(cons

parameter
(indexed 'FP (- (position parameter parameter-list»»)

(rest parameter-list»»)

Generate eode for a funetion definition.
(define (eode-gen-fune-def expr reg-list symbol-table)

; 1. Generate label for the start of the function, using function name.
(output-label (get-fune-name expr»
(eond «not (null? (get-params expr») ; if funetion has parameters

; 2. Save (push) the current frame pointer on the stack.
(output 'MOV 'FP (pre-dee 'SP»

; 3. Set the new frame pointer to the first parameter.
(output 'MOV 'SP 'FP)
(output 'ADD

(literal (+ (length (get-params expr» 1» 'FP»)

; 4. Generate code for the body of the function.
(eode-gen-expr-list (get-body expr) reg-list

(make-table (get-params expr»)

; 5. Save the return value in register O.
(if (not (eq? (first reg-list) 'RO»

(output 'MOV (first reg-list) 'RO»

; 6. Restore (pop) the old frame pointer from the stack.
(if (not (null? (get-params expr»)

(output 'MOV (post-ine 'SP) 'FP»

; 7. Generate a RET instruction.
(output 'RET))

Return funetion name from funetion definition.
(define (get-fune-name fune)

(eaadr fune))

Return parameter list from funetion definition.
(define (get-params fune)

(cdadr fune)·)

Return body from funetion definition.
(define (get-body fune)

(subseq fune 2))

; Generate code to push values in address-list on stack.
(define (push-vals address-list)

(for-each
(lambda (address)

(output 'MOV address (pre-dec 'SP»
address-list))

13.12 Code Listing 371

Generate code to pop values from stack into address-list addresses.
(define (pop-vals address-list)

(for-each
(lambda (address)

(output 'MOV (post-inc 'SP) address))
address-list))

(define *all-regs* '(RO R1 R2 R3 R4 R5 R6 R7»

; Generate code to call user-defined functions.
(define (code-gen-user-func expr reg-list symbol-table)

; 1. Save (push) the registers currently in use on the stack.
(push-vals (set-difference *all-regs* reg-list»

; 2. Generate code for the arguments and push the results on the stack.
(for-each

(lambda (arg)
(code-gen-expr arg reg-list symbol-table)
(push-vals (subseq reg-list 0 1»)

(get-args expr»

; 3. Call the JFN instruction.
(output 'JFN (get-call-name expr»

; 4. Save the return value in the first register if it's not already there.
(if (not (eq? (first reg-list) 'RO»

(output 'MOV 'RO (first reg-list»)

; 5. Increment the stack pointer past the arguments.
(if (not (null? (get-args expr»)

(output 'ADD (literal (length (get-args expr») 'SP»

; 6. Restore (pop) the registers from the stack.
(pop-vals (reverse (set-difference *all-regs* reg-list»)

Return arguments from a function call.
(define (get-args expr)

(rest expr))

Return function name from a function call.
(define (get-call-name expr)

(first expr))

372 Chapter 13: Compilers and Interpreters

; Generate code for calls to built-in functions.
(define (code-gen-built-in-func expr reg-list symbol-table)

(code-gen-expr (get-first-arg expr) reg-list symbol-table)
(if (has-two-args? expr)

(code-gen-expr
(get-second-arg expr) (rest reg-list) symbol-table»

(cond «is-negation? expr)
(output 'NEG (first reg-list»)

«is-addition? expr)
(output 'ADD (second reg-list) (first reg-list»)

«or (is-subtraction? expr) (is-comparison? expr»
(output 'SUB (second reg-list) (first reg-list»»

; Test if function call has two arguments.
(define (has-two-args? expr)

(= (length expr) 3))

Test if function call is a call to unary - (negation).
(define (is-negation? expr)

(and (eqv? (first expr) '-)
(= (length expr) 2»)

; Test if function call is a call to + (addition).
(define (is-addition? expr)

(and (eqv? (first expr) '+)
(= (length expr) 3»)

; Test if function call is a call to binary - (subtraction).
(define (is-subtraction? expr)

(and (eqv? (first expr) '-)
(= (length expr) 3»)

; Test if function call is a call to a comparison function.
(define (is-comparison? expr)

(and (member (first expr) '(> < >= <= = /=»
(= (length expr) 3»)

Return first argument to function call.
(define (get-first-arg expr)

(second expr))

Return second argument to function call.
(define (get-second-arg expr)

(third expr))

CHAPTER 14

OPERATING SYSTEMS

14.1 Operating Systems
The operating system serves a number of functions in a computer system. It acts as
an abstraction level between the hardware and the software to facilitate access to
programs existing in the computer system. The operation system provides a
simpler means of dealing with the resources that programs must use such as
memory, printers, and input and output (1/0) devices (terminals, keyboards, and
mouse). The operating system handles the information stored within the com
puter system; this information is typically maintained as a file system. The operat
ing system takes care of the computer system memory, handling its distribution
to programs running on the computer, and protection such that one program
cannot corrupt another program. The operating system manages the programs
running on the computer system to best utilize the resources of the computer;
this is called process management. Each of these areas is discussed in more depth
below. However, to better und erstand the workings of an operating system, it is
important to understand the different pieces composing a computer system.

Computer systems consist of various interconnected parts each serving a spe
cialized purpose. Let's review some of these pieces that were introduced in ear
lier chapters. The central processing unit, or CPU, is the "brains" of the computer
system. It does all the arithmetic and logical computations, comparisons, and
jumps to different instructions. The CPU understands machine language instruc
tions only. It is direct1y connected to the main system memory, consisting of RAM
(random access memory) and ROM (read only memory). RAM can be read from
and written to, but ROM can be only read from. Both RAM and ROM can be ran
domly accessed meaning any location can be jumped to quickly. There are also
sequential access memory devices in which the memory must be accessed in a
sequence. Think of the difference in going to the start of a song using a CD player
versus with a tape deck. A tape deck has sequential access only, whereas the CD
player has random access allowing you to jump to the start of another song.

RoJe o(the operating
system

Computer systems

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

374 Chapter 14: Operating Systems

Early computers

Peripheral devices
and device drivers

In addition to main memory, the epu is connected to secondary storage, which
consists of tape drives (usually used for backups) and disk drives, which are like
eDs that can be read from and written to. The epu can access peripheral devices,
like printers, keyboards, mice, and terminals for displaying information. A com
puter system comprises all of these different components. It is important not to
confuse the epu with the entire computer system. The operating system exists in
main memory, runs on the epu, and controls the entire computer system.

Terminal

Keyboard ~--------~

Mouse

14.2 Historical Background

epu

Printer

Main
Memory

1-E------------:lOoI Disk drive

Tape drive

The first computers were programmed by entering binary instructions directly
into the machine one instruction at a time. With such a computer system, an
operating system was not necessary. Only one person could use the computer at
a time running only one program. There were no terminals, keyboards, window
systems, or mice (except fuzzy ones). There were no files or directories. All
memory was accessible to the programmer and there were no other peripheral
devices that an operating system would have to handle. The machine would
display results via a row of lights representing one binary word in the machine's
memory. Each light corresponded to one bit; if it was on it was a 1, otherwise a O.

As advances in computers began, the need for operating systems arose. Tog
gling instructions directly into the computer gave way to paper card readers that
used punch cards to hold instructions. Une printers were developed to facilitate
getting output from the computer. Tape drives were used to save programs so
they didn't have to be loaded in from cards each time. Each of these peripheral
devices required programs ca lIed device drivers that enabled the epu to access
and use the devices. At first these device drivers were loaded in with the pro
grams to be run. Later they became part of the operating system.

14.2 Historical Background 375

With card readers came the advent of batch processing in which users would
submit their programs (a stack of cards) and then come back later to get the
results (output from the line printer). The cards contained the program as weH as
special job control cards. Job control cards indicated the start and end of different
jobs (user programs) and the start of the data for the programs (if any). A pro
gram caHed a monitor recognized these control cards, loaded the programs into
the computer, and started running the programs. The monitor contained device
drivers to handle peripheral devices.

Disk drives provided a more flexible means of data storage than magnetic
tape. Tape is read and written sequentiaHy and one cannot rapidly jump to a par
ticular section of a tape. Disks, on the other hand, give random access. Information
can be read from one part of the disk by a program, and new information can be
written to another part of the disk in a rapid manner. Random access aHows one
to move rapidly to a new memory location, for example jumping from song to
song on a CD versus using the (not so) fast forward button on a tape deck.

Another big improvement in computer throughput came about through the
use of multiprogramming and timesharing in computer systems. Multiprogram
ming involves switching between jobs when the CPU is idle. A computing sys
tem spends its time doing CPU work and 1/0 work. CPU work is the time that
that CPU is executing instructions (e.g., doing computations, comparisons, and
jumping to different instructions). 1/0 work is reading and writing information
from and to sources like card readers, keyboards, line printers, and terminals. A
job is termed l/O-bound if it does a great deal of 1/0 work and CPU-bound if it
primarily does CPU work. When a job is doing an 1/0 operation the CPU sits
idle while the 1/0 device waits for the desired information to be input or
displayed. This can involve seconds or much longer in the case of an I/O-bound
job with a great number of 1/0 operations. This is a very long period of time for
a CPU, which may be capable of executing hundreds of millions of instructions
per second. Even a slow processor (by today's standards) performs on the order
of ten million instructions per second! In the few seconds it takes to respond to a
query, this relatively slow CPU could have performed millions of instructions.

Rather than wait for 1/0 events to finish or arrive, a multiprogramming sys
tem will switch to a different job and let that job run until it finishes or gets an
I/Oevent. This gives better usage of the CPU and means that more jobs can be
run in the same amount of time.

Timesharing is an extension of multiprogramming. With multiprogramming
and batch processing, jobs are submitted and the output is ready some time later
when the job finishes. In a timesharing system each user ruis a terminal where
they can communicate with the operating system and submit jobs directly. The
job's output can be seen on the terminal as the job is being run, instead of at the
end of the job in batch systems.

1. The instructions per second of a machine is a function of the CPU's dock speed in cydes per
second (typically given in megahertz) and the number of cydes per instruction, which varies
depending on the CPU and maybe even the instructions themselves.

Batch processing and
monitors

Diskdrives

Multiprogramming

Timesharing

376 Chapter 14: Operating Systems

Network operating
systems

Distributed operating
systems

Resource allocation
goals

To provide more equity among CPU-bound jobs, timesharing systems switch
jobs after a job has run for a certain period of time without an 1/0 request. This
time period is called a quantum. Even with many people using the computer at a
time, multiprogramming gives each job some CPU time while the other jobs are
waiting for 1/0 requests to finish or have used their quantum. If there aren't too
many jobs contending for the CPU at a time, the user has the illusion that she is
the only person using the computer. This illusion rapidly disappears as the
number of users and jobs grows.

With the advent of networks interconnecting computers, network operating sys
tems developed. At first simple changes were made to the operating system to
support networks. These changes allowed users to send messages to other
machines via e-mail, copy files to or from other machines, and remotely log on to
machines. Later more sophisticated systems like SUN's network file system
(NFS) were developed to make remote file acquisition invisible to the user. With
NFS, computers with no local disks (diskless nodes) could be used in a network.
These diskless nodes would get all their files from a file server.

Access to other CPUs in a network is typically not allowed without special
permission or a password. And even if you can access another computer on the
network you are on, you are in effect running a job on that computer just as a
user who is connected directly to that computer would.

Distributed operating systems make the use of multiple CPUs in a network as
invisible as network file systems make remote file access. A distributed operating
system decides on which CPU (or CPUs) to run your job. This involves a great
deal of changes to the operating system. The process scheduler (which decides
which job to run) must be changed to support multiple CPUs. This gets more
complex if different CPUs have specialized hardware or resources (for example,
a fast floating point unit or high resolution color laser printer). If a job is run on
multiple CPUs at the same time, the operating system must know where a job
can be split to run in parallel and which parts must be run serially, or when one
CPU must wait for another to finish before starting. The way that memory in a
job is handled is tricky as well. Some distributed systems use the idea of shared
memory and others use a message passing system.

Now let's look at the jobs that the operating system does in more detail.

14.3 Resource Allocation
The resources of a computer system are devices that the operating system or pro
grams may use. These include printers, tape drives, 1/0 devices, and memory.
The CPU is a resource as well. The goals associated with resource allocation are
outlined below:

• Get the best usage of the system resources.
• Provide a simple means of allowing programs to get access to resources.
• Provide proteetion such that one program cannot interfere with another

program's use of nonshareable resources.

14.3 Resource Allocation 377

• Assure that the system avoids deadlock, which occurs when two or more pro
grams cannot continue because they are waiting for resources being used by
other programs.

One commonly used technique to increase epu utilization is spooling, which
involves writing information for peripheral devices to areas of memory (buffers).
The epu is much faster than most peripheral devices and to best utilize it, we
should keep it occupied at aH times, not waiting for slower devices to finish
doing what they need to do. For an analogy, imagine a teacher in an introductory
foreign language dass giving the dass an exercise to translate a sentence. She can
go to each student one at a time giving each a few words and then patiently wait
for their slow response before giving more words. Or she can write the sentence
on the board (a buffer) where each student can read and translate the words at
their own rates. The students can write their translations on paper (more buffers),
whereupon the teacher can check the translations, examining many words at a
time rather than the slow one-word-at-a-time stream from each student as they
are translating.

Rather than have the epu wait for peripheral devices to be ready to receive
data, it is best to send that data to a buffer. The epu can write information to a
disk or RAM buffer much faster than to most peripheral devices. Then the device
can read the data from the buffer directly at its own leisurely rate. Some devices
that take input also produce output. These devices may spool their output to a
buffer as weH. This reduces the number of times the device must interrupt the
~PU for each little part of the output it produces. Imagine how wasteful it would
be if the teacher had to run to each student every time they produced a single
word to verify it was correct. It is much more efficient to process many words at
a time. These spooling techniques are used for devices that are slow and
nonshareable, like printers and tape drives.

The operating system provides a means to access system resources. This saves
programmers a great deal of headaches and hassles. Dealing with peripheral
devices involves knowing a lot of specialized communication protocols, rules for
how to "talk" to the device. If the operating system takes care of these low-level
communication details and provides functions that the programmer can use to
access the peripheral devices, the programmer's job is much easier and less prone
to error.

Using functions provided by the operating system to access peripherals helps
make programs more portable. A program that runs on the Macintosh operating
system can run on many different types of Macintosh and Macintosh-done com
puters. The machines must have the same epu or the same family of epu
because the programs are delivered in the object code of the epu. The object code
is what the compiler produces and is what the underlying machine understands.
The operating system can handle the differences between the various types of
printers, monitors, keyboards, and hard drives that exist on these systems.

Protection is another advantage of using operating system functions for
resource access. If programs had complete access to a11 of the system's memory,
or to printers and tape drives, chaos and possibilities of corruption would ensue.

Spoo/ing to buffers

Simp/ifying
programming

Portabi/ity

Protection

378 Chapter 14: Operating Systems

One could write a program that could write into the same memory space that
another program was using. Or if two programs were using the printer at the
same time, the output of both programs would be interspersed. The operating
system can prevent this by only allowing programs to use the part of the memory
that they have been allocated, and to control access of peripheral devices such
that nonshareable devices (like printers and tape drives) cannot be used by more
than one process at a time.

Deadlock Deadlock is a subtle but crippling problem that the operating system must

Critical sections

prevent. Deadlock can happen when two or more processes are in contention for
the same nonshareable resources. Imagine that processl is using the printer and
process2 is using the tape drive, hence each process has acquired a nonshareable
resource. Now suppose that processl needs to use the tape drive and process2
needs the printer. They will both request these resources, which, of course, are
being used. Both processes will wait until those resources are available, but in
waiting they cannot continue. Thus they cannot release the resources they have
already acquired. Since each process is waiting for resources that cannot be freed,
the system is locked up-d.eadlock.

The classic example of deadlock is the dining philosophers problem from
Edsger Dijkstra. Here is a slight variation on that problem. The situation is this:
There are five philosophers sitting at a round table in a Chinese restaurant doing
what philosophers do, namely eating food and thinking. This restaurant has cut
down costs and only gives each philosopher one chopstick instead of two. To eat,
a philosopher must pick up the chopstick to her left and then the one to her right.
When done eating the philosopher replaces the chopsticks. If her neighbors are
thinking instead of eating, this works fine, but if one or both are eating, then she
must wait. A deadlock situation arises when all philosophers are hungry at the
same time and each picks up the chopstick to their left and then wants to grab the
right chopstick. All five philosophers will be stuck waiting for a second chop
stick.

There are a number of means to prevent deadlock. One method is to require
that processes acquire all the resources that they will need before they begin run
ning. This can make for a very inefficient system, however. Another means is to
try to stop deadlock before it occurs. This can be done by defining certain regions
of the code as critical sections, those in which shared resources are used. By only
allowing one process in a critical seetion at a time and carefully structuring the
way that requests for resources are allowed, deadlock can be avoided. For exam
pIe, deadlock can be avoided in the dining philosophers problem by only allow
ing one philosopher at a time to decide if the two neighboring chopsticks are
available. If they are, then the philosopher takes them and eats. Any neighboring
philosopher who attempts to eat then will have to wait because both chopsticks
are not available.

In general, preventing deadlock is more involved and requires some trade
offs. One solution is to numerically order all the resources and require processes
to acquire resources in order. This means that a process can never obtain a
resource and then request one numbered less. Making all nonshareable resources

14.4 Process and Memory Management 379

shareable through techniques such as spooling, where devices write to disk
rather than the device itself, is another way of preventing deadlock.

14.4 Process and Memory Management
The CPU is the most valuable resource of the computer system, and a good
operating system will try to keep the CPU in use at all times. Getting the best
usage of the CPU is handled primarily by the part of the operating system that
deals with process management. A process is a program or application running on
the computer. The term job is often used for processes. Process management tech
niques vary depending on the hardware and type of the operating system. The
heart of process management is the scheduler, which decides when processes are
run and temporarily stopped (blocked). Different scheduling algorithms are
shown in sections 14.8 and 14.9.

Processes can be in one of three states: running, ready to run, or waiting (or
blocked) for some 1/0 request to finish. Process management concerns itself with
the movement of processes between these three states. The following diagram
illustrates this:

start job 1/0 complete

job done

When a user submits a job to be run it goes to the ready queue. The scheduler
picks jobs from the ready queue so they are run. A job stays running until it
requests 1/0 or uses up its quantum~ If a job requests 1/0 it moves to the wait
state until its 1/0 request has been serviced. Once serviced the job is moved to
the ready queue. If a job uses up its quantum, it returns to the ready queue.

Process scheduling can be measured using many criteria. Some of these cri
teria are mutually exc1usive-improving one diminishes another. Seven criteria
are summarized in the table below:

2. A job stays running based on these reasons in a preemptive scheduler. In a nonpreemptive
scheduler there are no quantum time outs, and in a batch scheduler, there is no blocking for 1/0.

Process management:
improving CPU
utilization

Process states

Measuring process
scheduling

380 Chapter 14: Operating Systems

Response time, wait
time, and CPU usage

Turnaround time and
throughput

Memory management

Virtual memory and
demand paging

criterion
response time
waittime
CPUusage
turnaround time
priorities
equality
throughput

measures
the time a job waits before it gets to start running
the time that each job spends waiting to be run
percent of time that the CPU spends executing jobs
the time it takes for a job to finish
the turnaround time of high priority jobs
the variation in turnaround time between jobs
the number of jobs run in a given time

Minimizing response time is important in timesharing systems because the
sooner a job starts, the sooner some output can be seen. The CPU can produce
output faster than it can be displayed and much faster than it can be read, so giv
ing users at least a little output early on keeps them happy and busy. Wait time
measures the response time from the time a job is loaded into memory ready to
be run and all the additional times it is waiting in the ready queue to be run again
after using its quantum or blocking for an 1/0 request. These are really the times
that are affected by the scheduler, rather than the time spent doing processing or
handling 1/0. Wait times should be minimized. CPU usage looks at the time the
CPU spends processing jobs. The time spent servicing 1/0 requests or waiting to
be run is not included in this measurement. CPU usage should be maximized.

Turnaround time is the sum of the wait time, CPU time, and 1/0 time of a job.
It is the measurement that the users are aware of as they wait for their jobs to
finish in either a batch or timesharing system. Turnaround should be minimized.
There are three variations on how turnaround figures can be used: focusing on
high-priority jobs at the expense of low-priority jobs; keeping turnaround as con
stant as possible in a no-priority environment; and throughput. Throughput is a
good overall measurement of a scheduler. Throughput is the number of jobs that
complete in a certain time period. Dividing this overall time by the throughput
gives an average turnaround figure. Throughput should be maximized.

Processes exist in the main memory (RAM) of the computer when they are
run. The simplest approach to handling the memory of a process is to load all of
a process into the memory before it starts running and keep it there until the pro
cess finishes. However, this means that no process can be larger than the avail
able memory on the machine. This approach becomes more problematic if the
operating system allows more than one process to be run at the same time.

Virtual memory allows programs that do not fit in their entirety in the
computer's main memory to be run on the computer. In a computer system that
supports virtual memory, the operating system must support demand paging.
With demand paging, an entire process is not loaded into memory. Instead only
part of the process is loaded; other parts are loaded only if they are needed and
are not present. This may require that part of the same or another process be
moved out of the computer's memory to make room. The operating system must
take care of this movement (swapping) as well, deciding what is best to swap out
to keep the system performing well and avoid thrashing. Thrashing occurs when
the operating system spends all of its time switching between parts of processes
in memory. The parts of a program that are moved are called pages, which is

14.5 File Systems 381

where the term demand paging comes from.

14.5 File Systems
Information saved on the computer is organized into files and directories.
Together, these make up the computer's file system. The operating system usually
maintains the file system. Files represent information such as a cooking recipe, a
Scheme program, a list of addresses, a letter to a friend, a saved screen image, a
digitally encoded song, or even part of an operating system.

Files are organized into structures called directories. Directories can be
viewed as drawers in a file cabinet and files as file folders in those drawers. What
is written on the papers in a file folder is the contents of the file. The name on the
tag of the file folder is the name of the file. Directories are used to organize collec
tions of files into groups just as you might organize file folders into different
drawers of a file cabinet. The file cabinet metaphor falls apart, though, as direc
tories can have other directories within them. This would be like opening up a
file cabinet drawer and finding other file cabinet drawers within it.

Files can be created from scratch, added to, changed (edited), merged with
other files, searched through, sorted, shared, and printed (just to name a few
operations). Some of these are operations that the operating system performs and
some are operations that programs that work with files support. With many
microcomputer operating systems, certain file operations (such as searching,
creating, editing, and printing) are performed by separate software applications,
such as word processors or database management systems. The operating system
performs organizational operations like creating directories, moving files within
directories, copying files, and deleting files. In larger computer systems like
workstations or minicomputers, the operating system is usually more sophisti
cated and provides many file and directory functions. These operating systems
usually have editors, text processing systems, and tools to search for patterns in
files or make changes to files based on matched patterns.

Most files are collections of characters (text fi'es) or binary information (binary
files). Text files are used to hold human readable information. Each character is
represented internally as a number using some standard that specifies a mapping
between numbers and characters. ASCII or EBCDIC are two such standards.
Binary files hold computer code that the CPU can understand. When a program
is compiled into machine language, the result is a binary file (an object file) that
can be executed on a machine.

Files can take on other forms as weIl. Files can hold information in some spe
cial proprietary format-many programs save their data this way. Files can be
encrypted such that they are secure. Files can be encoded according to some stan
dard such that they can be made available to other computer systems that use
different operating systems or CPUs and have different text and binary represen
tations. Files can be compressed using compression programs to take up less disk
space, and entire directory structures can be represented as single files. All of
these different representations serve particular needs and have advantages and

The file system and
files

Directories

Operations on files

Logical
representations of
files

382 Chapter 14: Operating Systems

Physical
representations o(

files

Example utilities

Synchronous and
asynchronous
communication

disadvantages.
All of the above differences aside, there is a distinction between how a user

views a file and how the computer system stores a file. The user sees the file as
text, a movie, a screen display, or music. The computer system represents the file
in a very different form. The vast majority of today's computers are binary com
puters. They only deal with binary numbers, thus the representation of files is as
binary information (a collection of zeroes and ones). A single zero or one is called
a bit. A single character is represented using eight bits (a byte).

The human view of the file represents pieces of the file as logical records, and
the machine's representation is as physical records. These physical records are
stored as blocks. A block is a fixed amount of space, typically 512, 1,024, or 2,048
bytes long? In most instances the logical record differs in size from the physical
record. A text file uses a character (one byte) as its logical record. In a system that
uses 1,024-byte blocks, each block holds 1,024 characters and a file with one char
acter in it would use one block of space--as much as a thousand-character file
would.

14.6 Utilities
Most operating systems provide a great number of utility programs. One set of
commonly available utilities let the user create and manipulate information
stored on the computer. We have discussed some of these in section 14.5 above.
File utilities allow users to create files from scratch, edit existing files, concatenate
(join) files, sort files, merge sorted files together, search for patterns in files, com
pare files, share files with other users, and print files. Some operating systems
provide utilities that are miniature programming languages (UNIX's awk and
perl) to perform complex operations on files.

Operating systems usually provide operations to display information on ter
minals and print to printers. These seemingly simple-sounding operations are
complicated because there are few standards for terminals or printers. The
operating system must know how to "talk to" different terminals and printers to
produce the desired results. Ideally, the difficult parts are kept invisible from the
user.

Facilities to communicate with other users are another commonly provided
operating system feature. Communication can be synchronous or asynchronous.
The telephone is an example of a synchronous communication device. Both par
ties are actively participating in the dialogue at the same time. Writing letters and
sending them via the postal service is an example of asynchronous communica
tion. Communication happens at a slower speed, but both parties need not be
present at the same time to get messages across. Electronic mail (e-mail) uses
asynchronous communication. There are utilities (e.g., talk in UNIX) that allow
users to talk to one another at the same time (synchronous communication) even

3. These numbers are based on the size of sectors in the disko Sectors are physical sections of disks
that are typically 512, 1,024, or 2,048 bytes long. These numbers are all powers of 2.

14.7 Types 0/ Operating Systems 383

across the planet.
Other communication protocols exist like USENET -a huge collection of spe

cial interest groups to which individuals can read and write-and other bulletin
boards and information sources like Gopher, WWW (World Wide Web), and
WAlS (Wide Area Information Service). Browsers are programs that enable users
to retrieve information and search through large databases. Netscape Navigator
and Microsoft Internet Explorer are two popular browsers to search through the
World Wide Web. This network allows images, movies, sound, and text to be
retrieved. Browsers may not be part of an operating system, but the operating
system takes care of many of the communication details that browsers use to link
to different machines.

14.7 Types of Operating Systems
The simplest type of operating system is a single-user/single-job system. Such a sys
tem only allows one person to use the computer at a given time and run only one
job at a time. The earliest computers and the early microcomputers used this type
of system. In the case of early computers, there was no operating system at all.

Another type of operating system is a batch system. In a batch operating sys
tem there may be many users who have access to the computer, but the computer
runs only one job at a time. Jobs are typically run in a first-come, first-served
fashion, and the turnaround time, the time between submitting your job to the
computer and getting the results back, can vary dramatically (anywhere from
minutes to hours to days).

Interactive operating systems are systems that support many users running
many jobs at roughly the same time. The operating system switches between jobs
to best utilize the CPU and share it among all the jobs waiting to be run.

Realtime operating systems guarantee that jobs will run at a certain speed. Such
systems are important whenever timing issues are critical. If you need to meas
ure the time it takes for an event to occur, you need to guarantee that your pro
cess is not interrupted. In a timesharing system an interrupt may happen. Music
environments, control systems, and medical systems are examples where real
time systems are needed.

A computer network is created by connecting computers together with cables,
allowing information to be sent and received between computers. There are both
short-range networks called loeal area networks or LANs, and long-distance net
works called wide area networks or WANs. The computers hooked up to such net
works need- some way to communicate and share information with other com
puters on the networks. The network operating system typically provides some
level of support for this. In network operating systems each machine is auto
nomous, having its own unique running operating system.

Messages (e-mail) and files may be sent between machines in networked sys
tems. To exchange files with remote machines, a network operating system pro
vides a mechanism to explicitly send files. In addition to file access, networked
operating systems typically support remote access to other machines such that a

Single-job system

Batch systems

Interactive systems

Realtime systems

Networks and
Network operating
systems

384 Chapter 14: Operating Systems

File server and clients

Distributed operating
systems

Scheduling algorithms

user can conneet directly via the network to a remote machine.
The exact location of a user's files can be made invisible to the user. They may

exist on a different machine from the one the user is connected to, the same
machine, or even on a eollection of machines. File access is sometimes explicitly
made or can be invisible to the user such that the operating system gives the illu
sion that files are on the local maehine when in reality they are on a different
machine or file server. A file server maintains files for other machines (clients). The
advantage of such a system is that files only need to be maintained on the file
server so each dient has smaller local disk storage requirements. In the case of
the latter, from the user's perspective the files are alliocal.

Each computer does not need to be connected to all the other computers in
the network. Information may go from one computer to another through various
other computers along the way to its destination. A network operating system sup
ports the transmission of information among computers connected to one
another via some type of network.

Distributed operating systems work with many machines connected together via
a network or through shared memory. In distributed systems the user has the
illusion of using the loeal machine when in reality she may be using a remote
machine or many at onee. As in network systems, files can be accessed remotely.
In addition, processes may run on any machine(s) on the network to best utilize
the available CPU resources. Performance from the user's point of view is greatly
enhanced when a job is run on the least loaded CPU or split up to run on many
CPUs at the same time.

Distributed systems are a lot more eomplex than single CPU systems and
creating operating systems, compilers, and software that best utilize multiple
CPUs is a challenge. However, distributed systems offer great improvements in
speed (splitting the job load among many processors), reliability (if one CPU
fails, there are still others that can be used), and division of labor or resource han
dling (each CPU can specialize on certain tasks or handle certain peripherals that
can be shared among aB the CPUs in the distributed system).

14.8 How a Scheduler Works
Before running a job, the operating system must load the job into memory and
then put that job into the ready queue of jobs waiting for the CPU. Once the job is
started, a timer must be set allocating the maximum time limit, quantum, for that
job until the next job waiting may run. If the job makes any 1/0 requests, the
operating system must handle them. While the job is being serviced with an 1/0
request, it is blocked until the 1/0 request is complete. Once complete, the job is
put into the ready queue again.

Let' sexamine the internals of the scheduler in a multitasking operating system.
Multitasking is another term used for multiprogramming and typically refers to
an operating system with the ability to switch between processes (also called
tasks) that are initiated by a single user. In a multitasking system the scheduler
decides which job in the ready queue should be run next. The scheduler must

14.9 Implementing a Scheduler in Scheme 385

make its decision to provide the highest degree of throughput possible. Many
different algorithms can be used. The simplest approach is first-come, first-served
scheduling. In this approach the job that is first in the ready queue is the one the
scheduler chooses. This approach is easy to implement, but tends to be inefficient
as it is a nonpreemptive algorithm. A nonpreemtive scheduler does not allow
another job to replace (or preempt) an existing, running job unless it requests
1/0. This means that other jobs in the queue will wait if a large CPU-bound job
comes before them in the ready queue.

Another scheduling algorithm is to base the choice of which job to run next
upon job priority or type of job. If a job is given a high priority, it will be run
before other jobs. A low-priority job will not be run unless the system is rela
tivelyempty. This is beneficial in terms of getting better performance for those
users who have high-priority jobs, but certain jobs may wait a long time if their
priority is set too low.

Choosing a job based on its type (CPU- or I/O-bound) can result in overall
system performance improvement. If I/O-bound jobs are chosen first, the aver
age response time and turnaround time improves. I/O-bound jobs will be
blocked when they do 1/0 requests, enabling other jobs to run while the 1/0
request is being serviced. If CPU-bound jobs are run first, the I/O-bound jobs
must wait for their completion before starting, and then the CPU will sit idle
while the I/O-bound jobs are getting their 1/0 requests serviced. The average
waiting time will be greater. For CPU-bound jobs, choosing shorter jobs first will
result in shorter average response times-the time it takes for a job to get started.

Round-robin scheduling is another technique that is like first-come, first-served
scheduling, except it is preemptivei it adds a time limit to the CPU time. Each job is
given a time slice (quantum), and once that has been used up, the job times out
and another job runs. This approach works weIl in timesharing operating sys
tems.

14.9 Implementing a Scheduler in Scheme
We will implement two schedulers in Scheme. One is for batch jobs and the other
for multitasking environments. The scheduling algorithm will be a function that
is passed (as a parameter named select) to our schedulers. This way we don't
have to write a different scheduler for each algorithm we wish to use. We need
only write a different scheduling algorithm function. Part of the scheduler's job
will be to measure the efficiency of the scheduling algorithm used. This will
enable us to compare different scheduling algorithms.

We will need a representation for jobs that are waiting to be run. These job
descriptions will be arguments to our scheduler function. They should provide
enough information about the jobs such that the different scheduling algorithms
can be used. We need to indicate job priority and CPU and 1/0 times used.

To measure job timing we will need time constants for the quantum used
(*quantum*), and the time it takes to do a switch from one job to another, context
switch (*context-switch*). The context switch involves saving and restoring

Quantum and context
switch times

386 Chapter 14: Operating Systems

Representing jobs

Loops

Measuring the
effectiveness of our
scheduler

registers and certain data structures used in the operating systems to keep track
of processes and their memory. It also includes the time that the scheduler takes
in making the choice of which job to run next. We'll use one tenth of a second
(100,000 microseconds) for our quantum and 100 microseconds as the time to do
a context switch.

14.9.1 Deciding on a data structure
The main data structure is for jobs. Each job can be represented as a list-a job
description. A collection of jobs can be represented as a list of job descriptions.
We should have some means of indicating when jobs arrive (are ready to run) at
the computer system. Let's make the ready time the first item in the job descrip
tion list. The second element is the priority of the job ranging from 1 to 10, with
10 being the highest priority. If the priority is not needed, #f will be used instead
of a priority number. The next items in the job description are the times required
for CPU and 1/0. 1/0 times will be prefaced with the symbol io. In general, a job
description looks like the foIIowing.

(ready-time priority times)
Many jobs have loops, and rather than repeat CPU and 1/0 times in the

loops, we can use a list to represent a loop. The first element of the list is the
number of iterations of the loop. The remaining elements are the CPU and 1/0
times. All CPU and 1/0 times are expressed in microseconds. One second is one
million microseconds and one miIIisecond is one thousand microseconds. For
example, the list

(2000000 #f 1000 io 1000000 600 (4 io 100000 500»

represents a job arriving (ready) after 2 seconds with no priority. The job spends
1 millisecond of CPU time and then 1 second of 1/0 time, followed by 600
microseconds of CPU time, and then enters a loop 4 times. Each time through the
loop the job performs a 100 millisecond 1/0 request followed by 500
microseconds of CPU time.

Such job descriptions, along with a scheduling algorithm, are passed to our
scheduler which returns performance measurements of the scheduling algo
rithm. We can make use of applicative operators to run job lists against a variety
of scheduling algorithms to test which scheduling algorithm works best for those
jobs. Another useful thing would be to test each scheduling algorithm against dif
ferent job lists. We can determine if certain scheduling algorithms work best in
general or work best for CPU-bound jobs or I/O-bound jobs.

Section 14.4 presented various ways of measuring scheduling algorithm effec
tiveness. Response time (the time a job waits to be run) and wait time (the total of
all times a job spends in the ready queue waiting to be run) are good measures
because they don't take into account the CPU and 1/0 times of the jobs, like tur
naround time and throughput do. However, these measures don't tell us about
CPU utilization. CPU utilization is a good measure because it focuses only on the
CPU, which is the resource for which the scheduler is trying to maximize usage.
However, CPU utilization can be high but the overall system performance can be

14.9 Implementing a Scheduler in Scheme 387

suboptimal if the scheduling algorithm switches between jobs too often by using
a low quantum. Ideally, most jobs should finish their CPU bursts within the
given quantum for improved efficiency. Throughput (the number of jobs com
pleted in some amount of time) is a convenient measure to use because it gives
an overall picture of the operating system's performance. Given a fixed job list,
we can use throughput as a measure of scheduling algorithm efficiency because
the CPU and 1/0 times are constant, so they won't affect the results when doing
comparisons between scheduling algorithms.

14.9.2 Building a batch scheduler
The scheduler, as we have been describing it,takes a list of job descriptions and a
scheduling algorithm. The scheduling algorithm decides which job to choose
given a job description list, whereas the goal of the scheduler is to handle the tim
ing. The scheduler must keep track of the time the CPU and 1/0 devices spend
handling parts of a job and the time that each job spends waiting to be run. The
exact time figure we return depends on which measure of scheduler performance
we choose, or we can be flexible and return different performance measures. Our
scheduler will be flexible and return a list of CPU, 1/0, and wait times. These
times can be used to compute the average wait time, CPU utilization percentage,
percent of time spent handling 1/0, and total time spent to complete all the jobs.
In addition, the scheduler will print out each job as it is run, along with its start
time and the amount of CPU, 1/0, and wait time the job used. This information is
useful in verifying that the scheduler is working properly.

To save the running totals for wait, CPU, and 1/0 times, we can use different
variables that we change using set I. We can avoid setting global variables by
using variables defined in a 1et. Another way would be to use additional param
eters in our function and change these as we make recursive calls with smaller
portions of the job lists. This final solution is cleaner.

To start we'll create a batch scheduler that takes a job description list and
decides which job to invoke based on the scheduling algorithm, which uses infor
mation like the order in which the jobs arrive in the ready queue and the priority
of the jobs. Once a single job has been chosen, it can be processed by aseparate
function. This provides a nice breakdown of our overall problem. The function
that processes a job takes a job description list and recurses through it adding the
job's CPU and 1/0 times to running totals. It is best to call this function using a
job description with the ready time and job priority stripped off, since we will
recurse only on the CPU and 1/0 times. The function tirnes will do this.

The extra parameters for the total CPU and 1/0 times must be incremented
based on the current time value being processed in the job description list. This is
complicated by loops that are represented as sublists. However, if we take
advantage of the recursion, we can handle such sublists.

Below is a first attempt at the code to run a batch job to completion.

Maintaining CPU, 1/0,
and wait times

Processing a single
job

388 Chapter 14: Operating Systems

Preprocessing loops

; Simulate running a batch job - version 1.
(define (run-batch-job job-times cpu-time rio-time)

(cond «null? job-times) (list Cpu-time rio-time»
«number? (car job-times» ; CPU time

(run-batch-job (cdr job-times)
(+ CPU-time (car job-times» riO-time»

«symbol? (car job-times» ; rio time
(run-batch-job (cddr job-times) CPU-time

(+ rio-time (second jOb-times»»
(else ; loop

(run-batch-job (car job-times) CPU-time riO-time»))

Let's test this code:
> (run-batch-job '(700 io 3000 550 (3 1000 io 4000) 500) 0 0)
(2253 7000)

The answer we wanted is (4750 15000). One problem with the code is that
times that follow a loop are ignored. We must make a recursive call with the cdr
of the job list as weIl. The tricky part then is how we combine these results, as
both will be lists. We must add the corresponding elements of each retumed list
and return a list of the sums. This can be done using map.

Another problem is that the loops aren't handled properly. The first element
of the loop list is the number of repetitions of the loop. We are treating this value
as a CPUtime. If we compute the CPU and 1/0 times for one pass through the
loop and then multiply each time by the number of iterations through the loop,
we get the CPU and 1/0 times we need. We can do this by treating lists as a spe
cial case in run - ba tch - job. Another approach is to preprocess the job descrip
tion lists and eliminate the loops (sublists). For example, the job description

(700 io 3000 550 (3 1000 io 4000) 500)

should be translated to
(700 io 3000 550 3000 io 12000 500)

We'll take the approach of preprocessing the list in the interest of keeping
run - ba tch - j ob simple. Here is the code for these functions:
; Return a job time list without loops (the times in a loop are
; multiplied by the number of repetitions of the loop).
(define (no-loops job-times)

(cond «null? job-times) '(»
«atom? (car job-times»

(cons (car job-times) (no-loops (cdr jOb-times»»
(else

(append
(map (lambda (time) (if (number? time)

(cdar job-times»

(* time (caar job-times»
time))

(no-loops (cdr job-times»»)

14.9 Implementing a Scheduler in Scheme 389

; Simulate running a batch job - version 2.
(define (run-batch-job job-times Cpu-time l/O-time)

(cond «null? job-times) (list CPU-time l/O-time»
«number? (car job-times» ; CPU time

(run-batch-job (cdr job-times)
(+ CPU-time (car job-times» l/O-time»

«symbol? (car jOb-times» ; 1/0 time
(run-batch-job (cddr job-times) CPU-time

(+ 1/O-time (second job-times»»
(else ; ignore other items

(run-batch-job (cdr job-times) CPU-time 1/O-time»)

Let' s try these new functions:
> (no-1oops '(700 io 3000 550 (3 1000 io 4000) 500))
(700 io 3000 550 3000 io 12000 500)

> (run-batch-job
(no-1oops '(700 io 3000 550 (3 1000 io 4000) 500)) 0 0)

(4750 15000)

The batch scheduler must choose the most appropriate job based on the
scheduling algorithm it uses. This algorithm is passed in as an argument. Only
the jobs that are currently ready to run should be examined by the scheduling
algorithm. The function ready - jobs will filter out the jobs ready to run. It com
pares the time the job is ready to run (obtained from the selector function
ready-time) with the current time, which is maintained as the parameter time in
the scheduler.

Once a job has been chosen, it is run using run - ba tch - j ob to compute its
CPU and 1/0 times. The time a job had to wait before it was run can be deter
mined by taking the difference of the job's ready time and the time it was chosen.
This time is appended to the CPU and 1/0 times that are returned from run
ba tch - job. The scheduler returns a list of these three times.

The scheduler must be called recursively on the remaining jobs. When we
recurse, the current time is incremented adding the CPU and 1/0 times of the
last job. The recursive result is combined with the times from the current job
using map. After a job runs, it must be removed from from the job queue. We
shouldn't use the function remove to do so, as it will remove all jobs that are
identical to the last one run. Instead we'll write a function removel that returns a
list without the first occurrence of an item. To help us understand our scheduler,
we'll call the function info to print out the job selected, its start time, and the
times the job took to run. Here is the code for the scheduler and its auxiliary
functions:

Choosing a job

390 Chapter 14: Operating Systems

; Simulate running a collection of jobs in batch fashion using
; select as the scheduling algorithm.
(define (batch-scheduler job-collection select time)

(if (null? job-collection)
'(0 0 0) ; zero times
(let* ((next-job (select (ready-jobs jOb-collection time»)

(wait-time (- time (ready-time next-job»)
(time-spent

(append
(run-batch-job (no-loops (times next-job» 0 0)
(list wait-time»))

(info next-job time time-spent)
(map +

time-spent
(batch-scheduler

(removel next-job job-collection)
select
(+ time (first time-spent) (second time-spent»»»

; Print job description and job timing information.
(define (info job start-time time-spent)

(display job)
(newline)
(display 11 start: ")
(display start-time)
(display ", spent: ")
(display time-spent)
(newline))

The time when a job is first ready to run.
(define (ready-time job-desc)

(first job-desc))

The job's priority.
(define (priority job-desc)

(second job-desc))

Job description without the ready-time and priority.
(define (times job-desc)

(subseq job-desc 2))

The collection of jobs that is ready to run.
(define (ready-jobs job-collection time)

(keep-if
(lambda (job) «= (ready-time job) time)
job-collection))

14.9 Implementing a Scheduler in Scheme 391

; Remove the first occurrence of job from job-collection.
(define (remove1 job jOb-collection)

(1et ((pos (position job job-collection»)
(append (subseq job-collection 0 POS)

(subseq jOb-collection (+ pos 1»»

We can test out this scheduler with a collection of jobs. We'll create these jobs
with various priorities and times in which they are ready to run. Here are some
CPU- and I/O-bound jobs:
(define cpu1 '(0 B 50000 io 1000 30000 io 1000»
(define io1 '(0 6 1000 io 500000 10000 io 30000»
(define cpu2 '(30000 10 200000»
(define io2 '(60000 7 10000 io 250000 (2 5000 io 10000) 7000»

We can use the function first as the scheduling algorithm, meaning jobs are
selected according to the order in which they enter the ready queue. As described
earlier, this is called first-come, first-served scheduling.

> (batch-scheduler (list cpul iol cpu2 io2) first 0)
(0 8 50000 io 1000 30000 io 1000)

start: O. spent: (80000 2000 0)
(0 6 1000 io 500000 10000 io 30000)

start: 82000. spent: (11000 530000 82000)
(30000 10 200000)

start: 623000. spent: (200000 0 593000)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)

start: 823000. spent: (27000 270000 763000)
(318000 802000 1438000)

The final list is the total CPU, 1/0, and wait times. Adding the CPU and 1/0
times gives the turnaround time of all the jobs. This totals to 1,120,000
microseconds or 1.12 seconds. Dividing the total CPU time by this figure gives us
the CPU utilization: about 28.4%. This is not that good.

14.9.3 Building a multitasking scheduler
The above scheduler is a batch-oriented scheduleri once a job is selected it is run
in its entirety. This is contrasted with multiprogramming, in which a job is
blocked when it makes an 1/0 request and another job is started. This tends to
keep the CPU occupied. Multiprogramming systems have nonpreemptive and
preemptive schedulers. Jobs run in a nonpreemptive scheduler get run in their
entirety unless they make 1/0 requests. With a preemptive scheduler jobs can be
switched after an 1/0 request or after a job has used up its time slice in a
timesharing environment.

To handle preemptive multiprogramming schedulers (multitasking schedul
ers), we need to be able to switch jobs after 1/0 requests or after time slices have
elapsed. The function that runs the jobs, run-mt-job, will run a job until it is
blocked (does an 1/0 request or uses up its quantum) or finishes. If a job blocks,
it must be retumed to the ready queue by the scheduler. A function passed as a
parameter insert will be used to put the job back in the ready queue. To do this,

First-come, first
served batch
scheduling

Multitasking
schedulers

392 Chapter 14: Operating Systems

Handfingloopsinthe
multitasking scheduler

run-mt-job will return the new job description to the scheduler along with the
elapsed epu and 1/0 times for that job. The scheduler then calls itself recur
sively with this new job description, saved in the let variable returned-job,

replacing the old job description that was just run.
Jobs waiting for 1/0 are returned to the ready queue using the length of time

for the 1/0 requested as the time to wait until the job is ready to run (the first ele
ment of the job description list). This makes the assumption that 1/0 requests are
handled in the time given in the job description list. In reality it may take longer
due to multiple jobs competing for the same resources. Jobs that have timed out
(exhausted their quantum) are put onto the ready queue immediately ready to
run again. The function make-job takes the remaining epu and 1/0 times of a
job and adds the ready time and priority back to reform a proper job description
list.
; Return a job description to be inserted back in the ready queue.
(define (make-job time time-spent priority new-job-times)

{cons {+ time (first time-spent) (second time-spent»
(cons priority new-job-times»)

We must create a new function to preprocess loops, as no-loops simply mul
tiplies the epu and 1/0 times by the number of repetitions. We need to model
the exact sequence of epu and 1/0 events. We'Il need a function that takes a list
like

{lOO (3 200 io 1000) 500)

and produces the list
(lOO 200 io 1000 200 io 1000 200 io 1000 500)

The function expand does this with the help of repeat, which repeats an item a
given number of times.
; Return job times without loops (loops are replaced with aseries
; of the times in the loop).
{define (expand job-times)

{cond ({null? jOb-times) '(»
{{atom? (car jOb-times»

{cons (car job-times) {expand (cdr job-times»»
{else

(append
{repeat (caar job-times) (cdar job-times»
{expand (cdr job-times»»))

; Return a list of the times in time-list repeated number times.
{define (repeat number time-list)

{if (<= number 0)
'()
{append time-list {repeat (- number 1) time-list»))

In a multitasking system, wait times are indicators of how weIl the scheduling
algorithm is performing. Just as with the batch scheduler, wait times are added
to a running total each time a process gets scheduled to run. The multitask-

14.9 Implementing a Scheduler in Scheme 393

scheduler function follows:
Simulate running a collection of jobs in a multitasking fashion.

; select is the scheduling algorithm. insert indicates how jobs are
; to be replaced in the ready queue.
(define (multitask-scheduler job-collection select insert time)

(if (null? jOb-collection)
'(0 0 0) ; zero times
(let* «next-job (select (ready-jobs job-collection time»)

(wait-time (- time (ready-time next-job»)
(jOb-vals

(run-mt-job (expand (times next-job» 0 *quantum*»
(returned-job (first job-vals»
(time-spent

(append (rest job-vals) (list wait-time»»
(info next-job time time-spent)
(map +

time-spent
(multitask-scheduler

(if (null? returned-job) ; if job is done
(removel next-job job-collection)
(insert

(make-job time time-spent
(priority next-job) returned-job)

(removel next-job job-collection»)
select insert
(+ time (first time-spent) ; add CPU time and

context-switch»»» ; context switch time

With multitasking, jobs may not run to completion. Thus, run-mt-job must
be written such that when a job exceeds its quantum or does an 1/0 request, it is
blocked and exits run-mt-job. This routine calls itself recursively until the job
blocks. It returns a list of a new job description (to be added to the ready queue)
and the elapsed CPU and 1/0 times.
; Simulate running a job in a multitasking environment returning
; a list of the remaining job times and elapsed CPU and 1/0 times.
(define (run-mt-job job-times CPU-time quantum)

(cond «null? jOb-times) (list '() CPU-time 0» ; job is done
«number? (car job-times» ; CPU-time

(if « (car job-times) quantum) enough time
(run-mt-job (cdr job-times)

(+ CPU-time (car job-times»
(- quantum (car jOb-times»)

(list (cdr job-times) (+ CPU-time quantum) 0»)
«symbol? (car job-times» ; l/O-time

(list (cddr job-times) CPU-time (second job-times»)
(else ; ignore other items

(run-mt-job (cdr job-times) CPU-time quantum»))

Running a job in the
multitasking scheduler

394 Chapter 14: Operating Systems

First-come, first
served scheduling

All that is left to do is define the scheduling algorithms. The simplest algo
rithm to define is first-come, first-served scheduling. Given a list of jobs, this
algorithm simply returns the first job in the job list. That job is run to completion,
meaning first-come, first-served scheduling is nonpreemptive; time limits are not
used. A running job will only block if it requests 1/0. We cannot use our batch
processor to implement this because it never blocks; we can use the multitasking
scheduler if we choose a very large quantum. If a job blocks on 1/0, it should be
added to the end of the ready queue so the next job is selected to run. Adding a
job to the end of a list will be implemented with the following function:
; Add a job to the end of the ready queue.
(define (to-end job job-collection)

(append job-collection (list job»)

(define *quantum* 1000000000)

; First-come, first-served scheduling algorithm.
(define (fcfs-scheduling job-collection)

(multitask-scheduler job-collection first to-end 0))

We must define the context switching time as well:
(define *context-switch* 100)

Now we can try our multitasking scheduler with the first-come, first-served
scheduling algorithm:

> (fcfs-scheduling (list cpul cpu2 iol io2))
(0 8 50000 io 1000 30000 io 1000)

start: 0, spent: (50000 1000 0)
(30000 10 200000)

start: 50100, spent: (200000 0 20100)
(0 6 1000 io 500000 10000 io 30000)

start: 250200, spent: (1000 500000 250200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)

start: 251300, spent: (10000 250000 191300)
(51000 8 30000 io 1000)

start: 261400, spent: (30000 1000 210400)
Error: Pair expected

The scheduler went through all the jobs at least partially. The second job
finished, and the other three blocked waiting for 1/0. The first job ran again and
blocked for another 1/0 request. But look at the 1/0 times of the third and fourth
jobs. They are much longer than the elapsed time. Unfortunately, the code in
multitask-scheduler does not handle the situation when no jobs are ready to
run. It will try to pick the first (our scheduling selection) job from an empty list,
and here lies the bug. To fix this bug, we should have the scheduler update its
elapsed time parameter time to the minimum ready time of the jobs in the ready
queue when there are no jobs that are ready to run.

The other change we should make to the scheduler is printing the elapsed
time. For our batch scheduler we used the sum of the total CPU and 1/0 times. In
a multitasking scheduler this will most likely not be the turnaround time for all

14.9 Implementing a Scheduler in Scheme 395

the jobs, since CPU tirnes can happen in parallel with 1/0 tirnes (when jobs block
for 1/0), and there rnay be dead time in which no jobs are ready to run (because
they are waiting for their 1/0 requests to be serviced). The elapsed time value is
the time in which the next process could run. It does not include the final 1/0
tirnes to be serviced. Here is the new rnultitasking scheduler:
; Simulate running jobs in a mUltitasking fashion. select is the
; scheduling algorithm. insert replaces jobs in the ready queue.
(define (multitask-scheduler job-collection select insert time)

(cond «nu11? job-collection) (disp1ay "elapsed time -> ")
(disp1ay time) (new1ine) '(0 0 0» ; return zero times

«nu11? (ready-jobs job-collection time»
(multitask-scheduler job-collection select insert

(app1y min (map ready-time job-collection»»
(e1se

(1et* ((next-job
(select (ready-jobs job-collection time»)

(wait-time (- time (ready-time next-job»)
(job-vals (run-mt-job (expand (times next-job»

o *quantum*»
(returned-job (first job-vals»
(time-spent

(append (rest job-vals) (1ist wait-time»»
(info next-job time time-spent)
(map + time-spent

(multitask-scheduler
(if (nu11? returned-job) ; if job is done

(removel next-job job-collection)
(insert (make-job time time-spent

(removel
select insert

(priority next-job) returned-job)
next-job job-collection»)

(+ time (first time-spent)
context-switch»»»)

> (fcfs-scheduling (list cpul cpu2 iol io2))
(0 8 50000 io 1000 30000 io 1000)

start: 0, spent: (50000 1000 0)
(30000 10 200000)

start: 50100, spent: (200000 0 20100)
(0 6 1000 io 500000 10000 io 30000)

add CPU time and
context switch time

start: 250200, spent: (1000 500000 250200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)

start: 251300, spent: (10000 250000 191300)
(51000 8 30000 io 1000)

start: 261400, spent: (30000 1000 210400)
(511300 7 5000 io 10000 5000 io 10000 7000)

start: 511300, spent: (5000 10000 0)
(526300 7 5000 io 10000 7000)

start: 526300, spent: (5000 10000 0)

396 Chapter 14: Operating Systems

Round-robin
scheduling

(541300 7 7000)
start: 541300, spent: (7000 0 0)

(751200 6 10000 io 30000)
start: 751200, spent: (10000 30000 0)

elapsed time -) 761300
(318000 802000 672000)

The CPU utilization is 318,000/761,300 or 41.77%, which is quite better than
with batch scheduling. Another big improvement is in wait time reduction. If
there were more CPU processes waiting to be run, we would see an even bigger
improvement in CPU utilization in the multitasking scheduler than in the batch
scheduler.

The preemptive version of first-come, first-served scheduling in multitasking
environments is round-robin scheduling. Recall that in round-robin scheduling,
once a job has used up its quantum it is moved to the end of the job queue and
the next job is started. It is called round-robin because long jobs each get a turn in
sequence, round-robin. This algorithm is the same as first-come, first-served but
uses a much smaller quantum so jobs with long CPU bursts will be preempted to
allow other jobs to run.
(define *quantum* 100000)

i Round-robin scheduling algorithm.
(define (round-robin job-collection)

(multitask-scheduler job-collection first to-end 0))

) (round-robin (list cpul cpu2 iol io2))
(0 8 50000 io 1000 30000 io 1000)

start: 0, spent: (50000 1000 0)
(30000 10 200000)

start: 50100, spent: (100000 0 20100)
(0 6 1000 io 500000 10000 io 30000)

start: 150200, spent: (1000 500000 150200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)

start: 151300, spent: (10000 250000 91300)
(51000 8 30000 io 1000)

start:
(411300 7

start:
(426300 7

start:
(441300 7

161400,
5000 io
411300,
5000 io
426300,
7000)

spent: (30000 1000 110400)
10000 5000 io 10000 7000)
spent: (5000 10000 0)
10000 7000)
spent: (5000 10000 0)

start: 441300, spent: (7000 0 0)
(651200 6 10000 io 30000)

start: 651200, spent: (10000 30000 0)
elapsed time -) 661300
(218000 802000 372000)

Looking at the final result, notice that the total CPU time (218 milliseconds) is
less than the total CPU time returned by the first-come, first-served scheduler
(318 milliseconds). Also notice that the second job ran for half of its CPU burst

14.9 Implementing a Scheduler in Scheme 397

(100 milliseconds) and then was preempted, but the second half was never
finished. This accounts for the missing 100 milliseconds.

Something is wrong with our code. It is probably in the section where we
have CPU times that are greater than the quantum. This happens in run-mt-job.
When the CPU time is greater than or equal to the quantum, we return the rest of
the job times and the elapsed CPU and 1/0 times for that burst. This means that
the remaining CPU time (that exceeding the quantum) is silently eliminated. We
should make the recursive call with a modified CPU time subtracting the quan
tum from the original CPU time. If the quantum is equal to the CPU time, we
don't want to return a CPU time of 0, so we should change the test condition to
be <=. The new code folIows:
; Simulate running a job in a multitasking environment returning
; a list of the remaining job times and elapsed CPU and r/o times.
(define (run-mt-job job-times CPU-time quantum)

(cond «null? job-times) (list '() CPU-time 0» ; job is done
«number? (car job-times» ; CPU-time

(if «= (car jOb-times) quantum) enough or exact time
(run-mt-job (cdr job-times)

(+ CPU-time (car job-times»
(- quantum (car job-times»)

(list
(cons (- (car job-times) quantum) (cdr jOb-times»
(+ CPU-time quantum) 0»)

«symbol? (car jOb-times» ; riO-time
(list (cddr job-times) CPU-time (second job-times»)

(else ; ignore other items
(run-mt-job (cdr job-times) CPU-time quantum»))

> (round-robin (list cpul cpu2 iol io2))
(0 8 50000 io 1000 30000 io 1000)

start: 0, spent: (50000 1000 0)
(30000 10 200000)

start: 50100, spent: (100000 0 20100)
(0 6 1000 io 500000 10000 io 30000)

start: 150200, spent: (1000 500000 150200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)

start: 151300, spent: (10000 250000 91300)
(51000 8 30000 io 1000)

start: 161400, spent: (30000 1000 110400)
(150100 10 100000)

start: 191500, spent: (100000 0 41400)
(411300 7 5000 io 10000 5000 io 10000 7000)

start: 411300, spent: (5000 10000 0)
(426300 7 5000 io 10000 7000)

start: 426300, spent: (5000 10000 0)
(441300 7 7000)

start: 441300, spent: (7000 o 0)
(651200 6 10000 io 30000)

start: 651200, spent: (10000 30000 0)

398 Chapter 14: Operating Systems

Priority scheduling

elapsedtime -> 661300
(318000 802000 413400)

The elapsed time dropped by 100 milliseconds because we broke up the large
epu job into two bursts. This allowed the other I1O-bound jobs to start earlier
and once they block, the waiting epu processes can start earlier resulting in an
overall tumaround savings. This can be seen in the reduced wait time as weIl.
Now the epu utilization is 318,000/661,300, or 48.09%, which is an improvement
over first-come, first-served scheduling.

A different approach is to choose jobs based on their priority. Recall that a
job's priority is obtained using the selector function priority. Priorities are
numbers in which the largest number represents the highest priority. We can
extract the job priorities as a list of numbers from the job collection using map
with priority. Applying accumulate to max and this priority list will return the
highest priority. However, we need to get the job that has that highest priority,
not just the number. Instead of writing a function that searches through the job
collection list to find the job that matches the largest priority number, we can use
accumulate with the job collection list and a comparison function that matches
the priorities of jobs. The job with the highest priority is returned at each com
parison. When accumu1ate finishes, it returns the job with the largest priority.
Jobs with no priorities are given a #f as their priority. These will be considered as
the lowest priorities. If two jobs with no or identical priorities are compared, the
first one wins. The function follows:
; Return the job with the highest priority value.
(define (pick-highest job-collection)

(accumulate
(lambda (jobl job2)

(cond «not (priority job2» jobl)
«not (priority jobl» job2)
«>= (priority jobl) (priority job2» jobl)
(else jOb2»)

job-collection))

Priority scheduling algorithm.
(define (priority-scheduling job-collection)

(multitask-scheduler job-collection pick-highest cons 0))

> (priority-scheduling (list cpul cpu2 iol i02))
(0 8 50000 io 1000 30000 io 1000)

start: 0, spent: (50000 1000 0)
(30000 10 200000)

start: 50100, spent: (100000 0 20100)
(150100 10 100000)

start: 150200, spent: (100000 0 100)
(51000 8 30000 io 1000)

start: 250300, spent: (30000 1000 199300)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)

start: 280400, spent: (10000 250000 220400)
(0 6 1000 io 500000 10000 io 30000)

14.9 Impkmenting a Scheduler in Scheme 399

start: 290500, spent: (1000 500000 290500)
(540400 7 5000 io 10000 5000 io 10000 7000)

start: 540400, spent: (5000 10000 0)
(555400 7 5000 io 10000 7000)

start: 555400, spent: (5000 10000 0)
(570400 7 7000)

start: 570400, spent: (7000 0 0)
(791500 6 10000 io 30000)

start: 791500, spent: (10000 30000 0)
elapsed time -) 801600
(318000 802000 730400)

The CPU utilization dropped to 39.67% and the wait time increased
significantly compared to the round-robin scheduling. Our jobs are ranked posi
tively by CPU demand and negatively by 1/0 usage. So with these priorities we
favor the CPU-bound jobs. Let's see what happens if we favor the I/O-bound
jobs.

Another scheduling algorithm is to choose the job with the shortest CPU time
demand. In the case where jobs consist of only CPU times, choosing the shortest
jobs will reduce the average response and wait times for all the jobs. If jobs con
tain a mixture of CPU and 1/0 bursts, we can still choose the job with the shor
test upcoming CPU time requirement. If there is a job waiting for 1/0, it can take
priority to free up the CPU for another process to run while the 1/0 request is
being serviced. This algorithm can be implemented as folIows:
; Return the first job requesting 1/0 or the job with the
; shortest CPU request.
(define (shortest-CPU-time job-collection)

(accumulate
(lambda (jobl job2)

(let «timel (third jobI»
(time2 (third job2»)

(cond «symbol? timeI) jobl)
«symbol? time2) job2)
«<= timel time2) jobl)
(else job2»))

job-collection))

if i/o job, choose it

else use shortest CPU job

1/0 or shortest CPU first scheduling algorithm.
(define (short-CPU-scheduling jOb-collection)

(multitask-scheduler job-collection shortest-CPU-time cons 0))

) (short-CPU-scheduling (list cpul cpu2 iol io2))
(0 6 1000 io 500000 10000 io 30000)

start: 0, spent: (1000 500000 0)
(0 8 50000 io 1000 30000 io 1000)

start: 1100, spent: (50000 1000 1100)
(30000 10 200000)

start: 51200, spent: (100000 0 21200)
(60000 7 10000 io 250000 (2 5000 io 10000) 7000)

start: 151300, spent: (10000 250000 91300)

Shortest CPU times

400 Chapter 14: Operating Systems

(52100 8 30000 io 1000)
start: 161400, spent: (30000 1000 109300)

(151200 10 100000)
start: 191500, spent: (100000 0 40300)

(411300 7 5000 io 10000 5000 io 10000 7000)
start: 411300, spent: (5000 10000 0)

(426300 7 5000 io 10000 7000)
start: 426300, spent: (5000 10000 0)

(441300 7 7000)
start: 441300, spent: (7000 0 0)

(501000 6 10000 io 30000)
start: 501000, spent: (10000 30000 0)

e1apsed time -) 511100
(318000 802000 263200)

This is a big improvement over all the other scheduling algorithms. CPU utili
zation increased to 62.22% and wait times dropped 263.2 milliseconds. Favoring
1/ 0 and short CPU jobs is very beneficial.

14.9.4 Exercises
14.1 The function expand could be written without using repeat. The idea is to

break a job time list like
(3000 (3 io 5000 500) 7000)

into this
(3000 io 5000 500 (2 io 5000 500) 7000)

This process continues until the number of repetitions is O. Write a new
version of expand using this idea.

14.2 Write new versions of no-loops and expand that support loops that are
nested within loops, such as

(5000 (3 200 (4 io 3000 5000) io 2000»

Write your functions so that they work with arbitrarily deep nesting.

14.3 To compute the CPU usage of the batch scheduler, we divided the total
CPU time by the sum of the total CPU and 1/0 times. This is problematic
in that it assumes that there is no dead time in which no jobs are ready to
run. Fix batch-scheduler so that it can properly handle dead time and
have it print the true elapsed run time.

14.4 Create your own scheduling algorithm and write functions to implement
it. Test it using the four jobs used above.

14.5 Modify multitask-scheduler and/or run-mt-job so that they also
display the CPU utilization, average turnaround time, average response
time, and average wait time for the jobs entered.

14.10 Future Trends 401

14.6 Make some experiments with the multitasking scheduler to see the effects
that different quantum and context switch times have on the different
scheduling algorithms. You may want to create some different job descrip
tion lists to test against.

14.10 Future Trends
Computer networks are becoming more prevalent and larger. More and more
information is being transmitted over local and wide area networks. Operating
systems must provide some level of support to handle the increasing traffic in
terms of not just more people sending more information, but multimedia infor
mation that is much larger in size than simple text.

With a distributed operating system, transparent computational operations
are allowed just as networked operating systems allow transparent file access.
Computations may be run on other machines or perhaps multiple machines
without having to explicitly request this. Running computations on other
machines is often easier and quicker than transferring the files to the local
machine. For example, if you wanted to find the sizes of all the files and direc
tories on a remote machine, it would be quicker to run the command on the other
machine instead of transferring all the files and directories over to the local
machine.

If processes can be run on other machines, then this can create a large savings
in speed. If the operating system can pick the machine with the lightest load and
run the next job there, the job will execute faster, resulting in better turnaround
time. The machines in a network may be of different types or configurations, so a
job that was invoked on one machine may run faster on a different machine that
has more appropriate hardware for that process (e.g., faster processor or more
main memory). Even if all the machines in a network are of the same type and
configuration, they may have different software; a distributed operating system
may use this knowledge to direct processes to the most appropriate machine in
the network.

Creating distributed operating systems is a difficult endeavor. There are com
munication issues: should the machines send messages to one another or interact
through some shared memory space? There are timing issues: each machine has
its own CPU with its own dock. This creates difficult synchronization and
deadlock problems. Handling deadlock on distributed systems is much more
complicated than on single CPU systems. It is not practical to prevent, so it must
be detected and then recovered from. Scalability is a question: is it possible to
add CPUs to a distributed operating system in a simple fashion, and what hap
pens when the number of CPUs grows very large (e.g., in the billions)? Can relia
bility be provided? Can a distributed system be buHt that degrades gracefully as
CPUs go down? Distributed systems with central control will faH at this, as the
entire network of machines may be crippled when the controlling CPUs go
down. Can true transparency of files and computations be given? There are solu
tions to file transparency but this is on networks with machines running the same

Distributing jobs over
a network

Building distributed
operating systems

402 Chapter 14: Operating Systems

Multiprocessor
systems

Multithreaded
processes

or a few operating systems. It would be nice to have simple access to nonpro
tected files existing on a variety of hardware platforms across the network. Can
computation be handled similarly such that jobs are dispatched to the most
appropriate machines in a network to maximize turnaround? A huge software
infrastructure must be built: software that utilizes multiple CPUs in distributed
systems is very difficult to create. Compilers that produce code that takes advan
tage of multiple CPUs is a good example of this.

As CPUs get cheaper and cheaper, the number of multiple CPU systems
grows. Such multiprocessor systems have special requirements that the operating
system must meet. In multiprocessor systems, operating systems have many of
the same issues to address as in networked systems. Distributed operating sys
tems are more the norm in multiprocessor systems; in fact, there is typically only
one copy of the operating system running. It must decide how to best allocate
jobs to the different processors to get the highest throughput. There has been
research in how individual jobs may be split up and run on different processors.
Some jobs lend themselves to this splitting up, or parallelization, as they have
separate, autonomous segments that can be run independently in parallel on dif
ferent processors. Other jobs are more sequential in nature and difficult to paral
lelize. The goal is to automate this process to best make use of multiprocessor
systems.

Using multiple threads is one way to parallelize a process. Before defining
threads, let's take a closer look at processes. A process is a program that can be
run on a machine. It has its own set of instructions that it executes, its data stack,
register values, and program counter~ Each process may have apart of the main
memory set aside for its use as well. Such a process is called a heavyweight process.
A heavyweight process cannot be broken up into smaller entities that can run on
theCPU.

There are tasks in which we would like to be able to split a process into
smaller processes that can independently handle subtasks. Such a miniature pro
cess is called a thread. The threads of a single process all use the instructions and
memory of that process; however, each thread has its own program counter,
register values, and data stack. This way a thread acts as aseparate process with
some shared memory in common with other threads from the same parent pro
cess. A thread is a lightweight process-it is easy and fast to switch from one
thread to another.

For an example of an application where threads would be nice, imagine an
interactive program in which the user makes requests and the system performs
them. This may be a library query system where someone requests information
about books or periodicals. These requests may be time-consuming searches, and
waiting for the user to enter arequest is also slow. To speed things up we can
have one thread handle requests while another gets requests from the user. The
operating system will switch from one to another just as jobs are switched in a
multitasking environment. However, the context switch time for threads is less

4. These tenns were introduced in Chapter 13.

14.11 Summary 403

than for heavyweight processes, so they are more efficient. Also the threads all
share the same memory (variables and data structures), so the thread that gets a
request from a user reads that request into the same variable that the thread that
processes the request uses.

As more programmers see the usefulness of threads, more operating systems
will support them. There are some difficulties associated with threads, however.
Multithreaded operating systems need schedulers that handle different types of
context switches (switching between threads of the same process versus switch
ing between threads of different processes). The same problems that arose with
shareable resources also exist with threads because they share a process' s
memory space. For example, one thread may set a variable and be preempted,
and then another thread may reset that variable before the first thread is able to
use it. Some means of handling such critical section problems must be imple
mented and supported by the operating system.

14.11 Summary
• Operating systems handle resource allocation, process and memory manage

ment, provide access to the file system, and provide various utilities to per
form a myriad of tasks.

• The first computers had no operating systems. Instead programs were loaded
directly into the computer.

• Peripheral devices such as line printers and card readers were added to com
puters. These devices were controlled with programs called device drivers.

• Batch systems were used in the early operating systems. They ran one job at a
time to completion.

• To better utilize the CPU, multiprogramming schedulers were buHt that
switched between jobs when the running job was doing an 1/0 operation.

• Multiprogramming led to multitasking, where jobs would be preempted if
they ran beyond some time limit, quantum. This allowed timesharing systems
to come about in which multiple users could each share one CPU.

• Computer networks brought about network operating systems, which added
support for file transmission between computers and remote access to com
puters.

• Distributed operating systems extend the ideas of transparent file access to
transparent computer usage in which jobs are run on local, remote, or a com
bination of machines to best utilize the network CPU resources.

• Spooling involves sending or receiving information from a memory buffer
instead of waiting for a slow device to be ready. It helps keep the CPU better
used.

• Deadlock occurs when two or more processes are unable to continue because
they are both waiting for resources that the other already has and won't give
up. It is typically either detected and recovered from or prevented by not
allowing the conditions that lead up to deadlock to occur.

404 Chapter 14: Operating Systems

• Process management is the control of job sequencing to best utilize the CPU.
• The scheduler chooses which job to run according to the scheduling algo

rithm. There are various criteria for making this choices, including maximiz
ing CPU usage and throughput (the number of jobs completed in a given
time), and minimizing the response time (the time before a job starts) and the
turnaround time (the time a job takes to complete).

• Some common scheduling algorithms include first-come, first-served (jobs are
run in the order in which they reach the scheduler until they block for 1/0);
round-robin (jobs are run in order until they are preempted for 1/0 or using
their CPU quantum); and I/O-bound jobs first (jobs with 1/0 demands or
small CPU demands are run first).

• Batch schedulers run jobs until they finish. Multiprogramming schedulers run
jobs until they block for 1/0 only (nonpreemptive schedulers) or either 1/0 or
quantum expiration (preemptive schedulers).

• Memory management deals with providing and securing the computer's
main memory among the running processes.

• Virtual memory allows jobs to run even if they need more memory than is
available.

• Demand paging is the process of bringing sections (pages) of memory that
have been held on the disk back into the main memory when they are needed.

• A file is a collection of information.
• File systems are collections of files that can be accessed by one or more com

puters.

14.12 Additional Reading
Nutt, G.J. (1992). Centralized and Distributed Operating Systems, Prentice Hall,
Englewood Cliffs, NJ.

Silberschatz, A and Galvin, P.B. (1994). Operating System Concepts, Fourth edi
tion, Addison-W esley, Reading, MA

Tanenbaum, AS. (1992). Modern Operating Systems, Prentice Hall, Englewood
Cliffs, NJ.

Tanenbaum, AS. (1995). Distributed Operating Systems, Prentice Hall, Englewood
Cliffs, NJ.

14.13 Code Listing
Job collection:
(define cpu1 '(0 B 50000 io 1000 30000 io 1000»
(define io1 '(0 6 1000 io 500000 10000 io 30000»
(define cpu2 '(30000 10 200000»
(define io2 '(60000 7 10000 io 250000 (2 5000 io 10000) 7000»

Batch scheduler:
; Return a job time list without loops (the times in a loop are
; multiplied by the number of repetitions of the loop).
(define (no-loops job-times)

(cond «nu11? job-times) '(»
«atom? (car jOb-times»

(cons (car job-times) (no-loops (cdr job-times»»
(e1se

(append
(map (1ambda (time) (if (number? time)

(cdar jOb-times»

(* time (caar jOb-times»
time))

(no-loops (cdr jOb-times»»)

; Simu1ate running a batch job - version 2.
(define (run-batch-job job-times Cpu-time rio-time)

(cond «nu11? job-times) (1ist Cpu-time riO-time»
«number? (car job-times» ; CPU time

(run-batch-job (cdr job-times)
(+ CPU-time (car job-times»
I/O-time))

«symbo1? (car jOb-times» ; rio time
(run-batch-job (cddr job-times) CPU-time

(+ rio-time (second job-times»»
(e1se ; ignore other items

(run-batch-job (cdr job-times) CPU-time riO-time»))

14.13 Code Listing 405

406 Chapter 14: Operating Systems

; Simulate running a collection of jobs in batch fashion using
; select as the scheduling algorithm.
(define (batch-scheduler job-collection select time)

(if (null? job-collection)
, (0 0 0) ; zero times
(let* ((next-job (select (ready-jobs job-collection time»)

(wait-time (- time (ready-time next-job»)
(time-spent

(append
(run-batch-job (no-loops (times next-job» 0 0)
(list wait-time»))

(info next-job time time-spent)
(map +

time-spent
(batch-scheduler

(removel next-job job-collection)
select
(+ time (first time-spent) (second time-spent»»»

; Print job description and job timing information.
(define (info job start-time time-spent)

(display job)
(newline)
(display" start:")
(display start-time)
(display", spent: ")
(display time-spent)
(newline))

The time when a job is first ready to run.
(define (ready-time job-desc)

(first job-desc))

The job's priority.
(define (priority job-desc)

(second job-desc))

Job description without the ready-time and priority.
(define (times job-desc)

(subseq job-desc 2))

The collection of jobs that is ready to run.
(define (ready-jobs job-collection time)

(keep-if
(lambda (job) «= (ready-time job) time)
job-collection))

; Remove the first occurrence of job from job-collection.
(define (remove1 job job-collection)

(1et ((pos (position job job-collection»)
(append (subseq job-collection 0 POS)

(subseq job-collection (+ pos 1»»

Multitasking scheduler:

14.13 Code Listing 407

; Return a job description to be inserted back in the ready queue.
(define (make-job time time-spent priority new-job-times)

(cons (+ time (first time-spent) (second time-spent»
(cons priority new-job-times»)

Return job times without loops (loops are replaced with aseries
of the times in the loop).

(define (expand job-times)
(cond «nu11? job-times) '(»

«atom? (car job-times»
(cons (car job-times) (expand (cdr job-times»»

(e1se
(append

(repeat (caar job-times) (cdar job-times»
(expand (cdr job-times»»))

; Return a list of the times in time-list repeated number times.
(define (repeat number time-list)

(if «= number 0)
'()
(append time-list (repeat (- number 1) time-list»))

Simulate running a job in a multitasking environment returning
a list of the remaining job times and elapsed CPU and r/o times.

(define (run-mt-job job-times CPU-time quantum)
(cond «nu11? job-times) (1ist '() CPU-time 0» ; job is done

«number? (car job-times» ; CPU-time
(if «= (car job-times) quantum) enough or exact time

(run-mt-job (cdr job-times)
(+ CPU-time (car job-times»
(- quantum (car job-times»)

(Hst
(cons (- (car job-times) quantum) (cdr job-times»
(+ CPU-time quantum) 0»)

«symbo1? (car job-times» ; rio-time
(1ist (cddr job-times) CPU-time (second job-times»)

(e1se ; ignore other items
(run-mt-job (cdr job-times) CPU-time quantum»))

408 Chapter 14: Operating Systems

; Simulate running jobs in a multitasking fashion. select is the
; scheduling algorithm. insert replaces jobs in the ready queue.
(define (multitask-scheduler job-collection select insert time)

(cond «null? job-collection) (display "elapsed time -> n)

(display time) (newline) '(0 0 0» ; return zero times
«null? (ready-jobs job-collection time»

(multitask-scheduler job-collection select insert
(apply min (map ready-time jOb-collection»»

(else
(let* «next-job

(select (ready-jobs job-collection time»)
(wait-time (- time (ready-time next-job»)
(job-vals (run-mt-job (expand (times next-job»

o *quantum*»
(returned-job (first job-vals»
(time-spent

(append (rest job-vals) (list wait-time»»
(info next-job time time-spent)
(map + time-spent

(multitask-scheduler
(if (null? returned-job) ; if job is done

(remove1 next-job job-collection)
(insert (make-job time time-spent

(priority next-job) returned-job)
(remove1 next-job job-collection»)

select insert
(+ time (first time-spent)

context-switch»»»

Scheduling algorithms:
; Add a job to the end of the ready queue.
(define (to-end job job-collection)

(append job-collection (list job»)

(define *quantum* 1000000000)

add CPU time and
context switch time

; First-come, first-served scheduling algorithm.
(define (fcfs-scheduling jOb-collection)

(multitask-scheduler job-collection first to-end 0))

(define *context-switch* 100)

(define *quantum* 100000)

; Round-robin scheduling algorithm.
(define (round-robin job-collection)

(multitask-scheduler job-collection first to-end 0))

; Return the job with the highest priority value.
(define (pick-highest job-collection)

(accumulate
(lambda (jobl job2)

(cond ((not (priority j ob2)) jobl)
((not (priority jobl» job2)
« >= (priority jobl) (priority job2))
(else j ob2»)

job-collection))

Priority scheduling algorithrn.

jobl)

(define (priority-scheduling job-collection)
(multitask-scheduler job-collection pick-highest cons 0)

Return the first job requesting 1/0 or the job with the
shortest CPU request.

(define (shortest-CPU-time job-collection)
(accumulate

(lambda (jobl job2)
(let «timel (third jobl»

(time2 (third job2»)
(cond «symbol? timel) jobl) if i/o job, choose it

«symbol? time2) job2)

14.13 Code Listing 409

«<= timel time2) jobl) else use shortest CPU job
(else j ob2) »)

job-collection))

1/0 or shortest CPU first scheduling algorithm.
(define (short-CPU-scheduling job-collection)

(multitask-scheduler job-collection shortest-CPU-time cons 0))

CHAPTER 15

ARTIFICIAL INTELLIGENCE

15.1 Artificial Intelligence
Artificial intelligence is perhaps the most talked about field within computer sci
ence. This is not due to the number of researchers or proponents within the field,
or to number of accomplishments. Artificial intelligence, or AI as it is usually
referred to, is so popular because it is the most controversial field within com
puter science. AI is threatening to some people and exciting to others. Some say it
is an idea that is a few years away from becoming reality, while others say it will
never be a possibility. Some say it's hip; others, hype. How can one field elicit
such disparate beliefs? The answer lies in what AI attempts to do.

Artificial intelligence is the study of creating computers and software that can
perform intelligent actions. This very broad definition might not seem worthy of
the controversy that it has stirred. It is the nature and degree of the intelligent
actions that causes the problems. If by "intelligent" we mean programs that can
multiply 20-digit numbers faster than humans can, then that goal has been met
and most people are not bothered or impressed. If we are talking about a pro
gram that can recognize a joke, that is an extremely difficult and impressive
endeavor. Many people find the notion of a machine embodying such intelli
gence a frightening prospect. Intelligence is revered; it is the thing that separates
us humans from the rest of life on the planet. When AI researchers started mak
ing claims that programs would exist that could outperform humans, it made
many people uncomfortable. Others became excited and enthusiastic. Still others
feIt it could not and would not ever happen.

What really defines the intelligence that AI is trying to embody in computers?
The answer depends on whom you ask. Most researchers in AI focus on specific
problems or commercial applications. The days of claiming that computers will
outsmart humans in so many years are over. Modeling human intelligence is a
tough problem.

The controversy of AI

Intelligence

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

412 Chapter 15: Artijiciallntelligence

Different perspectives
01 AI

Rather than existing as a single unified field, AI is a collection of subfields,
each with its own unique problems and accomplishments. We'lllook at these
subfields and some general themes that exist across them, such as searching and
knowledge representation.

15.1.1 Subfields of artificial intelligence
The major subfields of AI include the following:

• Natural Language Processing
Naturallanguage processing (NLP) addresses the problems of understanding
human sPQken languages (naturallanguages) so that they can be translated,
summarized, used in communication between humans and computers, and
used in tasks that involve some degree of language comprehension.

• Machine Learning
Machine learning studies how computers can leam new information from
existing knowledge and beliefs.

• Problem Solving and Planning
Problem solvers and planners solve tasks within realworld environments.

• Expert Systems
Expert systems are programs that embody the knowledge of experts in a par
ticular domain.

• Robotics
Robotics is the creation of robots that can move about and function in real
environments.

• Vision
Vision involves recognizing three-dimensional objects given two-dimensional
images from still or motion pictures.

15.2 Historical Background
The. his tory of AI can be looked at through many lenses. A philosophical
viewpoint is shown in the dialogue between AI advocates and protagonists.
Books like What Computers Can Do, What Computers Can't Do, and What Computers
Still Can't Do exemplify the disparate beliefs between the different camps. A
businessperson might look at the introduction and growth of AI in the market
place. A sociologist will look at changes in a population' s views and beliefs of AI.
A linguist may look at how machine intelligence is used in text and speech. An
engineer will see how AI techniques can be used to solve problems or improve
designs.

In all these areas, there has been a growth in the interest and awareness of AI.
However, the big question of whether it is possible to create machines that are as
intelligent as humans still remains. Some of the early AI pioneers thought that
machines would outperform humans in a short period of time. Now AI research
ers are more modest in their claims. Some AI researchers believe that machines
will never reach human mental capabilities but still do research because a lot of

15.2 Historical Background 413

improvement can be made that will result in higher quality and easier-to-use
computers.

Let's look at some of the early work in AI. Allen Newell and Herbert Simon,
two of the pioneers of AI, buHt two well-known AI programs. Their Logic Theor
ist (LT) could prove logic theories and even produced a proof shorter than one
Bertrand Russell bad in his classic logic text Principia Mathematica. Newell and
Simon's General Problem Solver (GPS) was intended to solve any type of prob
lem. It modeled human problem solving methods using means-ends analysis, in
which the system looked at which operator could be applied to achieve the end
result. If the conditions of that operator were not present, then they became new
subgoals to be solved recursively. Later programs were buHt to solve algebra
word problems and prove theorems in geometry.

Some programs could "understand" some amount of human language. Terry
Winograd's SHRDLU 1 could answer questions about a world consisting of
colored blocks. It could answer questions like "Can the red block be moved on
top of the yellow block?" The answer to this depended on whether the blocks
bad objects above them.

There were faHures in naturallanguage processing as weil. A large effort in
translating Russian to English in the early cold war period from the mid 1950s to
the mid 1960s was one of AI' s biggest blunders. Researchers thought the task was
possible using grammar parsing techniques and dictionary lookup. Words in
Russian would be searched in a Russian-to-English dictionary buHt into the pro
gram, and the English equivalent was returned. Translating English to Russian
and then back into English resulted in transformations like

"Out of sight, out of mind" ~ "Invisible insanity"
and

"The spirit is willing but the flesh is weak" ~ "The vodka is strong but the
meat is rotten"

After ten years of research, a study reported that the language translation efforts,
even with human assistance to clean up the translations, were not effective. Even
with foreseeable increases in computing power, translation efforts were seen as
impossible.

Many fields within AI were running into limits. The toy problems that the AI
programs could solve so well did not scale up to realworld domains. Programs
like GPS turned out to be not so general after all.

AI made its recovery by limiting its research agenda to solving particular
aspects of problems. Rather than translate entire natural languages, work was
done on modeling small aspects of language understanding, like inference or
planning. Problem solvers moved from general problems to specific problems.
This brought about the field of expert systems, which saw a large degree of com
mercial success.

1. The letters in SHRDLU are the seventh through twelfth most common letters used in English
words. The letters in ET AOIN are the first through sixth most common letters. These twelve letters
make up a row in a popular typesetting terminal.

Logic Theorist and
General Problem
Solver

SHRDLU

Failures in AI

AI moves to attainable
goals

414 Chapter 15: Artificillllntelligence

Expert systems

AI hardware

Chess

Work on expert systems started at Stanford in the late 1960s with DENDRAL.
Hundreds of large expert systems were developed. The table below lists some of
the early, well-known expert systems:

DELTA

DENDRAL

MACSYMA

MYCIN

PROSPECTOR
SOPHIE

XCON

aids in troubleshooting and repairing diesel electric locomotive
engines, (Diesel Electric Locomotive Troubleshooting Aid)
determines the molecular structure of chemicals given mass
spectrometry data, (DENDRitic ALgorithm)
simplifies, solves, and integrates algebraic expressions using
symbolic manipulation, (MIT's Project MAC-Machine-Aided
Cognition-SYmbolic MAthematics)
diagnoses and treats infectious diseases, (from the suffix of
antibiotics like erythromycin, streptomycin, and neomycin)
finds mineral deposits
teaches students how to troubleshoot faulty electric circuits,
(SOPHisticated Instructional Environment)
determines the layout of VAX computer systems, (eXpert
CONfigurer)

Many expert system businesses grew in the early 1980s and then faded almost
as quickly in the late 1980s and early 199Os.

As AI software grew, so did AI hardware. Specialized LISP workstations were
built that helped speed up what was then a rather slow language in comparison
to other commonly used languages. Symbolics, Texas Instruments, LISP Machines
Inc., and Xerox all made custom LISP computers that ran LISP code faster than
general purpose computers. However, with the advent of faster, general purpose
computers and LISP compilers and optimizers, many of these specialized LISP
workstations have become a thing of the past.

15.2.1 Game' playing and puzzle solving programs
Some of the earliest AI programs were game playing programs in which a person
competed against a computer or in puzzle solving programs, where a program
tried to solve some type of logic or reasoning puzzle. Many of these problems
have become lc1assic" AI problems and are used to test new searching or prob
lem solving algorithms for their generality, expressiveness, speed, and efficiency.

One of the oldest and hardest problems is to create a program that can play
chess at the grand master level. The journal ACM (Association toT Computing
Machinery) sponsors an annual contest in which different chess programs com
pete against one another. Programs are pitted against people quite often as weIl.
At the writing of this book, some programs could occasionally beat grand mas
ters in chess, but no program could do this consistently.

Most chess programs pick moves based on a success measure that compares
all possible moves (assuming the opponent makes the best counter move). To be
successful, these programs must look ahead many moves of play. This involves a
lot of reduction in the space of possibilities (pruning of the search tree). Success
ful AI programs check many moves in parallel and eliminate poor moves early

15.2 Historical Background 415

on in the search. Only the most promising moves are searched further.
Other games and puzzles are easier than chess and are often used as bench

marks for testing new searching algorithms. Here are some of these.
The 8-queens problem is played on a chessboard. The goal is to place all 8

queens on the chessboard with the constraint that no queens can attack one
another.

The 8-puzzle is agame played on a 3-by-3 square with sliding tiles. Each tile
is numbered from 1 to 8. One part of the puzzle has no tile and is the spot in
which a neighboring tile can be moved. The goal is to arrange the numbered tiles
in some sequence, such as

~23 4 56
7 8

The 15-puzzle is a larger variation on this puzzle with 15 numbered tiles on a 4-
by-4 square.

Cryptarithmetic is a puzzle in which letters represent single digit numbers.
The letters are arranged like a math equation. For example,

SEN D

+ M 0 R E

MON E Y

Here, the sum of the digits represented by the letters in SEND plus the digits in
MORE equals the digits in MONEY. The goal is to figure out which digits match
which letters in the puzzle. It breaks down into solving aseries of equations with
many variables. For example,

D + E Y
N + R + carry from above = E

etc.

The traveling salesman problem exists in many businesses. The goal is to find
the least expensive route that visits a collection of locations. Imagine having to fly
to twenty different eities. Each flight costs some amount, and there is a best route
that hits every eity at the smallest total cost.

This problem is weIl known in computer seience theory. It is an NP-hard prob
lem, meaning that no known algorithm can solve this problem in polynomial
time~ Polynomial time grows according to some polynomial equation such as the
sum of the cube plus double the square of the number of eities to visit. NP-hard
problems take exponential time to solve. In the case of the traveling salesman
problem, this means the time is some amount raised to the number of eities to
visit. As the number of eities grows, the time to solve the problem grows

2. This is the current belief. However, someone may create such an algorithm, which would be a
major find, since then the entire dass of NP-hard problems would be solvable in polynomial time.

8-queens

8-puzzle

15-puzzle

Cryptarithmetic

Traveling salesman
problem

Polynomial versus
exponential time
problems

416 Chapter 15: ArtiftciallnteUigence

Missionaries and
cannibals

Search paths

Traversing the search
space

extremely large.
The traveling salesman problem is a good test case to measure the quality of

new search techniques used in AI. Problems that grow exponentially can be
solved using AI techniques, but they require a great deal of pruning of the search
space or making choices that might not produce the best solution, but a reason
able one. With NP-hard problems, a fairly good solution is an excellent realworld
compromise, since no one wants to wait an eternity for the best solution.

Another puzzle is the missionaries and cannibals problem. The goal is to get
three missionaries and three cannibals across a river using a boat that can hold
only one or two of them at a time. There is a constraint: at no time can the canni
bals outnumber the missionaries on either shore or in the boat. We will solve this
puzzle in a later section of this chapter.

15.3 Common Problems
A number of problem areas exist in most, if not all, the subfields of AI. We'lllook
at them individually before focusing on the different subfields. The four prob
lems we'lllook at are searching, knowledge representation, reasoning, and world
or commonsense knowledge.

15.3.1 Searching
Searching involves finding a path from an initial state to a final or goal state. A
state is adescription of the environment at some point in time. In addition, there
are operators that describe transformations from one state to another; these are
the actions that can be taken to change the state.

Sometimes the path taken to the goal is the information that is needed. For
example, in the missionaries and cannibals problem, we are looking for a
sequence of moves to get all the people across the river. Each move affects the
arrangement of people and therefore changes the state in this puzzle. Sometimes
we only care about reaching the goal state and not how it was reached. In chess,
if we know that a move will result in a win, we want to take that move. We don't
care about the path there because it makes estimates of what the opponent will
do and we must recalculate each move based on the exact move the opponent
took. Some problems have many paths to the goal, but we want to find the
cheapest one or a relatively inexpensive solution even though it may not be the
absolute best one. The traveling salesman problem is an example of this. The
same is true if you are shopping around for a good price. You will call some
places, but not every single store that may carry the item even though it may be
cheaper elsewhere. It just takes too much time.

Search is often discussed in terms of movement through a search space that is
a tree or network of some sort. Each node in the tree or network represents some
state, and branches from the node represent operators that can be taken to move
to another node. With a search tree, the initial state is the root of the tree and the
goal state is typically one of the leaves. There are numerous ways to search. Two
of the simplest search algorithms were presented in Chapter 7: depth-first and

15.3 Common Problems 417

breadth-first search. Both of these are exhaustive search approaches since they
can search the entire search space. Depending on how the information is
represented and where the goal is in the search tree, one approach will yield
better results than the other. Depth-first moves quickly toward the leaves,
whereas breadth-first covers a wider space of initial moves earlier on.

Uniform-cast search, a variation of breadth-first search, chooses the node with Uniform-cost search
the least expensive cost from the start state to that node. Hence, it follows the
cheapest alternative at all times. If that path gets more expensive than another
path, the cheaper path is followed. This process continues until the goal is found.
The idea is that if the cheapest path is followed and a solution is found, there can-
not be a cheaper path that leads to the solution.

Hill-climbing, a variation of depth-first search, involves always choosing the HiII-climbing
best node to search next. This is akin to climbing a hill by always moving along
the steepest path at every junction of many alternative paths. Hill-climbing is
often faster than depth-first search because it limits the number of paths it
searches (it is not exhaustive). However, hill-climbing can get stuck at local max-
ima and not find the desired global maximum. A local maxima is a high point rela-
tive to other points, but is not necessarily the overal maximum which is called the
global maximum. If a path takes us to the top of a side hill that is lower than the
overall hill we want to elimb, we get stuck there. Hill-elimbing does not back up
and try another path.

Best-first search is like hill-elimbing in that it has a means of ranking the nodes Best-first search
to determine their distance to the goal state. Rather than following only one path
and choosing the best child from the current node of that path, many alternative
paths are considered. The most promising path is followed. If that path fails,
best-first search can backtrack, thereby avoiding the problem hill-climbing has of
getting stuck at a local maxima.

A * search (pronounced A star) looks at the overall search picture to make deci- A * search
sions of which path to follow. A* search combines the cost that has already been
incurred from the start state to the current state with the predicted cost of follow-
ing a given path to the goal state. Thus A * search is a mix of uniform-cost search
and best-first search. If the predicted cost from the eurrent node to the goal
doesn't overestimate the actual cost, A* will find the minimal cost path to the
goal. Ideally, to reduce the amount of unnecessary searching, the predicted cost
should be elose to the actual cost. If the predicted-cost function underestimates
too much, then A * starts to perform like uniform-cost search, which bases its
decisions only on the cost of the path taken so far.

A" search is expressed using the following equation, where f is the overall cost
(to be minimized), g(n) is the cost ineurred so far to get to node n, and h(n) is the
estimated cost of going from node n to the goal.

f = g(n) + h(n)
The following table shows the different search strategies of the above search

methods. The table differentiates the strategies with two categories: the cost of
the path taken so far and the cost to the goal. The costs are expressed as either not
used (shown as an underscore), measured by the next node, or measured by the

418 Chapter 15: Arti.ficial1ntelligence

Comparison o(search
strategies

Minimax search

Alpha-beta pruning

Heuristic search

path cost or estimate.

method cost so far
depth-first
breadth-first
hill-climbing _
uniform-cost path
best-first -
A* path

cost to goal

node

path
path

For game search, minimax searching is used. Minimax involves using one tree
to represent moves by both players. The first player tries to maximize its situa
tion, while the second player tries to minimize the first player' s situation. In light
of this, the first player must always think ahead to what the second player can do
in response to its move. For example, in tic-tac-toe, if the first player makes a
move to get two pieces in a row, but neglects to block a column in which the
second player already has two pieces, the first player will end up loosing. Simi
lady, in chess, moving the queen to put the other player's king in check may
seem like a good move, but if the other player can respond by capturing the
queen, the move was not good.

To reduce the search space of two-player game problems like the minimax
search above, alpha-beta pruning is used. Alpha-beta pruning involves keeping
track of best-case and worst-case situations at different nodes in the search space
and removing paths that are too costly. As the minimax search tree is examined,
there are times when a given move would be too costly because of an opponent' s
response. There is no point in checking alternative responses by the opponent or
checking the following moves we could make. For example, a move that would
cause a valuable piece to be lost is not worth exploring further. The search con
tinues exploring other safe or less costly moves. By keeping track of the costs
already evaluated at different levels in the tree, it is possible to know when other
paths are worthwhile for further exploration or not.

A heuristic is a strategy or rule-of-thumb that is applicable in certain situa
tions. Using heuristics in addition to straight search methods may lead to a solu
tion more quickly. Heuristic search uses additional information about the tree or
certain nodes that enables pruning the search tree or making decisions to pursue
a given node ahead of alternative nodes. For example, the first move may be
defined by a heuristic because it is known to be a strong move. This may be done
in tic-tac-toe or chess. Rather than search through the space of possible moves, a
heuristic defines a move to take in a certain situation. Search can be done purely
with heuristics. Expert systems are an example of this.

To better understand search, let's explore two search algorithms in detail.
First, here is a function that implements best-first search:

15.3 Common Problems 419

Parameters: goal-fune, a funetion returning true if a goal has
been met; ehoiees, a list of paths to seareh; eost-fune, a eost
funetion to order new states; and next-states, a funetion that
generates new states from a eurrent path.
Return the first path eneountered that satisfies goal-fune.
The list of path ehoiees is printed each time through the code.

(define (best-first-seareh goal-fune ehoiees eost-fune next-states)
(display ehoiees)
(newline)
(cond «null? ehoiees) #f) ; no more ehoiees

«goal-fune (first ehoiees» (first ehoiees»
(else

(best-first-seareh goal-fune
(add-paths

(rest ehoiees)
(make-paths (next-states (first ehoiees»

(first ehoiees»
eost-fune)

eost-fune
next-states»)

The function next-states takes the current path from ehoiees and returns
the possible valid states below that. These should be returned in a list, which will
be empty if there are no further states below the current state. These states are
converted into paths by make-paths. Then add-paths joins them to the existing
paths in the proper order based upon the cost function eost - fune. Paths are
formed by adding the new state to the end of the list representing the rurrent
path. The function make - pa ths removes empty lists from the list of new states
from next-states. This is to allow more flexibility and ease in writing next
states. For example, empty branches of a tree can be represented as empty lists.
Rather than test and conditionallyadd these to the list of new states to process,
we can always add them and they will be removed by make-paths. The function
add-paths calls insert (from section 8.4.2, "Sorting listsOl in Chapter 8). It is
included here to ease the burden of jumping through the text.
; Return a new sorted list with element inserted into sorted-list
; based on eompare-fune.
(define (insert element sorted-list eompare-fune)

(cond «null? sorted-list)
(list element»

«eompare-fune element (first sorted-list»
(cons element sorted-list»

(else
(cons (first sorted-list)

(insert element (rest sorted-list) eompare-fune»»)

420 Chapter 15: Artificial1ntelligence

Using best-first search
to write depth-first and
brea,"h-firstseanch

; Add paths in new-choices to old paths, old-ehoiees, in sorted
; order based on east-fune.
(define (add-paths old-ehoiees new-ehaiees east-fune)

(if (null? new-ehoices)
old-ehoiees
(insert (first new-choiees)

(add-paths ald-ehoiees (rest new-ehaiees) eost-fune)
eost-fune»)

; Given a list of new states, remove the empty lists and eanvert
; the states inta eomplete paths.
(define (make-paths new-states eurrent-path)

(map (lambda (state) (append eurrent-path (list state»)
(remove '() new-states»)

The function best-first-seareh can be used to perform a depth-first or
breadth-first search. The initial choice is a path representing the starting state, the
root of the tree. To make the root a path we make it a list, and since we need to
pass a list of path choices, we must apply list once again. To add new paths to
the start of the list of path choices, we use a cost function that always returns
true. Lastly, the next states are the left and right children of the current node in
the tree, which can be found by following the current path to get there. The func
tion find does this by traversing through a tree based on the search path.
; Depth-first seareh implemented using best-first seareh.
(define (depth-first-alt goal-fune tree)

(best-first-seareh goal-fune (list (list (roat tree»)
(lambda (pathl path2) #t)
(lambda (path)

(list (left-ehild (find path tree»
(right-child (find path tree»»)

Breadth-first search is similar except the new states are added to the end of
the path choices, so the cost function must always return false. The function
passed to the parameter next - s ta tes must form a list with the right child first to
work properly for breadth-first search, because the new paths are added to the
end of the list in reverse order. The last child in the list is added to the end of the
search path list first. The first child in the list of new states will be the final value
added to the end of the path list.
; Breadth-first seareh implemented using best-first seareh.
(define (breadth-first-alt goal-fune tree)

(best-first-search gaal-fune (list (list (raat tree»)
(lambda (pathl path2) #f)
(lambda (path)

(list (right-child (find path tree»
(left-child (find path tree»»)

; Return the subtree in tree based on path.
(define (find path tree)

(cond «null? tree) #f) ; problem
«and (null? (cdr path»

(equal? (root tree) (car path») tree)
«null? (cdr path» #f) ; problem
«equal? (left-child tree) (second path»

(find (cdr path) (left-side tree»)
«equal? (right-child tree) (second path»

(find (cdr path) (right-side tree»)
(else #f») problem

Selector functions for parts of trees.
(define root first)
(define left-side second)
(define right-side third)
(define (left-child tree)

(if (null? (second tree» '() (caadr tree»)
(define (right-child tree)

(if (null? (third tree» '() (caaddr tree»)

15.3 CommonProblems 421

Let's make calls to these functions to see how they work. First we'H define a
tree to traverse:

2

------- ---4 6

/ "'" / "'" 1 3 2 1

(define tree '(2 (4 (1 () (» (3 () (») (6 (2 () (» (1 () (»»)

Now we caH our functions with the tree and a goal function that tests for a
path with nodes that add up to more than seven.

> (depth-first-alt (lambda (path) (> (apply + path) 7)) tree)
((2))
«2 4) (2 6»
«2 4 1) (2 4 3) (2 6»
«2 4 3) (2 6»
(2 4 3)

> (breadth-first-alt (lambda (path) (> (apply + path) 7)) tree)
((2»
«2 4) (2 6»
«2 6) (2 4 1) (2 4 3»
(2 6)

The function best - first - search prints the available choices in each iteration
through the search. Notice how the two search techniques use a different search
ordering and produce different results in this example.

422 Chapter 15: Artijiciallntelligence

A' search through
trees

A' search in general

Next let's explore A* search beginning with a variation on A* search that
works only on trees. Our A * search is an extension of best-first search.

A* seareh of tree implemented using best-first seareh.
; g is a funetion that returns the eost ineurred so far and
; h is a funetion returning the expeeted eost to reaeh the goal.
(define (a*-tree-seareh goal-fune tree g h)

(best-first-seareh goal-fune (list (list (root tree»)
(lambda (pathl path2)

(C= (+ (g pathl) (h pathl» (+ (g path2) (h path2»»
(lambda (path)

(list (left-ehild (find path tree»
(right-ehild (find path tree»»)

Here is another version of A* search that works on data structures other than
trees or in situations where it is easier to express the successor states with a func
tion rather than by creating a tree. This is the case in many problems, such as the
two problems in the following sections:

General a* seareh implemented using best-first seareh.
start-path is the path to the start state.
sueeessors is a funetion that returns the next states.
g is a funetion that returns the eost ineurred so far and
h is a funetion returning the expeeted eost to reaeh the goal.

(define (a*seareh goal-fune start-path sueeessors g h)
(best-first-seareh goal-fune (list start-path)

(lambda (pathl path2)
(C= (+ (g pathl) (h pathl» (+ (g path2) (h path2»»

sueeessors))

15.3.2 Scheduling problem solved with A* search
Let's look at an example of how A* search works. Imagine the fo11owing prob
lem. We are trying to fi11 time slots during the day with people who are available
to work at those times. Each person can work a maximum of two hours in a day.
We/11 represent the times we want to fi11 as a list of numbers representing the
hour of the day (each time slot is one hour long starting and ending on the hour).
For each person in our problem, we have a list representing the times that they
are available to work listed in order of their preferences. We'l1 use a twenty-four
hour dock to avoid dealing with A.M. and P.M.

There are two variations of this problem. One is to return a solution that
merely fills a11 the time slots. As long as a11 the time slots get fi11ed and no one
works more than two hours, this problem is satisfied. The second solution fi11s up
a11 the required time slots but also attempts to give each person their preferred
time requests. The first problem has potentia11y many solutions, whereas the
second has one optimal solution (or some number of ties).

To solve the first variation of the problem, we have to fi11 a co11ection of time
slots. In A * search we are trying to minirnize the function

15.3 Common Problems 423

f = g(n) + h(n)

Here, the function g(n) represents the number of time slots already filled. If the
path has one node for each time slot, the length of the path corresponds to g. The
function h(n) is an estimate of the number of slots that remain to be filled. At best,
the remaining time slots will be filled by making the proper choices each time.
Since h should not overestimate the number of steps, we can use this simple
measure for h: the number of slots remaining.

Here is the list of times to fill and hours people can work:
(define times-to-fill '(8 9 10 11 12 13 14 15 16 17»

(define people '(
(myriam 8 9 10 11 12)
(nate 12 13 14 16 17)
(alisa 8 9 10 15 16 17)
(wayne 11 13 14 15)
(therese 9 10 11 14 15 16»)

The function possible-choices returns a list of people who can work at a
given time given the current schedule. It limits each person to two hours of work.
; Given list of times, people, and people already scheduled, path,
; return list of people who can work at time.
(define (possible-choices time path)

(map car
(keep-if (lambda (person-times)

(and (member time (cdr person-times»
« (count (car person-times) path) 2»)

people))

Here is the call to a * search to solve the first version of our problem:
(a*search

(lambda (path) (= (length path) (length times-to-fill»)
'()
(lambda (path)

(possible-choices (list-ref times-to-fill (length path» path»
length
(lambda (path) (- (length times-to-fill) (length path»»

This call returns
(myriam myriam alisa wayne nate nate wayne therese therese alisa)

Take a look at the values retumed. The first seven people are the first choices
in the list people for those times (remember that each person can only work two
hours). For 3:00 P.M. (15) Alisa is the first person who can work and the first
choice made by the program. This path fails, since Tht~rese cannot work the final
hour. The next alternative is to have Therese work at 3:00 P.M. This path has one
problem when the first choice, Alisa, is chosen to work at 4:00. The next alterna
tive is having Therese work at 4:00, and then the final step can be reached in
which Alisa works at 5:00.

Calculating g and h
functions for A *
search

424 Chapter 15: Artijicial1ntelligence

Schedu/ing with
priorities

Creating a good h
function

For the second version of this scheduling problem, we want to optimize the
choice based on the work preferences given by each person. This changes the
functions g and h, which must now reflect the quality of the times chosen. The
new functions are based on the position of the times in the time-preference lists,
where the lower the position, the better the choice. The function g is the sum of
the costs incurred so far. For each person in the path, the position of the time they
work is computed. This list of numbers is added to get the total cost of the path
so far.

For the function h we can compute the sum of the costs of the people who will
work in the remaining time slots to filI. 5ince there can be many people who can
work at a given time slot, we can compute the costs for each available person and
use the minimum cost. FinalIy, we sum alI the minimum costs for each remaining
time to get the cost to reach the goal. This will not take into account the true list
of those who can work because that would involve knowledge of alI the people
working earlier. 50 the function h underestimates the actual cost.

Using the h function from the first version of this scheduling problem (that
doesn't look at time preferences) will not work, because it may overestimate the
cost function. For example, if there are two slots to filI, the first h function returns
a cost of 2. However, if there are people available whose first choice matches
those times, then the actual cost is o. If the converse is true and the remaining
times slots are alIlater choices in the preference lists, then the first h function will
greatly underestimate the actual cost, and A* search will behave more like
uniform-cost search instead~

Here is the calI to a*search to choose people according to their time prefer
ences. The function g totals the list from a mapping across the people in the
current path and the corresponding times that they work. The function mapped
computes the position of the given time in the person' s time preference list. The
function h is more complex. For the remaining times to find people to work, h
computes a list of the preferences for the people who can work then. The
minimum of these preferences is used, and alI the preference minimums for each
time to filI are added:

3. I tried using the first h function, and the search to fill the ten time slots took a lot longer to return a
final answer. It took around one hour as opposed to one to two minutes! The return value was a
different (but still optimal) list:

(myriam myriam therese wayne nate wayne therese al isa alisa nate)

(a*search
(lambda (path) (= (length path) (length times-to-fill»)
'()
(lambda (path)

15.3 Common Problems 425

(possible-choices (list-ref times-to-fill (length path» path»
(lambda (path)

(apply +
(map (lambda (person time)

(position time (cdr (assoc person people»)
path (subseq times-to-fill 0 (length path»»)

(lambda (path)
(apply +

(map (lambda (time)
(apply min

(map (lambda (person)
(position time (cdr (assoc person people»))

(possible-choices time path»))
(subseq times-to-fill (length path»»»

There is a bug, which can lead to an error when no one can work in a given
time slot. We cannot take the minimum cost of no costs. The apply withmin will
return an error with an empty list. To fix the bug, we can test the result of the call
to possible-choices and return some large cost if nobody can work then (we
don't want to take a path that is adeadend). An alternative solution is to use a
custom version of min that can handle no arguments, in which case it returns a
very large value. Opting for the first fix, here is the new call to a*search:

(a*search
(lambda (path) (= (length path) (length times-to-fill»)
, ()
(lambda (path)

(possible-choices (list-ref times-to-fill (length path» path»
(lambda (path)

(apply +
(map (lambda (person time)

(position time (cdr (assoc person people»»
path (subseq times-to-fill 0 (length path»»)

(lambda (path)
(apply +

(map (lambda (time)
(if (not (null? (possible-choices time path»)

(apply min
(map (lambda (person)

(position time
(cdr (assoc person people»»

(possible-choices time path»)
1000» ; return a large cost

(subseq times-to-fill (length path»»»

426 Chapter 15: Artificiallntelligence

Data representation
tor missionaries and
cannibals

Refining the data
representation

Problem
characteristics

The result of this call is

(rnyriarn therese rnyriarn wayne nate wayne therese alisa nate alisa)

15.3.3 The missionaries and cannibals problem solved with A*
search

We can use A* search to solve the missionaries and cannibals problem. We need
a data representation for the problem. The most obvious representation (in terms
of matching the mind's eye picture of the problem) is three lists. The first list
represents the people on the initial river bank, the second list represents people in
the boat and the boat's location, and the third list represents people on the oppo
site shore. The initial state can be represented as the list

«rn rn rn c c c) (left) (»

The rn's are missionaries and c's are cannibals. The left denotes that the boat
is at the left bank, where the people are. Of course the order of the people does
not matter, so to make life easier in verifying that we haven't violated the condi
tions of the puzzle or in generating new states, we can use numbers instead. The
first number is the number of missionaries. Now our initial state is

«3 3) (left) (0 0»

We don't need to keep track of the people in the boat with a list. There are at
most five possible configurations of people in the boat and they are all legal (i.e.,
the missionaries are never outnumbered). All we really need to keep track of is
where the boat iso Here is a new representation for the initial state:

((3 3) left (0 0»

The goal state is the list
«0 0) right (3 3»

This process of refinement of the data structure is common during the design
phase of computer programs. We could even go further and eliminate the list
representing the people on the right bank. It can be computed from the numbers
in the first list (the people on the left bank). For now we'll skip that change to the
data structure and keep both left and right bank lists.

Before reading the solution to this problem, take some time and try to solve
the problem by hand. Do this now.

You may have noticed some interesting things about the problem. First, it's
not that easy. Second, most states don't have many possible moves because they
are illegal (i.e., the missionaries get eaten) or they return to a previous state
visited earlier. Third, it's a slow process taking two steps forward and then one
step backward.

Now let's build a solution using A* search. We'll be dealing with paths in
which each path is a list of the states taken to get to that point in the solution.
New moves are a function of the current state, which is the last entry in the path
list. The function last (repeated from Chapter 4) returns the last element in a list;
we will use it to get the current state:

15.3 Common Problems 427

; Return the last element in a-list.
(define (last a-list)

(list-ref a-list (- (length a-list) 1»)

The function move-people generates a list of legal moves that can be taken
from the current state. We can check both lists (each side of the river) or take a
quicker approach and test only the first list (the left bank) by making the follow
ing realizations:

a move is legal if the number of missionaries on the left side is zero
(because the other side has three missionaries and they aren't outnumbered)

or there are three missionaries
(the other side will have zero)

or the number of missionaries equals the number of cannibals
(the numbers will be equal on the other side as weIl)

Otherwise the move is illegal. For example, two missionaries and one cannibal on
the left side means one missionary and two cannibals are on the right side, which
is illegal.

To test for valid states, keep-if is used to individually check each possible
state. To generate all possible successor states, map is called to perform a transfor
mation of the current state to the successors. This transformation is done by
adding and subtracting the number of missionaries and cannibals that can be
moved. The list below represents the numbers of missionaries and cannibals that
can go in the boat:

«10) (01) (20) (02) (11»

The first element denotes one missionary and no cannibals going across in the
boat. If we map across this list with the current state, we can form a list of the
successor states. We need to check which side the boat is on to decide if we must
add or subtract the people in the boat.
; Given state, the current position of people, return a list of
; legal successor states.
(define (move-people state)

(keep-if
(lambda (new-state)

(or (= (caar new-state) 0)
(= (caar new-state) 3)
(= (caar new-state) (cadar new-state»)

(map (lambda (trans)
(if (eq? (second state) 'left)

(list (map - (first state) trans)
'right
(map + (third state) trans»

(list (map + (first state) trans)
'left
(map - (third state) trans»)

'«1 0) (0 1) (2 0) (0 2) (1 1»»)

Legal configurations

Generating successor
states

428 Chapter 15: Artificiallntelligence

g and h functions for
missionaries and
cannibals

Here is a sampie call to move-people:

> (move-people '«3 3) left (0 0)))
(«3 2) right (0 1» « 3 1) right (0 2» « 2 2) right (1 1»)

This shows that there are three legal states from the initial state. The other two
possible states from the initial state are illegal since the missionaries are outnum
bered on one side of the river. The function move-people must be augmented to
not include states that already have been visited in the path. Calling set

difference with the states from move-people and the current path can handle
this.

Lastly, we must write the functions g and h for A * search. The cost g already
incurred is the length of the path. The estimated cost h to the goal can be
represented as the number of people remaining to add to the other side. This is
the number of people on the left bank, which is determined easily by adding the

. elements in that list using apply.

The call to a*search folIows:
(a*search

(1ambda (path) (equa1? (last path) '«0 0) right (3 3»»
'«(3 3) left (0 0»)
(1ambda (path) (set-difference (move-people (last path» path»
length
(1ambda (path) (app1y + (first (last path»»)

The results (formatted to look nice) are as folIows:
(((3 3) left (0 0» ((2 2) right (1 1» ((3 2) left (0 1»
«3 0) right (0 3» «3 1) left (0 2» «1 1) right (2 2»
((2 2) left (1 1» ((0 2) right (3 1» ((0 3) left (3 0»
«0 1) right (3 2» «1 1) left (2 2» «0 0) right (3 3»)

The answer is found in eleven steps. This took less than a second to ron. Tak
ing out the check for states that have already been encountered in the path (the
set-difference of the call to move-people) produces the same result, but it
takes about six minutes to ron! A* search should internally test for repeated
states. In the interest of simplicity this was left out, but for the missionaries and
cannibals problem it is important to include.

15.3.4 Exercises
15.1 Show a call to a*search that calculates a variation on the missionaries and

cannibals problem with four missionaries and four cannibals. You may
have to make changes to move-people.

15.2 Create a data representation and g and h functions for the 8-puzzle.

15.3 Think of what constitutes astate in 8-puzzle and write a function that com
putes the next states that are allowed from a given state.

15.3 Common Problems 429

15.4 Design a data representation for cryptarithmetic. It should be general so it
works for any cryptarithmetic problem.

15.5 Describe g and h functions for cryptarithmetic.

15.6 Indicate what states in cryptarithmetic look like and write a function that
returns aH possible successor states of a given state.

15.3.5 Knowledge representation
One of the most important decisions to make in programming is deciding the
form of the data structure. Chapter 7 presented examples to help illustrate this
concept. Data structures are important in AI programming as weH. Here data
structures are often used as representations of knowledge within the program.
Knowledge representation is the problem of designing a structure for data that
represents knowledge in a program. Below are some common choices.

Conceptual dependencies are used to represent sentences. They are presented in
section 15.7, "Natural Language Processing."

Semantic networks are graphs (a coHection of connected nodes) in which each
node represents some object and the connection between the nodes represents
the relationship between the objects it connects. A graph is more general than a
tree, in that a graph can have connections to any node, not just the ones immedi
ately above or below it.

Here is an example of a semantic net that represents information about
animals:

chases

The ellipses represent nodes and the arrows between them are the connec
tions. The connections represent the relationship that anode has to the node to
which it is pointing. For example, "dog is a mammai" is represented by an arrow
labeled "is a" that goes from the dog node to the mammal node. The "is a"

Semantic networks

Relations in semantic
networks

430 Chapter 15: Artificial Intelligence

relationship specifies that anode is a subset of another node to represent facts
like aIl dogs are mammals. Property inheritance gives the subset the same proper
ties as the superset, thus dogs will have aIl the properties of mammals. To indi
cate the properties that anode may have, the "has" relation is used. Another rela
tionship is "instance," which says that a particular object is a member of anode.
For example, we could specify the cat "Ruby" as an instance of the node cat. For
other specific relationships, the nature of the association between the nodes is
used (e.g., chases or eats).

Frames Frames are similar to semantic networks. Instead of a coIlection of nodes with

Inheritance

First-order predicate
calculus

labeled arrows, a frame has objects and their properties (caIled slots). A frame
may have code (procedural information) as weIl. For example, there may be code
specifying how to compute the value for a given slot.

Here is an example of a frame for dogs. Below the frame name is a list of slots
and their values:

dogframe
is-amammal
has sharp-teeth
eatsmeat

Frames support inheritance, in which a frame inherits the properties of the
frame of which it is a member. For example, if there is a mammal frame, then,
since dogs are mammals, they would inherit all the properties of mammals.

With a few extensions from first-order logic,4 predicate calculus provides an
expressive form of representing information. A predicate is a relation between
objects that is either true or false. Predicate calculus defines a language for
describing and using predicates. Predicates represent facts about the data being
modeled. We can combine predicates with the logical operators and, or, if-then,
equivalence, and not. We can also use functions that we define that return informa
tion about objects.

Below is a list of predicates and their arguments representing the animal
structure defined above:

is-a (dog, mamma})
is-a (cat, mammal)
is-a (duck, bird)
has (bird, wings)
has (dog, sharp-teeth)
has (cat, sharp-teeth)
eats (dog, meat)
eats (cat, meat)
chases (dog, cat)
chases (cat, duck)

4. These additions inc1ude functions that return values that aren't necessarily true or false and the
predicate "equals" to test if two things are the same.

15.3 Common Problems 431

Predicate calculus includes a means of quantifying predicates, which allows us
to form statements like

some dogs chase ducks

This would be represented as

There exists an x such that: is-a (x, dog) and chases (x, ducks)

This quantifier is called an existential quantifier. There is also a universal quantifier
that can be used to represent statements like

all dogs are mammals

This statement is expressed as

For an x, if is-a (x, dog) then is-a (x, mammal)

Since we can define general rules with predicate calculus, we can put in infor
mation about the system we are modeling and then ask questions or perform cal
culations based on particular examples. For example, if we have established the
rules

an mammals have hair, and
an cats are mammals

and then determine that Ruby is a cat, we can determine that Ruby has hair by
first realizing that she is a mammal and then since she is a mammal, she must
have hair. The next section goes into more detail into the reasoning process.

15.3.6 Reasoning
A dictionary definition of reasoning may mention logical thought, decision mak
ing, inference, rational thought, and judgment as part of reasoning. Reasoning is
important in AI because it provides a means to obtain new information or make
conclusions given information. Reasoning provides not only a means, but an abil
ity to explain how the new information or conclusions were obtained. The sim
plest type of reasoning involves drawing a conclusion based on direct facts that
match the desired goal. Unfortunately, many problems involve combining infor
mation in some way using different types of reasoning. Below are four of the
commonly used reasoning techniques.

Induction is a type of reasoning that involves generalization. If we have
enough examples of some phenomenon, we may induce that it is generally appli
cable. Medicine often works by induction. If researchers see enough cases of
some symptom along with some disease, they start believing that it is more than
correlation, but causation. Inductive reasoning may go as fonows:

Twenty-five sailors didn't eat any form of vitamin C and contracted scurvy.
Ten patients didn't get vitamin C in their diets and contracted scurvy.

Therefore, if one doesn't get vitamin C, they'll contract scurvy.

This type of reasoning is not always correct and can lead to false conclusions.

Existential and
universal quantifiers

Inductive reasoning

432 Chapter 15: Artificiallntelligence

Deductive reasoning

Abductive reasoning

Probabi/istic
reasoning

Deduction is one of the most powerful forms of reasoning. Syllogisms are
examples of deduetion. For example,

"All men are mortal,"
"Soerates is a man,"
Therefore, "Soerates is mortal."

This type of deduetion involves specifieation. We go from a general statement,
"All men are mortal," to a specifie eonclusion: "Soerates is mortal."

Deduetion is most easily shown with if-then statements in whieh we know the
anteeedent (the eondition part of an if-then statement) is true, so we ean deduee
the eonsequent (the then part). For example, parents often tell their ehildren state
mentslike

If you eat your dinner, then you'll get dessert.

If the ehild eats her dinner, then we deduee that she will get dessert.

Abduction is similar to deduetion, exeept it works by taking an if-then state
ment and its eonsequent (the then part), and eoncluding that the anteeedent (the
eondition) is true. Taking the above example, we begin with

If you eat your dinner, then you'll get dessert.

Given the knowledge that the ehild got dessert, we eonclude that the ehild must
have eaten her dinner. This seems reasonable, but is not logically true. If the eon
sequent in an if-then is true, the anteeedent need not be true in order for the if
then statement to be logieally true.

The opposite is not the ease. If the anteeedent in an if-then is true, the eonse
quent must be true in order for the if-then statement to be true. Deduetion works
by knowing the antecedent is true, and then logieally eoncluding that the eonse
quent must be true. Abduetion takes the eonsequent as its true information and
tries to explain why it is true. If there is a eausality between the eonsequent and
the anteeedent, abduetion may be eorrect to some degree. If no other anteeedent
eausally leads to the eonsequent, then that relationship beeomes an if-and-only-if
relation in whieh ease abduetion holds. For example,

If and only if you eat your dinner, then you'll get dessert.

If we know that the ehild got dessert, then we ean eonclude that the ehild ate her
dinner.

It is often the ease that many relationships exist with probabilities of one
event oeeurring or conditional probabilities of one event oecurring given
knowledge that another event oecurred. The probability that a ehild ate dinner
given the fact that she got dessert is a eonditional probability, and is written as
P (dinner I dessert). We ean ealculate this eonditional probability given the uncondi
tional probability that the ehild gets dessert (written as P(desserl», the uneondi
tional probability that the ehild eats dinner, P (dinner), and the eonditional proba
bility that the ehild gets dessert given that the ehild ate dinner, P (dessert I dinner).
This is ealculated using Bayes' role, as folIows:

15.3 Common Problems 433

P (dinner I dessert) = P (dessert I dinner)P (dinner)
P(dessert)

Given the statement "if you eat your dinner, then you'lI get dessert," we know
that the child will get dessert if she ate dinner (from deductive reasoning), so
P (dessert I dinner) is 1. Let's assurne that P (dinner) is 0.6 and P (dessert) is 0.8. The
conditional probability that the child ate dinner given the fact that she got dessert
is 0.75.

If there are other probabilities we know about, such as the conditional proba
bility that the child gets dessert given the fact that she cleaned her room and the
probability that the child cleans her room, we can calculate which event (eating
dinner or cleaning the room) is more likely to have explained why the child got
dessert. Techniques like this are used to find the most likely causes of events
given only probabilistic knowledge of the world.

15.3.7 World or commonsense knowledge
Most AI programs are first developed within a small domain. Within such "toy"
worlds, or microworlds, the programs perform impressively. The difficulty lies
in scaling the worlds up to the real world in which we live. In a small or abstract
domain it is possible to encode all the details and information about the domain
that the program must know. Trying to encapsulate all the information about the
world is a different matter altogether. This is the problem of representing world
knowledge or commonsense knowledge.

World knowledge or commonsense knowledge is very large and is something
that we leam with years of growing up in the world, observing the behavior and
actions of objects around uso To get an idea of how difficult it is to leam such
general knowledge, think about learning the culture of a foreign country or of a
different age or socioeconomic group in your own country. In fact, just try to
understand the opposite sex and you find that the interpretations and viewpoints
of the world can be very different. This confounds the problem of gathering
world knowledge as welI, since there is a context associated with it. One person's
humor is another person's insult. For example,

Question: What do lawyers use for birth control?
Answer: Their personalities.

may be humorous to many but offensive to lawyers. Of course, a great deal of
world knowledge is constant across all people and places. We are all affected by
the laws of physics. Gravity and friction exist in all countries throughout the
planet.

A program whose domain is the world has to deal with any type of situation
that the world and the laws of physics can throw at it, so it must understand how
the world and physics work. We may think that understanding how the world
works isn't that difficult. We deal with it every day and do just fine (more or
less). But physics, now that is hard stuff. For a program however, it's the other
way around. Newtonian physics can be explained fairly nicely, given a handful
of rules and some constants. For most realworld problem solving, our program

Scaling up to the real
world

Knowledge context

434 Chapter 15: Artificial1ntelligence

won't have to try to perform a grand unification of all the forces of nature or deal
with relativity, quarks, superstrings, or any of a host of issues that nuclear and
high energy physicists deal with. As long as it knows about simple physics (e.g.,
gravity, force, inclined planes, pulleys, electricity, and magneticism), then it is in
good shape.

Explaining what happens in a television show is much more complex. The
program would have to know about family relationships, economics, sociology,
romance, appropriate and inappropriate behavior, and so on. We have learned
this over the course of many years of watching and being in the world. If we
spent as much time studying physics or Scheme, we may find that they come as
naturally and simply as watching television.

Even if one could create a set of all the minute facts about the world, how
would one represent them in a computer program? How would all the intercon
nections be made? How would inferences be made? Would one have to represent
all facts, such as humans cannot walk through walls, or it's a bad idea to eat any
thing larger than your head?

CYC A team lead by Doug Lenat is developing a system called CyCS that is trying
to amass world and commonsense knowledge. CYC is a huge knowledge base of
concepts, assertions, and heuristics for reasoning over them. An assertion in CYC
is a commonsense fact about the world such as "you have to be awake to eat." In
just over ten years CYC has grown to include millions of assertions based on a
hundred thousand fundamental concepts~

About a million assertions were entered by people and coded in CYC' s
representation language, which is based on first-order predicate logic with some
extensions. Other assertions have been produced by the system based on how it
reasons and infers with its knowledge base. This has resulted in the addition of
millions of new assertions. The hope is that more and more of the system will be
self-generated.

CYC's assertions are assumed to be true in some given context: For example,
in the context of naive physics there would be an assertion about objects coming
to rest eventually. In the physicist context, we would find a different assertion
about objects tending to stay in motion if they are in motion. CYC reasons within
a specific context or contexts. This helps to reduce the search space of assertions
dramatically and also handle contradictions between assertions. The two motion
assertions are contradictory but wouldn't pose a problem to CYC because only
one would apply, given a question like "Would a physicist have difficulty under
standing how an air hockey game works?"

CYC is still in its development phase but is being linked with other programs
to extend their capabilities. At this point, it is too early to tell if a project like CYC

5. The name CYC comes from enCYClopedia.
6. These numbers are somewhat deceptive, since CYC contains some general assertions that

encompass many individual assertions.
7. When CYC was first developed, its assertions were weighted (given a degree of belieO. This

proved to be problematic and the notion of assertions dependent on context was developed.

15.4 Problem Solvers and Planners 435

will succeed. No one knows if CYC will be able to solve AI problems where they
have not scaled up due to a lack of world knowledge.

15.4 Problem Solvers and Planners
Problem solving is one of the fundamental goals of AI. Most AI programs are
attempts at solving some problem, whether it is medical diagnosis, object or
speech recognition, grasping an object, or playing agame of chess. Much of AI's
early work centered around building systems that could solve a dass of prob
lems (e.g., the Logic Theorist) or general problems (GPS). What emerged from
this was aseries of programs that focused on planning to reach some end goal.

We already introduced GPS, Newell and Simon's General Problem Solver. It
did solve problems, but it was far from general. The big problem with any
attempt at building a general problem solver is dealing with world knowledge.
And as we saw above and could have imagined before, this is no easy task.

Putting world knowledge aside, let's take a doser look at how GPS works.
GPS uses a collection of operators that each represent some action that can be
taken in the world being modeled. For example, an operator might represent
moving from one location to another, picking something up, or putting some
thing down. Each operator has preconditions that must be satisfied before the
operator can be applied and effects that the operator produces. For example, to
pick something up the preconditions may be that your hands are empty, that you
are at the object, that the object is not under other objects, and that the object is
not too heavy. The effects of carrying out the operation are that the object's loca
tion has moved and that your hands are no longer empty.

GPS uses means-ends analysis to reach its goal by trying to reduce the differ
ences in its current state and its goal state. If some action produces the desired
goal but cannot be performed because its preconditions have not been met, then
those preconditions become the new goals. This hopefully reduces the difference
between the current state and the goal state. If the goal can be solved, then even
tually all the preconditions will be met and the sequence of steps taken defines a
means to the goal. If a condition is reached that is not met and no goal specifies it
as its outcome, then the goal cannot be reached with those operators.

The original GPS was modified by Richard Fikes and Nils Nilsson in 1971.
Their version was called STRIPS (Stanford Research Institute Problem Solver).
STRIPS had a more restricted language for defining operators and had add and
delete lists to model the effects of actions. To model an operation, the items in the
add list would be added to the current state and the items in the delete list would
be removed from the current state. For example, the operation of moving from
location1 to 10cation2 would involve adding the state at -location2 and deleting
the state at-locationl.

Further refinements were made to problem sol vers. One was to add critics
that help in the selection of actions or reduce the amount of backtracking needed
by making the correct decisions early on. Another strategy was to abstract the
problem such that it could be solved in a hierarchical fashion, ignoring the details

GPS operators and
preconditions

Means-ends analysis

STRIPS

436 Chapter 15: ArtificialIntelligence

Production systems

Conflict resolution and
conflict resolution
strategies

at first. These models improved the original GPS, but none wound up producing
a true general problem solver.

15.5 Expert Systems
The grandiose claims made about general problem solvers were never realized.
Instead of trying to continue along that path, some AI researchers shifted to solve
more limited and specialized problems. Out of this arose expert systems. The
early expert systems were in the areas of chemical structure analysis from mass
spectroscopy data (DENORAL, 1965) and identification of infectious diseases
(MYCIN, 1976).

The foundation for expert systems came from the idea of production systems,
developed by Emil Post in the early 1940s. A production system is a collection of
production rules, current state information, and an interpreter. Production rules
are situation-action pairs. They model some specific fact about the world as a
rule in the form of

"if some situation is true, perform the following actions"

The current state information is called working memory since production systems
started as a psychological model of the mind. The interpreter chooses produc
tions whose situations match the current working memory and performs the
corresponding actions. The actions add information to working memory, remove
information, print information, or indicate that the system should stop.

When more than one rule is applicable, conflict resolution is used to choose one
to apply. There are many possible conflict resolution schemes. One scheme
chooses a rule according to some priority. The rules can be prioritized or the
situations or actions of the rules can be prioritized. For example, the situation
engine-overheating and the action engage-brake may have very high priori
ties. Another typical conflict resolution scheme is to choose the most specific of
the applicable rules. For example, consider the following two rules:
if pan-is-hot then add-oil-to-pan
if pan-is-hot and garlic-is-golden-brown and onions-are-golden then

add-vegetables-to-pan

The second rule should have priority over the first; otherwise, we will keep
adding oil to the pan and end up with a vat of hot oil instead of a vegetable stir
fry.

Choosing the rule whose situations were most recently satisfied can be used
to influence some control over the sequence of rules that are chosen. Not choos
ing a rule if it has been recently chosen is used to avoid having rules run continu
ously. Perhaps the simplest conflict resolution scheme is to choose the first rule
encountered that is satisfied and then continue evaluating rules starting with the
next ruie. This allows the rule writer to sequence rules to have a great degree of
control and understanding of the interaction of rules.

15.5 Expert Systems 437

The conflict resolution scheme has a large impact on the order in which rules
are chosen. Sometimes the rule writer wants control over the mle ordering, but
there are times when this is not wanted. In fact, expert systems started as a move
away from traditional control. The problem with controlled systems is that it is
difficult to model highly interconnected domains. Think of a medical system.
Even though the body comprises various systems (e.g., circulatory and respira
tory), it is highly interconnected. If we wrote separate mIes for each system,
many mIes would be repeated in the rulebases for different body systems, or
jumps from one mlebase to another would be needed. In the end, the control
would look like a tangled web of mIes. In programming this is referred to as
spaghetti code.

Production systems offer a different approach: Produce mIes that ideally can
stand alone, each representing some independent fact about the system. The mle
ordering no longer matters. Rules are irivoked when their conditions are met.
Conflict resolution gives an ordering to mIes so that the most important mle
happens first. For example, given a collection of mIes for an object avoidance sys
tem in an aircraft, we might want to have the mIes invoked in the following
order:

if on-collision-course then turn left
if on-collision-course then light "fasten seat belt" sign
if on-collision-course then send message to other aircraft

Some expert systems give an explanation of their reasoning process. These
explanations are useful in debugging the mlebase. They are essential in a field
where someone is using an expert system to augment their own expertise. For
example, a doctor receiving advice from a program will want to know why the
advice was given. This can be done fairly easily by producing a trace of the mIes
that were evaluated. Some expert systems have a question/ answer interface in
which the user can ask for explanations about the expert system analysis.

An expert system has three parts: the rulebase, the database, and the inference
engine. The mlebase is the collection of mIes that represent the expert knowledge.
The database is a collection of known facts about the system being modeled. It
may change as the mIes are evaluated to reflect changes in the system. The infer
ence engine sequences through the mIes and finds those that are satisfied accord
ing to the information in the database. The inference engine includes the conflict
resolution mechanism that chooses one mle from those that are satisfied. Then
that mle's actions are performed. This is called firing a rule.

Just as software engineering is the process of developing, testing, debugging,
and maintaining programs, knowledge engineering is the process of creating, veri
fying, and refining expert systems. Two pieces of an expert system must be
created: the inference engine and the rules that make up the knowledge base. The
inference engine makes up the shell of an expert system. In fact expert system
shells can be purchased to simplify the creation of an expert system; you just add
the mIes. The real knowledge is in the mlebase.

The process of obtaining the mIes is called knowledge acquisition. This is a pro
cess of interviewing experts and trying to formulate concrete, independent mIes

Control in production
systems

Explanatory abi/ities

Parts of an expert
system

Knowledge
engineering

Knowledge acquisition

438 Chapter 15: Arti.ficiallntelligence

Forwardand
backward chaining
expert systems

Stopping ru/es trom
being continuous/y
chosen

from their explanations. This process can be extremely difficult because much of
human reasoning is tadt. The expert has spent years forming knowledge, which
typically is not in the form of neat, condse rules. Ouring knowledge acquisition,
the expert' s knowledge must be brought out and manipulated into rules compa
tible with the inference engine.

15.6 Implementing an Expert System in Scheme
There are two general kinds of expert systems: forward chaining and backward
chaining. A forward chaining (also called data driven) expert system iteratively
chooses a rule from the rulebase with conditions that are satisfied, and performs
its actions. A backward chaining (or goal driven) expert system looks at the
actions of the rules in search of one that will satisfy the desired goal. If the condi
tions corresponding to the action are true, the system finishes. Otherwise those
conditions become new goals to satisfy. This is the same idea behind means-ends
analysis.

We will build a generic expert system shell that does forward chaining. It can
be an expert in many domains depending on the rulebase and database it is
given. Rather than having a fixed conflict resolution scheme, we'll allow a func
tion to handle that. Given a list of applicable rules (those with conditions that
have been met), this function will choose one to apply.

We need to assure that once a rule is chosen, it does not get chosen constantly.
This can be handled by having the rules put or remove something in the database
that is tested in the condition. However, this makes the rule writing an uglier
process. Another way is to test if the rule's actions have already occurred; in
other words, if the items that the rule adds to the database are already in the
database, the rule is ignored. The parameter redundant? will take a function that
checks for this.

We also need some way of knowing when to stop sequencing through rules.
The parameter finished takes a function that takes the database as an argument
and determines if the system should terminate.

To make our code more readable, we'll create let variables to hold the list of
satisfied rules, the satisfied rules that haven't already been invoked (the non
redundant ones), and the rule chosen by the conflict resolution function. We
won't include the database as a parameter because during the processing of the
rules it must be changed. It could be changed as a parameter, but it is a lot more
work than treating it as a global variable and destructively changing it. This glo
bal database is named database.

15.6 Implementing an Expert System in Scheme 439

Given rule-list, a list of rules, redundant?, a function to test
if a rule is redundant (i.e., its actions have already occurred),
conflict-func, to handle conflict resolution, and finished, to
test for termination, iteratively choose an applicable rule and
apply it until finished is true.

{define (expert-shell rule-list redundant? conflict-func finished)
{let* { {satisfied-rules (keep-if satisfied? rule-list»

{valid-rules (remove-if redundant? satisfied-rules»
{rule-to-apply (conflict-func valid-rules»)

(apply-rule rule-to-apply)
{if (finished database)

'finished
(expert-shell rule-list redundant? conflict-func

finished»))

Our expert system shell needs the following additional functions:
; Test if condition of rule is true.
{define (satisfied? rule)

{eval (condition rule»)

; Apply all the actions of rule.
{define (apply-rule rule)

{for-each eval (actions rule»

; Selector function to return condition of rule.
{define (condition rule)

(first rule))

; Selector function to return actions of rule.
{define (actions rule)

(rest rule))

15.6.1 An expert in Mille Bornes
We have created an expert system shell. It is generic in that it can be given rules
dealing with a variety of problem domains. The real expert knowledge is in the
rulebase. Let's take the next step and define a rule base. The rules will provide
moves in playing the card game Mille Bornes.

The object of Mille Bornes is to drive a car 700 miles before your opponent
does. You gain distance by playing mileage cards if you are able to drive. There
are hazard cards, which affect your ability to drive (e.g., stop, speed limit, and
out-of-gas), repair cards that fix hazards (e.g., go, end-of-limit, and gasoline), and
safety cards that prevent you from receiving hazards (e.g., right-of-way or driv
ing ace).

Players hold six cards in their hand. To play, a player draws a card from the
deck and then plays a card or discards a card. The goal is to play enough mileage
cards to total exactly 700 miles. Mileage cards can be played only if you do not
have a hazard and you have played a go or right-of-way safety. There are five
different mileage amounts: 200, 100, 75, SO, and 25. If your opponent puts a speed

Mille Bornes
description

440 Chapter 15: Artificiallntelligence

Summary of hazard,
repair, and safety
cards

Playing strategies

Mille Bornes database

Sampie database

Selector functions

limit on you, you are limited to SOor 25 miIe distances. The hazards have
corresponding repairs and protection (safeties). The table below shows these:

hazard repair safety
flat tire spare tire puncture proof
accident repairs driving ace
out of gas gasoline extra tank
speed limit end of limit right of way
stop go right of way

The scoring of the game is somewhat complicated. This is saved as one of the
exercises at the end of this section. A true Mille Bornes expert system would
include rules to maximize the score earned per game. Our simplified rulebase
will try only to win the game by getting 700 miIes before the opponent does.

Playing the game is fairly simple, but certain strategies can be used to
improve the chances of winning. For example, a player may be aggressive by
playing hazard cards on the opponent whenever possible or focus on gaining dis
tance by playing larg~ mileage cards. A player may not playa go card to move
until she has accumulated, in her hand, the miIeage needed to win (toward the
end of the game). By keeping track of the played and discarded cards, a player
can make good decisions about which cards to discard when none in her hand
can be played.

There are two players: a person and the computer driven by the expert sys
tem. The database of the expert system is the cards in the computer's hand and
the player's hand (the computer won't "look" at the player's cards), the
computer's and player's state (e.g., accident or go), the computer's and player's
accumulated miIeage, the cards that the computer has seen (those that it has
drawn and those that the person has played or discarded), and a repository for
misceHaneous information used in the rulebase, which we'H caH the blackboard
(abbreviated as bb)~ Each of these different miniature databases is a category of
our big database. Here is a snapshot of how the database may look during the
game. It is represented as an association list of categories and their values.

«handl go stop 25 50 100 end-of-limit)
(hand2 stop 75 75 100 extra-tank accident)
(statel flat-tire)
(state2)
(mileagel . 150)
(mileage2 . 0)
(deck go go go go go go go go go go go go stop stop ...)
(seen go stop 25 25 50 75 75 100 ...)
(bb))

. We'H need functions to access the database. The function pair will return a
pair from the database (e.g., (statel flat-tire». The function pair is caHed
by the function da ta to access the data alone (e.g., flat-tire) and by add-to

8. Some expert systems used the idea of a blackboard as a place to store generally accessible and
pertinent information.

15.6 lmplementing an Expert System in Scheme 441

and delete to change the data. Since pair is used in all of these functions, it will
do the error checking for a bad category. When such an error is encountered, the
program will stop running. This can be handled using call-with-current
continuation, which is covered in Chapter 11 under "Forcing Exits with call
with-current-continuation." The following two expressions establish error
as an exit function:

(define error 'not-yet)

(call-with-current-continuation
(lambda (stop)

(set! error stop»)

Return the pair assoeiated with name.
(define (pair name)

(let ((data-pair (assoc name database»)
(if data-pitir

data-pair
(error (append '(bad eategory given) (list name»»))

Return the data assoeiated with name.
(define (data name)

(cdr (pair name»)

The functions add -to and delete add and delete cards destructively from the
database. To restore a category to an empty value, reset is used:

; Add a eard to a eategory pair in the database.
(define (add-to category eard)

(set-cdr! (pair eategory) (cons eard (data eategory»)

Remove a eard from a eategory in the database.
(define (delete eategory eard)

(set-cdr! (pair eategory) (remove-one eard (data eategory»))

The function remove-one is like removel from Chapter 14 except it tests if the
item occurs in the list.

; Remove one oeeurrenee of item from a-list.
(define (remove-one item a-list)

(let ((loeation (position item a-list»)
(if loeation

(append (subseq a-list 0 loeation)
(subseq a-list (+ 1 loeation»)

a-list»)

; Reset eategory to an empty list.
(define (reset eategory)

(set-cdr! (pair eategory) 'Cl))

To simplify the rules, we use a couple additional functions that test if a certain
set of cards (e.g., our hand) contains a particular card or one of a set of cards. We
can then inquire if the opponent' s state is stop or if we have any mileage cards.

442 Chapter 15: Artificiallntelligence

Testing tor redundant
actions

Testing it a move is
complete

Handling cards tor the
player and computer

; Return true if value occurs within the category name.
(define (contains? name value)

(member value (data name»)

; Return true if any element in set occurs within the category
; name.
(define (contains-any? name set)

(not (null? (intersection set (data name»»)

We can now create the function that tests for redundant actions (those that
have already taken place) to avoid endlessly repeating the same action. We can
do this by testing all the add - to actions of a rule. If the category contains the
value to be added, the action has already taken place. We must apply eval to the
category and its value because they are quoted in the rules, and the quote must
be eliminated. See what happens when you leave out the eval in repeat
action?

; Test if the add-to actions in a rule have already been performed.
(define (repeat-action? rule)

(every
(lambda (action)

(if (eq? (first action) 'add-to)
(contains? (eval (second action» (eval (third action»)
tf))

(actions rule»)

The expert shell function needs a function to test if the selection of rules is
complete. In Mille Bornes, a move is complete when a card is played or dis
carded. These are the actions in the mIes. When we write the code to handle
these actions, we can inc1ude a step to add the symbol done to the blackboard to
denote that the move is complete. Our function to test when a move is finished
simply tests for done in the blackboard.

; Test if a single move in mille bornes is complete.
(define (move-done? database)

(contains? 'bb 'done))

The following functions take care of the actions of drawing, discarding, and
playing cards for the computer and player. Both will need to take similar actions,
but there will be some differences. For example, when the computer draws a
card, it should mark it as seen; however, only when the player discards or uses a
card can the computer see it. The computer must add done to the blackboard
when it plays or discards.

; computer picks a card from the deck and marks it as seen.
(define (draw-card)

(add-to 'seen (draw 'handl»)

15.6 Implementing an Expert System in Scheme 443

; computer discard: remave card from hand and mark move as done.
{define (discard card)

(display "Computer discards ")
(display card)
(newline)
(add-to 'bb 'done)
(delete 'handl card)

computer play: process card and mark move as done.
{define (play-card card)

(display ·Computer plays ")
(display card)
(newline)
(add-to 'bb 'done)
(play card 'handl 'statel 'state2 'mileagel))

To playa card, the actions taken depend on the card type (mileage, hazard,
repair, or safety), The player and computer can share the following function:

; Perform the actions needed when playing a card.
{define (play card hand statel state2 mileage)

{cond {(member card '(200 100 75 50 25»
(set-cdr! (pair mileage) {+ card (data mileage»»

{{member card '(stop accident flat-tire out-of-gas»
(delete state2 'go)
(add-to state2 card»

({eq? card 'speed-limit)
(add-to state2 card»

({eq? card 'go)
(delete statel 'stop»

({eq? card 'end-of-limit)
(delete statel 'speed-limit»

({eq? card 'right-of-way)
(delete statel 'stop)
(delete statel 'speed-limit)
(delete statel 'go»

{(member card '(repairs driving-ace»
(delete statel 'aceident»

{{member card '(spare-tire puncture-proof»
(delete statel 'flat-tire»

{(member card '(gasoline extra-tank»
(delete statel 'out-of-gas»

{else
{display {append '(illegal card:) (list card»»)

{if (member card '(go right-of-way driving-ace puncture-proof
extra-tank»

(add-to statel card»
(delete hand card))

The player and computer can share the following function as weIl, which
picks a card from the deck:

444 Chapter 15: ArtijiciallnteUigence

Mille Bornes rufes

i Pick a card at random from the deck and add it to hand.
{define (draw hand)

{let* {{card-num {random {length (data 'deck»»
{card {list-ref (data 'deck) card-num»)

(add-to hand card)
(delete 'deck card)
card))

15.6.2 The Mille Bornes rulebase
Here is a rule set that covers some of the previously mentioned strategies. It is
not the best possible player that can be created, but it should give you an idea of
how an expert rule base looks. The rules are in seetions, and each seetion is pre
faced with abrief description of what it tries to accomplish.
{define mille-rules '{

Draw cards if needed.
{ {< {length (data 'handI» 7)

(draw-card))

Go if not going and no hazard exists.
{ {and {not {contains-any'? 'state1

'(go right-of-way accident out-of-gas flat-tire»)
(contains? 'hand1 'gO»

(p1ay-card 'go»

Play big mileage if possible.
{ {contains-any? 'state1 '(go right-of-way»

(add-to 'bb 'can-go»

{and (contains? 'hand1 200)
{<= (data 'mileage1) 500)
{not (contains? 'state1 'speed-limit»)

(add-to 'bb 'use-200»

{and (contains? 'hand1 100)
{<= (data 'mileage1) 600)
{not (contains? 'state1 'speed-limit»)

(add-to 'bb 'use-100»

{and (contains? 'bb 'can-go)
(contains? 'bb 'use-200»

(play-card 200»

{and (contains? 'bb 'can-go)
(contains? 'bb 'use-100»

(play-card 100»

15.6 Implementing an Expert System in Scheme 445

Attacking moves.
((and (contains-any? 'state2 '(go right-of-way»

(not (contains-any? 'state2
, (out-of-gas flat-tire accident»)

(contains-any? 'handl
, (out-of-gas flat-tire accident stop»)

(add-to 'bb 'attack»

(and (contains? 'bb 'attack)
(contains? 'handl 'out-of-gas)
(not (contains? 'state2 'extra-tank»)

(play-card 'out-of-gas»

(and (contains? 'bb 'attack)
(contains? 'handl 'flat-tire)
(not (contains? 'state2 'puncture-proof»)

(play-card 'flat-tire»

(and (contains? 'bb 'attack)
(contains? 'handl 'accident)
(not (contains? 'state2 'driving-ace»)

(play-card 'accident»

(and (contains? 'bb 'attack)
(contains? 'handl 'stop)
(not (contains? 'state2 'right-of-way»)

(play-card 'stop»

(and (contains? 'handl 'speed-limit)
(not (contains-any? 'state2 , (right-of-way speed-limit»»

(play-card 'speed-limit»

Play smaller mileage if possible.
((and (contains? 'handl 75)

«= (data 'mileagel) 625)
(not (contains? 'statel 'speed-limit»)

(add-to 'bb 'use-75»

(and (contains? 'handl 50)
«= (data 'mileagel) 650»

(add-to 'bb 'use-50»

(and (contains? 'handl 25)
«= (data 'mileagel) 675»

(add-to 'bb 'use-25»

(and (contains? 'bb 'can-go)
(contains? 'bb 'use-75»

(play-card 75»

446 Chapter 15: Artificiallntelligence

(and (contains? 'bb 'can-go)
(contains? 'bb 'use-50»

(play-card 50»

(and (contains? 'bb 'can-go)
(contains? 'bb 'use-25»

(play-card 25»

Apply remedy or safety if stopped.

((and (contains? 'statel 'out-of-gas)
(contains? 'handl 'extra-tank»

(play-card 'extra-tank»

(and (contains? 'statel 'flat-tire)
(contains? 'handl 'puncture-proof»

(play-card 'puncture-proof»

(and (contains? 'statel 'aceident)
(contains? 'handl 'driving-ace»

(play-card 'driving-ace»

(and (contains-any? 'statel '(stop speed-limit»
(contains? 'handl 'right-of-way»

(play-card 'right-of-way»

(and (contains? 'statel 'out-of-gas)
(contains? 'handl 'gasoline»

(play-card 'gasoline»

(and (contains? 'statel 'flat-tire)
(contains? 'handl 'spare-tire»

(play-card 'spare-tire»

(and (contains? 'statel 'accident)
(contains? 'handl 'repairs»

(play-card 'repairs»

(and (contains? 'statel 'stop)
(contains? 'handl 'go»

(play-card 'go»

(and (contains? 'statel 'speed-limit)
(contains? 'handl 'end-of-limit»

(play-card 'end-of-limit»

Play safeties if can't play another card.
((contains? 'handl 'extra-tank)

(play-card 'extra-tank»

(contains? 'handl 'puncture-proof)
(play-card 'puncture-proof»

(contains? 'handl 'driving-ace)
(play-card 'driving-ace»

(contains? 'handl 'right-of-way)
(play-card 'right-of-way»

15.6 Implementing an Expert System in Scheme 447

Discard card if can't move. First try to discard unnecessary cards.
((and (contains? 'handl 'end-of-limit)

(or (contains? 'statel 'right-of-way)
(= (count 'speed-limit (data 'seen» 3»)

(discard 'end-of-limit»

(and (contains? 'handl 'go)
(or (contains? 'statel 'right-of-way)

(= (count 'stop (data 'seen» 4»)
(discard 'go»

(and (contains? 'handl 'repairs)
(or (contains? 'statel 'driving-ace)

(= (count 'accident (data 'seen» 2»)
(discard 'repairs»

(and (contains? 'handl 'gasoline)
(or (contains? 'statel 'extra-tank)

(= (count 'out-of-gas (data 'seen» 2»)
(discard 'gasoline»

(and (contains? 'handl 'spare-tire)
(or (contains? 'statel 'puncture-proof)

(= (count 'flat-tire (data 'seen» 2»)
(discard 'spare-tire»

(and (contains? 'handl 'stop)
(contains? 'state2 'right-of-way»

(discard 'stop»

(and (contains? 'handl 'speed-limit)
(contains? 'state2 'right-of-way»

(discard 'speed-limit»

(and (contains? 'handl 'accident)
(contains? 'state2 'driving-ace»

(discard 'accident»

(and (contains? 'handl 'flat-tire)
(contains? 'state2 'puncture-proof»

(discard 'flat-tire»

(and (contains? 'handl 'out-of-gas)
(contains? 'state2 'extra-tank»

(discard 'out-of-gas»

448 Chapter 15: ArtijiciallnteUigence

(and (contains? 'hand1 200)
(> (data 'mileage1) 500»

(discard 200»

(and (contains? 'hand1 100)
(> (data 'mileage1) 600»

(discard 100»

(and (contains? 'hand1 75)
(> (data 'mileage1) 625»

(discard 75»

(and (contains? 'hand1 50)
(> (data 'mileage1) 650»

(discard 50»

If no cards are unnecessary, try to discard cards with the least value.
((and (contains? 'hand1 75)

(contains? 'state1 'speed-limit»
(discard 75»

(and (contains? 'hand1 100)
(contains? 'state1 'speed-limit»

(discard 100»

(and (contains? 'hand1 200)
(contains? 'state1 'speed-limit»

(discard 200»

(contains? 'hand1 25)
(discard 25»

(contains? 'hand1 50)
(discard 50»

(contains? 'hand1 75)
(discard 75»

(contains? 'hand1 100)
(discard 100»

(contains? 'hand1 200)
(discard 200»

(contains? 'hand1 'go)
(discard ' go»

(contains? 'hand1 'stop)
(discard 'stop»

(contains? 'hand1 'end-of-limit)
(discard 'end-of-limit»

15.6 1mplementing an Expert System in Scheme 449

(contains? 'handl 'speed-limit)
(discard 'speed-limit»

(contains? 'handl 'gasoline)
(discard 'gasoline»

(contains? 'handl 'spare-tire)
(discard 'spare-tire»

(contains? 'handl 'repairs)
(discard 'repairs»

(contains? 'handl 'out-of-gas)
(discard 'out-of-gas»

(contains? 'handl 'flat-tire)
(discard 'flat-tire»

(contains? 'handl 'accident)
(discard 'accident»))

15.6.3 Building a driver for Mille Bornes
The current set of rules represent the strategie aspects of the game-those things
that involve "expertise" in deciding which actions to take. We need some control
features to handle the play between each player. We have two choiees when
building the rest of the Mille Bornes system. One choiee is to build additional
rules to take care of the sequencing of moves (e.g., stopping the game when one
player wins) and the details of shuffling, dealing, and discarding cards. The other
approach is to build functions that handle these actions. The second approach
will be easier, especially in terms of handling the flow of control of the play.
Rule-based systems don't lend themselves to handling complex flow of control.
They work best with large collections of independent rules, which may apply at
anytime.

The additional functions will act as a driver calling the expert system, which
will sequence through the rules until an action (play or discard) is performed.
Then the driver will read a move from the second player. This sequence of
actions continues until one player wins.

; Main driver to alternate computer's and player's move until
; game is complete.
(define (mille)

(reset 'bb)
(expert-shell mille-rules repeat-action? first move-done?)
(cond «= (data 'mileagel) 700)

'(sorry the computer beat you»
(else

(get-action)
(if (= (data 'mileage2) 700)

'(congratulations you won)
(mille»»)

Controlling the play

450 Chapter 15: Artificial1ntelligence

Representing the card
deck

As a variation we could change the driver to invoke another expert system for
the second player with a different strategy and compare the two strategies.

The function get-action will display information to the user, showing her
hand, state, and mileage and the computer's state and mileage. It calls play-or
discard tO- get a move from the user.

; Print current state and get a move from the user.
(define (get-action)

(draw 'hand2)
(newline)
(display "Your mileage: ")
(display (data 'mileage2»
(display" Your state: ")
(display (data 'state2»
(newline)
(display "Computer mileage: ")
(display (data 'mileagel»
(display" Computer state: ")
(display (data 'statel»
(newline)
(display "Your hand: ")
(display (data 'hand2»
(newline)
(play-or-discard)

Read in a play or discard move from the user.
(define (play-or-discard)

(newline)
(display "What would you like to do: ")
(let* «input (read»

(card (if (member input '(discard play»
(read»»

(cond «eq? input 'discard)
(add-to 'seen card)
(delete 'hand2 card»

«eq? input 'play)
(add-to 'seen card)
(play card 'hand2 'state2 'statel 'mileage2»

(else
(display "Illegal move. ")
(display "Please 'discard card' or 'play card''')
(newline)
(play-or-discard»»)

The cards are entered as a list, and multiple cards are sublists containing the
card name and the number of occurrences of that card. This makes it easier to
enter the cards and to make changes if we decide to. The functions expand-deck
and repeat-card (based on the functions expand and repeat from Chapter 14)
will turn this compressed list into a flat list from which we can choose random
elements. Contrast repea t - card which is written using do with repea t.

15.6 Implementing an Expert System in Scheme 451

; The mille bornes deck in compressed form.
(define compressed-cards

'((go 14) (stop 4) (200 4) (100 12) (75 10) (50 10) (25 10)
(gasoline 6) (out-of-gas 2) extra-tank (spare-tire 6)
(flat-tire 2) puncture-proof (repairs 6) (accident 2)
driving-ace (end-of-limit 6) (speed-limit 3) right-of-way»

Expand a compressed list into a flat list with repeated elements.
(define (expand-deck compressed)

(cond «null? compressed) '(»
«list? (car compressed»

(append (repeat-card (caar compressed) (cadar compressed»
(expand-deck (cdr compressed»»

(else
(cons (car compressed) (expand-deck (cdr compressed»»))

; Return a list of times occurrences of card.
(define (repeat-card card times)

(do «count 0 (+ count 1»
(ans '() (cons card ans»)

«= count times) ans»)

We can test expand -deck with a small sampie list:

> (expand-deck '((go 3) stop (gasoline 2)))
(go go go stop gasoline gasoline)

We'll save the actuallist of cards in the variablemille-cards.

(define mille-cards (expand-deck compressed-cards»

> (length mille-cards)
101

Lastly, we need to initialize the database so that the deck is a full set of cards
and that both players begin with six cards. This should be done before each
game, so a function to do this is handy. We need to define the database on the top
level and then redefine it in this function using set I.

(define database '(»

; Reset initial database.
(define (initialize)

(setl database '(
(hand1) (hand2)
(deck) (seen)
(mileage1 . 0) (mileage2. 0)
(statel) (state2)
(bb) »

(set-cdr! (pair 'deck) mille-cards)
(do «count 1 (+ count 1»)

«> count 6) 'done)
(draw-card)
(draw 'hand2»)

Initializing the
database

452 Chapter 15: Arti.ficiallntelligence

Testing the game

Samplegame

After getting the program running, I tried agame against the computer. I
easily beat it. In fact, the computer never got started. After looking more care
fully at its actions I noticed that it had discarded go cards. I realized that one rule
said if you are stopped, playago, but no rule said that you need to initially play
a go to get moving in the first place. I added this one rule, and then played
another game. The computer won. This feIt good in that the program was work
ing well, but also rather strange in that a machine I had programmed with my
knowledge and strategy beat me. Of course there is an element of luck, so I got
up my nerve and tried it again. This time the machine shut me out! I did finally
manage to beat it, but many games tumed out like the one shown in the trace
below. Notice the series of attacks the computer made to keep me from gaining
mileage.
> (initialize)
done

> (mille)
Computer plays go

Your mileage: 0 Your state: ()
Computer mileage: 0 Computer state: (go)
Your hand: (end-of-limit 75 200 end-of-limit go 50 50)

What would you like to do: play go
Computer plays flat-tire

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 0 Computer state: (go)
Your hand: (repairs end-of-limit 75 200 end-of-limit 50 50)

What would you like to do: discard end-of-limit
Computer plays 75

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 75 Computer state: (go)
Your hand: (100 repairs 75 200 end-of-limit 50 50)

What would you like to do: discard 50
Computer plays 75

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 150 Computer state: (go)
Your hand: (gasoline 100 repairs 75 200 end-of-limit 50)

What would you like to do: discard 50
Computer plays 200

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 350 Computer state: (go)
Your hand: (25 gasoline 100 repairs 75 200 end-of-limit)

What would you like to do: discard 25
computer plays 25

15.6 Implementing an Expert System in Scheme 453

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 375 Computer state: (go)
Your hand: (100 gasoline 100 repairs 75 200 end-of-limit)

What would you like to do: discard 75
Computer plays 200

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 575 Computer state: (go)
Your hand: (100 100 gasoline 100 repairs 200 end-of-limit)

What would you like to do: discard 100
Computer plays 100

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 675 Computer state: (go)
Your hand: (50 100 gasoline 100 repairs 200 end-of-limit)

Time passes.

Your mileage: 0 Your state: (flat-tire)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (puncture-proof go go gasoline 100 repairs 200)

What would you like to do: play puncture-proof
Computer plays speed-limit

Your mileage: 0 Your state: (speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (100 go go gasoline 100 repairs 200)

What would you like to do: play go
Computer plays out-of-gas

Your mileage: 0 Your state: (out-of-gas speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (50 100 go gasoline 100 repairs 200)

What would you like to do: play gasoline
Computer discards repairs

Your mileage: 0 Your state: (speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (100 50 100 go 100 repairs 200)

What would you like to do: play go
Computer discards repairs

454 Chapter 15: Artificiallntelligence

Your mileage: 0 Your state: (go speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (gasoline 100 50 100 100 repairs 200)

What would you like to do: play 50
Computer plays stop

Your mileage: 50 Your state: (stop speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (gasoline gasoline 100 100 100 repairs 200)

What would you like to do: discard gasoline
Computer discards 200

Your mileage: 50 Your state: (stop speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (go gasoline 100 100 100 repairs 200)

What would you like to do: play go
Computer discards 100

Your mileage: 50 Your state: (go speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (stop gasoline 100 100 100 repairs 200)

What would you like to do: discard stop
Computer plays accident

Your mileage: 50 Your state: (accident speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (gasoline gasoline 100 100 100 repairs 200)

What would you like to do: play repairs
Computer discards go

Your mileage: 50 Your state: (speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (go gasoline gasoline 100 100 100 200)

What would you like to do: play go
Computer discards 75

Your mileage: 50 Your state: (go speed-limit puncture-proof)
Computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (50 gasoline gasoline 100 100 100 200)

What would you like to do: play 50
Computer discards 75

Your mileage: 100 Your state: (go speed-limit puncture-proof)

15.6 Implementing an Expert System in Scheme 455

computer mileage: 675 Computer state: (driving-ace right-of-way)
Your hand: (extra-tank gasoline gasoline 100 100 100 200)

What would you like to do: play extra-tank
Computer plays 25
(sorry the computer beat you)

15.6.4 Exercises
15.7 Try your hand at knowledge engineering. Choose someone you know who

is an expert in some domain. This person does not have to be an expert in a
technical area with a wall full of degrees. Pick someone who has a good
deal of experience doing some task (e.g., fixing bikes, moving lawns, bak
ing cookies, changing diapers). Intervie~ this expert and build a set of
rules to represent their expert knowledge.

15.8 Modify the expert system shell so that it stops if no mIes are applicable
and returns the symbol no-matches.

15.9 Change the Mille Bornes code and data structures so that it uses the func
tions expand and repeat from Chapter 14 instead of the new versions
expand-deck and repeat-card.

15.10 The real game of Mille Bornes awards a bonus for playing a safety immedi
ately after receiving the corresponding hazard and before drawing a card.
This is called a coup foure. Also, whenever a safety is played (whether it
qualifies as a coup foure or not), the player gets an extra turn. Modify the
rules to incorporate this. You may need to make changes to some of the
functions that drive the Mille Bornes program.

15.11 The Mille Bornes player's moves are not checked, so the player can make
illegal moves, like playing mileage when stopped. Add tests to disallow
illegal moves.

15.12 Modify the rules to improve the discard policy. Same rules test if cards are
unnecessary (e.g., arepair card is not needed if two accidents have been
seen or if we have a driving ace card). Other rules unconditionally elim
inate cards according to some ordering in the rules. Create more discard
rules that test for things like discarding go if the player has many of them
in her hand or discarding additional repairs if one is already in the hand
and an accident has been played (there are only two accidents in the deck
and if one has been played, only one is needed as protection).

15.13 Each safety played is worth bonus points. Modify the rules to play any
safeties still in the hand just before winning the game (assuming the
opponent isn't too dose to winning).

456 Chapter 15: Arti.ficiallntelligence

The importance of
semantics

SAM

15.14 Modify the rules and driver to support extensions to the game. A player
with 700 miles can choose to extend the game to 1000 miles. Then the first
player to 1000 miles wins the game.

15.15 Modify the Mille Bornes functions to keep track of special bonuses that are
included in the real game. These are

bonus
safety
coup foure
trip completed
safe trip
delayed action
extension
shut-out

points
100 each
300each
400
300
300
200
500

explanation
playing a safety
playing safety immediately after hazard
getting 700 or 1000 miles first
completing trip without using 200 mile cards
completing trip after the deck is finished
completing 1000 mile trip
completing trip before opponent plays mileage

15.16 Modify the rules to improve the strategy for playing mileage near the end
of the game. Instead of immediately playing miles, wait until the exact
mileage to win is held in the hand. This avoids problems like getting 675
miles and then having to wait for 25 miles to win (this is what happened to
the computer in the game shown).

15.7 Natural Language Processing
Natural language processing (NLP) was introduced in section 15.2, "Historical
Background." To recap, the early work in NLP attempted language translation
based on syntactical rules and dictionary lookup of words. This failed miserably,
and for many years little was done in NLP research. One of the lessons learned is
that semantics are necessary for understanding. This can be seen in examples
suchas

"The pen is in the box"
versus

"The box is in the pen"

These two sentences are syntactically equivalent, but the usual interpretation
of "pen" is different in each sentence. In the first sentence one pictures a pen like a
ball point writing pen. In the second sentence "pen" becomes a large containment
pen, like a playpen. Syntax alone cannot give us this insight, but the semantics of
what being in another object requires teIls us that the pen cannot be a writing pen
in the second sentence (unless we picture a very small box).

When NLP resurfaced, researchers didn't make big claims but instead
worked on smaIler, specific problems. Rather than attempting complete language
translation, work was done on translation within specific domains of discourse
such as traffic reports or database queries.

The focus in NLP changed to the individual pieces of human language abili
ties that make up full understanding. One such ability is making inferences given

15.7 Natural Language Processing 457

incomplete information. This work was done with a program called SAM (script
applier mechanism). For example, you might be told the following:

Sam goes to Sante Fe Bar and Grill
He orders a salad
He leaves Sante Fe Bar and Grill

After a program receives this information, it can answer questions like the fol
lowing:

Did Sam eat a salad?
Did Sam pay for a salad?

The program can infer the answers to these questions even though the story
never explicitly indicated that Sam ate a salad (only that he ordered a salad) or
that Sam paid for the salad. The program can make inferences by having
knowledge of what typically happens in restaurants. This knowledge is
represented as scripts Oike movie or story scripts), which dictate a specific
sequence of actions that are usually taken. These scripts are abstracted using vari
ables instead of specific people, places, and items. A simple restaurant script may
look like the following:

person goes to restaurant
person orders lood
person eats lood
person pays for lood
person leaves restaurant

SAM has a collection of such scripts representing events like eating in restau
rants, driving to work, and buying clothes. When given some sentences as input,
SAM tries to match these with the scripts in its script database. The specific
instances (names, places, items) are matched with the variables in the script. For
example, given our previous sentences

Sam goes to Sante Fe Bar and Grill
He orders a salad
He leaves Sante Fe Bar and Grill

these match with the first, second, and last lines of the script

person goes to restaurant
person orders lood
person leaves restaurant

The variable person matches Sam, restaurant matches Sante Fe Bar and Grill,
and lood matches a salad. The remaining lines of the script are changed to reflect
the variable values as follows:

Sam eats a salad
Sam pays for a salad

Now it is easy to answer questions like

Inference

Restaurant script

458 Chapter 15: ArtijiciallnteUigence

Conceptual
dependency

Actions in CD

Sentences in CD

Did Sam eat a salad?
Did Sam pay for a salad?

SAM was written in the mid 1970s. However, the idea behind scripts resur
faced in the world-knowledge program CYC (presented in section 15.3.7). CYC's
contexts, when reduced to specific events, can be viewed as scripts. Instead of
writing a list of sentences of the events within a script, CYC maintains a collec
tion of assertions that are typically true in a given context. CYC might have a res
taurant context with assertions like "people typically pay for the food they order
andeat."

15.7.1 Representing natural languages
SAM did not use English to represent its scripts and sentences. A simplified
language called Conceptual Dependency (CO) was used. In CD, about a dozen
different primitive actions are defined. These actions correspond roughly to
English verbs. Many possible actions are not included because they are modeled
by combining two or more actions or they are represented as changes to an
object's state. For example, "Mickey upset Minnie" would be represented as a
change in Minnie's state, becoming upset, caused by some action that Mickey
did. The actions are outlined below.

action
ATRANS
MTRANS
PTRANS
PROPEL
MBUILD
ATIEND
SPEAK
GRASP
MOVE
INGEST
EXPEL

description
transfer of possession of object
information is transferred
physical transformation
applying a force
creating mental information
to foeus attention on something
to make asound
to grasp an object
to move a body part
to take an object into the body
to release an object from the body

example
Fred gave Fran a rose
Fred read a book
Fred went to the store
Fran kicked the ball
Fran thought about the game
Fred looked at the rock
Fran yelled "Duck!" at Fred
Fred grabbed the bag
Fred lifted his arm
Fran sipped her Chardonnay
Fred cried

In addition to actions, there are actors (the things that do the acting), objects
(the things that are acted upon), and directions (the orientation of the action).
These are represented as slots in a data structure. Together they represent one
event. For example, the sentence "Sam went to Santa Fe Bar and Grill" can be
represented as folIows:

«actor Sam)
(action PTRANS)
(object Sam)
(direction (to Santa Fe Bar and Grill) (from unknown»)

The sentence "Sam eats a salad" would be

15.7 Natural Language Processing 459

((actor Sam)
(action INGEST)
(object salad)
(direction (to Sam's mouth) (from plate»)

We could add other events to represent the movement of the salad to Sam' s
mouth, Sam grasping a fork to grab the salad, and the movement of Sam's hand
to move the fork and salad from the plate to his mouth. Such events are not
necessarily correct, however. Sam may be eating the salad with a spoon (it could
be a potato or fruit salad), or with his hands and injera (an Ethiopian pancake
like bread) at an Ethiopian restaurant. The salad may not be on a plate but could
be in a bowl. Sam may be a baby and "eating" the salad by wiping it in the gen
eral vicinity of his face, his dothes, and the most expensive furniture in the room.

One of the advantages of CD representations is that different sentences with Canonical
the same fundamental meaning can be represented with identical CDs. The fol- representation
lowing sentences can all be represented with the same CD.

lohn gave Mary a book.
lohn handed a book to Mary.
Mary received a book from lohn.
A book was given to Mary by lohn.
lohn presented Mary with a book.
lohn transferred a book from his possession to Mary's.
Mary, hereinafter known as the recipient, came into possession of said book,
exhibit A, given to her by the defendant, lohn.

A transferral of a book initiated by lohn directed toward Mary resulted in the
set of items constituting Mary's possessions being augmented to indude a
book that previously was a member of the set of lohn's possessions.

The CD representation dearly labels all the different parts of the sentence: the
actor, the recipient, the action, and so on. This helps in the process of summariz
ing, paraphrasing, answering questions, and in translation. Look at the following
two sentences. The first is in the active voice and the second in the passive voice.

The fish ate the shrimp.
The shrimp was eaten by the fish.

Both sentences would be represented as the same CD event diagram
«actor the fish)
(action INGEST)
(object the shrimp)
(direction (to the fishes' mouth) (from unknown»)

With such a representation, it is easy to answer questions like "What ate the
shrimp?" or "What did the fish eat?" It is dear that the fish did the eating and not
the shrimp. Translation is partially a matter of looking up the corresponding
word knowing its context.

The context of the word is important because it dictates the meaning to use
when a word has more than one meaning. For example,

Context in NLP

460 Chapter 15: Artificial1ntelligence

World knowledge in
NLP

Plans and goals

Look at all the stars!

means different things depending on the context. It could be an utterance made
while gazing at the heavens on a doudless night away from the city. Or it could
be a comment made at the Academy Awards presentations. The meaning of such
a sentence cannot be determined outside of its context.

Many sentences cannot be translated or understood without semantic infor
mation. For example,

He went wild, charging everything in sight: the cologne, the suit, the watch.
He went wild, charging everything in sight: the matador, the picador, the walls.

It is dear that in the first sentence "charging" refers to buying items with a credit
card. In the second example, the subject is most likely a bull who is charging at its
antagonists in the bullring. The semantics can explain this without knowledge of
the surrounding context in which the sentence occurs. One does not normally
charge into cologne, suits, or watches, nor does one buy matadors, picadors, or
walls with a credit card. To know this requires knowledge of objects in the world
and the typical behavior of actors in the world.

We have looked at how scripts can assist in making inferences about
unspecified events in a story. Having a model that indudes plans and goals is
also important. A story contains a goal or goals that the actor or actors are
attempting to achieve. To meet these goals a script may be followed or plans may
be used. Recognizing goals, scripts, and plans facilitates understanding.

A script is a stereotypical solution to achieve a goal. The restaurant script
meets the goal of satisfying hunger. Planning is a more fundamental and general
mechanism that is necessary because not all goals can be met using scripts. A
plan defines some course of action that attempts to achieve some goal. In addi
tion, plans are used to link scripts or parts of a dialogue together to support
goals. Here is a simple story with a goal and a plan:

Tom was getting hungry.
He picked up the book Yummy, Yummy, Yummy Quick Dishes.

Tom's goal is to satisfy his hunger, but its dear from the second sentence that
the restaurant script is not being followed. Instead Tom is following a plan to
find a recipe in a cookbook and make food. We know, or at least hope, that Tom
isn't picking up the cookbook to eat it. An NLP system would need knowledge of
typical goals, plans, and the outcomes of plans. The system would need to know
that a cookbook provides recipes that are used to prepare food and that the cook
book itself is not edible.

Sometimes goals and plans are not obvious, as this next story illustrates.

A man went to bar and asked for a glass of water.
The bartender pulled a gun on him.
The man thanked the bartender and left.

To understand stories like this that don't have scripts because they aren't com
mon events, one must understand goals and plans. Goals may not be readily
apparent, or an incorrect goal may be surmised. The goal of the man appears to

15.7 Natural Language Processing 461

be to quench his thirst. He makes a plan to ask for a glass of water to meet that
goal. Instead of giving him water, the bartender pulls a gun on him. This seems
like the bartender does not understand the man's goal. However, the man thanks
the bartender, so it appears that his goal is satisfied. The task now is to think of a
goal that makes sense in the context of the whole story. In this case that goal is to
stop the man's hiccups. The man had the plan of drinking water to stop the hicc
ups. The bartender, hearing the hiccups, had a different plan of scaring the man
to stop the hiccups. This plan worked and the man showed appreciation.

One other mechanism was used in understanding the above sentence
coherence. Stories must be coherent to be understood. The above story was not,
until we discovered a new plan. Coherency checks help us in verifying that our
goals, plans, and understanding are going weIl. These checks can happen within
a sentence. Take the following example:

The old man's glasses were filled with sherry.

As we read or listen to this sentence, a common interpretation upon hearing the
noun phrase "the old man's glasses" is to first think that "glasses" refers to specta
des or reading glasses. Then, when we encounter the rest of the sentence, we
realize that spectades cannot hold sherry Oncoherence) so we change them to
drinking glasses~

15.7.2 Current uses of NLP
The complete goal of naturallanguage processing has not been attained, and the
immediate future offers no promise of doing so. In the meantime, NLP research
continues but often with smaller scale projects. There are many domains in which
the discourse is usually limited and language understanding systems can be
built. NLP techniques have been used to provide front-ends to databases so that
queries can be made in English rather than in the query language of the database
system. These front-ends translate the English query into a query suitable for the
database system. The result from the query can be translated to an English
answer. Another example is generating reports from information stored in some
fairly typical form with a limited vocabulary. For example, the U.S. Geological
Service provides weather information. This can be translated into a more read
able form or into a format for a database on weather information.

Digitallibraries present a large area of research and NLP promise. With the
growing number of texts digitally encoded, we are able to rapidly search for
information from a huge number of sources. This data is in a database that is
readily accessible through the proper queries. Information retrieval and filtering
techniques are used to extract information. The difficulty is often in knowing
how to simplify requests for information so that they are not too specific or too
general. NLP techniques may offer some improvement here.

9. Another possible interpretation <the one that I made upon first hearing this example) is to maintain
the spectac1es interpretation of "glasses,': but view "sherry" as a woman named Sherry who is being
ogled by the old man so intently that all he sees is Sherry.

Coherence

NLP front-ends

Digitallibraries,
information retrieval,
and information
filtering

462 Chapter 15: ArtificiallnteUigence

Intelligent speil
checkers

Speech recognition

Speech synthesis

Word processors can use NLP techniques to improve their spelling and gram
mar checkers. An intelligent spelling checker may be able to correct words that
are spelled correctly but used improperly. For example, the sentence

Marry through there bawl threw the whole in the read wall.

produces no spelling errors but makes no sense. Given knowledge of words that
are similar and typical misuses of words, a program may be able to find the sen
tence

Mary threw their ball through the hole in the red wall.

This would take a very sophisticated program that had extensive knowledge of
English grammar mIes and knowledge about the semantics of words. For exam
pIe, you can throw a ball through a hole, but it makes no sense to throw a bawl
through a whole.

Two fields related to natural language processing are speech recognition and
speech synthesis. Speech recognition is the process of producing written text from
spoken text. Read the above two sentences about Mary /Marry aloud-both
sound the same. To understand which of many homonyms to use requires an
understanding of the semantics of the words. Sometimes it's not a matter of
deciding between homonyms but between groups of words that have the same
pronunciation. For example,

"It's hard to recognize speech"
versus

"It's hard to wreck a nice beach"

The words "recognize speech" sound the same as "wreck a nice beach" when spo
ken fast and slurred a bit. In speech recognition, individual syllables must be pro
cessed to determine if they are part of the current word or the next. Gaps in
speech cannot always be used because sometimes the gaps between syllables in a
word are bigger than the gaps between words. This is made very dramatic if you
record a sentence and then play it backwards. You'll notice the true gaps in
sound more clearly, because you won't have recognizable words to give you
mental word gaps.

Speech synthesis is challenging as weIl. Its task is to take text in some
language and produce the corresponding sounds of the text. This may sound
easy but is complicated, especially in the case of a nonphonetic language like
English, in which identical spellings are pronounced differently, like

You must read the book
versus

Yesterday he read the book

wild
versus

wilderness

Most pronunciations can be handled with less than 1,000 mIes that map spellings
to sounds. To do a perfect job would require a degree of language understanding

to discem, as in the above example, the proper pronunciation of the word "read"
based on its use as a command in the present tense or a past tense action.

Additionally, prosody is important when speaking text. Prosody is the use of
intonation, timing, and sound intensity when speaking. When asking a question,
the last word often ends on a rising tone. For example,

Youdid what?

A sequence of numbers is often ended with the final number voiced over a longer
period of time. Phone number information services (dialing 411) use speech syn
thesis, and the final number in the prefix and suffix are elongated. Ignoring pro
sody results in stale and strange-sounding speech. Tone is critical for
understanding-actually producing different words and meanings-in tonal
languages like Thai.

15.8 Robotics
Robots are machines that interact with the real world to carry out particular
tasks. Many robots are autonomous in that they can act without human interven
tion. Much of what robots do involves recognition, planning, and acting. Robots
must recognize their world to grab objects or know when to stop moving toward
an object. They must make plans to deal with going from a given initial state to
the desired goal state, for example to determine how to grab a nut and later
tighten it onto a bolt that is moving along an assembly line. Lastly, the robot must
take action to carry out the task.

Recognition is extremely important because of all the difficulties entailed in
being in the real world. Even a robot doing a task as seemingly simple as stapling
a stack of papers will run into problems if the papers are not lined up properly or
are not where the robot expects them to be. Robots can never rely 100% on
receiving the material they will work on at a given location. Think of how a xerox
machine can get stuck when the paper jams.

Recognition is not necessarily done only through visual systems. It may be a
tactile input to pressure-sensitive devices. A robot that picks up objects may need
tactile feedback to know if it is grabbing the object tightly enough and also that it
is not grabbing it too tightly. The robot must be aware of its location and the loca
tion of all of its moving parts. This proprioceptive sense is one we don't think about
too much, but it is crucial for robots, since they must know where they are in the
three-dimensional world to avoid colliding with other objects or themselves.

We often think of robots in two ways: either as sophisticated futuristic devices
that can communicate, reason, move about, and interact with the world (like the
robots from the movie Star Wars) or as machines that simply follow the same
sequence of actions tirelessly and endlessly like welding robots in an automobile
factory. For certain robots that take on the same task without ever adjusting to a
changing environment, there is no need for planning. The robot is really just a
mindless machine. However, if the robot is taking in inputs about its world and
is supposed to be able to respond to changes in its world, planning is necessary.
Robots interacting with the real world must deal with a constantly changing

15.8 Robotics 463

Prosody

Recognition

Planning

464 Chapter 15: Artijiciallntelligence

Movement and
degrees of freedom

Actions and effectors

Recognizing objects

Edge detection

environment. This makes planning much more difficult since the world condi
tions are dynamic. Imagine a robot that is supposed to follow an object that is
also moving. The robot must constantly adjust its actions according to the change
in relative position between it and the object it is following and the surrounding
objects.

Robots move in a variety of ways: they have treads, wheels, and legs. They
have appendages that can move independently. These may move linearly (back
and forth or up and down) or by rotating. Each movement (linear or rotational)
effects a degree of freedom. With six degrees of freedom, a robot or robot arm
can be at any position and orientation to grab or move an object. To plug in a
toaster, the end of the electrical cord must be directly in front of the outlet. This
position component has three subcomponents: distance to the outlet, height rela
tive to the outlet, and horizontal position left or right of the outlet. The cord has
an orientation in three axes. The cord can be pointing up or down instead of
toward the outlet, it can be pointing left or right as weIl, and finally the cord can
be rotated along its length. Once the cord is in the proper position and orienta
tion, it can be plugged into the outlet. More sophisticated robots have more
degrees of freedom. This allows the robot more flexibility in taking action in an
environment with a lot of obstacles. More degrees of freedom comes at aprice,
however. It requires more moving parts and the control and sensing mechanisms
for them. It also complicates calculating if part of the robot will collide with
another object because more movements and, potential collisions are possible.

Once a plan of action has been made, a robot must take action. The robot
needs some way of interacting with the world by using effectors, things that have
an effect on the world. Devices that grab, push, screw, cut, and weId are all effec
tors. The robot must move using legs, wheels, and motors that extend limbs and
effectors and rota tors that rotate all or parts of the robot. The movements are ini
tiated by instructions from the robot's "brain"-the program that controls the
robot. These instructions are converted into electrical signals to control the
motors that perform the mechanical activity of moving the robot.

15.9 Vision
The challenge of computer vision is to find the location, orientation, distance,
color, and size of objects in an image; in short, to recognize objects. The input to a
vision system is a two-dimensional image that is a representation of our three
dimensional world. These images may be from a photograph, drawing, or TV
screen. From this we must determine three-dimensional objects in the view and
information about the objects, such as the surfaces, textures, sizes versus dis
tances, and whether they are obscuring or obscured by other objects. Doing this
is not simple and involves getting information in many ways.

Vision begins by taking the output from some device that captures an image
(such as a CCD-charge-coupled device-from a video camera) and finding the
edges. Edges define boundaries between different objects in the image or can
indicate where an object changes shape or has a certain texture. An edge may

denote an area where one object occIudes another object. Further analysis is
required to determine the meaning of edges. For example, edges may denote sha
dow regions of objects.

Much of the low-Ievel recognition work involves mathematical analysis of the
two-dimensional (2-D) image. David Marr, the late vision researcher, took an
approach that involved aseries of steps going from a 2-D representation to a pri
mal sketch or 2.5-D representation to a 3-D representation. The primal sketch deter
mines some of the edges and information about how edges relate to one another.

Knowledge about objects in the physical world is used in visual systems. A
visual system can make interpretations that are not physically possible. Many of
M.C. Escher' s paintings use the fact that it is possible to draw objects in two
dimensions (what a visual system would perceive) that are impossible in three
dimensions (or only possible with cIeverly constructed models viewed from par
ticular angles and with a carefully chosen light source). Escher plays with depth
and perspective to give the illusion that water runs uphill or a roof top can be cir
cumnavigated in either a neverending upward cIimb or a downward descent. If a
visual system does not know how to perceive angles and corners as convex or
concave based on physical world possibilities, improper visual analysis will be
the result.

The Necker cube in the diagram below has two legal interpretations. One has
the face labeled ''back'' (with vertices A, B, C, and D) as the nearest face and the
other has it as the furthest face from the observer. A visual system may interpret
corners in ways that are impossible. For example, the vertex near the label "back"
may be viewed as c10ser than the vertex labeled "A" and the vertex labeled "B"
may be seen as being in front of the vertex "back." Thls is impossible with a
three-dimensional cube shown from this perspective. Given knowledge about
what types of shapes are possible in the real world and how vertices that share
edges relate, these misinterpretations can be avoided.

front
B F-----+------rC

back

15.9 Vision 465

World knowledge in
vision

Neckercube

466 Chapter 15: Artijiciallntelligence

Depth and stereo
disparity

Light information

Shadingand
highlighting

Vision on the highway

Additional information is used to determine more about the objects in an
image. Depth information can be obtained from stereo disparity c1ues. Stereo
disparity refers to the differences in the perceived location of the same object
when viewed from different vantage points by separate lenses. Our eyes provide
a perfect tool for doing this task. They are separated by a small distance, but this
is large enough to produce disparity. You'll easily notice this by holding a pen or
a book in front of you, looking at it with one eye only and then observing how it
jumps when you rapidly switch eyes to view it with the other eye. The pen hasn't
moved, only our perception of its location. The c10ser the object, the larger the
disparity, and this is how depth information is computed from the inputs of both
eyes. The brain combines the two disparate images into one cohesive image with
depth information.

Light color (hue), brightness, surface material, texture, and angle of the light
with respect to the viewer and the object are all used in determining the actual
color of objects. Factors such as angles of light, texture, and surface material may
not seem important, but the perceived hue varies with all of these factors. Think
of the glitter of a shiny new car or the shaded area that is darker in perceived hue
than the color in direct light.

Objects can be discovered using texture, hue, and motion information. Many
objects tend to have the same texture and/or color. So the borders of textures or
colors often are the horders of objects. Motion against a constant background can
indicate the outline of objects.

Shading can give clues as to the contours of an object. If we know from other
analysis that an object is constant color, then perceived differences in color will
be due to changes in the contour of the object. Changes in angles of reflectance
from the light source result in various degrees of shading. Direct line of sight
reflection causes specular highlights, which are bright and may reflect the color
of the light source back to the observer. Varying degrees of partial reflection give
varying degrees of light intensity and hence perceived color. The completely
shaded regions will be dark. Using this information and the rates of change over
the object, the contours of the object can be analyzed. A sharp change in light
intensity usually means an edge of the object; a gradual change would denote a
curved object.

Visual systems have become sophisticated enough to take on tasks like recog
nizing lanes on a highway scene and the location and distance of other vehic1es.
With systems like this and robotic controls to guide the vehic1e, unmanned cars
on the highway are a reality!

15.10 Is Artificial Intelligence Possible?
Hopefully, this chapter has given you asense of what AI researchers have done.
It is a long way from full intelligence. Will AI ever fully succeed in its end goals?
Some researchers think so and some do not. The arguments for point to the pro
gress that has been made and feel that scaling up to larger problems is just a
matter of time and addition of more information into AI systems. The arguments

15.10 ls Artijiciallntelligence Possible? 467

against point to the failures of AI and indicate that no major changes have taken
place to get around the big problems of world knowledge and combinatorial
explosions of data.

In addition to these arguments, there is the philosophical outlook. One philo
sophical argument in favor of AI follows a functionalist view of the mind. This
view holds that it's the functions of the mind that matter, not the means in which
they are realized. Given this viewpoint, it doesn't matter whether intelligence
comes from neuronal activity in a brain or electrical activity in a computer. This
is a viewpoint that computer scientists can relate to because of the idea that pro
grams can run on many different computer platforms. A program may compile
into different instructions on different machines (see Chapter 13), but the running
program behaves the same.

A philosophical argument against AI claims that a computer is just a simula
tion of intelligence, but there is no real intelligence there. The only thing that is
really happening in an AI program is that symbols are being manipulated, and
there is no grounding of those symbols to reality. This grounding issue is a sticky
one, since some argue that it is the relationships that symbols have with one
another that define grounding, whereas others argue that no matter how many
relationships are specified, the emotional content is lost in a symbol manipulation
system. In other words, a computer cannot feel or experience emotions, and this
is necessary for true intelligence.

Is a simulation of intelligence good enough or is it lacking? Music from a CD
player can be viewed as a simulation of the original sounds. The CD does not
have a physical representation of sound waves like arecord or cassette tape does
via grooves or a magnetized tape. It is just a collection of samples-numbers that
represent the sound amplitude at specific instances in time. Given enough of
these sampies of the sound, a reasonable equivalent of the original sound is pro
duced. For most of us, a CD is perfectly adequate. For some audiophiles it isn't. If
the sampie rate is dropped, the sound does diminish to a point where most
would feel it is not adequate, and if the sampie rate increases, even the
audiophiles are happy. Is intelligence the same-just a matter of degree of the
quality of the simulation of mental activity?

The philosopher John Searle created the following thought experiment,
known as the Chinese room. Imagine being in a sealed room and given a Chinese
text. Also imagine that you do not read Chinese,1O so to you the Chinese text is
completely meaningless. Later you are given more Chinese text and some English
instructions that explain how to relate the two Chinese texts to one another
without translating the texts into English. Later you get another Chinese text and
more English instructions explaining how to formulate responses in Chinese
based on the three texts you have received. You follow the instructions and write
down some Chinese characters and pass them to the people outside the room.

The three Chinese texts represent a script (a la SAM), a story that is pieces of a
script with real objects instead of variables (e.g., "Marcy went to Rivoli," "Marcy

lO'1f you do read Chinese, pick an alphabet you don't read to make this experiment more meaningful.

Philosophical views

Simulation versus the
real thing

Searle's Chinese
room experiment

468 Chapter 15: ArtificiallnteUigence

Neuron replacement
thought experiment

Turingtest

Eliza and Parry

ate Ahi tuna," ...), and questions (e.g., "What did Marcy order?"). The English
instructions represent the rules the program SAM uses. Searle's argument is that
to an outside observer the person in the room appears to understand Chinese,
since she can respond to questions in Chinese with responses in Chinese. To the
person inside, the Chinese is just meaningless squiggles and she is merely follow
ing the English instructions, which only explain which symbols to write given the
symbols that are shown. Or to summarize Searle's point-symbol manipulation
is not understanding.

Many people have argued against Searle, giving reasons such as it is the sys
tem composed of the person and the room along with the texts that understands.
Another argument says if the English program given to the person in the room
were a true simulation of the actions that take place in a human brain that under
stands Chinese, then the person would understand Chinese just as a Chinese
speaker would. Yet another argument says that if, instead of a person in the
room, there were a robot or a program that actually learned the rules of how the
symbols are to be manipulated, then it would have the same knowledge as a
Chinese reader because it had internalized the knowledge to produce Chinese
output. Others have argued that Searle is missing the whole point and has con
fused different conceptuallevels. You must decide for yourself who is correct.

Another thought experiment is to irnagine that an electronic device exists that
can carry on the same activity as a single neuron in the brain. We replace a single
neuron in someone's brain with this device. Does this affect the person's intelli
gence? Now replace some more neurons with additional copies of this device. At
some point does the person start loosing intelligence or the grounding of con
cepts or the emotional quality of thoughts?

Obviously the neuron replacement test cannot be done. Would you
volunteer? Even if it could, how could we know if we were observing a simula
tion of intelligence where after a while, the person would slowly loose her sense
of seIl. Another test is needed to measure intelligence. The classic test is the Tur
ing test named after Alan Turing, one of the pioneers of computer science.

The Turing test works as follows. Two computer terminals are used. One is
connected to a computer running the AI program being tested and the other is
connected to aperson. Another person (the experimenter) types in text to either
of the terminals and gets responses from the computer or person. The computer
program tries to convince the experimenter that it is the human. The premise of
the Turing test is that if the experimenter cannot tell which terminal is connected
to the computer and which to the person, then that computer program has
passed the Turing test and exhibits intelligence. To date, no program has passed
the Turing test.

One program, Eliza or Doctor, has fooled some people briefly. It simulates a
psychologist using the Rogerian method of analysis, which involves rephrasing
the patient's comments into questions to force introspection. Another program
called Parry has been more successful. It emulates a paranoid schizophrenie
patient and it has fooled some psychiatrists who could not discern Parry from a
real paranoid schizophrenie. While it has fooled people, Parry does not truly pass

15.11 Summary 469

the Turing test, because paranoid schizophrenia is a somewhat limited type of
behavior. Parry and Eliza were once connected to one another over the Internet.
The resulting conversation is quite hilarious. Parry was much more convincing
thanEliza.

15.11 Summary
• Artificial intelligence is a collection of subfields that share a common interest

in trying to buHd systems that model some aspect of natural intelligence.
• The early work in AI consisted of smalI, fairly well-defined problems. Its suc

cess gave false hopes of solving bigger problems, but the solutions to these
"toy" problems did not scale up to realworld problems.

• Searching is important in many fields within AI. There are numerous search
algorithms inc1uding uninformed methods (breadth-first and depth-first
search), algorithrns that look at the cost incurred so far (uniform-cost search),
algorithms that look at the cost to reach the goal (hill-c1imbing, best-first
search) and A* search, which looks at the cost already incurred and the
expected cost to the goal.

• Knowledge representation is another fundamental issue in AI. The
knowledge in an AI system is often maintained in data structures. These must
be constructed in a fashion that facilitates the types of queries and reasoning
that AI systems make. Semantic networks, frames, and first-order predicate
calcu1us are commonly used representations for knowledge.

• AI systems often must reason with the information they have to formulate an
answer to a question. Inductive, deductive, and abductive reasoning methods
canbeused.

• The difficulty that many AI programs have in scaling up to solve larger prob
lems is handling world or commonsense knowledge. To reason properly in
the world, a program must know about the world. The problem is that there
is a lot to know and the information is highly interconnected and often
context-specific. CYC is a project to collect all world knowledge in one huge
database and provide a means to query and reason within the database.

• Problem solvers are programs that have knowledge about items in the world
and their effect on other items, and can indicate how to use these items to
reach certain goals. Programs that can solve any problem have been unsuc
cessful in large part due to the world-knowledge problem. Some problem
solving techniques are used in AI, in particular planning is used in robotic
and naturallanguage processing systems.

• Expert systems embody the knowledge of an expert in a given field to carry
out specific tasks. Expert systems are typically buHt on a model in which the
expertise is encoded in if-then rules that are examined to determine which are
applicable. One rule is chosen and its actions are performed. This process con
tinues until a solution has been found or no rules are applicable.

• Natural language processing attempts to understand human spoken
languages so they may be translated, paraphrased, or used as a frontend to

470 Chapter 15: Artificiallntelligence

systems as a more natural interface. Early efforts in machine translation did
syntactical transformations and dictionary translation of words. They did not
scale up however, because to do complete translation, semantics (the meaning
of words) is necessary. Later NLP systems attempted simpler parts of
language understanding such as making inferences or handling limited
domains of discourse.

• Robotics involves the control of mechanical objects that interact with the
world. It requires recognition of the world and the robot' s position, planning
to carry out a sequence of steps that will attain the desired goal, and acting
out the necessary steps.

• Vision entails recognizing objects given a two-dimensional representation of
them (e.g., a photograph or video information). Vision systems begin with
very low-Ievel analysis of the image (line and edge detection) and reason
about which edges make up parts or boundaries of shapes. Shapes can appear
quite different depending on their orientation, lighting, and occlusion by
other objects. This complicates the task of computer vision.

15.12 Additional Reading
Norvig, P. (1992). Paradigms of Artificial Intelligence Programming: Case Studies in
Common LISP, Morgan Kaufmann, San Mateo, CA.

Rich, E. and Knight, K. (1991). Artificial Intelligence, 5econd edition, McGraw-Hill,
New York, NY.

RusselI, 5.J. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach, Pren
tice Hall, Englewood Cliffs, NJ.

Winston, P.H. (1992). Artificial Intelligence, Third edition, Addison-Wesley, Read
ing,MA.

AI references and historical coverage

Barr, A. and Feigenbaum, E.A., editors (1981). The Handbook of Artificial Intelli
gence, Volume 1, William Kaufman Inc., Los Altos, CA.

Barr, A. and Feigenbaum, E.A., editors (1982). The Handbook of Artificial Intelli
gence, Volume 2, William Kaufman Inc., Los Altos, CA.

Barr, A., Cohen, P.R., and Feigenbaum, E.A., editors (1989). The Handbook of
Artificial Intelligence, Volume 4, Addison-Wesley, Reading, MA.

Cohen, P.R. and Feigenbaum, E.A., editors (1982). The Handbook of Artificial Intelli
gence, Volume 3, William Kaufman Inc., Los Altos, CA.

15.12 Additional Reading 471

Shapiro, S.c., editor (1992). Encyclopedia o[Artificial Intelligence, Second edition,
Volumes 1 and 2, John Wiley & Sons, New York, NY.

Books specific to AI subfields

Gazdar, G. and Mellish, C.S. (1989). Natural Language Processing in LISP: An Intro
duction to Computational Linguistics, Addison-Wesley, Reading. MA.

Horn, B.K.P. (1986). Robot vision, MIT Press, Cambridge, MA.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information, W.H. Freeman, San Francisco, CA.

Murray, RM., Li, Z., and Sastry, S.S. (1994). A Mathematical Introduction to Robotic
Manipulation, CRC Press, Boca Raton.

Parsaye, K. and Chignell, M. (1988). Expert Systems for Experts, John Wiley & Sons,
New York, NY.

Schank, RC. and Riesbeck, c.K. (1981). Inside Computer Understanding: Five Pro
grams Plus Miniatures, Lawrence Erlbaum Associates, Hillsdale, NJ.

Waterman, D.A. (1986). A Guide to Expert Systems, Addison-Wesley, Reading,
MA.

Philosophical issues

Dreyfus, HL. (1992). What Computers Still Can't Do: A Critique o[Artificial Reason,
MIT Press, Cambridge, MA.

Hofstadter, D.R and Dennett, D.C. (1981). The Mind's I, Basic Books, New York,
NY.

Minsky, M.L. (1986). The Society of Mind, Simon and Schuster, New York, NY.

Penrose, R (1989). The Emperor's New Mind: Concerning Computers, Minds, and the
Laws of Physics, Oxford University Press, New York, NY.

Searle, J.R (1984). Minds, Brains, and Science, Harvard University Press, Cam
bridge,MA.

472 Chapter 15: Artificiallntelligence

15.13 Code Listing
Code for searching:

Parameters: goal-fune, a funetion returning true if a goal has
been met; ehoiees, a list of paths to seareh; eost-fune, a cast
funetion to order new states; and next-states, a funetion that
generates new states from a eurrent path.
Return the first path eneountered that satisfies goal-fune.
The list of path ehoiees is printed eaeh time through the code.

(define (best-first-seareh goal-fune ehoiees eost-fune next-states)
(display ehoiees)
(newline)
(cond «null? ehoiees) #f) ; no more ehoiees

«goal-fune (first ehoiees» (first ehoiees»
(else

(best-first-seareh goal-fune
(add-paths

(rest ehoiees)
(make-paths (next-states (first ehoiees»

(first ehoiees»
eost-fune)

eost-fune
next-states»)

; Return a new sorted list with element inserted into sorted-list
; based on eompare-fune.
(define (insert element sorted-list eompare-fune)

(cond «null? sorted-list)
(list element»

«eompare-fune element (first sorted-list»
(cons element sorted-list»

(else
(cons (first sorted-list)

(insert element (rest sorted-list) eompare-fune»»

Add paths in new-choiees to old paths, old-ehoiees, in sorted
order based on eost-fune.

(define (add-paths old-ehoiees new-ehoiees eost-fune)
(if (null? new-choiees)

old-ehoiees
(insert (first new-ehoiees)

(add-paths old-ehoiees (rest new-ehoiees) eost-fune)
eost-fune»)

; Given a list of new states, remave the empty lists and eonvert
; the states into eomplete paths.
(define (make-paths new-states eurrent-path)

(map (lambda (state) (append eurrent-path (list state»)
(remove '() new-states»)

Depth-first and breadth-first search using best-first search:

; Depth-first seareh implemented using best-first seareh.
(define (depth-first-alt goal-fune tree)

(best-first-seareh goal-fune (list (list (root tree»)
(lambda (pathl path2) #t)
(lambda (path)

(list (left-ehild (find path tree»
(right-ehild (find path tree»»)

Breadth-first seareh implemented using best-first seareh.
(define (breadth-first-alt goal-fune tree)

(best-first-seareh goal-fune (list (list (root tree»)
(lambda (pathl path2) #f)
(lambda (path)

(list (right-ehild (find path tree»
(left-ehild (find path tree»»)

; Return the subtree in tree based on path.
(define (find path tree)

(cond «null? tree) #f) ; problem
«and (null? (cdr path»

(equal? (root tree) (car path») tree)
«null? (cdr path» #f) ; problem
«equal? (left-ehild tree) (second path»

(find (cdr path) (left-side tree»)
«equal? (right-ehild tree) (second path»

(find (cdr path) (right-side tree»)
(else #f») problem

Seleetor functions for parts of trees.
(define root first)
(define left-side seeond)
(define right-side third)
(define (left-ehild tree)

(if (null? (second tree» '() (caadr tree»)
(define (right-ehild tree)

(if (null? (third tree» '() (caaddr tree»)

A" search through trees using best-first search:

A* seareh of tree implemented using best-first seareh.
; g is a funetion that returns the eost ineurred so far and
; h is a funetion returning the expeeted eost to reaeh the goal.
(define (a*-tree-seareh goal-fune tree g h)

(best-first-seareh goal-fune (list (list (root tree»)
(lambda (pathl path2)

«= (+ (g pathl) (h pathl» (+ (g path2) (h path2»»
(lambda (path)

(list (left-ehild (find path tree»
(right-ehild (find path tree»»)

15.13 Code Listing 473

474 Chapter 15: Artificiallntelligence

Generic A'" search:
General a* seareh implemented using best-first seareh.
start-path is the path to the start state.
sueeessors is a funetion that returns the next states.
g is a funetion that returns the eost ineurred so far and
h is a funetion returning the expeeted eost to reaeh the goal.

(define (a*seareh goal-fune start-path sueeessors g h)
(best-first-seareh goal-fune (list start-path)

(lambda (pathl path2)
«= (+ (g pathl) (h pathl» (+ (g path2) (h path2»»

sueeessors))

Expert system shell code:
Given rule-list, a list of rules, redundant?, a funetion to test
if a rule is redundant (i.e., its aetions have already oeeurred),
eonfliet-fune, to handle eonfliet resolution, and finished, to
test for termination, iteratively ehoose an applieable rule and
apply it until finished is true.

(define (expert-shell rule-list redundant? eonfliet-fune finished)
(let* ((satisfied-rules (keep-if satisfied? rule-list»

(valid-rules (remove-if redundant? satisfied-rules»
(rule-to-apply (eonfliet-fune valid-rules»)

(apply-rule rule-to-apply)
(if (finished database)

'finished
(expert-shell rule-list redundant? eonfliet-fune

finished»)

; Test if eondition of rule is true.
(define (satisfied? rule)

(eval (eondition rule»

Apply all the aetions of rule.
(define (apply-rule rule)

(for-each eval (aetions rule»

Seleetor funetion to return eondition of rule.
(define (eondition rule)

(first rule))

Seleetor funetion to return aetions of rule.
(define (aetions rule)

(rest rule))

CHAPTER 16

SOFT COMPUTING:
Fuzzy LoGIC,

NEURAL NETWORKS, AND

GENETIC ALGORITHMS

16.1 Soft Computing
Soft computing is a relatively new field within computer science. It is a
conglomeration of fuzzy logic, neural networks, and probabilistic reasoning. Pro
babilistic reasoning is further divided into belief networks, genetic algorithms,
and chaos theory. What all of these subfields share is an adherence to nonexact
computation. Up until now, we have been using formal Boolean logic, which
says that something is either true or false, yes or no, black or white. There are no
shades of gray with this type of logic.

Soft computing supports degrees of precision, certainty, belief, and truth.
Instead of using Boolean logic with two truth values, multivalued logic is used in
which something can have more than a true or false value. The difficulty lies in
how multivalued items can be combined logically. For example, suppose we
represent information dealing with a washing machine. We want to be able to
ask questions like the following:

• In a washing machine, how long should the dothes be rinsed if they are still
fairly soapy and the rinse water is very hot?

• How much additional soap or agitation time during the wash cyde should be
used if the dothes are moderately dirty and the water is slightly soapy?

To make statements like these, we need a way of logically expressing and
combining descriptions like "long," "fairly soapy," "very hot," and "moderately

Multivalued logic

O. Grillmeyer, Exploring Computer Science with Scheme
© Springer Science+Business Media New York 1998

476 Chapter 16: Soft Computing: FUZ1J Logic, Neural Networlcs, anti Genetic Algorithms

Fuzzy sets and
membership grades

Fuzzysetfunctions

dirty." Each subfield in soft computing has a way of handling this.
This chapter will not address all the subfields that compose soft computing,

but instead foeus on those that have been most influential recently. Of these,
fuzzy logic has had perhaps the biggest success due to its growing role in our
day-to-day life.

16.2 Fuzzy Logic
Fuzzy logic provides a formal way to represent multivalued logical values
values that aren't just 0 or 1, but represent degrees of belief, fit, or agreement.
Fuzzy logic provides a way to express notions like very high, fast, and comfortable.
These are not crisp values, but fuzzy values. The notion tall cannot be simply
represented as true for anyone 6' 2" (or 1.88 meters) tall and false for those who
are shorter. There is a spectrum of values and they have different degrees of
satisfying the notion tall. To represent such notions, fuzzy sets are used.

For example, if we want to represent a fuzzy set like tall we could do so with
a table, as shown below. Each height has a corresponding membership grade or
degree of fit in the fuzzy set. The larger the membership grade, the better the
height describes or fits the notion of tall. A membership grade of 0 means
definitely not tall and a membership grade of 1 means definitely tall.

actual height membership grade
5' 3" or less 0
5'6" 0.25
5'9" 0.5
6' 0.75
6' 3" or more 1

Fuzzy sets can be represented as functions that represent thresholds (as
above), triangles, or trapezoids. These are called L (decreasing threshold), r
(increasing threshold), A, and II functions due to the similarity the name of the
function has with the actual shape of the function.

~F A
For example, tall could be expressed as an increasing threshold (r) function as

follows (h represents the actual height value):

actual height membership grade
h < 5' 3" 0
5' 3" <= h <= 6' 3" (h - 5' 3") / 12"
h > 6'3" 1

Fuzzy sets are clearly subjective. A tall person might have a very different
fuzzy set for tall than a short person would. However, a fuzzy set like the above

16.2 Fuu,y Logic 477

fuzzy set would be more agreeable to most people than a crisp set would. A crisp
set would have a single cut off point with everyone shorter than that considered
as definitely not tall, and everyone above that considered definitely tall.

Linguistic variables are variables that take on fuzzy sets as values instead of
numericalor logical values. Height can be a linguistic variable that can take
values such as short, tall, medium, huge, etc.

A hedge is a modifier that can be applied to a fuzzy set. Very is a hedge that
can modify a fuzzy set like tall to produce a new fuzzy set, very tall. Somewhat,
rarely, and more or less are other examples of hedges. A hedge reduces or
increases the membership grades of a fuzzy set. For example, the hedge very
reduces the membership grades of a fuzzy set by squaring them. Look at the
difference between the fuzzy set tall and the fuzzy set very tall:

actual height tall membership grade very tall membership grade
5' 3" or less 0 0
5' 6" 0.25 0.0625
5' 9" 0.5 0.25
6' 0.75 0.5625
6' 3" or more 1 1

16.2.1 Fuzzy expert systems
Most often fuzzy sets are used in conjunction with rule-based systems forming
fuzzy expert systems. With fuzzy expert systems, one can .express statements like

if the temperature is very high, then set the fan speed to fast
if the temperature is fine, then turn the fan off

In addition, fuzzy expert systems provide a means of combining conditions such
that rules like the following can be expressed:

if the temperature is fine and the humidity is high, then set the fan speed to
medium
if the temperature is very high or the humidity is high, then set the fan speed to
fast

These rules can be acted upon as weil. Here is an overview of a fuzzy expert
system that controls the speed of a fan. Imagine we have fuzzy sets to represent
the following linguistic variables: temperature, humidity, fan speed. These fuzzy
sets represent temperatures like cool and hot, humidities such as high and very
low, and speeds: medium and fast. Sensors will measure crisp input values (tem
perature and humidity). These are fuzzified-for each applicable fuzzy set, the
membership grade is calculated. Next the rules are evaluated based on the fuzzy
values. All the rules with fuzzy sets with membership grades greater than 0 are
applicable. If there are multiple conditions in a mIe, these are combined to get an
overall rule strength. All the applicable rules are combined to produce a final
fuzzy set that represents each applicable rule's effect on the action. Lastly, this
new fuzzy set is defuzzified to produce a crisp output value-a fan speed like 325
revolutions per minute.

Linguistic variables

Hedges

Fuzzy fan controller

478 Chapter 16: Soft Computing: FUZZJ Logic, Neural Networks, anti Genetic Algorithms

Fuzzify inputs

Rufe inferencing

To summarize, the steps are

• Fuzzify crisp inputs
• Find applicable rules
• Combine rules according to membership grades to produce output fuzzy set
• Defuzzify output fuzzy set to get crisp value

Now let's look at a fuzzy system in more detail. The inputs to the system are
usually crisp values. In our example we'll have a temperature and humidity per
centage. We compare these inputs with our fuzzy sets. For example, look at the
following five fuzzy sets:

46 54
cold

58 62
cool

66 70
fine

74 78
warm

82
hot

90

Given an input temperature of 71 degrees, we compare this value with our fuzzy
sets and we see that it is within the fine and warm fuzzy sets. Computing the
membership grades for these two fuzzy sets, we find that 71 degrees has a degree
of membership of 0.5 in fine and 0.167 in warm. For all other temperature fuzzy
sets, the membership degree is O.

Let's assume that there are three humidity fuzzy sets (low, medium, and high),
and that the humidity is 65%, which has a 0.8 degree of membership in medium
and 0.3 in high.

All the rule premises are examined one at a time. For example, suppose we
have the following four fuzzy rules:

if the temperature is cool, then set the fan speed to slow
if the temperature is warm, then set the fan speed to fast
if the temperature is fine and the humidity is high, then set the fan speed to
medium
if the temperature is warm or the humidity is medium, then set the fan speed to
medium

The first rule is not satisfied because cool has a membership degree of O. The
second rule applies, but the action (set the fan speed to fast) is weighted accord
ing to the membership degree of warm, 0.167. The third rule has two conditions
joined with an and. We use the minimum membership degree in this case.
Seventy-one degrees has membership grade of 0.5 in fine and 75% humidity is
high with membership grade of 0.3. We use the minimum value 0.3 to weigh the
action (set the fan speed to medium). Lastly, the fourth rule has two conditions
joined with or, so the maximum of the membership grades is used. The
temperature's membership grade in warm is 0.167 and the humidity in medium is
0.8. Thus the strength of this action (set the fan speed to medium) is 0.8.

Each rule' s actions take effect according to the degree of membership of the
premise. The second rule specifies setting the fan speed to fast by 16.7%. The

16.2 Fu~Logic 479

third mle sets the speed to medium by 30% and the fourth mle also sets the fan
speed to medium, but by 80%. This percentage adjustment is performed by either
multiplying the fuzzy sets by the percentage or by using the percentage as a cut
off on the fuzzy set. Here are the three fuzzy sets for the fan speed. The speeds
are in revolutions per minute (RPM).

25 125 175 225 275 375
slow medium fast

When the fuzzy sets are weighted, we get three new fuzzy sets that look like this:

/
"" 125 275 125

30% medium
275

80% medium

I
225

16.7% fast " 375

The final step in the evaluation of fuzzy mIes is to combine the fuzzy sets pro
duced by each rule into one fuzzy set. This is done by either summing all the
fuzzy sets, or choosing the maximum value among each fuzzy set for each possi
ble input, and constructing a new fuzzy set from that. We'll use the maximum
method to get the following fuzzy set:

125 225 275 375

Most fuzzy systems need to produce a crisp value. In this case we want an
amount for the fan speed. There are a number of schemes to do this. The most
common technique is to find the center of mass or center of gravity of the fuzzy set
and return the crisp value that corresponds to it. Another technique to defuzzify
a fuzzy set is to choose the weighted average of the output values that yield the
largest degree of membership values. This technique is called average of max
imums. It is computationally simpler than the center of mass method, so we will
use it. In the example above the fan speed with the largest membership grade for
the medium fuzzy set is 200 RPM and 300 RPM for th~ fast fuzzy set. The
weighted average is n

l)naxValue; x strength;
1

n

I)trength;
1

Combining fuzzy sets

Defuzzifying output

480 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, and Genetic Algorithms

Possibility versus
probability

Applications of fuzzy
logic

In this example, it is

The result is 217.233 RPM.

200 x 0.8 + 300 x 0.167
0.8+0.167

Notice that the sum of the three membership grades (80%, 30%, and 16.67%)
is greater than 100%. This would not be allowed in a probability system. With pro
bability, the rule of extended middle says that the individual outcome probabilities
of an event must not add up to greater than 1.0 or 100%. They must be exdusive
of one another. Fuzzy logic systems do not have this restriction; they can and do
overlap. Grade of membership should not be looked at as being the probability
that a linguistic variable (e.g., fan speed) equals a certain crisp value (e.g., 200
RPM), but rather the possibility or degree of fit that the linguistic variable can
take on that crisp value. In other words, it does not make sense to say that the
probability that 57 degrees is cool is 70% and the probability that 57 degrees is
cold is 40%, because the probabilities of the possible outcome states must not
exceed 100%. However, it is acceptable to say that 57 degrees feels 70% cool, and
at the same time it feels 40% cold. This is what is meant by a possibility value in
fuzzy logic.

16.2.2 History 01 luzzy logic
Fuzzy logic got its beginnings in the 1920s through the work of Jan Lukasiewicz
in multivalued logic. In 1965, Lotfi Zadeh published a paper that laid the ground
work for fuzzy logic. Zadeh defined a working mathematics for fuzzy sets that
provided a formalism upon which fuzzy systems could be buHt. Ten years later
the first application of fuzzy systems, a fuzzy controller for a steam engine, was
developed. The first major industrial application of fuzzy systems was esta
blished in 1982. This is a fuzzy expert system that controls the mixing and grind
ing of cement for a cement kiln. The most celebrated fuzzy system is a fuzzy con
trolled subway system that outperforms humans. It went into production in 1986
in Japan and has improved rider comfort and decreased ride times and running
costs.

The number of fuzzy systems has grown dramatically in recent years. In 1986,
there were eight commercial and industrial applications of fuzzy systems. That
has more than doubled each year to reach 300 applications by 1991 and 1500
applications in 1993. Fuzzy systems are used mainly in control systems ranging
from cars to commerciallindustrial uses to household applications. In cars, fuzzy
systems were first used for cruise controls in 1991. Now they are used in
transmissions, brakes, and engines. Fuzzy controlled helicopters have been buHt
that respond to voice commands to hover, turn, go up, and land. Video cameras
use fuzzy logic for auto-focus, exposure settings, and anti-jitter stabilization.
Fuzzy washing machines adjust the wash cyde using about ten rules. Fuzzy
vacuum deaners measure dust flow for energy savings. There are fuzzy
microwave ovens, refrigerators, and even rice cookers. Fuzzy systems have been
used to evaluate credit applications for lenders, estimate performance on the

16.2 FU1:lJ Logic 481

stock market, and design plans for patients in hospitals.
To speed up fuzzy applications, custom microprocessors, or chips, have been

built that process fuzzy mIes (make fuzzy inferences). The first such fuzzy
microprocessor built in 1985 could process 80,000 mIes per second, or 0.08 mil
lion mIes per second. Fuzzy chips are measured in terms of FUPs, fuzzy logic
inferences per second. In 1993, chips capable of 2 million FLIPs had been built.
That corresponds to a performance increase of 25 times in speed in just eight
years, or more than a doubling of performance every two years.

16.2.3 A fuzzy expert system in Scheme
To build a complete fuzzy expert system, we need to represent fuzzy sets or
membership functions, linguistic variables, hedges, and fuzzy roles. We must
provide some type of inference engine that evaluates roles and determines fuzzy
outcomes. Lastly, if we want to input or output crisp numbers, we'll need a way
to fuzzify inputs and defuzzify outputs.

We've seen two different representations of membership functions, as lists of
pairs or as functions. Membership functions are typically represented as func
tions modeling triangular or trapezoidal shapes (A and TI functions). This system
will represent membership functions as functions that correspond to triangles.
The input to such a function should be simple. We can represent a triangle as
three numbers corresponding to the position on the x-axis where the triangle hits
o and 1 membership degree values (in other words the left, middle, and right
parts of the triangle). For example, to represent a triangle that is 0 below 40,
reaches 1 at 60, and then returns to 0 at 80, we could use the three numbers 40,
60, and 80.

The function that creates a triangular fuzzy set should return a function that
we can plug crisp numbers into and get membership grade values back. For
inputs below the left or above the right values, the function should return O. For
values between left and right, the function should return a value corresponding
to the inpufs height along the triangle.

In addition to computing membership grades, we will need to return the
maximum value of a fuzzy set (the value that has a membership grade of 1).
We'll need this when we defuzzify the final actions of the mIes. We can use the
ideas of message passing to do this. If we call the fuzzy set with the message max,
it will return the middle value of the triangle.
; Create a function returning the membership grade of a crisp value.
(define (make-fuzzy-triangle left mid right)

(1ambda (crisp-num)
(cand «eq? crisp-num 'max) mid)

«ar « crisp-num left) () crisp-num right» 0)
«< crisp-num mid) (I (- crisp-num left) (- mid left»)
(e1se (I (- right crisp-num) (- right mid»»))

To fuzzify a crisp number, we simply have to invoke the function that the
fuzzy set represents with that crisp number. This is easily implemented as fol
lows:

Fuzzy
microprocessors

Representing fuzzy
sets

Returning maximum
of fuzzy sets

482 Chapter 16: Soft Computing: FuZ1,J Logic, Neural Networlcs, and Genetic Algorithms

Working with fuzzy
sets

Representing rules

Representing the
actual inputs into the
rules

Evaluating rules

; Fuzzify crisp-number based on fuzzy-set.
(define (fuzzify crisp-number fuzzy-set)

(fuzzy-set crisp-number»

Here is an example creating a fuzzy set for the fine temperatures:
(define fine (make-fuzzy-triangle 62 68 74»

Calling this new function with a temperature yields its membership grade:
> (fuzzify 71 fine)
0.5

> (fuzzify 61 fine)
o

> (fuzzify 'max fine)
68

All of the details of the method outlined before are somewhat difficult to
model, as the functions we are using are not continuous functions. They compute
different functions depending on the range of inputs given. This makes it difficult
to compute minimum, maximum, sums, and products of fuzzy sets. Computing
the center of mass to defuzzify is rather difficult, as it involves computing
integrals. However, if we don't produce a representation of the final output
fuzzy set and we defuzzify our output using the average of maximums method
instead of the center of mass method, we can avoid these problem areas.

Fuzzy rules can be represented in two parts in lists. The first element
represents the condition of the rule. Each condition is a pair-a list of the linguis
tic variable and its fuzzy set value. Multiple conditions can be combined using
and and ar. The rest of the rule list is the rule's actions. It is a list of pairs of
linguistic variables and their fuzzy set values. Here are two mies and their
representations. Note: symbols beginning with "?" represent linguistic variables
that will be replaced by actual input values when the mies are inferenced.

if the temperature is cool, then set the fan speed to slow
if the temperature is warm or the humidity is medium, then set the fan speed to
medium

«?temperature cool) (?fan-speed slow»
«or (?temperature warm) (?humidity medium» (?fan-speed medium»

The rules have variables that must be replaced with the actual crisp input
values. We can create a variable to input value mapping that can be represented
as an association list. Here is an example mapping of the temperature 71 degrees
and the humidity 75%:

«?temperature . 71) (?humidity . 75»

The next step is to sequence through the mies and get a list of all actions that
apply, along with the corresponding degree to which they should be applied.
Given a list of fuzzy rules, we want to find those with conditions that have been
satisfied and the overall membership degree of the condition. We don't need the
complete rules, only the actions and the membership degrees. Therefore, we'll

16.2 FUZ'lSLogic 483

return a list of sublists with these values. Each sublist consists of a membership
degree followed by the mle' s actions. In addition, let' s create two selector func
tions to get the condition and actions of the rules:

; Return the condition of a rule.
(define (condition rule)

(first rule»

Return the actions of a rule.
(define (actions rule)

(rest rule»

Return list of applicable actions and the degree to which they
should be applied.

(define (outputs rule-list input-values)
(keep-if

(lambda (evaled-rule)
(not (zero? (car evaled-rule»»

(map (lambda (rule)
(cons

(membership-grade (condition rule) input-values)
(actions rule»)

rule-list»)

The function membership-grade takes a condition and the input values and
returns the overall membership grade:
; Return overall mernbership grade of condition based on input-values.
(define (membership-grade condition input-values)

(cond «eq? (car condition) 'and)
(apply min (map (lambda (clause)

(membership-grade clause input-values»
(rest condition»»

«eq? (car condition) 'or)
(apply max (map (lambda (clause)

(else

(membership-grade clause input-values»
(rest condition»»

(fuzzify (cdr (assoc (first condition) input-values»
(second condition»»)

Let's test these functions. We'll create some fuzzy sets, rules, and inputs first:
(define warm (make-fuzzy-triangle 70 76 82»
(define cool (make-fuzzy-triangle 54 60 66»
(define medium (make-fuzzy-triangle 69 74 79»
(define rule1 '«?temperature cool) (?fan-speed slow»)
(define rule2 '«or (?temperature warm) (?humidity medium»

(?fan-speed medium»)
(define input' «?temperature . 71) (?humidity . 75»)

> (membership-grade (condition rulel) input)
Error: Wrong type to apply: cool

Testing our code

484 Chapter 16: Soft Computing: Fu~ Logie, Neural Networlcs, antI Genetie Aigorithms

The function cool is passed to fuzzify. This seems to be okay. Let's try some
more explicit calls:

> (fuzzify (cdr (assoc (first (condition rule1)) input))
(second (condition rule1)))

Error: Wrong type to apply: cool

> (cdr (assoc (first (condition rule1)) input))
71

> (second (condition rule1))
cool

> (fuzzify 71 cool)
o

This probably seems strange unless you have figured out the bug. Calling
fuzzify directly with the arguments 71 and cool works, but not when the argu
ments are evaluated based on rulel. The problem here is a subtle one. Here is a
hint:

> (fuzzify 71 'cool)
Error: Wrong type to apply: cool

We managed to replicate the bug. The issue is the difference between a sym
bol and a function. Quoting cool returns the symbol cool, not the function.
Without the quote, cool returns the function bound to the variable cool. Since
rulel is a quoted list, none of its elements are evaluated, so the cadar of rulel is
the symbol cool. There are two ways we can fix this. One is to define the rules
using quasiquoted lists and evaluating the fuzzy sets like cool. A second way is
to add an eva I to the function rnernbership-grade. We'll opt for that approach.
Here is the new functionrnembership-grade:

; Return overall membership grade of condition based on input-values.
{define (membership-grade condition input-values)

{cond {{eq? (car condition) 'and)
{apply min {map {lambda (clause)

(membership-grade clause input-values»
(rest condition»»

({eq? (car condition) 'or)
{apply max {map {lambda (clause)

{else

(membership-grade clause input-values»
(rest condition»»

{fuzzify {cdr {assoc (first condition) input-values»
(eval (second condition»»))

> (membership-grade (condition rule1) input)
o

> (membership-grade (condition rule2) input)
0.8

16.2 Fuz:r.y Logic 485

> (outputs (list rulel rule2) input)
«0.8 (?fan-speed medium»)

The final step is to take the outputs and their strengths and create a crisp out
put value for each output variable. To simplify that operation, we should make
two changes to our list of actions. One is to break apart multiple actions from the
same rule into different lists. Rules with multiple actions will yield lists like these:

«0.8 (?distance close) (?fan-speed medium»
(0.4 (?fan-speed medium) (?distance little-closer»)

These actions should be transformed into a simpler list, like this:
«0.8 ?distance close)
(0.8 ?fan-speed medium)
(0.4 ?fan-speed medium)
(0.4 ?distance little-closer»

Split multiple actions in action-list to list of single actions.
(define (transform action-list)

(if (null? action-list)
I ()

(append
(map (lambda (action) (cons (caar action-list) action))

(cdar action-list»
(transform (rest action-list»»)

The second operation is to only keep the action with the largest strength when
there are multiple actions with the same linguistic variable and fuzzy set. For
example, given the above four actions

«0.8 ?distance close)
(0.8 ?fan-speed medium)
(0.4 ?fan-speed medium)
(0.4 ?distance little-closer»

we would like to get the actions
«0.8 ?distance close)

(0.8 ?fan-speed medium)
(0.4 ?distance little-closer»

This can be done by sequencing through the action list finding all actions that
match the current first action. We should only compare the rests of the actions,
ignoring the strengths. Given a list of matching actions, we form a new action
using the largest strength in the list. Then we must recurse with a new action list
with all the actions we just processed removed. This can be done simply using
set-difference.

Combining fuzzy
actions to produce
crisp outputs

Eliminating
unnecessary actions

486 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, and Genetic Algorithms

Defuzzifying actions

; Reduce duplicate actions to one with the largest strength.
(define (no-duplicates action-list)

(if (null? action-list)
'()
(let «duplicates

(keep-if (lambda (action)
(equal? (rest action) (edar action-list»)

action-list»)
(if (null? (rest duplicates»

(eons (first action-list)
(no-duplicates (rest action-list»)

(eons (eons (apply rnax (map first duplicates»
(edar action-list»

(no-duplicates
(set-differenee action-list duplicates»»»)

Once we have the actions in this form, we can defuzzify them into crisp out
puts. We'll use a method similar to that used in no-duplicates to get a list of
actions with the same linguistic variable. Then we'll make a list of the variable
name and its crisp value. This is done for each variable. To compute the crisp
value we use the formula given previously-the sum of the products of the rule
strengths and the maximum values of the fuzzy sets divided by the sum of the
rule strengths. To get the maximum value of a fuzzy set, we call fuzzify with
the message <symbol) rnax:

; oefuzzify actions in action-list returning crisp values.
(define (defuzzify action-list)

(if (null? action-list)
'()
(let «same-var

(keep-if (lambda (action)

(eons
(list

(equal? (seeond action)
(eadar action-list»)

action-list»)

(seeond (first sarne-var»
(I (apply + (map (lambda (action)

(* (first action)
(fuzzify 'rnax

(eval (third action»»)
sarne-var»

(apply + (map first same-var»»
(defuzzify (set-differenee action-list sarne-var»»))

We can try a contrived example to verify that these functions work. We'll use
the fuzzy sets cool and warm that we defined previously. Their maximum values
are 60 and 76, respectively.

16.2 FuUJ Logic 487

> (transform
'((0.8 (?x cool))

(0.3 (?y warm) (?x cool))
(0.6 (?x warm) (?y warm))
(0.4 (?y cool) (?x cool))))

«0.8 ?x cool) (0.3 ?y warm) (0.3 ?x cool) (0.6 ?x warm)
(0.6 ?y warm) (0.4 ?y cool) (0.4 ?x cool»

> (no-duplicates
'((0.8 ?x cool) (0.3 ?y warm) (0.3 ?x cool) (0.6 ?x warm)

(0.6 ?y warm) (0.4 ?y cool) (0.4 ?x cool)))
«0.8 ?x cool) (0.6 ?y warm) (0.6 ?x warm) (0.4 ?y cool»

> (defuzzify
'((0.8 ?x cool) (0.6 ?y warm) (0.6 ?x warm) (0.4 ?y cool)))

«?x 66.857) (?y 69.6»

Finally, let's put all the pieces together into one function that takes a list of
fuzzy rules and an association list of input values and returns a list of crisp out
puts:

; Evaluate rules using inputs to produce crisp results.
(define (fuzzy-eval rules inputs)

(defuzzify
(no-duplicates

(transform
(outputs rules inputs»»)

An alternate inferencing technique comes from Takagi, Sugeno, and Kang. I
will refer to this as the TSK method. Premises of rules with the TSK method are
the same as was presented earlier, namely nonfuzzy inputs are compared to
fuzzy sets. Crisp inputs are compared to fuzzy sets. In the case of multiple condi
tions in a rule, the membership degrees are multiplied together. This gives the
rule strength. The outcomes of the rules do not produce fuzzy sets, but crisp
values that are assigned to an output for each rule. This output is the sum of the
products of the rule inputs and a collection of parameters. These parameters are
adjusted as the rules are developed to produce a working set of rules.

Below are some example rules in TSK:

if temperature is highand humidity is low, thenoutput 1 = p~ +pttemperature +
p~humidity

if temperature is medium, then output 2 = p~ + p~temperature
where p~ ... p~ are the parameters to the first rule.

16.2.4 Fuzzy cheesecake
Let's build a fuzzy logic system to bake a cheesecake! Our system will have two

1. Mike Clancy provided the inspiration for this problem, along with many delicious cheesecakes.

TSK inferencing and
ru/es

Samp/e problem:
baking cheesecake

488 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, antI Genetic Algorithms

Cheesecake ru/es

Oven temperature
fuzzysets

Knife cleanliness
fuzzysets

inputs: the temperature of the oven and the cleanliness of a knife that we insert
into the cheesecake. If the knife comes out coated with cheesecakei then it's not
ready. If it's clean, then the cake is ready. There are two outputs: the temperature
at which the oven should be set, and the time interval between our measure
ments of the oven's temperature and the knife's cleanliness. We are assuming
that we don't use a constant temperature and rely on the oven's thermostat to
maintain it, as you normally would do when baking a cheesecake.

Here are the rules to the system. Fuzzy sets are in italies.

1) if the temperature is cool, turn the oven up a lot and wait a long time
2) if the temperature is warm, turn the oven up a little and wait a while
3) if the temperature is very hot, turn the oven down and wait a short time
4) if the temperature is hot and the knife is coated, keep the oven the same and

waita while
5) if the temperature is hot and the knife is slightly coated, keep the oven the same

and wait a short time
6) if the knife is clean, turn the oven down and wait a short time

Here are the rules' Scheme equivalents:
(define rules '(

«?temperature cool) (?oven up-a-lot) (?wait long-time»
«?temperature warm) (?oven up-a-little) (?wait while»
«?temperature very-hot) (?oven down) (?wait short-time»
«and (?temperature hot) (?knife coated»

(?oven the-same) (?wait while»
«and (?temperature hot) (?knife slightly-coated»

(?oven the-same) (?wait short-time»
«?knife clean) (?oven down) (?wait short-time»»

We need four collections of fuzzy sets for the different linguistic variables.
Here are four fuzzy sets for the temperature input. The numbers are in degrees
Fahrenheit.

50 125 150
cool warm

300 325 375 400 475
hot veryhot

(define cool (make-fuzzy-triangle 50 100 150»
(define warm (make-fuzzy-triangle 125 225 325»
(define hot (make-fuzzy-triangle 300 350 400»
(define very-hot (make-fuzzy-triangle 375 425 475»

Here are three fuzzy sets for the knife input. The numbers are on ascale from
o to 10 of cleanliness, where 0 is very clean and 10 is very coated.

16.2 FuzzyLogic 489

-3 2 3 7 8 13
clean slightly coated coated

(define clean (make-fuzzy-triangle -3 0 3»
(define slightly-coated (make-fuzzy-triangle 2 5 8»
(define coated (make-fuzzy-triangle 7 10 13»

Here are four fuzzy sets for setting the oven temperature. The numbers indi
cate the amount in degrees Fahrenheit that the temperature should be changed.

-50 -25 0 25
up

50
up alot

75
down the same

(define down (make-fuzzy-triangle -50 -25 0»
(define the-same (make-fuzzy-triangle -25 0 25»
(define up-a-little (make-fuzzy-triangle 0 25 50»
(define up-a-lot (make-fuzzy-triangle 25 50 75»

Here are three fuzzy sets for the time to wait between measurements. The
numbers are in minutes.

o 3 4 6 7
short while long

(define short-time (make-fuzzy-triangle 0 2 4»
(define while (make-fuzzy-triangle 3 5 7»
(define long-time (make-fuzzy-triangle 6 8 10»

10

To make our fuzzy system more meaningful, we'll build a simulator that
simulates the baking of a cheesecake. It will keep track of time and oven tempera
ture and model the energy that goes into the cheesecake. This energy will deter
mine when the cheesecake is done and affect the cleanliness of the knife being
stuck in the cheesecake. This won' t be an exact system and we'll make many
simplifications. Using a cooking temperature of 350 degrees and a time of 30
minutes and multiplying these together, we create an energy amount of 10,500.
When the total energy exceeds 10,500 (350 x 30), the cheesecake is done and the

Change in oven
temperature fuzzy
sets

Wait time fuzzy sets

Oven simulator

490 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, antI Genetic Algorithms

knife cleanliness reaches zero. The simulator will add a temperature change at
each minute to a running energy total. This temperature change is limited to ten
degrees each minute.

The process of simulation works as folIows:

• Evaluate the fuzzy mIes with the current inputs (temperature and cleanli-
ness).

• Adjust the oven temperature according to the oven output variable.
• Wait until the wait output variable time has elapsed.
• During that wait time, model the temperature changes and energy to the

cheesecake.
Model the baking of a cheesecake using fuzzy rules given initial
temp and energy. time counts the minutes.

(define (cheesecake rules temp energy time)
(if (zero? (done energy»

'eat
(let* «output

(fuzzy-eval rules
'«?temperature . ,temp)

(?knife. ,(done energy»»)
(oven (second (assoc '?oven output»)
(wait (second (assoc '?wait output»»

(display '(fuzzy output: oven ,oven wait ,wait»
(newline)
(let* «result (bake oven (+ time (truncate wait» temp

energy time»
(new-temp (first result»
(new-energy (second result»)

(cheesecake rules new-temp new-energy
(+ time (truncate wait»»»)

Model baking a cheesecake until time equals stop-time. oven is
the temperature change; temp and energy are the current
temperature and energy levels.

(define (bake oven stop-time temp energy time)
(if (>= time stop-time)

(list temp energy)
(let* «temp-change

(if (positive? oven) (min 10 oven) (max -10 oven»)
(new-energy

(+ energy (/ (+ temp temp temp-change) 2»»
(display '(time ,time temp ,(+ temp temp-change)

energy ,new-energy knife ,(done new-energy»)
(newline)
(bake (- oven temp-change) stop-time (+ temp temp-change)

new-energy (+ time 1»»)

16.2 Fuzzy Logic 491

; Helper function for cheesecake.
(define (baking ru1es oven-temp)

(cheesecake ru1es oven-temp 0 1»

Compute the c1ean1iness of the knife as a number between 0 and 10.
(define (done energy)

(- 10 (min 10 (truncate (/ energy 1050»»)

Let's run the cheesecake simulator with an initial oven temperature of 300
degrees.

> (baking rules 300)
(fuzzy output: oven 25.0 wait 5.0)
(time 1 temp 310.0 energy 305.0 knife 10)
(time 2 temp 320.0 energy 620.0 knife 10)
(time 3 temp 325.0 energy 942.5 knife 10)
(time 4 temp 325.0 energy 1267.5 knife 9)
(time 5 temp 325.0 energy 1592.5 knife 9)
(fuzzy output: oven 0.0 wait 5.0)
(time 6 temp 325.0 energy 1917.5 knife 9)
(time 7 temp 325.0 energy 2242.5 knife 8)
(time 8 temp 325.0 energy 2567.5 knife 8)
(time 9 temp 325.0 energy 2892.5 knife 8)
(time 10 temp 325.0 energy 3217.5 knife 7)
(fuzzy output: oven 0.0 wait 2.0)
(time 11 temp 325.0
(time 12 temp 325.0
(fuzzy output: oven
(time 13 temp 325.0
(time 14 temp 325.0
(fuzzy output: oven
(time 15 temp 325.0
(time 16 temp 325.0
(fuzzy output: oven
(time 17 temp 325.0
(time 18 temp 325.0
(fuzzy output: oven
(time 19 temp 325.0
(time 20 temp 325.0
(fuzzy output: oven
(time 21 temp 325.0
(time 22 temp 325.0
(fuzzy output: oven
(time 23 temp 325.0
(time 24 temp 325.0
(fuzzy output: oven
(time 25 temp 325.0
(time 26 temp 325.0
(fuzzy output: oven
(time 27 temp 315.0
(time 28 temp 305.0

energy 3542.5 knife
energy 3867.5 knife
0.0 wait 2.0)
energy 4192.5 knife
energy 4517.5 knife
0.0 wait 2.0)
energy 4842.5 knife
energy 5167.5 knife
0.0 wait 2.0)
energy 5492.5 knife
energy 5817.5 knife
0.0 wait 2.0)
energy 6142.5 knife
energy 6467.5 knife
0.0 wait 2.0)
energy 6792.5 knife
energy 7117.5 knife
0.0 wait 2.0)
energy 7442.5 knife
energy 7767.5 knife
0.0 wait 2.0)
energy 8092.5 knife
energy 8417.5 knife
-25.0 wait 2.0)
energy 8737.5 knife
energy 9047.5 knife

7)
7)

7)
6)

6)
6)

5)
5)

5)
4)

4)
4)

3)
3)

3)
2)

2)
2)

Baking simulation

492 Chapter 16: Soft Computing: FuZ'IJ Logic, Neural Networks, and Genetic Algorithms

Evaluation of
simulation results

New knife cleanliness
fuzzysets

Secondrun

(fuzzy output: oven -6.25 wait 3.125)
(time 29 temp 298.75 energy 9349.375 knife 2)
(time 30 temp 298.75 energy 9648.125 knife 1)
(time 31 temp 298.75 energy 9946.875 knife 1)
(fuzzy output: oven -10.874 wait 2.848)
(time 32 temp 288.75 energy 10240.625 knife 1)
(time 33 temp 287.876 energy 10528.938 knife 0)
eat

Let's examine the rules that fired during the simulation. Rule #2 fired first
which brought the oven up to 325 degrees, then rule #4 fired once and rule #5
fired eight times. The oven temperature remained constant here. Finally the knife
became clean and rule #6 fired which lowered the temperature by 25 degrees.
This made the oven warm so rule #2 fired next along with rule #6, and the last
two examples showed an interaction between two rules with the system moving
toward some balance of temperature reduction and wait time.

There is very little interaction between the rules. Our problem is that the
fuzzy sets are not overlapping enough to give interesting interactions. Instead we
are invoking one rule at a time for the most part. Let' s change the knife fuzzy sets
so they have more overlap.

-4 1 4 6 9 14
clean slightly coated coated

(define coated (make-fuzzy-triangle 6 10 14»
(define slightly-coated (make-fuzzy-triangle 1 5 9»
(define clean (make-fuzzy-triangle -4 0 4»

Running our simulator again produces the following output:

> (baking rules 300)
(fuzzy output: oven 25.0 wait 5.0)
(time 1 temp 310.0 energy 305.0 knife 10)
(time 2 temp 320.0 energy 620.0 knife 10)
(time 3 temp 325.0 energy 942.5 knife 10)
(time 4 temp 325.0 energy 1267.5 knife 9)
(time 5 temp 325.0 energy 1592.5 knife 9)
(fuzzy output: oven 0.0 wait 5.0)
(time 6 temp 325.0 energy 1917.5 knife 9)
(time 7 temp 325.0 energy 2242.5 knife 8)
(time 8 temp 325.0 energy 2567.5 knife 8)
(time 9 temp 325.0 energy 2892.5 knife 8)
(time 10 temp 325.0 energy 3217.5 knife 7)
(fuzzy output: oven 0.0 wait 3.0)
(time 11 temp 325.0 energy 3542.5 knife 7)
(time 12 temp 325.0 energy 3867.5 knife 7)

16.2 Fuzzy Logic 493

(time 13 temp 325.0
(fuzzy output: oven
(time 14 temp 325.0
(time 15 temp 325.0
(time 16 temp 325.0
(fuzzy output: oven
(time 17 temp 325.0
(time 18 temp 325.0
(fuzzy output: oven
(time 19 temp 325.0
(time 20 temp 325.0
(fuzzy output: oven

energy 4192.5
0.0 wait 3.0)
energy 4517.5
energy 4842.5
energy 5167.5
0.0 wait 2.0)
energy 5492.5
energy 5817.5
0.0 wait 2.0)
energy 6142.5
energy 6467.5
0.0 wait 2.0)

knife 7)

knife 6)
knife 6)
knife 6)

knife 5)
knife 5)

knife 5)
knife 4)

(time 21 temp 325.0 energy 6792.5 knife 4)
(time 22 temp 325.0 energy 7117.5 knife 4)
(fuzzy output: oven 0.0 wait 2.0)
(time 23 temp 325.0 energy 7442.5 knife 3)
(time 24 temp 325.0 energy 7767.5 knife 3)
(fuzzy output: oven -8.333 wait 2.0)
(time 25 temp 316.667 energy 8088.333 knife 3)
(time 26 temp 316.667 energy 8405.0 knife 2)
(fuzzy output: oven -12.5 wait 2.429)
(time 27 temp 306.667 energy 8716.667 knife 2)
(time 28 temp 304.167 energy 9022.083 knife 2)
(fuzzy output: oven -9.211 wait 2.882)
(time 29 temp 294.956 energy 9321.645 knife 2)
(time 30 temp 294.956 energy 9616.601 knife 1)
(fuzzy output: oven -10.699 wait 2.858)
(time 31 temp 284.956 energy 9906.557 knife 1)
(time 32 temp 284.257 energy 10191.163 knife 1)
(fuzzy output: oven -7.399 wait 3.056)
(time 33 temp 276.857 energy 10471.721 knife 1)
(time 34 temp 276.857 energy 10748.578 knife 0)
(time 35 temp 276.857 energy 11025.436 knife 0)
eat

Here we see much more interaction between the actions of the rules. The first
two fuzzy outputs involve the same rules, but then we see interactions between
rules #4 and #5 producing a wait time of three minutes. Then rule #5 alone fires
until the knife becomes clean, which happens earlier in this simulation than it did
in the last simulation. The last five outputs involve interaction between combina
tions of rules #2, #5, and #6, which result in nonlinear changes to the wait times
and oven temperature changes.

Now let's change the oven temperature fuzzy sets and see what happens.
Here are new fuzzy sets for the oven temperature with more overlap between the
sets.

Evaluation of second
run

Newoven
temperature fuzzy
sets

494 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms

100 150
cool

200
warm

300 350
hot

400
veryhot

(define cool (make-fuzzy-triangle 100 150 200»
(define warm (make-fuzzy-triang1e 150 250 350»
(define hot (make-fuzzy-triangle 300 350 400»
(define very-hot (make-fuzzy-triangle 350 400 450»

450

Thirdrun The results with these new fuzzy sets and the new knife c1eanliness fuzzy sets
are shown below:

> (baking rules 300)
(fuzzy output: oven 25.0 wait 5.0)
(time 1 temp 310.0 energy 305.0 knife 10)
(time 2 temp 320.0 energy 620.0 knife 10)
(time 3 temp 325.0 energy 942.5 knife 10)
(time 4 temp 325.0 energy 1267.5 knife 9)
(time 5 temp 325.0 energy 1592.5 knife 9)
(fuzzy output: oven 8.333 wait 5.0)
(time 6 temp 333.333 energy 1921.667 knife 9)
(time 7 temp 333.333 energy 2255.0 knife 8)
(time 8 temp 333.333 energy 2588.333 knife 8)
(time 9 temp 333.333 energy 2921.667 knife 8)
(time 10 temp 333.333 energy 3255.0 knife 7)
(fuzzy output: oven 6.25 wait 3.0)
(time 11 temp 339.583 energy 3591.458 knife 7)
(time 12 temp 339.583 energy 3931.042 knife 7)
(time 13 temp 339.583 energy 4270.625 knife 6)
(fuzzy output: oven 3.049 wait 2.366)
(time 14 temp 342.632 energy 4611.733 knife 6)
(time 15 temp 342.632 energy 4954.365 knife 6)
(fuzzy output: oven 2.236 wait 2.268)
(time 16 temp 344.868 energy 5298.115 knife 5)
(time 17 temp 344.868 energy 5642.983 knife 5)
(fuzzy output: oven 1.352 wait 2.162)
(time 18 temp 346.221 energy 5988.528 knife 5)
(time 19 temp 346.221 energy 6334.749 knife 4)
(fuzzy output: oven 1.199 wait 2.144),
(time 20 temp 347.420 energy 6681.569 knife 4)
(time 21 temp 347.420 energy 7028.989 knife 4)
(fuzzy output: oven 0.831 wait 2.100)
(time 22 temp 348.251 energy 7376.825 knife 3)
(time 23 temp 348.251 energy 7725.076 knife 3)
(fuzzy output: oven -7.574 wait 2.101)
(time 24 temp 340.678 energy 8069.541 knife 3)

16.2 Fuzzy Logic 495

(time 25 temp 340.678 energy 8410.218 knife 2)
(fuzzy output: oven -12.060 wait 2.471)
(time 26 temp 330.678 energy 8745.896 knife 2)
(time 27 temp 328.617 energy 9075.543 knife 2)
(fuzzy output: oven -7.423 wait 2.899)
(time 28 temp 321.195 energy 9400.449 knife 2)
(time 29 temp 321.195 energy 9721.644 knife 1)
(fuzzy output: oven -11.125 wait 2.832)
(time 30 temp 311.195 energy 10037.838 knife 1)
(time 31 temp 310.069 energy 10348.470 knife 1)
(fuzzy output: oven -7.628 wait 3.042)
(time 32 temp 302.441 energy 10654.725 knife 0)
(time 33 temp 302.441 energy 10957.166 knife 0)
(time 34 temp 302.441 energy 11259.607 knife 0)
eat

The first output involves rule #2 only. All others are combinations of rule #2
and other rules. The system increases the oven temperature gradually but less
and less each time until the knife becomes clean. In the last five outputs the oven
temperature changes oscillate between -7.423 and -12.060. This is a nice example
of control in a fuzzy system producing astate of relative equilibrium.

One interesting thing to note is that the cheesecake finished first in the last
simulation. At 32 minutes the cheesecake energy exceeded 10,500. The first simu
lation finished after 33 minutes and the second took 34 minutes. The third simu
lation finished first because the oven temperature was increased steadily until the
knife was clean. The second simulation took the longest because the definition of
a clean knife (the fuzzy set) was changed, so the fuzzy system started reducing
the oven temperature earlier than the first simulation did.

16.2.5 Exercises
16.1 Modify the cheesecake scenario so that the system stops once the

cheesecake is done (i.e., the energy exceeds 10,500) even though there is
more wait time in the system. Thus, the three examples would stop at 33,
34, and 32 minutes, respectively. You could do this one of three ways:
modify the fuzzy sets dealing with wait times; add new wait time and
knife cleanliness fuzzy sets and rules that use them when the cheesecake is
almost ready; or modify the driver functions to exit when the energy
exceeds 10,500 regardless of the amount of wait time left. Rate the three ap
proaches in implementation difficulty and build a new cheesecake model
using one of them.

16.2 Write functions that represent trapezoid or threshold membership func
tions (those staying at degree of membership 1 after reaching a point).

16.3 What happens in our fuzzy logic system if no rules are applicable? Modify
the code so that it returns the symbol no-rules-apply in that case.

Evaluation o(third run

Comparison o(three
trials

496 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, antI Genetic Algorithms

Units and connection
weights

Layers

16.4 Create fuzzy sets and rules to model some realworld objects. Once you
have created these, write a controller that evaluates the fuzzy mIes and
provides some feedback to the modeled object.

16.5 Modify the fuzzy system to allow hedges to be used in the rules. A hedge
is a word or descriptor like very or more or less that modifies a fuzzy set.
Assurne that very squares the membership grades and that somewhat and
more or less perform a square root on the membership grades. Think of
some other hedges and mathematical operations that can be applied to the
fuzzy sets that make sense given the semantics of the hedge.

16.6 It is possible to take the negation of a fuzzy set, for example, not tall. This is
implemented by subtracting the fuzzy set from one. For example, look at
the membership grades for the fuzzy sets tall and not tall.

actual height tall membership grade not tall membership grade
5' 3" or less 0 1
~6' ~~ Q~

5' 9" 0.5 0.5
6' 0.75 0.25
6' 3" or more 1 0

Modify the fuzzy rule system so that it accepts negations of fuzzy sets.

16.3 Neural Networks
Neural networks model the activity of neurons in brains. A neural network (or
neural net) simulates a collection of neurons. These artificial neurons are called
units or nodes. Units are highly interconnected with other units to various degrees
of strength called connection weights. Neural networks take inputs and produce
outputs acting like functions in Scheme. However, instead of having Scheme
code that maps inputs to outputs, they compute the outputs by propagating infor
mation up through the network. The output is a function of the input and the
weights inside the network. What makes neural networks interesting is the pro
perties they share with brains: the ability to leam, generalize, categorize, and be
robust in the face of changes to the network.

Neural nets are often called artificial neural networks, as they are artificial
models of neurons. Connectionist models and parallel distributed processing systems
are other names that have been used to describe neural networks. The differences
are subtle for our level of understanding. In fact, many people tend to use the
terms interchangeably.

Neural networks are typically organized in layers, where each layer consists of
a group of units. Each unit in a tayer is typically not connected to the units in that
tayer but is connected to all the units in the tayers immediately above and below
it. In some neural nets the units connect to units in additionaltayers as weIl. Look
at the following diagram of a simple three-Iayer network.

16.3 Neural Networlcs 497

Output layer

Hidden layer

Inputlayer

Neural networks are made up of three types of units. Input units take values
from outside the neural net and pass those values up to other units. Hidden units
take inputs from input units or other hidden units and pass values to other units.
Output units take input from input units (in two-Iayer networks) or hidden units
(in three- or more layer networks) and pass values as the output result of the net
work.

The processing of information through a network is called propagation. Propa
gation begins with a collection of input values that are sent to the units of the first
or input layer of the network. The other layers (hidden and output) are given
new values in a different manner. All the inputs to each of these units are multi
plied by connection weights and these products are summed together to make
the net input to the unit. This is best understood with a diagram.

activation
level

outputs

Types o(units

PnopagaNonthrough
networks

498 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, and Genetie Algorithms

ActivaUonleveland
sigmoidal function

Bias and thresholds

Propagation method
andformula

Adjusting connection
weights

The net input is converted to an activation level that will 'be used to produce
the output value that the unit sends to the layer of units above it. This conversion
typically involves a function that restriets the value of the activation level. A sig
moidal function does this, and drawn out, it looks like

We will use a sigmoidal function that restriets the activation level to be a value
between zero and one. Positive net inputs are greater than 0.5 and negative
inputs are less than 0.5.

Some neural networks use a threshold function in which the unit does not send
its activation level to other units unless it exceeds the threshold level. Another
method is to use a bias value that is associated with each unit and is added to the
net input to produce the total input to the unit. A negative bias reduces the
inputs from lower units and a positive bias increases it. This acts very much like
a threshold function.

When the unit has calculated its activation level, it is sent out to the units it is
connected to in the layer above. The activation level is multiplied by each connec
tion weight to the units above and these products are summed with the inputs
from other units to form the net inputs to the next layer of units.

The following equation computes unit j's input, inputj. We assurne that this
unit has n units that connect to it. Their activation levels are referred to as
activation;. weightj; is the connection weight between unit; and unitj above.

n

inputj = r.weightj; xactivation; + biasj
;=1

Activation levels are positive numbers between zero and one. Biases and con
nection weights can be positive or negative and any size. A negative connection
weight means that the connection between those two units is inhibitory. A posi
tive weight makes an excitatory connection.

16.3.1 Learning in neural nets
A neural network leams through a process of gradual adjustments of the connec
tion weights between units. An increase in a connection weight means that a unit
will send a larger value to the node it connects to via that connection weight. A
decrease in the connection weight means a smaller value will be sent. Negative
connection weights mean negative amounts will be sent that subtract from the
net input to the node. Adjusting connection weights changes the effects that
nodes have on one another and affects the final output of the network.

16.3 NeuralNetworks 499

The two most common forms of learning are Hebbian learning and baek propa
gation. Hebbian learning is a simple rule that strengthens the connection between
nodes that are simultaneously excited (both have positive activation levels) and
weakens connections between units that are simultaneously opposite (different
activation levels).

Back propagation, or baek-prop as it is often ca11ed, is a more complex type of
learning. It reduces the error between the actual output of the network and the
desired output by changing the connection weights and biases in such a way that
they move slowly toward the correct values. Back-prop is so named because it
works in the opposite fashion as the propagation of inputs to outputs we have
already seen. Back-prop learning starts at the output nodes comparing the results
obtained from forward propagation of inputs to outputs with the desired results.
The connection weights and biases are adjusted relative to this difference. A big
difference involves a bigger adjustment than a sma11 difference.

Back-prop sequences down the network layer by layer using an error meas
urement calculated from the nodes above. For output units the error measure
ment is the difference between the actual output of that unit and the desired out
put value. For input and hidden units, this error measurement is the sum of a11
the error measurements in the layer above times the respective connection
weights between the units.

It takes more than one change of connection weights and biases via back pro
pagation for a network to learn. A training process happens in which aseries of
forward and back propagations take place. For each of these iterations the accu
racy of the network is tested and the weights and biases are adjusted until the
difference between outputs and desired results is within some tolerance.

Neural networks can be trained to learn a collection of patterns. There is an
input set representing a11 the inputs and a target set representing a11 of the desired
outputs. Each input is propagated through the network and back propagation is
used to update the connection weights and biases. There are different schemes as
to when back propagation is done and when the connection weights and biases
are changed. Back-prop can be done after each input pattern is propagated
through the network, and at each step new connection weights and biases can be
calculated. In this scheme the inputs can be presented in a fixed order or they can
be presented in a random order. Another approach is to delay the changing of
connection weights and biases until a11 the input patterns have been presented.
Then the sums of a11 the weight and bias changes are calculated and the network
weights and biases are adjusted accordingly.

One of these learning schemes is used for each pass through the input set, an
epoeh. This entire process continues until the total or average of the differences
between actual and desired outcomes is less than some threshold.

As a network learns it goes through a process of adjusting weights and biases,
settling those values toward some optimum set of values. One can visualize this
process as movement along a bumpy terrain. The goal is to go to the lowest spot
in this terrain. However, there is always a danger of reaching a low spot that is
not the overall low spot. A network can tend to get stuck here in this loeal

Hebbian learning

Back propagation
learning

Training a network

Training methods

Learning (ai/ures

500 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms

Failing to leam

Overfitting

Neural network
plusses

Contrast of fuzzy
systems with neural
networks

Symbolic versus
subsymbolic systems

minimum and only partially learn the desired patterns.
There is always a danger that a network cannot learn a collection of patterns.

If the network is too smalI, i.e., it does not have enough hidden units, then it may
not be able to learn a pattern just because it is impossible to construct the weights
to get the desired outputs. For a simple example of this, imagine that two very
similar input patterns are supposed to produce very different outputs. The learn
ing steps conflict with one another so that as the network learns one pattern, it
unlearns another. This can be remedied by modifying the network to incorporate
enough hidden units or layers to allow the inputs to be differentiated. In general,
adding more hidden units allows more complex or larger input sets to be
learned. A network with more hidden units can often learn an input set faster (in
less training epochs) than a a smaller network can.

There is a down side to using large numbers of hidden units. A large network
tends to specialize, or overfit, learning its input-to-output mappings exact1y. This
reduces the network's ability to generalize, producing reasonable outputs given
similar inputs to those on which it was trained. The features of neural networks
are discussed in the next section.

There is a positive side to learning in neural networks. Neural networks usu
ally don't unlearn all they have learned when they learn new information, espe
cially when there is some reinforcement of their previous knowledge. This makes
neural networks robust. They tend to have a degree of redundancy so if some
weights change or even if some units are removed, the system can still perform
elose to its prior level. The human mind is similarly robust. As we learn new
information, we still maintain old information. We don't forget much consider
ing we loose thousands of neurons each day.

16.3.2 Comparing neural nets with other systems
Neural networks, like fuzzy logic systems, take crisp inputs and produce crisp
outputs. Both systems can deal with imprecise values or information and per
form reasonably. However, the two systems work in very different ways. Fuzzy
logic systems use rules and fuzzy sets that represent vague information. A fuzzy
system is developed with general concepts in mind and adjusted to work with
specific examples. Similar inputs will produce similar results because of the toler
ance inherent in the system.

A neural network has features that tend to smooth out the rough edges that
crisp values have. The sigmoidal function that collapses values and the bias that
acts as a threshold factor both contribute to this tolerance for a degree of impreci
sion. Like fuzzy systems, a neural network will yield reasonable results given
inputs with which it hasn't been trained but which are similar to trained patterns.

As fuZZY logic systems are contrasted with crisp systems, neural networks are
contrasted with symbolic systems. Symbolic systems represent information as sym
bols, such as words like fish and eat, or query, which could be bound to

«interrogative what) (verb is) (noun Mike) (verb saying)
(prep-phrase (prep to) (article the) (noun computer»)

16.3 Neural Networb 501

Neural nets are sometimes caHed subsymbolic systems. They work on a level
that lies below symbols, dealing with entities that, when combined, can be looked
at as more concrete values like symbols. Instead of a specific piece of a neural net
representing information like a symbol does, information is distributed
throughout many parts of the neural network. If a symbol' s value changes, it can
have a huge effect on a symbolic system. However, if one weight in a neural net
work changes, the system performs at about the same level.

Information in a neural network is maintained in a distributed fashion. Don't
think of a neural network as a coHection of nodes where each node represents a
specific piece of information that you can label, such as the height of a person or
the number of cars in a city. Instead look at information in a neural network as a
certain pattern of activation levels in the nodes. These levels taken as a whole
represent information. This is what is meant by information maintained in a dis
tributed fashion. Since no one unit represents an entire fact or concept, neural
networks have flexibility in that more than one combination of patterns may pro
duce the same result. And as we've already seen, one network can be trained to
learn a coHection of patterns because the connection weights between the units
each playa partial role in obtaining the final output. Generalization, categoriza
tion, handling incomplete inputs, and graceful degradation (performing weH
even after some of the internal structure has been changed) are aH things that
neural networks do weH but that purely symbolic systems have difficulties with.

Let's look at the properties in which neural networks excel. Neural networks
can generalize. Once trained, a network will produce similar outputs for patterns
that are dose to the learned patterns. If a network is exposed to related patterns
during its training, it improves in its ability to generalize. A network is not lim
ited to learning one coHection of inputs that map to a particular output. It can
learn multiple categories and then classify inputs. The input to a network may be
incomplete. For example, if a network is used to recognize patterns of zeroes and
ones, there may be a pattern in which we are unsure of some of the digits. Given
enough of the input, the proper outcome may still be produced. Lastly, if a unit's
weights change or if a unit is removed from a network, the other units and
weights may be able to provide enough information to produce the proper
results for the trained inputs.

The reason that networks can do these things is due to the distributed nature
of the knowledge they maintain and the redundancy in the system. You can view
each unit in the network as providing a piece of the eventual answer. If it is
slightly wrong or even missing, the other pieces can make up for this because
they perform redundant operations or they can make up for the one erroneous or
missing piece. In a symbolic system redundancy is rarely built in. Each part is
designed to do a specific task with a high degree of precision. There is no room
for error; in fact, allowing for a margin of error is a difficult thing to incorporate
in a symbolic system.

The artificial intelligence community has been in araging debate for many
years over symbolic versus subsymbolic techniques. Both approaches have their
advantages and disadvantages. The debate goes on. In the end neither approach

Distributed knowledge

Properties 01 neural
networks

Redundancy

502 Chopter 16: Soft Computing: FuZZ3 Logic, Neural Networlcs, antI Genetic Algorithms

Arguments supporting
subsymbolic systems

Arguments supporting
symbolic systems

Perceptrons

PDPgroup

may win out overall, but both may coexist, each suited for a particular class of
applications. Here are some of the arguments for each approach.

The camp supporting neural networks argues that networks can leam any
function given a large enough network and enough training sets. The resulting
trained network will be able to generalize such that new or incomplete data can
be presented to the network and correctly classified. Another advantage to neural
nets is that one does not need to analyze the input in any way to custom order or
tailor it, categorize it, or in any way understand it as one would have to do when
building adecision tree, expert system, or fuzzy logic system.

The symbolic AI camp points out that neural networks don't always reach the
best decisions (they get stuck in local minima when they leam), or they may
never converge on a set of weights. Nets may overfit the data, meaning they
represent the inputs more or less exactly and lose their ability to generalize or
match incomplete inputs. Even when neural nets settle on a working set of
weights, one cannot examine the weights and see how the network structured the
training data to formulate its categorization. The opacity of the system prevents
this. In many systems there is some degree of existing knowledge about the
structure of the system to be modeled. It is difficult to represent this like one can
in a symbolic system.

16.3.3 History of neural networks
Research with neural nets began with Warren McCullogh and Walter Pitts in the
early 194Os. They showed how networks could be used to make calculations. In
the late 1940s Oonald Hebb theorized that neural networks leamed by changing
their connection weights. Hebb' s learning idea (now referred to as the Hebbian
rule) was biologically plausible as weIl. Simply stated, in Hebbian learning the
connection weight between two active units is strengthened.

In the early 1960s Frank Rosenblatt made very boastful claims about what
could be done with perceptrons-a simple neural network that has only two
layers. He essentially said that a perceptron could leam to perform any type of
computation. In response to these strong claims, Marvin Minsky and Seymour
Papert wrote a book called Perceptrons in 1969. Through rigorous mathematical
proofs they showed the limitations of perceptrons. They proved that a percep
tron couldn't even solve a problem as simple as an exclusive or (often abbreviated
as XOR).2 Minsky and Papert challenged researchers to create a network that
could solve this simple problem. Perceptrons all but shut down research in neural
nets until the mid 1980s.

The resurgence of neural networks came about in large part due to the work
of the POP (Parallel Distributed Processing) group-a collection of researchers
from U.c. San Diego, including Oavid Rumelhart, James McClelland, Donald
Norman, and many other researchers who now form a who's who list of neural

2. An exc1usive or is a logical operation that is true if only one of its arguments is true and false if
both are true or both are false.

16.3 Neural Networks 503

net researchers and cognitive scientists. The group wrote a three-volume text that
came with software to experiment with neural networks that had hidden layers
and leaming algorithms. They showed that with a single hidden layer, they were
able to answer Minsky and Papert's chaIlenge showing a very simple network
that solves the XOR problem. We will now develop a neural network that solves
this problem as weIl.

16.3.4 A neural network in Scheme
To best see how neural networks work and get a deeper understanding of their
abilities and limitations, we'Il build a working model of a network that can learn.
A neural network requires a great deal of iteration and this makes it an interest
ing problem, especiaIly if we take advantage of the capabilities of the applicative
operators. The techniques we will use are not the most efficient in terms of
memory and speed. If you plan on using this system for large problems, you may
consider rewriting it using vectors and destructive operators.

Our system will work with multilayer networks but our examples will be
with a simple three-Iayer network. One layer will be an input layer, another a
hidden layer, and the third will be the output layer.

There are many possible representations of a neural network. Nested lists will
be the best structure to use to exploit the applicative operators. Each unit can be
represented by its activation level (a real number). Each layer is represented as a
list of activation levels of the units in that layer. The entire network is a list of
layers. By breaking up layers into separate lists, it is easier to apply the output of
a given unit to aIl the units in the next layer up. It will also be easier to implement
the learning algorithm.

Connection weights can be represented as lists as weIl. Since we will need to
reference aIl the weights that connect to each individual unit to sum up its collec
tive inputs, it will be best to use a nested list structure, where each sublist con
tains all the connection weights between a given unit and the units in the layer
below. The biases can be stored in a separate list or within the weight lists. It
makes things a bit easier if biases are stored with the weights, especially when
retuming new weights and biases. The biases will be the first value in each unit's
weight list and the weights will make up the rest of the list.

We will rely on mapping functions to multiply the outputs of units by their
connection weights and to sum these products. As long as there is a one-to-one
correspondence of units to connection weights, we don' t have to worry about
accessing individual weights by their positions in lists. We just sequence through
elements of lists.

To get a more concrete idea of what the representation looks like and how it
will be used, we'll create an example network. This sampie network has three
input units, four hidden units, and two output units. The numbers in the circ1es
are the biases of the units. The numbers next to the arrows are the connection
weights.

Representation of
units

Representing
connection weights
andbiases

Sampie network

504 Chapter 16: Soft Computing: FuZ1J Logic, Neural Networks, antI Genetic Algorithms

Computing net inputs

0.7 0.4 0.6

Output
layer

Hidden
layer

Input
layer

Inputs

And here is the data representation we can use to model this network:

inputs values:
(0.7 0.4 0.6)

connection weights and biases for hidden units:
«.42 -.25 .17 .30) (-.37 -.20 .15 .37)

(.24 .23 .14 .34) (.69 .28 -.13 -.33»

connection weights and biases for output units:
«-.57 .54 -.77 -.67 .45) (.47 .57 .74 -.63 .49»

The activation levels of the input layer are set to the inputs. Once we have the
activation levels of the input layer, we can compute the outputs that the units in
this layer will send up to the next layer. A threshold function is sometimes used
that does not send an output unless it is greater than some threshold. We will
leave this out and always send the activation level as the output for our neural
network.

To compute the net input to units in subsequent layers, we must combine the
outputs from all the units in the layer below, multiplying each by the connection
weight that joins them. This sum is added to the bias of that unit to get the total
input to the unit. For example, the total input to unit 7 is calculated as follows:

16.3 NeuralNetworks 505

> (+ .69 (apply + (map * '(.7 .4 .6) '(.28 -.13 -.33))))
.636

Notice that both lists supplied to map are the same length and that the activa
tion of unit 1, 0.7, is multiplied by 0.28, the connection weight between unit 1 and
unit 7, and so on for the other units in the input layer.

Let's generalize this to create a function that computes the total input for a
hidden or output unit:

; Return weighted surn of inputs to a single unit plus bias.
(define (total-input inputs weights)

(+ (car weights) (apply + (map * inputs (cdr weights»»)

To compute the activation levels of hidden and output layers, we apply the
limiting sigmoidal function to the total input to the unit. The sigmoidal function
looks like this:

1
output; = -totalInput

1+e '
This can be expressed in Scheme with the following function:
; Apply the lirniting sigrnoidal function that restriets the total
; input to be a value between 0 and 1.
(define (sig total-input)

(/ 1 (+ 1 (expt 2.71828 (- total-input»»

> (sig (total-input '(.7 .4 .6) '(.69 .28 -.13 -.33)))
.654

The following function computes the activation levels for all the nodes within
a layer. The second parameter, layer-weights, represents a list of connection
weights for a given layer in the network. It will be a list like the two shown above
for hidden or output layer connection weights.

; Return list of activations to nodes in a layer.
(define (act-layer inputs layer-weights)

(map (lambda (weights) (sig (total-input inputs weights»)
layer-weights))

Lastly, we need to propagate activation levels up through all levels of the net
work starting with inputs to the network. The inputs are passed directly to the
input units as their activation levels. Further levels are computed using act

layer. A recursive solution works best. Each pass through the recursion com
putes the activation levels of one layer. We'll need two pieces of information: the
weights for all layers of the network and the inputs to the current layer. The
weights, all-weights, is simply a list of the weights for each layer, which, as
shown above, are lists of sublists with weights for each unit. The first item in
all-weights is the weights between the input layer and the next layer of the net
work.

The parameter acts is a list of the activation levels to be propagated to the
next level. The input for each layer (other than the first) is the output of the previ
ous layer (the activation levels of that layer). As the activation level is computed

Computing activation
levels

Computing activation
levels for entire layers

Propagating activation
throughout the
network

506 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, anti Genetic Algorithms

Implementing back
prop

Weight change
formula

Learning rate and
momentum

for each layer, H: is passed on as the input to the next layer in each recursive call.
When the list all-weights is empty, acts contains the activation levels of the
outputunits.
i Return a list of the activation levels in a network beginning with
i the input layer.
(define (propagate all-weights acts)

(if (null? all-weights)
(list acts)
(cons

acts
(propagate

(rest all-weights)
(act-layer acts (first all-weights»»)

Using the weights, biases, and input from the previous picture, we can call
propagate to compute the activation levels for the network:

(define weights '(
«.42 -.25 .17 .30) (-.37 -.20 .15 .37)
(.24 .23 .14 .34) (.69 .28 -.13 -.33»

«-.57 .54 -.77 -.67 .45) (.47 .57 .74 -.63 .49»»

(define input '(.7 .4 .6»

> (propagate weights input)
«.7.4.6) (.621.443.659.654) (.327 .742»

The output from this network is 0.327 and 0.742. The next step is to train the
network to produce different outputs. Suppose we would like the network to
produce 0.4 and 0.9, given the same inputs and initial weights. Through the pro
cess of back propagation (back-prop), we can slowly adjust the weights and
biases to get the desired outputs.

We won't explain the mathematical derivations of the formulas that back
prop uses. If you are interested in the rnath, the first volume of the POP books
(see the reference section) gives a good explanation.

The change in weights of any node in a network is computed using the fol
lowing formula:

weightChange;j = learningRate xerrorSignal; xoutputj
+ momentum x oldWeightChange;j

The subscript ij denotes the weight between unit; and unitj, where unit; is in the
layer above unitj. The learningRate is the speed at which learning takes place. The
larger the value of the learning rate, the greater the weights change. However,
using a learning rate that is too big can cause the weights to bounce around too
much and never converge on a solution. Using 0.5 or 0.25 is a safe starting point
for a learning rate. The momentum term allows the old weight change to playa
role in deterrnining the new weight change. This tends to smooth out oscillations
that sometimes occur as the weights move toward the proper values. This term is
optional, but with it learning speeds up a lot. A good start value for momentum is
0.9. Since the learning rate and momentum terms are constants through the

16.3 Neural Networb 507

back-prop process, we'n make them global variables rather than pass them to a
series of functions.

(define learn-rate 0.5)
(define momentum 0.9)

The error signal represents the difference between the value that the unit
should have to produce the output and the actual value it has. errorSignal; is the
error signal of the unit in the upper layer. outputj is the output of the unit in the
lower layer. The error signal of an output unit is the product of two values. The
first is the difference between the output we want (the target) and the output we
get from propagating the input through the network. The second value is the
derivative of the sigmoidal function with respect to its input, which is

output;(1-output)

The error signal of output unit i is

errorSignal; = <target; -output;)output;(1-output;)

The error signal of a hidden unit is the sum of an the error signals of the units
in the layer above multiplied by their connection weights, an multiplied by the
derivative of the activation (sigmoidal) function. For unit j, the error signal is

n

errorSignalj = outputj(1-output)-r.errorSignal; x weight;j
i=1

The change in a bias is very similar to the change in a weight. It is

bias Change; = learningRate x errorSignal; + momentum x oldBiasChange;

Back propagation begins with the weights connecting the output nodes and
moves down layer by layer, ending at the bottom hidden layer's weights. Each
hidden layer uses the error signal in the layer above in determining the change in
weight. Since we'n need the error signals to compute both the weight change
within a layer and the error signals in the layer below, we'n write a function that
computes the error signals of a layer and returns them in a list. The output layer's
error signals are computed as folIows. targets is a list of the desired outputs
and outputs is a list of the actual outputs from the network.
; Compute error signals for output layer units.
(define (error-sig-output targets outputs)

(map (lambda (target output)
(* (- target output) output (- 1 output»

targets outputs))

One important consideration to make is that the weights are accessed dif
ferently when doing forward propagation through the network versus backward
propagation. In forward propagation when we calculate the total input to a hid
den or output layer, we are looking at the weights that feed into that layer from
below. With back-prop we are examining the weights that go to the layer above.
To make it easier to write the code for back-prop, we should transpose the
weights so they are structured as lists of weights to the above layer. We can leave
out the biases, as they are not used in computing error signals or bias change
values. Looking back at the picture of the network for this example, what we

Error signal

Change in bias

Computing error
signals tor output
layers

Transposing weights

508 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, anti Genetic Algorithms

Computing e"or
signals tor hidden
layers

Performing back
propagation

need is a list that looks like the following:
«(.54 .57) (-.77 .74) (-.67 -.63) (.45 .49»
«-.25 -.20 .23.28) (.17 .15 .14 -.13) (.30 .37 .34 -.33»)

The first sublist is a list of the weights that extend above the units in the
highest hidden unit to the units in the output unit. To form such a list, we can
write a function that transposes the weights and removes the biases. Look at the
current form of the weights and biases: «(.42 -.25.17.30) (-.37 -.20.15.37)
(.24.23.14.34) (.69 .28 -.13 -.33»
«-.57.54 -.77 -.67.45) (.47.57.74 -.63.49)))

If we map Hst across all the weights in each unit of a layer, we will form
new lists of the first elements in each list, the second elements, and so on. Since
the weight sublists are in lists for each layer and the number of these sublists
varies, the easiest way to construct this mapping is by using apply with the list of
the weight sublists. The one trick here is that the function Hst must be inserted
into the list that apply will call map with. Another mapping will perform this
operation for each layer and will remove the biases. Lastly, we want the weights
of the uppermost hidden layer first, so we must reverse the final list we get. The
following function does all of this:
; Transpose the weights for back-prop.
(define (transpose weights)

(reverse
(map (lambda (layer) (cdr (apply map (cons list layer»))

weights»)

Testing this function, we get the following result:
> (transpose weights)
«(.54 .57) (-.77 .74) (-.67 -.63) (.45 .49»
«-.25 -.20 .23 .28) (.17 .15 .14 -.13) (.30 .37 .34 -.33»)

For hidden layers the error signal is a function of the weights feeding out of
the layer, 1ayer-weights, the error signals in the layer above, error-signals,
and the outputs of the units in the layer, outputs.

; Compute error signals for hidden layer units.
(define (error-sig-inner error-signals layer-weights outputs)

(map (lambda (output weights)
(* (apply + (map * error-signals weights»

output (- 1 output»)
outputs layer-weights))

The process of back propagation involves computing the error signal of the
output nodes and then passing those values down through the network to calcu
late the error signals in the lower layers. As the error signals are calculated, the
change in weights and biases can be determined. The function back-prop calls
error-sig-output to determine the error signals of the output layer and passes
those values to des cent, which moves down through the network calculating
error signals and changes in connection weights and biases. The arguments to
back-prop are the desired outputs, targets, the actual outputs from propagate,

16.3 NeuralNetworks 509

the transposed weights, trans -weights, and the prior weight and bias changes,
old-changes. To facilitate updating the weights and biases, back-prop should
return the weight and bias changes in the form of the original weights and biases
(i.e., not as a transposed list).
; Perform back propagation on a network and returns a list of weight
; and bias changes in the form of the original weights and biases.
{define (back-prop target outputs trans-weights old-changes)

{if (null? outputs)
'no-outputs
{reverse

{descent {error-sig-output target (first outputs»
(rest outputs) trans-weights old-changes»))

The function descent recurses through the network a layer at a time, initially
being called with the topmost hidden layer. It calls calc -weights to compute the
changes in weights connecting the current layer to the one below it. Then it
recurses with the error signals of the next layer and continues to compute
weights for the layers below. des cent returns a list of the connection weight and
bias changes.
; Recurse through a network to compute error signals and return
; connection weight and bias changes.
{define (descent error-signals outputs trans-weights old-changes)

(if (null? outputs)
'()
(cons (calc-weights error-signals (first outputs)

(first old-changes»
(descent (error-sig-inner error-signals

(first trans-weights) (first outputs»
(rest outputs) (rest trans-weights)
(rest old-changes»»)

Calculating the change in connection weights and biases is a straightforward
process, given the error signals and the inputs to the units in a layer. We'll use a
nested loop where the outer loop handles each node in the layer and the inner
loop calculates a weight change for each input going into the node.

Compute change in connection weights and biases for all units in
; one layer. inputs are the activation levels of the units in the
; layer below.
(define (calc-weights error-signals inputs old-change)

(map (lambda (error change)
; insert new bias change
(cons {+ (* learn-rate error) (* momentum (car change»)

(map (lambda (input old-weight-change)
{+ (* learn-rate error input)

(* momentum old-weight-change»
inputs (cdr change»))

error-signals old-change))

Back propagation
through the network

Weight and bias
changes tor a single
layer

510 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms

Computing new
weights and biases

Proper learning

Test if finished

Implementing a
training function

Once the change in weights and biases is determined, we must calculate new
connection weights and biases. This is fairly straightforward with a nested loop
that adds the appropriate change values to the current weights and biases.
; Add the new weight and bias ehanges to the eurrent weights and
; biases and returns the new weights and biases.
(define (update old-weights weight-ehange)

(map (lambda (weight-layer ehange-layer)
(map (lambda (weight-unit ehange-unit)

(map + weight-unit ehange-unit)
weight-layer ehange-layer))

old-weights weight-ehange))

That condudes the process of adjusting weights and biases. But baek - prop

only does a single pass that makes a very small adjustment. If the system makes
large adjustments, it can easily overshoot the goal or worse yet, it may undo (or
forget) information that it leamed earlier because the weights and biases were
adjusted so dramatically. The key to learning in a neural network is to make
small adjustments and iterate through back propagation many times until the
output of the network is within some tolerance of the targets.

To determine when an output has been leamed, we'll call avg-square-test,
which takes the actual outputs and the desired targets and returns true if they are
dose enough. If the average of the squares of the differences of the actual and
desired outputs is less than .05 squared (.0025), it returns true.
; Test if outputs are elose enough to target values.
(define (avg-square-test outputs targets)

« (I (apply + (map (lambda (outeome desired)
(expt (- outeome desired) 2))

outputs targets»
(length outputs»

.0025))

We will create a function that learns to produce outputs from inputs. This
function takes a list of input patterns, input - set, and a list of corresponding out
put patterns, target-set, and trains the network to leam all of them. This input
and output set is called a training set. Once the network has leamed the training
set, it returns the final connection weights and biases and the number of itera
tions through the training set, epochs, it took to leam. To observe the learning pro
cess, we will display the inputs and corresponding outputs from the network and
indicate which inputs have been leamed. A parameter frequeney controls how
often this information is displayed.

Our training function will need seven parameters altogether: the input set; the
target set; the initial weights and biases; the prior weight and bias changes;
learn - fune, a function that controls the order in which back-prop is applied to
the input set and when the weights are updated; frequeney, how often output
values are displayed; and the epoch counter. We'll use a helper function that only
takes five of these values and sets the old weights and bias changes and the
current epoch to zero.

16.3 NeuralNetworks 511

To create a set of weight and bias changes equal to zero, we'H use the function
net - change that returns a new network with each unit adjusted according to the
function passed as an argument.
; Return new network with units changed according to func.
(define (net-change func weights)

(map (lambda (layer)
(map (lambda (unit) (func unit)) layer))

weights))

Creating the function net - change is an example of programming abstraction.
We could have created a function that only returns a network with weights and
biases equal to zero. But with net - change we can do much more than this. For
example, we can caH net - change with car to get a list of biases in a network or
with cdr to get a list of weights alone.

Here is the code to teach a network a training set. Pay dose attention to how
learn-func is used. It is passed the entire training set and caHs back-prop to get
weight and bias changes. Different variations on learn - func will vary the order
in which the training set is processed and when the weights and biases are
updated. In addition to retuming the new weight and bias values, learn - func
must return the most recent weight and bias changes.
; Helper function for trainer.
(define (train input-set target-set weights learn-func frequency)

(trainer input-set target-set weights
(net-change (lambda (unit)

(map (lambda (weight) 0) unit)) weights)
learn-func frequency 0))

Given training set of inputs and targets, initial weights and
biases, old weight and bias changes, learning function, display
frequency, and epoch counter - return the number of epochs to
train and the new connection weights and biases after learning.
Print outputs each frequency epochs.

(define (trainer input-set target-set weights old-changes
learn-func frequency count)

(let* «act-set
(map (lambda (input)

(reverse (propagate weights input»)
input-set))

(output-set (map first act-set»)
(if (zero? (remainder count frequency»

(print-outputs count input-set output-set target-set»
(if (every avg-square-test output-set target-set)

(list count weights)
(let* «results (learn-func target-set act-set weights

old-changes»
(weights (first results»
(changes (second results»)

(trainer input-set target-set weights changes
learn-func frequency (+ count 1»»))

Initializing weight and
bias changes

Programming
abstraction

512 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networlcs, and Genetic Algorithms

Printing outputs

Different leaming
functions

The function below prints the current outputs:
Print the current output va1ue for each input and indicate if
that input has been 1earned.

(define (print-outputs count input-set output-set target-set)
(display count)
(newline)
(for-each (lambda (input output target)

(display input)
(display" -> ")
(display output)
(display" 1earned: ")
(display (avg-square-test output target»
(newline))

input-set output-set target-set))

The following functions can be passed to trainer as learning functions. They
vary in the order they call back-prop with the inputs in the training set and in
the time the weights and biases are updated. adjust-during processes inputs in
the order they occur in the training set and updates the weight and bias changes
after each call to back-prop.3 adjust-after processes inputs in the order they
occur in the training set and accumulates the weight and bias changes and does
not adjust the weights or biases until all inputs have gone through back-prop
with the original weights and biases.
; Pass through the target set and actua1 outputs using back-prop
; and adjust the weights after each ca11 to back-prop.
(define (adjust-during target-set output-set weights old-changes)

(if (null? target-set)
(list weights old-changes)
(let «changes (back-prop (first target-set)

(first output-set) (transpose weights)
(reverse old-changes»»

(adjust-during (rest target-set) (rest output-set)
(update weights changes) changes»))

; Pass through the target set and actua1 outputs using back-prop
; and adjust the weights after the entire epoch is comp1ete.
(define (adjust-after target-set output-set weights old-changes)

(after target-set output-set (transpose weights) weights
old-changes»

3. Technically, there is a slight bug in trainer when used with adjust-during: propagate is called
with the original weights instead of the updated weights. I fixed this and found that with the
exclusive or problem, it takes a few more epochs to reach an answer with this "fixed" code. Since
the difference is so slight and the code is less efficient because propagate is called extra times, I
opted to leave the code with this slight bug.

16.3 Neural Networks 513

(define (after target-set output-set trans-weights new old-ehanges)
(if (null? target-set)

(list new old-ehanges)
(let «ehanges (baek-prop (first target-set)

(first output-set) trans-weights
(reverse old-ehanges»»

(after (rest target-set) (rest output-set) trans-weights
(update ehanges new) ehanges»))

Rather than assign initial weights and biases, most networks begin with ran
domly chosen values. Here are functions to create random weights and biases,
given the configuration of the network (the number of nodes in each layer):

Given a deseription of a network - a list of numbers indieating
; how many nodes are in eaeh layer beginning with the input layer,
; return a list of random initial eonneetion weights and biases.
(define (random-net net-dese)

(if (or (null? net-dese) (null? (cdr net-dese»)
'()
(cons (make-layer-weights (car net-dese) (second net-dese»

(random-net (cdr net-dese»»)

; Return random weights and biases for a layer in a network.
(define (make-layer-weights nodes-below nodes-above)

(make-list nodes-above
(lambda (n) (bias-&-weights nodes-below) »)

; Return random bias and weights for anode in a network.
; The values are in the range -1 to 1.
(define (bias-&-weights num-nodes)

(make-list (+ num-nodes 1)
(lambda (n) (- (/ (random 1000) 500) 1) »)

; Make a list of num-items elements with values based on fune.
(define (make-list num-items fune)

(do «num num-items (- num 1»
(new-list '(l (cons (fune num) new-list»)

«<= num 0)
new-list»)

Now we can demonstrate learning in a neural network. we'n train the net
work we defined earlier to learn the outputs 0.4 and 0.9. Here are the current
weights and biases:

> weights
«(.42 -.25 .17 .30) (-.37 -.20 .15 .37)

(.24 .23 .14 .34) (.69 .28 -.13 -.33»
«-.57 .54 -.77 -.67 .45) (.47 .57 .74 -.63 .49»)

Let's save the activation levels after propagating the inputs 0.7, 0.4, and 0.6
through the network.

(define out (propagate weights '(.7 .4 .6»)

Creating networks
with randorn weight
and bias values

Leaming trials

514 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, and Genetic Algorithms

Training cases

Tuming momentum
off

These activations are
) out
«.7 .4 .6) (.621 .443 .659 .654) (.327 .742»

Now we can call back-prop to get the weight and bias changes after one
epoch. The activation levels from propagate must be reversed for back-prop
and the weights must be transposed. The prior weight and bias changes must be
initialized to zero, which is what the call to net - change does. This list must be
reversed as weIl.

) (back-prop '(.4 .9) (reverse out) (transpose weights)
(reverse (net-change

(lambda (unit)
(map (lambda (weight) 0) unit)) weights)))

«(.003054 .002138 .001222 .001833)
(.001226 .000858 .000490 .000736)
(-.003353 -.002347 -.001341 -.002012)
(.002498 .001749 .000999 .001499»

«.008073 .005012 .003578 .005324 .005279)
(.015114 .009383 .006699 .009967 .009882»)

The weight and bias changes are very small. Now let's call train to iterate
through many epochs until the network has leamed. We must list the input and
target because train takes input and target sets to leam multiple patterns. The
last two arguments specify the method with which the weights and biases should
be adjusted and the frequency with which epochs should be displayed. We'Il
adjust the weights after each pattern and print out the outputs after each epoch.
) (train '((.7 . 4 . 6)) '((.4 . 9)) weights adjust-during 1)
0
(.7 .4 .6) -) (.327 .742) learned: #f
1
(.7 .4 .6) -) (.331 .750) learned: #f
2
(.7 .4 .6) -) (.340 .763) learned: #f
3
(.7 .4 .6) -) (.352 .780) learned: #f
4
(.7 .4 .6) -) (.367 .800) learned: #f
5
(.7 .4 .6) -) (.383 .819) learned: #f
6
(.7 .4 .6) -) (.399 .838) learned: #t
(6 «(.466 -.218 .188 .327) (-.351 -.187 .158 .382)

(.193 .197 .121 .312) (.728 .306 -.115 -.307»
«-.454 .612 -.718 -.594 .526) (.690 .707 .838 -.486 .635»»

The targets are leamed after six epochs. It's easy to see how the output values
slowly move toward the targets. Notice that the changes increase in magnitude
from the initial epoch's changes. This is the effect of the momentum term. To see
how much longer it takes to leam without the momentum term, let's turn it off.

16.3 Neural Networks 515

We will reduce the amount of output by using a larger frequency, 100.
(define momentum 0)

) (train '((.7 .4 .6)) '((.4 .9)) weights adjust-during 100)

o
(.7 .4 .6) -) (.327 .742) 1earned: #f
(23 «(.462 -.220 .187 .325) (-.349 -.185 .158 .382)

(.200 .202 .124 .316) (.725 .305 -.116 -.309»
«-.472 .602 -.726 -.606 .515) (.671 .697 .830 -.499 .623»»

With no momentum term the learning slowed down by about a factor of four.
Let's try some larger examples that require learning multiple patterns. We'll

start with exclusive or, XOR. First let's reset the momentum term and create a
random network with two input nodes, two hidden nodes, and one output.

(define momentum 0.9)
(define w (random-net '(2 2 1»)

) w
«(-.536 -.712 -.126) (-.352 -.734 .086» «.604 -.994 -.796»)

The input and target sets consist of Os and ls corresponding to logical false
and true. Since 0 and 1 are the extreme values of a node's activation, learning
these values is time-consuming. We can speed things up by using 0.1 as 0 and 0.9
as 1.
) (train '((0.1 0.1) (0.1 0.9)

, ((0.1) (0.9) (0.9) (0.1))

0
(.1 .1) -) (.485) 1earned: #f
(.1 .9) -) (.487) 1earned: #f
(.9 .1) -) (.540) 1earned: #f
(.9 .9) -) (.541) 1earned: #f
100
(.1 .1) -) (.275) 1earned: #f
(.1 .9) -) (.577) 1earned: #f
(.9 .1) -) (.578) 1earned: #f
(.9 .9) -) (.621) 1earned: #f
200
(.1 .1) -) (.181) 1earned: #f
(.1 .9) -) (.713) 1earned: #f
(.9 .1) -) (.713) 1earned: #f
(.9 .9) -) (.408) 1earned: #f

(0.9 0.1) (0.9 0.9))
w adjust-during 100)

(266 «(2.715 -6.175 -6.159) (4.644 -3.452 -3.451»
«-2.853 -6.735 6.460»»

After 266 epochs XOR is learned. Let's test the other learning method, which
adjusts the weights and biases after each epoch:

) (train '((0.1 0.1) (0.1 0.9) (0.90.1) (0.90.9))
'((0.1) (0.9) (0.9) (0.1)) w adjust-after 100)

o
(.1 .1) -) (.485) 1earned: #f
(.1 .9) -) (.487) 1earned: #f

XOR trials

516 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, and Genetic Algorithms

Counting-ones trials

(.9 .1) -) (.540) 1earned: #f
(.9 .9) -) (.541) 1earned: #f
100
(.1 .1) -) (.277) 1earned: #f
(.1 .9) -) (.578) 1earned: #f
(.9 .1) -) (.578) 1earned: #f
(.9 .9) -) (.618) 1earned: #f
200
(.1 .1) -) (.156) 1earned: #f
(.1 .9) -) (.806) 1earned: #f
(.9 .1) -) (.807) 1earned: #f
(.9 .9) -) (.244) 1earned: #f
(244 «(2.652 -6.015 -5.985) (4.692 -3.473 -3.470»

«-2.856 -6.736 6.442»»

In this example adjusting the weights and biases after each epoch produces
faster learning. This is not always the case.

Notice that the final weights and biases are about the same with both learning
methods. However, this may not always be true. There are many bias and weight
configurations that will produce a working XOR solution.

Here is a different problem-count-ones. The input set consists of permuta
tions of Os and ls (represented as 0.1 and 0.9). The targets are counts (in binary)
of the number of ls in the corresponding input. The numbers 0 through 3 in
binary are 00, 01, 10, and 11. This learning task, as weil as learning XOR, is
difficult because similar inputs produce dissimilar outputs.
(define input-set '«0.1 0.1 0.1) (0.1 0.1 0.9) (0.1 0.9 0.1)

(0.1 0.9 0.9) (0.9 0.1 0.1) (0.9 0.1 0.9) (0.9 0.9 0.1)
(0.9 0.9 0.9»)

(define target-set ' « 0.1 0.1) (0.1 0.9) (0.1 0.9) (0.9 0.1)
(0.1 0.9) (0.9 0.1) (0.9 0.1) (0.9 0.9»)

) (train input-set target-set (random-net '(3 4 2))
adjust-during 200)

0
(.1 .1 .1) -) (.445 .706) learned: #f
(.1 .1 .9) -) (.425 .666) learned: #f
(.1 .9 .1) -) (.431 .673) learned: #f
(.1 .9 .9) -) (.411 .637) learned: #f
(.9 .1 .1) -) (.443 .724) learned: #f
(.9 .1 .9) -) (.419 .682) learned: #f
(.9 .9 .1) -) (.430 .691) learned: #f
(.9 .9 .9) -) (.409 .652) learned: #f
200
(.1 .1 .1) -) (.005 .286) learned: #f
(.1 .1 .9) -) (.112 .993) learned: #f
(.1 .9 .1) -) (.109 .992) learned: #f
(.1 .9 .9) -) (.931 .352) learned: #f
(.9 .1 .1) -) (.108 .992) learned: #f
(.9 .1 .9) -) (.929 .344) learned: #f
(.9 .9 .1) -) (.930 .337) learned: #f

(.9 .9
400
(.1 .1
(.1 .1
(.1 .9
(.1 .9
(.9 .1
(.9 .1
(.9 .9
(.9 .9
600

.9)

.1)

.9)

.1)

.9)

.1)

.9)

.1)

.9)

-) (.980

-) (.004
-) (.109
-) (.100
-) (.890
-) (.099
-) (.891
-) (.899
-) (.951

.855) 1earned: #f

.099) 1earned: #f

.904) 1earned: #t

.899) 1earned: #t

.101) 1earned: #t

.899) 1earned: #t

.101) 1earned: #t

.101) 1earned: #t

.896) 1earned: #t

(.1 .1 .1) -) (.009 .100) 1earned: #f
(.1 .1 .9) -) (.107 .904) 1earned: #t
(.1 .9 .1) -) (.103 .900) 1earned: #t
(.1 .9 .9) -) (.893 .100) 1earned: #t
(.9 .1 .1) -) (.102 .899) 1earned: #t
(.9 .1 .9) -) (.893 .100) 1earned: #t
(.9 .9 .1) -) (.899 .100) 1earned: #t
(.9 .9 .9) -) (.919 .896) 1earned: #t

16.3 Neural Networlcs

(797 «(11.377 -5.812 -5.799 -5.595) (11.131 -7.700 -7.761 -8.281)
(1.441 -1.207 -1.287 -2.179) (1.767 -5.712 -5.597 -4.592»

«2.210 -.120 -4.901 .760 -2.274)
(2.441 -6.924 8.768 -2.890 -7.994»»

In other learning trials of count-ones, I found that the time to learn count-ones
varied greatly depending on the initial weights and biases. The bottleneck was
always in learning the first output of the first pattern. As in this example, the
value gets very small and then slowly grows. It's painful to watch but it increases
by a slightly larger amount each time.

16.3.5 Exercises
16.7 Compare the effects of adjusting the weights after each epoch versus after

each pattern in count-ones. Perform different trials and have something to
read or do while you wait for the output. Back-prop is very compute
intensive and slow. Which method gives a better learning rate?

16.8 Try improving the speed of learning in the XOR or count-ones problems by
changing the momentum and learning rates. At some point you may see
big oscillations in the output values when the learning goes too fast.

16.9 Write a function that can be used as an argument to train that sequences
through the inputs in a random order calling back-prop and adjusting
weights after each pattern. How does this function compare to adj ust
during and adjust-after in learning XOR or count-ones?

16.10 When more hidden units are added to a hidden layer, learning rates often
increase. Test this with XOR and count-ones.

517

518 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Aigorithms

Populations,
chromosomes,
genotypes, and
phenotypes

Evolutionary process

Fitness and selection

16.11 Create some interesting input sets and targets and test if they can be
learned. Can you create patterns that cannot be learned?

16.12 Modify the learning function and trainer so that they incorporate the fol
lowing two changes: adjust the weights before propagating the next input
(this fixes the bug mentioned earlier in the text), and apply back-prop only
to outputs that need to be adjusted. Here is an outline of this new
approach:

• Propagate the input value to produce an output.
• Compare this output with the target and if it is within the tolerance,

continue with the next input in the input set.
• If the output is not dose enough to the target, perform back-prop and

adjust the weights and biases, then continue with the next input.
• Repeat these steps once all inputs in the pattern have been tested, stop

ping once all inputs are within the tolerance.

Compare this learning approach with the original trainer and adj ust
during.

16.4 Genetic Aigorithms
Genetic algorithms are models of learning based on evolutionary ideas from biol
ogy. These systems represent information on a collection of individual members
that make up a population. An individual in a genetic system (or evolutionary sys
tem) is maintained as an artificial chromosome. A chromosome is effectively a list
of values that encodes information about a particular individual in the popula
tion. For example, a chromosome can represent a path to take to reach a goal, as
in the traveling salesman problem or the missionaries and cannibals problem. It
may represent the membership grades of a fuzzy set or the weights in a neural
network. There are many possibilities. It is important to understand that the
chromosome is a coded representation of the actual information (e.g., path or
weights) in which we are interested. This actual information is called the pheno
type and the encoded chromosome represents the genotype. These terms come
from biology.

A genetic algorithm begins with an initial (usually randomly chosen) popula
tion. This population goes through a process of evolution in which members of
the population are chosen according to some fitness test and selection process and
changed by either crosslinking or mutation. The most fit of these offspring and
their parents become the next generation of the system. This process continues
until some measure of fitness has been reached-some members of the popula
tion evolve to perform some task at a certain level.

The fitness test or fitness measurement is a function that is applied to a chro
mosome to give it a numerical value of how good it is-its fitness. This depends
on the particular problem that the genetic algorithm is trying to solve. Once the
fitness of chromosomes is determined, the best chromosomes can be chosen for
crosslinking or to be passed directly to the next generation. This is the selection

16.4 Genetic Algorithms 519

process. Selection may based solelyon fitness, hard selection, or may be probabil
istically determined (based on fitness and random luck>-soft selection.

Crosslinking is done by taking two individuals from the population (also
called the gene pool) and choosing a random split point between two genes in their
chromosomes. A gene is apart of a chromosome. Two new offspring will be pro
duced, each having one piece of one parent's original chromosome. The offspring
may be better or worse than their parents. The following diagram shows how
crosslinking works. The two parents on the left are crosslinked to produce the
two new offspring on the right. The dashed line denotes the crossover point in
each parent.

Mutation happens by simply changing a gene of a chromosome to a new ran
domly chosen value. The value of a gene is called an allele. This is a smaller
change to a chromosome than crosslinking but can have a large impact in that it
inserts a random value that may or may not be beneficial. The following diagram
illustrates mutation:

y 1--------_.

A x B B

Let's take a c10ser look at the steps taken in a generation of a genetic algo
rithm. The first step is to evaluate the members of the population according to
the fitness measurement that gives each member a ranking (fitness) in the popu
lation. Then members from the population are selected to be parents to produce a
new generation. An individual may be used only once as a parent or may be
replaced in the population such that it can be a parent more than once in a given
generation.

CrossIinking

Mutation

Steps taken in one
generation

520 Chapter 16: Soft Computing: Fuz:l,J Logic, Neural Networks, and Genetic Algorithms

Stopping the process

Encoding problems
into chromosomes

Once a collection of parents is created, they are randomly paired up and then
"bred" to produce the new generation. Crosslinking is performed to combine one
part of one parent's chromosome with another part of another parent's chromo
some. Each pair of parents produces a pair of children.

Some parents may pass directly to the next generation. This is called asexual
reproduction. The number of chromosomes that pass directly to the next genera
tion and the number of chromosomes that are crosslinked are both factors that
can be adjusted in a genetic algorithm system.

Mutation may be performed in addition to crosslinking and asexual repro
duction. Mutation involves the simple switching of a gene from its current state
to another possible state. Only one individual is needed in mutation, unlike
crosslinking which requires two. Mutation is usually performed on a smaller part
of the population than crosslinking and asexual reproduction.

Crosslinking, asexual reproduction, and mutation form a collection of new
chromosomes. These may be used directly as the next generation, or may be com
pared with the parent generation and the best members continue on as the next
generation. This process of selecting parents, generating new offspring via
crosslinking and mutation, and choosing the new generation continues until an
offspring is produced that has a large enough fitness to satisfy some stopping cri
terion. For some problems this is a dear measure and in some problems it isn't.
For example, in the missionaries and cannibals problem a chromosome that
solves the problem would constitute a stopping criterion. For a problem like the
traveling salesman problem in which the cost of the best path is not known, we
either have to pick a reasonable guess or stop after a certain number of genera
tions and return the chromosome with the best fit and dedare that the best path.
Another stopping point occurs when the population has converged, when the vast
majority of each gene in each chromosome contains the same value (allele). At
this point the population does not change much and may have settled to some
maximal value.

16.4.1 Building a genetic algorithm in Scheme
Before we begin to create the code for a genetic algorithm, let's look into how a
problem can be encoded into a chromosome representation. For example, if we
want to train a neural network using a genetic algorithm instead of back
propagation, our chromosome would be an encoding of the network weights and
biases. We cannot directly use the weight structure as a chromosome because a
chromosome should be a flat structure, not a nested list. If we flatten the weight
and bias list, we form a list of numbers that can be used as a chromosome which
can be crosslinked and mutated. Reconstructing the proper list structure reforms
the weights and biases so inputs can be propagated to test the fitness compared
to the target.

A chromosome does not have to consist of numbers. Characters and symbols
can be used. Regardless of which type of gene is used, the legal values for the
gene must be specified. This is needed when the initial population is created and
when mutation occurs. If this is not done it may be impossible to evaluate the

16.4 Genetic Algorithms 521

fitness of the offspring.
There are other problems that may arise when evaluating offspring. If our

chromosome is a path of cities to visit, crosslinking may produce offspring that
indude multiple copies of the same city and miss other cities. In a problem like
this where genes cannot be repeated in the chromosome, special measures must
be taken to fix or ignore such offspring.

Another option to avoid repeating genes is to use different reproduction
methods instead of crosslinking. Reordering and inversion are two such reproduc
tive methods and they require only a single parent. Reordering, as the name sug
gests, reorders the genes in a chromosome. Inversion reverses the genes in a sec
tion of a chromosome. Both of these methods change a chromosome without
adding or deleting any of the existing genes and are good for problems in which
the exact genes must remain in the chromosomes.

Let's move on to the code. The first step is to create an initial population. We
can use make-list (defined in the neural network section) which takes a number
of elements and a function of one argument that defines what the elements
should be. Using a function instead of a value to define the elements of the list
makes make-list a ver:y general function that can be used in many contexts. The
function make-list is a good example of procedural abstraction facilitating code
reuse. One call to make-list will produce all the-chromosomes, and another
nested call will produce the genes in a chromosome. The argument crea te is a
function that produces an allele.

; Randomly create a population of pop-size individuals.
(define (random-pop pop-size chromosome-length create) .

(make-list pop-size
(1ambda (n) (make-list chromosome-length create) »

> (random-pop 4 5 (lambda () (random 10)))
«4 3 3 9 7) (9 4 5 3 7) (2 7 2 1 8) (7 3 607»

Our random population can be passed to a function that simulates a genera
tion in our genetic system. In calculating each generation we must carry out the
following actions:

• sort the population according to the fitness measure
• test if we have reached our exit criterion with the best individual
• if so, return the generation number and the individual
• otherwise, select the parents to produce the next generation
• perform crosslinking on the parents
• perform mutation according to the mutation probability rn-prob
• select the best members from this new generation and the prior generation

and pass those along as the next generation

Reordering and
inversion

Creating an initial
population

Actions (or one
generation

522 Chapter 16: Soft Computing: Fuuy Logic, Neural Networks, and Genetic Algorithms

Sorting the population

Selecting parents

; Main function for performing genetic algorithms.
(define (generation sorted-pop fitness done? select rn-prob create

count)
(display sorted-pop)
(newline)
(if (done? (first sorted-pop) count)

(list count (first sorted-pop»
(let* «parents (select sorted-pop»

(children (mutate (crosslink parents) rn-prob create»
(new-pop (subseq (sort fitness

(append sorted-pop children»
o (lenqth sorted-pop»»

(generation new-pop fitness done? select rn-prob create
(+ count 1»»)

A helper function is a good idea to save the user the bother of passing in the
initial counter and sorting the initial random population.
; Helper function for generation - sorts population.
(define (gen-algo population fitness done? select rn-prob create)

(generation (sort fitness population) fitness done? select rn-prob
create 0))

Now let's write the additional functions we need. To sort the population we
can use the insertion sort function from Chapter 8, which is repeated here:
; Perform insertion sort on a-list according to compare-func.
(define (sort compare-func a-list)

(if (null? a-list)
'()
(insert

(first a-list)
(sort compare-func (rest a-list»
compare-func»)

Insert element into sorted-list using compare-func.
(define (insert element sorted-list compare-func)

(cond «null? sorted-list)
(list element»

«compare-func element (first sorted-list»
(cons element sorted-list»

(else
(cons (first sorted-list)

(insert element (rest sorted-list) compare-func»»)

The selection function will use two global variables: cross%, the percentage of
the population that should be crosslinked, and best%, the percentage of the
parents that come from the best of the population ordered by fitness (the
remainder are chosen randomly from the rest of the population). From these per
centages we can calculate the exact number of parents and the number of parents
that come from the best of the sorted population. In making these calculations we
should round off the results instead of truncating them. Scheme has a buHt-in

16.4 Genetic Algorithms 523

function round that can be used for this purpose.
; Select parents from the sorted population.
(define (select-parents sorted-pop)

(1et* «num-parents (round (* (1ength sorted-pop) cross%»)
(num-best (round (* num-parents best%»»

(append (subseq sorted-pop 0 num-best)
(choose-from (subseq sorted-pop num-best)

(- num-parents num-best»»)

The function choose-from takes a population and a number and randomly
picks that many individuals from the population. It does not pick the same indi
vidual more than once. To assure this it recurses with the population of all indivi
duals except the one just selected.
; Choose num individuals randomly from population.
(define (choose-from pop-list num)

(if (= 0 num)
, ()
(1et «elt-pos (random (1ength pop-list»»

(cons (1ist-ref pop-list elt-pos)
(choose-from (append (subseq pop-list 0 elt-pos)

(subseq pop-list (+ elt-pos 1»)
(- num 1»»))

Let' s test these functions choosing a crosslink percentage of 60% and taking
75% of the parents for crosslinking from the best (most fit) individuals and the
remainder from the rest of the population.
(define cross% 0.6)
(define best% 0.75)

; crosslink 60% of the population
; 75% of the parents are the best individuals

> (select-parents '((4 5) (2 2) (2 6) (3 0) (3 9) (2 3)))
«4 5) (2 2) (2 6) (3 9»

Sixty percent of the population (four individuals) are selected and 75% (three)
of these are from the head of the population list. The fourth individual is ran
domly chosen from the remaining three individuals in the population list, either
(3 0), (3 9),Or (2 3).

After selecting a set of parents, we must pair and crosslink them. The pairs
should be randomly chosen. We can either choose individuals from the popula
tion one by one and pair them, or rearrange the entire population and then take
pairs in order from this shuffled population. Which approach do you think is
easier?

In the first approach, choose-from can be used to get one or two random
individuals, but then we'll have to write a "remove one instance" function that
removes only one item from the population (there may be duplicates). This
sounds easier than shuffling the entire population. However, we can shuffle the
population with a single call to choose-from using the population size as the
number of items to choose. Sometimes the functions we create can have surpris
ing extra benefits. Finally, we must create another function crosspair that forms
pairs and crosslinks them.

Implementing
crosslinking

524 Chapter 16: Soft Computing: FuZ1J Logic, Neural Networks, antI Genetic Algorithms

Implementing
mutation

; Reorder population then call crosspair to perform crosslinking.
(define (crosslink population)

(crosspair (choose-from population (length population»))

; Sequence through pop applying crossover to successive pairs.
(define (crosspair pop)

(cond «null? pop) '(»
«null? (cdr pop» pop)
(else (append (crossover (first pop) (second pop»

(crosspair (cddr pop»»))

The crossover point is randomly chosen. We can randomly pick a position in
the chromosome and then use subseq to split the chromosomes around the
crossover point.
; Generate two new offspring by crosslinking two chromosomes.
(define (crossover chromosome1 chromosome2)

(let «cross-pos (random (length chromosomei»»
(list

(append (subseq chromosomel 0 cross-pos)
(subseq chromosome2 cross-pos»

(append (subseq chromosome2 0 cross-pOS)
(subseq chromosome1 cross-pos»»

Trying out these new functions, we get the following results:
> (crosslink '(ra b c) (d e f) (1 2 3) (4 5 6)))
«4 b c) (a 5 6) (1 2 3) (d e f»

The first pair of genes results from crosslinking (a b c) and (4 5 6). The
second pair is from crosslinking (d e f) and (1 2 3). It looks like a crossover
did not occur in the second pair, but it did; however, the position was 0, so the
crosslinking combines an empty list with the entire second parent. We should fix
this by restricting the crossover point to be between 1 and the length of the list
minus 1 inclusive. Here is the new code and another trial run:
; Generate two new
(define (crossover

(let «cross-pos
(list

offspring by crosslinking two chromosomes.
chromosomel chromosome2)

(append

(append

(+ 1 (random (- (length chromosomei) 1»»)

(subseq
(subseq
(subseq
(subseq

chromosomel 0 cross-pOS)
chromosome2 cross-pos»
chromosome2 0 cross-pos)
chromosome1 cross-pos»»

> (crosslink '(ra b c) (d e f) (1 2 3) (4 5 6)))
«1 e f) (d 2 3) (a b 6) (4 5 c»

Try some additional examples to convince yourself that this code actually works.
Mutation involves sequencing through all the genes in the population and

randomly deciding if they should change according to the mutation probability.

16.4 Genetie Algorithms 525

; Mutate random genes in population according to probability.
; Use create to produce a new allele.
(define (mutate population probability create)

(map (lambda (individual)
(map (lambda (gene)

(if « (random 100) (* probability 100»
(create)
gene))

individual))
population))

Lefs try a sampIe call with a very high mutation rate of 50%.
) (mutate '((4 5) (2 2) (2 6) (3 0) (3 9) (2 3)) 0.50

(lambda () (random 10)))
«4 8) (2 2) (3 1) (9 0) (0 3) (2 3»

Now we are ready to try a sampIe problem. The task is to find a chromosome
with numbers that add up to thirty exactly. Our population size is four and our
alleles are numbers between zero and nine. The function to determine if we are
done is easy to create.

; Test if genes in individual sum to 30.
(define (thirty? individual generation)

(= (app1y + individual) 30))

The fitness function should compare the absolute values of the differences
between the actual sum in the chromosome and thirty. This way, going over
thirty is treated the same as being under thirty.

; Fitness comparison between chromosomes cl and c2.
(define (fit cl c2)

«= (abs (- (app1y + cl) 30»
(abs (- (app1y + c2) 30»)

Lefs try our genetic algorithm out using a four-member population with
chromosomes that are four genes long. We'll use 1 % as the mutation rate.
) (gen-algo (random-pop 4 4 (lambda () (random 10))) fit thirty?

select-parents 0.01 (lambda () (random 10)))
((5 5 9 9) (5 1 4 8) (1 6 3 3) (0 1 1 5»
((5 5 9 9) (5 1 9 9) (5 5 4 8) (5 1 4 8))
((5 7 9 9) (5 5 9 9) (5 1 9 9) (5 1 9 9»
(2 (5 7 9 9»

Given the values of cross% and best%, the first two chromosomes will be
crosslinked each time. In the first generation (5 5 9 9) and (5 1 4 8) are
crosslinked and (5 1 9 9) and (5 5 4 8) are produced. In the next generation
(5 5 9 9) and (5 1 9 9) are crosslinked producing (5 5 9 9) and (5 1 9 9).

Notice that regardless of the crosspoint, the children will be clones of the parents.
However, there was a visible mutation and (5 5 9 9) became (5 7 9 9), which
totals thirty. This was very lucky. In twelve trials the average time to complete
was two-hundred generations.

SampIe problem:
finding a chromosome
that totals thirty

Fitness function

526 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms

Gene and population
convergence

In the next example we weren't as lucky as we were in the first trial:

> (gen-algo (random-pop 4 4 (lambda () (random 10))) fit thirty?
select-parents 0.01 (lambda () (random 10)))

«8 6 9 6) (9 7 3 6) (5 9 5 2) (2 4 0 2»

«8 6 9 6) (9 7 9 6) (9 7 3 6) (8 6 3 6»
«8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6»
«8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6»
«8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6»
«8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6»
«8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6»
«8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6»
«8 6 9 6) (9 7 9 6) (9 7 9 6) (8 6 9 6»
«8 7 9 6) (9 6 9 6) (8 6 9 6) (9 7 9 6»
(9 (8 7 9 6»

This trial is a good example of gene convergence. After one generation the last
gene in the entire population has the same allele, six. When 95% of the popula
tion has the same gene, that gene has converged. After two generations the third
and fourth genes have converged. In many of the other trials Iran the entire
population converged-all the genes had converged. Crosslinking cannot change
the values of these genes, only mutation can.

In the ninth generation (B 6 9 6) and (9 7 9 6) crosslink between the first
two genes, producing (8 7 9 6) and (9 6 9 6) which both add to thirty. This
trial wasn't too bad. One trial took 552 generations to get the answer.

There are a couple problems lurking here. One is that we have no way to safe
guard against population convergence. If we choose larger populations, we can
slow this process down because more individuals participate in the crosslinking.
In our simple example above only the first two elements of the sorted population
are used each time as parents. We can take another measure which is to take the
union of the old and new generation in generation instead of appending the two
populations. The order of the arguments to union is very important. Look at the
code for union in section 7.4 of Chapter 7. It adds elements from the first set onto
the second if they don't exist in the second set. We should call union with the
offspring as the first argument and the old population as the second argument.
; Main function for perforrning genetic algorithms.
(define (generation sorted-pop fitness done? select rn-prob create

count)
(display sorted-pop)
(new1ine)
(if (done? (first sorted-pop) count)

(1ist count (first sorted-pop»
(1et* «parents (select sorted-pop»

(children (rnutate (crosslink parents) rn-prob create»
(new-pop (subseq (sort fitness

(union children sorted-pop»
o (1ength sorted-pop»»

(generation new-pop fitness done? select rn-prob create
(+ count l»»)

16.4 Genetic Algorithms 527

Below is a trial with this new code. Notice that there are no duplicates in the
population.
> (gen-algo (random-pop 4 4 (lambda () (random 10))) fit thirty?

select-parents 0.01 (lambda () (random 10)))
((9 3 8 9) (8 6 5 7) (7 9 6 0) (8 4 2 2»
((9 3 8 9) (8 3 8 9) (9 6 5 7) (8 6 5 7»
((9 3 8 9) (8 3 8 9) (9 6 5 7) (8 6 5 7»
((9 3 8 9) (8 3 8 9) (9 6 5 7) (8 6 5 7»
((9 3 8 9) (8 3 8 9) (9 6 5 7) (8 6 5 7»
«9 3 8 9) (8 3 8 9) (9 6 5 7) (8 6 5 7»
«8 3 9 9) (9 3 8 9) (8 3 8 9) (9 6 5 7»
«9 3 9 9) (8 3 9 9) (9 3 8 9) (8 3 8 9»
(7 (9 3 9 9»

This again is one of the faster cases. The average time to reach a solution was
just a bit less than with the earlier version of genera tion.

Do genetic algorithms provide an improvement over just randomly generat
ing lists? Let's test this out. Here is a simple, but generic, function that generates
and tests chromosomes until a completion test is satisfied. The chromosomes are
genera ted given their size and a gene creation function.
; Randomly make chromosomes until done? is true. chromosome-size
; and create define the size and gene makeup of the chromosomes.
(define (guess count chromosome-size create done?)

(1et «try (make-list chromosome-size create»)
(if (done? try count)

(1ist count try)
(guess (+ count 1) chromosome-size create done?»)

This function is called as follows:
(guess 0 4 (lambda (n) (random 10» thirty?)

In sampie runs guess found the solution in about half the number of cydes or
generations as gen-algo. So what is the use of creating a genetic algorithm? It
has been shown that genetic algorithms should perform better than random tri
als. We should take a more carefullook at our control parameters.

With this problem and the crosslinking parameters used, mutation often plays
a big role in generating the final solution. 5election and crosslinking get us dose
very early on. But crosslinking only the best two members of the population lim
its the offspring possibilities. We can increase the crosslinking by changing the
cross% and best% values to be 100%, as follows:

(define cross% 1.0)
(define best% 1.0)

There are other possibilities as weIl. Rather than increase the crosslinking rate
by changing the crosslinking variables, we can increase the population and use
the old crosslinking values. This will increase the number of crosslinking opera
tions. Or we can take a completely different approach and instead of increasing'
the crosslinking, we can increase the mutation rate. The table below gives aver
age figures based on a dozen trials for each different configuration. Unless

Retrial of totaling thirty

Comparison with
randomly generated
chromosomes

Adjusting the
crosslinking rate

Adjusting other
parameters

528 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, anti Genetic Aigorithms

Summary o(trial
results

Magie square

Chromosome
representation

Converling (rom
genotype to
phenotype

indieated, assume the crosslinking is 60% and the mutation rate is 1 %.

description of GA average generations to reach goal
original generation 200
new generation 189
random guess 94
100% crosslinking 47
10% mutation 24
population = 10 7
all three above 4

These numbers are somewhat misleading, as they count generations, and
with larger population sizes more individuals are tested in each generation. Plus
the random guess trials only test one individual at each generation.

Let's try a different example that is a variation on the magie square problem.
Imagine a three-by-three matrix of numbers like this:
465
7 53
447

The goal of tbis puzzle is to pick numbers for each box such that the sum of each
row, column, and diagonal is fifteen. In tbis example every row and column
sums to fifteen, but one diagonal sums to sixteen and the other to fourteen;

To build a genetic algorithm to solve this, we'll need to create a fitness func
tion, a function that tests if we are done, and an encoding of the box phenotype
into a chromosome. We can take the numbers in row-order (row-by-row)
without any nesting and make that our chromosome representation. The example
above would be

(4 6 5 7 5 3 4 4 7)

The fitness and completion functions are similar to the functions in the sum-to
thirty problem except eight sums must be examined. To add up the rows, it is
easier to use the phenotype representation

«4 6 5) (7 5 3) (4 4 7»

To convert from the genotype to the phenotype, we can use the following
function that uses make-list and produces the proper positions of the numbers
in the puzzle. Tbis function is general and can work with any size puzzle.
; Convert chromosome genotype to phenotype nested list.
(define (decode genotype size)

(make-list size
(1ambda (row)

(make-list size
(1ambda (elt) (1ist-ref genotype

(+ (* (- row 1) size) (- elt 1») » »)

> (decode '(4 6 5 7 5 3 4 4 7) 3)
«4 6 5) (7 5 3) (4 4 7»

16.4 Genetic Algorithms 529

The following function returns a list of the sums of the rows:
; Return list of sums of all rows in puzzle.
(define (sum-rows puzzle)

(map (lambda (row) (apply + row) puzzle)

> (sum-rows '«4 6 5) (753) (4 4 7)))
(15 15 15)

We can use the same function to add up the columns if we convert our puzzle
to a list of columns. This can be done with a simplification of the function tran
spose that we used to transpose the weights and biases of a neural network.

; Convert puzzle from list of rows to list of columns.
(define (row-to-col puzzle)

(apply map (cons list puzzle»)

> (row-to-col '«4 6 5) (7 5 3) (4 4 7)))
«4 7 4) (6 5 4) (5 3 7))

> (sum-rows (row-to-col '«4 6 5) (7 5 3) (4 4 7))))
(15 15 15)

To add the diagonals, we can either access the appropriate elements from the
chromosome or we can convert the puzzle into a list of two diagonals and pass
that to sum-rows. The second approach is slightly more work but is better
because our code will be general and can be used for any size puzzle (e.g., four
by-four). We can sequence through the rows using map and extract the proper
element from each row. This can be done by constructing a list of positions (0 to
the size minus 1).

; Convert puzzle from list of rows to list of diagonals.
(define (row-to-diag puzzle)

(let «pos-list (make-list (length puzzle) (lambda (n) (- n 1»»)
(list

(map (lambda (pos row) (list-ref row pos)
pos-list puzzle)

(map (lambda (pos row) (list-ref row pos)
(reverse pos-list) puzzle»)

> (row-to-diag '«4 65) (753) (44 7)))
«4 5 7) (5 5 4))

> (sum-rows (row-to-diag '«4 6 5) (7 5 3) (4 4 7))))
(16 14)

We can put all of these functions together in one function that returns a fitness
value for a puzzle.

Summing rows

Summing columns

Summing diagonals

Fitnessand
completion
measurements

530 Chapter 16: Soft Computing: Fuuy Logic, Neural Networks, and Genetic Algorithms

Sampie trials

Comparison with
randomly generated
squares

; Return fitness measure for puzzle - sum of absolute values of
; differences between each row, column, and diagonal and 15.
(define (sum-diffs puzzle)

(app1y +
(map (lambda (sum)

(abs (- sum 15»)
(append (sum-rows puzzle) (sum-rows (row-to-col puzzle»

(sum-rows (row-to-diag puzzle»»))

Using the fitness measurement, we can write functions to compare two chro
mosomes and to test if we are done:
; Fitness function for chromosomes cl and c2.
(define (fitB cl c2)

«= (sum-diffs (decode cl (truncate (sqrt (length cl»»)
(sum-diffs (decode c2 (truncate (sqrt (length c2»»»

Test if puzzle's rows, columns, and diagonals all sum to 15.
(define (all-fifteen? puzzle generation)

(= (sum-diffs
(decode puzzle (truncate (sqrt (length puzzle»»)

0))

Now let's call gen-algo to solve this problem. We'll use a population of size
twenty and crosslink 75% (fifteen individuals) of the population choosing 60%
(nine individuals) from the best of the population. The mutation rate is 1 %.

(define cross% 0.75)
(define best% 0.6)

(gen-algo (random-pop 20 9 (lambda () (random 10») fitB
all-fifteen? select-parents 0.01 (lambda () (random 10»)

Here are some of the resulting solutions:
555 375 654 474 447 6 1 B 4 3 B
555 753 357 555 B 5 2 753 951
55553 7 654 636 366 294 276

The leftmost result is the simplest solution to this problem. Moving to the
right the solutions use three, five, seven, and nine different numbers. The last two
solutions are solutions to the true magie square problem in which each number is
used only once.

Given a sampie of forty trials, the average number of generations to reach a
solution was about 150 generations. Once again we can compare our genetic
algorithm with completely randomly generated chromosomes using the guess
function. These can be genera ted using the following call:

(guess 0 9 (lambda (n) (random 10» all-fifteen?)

If you decide to run this, don't wait for the answer unless you feel really
lucky. There are a billion possible chromosomes that can be generated and not
too many correct solutions. This call took about ten days (yes days, not minutes)
to run and it finally got an answer after 22,651,059 attempts generating the

16.5 Mixing Metaphors to Create Better Systems 531

chromosome (4 5 6 7 5 3 4 5 6). Compare this with another probability
game--your chances of winning the Califomia lottery where you choose six
numbers out of 51 are one in 18,009,460 (not repeating any numbers, and order
does not matter). If you are starting to think that soft computing techniques can
be used to pick lottery numbers, it is already being done for lottery numbers,
stock markets, and international currencies.

16.4.2 Exercises
16.13 The second version of generation took the union of the offspring and the

old population. Why does the order of these two arguments matter in the
call to union?

16.14 Write functions to carry out reordering and inversion of chromosomes.
Define two variables to represent the reordering and inversion rates and
change the generation function to invoke these for the proper number of
parents.

16.15 None of the solutions to the simplified magic square problem had the
number zero in the answer. Why do you think this is so?

16.16 All of the solutions to the simplified magic square problem had the
number five as the middle gene. Why do you think this is so?

16.17 What do you predict will be the effect of increasing the mutation rate on
the simplified magie square problem? Test your hypothesis.

16.18 Do you think that doubling the population will cut the number of genera
tions to solve the simplified magie square problem in half? What about
halving the population-will that double the average number of genera
tions to reach a solution?

16.19 Create a new problem and design a way of decoding the phenotypes into
chromosomes. Next create gene creation, chromosome fitness, and comple
tion functions and then test out your problem with a genetic algorithm.
Compare the solution time using a genetic algorithm to using a call to the
function guess, which generates purely random chromosomes.

16.5 Mixing Metaphors to Create Better Systems
It is possible to combine fuzzy logic, neural networks, and genetic algorithms to
produce systems that perform better than their nonmixed equivalents. Systems
are usually mixed to overcome difficult areas that exist within each system.

A fuzzy logic system has difficulties working well until its fuzzy sets are
tuned. In the case of TSK systems, the parameters must be tuned as well. This is a
difficult process that cannot always be done by human intuition alone. Often a lot

Difficulties in fuzzy
logic

532 Chapter 16: Soft Computing: Fuzzy Logic, Neural Networks, and Genetic Algorithms

Difficulties in neural
networks

Difficulties in genetic
algorithms

Neuro-fuzzy systems

Fuzzy-genetic
systems

of tweaking (making fine adjustments) is necessary. This becomes a long, tedious
process.

Neural networks may be slow in learning (forming a set of connection
weights and biases that enable inputs to produce the desired outputs). This is a
very time-consuming, compute-intensive process, and for some inputs and
desired outputs, the system may never converge on a working set of connection
weights.

Genetic algorithms have limitations in their ability to evolve to a desirable
population. This happens because the crosslinking and mutations may take a
great deal of time to yield a good population. When genes or entire chromosomes
converge, learning by crosslinking and asexual reproduction slows down and
mutation becomes the driving force, but mutation is typically kept to small fre
quencies for best results when convergence does not occur.

In aIl the combinations one system takes on the primary or leading role and
the other system or systems take on supporting roles. For example, a neuro-fuzzy
system may use either the neural network or the fuzzy logic system as its primary
model and the other system to support some aspect to make up for the
weaknesses in the primary system.

A fuzzy logic system can be combined with a neural network to produce a
neuro-fuzzy system. One example of this is a fuzzy expert system that uses a
neural network to leam fuzzy set values or parameter values (in the case of TSK
systems). For example, a neural network can be trained to leam the relationship
of some values and their corresponding membership grades. Then other
membership grades for the same fuzzy set can be obtained by passing in their
values as inputs and getting the membership grades as outputs from the neural
net. The ability of neural nets to generalize is being used to interpolate member
ship grades.

A different approach is to represent the fuzzy sets as weights in a neural net
work and update them according to how far the fuzzy system veers from its
desired outputs. The weights should not be initialized to random values, but
have values based on reasonable estimates. Back propagation will slowly adjust
the weights. Rather than propagate inputs forward, the test for correction is to
mn the inputs through the fuzzy logic system and determine how weIl the sys
tem performs. This is a supervised learning approach.

Another possibility is to use unsupervised learning approaches. These take
advantage of neural net's abilities to generalize and categorize. Networks are
provided with numerous training sets of expert behavior within the realm that
the fuzzy system is trying to perform. EventuaIly the system groups and categor
izes these inputs that are pairs of inputs to the fuzzy system and the outputs
desired. By carefuIly examining these groupings and their degree of fuzziness,
fuzzy sets can be created.

Ideas from fuzzy logic and genetic algorithms can be combined to produce
fuzzy-genetic systems. Genetic algorithms can use fuzzy mIes to choose the param
eters of the genetic algorithm like crossover and mutation rate and population
size. Another use of fuzzy mIes is measuring the fitness of individuals in a

16.6 Future Trends 533

population.
Instead of adjusting fuzzy sets or parameters in TSK systems by hand, genetic

algorithms can be used in which the fuzzy sets or parameters are chromosomes
that und ergo crosslinkings and mutations to evolve into better fuzzy
sets/parameters. Even entire fuzzy rules can be encoded as chromosomes and
adjusted using a genetic algorithm. Their performance is measured by the quality
of the fuzzy system.

Just as fuzzy mIes can be used to decide crossover and mutation rates, neural
networks can be developed to do the same, resulting in neuro-genetic systems.

A neural net can genetically learn connection weights instead of using Heb
bian or back-prop learning approaches. A population of networks is used and the
best networks survive. Since genetic algorithms tend to move quickly toward
reasonable solutions, this may be a means of speeding up learning in neural net
works. After a number of generations, the best weight set can be fine-tuned using
a traditional neural network learning approach.

Genetic algorithms can be used to optimize the characteristics of a neural net
work: the number of units, layers, learning rate, momentum, or tolerance factor
in deciding when the actual outputs are close enough to the desired outputs.

16.6 Future Trends
Since soft computing is such a new field, a great deal of the research has been and
continues to be in testing soft computing techniques against traditional methods
in specific problem areas. This has provided a great deal of information into the
general applicability of these techniques. Where weaknesses are encountered,
attempts are made to combine soft computing techniques to get around the prob
lems. General methods for doing this are still not well understood.

Fuzzy logic is used in many commercial products. We should expect to see
fuzzy logic become more of a buzz ward and be accepted technology in many of
our consumer electronics goods, although marketing people may find challenges
selling fuzzy camera foeus mechanisms. The process of creating fuzzy sets is still
a difficult problem and a strong contender for improvement through research
efforts.

Two extensions of fuzzy logic are information granulation and computing with
words. Information granulation can be thought of as fuzzy partitioning, taking
objects and dividing them into smaller pieces or into similar or functionally
equivalent parts. Granulation can be crisp or fuzzy. For example, a house can be
divided into specific rooms Oiving room, dining room) or into clean rooms
versus messy rooms. This second division is fuzzy because clean and messy are
fuzzy concepts. For many problems, fuzzy granulation is more practical or
natural than crisp granulation.

Computing with words is computation using words as the driving factor.
Fuzzy systems take numbers and fuzzify them, then defuzzify the final outcome
into crisp values. Computing with words takes fuzzy va lues and produces fuzzy
values. For example, the question "How wealthy is she?" can result in a fuzzy

Neuro-genetic
systems

Fuzzy logic in
commercial products

Information
granulation

Computing with words

534 Chapter 16: Soft Computing: Fuzzy Logie, Neural Networks, and Genetie Algorithms

Neural network
futures

Genetic algorithm
futures

answer (e.g., very rich) instead of a erisp answer like $1,547,842.34. Computing
with words eonverts the fuzzy value wealthy into the fuzzy amount very rieh.

Neural networks have not had the commercial success that fuzzy logic sys
tems have, but have done weIl in complex areas in which the relationships
between inputs and outputs are not weIl understood and do not lend themselves
to symbolic representation techniques. Although neural nets can solve such prob
lems, there is great interest in being able to understand networks so that mIes can
be extracted. There are techniques to do this, but they tend to be complex and
limited in how weIl they work. Rule insertion is desired as weIl. There are prob
lems that are understood and instead of building a network from random values,
being able to create initial approximate weights based on existing knowledge of
the system is desired.

Genetic algorithms are perhaps the least exploited of the soft computing
fields. They offer great promise as a search technique or as a generation mechan
ism to create novel solutions. For example, genetic algorithms have been used to
make computer paint bmshes to create artistically appealing textures. The
difficulties with genetic algorithms are in the adjustment of the parameters to get
the best performance and in the creation of good fitness functions. As more prob
lems are attempted with genetic algorithms, we should develop better heuristics
for using them in a variety of contexts.

16.7 Summary
• Soft eomputing is a mix of fuzzy logic, neural networks, and probabilistic rea

soning of which genetic algorithms is a subfield.
• Fuzzy logic is an extension of eonventional logic that allows values that lie

between true and false.
• Fuzzy sets represent uncrisp concepts like taIl, rich, and fast. A fuzzy set is a

mapping between real values like six feet and membership grades that are
between zero and one. Membership grades give the degree to which a value
represents a fuzzy set.

• Linguistic variables have fuzzy sets as values; for example, height is a linguis
tie variable that can take va lues like tall or short.

• Fuzzy expert systems use fuzzy sets and fuzzy mIes to represent expert
knowledge. They take erisp values and fuzzify them, then find all applicable
fuzzy mIes and combine them according to the membership grades and pro
duce a new fuzzy set. This fuzzy set is defuzzified to return crisp output
values.

• Neural networks are models inspired by neurons in the brain. These networks
contain a number of highly interconnected neurons or units. The strength of
the connection between two units is called a connection weight.

• Units are organized into layers where the units in each layer are connected to
all the units in the layers immediately above and below. The input layer takes
inputs and passes them into the network, hidden layers lie between input and
output layers, and the output layer gets input from an input or hidden layer

16.8 Additional Reading 535

and passes values as the output of the network.
• Propagation is the passing of information through the network from the

inputs to the input layer, then to each subsequent layer until the output layer.
• The input to a unit is the sum of all the outputs from the units in the layer

below multiplied by the connection weights joining them. This sum is added
to the unit's bias and applied to a sigmoidal function to form the activation
level of the unit.

• Back propagation and Hebbian learning are used to teach a network to map a
collection of inputs to a collection of outputs. Back propagation makes small
adjustments to the connection weights and biases until the inputs produce the
desired outputs.

• Genetic algorithms are inspired by theories of evolution and gl;.',~etics. Poten
tial solutions to a problem are encoded as chromosomes (a fixea length list of
numbers or characters). Chromosomes are made up of genes.

• The population is ordered according to a fitness measurement. A set of
parents is selected from the population and combined via crosslinking.

• Crosslinking switches the genes of two chromosomes around a switch point
to form two new chromosomes.

• Mutation changes a single gene in a chromosome.
• Reordering reorders the genes in a chromosome and inversion reverses the

genes in a section of a chromosome.
• After the chromosomes are updated through some combination of crosslink

ing, mutation, reordering, and/or inversion, a new population is chosen
based on the fitness measurement of the new offspring and the old popula
tion. Then the whole process continues with the new population.

• The genetic algorithm finishes when some member of the population meets a
stopping criterion.

16.8 Additional Reading
FuzzyLogic

Cox, E.D. (1995). Fuzzy Logic for Business and Industry, Charles River Media Inc.,
Rockland, MA.

Kosko, B. (1993). Fuzzy Thinking: The New Science o[Fuzzy Logic, Hyperion, New
York,NY.

Von Altrock, C. (1995). Fuzzy Logic and NeuroFuzzy Applications Explained, Pren
tice Hall PTR, Englewood Cliffs, N.J.

Neural Networks

Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ.

536 Chapter 16: Soft Computing: Fu~ Logre, Neural Networlcs, anti Genetic Algorithms

McClelland, J.L., Rumelhart, D.E., and the PDP Research Group (1986). Parallel
Distributed Proeessing: Explorations in the Mierostrueture 01 Cognition, Volume 2:
Psychological and Biological Models, MIT Press, Cambridge, MA.

Rumelhart, D.E., McClelland, J.L., and the PDP Research Group (1986). Parallel
Distributed Proeessing: Explorations in the Microstructure 01 Cognition, Volume 1:
Foundations, MIT Press, Cambridge, MA.

Genetic Algorithms

Goldberg, D.E. (1989). Genetie Algorithms in Seareh, Optimization, and Maehine
Learning, Addison-Wesley, Reading, MA.

Koza, J.R. (1992). Genetie Programming: On the Programming 01 Computers by Means
01 Natural Selection, MIT Press, Cambridge, MA.

Michalewicz, Z. (1996). Genetie Algorithms + Data Struetures = Evolution Programs,
Third revision and extended edition, Springer-Verlag, Berlin, Germany.

16.9 Code Listing
Fuzzy expert system code:
; Create a function returning the membership grade of a crisp value.
(define (make-fuzzy-triangle left mid right)

(lambda (crisp-num)
(cond «eq? crisp-num 'max) mid)

«or « crisp-num left) (> crisp-num right» 0)
«< crisp-num mid) (I (- crisp-num left) (- mid left»)
(else (I (- right crisp-num) (- right mid»»))

; Fuzzify crisp-number based on fuzzy-set.
(define (fuzzify crisp-number fuzzy-set)

(fuzzy-set crisp-number»

; Return the condition of a rule.
(define (condition rule)

(first rule»

; Return the actions of a rule.
(define (actions rule)

(rest rule»

; Return list of applicable actions and the degree to which they
; should be applied.
(define (outputs rule-list input-values)

(keep-if
(lambda (evaled-rule)

(not (zero? (car evaled-rule»»
(map (lambda (rule)

(cons
(membership-grade (condition rule) input-values)
(actions rule»)

rule-list»)

16.9 Code Listing 537

Return overall membership grade of condition based on input-values.
(define (membership-grade condition input-values)

(cond «eq? (car condition) 'and)
(apply min (map (lambda (clause)

(membership-grade clause input-values»
(rest condition»»

«eq? (car condition) 'or)
(apply max (map (lambda (clause)

(membership-grade clause input-values»
(rest condition»»

(else
(fuzzify (cdr (assoc (first condition) input-values»

(eval (second condition»»))

; Split multiple actions in action-list to list of single actions.
(define (transform action-list)

(if (null? action-list)
'()
(append

(map (lambda (action) (cons (caar action-list) action))
(cdar action-list»

(transform (rest action-list»»)

Reduce duplicate actions to one with the largest strength.
(define (no-duplicates action-list)

(if (null? action-list)
, ()

(let «duplicates
(keep-if (lambda (action)

(equal? (rest action) (cdar action-list»)
action-list»)

(if (null? (rest duplicates»
(cons (first action-list)

(no-duplicates (rest action-list»)
(cons (cons (apply max (map first duplicates»

(cdar action-list»
(no-duplicates

(set-difference action-list duplicates»»»)

538 Chapter 16: Soft Computing: Fu1,ZJ Logic, Neural Networks, and Genetic Algorithms

; Defuzzify actions in action-list returning crisp values.
(define (defuzzify action-list)

(if (null? action-list)
'()
(let «sarne-var

(keep-if (lambda (action)
(equal? (second action)

(cadar action-list)))
action-list)))

(cons
(list

(second (first sarne-var))
(I (apply + (map (lambda (action)

(* (first action)
(fuzzify 'rnax

(eval (third action)))))
sarne-var))

(apply + (map first sarne-var))))
(defuzzify (set-difference action-list sarne-var)))))

Evaluate rules using inputs to produce crisp results.
(define (fuzzy-eval rules inputs)

(defuzzify
(no-duplicates

(transforrn
(outputs rules inputs)))))

Neural network and back propagation code:
(define learn-rate 0.5)
(define rnornenturn 0.9)

; Return weighted surn of inputs to a single unit plus bias.
(define (total-input inputs weights)

(+ (car weights) (apply + (map * inputs (cdr weights))))

; Apply the lirniting sigrnoidal function that restricts the total
; input to be a value between 0 and 1.
(define (sig total-input)

(/ 1 (+ 1 (expt 2.71828 (- total-input))))

; Return list of activations to nodes in a layer.
(define (act-layer inputs layer-weights)

(map (lambda (weights) (sig (total-input inputs weights)))
layer-weights))

16.9 Code Listing 539

; Return a list of the activation levels in a network beginning with
; the input layer.
(define (propagate all-weights acts)

(if (nu11? all-weights)
(1ist acts)
(cons

acts
(propagate

(rest all-weights)
(act-layer acts (first all-weights»»)

; Compute error signals for output layer units.
(define (error-sig-output targets outputs)

(map (1ambda (target output)
(* (- target output) output (- loutput»

targets outputs))

Transpose the weights for back-prop.
(define (transpose weights)

(reverse
(map (1ambda (layer) (cdr (app1y map (cons list layer»))

weights»)

Compute error signals for hidden layer units.
(define (error-sig-inner error-signals layer-weights outputs)

(map (1ambda (output weights)
(* (app1y + (map * error-signals weights»

output (- 1 output»)
outputs layer-weights))

Perform back propagation on a network and returns a list of weight
and bias changes in the form of the original weights and biases.

(define (back-prop target outputs trans-weights old-changes)
(if (nu11? outputs)

'no-outputs
(reverse

(descent (error-sig-output target (first outputs»
(rest outputs) trans-weights old-changes»))

; Recurse through a network to compute error signals and return
; connection weight and bias changes.
(define (descent error-signals outputs trans-weights old-changes)

(if (nu11? outputs)
, ()

(cons (calc-weights error-signals (first outputs)
(first old-changes»

(descent (error-sig-inner error-signals
(first trans-weights) (first outputs»

(rest outputS) (rest trans-weights)
(rest old-changes»»)

540 Chapter 16: Soft Computing: Fu~ Logic, Neural Networks, antI Genetic Algorithms

Compute change in connection weights and bias es for all units in
one layer. inputs are the activation levels of the units in the
layer below.

(define (calc-weights error-signals inputs old-change)
(map (lambda (error change)

; insert new bias change
(cons (+ (* learn-rate error) (* momentum (car change»)

(map (lambda (input old-weight-change)
(+ (* learn-rate error input)

(* momentum old-weight-change»
inputs (cdr change»))

error-signals old-change))

Add the new weight and bias changes to the current weights and
biases and returns the new weights and biases.

(define (update old-weights weight-change)
(map (lambda (weight-layer change-layer)

(map (lambda (weight-unit change-unit)
(map + weight-unit change-unit)

weight-layer change-layer))
old-weights weight-change))

Test if outputs are close enough to target values.
(define (avg-square-test outputs targets)

« (I (apply + (map (lambda (outcome desired)
(expt (- outcome desired) 2))

outputs targets»
(length outputs»

.0025))

Return new network with units changed according to func.
(define (net-change func weights)

(map (lambda (layer)
(map (lambda (unit) (func unit)) layer))

weights))

Helper function for trainer.
(define (train input-set target-set weights learn-func frequency)

(trainer input-set target-set weights
(net-change (lambda (unit)

(map (lambda (weight) 0) unit)) weights)
learn-func frequency 0))

16.9 Code Listing 541

Given training set of inputs and targets, initial weights and
biases, old weight and bias changes, learning function, display
frequency, and epoch counter - return the number of epochs to
train and the new connection weights and biases after learning.
Print outputs each frequency epochs.

(define (trainer input-set target-set weights old-changes
learn-func frequency count)

(let* «act-set
(map (lambda (input)

(reverse (propagate weights input»)
input-set))

(output-set (map first act-set»)
(if (zero? (remainder count frequency»

(print-outputs count input-set output-set target-set»
(if (every avg-square-test output-set target-set)

(list count weights)
(let* «results (learn-func target-set act-set weights

old-changes»
(weights (first results»
(changes (second results»)

(trainer input-set target-set weights changes
learn-func frequency (+ count 1»»))

; Print the current output value for each input and indicate if
; that input has been learned.
(define (print-outputs count input-set output-set target-set)

(display count)
(newline)
(for-each (lambda (input output target)

(display input)
(display" -> ")
(display output)
(display 11 learned: ")
(display (avg-square-test output target»
(newline))

input-set output-set target-set))

Pass through the target set and actual outputs using back-prop
and adjust the weights after each call to back-prop:

(define (adjust-during target-set output-set weights old-changes)
(if (null? target-set)

(list weights old-changes)
(let «changes (back-prop (first target-set)

(first output-set) (transpose weights)
(reverse old-changes»»

(adjust-during (rest target-set) (rest output-set)
(update weights changes) changes»))

542 Chapter 16: Soft Computing: FuZZJ Logic, Neural Networks, antI Genetic Algorithms

; Pass through the target set and aetual outputs using baek-prop
; and adjust the weights after the entire epoeh is eomplete.
(define (adjust-after target-set output-set weights old-ehanges)

(after target-set output-set (transpose weights) weights
old-ehanges»

(define (after target-set output-set trans-weights new old-ehanges)
(if (nu11? target-set)

(1ist new old-ehanges)
(1et «ehanges (baek-prop (first target-set)

(first output-set) trans-weights
(reverse old-ehanges»»

(after (rest target-set) (rest output-set) trans-weights
(update ehanges new) ehanges»))

Given a deseription of a network - a list of numbers indieating
how many nodes are in eaeh layer beginning with the input layer,
return a list of random initial eonneetion weights and biases.

(define (random-net net-dese)
(if (or (nu11? net-dese) (nu11? (cdr net-dese»)

'()
(cons (make-layer-weights (car net-dese) (second net-dese»

(random-net (cdr net-dese»»)

; Return random weights and biases for a layer in a network.
(define (make-layer-weights nodes-below nodes-above)

(make-list nodes-above
(1ambda (n) (bias-&-weights nodes-below) »)

; Return random bias and weights for anode in a network.
; The values are in the range -1 to 1.
(define (bias-&-weights num-nodes)

(make-list (+ num-nodes 1)
(1ambda (n) (- (/ (random 1000) 500) 1) »)

; Make a list of num-items elements with va lues based on fune.
(define (make-list num-items fune)

(do «num num-items (- num 1»
(new-list '() (cons (fune num) new-list»)

«<= num 0)
new-list»)

Genetic algorithm code:

; Randomly create a population of pop-size individuals.
(define (random-pop pop-size ehromosome-length ereate)

(make-list pop-size
(1ambda (n) (make-list ehromosome-length

(1ambda (n) (ereate) » »

16.9 Code Listing 543

; Main function for performing genetic algorithms.
(define (generation sorted-pop fitness done? select rn-prob create

count)
(display sorted-pop)
(newline)
(if (done? (first sorted-pop) count)

(list count (first sorted-pop»
(let* «parents (select sorted-pop»

(children (mutate (crosslink parents) rn-prob create»
(new-pop (subseq (sort fitness

(union children sorted-pop»
o (lenqth sorted-pop»»

(generation new-pop fitness done? select rn-prob create
(+ count l»»)

; Helper function for generation - sorts population.
(define (gen-algo population fitness done? select rn-prob create)

(generation (sort fitness population) fitness done? select rn-prob
create 0))

Perform insertion sort on a-list according to compare-func.
(define (sort compare-func a-list)

(if (null? a-list)
I ()

(insert
(first a-list)
(sort compare-func (rest a-list»
compare-func»)

Insert element into sorted-list using compare-func.
(define (insert element sorted-list compare-func)

(cond «null? sorted-list)
(list element»

«compare-func element (first sorted-list»
(cons element sorted-list»

(else
(cons (first sorted-list)

(insert element (rest sorted-list) compare-func»»)

; Select parents from the sorted population.
(define (select-parents sorted-pop)

(let* «num-parents (round (* (lenqth sorted-pop) cross%»)
(num-best (round (* num-parents best%»»

(append (subseq sorted-pop 0 num-best)
(choose-from (subseq sorted-pop num-best)

(- num-parents num-best»»)

544 Chapter 16: Soft Computing: FuUJ Logic, Neural Networks, antI Genetic Algorithms

; Choose num individuals randomly from population.
(define (choose-from pop-list num)

(if (= 0 num)
'()
(let «elt-pos (random (length pop-list»»

(cons (list-ref pop-list elt-pos)
(choose-from (append (subseq pop-list 0 elt-pos)

(subseq pop-list (+ elt-pos 1»)
(- num 1»»))

(define cross% 0.6)
(define best% 0.75)

crosslink 60% of the population
75% of the parents are the best individuals

; Reorder population then call crosspair to perform crosslinking.
(define (crosslink population)

(crosspair (choose-from population (length population»))

Sequence through pop applying crossover to successive pairs.
(define (crosspair pop)

(cond «null? pop) '(»
«null? (cdr pop» pop)
(else (append (crossover (first pop) (second pop»

(crosspair (cddr pOp»»))

; Generate two new
(define (crossover

(let «cross-pos
(list

offspring by crosslinking two chromosomes.
chromosomel chromosome2)
(+ 1 (random (- (length chromosome1) 1»»)

(append

(append

(subseq
(subseq
(subseq
(subseq

chromosome1 0 cross-pos)
chromosome2 cross-pos»
chromosome2 0 cross-pos)
chromosome1 cross-pos»»

; Mutate random genes in population according to probability.
; Use create to produce a new allele.
(define (mutate population probability create)

(map (lambda (individual)
(map (lambda (gene)

(if « (random 100) (* probability 100»
(create)
gene))

individual))
population))

APPENDIX

1 Scheme Resources
Two items that are helpful for programming in any language are a reference manual and a com
piler or interpreter. The reference manual for Scheme is called R4RS (Revised4 Report on
Scherne). It is very terse but covers the entire language. Scheme interpreters and compilers are
available commercially or for free. You can get these items and a host of additional information
about Scheme by checking out either the following ftpl site or web sites.

ftp:
web:

swiss-ftp.ai.mit.edu

swissnet.ai.mit.edujscheme-home.html

www.cs.indiana.edujscheme-repositoryjhome.html

Connect to the ftp site by specifying "anonymous" as a name and your name as a password.
Under the pub directory, you will find various Scheme files and directories inc1uding reports on
Scheme such as R4RS and implementations of Scheme inc1uding sem, PC-Scheme, and MIT
Scherne.

The web sites are easier to explore. They have free implementations of Scheme and R4RS in
postscript and HTML. In these sites or links from these sites you can find numerous free imple
mentations of Scheme and information about Scheme inc1uding a FAQ (frequently asked ques
tions) on Scheme.

Through these different resources you should find Scheme interpreters that run on Windows
3.1, Windows 95, Windows NT, MacOS, Linux and many UNIX platforms.

The code from the examples in this text inc1uding the extensions are available on the Web at
www.springer-ny. comjsupplementsjgrillmeyer. There you can also find corrections to any
errors that were found in the text.

You can reach me (Oliver Grillmeyer) via e-mail at topramen@cs.berkeley.edu.

I. FrP stands for file transfer protocol and is a way of remotely connecting to a computer and
receiving or sending information (e.g., programs, text, images).

546 Appendix

2 Scheme Reference
As a convenience, the standard Scheme functions including those not covered in this text are
listed below by category. Following this section is a listing of the extensions to Scheme used in
this text and their implementation.

2.1 Mathematical functions
function arguments return value
+ o or more nums sum of arguments

1 or more nums difference of arguments in left to right order

* o or more nums product of arguments
/ 1 or more nums quotient of arguments in left to right order
< 2 or more nums numl < num2 < ... < numN
> 2 or more nums numl > num2 > ... > numN

2 or more nums numl = num2 = ... = numN
<= 2 or more nums numl ~ num2 ~ ... ~ numN
>= 2 or more nums numl ~ num2 ~ ... ~ numN
zero? num test if num = 0
positive? num test if num > 0
negative? num test if num < 0
even? num test if num is an even number
odd? num test if num is an odd number
number? num test if num is a number (integer, real, or ratio)
real? num test if num is areal number
integer? num test if num is an integer
complex? num test if num is a complex number
rational? num test if num is a rational number
exact? num test if num is an exact number
inexact? num test if num is an inexact number
quotient numl num2 integer division of numl and num2
max 1 or more nums maximum of arguments
min 1 or more nums minimum of arguments
truncate num integer part of num (digits to the left of the decimal)
round num rounds num to nearest integer
floor num nearest integer that is less than num
ceiling num nearest integer that ~ greater than num
sqrt num square root of num, num
ahs num absolute value of num, I num I
expt num power exponentiation (num raised to power), numpawer
remainder numl num2 remainder of numl when divided by num2
modulo numl num2 like remainder but differs with negative numbers
numerator num numerator of num
denominator num denominator of num
rationalize numl num2 simplest rational number within num2 of numl
gcd o or more nums greatest common divisor of arguments

Scheme Reference 547

lcm o or more nums least common multiple of arguments
exp num e (2.71828) to the num power, enum
log num natural log of num
sin num sineofnum
cos num eosine of num
tan num tangent of num
asin num aresine of num
acos num areeosine of num
atan num aretangent of num
exact->inexact num inexaet representation of num
inexact->exact num exaet representation of num
make-rectangular numl num2 eomplex number numl + num2i
real-part num real part of eomplex number num
imag-part num imaginary part of eomplex number num
make-polar numl num2 eomplex number numl x einum2
magnitude num magnitude of eomplex number num
angle num angle of eomplex number num

2.2 Atom and symbol functions
predicate
define
set!
eqv?
eq?
symbol?

arguments
variable value
variable value
argl arg2
argl arg2
arg

return value
undefined, binds variable to value
undefined, rebind variable to value
test if atoms argl and arg2 are the same
test if symbols argl and arg2 are the same
test if arg is a symbol

2.3 List functions
function
length
car
cdr
list-ref
list-tail
cons
list
append
member

memq
memv
reverse
assoc
assq

arguments
list
list
list
list position
list num
element list
eil ... eiN
listl ... listN
element list

element list
element list
list
element assoc-list
element assoc-list

return value
the number of elements in list
first element of list
rest of list
element at position pos in list
list without the first num elements
list with element inserted at the start
the list (eil ... eiN)
the list formed by eoneatenating the elements of listl through listN
the rest of list starting with the first oeeurrenee of element,
#f if element is not in list
like member but uses eq? for eomparisons
like member but uses eqv? for eomparisons
the reverse of the top-level elements of list
the first pair in assoc-list whose car is element
like assoc but uses eq? for eomparisons

548 Appendix

assv

equal?

list?

null?

pair?

set-earl

set-edrl

element assoc-list
argl arg2
arg
arg
arg
list value
list value

like assoe but uses eqv? for comparisons
test if argl looks the same as arg2
test if arg is a list
test if arg is ()
test if arg is a pair
undefined, rebind ear of list to value
undefined, rebind edr of list to value

In addition there are combinations of up to four ear and edr function calls abbreviated with
a'S and d'S sandwiched between a "e" and an "r" (e.g., edar, edadr, eadaar).

2.4 Control special forms
(if condition

action
[else-action])

If condition is true, return action. If condition is false, return else-action. If condition is false and
there is no else-action, return an undefined value.

(eond (condition action1 action2 ... actionN)
(condition action1 action2 ... actionN)

(else action1 action2 ... actionN)

Evaluates conditions in order and returns the last action, actionN, corresponding to the first
condition that is true. If the are no actions, condition is returned. If all conditions are false, returns
actionN corresponding to else. If all conditions are false and there is no else clause, eond returns
an undefined value.

(ease key
((values1) action1 action2 ... actionN)
((values2) action1 action2 ... actionN)

(else action1 action2 ... actionN)

Evaluates key and compares it to values which are nonquoted atoms (treated literally). If key
matches any atom in values, the corresponding actions are evaluated and the last action, actionN, is
returned. If none of the atoms in any of valuess matches key, actionN of the else is returned. Oth
erwise if there are no matches and no else clause, ease returns an undefined value.

(and condition1 condition2 ... conditionN)

Evaluates conditions until a false condition is found or all conditions are true. Returns #f if a
false condition is found, otherwise returns conditionN.

(or condition1 condition2 ... conditionN)

Evaluates conditions until a true condition is found or all conditions are false. Returns first true
condition found or #f if all conditions are false.

Scheme Reference 549

2.5 String and character functions
function arguments return value
string-length string number of characters in string
string-ref string pos
string o or more chars

the character at position pos in string
string consisting of chars

make-string
string-copy
substring

num char
string
string start end

string consisting of num copies of char
a copy of string

string-append o or more strings
like subseq but returns part of string
like append but with strings

string? arg
string=? strl str2
string<? strl str2
string>? strl str2
string<=? strl str2
string>=? strl str2
string-set! string pos char
string-filll string char
char-upcase char
char-downcase char
char? arg
char=? charl char2
char<? charl char2
char>? charl char2
char<=? charl char2
char>=? charl char2
char-alphabetic? char
char-numeric? char
char-whitespace? char
char-upper-case? char
char-lower-case? char

test if arg is a string
test if strl and str2 are the same
test if strl is less than (alphabetically) str2
test if strl is greater than (alphabetically) str2
test if strl is less than or equal to str2
test if strl is greater than or equal to str2
undefined, rebind element at position pos of string to char
undefined, rebind every element of string to char
the upper case version of char
the lower case version of char
test if arg is a character
test if charl and char2 are the same
test if charl is less than (alphabetically) char2
test if charl is greater than (alphabetically) char2
test if charl is less than or equal to char2
test if charl is greater than or equal to char2
test if char is alphabetic
test if char is numeric
test if char is a whitespace character
test if char is upper case
test if char is lower case

There are versions of the ten string and character comparison functions (e.g., string=? and
char>=?) that ignore the case of the letters. The letters "-ci" (for case insensitive) are attached to
the function names as in string-ci=? and char-ci>=?

2.6 Vector functions
function
vector-length
vector-ref
vector
make-vector
vector?
vector-setl
vector-filll

arguments
vector
vector pos
o or more eIts
num eIt
arg
vector pos value
vector value

return value
number of elements in vector
the element at position pos in vector
vector consisting of eIts
vector consisting of num copies of elt
test if arg is a vector
undefined, rebind element at position pos of vector to value
undefined, rebind every element of vector to value

550 Appendix

2.7 Conversion functions
function arguments return value
symbol->string symbol string equivalent of symbol
string->symbol string symbol equivalent of string
number->string number string equivalent of number
string->number string number equivalent of string
list->string list string version of the characters in list
string->list string list of characters in string
integer->char integer character equivalent of integer
char->integer char integer equivalent of char
list->vector list vector equivalent of the elements of list
vector->list vector list equivalent of the elements in vector

2.8 Functionals
function arguments return value
map function lists
for-each function lists

list of results from applying function to successive elements of lists
undefined, apply function to successive elements of lists

apply function list result of applying function to elements of list

2.9 Additional special forms and functions within Scheme
item
let
let*
letrec

quote
quasiquote

not
boolean?
procedure?
begin
delay
force
load
transcript-on

arguments
var-value-pairs body
var-value-pairs body
var-value-pairs body

expression
expression

arg
arg
arg
1 or more express ions
expression
promise
string
string

return value and side-effects
bind vars to values and evaluate body
bind vars to values in order and evaluate body
like let except vars can be bound to functions
which can be recursive or mutually recursive
expression unevaluated
expression unevaluated except for items preceded
by 11 I 11 or 11 1 @"

the logical opposite of arg
test if arg is a boolean (#t or #f)
test if arg is a procedure
evaluate express ions returning result of last one
a promise to evaluate expression when forced
result from evaluating promise (from a delay)
undefined, load contents of file named string
undefined, save the Scheme interaction in file
named string

transcript-off none undefined, stop saving the Scheme interaction

define can be used to create functions. The syntax for doing this is as follows:

(de fine (Junetion-name parameter-list l
bodYl

The syntax of let, let*, and letrec is as follows:
(let ((variable-l value-l)

(variable-2 value-2)

(variable-N value-N)
body)

(lambda (parameters) body)

Creates a function (closure) taking parameters with body as its actions.

(call-with-current-continuation function)

Scheme Reference 551

The parameter of function names an exit function. The body of function is evaluated and
returns anormal result, unless the exit function is called in which case the argument to the exit
functionisreturned.

2.10 Iteration
(do ((variablel initial-value1 {update-valuel J}

(variable2 initial-value2 {update-value2 J}

(variableN initial-valueN {update-valueN J}
(test exit-actions)
body}

The variables are bound to initial-values as in let. Next test is evaluated and if true exit-actions
are evaluated and the final action is returned. Otherwise body is evaluated and the do repeats the
sequence, however variables are bound to update-values on subsequent iterations through the do.

2.11 1/0 functions
Input functions

input function
read
read-char
peek-char

Output functions

function
newline
display
write
write-char

arguments return value
none the value entered by the user
none the character entered by the user
none the next character ready to be read

arguments prints out return value
none a blankline undefined
expression the value of expression undefined
expression the value of expression undefined
char char undefined

552 Appendix

2.12 File functions
function
open-input-fi1e
open-output-fi1e
current-input-port
current-output-port
ca11-with-input-fi1e

ca11-with-output-fi1e

with-input-from-fi1e

with-output-from-fi1e

c1ose-input-port
c1ose-output-port
input-port?
output-port?
eof-object?
char-ready?

arguments
string
string
none
none
string function

string function

string function

string function

port
port
arg
arg
arg
port

return value
open file named string for input and return port
open file named string for output and return port
the current input port
the current output port
call function with the input port for string
if it can be opened
call function with the output port for string
if it can be opened
call function with no arguments after opening
the file named string for input
call function with no arguments after opening
the file named string for output
undefined, dose input file associated with port
undefined, dose output file associated with port
test if arg is an input-port
test if arg is an output-port
test if arg is an eof object
test if if there is a character ready to read on port

3 Functions Added as Extensions to Scheme
The following functions are not standard to Scheme, but have been added in this text. They are
grouped by the categories used above for the standard functions.

3.1 Mathematical functions
The following two functions have been changed in this text's extensions to always return an exact
number even if called with an inexact number.

function arguments
truncate num
round num

3.2 List functions
function
first
second
third
fourth
fifth
rest
subseq

arguments
list
list
list
list
list
list
list start

return value
exact integer part of num (digits to the left of the decimaD
rounds num to nearest exact integer

return value
first element of list
second element of list
third element of list
fourth element of list
fifth element of list
rest of list without the first element
list with elements start + 1 to the end of list

subseq list start end
position element list

count element list
remove element list
rassoc element assoc-list

Implementation 0/ Extensions 553

list with elements start + 1 through end
the position of element in list (counting from zero),
#f if element is not in list
the number of occurrences of element in list
list with all occurrences of element removed
the first pair in assoc-list whose cdr is element

3.3 Atom and symbol functions
function arguments return value
atom? arg arg is an atom

3.4 Functionals
function
find-if
find-if-not
count-if
count-if-not
remove-if
keep-if
every

any

accumu1ate

arguments
test list
test list
test list
test list
test list
test list
test lists

return value
first element in list that satisfies test
first element in list that does not satisfy test
number of elements in list that satisfy test
number of elements in list that do not satisfy test
list without elements that satisfy test
list of elements that satisfy test
final true return value if all successive elements in lists satisfy test,
#f otherwise

test lists first true value from applying test to successive elements in lists,
#f otherwise

bin-fune list result of applying bin-fune to the elements in list
two ata time

3.5 Additional functions
function
random
union
intersection
set-difference
adjoin
subset?

arguments
num
setl set2
setl set2
setl set2
element set
setl set2

return value
randomly genera ted number between 0 and num - 1
set of elements in either setl or set2
set of elements in both of setl and set2
set of elements in setl that are not in set2
set with element added if its not already in set
true if all the elements of setl are in set2?

4 Implementation of Extensions
The definitions of the following extensions differ slightly from those given in the text. The exten
sions save the values of the functions they use in 1et variables and the extension itself is defined
as a 1ambda within the 1et. This way, even if the functions that these extensions use internally are
changed, the extensions maintain the old bindings to the functions and they continue to work. For

554 Appendix

example, if the function length were redefined, the extension subseq would still work even
though it uses length because it has saved the initial definition of length.

Library files for Exploring Computer Science with Scheme
Oliver Grillmeyer
Version 1.5, 10/7/97

Contents
truncate (redefined to give exact number)
round (redefined to give exact number)
first, second, third, fourth, fifth, rest
subseq
position, remove, count (all use equal? for comparison)
atom?
find-if, find-if-not, count-if, count-if-not, remove-if, keep-if
rassoc (uses equal? for comparison)
every, any
accumulate
intersection, union, set-difference, subset?, adjoin
random, init-random

Add the following code if error does not exist in your version of Scheme
(define error-setup 'init)

(call-with-current-continuation
(lambda (stop)

(set! error-setup stop)))

Print an error message made up of the arguments to the function.
(define error

(let ((newline newline) (display display) (car car) (cdr cdr)
(for-each for-each) (error-setup error-setup))

(lambda vals
(newline)
(display "Error: ")
(display (car vals))
(for-each (lambda (val) (display" ") (display val)) (cdr vals))
(error-setup '.))))

Redefine truncate to return an exact integer.
(set! truncate

(let ((truncate truncate) (inexact->exact inexact->exact)
(lambda (number)

(inexact->exact (truncate number)))))

; Redefine round to return an exaet integer.
(set! round

(let ((round round) (inexaet->exaet inexaet->exaet)
(lambda (number)

(inexaet->exaet (round number» »)

Return the first element of a list.
(define first earl

; Return the seeond element of a list.
(define second eadr)

; Return the third element of a list.
(define third caddr)

; Return the fourth element of a list.
(define fourth eadddr)

; Return the fifth element of a list.
(define fifth

(let ((car car) (cddddr cddddr)
(lambda (1st)

(car (cddddr 1st» »)

Return the rest of a list.
(define rest cdr)

; Return 1st without last num elements.
(define list-head

Implementation 0/ Extensions 555

(let ((>= >=) (length length) (= =) (cons cons) (car car)
(cdr cdr))

(lambda (1st num)
(cond «>= num (length 1st» '(»

«=numO) 1st)
(else (cons (car 1st) (list-head (cdr 1st) num»» »)

; Return subsection of 1st from positions start to end-I.
(define subseq

(let ((length length) (null? null?) (not not) «= <=)
(error error) (list-head list-head) (list-tail list-tail)

(lambda (1st start . args)
(let* ((len (length 1st»

(end (if (null? args) len (car args»))
(eond «not «= 0 start len»

(error "Improper start value for subseq:" start»
«not «= 0 start end len»

(error "Improper end value for subseq:" end»
(else

(list-head (list-tail 1st start) (- len end»») »)

556 Appendix

; Return the position (base 0) of the first occurrence of elt in 1st.
(define position-helper

(let ((null? null?) (equal? equal?) (car car) (cdr cdr) (+ +)
(lambda (elt 1st num)

(cond «null? 1st) #f)
«equal? elt (car 1st» num)
(else (position-helper elt (cdr 1st) (+ num 1»» »)

(define position
(let ((position-helper position-helper)

(lambda (elt 1st)
(position-helper elt 1st 0) »)

Return 1st with all occurrences of elt removed.
(define remove

(let ((null? null?) (equal? equal?) (car car) (cdr cdr)
(cons cons))

(lambda (elt 1st)
(cond «null? 1st) '(»

«equal? elt (car 1st» (remove elt (cdr 1st»)
(else (cons (car 1st) (remove elt (cdr 1st»») »)

; Return the number of times elt occurs in 1st.
(define count

(let ((null? null?) (equal? equal?) (car car) (cdr cdr) (+ +))
(lambda (elt 1st)

(cond «null? 1st) 0)
«equal? elt (car 1st» (+ 1 (count elt (cdr 1st»»
(else (count elt (cdr 1st»» »)

; Return #t if item is a symbol or a number, #f otherwise.
(define atom?

(let ((symbol? symbol?) (number? number?)
(lambda (item)

(or (symbol? item) (number? item» »)

Return the first element in 1st that satisfies func, or #f if no
elements satisfy func.

(define find-if
(let ((null? null?) (car car) (cdr cdr))

(lambda (func 1st)
(cond «null? 1st) #f)

«func (car 1st» (car 1st»
(else (find-if func (cdr 1st»» »)

lmplementation 0/ Extensions 557

; Return the first element in 1st that does not satisfy fune, or #f
; if all elements satisfy fune.
(define find-if-not

(let ((null? null?) (not not) (ear earl (edr edr))
(lambda (fune 1st)

(eond «null? 1st) #f)
«not (fune (ear 1st») (ear 1st»
(else (find-if-not fune (edr 1st»» »)

; Return the number of elements in 1st that satisfy fune.
(define eount-if

(let ((null? null?) (ear earl (edr edr) (+ +))

(lambda (fune 1st)
(eond «null? 1st) 0)

«fune (ear 1st» (+ 1 (eount-if fune (edr 1st»»
(else (eount-if fune (edr 1st»» »)

; Return the number of elements in 1st that da not satisfy fune.
(define eount-if-not

(let ((null? null?) (not not) (ear earl (edr edr) (+ +)
(lambda (fune 1st)

(eond «null? 1st) 0)
«not (fune (ear 1st»)

(+ 1 (eount-if-not fune (edr 1st»»
(else (eount-if-not fune (edr 1st»» »

; Return 1st with all elements satisfying fune removed.
(define remove-if

(let ((null? null?) (ear earl (edr edr) (eons eons))
(lambda (fune 1st)

(eond «null? 1st) '(»
«fune (ear 1st»

(remove-if fune (edr 1st»)
(else

(eons (ear 1st) (remove-if fune (edr 1st»») »)

; Return 1st with all elements satisfying fune.
(define keep-if

(let ((null? null?) (not not) (ear earl (edr edr) (eons eons))
(lambda (fune 1st)

(eond «null? 1st) '(»
«not (fune (ear 1st»)

(keep-if fune (edr 1st»)
(else

(eons (ear 1st) (keep-if fune (edr 1st»») »)

558 Appendix

; Like assoe but return the first pair whose edr matches elt.
(define rassoe

(let ((find-if find-if) (equal? equal?) (edr edr))
(lambda (elt assoe-list)

(find-if (lambda (dotted-pair)
(equal? (edr dotted-pair) elt))

assoe-list) »)

every and any eaeh take a variable number of lists as arguments
and apply the funetion to those N lists using apply and map.
To make the reeursive eall, apply is used to eonvert a list of
argument lists into separate arguments.

Return final true return value if all sueeessive elements in lists
satisfy fune, #f otherwise.

(define every
(let ((null? null?) (ear earl (edr edr) (apply apply) (map map)

(eons eons) (member member))
(lambda (fune . lists)

(eond «member #t (map null? lists» #t)
«member #t (map (lambda (1st) (null? (edr 1st») lists»

(apply fune (map ear lists»)
(else

(and (apply fune (map ear lists»
(applyevery (eons fune (map edr lists»»» »)

; Return the first true value from applying fune to sueeessive
; elements in lists, or #f if no elements satisfy fune.
(define any

(let ((null? null?) (ear earl (edr edr) (apply apply) (map map)
(eons eons) (member member))

(lambda (fune . lists)
(if (member #t (map null? lists»

#f

(or (apply fune (map first lists»
(applyany (eons fune (map rest lists»») »)

Return result of applying fune to elements of 1st in the following
manner: fune is applied to the first two elements of 1st then to
that result and the third element, then to that result and the
fourth element, and so on until all elements have been applied.

(define aeeum-tail
(let ((null? null?) (ear earl (edr edr))

(lambda (fune 1st answer)
(if (null? 1st)

answer
(aeeum-tail fune (edr 1st) (fune answer (ear 1st»» »)

Implementation 0/ Extensions 559

(define aeeumulate
(let ((null? null?) (ear earl (edr edr) (aeeum-tail aeeum-tail))

(lambda (fune 1st)
(if (null? 1st)

(fune)
(aeeum-tail fune (edr 1st) (ear 1st») »)

; Return the elements that setl and set2 have in eommon.
(define interseetion

(let ((null? null?) (member member) (ear earl (edr edr)
(eons eons))

(lambda (setl set2)
(eond «or (null? setl) (null? set2»

I ())

«member (ear setl) set2)
(eons (ear setl) (interseetion (edr setl) set2»)

(else
(interseetion (edr setl) set2») »

; Return the elements that exist in either setl or set2.
(define union

(let ((null? null?) (member member) (ear earl (edr edr)
(eons eons))

(lambda (setl set2)
(eond «null? setl)

set2)
«member (ear setl) set2)

(union (edr setl) set2»
(else

(eons (ear setl) (union (edr setl) set2»» »)

; Return the elements that exist in setl but not in set2.
(define set-differenee

(let ((null? null?) (member member) (ear earl (edr edr)
(eons eons))

(lambda (setl set2)
(eond «null? set2)

setl)
«null? setl)

I ())

«member (ear setl) set2)
(set-differenee (edr setl) set2»

(else
(eons (ear setl)

(set-differenee (edr setl) set2»» »)

560 Appendix

; Return #t if all the elements in set1 exist in set2.
(define subset?

(let ((null? null?) (member member) (car car) (cdr cdr)
(lambda (set1 set2)

(cond «null? set1)
#t)

((null? set2)
H)

(else
(and (member (car set1) set2)

(subset? (cdr set1) set2»» »)

; Return a new set of item and the elements in set if item does not
; exist in set, otherwise return set.
(define adjoin

(let ((member member) (cons cons))
(lambda (item set)

(if (member item set)
set
(cons item set» »

The following code is a modification of a random function used by
Brian Harvey and Matt Wright in their text "Simply Schemen which
they obtained from an old version of the Scheme Library (SLIB)
written by Aubrey Jaffer.

random has been modified to allow an initial seed to be created
using init-random.

(define random 0)

(define (init-random seed)
(set! random

(let ((*seed* seed) (quotient quotient) (modulo modulo)
(+ +) (- -) (* *) (> »)

(lambda (x)
(let* «hi (quotient *seed* 127773»

(low (modulo *seed* 127773»
(test (- (* 16807 low) (* 2836 hi»»

(if (> test 0)
(set! *seed* test)
(set! *seed* (+ test 2147483647»»

(modulo *seed* x) »))

(init-random 1)

+,31-32
-,31-32
*,31-32
/,31-32
',62
',87
<,104,111
<=,104
),104,111
)=,104
=,104,115-116
1 to N relationship, 291
8-puzzle, 415
8-queens, 415
15-puzzle, 415

A

)l*search,417-418,422,426
abduction, 432
ahs,31
absolute address, 334-335
absrraction,15,38,285,511,521
accum-tail,221
accumulate,219-222
)lCM,414
actions, 439, 483
activation level, 498
act -layer, 505

INDEX

add-list,219
add-new-CD,96
add-paths,420
address, 66, 332, 334, 337
addressing modes, 334
add-to,441
add-to-end,80
adjoin,177
adjust-after,512
adjust-during,512
after, 513
)lI, see artificial intelligence
allele, 519
all-fifteen?,530
all-numbers,l44
all-numbers-alt?,210
all-numbers?-iter,247
all-numbers?-iter-bad,247
alpha-beta pruning, 418
alt-assoc,217
alt-new-balance,138
)lLU, see arithmetic logic unit
anchovy,114
and, 109-112

evaluation rules, 109
antecedent,432
any, 209-210, 213

with multiple lists, 212
append,77-79,99-100

562 Index

applicative operators, see also
functionals, 199, 503

apply, 35, 201
apply,201,219-220,222
apply-rule,439
apply-to-7,202
argument, 27, 30
arithmetic functions, 31
arithmetic logic unit, 332-333
array,331
artificial intelligence, 8, 411

philosophy,467
subfields,412

artificial neural networks, 496
artificial neuron, see unit
artist-CO-list,93
ASCII, 381
a*search,422
asexual reproduction, 520
assembly language, 331, 334

conditional expressions, 336-337
function calls, 337, 341
function definitions, 337, 341
numerical expressions, 335-336
recursive function calls, 342-343
recursive function definitions,

342-343
assoc,172-173,217
Association for Computing

Machinery,414
association list, 172-173
asynchronous communication, 382
atom, 61
atom?, 114
a*-tree-searc~422

attribute-name?, 299
attribute-value,300
attributes, 286
attributes, 301
auto, 269-273
average of maximums, 479, 482
avg,261-262
avg-square-test,510
awk,382

B

back propagation, 499, 506-508
back-prop, see back propagation
back-prop,509
backtracking, 323
backward chaining expert system,

438
bake, 490
baking,491
batch operating system, 383
batch processing, 375
batch scheduler

implementation,387
batch-schedule4 390
Bayes' role, 432
beer,285
best-first search, 417-418
best-first-search,419
bias, 498, 507
bias-&-weights,513
bifurcation,237-238
biggest,221
binary computers, 382
binary file, 381
binary function, 219
binaryinstructions,374
binary numbers, 516
binding, 40-41
biology,518
bit, 374, 382
blackboard, 440
blocked process, 379
blocks

of memory, 382
bottom-up design, 37-38
bottom-up parser, 323, 327, 330
branch, 333, 336, 352

in a tree, 181
breadth-firstsearch,185,417-418,420
breadth-first traversal, 185
breadth-first-alt,420
breadth-first-search,186-187
browser, 4, 383
buffers, 377

build up approach, see recursion,
build up approach

byte, 382

c

C,266
C++ , 266-267
cache, 333
CAD, see computer-aided design
calc-weights,509
caller/callee responsibilities, 339
call-with-current-continuation,

255,275-276,279,347,441
CAM, see computer-aided

manufacturing
car,67,98-99
car and cdr

combinations, 67, 75-76
origin of names, 66
pronunciation, 76

card readers, 374-375
card-suit,225
card-value,225
Cartesian product, 297, 312
CASE, see computer-aided software

engineering
caseinsensitive,42
CD, see conceptual dependency or

compact disk
cdr,67,98-99
cDs,163
CDs-within-category,162,164
CD-within-CD-list,l64
center of gravity, 479
center of mass, 479,482
central processing unit, see CPU
chaos, 237-238
cheesecake, 487
cheesecake,490
chess, 414, 416, 418
children,181
Chineseroom,467-468
chips, 481
chocolate,277

choose-from,523
chromosome,9,518

encoding, 520
selection,519

dass variable, 267, 271
dasses, 266
dients, 384
dosure, 264

in functions, 288
code generation, 331
code modifiability, 267
code optimization, 364
code reuse, 267, 521
code-gen-built-in-func,358
code-gen-expr,349
cOde-gen-expr-list,347
code-gen-func-def,355
cOde-gen-if,352-353
cOde-gen-user-func,357
cOde-to-english-letter,173-174
coherence,461
comma operator, 87
comma-at-sign operator, 88
comments

in code, 31
Common LIsp, 255
commonsense knowledge, 433
communication protocols, 377
compact disk (CD), 64

data structure, 161
database,92

comparator,332-334
comparisons

with more than two items, 110
compiler, 7, 319

components,319-320
compiling compilers, 344
compressedfile,381
computer, 1

internals, 332
computer architecture, 10
computer graphics, 9
computer science, 5
computer system, 3-4, 285, 373-374
computer vision, see vision

Index 563

564 Index

computer-aided design, 314
computer-aided manufacturing, 314
computer-aided software

engineering, 314
computing with words, 533
conceptualdependency,429,458
cond,107-108,110-111,235

with multiple actions, 235
condition

without action, 163
condition,439,483
condition-action pairs, 107
conditional expressions, 103
conditional probability, 432
conditional-test,352
conflict resolution, 436-437
connection weights, 496, 498
connectionist models, 496
cons,l72
cons, 77, 79,98-99, 148
cons cells, 97-98, 116,362-363

when created, 116
consequent, 432
constant, 104
constrained join, 298, 305
contains?,442
contains-any?,442
context switch, 385-386, 403
continuation,275,279
control in expert systems, 436-437
control operations, 103
convergence, see also population

convergence and gene
convergence, 520

convert,300,302
count, 89-90
count-atoms, 153
count-if,203,207
count-if-not,207
counting backward, 245
CPU, 10, 14,373-374,376
CPU usage, 379-380
CPU utilization, 386, 391
CPU work, 375
CPU-bound, 375

CPU-bound jobs, 385
create-card,225
creator function, 175
crisp versus fuzzy values, 476
critical sections, 378
cross-compiler, 319, 345
crosslink,524
crosslinking, 9,518-520
crossover,524
crossover point, 519
crosspair,524
cryptarithmetic, 415
curly,265
CYC, 434, 458

assertions, 434
concepts, 434

D

dances-sentence,83
dangling else, 329
data,61
data,441
data abstraction, 349-350
data driven expert system, 438
data independence, 296
data integrity, 170, 296
data mining, 314
data representation, 362
data structure, 61, 169

using lists, 64
database, 7, 285
database management system, 7,285
database system, 285
OBMS, see database management

system
Oe Morgan, 112
deadlock,377-378

in distributed systems, 401
preventing,378-379

decode,528
deduction, 432
deep-reverse,156,158
deep-rev-map,200
define,40, 43-44, 63, 278

definition
function versus variable, 45

definitional pseudo code, 131, 135
defuzzi~,477,479,482,486
defuzzify,486
degrees of freedom, 464
delete,441
DELTA, 414
demand paging, 380-381
DENDRAL, 414, 436
department-list,256
department-name,256
depth,466
depth-first search, 183,417-418,420
depth-first traversal, 183
depth-first-al~420

depth-first-search,184-185
derivation, 322

leftmost, 326
rightmost, 327

descent,509
design

for modifiability, 175, 184
destructive operators, 503
device drivers, 374
difference,51
digitallibraries, 461
Dijkstra, Edsger, 378
dilbert,263
dining philosophers problem, 378
directories,381
discard,443
disk drive, 6, 374-375
diskless node, 376
dispatching, 267
display, 231-233
distributed information, see

distributed knowledge
distributed knowledge, 501
distributed operating system, 376,

384,401
division-name, 256
do,244,279

body,247
evaluation, 244

general uses, 248
recursive equivalent, 245
repeating actions, 245
repetition through lists, 246
syntax, 244

Doctor,468
dogbert,263
dO-loop,245
do-loop- 2,245
done,491
dotted. list, 99-100,173

internal representation, 99
draw,444
draw-card,442
dummy record, 292

E

EBCDIC,381
edge detection, 464
editing,381
effectors, 464
electronic maH, 4, 382
element-after, 93
Eliza,468
else, 108
elts,262
e-mail, see electronic maH
embedded recursion, 139, 243
employees,256
empty list, 61-62
encapsulation, 263
encrypted file, 381
english-letter-to-code,171,

173-174,176
english-to-code,171
environment, 264, 364
epoch, 499, 510
eq?,116
equal?,114-116
equality predicates, 115
eqv?, 115-116
error measurement, 499
error messages, 33
error signal, 507-508

Index 565

566 Index

error-sig-inne~508

error-sig-output,507
Escher, M.C., 465
eval,239,268,300
evaluation

stopping, 62
evaluation rules, 35, 40, 268
evaluator,35
even?,l04
events,458
every, 209-210, 212

with multiple lists, 212
evolutionary system, 518
excitatory connection, 498
exdusive or, 111,502-503,515
exhaustive search, 417
existential quantifier, 431
exit case, 129, 134
exit function, 276-279
expand,392
expand-deck,451
expert system, 8, 412, 414, 418,

436-437
actions,436
control, 436-437
database,437
explanations, 437
implementation, 438

expert system shells, 437
expert-shell,439
exponentialtim~415
expression, 35
expt,31
extended relational database system,

314
extent,49

global variable, 49
parameter, 49

F

#f,l04
fact, 141
fact-iter,248
factorial,140,160

false,104
fast, 269-271,273
fault tolerance, 10
fcfs-scheduling,394
field

ofrecord,362
fifth,67
Fikes, Füchard, 435
file, 381

binary, see binary file
compressed, see compressed file
encrypted, see encrypted file
object, see object file
text, see text file

file access, 383-384
file server, 376, 384
file system, 373, 381
filter, 148-149,250-251
find, 421
find-dept,257
find-employee, 257-258, 280
find-if, 203, 205, 207, 217
find-if-not,207
firing rules, 437
first, 66-67, 128
first dass object, 262, 364
first-come, first-served scheduling,

383,385,391,394
first-greater,127-128
fit, 525
fit8,530
fitness, 518-519
fitness measurement, see fitness test
fitness test, 518
fixed-print,309
FLIP, see fuzzy logic inferences per

second
floating point unit, 376
for-each, 199-201,232, 265,310
form letters, 84
FORTRAN, 343

compiler, 343
forward chaining expert system, 438
forward propagation, see

propagation

fourth,67
frame pointer, 339, 354
frames,430
Fra~in,j\refha,82

free variable, 138
FROM, 286, 297

implementation, 304
from,307-308
function, 29, 262

as argument, 199, 202, 262
as return value, 263
binary,219
creating, 43-44
definition versus call, 45
evaluation, 44
helper, 141
shadowing,51
user-defined, 43
with variable number of

parameters, 212, 261
function calls

versus lists, 62
function composition, 35
function definition, 43, 261
functional programming, viii, 266
functionalist, 467
functionals, 199, 503

writing, 202
fuzzify,477-478
fuzzify,482
fuzzy applications, 480
fuzzy expert system, see also fuzzy

system, 477, 480
implementation, 481

fuzzy granulation, 533
fuzzy inferencing, 478, 481
fuzzy logic, 8, 476, 533
fuzzy logic inferences per second, 481
fuzzy logic system

problems, 531
fuzzy microprocessor, 481
fuzzy rules, 478

representation, 482
fuzzy sets, 476, 518

combining, 479

representation,481
fuzzy subway system, 480
fuzzy system, see also fuzzy expert

system, 478
compared with neural networks,

500
extensions, 531-532

fuzzy versus crisp values, 476
fuzzy-eval,487
fuzzy-genetic systems, 532

G

g cost function, 417, 423-424, 428
r(gamma)functions,476
game playing, 414
gen-algo,522
gene, 519
geneconvergence,526
gene pool, 519
General Problem Solver, 413, 435

operators, 435
preconditions, 435

generation, 518, 521
generation, 522, 527
genetic algorithm, 9, 518, 534

extensions, 531-533
problems, 532

genotype,518,528
gentemp,351
get-action,450
get-args,357
get-body,356
get-call-name,357
get-condition,350
get-else-action, 351, 353
get-first-arg,359
get-func-name,356
get-number,234
get-params,356
get-random-element,73
get-second-arg,359
get-then-action,350
global maximum, 417
global variable, 49,138

Index 567

568 Index

goal driven expert system, 438
goal state, 416
goals, see natural language

processing, goals
Gopher,383
GPS

see General Problem Solver, 413
grammar, 321

LL,330
LL(1),326
LR, 327, 330
productions, 322
recursive, 322-323
rules,322
start symbol, 322

graphical user interface, 268
graphics,314
graphics toolkit, 268
graphs,429

versus trees, 429
grounding of symbols, 467
guess,527
GUI, see graphical user interface

H

h cost function, 417, 423-424, 428
Hapkido,xi
hard selection, 519
hardware, 3
has-3,204
has-two-args?,359
heavyweight process, 402
Hebb, Donald, 502
Hebbian learning, 499, 502
Hebbian rule, 502
hedge,477
helper function, 141
heuristic, 418
heuristic search, 418
hidden layer, 497
hidden units, 497
hierarchical database system, 290, 293
hierarchicalrepresentation,190
higher-note,119

high-levellanguage, 6, 319, 343
hill-climbing,417-418
HTML,4
hypertext, 4

I

if, 103, 110-111
nested, 105, 111

immediate address, 335
imperative programming, viii, 266
inclusive or, 111
increasing-digits,136
indexed,350
indexed address, 334-335
indirect,350
indirect address, 334-335
induction, 431
inference, 457
inference engine,437
infinite, 243
infinite loop, 243
infinite-iter,244
infix,l84
info, 390
information filtering, 461
information granulation, 533
information retrieval, 461
inheritance,267, 272, 430
inhibitory connection, 498
initial state, 416
initialize,452
injera,459
inner loop, 160
innernode

in a tree, 181
inner-berry,276
input, 231, 233
input devices, see 1/0 devices
input layer, 497
input set, 499
input units, 497
INSERT, 286
insert, 225, 419, 522
insert-card,l65

insert-iter,253-254
insert-tuple,310-311
insertion sort, 165, 224
instance, 266
instance variable, 266-267, 271
integer?, 104
integer division, 33
intelligence, 411
interactive operating system, 383
international currendes, 531
Internet, 4, 469
interpreter, 7, 30, 319, 436
interseetion, 177
intersection, 177-178,216-217
intersection-al~217

interval, 118
in-the-dark-sentence,83
inversion, 521
investment, 130
1/0,231
1/0 devices, 373, 376
1/0 work, 375
I/O-bound,375
I/O-bound jobs, 385
is-addition?,359
iS-built-in-func?,349
is-comparison?,359
is-flush?,227
is-func-def?,349
is-if?,349
is-negation?,359
is-royal-straight?,227
is-straight?,167
is-straight-new?,226
is-subtraction?,359
items-after,95
items-before,94-95
iteration, 243

Scheme versus Pascal and C, 247
iterative loops, 244

J

Java, 266-267
JFN,337,354

job, see also process, 375
job control cards, 375
job priority scheduling, 385
jOb-info, 264
join

on relations, 287, 297, 304
join, 305, 307
join condition, 298
junk mail, 84

K

KDD, see knowledge discovery in
databases

keep-if, 207, 217
keyboards, 373-374
keyword,42
knowledge acquisition, 437
knowledge discovery in databases,

314
knowledge engineering, 437
knowledge representation, 314, 429

L

L functions, 476
A (lambda) functions, 476
label, 337, 351
lambda, 215, 262,364
lambda expressions, 215-216, 218
LAN, see local area network
language-based editor, 319
larry,265
last, 68-69,427
lawyers,433
layer

in neural network, 496
leaf,181
leaf?,193
leap of faith, see recursion, leap of

faith
learning

in neural networks, 498
learning failures, 499
learning rate, 506-507

Index 569

570 Index

left-child,421
leftmost derivation, 326
left-side,184,421
Lenat, Doug, 434
length,66,177
let, 53, 63

syntax, 53
let expressions, 53
let*,55,63
lex, 344
lexieal analysis, 320
lexieal closure, see also closure, 264,

351
light

in vision, 466
lightweight process, 402
line printers, 374
linguistic variables, 477, 482
list, 61

creating,76
element, 61
elements versus function

arguments, 73
extracting element from, 68
extracting random element from, 72
extracting section of, 69
internal representation, 97
number of top-level elements, 66
templates, 87
top-level element, 65-66
versus function call, 62

list, 77-80,99
list?, 114
listify,202
list-ref,68
list-tail,69
litera!, 334
literal,349
LL grammar, 330
LL(1) grammar, 326
local area network, 383
local maxima, 417
local minima, 500, 502
local state, 263
local variable, 53

logic programming, 266
Logic Theorist, 413
logical records, 382
logistic difference equation, 237
lookaheadtoken,323
loop,160
lottery, 531
lower-card?,165
lower-value?,226
LR grammar, 327, 330
LR parser, 327, 330
LISP, 29, 62, 66
LISP workstations, 414
Lukasiewiez, Jan, 480

M

machinelanguage,6, 15,331,373
machine learning, 8, 412
Macintosh operating system, 377
macros,268
MACSYMA,414
magie square problem, 528, 530
magnetic tape, 375
main system memory, 373
make-form-letter,86-87
make-fuzzy-triangle,481
make-gentemp,351
make-job,392
make-layer-weights,513
make-list,513
make-paths,420
make-string,309
make-table,355
map,199-200,203

with multiple lists, 211
mapping, 170
mapping function, 148, 199-200, 250,

503
Marr, David, 465
max,31-32
max-of-func,202
McClelland, James, 502
McCullogh, Warren, 502
means-ends analysis, 413, 435, 438

member,89,l14,177
membership grade, 476
membership-grade,483-484
memory, 373, 376
memory management, 380
memory protection, 373, 377
Mercator projection, 199
message passing, 267, 376, 401, 481
Metheny, Pat, 64-65, 92, 161
method,267
microprocessors,481
microsecond, 386
Microsoft Internet Explorer, 383
microworlds, 433
mille, 450
Mille Bornes, 439

database,44O
driver, 449
rulebase, 444
sampie run, 452

millisecond, 386
min,31-32
mini Scheme,331
minimax, 418
Minsky, Marvin, 502-503
missionaries and cannibals, 416, 426,

518,520
data representation, 426

moe,265
momentum,506-507,514-515
monitor, 375
motherboard,10
motorcycle,274
mouse, 373-374
move-done?,442
move-people,427
multimedia, 401
multiple inheritance, 267
multiprocessor system, 402
multiprogramming, 375
multitasking operating system, 384
multitasking scheduler

implementation, 391
multitask-scheduler, 393, 395

multithreaded operating system,
402-403

multivalued logic, 8, 475
musical intervals, 117
musical scale, 117
mutate,525
mutation, 9, 518-520
MYCIN, 414, 436

N

N to M relationship, 292
Narell, Andy, 64-65, 92, 161
naturallanguage, 6, 412
naturallanguage processing, 8, 412,

456
cunent uses, 461
goals, 460
plans, 460-461
translating Russian to English, 413

Necker cube,465
negative?, 104
nested if, 105, 111
nested list, 64
nested loop, 160-161, 255
net input, 497
net-change,511
Netscape Navigator, 383
network,4,10,383,401
network database system, 291

queries, 294
network file system, 376
network operating system, 376,

383-384
neural net, see neural network
neural network, 8,496,518, 534

advantages, 502
categorization, 501-502, 532
classification, 501-502
compared with fuzzy systems, 500
disadvantages, 502
extensions, 531-533
generalization,500-502,532
graceful degradation, 501
handling incomplete data, 501-502

Index 571

572 Index

implementation,503
learning, 498
problems, 532
representation, 503-504
training, 499, 520
tuning, 533

neuro-fuzzy system, 532
neuro-genetic system, 533
neuron replacement, 468
neurons, 496, 500
new-balance,130
new-element,95
Newell, Allen, 413, 435
new-equal?,213
newline,231-232
Nilsson, Nils, 435
NLP, see naturallanguage processing
node

in a tree, 181
in neural network, see unit

no-duplicates,486
no-loops,388
nonberry,278
non-#f,104
nonpreemptive scheduler, 379
nonpreemptive scheduling, 385, 391,

394
nonterminals, 322
normal forms, 289
normalization, 289, 296
Norman, Donald, 502
not, 109-110, 112
NP-hardproblems,415-416
null?, 114, 128,177
number?,104
number-of-times,236
numbers

in Scheme, 29
nUmber-)string,309
numerical functions, 31

o

object code, 377
object file, 381

object-oriented database system, 314
object-oriented programming, 266

benefits, 267
objects,266
odd?,104
off-by-one errors, 71
one-per-line,232
OOP, see object-oriented

programming
operand, 334
operating system, 3, 5, 373
operator, 416
optional arguments, 261, 264
or,109-112

evaluation rules, 109
otherwise clause, 108
outer loop, 160
output, 231
output, 348
output devices, see 1/0 devices
output layer, 497
output units, 497
output-label, 353
outputs, 483
overfit, 500, 502
overloading, 331

p

II (pi) functions, 476
pages,380
pair, 172
pair, 441
Pair expected error, 67-68, 70, 78, 100,

127-128
Papert, Seymour, 502-503
parallel distributed processing, 496,

502
parallel machines, 365
parallel processor, 10
parallelization, 402
parameter, 26, 43, 261
parent,181
Parry,468
parse tree, 322, 325

parsing, 321, 323
bottom-up, see bottom-up parser
predictive, see predictive parser
recursive descent, see recursive

descent parser
shift-reduce, see shift-reduce parser
top-down, see top-down parser

Pascal, 169,266
pattern of activation, 501
PDP, see parallel distributed

processing
peephole optimization, 364
Perceptrons,502
perceptrons, 502
peripheral device, 6, 374
perl, 382
person-info, 263
pheno~e,518,528
physical records, 382
physics, 433
pick-highest,398
Pitts, Waller, 502
pizza, 114
planning, 412, 463
plans, see naturallanguage

processing, plans
play,443
play-card,443
play-or-discard,450
pointer, 97, 116, 363
poke~119,164,225

hand order, 227
poker-value,121
pOker-value-new,228
polymorphic nxnctions, 267, 330-331
polynomial time, 415
population, 518
population convergence, 520, 526
population growth, 237
population-growth,237
population-growth-iter,246
pop-vals,356
portability, 377
position

versus element number, 68

position, 89-90, 114
positive?, 104
positive-filte~150

positive-filter-alt,207
positive-filter-iter,251
possibility,480

versus probability, 480
possible-choices,423
Post, Emil, 436
postfix, 184
post-inc,350
post-increment indirect address,

334-335
pre-dec,350
pre-decrement indirect address,

334-335
predicate

in logic, 430
predicate calculus, 430
predicale function, 103
predicted-cost function, 417
predictive parser, 323, 326
preemptive scheduler, 379
preemptive scheduling, 385, 391, 396
prefix,l84
pretty printer, 319
primal sketch, 465
print-and-square,232
printers, 373-374, 376
print-outputs,512
print-relation,310
priority,390
priority of jobs, 385-386, 398
priority scheduling, 398
priority-scheduling,398
probabilistic reasoning, 432, 475
probability, 432, 480

versus possibility, 480
problem solvers

abstract, 435
critics, 435

problem solving, 8, 412-413, 435
procedure, 30
process, 379, 402
process management, 373, 379

Index 573

574 Index

process scheduler, see scheduler
process states, 379
processor,lO
production

recursive, 322
production rules, 436
production systems, 436
program counter, 332-333
programming language, 15
programming paradigms, 266
programming style, 51, 139
PROLOG, 266
PROLOG-like database systems, 314
prompt, 31
propagate, 506
propagation, 496-497, 505
property inheritance, 430
proprioceptive sense, 463
prosody, 463
PROSPECTOR,414
protection, see memory protection

and resource protection
pruning, 414
pseudo code, 20
punch cards, 374
push-vals,356

Q

quantum, 376, 384-386
quasiquote,87
querylanguage,285-286
quote, 62-63
quoting lists, 62
quoting variables, 63

R

RAM, see random access memory
random,72-73
random access, 373, 375
random access memory, 332, 373
random -net, 513
random-pop,521
rassoc,I72-173

ratbert,264
read, 233-234, 239
read only memory, 373
read-and-apply,234
read-eval-print,240
read-eval-print loop, 239
read-eval-print-with-exit,240
read-only memory, 332
ready queue, 379, 384
ready time, 386
ready-jobs, 390
ready-time, 390
real?, 104
realtime operating system, 383
reasoning,431
recognition,463
record

in database system, 290-291
record structure, 362
record type

in database system, 290
recursion, see also recursion, 125-127,

181
build up approach, 148, 155-156
car-cdr, 152, 154
embedded,139,243
leap of faith, 148, 152-153, 155
linear, 152
nonlinear, 152
prescriptive method, 134
tail,139-140,244
through lists, 142-143
through numbers, 131, 135
to create lists, 148-149
tree,152

recursive call, 126, 131
recursive case, 129, 135
recursive definition, 35, 126
recursive descent, 127, 133, 140
recursive descent parser, 323
recursive function, 126, 129, 131, 134
recursive unwind, 133
reduce, see also shift/reduce, 327
reduce/reduce conflict, 329-330
redundancy,501

refinement, 23, 38, 135
register windows, 338
registers, 333

conflicts, 337
saving,338

regular expressions, 320
relational database system, 286, 296

implementation,296
relations, 286, 296

representation,298
remainder, 31, 33
remote access, 384
remove,89
removel,391
remove-if, 203-205,207, 216
remove-if-not,see keep-if,207
remove-one,441
reordering,521
repeat, 392
repeat-action?, 442
repeat-card,451
repeating actions, 245
repetition through lists, 246
reset,441
resource protection, 377
resources, 376
response time, 379-380, 385-386
rest, 66-68, 128
restaurant-advisor,193
RET,337
return value, 338
returning functions, 263
reverse, 89-90
reverse Polish notation, 184
right-child,421
rightmost derivation, 327
right-side,184,421
robotcommands,16
robotics, 8, 412
robots,463

acting, 463-464
movement, 464
planning, 463
recognition,463

Rolling Stones, 64-65, 92,161

ROM, see read only memory
root,181
root, 184, 421
Rosenblatt, Frank, 502
round,523
round-robin,396
round-robin scheduling, 385, 396
row-to-col,529
row-to-diag,529
RP.N.,184
Ruby,431
rule of extended middle, 480
rulebase,437
rule-of-thumb,418
Rumelhart, David, 502
run-batch-job,388-389
run-mt-job,393,397
Russell, Bertrand, 413

s
safe-sum,145
SAM, 457-458, 467
same, 213
satisfied?,439
scheduler, 376, 379, 384, 387

implementation, 385
scheduling algorithms, 379,385,387
scheduling problem, 422
Scheme,266
Scheme compiler, 346

adding new functions, 363
adding new types, 362
adding special forms, 363
built-in function calls, 357
code generation, 346
define expressions, 354
error checking, 346
error handling, 347
function caUs, 356
handling scope, 363
if expressions, 350
lexical analyzer, 346
parser, 346
registers, 347, 357

Index 575

576 Index

return value, 347-348
semantic analysis, 346
symbol table, 348, 354
symbols, 347

Schwarzenegger, Arnold, 72
scope,49

global variable, 49
let variable, 53
parameter, 49

scripts, 457, 460
search,416

A>(o search, see A>(o search
best-first, see best-first search
breadth-first, see breadth-first

search
comparison, 418
depth-first, see depth-first search
exhaustive, see exhaustive search
heuristic, see heuristic search
hill-climbing, see hill-climbing
minimax, see minimax
uniform-cost, see uniform-cost

search
search path, 416
search space, 416
search tree, 416
Searle, John, 467-468
second,67
secondary storage, 374
SELECT, 286, 296

implementation, 303
select, 304
selection process, 518
selector function, 175, 184,301
select-parents, 523
semantic analysis, 330-331
semantic networks, 429

relations, 429
semantics, 73,456,460
sequential access, 373
set, 176-178

in database system, 291
set!, 41, 278
set-car!,311
set-cdr!,311

set-differenc~177-178

s-expression, 35
shading

in vision, 466
shadowing, 49-51
shared memory, 376, 384, 401
shared variable, 267, 270-271
shift, 327
shift/reduce conflict, 329
shift-reduce parser, 327, 329
shift-reduce parsing, 328
shift-reduce table, 327-328
short-CPu-scheduling,399
shortest CPU time scheduling, 399
shortest-CPU-tirne, 399
short-list?,209
SHRDLU,413
side-effects, 51, 139,235,244,247,

310-311
sig, 505
sigmoidal function, 498, 505
Simon, Herbert, 413, 435
simulation, 467-468

versus reality, 467
single-job operating system, 383
situation-action pairs, 436
slots, 430, 458
srnall,269-271,273
Smalltalk,266
soft computing, 8, 475
soft selection, 519
software, 3
SOPHIE,414
sort

insertion, 165, 224
sort, 224, 522
sort-hand,165
sorting, 165,224
sort-iter,253
soup

cream of asparagus, 13
spaghetti code, 437
special form, 63,104,107, 109,201,

268
speech recognition, 462

speech synthesis, 462
spooling, 377
sQL, see structured query language
sqrt,31
square, 44
square-roots,149
square-roots-iter,250
square-roots-iter-correct,251
square-roots-mapping,200
smck,332-333,338-339
smck overflow, 244
smck pointer, 332-333, 339
smte,416
stereo disparity

in vision, 466
stock market, 531
stopping evaluation, 62
strawberry,276
string,232
string-length,309
STRIPS, 435
structured query language, 286
sTK,268
studbert,264
style, 56
subdass, 267, 272
sublist, 62
subseq, 69-71

templates, 72
subset?,177-178
subset?-iter,279
substring,309
subsymbolic system, 501-502
subtree, 181
sum-abs,45,220
sum-diffs,530
sum-digits,133
sum-digits-ite~249-250

sum-facts,161
sum-list,143
sum-list-alt,201
sum-rows,529
sUN,376
superdass, 267, 272
supervised learning, 532

swapping, 380
sweepsmkes, 84
syllogism, 432
symbol, 29,42, 63

naming rules, 42
versus function name, 484

symbol?, 114
symbol table, 321
symbol-address,348
symbolic system, 500-502
symbol->string,309
synchronous communication,

382-383
synmctical analysis, 321

T

#t, 104

tactile feedback, 463
tactile input, 463
tail recursion, 139-140,244
tail-factorial,140
Takagi, sugeno, and Kang, see TSK
talk, 382
mpe drives, 374, 376
mrget set, 499
task

see process, 384
tax-amount, 46, 48, 53-55
tax-rate, 48
Td/Tk,268
terminals, 322, 373-374
Terminator, 72
text file, 381
text formatter, 319
theory,5
theta join, see constrained join
third,67
thirty?,525
thrashing, 380
thread,402
threshold function, 498, 504
throughput, 375, 379-380, 386-387
tic-tac-toe, 418
time sharing, 6

Index 577

578 Index

time slice, see quantum
times,390
timesharing, 375
timesharing operating system, 375,

380,383,385
to-end,394
token, 320-321
top-down design, 38
top-down parser, 323
top-down parsing, 327
top-level element, 65-66
total-input, SOS
toy worlds, 433
train, 511
trainer, 512
training, 499
training set, 510
transform,485
trans pose, 507
transpose, 508
traveling salesman problem, 415--416,

518,520
tree, 181, 290

binary,181
eomplete binary, 181
hierarehieal informa tion, 190
N-ary,181
representations, 181-182, 184
ternary, 181

true,104
true/false values, 103
truncate,31,132
TSK,487
TSK systems, 532-533

problems, 531
tupies, 286
tuples,301
Turing, Alan, 468
Turing test, 468--469
turnaround time, 379-380, 383,

385-386,391
tweaking, 532
type dash, 33
type-eheeking,73, 104,330

u

unbound variable, 40
uneonditional probability, 432
uneonstrained join, 297, 305
undefined variable, 41
uniform-cost seareh, 417-418
union, 177
union, 177-178,216
union-alt, 216
unit

in neural network, 496
universal quantifier, 431
UNIX, 382
unquote,87
unquote-splicing,88
unsupervised learning, 532
update, 510
USENET,383
utilities,382

v

vanilla, 276
variable, 16,29,40

changing the value, 41
free,138
global, 49, 138
loeal,53
negate,41
shadowing,49-51
undefined, 41

vectors,503
vehicle,272-273
virtual memory, 380
vision, 8, 412, 464

world knowledge, 465
Von Neumann, 333

arehiteeture,333

w
WAlS, see Wide Area Information

Service
wait time, 379-380, 386

W AN, see wide area network
Web, see World Wide Web
WHERE, 286, 297-298

implementation, 299
where,301
Wide Area Information Service, 383
wide area network, 383
Winograd, Terry, 413
Wirth, Niklaus, 85, 169
word,374
word processors, 462
working memory, 436
world knowledge, 433, 460, 465
World Wide Web, 4, 383
write, 231-233, 239
writing style, 56
WWW,seeWorld Wide Web

x

XCON,414
XOR, see exclusive or

y

yacc,327,344
yes-no,235
Yet Another Compiler Compiler, see

yacc

z
Zadeh, Lotfi, 480
zero?, 104

Index 579

COLOPHON

I originally wrote the beginning chapters of this book using Common LISP. For a
programming language, Common LISP offers a great deal. However, Scheme is
better suited and more popular for a first language. Many of the extensions I
added to Scheme's built-in functions are based on Common LISP functions.

Rather than rewrite all the examples in the text, I wrote a filter using a UNIX
sed script to translate the Common LISP code into Scheme. Where language
differences existed or language style required a different approach, I used condi
tional text within the book's source. Thus I produced two books at the same time;
one in Common LISP and another in Scheme. If there is a demand in the future, I
will publish the Common LISP version.

This text was typeset using troff, eqn, and pie on a Sun Enterprise server.
These tools are challenging to use, but by creating asound collection of macros,
the text was relatively easy to produce and adjust stylistically. However, if I had
to do it all over again, I' d use different tools.

UNIX utilities were used extensively to produce this text. All the code exam
pIes are preprocessed to embolden the built-in functions and extensions to the
language. Each chapter was processed through aseries of filters to produce
postscript output. Index and table of contents information was redirected to one
file and postscript output to another. A makefile was used to handle the com
plexities of formatting issues. Here is an example to format one chapter:

sed -f scheme-translation chapter I sed -f embolden-functions I
pic I eqn I troff -ms 2> index-file> postscript-output

The index was produced using aseries of UNIX utilities. A multikey sort
arranged the index entries in the proper order and then an awk script produced
the final index file to be typeset with troff.

The main body of the text is typeset in 10 point Palatino. The code examples
and function names are given in 9 point Courier. Section headings and margin
notes are set in Helvetica. The page headers are in 10 point Times bold italic.
Chapter titIes are in 24 point Bookman.

