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Preface

This volume contains the papers selected for presentation at the Seventh Inter-
national Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft
Computing (RSFDGrC’99) held in the Yamaguchi Resort Center, Ube, Yam-
aguchi, Japan, November 9-11, 1999. The workshop was organized by Interna-
tional Rough Set Society, BISC Special Interest Group on Granular Comput-
ing (GrC), Polish-Japanese Institute of Information Technology, and Yamaguchi
University.

RSFDGrC’99 provided an international forum for sharing original research
results and practical development experiences among experts in these emerging
fields. An important feature of the workshop was to stress the role of the integra-
tion of intelligent information techniques. That is, to promote a deep fusion of
these approaches to AI, Soft Computing, and Database communities in order to
solve real world, large, complex problems concerned with uncertainty and fuzzi-
ness. In particular, rough and fuzzy set methods in data mining and granular
computing were on display.

The total of 89 papers coming from 21 countries and touching a wide
spectrum of topics related to both theory and applications were submitted to
RSFDGrC’99. Out of them 45 papers were selected for regular presentations
and 15 for short presentations. Seven technical sessions were organized, namely:
Rough Set Theory and Its Applications; Fuzzy Set Theory and Its Applications;
Non-Classical Logic and Approximate Reasoning; Information Granulation and
Granular Computing; Data Mining and Knowledge Discovery; Machine Learn-
ing; Intelligent Agents and Systems.

The RSFDGrC’99 program was enriched by four invited speakers: Zdzis�law
Pawlak, Lotfi A. Zadeh, Philip Yu, and Setsuo Arikawa, from Soft Computing,
Database, and AI communities. A special session on Rough Computing: Foun-
dations and Applications was organized by James F. Peters.

An event like this can only succeed as a team effort. We would like to ac-
knowledge the contribution of the program committee members and thank the
reviewers for their efforts. Many thanks to the honorary chairs Zdzis�law Pawlak
and Lotfi A. Zadeh as well as the general chairs Setsuo Ohsuga and T.Y. Lin.
Their involvement and support have added greatly to the quality of the work-
shop. Our sincere gratitude goes to all of the authors who submitted papers.
We are grateful to our sponsors: Kayamori Foundation of Informational Sci-
ence Advancement, United States Air Force Asian Office of Aerospace Research
and Development, Yamaguchi Industrial Technology Development Organizer,
for their generous support. We wish to express our thanks to Alfred Hofmann
of Springer-Verlag for his help and cooperation.

November 1999 Ning Zhong
Andrzej Skowron

Setsuo Ohsuga
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Decision Rules, Bayes’ Rule and Rough Sets

Zdzis�law Pawlak

Institute of Theoretical and Applied Informatics
Polish Academy of Sciences

ul. Ba�ltycka 5, 44 000 Gliwice, Poland
zpw@ii.pw.edu.pl

Abstract. This paper concerns a relationship between Bayes’ inference
rule and decision rules from the rough set perspective.
In statistical inference based on the Bayes’ rule it is assumed that some
prior knowledge (prior probability) about some parameters without
knowledge about the data is given first. Next the posterior probability
is computed by employing the available data. The posterior probability
is then used to verify the prior probability.
In the rough set philosophy with every decision rule two conditional prob-
abilities, called certainty and coverage factors, are associated. These two
factors are closely related with the lower and the upper approximation
of a set, basic notions of rough set theory. Besides, it is revealed that
these two factors satisfy the Bayes’ rule. That means that we can use to
data analysis the Bayes’ rule of inference without referring to Bayesian
philosophy of prior and posterior probabilities.

Keywords: Bayes’ rule, rough sets, decision rules, information system

1 Introduction

This paper is an extended version of the author’s ideas presented in [5,6,7,8].
It concerns some relationships between probability, logic and rough sets and it
refers to some concepts of �Lukasiewicz presented in [3].

We will dwell in this paper upon the Bayesian philosophy of data analysis
and that proposed by rough set theory.

Statistical inference grounded on the Bayes’ rule supposes that some prior
knowledge (prior probability) about some parameters without knowledge about
the data is given first. Next the posterior probability is computed when the
data are available. The posterior probability is then used to verify the prior
probability.

In the rough set philosophy with every decision rule two conditional proba-
bilities, called certainty and coverage factors, are associated. These two factors
are closely related with the lower and the upper approximation of a set, basic
concepts of rough set theory. Besides, it turned out that these two factors satisfy
the Bayes’ rule. That means that we can use to data analysis the Bayes’ rule
of inference without referring to Bayesian philosophy, i.e., to the prior and pos-
terior probabilities. In other words, every data set with distinguished condition

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 1–9, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



2 Zdzis�law Pawlak

and decision attributes satisfies the Bayes’ rule. This property gives a new look
on reasoning methods about data.

2 Information System and Decision Table

Starting point of rough set based data analysis is a data set, called an information
system.

An information system is a data table, whose columns are labelled by at-
tributes, rows are labelled by objects of interest and entries of the table are
attribute values.

Formally by an information system we will understand a pair S = (U,A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a ∈ A we associate a set Va, of
its values, called the domain of a. Any subset B of A determines a binary rela-
tion I(B) on U , which will be called an indiscernibility relation, and is defined
as follows: (x, y) ∈ I(B) if and only if a(x) = a(y) for every a ∈ A, where a(x)
denotes the value of attribute a for element x. Obviously I(B) is an equivalence
relation. The family of all equivalence classes of I(B), i.e., partition determined
by B, will be denoted by U/I(B), or simple U/B; an equivalence class of I(B),
i.e., block of the partition U/B, containing x will be denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible or
indiscernible with respect to B. Equivalence classes of the relation I(B) (or
blocks of the partition U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two classes of attributes, called
condition and decision attributes, respectively, then the system will be called a
decision table.

A simple, tutorial example of an information system (a decision table) is
shown in Table 1.

Table 1. An example of a decision table

Car F P S M

1 med. med. med. poor
2 high med. large poor
3 med. low large poor
4 low med. med. good
5 high low small poor
6 med. low large good

The table contains data about six cars, where F, P, S and M denote fuel
consumption, selling price, size and marketability, respectively.
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Attributes F, P and S are condition attributes, whereas M is the decision
attribute. Each row of the decision table determines a decision obeyed when
specified conditions are satisfied.

3 Approximations

Suppose we are given an information system (a datat set) S = (U,A), a subset X
of the universe U , and subset of attributes B. Our task is to describe the set X in
terms of attribute values from B. To this end we define two operations assigning
to every X ⊆ U two sets B∗(X) and B∗(X) called the B-lower and the B-upper
approximation of X , respectively, and defined as follows:

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X},

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩X �= ∅}.

Hence, the B-lower approximation of a set is the union of all B-granules that are
included in the set, whereas the B-upper approximation of a set is the union of
all B-granules that have a nonempty intersection with the set. The set

BNB(X) = B∗(X)−B∗(X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X is

crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅, X is
referred to as rough (inexact) with respect to B.

For example, let C = {F, P, S} be the set of all condition attributes. Then
for the set X = {1, 2, 3, 5} of cars with poor marketability we have C∗(X) =
{1, 2, 5}, C∗(X) = {1, 2, 3, 5, 6} and BNC(X) = {3, 6}.

4 Decision Rules

With every information system S = (U,A) we associate a formal language L(S),
written L when S is understood. Expressions of the language L are logical for-
mulas denoted by Φ, Ψ etc. built up from attributes and attribute-value pairs by
means of logical connectives ∧ (and), ∨ (or), ∼ (not) in the standard way. We
will denote by ||Φ||S the set of all objects x ∈ U satisfying Φ in S and refer to
as the meaning of Φ in S.

The meaning of Φ in S is defined inductively as follows:

1) ||(a, v)||S = {v ∈ U : a(v) = U} for all a ∈ A and v ∈ Va,
2) ||Φ ∨ Ψ ||S = ||Φ||S ∪ ||Ψ ||S ,
3) ||Φ ∧ Ψ ||S = ||Φ||S ∩ ||Ψ ||S ,
4) || ∼ Φ||S = U − ||Φ||S .
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A formula Φ is true in S if ||Φ||S = U.

A decision rule in L is an expression Φ→ Ψ , read if Φ then Ψ ; Φ and Ψ are
referred to as conditions and decisions of the rule, respectively.

An example of a decision rule is given below

(F,med.) ∧ (P, low) ∧ (S, large)→ (M,poor).

Obviously a decision rule Φ→ Ψ is true in S if ||Φ||S ⊆ ||Ψ ||S .
With every decision rule Φ → Ψ we associate a conditional probability

πS(Ψ |Φ) that Ψ is true in S given Φ is true in S with the probability
πS(Φ) card(||Φ||S)

card(U) , called the certainty factor and defined as follows:

πS(Ψ |Φ) =
card(||Φ ∧ Ψ ||S)
card(||Φ||S)

,

where ||Φ||S �= 0.
This coefficient is widly used in data mining and is called “confidence coeffi-

cient”.
Obviously, πS(Ψ |Φ) = 1 if and only if Φ→ Ψ is true in S.

If πS(Ψ |Φ) = 1, then Φ→ Ψ will be called a certain decision rule; if
0 < πS(Ψ |Φ) < 1 the decision rule will be referred to as a possible decision rule.

Besides, we will also need a coverage factor

πS(Φ|Ψ) =
card(||Φ ∧ Ψ ||S)
card(||Ψ ||S)

,

which is the conditional probability that Φ is true in S, given Ψ is true in S with
the probability πS(Ψ).

Certainty and coverage factors for decision rules associated with Table 1 are
given in Table 2.

Table 2. Certainty and coverage factors

Car F P S M Cert. Cov.

1 med. med. med. poor 1 1/4
2 high med. large poor 1 1/4
3 med. low large poor 1/2 1/4
4 low med. med. good 1 1/2
5 high low small poor 1 1/4
6 med. low large good 1/2 1/2

More about managing uncertainty in decision rules can be found in [2].
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5 Decision Rules and Approximations

Let {Φi → Ψ}n be a set of decision rules such that:

all conditions Φi are pairwise mutally exclusive, i.e., ||Φi ∧ Φj ||S = ∅, for any
1 ≤ i, j ≤ n, i �= j, and (1)

n∑

i=1

πS(Φi|Ψ) = 1.

Let C and D be condition and decision attributes, respectively, and let
{Φi → Ψ}n be a set of decision rules satisfying (1).

Then the following relationships are valid:

a) C∗(||Ψ ||S) = ||
∨

π(Ψ |Φi)=1

Φi||S ,

b) C∗(||Ψ ||S) = ||
∨

0<π(Ψ |Φi)≤1

Φi||S ,

c) BNC(||Ψ ||S) = ||
∨

0<π(Ψ |Φi)<1

Φi||S =
n⋃

i=1

||Φi||S .

The above properties enable us to introduce the following definitions:

i) If ||Φ||S = C∗(||Ψ ||S), then formula Φ will be called the C-lower approxima-
tion of the formula Ψ and will be denoted by C∗(Ψ);

ii) If ||Φ||S = C∗(||Ψ ||S), then the formula Φ will be called the C-upper approx-
imation of the formula Φ and will be denoted by C∗(Ψ);

iii) If ||Φ||S = BNC(||Ψ ||S), then Φ will be called the C-boundary of the formula
Ψ and will be denoted by BNC(Ψ).

Let us consider the following example.
The C-lower approximation of (M, poor) is the formula

C∗(M,poor) = ((F,med.) ∧ (P,med.) ∧ (S,med.)) ∨
((F, high) ∧ (P,med.) ∧ (S, large)) ∨
((F, high) ∧ (P, low) ∧ (S, small)).

The C-upper approximation of (M, poor) is the formula

C∗(M,poor) = ((F,med.) ∧ (P,med.) ∧ (S,med.)) ∨
((F, high) ∧ (P,med.) ∧ (S, large)) ∨
((F,med.) ∧ (P, low) ∧ (S, large)) ∨
((F, high) ∧ (P, low) ∧ (S, small)).
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The C-boundary of (M, poor) is the formula

BNC(M,poor) = ((F,med.) ∧ (P, low) ∨ (S, large)).

After simplification we get the following approximations

C∗(M,poor) = ((F,med.) ∧ (P,med.)) ∨ (F, high),
C∗(M,poor) = (F,med.) ∨ (F, high).

The concepts of the lower and upper approximation of a decision allow us to
define the following decision rules:

C∗(Ψ)→ Ψ,

C∗(Ψ)→ Ψ,

BNC(Ψ)→ Ψ.

For example, from the approximations given in the example above we get the
following decision rules:

((F,med.) ∧ (P,med.)) ∨ (F,high) → (M, poor),
(F,med.) ∨ (F,high) → (M, poor),
((F,med.) ∧ (P,low) ∧ (S,large)) → (M,poor).

From these definitions it follows that any decision Ψ can be uniquely discribed
by the following two decision rules:

C∗(Ψ)→ Ψ,

BNC(Ψ)→ Ψ.

From the above calculations we can get two decision rules

((F,med.) ∧ (P,med.)) ∨ (F, high) → (M,poor),
((F,med.) ∧ (P,low.) ∧ (S,large)) → (M,poor),

which are associated with the lower approximation and the boudary region
of the decision (M, poor), respectively and describe decision (M, poor).

Obviously we can get similar decision rules for the decision (M, good) which
are as follows:

(F,low) → (M,good),
((F,med.) ∧ (P,low.) ∧ (S,large)) → (M,good).

This coincides with the idea given by Ziarko [15] to represent decision tables
by means of three decision rules corresponding to positive region the boundary
region, and the negative region of a decision.
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6 Decision Rules and Bayes’ Rules

If {Φi → Ψ}n is a set of decision rules satisfying condition (1), then the well
known formula for total probability holds:

πS(Ψ) =
n∑

i=1

πS(Ψ |Φi) · πS(Φi). (2)

Moreover for any decision rule Φ→ Ψ the following Bayes’ rule is valid:

πS(Φj |Ψ) =
πS(Ψ |Φj) · πS(Φj)∑n
i=1 πS(Ψ |Φi) · πS(Φi)

. (3)

That is, any decision table or any set of implications satisfying condition (1)
satisfies the Bayes’ rule, without referring to prior and posterior probablities –
fundamental in Baysian data analysis philosophy. Bayes’ rule in our case says
that: if an implication Φ→ Ψ is true to the degree πS(Ψ |Φ) then the implication
Ψ → Φ is true to the degree πS(Φ|Ψ).

This idea can be seen as a generalization of a modus tollens inference rule,
which says that if the implication Φ→ Ψ is true so is the implication ∼ Ψ →∼ Φ.

For example, for the set of decision rules

((F,med.) ∧ (P,med.)) ∨ (F, high) → (M,poor),
((F,med.) ∧ (P,low) ∧ (S,large)) → (M,poor),
(F,low) → (M,good),
((F,med.) ∧ (P,low) ∧ (S,large)) → (M,good),

we get the values of ceratinty and coverage factors shown in Table 3.

Table 3. Initial decision rules

Rule Decision Certainty Coverage

certain poor 1 3/4
boundary poor 1/2 1/4
certain good 1 1/2

boundary good 1/2 1/2

The above set of decison rules can be “reversed” as

(M,poor) → ((F,med.) ∧ (P,med.)) ∨ (F, high),
(M,poor) → ((F,med.) ∧ (P,low) ∧ (S,large)),
(M,good) → (F,low),
(M,good) → ((F,med.) ∧ (P,low) ∧ (S,large)).
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Due to Bayes’ rule the certainty and coverage factors for inverted decision
rules are mutually exchanged as shown in Table 4 below.

Table 4. Reversed decision rules

Rule Decision Certainty Coverage

certain poor 3/4 1
boundary poor 1/4 1/2
certain good 1/2 1

boundary good 1/2 1/2

This property can be used to reason about data in the way similar to that
allowed by modus tollens inference rule in classical logic.

7 Conclusions

It is shown in this paper that any decision table satisfies Bayes’ rule. This en-
ables to apply Bayes’ rule of inference without referring to prior and posterior
probabilities, inherently associated with “classical” Bayesian inference philoso-
phy. From data tables one can extract decision rules – implications labelled by
certainty factors expressing their degree of truth. The factors can be computed
from data. Moreover, one can compute from data the coverage degrees expressing
the truth degrees of “reverse” implications. This can be treated as generalization
of modus tollens inference rule.
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In one form or another, decision processes play a pivotal role in systems
analysis. Decisions are based on information. More often than not, decision-
relevant information is a mixture of measurements and perceptions.

It is a long-standing tradition in science to deal with perceptions by convert-
ing them into measurements. As is true of every tradition, a time comes when
the underlying assumptions cease to be beyond question.

A thesis advanced in our work is that closer analysis leads to the conclusion
that in most fields of science – and especially in systems analysis – conversion of
perceptions into measurements is, in many cases, infeasible, unrealistic or coun-
terproductive. The alternative is to develop a machinery for computation with
perceptions which exploits the vast computational power of modern computers.
In essence, this is the aim of the computational theory of perceptions (CTP).
Somewhat paradoxically, the source of inspiration for this theory is the remark-
able human capability to perform a wide variety of physical and mental tasks
without any measurements and any computations. Underlying this capability
is the brain’s crucial ability to manipulate perceptions – perceptions of time,
distance, direction, speed, force, shape, color, similarity, likelihood, intent and
truth, among others.

The point of departure in the computational theory of perceptions – the first
stage in the reasoning process – is conversion of perceptions into propositions
expressed in a natural language, with a proposition viewed as a carrier of in-
formation which provides an answer to a question. A key idea in CTP is that
the meaning of a proposition may be represented as a generalized constraint
on a variable. This idea forms the basis for what is called constraint-centered
semantics of natural languages (CSNL).

The second stage in CTP involves translation of propositions in the ini-
tial data set into the constraint language GCL, resulting in a collection of an-
tecedent constraints which constitute the initial constraint set ICS. The third
stage involves goal-directed propagation of initial constraints augmented with
� Research supported in part by NASA Grant NAC2-1177, ONR Grant N00014-96-1-
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decision-relevant constraints induced by an external knowledgebase. The goal is
a terminal constraint set in GCL which upon retranslation – the fourth and last
stage – yields the end result of the reasoning process.

Existing theories, especially probability theory, decision analysis and systems
analysis, lack the capability to operate on information which is perception-based
rather than measurement- based. The primary objective of the computational
theory of perceptions is to add such capability to existing theories and thereby
enhance their ability to deal with real world problems in an environment of
imprecision, uncertainty and partial truth.
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Abstract. The popularity of the Web has made text mining techniques
for personalization an increasingly important research topic. We first ex-
amine the problem on text mining for building categorization systems.
Three different approaches which can be used for building categorization
systems are discussed: classification, clustering and partial supervision.
We examine the advantages and disadvantages of each approach. Some
Web specific enhancements are discussed. Applications of text mining
techniques to collaborative filtering have then been examined. Specifi-
cally, a content-based collaborative filtering approach is considered.

1 Introduction

The increased amount of online text data on the Web has led to the need for
improved text mining techniques for personalization. In this paper we will discuss
two important applications:

– Categorization Systems: In categorization systems, we wish to provide
the ability of classifying documents into categories in an automated way.
These categories may either be pre-decided from a training data set or may
be generated using a clustering algorithm. Various tradeoffs will be discussed
in this paper. Some web specific extensions for categorization are examined.

– Collaborative Filtering Systems: Collaborative filtering systems
[18,12,2] are very applicable to electronic commerce sites in which purchases
made by customers can be tracked. The record of purchases or Web pages
browsed may be used in order to determine like-minded peer groups and
make recommendations for individual customers based on the behavior of
their peer groups. In content based collaborative filtering methods [6], a
content characterization of the product or Web page is being used on the
peer group formation to make these recommendations. Text mining tech-
niques are very effective in using these content characterizations in order to
provide recommendations.

2 Categorization Systems

Categorization systems have become increasingly important because of the need
to classify large online repositories in a structured way. This can be very use-
ful for personalization applications in which the analysis of textual material
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browsed on an E-commerce site by an online customer is used in order to make
recommendations.

Categorization systems can be built with or without supervision from a pre-
existing set of classes in another taxonomy. Several tradeoffs are possible and
have been discussed in [1]. These tradeoffs are as follows:

– Unsupervised systems: In unsupervised systems, clustering methods are
used in order to create sets of classes. These classes are then used in order
to perform the recommendations. Examples of such systems include those
discussed in [9,10]. Improved methods for text clustering have also been
discussed in [4,9,10,17,19,21]. The advantage of this system is that the same
measures which are used for clustering may be used for categorization. Thus,
this system has 100% accuracy, though the actual quality of categorization
is dependent on the nature of the initial clustering. Such systems may not be
too useful for personalization because it is not possible to control the range of
categories that the system can address. Furthermore, it is difficult to create
effective fine grained subject isolation using unsupervised techniques.

– Supervised Systems: In supervised systems, a pre-existing sample of doc-
uments with the associated classes is available in order to provide the super-
vision to the categorization system. A training procedure is applied to this
sample which models the relationship between the training data and the set
of classes. Several text classifiers have recently been proposed [5,7,14,15].
Although these methods seem to work well on structured collections such as
the US patent database or the Reuters data set, the systems do not work
well for heterogeneous collections of documents such as those on the Web.
This is primarily because of the varying style, authorship and vocabulary in
different documents. For example, it has been shown in [7] that a training
procedure on the Y ahoo! taxonomy achieves only 32% accuracy, whereas
the same algorithm achieves much greater success (more that 66%) with
the US patent database and Reuters data sets. Clearly, text data on the
Web provides special problems in terms of fitting the training data into any
particular model.

– Partially Supervised Clustering: We have developed a new approach
on categorization systems, referred to as the partially supervised approach,
where an initial training data set is used in order to partially supervise
the creation of a new set of classes. This results in a categorization sys-
tem in which it is possible to have some control over the range of subjects
that one would like the categorization system to address, but with a precise
automated definition of how each cluster is defined. The definition of the
clusters may then be used for the categorization process. The details of such
a categorization system can be found in [1] which uses a projected cluster-
ing technique [3] to handle high dimensional clustering, and has shown to
be more effective than either purely supervised or unsupervised clustering.
This is because the supervision ensures that one is able to create reasonably
fine grained subject isolation which is related to the original taxonomy. At
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the same time, the system is very suited to automated categorization. We
have used this system to categorize Web pages for personalized news feed.

It is possible to improve the accuracy of these systems on the Web further by
adding certain Web-specific extensions. One interesting method for performing
enhanced categorization is by using the information which is latent in hyper-
links [8]. Web pages tends to link with one another based on a proximity in the
general subject areas which are discussed in each page. This information can be
used in order to improve classifier performance by examining the content of the
Web pages which are linked to by the current page. Such a method has been
discussed in [8].

3 Content Based Collaborative Filtering Systems

In this section, we will discuss our work on an application of clustering to pro-
vide a generalization of the collaborative filtering concept to combine it with
content based filtering [16], where recommendations are made on products with
similar characteristic to the products likened by a customer. This is referred to
as the content based collaborative filtering approach [6]. Content based collab-
orative filtering systems are useful in providing personalized recommendations
at an E-commerce site. In such systems, a past history of customer behavior is
available, which may be used for making future recommendations for individ-
ual customers. We also assume that a “content characterization” of products
is available in order to perform recommendations. These characterizations may
be (but are not restricted to) the text description of the products which are
available at the Web site. The key here is that the characterizations should be
such that they contain attributes (or textual words) which are highly correlated
with buying behavior. In this sense, using carefully defined content attributes
which are specific to the domain knowledge in question can be very useful for
making recommendations. For example, in an engine which recommends CDs,
the nature of the characterizations could be the singer name, music category,
composer etc., since all of these attributes are likely to be highly correlated with
buying behavior. On the other hand, if the only information available is the raw
textual description of the products, then it may be desirable to use some kind
of feature selection process in order to decide which words are most relevant to
the process of making recommendations.

We will now proceed to describe the overall process and method of our ap-
proach for performing content-based collaborative filtering. This collaborative
filtering process consists of the following sequence of steps, all of which are
shown in Figure 1.

(1) Feature Selection: It is possible that the initial characterization of the
products is quite noisy, and not all of the textual descriptions are directly
related to buying behavior. For example, stop words (commonly occurring
words in the language) in the description are unlikely to have much con-
nection with the buying pattern in the products. In order to perform the
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Fig. 1. Content Based Collaborative Filtering

feature selection, we perform the following process: we first create a prelim-
inary customer characterization by concatenating the text descriptions for
each product bought by the customer. Let the set of words in the lexicon
describing the products be indexed by i ∈ {1, . . . , k}, and let the set of cus-
tomers j for which buying behavior is available be indexed by j ∈ {1, . . . , n}.
The frequency of presence of word i in customer characterization j is denoted
by F (i, j). The fractional presence of a word i for customer j is denoted by
P (i, j) and is defined as follows:

P (i, j) =
F (i, j)∑

j∈All customers F (i, j)
(1)

Note that when the word i = i0 is noisy in its distribution across the different
products, then the values of P (i0, j) are likely to be similar for different
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values of j. The gini index for the word i is denoted by G(i), and is defined
as follows:

G(i0) = 1−
√∑

j

P (i0, j)2 (2)

When the word i0 is noisy in its distribution across the different customers,
then the value of G(i0) is high. Thus, in order to pick the content which
is most discriminating in behavioral patterns, we pick the words with the
lowest gini index. The process of finding the words with the lowest gini index
is indicated in Step 1 of Figure 1.

(2) Refining Product Characterizations: In the second stage of the proce-
dure, we refine the product characterizations from the original text descrip-
tion. To do so, we prune the content characterizations of each product by
removing those features or words which have high gini index.

(3) Refining Customer Characterizations: In the third stage of the proce-
dure, we improve the customer characterizations from the text descriptions
by concatenating the refined content characterizations (derived in the pre-
vious step) of the products bought by the individual consumers. We create
customer characterizations by concatenating together these pruned product
characterizations for a given customer.

(4) Clustering: In the fourth stage, we use the selected features in order to
perform the clustering of the customers into peer groups. This clustering
can either be done using unsupervised methods, or by supervision from a
pre-existing set of classes of products such that the classification is directly
related to buying behavior.

(5) Making Recommendations: In the final stage, we make recommendations
for the different sets of customers. In order to make the recommendations for
a given customer, we find the closest sets of clusters for the content charac-
terization of that customer. Finding the content characterization for a given
customer may sometimes be a little tricky in that a weighted concatenation
of the content characterizations of the individual products bought by that
customer may be needed. The weighting may be done in different ways by
giving greater weightage to the more recent set of products bought by the
customer. The set of entities in this closest set of clusters forms the peer
group. The buying behavior of this peer group is used in order to make
recommendations. Specifically, the most frequently bought products in this
peer group may be used as the recommendations. Several variations of the
nature of queries are possible, and are discussed subsequently.

We have implemented these approaches in a content-based mining engine for
making recommendations, and it seems to provide significantly more effective
results than a simple clustering engine which uses only the identity attributes of
the products in order to do the clustering.

Several kinds of queries may be resolved using such a system by using minor
variations of the method discussed for making recommendations:

(1) For a given set of products browsed/bought, find the best recommendation
list.
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(2) For a given customer and a set of products browsed/bought by him in the
current session, find the best set of products for that customer.

(3) For a given customer, find the best set of products for that customer.
(4) For the queries (1), (2), and (3) above, find the recommendation list out of

a pre-specified promotion list.
(5) Find the closest peers for a given customer.
(6) Find the profile of the customers who will like a product the most.

Most of the above queries (with the exception of (6)) can be solved by using
a different content characterization for the customer, and using this content
characterization in order to find the peer group for the customer. For the case
of query (6), we first find the peer group for the content characterization of the
current product, and then find the dominant profile characteristics of this group
of customers. In order to do so, the quantitative association rule method [20]
may be used.

Another related application which we are working on is to provide user pro-
filing on Web browsing patterns by categorizing the Web pages browsed by each
person so as to identify the categories of interests to a person. Once the user
characterization or profile is built, content-based collaborative filtering can then
be applied. Here we have used the categorization system based on the partially
supervised clustering approach to categorize the Web pages. Now the product
characterization is replaced by the Web page categorization. The user catego-
rization is the concatenation of the categories of Web pages browsed by a user.

4 Conclusions and Summary

In this paper, we discussed some categorization and clustering methods based
on text mining, and their applications to content based collaborative filtering
systems. With the recent increase in the popularity of the World Wide Web for
electronic commerce, such systems are very useful for improving the efficiency
of target marketing techniques. Specifically, such methods may be very useful in
performing one-to-one sales promotions.
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Abstract. Rough mereology is a paradigm allowing for a synthesis of
main ideas of two potent paradigms for reasoning under uncertainty:
fuzzy set theory and rough set theory. In this work, we demonstrate
applications of rough mereology to the important theoretical ideas put
forth by Lotfi Zadeh [9], [10]: Granularity of Knowledge and Computing
with Words.
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1 Introduction

We refer the reader to [2], [4], [5], [6], [7] for the basic notions of rough set
theory and rough mereology. Here, we begin with the notion of a pre-granule
of knowledge. Given either an information system or a decision system A =
(U,A) (resp. A = (U,A, d)), we define information sets of objects via InfB(u) =
{(a, a(u)) : a ∈ B} and we express the indiscernibility of objects as the identity
of their information sets : INDB(u,w) is TRUE iff InfB(u) = InfB(w) for
any pair u,w of objects in U . The (boolean) algebra generated over the set of
atoms U/INDB by means of set - theoretical operations of union, intersection
and complement is said to be the B-algebra CG(B) of pre - granules.

1.1 Granules of Knowledge: Rough Set Approach

In the language of granules, we may express partial dependencies between sets
B,C of attributes by relating classes of INDB to classes of INDC . We will call,
accordingly, a (B,C) − granule any pair (G,G′) where G ∈ CG(B) and G′ ∈
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CG(C). Clearly, given a pre - granuleG ∈ CG(B), there exists a formula (unique
in DNF) αG of the form ∨i ∧j (ai,j = vi,j) such that the meaning [αG] = G;
Then, the granule (G,G′) may be represented logically as a pair [αG], [αG′ ] cor-
responding to the dependency rule αG =⇒ αG′ [2]. There are two characteristics
of the granule (G,G′) important in applications to decision algorithms viz. the
characteristic whose values measure what part of [G′] is in [G] (the ′strength′

of the rule αG =⇒ αG′) and the characteristic whose values measure what part
of [G] is in [G′] (the ′ strength of the support′ for the rule αG =⇒ αG′).

A standard choice of an appropriate measure may be based on frequency
count; the formal rendering is the standard rough inclusion function [3] defined
for two sets X,Y ⊆ U by the formula µ(X, Y ) = card(X∩Y )

card(X) when X is non -
empty and µ(X, Y ) = 1, otherwise.

To select sufficiently strong rules, we would set a threshold ρcr. We define
then, in analogy with machine learning techniques, two characteristics:

(ρ) ρ(G,G′) = µ([G], [G′]); (η) η(G,G′) = µ([G′], [G])
and we call an (η, ρ) granule of knowledge any granule (G,G′) such that
(i) ρ(G,G′) ≥ ρcr; (ii) η(G,G′) ≥ ρcr

This logical model of granulation may not be adequate to practical demands:
the relation IND may be too rigid and ways of its relaxation are among most
intensively studied topics [7]. Here, we propose to introduce rough mereological
approach to the granulation problem in which IND-classes are replaced with
mereological classes i.e. similarity classes.

2 Rough Mereology

Rough mereology [4], [5], [8] has been proposed and studied as means of clus-
tering in a relational way. Formally, it defines a functor µ(r) of being a part
in degree at least r for each r ∈ [0, 1]. Rough mereology may be introduced
conveniently in the logical framework of ontology and mereology proposed by
Stanis?law Leśniewski [1].

2.1 Mereology

We begin with the notion of a part functor. This sets the meaning of ”X is a part
of Y ”. We will use the notation of Ontology of Leśniewski XεY (reads ”X is Y ”)
which replaces the standard notation of naive set theory as more convenient. The
meaning of XεY is specified as:

XεY ⇐⇒ ∃Z.ZεX ∧ ∀Z.(ZεX =⇒ ZεY ) ∧ ∀U,W.(UεX ∧WεX =⇒ UεW )

which means that X is an individual, anything which is X is Y and X is non-
empty. The symbol V denotes the universe and is defined via

XεV ⇐⇒ ∃Y.XεY.

We rephrase basic axioms for pt.
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(ME1) Xεpt(Y ) =⇒ ∃Z.ZεX ∧XεV ∧ Y εV ;
(ME2) Xεpt(Y ) ∧ Y εpt(Z) =⇒ Xεpt(Z);
(ME3) non(Xεpt(X)).

Then Xεpt(Y ) means that the individual denoted X is a proper part (in
virtue of (ME3)) of the individual denoted Y. The concept of an improper part
is reflected in the notion of an element el; this is a name - forming functor defined
as follows: Xεel(Y )⇐⇒ Xεpt(Y ) ∨X = Y.

We will require that the following inference rule be valid.

(ME4) ∀T.(Tεel(X) =⇒ ∃W.Wεel(T ) ∧Wεel(Y )) =⇒ Xεel(Y ).

The notion of a collective class i.e. of an object composed of other objects which
are its elements may be introduced at this point; this is effected by means of a
functor Kl defined as follows.

XεKl(Y )⇐⇒ ∃Z.ZεY ∧ ∀Z.(ZεY =⇒ Zεel(X)) ∧
∀Z.(Zεel(X) =⇒ ∃U,W.UεY ∧Wεel(U) ∧Wεel(Z)).

Thus, the class consists of all objects which have an element in common with
an object with the class defining property.

The notion of a class is subjected to the following restrictions

(ME5) XεKl(Y ) ∧ ZεKl(Y ) =⇒ ZεX (Kl(Y ) is an individual);
(ME6) ∃Z.ZεY ⇐⇒ ∃Z.ZεKl(Y ) (the class exists for each non-empty name).

Thus,Kl(Y ) is defined for any non-empty name Y andKl(Y ) is an individual
object.

2.2 Rough Mereology: First Notions

Rough Mereology has been proposed and studied in [4], [5], [8] as a vehicle for
reasoning under uncertainty.

The following is a list of basic axiomatic postulates for Rough Mereology.
We introduce a graded family µr, where r ∈ [0, 1] is a real number from the unit
interval, of functors which would satisfy (µr(X) is a new name derived from X
via µr).

(RM1) Xεµ1(Y )⇐⇒ Xεel(Y );
(RM2) Xεµ1(Y ) =⇒ ∀Z.(Zεµr(X) =⇒ Zεµr(Y ));
(RM3) X = Y ∧Xεµr(Z) =⇒ Y εµr(Z);
(RM4) Xεµr(Y ) ∧ s ≤ r =⇒ Xεµs(Y );

One may have as an archetypical rough mereological predicate the rough
membership function of Pawlak and Skowron [3] defined in an extended form as:

Xεµr(Y )⇐⇒ card(X∩Y )
card(X) ≥ r in case X non–empty, 1 else

where X,Y are (either exact or rough) subsets in the universe U of an informa-
tion/decision system (U,A).
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2.3 Rough Mereological Component of Granulation

The functors µr may enter our discussion of a granule and of the relation Gr in
each of the following ways:

1. Concerning the definitions (η), (ρ) of functions η, ρ , we may replace in
them the rough membership function µ with a function µr possibly better suited
to a given context:

(ρ) GεµρcrG
′; (η) G′εµρcrG.

2. The process of clustering may be described in terms of the class functor
of mereology:

(ρ) Gεel(Klρcr(G′)); (η) G′εel(Klρcr(G))
where Klr(X) is the class of objects Z satisfying ZεµrX . We will adhere to

this means of clustering and we denote in the sequel Klr(X) with the symbol
gr(X, r) read as the granule of radius r centered at X .

3 Adaptive Calculus of Granules for Synthesis in
Distributed Systems

We construct a mechanism for transferring granules of knowledge among agents
by means of transfer functions induced by rough mereological connectives ex-
tracted from their respective information systems [5].

We now recall basic ingredients of our scheme of agents [5], [8].

3.1 Distributed Systems of Agents

We assume that a pair (Inv,Ag) is given where Inv is an inventory of elementary
objects and Ag is a set of inteligent computing units called shortly agents. We
consider an agent ag ∈ Ag. The agent ag is endowed with tools for reasoning and
communicating about objects in its scope; these tools are defined by components
of the agent label.

The label of the agent ag is the tuple

lab(ag) = (A(ag), µ(r)(ag), L(ag), Link(ag), O(ag), St(ag)), Unc− rel(ag),

Unc− rule(ag), Dec− rule(ag))

where

1. A(ag) is an information system of the agent ag.
2. µr(ag) is a functor of part in a degree at ag.
3. L(ag) is a set of unary predicates (properties of objects) in a predicate

calculus interpreted in the set U(ag).
4. St(ag) = {st(ag)1, ..., st(ag)n} ⊂ U(ag) is the set of standard objects at ag.
5. Link(ag) is a collection of strings of the form ag1ag2...agkag which are el-

ementary teams of agents; we denote by the symbol Link the union of the
family {Link(ag) : ag ∈ Ag}.
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6. O(ag) is the set of operations at ag; any o ∈ O(ag) is a mapping of the
Cartesian product U(ag1) × U(ag2) × ... × U(agk) into the universe U(ag)
where ag1ag2...agkag ∈ Link(ag).

7. Unc − rel(ag) is the set of parameterized uncertainty relations ρi =
ρi(oi(ag), st(ag1)i, st(ag2)i, ..., st(agk)i, st(ag)) where ag1, ag2, ...agk, ag ∈
Link(ag), oi(ag) ∈ O(ag) are such that

ρi((x1, ε1), (x2, ε2), ., (xk, εk), (x, ε))

holds for x1 ∈ U(ag1), x2 ∈ U(ag2), .., xk ∈ U(agk) and ε, ε1, ε2, .., εk ∈ [0, 1]
iff xjεµ(agj)εj (st(agj)) for j = 1, 2, .., k and xεµ(ag)ε(st(ag)) where

oi(st(ag1), st(ag2), .., st(agk)) = st(ag) and oi(x1, x2, .., xk) = x.

Uncertainty relations express the agents knowledge about relationships am-
ong uncertainty coefficients of the agent ag and uncertainty coefficients of
its children.

8. Unc− rule(ag) is the set of uncertainty rules fj where fj : [0, 1]k −→ [0, 1]
is a function which has the property that
if x1 ∈ U(ag1), x2 ∈ U(ag2), .., xk ∈ U(agk) satisfy the conditions

xiεµ(agi)ε(agi)(st(agi))fori = 1, 2, .., k

then µo(oj(x1, x2, ..., xk), st(ag)) ≥ fj(ε(ag1), ε(ag2), .., ε(agk))
where all parameters are as in 7.

9. Dec− rule(ag) is a set of decomposition rules dec− rulei and

(Φ(ag1), Φ(ag2), .., Φ(agk), Φ(ag)) ∈ dec− rulei

where Φ(ag1) ∈ L(ag1), Φ(ag2) ∈ L(ag2), .., Φ(agk) ∈ L(agk), Φ(ag) ∈ L(ag)
and ag1ag2..agkag ∈ Link(ag)) iff there exists a collection of standards
st(ag1), st(ag2),...,st(agk), st(ag) with the properties that oj(st(ag1), st(ag2)
,..., st(agk)) = st(ag), st(agi) satisfies Φ(agi) for i = 1, 2, .., k and st(ag) sat-
isfies Φ(ag). Decomposition rules are decomposition schemes in the sense
that they describe the standard st(ag) and the standards st(ag1), ..., st(agk)
from which the standard st(ag) is assembled under oi in terms of predicates
which these standards satisfy.

3.2 Approximate Synthesis of Complex Objects

The process of synthesis of a complex object (e.g. signal, action) by the above
defined scheme of agents consists in our approach of the two communication
stages viz. the top - down communication/negotiation process and the bottom
- up communication/assembling process. We outline the two stages here in the
language of approximate formulae.
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Approximate Logic of Synthesis We assume for simplicity that the relation
ag′ ≤ ag, which holds for agents ag′, ag ∈ Ag iff there exists a string ag1ag2.
..agkag ∈ Link(ag) with ag′ = agi for some i ≤ k, orders the set Ag into a tree.
We also assume that O(ag) = {o(ag)} for ag ∈ Ag i.e. each agent has a unique
assembling operation.
We recall a logic L(Ag) [5], [8] in which we can express global properties of the
synthesis process.
Elementary formulae of L(Ag) are of the form < st(ag), Φ(ag), ε(ag) > where
st(ag) ∈ St(ag), Φ(ag) ∈ L(ag), ε(ag) ∈ [0, 1] for any ag ∈ Ag. Formulae of
L(ag) form the smallest extension of the set of elementary formulae closed under
propositional connectives ∨, ∧, ¬ and under the modal operators ✷, ✸.

The meaning of a formula Φ(ag) is defined classically as the set [Φ(ag)] =
{u ∈ U(ag) : u has the property Φ(ag)}; we express satisfaction by u � Φ(ag).
For x ∈ U(ag), we say that x satifies < st(ag), Φ(ag), ε(ag) >, in symbols:

x �< st(ag), Φ(ag), ε(ag) >,

iff (i) st(ag) � Φ(ag); and (ii) xεµ(ag)ε(ag)(st(ag)).
We extend satisfaction over formulae by recursion as usual.
By a selection over Ag we mean a function sel which assigns to each agent

ag an object sel(ag) ∈ U(ag). For two selections sel, sel′ we say that sel induces
sel′, in symbols sel→Ag sel

′ when sel(ag) = sel′(ag) for any ag ∈ Leaf(Ag) and
sel′(ag) = o(ag)(sel′(ag1), sel′(ag2), ..., sel′(agk)) for any ag1ag2...agkag ∈ Link.

We extend the satisfiability predicate � to selections: for an elementary
formula < st(ag), Φ(ag), ε(ag) >, we let sel �< st(ag), Φ(ag), ε(ag) > iff
sel(ag) �< st(ag), Φ(ag), ε(ag) > .

We now let sel � ✸ < st(ag), Φ(ag), ε(ag) > when there exists a selection
sel′ satisfying the conditions: sel→Ag sel

′; sel′ �< st(ag), Φ(ag), ε(ag) > .
In terms of L(Ag) it is possible to express the problem of synthesis of an

approximate solution to the problem posed to Ag. We denote by head(Ag) the
root of the tree (Ag,≤) and by Leaf(Ag) the set of leaf-agents in Ag. In the
process of top - down communication, a requirement Ψ received by the scheme
from an external source (which may be called a customer) is decomposed into
approximate specifications of the form < st(ag), Φ(ag), ε(ag) > for any agent ag
of the scheme. The decomposition process is initiated at the agent head(Ag) and
propagated down the tree. We are able now to formulate the synthesis problem.

Synthesis problem. Given a formula

α :< st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) >

find a selection sel over the tree (Ag,≤) with the property sel � α.
A solution to the synthesis problem with a given formula α is found by

negotiations among the agents based on uncertainty rules and their succesful
result can be expressed by a top-down recursion in the tree (Ag,≤) as follows:
given a local team ag1ag2...agkag with the formula < st(ag), Φ(ag), ε(ag) >
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already chosen, it is sufficient that each agent agi choose a standard st(agi) ∈
U(agi), a formula Φ(agi) ∈ L(agi) and a coefficient ε(agi) ∈ [0, 1] such that

(iii) (Φ(ag1), Φ(ag2),... Φ(agk), Φ(ag)) ∈ Dec− rule(ag)
with standards st(ag), st(ag1),..., st(agk);

(iv) f(ε(ag1), .., ε(agk)) ≥ ε(ag)
where f satisfies unc− rule(ag) with st(ag), st(ag1), ..., st(agk) and ε(ag1),
..., ε(agk), ε(ag).

For a formula α, we call an α - scheme an assignment of a formula α(ag) :
< st(ag), Φ(ag), ε(ag) > to each ag ∈ Ag in such manner that (iii), (iv) above
are satisfied and α(head(Ag)) is < st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) > .
We denote this scheme with the symbol

sch(< st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) >).

We say that a selection sel is compatible with a scheme sch(< st(head(Ag)),
Φ(head(Ag)), ε(head(Ag)) >) in case sel(ag)εµ(ag)ε(ag)(st(ag)) for each leaf
agent ag ∈ Ag.

The goal of negotiations can be summarized now as follows.

Proposition 1. Given a formula < st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) >:
if a selection sel is compatible with a scheme sch(< st(head(Ag)), Φ(head(Ag)),
ε(head(Ag)) >) then sel � ✸ < st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) > .

4 Calculi of Granules in (Inv, Ag)

We construct for a given system (Ag,≤) of agents a granulation relation Gr(ag)
for any agent ag ∈ Ag depending on parameters ε(ag), µ(ag). We may have
various levels of granulation and a fortiori various levels of knowledge compresion
about synthesis; we address here a simple specimen.

4.1 Calculi of Pre-granules

For a standard st(ag) and a value ε(ag), we denote by gr(st(ag), ε(ag)) the pre-
granule Klε(ag)(st(ag)); then, a granule selector selg is a map which for each
ag ∈ Ag chooses a granule selg(ag)=gr(st(ag), ε(ag)).

We say that gr(st(ag), ε(ag)) satisfies a formula α :< st(ag), Φ(ag), ε(ag) >
(gr(st(ag), ε(ag)) � α) in case st(ag) � Φ(ag). Given ag1ag2...agkag ∈ Link and
a formula < st(ag), Φ(ag), ε(ag) > along with f satisfying unc− rule(ag) with
st(ag), st(ag1), ..., st(agk) and ε(ag1), ..., ε(agk), ε(ag), o(ag) maps the product
×igr(st(agi), ε(agi)) into gr(st(ag), ε(ag)). Composing these mappings along the
tree (Ag,≤), we define a mapping prodAg which maps any set {gr(st(ag), ε(ag)) :
ag ∈ Leaf(Ag)} into a granule gr(st(head(Ag), ε(head(Ag)). We say that a
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selection selg is compatible with a scheme sch(< st(head(Ag)), Φ(head(Ag)),
ε(head(Ag)) >) if

selg(agi) = gr(st(agi), ε′(agi))εel(gr(st(agi), ε(agi))

for each leaf agent agi. As

prodAg(selg) �< st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) >

we have the pre-granule counterpart of Proposition 1.

Proposition 2. Given a formula <st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) >:
if a selection selg is compatible with a scheme sch(< st(head(Ag)), Φ(head(Ag)),
ε(head(Ag)) >) then selg � ✸ < st(head(Ag)), Φ(head(Ag)), ε(head(Ag)) > .

5 Associated Grammar Systems: A Granular Semantics
for Computing with Words

We are now in position to present our discussion in the form of a grammar
system related to the multi - agent tree (Ag,≤) [6]. With each agent ag ∈
Ag, we associate a grammar Γ (ag) = (N(ag), T (ag), P (ag)). To this end, we
assume that a finite set Ξ(ag) ⊂ [0, 1] is selected for each agent ag. We let
N(ag) = {(sΦ(ag), tε(ag)) : Φ(ag) ∈ L(ag), ε(ag) ∈ Ξ(ag)} where sΦ(ag)is a non–
terminal symbol corresponding in a one - to - one way to the formula Φ(ag)
and similarly tε(ag) corresponds to ε(ag). The set of terminal symbols T (ag) is
defined for each non–leaf agent ag by letting

T (ag) =
⋃
{{(sΦ(agi), tε(agi)) : Φ(agi) ∈ L(agi), ε(agi) ∈ Ξ(agi)} : i = 1, 2, ., k}

where ag1ag2...agkag ∈ Link .
The set of productions P (ag) contains productions of the form

(v) (sΦ(ag), tε(ag)) −→ (sΦ(ag1), tε(ag1))(sΦ(ag2), tε(ag2))...(sΦ(agk), tε(agk))
where (o(ag), Φ(ag1), Φ(ag2), .., Φ(agk), Φ(ag), st(ag1), st(ag2), ..., st(agk),
st(ag), ε(ag), ε(ag1), ε(ag2), ..., ε(agk)) satisfy (iii), (iv).
We define a grammar system Γ = (T, (Γ (ag) : ag ∈ Ag, ag non-leaf or
ag = Input), S) by choosing the set T of terminals as follows:

(vi) T = {{(sΦ(ag), tε(ag)) : Φ(ag) ∈ L(ag), ε(ag) ∈ Ξ(ag)} : ag ∈ Leaf(Ag)};
and introducing an additional agent Input with non - terminal symbol S,
terminal symbols of Input being non-terminal symbols of head(Ag) and
productions of Input of the form:

(vii) S −→ (sΦ(head(Ag)), tε(head(Ag)))
where Φ(head(Ag)) ∈ L(head(Ag)), ε(head(Ag)) ∈ Ξ(head(Ag)).
The meaning of S is that it codes an approximate specification (requirement)
for an object; productions of Input code specifications for approximate solu-
tions in the language of the agent head(Ag). Subsequent rewritings produce
terminal strings of the form
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(viii) (sΦ (ag1), tε(ag1))(sΦ(ag2), tε(ag2))...(sΦ(agk), tε(agk))
where ag1, ag2, .., agk are all leaf agents in Ag.

We have

Proposition 3. Suppose (sΦ(ag1), tε(ag1))(sΦ(ag2), tε(ag2))...(sΦ(agk), tε(agk)) is of
the form (viii) and it is obtained from S −→ (sΦ(head(Ag)), tε(head(Ag))) by subse-
quent rewriting by means of productions in Γ . Then given any selection sel with
sel(agi)εµ(agi)(ε(agi)st(agi) for i = 1, 2, ..., k we have

sel |= ✸ < st(head(Ag), Φ(head(Ag)), ε(head(Ag) > .

Let us observe that each of grammars Γ is a linear context-free grammar. We
have thus linear languages L(Γ ) which provide a semantics for Computing with
Words.
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Abstract. One of the most difficult problems in modeling medical rea-
soning is to model a procedure for diagnosis about complications. In
medical contexts, a patient sometimes suffers from several diseases and
has complicated symptoms, which makes a differential diagnosis very dif-
ficult. For example, in the domain of headache, a patient suffering from
migraine, (a vascular disease), may also suffer from muscle contraction
headache(a muscular disease). In this case, symptoms specific to vascu-
lar diseases will be observed with those specific to muscular ones. Since
one of the essential processes in diagnosis of headache is discrimination
between vascular and muscular diseases1 , simple rules will not work to
rule out one of the two groups. However, medical experts do not have
this problem and conclude both diseases. In this paper, three models
for reasoning about complications are introduced and modeled by using
characterization and rough set model. This clear representation suggests
that this model should be used by medical experts implicitly.

1 Introduction

One of the most difficult problems in modeling medical reasoning is to model a
procedure for diagnosis about complications. In medical contexts, a patient some-
times suffers from several diseases and has complicated symptoms, which makes
a differential diagnosis very difficult. For example, in the domain of headache, a
patient suffering from migraine, (a vascular disease), may also suffer from mus-
cle contraction headache(a muscular disease). In this case, symptoms specific to
vascular diseases will be observed with those specific to muscular ones. Since
one of the essential processes in diagnosis of headache is discrimination between
vascular and muscular diseases2, simple rules will not work to rule out one of the
two groups. However, medical experts do not have this problem and conclude
both diseases.
1 The second step of differential diagnosis will be to discriminate diseases within each
group.

2 The second step of differential diagnosis will be to discriminate diseases within each
group[2].

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 29–37, 1999.
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In this paper, three models for reasoning about complications are introduced
and modeled by using characterization and rough set model. This clear repre-
sentation suggests that this model should be used by medical experts implicitly.

The paper is organized as follows: Section 2 discusses reasoning about compli-
cations. Section 3 shows the definitions of statistical measures used for modeling
rules based on rough set model. Section 4 presents a rough set model of com-
plications and an algorithm for induction of plausible diagnostic rules. Section
5 gives an algorithm for induction of reasoning about complications. Section 6
discusses related work. Finally, Section 7 concludes this paper.

2 Reasoning about Complications

Medical experts look for the possibilities of complications when they meet the
following cases. (1) A patient has several symptoms which cannot be explained
by the final diagnostic candidates. In this case, each diagnostic candidate belongs
to the different disease category and will not intersect each other (independent
type). (2) A patient has several symptoms which will be shared by several dis-
eases, each of which belongs to different disease categories, and which are impor-
tant to confirm some diseases above. In this case, each diagnostic candidate will
have some intersection with respect to characterization of diseases (boundary
type). (3) A patient has several symptoms which suggest that his disease will
progress into the more specific ones in the near future. In this case, the specific
disease will belong to the subcategory of a disease (subcategory type).

3 Probabilistic Rules

3.1 Accuracy and Coverage

In the subsequent sections, we adopt the following notations, which is introduced
in [7].

Let U denote a nonempty, finite set called the universe and A denote a
nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where Va is called
the domain of a, respectively.Then, a decision table is defined as an information
system, A = (U,A ∪ {d}).

The atomic formulas over B ⊆ A ∪ {d} and V are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation.

For each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all
objects in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

By the use of this framework, classification accuracy and coverage, or true pos-
itive rate is defined as follows.
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Definition 1.
Let R and D denote a formula in F (B, V ) and a set of objects which belong to
a decision d. Classification accuracy and coverage(true positive rate) for R→ d
is defined as:

αR(D) =
|RA ∩D|
|RA| (= P (D|R)), and

κR(D) =
|RA ∩D|
|D| (= P (R|D)),

where |A| denotes the cardinality of a set A, αR(D) denotes a classification
accuracy of R as to classification of D, and κR(D) denotes a coverage, or a true
positive rate of R to D, respectively.

It is notable that these two measures are equal to conditional probabilities:
accuracy is a probability of D under the condition of R, coverage is one of R
under the condition of D. It is also notable that αR(D) measures the degree of
the sufficiency of a proposition, R→ D, and that κR(D) measures the degree of
its necessity.3

For example, if αR(D) is equal to 1.0, then R → D is true. On the other
hand, if κR(D) is equal to 1.0, then D → R is true. Thus, if both measures
are 1.0, then R↔ D.

Also, Pawlak recently reports a Bayesian relation between accuracy and
coverage[5]:

αR(D)P (D) = P (R|D)P (D) = P (R,D)
= P (R)P (D|R) = κR(D)P (R)

This relation also suggests that a priori and a posteriori probabilities should be
easily and automatically calculated from database.

3.2 Definition of Rules

By the use of accuracy and coverage, a probabilistic rule is defined as:

R
α,κ→ d s.t. R = ∧j ∨k [aj = vk], αR(D) ≥ δα,

κR(D) ≥ δκ.
This rule is a kind of probabilistic proposition with two statistical measures,

which is an extension of Ziarko’s variable precision model(VPRS) [12].4

It is also notable that both a positive rule and a negative rule are defined as
special cases of this rule, as shown in the next subsections.
3 These characteristics are from formal definition of accuracy and coverage. In this
paper, these measures are important not only from the viewpoint of propositional
logic, but also from that of modelling medical experts’ reasoning, as shown later.

4 This probabilistic rule is also a kind of Rough Modus Ponens[4].
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4 Rough Set Model of Complications

4.1 Definition of Characterization Set

In order to model these three reasoning types, a statistical measure, cover-
age κR(D) plays an important role in modeling, which is a conditional prob-
ability of a condition (R) under the decision D (P (R|D)).

Let us define a characterization set of D, denoted by L(D) as a set, each
element of which is an elementary attribute-value pair R with coverage being
larger than a given threshold, δκ. That is,

Lδκ(D) = {[ai = vj ]|κ[ai=vj ](D) > δκ}.
Then, according to the descriptions in Section 2, three models of reasoning about
complications will be defined as below:

1. Independent type: Lδκ(Di) ∩ Lδκ(Dj) = φ,
2. Boundary type: Lδκ(Di) ∩ Lδκ(Dj) �= φ, and
3. Subcatgory type: Lδκ(Di) ⊆ Lδκ(Dj).

All three definitions correspond to the negative region, boundary region,
and positive region[2], respectively, if a set of the whole elementary attribute-
value pairs will be taken as the universe of discourse. Thus, reasoning about
complications are closely related with the fundamental concept of rough set
theory.

4.2 Characterization as Exclusive Rules

Characteristics of characterization set depends on the value of δκ. If the threshold
is set to 1.0, then a characterization set is equivalent to a set of attributes in
exclusive rules[8]. That is, the meaning of each attribute-value pair in L1.0(D)
covers all the examples of D. Thus, in other words, some examples which do not
satisfy any pairs in L1.0(D) will not belong to a class D.

Construction of rules based on L1.0 are discussed in Subsection 4.4, which
can also be found in [9,10]. The differences between these two papers are the
following: in the former paper, independent type and subcategory type for L1.0

are focused on to represent diagnostic rules and applied to discovery of decision
rules in medical databases. On the other hand, in the latter paper, a boundary
type for L1.0 is focused on and applied to discovery of plausible rules.

4.3 Rough Inclusion

Concerning the boundary type, it is important to consider the similarities be-
tween classes. In order to measure the similarity between classes with respect to
characterization, we introduce a rough inclusion measure µ, which is defined as
follows.

µ(S, T ) =
|S⋂T |
|S| .
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It is notable that if S ⊆ T , then µ(S, T ) = 1.0, which shows that this relation
extends subset and superset relations. This measure is introduced by Polkowski
and Skowron in their study on rough mereology[6]. Whereas rough mereology
firstly applies to distributed information systems, its essential idea is rough in-
clusion: Rough inclusion focuses on set-inclusion to characterize a hierarchical
structure based on a relation between a subset and superset. Thus, application
of rough inclusion to capturing the relations between classes is equivalent to
constructing rough hierarchical structure between classes, which is also closely
related with information granulation proposed by Zadeh[11].

procedure Rule Induction (Total Process);
var
i : integer; M,L,R : List;
LD : List; /* A list of all classes */

begin
Calculate αR(Di) and κR(Di)
for each elementary relation R and each class Di;

Make a list L(Di) = {R|κR(D) = 1.0})
for each class Di;

while (LD �= φ) do
begin
Di := first(LD); M := LD −Di;
while (M �= φ) do

begin
Dj := first(M);
if (µ(L(Dj), L(Di)) ≤ δµ)
then L2(Di) := L2(Di) + {Dj};

M := M −Dj ;
end

Make a new decision attribute D′
i for L2(Di);

LD := LD −Di;
end
Construct a new table (T2(Di))for L2(Di).
Construct a new table(T (D′

i))
for each decision attribute D′

i;
Induce classification rules R2 for each L2(D);
/* Fig.2 */
Store Rules into a List R(D);
Induce classification rules Rd

for each D′ in T (D′); /* Fig.2 */
Store Rules into a List R(D′)(= R(L2(Di)))

Integrate R2 and Rd into a rule RD;
/* Fig.3 */

end {Rule Induction };

Fig. 1. An Algorithm for Rule Induction
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4.4 Rule Induction Algorithm

Algorithms for induction of plausible diagnostic rules (boundary type) are given
in Fig 1 to 3, which are fully discussed in [10]. Since subcategory type and
independent type can be viewed as special types of boundary type with respect to
rough inclusion, rule induction algorithms for subcategory type and independent
type are given if the thresholds for µ are set up to 1.0 and 0.0, respectively.

Rule induction(Fig 1.) consists of the following three procedures. First, the
characterization of each given class, a list of attribute-value pairs the supporting
set of which covers all the samples of the class, is extracted from databases and
the classes are classified into several groups with respect to the characterization.
Then, two kinds of sub-rules, rules discriminating between each group and rules
classifying each class in the group are induced(Fig 2). Finally, those two parts
are integrated into one rule for each decision attribute(Fig 3).

procedure Induction of Classification Rules;
var
i : integer; M,Li : List;

begin
L1 := Ler;
/* Ler: List of Elementary Relations */
i := 1; M := {};
for i := 1 to n do

/* n: Total number of attributes */
begin

while ( Li �= {} ) do
begin

Select one pair R = ∧[ai = vj ] from Li;
Li := Li − {R};
if (αR(D) ≥ δα) and (κR(D) ≥ δκ)

then do Sir := Sir + {R};
/* Include R as Inclusive Rule */
else M :=M + {R};

end
Li+1 := (A list of the whole combination of
the conjunction formulae in M);

end
end {Induction of Classification Rules };

Fig. 2. An Algorithm for Classification Rules

5 Induction of Complication Rules

Simple version of complication rules are formerly called disease image, which had
a very simple form in earlier versions[8]. Disease image is constructed
from L0.0(D), as disjunctive formula of all the members of this characteriza-
tion set. In this paper, complication rules are defined more effectively to detect
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procedure Rule Integration;
var
i : integer; M,L2 : List; R(Di) : List;
/* A list of rules for Di */
LD : List; /* A list of all classes */

begin
while(LD �= φ) do

begin
Di := first(LD); M := L2(Di);
Select one rule R′ → D′

i from R(L2(Di)).
while (M �= φ) do

begin
Dj := first(M);
Select one rule R→ dj for Dj ;
Integrate two rules: R ∧R′ → dj .

M := M − {Dj};
end
LD := LD −Di;

end
end {Rule Combination}

Fig. 3. An Algorithm for Rule Integration

complications. This rule is used to detect complications of multiple diseases, ac-
quired by all the possible manifestations of the disease. By the use of this rule,
the manifestations which cannot be explained by the conclusions will be checked,
which suggest complications of other diseases. These rules consists of two parts:
one is a collection of symptoms, and the other one is a rule for each symptoms,
which are important for detection of complications.

1.R
α,κ→ ¬d s.t. R = ∨Rjk = ∨j ∨k [aj = vk],

αRjk
(D) = 0.

2. Rjk
α,κ→ dl s.t. Rjk = [aj = vk],

αRjk
(Dl) > ηα, κRjk

(Dl) > ηκ,

where η denotes a threshold for α and κ.

The first part can be viewed as rules, whose attribute-value pairs belong
to U − L0.0(Di).for each class Di. On the other hand, the second part can be
viewed as rules, whose attribute-value pairs comes from Lηκ(Dj) such that i �= j.
Thus, complication rules can be constructed from overlapping region of
U − L0.0(Di) and Lηκ(Dj).
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6 Discussion

6.1 Conflict Analysis

It is easy to see the relations of independent type and subcategory type. While
independent type suggests different mechanisms of diseases, subcategory type
does the same etiology. The difficult one is boundary type, where several symp-
toms are overlapped in each Lδκ(D). In this case, relations between Lδκ(Di).
and Lδκ(Dj) should be examined.

One approach to these complicated relations is conflict analysis[3]. In this
analysis, several concepts which shares several attribute-value pairs, are analyzed
with respect to qualitative similarity measure that can be viewed as an extension
of rough inclusion. It will be our future work to introduce this methodology to
analyze relations of boundary type and to develop an induction algorithms for
these relations.

6.2 Granular Fuzzy Partition

Coverage is also closely related with granular fuzzy partition, which is introduced
by Lin[1] in the context of granular computing.

Since coverage κR(D) is equivalent to a conditional probability, P (R|D),this
measure will satisfy the condition on partition of unity, called BH-partition
(If we select a suitable partition of universe, then this partition will satisfy∑

κ κR(D) = 1.0. ) Also, from the definition of coverage,it is also equivalent to
the counting measure for |[x]R

⋂
D|, since |D| is constant in a given universe U .

Thus, this measure satisfies a “nice context”, which holds:

|[x]R1

⋂
D|+ |[x]R2

⋂
D| ≤ |D|.

Hence, all these features show that a partition generated by coverage is a kind
of granular fuzzy partition[1]. This result also shows that the characterization
by coverage is closely related with information granulation.

From this point of view, the usage of coverage for characterization and
grouping of classes means that we focus on some specific partition generated
by attribute-value pairs, the coverage of which are equal to 1.0 and that we
consider the second-order relations between these pairs. It is also notable that if
the second-order relation makes partition, as shown in the example above, then
this structure can also be viewed as granular fuzzy partition.

However, rough inclusion and accuracy do not always hold the nice context.
It would be our future work to examine the formal characteristics of coverage
(and also accuracy) and rough inclusion from the viewpoint of granular fuzzy
sets.
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Abstract. This paper proposes rough genetic algorithms based on the
notion of rough values. A rough value is defined using an upper and a
lower bound. Rough values can be used to effectively represent a range or
set of values. A gene in a rough genetic algorithm can be represented us-
ing a rough value. The paper describes how this generalization facilitates
development of new genetic operators and evaluation measures. The use
of rough genetic algorithms is demonstrated using a simple document
retrieval application.

1 Introduction

Rough set theory [9] provides an important complement to fuzzy set theory [14]
in the field of soft computing. Rough computing has proved itself useful in the
development of a variety of intelligent information systems [10,11]. Recently,
Lingras [4,5,6,7] proposed the concept of rough patterns, which are based on
the notion of rough values. A rough value consists of an upper and a lower
bound. A rough value can be used to effectively represent a range or set of
values for variables such as daily temperature, rain fall, hourly traffic volume,
and daily financial indicators. Many of the mathematical operations on rough
values are borrowed from the interval algebra [1]. The interval algebra provides
an ability to deal with an interval of numbers. Allen [1] described how the interval
algebra can be used for temporal reasoning. There are several computational
issues associated with temporal reasoning based on the interval algebra. van
Beek [12] used a subset of the interval algebra that leads to computationally
feasible temporal reasoning. A rough value is a special case of an interval, where
only the upper and lower bounds of the interval are used in the computations. A
rough pattern consisting of rough values has several semantic and computational
advantages in many analytical applications. Rough patterns are primarily used
with numerical tools such as neural networks and genetic algorithms, while the
interval algebra is used for logical reasoning.

Lingras [7] used an analogy with the heap sorting algorithm and object ori-
ented programming to stress the importance of rough computing. Any compu-
tation done using rough values can also be rewritten in the form of conventional
numbers. However, rough values provide a better semantic interpretation of re-
sults, in terms of upper and lower bounds. Moreover, some of the numeric com-
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c© Springer-Verlag Berlin Heidelberg 1999



Rough Genetic Algorithms 39

putations can not be conceptualized without explicitly discussing the upper and
lower bound framework [7].

This paper proposes a generalization of genetic algorithms based on rough
values. The proposed rough genetic algorithms (RGAs) can complement the
existing tools developed in rough computing.

The paper provides the definitions of basic building blocks of rough genetic
algorithms, such as rough genes and rough chromosomes. The conventional genes
and chromosomes are shown to be special cases of their rough equivalents. Rough
extension of GAs facilitates development of new genetic operators and evaluators
in addition to the conventional ones. Two new rough genetic operators, called
union and intersection, are defined in this paper. In addition, the paper also
introduces a measure called precision to describe the information contained in a
rough chromosome. A distance measure is defined that can be useful for quan-
tifying the dissimilarity between two rough chromosomes. Both precision and
distance measures can play an important role in evaluating a rough genetic pop-
ulation. A simple example is also provided to demonstrate practical applications
of the proposed RGAs.

Section 2 provides a brief review of genetic algorithms. Section 3 proposes
the notion of rough genetic algorithms and the associated definitions. New rough
genetic operators and evaluation measures are also defined in section 3. Section 4
contains a simple document retrieval example to illustrate the use of rough ge-
netic algorithms. Summary and conclusions appear in section 5.

2 Brief Review of Genetic Algorithms

The origin of Genetic Algorithms (GAs) is attributed to Holland’s [3] work
on cellular automata. There has been significant interest in GAs over the last
two decades. The range of applications of GAs includes such diverse areas as
job shop scheduling, training neural nets, image feature extraction, and image
feature identification [2]. This section contains some of the basic concepts of
genetic algorithms as described in [2].

A genetic algorithm is a search process that follows the principles of evolution
through natural selection. The domain knowledge is represented using a candi-
date solution called an organism. Typically, an organism is a single chromosome
represented as a vector of length n:

c = (ci | 1 ≤ i ≤ n) , (1)

where ci is called a gene.
A group of organisms is called a population. Successive populations are called

generations. A generational GA starts from initial generation G(0), and for each
generation G(t) generates a new generation G(t+1) using genetic operators such
as mutation and crossover. The mutation operator creates new chromosomes by
changing values of one or more genes at random. The crossover joins segments
of two or more chromosomes to generate a new chromosome. An abstract view
of a generational GA is given in Fig. 1.
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Genetic Algorithm:
generate initial population, G(0);
evaluate G(0);
for(t = 1; solution is not found, t++)

generate G(t) using G(t − 1);
evaluate G(t);

Fig. 1. Abstract view of a generational genetic algorithm

3 Definition of Rough Genetic Algorithms

In a rough pattern, the value of each variable is specified using lower and upper
bounds:

x = (x, x), (2)

where x is the lower bound and x is the upper bound of x. A conventional pattern
can be easily represented as a rough pattern by specifying both the lower and
upper bounds to be equal to the value of the variable. The rough values can be
added as:

x + y = (x, x) + (y, y) = (x + y, x + y), (3)

where x and y are rough values given by pairs (x, x) and (y, y), respectively. A
rough value x can be multiplied by a number c as:

c× x = c× (x, x) = (c× x, c× x), if c ≥ 0,
c× x = c× (x, x) = (c× x, c× x), if c < 0. (4)

Note that these operations are borrowed from the conventional interval calculus.
As mentioned before, a rough value is used to represent an interval or a set of
values, where only the lower and upper bounds are considered relevant in the
computation.

A rough chromosome r is a string of rough genes ri:

r = (ri | 1 ≤ i ≤ n) (5)

A rough gene ri can be viewed as a pair of conventional genes, one for the lower
bound called lower gene (ri) and the other for the upper bound called upper
gene (ri):

ri = (ri, ri), (6)

Fig. 2 shows an example of a rough chromosome. The value of each rough
gene is the range for that variable. The use of a range means that the information
conveyed by a rough chromosome is not precise. Hence, an information measure
called precision given by eq. (7) may be useful while evaluating the fitness of a
rough chromosome.

precision(r) = −
∑

1≤i≤n

(
ri − ri

Rangemax(ri)

)
. (7)
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Fig. 2. Rough chromosomes along with associated operators and functions

In eq. (7), Rangemax(ri) is the length of maximum allowable range for the value
of rough gene ri.

In Fig. 2,

precision(r) = − (0.4− 0.2)
1.0

− (0.6− 0.1)
1.0

− (0.3− 0.2)
1.0

− (0.9− 0.7)
1.0

= −1.0,

assuming that the maximum range of each rough gene is [0, 1].
Any conventional chromosome can be represented as a rough chromosome

as shown in Fig. 3. Therefore, rough chromosomes are a generalization of con-
ventional chromosomes. For a conventional chromosome c, precision(c) has the
maximum possible value of zero.

New generations of rough chromosomes can be created using the conventional
mutation and crossover operators. However, the mutation operator should make
sure that ri ≥ ri. Similarly, during the crossover a rough chromosome should be
split only at the boundary of a rough gene, i.e. a rough gene should be treated
as atomic.

In addition to the conventional genetic operators, the structure of rough genes
enables us to define two new genetic operators called union and intersection. Let
r = (ri | 1 ≤ i ≤ n) and s = (si | 1 ≤ i ≤ n) be two rough chromosomes
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Fig. 3. Conventional chromosome and its rough equivalent

defined as strings of rough genes ri and si, respectively. The union operator,
denoted by the familiar symbol ∪, is given as follows:

r ∪ s = (ri ∪ si | 1 ≤ i ≤ n) ,where
ri ∪ si =

(
min(ri, si), max(ri, si)

) (8)

The intersection operator, denoted by the the symbol ∩, is given as follows:

r ∩ s = (ri ∩ si | 1 ≤ i ≤ n) ,where

ri ∩ si =
(

min
(
min(ri, si), max(ri, si)

)
,

max
(
min(ri, si), max(ri, si)

)
)

.
(9)

Fig. 2 illustrates the union and intersection operators.

A measure of similarity or dissimilarity between two chromosomes can be
important during the evolution process. The distance between two rough chro-
mosomes is given as follows:

distance(r, s) =
∑

1≤i≤n

√(
ri − si

)2 + (ri − si)
2 (10)
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The distance between rough chromosomes r and s from Fig. 2 can be calculated
as:

distance(r, s) =
√
(0.2− 0.3)2 + (0.4− 0.5)2

+
√
(0.1− 0.3)2 + (0.6− 0.4)2

+
√
(0.2− 0.5)2 + (0.3− 0.8)2

+
√
(0.7− 0.6)2 + (0.9− 0.7)2

= 1.23.

4 An Application of Rough Genetic Algorithms

Information retrieval is an important issue in the modern information age. A
huge amount of information is now available to the general public through the
advent of the Internet and other related technologies. Previously, the information
was made available through experts such as librarians, who helped the general
public analyze their information needs. Because of enhanced communication
facilities, the general public can access various documents directly from their
desktop computers without having to consult a human expert. The modern in-
formation retrieval systems must assist the general public in locating documents
relevant to their needs.

In the traditional approach, user queries are usually represented in a linear
form obtained from the user. However, the user may not be able to specify his
information needs in the mathematical form, either because he is not comfortable
with the mathematical form, or the mathematical form does not provide a good
representation of his information needs [8]. Wong and Yao [13] proposed the use
of perceptrons to learn the user query based on document preference specified
by the user for a sample set. Lingras [8] extended the approach using non-linear
neural networks. This section illustrates how rough genetic algorithms can learn
the user query from a sample of documents.

Let us consider a small sample of documents a, b, c, and d. Let us assume that
each document is represented using four keywords: Web search, Information Re-
trieval, Intelligent Agents and Genetic Algorithms. Fig. 4 shows the documents
represented as conventional chromosomes. The value a1 = 0.6 corresponds to the
relative importance attached to the keyword Web Search in document a. Simi-
larly, a2 = 0.9 corresponds to the relative importance attached to the keyword
Information Retrieval in document a, etc.

As mentioned before, the user may not be able to specify the precise query
that could be matched with the document set. However, given a sample set, she
may be able to identify relevant and non-relevant documents. Let us assume that
the user deemed a and b as relevant. The documents c and d were considered
non-relevant to the user. This information can be used to learn a linear query
by associating weights for each of the four keywords [13]. However, it may not
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Fig. 4. Document set represented as conventional chromosomes

be appropriate to associate precise weights for each keyword. Instead, a range
of weights such as 0.3-0.5, may be a more realistic representation of the user’s
opinion. A rough query can then be represented using rough chromosomes.

The user may supply an initial query and a genetic algorithm may generate
additional random queries. The evolution process given by Fig. 1 can be used
until the user’s preference is adequately represented by a rough chromosome.
Fig. 5 shows an objective function which may be used to evaluate the population
in such an evolution process.

Objective function:
repeat for all the relevant documents d

repeat for all the non-relevant documents d′

if distance(r, d) ≤ distance(r, d′) then
match++;

return match;

Fig. 5. An example of objective function for document retrieval

Let us assume that r and s in Fig. 2 are our candidate queries.
In that case,

distance(r, a) = 2.53,
distance(r, b) = 1.24,
distance(r, c) = 2.53, and
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distance(r, d) = 3.05. Similarly,
distance(s, a) = 2.29,
distance(s, b) = 1.21,
distance(s, c) = 2.67, and
distance(s, d) = 2.00.

Using the objective function given in Fig. 5, rough chromosome r evaluates
to 4 and s evaluates to 3. Hence, in the natural selection process, r will be chosen
ahead of s. If both of these rough chromosomes were selected for creating the
next generation, we may apply genetic operators such as mutation, crossover,
union and intersection. The results of union and intersection of r and s are shown
in Fig. 2.

The example used here demonstrates a few aspects of a rough genetic algo-
rithm. Typically, we will select twenty candidate queries for every generation.
Depending upon a probability distribution, the four different genetic operators
will be applied to create the next generation. The evolution process will go on
for several generations.

In practice, a document retrieval process will involve hundreds of keywords.
Instead of classifying sample documents as relevant or non-relevant, it may be
possible to rank the documents. Rough genetic algorithms may provide a suitable
mechanism to optimize the search for the user query. Results of applications of
RGAs for web searching will appear in a future publication. An implementation
of rough extensions to a genetic algorithm library is also currently underway and
may be available for distribution in the future.

5 Summary and Conclusions

This paper proposes Rough Genetic Algorithms (RGAs) based on the notion of
rough values.

A rough value consists of an upper and a lower bound. Variables such as daily
temperature are associated with a set of values instead of a single value. The
upper and lower bounds of the set can represent variables using rough values.

Rough equivalents of basic notions such as gene and chromosomes are defined
here as part of the proposal. The paper also presents new genetic operators,
namely, union and intersection, made possible with the introduction of rough
computing. These rough genetic operators provide additional flexibility for cre-
ating new generations during the evolution. Two new evaluation measures, called
precision and distance, are also defined. The precision function quantifies infor-
mation contained in a rough chromosome, while the distance function is used
to calculate the dissimilarity between two rough chromosomes. A simple docu-
ment retrieval example was used to demonstrate the usefulness of RGAs. Rough
genetic algorithms seem to provide useful extensions for practical applications.
Future publications will present results of such experimentation.



46 Pawan Lingras and Cedric Davies

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research
Council of Canada for their financial support.

References

1. Allen, J. F.: Maintaining Knowledge about Temporal Intervals. Commnunication of
the ACM. 26 (1983) 832-843 38

2. Buckles, B. P. and Petry, F.E.: Genetic Algorithms. IEEE Computer Press, Los
Alamitos, California. (1994) 39

3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor. (1975) 39

4. Lingras, P.: Rough Neural Networks. Proceedings of Sixth International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, Granada, Spain (1996) 1445–1450 38

5. Lingras, P.: Unsupervised Learning Using Rough Kohonen Neural Network Classi-
fiers. Proceedings of Symposium on Modelling, Analysis and Simulation, CESA’96
IMACS Multiconference, Lille, France (1996) 753–757 38

6. Lingras, P.: Comparison of neofuzzy and rough neural networks, Information Sci-
ences: an International Journal. 110 (1998) 207–215 38

7. Lingras, P.: Applications of Rough Patterns. In: L. Polkowski and A. Skowron (eds.),
Rough Sets in Data Mining and Knowledge Discovery 2, Series Soft Computing,
Physica Verlag (Springer). (1998) 369–384 38, 39

8. Lingras, P.: Neural Networks as Queries for Linear and Non-Linear Retrieval Models,
Proceedings of Fifth International Conference of the Decision Sciences Institute,
Athens, Greece. (1999) (to appear). 43

9. Pawlak, Z.: Rough sets. International Journal of Information and Computer Sci-
ences. 11 (1982) 145–172 38

10. Pawlak Z.: Rough classification. International Journal of Man-Machine Studies. 20
(1984) 469-483 38

11. Pawlak, Z., Wong, S.K.M. and Ziarko, W.: Rough sets: probabilistic versus deter-
ministic approach. International Journal of Man-Machine Studies. 29 (1988) 81–95
38

12. van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelli-
gence. 58 (1992) 297-326 38

13. Wong S.K.M. and Yao Y.Y.: Query Formulation in Linear Retrieval Models. Jour-
nal of the American Society for Information Science. (1990) 41(5) 334-341 43

14. Zadeh, L.: Fuzzy Sets as a Basis for Theory of Possibility. Fuzzy Sets and Systems.
1 (1978) 3–28 38



N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 47-54, 1999. 
 c Springer-Verlag Heidelberg Berlin 1999

Classifying Faults in High Voltage Power Systems:
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Abstract:   This paper introduces an approach to classifying faults in high voltage
power system with a combination of rough sets and fuzzy sets in a neural computing
framework.  Typical error signals important for fault detection in power systems are
considered.   Features of these error signals derived earlier using Fast Fourier Transform
analysis, amplitude estimation and waveform type identification, provide inputs to a
neural network used in classifying faults.  A form of rough neuron with memory is
introduced in this paper.  A brief overview of a rough-fuzzy neural computational
method is given.  The learning performance of a rough-fuzzy and pure fuzzy neural
network are compared.

Keywords:  Approximation, calibration, classification, faults, fuzzy sets, rough
neuron, rough sets, neural network, high voltage power system

1    Introduction

A file of high voltage power system faults recorded by the Transcan Recording System
(TRS) a Manitoba Hydro in the past three years provides a collection of unclassified
signals.    The TRS records power system data whenever a fault occurs.  However, the
TRS does not classify faults relative to waveform types.  To date, a number of power
system fault signal readings have been visually associated with seven waveform types.   
In this paper, a combination of rough set and fuzzy set are used in a neural computing
framework to classify faults.  Rough neural networks (rNNs) were introduced in 1996
[1], and elaborated in [2]-[4].   This paper reports research-in-progress on classifying
power system faults and also introduces the design of neurons in rNNs in the context of
rough sets.

This paper is organized as follows.  Waveform types  of power system faults are
discussed in Section 2.   The basic concepts of rough sets and design of a rough neural
network are presented in Section 3.    An overview of a form of rough-fuzzy neural
computation is given in Section 4.  In this section, the performance comparison
between rough-fuzzy neural network and pure-fuzzy neural network is also provided.  
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2 Power System Faults

Using methods described in [5], a group of 26 pulse signals relative to seven types of
waveforms have been selected for this study (see Table 1).   Each value in Table 1
specifies the degree-of-membership of a pulse signal in the waveform of a particular
fault type.   Values greater than 0.5 indicate “definite” membership of a signal in a fault
class.   Values below 0.5 indicate uncertainty that a signal is of a particular fault type.
From line 7 of Table 1,  a value of 0.6734 indicates a high degree of certainty that a
pole line flasher signal has a type 2 waveform.   

Table 1   Sample Power System Faults Relative to Waveform Type
Fault Degree-of-membership / Waveform Type

type1 type2 type3 type4 type5 type6 type7
Value Cab 0.0724 0.0231 0.0381 0.8990 0.0222 0.1109 0.0201

AC filter test 0.0752 0.0270 0.0447 0.1102 0.0259 0.6779 0.0158
Ring counter error 0.1383 0.0446 0.1300 0.0506 0.0410 0.0567 0.0109

500 Kv close 0.0862 0.1234 0.0626 0.2790 0.1224 0.2083 0.8334
pole line flash 0.0369 0.3389 0.0600 0.0251 0.2122 0.0289 0.0214
pole line flash 0.0340 0.6734 0.0573 0.0237 0.1539 0.0271 0.0201
pole line flash 0.0327 0.5836 0.0533 0.0231 0.1537 0.0263 0.0231
pole line flash 0.0337 0.4836 0.0561 0.0211 0.1767 0.0283 0.0221
pole line flash 0.0329 0.5336 0.0582 0.0241 0.1676 0.0275 0.0205
pole line retard 0.0326 0.2056 0.0548 0.0230 0.0854 0.0262 0.0156

3    Classifying Faults

In this paper, the classification of six high voltage power system faults relative to
candidate waveforms is carried out with a neural network which combines the use of
rough sets and fuzzy sets.

3.1    Basic Concepts of Rough Sets

Rough set theory offers a systematic approach to set approximation [6]-[7].    To begin,
let S = (U, A) be an information system where U is a non-empty finite set of objects
and A is a non-empty finite set of attributes where a U Va: →  for every a ∈ A.      For

each B ⊆  A, there is associated an equivalence relation IndB(A) such that  

Ind A B x x U a B( ) {( , ' ) | .= ∈ ∀ ∈2  a(x) = a(x' )}

If (x, x') ∈ IndB(A), we say that objects x and x' are indiscernible from each other
relative to attributes from B.   The notation [x]B denotes equivalence classes of IndB(A).   
For X ⊆  U, the set X can be approximated only from information contained in B by

constructing a B-lower and B-upper approximation denoted by BX  and BX  respectively,
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where B     X x x XB= ⊆{ | [ ] } and B { x |  [x] X  }BX = ∩ ≠ ∅ .   The objects of BX

can be classified as members of X with certainty, while the objects of BX  can only be

classified as possible members of X.  Let BNB(X) = BX  - BX .  A set X is rough if
BNB(X) is not empty. The notation αB( )X  denotes the accuracy of an approximation,

where

αB

BX 

BX 
( )X =

where | X | denotes the cardinality of the non-empty set X, and αB( )X ∈ [0, 1].   The

approximation of X with respect to B is precise, if αB( )X = 1.   Otherwise, the

approximation of X is rough with respect to B, if αB( )X  < 1.

3.2   Example

Let PLF denote a pole line fault in a high voltage power system.   The set P = {x |
PLF2(x) = yes} consists of pole line fault readings which are judged to be type 2
waveforms (see Table 2).  

Table 2.   Sample PLF2 Decision Table
PLFα PLF2

x1 in [ τ , 1] yes
x2 in [0, β ) no

x3 in [ τ , 1] yes
x4 in [ β , τ ) yes/no

x5 in [ τ , 1] yes

In effect, PLF2 is a decision attribute whose outcome is synthesized in terms of hidden
condition attributes.    To see this, let τ , β  be thresholds used to assess the candidacy

of a fault reading in particular type of waveform and numerical boundary separating the
possible approximation region from the rest of the universe, respectively.   Recall that a
power system fault f is considered to be a waveform of type t if the degree-of-
membership of t is greater than or equal to some threshold.   Next, we construct a
sample decision table for pole line faults of type 2 (see Table 2). From Table 2, we

obtain approximation regions BP = {0.6734, 0.5836, 0.4836, 0.5336} and BP  =
{0.3389, 0.6734, 0.5836, 0.4836, 0.5336} relative to condition attributes B (see Fig.
1).  The set of pole line fault readings being classified is rough, since the boundary
region BNB(P) = {0.3389} in Fig. 1 is non-empty.   The accuracy of the approximation
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is high, since αB( )P  = 4/5. We use the idea of approximation regions to design a

rough neuron.   

X={x | x<=0.3389}

{0.3389}

Yes

Yes/No

No

{0.6734,0.5836,0.4836,0.5336}

Fig. 1  Approximating the Set of Pole Line Fault Recordings

Notice that six power system faults are represented in Table 1. The degree-of-
membership of each fault is computed relative to seven types of waveforms.    This
leads to 42 different rough sets, seven rough sets for each of the set of fault readings.

3.3   Design of Rough Neurons

A neuron is a processing element in a neural network.  Informally, a rough neuron is a

processing element designed to construct approximation regions BX  and BX  based on
the evaluation of its input X  on the basis of knowledge in a set of condition attributes
B.   Let rm be a rough neuron with memory.  Let X, τ  be a set of unclassified fault
readings and threshold used to assess the candidacy of a fault reading in a particular type
of waveform, respectively.   Further, let α  be a degree-of-membership function such
that α: [ , ]X → 0 1 .   Internally,  a rough neuron  rm  performs  the following
computation on each x ∈ X.

r (x) =m

B  if (x)  

B  if (x)  

B  if 0  (x) <  U -

X x

X x

X x

∪ ≥

∪ <

∪ ≤









{ },

{ },

{ },

α τ

α τ

α β

In effect, a rough neuron constructs approximation regions over time.   To make this
possible, a rough neuron is endowed with memory.   During calibratilon, the
approximation regions from the previous epoch are recalled and updated during the
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current epoch.    The accuracy of the approximation computed by a rough neuron is
measured byα B X( ), which is the output of a rough neuron.  

4    Rough-Fuzzy Neural Network Computation

The basic features of a rough-fuzzy neural computing algorithm used to classify the
waveforms of power system faults are shown in the flowchart in Fig. 2.

 

construct construct
BP BP

αB( )P

measure accuracy

classify

αB( )P

αB( )P

selected inputs: e.g.
main bandwidth,
subband amplitude
of pulse signal

compute degree-of-membership pulse
signal in fault type 1 waveform

compute degree-of-membership pulse
signal in fault type i waveform

t-norm aggregation

s-norm aggregation

hidden
processing

compute error

r, w

z1

y

a

Q≤

r, w

δexit

z2,...zn

wts u1,...,un

weight u1

noyes

rough neuron

a

adjust
r, w, u

Fig. 2   Rough-Fuzzy Neural Computation

The details of the underlying network have been omitted due to space constraints.  The
computation in Fig. 2 begins with the initialization of modulator r and strengths-of-
connection w, u.   During calibration, r, w, u will be adjusted until the error Q is less
than some threshold δ .

Let α: [ , ]X → 0 1  be a degree-of-membership function used in Fig. 2.  The output
of each rough neuron is aggregated with the degree-of-membership values using a t-, s-
norm and implication ( → ) operations from fuzzy set theory to compute zj.
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z j
i

n

ij iT r x=
=

→( )[ ]
1

α( )  s wij

In the next stage of the neural computation in Fig. 2, the weighted z-values are
aggregated with an s-, t-norm operations to compute y.

y S z
j

n

j=
=

[ ]
1

 t u j

4.1   Calibration

The flowchart in Fig. 2 has a feedback loop used to calibrate r, w, and u relative to
target values of the estimated type-of-fault. The calibration scheme for rough-fuzzy
neural networks exploits the learning method given in [8].   What follows is a brief
summary of the calibration steps:

1. Initialize modulator r and strength-of-connections w and u.
2. Introduce a training set representing data sets of values containing information

of fault signals.
3. Compute y of the output neuron.
4. Compute error indices Q, by comparing network outputs with target values

using Q = target – y.
5. Let α>0 denote the positive learning rate.  Based on the values of the error

indices, adjust the r, w, and u parameters using the usual gradient-based
optimization method suggested in (1) and (2).

param new param
Q

param
( ) = −

∂

∂
α (1)

∂

∂
=

∂

∂

∂

∂

Q

param

Q

y

y

param
(2)

4.2   Learning Performance of Two Types of Networks

A rough-fuzzy and pure fuzzy neural network have been calibrated, and compared (see
Figures 3, 4, and 5).  
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Fig. 3 Rough-fuzzy network performance Fig. 4  Performance of fuzzy network

A plot showing a comparison of learning performance of these networks during
calibration is given in Figures 3 and 4.   It is clear that for the same learning iteration,
the performance of rough-fuzzy neural network is better than that of pure-fuzzy neural
network.   After the calibration of both neural networks, all of the connections relative
to the r, w and u parameters have been determined. To test the performance of the
sample rough-fuzzy and pure fuzzy neural networks, we utilize an additional 26 data sets
of fault signals.

Fig. 5  Verification of rough-fuzzy and pure fuzzy networks
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Notice in Fig. 5 that the estimation of the fault type by the rough-fuzzy neural network
is more precise than that of the pure-fuzzy neural network.

5   Concluding Remarks

The design of a rough neuron in the context of rough sets has been given.   The output
of a rough neuron is an accuracy of approximation measurement, which is granulated
and used in conjunction with aggregation methods from fuzzy sets to classify the type
of waveform of detected high voltage power system faults.  This work is part of a study
begun at Manitoba Hydro in 1998.
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Abstract. Rough mereology is a paradigm allowing to blend main ideas
of two potent paradigms for approximate reasoning : fuzzy set theory
and rough set theory. Essential ideas of rough mereology and schemes
for approximate reasoning in distributed systems based on rough mere-
ological logic were presented in [13,14,17]. Spatial reasoning is an ex-
tensively studied paradigm stretching from theoretical investigations of
proper languages and models for this reasoning to applicational stud-
ies concerned with e.g. geographic data bases, satellite image analyses,
geodesy applications etc. We propose a rough mereological environment
for spatial reasoning under uncertainty. We confront our context with
an alternatively studied mereological context defined within Calculus of
Individuals [10] by Clarke [5] and developed into schemes for spatial
reasoning in [2,3] where the reader will find examples of linguistic inter-
pretation. We outline how to define in the rough mereological domain the
topological and geometrical structures which are fundamental for spatial
reasoning; we show that rough mereology allows for introducing notions
studied earlier in other mereological theories [2,3,5]. This note sums up
a first step toward our synthesis of intelligent control algorithms useful
in mobile robotics [1,7,8].

Keywords rough mereology, mereotopology, spatial reasoning, connec-
tion, rough mereological geometry

1 Introduction

Rough mereology has been proposed in [13] and developed into a paradigm for
approximate reasoning in [14]. Its applications to problems of approximate syn-
thesis, control, design and analysis of complex objects have been discussed in [17]
and in [15] a granular semantics for computing with words was proposed based
on rough mereology. We are concerned here with the issues of spatial reason-
ing under uncertainty. Therefore we study the rough mereological paradigm in a
geometric - mereotopological setting (cf. [2,3]). Spatial reasoning plays an impor-
tant role in intelligent robot control (cf. [1,7,8] and we are aiming at synthesizing
a context for control under uncertainty of a mobile robot which may possibly
involve natural language interfaces. Rough Mereology is a natural extension of
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Mereology (cf. [11], [18]) and we give as well a brief sketch of relevant theories
of Ontology and Mereology to set a proper language for our discussion.

2 Ontology

Ontological theory of Leśniewski [9,18] is concerned with the explanation of
meaning of phrases like ”X is Y ” . Naive set theory solves this problem via
the notion of an element; in Ontology, the esti symbol ∈ is replaced by the
copula ε (read ”is”). Ontology makes use of functors of either of two categories:
propositional and nominal; the former yield propositions the latter new names.
We begin this very concise outline of Ontology by selecting symbols X,Y, Z ....
to denote names (of objects); the primitive symbol of ontology is ε (read ”is”).

The sole Axiom of Ontology is a formula coding the meaning of ε as follows

2.1 Ontology Axiom

XεY ⇐⇒ ∃Z.ZεX ∧∀U,W.(UεX ∧WεX =⇒ UεW ) ∧ ∀T.(TεX =⇒ TεY )
This axiom determines the meaning of the formula XεY (”XisY ”) as the

conjunction of three conditions: ∃Z.ZεX (”something is X”); ∀U,W.(UεX ∧
WεX =⇒ UεW ) (”any two objects which are X are identical” i.e. X is an
individual name); ∀T.(TεX =⇒ TεY ) (”everything which is X is Y ”).

Therefore the meaning of the formula XεY is as follows: X is a non-empty
name of an individual (X is an individual) and any object which is X is also Y .

We introduce a name V defined via : XεV ⇐⇒ ∃Y.XεY being a name
for a universal object. The copula ε formalized as above permits to accomodate
distributive classes (counterparts of sets in the naive set theory). The next step is
to formalize the notion of distributive classes (counterparts of unions of families
of sets ). This belongs to Mereology.

3 Mereology

Mereology of Leśniewski [11,19] can be based on any of a few primitive notions
related one to another: part, element, class..; here, we begin with the notion of
a part conceived as a name - forming functor pt on individual names.

3.1 Mereology Axioms

We start with basic axioms for pt.
(ME1) Xεpt(Y ) =⇒ ∃Z.ZεX ∧XεV ∧ Y εV ;
(ME2) Xεpt(Y ) ∧ Y εpt(Z) =⇒ Xεpt(Z);
(ME3) non(Xεpt(X)).
Then Xεpt(Y ) means that the individual denoted X is a proper part (in

virtue of (ME3)) of the individual denoted Y. The concept of an improper part
is reflected in the notion of an element el; this is a name - forming functor defined
as follows:
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Xεel(Y )⇐⇒ Xεpt(Y ) ∨X = Y.
We will require that the following inference rule be valid.
(ME4) ∀T.(Tεel(X) =⇒ ∃W.Wεel(T ) ∧Wεel(Y )) =⇒ Xεel(Y ).

3.2 Classes

The notion of a collective class may be introduced at this point; this is effected
by means of a name - forming functor Kl defined as follows.
XεKl(Y )⇐⇒

∃Z.ZεY ∧ ∀Z.(ZεY =⇒ Zεel(X))∧
∀Z.(Zεel(X) =⇒ ∃U,W.UεY ∧Wεel(U)∧Wεel(Z)).

The notion of a class is subjected to the following restrictions
(ME5) XεKl(Y ) ∧ ZεKl(Y ) =⇒ ZεX (Kl(Y ) is an individual);
(ME6) ∃Z.ZεY ⇐⇒ ∃Z.ZεKl(Y ) (the class exists for each non-empty name).
Thus,Kl(Y ) is defined for any non-empty name Y andKl(Y ) is an individual

object. One can also introduce a less restrictive name viz. of a set:
Xεset(Y )⇐⇒

∃Z.ZεY ∧∀Z.(Zεel(X) =⇒ ∃U,W.UεY ∧Wεel(U)∧Wεel(Z)).
Thus, a set is like a class except for the universality property ∀Z.(ZεY =⇒

Zεel(X)).

3.3 Mereotopology: First Notions

Within mereology one may define (cf. [11]) some functors expressing relative
position of objects. The functor ext expresses disjointness in terms of parts:
Xεext(Y )⇐⇒ non(∃Z.Zεel(X) ∧ Zεel(Y )).
The notion of a complement is expressed by the functor comp :
Xεcomp(Y, relZ)⇐⇒ Y εsub(Z) ∧XεKl(elZ|extY )
where UεelZ|extY iff Uεel(Z) ∧ Uεext(Y ).

4 Rough Mereology

Approximate Reasoning carried out under Uncertainty needs a weaker form of
part predicate: of being a part in a degree. The degree of being a part may then
be specified either on the basis of a priori considerations and findings or directly
from data [14]. In our construction of rough mereoogical predicate, we are guided
by the tendency to preserve Mereology as an exact skeleton of reasoning .

Rough Mereology has been proposed and studied in [13,14,17] as a first-order
theory. Here, we propose a formalization in the framework of Ontology; hence,
rough mereology becomes now a genuine extension of mereology in a unified
framework. By virtue of our earlier studies cited above, we may now assume
that rough mereology is defined around a certain mereological theory as its
extension. We therefore assume that a mereological predicate el of an element is
given and ε is a symbol for ontological copula as defined above.
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4.1 Rough Mereology Axioms

The following is a list of axiomatic postulates for Rough Mereology. We introduce
a graded family µr, where r ∈ [0, 1] is a real number from the unit interval, of
name–forming functors of an individual name which would satisfy

(RM1) Xεµ1(Y )⇐⇒ Xεel(Y ) (any part in degree 1 is an element);
(RM2) Xεµ1(Y ) =⇒ ∀Z.(Zεµr(X) =⇒ Zεµr(Y )) (monotonicity);
(RM3) X = Y ∧Xεµr(Z) =⇒ Y εµr(Z) (identity of objects);
(RM4) Xεµr(Y ) ∧ s ≤ r =⇒ Xεµs(Y ) (meaning of µr: a part in degree at

least r);
we introduce a following notational convention:
Xεµ+

r (Y )⇐⇒ Xεµr(Y ) ∧ non(∃s > r.Xεµs(Y )).
In some versions of our approach, we adopt one more axiom
(RM5) Xεext(Y ) =⇒ Xεµ+

0 (Y ) (disjointness of objects is fully recognizable)
or its weakened form expressing uncertainty of our reasoning
(RM5)* Xεext(Y ) =⇒ ∃r < 1.Xεµ+

r (Y ) (disjointness is recognizable up to
a bounded uncertainty).

4.2 Models

One may have as an archetypical rough mereological predicate the rough mem-
bership function of Pawlak and Skowron [12] defined in an extended form as:
Xεµr(Y )⇐⇒ card(X∩Y )

card(X) ≥ r
where X,Y are (either exact or rough) subsets in the universe U of an infor-

mation/decision system (U,A).

4.3 Mereotopology: Čech Topologies

Topological structures are important for spatial reasoning: setting the interior
and the boundary of an object apart, allows for expressing various spatial re-
lations of contact (cf. eg. [2], [3]). We point here that (weak) topologies are
immanent to rough mereological structures.

We define an object KlrX , each X, r < 1, as follows:
ZεKlrX ⇐⇒ ZεKl(µrX) where ZεµrX ⇐⇒ Zεµr(X).
Thus KlrX is the class of all objects Z such that Zεµr(X).
A simplified description of KlrX may be provided as follows.
Let BrX be defined via: ZεBrX ⇐⇒ ∃T.Zεel(T )∧ TεµrX.
Then we have

Proposition 1. KlrX = BrX.

Proof. Let Zεel(BrX); there is T such that Zεel(T ) and TεµrX. Hence the
following is true: ∀Z.Zεel(BrX) =⇒ ∃U.Uεel(Z) ∧ Uεel(KlrX) and
BrXεel(KlrX) follows by (ME4). Similarly, for Zεel(KlrX), we have P,Q
with Pεel(Z), P εel(Q), Qεµr(X). Hence Pεel(BrX) and (ME4) implies that
KlrXεel(BrX) so finally, KlrX = BrX.

There is another property, showing the monotonicity of class operators.
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Proposition 2. For s ≤ r, KlrXεel(KlsX).

Indeed, by the previous fact, Zεel(KlrX) implies that Zεel(T ) and TεµrX
for some T hence TεµsX and a fortiori Zεel(KlsX).

Introducing a constant name Λ ( the empty name) via the definition:
XεΛ⇐⇒ XεX ∧ non(XεX)
and defining the interior IntX of an object X as follows:
IntXεKl(int X)
where Zεint X ⇐⇒ ∃T.∃r < 1.Zεel(KlrT ) ∧KlrTεel(X)
i.e. IntX is the class of objects of the form KlrT which are elements of X ,

we have

Proposition 3. (i) IntΛε IntΛ⇐⇒ ΛεΛ (the interior of the empty concept is
the empty concept);

(ii) Xεel(Y ) =⇒ IntXεel(IntY ) (monotonicity of Int);
(iii)IntKlV εKlV (the universe is open).

Properties (i)-(iii) witness that the family of all classes KlrT, r < 1, is a base
for a Čech topology [21]; we call this topology the rough mereological topology
(rm–topology).

5 From Čech Mereotopologies to Mereotopologies

We go a step further: we make rm-topology into a topology (ie. open sets have
open intersections); this comes at a cost: we need a specific model for rough
mereology.

5.1 A t-norm Model

We recall that a t-norm is a 2-argument functor �(x, y) : [0, 1]2 −→ [0, 1] satis-
fying the conditions:

(i) �(x, y) = �(y, x); (ii) �(x, 1) = x; (iii) x′ ≥ x, y′ ≥ y −→ �(x′, y′) ≥
�(x, y); (iv) �(x,�(y, z)) = �(�(x, y), z)

and that the residual implication induced by �,in symbols −→� , is defined via−→�(r, s) ≥ t⇐⇒ �(t, r) ≤ s.
We apply here the ideas developed in [14] and we define, given a part in

degree predicate µ, a new measure of partiality in degree, µ�, defined as follows
(*) Xεµ�(r)(Y )⇐⇒ ∀Z.(Zεµ(u)(X) ∧ Zεµ(v)(Y ) =⇒ −→�(u, v) ≥ r).
It turns out that

Proposition 4. The functor µ� satisfies axioms (RM1)-(RM5), (RM5)*.

Proof. We may check (RM1): Xεµ�(1)(Y ) implies that from Zεµ(u)(X) ∧
Zεµ(v)(Y ) it follows that u ≤ v for each Z hence: Zεel(X) =⇒ Zεel(Y )
follows for any Z i.e. Xεel(Y ). Similarly, Xεel(Y ) implies via (RM2) for µ
that Zεµ(u)(X) ∧ Zεµ(v)(Y ) yields u ≤ v i.e. −→�(u, v) ≥ 1 for any Z thus
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Xεµ�(1)(Y ). (RM2), (RM3), (RM4) are checked similarly, for (RM5), we be-
gin with the premise Xεext(Y ) hence Xεµ+

0 (Y ); assuming Xεµ�(r)(Y ) we get
by (*) for Z = X that −→�(1, 0) ≥ r i.e. �(r, 1) = r ≤ 0. Similar argument
handles (RM5)*.

Thus µ� is a partiality in degree predicate.
Modifying a proof given in ([9], Prop.14), we find that the following deduction

rule is valid for µ� :
(MPR) Xεµ�(r)(Y ),Y εµ�(s)(Z)

Xεµ�(�(r,s))(Z) .

We denote with the symbol Klr,�X the class KlrX with respect to µ�.
We may give a new characterization of Klr,�X.

Proposition 5. Y εel(Klr,�X)⇐⇒ Y εµ�(r)(X).

Indeed, Y εel(Klr,�X) means that Y εel(Z) and Zεµ�(r)(X) for some Z. From
Y εµ�(1)(Z) and Zεµ�(r)(X) it follows by (MPR) that Y εµ�(�(1, r) = r)(X).

We may regard therefore Klr,�X as a ”ball of radius r centered at X” with
respect to the ”metric” µ�.

Furthermore, we have by the same argument

Proposition 6. Y εel(Klr,�X) and so = min arg(�(r, s) ≥ r) imply
Kls0,�Y εel(Klr,�X).

It follows that the family {Klr,�X : r < 1, X} induces a topology on our
universe of objects (under the assumption that �(r, s) < 1 whenever rs < 1).
This allows us to define a variety of functors like: Tangential Part, Non-tangential
Part etc. instrumental in spatial reasoning (cf. [2], [3]).

6 Connections

We refer to an alternative scheme for mereological reasoning based on Clarke’s
formalism of connection C [5] in Calculus of Individuals of Leonard &Good-
man [10]; see in this respect [3]. This formalism is a basis for some schemes of
approximate spatial reasoning (eg. various relations of external contact, touching
etc. may be expressed via C) (op.cit.). The basic primitive in this approach is
the predicate C(X,Y ) (read ”X and Y are connected”) which should satisfy : (i)
C(X,X); (ii) C(X,Y ) =⇒ C(Y,X); (iii) ∀Z.(C(X,Z)⇐⇒ C(Y, Z)) =⇒ X = Y.
From C other predicates (as mentioned above) are generated and under addi-
tional assumptions (cf. [5]) a topology may be generated from C.

We will define a notion of connection in our model; clearly, as in our model
topological structures arise in a natural way via ”metrics” µ, we may afford a
more stratified approach to connection and separation properties. So we propose
a notion of a graded connection C(r, s).
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6.1 From Graded Connections to Connections

We let
BdrXεKl(µ+

r X) where Zεµ+
r (X) ⇐⇒ Zεµr(X) ∧ non(Zεµs(X), s > r)

and then
XεC(r, s)(Y )⇐⇒ ∃W.Wεel(BdrX) ∧Wεel(BdsY ).
We have then clearly:
(i) XεC(1, 1)(X); (ii) XεC(r, s)(Y ) =⇒ Y εC(s, r)(X).

Concerning the property (iii), we may have some partial results However, we
adopt here a new approach. It is realistic from both theoretical and applicational
points of view to assume that we may have ”infinitesimal ” parts i.e. objects as
”small” with respect to µ as desired.

Infinitesimal Parts Model We adopt a new axiom of infinitesimal parts
(IP) non(Xεel(Y )) =⇒ ∀r > 0.∃Zεel(X), s < r.Zεµ+

s (Y ).
Our rendering of the property (iii) under (IP) is as follows:
non(Xεel(Y )) =⇒ ∀r > 0.∃Z, s < r.Zεµ+

s (Y ).ZεC(1, 1)(X) ∧ ZεC(1, s)(Y ).

Introducing Connections Our notion of a connection will depend on a thresh-
old, α,set according to the needs of a context of reasoning.

Given 0 < α < 1, we let
(CON) XεCα(Y )⇐⇒ ∃r, s ≥ α.XεC(r, s)(Y ).
Then we have
(i) XεCα(X), each α;
(ii) XεCα(Y ) =⇒ Y εCα(X);
(iii)X �= Y =⇒ ∃Z.(ZεCα(X)∧non(ZεCα(Y ))∨ZεCα(Y )∧non(ZεCα(X)))
i.e. the functor Cα has all the properties of connection in the sense of [5]

and [2,3].

Restoring Rough Mereology from Connections We show now that when
we adopt mereological notions as they are defined via connections in Calculus of
Individuals, we do not get anything new: we come back to rough mereology we
started from. The formula
XεelC(Y ) ⇐⇒ ∀Z.(ZεC(X) =⇒ ZεC(Y )) is the definition of the notion of

an element from a connection C. We claim

Proposition 7. XεelCα(Y )⇐⇒ Xεel(Y ).

Clearly, XεelCα(Y ) =⇒ Xεel(Y ). Assume that Xεel(Y ); ZεCα(X). There
is W with Wεµ+

r (Z) and Wεµ+
s (X), r, s ≥ α. Then by (RM2), Wεµ+

s′(Y ) with
an s′ ≥ s and so ZεCα(Y ). It follows that Xεel(Y ) =⇒ XεelCα(Y ).

Any of connections Cα restores thus the original notion of an element, el.
Therefore in our setting of rough mereology, we may have as well the

mereotopological setting of [2,3,5].
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Let us observe that in general Cα �= OV where XεOV (Y )⇐⇒ ∃Z.Zεel(X)∧
Zεel(Y ) is the functor of overlapping (in our context, objects may connect each
other without necessarily having a part in common).

7 Geometry via Rough Mereology

It has been shown that in the mereotopological context of Calculus of Individ-
uals one may introduce a geometry (cf. [3]). We show that in the context of
rough mereology geometric structures arise naturally without any resort to the
intermediate structure of connection. It is well known that elementary geometry
may be developed on the basis of eg. the primitive notion of ”being closer to ...
than to..”. We consider here the axioms for this notion going back to Tarski (cf.
eg. [4]) and we introduce a name - forming functor on pairs of individual names
CT (Y, Z) (XεCT (Y, Z) is read ”X is closer to Y than to Z”) subject to

(CT1) XεCT (Y, Z) ∧XεCT (Z,W ) =⇒ XεCT (Y,W );
(CT2) XεCT (Y, Z) ∧ ZεCT (X,Y ) =⇒ Y εCT (X,Z);
(CT3) non(XεCT (Y, Y ));
(CT4) XεCT (Y, Z) =⇒ XεCT (Y,W ) ∨XεCT (W,Z).
We define this notion in the context of rough mereology: for X,Y, we let

µ+(X,Y ) = r ⇐⇒ Xεµ+
r (Y ) and then

XεCT (Y, Z)⇐⇒ max(µ+(X,Y ), µ+(Y,X)) ≥ max(µ+(X,Z), µ+(Z,X)).
Then

Proposition 8. The functor CT thus defined satisfies (CT1)-(CT4).

We may now follow e.g. the lines of [4,3] and give definitions of a other geometric
notions; for instance, letting
T (X,Y, Z)⇐⇒ ∀W.X = W ∨CT (Y,X,W ) ∨ CT (Z,X,W )
we may render the notion that X is positioned between Y and Z and this may
permit to define a straight line segment and further notions as pointed to in
e.g. [4]. The details will be presented elsewhere (cf. [16]).

8 Conclusion

We have presented a scheme for developing conceptual spatial reasoning under
uncertainty in the framework of rough mereology. In this framework, as it will
be presented elsewhere, we may develop various approaches to spatial reasoning,
including metric geometry based on predicates µ and metrics derived from them.
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Abstract. Rough sets theory depending upon DIS(Deterministic In-
formation System) is now becoming a mathematical foundation of soft
computing. Here, we pick up NIS(Non-deterministic Information Sys-
tem) which is more general system than DIS and we try to develop
the rough sets theory depending upon NIS. We first give a definition
of definability for every object set X, then we propose an algorithm for
checking it. To find an adequate equivalence relation from NIS for X
is the most important part in this algorithm, which is like a resolution.
According to this algorithm, we implemented some programs by prolog
language on the workstation.

1 Introduction

Rough sets theory is seen as a mathematical foundation of soft computing, which
covers some areas of research in AI, i.e., knowledge, imprecision, vagueness,
learning, induction[1,2,3,4]. We recently see many applications of this theory to
knowledge discovery and data mining[5,6,7,8,9].

In this paper, we deal with rough sets in NIS(Non-deterministic Information
System), which will be an advancement from rough sets in DIS(Deterministic In-
formation System). According to [1,2], we define every DIS = (OB,AT, {V ALa|
a ∈ AT }, f), where OB is a set whose element we call object, AT is a set whose el-
ement we call attribute, V ALa for a ∈ AT is a set whose element we call attribute
value and f is a mapping such that f : OB ∗AT → ∪a∈ATV ALa, which we call
classification function. For every x, y(x �= y) ∈ OB, if f(x, a) = f(y, a) for
every a ∈ AT then we see there is a relation for x and y. This relation becomes
an equivalence relation on OB, namely we can always define an equivalence re-
lation EQ on OB. If a set X(⊂ OB) is the union of some equivalence classes
in EQ, then we call X is definable in DIS. Otherwise we call X is rough [1].

Now we go to the NIS. We define every NIS=(OB,AT,{V ALa|a ∈AT }, g),
where g is a mapping such that g : OB ∗ AT → P (∪a∈ATV ALa) (Power
set for ∪a∈ATV ALa)[3,4]. We need to remark that there are two interpreta-
tions for mapping g, namely AND-interpretation and OR-interpretation. For
example, we can give the following two interpretations for g(tom, language) =
{English, Polish, Japanese}.
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c© Springer-Verlag Berlin Heidelberg 1999



An Algorithm for Finding Equivalence Relations 65

(AND-interpretation) Tom can use three languages, English, Polish and Jap-
anese. Namely, we see g(tom, language) is English∧ Polish ∧ Japanese.
(OR-interpretation) Tom can use either one of language in English, Polish or
Japanese. Namely we see g(tom, language) is English∨ Polish ∨ Japanese.
The OR-interpretation seems to be more important for g. Because, it is related
to incomplete information and uncertain information. Furthermore, knowledge
discovery, data mining and machine learning from incomplete information and
uncertain information will be important issue. In such situation, we discuss NIS
with OR-interpretation. We have already proposed incomplete information and
selective information for OR-interpretation [10], where we distinguished them
by the existence of unknown real value. In this paper, we extend the contents
in [10] and develop the algorithm for finding equivalence relations in NIS.

2 Aim and Purpose in Handling NIS

Now in this section, we show the aim and purpose in handling NIS. Let’s con-
sider the following example.
Example 1. Suppose the next NIS1 such that OB = {1, 2, 3, 4},AT ={A,B,C},
∪a∈ATV ALa = {1, 2, 3} and g is given by the following table.

OB A B C

1 1 ∨ 2 2 1 ∨ 2 ∨ 3

2 1 2 1 ∨ 2 ∨ 3

3 1 1 ∨ 2 2

4 1 2 2 ∨ 3

Table 1. Non-deterministic Table for NIS1

In this table, if we select an element for every disjunction then we get a
DIS. There are 72(=2*3*3*2*2) DISs for this NIS1. In this case, we have the
following issues.

Issue 1: For a set {1, 2}(⊂ OB), if we select 1 from g(1, A) and 3 from g(1, C),
g(2, C) and g(4, C) then {1, 2} is not definable. However, if we select 1 from
g(1, C) and g(2, C) then {1, 2} is definable. How can we check such defin-
ability for every subset X of OB ?

Issue 2: How can we get all possible equivalence relations from 72 DISs ? Do
we have to check 72 DISs sequentially ?

Issue 3: Suppose there are following information for attribute D: g(1, D) = {1},
g(2, D) = {1}, g(3, D) = {2} and g(4, D) = {2}, respectively. In this case,
which DIS from NIS1 makes (A,B,C) → D consistent ? How can we get
all DISs which make (A,B,C)→ D consistent ?

These issues come from the fact such that the equivalence relation in DIS is
always unique but there are some possible equivalence relations for NIS.



Now we just a little show the real execution for Issue 2 to clarify how our
system works.

?-relationall.
[1] [[1,2,3,4]] 1 [10] [[1,4],[2],[3]] 5
[2] [[1,2,3],[4]] 1 [11] [[1],[2,3,4]] 5
[3] [[1,2,4],[3]] 3 [12] [[1],[2,3],[4]] 4
[4] [[1,2],[3,4]] 2 [13] [[1],[2,4],[3]] 14
[5] [[1,2],[3],[4]] 5 [14] [[1],[2],[3,4]] 8
[6] [[1,3,4],[2]] 2 [15] [[1],[2],[3],[4]] 19
[7] [[1,3],[2,4]] 1 POSSIBLE CASES 72
[8] [[1,3],[2],[4]] 1 EXEC TIME=0.1566100121(sec)
[9] [[1,4],[2,3]] 1 yes

In the above execution, we see there are 15 kinds of equivalence relations and
there are 19 DISs whose equivalence relation is {{1}, {2}, {3}, {4}}. Accord-
ing to this execution, we can see that 2 cases of {{1, 2}, {3, 4}}, 5 cases of
{{1, 2}, {3}, {4}}, 8 cases of {{1}, {2}, {3, 4}} and 19 cases of {{1}, {2}, {3},
{4}} make (A,B,C) → D consistent by Proposition 4.1 in [1]. In the subse-
quent sections, we discuss the definability of every set in NIS as well as the
above issues.

3 An Algorithm for Checking Definability of Set in DIS

In this section, we simply refer to an algorithm to detect the definability of set
in DIS. Here, we suppose an equivalence relation EQ in the DIS and we use
[x] to express an equivalence class with object x.
An Algorithm in DIS
(1) Make a set SUP (= ∪x∈X [x]).
(2) If SUP = X then X is definable in DIS else go to the next step (3).
(3) Make a set INF (= ∪{[x] ∈ EQ|[x] ⊂ X}), then lower and the upper ap-

proximation of X are INF and SUP , respectively.
The above algorithm manages the definability of set X , upper and the lower
approximation of X . We will propose a new algorithm in NIS depending upon
the above one.

4 Some Definitions and Properties in NIS

We first give some definitions then we show a proposition.
Definition 1. For NIS = (OB,AT, {V ALa|a ∈ AT }, g), we call NIS′ = (OB,
AT, {V ALa|a ∈ AT }, g′) which satisfies the following (1) and (2) an extension
from NIS.
(1) g′(x, a) ⊂ g(x, a) for every x ∈ OB, a ∈ AT .
(2) g′(x, a) is a singleton set for every x ∈ OB, a ∈ AT .
Here, we can see every extension from NIS is a DIS, because every attribute
value is fixed uniquely.
Definition 2. For every extension NIS′ from NIS, we call the equivalence
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relation in NIS′ a possible equivalence relation in NIS. We also call every
element in this relation a possible equivalence class in NIS.
In every DIS, we know the definability of a set X , so we give the next definition.
Definition 3. A set X(⊂ OB) is definable in NIS, if X is definable in some
extensions from NIS.

We soon remind a way to detect the definability of a set X in NIS, namely
we sequentially make every extension from NIS and execute the program by
algorithm in DIS. However, we need the same number of files as extensions
from NIS. Furthermore, if X is not definable in NIS then we have to execute
the same program for all extensions. So we propose another way from now on.
We give the following definitions.
Definition 4. Suppose NIS = (OB,AT, {V ALa|a ∈ AT }, g). If g(x, a) is a
singleton set for every a ∈ AT then we call that object x is fixed. Furthermore,
OBfixed = {x ∈ OB| object x is fixed }.
Definition 5. Suppose NIS = (OB,AT, {V ALa|a ∈ AT }, g) and g(x, a) is not
a singleton set for some a ∈ AT . By picking up an element in such g(x, a), we
can make object x fixed. Here, we call a set of pairs {[attribute, picked element]}
selection in x. For a selection θ, xθ expresses the fixed tuple for x.
In Example 1, if we take a selection θ = {[A, 1], [C, 1]}, then the 1θ is (1, 2, 1).
For θ = {[B, 2]}, the 3θ is (1, 2, 2).
Definition 6. Suppose NIS = (OB,AT, {V ALa|a ∈ AT }, g). For every x(∈
OB) and selection θ in x, we give the following definitions.
(1) inf(x, θ) = {x} ∪ {y ∈ OBfixed| xθ and the tuple for y are the same }.
(2) sup(x, θ) = {y ∈ OB| there is a selection θ′ such that xθ = yθ′}.
According to these definitions, we get the following proposition.
Proposition 1.
(1) The inf(x, θ) is the minimal possible equivalence class including object x for

the selection θ.
(2) For every y ∈ (sup(x, θ)− inf(x, θ)), there are selections θ′ and θ′′ such that

xθ = yθ′ and xθ �= yθ′′ .
(3) A subset X(⊂ OB) which satisfies inf(x, θ) ⊂ X ⊂ sup(x, θ) for some x and

θ can be a possible equivalence class.
(Proof) (1) For x and θ, the tuple for every y ∈ inf(x, θ) is the same and fixed.
So inf(x, θ) is a minimal possible equivalence class with x for the selection θ.
(2) For y ∈ (sup(x, θ) − inf(x, θ)), we get y ∈ sup(x, θ) and y �∈ inf(x, θ). By
the definition of sup, there is a selection θ′ such that xθ = yθ′ . If y ∈ OBfixed

then y ∈ inf(x, θ), which makes contradiction to y �∈ inf(x, θ). So y �∈ OBfixed,
and there exists at least another selection θ′′ such that yθ′′ �= xθ.
(3) According to (1) and (2), inf(x, θ) ∪M for M ⊂ (sup(x, θ)− inf(x, θ)) can
be a possible equivalence class.

In this proposition, the (3) is related to the definability of set in NIS and we
use this property. However, we have to remark that inf(x, θ) and sup(x, θ) are
not independent in every x. The inf(x, θ) and sup(x, θ) are mutually related to
other inf(y, θ′) and sup(y, θ′). We show it in the next example.
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Example 2. Suppose NIS1 in Example 1. The OBfixed = ∅ and we get the
following subset of all inf and sup.

(A) inf(1, {[A, 1], [C, 3]}) = {1}, sup(1, {[A, 1], [C, 3]}) = {1, 2, 4}.
(B) inf(3, {[B, 1]}) = {3}, sup(3, {[B, 1]}) = {3}.
(C) inf(3, {[B, 2]}) = {3}, sup(3, {[B, 2]}) = {1, 2, 3, 4}.
(D) inf(4, {[C, 2]}) = {4}, sup(4, {[C, 2]}) = {1, 2, 3, 4}.
(E) inf(4, {[C, 3]}) = {4}, sup(4, {[C, 3]}) = {1, 2, 4}.

Here in (A), the following sets {1}, {1, 2}, {1, 4} and {1, 2, 4} can be a possible
equivalence class by (3) in Proposition 1. However, if we make {1, 2} a possible
equivalence class, then we implicitly make object 4 �∈ [1](= [2]). It implies se-
lection [C, 3] for object 4 is rejected, because 4{[C,3]} is (1,2,3) which is the same
as 1{[A,1],[C,3]}. Namely, we can not use (E) and we have to revise (C) and (D)
as follows:

(C’) inf(3, {[B, 2]}) = {3}, sup(3, {[B, 2]}) = {3, 4}.
(D’) inf(4, {[C, 2]}) = {4}, sup(4, {[C, 2]}) = {3, 4}.

If we use (B) then [3] = {3} and reject the (C’), because either (B) or (C’) hold.
Here, we have to revise (D’) as follows:

(D”) inf(4, {[C, 2]}) = {4}, sup(4, {[C, 2]}) = {4}.
For this (D”), only {4} can be a possible equivalence class. Finally we get a pos-
sible equivalence relation {{1, 2}, {3}, {4}} and the selections are {[A, 1], [C, 3]}
for object 1, {[C, 3]} for 2, {[B, 1]} for 3 and {[C, 2]} for 4. These selections
specify a DIS from NIS. We also know that sets like {1, 2, 3} and {3, 4} are
definable in NIS but {2, 3} is not defiable in this DIS.

5 Proposal of an Algorithm in NIS

The following is the overview of proposing algorithm.
An Algorithm for Checking Definability of Set in NIS
Suppose we are given inf(x, θ) and sup(x, θ) for every x(∈ OB).
Input: A set X(⊂ OB).
Output: X is definable in NIS or not.
(1) Set X∗ = X .
(2) For the first element x(∈ X∗), find X ′(⊂ X∗) such that inf(x, θ) ⊂ X ′ ⊂

sup(x, θ) for some θ.
(3) The usable inf(y, θ′) and sup(y, θ′) for y ∈ OB are restricted by selecting

X ′ in (2). So, check the usable inf and sup, and go to (4).
(4) If there is no contradiction in (3), then set [x] = X ′, X∗ = X∗ −X ′ and

go to (2). Especially if X∗ = ∅ then we conclude X is definable. To find
other cases, backtrack to (2). If there is contradiction in (3), then backtrack
to (2) and try another X ′. If there is no branch for backtrack, then we
conclude X is not definable.

In this algorithm, if we set X = OB then we can get all possible equivalence
relations. This algorithm seems to be simple and natural, but managing the inf
and sup is very complicated. We also need to discuss how we get inf and sup
information from NIS.
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6 Implementation of Proposing Algorithm in NIS

Now in this section, we show the implementation of a prover for NIS. We depend
upon prolog language on workstation for implementing this prover. Our prover
consists of the following two subsystems:

(1) File translator from data file to an internal expression.
(2) Query interpreter with some subcommands.

6.1 Data File for NIS

Here, we show the data file in prolog, which is very simple. We use two kinds of
atomic formulas:

object(number of objects, number of attributes).
data(object, tuple data).

The following is the real data file for NIS1.
object(4,3). data(1,[[1,2],2,[1,2,3]]). data(2,[1,2,[1,2,3]]).

data(3,[1,[1,2],2]). data(4,[1,2,[2,3]]).

We use a list to express disjunction. This data structure is so easy that we can
soon make this file from every non-deterministic table. There is no restrictions
for every number of items except prolog and workstation’s restriction.

6.2 File Translator from Data File to Internal Expression

This translator creates an internal expression from every data file, which consists
of the following three kinds of atomic formulas.

cond(object, number for selection, tuple for this selection).
pos(object, number of all selections).
conn([object, number for selection], [slist, slist1], [mlist,mlist1],maylist).

As for the 2nd, 3rd and 4th arguments in conn, we will show their contents by
using real execution. The following is the translation of data file.

?-consult(nkbtf.pl).

yes

?-go.

File Name for Read Open:’nkbda23.pl’.

File Name for Write Open:’out.pl’.

EXEC TIME=0.05459904671(sec)

yes

In this translation, nkbtf.pl is the translator and nkbda23.pl is a data file for
NIS1. The file out.pl keeps the internal expression for NIS1. The following is a
part of internal expression for object 3.

cond(3,1,[1,1,2]).

cond(3,2,[1,2,2]).

pos(3,2).

conn([3,1],[ [3], [1]],[[],[]],[[3,1]]).

conn([3,2],[ [3], [2]],[[1,2,4],[3,2,1]],[[3,2],[1,3],[2,2],[4,1]]).

The pos(3, 2) shows there are two selections for object 3 and cond(3, 1, [1, 1, 2])
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does [1, 1, 2] is the tuple for the first selection θ(= {[B, 1]}). In this selection,
the 2nd argument in conn([3, 1], , , ) shows inf(3, θ) = {3} and 3rd argument
does sup(3, θ) − inf(3, θ) = ∅. Similarly for the second selection θ′(= {[B, 2]})
which makes tuple [1, 2, 2], we get inf(3, θ′) = {3} and sup(3, θ′)− inf(3, θ′) =
{1, 2, 4}. Here, we identify the selections θ with the second argument in cond.
For example, we identify a selection θ = {[B, 1]} as the second argument 1 in
cond(3, 1, [1, 1, 2]).
Definition 7. For cond(object, number for selection, tuple), we call number
for selection an index of selection θ and we do [object, number for selection]
an index of the fixed tuple.

6.3 An Algorithm for Translator

Now we simply show the translation algorithm, which consists of two phases.
In Phase1, we create cond(object, , ) and pos(object, ) from data(object, ).
For every data(object, list), we first make the cartesian products from list then
sequentially we assert cond(object, selection, fixed tuple), and finally we assert
pos(object, last number).

In Phase2, we make every conn([object, selection], , , ) from every cond.
For every cond(object, selection, fixed tuple), we first initialize lists [slist, slist1]
and [mlist,mlist1] and we find other cond(object′, selection′, f ixed tuple). If
pos(object′, 1) then we add [object′, selection′] to [slist, slist1] else we do to
[mlist,mlist1]. We continue it for all selections. Finally, we assign the union of
[slist, slist1] and [mlist,mlist1] to maylist and assert conn([object, selection],
[slist, slist1], [mlist,mlist1],maylist). We have realized the translator according
to this algorithm.

6.4 An Algorithm for Handling Usable inf and sup

In proposing algorithm, the most difficult part is to handle every subset of objects
from usable inf and sup. The usable inf and sup are dynamically revised, so we
need to manage what are the usable inf and sup. For example in the translated
conn([3, 2], [ [3], [2]], [[1, 2, 4], [3, 2, 1]], ), every {3} ∪M(M ⊂ {1, 2, 4}) can be a
possible equivalence class by Proposition 1. To make {1, 3} a possible equivalence
class, we need to positively use object 1 in {1, 2, 4} and negatively use objects 2
and 4 in {1, 2, 4}.
Definition 8. For X ⊂ OB, suppose inf(x, θ) ⊂ X ⊂ sup(x, θ) for some
x ∈ OB. In this case, we call every element in X positive use of index [x, θ] and
every element in (sup(x, θ)−X) negative use of [x, θ].
To manage such two kinds of usage, we adopt a positive list PLIST and a
negative list NLIST . The PLIST keeps indexes [object, selection] which have
been applied as positive use, and the NLIST keeps indexes which have been
applied as negative use. For these two lists and positive and negative use, we
have the following remarks.
Remark for Positive Use of [x, θ]
Suppose the index for xθ is [x, num]. The xθ is applicable as positive use only
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when [x, ] �∈ PLIST and [x, num] �∈ NLIST .
Remark for Negative Use of [x, θ]
Suppose the index for xθ is [x, num]. The xθ is applicable as negative use in the
following cases;
(1) [x, num] ∈ NLIST .
(2) [x, num] �∈ NLIST , [x, num] �∈ PLIST and [x, num′] ∈ PLIST for num �=

num′.
(3) [x, num] �∈ NLIST , [x, ] �∈ PLIST and there is at least [x, num′′] �∈ NLIST

for num �= num′′.
The above remarks avoid the contradiction such that [x, θ] is applied not only
positive use but also negative use. The third condition in negative use shows
that [x, num] ∈ NLIST for all num does not hold.

Now we show the algorithm for finding a possible equivalence class.
An Algorithm: candidate
Input: X = {x1, · · · , xn} ⊂ OB, inf , sup, current PLIST and NLIST .
Output: There is a possible equivalence class [x1] ⊂ X such that inf(x1, θ) ⊂

[x1] ⊂ sup(x1, θ) or not.
(1) Pick up a selection θ such that inf(x1, θ) ⊂ X . If we can not pick up such

selection then respond there is no possible equivalence class.
(2) If every element in inf(x1, θ) is applicable as positive use then go to (3) else

go to (1) and try another selection.
(3) Pick up a set M(⊂ (sup(x1, θ)− inf(x1, θ))) and go to (4). If we can not

pick up any other M then go to (1) and try another selection.
(4) If M ⊂ (X − inf(x1, θ)) and every element in M is applicable as positive

use then set PLIST ← PLIST ∪{[y, θ′]|y ∈ inf(x1, θ)∪M, yθ′ = x1,θ} and
go to (5) else go to (3) and try another M .

(5) If every element in (sup(x1, θ)− (inf(x1, θ) ∪M)) is applicable as negative
use then go to (6) else go to (3) and try another M .

(6) Set NLIST ← NLIST ∪ {[y, θ′]|y ∈ (sup(x1, θ)− (inf(x1, θ) ∪M)), yθ′ =
x1,θ}. Respond [x1](= inf(x1, θ) ∪M) can be a possible equivalence class.

According to this algorithm, we realized a program candidate which responses
a possible equivalence class depending upon the current PLIST and NLIST .

6.5 Realization of Query Interpreter and Its Subcommands

Now we show the basic programs class depending upon the algorithm candidate.
This class manages the definability of a set in NIS.

class(X,Y,EQUIV,Ppre,Pres,Npre,Nres)

:-X==[],EQUIV=Y,Pres=Ppre,Nres=Npre.

class([X|X1],Y,EQUIV,Ppre,Pres,Npre,Nres)

:-candidate([X|X1],CAN,Ppre,Pres1,Npre,Nres1),

minus([X|X1],CAN,REST),

class(REST,[CAN|Y],EQUIV,Pres1,Pres,Nres1,Nres).

In class, the second argument Y keeps the temporary set of equivalence classes,
the fourth argument Ppre does the temporary PLIST and the sixth argument
Npre does the temporary NLIST . In the second clause, we first make a set
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CAN(⊂ [X |X1]) which satisfies all conditions, then we execute the class for a set
([X |X1]−CAN) again. If this ([X |X1]−CAN) is empty set, then the first clause
is called and the temporary items are unified to response variable EQUIV , Pres
and Nres. After finding a refutation for class, we get an equivalence relation
and DIS. We have also prepared some subcommands depending upon class,
classex, relation, relationex and relationall.

Now, we just show the real execution times for some NISs.
(CASE1) In NIS1, we got two DISs for relationex([[1, 2], [3, 4]]) in 0.0697(sec).
(CASE2) The number of object is 20, attribute is 10, DIS from NIS
is 648(= 23 ∗ 34). It took 0.1646(sec) for translation. For class([1, 2, 3, 4, 5]), we
got no DIS in 0.0018(sec). For class([1, 2, 3, 4, 5, 6]), we got 324 DISs
in 0.0481(sec). For relationall which is the most heavy query, we got 48 possible
equivalence relations in 2.0513(sec).
(CASE3) The number of object is 70, attribute is 4, DIS from NIS
is 34992(= 24 ∗ 37). It took 0.3875(sec) for translation. For class([1, 2, 3, 4, 5]),
we got no DIS in 0.0053(sec). For relationall, we got 4 possible equivalence
relations in 215.6433(sec). The relations come from 20736 DISs, 2592 DISs,
10368 DISs and 1296 DISs, respectively.

7 Concluding Remarks

In this paper, we discussed the definability of set in NIS and proposed an al-
gorithm for checking it. The algorithm candidate takes the important roll for
realizing some programs, which will be a good tool for handling NIS. We will
apply our framework to machine learning and knowledge discovery from NIS.

References

1. Z.Pawlak: Rough Sets, Kluwer Academic Publisher, 1991. 64, 66, 68, 69

2. Z.Pawlak: Data versus Logic A Rough Set View, Proc. 4th Int’l. Workshop on
Rough Set, Fuzzy Sets and Machine Discovery, pp.1-8, 1996. 68, 69, 70

3. E.Orlowska and Z.Pawlak: Logical Foundations of Knowledge Representation, Pas
Reports, 537, 1984. 68, 69, 70

4. A.Nakamura, S.Tsumoto, H.Tanaka and S.Kobayashi: Rough Set Theory and Its
Applications, Journal of Japanese Society for AI, Vol.11, No.2, pp.209-215, 1996.

5. J.Grzymala-Busse: A New Version of the Rule Induction System LERS, Funda-
menta Informaticae, Vol.31, pp.27-39, 1997.

6. J.Komorowski and J.Zytkow(Eds.): Principles of Data Mining and Knowledge Dis-
covery, Lecture Notes in AI, Vol.1263, 1997.

7. Z.Ras and S.Joshi:Query Approximate Answering System for an Incomplete
DKBS, Fundamenta Informaticae, Vol.30, pp.313-324, 1997.

8. S.Tsumoto: PRIMEROSE, Bulletin of Int’l. Rough Set Society, Vol.2, No.1, pp.42-
43, 1998.



An Algorithm for Finding Equivalence Relations 73

9. N.Zhong, J.Dong, S.Fujitsu and S.Ohsuga: Soft Techniques to Rule Discovery
in Data, Transactions of Information Processing Society of Japan, Vol.39, No.9,
pp.2581-2592, 1998.

10. H.Sakai: Some Issues on Nondeterministic Knowledge Bases with Incomplete and
Selective Information, Proc. RSCTC’98, Lecture Notes in AI, Vol.1424, pp.424-431,
1998. 65



On the Extension of Rough Sets under

Incomplete Information

Jerzy Stefanowski1 and Alexis Tsoukiàs2
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tsoukias@lamsade.dauphine.fr

Abstract. The rough set theory, based on the conventional indiscerni-
bility relation, is not useful for analysing incomplete information. We in-
troduce two generalizations of this theory. The first proposal is based on
non symmetric similarity relations, while the second one uses valued tol-
erance relation. Both approaches provide more informative results than
the previously known approach employing simple tolerance relation.

1 Introduction

Rough set theory has been developed since Pawlak’s seminal work [5] (see
also [6]) as a tool enabling to classify objects which are only “roughly” described,
in the sense that the available information enables only a partial discrimination
among them although they are considered as different objects. In other terms,
objects considered as “distinct” could happen to have the “same” or “similar”
description, at least as far as a set of attributes is considered. Such a set of at-
tributes can be viewed as the possible dimensions under which the surrounding
world can be described for a given knowledge. An explicit hypothesis done in
the classic rough set theory is that all available objects are completely described
by the set of available attributes. Denoting the set of objects as A = {a1, · · ·an}
and the set of attributes as C = {c1, · · · cm} it is considered that ∀aj ∈ A, ci ∈ C,
the attribute value always exists, i.e. ci(aj) �= ∅.
Such a hypothesis, although sound, contrast with several empirical situations

where the information concerning the set A is only partial either because it has
not been possible to obtain the attribute values (for instance if the set A are
patients and the attributes are clinical exams, not all results may be available in
a given time) or because it is definitely impossible to get a value for some object
on a given attribute.
The problem has been already faced in literature by Grzymala [2],

Kryszkiewicz [3,4], S7lowiński and Stefanowski [7]. Our paper enhances such works
by distinguishing two different semantics for the incomplete information: the
“missing” semantics (unknown values allow any comparison) and the “absent”
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semantics (unknown values do not allow any comparison) and explores three dif-
ferent formalisms to handle incomplete information tables: tolerance relations,
non symmetric similarity relations and valued tolerance relations.
The paper is organized as follows. In section 2 we discuss the tolerance ap-

proach introduced by Kryszkiewicz [3]. Moreover, we give an example of incom-
plete information table which will be used all along the paper in order to help the
understanding of the different approaches and allow comparisons. In section 3 an
approach based on non symmetric similarity relations is introduced using some
results obtained by S7lowiński and Vanderpooten [8]. We also demonstrate that
the non symmetric similarity approach refines the results obtained using the
tolerance relation approach. Finally, in section 4 a valued tolerance approach is
introduced and discussed as an intermediate approach among the two previous
ones. Conclusions are given in the last section.

2 Tolerance Relations

In the following we briefly present the idea introduced by Kryszkiewicz [3]. In
our point of view the key concept introduced in this approach is to associate to
the unavailable values of the information table a “null” value to be considered
as “everything is possible” value. Such an interpretation corresponds to the idea
that such values are just “missing”, but they do exist. In other words, it is our
imperfect knowledge that obliges us to work with a partial information table.
Each object potentially has a complete description, but we just miss it for the
moment. More formally, given an information table IT = (A,C), a subset of
attributes B ⊆ C we denote the missing values by ∗ and we introduce the
following binary relation T :
∀x, y ∈ A×A T (x, y)⇔ ∀cj ∈ B cj(x) = cj(y) or cj(x) = ∗ or cj(y) = ∗
Clearly T is a reflexive and symmetric relation, but not necessarily transitive.

We call the relation T a “tolerance relation”. Further on let us denote by IB(x)
the set of of objects y for which T (x, y) holds taking into account attributes B.
We call such a set the “tolerance class of x”, thus allowing the definition of a
set of tolerance classes of the set A. We can now use the tolerance classes as
the basis for redefining the concept of lower and upper approximation of a set Φ
using the set of attributes B ⊆ C. We have:
ΦB = {x ∈ A|IB(x) ⊆ Φ} the lower approximation of Φ
ΦB = {x ∈ A|IB(x) ∩ Φ �= ∅} the upper approximation of Φ
It is easy to observe that ΦB =

⋃{I(x)|x ∈ Φ} also. Let us introduce now an
example of incomplete information table which will be further used in the paper.
Example 1. Suppose the following information table is given

A a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

c1 3 2 2 * * 2 3 * 3 1 * 3
c2 2 3 3 2 2 3 * 0 2 * 2 2
c3 1 2 2 * * 2 * 0 1 * * 1
c4 0 0 0 1 1 1 3 * 3 * * *
d Φ Φ Ψ Φ Ψ Ψ Φ Ψ Ψ Φ Ψ Φ
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where a1, ...., a12 are the available objects, c1, ...., c4 are four attributes which
values (discrete) range from 0 to 3 and d is a decision attribute classifying objects
either to the set Φ or to the set Ψ .
Using the tolerance relation approach to analyse the above example we

have the following results: IC(a1) = {a1, a11, a12}, IC(a2) = {a2, a3}, IC(a3) =
{a2, a3}, IC(a4) = {a4, a5, a10, a11, a12}, IC(a5) = {a4, a5, a10, a11, a12},
IC(a6) = {a6}, IC(a7) = {a7, a8, a9, a11, a12}, IC(a8) = {a7, a8, a10},
IC(a9) = {a7, a9, a11, a12},IC(a10) = {a4, a5, a8, a10, a11}, IC(a11) =
{a1, a4, a5, a7, a9, a10, a11, a12}, IC(a12) = {a1, a4, a5, a7, a9, a11, a12}. From
which we can deduce that: ΦC=∅, ΦC={a1, a2, a3, a4, a5, a7, a8, a9, a10, a11, a12},
ΨC = {a6}, ΨC = A
The results are quite poor. Moreover there exist elements which intuitively

could be classified in Φ or in Ψ , while they are not. Take for instance a1. We
have complete knowledge about it and intuitively there is no element perceived
as similar to it. However, it is not in the lower approximation of Φ. This is due to
“missing values” of a11 and a12 which enables them to be considered as “similar”
to a1. Of course this is “safe” because potentially the two objects could come up
with exactly the same values of a1.
A reduct is defined similarly as in the “classical” rough set the same model,

i.e. it is a minimal subset of attributes that preserves lower approximations of
object classification as for all attributes . In Example 1, the set of attributes
{c1, c2, c4} is the only reduct. Kryszkiewicz [3] discussed the generation of deci-
sion rules from incomplete information tables. She considered mainly generalized
decision rules of the form ∧i(ci, v)→∨(d, w). If the decision part contains one dis-
junct only, the rule is certain. Let B be a set of condition attributes which occur
in a condition part of the rule s→ t. A decision rule is true if for each object x
satisfying condition part s, IB(x) ⊆ [t]. It is also required that the rule must
have non-redundant condition part. In our example, we can find only one certain
decision rule: (c1 = 2)∧(c2 = 3)∧(c4 = 1)→(d = Ψ).

3 Similarity Relations

We introduce now a new approach based on the concept of a not necessarily
symmetric similarity relation. Such a concept has been first introduced in general
rough set theory by S7lowiński and Vanderpooten [8] in order to enhance the
concept of indiscernability relation. We first introduce what we call the “absent
values semantics” for incomplete information tables. In this approach we consider
that objects may be described “incompletely” not only because of our imperfect
knowledge, but also because definitely impossible to describe them on all the
attributes. Therefore we do not consider the unknown values as uncertain, but
as “non existing” and we do not allow to compare unknown values.
Under such a perspective each object may have a more or less complete

description, depending on how many attributes has been possible to apply. From
this point of view an object x can be considered similar to another object y only if
they have the same known values. More formally, denoting as usual the unknown
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value as ∗, given an information table IT = (A,C) and a subset of attributes
B ⊆ C we introduce a similarity relation S as follows:
∀x, y S(x, y)⇔ ∀cj ∈ B : cj(x) �= ∗, cj(x) = cj(y)
It is easy to observe that such a relation although not symmetric is transitive.

The relation S is a partial order on the set A. Actually it can be seen as a
representation of the inclusion relation since we can consider that “x is similar
to y” iff the “the description of x” is included in “the description of y”. We can
define for any object x ∈ A two sets:
R(x) = {y ∈ A|S(y, x)} the set of objects similar to x
R−1(x) = {y ∈ A|S(x, y)} the set of objects to which x is similar
Clearly R(x) and R−1(x) are two different sets. We can now define for the

lower and upper approximation of a set Φ as follows:
ΦB = {x ∈ A|R−1(x) ⊆ Φ} the lower approximation of Φ
ΦB =

⋃{R(x)|x ∈ Φ} the upper approximation of Φ
In other terms we consider as surely belonging to Φ all objects which have

objects similar to them belonging to Φ. On the other hand any object which is
similar to an object in Φ could potentially belong to Φ. Comparing our approach
with the tolerance relation based one we can state the following result.

Theorem 1. Given an information table IT = (A,C) and a set Φ, the up-
per and lower approximations of Φ obtained using a non symmetric similarity
relation are a refinement of the ones obtained using a tolerance relation.

Proof. Denote as ΦT
B the lower approximation of Φ using the tolerance ap-

proach and ΦS
B the lower approximation of Φ using the similarity approach, Φ

B
T

and ΦB
S being the upper approximations respectively. We have to demonstrate

that: ΦT
B ⊆ ΦS

B and ΦB
S ⊆ ΦB

T . Clearly we have that: ∀x, y S(x, y)→T (x, y)
since the conditions for which the relation S holds are a subset of the conditions
for which the relation T holds. Then it is easy to observe that: ∀x R(x) ⊆
I(x) and R−1(x) ⊆ I(x).

1. ΦT
B ⊆ ΦS

B . By definition Φ
T
B = {x ∈ A|I(x) ⊆ Φ} and ΦS

B = {x ∈ A|R−1(x) ⊆
Φ}. Therefore if an object x belongs to ΦT

B we have that IB(x) ⊆ Φ and
since R−1(x) ⊆ I(x) we have that R−1(x) ⊆ Φ and therefore the same ob-
ject x will belong to ΦS

B. The inverse is not always true. Thus the lower
approximation of Φ using the non symmetric similarity relation is at least
as rich as the lower approximation of Φ using the tolerance relation.

2. ΦB
S ⊆ ΦB

T . By definition ΦB
S = ∪x∈ΦR(x) and ΦB

T = ∪x∈ΦI(x) and since
R(x) ⊆ I(x) the union of the sets R(x) will be a subset of the union of the
sets I(x). The inverse is not always true. Therefore the upper approximation
of Φ using the non symmetric similarity relation is at most as rich as the
upper approximation of Φ using the tolerance relation.

Continuation of Example 1. Let us come back to the example introduced
in section 1. Using all attributes C we have the following results: R−1(a1) =
{a1}, R(a1) = {a1, a11, a12}, R−1(a2) = {a2, a3}, R(a2) = {a2, a3}, R−1(a3) =
{a2, a3},R(a3) = {a2, a3},R−1(a4) = {a4, a5},R(a4) = {a4, a5, a11},R−1(a5) =
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{a4, a5}, R(a5) = {a4, a5, a11}, R−1(a6) = {a6}, R(a6) = {a6}, R−1(a7) =
{a7, a9}, R(a7) = {a7}, R−1(a8) = {a8}, R(a8) = {a8}, R−1(a9) = {a9},
R(a9) = {a7, a9, a11, a12}, R−1(a10) = {a10}, R(a10) = {a10}, R−1(a11) =
{a1, a4, a5, a9, a11, a12}, R(a11) = {a11}, R−1(a12) = {a1, a9, a12}, R(a12) =
{a11, a12}. From which we can deduce that: ΦC={a1, a10}, ΦC={a1, a2, a3, a4,
a5, a7, a10, a11, a12}, ΨC={a6, a8, a9}, ΨC={a2, a3, a4, a5, a6, a7, a8, a9, a11, a12}.
The new approximations are more informative than the tolerance based ones.

Moreover, we find now in the lower approximations of the sets Φ and Ψ some of
the objects which intuitively we were expecting to be there. Obviously such an
approach is less “safe” than the tolerance based one, since objects can be classi-
fied as “surely in Φ” although very little is known about them (e.g. object a10).
However, under the “absent values” semantic we do not consider a partially
described object as “little known”, but as “known” just on few attributes.
The subset C′ of C is a reduct with respect to a classification if it is min-

imal subset of attributes C that keeps the same lower approximation of this
classification. We observe that according to definition of the relation an object
“totally unknown” (having in all attributes an unknown value) is not similar to
any other object. If we eliminate one or more attributes which will make an ob-
ject to become “totally unknown” on the remaining attributes we lose relevant
information for the classification. We can conclude that all such attributes have
to be in the reducts. In example 1 there is one reduct {c1, c2, c4} - it leads to the
same classes R−1(x) and R(x) as using all attributes.
The decision rule is defined as s→t (where s = ∧i(ci, v) and t = (d, w)). The

rule is true if for each object x satisfying s, its class R(x) ⊆ [t]. The condition
part cannot contain redundant conditions.
In example 1, the following certain decision rules can be generated:

(c1 = 1)→ (d = Φ), (c3 = 1)∧(c4 = 0)→ (d = Φ), (c1 = 3)∧(c4 = 0)→ (d = Φ)
(c2 = 3)∧(c4 = 1)→ (d = Ψ), (c2 = 0)→ (d = Ψ), (c3 = 0)→ (d = Ψ)
The absent value semantics gives more informative decision rules than tolerance
based approach. Nevertheless these two different approaches (the tolerance and
the non symmetric similarity) appear to be two extremes, in the middle of which
it could be possible to use a more flexible approach.

4 Valued Tolerance Relations

Going back to the example of section 2, let’s consider the elements a1, a11

and a12. Under both the tolerance relation approach and the non symmetric
similarity relation approach we have: T (a11, a1), T (a12, a1), S(a11, a1), S(a12, a1).
However we may desire to express the intuitive idea that a12 is “more similar”
to a1 than a11 or that a11 is “less similar” to a1 than a12. This is due to the
fact that in the case of a12 only one value is unknown and the rest all are equal,
while in the case of a11 only one value is equal and the rest are unknown. We
may try to capture such a difference using a valued tolerance relation.
The reader may notice that we can define different types of valued tolerance

(or similarity) using different comparison rules. Moreover a valued tolerance (or
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similarity) relation can be defined also for complete information tables. Actually
the approach we will present is independent from the specific formula adopted
for the valued tolerance and can be extended to any type of valued relation.

Given a valued tolerance relation for each element of A we can define a “toler-
ance class” that is a fuzzy set with membership function the “tolerance degree”
to the reference object. It is easy to observe that if we associate to the non zero
tolerance degree the value 1 we obtain the tolerance classes introduced in sec-
tion 2. The problem is to define the concepts of upper and lower approximation
of a set Φ. Given a set Φ to describe and a set Z ⊆ A we will try to define the
degree by which Z approximates from the top or from the bottom the set Φ. Un-
der such a perspective, each subset of A may be a lower or upper approximation
of Φ, but to different degrees. For this purpose we need to translate in a func-
tional representation the usual logical connectives of negation, conjunction etc..:
1. A negation is a function N : [0, 1] �→ [0, 1], such that N(0) = 1 and N(1) = 0.
An usual representation of the negation is N(x) = 1− x.
2. A T -norm is a continuous, non decreasing function T : [0, 1]2 �→ [0, 1] such
that T (x, 1) = x. Clearly a T -norm stands for a conjunction. Usual representa-
tions of T -norms are: the min: T (x, y) = min(x, y); the product: T (x, y) = xy;
the 7Lukasiewicz T -norm: T (x, y) = max(x+ y − 1, 0).
3. A T -conorm is a continuous, non decreasing function S : [0, 1]2 �→ [0, 1]
such that S(0, y) = y. Clearly a T -conorm stands for a disjunction. Usual
representations of T -conorms are: the max: S(x, y) = max(x, y); the product:
S(x, y) = x+ y − xy; the 7Lukasiewicz T -conorm: S(x, y) = min(x + y, 1).

If S(x, y) = N(T (N(x), N(y))) we have the equivalent of the De Morgan
law and we call the triplet 〈N,T, S〉 a De Morgan triplet. I(x, y), the degree
by which x may imply y is again a function I : [0, 1]2 �→ [0, 1]. However, the
definition of the properties that such a function may satisfy do not make the
unanimity. Two basic properties may be desired: the first claiming that I(x, y) =
S(N(x), y) translating the usual logical equivalence x→y=def¬x∨y; the second
claiming that whenever the truth value of x is not greater than the truth value
of y, then the implication should be true (x ≤ y ⇔ I(x, y) = 1). It is almost
impossible to satisfy both the two properties. In the very few cases where this
happens other properties are not satisfied (for a discussion see [1]).

Coming back to our lower and upper approximations we know that given a
set Z ⊆ A, a set Φ and attributes B ⊆ C the usual definitions are:
1. Z = ΦB ⇔ ∀ z ∈ Z, Θ(z) ⊆ Φ, 2. Z = ΦB ⇔ ∀ z ∈ Z, Θ(z) ∩ Φ �= ∅
Θ(z) being the “indiscernability (tolerance, similarity etc.)” class of element z.
The functional translation of such definitions is straightforward. Having:
∀ x φ(x) =def Txφ(x); ∃ x φ(x) =def Sxφ(x); Φ ⊆ Ψ =def Tx(I(µΦ(x), µΨ (x)));
Φ ∩ Ψ �= ∅ =def ∃ x φ(x)∧ψ(x) =def Sx(T (µΦ(x), µΨ (x))) we get:
1.µΦB (Z) = Tz∈Z(Tx∈Θ(z)(I(R(z, x), x̂))),
2.µΦB (Z) = Tz∈Z(Sx∈Θ(z)(T (R(z, x), x̂))),
where: µΦB (Z) is the degree for set Z to be a lower approximation of Φ; µΦB (Z)
is the degree for set Z to be an upper approximation of Φ; Θ(z) is the tolerance
class of element z; T, S, I are the functions previously defined; R(z, x) is the
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membership degree of element x in the tolerance class of z; x̂ is the membership
degree of element x in the set Φ (x̂ ∈ {0, 1}).
Continuation of Example 1. Considering that the set of possible values on
each attribute is discrete we make the hypothesis that there exists a uniform
probability distribution among such values. More formally, consider cj an at-
tribute of an information table IT = (A,C) and associate to it the set Ej =
{e1

j , · · · em
j } of all its possible values. Given an element x ∈ A the probabil-

ity that cj(x) = ei
j is 1/|Ej|. Therefore given any two elements x, y ∈ A and

an attribute cj , if cj(y) = ei
j , the probability Rj(x, y) that x is similar to y

on the attribute cj is 1/|Ej|. On this basis we can compute the probability
that two elements are similar on the whole set of attributes as the joint prob-
ability that the values of the two elements are the same on all the attributes:
R(x, y) =

∏
cj∈C Rj(x, y). Applying this rule to objects we obtain the following

table 1 concerning the valued tolerance relation.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

a1 1 0 0 0 0 0 0 0 0 0 1/64 1/4

a2 0 1 1 0 0 0 0 0 0 0 0 0

a3 0 1 1 0 0 0 0 0 0 0 0 0

a4 0 0 0 1 1/256 0 0 0 0 1/1024 1/1024 1/64

a5 0 0 0 1/256 1 0 0 0 0 1/1024 1/1024 1/64

a6 0 0 0 0 0 1 0 0 0 0 0 0

a7 0 0 0 0 0 0 1 1/256 1/16 0 1/1024 1/64

a8 0 0 0 0 0 0 1/256 1 0 1/1024 0 0

a9 0 0 0 0 0 0 1/16 0 1 0 1/64 1/4

a10 0 0 0 1/1024 1/1024 0 0 1/1024 0 1 1/4096 0

a11 1/64 0 0 1/1024 1/1024 0 1/1024 0 1/64 1/4096 1 1/256

a12 1/4 0 0 1/64 1/64 0 1/64 0 1/4 0 1/256 1

Table 1: Valued tolerance relation for Example 1.

If we consider element a1, the valued tolerance relation R(a1, x), x ∈ A will
result in the vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/64, 1/4] which actually represents
the tolerance class Θ(a1) of element a1. The reader may notice that the crisp
tolerance class of element a1 was the set {a1, a11, a12} which corresponds to
the vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]. Following our “probabilistic approach” we
may choose for T and S the product representation, while for I we will satisfy
the De Morgan property thus obtaining: T (x, y) = xy, S(x, y) = x + y − xy,
I(x, y) = 1 − x + xy. Clearly our choice of I(x, y) does not satisfy the second
property of implication. However, the reader may notice that in our specific case
we have a peculiar implication from a fuzzy set (Θ(z)) to a regular set (Φ),
such that x̂ ∈ {0, 1}. The application of any implication satisfying the second
property will reduce the valuation to the set {0, 1} and therefore the whole degree
µΦB (Z) will collapse to {0, 1} and thus to the usual lower approximation. With
such considerations we obtain:
µΦB (Z) =

∏
z∈Z

∏
x∈Θ(z)(1−R(z, x) +R(z, x)x̂)

µΦB (Z) =
∏

z∈Z(1−
∏

x∈Θ(z)(1−R(z, x)x̂))
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Consider now the set Φ and as set Z consider the element a1, where R(a1, x)
was previously introduced and x̂ takes the values [1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1].We
obtain µΦC (a1) = 0.98 and µΦC (a1) = 1. Operationally we could choose a set Z
as lower (upper) approximation of set Φ as follows:
1. take all elements for which µ(Θ(z)→Φ) = 1 (µ(Θ(z) ∩ Φ) = 1);
2. then add elements in a way such that µ(Θ(z)→Φ) > k (µ(Θ(z) ∩ Φ) > k),
(for decreasing values of k, let’s say 0.99, 0.98 etc.), thus obtaining a family
of lower (upper) approximations with decreasing membership function µΦB (Z)
(µΦB (Z));
3. fix a minimum level λ enabling to accept a set Z as a lower (upper) approxi-
mation of Φ (thus µΦB (Z) ≥ λ).
The concept of reduct and decision rules are also generalized in the valued tol-

erance case. Given the decision table (A,C) and the partition Y = Φ1, Φ2, . . . Φn,
the subset of attributes C′ ⊂ C is a reduct iff it does not decease the degree of
lower approximation obtained with C, i.e. if z1, z2, . . . , zn is a family of lower
approximations of Φ1, Φ2, . . . Φn then ∀i=1,...,nzi µΦiC (zi) ≤ µΦiC′ (zi).
In order to induce classification rules from the decision table on hand we may

accept now rules with a “credibility degree” derived from the fact that objects
may be similar to the conditional part of the rule only to a certain degree, besides
the fact the implication in the decision part is also uncertain. More formally we
give the following representation for a rule ρi: ρJ

i =def

∧
j(cj(ai) = v)→ (d = w)

where: J ⊆ C, v is the value of attribute cj , w is the value of attribute d.
As usual we may use relation s(x, ρi) in order to indicate that element x

“supports” rule ρi or that, x is similar to some extend to the condition part of
rule ρi. We denote as S(ρi) = {x : s(x, ρi) > 0} and as W = {x : d(x) = w}.
Then ρi is a decision rule iff: ∀ x ∈ S(ρi) : Θ(x) ⊆ W . We can compute
a credibility degree for any rule ρi calculating the truth value of the previous
formula which can be rewritten as: ∀ x, y s(x, ρi)→(R(x, y)→W (y)). We get:
µ(ρi) = Tx(Iy(s(x, ρi), I(µΘ(x)(y), µW (y)))) . Finally it is necessary to check
whether J is a non-redundant set of conditions for rule ρi, i.e. to look if it is
possible to satisfy the condition: ∃ Ĵ ⊂ J : µ(ρĴ

i ) ≥ µ(ρJ
i ) or not.

Continuation of Example 1. Consider again the incomplete table and take as
candidate the rule: ρ1 : (c1 = 3)∧(c2 = 2)∧(c3 = 1)∧(c4 = 0)→(d = Φ). Since
in the paper we have chosen for the functional representation of implication the
satisfaction of De Morgan law and for T -norms the product, we get:
µ(ρi) =

∏
x∈S(ρi)

(1− s(x, ρi) + s(x, ρi)
∏

y∈Θ(x)(1−µΘ(x)(y) +µΘ(x)(y)µW (y)))
where s(x, ρi) represents the “support” degree of element x to the rule ρi. We
thus get that µ(ρ1) = 0.905. However, the condition part of rule ρ1 is redundant
and is transformed to: ρ1 : (c1 = 3)∧(c3 = 1)∧(c4 = 0)→(d = Φ) with degree
µ(ρ1) = 0.905. This rule is supported by objects S(ρ1) = {a1, a11, a12}. For the
set Ψ we have one rule: ρ2 : (c1 = 2)∧(c2 = 3)∧(c4 = 1)→(d = Ψ) with degree
µ(ρ2) = 1.0 and a supporting object a6.
Operationally a user may first fix a threshold of credibility for the rules to

accept and then could operate a sensitivity analysis on the set of rules that is
possible to accept in an interval of such threshold.
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5 Conclusions

Rough set theory has been conceived under the implicit hypothesis that all ob-
jects in a universe can be evaluated under a given set of attributes. However,
it can be the case that several values are not available for various reasons. In
our paper we introduce two different semantics in order to distinguish such sit-
uations. “Missing values” imply that non available information could always
become available and that in order to make “safe” classifications and rules in-
duction we might consider that such missing values are equal to everything.
Tolerance relations (which are reflexive and symmetric, but not transitive) cap-
ture in a formal way such an approach. “Absent values” imply that not available
information cannot be used in comparing objects and that classification and
rules induction should be performed with the existing information since the ab-
sent values could never become available. Similarity relations (which in our case
are reflexive and transitive, but not symmetric) are introduced in our paper in
order to formalize such an idea. We demonstrate in the paper that our approach
always lead to more informative results with respect to the tolerance relation
based approach (although less safe).
A third approach is also introduced in the paper, as an intermediate position

among the two previously presented. Such an approach is based on the use of a
valued tolerance relation. A valued relation could appear for several reasons not
only because of the non available information and in fact the approach presented
has a more general validity. However in this paper we limit ourselves in discussing
the missing values case. A functional extension of the concepts of upper and lower
approximation is introduced in this paper so that to any subset of the universe
a degree of lower (upper) approximation can be associated. Further on such a
functional extension enables to compute a credibility degree for any decision rule
induced by the classification.
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Abstract. Another formulation of the notion of rough relations is pre-
sented. Instead of using two equivalence relations on two universes, or a
joint equivalence relation on their Cartesian product, we start from spe-
cific classes of binary relations obeying certain properties. The chosen
class of relations is a subsystem of all binary relations and represents
relations we are interested. An arbitrary relation is approximated by a
pair of relations in the chosen class.

1 Introduction

The theory of rough sets is built on partitions of the universe defined by equiv-
alence relations [6,16]. A partition of the uninverse represents a granulated view
of the universe, in which equivalence classes are considered to be basic granules.
It is assumed that information is available for only the basic granules. One has to
consider each equivalence class as a whole instead of individual elements of the
universe. For inferring information about an arbitrary subset of the universe, it
is necessary to consider its approximations by equivalence classes. More specif-
ically, a set is described by a pair of lower and upper approximations. From
existing studies of rough sets, we can identify at least two formulations, the par-
tition based method and subsystem based method [14,15]. In partition based
approach, the lower approximation is the union of equivalence classes contained
in the set, and the upper approximation is the union of equivalence classes hav-
ing a nonempty intersection with the set. In subsystem based approach, one can
use equivalence classes as basic building blocks and construct a subsystem of the
power set by taking unions of equivalence classes. The constructed subsystem
is in fact an σ-algebra of subsets of the universe. That is, it contains both the
empty set and the entire set, and is closed under set intersection and union. The
lower approximation is the largest subset in the subsystem that is contained in
the set to be approximated, and the upper approximation is the smallest subset
in the subsystem that contains the set to be approximated. Each of the two
formulations captures different aspects of rough set approximations. They can
be used to obtain quite distinctive generalizations of rough set theory [15,17].

A binary relation is a set of pairs, i.e., a subset of the Cartesian product
of two universes. It is therefore very natural to generalize rough sets to the
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notion of rough relations. The majority of existing studies on rough relations
is relied on partition based approach. It involves two equivalence relations on
two universes, or a joint equivalence relation on their Cartesian product. This
straightforward definition of rough relations was proposed by Pawlak [7,9]. Gen-
eralizations of rough relations, along the same line of argument, have been made
by Düntsch [3], Stepaniuk [11,12,13], and Skowron and Stepaniuk [10]. An im-
plication of the partition based formulation is that the properties of lower and
upper approximations depend on the relation to be approximated. Although a
binary relation is a set of pair, it is set equipped with additional properties, such
as reflexivity, symmetry, and transitivity. The added information provided by bi-
nary relations is not fully explored in many studies of rough relations. For some
applications, we may only be interested in approximating a relation in terms
of relations with special properties [4]. The subsystem based approach may be
useful, as one can choose the subsystem so that all relations in the subsystem
have some desired properties. Greco et al. [4] implicitly used subsystem based
approach for the approximation of preferential information.

The main objective of this paper is to present an alternative formulation
of rough relations by extending the subsystem based method. In Section 2, we
review two formulations of rough set approximations. In Section 3, a subsystem
based formulation of rough relations is introduced. Special types of subsystems
are used for defining rough relation approximations. This study is complemen-
tary to existing studies, and the results may provide more insights into the
understanding and applications of rough relations.

2 Two Formulations of Rough Set Approximations

Let E ⊆ U × U denote an equivalence relation on a finite and nonempty uni-
verse U , where U×U = U2 is the Cartesian product of U . That is, E is reflexive,
symmetric, and transitive. The pair apr = (U,E) is referred to as a Pawlak ap-
proximation space. The equivalence relation E partitions U into disjoint subsets
known as equivalence classes. That is, E induces a quotient set of the universe U ,
denoted by U/E. Equivalence classes are called elementary sets. They are inter-
preted as basic observable, measurable, or definable subsets of U . The empty
set ∅ and a union of one or more elementary sets are interpreted as composite
ones. The family of all such subsets is denoted by Def(U). It defines a topology
space (U,Def(U)) in which Def(U), a subsystem of the power set of U , consists
of both closed and open sets. Two formulations of rough sets can be obtained
by focusing on the partition U/E and the topology Def(U), respectively.

An arbitrary subset X ⊆ U is approximated by a pair of subsets of U called
lower and upper approximations, or simply a rough set approximation [6]. The
lower approximation apr(X) is the union of all elementary sets contained in X ,
and the upper approximation apr(X) is the union of all elementary sets which
have a nonempty intersection with X . They are given by:

(def1) apr(X) =
⋃
{[x]E | x ∈ U, [x]E ⊆ X},
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apr(X) =
⋃
{[x]E | x ∈ U, [x]E ∩X 	= ∅},

where [x]E denotes the equivalence class containing x:

[x]E = {y | xEy, x, y ∈ U}. (1)

For rough set approximations, we have the following properties:

(L1) apr(X ∩ Y ) = apr(X) ∩ apr(Y ),
(L2) apr(X) ⊆ X,
(L3) apr(X) = apr(apr(X)),
(L4) apr(X) = apr(apr(X)),

and

(U1) apr(X ∪ Y ) = apr(X) ∪ apr(Y ),
(U2) X ⊆ apr(X),
(U3) apr(X) = apr(apr(X)),
(U4) apr(X) = apr(apr(X)).

The two approximations are dual to each other in the sense that apr(−X) =
−apr(X) and apr(−X) = −apr(X). The properties with the same number may
be considered as dual properties. It is possible to compute the lower approxi-
mation of X ∩ Y based on the lower approximations of X and Y . However, it
is impossible to compute the upper approximation of X ∩ Y based on the up-
per approximations of X and Y . Similar observation can also be made for the
approximations of X ∪ Y .

By the properties of rough set approximations, apr(X) is indeed the greatest
definable set contained in X , apr(X) is the least definable set containing X . The
following equivalent definition can be used [6,14]:

(def2) apr(X) =
⋃
{Y | Y ∈ Def(U), Y ⊆ X},

apr(X) =
⋂
{Y | Y ∈ Def(U), X ⊆ Y }.

For a subset X ∈ Def(U), we have X = apr(X) = apr(X). Thus, we can say
that subsets in Def(U) have exact representations. For other subsets of U , both
lower and upper approximations do not equal to the set itself, which leads to
approximate representations of the set. It should be clear by now the reason
for calling elements of Def(U) definable sets. Mathematically speaking, subsets
in Def(U) may be considered as fixed points of approximation operators apr
and apr. Every other element is approximated using the fixed points. That is,
apr(X) is the best approximation of X from below, and apr(X) is the best
approximation of X from above.

Although both definitions are equivalent, they offer quite different interpre-
tations for rough set approximations. Definition (def1) focuses on equivalence
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classes, which clearly shows how relationships between elements of U are used.
The approximations of an arbitrary subset of the universe stem from the gran-
ulation of universe by an equivalence relation. This definition can be extended
to define approximation operators based on other types of binary relations [17].
Definition (def2) focuses on a subsystem of U with special properties. With
less elements in the subsystem than that in the power set, certain elements of
the power set have to be approximated. The formulation can be easily applied
to situations where a binary relation is not readily available. It has been used
to study approximation in mathematical structures such as topological spaces,
closure systems, Boolean algebras, lattices, and posets [1,14,15].

In generalizing definition (def2), subsystems of the power set must be prop-
erly chosen [15]. The subsystem for defining lower approximations must contain
the empty set ∅ and be closed under union, and the subsystem for defining upper
approximations must contain the entire set U and be closed under intersection.
In other words, the subsystem for defining upper approximation must be a clo-
sure system [2]. In general, the two subsystems are not necessarily the same,
nor dual to each other [1,15]. The subsystem Def(U) induced by an equivalence
relation is only a special case.

3 Rough Relation Approximations

This section first reviews a commonly used formulation of rough relations based
on definition (def1) and discusses its limitations. By extending definition (def2),
we present a new formulation.

3.1 A Commonly Used Formulation

A binary relation R on a universe U is a set of ordered pairs of elements from U ,
i.e., R ⊆ U×U . The power set of U×U , i.e., 2U×U , is the set of all binary relations
on U . The empty binary relation is denoted by ∅, and the whole relation is U×U .
One may apply set-theoretic operations to relations and define the complement,
intersection, and union of binary relations. By taking U × U as a new universe,
one can immediately study approximations of binary relations. For clarity, we
only consider binary relations on the same universe, instead of the general case
where relations are defined on more than two distinct universes [7].

Suppose E1 and E2 are two equivalence relations on U . They induce two
approximation spaces apr1 = (U,E1) and apr2 = (U,E2). The product relation
E = E1 × E2:

(x, y)E(v, w)⇐⇒ xE1v, yE2w, (2)

is an equivalence relation on U × U . It gives rise to a product approximation
space apr = (U ×U,E1 ×E2). In the special case, a single approximation space
aprU = (U,EU ) can be used to derive the product approximation space apr =
(U ×U,EU ×EU ). The notion of product approximation space forms a basis for
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rough relation approximations. For an equivalence relation E ⊆ (U × U)2, the
equivalence class containing (x, y):

[(x, y)]E = {(v, w) | (x, y)E(v, w), (x, y), (v, w) ∈ U × U},
= [x]E1 × [y]E2 , (3)

is in fact a binary relation on U . It is called an elementary definable relation. The
empty relation ∅ and unions of elementary definable relations are referred to as
definable relations. The family of definable relations is denoted by Def(U × U).
Although definable relations are constructed from an equivalence relation E
on U × U , relations in Def(U × U) are not necessarily reflexive, symmetric, or
transitive. This can be easily seen from the fact that the elementary relations
[(x, y)]E do not necessarily have any of those properties.

Given a binary relation R ⊆ U ×U , by definition (def1) we can approximate
it by two relations:

(def1) apr(R) =
⋃
{[(x, y)]E | (x, y) ∈ U × U, [(x, y)]E ⊆ R},

apr(R) =
⋃
{[(x, y)]E | (x, y) ∈ U × U, [(x, y)]E ∩R 	= ∅}.

Equivalently, definition (def2) can be used with respect to the subsystem Def(U×
U). The rough relation approximations are dual to each other and satisfy prop-
erties (L1)-(L4) and (U1)-(U4). Since a binary relation is a set with added in-
formation, one can observe the following additional facts [7,11,13]:

1. Suppose E = EU × EU . If EU 	= IU , neither apr(IU ) nor apr(IU )
is the identity relation, where IU = {(x, x) | x ∈ U} denotes the
identity relation on U .

2. For a reflexive relation R, apr(R) is reflexive, and apr(R) is not
necessarily reflexive.

3. For a symmetric relation R, both apr(R) and apr(R) are symmetric.
4. For a transitive relation R, apr(R) and apr(R) are not necessarily
transitive.

5. For an equivalence relation R, apr(R) and apr(R) are not necessarily
equivalence relations.

6. Suppose E = EU × EU . For an equivalence relation R, apr(R) is an
equivalence relation if and only if apr(R) = (R ∪ EU )∗, and apr(R)
is an equivalence relation if and only if EU ⊆ R, where R∗ denotes
the reflexive and transitive closure of a relation R.

One can therefore conclude that the lower and upper approximations of a relation
may not have all the properties of the relation to be approximated. If an arbitrary
relation is approximated by elements of Def(U × U), one cannot expect certain
properties of its approximations. However, in some situations, it may be desirable
that a relation is approximated by relations having certain specific properties.
We clearly cannot achieve this goal with the standard formulation of rough
relations.
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3.2 A New Formulation

If subsystems of U ×U are properly chosen, some of the difficulties identified in
the last section can be avoided by generalizing definition (def2). In what follows,
a new formulation is presented, with focus on properties, such as reflexivity,
symmetry, and transitivity, of binary relations.

Let P = {reflexive, symmetric, transitive} = {r, s, t} denote a set of proper-
ties of binary relations on U . For A ⊆ P , the set of binary relations satisfying all
properties in A is denoted by SA. For instance, S{r,s} consists of all reflexive and
symmetric relations (i.e., tolerance or compatibility relations). One can verify
the following properties:

1. The system S{r} is closed under both intersection and union. It does
not contain the empty relation, i.e., ∅ 	∈ S{r}, and contains the whole
relation, i.e., U × U ∈ S{r}.

2. The system S{s} is closed under both intersection and union. It con-
tains both the empty relation and the whole relation.

3. The system S{t} is closed under intersection, but not closed under
union. It contains both the empty relation and the whole relation.

4. The system of compatibility relations S{r,s} is closed under both
intersection and union. It contains the whole relation, and does not
contain the empty relation.

5. The system S{r,t} is closed under intersection and not closed under
union. It contains the whole relation, and does not contain the empty
relation.

6. The system S{s,t} is closed under intersection. It contains both the
empty relation and the whole relation.

7. The system of equivalence relations S{r,s,t} is closed under intersec-
tion, but not closed under union. It contains the whole relation, and
does not contain the empty relation.

They represent all possible subsystems with properties in the set P . It is inter-
esting to note that the subsystem Def(U×U) induced by an equivalence relation
on U × U does not belong to any of the above classes. Subsystems that can be
used for various approximations are summarized as follows:

Lower approximation:
S{r} ∪ {∅}, S{s}, S{r,s} ∪ {∅}.

Upper approximation:
All subsystems.

Lower and upper approximations:
S{r} ∪ {∅}, S{s}, S{r,s} ∪ {∅}.

Although every subsystem can be used for defining upper approximation, only
three subsystems can be used for lower approximation.

Given a subsystem Sl ⊆ 2U×U containing ∅ and being closed under union, and
a subsystem Su ⊆ 2U×U containing U × U and being closed under intersection,



88 Y.Y. Yao and Tao Wang

the rough relation approximation of a binary relation R is defined by:

(def2) apr(R) =
⋃
{Q | Q ∈ Sl, Q ⊆ R},

apr(R) =
⋂
{Q | Q ∈ Su, R ⊆ Q}.

In the special case, two subsystems can be the same. For example, one may
use the subsystem of compatibility relations. By definition, rough relation ap-
proximations satisfy properties (L2), (L3), (U2), (U3), and the following weaker
version of (L1) and (U1):

(L0) R ⊆ Q =⇒ apr(R) ⊆ apr(Q),
(U0) R ⊆ Q =⇒ apr(R) ⊆ apr(Q).

A detailed discussion of such subsystems in the setting of rough set approxima-
tions can be found in a recent paper by Yao [15].

Regarding the subsystems characterized by properties in P = {r, s, t}, we
have the following results:

(i). Suppose the pair of subsystems (S{r}∪{∅}, S{r}) is used for defining
lower and upper approximations. We have:

apr(R) =
{∅ if IU 	⊆ R,
R if IU ⊆ R,

apr(R) = R ∪ IU .

(ii). For the subsystem S{s}, we have:

apr(R) = R ∩R−1,

apr(R) = R ∪R−1,

where R−1 = {(y, x) | xRy} is the inverse of the relation R.
(iii). For the subsystem S{t}, we have:

apr(R) = R+,

where R+ denotes the transitive closure of the binary relation R.
(iv). For the subsystem S{r,s} ∪ {∅}, we have:

apr(R) =
{∅ if IU 	⊆ R,
R ∩R−1 if IU ⊆ R,

apr(R) = R ∪ IU ∪R−1.

(v). For the subsystem S{r,t}, we have:

apr(R) = IU ∪R+
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(vi). For the subsystem S{s,t}, we have:

apr(R) = (R ∪R−1)+.

(vii). For the subsystem S{r,s,t}, we have:

apr(R) = (R ∪ IU ∪R−1)+.

One can see that the lower approximation is obtained by removing certain pairs
from the relation, while the upper approximation is obtained by adding certain
pairs to the relation, so that the required properties hold. This interpretation
of approximation is intuitively appealing. The definition (def2) only provides a
formal description of rough relation approximations. In practice, one can easily
obtain the approximations without actually constructing the subsystems and
using definition (def2).

When the subsystem S{r} ∪ {∅} is used for lower and upper approximations,
reflexive relations are fixed points. That is, both lower and upper approximations
of a reflexive relation equal to the relation itself. Similar observations hold for
other subsystems.

Our formulation of rough relation approximations is very flexible. In ap-
proximating a relation, two different subsystems may be used, one for lower
approximation, and the other for upper approximation. For example, one may
approximate an arbitrary binary relation from below by a compatibility relation,
and from above by an equivalence relation. If the relation is reflexive, then the
lower approximation is obtained by deleting pairs that violate the property of
symmetry, while the upper approximation is obtained by adding pairs so that
the transitivity holds. Such a pair of lower and upper approximations provides
a good characterization of the original relation. The subsystems discussed so
far are some examples. In general, one can construct various subsystems for ap-
proximation as long as they obey certain properties. The subsystem for lower
approximation must contain ∅ and be closed under union, and the subsystem
for upper approximation must contain U × U and be closed under intersection.
For example, for defining both lower and upper approximations one may select
a subset of S{r,s,t}∪{∅} such that it is closed under both intersection and union.

4 Conclusion

A binary relation is not simply a set of pairs, but a set with additional informa-
tion and properties. The problem of rough relation approximation may therefore
be different from rough set approximations. In contrast to other related studies,
the main purpose of this paper is to investigate possibilities of using such ex-
tra information in approximating relations. An alternative formulation of rough
relations is proposed based on subsystems of binary relations with certain prop-
erties, instead of using equivalence relations. From a quite different point of view,
our formulation explicitly addresses some fundamental issues which have been
overlooked in existing studies of rough relations.
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The results as shown by (i)-(vii) are simple and they could have been obtained
easily without the introduction of the new framework. However, the importance
of the approach may not be taken lightly. The recognization and utilization of
special classes of binary relations for approximating other binary relations may
have significant implications on the understanding and applications of rough
relation approximations. The results may be applied to rough function approxi-
mations [8]. In this paper, we only considered three properties of binary relations.
With our formulation, other properties of binary relations can also be considered.
Order relations (i.e., preference relations) play a very important role in decision
theory [4,5]. It may be useful to apply the proposed method for approximating
order relations.
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abstract

In this paper, we present a novel approach for approximating concepts in the
framework of formal concept analysis. Two main problems are investigated. The
first, given a set A of objects (or a set B of features), we want to find a formal
concept that approximates A (or B). The second, given a pair (A,B), where
A is a set of objects and B is a set of features, the objective is to find formal
concepts that approximate (A,B). The techniques developed in this paper use
ideas from rough set theory. The approach we present is different and more
general than existing approaches.

1 Introduction

Formal concept analysis (FCA) is a mathematical framework developed by Rudolf
Wille and his colleagues at Darmstadt/Germany that is useful for representa-
tion and analysis of data [8]. A pair consisting of a set of objects and a set of
features common to these objects is called a concept. Using the framework of
FCA, concepts are structured in the form of a lattice called the concept lattice.
The concept lattice is a useful tool for knowledge representation and knowledge
discovery [2]. Formal concept analysis has also been applied in the area of con-
ceptual modeling that deals with the acquisition, representation and organization
of knowledge [4]. Several concept learning methods have been implemented in
[1, 2, 3] using ideas from formal concept analysis.

Not every pair of a set of objects and a set of features defines a concept [8].
Furthermore, we might be faced with a situation where we have a set of features
(or a set of objects) and need to find the best concept that approximates these
features (or objects). For example, when a physician diagnosis a patient, he finds
a disease whose symptoms are the closest to the symptoms that the patient has.
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In this case we can think of the symptoms as features and diseases as objects. It
is therefore of fundamental importance to be able to find concept approximations
regardless how little information is available.

In this paper we present a general approach for approximating concepts. We
first show how a set of objects (or features) can be approximated by a concept.
We prove that our approximations are the best that can be achieved using rough
sets. We then extend our approach to approximate a pair of a set of objects and
a set of features.

2 Background

Relationships between objects and features in FCA is given in a context which is
defined as a triple (G,M, I), whereG andM are sets of objects and features (also
called attributes), respectively, and I ⊆ G×M . If object g possesses feature m,
then (g,m) ∈ I which is also written as gIm. The set of all common features to
a set of objects A is denoted by β(A) and defined as {m ∈ M | gIm ∀g ∈ A}.
Similarly, the maximal set of objects possessing all the features in a set of features
B is denoted by α(B) and given by {g ∈ G | gIm ∀m ∈ B}. A formal concept
is defined as a pair (A,B) where A ⊆ G, B ⊆ M , β(A) = B and α(B) = A. A
is called the extent of the concept and B is called its intent.

Using the above definitions of α and β, it is easy to verify that A1 ⊆ A2

implies that β(A1) ⊇ β(A2), and B1 ⊆ B2 implies that α(B1) ⊇ α(B2) for
every A1, A2 ⊆ G, and B1, B2 ⊆ M [8]. Let C(G,M, I) denote the set of all
concepts of the context (G,M, I) and (A1, B1) and (A2, B2) be two concepts
in C(G,M, I). (A1, B1) is called a subconcept of (A2, B2) which is denoted by
(A1, B1) ≤ (A2, B2) whenever A1 is a subset of A2 (or equivalently B1 contains
B2). The relation ≤ is an order relation on C(G,M, I).

In the sequel we give an overview of few basic rough set theory terms. Let
U be a nonempty finite set of objects called the Universe. Let A be a set of
attributes. Associate with each a ∈ A a set Va of all possible values of a called
its domain. Let a(x) denote the value of the attribute a for element x. Let B be
a subset of A (B can be equal to A). A binary relation RB on U is defined as
xRBy ⇐⇒ a(x) = a(y)∀a ∈ B. Clearly, RB is an equivalence relation and thus
forms a partition on U . Let [x]B denote the equivalence class of x with respect
to RB. When B is clear from context, we will write [x] instead of [x]B . Let
U/RB denote the set of all equivalence classes determined by RB. Equivalence
classes of the relation RB are called B-elementary sets (or just elementary sets).
Any finite union of elementary sets is called a definable set.

Given a set X ⊆ U , X may not be definable. The relation RB can be
used to characterize X by a pair of definable sets called its lower and upper
approximations. The lower and upper approximations of X with respect to
RB (or set of attributes B) are defined as B(X) = {m ∈ U | [m]B ⊆ X} and
B(X) = {m ∈ U | [m]B∩X 
= ∅}, respectively. Clearly, the lower approximation
of X is the greatest definable set contained in X and the upper approximation
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of X is the smallest definable set containing X . The difference between the
upper and lower approximations of X is known as the boundary region of X
and is denoted by BND(X). If BND(X) is an empty set, then X is a definable
set with respect to B; on the other hand, if BND(X) is not empty, then X is
referred to as a rough set with respect to B [6].

3 Existing Approach

The existing approach for approximating concepts is due to Kent and is called
rough concept analysis [5]. It relies on the existence of an equivalence relation,
E, on the set of objects, G, that is provided by an expert. A pair (G,E) where E
is an equivalence relation on G is called an approximation space. An E-definable
formal context ofG-objects andM -attributes is a formal context (G,M, I) whose
elementary extents {Im | m ∈ M} are E-definable subsets of G-objects where
Im = {g ∈ G | gIm}.

The lower and upper E-approximations of I with respect to (G,E) are de-
noted by IE and I

E
, respectively, and given by

IE = {(g,m) | [g]E ⊆ Im} and I
E

= {(g,m) | [g]E ∩ Im 
= ∅}.

The formal context (G,M, I) can be approximated by the lower and upper
contexts (G,M, IE) and (G,M, I

E
). The rough extents of an attribute set B ⊆

M with respect to IE and I
E

are defined by

α(BE) = α(B)
E

=
⋂

m∈B

ImE and α(B
E

) = α(B)
E

=
⋂

m∈B

Im
E

Any formal concept (A,B) ∈ C(G,M, I) can be approximated by means of
IE and I

E
. The lower and upper E-approximations of (A,B) are given by

(A,B)
E

= (α(BE), β(α(BE))) and (A,B)
E

= (α(B
E

), β(α(B
E

)))

4 Formal Rough Concept Analysis

In the previous section we presented an overview of the existing approach for
approximating concepts. This approach is not direct because upper and lower
approximations for the context (G,M, I) have to be found first and then used for
approximating a pair (A,B) of objects and features. The resulting upper and
lower approximations of (G,M, I) depend on the approximation space (G,E)
as described in Section 3. This means that different equivalence relations on G
would result in different answers. Furthermore, the set A was not used in the
approximation. This means that all pairs that have the same set of features will
always have the same lower and upper E-approximations.
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In this section we present a different and more general approach for approxi-
mating concepts. Our approach is consistent in that the relation or relations we
use in the approximation are defined in a way that assures that the same answer
is always given. We first show how a set A of objects (or B of features) can be
approximated by a concept whose extent (intent) approximates A (B). Then we
show how a pair (A,B) can be be approximated by one or two concepts.

First, a few definitions need to be given. Let (G,M, I) be a context, not
every subset A ⊆ G is an extent nor every subset B ⊆M is an intent. Wille [8]
has shown that A ⊆ α(β(A)) for any A ⊆ G and B ⊆ β(α(B)) for any B ⊆M .
Furthermore, β(

⋃
i∈J Ai) =

⋂
i∈J β(Ai) and α(

⋃
i∈J Bi) =

⋂
i∈J α(Bi) where J

is and index set. This later result will be used later. A set of objects A is called
feasible if A = α(β(A)). Similarly a set of features is feasible if B = β(α(B)).
If A is feasible, then clearly (A, β(A)) is a concept. Similarly, if B is feasible,
then (α(B), B) is a concept. Let us also say that a set A ⊆ G is definable
if it is the union of feasible extents; otherwise, we say that A is nondefinable.
Similarly, B ⊆ M is definable if it is the union of feasible intents; otherwise, B
is nondefinable. A pair (A,B) is called a definable concept if both A and B are
definable, α(B) = A and β(A) = B; otherwise, (A,B) is a nondefinable concept.

4.1 Approximating a Set of Objects

Given a set of objects A ⊆ G, we are interested in finding a definable concept
that approximates A. We have the following cases:

Case 1: A is feasible. Clearly (A, β(A)) is a definable concept. Therefore,
(A, β(A)) is the best approximation.

Case 2: A is definable. Since A is definable, it can be written as A = A1 ∪
A2 . . . ∪An, where each Ai, i = 1, . . . n, is feasible.
Hence, β(A) = β(A1∪A2 . . .∪An) = β(A1)∩β(A2)∩ . . .∩β(An) =

⋂i=n
i=1 β(Ai).

Therefore, when A is definable, the best approximation is obtained by

(A, β(A)) = (
i=n⋃

i=1

Ai,

i=n⋂

i=1

β(Ai)).

Case 3: A is nondefinable. If A is nondefinable, it is not as straightforward to
find a definable concept that approximates A. Our approach is to think of A as
a rough set. We first find a pair of definable sets A and A that best approximate
A. A and A are then used in finding two concepts that best approximate A.

Let gI = {m ∈M | gIm} denote the set of all features that are possessed by
the object g. Define a relation R on G as follows:

g1Rg2 iff g1I = g2I where g1, g2 ∈ G.
Clearly, R is reflexive, symmetric and transitive. Thus, R is an equivalence
relation on G. Let G/R be the set of all equivalence classes induced by R on G.
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Lemma 4.1 Each equivalence class X ∈ G/R is a feasible extent.

Proof. Assume not, that is, there is an X ∈ G/R which is not a feasible extent.
Therefore,X ⊂ β(α(X)) and X 
= β(α(X)). So there is an object g ∈ β(α(X))−
X such that gIm ∀m ∈ α(X). But this is a contradiction because by the
definition of R, g must be in X because it has all the features in α(X). Therefore,
X = β(α(X)) which means that X is a feasible extent. �

It follows from the previous lemma that each equivalence class X ∈ G/R is
a feasible extent and thus is an elementary extent. Therefore, define the lower
and upper approximations of A ∈ G with respect to R as

A = {g ∈ G | [g] ⊆ A}, and A = {g ∈ G | [g] ∩A 
= ∅}
Now, we can find two concepts that approximateA. The lower approximation

is given by (A, β(A)) and the upper approximation is given by (A, β(A)).

Lemma 4.2 If A is a nondefinable extent, then the best lower and upper ap-
proximations are given by (A, β(A)) and (A, β(A)), respectively.

Proof. A is a union of feasible extents and thus is a definable extent. Therefore,
(A, β(A)) is a definable concept. Similarly, we can show that (A, β(A)) is a
definable concept.
Since A ⊆ A ⊆ A, we have (A, β(A)) ≤ (A, β(A)) ≤ (A, β(A)). Furthermore, A
is the greatest definable extent contained in A and A is the least definable extent
containing A. This implies that (A, β(A)) is the greatest definable subconcept of
(A, β(A)) and (A, β(A)) is the least definable superconcept of (A, β(A)). There-
fore, (A, β(A)) and (A, β(A)) are the best lower and upper approximations.
�

4.2 Approximating a Set of Features

Because approximating a set of features is similar to approximating a set of ob-
jects and because of limitations of space, we will omit some unnecessary details.

Case 1: B is feasible. The concept (α(B), B) best approximates B.

Case 2: B is definable. B can be written as B =
⋃i=l

i=1Bi where each Bi, is
feasible. Hence, α(B) = α(

⋃i=l
i=1 Bi) =

⋂i=l
i=1 α(Bi) Therefore, B can be approx-

imated by the definable concept (α(B), B) = (
⋂i=l

i=1 α(Bi),
⋃i=l

i=1Bi)

Case 3: B is nondefinable. Let Im = {g ∈ G | gIm} be the set of all objects
that posses the attribute m. Define a relation R′ on M as follows:

m1R
′m2 iff Im1 = Im2 where m1,m2 ∈M.

Clearly, R′ is an equivalence relation. Let G/R′ be the set of all equivalence
classes induced by R′ on M .
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Lemma 4.3 Each equivalence class Y ∈ G/R′ is a feasible intent and thus an
elementary set.

Using the result of the previous lemma, the lower and upper approximations
of B ∈M with respect to R are defined by

B = {m ∈M | [m] ⊆ B}, and B = {m ∈M | [m] ∩B 
= ∅}

The next lemma, which can be proved similar to lemma 4.2, gives two concepts
that best approximate B.

Lemma 4.4 If B is a nondefinable intent, then the best lower and upper ap-
proximations are given by (α(B), B) and (α(B), B), respectively.

4.3 Approximating A Concept

Given a pair (A,B) where A ⊆ G and B ⊆ M , we want to find one or two
concepts approximating (A,B). Four different cases need to be considered:
I) Both A and B are definable, II)A is definable and B is not, III)B is definable
and A is not, and IV) Both A and B are nondefinable.

4.3.1 Both A and B are Definable

Four subcases need to be considered.

1. Both A and B are feasible. If β(A) = B, then α(B) must equal to A because
both A and B are feasible. Thus the given concept (A,B) is definable and no
approximation is needed.
If β(A) 
= B, (and thus α(B) 
= A), let β(A) = A′ and α(B) = B′. Since both
A and B are feasible, then both (A,A′) and (B′, B) are definable concepts in
(G,M, I). Consider the two concepts (A ∪ B′, β(A ∪ B′)) = (A ∪ B′, A′ ∩ B)
and (α(A′ ∪ B), A′ ∪ B) = (A ∩ B′, A′ ∪ B). We notice that β(B′) = B and
α(A′) = A because B and A are feasible. Furthermore, (A ∩ B′, A′ ∪ B) ≤
(A,B) ≤ (A ∪ B′, A′ ∩ B). Therefore, the lower and upper approximations of
(A,B) are given by (A,B) = (A ∩B′, A′ ∪B) and (A,B) = (A ∪B′, A′ ∩B).

2. A is feasible and B is not. Since B is definable, it can be written as a union
of feasible intents. Let B =

⋃i=m
i=1 Bi where Bi is feasible for i = 1, 2, . . . ,m. Let

α(Bi) = Bi
′, for i = 1, 2, . . . ,m, and α(B) = B′.

B′ = α(B) = α(
⋃i=m

i=1
Bi) =

⋂i=m

i=1
α(Bi) =

⋂i=m

i=1
Bi

′.

Therefore, the lower and upper approximations of (A,B) are given by

(A,B) = (A ∩B′, A′ ∪B) = (
⋂i=m

i=1
(A ∩Bi

′),
⋃i=m

i=1
(A′ ∪Bi)),
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and

(A,B) = (A ∪B′, A′ ∩B) = (
⋂i=m

i=1
(A ∪Bi

′),
⋃i=m

i=1
(A′ ∩Bi)).

3. B is feasible and A is not. This case is similar to the previous case and details
are omitted. The lower and upper approximations are given by

(A,B) = (A ∩B′, A′ ∪B) = (
⋃i=l

i=1(Ai ∩B′),
⋂i=l

i=1(Ai
′ ∪B)), and

(A,B) = (A ∪B′, A′ ∩B) = (
⋃i=l

i=1(Ai ∪B′),
⋂i=l

i=1(Ai
′ ∩B)).

Where A =
⋃i=l

i=1Ai and each Ai is feasible for i = 1, 2, . . . , l.

4. Both A and B are not feasible. Since A and B are definable, they can be
written as unions of feasible extents and intents, respectively.
Let A =

⋃i=l
i=1Ai andB =

⋃j=k
j=1Bj , where Ai andBj are feasible for i = 1, 2, . . . , l

and j = 1, 2, . . . , k. Let A′, Ai
′, B′, and Bi

′ denote β(A), β(Ai), α(B), and α(Bi),
respectively. Then,

A′ = β(A) = β(
⋃i=l

i=1Ai) =
⋂i=l

i=1β(Ai) =
⋂i=l

i=1Ai
′, and

B′ = α(B) = α(
⋃j=k

j=1Bj) =
⋂j=k

j=1α(Bj) =
⋂j=k

j=1Bj
′.

The lower and upper approximations of (A,B) are given by

(A,B) = (A ∩B′, A′ ∪B)
= ((

⋃i=l
i=1Ai) ∩ (

⋂j=k
j=1Bj

′), (
⋂i=l

i=1Ai
′) ∪ (

⋃j=k
j=1Bj)), and

(A,B) = (A ∪B′, A′ ∩B)
= ((

⋃i=l
i=1Ai) ∪ (

⋂j=k
j=1Bj

′), (
⋂i=l

i=1Ai
′) ∩ (

⋃j=k
j=1Bj)).

4.3.2 A is Definable and B is not

Since A is definable, it can be written as A =
⋃i=l

i=1Ai where each Ai is feasible.
Define a binary relation R′ on M such that for m1,m2 ∈M , m1R

′m2 if Im1 =
Im2. Clearly, R′ is an equivalence relation and thus can be used in creating a
rough approximation for any subset of M as was done earlier. Let B and B be
the lower and upper approximations of B with respect to R′.

B and B can be used in creating lower and upper approximations for (A,B)
in the context (G,M, I). The lower and upper approximations are given by

(A,B) = (A ∩ α(B), β(A) ∪B), and (A,B) = (A ∪ α(B), β(A) ∩B).

The concept (A∩α(B), β(A)∪B) is definable because β(A∩α(B)) = β(A)∪B.
Similarly, (A ∪ α(B), β(A) ∩B) is definable because β(A ∪ α(B)) = β(A) ∩B.

We can show that the approximations developed above are indeed correct
by observing that B ⊆ B ⊆ B which implies that β(A) ∩ B ⊆ B ⊆ β(A) ∪ B
Therefore,
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(A ∩ α(B), β(A) ∪B) ≤ (A,B) ≤ (A ∪ α(B), β(A) ∩B)

To get the final answer we need to substitute
⋃i=l

i=1Ai in place of A. However,
we choose not to do that in this context to make the results easier to read.

4.3.3 B is Definable and A is not

The scenario here is similar to that in the previous subsection and we will just
sketch the results. Since B is definable, it can be written as B =

⋃j=k
j=1Bj where

Bj is feasible for j = 1, 2, . . . , k. Define a relation R on G by g1Rg2 iff g1I = g2I.
R is an equivalence relation on G and can be used in approximating the non-
definable set A. Let A and A represent the lower and upper approximations of
A with respect to R. The lower and upper approximations of (A,B) are given
by

(A,B) = (A ∩ α(B), β(A) ∪B) and (A,B) = (A ∪ α(B), β(A) ∩B).

4.3.4 Both A and B are Nondefinable

Neither A nor B can be used in approximating the nondefinable concept (A,B).
However, we can combine the approaches from the previous two subsections and
define R to be an equivalence relation on G and define R′ to be an equivalence
relation on M using the same definitions from the previous two subsections. Let
the lower and upper approximations of A with respect to G be given by A and A,
respectively. Similarly, let B and B denote the lower and upper approximations
of B with respect to R′. Now, A, A, B and B are definable sets that can be used
for approximating the nondefinable concept (A,B). The lower approximations
is given by

(A,B) = (A ∩ α(B), β(A) ∪B),

Similarly, the upper approximations is given by

(A,B) = (A ∪ α(B), β(A) ∩B).

Clearly, both (A ∩ α(B), β(A) ∪ B) and (A ∪ α(B), β(A) ∩ B) are definable
concepts. Furthermore, it is easy to prove that

(A ∩ α(B), β(A) ∪B) ≤ (A,B) ≤ (A ∪ α(B), β(A) ∩B).

Hence, our proposed approximations are correct.

5 Conclusion and Future Work

This paper presents a new approach for approximating concepts using rough
sets. Using this approach the given context is used directly for finding upper
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and lower approximations for nondefinable concepts without any context ap-
proximation which is a major difference from the approach given in [5]. Another
major difference between our approach and the existing approach is that in the
existing approach an equivalence relation on the set of objects has to be given
by an expert before the approximation process can start. Different equivalence
relations would usually result in different approximations for a given nondefin-
able concept. Our natural choice of an equivalence relation R on the set of
objects G is such that objects that share the same set of features are grouped
together in the same equivalence class. This choice guarantees the uniqueness
of our approximations. Furthermore, such a definition of R can help automate
the process of approximating concepts.

Using the new approach, we showed how a set of objects, features, or a
nondefinable concept can be approximated by a definable concept. We proved
that the approximations found for a set of features or objects are the best one
can get. The ideas developed in this paper are useful for information retrieval,
knowledge acquisition and conceptual modeling. An implementation of a system
that uses the ideas developed in this paper is currently in progress.
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The perceptual noise reduction system (Fig. 2) is fed by two inputs: the noisy signal
)(my  and the noise patterns )(~ mn . The signal )(my  consists of the original audio

signal )(mx  corrupted by the noise )(mn , and is transformed to the spectral repre-

sentation )j( ωY  with the use of the DFT procedure. In turn, the patterns )(~ mn  are

assumed to be correlated to the noise )(mn , and are taken from empty passages of

the signal transmitted in a telecommunication channel. The signal )(~ mn  is delivered

to the Noise Estimation Module which task is to collect essential information on the
noise )(mn . At its output, the time-frequency noise estimation )j,( ωρ t  is obtained.

Both this estimation )j,( ωρ t  and the spectrum of the corrupted audio )j( ωY  are

supplied to the Decision Systems. Its first task is to select one of the collected spec-
tral estimations )j,()j( ωρωρ t⊂  which is correlated best to the corrupting noise in

a given moment. The second task is to qualify the elements of the signal )j( ωY  for

two disjoint sets: the set U of the useful or the set D of the useless elements. It is
necessary to know, which spectral components are maskers (useful), and which ones
are to be masked (useless).
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The associated vector nV ˆ
k  serves as a key vector and is exploited during the noise

reduction mode when a spectrum jN̂  is searched for. This vector should be unique,

however in practice the condition is hard to be ensured. Its elements are expected to

reflect quantitatively a noisy character of the average spectrum kN̂ . Therefore two

kinds of parameters are considered that turned out to be very robust in contemporary
perceptual coding schemes [8]: the Spectral Flatness Measure [5] and the unpredict-
ability measure [1]. These parameters are computed in each critical band, and their
definitions for the l-th frame are given further.
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the unpredictability measure )(l
ic  is defined as the Euclidean distance between the
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5RXJK 6HW $QDO\VLV RI (OHFWURVWLPXODWLRQ 7HVW 'DWDEDVH

IRU WKH 3UHGLFWLRQ RI 3RVW�2SHUDWLYH 3URILWV LQ &RFKOHDU

,PSODQWHG 3DWLHQWV

$QGU]HM &]\]HZVNL� +HQU\N 6NDU]\QVNL� %R]HQD .RVWHN DQG 5DIDO .UROLNRZVNL

,QVWLWXWH RI 3K\VLRORJ\ DQG 3DWKRORJ\ RI +HDULQJ�
XO� 3VWURZVNLHJR �� ������ :DUVDZ� 3RODQG

NLG#VRXQG�HWL�SJ�JGD�SO

$EVWUDFW� $ QHZ PHWKRG RI H[DPLQLQJ WKH KHDULQJ QHUYH LQ GHDI SHRSOH KDV

EHHQ GHYHORSHG DW WKH ,QVWLWXWH RI 3K\VLRORJ\ DQG 3DWKRORJ\ RI +HDULQJ LQ

:DUVDZ� ,W FRQVLVWV LQ WHVWLQJ GHDI SHRSOH E\ VSHHFK VLJQDO GHOLYHUHG WKURXJK D

EDOO VKDSHG PLFURHOHFWURGH FRQQHFWHG WR WKH PRGXODWHG FXUUHQW VRXUFH DQG DW�

WDFKHG WR WKH SURPRQWRU\ DUHD� 7KH HOHFWULF FXUUHQW GHOLYHUHG WR WKH EDOO VKDSHG

HOHFWURGH LV PRGXODWHG ZLWK UHDO VSHHFK VLJQDO ZKLFK LV WUDQVSRVHG GRZQZDUGV

WKH IUHTXHQF\ VFDOH� $ FRPSXWHU GDWDEDVH RI SDWLHQWV¶ GDWD DQG HOHFWURVWLPXOD�

WLRQ WHVW UHVXOWV KDV EHHQ FUHDWHG� 7KLV GDWDEDVH ZDV DQDO\]HG XVLQJ WKH URXJK

VHW PHWKRG LQ RUGHU WR ILQG UXOHV DOORZLQJ SUHGLFWLRQ RI KHDULQJ UHFRYHU\ RI

FRFKOHDU LPSODQWDWLRQ FDQGLGDWHV� 7KH 5RXJK 6HW &ODVV /LEUDU\ �56&/� KDV

EHHQ GHYHORSHG LQ RUGHU WR LPSOHPHQW GDWD PLQLQJ SURFHGXUHV WR WKH HQJL�

QHHUHG GDWDEDVH RI HOHFWURVWLPXODWLRQ WHVW UHVXOWV� 7KH 56& /LEUDU\ VXSSRUWV

V\PEROLF DSSURDFK WR GDWD SURFHVVLQJ� $GGLWLRQDOO\� WKH OLEUDU\ LV HTXLSSHG

ZLWK D VHW RI GDWD TXDQWL]DWLRQ PHWKRGV WKDW PD\ EH D SDUW RI DQ LQWHUIDFH EH�

WZHHQ H[WHUQDO GDWD HQYLURQPHQW DQG WKH URXJK VHW�EDVHG NHUQHO RI WKH V\VWHP�

7KH UHVXOWV RI VWXGLHV LQ WKH GRPDLQ RI SUHGLFWLRQ RI SRVW�RSHUDWLYH SURILWV RI

GHDI SDWLHQWV EDVHG RQ WKH URXJK VHW DQDO\VLV RI HOHFWURVWLPXODWLRQ WHVW GDWD�

EDVH DUH SUHVHQWHG DQG GLVFXVVHG LQ WKH SDSHU�

� ,QWURGXFWLRQ

7KH HOHFWURVWLPXODWLRQ WHVWV DUH WUHDWHG DV DQ LPSRUWDQW WRRO LQ SUHRSHUDWLYH GLDJQRV�

WLFV RI GHDI SHRSOH ZKR DUH FDQGLGDWHV IRU WKH FRFKOHDU LPSODQWDWLRQ� 7KH LGHD RI

HOHFWULFDO VWLPXODWLRQ� ZKLFK JRHV EDFN WR $� 9ROWD� LV WR HOHFWULFDOO\ VWLPXODWH WHUPL�

QDWLRQV RI WKH ILEHUV RI WKH DXGLWRU\ QHUYH LQ RUGHU WR HYRNH DQ DXGLWRU\ VHQVDWLRQ LQ

WKH FHQWUDO QHUYRXV V\VWHP� 7KH HOHFWULFDO VWLPXODWLRQ LV WKH DSSOLFDWLRQ RI HOHFWULFDO

FXUUHQW WR WKH DXGLRYHVWLEXODU QHUYH LQ RUGHU WR DVVHVV LWV LQWHJULW\ >�@� ,W FDQ EH SHU�

IRUPHG DSSO\LQJ HLWKHU LQYDVLYH RU QRQ�LQYDVLYH WHFKQLTXH� 8VLQJ LQYDVLYH WHFKQLTXH

D SURPRQWRU\ QHHGOH�HOHFWURGH LV DSSOLHG WUDQVW\PSDQLFDOO\ >�@�>�@ RU EDOO�VKDSHG

HOHFWURGH LV SODFHG LQ WKH URXQG ZLQGRZ QLFKH IROORZLQJ D WUDQVFDQDO W\PSDQRPHDWDO

LQFLVLRQ DQG UHPRYDO RI WKH ERQ\ RYHUKDQJ RYHUO\LQJ WKH URXQG ZLQGRZ PHPEUDQH

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 109-117, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



>�@� $ QRQ�LQYDVLYH DOWHUQDWLYH LV H[WUDW\PSDQLF HDU FDQDO WHVW >�@>�@>�@� 'XULQJ WKLV

WHVW WKH PHWDO HOHFWURGH LV LQVHUWHG LQWR WKH HDU FDQDO� ZKLFK KDV EHHQ ILOOHG ZLWK

SK\VLRORJLFDO VDOLQH VROXWLRQ >�@� ,W LV DVVXPHG WKDW WKH QRQ�LQYDVLYH DWWDFKPHQW

FRQVLGHUDEO\ VLPSOLILHV SUHRSHUDWLYH HOHFWURVWLPXODWLRQ� 7KLV LV HVSHFLDOO\ LPSRUWDQW

ZKHQ WHVWLQJ FKLOGUHQ LV FRQVLGHUHG >�@�

7KH UHVXOWV RI HOHFWULFDO VWLPXODWLRQ WHVWV DUH KLJKO\ GLYHUVLILHG� GHSHQGLQJ RQ D SD�

WLHQW¶V DJH DQG FRQGLWLRQ� WKXV WKHUH ZDV D QHHG WR FUHDWH D GDWDEDVH SURYLGHG ZLWK

DGHTXDWH WRROV DOORZLQJ WR ILQG DQG WR VWXG\ WKH FRUUHODWLRQ EHWZHHQ REWDLQHG WHVW

UHVXOWV DQG SDWLHQWV
 DELOLW\ WR UHFHLYH DQG XQGHUVWDQG VRXQGV� +RZHYHU� LQ RUGHU WR

DFKLHYH WKH EHVW SHUVSHFWLYH LQ FRFKOHDU LPSODQWDWLRQ LW LV QHFHVVDU\ QRW RQO\ WR GLDJ�

QRVH SURSHUO\ WKH DXGLWRU\ QHUYH VWDWXV� EXW DW WKH VDPH WLPH WR HYDOXDWH WKH IXWXUH

EHQHILWV RI WKH FRFKOHDU LPSODQW WR WKH SDWLHQW� 7KH SURFHGXUH GHYHORSHG DW WKH ,Q�

VWLWXWH RI 3K\VLRORJ\ DQG 3DWKRORJ\ RI +HDULQJ LQ :DUVDZ DOORZV GHWHUPLQLQJ VRPH

YLWDO FKDUDFWHULVWLFV RI WKH KHDULQJ VHQVH WKDW KHOS WR PDNH GHFLVLRQV UHJDUGLQJ WKH

FRFKOHDU LPSODQWDWLRQ >��@� 7KH WHVWLQJ EDVHG RQ WKH HOHFWULFDO VWLPXODWLRQ YLD WKH

H[WHUQDO DXGLWRU\ FDQDO ILOOHG ZLWK VDOLQH LV SHUIRUPHG XVLQJ WKH EDOO VKDSHG HOHFWURGH

DQG WKH VSHFWUDO WUDQVSRVLWLRQ RI VSHHFK VLJQDO� 0RUHRYHU� SDWLHQWV¶ GDWD VXFK DV

SHUVRQDO GDWD DQG KHDOWK KLVWRU\ DUH LQFOXGHG LQ WKH GDWDEDVH� 7KH URXJK VHW DOJR�

ULWKP ZDV HQJLQHHUHG HQDEOLQJ DQ DQDO\VLV RI KLJKO\ GLYHUVLILHG GDWDEDVH UHFRUGV LQ

RUGHU WR ILQG VRPH GHSHQGHQFLHV EHWZHHQ GDWD DQG PDNLQJ SRVVLEOH WR SUHGLFW UHVXOWV

RI FRFKOHDU LPSODQWDWLRQ EDVLQJ RQ WKH UHVXOWV REWDLQHG SUHYLRXVO\ LQ RWKHU SDWLHQWV�

� 0HWKRG RI 6SHHFK 3URFHVVLQJ

7KH PHWKRG RI VSHFWUDO WUDQVSRVLWLRQ RI VSHHFK VLJQDO ZDV HQJLQHHUHG HDUOLHU IRU WKH

XVH LQ VSHFLDO KHDULQJ DLGV DSSOLHG LQ WKH SURIRXQG KHDULQJ ORVV >��@� 6RPH HVVHQWLDO

PRGLILFDWLRQV ZHUH LQWURGXFHG WR WKH SUHYLRXVO\ GHVLJQHG DOJRULWKP LQ RUGHU WR DGMXVW

LW WR WKH FXUUHQW QHHGV�

7KH VLPSOLILHG VFKHPH RI WKH DOJRULWKP RI VSHFWUDO WUDQVSRVLWLRQ RI VSHHFK VLJQDOV

LV VKRZQ LQ )LJ� �� ,W FDQ EH QRWLFHG WKDW WKH VWUXFWXUH RI WKH DOJRULWKP LV EDVHG RQ

WKH YRLFH FRGHU �YRFRGHU�� 7KH QDWXUDO VSHHFK VLJQDO LV GHOLYHUHG WR WKH WUDQVSRVHU�

6LQFH WKH HQHUJ\ RI VRXQGV ORZHUV XSZDUGV WKH IUHTXHQF\ VFDOH� WKH VLJQDO LV SUHHP�

SKDVL]HG E\ � G%�RFW� %\ DQDORJ\� WKH WUDQVSRVHG VLJQDO LV GHHPSKDVL]HG DW WKH RXW�

SXW E\ WKH VDPH UDWLR� L�H� � G%�RFW� $GGLWLRQDOO\� LQ RUGHU WR JHW ULG RI VRPH GLVWXU�

EDQFHV WKDW PD\ RFFXU ZKLOH PDQLSXODWLQJ WKH VLJQDO� D ORZ�SDVV ILOWHU LV DSSOLHG�

7KH GHHPSKDVL]HG VLJQDO LV FRPSUHVVHG LQ WKH &RPSUHVVRU PRGXOH� EHFDXVH RI WKH

VHULRXV OLPLWDWLRQ RI WKH G\QDPLF UDWLR RI VLJQDOV UHFHLYHG E\ WKH HOHFWULFDOO\ VWLPX�

ODWHG DXGLWRU\ QHUYH�

7KH GHWHFWLRQ RI YRLFHG VSHHFK SRUWLRQV LV EDVHG RQ WKH FHSVWUXP DQDO\]LV

PHWKRG� :KHQ YRLFHG VRXQGV DUH SURQRXQFHG� D )XQGDPHQWDO )UHTXHQF\ *HQHUDWRU

LV DFWLYDWHG� ,Q VXFK D FDVH� WKH V\QWKHVL]HG VRXQG LV D UHVXOW RI D FRQYROXWLRQ RI D

SHULRGLF VWLPXOXV DQG WKH LPSXOVH UHVSRQVH RI D YRFDO WUDFW UHSUHVHQWHG E\ VSHFWUDO

HQYHORSHV� 7KH GHWHFWHG YRFDO WRQH IUHTXHQF\ LV WKHQ GLYLGHG E\ D IDFWRU VHOHFWHG

IURP WKH UDQJH RI ��� WR �� GHSHQGLQJ RQ WKH ZLGWK RI SDWLHQW
V DXGLWRU\ QHUYH UH�
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VSRQVH IUHTXHQF\ EDQG� 7KH UHV\QWKHVLV RI VSHHFK ZLWK WKH ORZHU YRFDO WRQH IUH�

TXHQF\ DOORZV WR PDLQWDLQ VSHHFK IRUPDQWV LQ WKH ORZ IUHTXHQF\ EDQG UHODWHG WR

SDWLHQWV¶ DXGLWRU\ QHUYH VHQVLWLYLW\ FKDUDFWHULVWLFV� 7KH DERYH SURFHGXUHV PDNH SRV�

VLEOH WR UHV\QWKHVL]H VSHHFK LQ WKH ORZHU EDQG RI WKH IUHTXHQF\ VFDOH LQ VXFK D ZD\

WKDW WKH IRUPDQW IUHTXHQF\ UDWLRV DUH SUHVHUYHG� ,W KHOSV WR PDLQWDLQ WKH V\QWKHWLF

VSHHFK LQWHOOLJLEOH� WKRXJK LW LV UHFHLYHG ZLWKLQ D QDUURZ IUHTXHQF\ EDQG RQO\�

3UHHPSKDVLV

� G%�RFW

([WUDFWLRQ

RI VSHFWUXP

HQYHORSH

�ORZ�SDVV

ILOWUDWLRQ�

%DQN RI �� EDQGSDVV ILOWHUV

UHODWHG WR FULWLFDO EDQGV

'HHPSKDVLV

� G%�RFW

,QSXW

2XWSXW

/RZSDVV )LOWHU

b1

0

b2

b1

�

�

�
�

�

�

��0R�

GX ODWRUV

b’10

b’2

b’1

�

�

�

&HSVWUXP DQDO\VLV �

YRFDO WRQH GHWHFWLRQ

divisionFrequency 

fitting Manualenerator
requency 
undamental

G
F
F

&RPSUHVVRU

%DQN RI �� EDQGSDVV ILOWHUV UHODWHG WR WKH DXGLWRU\

QHUYH IUHTXHQF\ UHVSRQVH �SURJUDPPDEOH ILOWHUV�

)LJ� �� *HQHUDO OD\�RXW RI WKH QRLVH UHGXFWLRQ V\VWHP

� ([DPLQDWLRQ RI WKH 3DWLHQWV

$ VHW RI FKDUWV LV SUHSDUHG LQ RUGHU WR IDFLOLWDWH FR�RSHUDWLRQ ZLWK SDWLHQWV� 7KH FKDUWV

LQFOXGH UHVSRQVHV� VXFK DV DXGLWRU\ VHQVDWLRQ UHFHLYHG E\ WKH SDWLHQW� VRIW� FRPIRUW�

DEOH� ORXG� YHU\ ORXG� HWF� 7KH FKDUWV DOVR LQFOXGH LQIRUPDWLRQ RQ WKH W\SH RI UHFHLYHG

VLJQDO� 'XULQJ WKH H[DPLQDWLRQ� WKUHH VWDQGDUG WHVWV DUH SHUIRUPHG�

• 708 � G\QDPLFV UDQJH GHILQHG E\ WKH DXGLWRU\ WKUHVKROG �7+5� DQG XQFRPIRUW�

DEOH ORXGQHVV

• 7'/ � 7LPH 'LIIHUHQFH /LPHQ WHVW

• 7,' � WHVW RI IUHTXHQF\ GLIIHUHQWLDWLRQ

,Q WKH 708 WHVW� WKH YDOXHV RI LQWHQVLW\ LQ >µ$@ RI WKH HOHFWULFDO VWLPXOL HYRNLQJ

DQ DXGLWRU\ UHVSRQVH DUH GHWHUPLQHG� ,Q WKH 7'/ WHVW� WKH WLPH RI VXEMHFWLQJ WR WKH

VWLPXOXV LV GLIIHUHQWLDWHG� 7KH ILUVW VWHS LV WR GHWHUPLQH WKH OHYHO RI FRPIRUWDEOH

KHDULQJ �0&/� IRU WKH SDWLHQW IRU D VWLPXOXV RI ��� +] �RU ���� +]�� ,I WKH G\QDPLFV

LQ WKLV UDQJH RI IUHTXHQFLHV LV DV KLJK DV �� G%� WKLV UHVXOW LV UHFRJQL]HG DV JRRG�

1H[W� WKH SDWLHQW OLVWHQV WR WKUHH VRXQGV� RI ZKLFK RQH LV ORQJHU DQG WZR DUH VKRUWHU�

7KH SXUSRVH RI WKLV WHVW LV WR ILQG ZKHWKHU WKH SDWLHQW LV FDSDEOH RI GLIIHUHQWLDWLQJ WKH

VHTXHQFH LQ ZKLFK WKH VRXQGV DUH JLYHQ� 7KH GLIIHUHQFH LQ WKH GXUDWLRQ RI WKH ORQJ

DQG VKRUW VRXQG FKDQJHV� GHSHQGLQJ RQ WKH SDWLHQW
V UHVSRQVH� 7KH UHVXOW RI WKLV WHVW

LV JLYHQ LQ PLOLVHFRQGV >PV@�
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,I WKH UHVXOW REWDLQHG E\ WKH SDWLHQW LV OHVV WKDQ ��� PV� WKLV PHDQV WKDW WKH SDWLHQW

FDQ UHFRJQL]H WLPH UHODWLRQV ZHOO� ,W JLYHV D JRRG SHUVSHFWLYH IRU D SDWLHQW
V DFKLHY�

LQJ VSHHFK FRPSUHKHQVLRQ LQ DQ DFRXVWLF PDQQHU� ,Q WKH QH[W WHVW �7,'� � WKH IUH�

TXHQF\ RI WKH VWLPXOXV JLYHQ LV GLIIHUHQWLDWHG� 7KLV WHVW LV GRQH LQ WKUHH IUHTXHQFLHV�

����� +]� ���� +]� ��� +]� )RU WKHVH IUHTXHQFLHV WKH OHYHO RI WKH PRVW FRPIRUWDEOH

KHDULQJ LV GHWHUPLQHG� 7KUHH GLIIHUHQW VRXQGV DUH GHPRQVWUDWHG WR WKH SDWLHQW� ,� ,,�

,,, FRUUHVSRQGLQJ WR WKH DERYH IUHTXHQFLHV� 1H[W� DIWHU WKH VRXQG LV JLYHQ� WKH SDWLHQW

WHOOV ZKLFK VRXQG KH RU VKH KDV KHDUG� ,� ,, RU ,,,� 7R FRPH XS ZLWK D VWDWLVWLFDOO\

YDOLG DQG FUHGLEOH UHVXOW� WKH H[DPLQDWLRQ KDV WR EH UHSHDWHG DW OHDVW WKUHH WLPHV�

7KH IRXUWK PHDVXUHPHQW LV WKH GLIIHUHQFH EHWZHHQ 8//� ZKLFK LV WKH OHYHO RI

IHHOLQJ GLVFRPIRUW RU WKH OHYHO RI IHHOLQJ SDLQ� DQG 7+5 � ZKLFK LV WKH ORZHVW WKUHVK�

ROG RI WKH VWLPXOXV WKDW FDQ EH KHDUG� 7KHVH GLIIHUHQFHV LQGLFDWH WKH UDQJH RI G\�

QDPLFV GHILQHG LQ WKH GHFLEHO VFDOH >G%@� ,W LV D YHU\ LPSRUWDQW PHDVXUHPHQW EHFDXVH

LW GHILQHV WKH DELOLW\ RI WKH DXGLWRU\ QHUYH WR EH HOHFWULFDOO\ H[FLWHG DQG JLYHV D SURJ�

QRVLV DV WR WKH SRVWRSHUDWLYH HIIHFWV� $FFRUGLQJ WR UHVXOWV SUHVHQWHG LQ WKH OLWHUDWXUH�

G\QDPLFV H[FHHGLQJ �� G% JXDUDQWHHV JRRG UHVXOWV RI SRVWRSHUDWLYH UHKDELOLWDWLRQ�

� 'DWDEDVH RI (OHFWURVWLPXODWLRQ 7HVW 5HVXOWV

,Q RUGHU WR HYDOXDWH WKH UHVXOWV REWDLQHG LQ SUHRSHUDWLYH HOHFWURVWLPXODWLRQ WHVWV D VHW

RI H[DPLQLQJ WHFKQLTXHV LV XVHG DIWHU WKH FRFKOHDU LPSODQWDWLRQ� 7KHVH DUH� VFUHHQ�

LQJ WHVWV DQG DXGLWRU\ VSHHFK SHUFHSWLRQ� UHFRJQLWLRQ DQG LGHQWLILFDWLRQ WHVWV� WKH

ODWWHU FRQVLVWLQJ LQ XVLQJ YDULRXV VSHHFK HOHPHQWV� VXFK DV VLQJOH ZRUGV� YRZHOV�

PRQRV\OODEOH� RQRPDWRSRHLDV� HWF� 7KLV DLPHG DW DVVLJQLQJ D FRUUHODWLRQ EHWZHHQ

SUHRSHUDWLYH DQG SRVWRSHUDWLYH WHVW UHVXOWV� )RU WKLV SXUSRVH WKH PHQWLRQHG GDWDEDVH

FRQWDLQLQJ UHVXOWV REWDLQHG E\ PRUH WKDQ ��� LPSODQWHG SDWLHQWV KDV EHHQ FUHDWHG DW

WKH ,QVWLWXWH RI 3K\VLRORJ\ DQG 3DWKRORJ\ RI +HDULQJ LQ :DUVDZ� ,W LQFOXGHV DOVR

SHUVRQDO GDWD DQG VRPH DGGLWLRQDO IDFWRUV SHUWDLQLQJ HGXFDWLRQDO DQG VRFLDO VNLOOV� D

GHJUHH RI PRWLYDWLRQ� KRZ HDUO\ D KHDULQJ DLG ZDV SUHVFULEHG WKDW SURYLGHV FRQVWDQW

DFRXVWLF VWLPXODWLRQ RI WKH DXGLWRU\ V\VWHP� HWF�

7KH FUHDWHG GDWDEDVH KDV EHHQ GHVLJQHG IRU WHVWLQJ E\ WHFKQLTXHV UHFRJQL]HG DV

GDWD PLQLQJ RU VRIW FRPSXWLQJ� 7KHVH WHFKQLTXHV DUH YHU\ YDOXDEOH LQ FOLQLFDO GLDJ�

QRVWLFV EHFDXVH WKH\ FDQ WUDFH VRPH KLGGHQ UHODWLRQV EHWZHHQ GDWD� QRW YLVLEOH LQ WKH

FDVH ZKHQ SDWLHQWV
 GDWD DUH QRW FRPSOHWH RU WKHUH DUH PDQ\ UHFRUGV LQFOXGHG LQ WKH

GDWDEDVH� 7KH GDWDEDVH DGGUHVVHV WKH IROORZLQJ LVVXHV� D� SHUVRQDO GDWD� E� FDXVH RI

GHDIQHVV� F� NLQG RI GHDIQHVV �SUHOLQJXDO� SHULOLQJXDO� SRVWOLQJXDO �� G� WLPH SDVVHG

VLQFH GHDIQHVV� H� GDWHV RI H[DPLQDWLRQV� I� QXPEHU RI WHVWV SHUIRUPHG� J� IRXQG

G\QDPLF UDQJH RI KHDULQJ QHUYH VHQVLWLYLW\ >G%@� K� IRXQG IUHTXHQF\ EDQG RI KHDULQJ

QHUYH VHQVLWLYLW\ >+]@� L� 708 PHDVXUHPHQW� M� 7'/ WHVW UHVXOW� N� 7,' WHVW UHVXOW� O�

VRPH IDFWRUV ZKLFK PD\ LQIOXHQFH WKH UHVXOWV RI HOHFWURVWLPXODWLRQ WHVWV �H�J�� SUR�

JUHVVLYH KHDULQJ ORVV� DFRXVWLF WUDXPD� XVH RI KHDULQJ DLGV� ����� P� XVH RI WUDQVSRVL�

WLRQ GXULQJ WKH YRLFH FRPPXQLFDWLRQ� Q� SDWLHQW
V PRWLYDWLRQ� R� SDWLHQW VRFLDO VNLOOV�

S� YRZHOV UHFRJQLWLRQ DELOLW\� T� PRQRV\OODEOH UHFRJQLWLRQ DELOLW\� U� RQRPDWRSRHLDV

UHFRJQLWLRQ DELOLW\� V� VLPSOH FRPPDQGV UHFRJQLWLRQ DELOLW\�
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7KH SDWLHQWV DUH GLYLGHG WR WKH WZR UDQJHV RI DJH� ���� \HDUV� PRUH WKDQ �� \HDUV�

7KHUH DUH � JURXSV RI SDWLHQWV GLVWLQJXLVKHG ZLWK UHJDUG RI WKH WLPH SDVVHG VLQFH

GHDIQHVV� OHVV WKDQ � \HDU� ��� \HDUV� ���� \HDUV� ����� \HDUV� PRUH WKDQ �� \HDUV�

$V LV HDV\ WR REVHUYH LQ DERYH OLVW� WKH GDWDEDVH FRQWDLQV KLJKO\ GLYHUVLILHG LQIRU�

PDWLRQ� QDPHO\ WH[W VWULQJV �D�E�� LQWHJHUV �F�K�� UHDO QXPEHUV �L�N�� ELQDU\ IODJV �O�

P�� DQG JUDGHV �Q�V�� 7KH SURFHVVLQJ RI VXFK RI LQIRUPDWLRQ FDQ EH GRQH HIILFLHQWO\

E\ WKH DOJRULWKP EDVHG RQ WKH URXJK VHW PHWKRG� 7KH UHVXOWV RI PHDVXUHPHQWV �J�N�

QHHG WR EH TXDQWL]HG DXWRPDWLFDOO\ E\ VRPH DGHTXDWH DOJRULWKPV�

� 5RXJK 6HW $QDO\VLV RI (OHFWURVWLPXODWLRQ 'DWDEDVH

7KH OLEUDU\ RI URXJK VHW SURFHGXUHV ZDV HQJLQHHUHG DW WKH 6RXQG (QJLQHHULQJ 'H�

SDUWPHQW RI WKH 7HFKQLFDO 8QLYHUVLW\ RI *GDQVN� 7KLV OLEUDU\ PDNHV SRVVLEOH WR LQ�

FOXGH VRPH URXJK VHW GDWD DQDO\VLV SURFHGXUHV LQ WKH HQJLQHHUHG GDWDEDVH VRIWZDUH� $

GHVFULSWLRQ RI WKH URXJK VHW FODVV OLEUDU\ LV JLYHQ EHORZ LQ WKLV FKDSWHU�

��� 5RXJK 6HW &ODVV /LEUDU\

7KH 5RXJK 6HW &ODVV /LEUDU\ LV DQ REMHFW�RULHQWHG OLEUDU\ RI SURFHGXUHV�IXQFWLRQV

ZKLFK JRDO LV WR SURFHVV GDWD DFFRUGLQJ WR SULQFLSOHV RI WKH URXJK VHW WKHRU\� 7KH

56&/ WDNHV DOO QHFHVVDU\ DFWLRQV UHODWHG WR GDWD PLQLQJ DQG NQRZOHGJH GLVFRYHU\�

7KH HQJLQHHUHG OLEUDU\ LV GHVLJQHG WR UXQ LQ WKH '26�:LQGRZV HQYLURQPHQW DQG

FRPSLOHG ZLWK WKH XVH RI %RUODQG &�� &RPSLOHU Y� ����

,Q JHQHUDO� LPSOHPHQWHG IXQFWLRQV LQ 56&/ FRPSULVH WKH IROORZLQJ WDVNV�

• UXOH LQGXFWLRQ

• SURFHVVLQJ RI UXOHV

• IXQGDPHQWDO RSHUDWLRQV RQ URXJK VHWV� SDUWLWLRQ RI WKH XQLYHUVH LQWR HTXLYDOHQFH

FODVVHV �L�H� VHWV RI REMHFWV LQGLVFHUQLEOH ZLWK UHVSHFW WR D JLYHQ VHW�� FDOFXODWLRQ RI

ORZHU DQG XSSHU DSSUR[LPDWLRQ� FDOFXODWLRQ RI ERXQGDU\ UHJLRQ� FDOFXODWLRQ RI

SRVLWLYH DQG QHJDWLYH UHJLRQ

• VXSSO\ RI DX[LOLDU\ IXQFWLRQV� VKRZLQJ WKH ZLQQLQJ UXOH DQG LWV URXJK PHDVXUH�

FDOFXODWLQJ QXPEHU�SHUFHQWDJH RI FHUWDLQ DQG XQFHUWDLQ UXOHV� VKRZLQJ UDQJH RI

WKH URXJK PHDVXUH IRU DOO UXOHV� FRPSXWLQJ FDUGLQDOLW\ RI GDWD VHWV�

7KH NHUQHO RI WKH URXJK�VHW�EDVHG GDWD SURFHVVLQJ V\VWHP ZRUNV RQ V\PEROLF GDWD�

L�H� V\PEROLF UHSUHVHQWDWLRQV RI DWWULEXWHV DQG GHFLVLRQV LQ DQ LQIRUPDWLRQ WDEOH� ,Q

RUGHU WR IDFLOLWDWH ILWWLQJ WKH V\VWHP¶V NHUQHO WR H[WHUQDO� WKH PRVW IUHTXHQW QRQ�

V\PEROLF� GDWD� VRPH PHWKRGV RI TXDQWL]DWLRQ DUH VXSSOLHG LQ WKH OLEUDU\ >��@� 7KHVH

GLVFUHWL]DWLRQ SURFHGXUHV DUH DV IROORZV� (TXDO ,QWHUYDO :LGWK 0HWKRG� 6WDWLVWLFDO

&OXVWHULQJ 0HWKRG DQG 0D[LPXP 'LVWDQFH 0HWKRG�
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��� 7KH 5RXJK 6HW &ODVV ,PSOHPHQWDWLRQ

,Q WKLV SDUDJUDSK LV JLYHQ D EULHI GHVFULSWLRQ RI VRPH 56&/ IXQFWLRQV WKDW DUH UHODWHG

WR WKH SULQFLSOHV RI URXJK�VHW�EDVHG GDWD SURFHVVLQJ�

• TXDQWL]DWLRQ RI GDWD LQ WKH GHFLVLRQ WDEOH

7KH IXQFWLRQ SHUIRUPV GLVFUHWL]DWLRQ RI GDWD YDOXHV LQ WKH GHFLVLRQ WDEOH DFFRUG�

LQJ WR D JLYHQ TXDQWL]DWLRQ PHWKRG�

,QSXW� D GHFLVLRQ WDEOH� D TXDQWL]DWLRQ PHWKRG�

2XWSXW� WKH GHFLVLRQ WDEOH ZLWK TXDQWL]HG YDOXHV�

• TXDQWL]DWLRQ RI FRQGLWLRQDO DWWULEXWHV

7KH IXQFWLRQ SHUIRUPV GLVFUHWL]DWLRQ RI YDOXHV RI WKH FRQGLWLRQDO DWWULEXWHV DF�

FRUGLQJ WR D JLYHQ TXDQWL]DWLRQ PHWKRG�

,QSXW� D VHW RI FRQGLWLRQDO DWWULEXWHV� D TXDQWL]DWLRQ PHWKRG�

2XWSXW� WKH VHW RI FRQGLWLRQDO DWWULEXWHV LQ DQ DGHTXDWH V\PEROLF UHSUHVHQWDWLRQ�

• GHTXDQWL]DWLRQ RI GHFLVLRQ DWWULEXWHV

7KH IXQFWLRQ H[HFXWHV WKH LQYHUVH DFWLRQ WR WKH TXDQWL]DWLRQ DOJRULWKP �UHSODFHV

WKH V\PEROLF YDOXH RI GDWD ZLWK DGHTXDWH FULVS YDOXHV�

,QSXW� D V\PEROLF GHFLVLRQ �GHFLVLRQ DWWULEXWHV�� D TXDQWL]DWLRQ PHWKRG�

2XWSXW� FULVS YDOXHV RI WKH GHFLVLRQ�

• UXOH LQGXFWLRQ

7KH IXQFWLRQ LQGXFHV D UXOH EDVH� 7KH DFWLRQ LV SHUIRUPHG RQ WKH EDVLV RI WKH

SULQFLSOHV RI WKH URXJK VHW PHWKRG�

,QSXW� D GHFLVLRQ WDEOH�

2XWSXW� D WDEOH ZLWK GLVFRYHUHG NQRZOHGJH �LQGXFHG UXOHV��

• SURFHVVLQJ RI UXOHV

7KH IXQFWLRQ GHGXFHV D GHFLVLRQ RQ WKH EDVLV RI DQ HYHQW� L�H� VHW RI FRQGLWLRQDO

DWWULEXWHV� 7KH UXOH EDVH KDV WR EH LQGXFHG HDUOLHU�

,QSXW� DQ HYHQW �VHW RI FRQGLWLRQDO DWWULEXWHV��

2XWSXW� D GHFLVLRQ �VHW RI GHFLVLRQ DWWULEXWHV��

• SDUWLWLRQ RI WKH XQLYHUVH LQWR HTXLYDOHQFH FODVVHV

7KH SURFHGXUH \LHOGV D VHW RI HTXLYDOHQFH FODVVHV� 7KH GHFLVLRQ WDEOH LV SDUWL�

WLRQHG LQWR VRPH VHWV ZLWK UHVSHFW WR D FHUWDLQ VHW RI DWWULEXWHV�

,QSXW� D GHFLVLRQ WDEOH �WKH XQLYHUVH�� D VHW RI FRQGLWLRQDO DWWULEXWHV�

2XWSXW� D VHW RI HTXLYDOHQFH FODVVHV�

• FDOFXODWLRQ RI ORZHU� DQG XSSHU DSSUR[LPDWLRQ DQG ERXQGDU\ UHJLRQ

7KH IXQFWLRQV FRPSXWH VHWV� ZKLFK DUH ORZHU� DQG XSSHU DSSUR[LPDWLRQV DQG D

ERXQGDU\ UHJLRQ RI D VHW RI REMHFWV ZLWK UHVSHFW WR D FHUWDLQ VHW RI DWWULEXWHV�

,QSXW� D VHW RI REMHFWV �LQ WKH IRUP RI D GHFLVLRQ WDEOH�� D VHW RI DWWULEXWHV�

2XWSXW� D UHVXOWDQW VHW RI REMHFWV�

• FDOFXODWLRQ RI SRVLWLYH DQG QHJDWLYH UHJLRQ

7KH IXQFWLRQV FDOFXODWH SRVLWLYH RU QHJDWLYH UHJLRQV RI FODVVLILFDWLRQ IRU D FHUWDLQ

VHW RI DWWULEXWHV�

,QSXW� D GHFLVLRQ WDEOH� WZR VHWV RI DWWULEXWHV�

2XWSXW� D UHVXOWDQW VHW RI REMHFWV�
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��� 5RXJK 6HW 3URFHVVLQJ RI (OHFWURVWLPXODWLRQ 'DWD

7KH UHVXOWV RI HOHFWURVWLPXODWLRQ WHVWV DUH FROOHFWHG LQ IRUPV� VHSDUDWHO\ IRU HDFK

SDWLHQW� 7KHQ WKH\ VKRXOG EH WUDQVIRUPHG WR WKH GHFLVLRQ WDEOHV XVHG LQ WKH URXJK VHW

GHFLVLRQ V\VWHPV �7DE� �� 7KHUHIRUH� REMHFWV W� WR WQ UHSUHVHQW SDWLHQW FDVHV� $WWULEXWHV

$� WR $P DUH WR EH GHQRWHG DV WHVWHG SDUDPHWHUV� LQWURGXFHG LQ 3DU� � �D�V�� 7KH\ DUH

XVHG DV FRQGLWLRQDO DWWULEXWHV� 7KH GDWD YDOXHV DUH GHILQHG E\ D�� WR DQP DV QXPEHUV

RU JUDGHV �TXDQWL]HG YDOXHV�� 7KH GHFLVLRQ ' LV XQGHUVWRRG DV D YDOXH DVVLJQHG WR WKH

RYHUDOO JUDGH �29(5$// *5$'(�� 7KLV TXDQWLW\ UHSUHVHQWV WKH H[SHFWHG SRVW�

RSHUDWLYH SURILWV H[SUHVV LQ WKH GHVFULSWLYH VFDOH DV IROORZV�

29(5$// *5$'(  � � PHDQLQJ� SUHGLFWHG KHDULQJ UHFRYHU\ SURILWV � QRQH

29(5$// *5$'(  � � PHDQLQJ� SUHGLFWHG KHDULQJ UHFRYHU\ SURILWV ± ORZ

29(5$// *5$'(  � � PHDQLQJ� SUHGLFWHG KHDULQJ UHFRYHU\ SURILWV ± IDLU

29(5$// *5$'(  � � PHDQLQJ� SUHGLFWHG KHDULQJ UHFRYHU\ SURILWV ± ZHOO

29(5$// *5$'(  � � PHDQLQJ� SUHGLFWHG KHDULQJ UHFRYHU\ SURILWV ± YHU\ JRRG

7DEOH �� 'HFLVLRQ WDEOH XVHG LQ HOHFWURVWLPXODWLRQ GDWDEDVH

$WWULEXWH

3DWLHQW
1A 2A � mA D

1t 11a 12a � ma1 1d

� � � � � �

nt 1na 2na � nma nd

7KH HQJLQHHUHG GHFLVLRQ V\VWHP HPSOR\V ERWK OHDUQLQJ DQG WHVWLQJ DOJRULWKPV

>��@� 'XULQJ WKH ILUVW SKDVH UXOHV DUH GHULYHG WKDW IURP WKH EDVLV IRU WKH VHFRQG SKDVH

SHUIRUPDQFH� 7KH JHQHUDWLRQ RI GHFLVLRQ UXOHV VWDUWV IURP UXOHV RI WKH OHQJWK HTXDOV

�� WKHQ WKH V\VWHP JHQHUDWHV UXOHV RI WKH OHQJWK HTXDOV �� HWF� 7KH PD[LPXP UXOH

OHQJWK PD\ EH GHILQHG E\ WKH RSHUDWRU� 7KH V\VWHP LQGXFHV ERWK FHUWDLQ DQG SRVVLEOH

UXOHV� ,W LV DVVXPHG WKDW WKH URXJK VHW PHDVXUH �µ56� IRU SRVVLEOH UXOHV VKRXOG H[FHHG

WKH YDOXH ���� 0RUHRYHU� RQO\ VXFK UXOHV DUH WDNHQ LQWR DFFRXQW� WKDW KDYH EHHQ SUH�

FHGHG E\ DQ\ VKRUWHU UXOH RSHUDWLQJ RQ WKH VDPH SDUDPHWHUV� 7KH V\VWHP SURGXFHV

UXOHV RI WKH IROORZLQJ IRUP�

�DWWULEXWHB$� YDOXHBD��� DQG���DQG �DWWULEXWHB$P YDOXHBDQP� ⇒ �2YHUDOO*UDGHBGL�

7KH GDWD ZHUH JDWKHUHG IURP DOO VXEMHFWV GXULQJ WKH LQWHUYLHZV DQG HOHFWURVWLPX�

ODWLRQ WHVW VHVVLRQV� 6RPH H[HPSODU\ GDWD UHFRUGV DUH SUHVHQWHG LQ 7DE� �� +DYLQJ

UHVXOWV RI VHYHUDO SDWLHQWV� WKHVH GDWD DUH WKHQ SURFHVVHG E\ WKH URXJK VHW DOJRULWKP�
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7DEOH �� )UDJPHQWV RI HOHFWURVWLPXODWLRQ GDWDEDVH UHFRUGV �GHVFULEHG LQ 3DU� ��

9DOXHV �*UDGHV

3DWLHQW

�E� �F� �G� �I� �J� � �G� 2YHUDOO

*UDGH

1t RWLWLV � � �� �� � � �

� � � � � � � � �

nt DFRXVW�

WUDXPD

� � �� �� � � �

)RU WKH GLVFXVVHG H[DPSOH �7DE� �� WKH IROORZLQJ VWURQJHVW UXOHV ZHUH REWDLQHG�

EHLQJ LQ D JRRG DFFRUGDQFH ZLWK WKH SULQFLSOHV DQG SUDFWLFH RI DXGLRORJ\�

IF (g = high)  THEN  (OverallGrade = very good) 1=RSµ
IF (d = high ) &  (s = low)  THEN  (OverallGrade = low) 92.0=RSµ
IF (c = 1) & (g = low) & (s = low)  THEN  (OverallGrade = none) 8.0=RSµ
IF (b = trauma) & (c = 3)  THEN  (OverallGrade = well) 76.0=RSµ
IF (f = high) & (g = high)  THEN  (OverallGrade = well) 72.0=RSµ

Every new patient record can be tested using previously induced rules and on this
basis a predictive diagnosis of post-operative profits can be automatically provided by
the system. This diagnosis expressed as a grade value may be used as a supportive or
a contradictory factor in the process of qualification of the deaf patient to cochlear
implantation. The accuracy of decisions produced by the intelligent database analysis
algorithm is expected to grow higher as the number of patient records increase.

� &RQFOXVLRQV

,Q WKLV SDSHU D QHZ SURFHGXUH IRU WHVWLQJ FDQGLGDWHV IRU KHDULQJ LPSODQWDWLRQ KDV

EHHQ SUHVHQWHG� 7KH REWDLQHG IUHTXHQF\ UDQJH GXULQJ WKH HOHFWURVWLPXODWLRQ WHVWV

ZLWK WKH PRGLILHG EDOO�VKDSHG HOHFWURGH DOORZV WR GHOLYHU QRW RQO\ WRQHV WR WKH DXGL�

WRU\ QHUYH EXW XVLQJ WKH VLJQDO SURFHVVLQJ GHYLFH DOVR VSHHFK VLJQDO FDQ EH UHFHLYHG

E\ VRPH FRPSOHWHO\ GHDI SDWLHQWV� 7KLV PD\ EH KHOSIXO WR SURSHUO\ GLDJQRVH DQG

TXDOLI\ SDWLHQWV WR FRFKOHDU LPSODQWDWLRQ DQG WR JLYH WKH SDWLHQWV VRPH NLQG RI VRXQG

H[SHULHQFH EHIRUH WKH LPSODQWDWLRQ�

7KH HQJLQHHUHG 56& /LEUDU\ SURFHGXUHV RIIHULQJ D V\PEROLF DSSURDFK WR GDWD

SURFHVVLQJ KDYH EHHQ LPSOHPHQWHG LQ WKH FRQVWUXFWHG HOHFWURVWLPXODWLRQ WHVW GDWDEDVH

DOORZLQJ WR DQDO\]H GDWD UHFRUGV DXWRPDWLFDOO\ LQ RUGHU WR PLQH UXOHV VKRZLQJ VRPH

KLGGHQ GHSHQGHQFLHV EHWZHHQ SDWLHQWV¶ GDWD DQG WKH H[SHFWHG KHDULQJ UHFRYHU\ DIWHU

FRFKOHDU LPSODQWDWLRQ�

7KH SURSRVHG PHWKRG RI SUHGLFWLRQ RI SRVW�RSHUDWLYH UHVXOWV LV SUHVHQWO\ DW WKH H[�

SHULPHQWDO VWDJH DQG UHTXLUHV VRPH PRUH WHVWLQJ LQ RUGHU WR UHYHDO LWV IXOO SRWHQWLDO�

1HYHUWKHOHVV� D GLDJQRVLV SURYLGHG E\ WKH DOJRULWKP PD\ EH DOUHDG\ XVHG DV D VXS�

SRUWLYH RU D FRQWUDGLFWRU\ IDFWRU LQ WKH SURFHVV RI TXDOLILFDWLRQ RI GHDI SDWLHQWV WR

FRFKOHDU LPSODQWDWLRQ�
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Abstract. A non-trivial obstacle in good text classification for infor-
mation filtering and retrieval (IF/IR) is the dimensionality of the data.
This paper proposes a technique using Rough Set Theory to alleviate
this situation. Given corpora of documents and a training set of exam-
ples of classified documents, the technique locates a minimal set of co-
ordinate keywords to distinguish between classes of documents, reducing
the dimensionality of the keyword vectors. This simplifies the creation
of knowledge-based IF/IR systems, speeds up their operation, and al-
lows easy editing of the rule bases employed. The paper describes the
proposed technique, discusses the integration of a keyword acquisition
algorithm with a rough set-based dimensionality reduction algorithm,
and provides experimental results of a proof-of-concept implementation.

1 Introduction

Information Filtering (IF) and Information Retrieval (IR) is rapidly acquiring
importance as the volume of electronically stored information explodes. Text
classification is an important part of information filtering in that it categorises
documents within text corpora. The user may then handle the various classes
of documents in different ways and devote attention only to those classes that
merit it. For instance, an E-mail classification system could divide incoming mail
into business-related messages, personal messages and useless, unsolicited mail
to be deleted automatically.

However, a non-trivial obstacle in good text classification is the dimension-
ality of the data. In most IF/IR techniques, each document is described by a
vector of extremely high dimensionality — typically one value per word or pair
of words in the document [1]. The vector ordinates are used as preconditions to a
rule which decides what class the document belongs to. Document vectors com-
monly comprise tens of thousands of dimensions [2], which renders the problem
all but intractable for even the most powerful computers. The use of the cosine
of the angle between two vectors [3] as a comparison metric further increases the
number of operations to be performed for the classification of one document.

This paper proposes a technique using Rough Set Theory [4] that can help
cope with this situation. Given corpora of documents and a set of examples
of classified documents, the technique can quickly locate a minimal set of co-
ordinate keywords to distinguish between classes of documents. As a result, it
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dramatically reduces the dimensionality of the keyword space. The resulting set
of keywords (or preconditions) is typically small enough to be understood by a
human. This simplifies the creation of knowledge-based IF/IR systems, allowing
easy editing of the rule bases.

The background of text classification and Rough Set theory is discussed in
Sect. 2. Section 3 provides a description of the proposed system. Section 4 de-
scribes experimental results. The paper is concluded in Sect. 5.

2 Background

2.1 The Rough Set Attribute Reduction Method (RSAR)

Rough set theory [4] is a flexible, formal mathematical tool that can be applied
to reducing the dimensionality of datasets. RSAR removes redundant input at-
tributes from datasets of nominal values, while ensuring that no information
essential for the task at hand is lost. The approach is very efficient, taking advan-
tage of conventional Set Theory operations. It works by maximising a quantity
known as degree of dependency. The degree of dependency γP (X) of a set Y of
decision attributes on a set of conditional attributes X provides a measure of
how important that set of decision attributes is in classifying the dataset exam-
ples into the classes in Y . If γX(Y ) = 0, then classification Y is independent of
the attributes in X , hence the decision attributes are of no use to this classifi-
cation. If γ = 1, then Y is completely dependent on X , hence the attributes are
indispensable. Values 0 < γX(Y ) < 1 denote partial dependency, which shows
that only some of the attributes in X may be useful, or that the dataset was
flawed to begin with.

To calculate γX(Y ), it is necessary to define the indiscernibility relation.
Given a subset of the set of attributes, P ⊆ A, two objects x and y in a dataset U

are indiscernible with respect to P if and only if f(x,Q) = f(y,Q) ∀ q ⊆ P

(where f(α,B) is the classification function represented in the dataset, return-
ing the classification of object α using the conditional attributes contained in
the set B). The indiscernibility relation for all P ∈ A is written as IND(P ).
U/IND(P ) is used to denote the partition of U given IND(P ):

U/IND(P ) =
⊗{

q ∈ P : U/IND(q)} (1)

where the operator ⊗, as applied to two sets of sets A and B, is defined as:

A⊗B = {X ∩ Y : ∀ X ∈ A, ∀ Y ∈ B, X ∩ Y �= ∅} (2)

Rough Sets approximate traditional sets using a pair of other sets, named the
lower and upper approximation of the set in question. The lower and upper
approximation of a set P ⊆ U, given an equivalence relation IND(P ), is defined
as:
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PY =
⋃
{X : X ∈ U/IND(P ), X ⊆ Y } (3)

PY =
⋃
{X : X ∈ U/IND(P ), X ∩ Y �= ∅} (4)

Suppose that P and Q are equivalence relations in U, the positive region
POSP (Q) contains all objects in U that can be classified in attributes Q us-
ing the information in attributes P and is defined as:

POSP (Q) =
⋃

X∈Q

PX (5)

From this, the degree of dependency γP (Q) is given by:

γP (Q) =
‖ POSP (Q) ‖
‖ U ‖ (6)

where ‖ Set ‖ is the cardinality of Set.
The näıve version of the RSAR algorithm evaluates γP (Q) for all possible

subsets of the dataset’s conditional attributes, stopping when it either reaches 1,
or there are no more combinations to investigate. TheQuickReduct Algorithm
(described in [5,6]) escapes the NP-hard nature of the näıve version by searching
the tree of attribute combinations in a depth-first manner. It starts off with an
empty subset and adds attributes one by one, each time selecting the attribute
whose addition to the current subset will offer the highest increase of γP (Q).
The algorithm stops when a γP (Q) of 1 is reached, or when all attributes have
been added (in which case the dataset could not be correctly classified to begin
with).

It is evident from this that the RSAR will not compromise with a set of
conditional attributes that contains large part of the information of the initial
set — it will always attempt to reduce the attribute set without losing any
information significant to the classification at hand.

Since the QuickReduct algorithm builds conditional attribute subsets in-
crementally, it is possible to influence its decisions by suitable re-ordering of the
conditional attributes in the dataset such that attributes suspected to be of more
importance are placed before (to the left of) attributes of lesser importance. This
is done by the integrated system described in this paper, in order to suggest to
RSAR to utilise the better, more characteristic keywords before others.

2.2 Text Classification

Text classification aims to separate groups (corpora) of documents into cate-
gories. Like all classification tasks, it may be tackled either by comparing new
documents with previously classified ones (distance-based techniques), or by us-
ing rule-based approaches.
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Most text classification techniques that do not operate at the semantics level
work on a hyperplane whose axes represent the presence of different keywords.
Depending on the specific technique, the axes of this keyword space may be
discrete (e.g. boolean) or continuous (e.g. frequency of keywords, importance of
keyword, et cetera). The dimensionality of the keyword space depends on the
cardinality of the universal set of keywords, defined as the union of all possible
keywords of all documents examined, as shown in (7). Any documentDj (a set of
keywords) in the corpora at hand can then be represented by a multidimensional
keyword vector xDj

:

U =
⋃

i

Di = {k1, k2, . . . , kn} (7)

xDj
=
〈
f(Dj , k1), f(Dj , k2), . . . , f(Dj , kn)

〉
(8)

Where each ordinate f(Dj, ki) (1 ≤ i ≤ n) in the vector represents the weight of
the keyword ki in U. The weight is the result of some metric f(Dj, ki), measuring
the presence, frequency importance or other quantifiable aspect of the keyword ki

in the document.
The two most commonly used text classification approaches are outlined

below.

Distance-Based Text Classification Distance-based classification involves
the comparison of high-dimensionality keyword vectors. In cases where the vector
describes groups of documents, it identifies the centre of a cluster of documents.
Documents are classified by comparing their document vectors. The metric most
commonly used is the cosine of the angle between the two vectors, derived in
terms of the scalar or inner product, though other metrics are also available [1].

The set of keywords representing one document (or a cluster of documents)
may be obtained by numerous different algorithms that scan corpora of docu-
ments for keywords, ranking them by perceived importance. Weight calculation
metrics range from a simple frequency-proportional weighting technique that
näıvely attaches more importance to the common words in a document, to the
inverse document frequency that emphasises those keywords that are common in
the document in question, yet uncommon in the overall collection of documents.

Datasets for such systems are almost always built automatically and main-
tained using paradigms like learning by observation, example or imitation that
abstract away the actual calculation of weights and formation of vectors. This
allows the user to obtain complex intelligent-like text classification behaviour
with a minimum of effort. Unfortunately, the dimensionality of the document
vectors is typically extremely high (usually in the tens of thousands), a detail
that greatly slows down classification tasks and makes storage of document vec-
tors expensive [2].

Rule-Based Text Classification Rule-based text classification has been in use
for a relatively long time and is an established method of classifying documents.



122 Alexios Chouchoulas and Qiang Shen

Common applications include the kill-file article filters used by Usenet client
software and van den Berg’s autonomous E-mail filter, Procmail.

In this context, keyword vectors are viewed as rule preconditions; the class a
document belongs to is used as the rule decision:

k1, k2, . . . , kn ∈ U

ri(D) = p(D, k1) ∧ p(D, k2) ∧ . . . ∧ p(D, kn)⇒ D ∈ D (9)

Where ki are document keywords, U is the universal keyword set, D is one
document, D is a document class, ri(D) is rule i applied to D and p(D, ki)
is a function evaluating to true if D contains keyword ki such that it satisfies
some metric (e.g. a minimum frequency or weight). Not all keywords in the
universal set need be checked for. This allows rule-based text classifiers to exhibit
a notation much terser than that of vector-based classifiers, where a vector must
always have the same dimensionality as the keyword space.

In most cases, rules are written by the human user. Most typical rule bases
simply test for the presence of specific keywords in the document (so p(D, ki)⇔
ki ∈ D). For example, a Usenet client may use a kill-file to filter out newsgroup
articles by some specific person by looking for the person’s name in the article’s
‘From’ field. Such rule-based approaches are inherently simple to understand,
which accounts for their popularity among end-users. Unfortunately, complex
needs often result in very complex rule bases, ones that users have difficulty
maintaining by hand.

3 The Proposed System

This paper proposes a system that builds text classification rule bases, although
it is trivial to adapt it to distance-based approaches by using a different key-
word acquisition sub-system (as described in sect. 3.1). The modularity of the
proposed technique allows this.

The application domain chosen to test the system is E-mail, since real-life
corpora of E-mail messages are very easy to obtain. Most users of E-mail keep
‘folders’ of messages related in some way. This provides training data for the
system. Like many documents, E-mail messages are structured: each message
comprises a header, itself comprising a number of fields, and a body. Keywords
may need to be treated differently, depending on where in the message they
are encountered. For example, the Message-ID field is a unique identifier of an
E-mail message and, as such, a notorious opportunity for over-training. This
rigidly structured nature of E-mail messages makes the domain attractive as a
test-case for a text classification system.

The system comprises two main stages, as shown in fig. 1: the keyword ac-
quisition stage reads corpora of documents (folders of similar E-mail messages),
locates candidate keywords, estimates their importance and builds an interme-
diate dataset of high dimensionality. The RSAR part examines the dataset and
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...Document Class 1 Document Class 2

High Dimensionality Dataset

Document Class n

Keyword Acquisition

Rough Set Attribute ReductionMinimal Rule Base

Fig. 1. Data flow through the system.

removes redundancy, insofar as this is possible, leaving a dataset or rule base
containing a drastically reduced number of preconditions per rule.

3.1 Keyword Acquisition

This sub-system uses a set of E-mail folders as input. Each folder is expected
to contain similar E-mail messages. Folders (in UNIX mailbox format) contain
standard E-mail messages as described in the RFC-822 document [7]. Messages
are sequentially read; each field (key/value pair) within each message is treated
separately. The body of a message is treated as a very long field.

Within each field, words are isolated and pre-filtered to avoid very short or
long keywords, or keywords that are not words (e.g. long numbers or random
sequences of characters). Every word or pair of consecutive words in the text is
considered a candidate keyword. The name of the current field is also added to
the keyword, so that information on where in the message the keyword occurred
is retained.

At this stage, the keyword acquisition sub-system has two modes of operation:
one, dubbed single cluster mode, generates a set of keywords characterising each
entire folder; the other generates separate sets of keywords for each message in
each folder, ultimately used to create one classification rule per message, hence
dubbed one-per-message. In the former case, shown in (10), keyword weights
are calculated such that keywords common to most messages are deemed more
important. In the latter case (11), the weighting metric emphasises keywords
that show the message’s difference from other messages in the collection. This
applies pressure to diversify the keyword sets, rather than create multiple copies
of the same set of keywords for each message. The weighting functions are as
follows:

w1(k) = − log
(
Nk

N

)
fkwf (10)
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w2(k) = log
(
N

Nk

)
fkwf (11)

Where w1(k) and w2(k) are the weights of keyword k on a per-folder and per-
message basis respectively; Nk is the number of messages in the folder contain-
ing k; N is the total number of messages in the folder; fk is the frequency of the
keyword k in the current message; and wf denotes the current field’s importance
to the classification, which depends on the application and user preferences. To
avoid over-training and other pitfalls, certain fields are marked as far less im-
portant than others and this influences the weights of keywords within them.
For instance, it is relatively safe to expect the subject and body of a message to
contain very useful information, whereas a trace of the message’s delivery path
(the Received field) is unlikely to provide useful keywords.

Finally, before the weighted keyword is added to the set of keywords, it passes
through two filters: one is a low-pass filter removing words so uncommon that are
definitely not good keywords; the other is a high-pass filter that removes far too
common words such as auxiliary verbs, articles et cetera. This gives the added
advantage of language-independence to the keyword acquisition algorithm: most
similar methods rely on English thesauri and lists of common English words to
perform the same function. Finally, all weights are normalised before the keyword
sets are output. This allows for more homogeneous handling of weights in the
next stages and avoids counter-intuitive results as identified in [1].

It must be emphasised that any keyword acquisition algorithm may be sub-
stituted for the one described above, as long as it outputs weighted keywords.

3.2 Rough Set Attribute Reduction

The RSAR used here is exactly as described previously. It reads the sets of
keywords generated by the keyword acquisition algorithm above. A dataset is
constructed by evaluating the union of all sets of weighted keywords; the key-
words are sorted in order of decreasing weight. Where one keyword has two or
more different weights, the maximum one is used. Each keyword maps to one
conditional attribute in the dataset. The decision attribute is the name of the
folder from where the keyword set was extracted. Missing values in the dataset
denote the absence of that particular keyword in the particular keyword set.

For example, the two sets of keywords below, describing two documents D1

and D2, may be used to build the dataset shown in table 1.

D1 = {〈k1, 0.19〉, 〈k2, 0.98〉, 〈k3, 0.72〉, 〈k4, 0.87〉} (12)
D2 = {〈k4, 0.31〉, 〈k5, 0.42〉, 〈k6, 0.56〉} (13)

Since RSAR is better suited to nominal datasets, the dataset is thus quan-
tised. Two different quantisation methods are available: a boolean quantisation,
where a value of 1 signifies the keyword’s presence and a value of 0 signifies its
absence; and a quantisation of the normalised weight space into eleven values,
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Table 1.Dataset produced from (12) and (13), assuming they belong to folders α
and β respectively.

k2 k4 k3 k6 k5 k1 → Class

D1 0.98 0.87 0.72 0.19 → α

D2 0.31 0.56 0.42 → β
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Fig. 2. Discernibility after dimensionality reduction.

calculated by �10w� (where w is a keyword weight and �·� is the floor function,
evaluating to the greatest integer less than or equal to its argument). The two
methods are there to allow better interfacing with various classifiers as well as
to evaluate the best technique for quantising weights in the application domain
at hand.

Having quantised the intermediate, high-dimensionality dataset, the RSAR
can now execute the QuickReduct algorithm to remove all redundant decision
attributes. This results in a dataset of radically reduced dimensionality. Since
each object in the dataset comprises a set of conditional attributes accompanied
by a decision attribute (the document class the object belongs to), it can be
viewed as a set of production rules, with conditional attribute values being the
rule preconditions and the document class being the rule’s decision. The dataset
is simply post-processed to remove duplicate rules and output in the form of a
rule base.
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4 Experimental Results

The use of the above proposed system allows the generation of rule bases of
extremely reduced dimensionality from corpora of documents, without reducing
the classification accuracy, inasmuch as this is possible. To demonstrate this,
seven different corpora of E-mail messages were used. The corpora were chosen
so as to provide a wide spectrum of characteristics found in sets of documents:
some are homogeneous, containing messages by a single author; others contain
text from multiple authors with different writing styles. Small and larger corpora
are mixed to ensure that the size of the document collection does not influence
the quality of the resultant rule base. Each collection of messages represents one
class of documents.

Random groups of two to five such message folders are chosen and fed to
the system. All combinations of keyword generation (single cluster or one-per-
message) and quantisation method (boolean, weight integer part) are investi-
gated. Table 2 shows the average dimensionality reduction for each combina-
tion. Dimensionality reduction is shown in orders of magnitude (base 10). Note
that, although the one-per-message dataset generation technique shows greater
reduction, the dimensionality is typically much higher than for the single cluster
method. Average pre-reduction dimensionality is 26,827 for the one-per-message
technique and 338 for the single-cluster technique. The resultant rule bases have
rules involving one to six preconditions, with the boolean rule bases exhibit-
ing slightly higher dimensionality due to boolean conditional attributes’ lesser
information content.

Figure 2 shows the average discernibility in the generated rule bases. A dis-
cernibility of 1 indicates no loss of information after the RSAR algorithm has
executed. A classifier employing the rule base in question will, assuming the
training set is a good statistical sample, achieve a classification accuracy very
similar to the discernibility of the rule base. As shown in the figure, generating
one rule for an entire folder of E-mail messages does not allow for good classifica-
tion. Discernibility can drop to unacceptable levels and varies widely depending
on the content of the text corpora. By contrast, generating multiple rules allows
for much better coverage of the feature space — discernibility is high enough to
satisfactory and appears to be almost constant. Binary quantisation seems to
offer slightly less satisfactory results than the weighted method.

In terms of the linguistic nature of the rule bases, it is considerably easier
for a human to read and understand rules that span entire corpora, rather than

Table 2. Average dimensionality reduction in orders of magnitude for all four
combinations of operation modes.

Single cluster One-per-message

Boolean 2.02 3.62

Weighted 2.29 3.70
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rules that describe single documents. It is also possible to judge the quality of
the rule base in an intuitive manner, simply by reading it.

5 Conclusion

Text classification relies heavily on the acquisition of sets of co-ordinate keywords
describing documents. This paper has summarised a technique that reduces the
need to choose a restricted number of good quality keywords by allowing larger
collections of keywords to be built. The dimensionality of these sets of keywords
is then reduced with the aid of Rough Set Theory, while maintaining intact the
information contained in the keyword sets. The technique is efficient, language-
independent and particularly flexible due to its modular nature. The decrease
in dimensionality is drastic, due to RSAR’s reduction of the keyword set to the
minimum required for the classification at hand.

The system can be interfaced to a number of text classifiers to produce highly
optimised rule-based text classification applications, while still allowing the user
to read and intuitively understand the rule bases.

The approach is still in its early states of research, which accounts for the
less-than-acceptable results of the single-cluster rule generation method. Fur-
ther investigation into suitable keyword weighting metrics and rule induction
especially designed for text classification is in progress, as is an actual test-bed
application of the present technique to the classification of in-coming E-mail
messages.
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Abstract. This article describes a way of designing a hybrid system for
classification and rule generation, in soft computing paradigm, integrat-
ing rough set theory with a fuzzy MLP using an evolutionary algorithm.
An l-class classification problem is split into l two-class problems. Crude
subnetworks are initially obtained for each of these two-class problems
via rough set theory. These subnetworks are then combined and the final
network is evolved using a GA with restricted mutation operator which
utilizes the knowledge of the modular structure already generated, for
faster convergence. The GA tunes the fuzzification parameters, and the
network weights and structure simultaneously, by optimizing a single
fitness function.

1 Introduction

Soft Computing is a consortium of methodologies which works synergetically
(not competitively) and provides, in one form or another, flexible information
processing capability for handling real life ambiguous situations [1]. There are
ongoing efforts to integrate artificial neural networks (ANNs) with fuzzy set
theory, genetic algorithms (GAs), rough set theory and other methodologies in
the soft computing paradigm [2].

Knowledge-based networks [3,4] constitute a special class of ANNs that con-
sider crude domain knowledge to generate the initial network architecture, which
is later refined in the presence of training data. Recently, the theory of rough
sets has been used to generate knowledge-based networks.

A recent trend in neural network design for large scale problems is to split the
original task into simpler subtasks, and use a subnetwork module for each of the
subtasks [5]. The divide and conquer strategy leads to super-linear speedup in
training. It has been shown that by combining the output of several subnetworks
in an ensemble, one can improve the generalization ability over that of a single
large network [6].

In the present article an evolutionary strategy is suggested for designing a
connectionist system, integrating fuzzy sets and rough sets. The basic building
block is a Rough Fuzzy MLP [7]. The evolutionary training algorithm gener-
ates the weight values for a parsimonious network and simultaneously tunes
the fuzzification parameters by optimizing a single fitness function. Rough set

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 128–137, 1999.
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theory is used to obtain a set of probable knowledge-based subnetworks which
form the initial population of the GA. These modules are then integrated and
evolved with a restricted mutation operator that helps preserve extracted lo-
calized rule structures as potential solutions. An restricted mutation operator
is implemented, which utilizes the knowledge of modular structure evolved to
achieve faster convergence.

2 Fuzzy MLP

The fuzzy MLP model [8] incorporates fuzziness at the input and output levels
of the MLP, and is capable of handling exact (numerical) and/or inexact (lin-
guistic) forms of input data. Any input feature value is described in terms of
some combination of membership values in the linguistic property sets low (L),
medium (M) and high (H). Class membership values (µ) of patterns are rep-
resented at the output layer of the fuzzy MLP. During training, the weights
are updated by backpropagating errors with respect to these membership values
such that the contribution of uncertain vectors is automatically reduced.

A single layer feedforward MLP is used. An n-dimensional pattern
Fi = [Fi1,Fi2, . . . ,Fin] is represented as a 3n-dimensional vector

Fi = [µlow(Fi1)(Fi), . . . , µhigh(Fin)(Fi)] = [y0
1, y

0
2, . . . , y

0
3n] , (1)

where the µ values indicate the membership functions of the corresponding lin-
guistic π-sets low, medium and high along each feature axis and y0

1 , . . . , y
0
3n refer

to the activations of the 3n neurons in the input layer.
When the input feature is numerical, we use the π−fuzzy sets (in the one

dimensional form), with range [0,1], represented as

π(Fj ; c, λ) =






2(1− ‖Fj−c‖
λ )2, for λ

2 ≤ ‖Fj − c‖ ≤ λ

1− 2(‖Fj−c‖
λ )2, for 0 ≤ ‖Fj − c‖ ≤ λ

2
0 , otherwise ,

(2)

where λ(> 0) is the radius of the π−function with c as the central point. Note
that features in linguistic and set forms can also be handled in this framework [8].

3 Rough Fuzzy MLP

Here we describe the Rough Fuzzy MLP [7]. Let S =< U,A > be a deci-
sion table, with C and D = {d1, ..., dl} its sets of condition and decision at-
tributes respectively. Divide the decision table S =< U,A > into l tables
Si = < Ui, Ai >, i = 1, ..., l, corresponding to the l decision attributes d1, ..., dl,
where

U = U1 ∪ ... ∪ Ul and Ai = C ∪ {di}.
The size of each Si (i = 1, ..., l) is first reduced with the help of a threshold
on the number of occurrences of the same pattern of attribute values. This will
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be elicited in the sequel. Let the reduced decision table be denoted by Ti, and
{xi1, ..., xip} be the set of those objects of Ui that occur in Ti, i = 1, ..., l.

Now for each di-reduct B = {b1, ..., bk} (say), a discernibility matrix (de-
noted Mdi(B)) from the di-discernibility matrix is defined as follows:

cij = {a ∈ B : a(xi) 
= a(xj)}, (3)

for i, j = 1, ..., n.
For each object xj ∈ xi1 , . . . , xip , the discernibility function fxj

di
is defined as

f
xj

di
=
∧
{
∨

(cij) : 1 ≤ i, j ≤ n, j < i, cij 
= ∅} , (4)

where
∨
(cij) is the disjunction of all members of cij . Then f

xj

di
is brought to

its conjunctive normal form (c.n.f). One thus obtains a dependency
rule ri, viz. Pi ← di, where Pi is the disjunctive normal form (d.n.f) of fxj

di
, j ∈

i1, . . . , ip.
The dependency factor dfi for ri is given by

dfi =
card(POSi(di))

card(Ui)
, (5)

where POSi(di) =
⋃

X∈Idi
li(X), and li(X) is the lower approximation of X

with respect to Ii. In this case dfi = 1 [7].
Consider the case of feature Fj for class ck in the l-class problem domain.

The inputs for the ith representative sample Fi are mapped to the corresponding
three-dimensional feature space of µlow(Fij)(Fi), µmedium(Fij)(Fi)
and µhigh(Fij)(Fi), by eqn. (1). Let these be represented by Lj, Mj and Hj

respectively. Then consider only those attributes which have a numerical value
greater than some threshold Th (0.5 ≤ Th < 1). This implies clamping only
those features demonstrating high membership values with one, while the others
are fixed at zero. As the method considers multiple objects in a class a sep-
arate nk × 3n-dimensional attribute-value decision table is generated for each
class ck (where nk indicates the number of objects in ck).

Let there be m sets O1, ..., Om of objects in the table having identical at-
tribute values, and card(Oi) = nki , i = 1, ...,m, such that nk1 ≥ . . . ≥ nkm and∑m

i=1 nki = nk. The attribute-value table can now be represented as an m× 3n
array. Let nk′

1
, nk′

2
, . . . , nk′

m
denote the distinct elements among nk1 , . . . , nkm

such that nk′
1
> nk′

2
> . . . > nk′

m
. Let a heuristic threshold function be defined

as

Tr =





∑m
i=1

1
nk′

i
−nk′

i+1

Th




, (6)

so that all entries having frequency less than Tr are eliminated from the ta-
ble, resulting in the reduced attribute-value table. Note that the main motive
of introducing this threshold function lies in reducing the size of the resulting
network. One attempts to eliminate noisy pattern representatives (having lower
values of nki) from the reduced attribute-value table.
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While designing the initial structure of the rough fuzzy MLP, the union of
the rules of the l classes is considered. The input layer consists of 3n attribute
values while the output layer is represented by l classes. The hidden layer nodes
model the first level (innermost) operator in the antecedent part of a rule, which
can be either a conjunct or a disjunct. The output layer nodes model the outer
level operands, which can again be either a conjunct or a disjunct. For each
inner level operator, corresponding to one output class (one dependency rule),
one hidden node is dedicated. Only those input attributes that appear in this
conjunct/disjunct are connected to the appropriate hidden node, which in turn
is connected to the corresponding output node. Each outer level operator is
modeled at the output layer by joining the corresponding hidden nodes. Note
that a single attribute (involving no inner level operators) is directly connected
to the appropriate output node via a hidden node, to maintain uniformity in
rule mapping.

Let the dependency factor for a particular dependency rule for class ck
be df = α = 1 by eqn. (5). The weight w1

ki between a hidden node i and
output node k is set at α

fac + ε, where fac refers to the number of outer level
operands in the antecedent of the rule and ε is a small random number taken to
destroy any symmetry among the weights. Note that fac ≥ 1 and each hidden
node is connected to only one output node. Let the initial weight so clamped
at a hidden node be denoted as β. The weight w0

iaj
between an attribute aj

(where a corresponds to low (L), medium (M) or high (H) ) and hidden node i
is set to β

facd + ε, such that facd is the number of attributes connected by the
corresponding inner level operator. Again facd ≥ 1. Thus for an l-class problem
domain there are at least l hidden nodes. All other possible connections in the
resulting fuzzy MLP are set as small random numbers. It is to be mentioned
that the number of hidden nodes is determined from the dependency rules.

4 Modular Knowledge-Based Network

It is believed that the use of Modular Neural Network (MNN) enables a wider
use of ANNs for large scale systems. Embedding modularity (i.e. to perform local
and encapsulated computation) into neural networks leads to many advantages
compared to the use of a single network. For instance, constraining the network
connectivity increases its learning capacity and permits its application to large
scale problems [5]. It is easier to encode a priori knowledge in modular neural
networks. In addition, the number of network parameters can be reduced by using
modularity. This feature speeds computation and can improve the generalization
capability of the system.

We use two phases. First an l-class classification problem is split into l two-
class problems. Let there be l sets of subnetworks, with 3n inputs and one output
node each. Rough set theoretic concepts are used to encode domain knowledge
into each of the subnetworks, using eqns (3)-(6). The number of hidden nodes and
connectivity of the knowledge-based subnetworks is automatically determined.
A two-class problem leads to the generation of one or more crude subnetworks,
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each encoding a particular decision rule. Let each of these constitute a pool. So
we obtain m ≥ l pools of knowledge-based modules. Each pool k is perturbed to
generate a total of nk subnetworks, such that n1 = . . . = nk = . . . = nm. These
pools constitute the initial population of subnetworks, which are then evolved
independently using genetic algorithms.

At the end of training, the modules/subnetworks corresponding to each two-
class problem are concatenated to form an initial network for the second phase.
The inter module links are initialized to small random values as depicted in
Fig. 1. A set of such concatenated networks forms the initial population of
the GA. The mutation probability for the inter-module links is now set to a high
value, while that of intra-module links is set to a relatively lower value. This
sort of restricted mutation helps preserve some of the localized rule structures,
already extracted and evolved, as potential solutions. The initial population for
the GA of the entire network is formed from all possible combinations of these
individual network modules and random perturbations about them. This ensures
that for complex multi-modal pattern distributions all the different representa-
tive points remain in the population. The algorithm then searches through the
reduced space of possible network topologies.

Inputs

Outputs

Usual links

links assigned
small random

value

Module 2

Module 3

 Module 1

Fig. 1. Intra and Inter module links

5 Evolutionary Design

Genetic algorithms are highly parallel and adaptive search processes based on
the principles of natural selection. Here we use GAs for evolving the weight
values as well as the structure of the fuzzy MLP used in the framework of
modular neural networks. The input and output fuzzification parameters are
also tuned. Unlike other theory refinement systems which train only the best
network approximation obtained from the domain theories, the initial population
here consists of all possible networks generated from rough set theoretic rules.
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This is an advantage because potentially valuable information may be wasted by
discarding the contribution of less successful networks at the initial level itself.

Genetic algorithms involve three basic procedures - encoding of the problem
parameters in the form of binary strings, application of genetic operators like
crossover and mutation, selection of individuals based on some objective func-
tion to create a new population. Each of these aspects is discussed below with
relevance to our algorithm.

5.1 Chromosomal Representation

The problem variables consist of the weight values and the input/output fuzzi-
fication parameters. Each of the weights is encoded into a binary word of 16
bit length, where [000...0] decodes to −128 and [111...1] decodes to 128. An ad-
ditional bit is assigned to each weight to indicate the presence or absence of
the link. If this bit is 0 the remaining bits are unrepresented in the phenotype.
The total number of bits in the string is therefore dynamic [9]. Thus a total
of 17 bits are assigned for each weight. The fuzzification parameters tuned are
the centers (c) and radius (λ) for each of the linguistic attributes low, medium
and high of each feature (eqn. 2). These are also coded as 16 bit strings in the
range [0, 2].

Initial population is generated by coding the networks obtained by rough
set based knowledge encoding, and by random perturbations about them. A
population size of 64 was considered.

5.2 Genetic Operators

Crossover It is obvious that due to the large string length, single point
crossover would have little effectiveness. Multiple point crossover is adopted,
with the distance between two crossover points being a random variable be-
tween 8 and 24 bits. This is done to ensure a high probability for only one
crossover point occurring within a word encoding a single weight. The crossover
probability is fixed at 0.7.

Mutation The search string being very large, the influence of mutation is more
on the search. Each of the bits in the string is chosen to have some mutation
probability (pmut). This mutation probability however has a spatio-temporal
variation. The maximum value of pmut is chosen to be 0.4 and the minimum
value as 0.01. The mutation probabilities also vary along the encoded string,
with the bits corresponding to inter-module links being assigned a probability
pmut (i.e., the value of pmut at that iteration) and intra-module links assigned
a probability pmut/10. This is done to ensure least alterations in the structure of
the individual modules already evolved. Hence, the mutation operator indirectly
incorporates the domain knowledge extracted through rough set theory.
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5.3 Choice of Fitness Function

In GAs the fitness function is the final arbiter for string creation, and the nature
of the solution obtained depends on the objective function. An objective function
of the form described below is chosen.

F = α1f1 + α2f2 ,

where

f1 =
No. of Correctly Classified Sample in T raining Set

T otal No. of Samples in T raining Set

f2 = 1 − No. of links present

T otal No. of links possible
.

Here α1 and α2 determine the relative weightage of each of the factors. α1 is
taken to be 0.9 and α2 is taken as 0.1, to give more importance to the classifica-
tion score compared to the network size in terms of number of links. Note that
we optimize the network connectivity, weights and input/output fuzzification
parameters simultaneously.

5.4 Selection

Selection is done by the roulette wheel method. The probabilities are calculated
on the basis of ranking of the individuals in terms of the objective function,
instead of the objective function itself. Fitness ranking overcomes two of the
biggest problems inherited from traditional fitness scaling : over compression
and under expansion.

Elitism is incorporated in the selection process to prevent oscillation of the
fitness function with generation. The fitness of the best individual of a new gen-
eration is compared with that of the current generation. If the latter has a higher
value - the corresponding individual replaces a randomly selected individual in
the new population.

6 Implementation and Results

The genetic-rough-neuro-fuzzy algorithm has been implemented on speech data.
Let the proposed methodology be termed Model S. Other models compared

include:
Model O: An ordinary MLP trained using backpropagation (BP) with weight

decay. Model F: A fuzzy multilayer perceptron trained using BP [8] (with weight
decay).

Model R: A fuzzy multilayer perceptron trained using BP (with weight de-
cay), with initial knowledge encoding using rough sets [7].



Modular Rough Fuzzy MLP: Evolutionary Design 135

Model FM: A modular fuzzy multilayer perceptron trained with GAs along
with tuning of the fuzzification parameters. Here the term modular refers to
the use of subnetworks corresponding to each class, that are later concatenated
using GAs.

A threshold value of 0.5 is applied on the fuzzified inputs to generate the
attribute value table used in rough set encoding, such that y0

i = 1 if y0
i ≥ 0.5

and 0 otherwise. Here, 50% of the samples are used as training set and the
network is tested on the remaining samples.

The speech data Vowel deals with 871 Indian Telegu vowel sounds. These
were uttered in a consonant-vowel-consonant context by three male speakers in
the age group of 30 to 35 years. The data set has three features: F1, F2 and F3

corresponding to the first, second and third vowel formant frequencies obtained
through spectrum analysis of the speech data. There are six classes δ, a, i, u, e, o.
These overlapping classes will be denoted by c1, c2, . . . , c6.

The rough set theoretic technique is applied on the vowel data to extract
some knowledge which is initially encoded among the connection weights of the
subnetworks. The data is first transformed into a nine dimensional linguistic
space.

The dependency rules obtained are :

c1 ←M1 ∨ L3, c1 ←M1 ∨M3, c2 ←M2 ∨M3, c3 ← (L1 ∧M3) ∨ (L1 ∧H3),

c4 ← (L2 ∧M3) ∨ (L1 ∧ L2) ∨ (L1 ∧ L3) ∨ (L2 ∧ L3)

c4 ← (L2∧H3)∨(L1∧L2)∨(L1∧L3)∨(L2∧L3), c5 ← (M1∧M3)∨(H1∧M3),

c5 ← (H1 ∧M3) ∨ (H1 ∧H3) ∨ (M3 ∧H3)c6 ← L1 ∨M3,

c6 ←M1 ∨M3, c6 ← L1 ∨H3, c6 ←M1 ∨H3.

The above rules are used to get initial subnetwork modules using the scheme
outlined in Section 3. The integrated network contains a single hidden layer
with 15 nodes. In all, 32 such networks are obtained. The remaining 32 networks
are obtained by small (20%) random perturbations about them, to generate an
initial population of 64 individuals.

The performance of Model S along with its comparison with other models
using the same number of hidden nodes is presented in Table 1. In the first phase
of the GA (for models FM and S), each of the subnetworks are partially trained
for 10 sweeps each. It is observed that Model S performs the best with the least
network size after being trained for only 90 sweeps in the final phase. Comparing
Models F and R, we observe that the incorporation of domain knowledge in the
latter through rough sets boosts its performance. Similarly, using the modular
approach with GA in Model FM improves its efficiency over that of Model F.
Note that Model S encompasses both models R and FM. Hence it results in the
least redundant yet effective model.
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Table 1. Comparative performance of different models for Vowel data

Models Model O Model F Model R Model FM Model S

Train Test Train Test Train Test Train Test Train Test

c1(%) 11.20 8.10 15.70 14.21 44.12 42.41 42.40 32.50 62.20 58.42

c2(%) 75.71 76.40 82.58 88.41 88.81 87.53 95.02 88.89 100.0 88.89

c3(%) 80.00 85.48 90.91 92.42 88.41 88.71 90.91 89.50 94.24 92.42

c4(%) 71.43 65.20 93.22 87.21 88.23 87.44 90.91 90.00 90.20 90.25

c5(%) 68.57 59.10 80.00 78.57 94.22 93.45 82.21 80.42 85.84 82.42

c6(%) 76.47 71.10 96.21 93.90 94.45 94.21 100.0 100.0 95.10 94.90

Net(%) 65.23 64.20 84.36 81.82 86.82 85.81 85.48 82.45 87.21 85.81

# links 131 210 152 124 84

Iterations 5600 5600 2000 200 90

7 Conclusions

A methodology for integrating rough sets with fuzzy MLP using genetic algo-
rithms for designing a knowledge-based network for pattern classification and
rule generation is presented. The proposed algorithm involves synthesis of sev-
eral MLP modules, each encoding the rough set rules for a particular class. These
knowledge-based modules are refined using a GA. The genetic operators are im-
plemented in such a way that they help preserve the modular structure already
evolved. It is seen that this methodology along with modular network decom-
position results in superior performance in terms of classification score, training
time, and network sparseness (thereby enabling easier extraction of rules) as
compared to earlier hybridizations.
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Abstract. We consider approximate versions of fundamental notions of

theories of rough sets and association rules. We analyze the complexity

of searching for �-reducts, understood as subsets discerning "�-almost"

objects from di�erent decision classes, in decision tables. We present how

optimal approximate association rules can be derived from data by using

heuristics for searching for minimal �-reducts. NP-hardness of the prob-

lem of �nding optimal approximate association rules is shown as well.

It makes the results enabling the usage of rough sets algorithms to the

search of association rules extremely important in view of applications.

1 Introduction

Theory of rough sets ([5]) provides e�cient tools for dealing with fundamental

data mining challenges, like data representation and classi�cation, or knowledge

description (see e.g. [2], [3], [4], [8]). Basing on the notions of information system

and decision table, the language of reducts and rules was proposed for expressing

dependencies between considered features, in view of gathered information.

Given a distinguished feature, called decision, the notion of decision reduct is

constructed over, so called, discernibility matrix ([7]), where information about

all pairs of objects with di�erent decision values is stored. A reduct is any min-

imal (in sense of inclusion) subset of non-decision features (conditions) which

discern all such pairs, necessary to be considered, e.g., with respect to proper

decision classi�cation of new cases.

In real applications, basing on such deterministic reducts, understood as

above, is often too restrictive with respect to discerning all necessary pairs. In-

deed, deterministic dependencies may require too many conditions to be involved

to. Several approaches to uncertainty representation of decision rules and reducts

were proposed to weaken the above conditions (see e.g. [6], [8], [9]). In the lan-

guage of reducts and their discernibility characteristics, we can say that such

uncertainty or imprecision can be connected with a ratio of pairs from di�erent

decision classes which remain not discerned by such an approximate reduct.

Applications of rough sets theory to the generation of rules, for classi�ca-

tion of new cases or representation of data information, are usually restricted

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 137-145, 1999. 
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to searching for decision rules with a �xed decision feature related to a rule's

consequence. Recently, however, more and more attention is paid on, so called,

associative mechanism of rules' generation, where all attributes can occur as in-

volved to conditions or consequences of particular rules (compare with, e.g., [1],

[10]). Relationship between techniques of searching for optimal association rules

and rough sets optimization tasks, like, e.g., the templates generation, were stud-

ied in [3]. In this paper we would like to focus on approximate association rules,

analyzing both complexity of related search tasks and their correspondence to

approximate reducts.

The reader may pay attention on similarities between construction of proofs

of complexity results concerning approximate reducts and association rules. We

believe that presented techniques can be regarded as even more universal for sim-

ple and intuitive characteristics of related optimization tasks. What even more

important, however, is the correspondence between the optimization problems

concerning the above mentioned notions - Although the problems of �nding

both minimal approximate reducts and all approximate reducts are NP-hard,

the existence of very e�cient and fast heuristics for solving them (compare, e.g.,

with [4]) makes such a correspondence very important tool for development of

appropriate methods of �nding optimal approximate association rules.

The paper is organized as follows: In Section 2 we introduce basic notions

of rough sets theory and consider the complexity of searching for minimal ap-

proximate (in sense of discernibility) reducts in decision tables. In Section 3

we introduce the notion of association rule as strongly related to the notion of

template, known from rough sets theory. Similarly as in case of approximate

reducts, we show the NP-hardness of the problem of �nding optimal approx-

imate (in sense of a con�dence threshold) association rule corresponding to a

given template. In Section 4 we show how optimal approximate association rules

can be searched for as minimal approximate reducts, by using an appropriate

decision table representation. In Section 5 we conclude the paper with pointing

the directions of further research.

2 Approximate reducts

An information system is a pair S= (U;A), where U is a non-empty, �nite set

called the universe and A is a non-empty, �nite set of attributes. Each a 2 A

corresponds to function a : U ! Va, where Va is called the value set of a. Ele-

ments of U are called situations, objects or rows, interpreted as, e.g., cases, states,

patients, observations. We also consider a special case of information system: de-

cision table S = (U;A [ fdg), where d =2 A is a distinguished attribute called

decision and the elements of A are called conditional attributes (conditions).

In a given information system, in general, we are not able to distinguish all

pairs of situations (objects) by using attributes of the system. Namely, di�er-

ent situations can have the same values on considered attributes. Hence, any

set of attributes divides the universe U onto some classes which establish a

partition of U ([5]). With any subset of attributes B � A we associate a bi-
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nary relation ind(B); called a B-indiscernibility relation, which is de�ned by

ind(B) = f(u; u0
) 2 U � U : for every a 2 B; a(u) = a(u0

)g:
Let S = (U;A) be an information system. Assume that U = fu1; :::; uNg,

and A = fa1; :::; ang. By M (S) we denote an N � N matrix (ci;j), called the

discernibility matrix of S, such that ci;j = fa 2 A : a(ui) 6= a(uj)g for i; j =

1; :::; N . Discernibility matrices are useful for deriving possibly small subsets

of attributes, still keeping the knowledge encoded within a system. Given S =

(U;A), we call as a reduct each subset B � A being minimal in sense of inclusion,

intersecting with each non-empty ci;j , i.e., such that

8i;j(ci;j 6= ;)) (B \ ci;j 6= ;)

The above condition states the reducts as minimal subsets of attributes which

discern all pairs of objects possible to be discerned within an information sys-

tem. In a special case, for decision table S= (U;A [ fdg), we may weaken this

condition, because not all pairs are necessary to be discerned, to keep knowl-

edge concerning decision d - we modify elements of corresponding discernibility

matrix with respect to formula

[ci;j = fa 2 A : a(ui) 6= a(uj)g , d(ui) 6= d(uj)] ^ [ci;j = ; , d(ui) = d(uj)]

In this paper we are going to focus on decision tables, so, from now, we will

understand reducts as corresponding to such modi�ed matrices.

Extracting reducts from data is a crucial task in view of tending to possibly

clear description of decision in terms of conditional attributes. In view of the

above formulas, such a description can be regarded as deterministic, relatively

to gathered information (one can show that the above de�nition of reduct in

a decision table is equivalent to that based on generalized decision functions,

considered, e.g., in [8]). Still, according to real life applications, we often cannot

a�ord to handle subsets of conditions de�ning d even in such a relative way.

Thus, in some applications (see e.g. [6]), we prefer to use �-approximations of

reducts, where � 2 (0; 1] is a real parameter.

We consider two versions of such approximations. The �rst of them is related

to the task of discerning almost all pairs of objects with di�erent decision classes,

regardless of information provided by conditional attributes: The set of attributes

B � A is called an �-reduct i� it is minimal in sense of inclusion, intersecting at

least � � 100% of pairs necessary to be discerned with respect to decision, what

means that
jfci;j : B \ ci;j 6= ;gj

jf(ui; uj) : d(ui) 6= d(uj)j
� �

Appropriate tuning of parameter � in the above inequality provides representa-

tion of inconsistent information, alternative to approaches based on generalized

or other decision functions, proposed, e.g., in [8] or [9]. What similar, however, is

the complexity characteristics, well known for � = 1, of the following problem:

Theorem 1. For a given � 2 (0; 1), the problem of �nding the minimal (in sense

of cardinality) �-reduct is NP-hard with respect to the number of conditional

attributes.
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Because of the lack of space, let us just mention that the proof of Theorem 1

can be obtained by deriving (in polynomial time) the problem of minimal graph

covering (i.e. the problem of �nding minimal set of vertices which cover all edges

in a given graph) to that considered above. Let us illustrate this derivation with

the following example:

Example 1

Let us consider the Minimal �-Reduct Problem for c = 0:8. We illustrate the proof

of Theorem 1 by the graphG = (V;E) with �ve vertices V = fv1; v2; v3; v4; v5g and

six edges E = fe1; e2; e3; e4; e5; e6g. First we compute k =
j

�

1��

k
= 4. Hence, deci-

sion table S(G) consists of �ve conditional attributes fav1 , av2 , av3 , av4 , av5g, de-
cision a

� and (4+1)+6 = 11 objects fx1; x2; x3; x4; x
�

; ue1 ; ue2 ; ue3 ; ue4 ; ue5 ; ue6g.
Decision table S(G) constructed from the graph G is presented below:

v2v1

v

v

v 3

4

5

e
e

e

e

e

e

1

2
3

6

5

4

=)

S(G) av1 av2 av3 av4 av5 a
�

x1 1 1 1 1 1 1

x2 1 1 1 1 1 1

x3 1 1 1 1 1 1

x4 1 1 1 1 1 1

x
� 1 1 1 1 1 0

ue1 0 0 1 1 1 1

ue2 0 1 1 0 1 1

ue3 1 0 1 1 0 1

ue4 1 0 1 0 1 1

ue5 0 1 0 1 1 1

ue6 1 1 0 1 0 1

Analogous result can be obtained for the Minimal Relative �-Reduct Problem,

where relative �-reducts are understood as subsets B � A being minimal in

sense of inclusion, satisfying inequality

jfci;j : B \ ci;j 6= ;gj

jfci;j : ci;j 6= ;gj
� �

In such a case, since procedure illustrated by Example 1 is not appropriate

any more, we have to use more sophisticated representation of a graph by a

decision table. Instead of the formal proof, again, let us just modify the previous

illustration. Appropriate modi�cation can be seen in Example 2 below.

Although the above results may seem to reduce the possibilities of deal-

ing with rough set tools in an e�ective way, a number of random algorithms

for �nding approximately optimal solutions to mentioned problems can be pro-

posed. The power of heuristics possible to be implemented by using rough set

algorithmic techniques (see e.g. [4]) is worth remembering because the majority

of interesting data mining problems is known to be NP-hard as well. Thus, the

analysis of correspondence between such problems and the search for (approxi-

mate) reducts can turn out to be very fruitful in view of many applications.
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Example 2

In case of the Minimal Rela-

tive �-Reduct Problem, � = 0:8,

graphG = (V;E) from the above

Example can be translated to de-

cision table S0(G), where, com-

paring to S(G), we add four new

conditions a01; a
0

2; a
0

3; a
0

4. One can

show that from a given minimal

relative �-reduct in S0(G) we can

derive (in a polynomial time with

respect to the number of condi-

tions) minimal graph covering for

G.

S
0(G) av1 av2 av3 av4 av5 a

0

1 a
0

2 a
0

3 a
0

4 a
�

x1 1 1 1 1 1 1 1 1 0 1

x2 1 1 1 1 1 1 1 0 1 1

x3 1 1 1 1 1 1 0 1 1 1

x4 1 1 1 1 1 0 1 1 1 1

x
� 1 1 1 1 1 1 1 1 1 0

ue1 0 0 1 1 1 1 1 1 1 1

ue2 0 1 1 0 1 1 1 1 1 1

ue3 1 0 1 1 0 1 1 1 1 1

ue4 1 0 1 0 1 1 1 1 1 1

ue5 0 1 0 1 1 1 1 1 1 1

ue6 1 1 0 1 0 1 1 1 1 1

3 Approximate association rules

Association rules and their generation can be de�ned in many ways (see [1]). As
we mentioned in Introduction, we are going to introduce them as related to so
called templates.

Given an information table S = (U;A), by descriptors we mean the terms
of the form (a = v), where a 2 A is an attribute and v 2 Va is a value in the
domain of a (see [4]). The notion of descriptor can be generalized by using terms
of the form (a 2 S), where S � Va is a set of values. By a template we mean
the conjunction of descriptors, i.e. T = D1 ^D2 ^ :::^Dm, where D1; :::Dm are
either simple or generalized descriptors. We denote by length(T) the number of
descriptors in T.

An object u 2 U satis�es template T = (ai1 = v1) ^ ::: ^ (aim = vm) if and
only if 8jaij (u) = vj . Hence, template T describes the set of objects having the
common property: "the values of attributes aj1 ; :::; ajm on these objects are equal

to v1; :::; vm, respectively". The support of T is de�ned by support(T) = jfu 2

U : u satis�es Tgj.
Long templates with large support are preferred in many Data Mining tasks.

Regarding on a concrete optimization function, problems of �nding optimal large
templates are known as being NP-hard with respect to the number of attributes
involved into descriptors, or remain open problems (see e.g. [3]). Nevertheless,
the large templates can be found quite e�ciently by Apriori and AprioriTid al-
gorithms (see [1], [10]). A number of other methods for large template generation
has been proposed e.g. in [4].

According to the presented notation, association rules can be de�ned as im-
plications of the form (P) Q), where P and Q are di�erent simple templates.
Thus, they take the form

(ai1 = vi1 ) ^ : : : ^ (aik = vik )) (aj1 = vj1) ^ : : : ^ (ajl = vjl) (1)

Usually, for a given information system S, the quality of association rule R =
P) Q is evaluated by two measures called support and con�dence with respect
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to S. The support of rule R is de�ned by the number of objects from S satisfying

condition (P ^Q), i.e.

support(R) = support(P ^Q)

The second measure, con�dence of R, is the ratio of support of (P ^ Q) and

support of P, i.e.

confidence(R) =
support(P ^Q)

support(P)

The following problem has been investigated by many authors (see e.g. [1], [10]):

For a given information table S, an integer s, and a real

number c 2 (0; 1), find as many as possible association rules

R = (P) Q) such that support(R) � s and confidence(R) � c.

All existing association rule generation methods consist of two main steps:

1. Generate as many as possible templates T = D1 ^ D2::: ^ Dk such that

support(T) � s and support(T ^D) < s for any descriptor D (i.e. maximal

templates among these which are supported by not less than s objects).

2. For any template T, search for decomposition T = P ^Q such that:

(a) support(P) �
support(T)

c
,

(b) P is the smallest template satisfying (a).

In this paper we show that the second above step can be solved using rough set

methods. Let us assume that template T = D1^D2^: : :^Dm, which is supported

by at least s objects, has been found. For a given con�dence threshold c 2

(0; 1] decompositionT = P ^Q is called c-irreducible if confidence(P) Q) � c

and for any decomposition T = P0 ^Q0 such that P0 is a sub-template of P,

confidence(P0 ) Q0) < c.

We are especially interested in approximate association rules, corresponding

to c < 1. The following gives analogy of this case to well known result concerning

the search for deterministic association rules.

Theorem 2. For a �xed c 2 (0; 1), the problem of searching for the shortest

association rule from the template T for a given table S with con�dence limited

by c (Optimal c-Association Rule Problem) is NP-hard, with respect to the length

of T.

The proof of this theorem is similar to that of Theorem 1. We illustrate it by

example:

Example 3

Let us consider the Optimal c-Association Rules Problem for c = 0:8. We illustrate

the proof of Theorem 2 analogously to the illustration from Example 1, related

to the proof of Theorem 1. For graph G = (V;E), we compute k =
j

c

1�c

k
= 4 like

previously. The only di�erence is that instead of decision table S(G) we begin to

consider information system S
00(G), where a

� is a non-decision attribute, like the

others.
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4 Application of approximate reducts to the search of

approximate association rules

In this section we are going to show that the problem of searching for optimal ap-

proximate association rules from the given template is equivalent to the problem

of searching for minimal �-reducts in an appropriately modi�ed decision table.

We construct new decision table SjT = (U;AjT [ d) from original information

table S and template T as follows:

1. AjT = faD1
; aD2

; :::; aDm
g is the set of attributes corresponding to the de-

scriptors of T, such that aDi
(u) =

�
1 if object u satis�es Di;

0 otherwise:
2. Decision attribute d determines whether a given object satis�es template T,

i.e. d(u) =

�
1 if object u satis�es T;

0 otherwise:

The following theorem describes the relationship between the optimal association

rule and the minimal reduct search problems.

Theorem 3. For information table S= (U;A), template T, set of descriptors P

and parameter c 2 (0; 1], implication
V
Di2P

Di )
V
Dj =2P

Dj is a c-irreducible

association rule from T i� P is an �-reduct in SjT, for � = 1�( 1
c
� 1)=(N

s
� 1),

where N is the total number of objects in U and s = support(T). In particular,

the above implication is a deterministic association rule i� P is a reduct in SjT.

The following example illustrates the main idea of the method based on the

above characteristics. Let us consider the following information table S with 18

objects and 9 attributes:

S a1 a2 a3 a4 a5 a6 a7 a8 a9

u1 0 1 1 1 80 2 2 2 3

u2 0 1 2 1 81 0 aa 1 aa

u3 0 2 2 1 82 0 aa 1 aa

u4 0 1 2 1 80 0 aa 1 aa

u5 1 1 2 2 81 1 aa 1 aa

u6 0 2 1 2 81 1 aa 1 aa

u7 1 2 1 2 83 1 aa 1 aa

u8 0 2 2 1 81 0 aa 1 aa

u9 0 1 2 1 82 0 aa 1 aa

u10 0 3 2 1 84 0 aa 1 aa

u11 1 1 2 2 80 0 aa 2 aa

u12 0 2 3 2 82 0 aa 2 aa

u13 0 2 2 1 81 0 aa 1 aa

u14 0 3 2 2 81 2 aa 2 aa

u15 0 4 2 1 82 0 aa 1 aa

u16 0 3 2 1 83 0 aa 1 aa

u17 0 1 2 1 84 0 aa 1 aa

u18 1 2 2 1 82 0 aa 2 aa

SjT D1 D2 D3 D4 D5 d

a1 = 0 a3 = 2 a4 = 1 a6 = 0 a8 = 1

u1 1 0 1 0 0 0

u2 1 1 1 1 1 1

u3 1 1 1 1 1 1

u4 1 1 1 1 1 1

u5 0 1 0 0 1 0

u6 1 0 0 0 1 0

u7 0 0 0 0 1 0

u8 1 1 1 1 1 1

u9 1 1 1 1 1 1

u10 1 1 1 1 1 1

u11 0 1 0 1 0 0

u12 1 0 0 1 0 0

u13 1 1 1 1 1 1

u14 1 1 0 0 0 0

u15 1 1 1 1 1 1

u16 1 1 1 1 1 1

u17 1 1 1 1 1 1

u18 0 1 1 1 0 0
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Assume that template

T = (a1 = 0) ^ (a3 = 2) ^ (a4 = 1) ^ (a6 = 0) ^ (a8 = 1)

has been extracted from information table S. One can see that support(T) = 10
and length(T) = 5. Decision table SjT is presented below:

M (SjT) u2; u3; u4; u8; u9
u10; u13; u15; u16; u17

u1 D2 _D4 _D5

u5 D1 _D3 _D4

u6 D2 _D3 _D4

u7 D1 _D2 _D3 _D4

u11 D1 _D3 _D5

u12 D2 _D3 _D5

u14 D3 _D4 _D5

u18 D1 _D5

= 100% =)

= 90% =)

D3 ^D5 ) D1 ^D2 ^D4

D4 ^D5 ) D1 ^D2 ^D3

D1 ^D2 ^D3 ) D4 ^D5

D1 ^D2 ^D4 ) D3 ^D5

D1 ^D2 ^D5 ) D3 ^D4

D1 ^D3 ^D4 ) D2 ^D5

D1 ^D2 ) D3 ^D4 ^D5

D1 ^D3 ) D3 ^D4 ^D5

D1 ^D4 ) D2 ^D3 ^D5

D1 ^D5 ) D2 ^D3 ^D4

D2 ^D3 ) D1 ^D4 ^D5

D2 ^D5 ) D1 ^D3 ^D4

D3 ^D4 ) D1 ^D2 ^D5

The discernibility function f corresponding to matrix M (SjT) is the following:

f = (D2 _D4 _D5) ^ (D1 _D3 _D4) ^ (D2 _D3 _D4) ^ (D1 _D2 _D3 _D4)

^(D1 _D3 _D5) ^ (D2 _D3 _D5) ^ (D3 _D4 _D5) ^ (D1 _D5)

After simpli�cation we obtain six reducts: f = (D3 ^D5) _ (D4 ^ D5) _ (D1 ^

D2 ^D3)_ (D1 ^D2 ^D4)_ (D1 ^D2 ^D5)_ (D1 ^D3 ^D4) for decision table
SjT. Thus, we have found from T six deterministic association rules with full
con�dence.

For c = 0:9, we would like to �nd �-reducts for decision table SjT, where

� = 1 �
1

c
�1

N

s
�1

= 0:86. Hence we search for a set of descriptors covering at least

d(n � s)(�)e = d8 � 0:86e = 7 elements of discernibility matrix M (SjT). One
can see that each of the following sets fD1; D2g, fD1; D3g, fD1; D4g, fD1; D5g,
fD2; D3g, fD2; D5g, fD3; D4g intersects with exactly 7 members of discernibility
matrix M (SjT). In the above table we present all association rules achieved from
these sets.

The problems of �nding both minimal �-reducts and all �-reducts are NP-
hard, so we usually cannot a�ord for such exhaustive computations like these
presented above. However, one should remember that the above is just an illus-
trative example and in real life applications we can use very e�cient and fast
heuristics for solving �-reduct problems (see e.g. [4] for further references). In
particular, it makes presented derivation very important tool for development of
appropriate methods of �nding optimal approximate association rules.
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5 Conclusions

Searching for minimal �-reducts is well known problem in Rough Sets theory. A

great e�ort has been involved to solve these problems. One can �nd numerous

applications of �-reducts in the knowledge discovery domain. In this paper we

have shown, that the problem of searching for the shortest �-reducts is NP-hard.

We also investigated the application of �-reducts to association rule generation.

Still, further development of the language of association rules is needed for appli-

cations. In the next papers we are going to present such a development, together

with new, rough set based algorithms for the association rule generation.

Acknowledgements Supported by ESPRIT project 20288 CRIT-2 and KBN

Research Grant 8T11C02412.

References

1. Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A.I., 1996. Fast discov-

ery of assocation rules. In V.M. Fayad, G.Piatetsky Shapiro, P. Smyth, R. Uthu-

rusamy (eds): Advanced in Knowledge Discovery and Data Mining, AAAI/MIT

Press, pp.307-328.

2. J. Bazan. A comparison of dynamic non-dynamic rough set methods for extracting

laws from decision tables. In: L. Polkowski and A. Skowron (Eds.), Rough Sets in

Knowledge Discovery 1: Methodology and Applications, Physica-Verlag, Heidelberg,

1998, 321{365.

3. H.S. Nguyen and S.H. Nguyen. Pattern extraction from data, Fundamenta Infor-

maticae 34 (1998) 129{144.

4. Nguyen S. Hoa, A. Skowron, P. Synak. Discovery of data pattern with applications

to decomposition and classi�cation problems. In L. Polkowski, A. Skowron (eds.):

Rough Sets in Knowledge Discovery 2. Physica-Verlag, Heidelberg 1998, pp. 55{97.

5. Z. Pawlak. Rough Sets { Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht, 1991.

6. Skowron A. Synthesis of adaptive decision systems from experimental data. In

A. Aamodt, J. Komorowski (eds), Proc. of the Fifth Scandinavian Conference

on Arti�cial Intelligence (SCAI'95), May 1995, Trondheim, Norway, IOS Press,

Amsterdam, 220{238.

7. A. Skowron and C. Rauszer. The discernibility matrices and functions in infor-

mation systems, in: R. S lowi�nski (Ed.), Intelligent decision support: Handbook of

applications and advances of the rough sets theory, Kluwer Academic Publishers,

Dordrecht, 1992, 331-362.

8. D. �Sl�ezak. Decision information functions for inconsistent decision tables analysis.

Accepted to International Conference EUFIT'99.

9. D. �Sl�ezak. Reasoning in decision tables with frequency based implicants. In prepa-

ration.

10. Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, Wei Li,

1997. New Parallel Algorithms for Fast Discovery of Association Rules. In Data

Mining and Knowledge Discovery : An International Journal, special issue on Scal-

able High-Performance Computing for KDD, Vol. 1, No. 4, December 1997, pp

343-373.

145Approximate Reducts and Association Rules      



Handling Missing Values in Rough Set Analysis of
Multi-attribute and Multi-criteria Decision Problems

Salvatore Greco
1
,  Benedetto Matarazzo

1
,  Roman Slowinski

2

1
Faculty of Economics, University of Catania, Corso Italia, 55,

  95129 Catania, Italy, {salgreco, matarazz}@mbox.unict.it
2
Institute of Computing Science, Poznan University of Technology,
  60965 Poznan, Poland, slowinsk@sol.put.poznan.pl

Abstract. Rough sets proved to be very useful for analysis of decision
problems concerning objects described in a data table by a set of condition
attributes and by a set of decision attributes. In practical applications, however,
the data table is often not complete because some data are missing. To deal with
this case, we propose an extension of the rough set methodology. The
adaptation concerns both the classical rough set approach based on
indiscernibility relations and the new rough set approach based on dominance
relations. While the first approach deals with multi-attribute classification
problems, the second approach deals with multi-criteria sorting problems. The
adapted relations of indiscernibility or dominance between two objects are
considered as directional statements where a subject is compared to a referent
object having no missing values. The two rough set approaches handling the
missing values boil down to the original approaches when the data table is
complete. The rules induced from the rough approximations are robust in a
sense that each rule is supported by at least one object with no missing values
on condition attributes or criteria used by the rule.

1 Introduction

The rough sets philosophy introduced by Pawlak [5, 6] is based on the assumption
that with every object of the universe there is associated a certain amount of
information (data, knowledge), expressed by means of some attributes used for object
description. It proved to be an excellent tool for analysis of decision problems [7, 10]
where the set of attributes is divided into disjoint sets of condition attributes and
decision attributes describing objects in a data table.

The key idea of rough sets is approximation of knowledge expressed by decision
attributes using knowledge expressed by condition attributes. The rough set approach
answers several questions related to the approximation: (a) is the information
contained in the data table consistent? (b) what are the non-redundant subsets of
condition attributes ensuring the same quality of approximation as the whole set of
condition attributes? (c) what are the condition attributes which cannot be eliminated
from the approximation without decreasing the quality of approximation? (d) what
minimal “if ..., then ...” decision rules can be induced from the approximations?
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The original rough set approach is not able, however, to discover and process
inconsistencies coming from consideration of criteria, i.e. condition attributes with
preference-ordered scales. For this reason, Greco, Matarazzo and Slowinski [1, 2]
have proposed a new rough set approach that is able to deal with inconsistencies
typical to consideration of criteria and preference-ordered decision classes. This
innovation is mainly based on substitution of the indiscernibility relation by a
dominance relation in the rough approximation of decision classes. An important
consequence of this fact is a possibility of inferring from exemplary decisions the
preference model in terms of decision rules being logical statements of the type ”if...,
then...”. The separation of certain and doubtful knowledge about the decision
maker’s preferences is done by distinction of different kinds of decision rules,
depending whether they are induced from lower approximations of decision classes
or from the boundaries of these classes composed of inconsistent examples that do
not observe the dominance principle. Such preference model is more general than the
classical functional or relational model in multi-criteria decision making and it is
more understandable for the users because of its natural syntax.

Both the classical rough set approach based on the use of indiscernibility relations
and the new rough set approach based on the use of dominance relations suffer,
however, from another deficiency: they require the data table to be complete, i.e.
without missing values on condition attributes or criteria describing the objects.

To deal with the case of missing values in the data table, we propose an adaptation
of the rough set methodology. The adaptation concerns both the classical rough set
approach and the dominance-based rough set approach. While the first approach deals
with multi-attribute classification, the second approach deals with multi-criteria
sorting. Multi-attribute classification concerns an assignment of a set of objects to a
set of pre-defined classes. The objects are described by a set of (regular) attributes and
the classes are not necessarily ordered. Multi-criteria sorting concerns a set of objects
evaluated by criteria, i.e. attributes with preference-ordered scales. In this problem,
the classes are also preference-ordered.

The adapted relations of indiscernibility or dominance between two objects are
considered as directional statements where a subject is compared to a referent object.
We require that the referent object has no missing values. The two adapted rough set
approaches maintain all good characteristics of their original approaches. They also
boil down to the original approaches when there are no missing values. The rules
induced from the rough approximations defined according to the adapted relations
verify some suitable properties: they are either exact or approximate, depending
whether they are supported by consistent objects or not, and they are robust in a sense
that each rule is supported by at least one object with no missing value on the
condition attributes or criteria represented in the rule.

The paper is organized in the following way. In section 2, we present the extended
rough sets methodology handling the missing values. It is composed of four sub-
sections – first two are devoted to adaptation of the classical rough set approach based
on the use of indiscernibility relations; the other two undertake the adaptation of the
new rough set approach based on the use of dominance relations. In order to illustrate
the concepts introduced in section 2, we present an illustrative example in section 3.
Section 4 groups conclusions.
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2 Rough approximations defined on data tables with missing values

For algorithmic reasons, the data set about objects is represented in the form of a data
table. The rows of the table are labelled by objects, whereas columns are labelled by
attributes and entries of the table are attribute-values, called descriptors.

Formally, by a data table we understand the 4-tuple S=<U,Q,V,f>, where U is a
finite set of objects, Q is a finite set of attributes, 

�

Qq
qVV

∈
=  and Vq  is a domain of

the attribute q, and f:U×Q→V is a total function such that f(x,q)∈Vq∪{∗} for every

q∈Q, x∈U, called an information function. The symbol “∗” indicates that the value
of an attribute for a given object is unknown (missing).

If set Q is divided into set C of condition attributes and set D of decision
attributes, then such a data table is called decision table. If the domain (scale) of a
condition attribute is ordered according to a decreasing or increasing preference, then
it is a criterion. For condition attribute q∈C being a criterion, Sq is an outranking
relation [8] on U such that xSqy means “x is at least as good as y with respect to
criterion q”. We suppose that Sq is a total preorder, i.e. a strongly complete and
transitive binary relation, defined on U on the basis of evaluations f(⋅,q). The
domains of “regular” condition attributes are not ordered.

We assume that the set D of decision attributes is a singleton {d}. Decision
attribute d makes a partition of U into a finite number of classes Cl={Clt, t∈T},
T={1,...,n}, such that each x∈U belongs to one and only one Clt∈Cl. The domain of
d can be preference-ordered or not. In the former case, we suppose that the classes
are ordered such that the higher is the class number the better is the class, i.e. for all
r,s∈T, such that r>s, the objects from Clr are preferred (strictly or weakly) to the
objects from Cls. More formally, if S is a comprehensive outranking relation on U,
i.e. if for all x,y∈U, xSy means “x is at least as good as y”, we suppose:  [x∈Clr,
y∈Cls, r>s] ⇒ [xSy and not ySx]. These assumptions are typical for consideration of
a multi-criteria sorting problem.

In the following sub-sections of this section we are considering separately the
multi-attribute classification and the multi-criteria sorting with respect to the problem
of missing values. The first idea of dealing with missing values in the rough set
approach to the multi-attribute classification problem in the way described below has
been given in [3].

2.1 Multi-attribute classification problem with missing values

For any two objects x,y∈U, we are considering a directional comparison of y to x;
object y is called subject and object x, referent. We say that subject y is indiscernible
with referent x with respect to condition attributes P⊆C (denotation yIPx) if for every
q∈P the following conditions are met:

�  f(x,q)≠∗ ,
�  f(x,q)=f(y,q) or f(y,q)=∗.

The above means that the referent object considered for indiscernibility with
respect to P should have no missing values on attributes from set P.
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The binary relation IP is not necessarily reflexive because for some x∈U there may
exist q∈P for which f(x,q)=∗ and, therefore, we cannot state xIPx. Moreover, IP is also
not necessarily symmetric because the statement yIPx cannot be inverted if there exist
q∈P for which f(y,q)=∗. However, IP is transitive because for each x,y,z∈U, the
statements xIPy and yIPz imply xIPz. This is justified by the observations that object z
can substitute object y in the statement xIPy because yIPz and both y and z, as referent
objects, have no missing values.
For each P⊆C let us define a set of objects having no missing values on q∈P:

UP={x∈U: f(x,q)≠∗ for each q∈P}.
It is easy to see that the restriction of IP to UP (in other words, the binary relation

IP∩UP×UP defined on UP) is reflexive, symmetric and transitive, i.e. it is an
equivalence binary relation.

For each x∈U and for each P⊆Q let IP(x)={y∈U: yIPx} denote the class of objects
indiscernible with x. Given X⊆U and P⊆Q, we define lower approximation of X with
respect to P as

IP(X)={x∈UP: IP(x)⊆X}.     (1)
Analogously, we define the upper approximation of X with respect to P as

PI (X)={x∈UP: IP(x)∩X≠∅}.   (2)

Let us observe that if x∉UP then IP(x)=∅ and, therefore, we can also write

PI (X)={x∈U: IP(x)∩X≠∅}.

Let XP=X∩UP. For each X∈U and for each P⊆C: IP(X)⊆XP⊆ PI (X) (rough

inclusion) and  IP(X)=UP - PI (U-X)  (complementarity).

The P-boundary of X in S, denoted by BnP(X), is equal to  BnP(X)= PI (X) - IP(X).

BnP(X) constitutes the "doubtful region" of X: according to knowledge expressed
by P nothing can be said with certainty about membership of its elements in the set X.

The following concept will also be useful [9]. Given a partition Cl={Clt, t∈T},
T={1,...,n}, of U, the P-boundary with respect to k>1 classes {Clt1,…,Cltk}⊆
{Cl1,…,Cln} is defined as

BdP({Clt1,…,Cltk}) = ( ) ( )( )





−∩






≠=

��

tk,...,1tt
tPt

tk,...,1tt
P ClBnUClBn .

The objects from BdP({Clt1,…,Cltk}) can be assigned to one of the classes
Clt1,…,Cltk but P provides not enough information to know exactly to what class.
Let us observe that a very useful property of lower approximation within classical
rough sets theory is that if an object x∈U belongs to the lower approximation with
respect to P⊆C, then x belongs also to the lower approximation with respect to R⊆C
when P⊆R (this is a kind of monotonicity property). However, definition (1) does not
satisfy this property of lower approximation, because it is possible that f(x,q)≠∗ for all
q∈P but f(x,q)=∗ for some q∈R-P. This is quite problematic with respect to definition
of some key concepts of the rough sets theory, like quality of approximation, reduct
and core.

Therefore, another definition of lower approximation should be considered to
restore the concepts of quality of approximation, reduct and core in the case of
missing values. Given X⊆U and P⊆Q, this definition is the following:
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I*
P (X)= �

PR
RI

⊆
(X).     (3)

PI* (X) will be called cumulative P-lower approximation of X because it includes

all the objects belonging to all R-lower approximations of X, where R⊆P.
It can be shown that another type of indiscernibility relation, denoted by I*

P ,

permits a direct definition of the cumulative P-lower approximation in a classic way.
For each x,y∈U and for each P⊆Q, y I*

P x means that f(x,q)=f(y,q) or f(x,q)=∗ and/or

f(y,q)=∗, for every q∈P. Let I*
P (x)={y∈U: y I*

P x} for each x∈U and for each P⊆Q.

I*
P  is a reflexive and symmetric but not transitive [4]. Let us observe that the

restriction of I*
P  to U*

P  is reflexive, symmetric and transitive when U*
P ={x∈U:

f(x,q)≠∗ for at least one q∈P}.

Theorem 1. (Definition (3) expressed in terms of I*
P )  I*

P (X)={x∈ U*
P : I*

P (x)⊆X}.

Using I*
P  we can give definition of the P-upper approximation of X:

∗
PI (X)={x∈ U*

P : I*
P (x)∩X≠∅}. (4)

For each X⊆U, let PX* =X∩ PU* . Let us remark that x∈ PU*  if and only if there

exists R≠∅ such that R⊆P and x∈UR. For each X⊆U and for each P⊆C:

I*
P (X)⊆ X*

P ⊆ ∗
PI (X) (rough inclusion) and I*

P (X)= U*
P - ∗

PI (U-X) (complementarity).

The P-boundary of X approximated with I*
P  is equal to BnP

* (X)= ∗
PI (X) - I*

P (X).

Given a partition Cl={Clt, t∈T}, T={1,...,n}, of U, the P-boundary with respect to
k>1 classes {Clt1,…,Cltk}⊆ {Cl1,…,Cln} is defined as

*
PBd ({Clt1,…,Cltk}) = ( ) ( )( )





−∩






≠=

��

tk,...,1tt
t

*
Pt

tk,...,1tt

*
P ClBnUClBn .

The objects from *
PBd ({Clt1,…,Cltk}) can be assigned to one of the classes

Clt1,…,Cltk , however, P and all its subsets provide not enough information to know
exactly to what class.

Theorem 2. (Monotonicity of the accuracy of approximation)  For each X⊆U and

for each P,T⊆C, such that P⊆T, the following inclusion holds:   i) I*
P (X) ⊆ I*

T (X).

Furthermore, if U*
P = U*

T , the following inclusion is also true:   ii) ∗
PI (X)⊇ I

*
T (X). 

Due to Theorem 2, when augmenting a set of attributes P, we get a lower
approximation of X that is at least of the same cardinality. Thus, we can restore for
the case of missing values the key concepts of the rough sets theory: accuracy and
quality of approximation, reduct and core.

2.2 Decision rules for multi-attribute classification with missing values

Using the rough approximations (1), (2) and (3), (4), it is possible to induce a
generalized description of the information contained in the decision table in terms of
decision rules.  These are logical statements (implications) of the type "if ..., then...",
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where the antecedent (condition part) is a conjunction of elementary conditions
concerning particular condition attributes and the consequence (decision part) is a
disjunction of possible assignments to particular classes of a partition of U induced
by decision attributes. Given a partition Cl={Clt, t∈T}, T={1,...,n}, of U, the syntax
of a rule is the following:

"if f(x,q1) = rq1  and f(x,q2) = rq2  and ... f(x,qp) = rqp, then  x  is assigned to Clt1  or
             Clt2  or ... Cltk",

where {q1,q2,...,qp}⊆C, (rq1,rq2,...,rqp)∈Vq1×Vq2×...×Vqp and {Clt1,Clt2,...,Cltk}⊆{Cl1,
Cl2,...,Cln}. If the consequence is univocal, i.e. k=1, then the rule is exact, otherwise it
is approximate or uncertain.

Let us observe that for any Clt∈{Cl1,Cl2,...,Cln} and P⊆Q, the definition (1) of P-
lower approximation of Clt can be rewritten as:

IP(Clt)={x∈UP: for each y∈U, if yIPx, then y∈Clt}.    (1')
Thus the objects belonging to the lower approximation IP(Clt) can be considered as

a basis for induction of exact decision rules.
Therefore, the statement "if f(x,q1) = rq1  and f(x,q2) = rq2  and ... f(x,qp) = rqp, then

x  is assigned to Clt", is accepted as an exact decision rule iff there exists at least one
y∈ )Cl(I tP

, P={q1,…,qp},  such that f(y,q1) = rq1 and f(y,q2)=rq2 and  … f(y,qp)=rqp.

Given {Clt1,…,Cltk}⊆{Cl1,Cl2,...,Cln}  we can write:
BdP({Clt1,…,Cltk}) ={x∈UP: for each y∈U, if yIPx, then y∈Clt1 or … Cltk}.   (2')
Thus, the objects belonging to the boundary BdP({Clt1,…,Cltk}) can be considered

as a basis for induction of approximate decision rules.
Since each decision rule is an implication, a minimal decision rule represents such

an implication that there is no other implication with an antecedent of at least the
same weakness and a consequent of at least the same strength.

We say that y∈U supports the exact decision rule if [f(y,q1)=rq1 and/or f(y,q1)=∗]
and [f(y,q2)=rq2 and/or f(y,q2)=∗] ... and [f(y,qp)=rqp and/or f(y,qp)=∗ ] and y∈Clt.
Similarly, we say that y∈U supports the approximate decision rule if [f(y,q1)=rq1

and/or f(y,q1)=∗] and [f(y,q2)=rq2 and/or f(y,q2)=∗] ... and [f(y,qp)=rqp and/or

f(y,qp)=∗] and y∈ *
CBd ({Clt1,…,Cltk}).

A set of decision rules is complete if it fulfils the following conditions:

- each x∈ I*
C (Clt) supports at least one exact decision rule suggesting an assignment

to Clt,  for each Clt∈Cl,
- each x∈ *

CBd ({Clt1,…,Cltk}) supports at least one approximate decision rule

suggesting an assignment to Clt1  or Clt2  or ... Cltk,  for each {Clt1,Clt2,...,Cltk}⊆
{Cl1,Cl2,...,Cln}.

We call minimal each set of minimal decision rules that is complete and non-
redundant, i.e. exclusion of any rule from this set makes it non-complete.

2.3 Multi-criteria sorting problem with missing values

Formally, for each q∈C being a criterion there exists an outranking relation [8] Sq on
the set of objects U such that xSqy means “x is at least as good as y with respect to
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criterion q”. We suppose that Sq is a total preorder, i.e. a strongly complete and
transitive binary relation defined on U on the basis of evaluations f(⋅,q). Precisely, we
assume that  xSqy  iff  f(x,q)≥f(y,q).

Also in this case, we are considering a directional comparison of subject y to
referent x, for any two objects x,y∈U.  We say that subject y dominates referent x

with respect to criteria P⊆C (denotation y +
PD x) if for every criterion q∈P the

following conditions are met:
�  f(x,q)≠∗,
�  f(y,q)≥f(x,q) or f(y,q)=∗.

We say that subject y is dominated by referent x with respect to criteria P⊆C

(denotation x −
PD y) if for every criterion q∈P the following conditions are met:

�  f(x,q)≠∗,
�  f(x,q)≥f(y,q) or f(y,q)=∗.

The above means that the referent object considered for dominance +
PD  and −

PD

should have no missing values on criteria from set P.

The binary relations +
PD  and −

PD  are not necessarily reflexive because for some

x∈U there may exist q∈P for which f(x,q)=∗ and, therefore, we cannot state neither

x +
PD x nor x −

PD x. However, +
PD  and −

PD   are transitive because for each x,y,z∈U,

(i)  x +
PD y and y +

PD z imply x +
PD z, and  (ii)  x −

PD y and y −
PD z imply x −

PD z .

Implication (i) is justified by the observation that object z can substitute object y in

the statement x +
PD y because y +

PD z and both y and z, as referent objects, have no

missing values. As to implication (ii), object x can substitute object y in the statement

y −
PD z because x −

PD y and both x and y, as referent objects, have no missing values.

For each P⊆C we restore the definition of set UP from sub-section 2.1. It is easy to

see that the restrictions of +
PD  and −

PD  to UP (in other words, the binary relations
+
PD ∩UP×UP and −

PD ∩UP×UP defined on UP) are reflexive and transitive, i.e. they are

partial preorders.
The sets to be approximated are called upward union and downward union of

preference-ordered classes, respectively:
�

ts
st ClCl

≥

≥ = ,   
�

ts
st ClCl

≤

≤ = ,   t=1,...,n.

The statement 
�

ts
st ClCl

≥

≥ =  means "x belongs at least to class Clt", while

�

ts
st ClCl

≤

≤ =  means "x belongs at most to class Clt".

Let us remark that Cl1
≥ = Cln

≤ =U, Cln
≥ =Cln and Cl1

≤ =Cl1. Furthermore, for

t=2,...,n, we have Cl1
≥ =U- Cln

≤    and  Cln
≤ =U- Cl1

≥ .

Given P⊆C and x∈U, the “granules of knowledge” used for approximation are:
-  a set of objects dominating x, called P-dominating set, )x(DP

+ ={y∈U: y DP
+ x},
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-  a set of objects dominated by x, called P-dominated set, )x(DP
− ={y∈U: x DP

− y}.

For any P⊆C we say that x∈U belongs to Clt
≥  without any ambiguity if x∈ Clt

≥

and for all the objects y∈U dominating x with respect to P, we have y∈ Clt
≥ , i.e.

)x(DP
+ ⊆ Clt

≥ . Furthermore, we say that x∈U could belong to Clt
≥  if there would

exist at least one object y∈ Clt
≥  dominated by x with respect to P, i.e. y∈ )x(DP

− .

Thus, with respect to P⊆C, the set of all objects belonging to Clt
≥  without any

ambiguity constitutes the P-lower approximation of Clt
≥ , denoted by )Cl(P t

≥ , and the

set of all objects that could belong to Clt
≥  constitutes the P-upper approximation of

Clt
≥ , denoted by )Cl(P t

≥ , for t=1,...,n:

)Cl(P t
≥ = {x∈UP: )x(DP

+ ⊆ Clt
≥ }, (5.1)

)Cl(P t
≥ = {x∈UP: )x(DP

− ∩ Clt
≥ ≠∅}. (5.2)

Analogously, one can define P-lower approximation and P-upper approximation
of Clt

≤ , for t=1,...,n:

)Cl(P t
≤ ={x∈UP: )x(DP

− ⊆ Clt
≤ }, (6.1)

)Cl(P t
≤ ={x∈UP: )x(DP

+ ∩ Clt
≤ ≠∅}. (6.2)

Let ( Clt
≥ )P= Clt

≥ ∩UP and ( Clt
≤ )P= Clt

≤ ∩UP, t=1,…,n. For each Clt
≥  and Clt

≤ ,

t=1,…,n, and for each P⊆C:  )Cl(P t
≥ ⊆( Clt

≥ )P⊆ )Cl(P t
≥ , )Cl(P t

≤ ⊆( Clt
≤ )P⊆ )Cl(P t

≤

(rough inclusion). Moreover, for each Clt
≥ , t=2,…,n, and Clt

≤ , t=1,…,n-1, and for

each P⊆C:  )Cl(P t
≥

 = UP - )Cl(P 1t
≤
− ,  )Cl(P t

≤  = UP - )Cl(P 1t
≥
+  (complementarity).

The P-boundaries (P-doubtful regions) of Clt
≥  and Clt

≤  are defined as:

BnP( Clt
≥ )= )Cl(P t

≥ - )Cl(P t
≥ ,     BnP( Clt

≤ )= )Cl(P t
≤ - )Cl(P t

≤ ,    for t=1,...,n.

Due to complementarity of the rough approximations [1], the following property
holds: BnP( Clt

≥ )=BnP( Cl 1t
≤
− ),  for t=2,...,n, and  BnP( Clt

≤ )=BnP( Cl 1t
≥
+ ), for t=1,...,n-1.

To preserve the monotonicity property of the lower approximation (see sub-
section 2.1) it is necessary to use another definition of the approximation for a given

Clt
≥  and Clt

≤ , t=1,…,n, and for each P⊆C:
�

PR
tt )Cl(R)Cl(P

⊆

≥∗≥ = , (7.1)

�

PR
tt )Cl(R)Cl(P

⊆

≤∗≤ = . (7.2)

∗≥ )Cl(P t  and ∗≤ )Cl(P t  will be called cumulative P-lower approximations of unions

Clt
≥  and Clt

≤ , t=1,…,n, because they include all the objects belonging to all R-lower

approximations of Clt
≥  and Clt

≤ , respectively, where R⊆P.

It can be shown that another type of dominance relation, denoted by DP
∗ , permits a

direct definition of the cumulative P-lower approximations in a classical way. For
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each x,y∈U and for each P⊆Q, y DP
∗ x means that f(y,q)≥f(x,q) or f(x,q)=∗ and/or

f(y,q)=∗, for every q∈P.
Given P⊆C and x∈U, the “granules of knowledge” used for approximation are:

- a set of objects dominating x, called P-dominating set, ∗+
PD (x)={y∈U: y DP

∗ x},

- a set of objects dominated by x, called P-dominated set, ∗−
PD (x)={y∈U: x DP

∗ y}.

DP
∗  is reflexive but not transitive. Let us observe that the restriction of DP

∗  to U*
P

is reflexive and transitive when PU* ={x∈U: f(x,q)≠∗ for at least one q∈P}.

Theorem 3. (Definitions (7.1) and (7.2) expressed in terms of DP
∗ )

∗≥ )Cl(P t ={x∈ U*
P : ∗+

PD (x)⊆ ≥
tCl },  ∗≤ )Cl(P t ={x∈ U*

P : ∗−
PD (x)⊆ ≤

tCl }. 

Using DP
∗  we can give definition of the P-upper approximations of ≥

tCl  and ≤
tCl ,

complementary to ∗≥ )Cl(P t  and ∗≤ )Cl(P t , respectively:
∗≥ )Cl(P t ={x∈ U*

P : ∗−
PD (x)∩ ≥

tCl ≠∅}, (8.1)
∗≤ )Cl(P t ={x∈ U*

P : ∗+
PD (x)∩ ≤

tCl ≠∅}. (8.2)

For each ≥
tCl ⊆U and ≤

tCl ⊆U, let ∗≥ )Cl( t = ≥
tCl ∩ PU*  and ∗≤ )Cl( t = ≤

tCl ∩ PU* .

Let us remark that x∈ PU*  if and only if there exists R≠∅ such that R⊆P and x∈UR.

For each Clt
≥  and Clt

≤ , t=1,…,n, and for each P⊆C: ∗≥ )Cl(P t ⊆ ∗≥ )Cl( t ⊆ ∗≥ )Cl(P t ,
∗≤ )Cl(P t ⊆ ∗≤ )Cl( t ⊆ ∗≤ )Cl(P t  (rough inclusion). Moreover, for each Clt

≥ , t=2,…,n,

and Clt
≤ , t=1,…,n-1, and for each P⊆C: ∗≥ )Cl(P t = PU* - ∗≤

− )Cl(P 1t , ∗≤ )Cl(P t = PU* -
∗≥

+ )Cl(P 1t  (complementarity).

The P-boundary of and Clt
≤ , t=1,…,n, approximated with DP

∗  are equal,

respectively, to BnP
* ( Clt

≥ )= ∗≥ )Cl(P t - ∗≥ )Cl(P t , BnP
* ( Clt

≤ )= ∗≤ )Cl(P t - ∗≤ )Cl(P t .

Theorem 4. (Monotonicity of the accuracy of approximation)  For each Clt
≥  and

Clt
≤ , t=1,…,n, and for each P,R⊆C, such that P⊆R, the following inclusions hold:

∗≥ )Cl(P t ⊆ ∗≥ )Cl(R t ,  ∗≤ )Cl(P t ⊆ ∗≤ )Cl(R t .

Furthermore, if U*
P = U*

T , the following inclusions are also true:
∗≥ )Cl(P t ⊇ ∗≥ )Cl(R t ,  ∗≤ )Cl(P t ⊇ ∗≤ )Cl(R t . 

Due to Theorem 4, when augmenting a set of attributes P, we get lower
approximations of Clt

≥  and Clt
≤ , t=1,…,n, that are at least of the same cardinality.

Thus, we can restore for the case of missing values the key concepts of the rough sets
theory: accuracy and quality of approximation, reduct and core.

For every t∈T and for every P⊆C we define the quality of approximation of
partition Cl by set of attributes P, or in short, quality of sorting:
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The quality expresses the ratio of all P-correctly sorted objects to all objects in the
decision table.

Each minimal subset P⊆C such that ( )ClPγ = ( )ClCγ  is called a reduct of Cl and

denoted by ClRED (C). Let us remark that a decision table can have more than one

reduct. The intersection of all reducts is called the core and denoted by ClCORE (C).

2.4 Decision rules for multi-criteria sorting with missing values

Using the rough approximations (5.1), (5.2), (6.1), (6.2) and (7.1), (7.2), (8.1),
(8.2), it is possible to induce a generalized description of the information contained in
the decision table in terms of "if ..., then..." decision rules.

Given the preference-ordered classes of partition Cl={Clt, t∈T}, T={1,...,n}, of
U, the following three types of decision rules can be considered:
1) D≥-decision rules with the following syntax:

"if  f(x,q1)≥rq1 and  f(x,q2)≥rq2 and …f(x,qp)≥rqp, then  x∈ Clt
≥ ",

where P={q1,...,qp}⊆C, (rq1,...,rqp)∈Vq1×Vq2×...×Vqp and t∈T;
2) D≤-decision rules with the following syntax:

"if  f(x,q1)≤rq1 and f(x,q2)≤rq2 and ... f(x,qp)≤rqp, then  x∈ Clt
≤ ",

where P={q1,...,qp}⊆C, (rq1,...,rqp)∈Vq1×Vq2×...×Vqp and t∈T;
3) D≥≤-decision rules with the following syntax:

"if  f(x,q1)≥rq1 and f(x,q2)≥rq2 and ... f(x,qk)≥rqk and f(x,qk+1)≤rqk+1 and ...
f(x,qp)≤rqp, then x∈Cls∪Cls+1∪…∪Clt",

where O’={q1,...,qk}⊆C, O’’={qk+1,...,qp}⊆C, P=O’∪O’’, O’ and O’’ not
necessarily disjoint, (rq1,...,rqp)∈Vq1×Vq2×...×Vqp,  s,t∈T  such that  s<t.

As it is possible that {q1,...,qk}∩{qk+1,...,qp}≠∅, in the condition part of a D≥≤-

decision rule we can have "f(x,q)≥rq" and "f(x,q)≤r'q", where rq≤r'q, for some q∈C.
Moreover, if rq=r'q, the two conditions boil down to "f(x,q)=rq".

Since each decision rule is an implication, by a minimal decision rule we
understand such an implication that there is no other implication with an antecedent
of at least the same weakness and a consequent of at least the same strength.

We say that an object supports a rule if its evaluation by set C of criteria matches
the condition part of the rule.

A set of decision rules is complete if it fulfils the following conditions:

- each y∈ ∗≥ )Cl(C t  supports at least one D≥-decision rule of the type "if f(x,q1)≥rq1

and  f(x,q2)≥rq2 and … f(x,qp)≥rqp, then  x∈ Clr
≥ ", with r,t∈{2,...,n} and r≥t,

- each y∈ ∗≤ )Cl(C t  supports at least one D≤-decision rule of the type "if f(x,q1)≤rq1

and f(x,q2)≤rq2 and ... f(x,qp)≤rqp, then  x∈ Clu
≤ ", with u,t∈{1,...,n-1} and u≤t,
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- each y∈ ∗≤ )Cl(C s ∩ ∗≥ )Cl(C t  supports at least one D≥≤-decision rule of the type

"if f(x,q1)≥rq1 and f(x,q2)≥rq2 and ... f(x,qk)≥rqk and f(x,qk+1)≤rqk+1 and ...
f(x,qp)≤rqp, then x∈Clv∪Clv+1∪…∪Clz", with s,t,v,z∈T and v≤s<t≤z.

Let us remark that application of any complete set of decision rules on the objects
from the data table results in either exact or approximate reassignment of these
objects to the classes Clt, t∈T. Let us explain this reassignment in more detail.

Given a complete set of rules, and an object y∈U, such that ( )≤∉ sC ClBny  and

( )≥∉ sC ClBny  for any s∈T, the following situations may occur:

- y∈Clt, t=2,...,n-1; then there exists at least one D≥-decision rule with consequent
≥∈ tClx , and at least one D≤-decision rule with consequent ≤∈ tClx ;

- y∈Cl1; then there exists at least one D≤-decision rule with consequent ≤∈ 1Clx ;

- y∈Cln; then there exists at least one D≥-decision rule with consequent ≥∈ nClx .

In all above situations, intersection of all unions (upward and downward) of
classes suggested for assignment in the consequent of rules matching object y will
result in (exact) reassignment of y to class Clt, t∈T.

Similarly, for each object y∈ ∗≤ )Cl(C s ∩ ∗≥ )Cl(C t , s<t, such that y∉ ∗≤ )Cl(C 1s ∩
∗≥ )Cl(C 1t , s1<[≤]s and t≤[<]t1, which means that y belongs exclusively to boundaries

)Cl(Bn vC
≥∗ , v=s+1,...,t, and )Cl(Bn zC

≤∗ , z=s,...,t-1, there exists at least one D≥≤-

decision rule whose consequent is x∈Cls∪Cls+1∪…∪Clt. Thus, in result of
application of the complete set of rules to object y, it will be reassigned
(approximately) to classes Cls∪Cls+1∪…∪Clt.

We call minimal each set of minimal decision rules that is complete and non-
redundant, i.e. exclusion of any rule from this set makes it non-complete.

3   Conclusions

We adapted the rough sets methodology to the analysis of data sets with missing
values. The adaptation concerns both the classical rough set approach based on the
use of indiscernibility relations and the new rough set approach based on the use of
dominance relations. While the first approach deals with multi-attribute classification
problems, the second approach deals with multi-criteria sorting problems. The two
adapted rough set approaches maintain all good characteristics of their original
approaches. They also boil down to the original approaches when there are no
missing values.

The case of missing values is very often met in practice and not many methods
can deal satisfactorily with this problem. The way of handling the missing values in
our approach seems faithful with respect to available data because the decision rules
are robust in the sense of being founded on objects existing in the data set and not on
hypothetical objects created by putting some possible values instead of the missing
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ones. This is a distinctive feature of our extension in comparison with the extension
proposed by Kryszkiewicz [4].
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Abstract. The gRS–ILP model (generic Rough Set Inductive Logic
Programming model) provides a framework for Inductive Logic Program-
ming when the setting is imprecise and any induced logic program will
not be able to distinguish between certain positive and negative exam-
ples. However, in this rough setting, where it is inherently not possible to
describe the entire data with 100% accuracy, it is possible to definitively
describe part of the data with 100% accuracy. The gRS–ILP model is
extended in this paper to motifs in strings. An illustrative experiment
is presented using the ILP system Progol on transmembrane domains in
amino acid sequences.

Keywords: Rough Set Theory; Inductive Logic Programming; Machine
Learning; Knowledge Discovery from Data; Molecular biology;

1 Introduction

Inductive Logic Programming [1] is the research area formed at the intersection
of logic programming and machine learning. Inductive Logic Programming (in
the example setting) uses background knowledge definite clauses, and positive
and negative example ground facts to induce a logic program that describes the
examples, where the induced logic program consists of the original background
knowledge along with an induced hypothesis (as definite clauses).

Rough set theory [2,3] defines an indiscernibility relation, where certain sub-
sets of examples cannot be distinguished. A concept is rough when it contains at
least one such indistinguishable subset that contains both positive and negative
examples. It is inherently not possible to describe the examples accurately, since
certain positive and negative examples cannot be distinguished.

The gRS–ILP model [4] introduces a rough setting in Inductive Logic Pro-
gramming and describes the situation where the background knowledge, declara-
tive bias and evidence are such that it is not possible to induce any logic program
from them that is able to distinguish between certain positive and negative ex-
amples. Any induced logic program will either cover both the positive and the

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 158–167, 1999.
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negative examples in the group, or not cover the group at all, with both the
positive and the negative examples in this group being left out.

The gRS–ILP model has useful applications in the definitive description of
large data. Knowledge discovery in databases is the non–trivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns in
data([5]). This usually involves one of two different goals: prediction and descrip-
tion. Prediction involves using some variables or fields in the database to predict
unknown or future values of other variables of interest. Description focuses on
finding human–interpretable patterns describing the data. Definitive description
is the description of the data with full accuracy. In a rough setting, it is not
possible to definitively describe the entire data, since some of the positive exam-
ples and negative examples (of the concept being described) inherently cannot
be distinguished from each other.

Conventional systems handle a rough setting by using various techniques to
induce a hypothesis that describes the evidence as well as possible. They aim to
maximize the correct cover of the induced hypothesis by maximizing the number
of positive examples covered and negative examples not covered. This means
that most of the positive evidence would be described, along with some of the
negative evidence. The induced hypothesis cannot say with certainty whether
an example definitely belongs to the evidence or not. However, the gRS–ILP
model lays a firm theoretical foundation for the definitive description of data in
a rough setting. A part of the data is definitively described. The rest of the data
can then be described using conventional methods, but not definitively.

This paper extends the gRS–ILP model to motifs in strings, and reports an
illustrative experiment using Progol on transmembrane domains in amino acid
sequences.

2 Formal Definitions of the gRS–ILP Model

The generic Rough Set Inductive Logic Programming (gRS–ILP) model intro-
duces the basic definition of elementary sets and a rough setting in ILP [6,4].
The essential feature of an elementary set is that it consists of examples that can-
not be distinguished from each other by any induced logic program in that ILP
system. The essential feature of a rough setting is that it is inherently not pos-
sible for the consistency and completeness criteria to be fulfilled together, since
both positive and negative examples are in the same elementary set. The basic
definitions formalised in [7] follow.

2.1 The RSILP System

We first formally define the ILP system in the example setting of [8] as follows.

Definition 2.1. An ILP system in the example setting is a tuple Ses = (Ees, B),
where
(1) Ees = E+

es ∪ E−
es is the universe, where E+

es is the set of positive examples



160 Arul Siromoney and K. Inoue

(true ground facts), and E−
es is the set of negative examples (false ground facts),

and
(2) B is a background knowledge given as definite clauses such that (i) for
all e− ∈ E−

es, B �� e−, and (ii) for some e+ ∈ E+
es, B �� e+. ✷

Let Ses = (Ees, B) be an ILP system in the example setting. Then let H(Ses)
(also written as H(Ees, B)) denote the set of all possible definite clause hypothe-
ses that can be induced from Ees and B, and be called the hypothesis space
induced from Ses (or from Ees and B). Further, let P(Ses) (also written as
P(Ees, B) = {P = B ∧H | H ∈ H(Ees, B)}) denote the set of all the programs
induced from Ees and B, and be called the program space induced from Ses (or
from Ees and B).

Our aim is to find a program P ∈ P(Ses) such that the next two conditions
hold: (iii) for all e− ∈ E−

es, P �� e−, (iv) for all e+ ∈ E+
es, P � e+.

The following definitions of Rough Set ILP systems in the gRS–ILP model
(abbreviated as RSILP systems) use the terminology of [8].

Definition 2.2. An RSILP system in the example setting (abbreviated as
RSILP–E system) is an ILP system in the example setting, Ses = (Ees, B),
such that there does not exist a program P ∈ P(Ses) satisfying both the condi-
tions (iii) and (iv) above. ✷

Definition 2.3. An RSILP–E system in the single–predicate learning context
(abbreviated as RSILP–ES system) is an RSILP–E system, whose universe E is
such that all examples (ground facts) in E use only one predicate, also known
as the target predicate. ✷

A declarative bias [8] biases or restricts the set of acceptable hypotheses, and
is of two kinds: syntactic bias (also called language bias) that imposes restrictions
on the form (syntax) of clauses allowed in the hypothesis, and semantic bias that
imposes restrictions on the meaning, or the behaviour of hypotheses.

Definition 2.4. An RSILP–ES system with declarative bias (abbreviated as
RSILP–ESD system) is a tuple S = (S′, L), where
(i) S′ = (E,B) is an RSILP–ES system, and
(ii) L is a declarative bias, which is any restriction imposed on the hypothesis
space H(E,B).
We also write S = (E,B,L) instead of S = (S′, L). ✷

For any RSILP–ESD system S = (E,B,L), let
H(S) = {H ∈ H(E,B) | H is allowed by L}, and
P(S) = {P = B ∧H | H ∈ H(S)}.
H(S) (also written as H(E,B,L)) is called the hypothesis space induced from S
(or from E, B, and L). P(S) (also written as P(E,B,L)) denotes the set of all
the programs induced by S, and is called the program space induced from S (or
from E, B, and L).
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2.2 Equivalence Relation, Elementary Sets and Composed Sets

We now define an equivalence relation on the universe of an RSILP–ESD system.

Definition 2.5. Let S = (E,B,L) be an RSILP–ESD system. An indiscerni-
bility relation of S, denoted by R(S), is a relation on E defined as follows:
∀x, y ∈ E, (x, y) ∈ R(S) iff
(P � x⇔ P � y) for any P ∈ P(S) (i.e. iff x and y are inherently indistinguish-
able by any induced logic program P in P(S)). ✷

The following fact follows directly from the definition of R(S).

Fact 1 For any RSILP–ESD system S, R(S) is an equivalence relation.

Definition 2.6. Let S = (E,B,L) be an RSILP–ESD system. An elementary
set of R(S) is an equivalence class of the relation R(S). For each x ∈ E, let
[x]R(S) denote the elementary set of R(S) containing x. Formally,
[x]R(S) = {y ∈ E | (x, y) ∈ R(S)}.
A composed set of R(S) is any finite union of elementary sets of R(S). ✷

Definition 2.7. An RSILP–ESD system S = (E,B,L) is said to be in a rough
setting iff
∃e+ ∈ E+ ∃e− ∈ E− ( (e+, e−) ∈ R(S) ). ✷

We now define a combination of declarative biases.
Let S = (E,B) be an RSILP–ES system. Let L1, L2 and L3 be declarative

biases. L1 ∧L2 (resp., L1 ∨L2) denotes the declarative bias such that H(S′) =
H(S1) ∩ H(S2) (resp., H(S′′) = H(S1) ∪ H(S2)), where S′ = (E,B,L1 ∧ L2),
S′′ = (E,B,L1 ∨ L2), S1 = (E,B,L1) and S2 = (E,B,L2) are RSILP–ESD
systems.

L1 ∧ L2 ∧ L3 (resp., (L1 ∧ L2) ∨ L3) denotes the declarative bias such
that H(S′′′) = H(S1) ∩ H(S2) ∩ H(S3) (resp., H(S′′′′) = (H(S1) ∩ H(S2)) ∪
H(S3)), where S′′′ = (E,B,L1 ∧ L2 ∧ L3), S′′′′ = (E,B, (L1 ∧ L2) ∨ L3),
S1 = (E,B,L1), S2 = (E,B,L2) and S3 = (E,B,L3) are RSILP–ESD systems.
L1 ∨ L2 ∨ L3, (L1 ∨ L2) ∧ L3, . . . , etc. are defined similarly.

2.3 Consistency and Completeness in the gRS–ILP Model

Let S = (E,B,L) be an RSILP–ESD system, and P(S) the program space
induced by S.

Definition 2.8. The upper approximation of S, Upap(S), is defined as the least
composed set of R(S) such that E+ ⊆ Upap(S). ✷

Definition 2.9. The lower approximation of S, Loap(S), is defined as the
greatest composed set of R(S) such that Loap(S) ⊆ E+. ✷

The set Bndr(S) = Upap(S)−Loap(S) is known as the boundary region of S
(or the borderline region of S). The lower approximation of S, Loap(S), is also
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known as Pos(S), the positive region of S. The set Neg(S) = E − Upap(S) is
known as the negative region of S.

Definition 2.10. The consistent program space Pcons(S) of S is defined as
Pcons(S) = {P ∈ P(S) | P �� e−, ∀e− ∈ E−}.
A program P ∈ P(S) is consistent with respect to S iff P ∈ Pcons(S).
The reverse–consistent program space Prev−cons(S) of S is defined as
Prev−cons(S) = {P ∈ P(S) | P �� e+, ∀e+ ∈ E+}.
A program P ∈ P(S) is reverse–consistent w.r.t. S iff P ∈ Prev−cons(S). ✷

Definition 2.11. The complete program space Pcomp(S) of S is defined as
Pcomp(S) = {P ∈ P(S) | P � e+, ∀e+ ∈ E+}.
A program P ∈ P(S) is complete with respect to S iff P ∈ Pcomp(S). ✷

Definition 2.12. The cover of a program P ∈ P(S) in S is defined as
cover(S, P ) = {e ∈ E | P � e}. ✷

The following facts follow directly from the definitions.

Fact 2 ∀P ∈ Pcons(S), cover(S, P ) ⊆ Loap(S).

Fact 3 ∀P ∈ Pcomp(S), cover(S, P ) ⊇ Upap(S).

Fact 4 ∀P ∈ Pcomp(S), (E − cover(S, P )) ⊆ (E − Upap(S)).

Fact 5 ∀P ∈ Prev−cons(S), cover(S, P ) ⊆ (E − Upap(S)).

Fact 6 ∀P ∈ Pcons(S), P � e⇒ e ∈ E+.

Fact 7 ∀P ∈ Pcomp(S), P �� e⇒ e ∈ E−.

Fact 8 ∀P ∈ Prev−cons(S), P � e⇒ e ∈ E−.

These facts are used in a rough setting for the definitive description of data.
Definitive description involves the description of the data with 100% accuracy.
In a rough setting, it is not possible to definitively describe the entire data,
since some of the positive examples and negative examples (of the concept being
described) inherently cannot be distinguished from each other. These facts show
that definitive description is possible in a rough setting when an example is
covered by a consistent program (the example is then definitely positive), covered
by a reverse–consistent program (the example is then definitely negative), or is
not covered by a complete program (the example is then definitely negative).

2.4 Some Useful Declarative Biases

Let Lpi be the declarative bias such that for any RSILP–ESD system S =
(E,B,Lpi), H ∈ H(S) ⇒ head predicate of C is the target predicate, for any
C ∈ H (predicate invention is not allowed),
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let Lrd be the declarative bias such that for any RSILP–ESD system S =
(E,B,Lrd), H ∈ H(S) ⇒ head predicate of C is not in the body of C, for
any C ∈ H (directly recursive definition is not allowed), and
let Leu be a declarative bias such that for any RSILP–ESD system
S = (E,B,Leu), H ∈ H(S)⇒ e �∈ C for any e ∈ E and any C ∈ H .

Let V be any set of ground atoms. Let pred(V ) denote the set of predicate
symbols used in V . For each A ⊆ pred(V ), let VA = {q(. . .) ∈ V | q ∈ A},
and placelist(A) = {(q, i) | q ∈ A, and 1 ≤ i ≤ nq where nq is the arity
of q}. Let B be any background knowledge of an RSILP–ES system. For each
Z ⊆ placelist(A), where A ⊆ pred(B), let LZ be the declarative bias such that,
for any RSILP–ES (E,B) with B as the background knowledge:
∀H ∈ H(E,B,LZ), ∀C ∈ H
[q(t1, . . . , tn) ∈ C ⇒ [q ∈ A ∧ ∀i ∈ {1, . . . , n} [(q, i) ∈ Z ⇒ ti is a variable]]].

3 The gRS–ILP Model and Motifs in Strings

3.1 Definition of a Motif–RSILP–ESD System

Let Σ be a finite alphabet of letters. A string over Σ is any sequence of finite
length composed of letters from Σ. We use Σ+ to denote the set of all the strings
over Σ. Let the term substring of a string have its usual meaning. (Note that the
characters in a substring of a string x must occur contiguously in x.) If r (∈ Σ+)
is a substring of a string s (∈ Σ+), then r is called a positive motif of s. If r is
not a substring of the string s, then r is called a negative motif of s.

Definition 3.13. We define a motif–RSILP–ESD system as a 2–tuple S =
(S′, {Σ1, Σ2, . . . , Σn}), for some finite n ≥ 1, where:
(1) each Σi, 1 ≤ i ≤ n, is a finite alphabet of letters, and
(2) S′ = (E,B,L) is an RSILP–ESD system such that
(i) E is the universe of examples consisting of a unary predicate, say p,
(ii) B is the background knowledge consisting of ground unit clauses, using the
following three predicates: strings (of arity, saym), contains and abstains (both
of arity 2), where for any p(x) ∈ E:

(a) strings(x, s1, s2, . . . , sm−1) ∈ B ⇒ s1, s2, . . . , sm−1 are attribute strings
of the example p(x),
where for each 1 ≤ j ≤ m− 1, sj ∈ Σ+

i for some 1 ≤ i ≤ n,
(b) contains(r, s) ∈ B ⇒ r (∈ Σ+

i ) is a positive motif of attribute string
s (∈ Σ+

i ), 1 ≤ i ≤ n, and
(c) abstains(r, s) ∈ B ⇒ r (∈ Σ+

i ) is a negative motif of attribute string
s (∈ Σ+

i ), 1 ≤ i ≤ n, and
(iii) L is the declarative bias L = LZ ∧ Lpi ∧ Lrd ∧ Leu,
where A = {strings, contains, abstains} = pred(B) and Z = {(strings, 1),
(strings, 2), . . . , (strings,m), (contains, 2), (abstains, 2)}. ✷

It is seen that the motif–RSILP–ESD system is an R–RSILP–ESD system
studied in [7].
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It is to be noted that the model can be expressed in an alternate manner,
with B using 2–arity predicates of the form d1(x, s1),d2(x, s2),. . . , dm−1(x, sm−1),
rather than the single m–arity predicate strings(x, s1, s2, . . . , sm−1). LZ is then
suitably modified with A = {d1, d2, . . . , dm−1, contains, abstains} and
Z = {(d1, 1), (d1, 2), . . . , (dm−1, 1), (dm−1, 2), (contains, 2), (abstains, 2)}.

3.2 An Example

We now consider an illustration of a motif–RSILP–ESD system.
The Protein Identification Resource database [9] contains amino acid se-

quences, with the FEATURE field for each sequence indicating where the trans-
membrane domains are located within the sequence. The amino acid sequences
are cut into substrings in such a manner that positive example attribute strings
are entirely within transmembrane domains, and negative example attribute
strings are entirely outside transmembrane domains.

The identification of transmembrane domains from amino acid sequences is
described in [10]. A decision tree is learnt that can classify any new attribute
string as a transmembrane domain. The simple form ‘xAy’ of a regular pattern
language [10] is used in the nodes of a decision tree. ‘x’ and ‘y’ are variable sub-
strings and ‘A’ is a given fixed substring (the motif). The decision tree consists
of leaf nodes (labelled with the resulting class) and internal nodes (labelled with
a regular pattern of the form ‘xAy’). At an internal node, the decision tree tests
if the attribute string matches the regular pattern. The ‘Y’ path of the node of
the decision tree is taken when the attribute string is of the form ‘xAy’, that
is, the motif ‘A’ is contained in the attribute string; and the ‘N’ path taken
otherwise.

The simple form ‘xAy’ of a regular pattern language determines whether a
given motif ‘A’ is ‘contained’ in the attribute string. The ‘contains’ operator has
been studied in detail in [11]. The ‘contains’ and ‘abstains’ operators are used
in [12,13] to learn transmembrane domains from amino acid sequences. The
‘contains’ operator is true when the motif is contained in the attribute string
and false otherwise. The operator ‘abstains’ is the opposite of contains, and is
true when the motif is not contained in the attribute string.

The Kyte and Doolittle hydropathy index [14] of an amino acid is used to
distinguish the amino acids into three distinct categories. The twenty symbol
amino acid sequences are transformed into three symbol strings by assigning
each amino acid symbol to one of the following three distinct categories: amino
acids with positive hydropathy index (1.8 to 4.5) (*), with slightly negative
hydropathy index (−1.6 to −0.4) (+), and those with very negative hydropathy
index (−4.5 to −3.2) (-). Σ1 is an alphabet of the 3 letters +, - and *. Σ2 is an
alphabet of 3 letters a, b, n according to whether the amino acid is acidic, basic
or neutral.

That is, let Σ1 = {+,-,*} and Σ2 = {a, b, n}.
Let E = {p(e1), p(e2), p(e3)}.
LetB = {strings(e1,+++-++,aaaaaa), strings(e2,++-,aab), strings(e3,++-,aba),
contains(++,+++-++), contains(+-,+++-++), contains(-+,+++-++), . . . ,
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abstains(+*,+++-++), . . . , contains(a, aaaaaa), contains(a, aab), . . . ,
abstains(b, aaaaaa), . . .}.
Let L = LZ ∧ Lpi ∧ Lrd ∧ Leu,where A = pred(B) and Z = {(strings, 1),
(strings, 2), (strings, 3), (contains, 2), (abstains, 2)}.

S = (S′, Σ1, Σ2), where S′ = (E,B,L), is a motif–RSILP–ESD system.

3.3 Experimental Illustration

583 positive and 583 negative examples of the transmembrane data from PIR [9]
are used in this experimental illustration. The amino acid sequences are con-
verted into three symbol strings based on the Kyte and Doolittle hydropathy
index of the amino acid as described above. This is the same translation mech-
anism used initially in [10]. The symbols 0, 1 and 2 are used instead of the
symbols *, + and -, respectively, that are used in [10]. Motif length of 2 is used.

Progol is an Inductive Logic Programming system written in C by Dr. Mug-
gleton [15]. The syntax for examples, background knowledge and hypothesis is
Dec-10 Prolog. Headless Horn clauses are used to represent negative examples
and constraints. Progol source code and example files are freely available (for
academic research) from ftp.cs.york.ac.uk under the appropriate directory
in pub/ML GROUP. Progol version 4.4 dated 25.08.98 is used in this study.

Since only one type of string is used in this experimental illustration, a sim-
plified form of the motif–RSILP–ESD system is used. The background knowl-
edge B consists of predicates such as c(p1,s22) or a(p1,s22), when the mo-
tif ‘22’ (equivalent to ‘--’) is present or not present, respectively, in the attribute
string of example tm(p1). The positive examples (E+) are given as ‘tm(p1).’
to ‘tm(p583).’ and the negative examples (E−) are given as ‘:- tm(n1).’
to ‘:- tm(n583).’ Appropriate mode declarations are used in Progol to incor-
porate the required declarative bias L. Let S = (E,B,L).

The first step is any conventional Progol experiment using the data set. Con-
ventionally, the aim is to maximise the correct cover of both positive and negative
examples (in other words, try to increase the number of positive examples cov-
ered and decrease the number of negative examples covered). Let this induced
program be known as P for the purpose of this outline.

The second step uses Progol with the default noise setting of zero, where
any induced hypothesis is consistent and cannot cover any negative example.
Let this induced consistent program be Pcons.

The induced hypothesis of Pcons follows.

tm(A) :- a(A,s11), a(A,s12), a(A,s22).
tm(A) :- a(A,s20), a(A,s21), c(A,s12).
tm(A) :- a(A,s12), a(A,s22), c(A,s21).
tm(A) :- a(A,s12), a(A,s20), c(A,s22).
tm(A) :- a(A,s02), a(A,s11).
tm(A) :- a(A,s11), a(A,s21), a(A,s22).
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tm(A) :- a(A,s11), a(A,s20).
tm(A) :- a(A,s12), a(A,s20), c(A,s02).
tm(A) :- a(A,s02), a(A,s12), c(A,s20).
tm(A) :- a(A,s10), a(A,s21).

The third step is to determine a reverse–consistent program denoted
by Prev−cons, by exchanging the roles of E+, E−, and then repeating step 2.
The induced hypothesis of Prev−cons follows.

tm(A) :- a(A,s00).
tm(A) :- a(A,s10), c(A,s21).
tm(A) :- a(A,s01), c(A,s22).

The results are tabulated below.

|E+| |E−| |E| |cover(S, Pcons)| |cover(S, Prev−cons)|

583 583 1166 249 55

Using Facts 6 and 8 we have the following.
If Pcons � e, then e ∈ E+.
If Prev−cons � e, then e ∈ E−.
Otherwise P is used:
If P � e, then it is very likely that e ∈ E+;
else if P �� e, then it is very likely that e ∈ E−.

249 out of 583 positive examples are definitively described by Pcons and 55
out of 583 negative examples are definitively described by Prev−cons.

Earlier systems conventionally do not use Pcons and Prev−cons. They han-
dle the rough setting by inducing P to maximize correct cover by maximizing
the number of positive examples covered and negative examples not covered.
However, this does not definitively describe the data, since P cannot say with
certainty whether an example definitely belongs to the evidence or not. When
the gRS–ILP model is used, Pcons and Prev−cons are induced to definitively
describe part of the data. The rest of the data can be described by P , but not
definitively.

4 Conclusions

The gRS–ILP model is extended to motifs in strings. An illustrative experiment
is presented regarding the definitive description of transmembrane domains from
amino acid sequences using Progol. Possibilities for further work include exten-
sions of the gRS–ILP model to areas other than definitive description, such as
prediction, and to other application areas.
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Abstract. Inductive Logic Programming (ILP) is a relatively new
method in machine learning. Compared with the traditional attribute-
value learning methods, it has some advantages (the stronger expressive
power and the ease of using background knowledge), but also some weak
points. One particular issue is that the theory, techniques and experi-
ences are much less mature for ILP to deal with imperfect data than in
the traditional attribute-value learning methods. This paper applies the
Rough Set theory to ILP to deal with imperfect data which occur in large
real-world applications. We investigate various kinds of imperfect data
in ILP and identify a subset of them to tackle. Namely, we concentrate
on incomplete background knowledge (where essential predicates/clauses
are missing) and on indiscernible data (where some examples belong to
both sets of positive and negative training examples), proposing rough
problem settings for these cases. The rough settings relax the strict re-
quirements in the standard normal problem setting for ILP, so that rough
but useful hypotheses can be induced from imperfect data.

1 Introduction

Inductive Logic Programming (ILP, see [2,6,7,8]) is a relatively new method
in machine learning. ILP is concerned with learning from examples within the
framework of predicate logic. ILP is relevant to Knowledge Discovery and Data
Mining (KDD), and compared with the traditional attribute-value learning meth-
ods (the main stream in KDD community up to date), it possesses the following
advantages:

– ILP can learn knowledge which is more expressive than that by the attribute-
value learning methods, because the former is in predicate logic while the
latter is usually in propositional logic.

– ILP can utilize background knowledge more naturally and effectively, be-
cause in ILP the examples, the background knowledge, as well as the learned
knowledge are all expressed within the same logic framework.

However, when applying ILP to KDD, we can identify some weak points com-
pared with the traditional attribute-value learning methods, such as:

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 168–177, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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– It is more difficult to handle numbers (especially continuous values) prevail-
ing in real-world databases, because predicate logic lacks effective means for
this.

– The theory, techniques and experiences are much less mature for ILP to deal
with imperfect data (uncertainty, incompleteness, vagueness, impreciseness,
etc. in examples, background knowledge as well as the learned rules) than in
the traditional attribute-value learning methods (see [3,13,15], for instance).

In [4], we suggested Constraint Inductive Logic Programming (CILP), an
integration of ILP and CLP (Constraint Logic Programming), as a solution for
the first problem mentioned in the above.

This paper addresses the second problem, applying the Rough Set theory
to ILP to deal with some kinds of imperfect data which occur in large real-
world applications. Namely, we concentrate on incomplete background knowl-
edge (where essential predicates/clauses are missing) and on indiscernible data
(where some examples belong to both sets of positive and negative training ex-
amples), proposing rough problem settings for these cases. The rough settings
relax the strict requirements in the standard normal problem setting for ILP, so
that rough but useful hypotheses can be induced from imperfect data.

This paper is organized as follows: First in Section 2 we give the standard
problem setting for ILP which assumes that everything is correct and perfect.
Section 3 lists various kinds of imperfect data in ILP and identifies a subset
of them to tackle in this paper. Section 4 is a brief review of some part of the
Rough Set theory, which is relevant to our purpose in this paper. Section 5
proposes rough problem settings for incomplete background knowledge and for
indiscernible data, and discusses the related work. Finally in Section 6 we sum-
marize our work and point out the future research directions.

2 The Normal Problem Setting for ILP

We follow the notations of [8]. Especially, supposing C is a set of clauses
{c1, c2, . . .}, we use C to denote the set {∼c1,∼c2, . . .}. The normal problem
setting for ILP can be stated as follows:

Given the positive examples E+ and the negative examples E− (both
are sets of clauses) and the background knowledge B (a finite set of
clauses), ILP is to find a theory H (a finite set of clauses) which is
correct with respect to E+ and E−. That demands:
– ∀e∈E+H ∪B |= e (completeness wrt. E+);
– H ∪B ∪ E− is satisfiable (consistency wrt. E−).

The above ILP problem setting is somewhat too general. In most of the ILP
literature, the following simplifications are assumed:

– Single predicate learning. The concept to be learned is represented by a
single predicate p (called the Target predicate). Examples are instances of the
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target predicate p and the induced theory is the defining clauses of p. Only
the background knowledge B may contain definitions of other predicates
which can be used in the defining clauses of the target predicate.

– Restricted within definite clauses. All clauses contained in B and H are
definite clauses, and the examples are ground atoms of the target predicate.
We can prove that in this case the condition of consistency has an equivalent
form: supposing that Σ is a set of definite clauses, E− is a set of ground
atoms, then Σ is consistent with respect to E− if and only if ∀e∈E−Σ �|= e.
This form is more operational than the general condition (i.e., Σ ∪ E− is
satisfiable).

This paper also takes these simplifications. For the convenience of later refer-
ence, here we restate the (simplified) normal problem setting for ILP in a more
formal way:

Given:

– The target predicate p.
– The positive examples E+ and the negative examples E− (two sets of ground

atoms of p).
– Background knowledge B (a finite set of definite clauses).

To find:

– Hypothesis H (the defining clauses of p) which is correct with respect to E+

and E−, that is,
1. H ∪ B is complete with respect to E+ (i.e. ∀e∈E+H ∪ B |= e). We also

say that H ∪B covers all positive examples.
2. H ∪B is consistent with respect to E− (i.e. ∀e∈E−H ∪B �|= e). We also

say that H ∪B rejects any negative examples.

To make the ILP problem meaningful, we assume the following prior condi-
tions:

– B is not complete with respect to E+. (Otherwise there will be no learning
task at all, because the background knowledge itself is the solution).

– B∪E+ is consistent with respect to E− (Otherwise there will be no solution
to the learning task).

In the above normal problem setting for ILP, everything is assumed correct
and perfect. But in large, real-world empirical learning, data are not always
perfect. In contrary, uncertainty, incompleteness, vagueness, impreciseness, etc.
are frequently observed in training examples, in background knowledge, as well
as in the induced hypothesis. Thus ILP has to deal with imperfect data. In
this aspect, the theory, measurement, techniques and experiences are much less
mature for ILP than in the traditional attribute-value learning methods. This
paper addresses this problem, focusing on the potential role of the Rough Set
theory in it.
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3 Imperfect Data in ILP

We distinguish five kinds of imperfect data encountered in ILP:

1. Imperfect output
In ILP, even the input data (examples and background knowledge) are “per-
fect”, there are usually more than one hypotheses which can be induced
and the preferential order among hypotheses is an important issue. If the
input data is imperfect (see below), the situation is more serious: we have
imperfect hypotheses. At present, quantitative measures associated with hy-
potheses in ILP are not as rich as those of the attribute-value learning [15].

2. Noise data
This includes erroneous argument values in examples, and/or erroneous clas-
sification of examples as belonging to E+ or E−. The ILP community has
made some advances in noise-handling, using heuristics to avoid overly spe-
cific hypotheses which will have low prediction accuracy (see [2] for details).
The ideas come from the similar techniques developed within the attribute-
value learning framework.

3. Too sparse data
This means that the training examples are too sparse to induce reliable
hypothesis H. The noise-handling mechanisms mentioned above usually also
take care of too sparse data. Zhong[16,17] proposes a mechanism considering
unseen instances, which can be also extended to ILP.

4. Missing data
(a) Missing values

This means that some arguments of some examples have unknown values.
A simple way to deal with this problem is to induce a missing value from
other examples (e.g. the value occurring in the same argument place of
the majority of other examples).

(b) Missing predicates
This means that the background knowledge B lacks essential predicates
(or essential clauses of some predicates) so that no non-trivial hypothe-
sis H can be induced. (Note that E+ itself can be always regarded as a
hypothesis, but it is trivial). Especially, even though a large amount of
positive examples are given, some examples are not generalized by hy-
potheses if some background knowledge is missing. This is a big topic in
the research area of ILP. In recent study of Muggleton, has taken some
important steps in the field of ILP[5].

5. Indiscernible data
This means that some examples belong to both E+ and E−. In this case, the
prior condition 2’ (B ∪ E+ is consistent with respect to E−) in the normal
setting is not satisfied, so there will be no solution to the learning task.

As the above list clearly shows, imperfect data handling is a too vast task
to tackle in one paper. In the following of this paper, we will concentrate on
item 4(b) (Missing predicates) and item 5 (Indiscernible data). In both cases,
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the requirement in the normal problem setting of ILP that H should be “correct
with respect to E+ and E−” needs to be relaxed, otherwise there will be no
(meaningful) solutions to the ILP problem. We will give rough problem settings
in the cases of missing predicates and indiscernible data, using concepts from
the Rough Set theory [9,10].

4 Rough Set Theory

The Rough Set theory is a powerful mathematical model of imprecise infor-
mation. For reader’s convenience, here we review some concepts in the the-
ory [9,10,14] which are relevant to our rough problem settings of ILP presented
in the next section.

Approximation space A = (U, R). Here U is a set (called the universe) and R
is an equivalence relation on U (called an indiscernibility relation). In fact, U
is partitioned by R into equivalence classes, elements within an equivalent class
are indistinguishable in the approximation space A.

Lower and upper approximations. For an equivalence relation R, the lower
and upper approximations of X ⊆ U are defined by

Apr
A
(X) =

⋃

[x]R⊆X

[x]R = {x ∈ U | [x]R ⊆ X} (1)

AprA(X) =
⋃

[x]R∩X �=0

[x]R = {x ∈ U | [x]R ∩X �= 0} (2)

where [x]R denotes the equivalence class containing x. Furthermore, AprA(X)
can be simply denoted as Apr(X) when A is implicit.

Boundary. BndA(X) = AprA(X) − Apr
A
(X) is called the boundary of X

in A.
Rough membership.

– element x surely belongs to X in A if x ∈ Apr
A
(X);

– element x possibly belongs to X in A if x ∈ AprA(X);
– element x surely does not belong to X in A if x �∈ AprA(X).

5 Rough Problem Settings for ILP

5.1 Rough Problem Setting for Missing Predicates/Clauses

Considering the following ILP problem (adapted from [1]):

Given:

– The target predicate “customer(Name, Age, Sex, Income)”
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– The positive examples E+ :

customer(a, 30, female, 1).
customer(b, 53, female, 100).
customer(d, 50, female, 2).
customer(e, 32, male, 10).
customer(f, 55, male, 10).

– The negative examples E− :

customer(c, 50, female, 2).
customer(g, 20, male, 2).

– Background knowledge B defining predicate “married to(Husband, Wife)”
by

married to(e, a).
married to(f, d).

To find:

– Hypothesis H (the definition of customer/4) which is correct with respect
to E+ and E−.

The normal problem setting (see Section 2) is perfectly suitable for this prob-
lem, and an ILP system can induce the following hypothesisH (a Prolog program
defining customer/4):

customer(N, A, S, I) :- I ≥ 10.
customer(N, A, S, I) :- married to(N’, N), customer(N’, A’, S’, I’).

However, if predicate married to/2 (or its second clause “married to(f, d)”) is
missing in the background knowledge B (and no other predicates/clauses in B
that tell any essential difference between persons c and d), no meaningful hy-
pothesis will be induced, because no Prolog program defining customer/4 can
explain why person d is a customer while person c is not, given the fact that
except their Names, all descriptions of the two persons are the same.

This illustrates that even a learning task can be expressed in the normal
problem setting for ILP, it is possible that no meaningful hypothesis can be
induced due to the lack of essential predicates/clauses in the background knowl-
edge. In order to learn something useful in these cases, the requirement in the
normal problem setting of ILP that H should be “correct with respect to E+

and E−” has to be relaxed. We propose the following rough problem setting for
incomplete background knowledge.
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Rough Problem Setting 1 (for missing predicate/clauses)

Given:

– The target predicate p (the set of all ground atoms of p is U)
– An equivalent relationR on U (we have the approximation space A = (U,R))
– E+ ⊆ U and E− ⊆ U satisfying the prior condition: B ∪ E+ is consistent

with respect to E−
– Background knowledge B (may lack essential predicates/clauses)

Considering the following rough sets:

– E++ = AprA(E+), containing all positive examples, and those negative
examples E−+ = {e′ ∈ E−|∃e∈E+eRe′}

– E−− = E− − E−+, containing the “pure” (remaining) negative examples
– E++ = Apr

A
(E+), containing the “pure” positive examples. That is, E++ =

E+ − E+−, where E+− = {e ∈ E+|∃e′∈E−eRe′}
– E−− = E−+E+− containing all negative examples and “non-pure” positive

examples

To find:

– Hypothesis H+ (the defining clauses of p) which is correct with respect to
E++ and E−−, that is,
• H+ ∪B covers all examples of E++.
• H+ ∪B rejects any examples of E−−.

– Hypothesis H− (the defining clauses of p) which is correct with respect to
E++ and E−−, that is,
• H− ∪B covers all examples of E++.
• H− ∪B rejects any examples of E−−.

Returning to our illustrating example, where predicate Married to/2 is miss-
ing in the background knowledge B. Let R be defined as

“customer(N, A, S, I) R customer(N’, A, S, I)”,

with the rough problem setting 1, we may induce H+ as:

customer(N, A, S, I) :- I ≥ 10.
customer(N, A, S, I) :- S = female.

which covers all positive examples and the negative example “customer(c, 50,
female, 2)”, rejecting other negative examples. We may also induce H− as:

customer(N, A, S, I) :- I ≥ 10.
customer(N, A, S, I) :- S = female, A < 50.

which covers all positive examples except “customer(d, 50, female, 2)”, rejecting
all negative examples.

These hypotheses are rough (because the problem itself is rough), but still
useful. On the other hand, if we insist in the normal problem setting for ILP,
these hypotheses are not considered as “solutions”.
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5.2 Rough Problem Setting for Indiscernible Examples

In the KDD community, people have to deal with situations such as: two pa-
tients showing the same symptoms have got different diagnostic results; two
person records in a database having the same values for condition attributes
have different decision attribute values; etc. In ILP, the similar situation is that
example e belongs to E+ as well as to E−.

In the illustration given in Section 5.1, if we ignore the person names, the
target predicate will be “customer(Age, Sex, Income)” and we will encounter
indiscernible examples: “customer(50, female, 2)” belongs to E+ as well as to E−.
Then the problem cannot be expressed in the normal problem setting at all,
because the prior condition 2’ (B ∪ E+ is consistent with respect to E−) is
violated. In order to learn something useful in these cases, the requirement in
the normal problem setting of ILP that H should be “correct with respect to E+

and E−” has also to be relaxed. We propose the following rough problem setting
for indiscernible examples, which essentially is a special case of the above rough
setting 1.

Rough Problem Setting 2 (for indiscernible examples)

Given:

– The target predicate p (the set of all ground atoms of p is U)
– E+ ⊆ U and E− ⊆ U where E+ ∩ E− �= ∅.
– Background knowledge B

The rough sets to consider and the hypotheses to find:

– Taking the identity relation I as a special equivalent relation R, the remain-
ing description of rough setting 2 is the same as in rough setting 1.

5.3 Related Work

Siromoney[12] also tries to apply the Rough Set theory to ILP. It considers
A = (U,R) where U is the set of all possible positive and negative examples, the
equivalent relation R on U is defined as eRe′ iff for any H which can be induced,
either H |= e,H |= e′ or H �|= e,H �|= e′. Then it considers the concept to be
learn as a subset C of U, and points out that

E+ ⊆ Apr
A
(C) and E− ⊆ U −AprA(C).

However it did not distinguish different kinds of imperfect data, nor give any
problem settings for ILP. We think this is not surprising, because R and C used
in [12] are posterior in the sense that the user does not know them prior. In
contrary, we use user-defined R, and E+, E− etc. (all known to the user) as the
start point, so we can give rough problem settings for ILP, and it is possible to
develop ILP systems allowing the user to specify rough problem settings, as well
as the normal problem setting. These ILP systems will be able to induce useful
hypotheses even when the input data are imperfect.
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6 Conclusions and Future Work

This paper addresses the problem of imperfect data handling in Inductive Logic
Programming (ILP). We discuss various kinds of imperfect data in ILP, and ap-
ply the Rough Set theory to incomplete background knowledge (where essential
predicates/clauses are missing) and to indiscernible data (where some examples
belong to both sets of positive and negative training examples), proposing rough
problem settings for these cases. The rough settings relax the strict require-
ments in the standard normal problem setting for ILP, so that rough but useful
hypotheses can be induced from imperfect data.

Future work in this direction includes:

– Trying to apply the Rough Set theory to other kinds of imperfect data (noise
data, too sparse data, missing data, etc.) in ILP.

– Giving quantitative measures associated with hypotheses induced within the
rough problem settings of ILP, using appropriate concepts and techniques
from the Rough Set theory.

– Developing a new ILP system (or extend an existing ILP system) which
allows the user to specify rough problem settings, as well as the normal
problem setting. The new ILP system will be able to induce useful hypotheses
even when the input data are imperfect.
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Abstract. Practical machine learning algorithms are known to degrade
in performance when faced with many features that are not necessary
for rule discovery. To cope with this problem, many methods for select-
ing a subset of features with similar-enough behaviors to merit focused
analysis have been proposed. In such methods, the filter approach that
selects a feature subset using a preprocessing step, and the wrapper ap-
proach that selects an optimal feature subset from the space of possible
subsets of features using the induction algorithm itself as a part of the
evaluation function, are two typical ones. Although the filter approach
is a faster one, it has some blindness and the performance of induction
is not considered. On the other hand, the optimal feature subsets can
be obtained by using the wrapper approach, but it is not easy to use
because the complexity of time and space. In this paper, we propose
an algorithm of using the rough set methodology with greedy heuristics
for feature selection. In our approach, selecting features is similar as the
filter approach, but the performance of induction is considered in the
evaluation criterion for feature selection. That is, we select the features
that damage the performance of induction as little as possible.

1 Introduction

Generally speaking, the purpose of building databases in most organizations is
that of managing information sources effectively. In other words, data are rarely
specially collected/stored in a database for the purpose of mining knowledge in
most organizations. Hence, a database always contains a lot of attributes that
are redundant and not necessary for rule discovery. If these redundant attributes
do not be removed, not only the time complexity of rule discovery will increases,
but also the quality of the discovered rules may be much degraded.

Which attribute should be deleted is very difficult to decide for non-experts
and even for experts. Clearly, we need additional methods for selecting the fea-
ture subset. The problem of feature subset selection is that of finding an optimal
subset of features of a database according to some criterion, so that a classifier
with the highest possible accuracy can be generated by an inductive learning
algorithm that is run on data containing only the subset of features.

Many researchers have investigated this field and several methods have been
proposed [1,3,11,6,5]. A kind of these methods is that of ranking features first ac-
cording to evaluation measures such as consistency, information, distance, and
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dependence, and then selecting the features with a higher rank. This kind of
methods considers only data but not the classifying properties. The filter ap-
proach belongs to this type. Another kind of methods such as wrapper approach
is that of using the induction algorithm itself as an evaluation function for se-
lecting the optimal subsets from the space of all possible subsets. Furthermore,
the rough set theory provides a mathematical tool to find out all of possible
feature subsets (called reducts)[1]. Unfortunately, the number of possible subsets
are always very large when N is large because there are 2N−1 subsets for N
features. Therefore examining exhaustively all subsets of features for selecting
the optimal one is NP-hard. Most practical algorithms attempt to be fit for the
data by solving the NP-hard optimization problem [4].

In this paper, we propose an algorithm of using the rough set theory with
greedy heuristics for feature selection. We attempt to find an approach that is
not heavy but effective. In our approach, features are selected from the space of
features but no the space of reducts, and using the evaluation criterion in which
the performance of induction is considered. That is, we select the features that
damage the performance of induction as little as possible.

2 Dispensable and Indispensable Features

In the rough set theory, a decision table is denoted T = (U,A,C,D), where U is
universe of discourse, A is a family of equivalence relations over U,
and C,D ⊂ A are two subsets of features that are called condition and deci-
sion features, respectively[1].

Before describing what are the dispensable and indispensable features, some
basic terms and notations on the rough set theory must be explained first.

Lower Approximations:
The lower approximations of a set, RX, is the set of all elements of U which

can be with certainty classified as elements of X , in the knowledge R, where
X ⊆ U . It can be presented formally:

RX =
⋃
{Y ∈ U/R : Y ⊆ X)

The Positive Region:
We also using a positive region to denote the lower approximations of a set.

Let P and Q be equivalence relation over U , P ⊂ U and Q ⊂ U . The P -
positive region of Q, POSP (Q), is the set of all objects of universe U which can
be properly classified to classes of U/Q employing knowledge expressed by the
classification U/P .

POSP (Q) =
⋃

X∈U/Q

RX

Dispensable and Indispensable Features:
The dispensable and indispensable features are defined as follows:
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Let c ∈ C. A feature c is dispensable in T , if POS(C−c)(D) = POSC(D);
otherwise feature c is indispensable in T .

If c is an indispensable feature, deleting it from T will cause T to be incon-
sistent. Otherwise, c can be deleted from T . T = (U,A,C,D) is independent if
all c ∈ C are indispensable in T .

Reduct:
The set of features R ⊆ C will be called a reduct of C, if T = (U,A,R,D) is

independent and POSR(D) = POSC(D).

CORE:
The set of all indispensable features in (C,D) will be denoted by CORE(C,D).

CORE(C,D) =
⋂

RED(C,D)

where RED(C,D) is the set of all reducts of (C,D).

3 Searching Indispensable Features

All of indispensable features should be contained in an optimal feature subset,
because removing any of them will cause inconsistent in a decision table. As
defined in Section 2, CORE is the set of all indispensable features. Hence the
process of searching indispensable features is that of finding CORE.

The discernibility matrix proposed by Skowron [2,1] can be used for CORE
searching. The basic idea of the discernibility matrix can be briefly presented as
follows:

Let T = (U,A,C,D) be a decision table, with U = {u1, u2, . . . , un}. By a
discernibility matrix of T, denoted M(T ), we will mean n × n matrix defined
thus:

mij = {a ∈ C : a(ui) �= a(uj) ∧ D(ui) �= D(uj) } for i, j = 1, 2, . . . , n.

Thus entry mij is the set of all attributes that discern objects ui and uj .
The CORE can be defined now as the set of all single element entries of the

discernibility matrix, that is,

CORE(C) = {a ∈ C : mij = (a), for some i, j }.
Searching CORE is to search such a set of features in which each feature is
unique to discern some objects.

Example
The discernibility matrix corresponding to the sample database (the decision

table) shown in Table 1 with U = {u1, u2, . . . , u7}, C = {a, b, c}, D = {d} is as
follows:
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Table 1. A Sample Database

a b c d E

u1 1 0 2 1 1
u2 1 0 2 0 1
u3 1 2 0 0 2
u4 1 2 2 1 0
u5 2 1 0 0 2
u6 2 1 1 0 2
u7 2 1 2 1 1

u1 u2 u3 u4 u5 u6
u2 –
u3 b,c,d b,c
u4 b b,d c,d
u5 a,b,c,d a,b,c – a,b,c,d
u6 a,b,c,d a,b,c – a,b,c,d –
u7 – – a,b,c,d a,b c,d c,d

The CORE is the feature b. We can see that b is the unique feature for dis-
cerning u1 and u4. Furthermore, two reducts are {b, c} and {b, d}. Since the
feature a is not contained in any reduct, it could be deleted.

4 Feature Subset Selection

An optimal feature subset selection based on the rough set theory can be viewed
as finding such a reduct R, R ⊂ C with the best classifying properties. R will
be used to instead of C in a rule discovery algorithm.

Selecting an optimal reduct R from all subsets of features is not an easy
work. Considering the combinations among N features, the number of possible
reducts is 2N−1. Hence, selecting the optimal reduct from all of possible reducts
is NP-hard. For this reason, many methods for finding approximate results have
been proposed [1,3,11,6,5]. However the features in CORE must be included
whatever in an optimal result or in an approximate result. It is obvious that
all of indispensable features in CORE(C,D) cannot be deleted from C if the
accuracy of a decision table is not changed (dropped). The feature(s) in CORE
must be the member of feature subsets. Note that not all of the features in an
optimal feature subset must be indispensable. Therefore, The problem of feature
subset selection will become how to select the features from dispensable features
for forming the best reduct with CORE. We use CORE(C,D) as the core of
feature subsets. If CORE is not a reduct of (C,D), some of dispensable features
must be selected to make up a reduct.

Basically, the feature selection approaches can be divided into two types: the
filter approach and the wrapper approach [11].
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4.1 The Filter Approach

The filter approach selects the features using a preprocessing step. The main
disadvantage of the filter approach is that it totally ignores the effect of the
selected feature subset on the performance of the induction algorithm.

The main feature selection strategies of the filter approach are as follows:

1. The minimal subset of features (the MINIMAL FEATURES bias).
This bias has severe implications when applied blindly without regard for
the resulting induced concept. For example, the ID number of the patient in
a medical diagnosis data may be picked as the only feature needed. Given
only the ID number, any induction algorithm is expected to generalize very
poorly.

2. Selecting the features with a higher rank.
Ranking a list of features according to some measures. A measure can be
based on any of accuracy, consistency, information, distance, and depen-
dence. However, this bias does not help with a redundant feature. Moreover,
it may not be wise to use this bias on the data in which some irrelevant
feature is strongly correlated to the class feature.

4.2 The Wrapper Approach

In the wrapper approach, the features subset selection is done using the induction
algorithm as a black box. A search for a good subset is done using the induction
algorithm itself as a part of the evaluation function.

The wrapper approach conducts a search in the space of possible subsets of
feature. For example, the space of reducts. There are several search methods
that can be used for the wrapper approach,

– Exhaustive/Complete search
– Heuristic search
– Nondeterministic search

and so on.
When the number of features N is small, the search space may be not so large,

but it grows exponentially when N increases. In general, given a search space,
the more you search it, the better the subset you can find. But the resource is
not unlimited, we have to sacrifice optimality of selected subsets. The sacrifice
has also a limit, we must keep the optimality of a feature subset as much as
possible while spending as little search time as possible.

Exhaustive/Complete search exhausts all possible subsets and find the op-
timal ones. It is obvious that no optimal subset can possibly be missed. The
number of possible subsets is 2N−1, so that the time complexity of searching all
of them is O(2N−1). Using heuristics in search avoids brute-force search, but at
the same time risks losing optimal subsets. Heuristic search is obviously much
faster than exhaustive search since it only searches a part of subsets and finds a
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near-optimal subset. Nondeterministic search is also called random search strate-
gies. Searching for the next set at random, that is, a current set dose not directly
grow or shrink from any previous set following a deterministic rule. There are
two characteristics: (1) do not need to wait until the search end; (2) do not know
when the optimal set shows up, although we know a better one appears when it
is there.

5 Heuristics for Feature Subset Selection

In this section, we describe our approach for feature subset selection. The data
we faced are almost very large and the number of features are a quite many, so we
select the heuristic search as our search strategy, because exhaustive/complete
search is too time consuming and nondeterministic search is difficult to know
when the optimal subset appears. Although the heuristic search cannot guarantee
that the result must be the best one, it is a better way for solving very-large,
complex problems [8].

A search is invalid if it totally ignores the effect of the selected feature subset
on the performance of the induction algorithm. Using an induction algorithm
itself as a part of the evaluation function like the wrapper approach, no doubt,
a good subset can be searched. However, evaluating all subsets of features, even
evaluating just a part of feature subsets selected by some strategy, are also time
consuming.

For selecting feature subsets from a large database with a lot of features, we
select the best features one by one by using the evaluation criterion in an induc-
tion algorithm, until a reduct is found. However, unlike the wrapper approach,
we do not select the best feature subset from all of possible subsets of features.

The evaluation criterion used in our feature selection approach is that of the
rule selection used in the rule discovery system, GDT-RS, developed by us [9,10]:

1. Selecting the rules that cover as many instances as possible;
2. Selecting the rules that contain as little features as possible, if they cover

the same number of instances;
3. Selecting the rules with larger strengths, if they are in the same generaliza-

tion (condition features) level and cover the same number of instances.

Where the strength of a generalization is related to the number of values in each
feature in the generalization. The more the number of values the stronger the
generalization.

A feature subset, is good or not, depends on the strengths of the rules dis-
covered by using this subset. The strong the strength, the better the subset. To
select the feature that is of benefit to acquire the rules with a larger cover rate
and a strong strength, the following selection strategies are used:

– To obtain the subset of features as small as possible, selecting the features
that cause the number of consistent instances increases faster.
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To avoid the features with a lot of attribute values such as the ID number or
continuous attributes are considered first, not only the preprocess of delet-
ing unnecessary attribute and the discretization of continuous attributes is
important, but also the features that can generate the strong rules must be
selected first. The size of the maximal subset in POSR(D)/IND({R,D})
should be considered since it affects the strengths of rules. In general, the
more the number of attribute values in a feature in R, the more the num-
ber of subsets, and the smaller the size of the maximal subset. Selecting a
feature, by which a bigger subset can be acquired, is a way for our purpose.

Let a cardinality of the lower approximation of a set, card POSR(D), denote
the number of consistent instances, max size(POSR(D)/IND({R,D})) de-
note the size of the maximal subset of the lower approximation of the set
POSR(D). The feature selection can be regarded as selecting such features:
if adding them into the subset of features, R, the card POSR(D) increases
faster and the max size(POSR(D)/IND({R,D})) is bigger than adding
other features.

– When two features have the same performance described above, the one
that contains a littler number of different values will be selected. This is for
guaranteeing that the number of instances covered by a rule is as many as
possible.

Based on the preparations stated above, a heuristic algorithm is described
below. At first, we use the features in CORE as the initial feature subset, and
then choose the features from dispensable features one by one by using the
strategies stated above, and add them into the feature subset, until a reduct is
achieved.

A Heuristic Algorithm

Let R be a subset of the selected features, P the set of unselected features,
U all of instances, X the contradictory instances, and EXPECTk the
threshold of the accuracy.

In the initial state, R = CORE(C,D), P = C − CORE(C,D),
X = U − POSR(D).

Step 1. Calculate the dependent degree, k,

k = γR(D) =
card (U −X)

card U

where card denotes the cardinality of the set.
If k ≥ EXPECT k, then stop.

Step 2. For each p in P , calculate

v = card POSR+{p}(D).
m = card max set(POSR+{p}(D)/IND(R + {p}, D)).
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Step 3. Choose the best feature p with the largest v ∗m, do

R = R ∩ p,
P = P − p;

Step 4. Remove all of the consistent instances x that are contained in
the set of POSR(D) from X .

Step 5. Goto back to Step 1.

Example
We would like to use the sample database shown in Table 1 as an ex-

ample to explain how to get the feature subset using this algorithm. In Ta-
ble 1, a, b, c, and d are condition features, E is a decision feature, and U =
{u1, u2, u3, u4, u5, u6, u7}. {b} is a unique indispensable feature, because it will
cause inconsistent, {a1c2d1} → E1 and {a1c2d1} → E0, if deleting {b}.

From the following equivalence classes,

U/{b} = {{u1, u2}, {u5, u6, u7}, {u3, u4}}
U/{E} = {{u4}, {u1, u2, u7}, {u3, u5, u6}},

we know b-positive region of E, POSb(E), is {u1, u2}. Hence, in the initial state,
R = {b}, P = {a, c, d}, and X = {u3, u4, u5, u6, u7}. The initial state is shown
as follows:

U b E
u3 2 2
u4 2 0
u5 1 2
u6 1 2
u7 1 1

Let EXPECT K = 1, the termination condition will be k ≥ 1.
Since k = 2/7 < 1, R is not a reduct, we must continue to select. The next
candidate is a, c or d. Table 2 gives the results of adding {a}, {c}, or {d} into R,
respectively.

Table 2. Selecting the second feature from P = {a, c, d}.

U a b E

u3 1 2 2
u4 1 2 0
u5 2 1 2
u6 2 1 2
u7 2 1 1

U b c E

u3 2 0 2
u4 2 2 0
u5 1 0 2
u6 1 1 2
u7 1 2 1

U b d E

u3 2 0 2
u4 2 1 0
u5 1 0 2
u6 1 0 2
u7 1 1 1

1. selecting {a} 2. selecting {c} 3. selecting {d}
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From Table 2 or the following equivalence classes,

U/E = {{u4}, {u7}, {u3, u5, u6}};
U/{a, b} = {{u3, u4}, {u5, u6, u7}};
U/{b, c} = {{u5}, {u6}, {u7}, {u3}, {u4}};
U/{b, d} = {{u5, u6}, {u7}, {u3}, {u4}};
POS{a,b}(E) = ∅;
POS{b,c}(E) = POS{b,d}(E) = {u3, u4, u5, u6, u7};
max size(POS{b,c}(E)/{b, c, E}) = 1;
max size(POS{b,d}(E)/{b, d, E}) = |{u5, u6}| = 2,

we can see that selecting the feature a cannot reduce the number of contradictory
instances, but if selecting either c or d, all of instances become consistent. Since
the maximal set is in the U/{b, d, E}, d should be selected first.

After adding d into R, all of instances are consistent and must be removed
from U . Hence U is empty, k = 1, the process finished. The selected feature
subset is {b, d}.

6 Experiment Results

Using the algorithm stated in Section 5, we have tested several databases. Some
of them are artificial: Monk1, Monk3; some of them are well made: Mushroom,
breast cancer, earthquake; and some of them are real world databases: meningi-
tis, medical treatment, land-slide. Table 3 shows the results of feature selection
on these datasets. In Table 3, #attr n, #inst n, #CORE, and #attt n(sel) de-
note the number of features in a dataset, the number of instances, the number
of features in CORE, and the number of features selected, respectively.

Table 3. Results of feature selection

Dataset #attr n #inst n #CORE #attr n(sel)

Monk1 6 124 3 3

Monk3 6 122 4 4

Mushroom 22 8124 0 4

breast cancer 10 699 1 4

earthquake 16 155 0 3

meningitis 30 140 1 4

medical treatment 57 20920 2 9

land-slide 23 3436 6 8



Using Rough Sets with Heuristics for Feature Selection 187

7 Conclusions

In this paper, we presented an approach for feature selection. It is based on the
rough set theory and greedy heuristics. The main advantages of our approach
are that it can select a better subset of features quickly and effectively from
a large database with a lot of features; the selected features do not damage
the performance of induction so much since the performance of induction is
considered in the evaluation criterion for feature selection.
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Abstract. Most of the existing discretization approaches discrete each
continuous attribute independently, without considering the discretization
results of other continuous attributes. Therefore, some unreasonable and
superfluous discretization split points are usually created. Based on
compatibility rough set model and genetic algorithm, a global discretization
approach has been provided. The experimental results indicate that the global
discretization approach proposed can significantly decrease the number of
discretization split points and the number of rules, but increase the predictive
accuracy of the classifier.

1. Introduction

In the practical application of machine learning and data mining, there are many
continuous attributes where some symbolic inductive learning algorithm could not be
applied unless the continuous attributes are first discretized. There are currently
several discretization algorithms[2,5,9,14,15]. Most are independent methods,
meaning that they discrete each continuous attribute independently, without
considering the discretization results of other continuous attributes.

The final discretization result of a set of continuous attributes mainly depends on
the locations and the number of the selected discretization split points that come from
different continuous attributes. Usually, the discretization approaches that consider the
dependency among multiple continuous attributes are called global discretization. By
means of the binarization of continuous attributes[8], the problem of the global
discretization of continuous attributes was converted into the problem of selecting the
simplest subset of binary attributes[9]. However, the problem with the global
discretization approach is that the number of the initial binary attributes is extremely
large, because all potential split points are taken into account.

Based on the new compatibility rough set model introduced in section 2, we
proposed a novel approach that can generate reasonable sized initial split points.
Genetic algorithm is also adopted in order to obtain optimal discretization results.

2. Compatibility Rough Set

The standard rough set model introduced by Pawlak, Z. [10] is based on the
equivalence relation on the instances. Many authors have proposed interesting
extensions of the initial rough set model[6,7,13,16]. A common feature of these
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extended models is the induction the unequivalence relation on the instances based on
the unequivalence relation on the attribute values. In this study, we intent to introduce
a compatibility rough set model based on the compatibility relation directly on the
instances instead of the attribute values.

Let },,{ 1 luuB �= is a subset of the full set of the instances, UB ⊆ , },,{ 1 mccC �=
is the set of the conditional attributes (assume C contains both continuous and
symbolic attributes). Each instance iu corresponds to an attribute value vector

},,{ ,1, mii vv � . We can construct a hyper-region in feature space based on a group of

instances by using the instances merging operation luu ⊕⊕�1 , where ⊕ denotes the

merging operation. Actually, the instances merging operation is realized by the
attribute values merging operation }}{,},{{ ,,11,1,11 mlmll vvvvuu ⊕⊕⊕⊕=⊕⊕ ���� .

For a continuous attribute, )],,max(),,,[min( 1,1,11,1,11,1,1 lll vvvvvv ��� =⊕⊕ , and for a

symbolic attribute, }{ 1,1,11,1,1 ll vvvv ∪∪=⊕⊕ �� .

If the instances in a hyper-region have identical decision label, then the hyper-
region is called pure hyper-region. Any pair of instances ji uu , in a pure hyper-region

is called compatibility. The compatibility on ji uu , defines a type of binary relation.

Clearly, this binary relation is reflexive and symmetric, therefore the compatibility on
the instances is the compatibility relation.

Basing on the compatibility relation, we can only get some compatibility classes
on the instances. The union of all the compatibility classes can cover the full set of
instances, but usually not every compatibility class is required to cover the set. A set
of compatibility classes is called the simplest closed cover, if it can completely cover
a full set of instances and contain the least compatibility classes. Because each
compatibility class can only cover a proportion of a full set of instances, the problem
of searching the simplest closed cover equals to the problem of minimal set cover, it is
NP-hard. Next, we will give an greedy algorithm that is able to search for an
approximate solution of the simplest closed cover.

Let },,{})({/ 1 rDDdINDU �= is the set of decision equivalence classes of a

decision table }){,( dCU ∪=Α , CP is a compatibility class, CPS is the set of

compatibility classes, TM is a temporary set.

Step1. {}=CPS ;

Step2. for i=1 to r do { iDTM = ;

While( 0)( ≠TMCard )

{ TMuCP k ∈= ; kuTMTM \= ;

for j=1 to )(TMCard do

{ if(CP is compatibility with ij Du ∈ against CPSDD ri ∪+ },,{ 1 � )

then { juCPCP ∪= ; juTMTM \= ;}

}
CPCPSCPS ∪= ;

} }
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3. Obtaining the Initial Set of Split Points

The major objective of introducing this compatibility rough set model is to generate a
moderate sized initial set of split points, from which the simplest set of the
discretization split points will be searched. The valued domain of each attribute is
divided into some overlapping valued intervals or valued set. For a continuous
attribute, each valued interval has two boundaries. The boundaries with smaller value
and larger value are called low boundary and high boundary, respectively. The initial
split points can be determinate based on the relationship among these boundaries of
the valued intervals. The actual procedure is described as follows:

Let },,{ 1
i
p

i lblbLBS �= and },,{ 1
i
q

i ububUBS �= are two sets of low boundaries and up

boundaries of a continuous attribute Cci ∈ . SPS is the set of split points, TM is a

temporary set.
Step1. {}=SPS ; {}=TM ; 0=N ;

Step2. for j=1 to q do

{if (there is a }:min{min LBSlbublblb i
k

i
j

i
k

i ∈<= )

then look for a }:max{ minmin UBSublbubub i
k

ii
k

i ∈>= ;

)},{( minmax
ii lbubTMTM ∪= ; ++N ;}

Step3. for j=1 to N do
{ /*),(/*;2/)( TMublbublbsp i

j
i
j

i
j

i
j ∈+=

}{spSPSSPS ∪= ;}

Step4. Repeat Step2 and Step3 for each Cci ∈ .

4. Selecting the Optimal Set of Split Points

The three main issues in applying genetic algorithm to any optimization problem are
the choice of an appropriate representation scheme, a fitness function, and the
initialization the chromosome population. The natural representation for optimal
feature subset selection (OFSS) is exactly the same as the bit string of length N
representing the presence or absence of the N possible binary attributes.

The problem of OFSS is usually regarded as the problem of searching state space.
Obviously, the closer the starting search states are to the final optimal state, the higher
the search efficiency is. H. S. Nguyen [9] had provided a greedy quick discretization
method by which we can greedily construct some relative reducts of the binary
attributes (the population of the initial chromosomes).

Shan [14] had given an entropy function that can measure the discretization
complexity.
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Where )( jDp is the probability that an instance belongs to decision equivalence

class°
jD , )/( ji DCp is the probability that an instance belonging to decision

equivalence class
jD is matched by conditional equivalence class

iC .



The Discretization of Continuous Attributes 191

In order to measure the simplification (the number of the binary attributes) of a
relative reduct while the discretization complexity is measured, we slightly modify
above entropy function as the fitness function:
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Where )( Re
b

mCCard is the number of the binary attributes in current chromosome.

After certain specific genetic operations, such as cross-over or mutation, the
offspring of two relative reducts may not be a new relative reduct. However, being a
relative reduct is the essential condition of the optimal subset of the binary attributes.
In order to efficiently detect whether a new offspring is a relative reduct, we take the
simplified discernibility factor set (SDFS) CΦ modulo decision information, which

was proposed by T. Mollestad[11], as a filter. Let BC is the full set of the binary

attributes and '
BC is a subset of BC , if CΦ∈∃ϕ makes '

BB CC −⊆ϕ is true, then '
BC is a

relative reduct, otherwise, '
BC is not a relative reduct. Usually )()( 2UCardCard C <<Φ , so

the efficiency of the above set containing inquery is quit high. If only the relative
reducts are forwarded to the fitness function, then we can omit a lot of unnessesary
fitness function calculation.

5. Experiments and Conclusions

In order to test the effectiveness of the discretization approach based on the
compatibility rough set model, an experiment is conducted. We selected nine data
sets that are suitable to evaluate the discretizaiton methods from the UCI
repository[12]. A general-purpose genetic algorithm program GENESIS [3] was used
as searching engine. Parameters for the GA were set using the default values given in
GENESIS. In the experiment procedure, each data set is divided into two groups,
sixty percent as training set and forty percent as testing set. AE5 rule induction
algorithm [4], which is based on the theory of extension matrix, is used to evaluate the
predictive accuracy. Table 4 shows the experiment results of the nine selected data
sets.

Table 4. The comparison of the number of split points –N. of SP, the number of
rules°–N. of R and the predictive accuracy of classifier between the discretization of
entropy and the discretization of compatibility rough set.

Discretization of Entropy Discretization of Comp. Rough SetData Set
N. of SP N. of R Accuracy N. of SP N. of R Accuracy

Breast
Diabetes
Echo
Glass
Heart
Hepatiti
Iris
Thyroid
Wine

12 58 81.2%
49 44 64.8%
23 63 32.5%

229 93 48.4%
41 60 63.2%
57 27 74.2%
27 19 90.1%
44 78 62.8%

137 123 47.2%

7 42 92.2%
19 39 69.4%
8 43 70.0%

14 20 57.8%
12 16 73.8%
13 23 74.2%
6 8 96.1%
8 39 98.9%
6 19 92.5%
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Comparison of the number of discretization split points, the number of rules and the
predictive accuracy proves that the discretization method based on compatibility
rough set model can significantly decrease the number of discretization split points
and the number of rules, and universally improve the predictive accuracy.
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Abstract. A necessity measure N is defined by an implication func-
tion. However, specification of an implication function is difficult. Ne-
cessity measures are closely related to inclusion relations. In this paper,
we propose an approach to necessity measure specification by giving an
equivalent parametric inclusion relation between fuzzy sets A and B
to NA(B) ≥ h. It is shown that, by such a way, we can specify a neces-
sity measure, i.e., an implication function. Moreover, given an implication
function, an associated inclusion relation is discussed.

1 Introduction

Possibility theory [2][8] has been applied to many fields such as approximate rea-
soning, data base theory, decision making, optimization and so forth. In possibil-
ity theory, possibility and necessity measures play key roles to handle uncertain
information, ambiguous knowledge and vague concepts. There exist quite a lot
of possibility and necessity measures and the selection of those measures quali-
fies the properties of fuzzy reasoning, decision principles and so on. Possibility
and necessity measures should reflect the expert’s knowledge and/or decision
maker’s preference. Between possibility and necessity measures, the selection of
a necessity measure is much more important since (1) it directly qualifies fuzzy
rules and possibility distributions in approximate reasoning (see [1]) and (2) it
is used for the measure of safety or robustness.

A necessity measure N under a possibility distribution µA (i.e., fuzzy infor-
mation that x is in A) is defined as

NA(B) = inf
x∈X

I(µA(x), µB(x)) (1)

by an implication function I : [0, 1]× [0, 1]→ [0, 1] such that I(0, 0) = I(0, 1) =
I(1, 1) = 1 and I(1, 0) = 0, where µA and µB are membership functions of fuzzy
sets A and B of a universal set X . The selection of a necessity measure means
that of an implication function. In real world situations, it is not easy for us to
select an implication function directly since we are not aware of what kind of
implication function is used to evaluate the certainty degree of the conclusion and

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 193–203, 1999.
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the implication function itself is far from our imagination. On the other hand, the
necessity measure is closely related to the inclusion relation between A and B as
is defined in the crisp case. Indeed, for several implication functions, equivalent
conditions of NA(B) ≥ h are known to be inclusion relations between fuzzy
sets A and B with a parameter h. An inclusion relation is much more imaginable
for us than an implication function. From this point of view, we will be able
to specify an inclusion relation with a parameter h as an equivalent condition
to NA(B) ≥ h. Such a parametric inclusion relation specification is at least easier
than the implication function specification. In this way, the authors [5] succeeded
to construct a necessity measure, in other words, an implication function, from
a given inclusion relation with respect to NA(B) ≥ h and proposed nine kinds of
necessity measures defined by distinct inclusion relations with h. In this paper,
an inclusion relation with a parameter h with respect to NA(B) ≥ h is called a
‘level cut condition’ and the approach to specify a necessity measure by giving
a level cut condition is called a ‘level cut conditioning approach’.

Since the level cut conditioning approach has not yet studied considerably,
there still remain open problems: (Q1) Can we unify the level cut conditions
without loss of rationality ?, (Q2) Is there any level cut condition of the ne-
cessity measure associated with an arbitrarily given implication function satis-
fies ?, (Q3) Can any novel necessity measure be derived by this approach ?, (Q4)
How utilize the results of this approach to real world problems ? and so on. In
this paper, we answer the questions (Q1) and (Q2). To (Q1), we give a general-
ized level cut condition and show the existence of the necessity measure satisfies
the condition. To (Q2), we show that a level cut condition can be obtained when
a given implication function satisfies certain properties. On account of limited
space, (Q3) and (Q4) are not answered in this paper but in our future papers.

2 Necessity Measures Defined by Level Cut Conditions

When A and B are crisp sets, the necessity measure N is uniquely defined by

NA(B) =
{
1, if A ⊆ B,
0, otherwise. (2)

The traditional and most well-known necessity measure ND is the one defined
by (1) with Dienes implication function ID(a, b) = max(1−a, b). To this necessity
measure, we have (see [5])

ND
A (B) ≥ h⇔ (A)1−h ⊆ [B]h, (3)

where (A)h and [A]h are strong and weak h-level sets of A defined by

(A)h = {x | µA(x) > h}, [A]h = {x | µA(x) ≥ h}. (4)

For necessity measures NG and N r−G defined by (1) with Gödel implication
function IG and reciprocal Gödel implication function Ir−G satisfy (see [5])

NG
A (B) ≥ h⇔ (A)k ⊆ (B)k, ∀k < h, (5)

N r−G
A (B) ≥ h⇔ [A]1−h ⊆ [B]1−h, ∀k < h, (6)
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where IG and Ir−G are defined by

IG(a, b) =
{
1, if a ≤ b,
b, if a > b,

Ir−G(a, b) =
{

1, if a ≤ b,
1− a, if a > b.

(7)

As shown in (3)–(6), necessity measures are closely related to set inclusion re-
lations. Moreover, those necessity measures are uniquely specified by the right-
hand side conditions of (3)–(6) since we have

NA(B) = sup
h
{h | NA(B) ≥ h}. (8)

From this fact, it is conceivable to specify a necessity measure by giving a
necessary and sufficient condition of NA(B) ≥ h. From the practical point of
view, giving such a condition must be easier than giving an implication func-
tion directly to define a necessity measure, since inclusion relations are more
imaginable in our mind than implication functions. From this point of view, the
authors [5] proposed level cut conditioning approach to define a necessity mea-
sure. We succeeded to construct nine kinds of necessity measures giving nine
different level cut conditions. In this paper, generalizing our previous results, we
discuss measures NL which satisfy the following condition:

NL
A(B) ≥ h⇔ mh(A) ⊆Mh(B), (9)

where mh(A) and Mh(A) are fuzzy sets obtained from a fuzzy set A by applying
a suitable parametric transformation as will formally be defined later. We assume
that the inclusion relation between fuzzy sets is defined normally, i.e.,

A ⊆ B ⇔ µA(x) ≤ µB(x), ∀x ∈ X (10)

Let a fuzzy set A have a linguistic label α. Then, roughly speaking, mh(A) is a
fuzzy set corresponding to a linguistic label, “very α”, “extremely α” or “typi-
cally α” and Mh(A) a fuzzy set corresponding to a linguistic label, “roughly α”,
“more or less α” or “weakly α”. Thus, (9) tries to capture that an event ‘x is β’
expressed by a fuzzy set B is necessary to a certain extent under information
that ‘x is α’ expressed by a fuzzy set A if and only if the fact ‘x is very α’ entails
the fact ‘x is roughly β’. Degrees of stress and relaxation by modifiers ‘very’ and
‘roughly’ decrease as the necessity degree h increases, i.e., mh and Mh satisfy

h1 > h2 ⇒ mh1(A) ⊇ mh2(A), Mh1(A) ⊆Mh2(A). (11)

Now let us define mh and Mh mathematically. mh(A) and Mh(A) are defined
by the following membership functions:

µmh(A)(x) = gm(µA(x), h), µMh(A)(x) = gM (µA(x), h), (12)

where functions gm : [0, 1] × [0, 1] → [0, 1] and gM : [0, 1] × [0, 1] → [0, 1] are
assumed to satisfy
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(g1) gm(a, ·) is lower semi-continuous and gM (a, ·) upper semi-continuous
for all a ∈ [0, 1],

(g2) gm(1, h) = gM (1, h) = 1 and gm(0, h) = gM (0, h) = 0 for all h > 0,
(g3) gm(a, 0) = 0 and gM (a, 0) = 1 for all a ∈ [0, 1],
(g4) h1 ≥ h2 implies gm(a, h1) ≥ gm(a, h2) and gM (a, h1) ≤ gM (a, h2)

for all a ∈ [0, 1],
(g5) a ≥ b implies gm(a, h) ≥ gm(b, h) and gM (a, h) ≥ gM (b, h) for all

h ≤ 1,
(g6) gm(a, 1) > 0 and gM (a, 1) < 1 for all a ∈ (0, 1).

(g1) is required in order to guarantee the existence of a measure satisfies (9) (see
Theorem 1). (g2) means that complete members of a fuzzy set A are also com-
plete members of the fuzzy sets mh(A) and Mh(A) and complete non-members
of A are also complete non-members of the fuzzy sets mh(A) and Mh(A). This
implies that [mh(A)]1 = [Mh(A)]1 = [A]1 and (mh(A))0 = (Mh(A))0 = (A)0 for
any h > 0. (g3) is required so that the left-hand sides of (9) is satisfied when
h = 0. (g4) coincides with the requirement (11). (g5) means that the member-
ship degrees of mh(A) and Mh(A) increase as that of A increases. (g6) means
that all possible members of A cannot be complete non-members of mh(A) at
the lowest stress level, i.e., h = 1 and that all possible non-members of A cannot
be complete members of Mh(A) at the lowest relaxation level, i.e., h = 1. As
described above, those requirements, (g1)–(g6) can be considered as natural.

It should be noted that gm and gM are defined by

gm(a, h) = T (a, h), gM (a, h) = Cnv[I](a, h) = I(h, a), (13)

where T and I are a conjunction function and an implication function satisfy

(I1) I(a, 1) = 1 and I(0, a) = 1, for all a ∈ [0, 1],
(I2) I(a, 0) = 0, for all a ∈ (0, 1],
(I3) I(·, a) is upper semi-continuous for all a ∈ [0, 1],
(I4) a ≤ c and b ≥ d imply I(a, b) ≥ I(c, d).
(I5) I(1, a) < 1, for all a ∈ [0, 1).
(T1) T (0, a) = 0 and T (a, 0) = 0, for all a ∈ [0, 1],
(T2) T (1, a) = 1, for all a ∈ (0, 1],
(T3) T (a, ·) is lower semi-continuous for all a ∈ [0, 1],
(T4) a ≥ c and b ≥ d imply T (a, b) ≥ T (c, d).
(T5) T (a, 1) > 0, for all a ∈ (0, 1].

Conversely, I(a, b) = gM (b, a) is an implication function satisfies (I1)–(I5) and
T (a, b) = gm(a, b) is a conjunction function satisfies (T1)–(T5).

Remark 1. In order to express fuzzy sets corresponding to a linguistic labels
‘very α’ and ‘roughly α’, mh(A) and Mh(A) should be satisfy mh(A) ⊆ A ⊆
Mh(A), ∀h ∈ [0, 1]. In [5], we required so. However, to generalize the results
obtained in [5], we dropped this requirement. By this generalization, we can
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treat conditions including h-level sets. For example, (3) can be expressed by (9)
with definitions,

gm(a, h) =
{
1, if a > 1− h,
0, otherwise, gM (a, h) =

{
1, if a ≥ h,
0, otherwise.

The following proposition guarantees the existence and uniqueness of NL.

Theorem 1. NL exists and is defined by

NL
A(B) = sup

0≤h≤1
{h | mh(A) ⊆Mh(B)}. (14)

Proof. Suppose mh(A) �⊆ Mh(B) when sup0≤k≤1{k | mk(A) ⊆ Mk(B)} ≥ h.
From (11) and (12), there exists x ∈ X such that gm(µA(x), k) = µmk(A)(x) ≤
µMk(B)(x) = gM (µB(x), k), ∀k < h but gm(µA(x), h) = µmh(A)(x) > µMh(B)(x)
= gM (µB(x), h). This fact implies

lim inf
k→h

gm(µA(x), k) < gm(µA(x), h) or lim sup
k→h

gM (µB(x), k) > gM (µB(x), h).

This contradicts the lower semi-continuity of gm(a, ·), ∀a ∈ [0, 1] and the upper
semi-continuity of gM (a, ·), ∀a ∈ [0, 1]. Therefore, we have

sup
k≤1
{k | mk(A) ⊆Mk(B)} ≥ h⇒ A ⊆Mh(B)

The converse is obvious. Hence, we have (14). ��
The following theorem shows that NL defined by (14) is a necessity measure.

Theorem 2. NL is a necessity measure and the associated implication func-
tion IL is defined by

IL(a, b) = sup
0≤h≤1

{h | gm(a, h) ≤ gM (b, h)}. (15)

Proof. Let us consider IL defined by (15). From (g2) and (g3), we obtain IL(0, 0)
= IL(0, 1) = IL(1, 1) = 1 and IL(1, 0) = 0. Thus, IL is an implication function.
From (g1), we have

IL(a, b) ≥ h⇔ gm(a, h) ≤ gM (b, h). (∗)
Consider a measure ΦA(B) = infx∈X IL(µA(x), µB(x)). By (∗), it is easy to show

ΦA(B) ≥ h⇒ mh(A) ⊆Mh(B).

Thus, ΦA(B) ≤ NL
A(B). Suppose ΦA(B) < NL

A(B) = h∗. Then there exists
an x∗ ∈ X such that IL(µA(x∗), µB(x∗)) < h∗. From (∗), we have
gm(µA(x∗), h∗) > gM (µB(x∗), h∗). From (12), mh∗(A) �⊆Mh∗(B). From (9), we
obtain NL

A(B) < h∗. However, this contradicts NL
A(B) ≥ h∗. Hence, NL

A(B) =
ΦA(B). ��
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It is worth knowing the properties of IL in order to see the range of implica-
tion functions defined by level cut conditions.

Proposition 1. IL defined by (15) satisfies (I1), (I4), (I5) and

(I6) I(a, 0) < 1, for all a ∈ (0, 1].

Moreover, IL satisfies (I2) if and only if gm(a, h) > 0 for all (a, h) > (0, 0),
and (I7) if and only if gM (a, h) < 1 for all a < 1 and h > 0, where

(I7) I(1, a) = 0, for all a ∈ [0, 1).

Proof. Except for (I5) and (I6), all the properties are straightforward
from (g1)–(g6). Form (g2), we obtain

IL(1, a) = sup
0≤h≤1

{h | gM (a, h) ≥ 1}, IL(a, 0) = sup
0≤h≤1

{h | gm(a, h) ≤ 0}.

From (g1) and (g6), we have (I5) and (I6). ��
It should be noted that infinitely many different pairs of (gm, gM ) produce

the same necessity measure as far as the level cut condition, or simply, the
condition gm(a, h) ≤ gM (b, h) is equivalent.

Example 1. Let V (A) be the truth value (1 for true and 0 for false) of a state-
ment A. When gm(a,h) = min(a,V (h > 0)) and gM (a,h) = max(a,V (a ≥ h)),IL

is Gödel implication IG. When gm(a, h) = min(a, V (a > h)) and gM (a, h) =
max(a, V (h = 0)), IL is reciprocal Gödel implication Ir−G.

3 Level Cut Conditions Derived from Necessity Measures

In this section, given a necessity measure, or equivalently, given an implication,
we discuss how we can obtain the functions gm and gM . To do this, require-
ments (g1)–(g6) are not sufficient to obtain some results. We add a requirement,

(g7) gm(·, h) is lower semi-continuous and gM (·, h) upper semi-continuous
for all h ∈ [0, 1].

and assume that gm and gM satisfy (g1)–(g7). Together with (g1), this additional
requirement guarantees that IL satisfies (I3) and

(I8) I(a, ·) is upper semi-continuous.

First, we look into the properties of pseudo-inverses of gm(·, h) and gM (·, h)
defined by

gm∗(a, h) = sup
0≤b≤1

{b | gm(b, h) ≤ a}, gM∗(a, h) = inf
0≤b≤1

{b | gM (b, h) ≥ a}.
(16)

We have the following propositions.



Level Cut Conditioning Approach to the Necessity Measure Specification 199

Proposition 2. gm∗(·, h) is upper semi-continuous and gM∗(·, h) lower semi-
continuous, for all h ∈ [0, 1].

Proof. When h = 0, it is obvious. When h > 0, from the definition and (g5), we
have

{a | gm∗(a, h) ≥ b∗} =
⋂

0≤b<b∗
{a | a ≥ gm(b, h)}.

This set is closed and hence, gm∗(·, h) is upper semi-continuous. The lower semi-
continuity of gM∗(·, h) can be proved similarly. ��

Moreover, from (g1), we can prove the upper semi-continuity of gm∗(a, ·) and
the lower semi-continuity of gM∗(a, ·).
Proposition 3. We have

gm(a, h) ≤ gM (b, h)⇔ a ≤ gm∗(gM (b, h), h), (17)
gm(a, h) ≤ gM (b, h)⇔ gM∗(gm(a, h), h) ≤ b. (18)

Proof. From the definition of gm∗, we have a ≤ gm∗(gm(a, h), h) and gm∗(·, h)
is non-decreasing. Thus, we have

gm(a, h) ≤ gM (b, h)⇒ a ≤ gm∗(gm(a, h), h) ≤ gm∗(gM (b, h), h).

On the other hand, from the upper semi-continuity of gm∗(·, h), we can easily
prove gm(gm∗(a, h), h) ≤ a. Thus, from (g6), we obtain

a ≤ gm∗(gM (b, h), h)⇒ gm(a, h) ≤ gm(gm∗(gM (b, h), h), h) ≤ gM (b, h).

Hence, (17) is valid. (18) can be proved in the same way. ��
Proposition 3 gives an expression of IL other than (15), i.e.,

IL(a, b) = sup
0≤h≤1

{h | a ≤ gm∗(gM (b, h), h)}, if gm(·, h) is l. s. c., (19)

IL(a, b) = sup
0≤h≤1

{h | gM∗(gm(a, h), h) ≤ b}, if gM (·, h) is u. s. c. (20)

Moreover, it should be noted that Im∗(a, b) = gm∗(gM (b, a), a) is an implica-
tion function which satisfies (I1), (I3) (I4), (I5), (I6) and (I8) and TM∗(a,b) =
gM∗(gm(a,b),b) is a conjunctive function which satisfies (T1),(T3),(T4),(T5),(T6)
and (T7):

(T6) T (1, a) > 0, for all a ∈ (0, 1],
(T7) T (·, a) is lower semi-continuous.

This fact together with (19) and (20) remind us functionals σ and ζ both of which
yield an implication function from an implication function I and a conjunction
function T , respectively (see [4][6][7]), i.e.,

σ[I](a, b) = sup
0≤h≤1

{h | I(h, b) ≥ a}, ζ[T ](a, b) = sup
0≤h≤1

{h | T (a, h) ≤ b}. (21)
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Under assumptions that I satisfies I(1, 0) = 0, (I1), (I3), (I6) and (I4-a):
I(a, c) ≥ I(b, c) whenever a ≤ b, we can prove σ[σ[I]] = I and σ[I] preserves
those properties (see [4][7]). Under the assumptions that T satisfies
T (1, 1) = 1, (T1), (T3), (T6) and (T4-b): T (a, b) ≤ T (a, c) whenever b ≤ c,
we have ξ[ζ[T ]] = T and ζ[T ] satisfies I(1, 0) = 0, (I1), (I5), (I8) and (I4-b):
I(a, b) ≤ I(a, c) whenever b ≤ c (see [6][7]), where

ξ[I](a, b) = inf
0≤h≤1

{h | I(a, h) ≥ b}. (22)

Moreover, under the assumptions that I satisfies I(1, 0) = 0,(I1),(I5),(I8)
and (I4-b), we have ζ[ξ[I]] = I and ξ[I] satisfies T (1, 1) = 1, (T1),(T3),(T6)
and (T4-b).

Under the assumptions (g1)–(g7), pairs (IL, Im∗) and (IL, TM∗) satisfy the
requirements for (σ[IL] = Im∗ and σ[Im∗] = IL) and (ξ[IL] = TM∗ and
ζ[TM∗] = IL), respectively. Hence, given an arbitrary implication function I
which satisfies (I1), (I3)–(I6) and (I8), we obtain Im∗ = σ[I] and TM∗ = ξ[I].
One may think that, defining gm(a, h) = a or gM (a, h) = a when h > 0 so
that we have gm∗(a, h) = a or gM∗(a, h) = a for all h > 0, we can obtain gm

and gM via (13) with substitution of Im∗ or TM∗ for I and T . However, un-
fortunately, there is no guarantee that such gm and gM satisfy (g3). The other
properties,(g1),(g2),(g4)–(g7), are satisfied as is shown in the following proposi-
tion.

Proposition 4. σ preserves (I2), (I4) and (I8). Moreover, σ preserves (I5) un-
der (I3). On the other hand, when I satisfies (I4-a), ξ[I] satisfies (T4). When I
satisfies (I6) and (I8), ξ[I] satisfies (T5). When I satisfies (I7), ξ[I] satis-
fies (T2). When I satisfies (I3), ξ[I] satisfies (T7).

From Propositions 1 and 4 together with (13), the following theorem is
straightforward.

Theorem 3. Let I satisfy (I1), (I3)–(I6) and (I8). When I satisfies (I2),

gm(a, h) =
{
a, if h > 0,
0, if h = 0, gM (a, h) = σ[I](h, a), (23)

satisfy (g1)–(g7). On the other hand, when I satisfies (I7),

gm(a, h) = ξ[I](a, h), gM (a, h) =
{
a, if h > 0,
1, if h = 0, (24)

satisfy (g1)–(g7).

Theorem 3 gives an answer to (Q2) when I satisfies (I2) or (I7) as well
as (I1), (I3)–(I6) and (I8). The complete answer to (Q2) is rather difficult since
decompositions of Im∗ and TM∗ to gm and gM satisfying (g1)–(g7) are not easy.
In what follows, we give other answers under certain conditions. The following
proposition plays a key role.
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Proposition 5. When gm is continuous, we have gm(gm∗(a, h), h) = a, for all
h ∈ (0, 1]. Similarly, when gM is continuous, we have gM (gM∗(a, h), h) = a.

Proof. Because of (g2), the continuity of gm(·, h) and gM (·, h) implies that
gm(·, h) and gM (·, h) are surjective for all h ∈ (0, 1], respectively. Hence, we have
gm∗(a, h)=sup0≤b≤1{b |gm(b, h)=a} and gM∗(a, h) = inf0≤b≤1{b | gM (b, h) = a}.
Because of continuity, sup and inf can be replaced with max and min, respec-
tively. Hence, we have the theorem. ��

Moreover, the following proposition is straightforward.

Proposition 6. If a given function gm : [0, 1]×[0, 1]→ [0, 1] satisfies (g1)–(g6),

(g8) gm(·, h) is continuous for all h ∈ (0, 1],
(g9) gm(σ[I](a, 0), a) = 0 for all a ∈ (0, 1],
(g10) gm(a, 1) < 1 for all a ∈ [0, 1),

then I∗(a, b) = gm(σ[I](a, b), b) satisfies (I1)–(I3), (I5) and (I8). Similarly, if a
given function gM : [0, 1]× [0, 1]→ [0, 1], such that gM satisfies (g1)–(g6),

(g11) gM (·, h) is continuous for all h ∈ (0, 1],
(g12) gM (ξ[I](1, a), a) = 1 for all a ∈ (0, 1],
(g13) gM (a, 1) > 0 for all ∈ (0, 1],

then T ∗(a, b) = gM (ξ[I](a, b), b) satisfies (T1)–(T3), (T5) and (T7).

From Propositions 5 and 6, if we find a function gm (resp. gM ) satis-
fies (g1)–(g6) and (g8)–(g10) (resp. (g11)–(g13)) and I∗(a, b) = gm(σ[I](a, b), b)
(resp. T ∗(a, b) = gM (ξ[I](a, b), b)) satisfies (I4) (resp. (T4)), then the
pair (gm, Cnv[I∗]) (resp. (T ∗, gM )) is an answer to (Q2) with respect to a given
implication function I, where Cnv[I∗] is the converse of an implication func-
tion I∗, i.e., Cnv[I∗](a, b) = I∗(b, a).

From Propositions 3 and 4, the necessary and sufficient condition
of NA(B) ≥ h becomes (a) µA(x) ≤ σ[I](h, µB(x)), ∀x ∈ X , or
(b) ξ[I](µA(x), h) ≤ µB(x), ∀x ∈ X . As can be seen easily, (a) if and only if
max(µA(x), σ[I](h, 0)) ≤ max(σ[I](h, µB(x)), σ[I](h, 0)), ∀x ∈ X and (b) if and
only if min(ξ[I](µA(x), h), ξ[I](1, h)) ≤ min(µB(x), ξ[I](1, h)). From this fact,
giving bijective and strictly increasing functions p(·, h) : [σ[I](h, 0), 1] → [0, 1]
and q(·, h) : [0, ξ[I](1, h)] → [0, 1], we may define gm(a, h) =
p(max(a, σ[I](h, 0)), h) for case (a) and gM (a, h) = q(min(a, ξ[I](1, h)), h) for
case (b) under certain conditions. From this point of view, we have the following
theorem.

Theorem 4. We have the following assertions:

1. Let p(·, h) : [σ[I](h, 0), 1] → [0, 1] be a bijective and strictly increasing func-
tion such that

(p1) h1 ≥ h2 implies p(a, h1) ≥ p(a, h2) for all a ∈ [σ[I](h2, 0), 1],
(p2) p(max(σ[I](h, a), σ[I](h, 0)), h) is non-decreasing in h,
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Table 1. gm and gM for IS, IR and Ir−R

I f(0) gm(a, h) (h > 0) gM (a, h) (h > 0)

IS — max(0, 1− f(a)/f(n(h))) min(1, f(n(a))/f(n(h)))

< +∞ max(0, 1− f(a)/(f(0) − f(h))) min(1, (f(0)− f(a))/(f(0)− f(h)))
IR

= +∞ a f−1(max(0, f(a)− f(h)))

< +∞ (f(n(a))− f(h))/(f(0) − f(h)) min(1, f(n(a))/(f(0) − f(h)))
Ir−R

= +∞ n(f−1(max(0, f(n(a))− f(h))) a

(p3) σ[I](·, 0) is continuous,
then gm(a, h) = p(max(a, σ[I](h, 0)), h) and gM (a, h) = p(max(σ[I](h, a),
σ[I](h, 0)), h) satisfy (g1)–(g7) and define the level cut condition.

2. Let q(·, h) : [0, ξ[I](1, h)] → [0, 1] be a bijective and strictly increasing func-
tion such that

(q1) h1 ≥ h2 implies q(a, h1) ≤ q(a, h2) for all a ∈ [0, ξ[I](1, h2)],
(q2) q(min(ξ[I](a, h), ξ[I](1, h), h) is non-increasing in h,
(q3) ξ[I](1, ·) is continuous,

then gm(a,h)=q(min(ξ[I](a,h),ξ[I](1,h)),h) and gM (a,h)=q(min(a,ξ[I](1,h)),h)
satisfy (g1)–(g7) and define level cut condition.

Proof. From Proposition 6, it is obvious. ��
From Theorem 4, we can obtain the level cut condition of a given neces-

sity measure when we find suitable functions p and q. Table 1 shows the level
cut condition for S-, R- and reciprocal R-implication functions of a continu-
ous Archimedean t-norm t and strong negation n. A continuous Archimedean
t-norm is a conjunction function which is defined by t(a, b) = f∗(f(a) + f(b))
with a continuous and strictly decreasing function f : [0, 1]→ [0,+∞) such that
f(1) = 0, where f∗ : [0,+∞) → [0, 1] is a pseudo-inverse defined by f∗(r) =
sup{h | f(h) ≥ r}. A strong negation is a bijective strictly decreasing function
n : [0, 1] → [0, 1] such that n(n(a)) = a. Given a t-norm t and a strong nega-
tion n, the associated S-implication function IS, R-implication function IR and
reciprocal R-implication Ir−R are defined as follows (see [3]):

IS(a, b) = n(t(a, n(b))), IR(a, b) = ζ[t](a, b), Ir−R(a, b) = ζ[t](n(b), n(a)).
(25)
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Abstract. Four methods of c-regression are compared. Two of them are
methods of fuzzy clustering: (a) the fuzzy c-regression methods, and (b)
an entropy method proposed by the authors. Two others are probabilistic
methods of (c) the deterministic annealing, and (d) the mixture distri-
bution method using the EM algorithm. It is shown that the entropy
method yields the same formula as that of the deterministic annealing.
Clustering results as well as classification functions are compared. The
classification functions for fuzzy clustering are fuzzy rules interpolat-
ing cluster memberships, while those for the latter two are probabilistic
rules. Theoretical properties of the classification functions are studied.
A numerical example is shown.

1 Introduction

Recent studies on fuzzy clustering revealed that there are new methods [5,7,8,9]
based on the idea of regularization. These methods are comparable with the
fuzzy c-means [1,3] and their variations. The c-regression model is well-known
among the variations, namely, Hathaway and Bezdek have developed the method
of fuzzy c-regression [4]. It is not difficult to show, as we will see below, that the
new methods have variations that are applied to the c-regression model.

Another class of methods that may compete with the fuzzy c-means is the
mixture distribution model [10] with the EM algorithm [2] for the calculation
of solutions. This method is based on the statistical model and hence the two
frameworks of fuzziness and statistics are different. Hathaway and Bezdek [4]
mention a simple type of the mixture model for the c-regression.

Moreover a method of deterministic annealing has been proposed [11] that
is also based on probability theory. This method uses the Gibbs distribution
for determining probabilistic allocation of clusters with the heuristic method of
using the means for centers. (See also Masulli et. al. [6].)
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In addition to the new methods of fuzzy c-means, we have introduced clas-
sification functions that interpolate the membership values of the individuals
to each cluster. Global characters of clusters are accordingly made clear by us-
ing the classification functions [7,8,9]. The concept of classification functions
is applicable to the c-regression model. In contrast, classification functions in
probabilistic models are derived from probabilistic rules such as the Bayes rule.

We have thus four methods for the clustering with regression: the two fuzzy
models and the other two probabilistic models. These methods should now be
compared in theoretical, methodological, and applicational features. In doing
this, we can use classification functions.

In the following we first review the four methods briefly, and develop the
algorithms for calculating solutions that are not shown in foregoing works. The
algorithm for calculating solutions for the entropy method developed by the
authors is shown to be equivalent to the method of deterministic annealing,
although the two models are different. Theoretical properties of the classification
functions are compared. A numerical example is shown to see differences in
clustering results and classification functions.

2 Fuzzy Methods and Probabilistic Methods

2.1 Two Methods of Fuzzy c-Regression

A family of methods on the basis of fuzzy c-means have been developed; there are
common features in the methods. First, an alternative optimization algorithm is
used to find solutions. Second, objective functions for clustering have a common
form.

Let xi = (x1
i , . . . , x

p
i )

T , i = 1, . . . , n be individuals to be clustered. They
are points in p-dimensional Euclidean space. We consider two types of objective
functions:

J1 =
c∑

i=1

n∑

k=1

(uik)mDik

J2 =
c∑

i=1

n∑

k=1

uikDik + λ−1
c∑

i=1

n∑

k=1

uik log uik.

where uik is the element of cluster membership matrix U = (uik). The constraint
of the fuzzy partition M = {U | ∑c

j=1 ujk = 1, 0 ≤ uik ≤ 1, i = 1, . . . , c, k =
1, . . . , n} is assumed as usual.

The term Dik varies in accordance with the types of clustering problems. In
the standard fuzzy c-means, J1 is used with Dik = ‖xk − vi‖2, the square of
the Euclidean distance between the individual xk and the center of the cluster i,
while J2 is used with the same Dik in the method of entropy proposed by the
authors [7].

Since we consider c-regression models, Dik = (yk−fi(xk;βi))2 is used instead
of ‖xk − vi‖2. Remark that the set of data has the form of (xk, yk), i = 1, . . . , n,
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where x is the p-dimensional independent variable, while y is a scalar dependent
variable. We wish to find a function fi(x;βi) of regression by choosing param-
eters βi so that the objective functions are minimized. Among possible choices
for fi, the linear regression is assumed:

y = fi(x;βi) =
p∑

j=1

βj
i x

j + βp+1
i (1)

whence βi = (β1
i , . . . , β

p+1
i ) is a p+ 1 dimensional vector parameter.

The term Dik is thus a function of βi: Dik(βi) = |y −
∑p

j=1 β
j
i x

j − βp+1
i |2.

Let B = (β1, . . . , βc), we can express the objective functions as the function of U
and B:

J1(U,B) =
c∑

i=1

n∑

k=1

(uik)mDik(βi) (2)

J2(U,B) =
c∑

i=1

n∑

k=1

uikDik(βi) + λ−1
c∑

i=1

n∑

k=1

uik log uik. (3)

Finally, we note that the following alternative optimization algorithm is used
for finding optimal U and B, in which either J = J1 or J = J2.

Algorithm of fuzzy c-regression

R1 Set initial value for B̄.
R2 Find optimal solution Ū : J(Ū , B̄) = min

U∈M
J(U, B̄)

R3 Find optimal solution B̄: J(Ū , B̄) = min
B∈R(p+1)c

J(Ū , B)

R4 Check stopping criterion and if convergent, stop. Otherwise go to R2.

Assume J = J1 (the standard fuzzy c-regression method is used). It is then
easy to see that the solution in R2 is

ūik =




c∑

j=1

(
Dik

Djk

) 1
m−1




−1

. (4)

while the solution β̄i in R3 is obtained by solving
(

n∑

k=1

(uik)mzkz
T
k

)
βi =

n∑

k=1

(uik)mykzk (5)

with respect to βi, where zk = (x1
k, . . . , x

p
k, 1)

T .
If we use J = J2, we have

ūik =
e−λDik

c∑

j=1

e−λDjk

, β̄i =

(
n∑

k=1

uikzkz
T
k

)−1 n∑

k=1

uikykzk (6)

in R2 and R3, respectively.
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2.2 Mixture Distribution Model for c-Regression

The model of the mixture of normal distribution is another useful method for
clustering with the EM algorithm [2,10]. It is based on the statistical concept of
maximum likelihood but the results are comparable with those by fuzzy c-means.
Application of this model to the c-regression has been mentioned by Hathaway
and Bezdek [4].

We simply describe an outline of the algorithm. Notice first that the model
assumes that the distribution of the error term ei = y −∑p

j=1 β
j
i x

j − βp+1
i is

Gaussian with the mean 0 and the standard deviation σi which is to be estimated
in the algorithm.

The distribution is hence assumed to be

p(x, y) =
c∑

i=1

αipi(x, y|Ci), (
c∑

i=1

αi = 1) (7)

pi(x, y|Ci) =
1√
2πσi

exp
(− 1

2σ2
i

(y −
p∑

j=1

βj
i x

j − βp+1
i )2

)
(8)

The parameters φi = (αi, σi, βi) (i = 1, . . . , c) should be estimated by the EM
algorithm. For simplicity, let Φ = (φ1, . . . , φc) and assume that p(x, y|Φ) is the
density with the parameter Φ.

Let an estimate of the parameters be φ′ (i = 1, . . . , c), then the next esti-
mate αi by the EM algorithm is given as follows.

αi =
Ψi

n
=

1
n

n∑

k=1

α′
ipi(xk, yk|φ′

i)
p(xk, yk|Φ′)

, i = 1, . . . , c,

where

ψik =
α′

ipi(xk, yk|φ′
i)

p(xk, yk|Φ′)
, Ψi =

n∑

k=1

ψik.

βi is obtained from solving the following equation:

p∑

j=1

(
n∑

k=1

ψikx
j
kx

�
k)β

j
i + (

n∑

k=1

ψikx
�
k)β

p+1
i =

n∑

k=1

ψikykx
�
k (� = 1, . . . , p)

p∑

j=1

(
n∑

k=1

ψikx
j
k)β

j
i + (

n∑

k=1

ψik)β
p+1
i =

n∑

k=1

ψikyk

and finally we have

σ2
i =

1
Ψi

n∑

k=1

ψik

(
yk −

p∑

j=1

βj
i x

j
k − βp+1

i

)2
, (i = 1, . . . , c).
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Remark moreover that the individual (xk, yk) is allocated to the cluster Ci

using the Bayes formula. Namely, the probability of the allocation is given by

p(Ci|xk, yk) =
αip(xk, yk|φi)

c∑

j=1

αjp(xk, yk|φj)

(9)

2.3 Deterministic Annealing

Gibbs distribution is used for probabilistic rule of allocating individuals to clus-
ters [11]. Namely, the following rule is used:

Pr(x ∈ Ci) =
e−ρ‖x−yi‖2

c∑

j=1

e−ρ‖x−yj‖2

(10)

in which ρ is a parameter and yi is the cluster representative. For given
yi (i = 1, . . . , c), Pr(x ∈ Ci) is determined as above, then the cluster repre-
sentative is calculated again by the average:

yi =

∑

x

x · Pr(x ∈ Ci)

∑

x

Pr(x ∈ Ci)
. (11)

Iterations of (10) and (11) until convergence provide clusters by this method.

2.4 Deterministic Annealing and Entropy Method

It is now straightforward to use the deterministic annealing for the c-regression.
We have

πik = Pr((xk , yk) ∈ Ci) =
e−ρDik(βi)

c∑

j=1

e−ρDjk(βi)

(12)

while

βi =

(
n∑

k=1

πikzkz
T
k

)−1 n∑

k=1

πikykzk (13)

(Remark: Detailed proof is omitted here to save the space.)
Now, readers can see that the method of entropy and the deterministic an-

nealing provide the equivalent solutions by putting ρ = λ, although the models
are different; the entropy method is a fuzzy model and is based on the alterna-
tive optimization, while the deterministic annealing is a probabilistic model and
an objective function to be optimized is not assumed. Although we have shown
this equivalence in the case of c-regression, the same argument is applicable to
the c-means and to other variations of the c-means.
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3 Classification Functions

Classification functions in fuzzy c-means and the entropy method have been
proposed and studied in Miyamoto and Mukaidono [7]. This idea can be applied
to the c-regression.

The classification function in fuzzy clustering means that a new generic ob-
servation should be allocated to each cluster with the membership defined by
that function, hence the function should have x and y as independent variables
in this case of c-regression.

In analogy to the fuzzy c-means, classification functions in fuzzy c-regression
is defined by replacing xk, yk by the corresponding variables x = (x1, . . . , xp)
and y:

U1
i (x, y) =

1
c∑

�=1

(
|y −∑p

j=1 β
j
i x

j − βp+1
i |2

|y −∑p
j=1 β

j
�x

j − βp+1
� |2

) 1
m−1

(14)

and when

y =
p∑

j=1

βj
i x

j + βp+1
i (15)

for a particular i, the corresponding U1
i (x, y) = 1 and U1

� (x, y) = 0 for � 
= i.
In the case of the entropy method, we have

U2
i (x, y) =

e
−λ|y−

∑p

j=1
βj

i xj−βp+1
i |2

c∑

�=1

e
−λ|y−

∑p

j=1
βj

�
xj−βp+1

�
|2

(16)

Remark that the values of the parameters βi, (i = 1, . . . , c) are obtained
when the corresponding algorithm of clustering terminates.

As shown above, the classification function for the deterministic annealing is
equivalent to that by the entropy method. Thus, Pr((x, y) ∈ Ci) = U2

i (x, y) by
putting λ = ρ.

For the mixture distribution model, the same idea is applied. Namely, we
can define a classification function, or a discrimination function by replacing the
symbols xk, yk by the variables x and y. We thus have

Um
i (x, y) = p(Ci|x, y) = αip(x, y|φi)

c∑

�=1

α�p(x, y|φ�)

(17)

in which the parameter Φ is obtained from the application of the EM algorithm.
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Comparison of classification functions
Some of the theoretical properties of classification function are easily proved.

First, notice that the maximum value U1
i (x, y) = 1 is attained at the points

where (15) is satisfied. On the other hand, when

|y −
p∑

j=1

βj
�x

j − βp+1
� | → +∞

for all 1 ≤ � ≤ c, we have U1
i (x, y)→

1
c
.

We next examine the classification function of the entropy method (and
equivalently, we are examining the function for the deterministic annealing).
It should be remarked that the maximum value of U2

i (x, y) is not necessarily at
the point satisfying (15).

It is easily seen that the value U2
i (x, y) = 1 cannot be attained for a par-

ticular (x, y) in contrast to U1
i . Instead, we have lim

y→∞U2
i (x̃, y) = 1 for some i

and an appropriately chosen x = x̃. Whether this property holds or not de-
pends upon the relative positions of the vectors (β1

i , . . . , β
p
i ) ∈ Rp, i = 1, . . . , c.

Notice that βp+1
i is not included in the discussion below. Hence another vector

β̂i = (β1
i , . . . , β

p
i ) is used instaed of βi.

For the following two propositions, the proofs are not difficult and are omitted
here. The first proposition formally states the above result.

Proposition 1. If there exists an open half space S ⊂ Rp such that

{ β̂� − β̂i : 1 ≤ � ≤ c, � 
= i } ⊂ S (18)

then there exists x̃ ∈ Rp such that lim
y→∞U2

i (x̃, y) = 1. If such a half space does

not exist, then for all x ∈ Rp, lim
y→∞U2

i (x, y) = 0.

A condition for the existence of S in the Proposition 1 is the following.

Proposition 2. Let T = span{β̂1, . . . , β̂c} and CO{β̂1, . . . , β̂c} be the convex
hull in T generated by {β̂1, . . . , β̂c}. Assume that {β̂1, . . . , β̂c} is independent.
Then a condition for the existence of S for a particular i such that (18) holds is
that

β̂i /∈ int(CO{β̂1, . . . , β̂c}).
In other words, such a S exists if and only if the vertex of β̂i is not in the interior
of the above convex hull.

We thus observe that the maximum value is not at the points of (15) in
the entropy method. Analogous results hold for the classification function Um

i

of the mixture distribution model, but propositions of the above type cannot
be derived since the function is too complicated. Nevertheless, it is easily seen
that the form of the classification function Um

i becomes equivalent as U2
i in a

particular case of σ1 = · · · = σc and α1 = · · · = αc. We therefore expect that
the maximum value is not at the points of (15) in the mixture model also.
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4 A Numerical Example

Figure 1 shows an artificial example of a set of points with two regression lines.
The lines in the figure have been obtained from the fuzzy c-regression, but no
remarkable differences have been observed concerning the regression lines derived
from the four methods.

Figure 2 shows the three-dimensional plot of the classification function for one
cluster by the fuzzy c-regression, whereas Figure 3 depicts the plot of p(C1|x, y)
by the mixture distribution model. Readers can see remarkable difference be-
tween these two classification functions. The classification function by the en-
tropy method (and the deterministic annealing) in Figure 4 is similar to that in
Figure 3.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 1. Two regression lines

-1

0

1
-1

0

1

0

0.5

1

Fig. 2. Classification function by
FCR

-1

0

1
-1

0

1

0

0.5

1

Fig. 3. Classification function by
mixture distributions

-1

0

1
-1

0

1

0

0.5

1

Fig. 4. Classification function by
entropy method



Four c-Regression Methods and Classification Functions 211

5 Conclusion

Four methods of c-regression have been considered and classification functions
have been studied. It should be remarked that the classifications function in
the standard fuzzy c-regression reveals the shape of regression hyperplane by
its maximum values, whereas the entropy method, the deterministic annealing,
and the mixture model do not express those shapes of the regressions. Hence to
observe outlines and global characteristics of the clusters by the latter class of
methods require other types of functions, which we will study from now.

The importance of the entropy method is that it stands between the fuzzy c-
means and the mixture model. Moreover the deterministic annealing is equivalent
to the entropy method. It thus is based on fuzzy sets and at the same time a
probabilistic interpretation is possible.

Future studies include theoretical investigations of the classification func-
tions in the mixture of normal distributions and discussion of other variations
of fuzzy c-means using the classification functions.

This study has partly been supported by TARA (Tsukuba Advanced Re-
search Alliance), University of Tsukuba.
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Abstract. Conventional studies on rule discovery and rough set meth-
ods mainly focus on acquisition of rules, the targets of which have mu-
tually exclusive supporting sets. However, mutual exclusiveness does not
always hold in real-world databases, where conventional probabilstic ap-
proaches cannot be applied. In this paper, �rst, we show that these
phenomena are easily found in data mining contexts: when we apply
attribute-oriented generalization to attributes in databases, generalized
attributes will have fuzziness for classi�cation. Secondly, we show that
real-world databases may have fuzzy contexts. Then, �nally, these con-
texts should be analyzed by using fuzzy techniques, where context-free
fuzzy sets will be a key idea.

1 Introduction

Conventional studies on machine learning[10], rule discovery[2] and rough set
methods[5, 12, 13] mainly focus on acquisition of rules, the targets of which
have mutually exclusive supporting sets. Supporting sets of target concepts form
a partition of the universe, and each method search for sets which covers this
partition. Especially, Pawlak's rough set theory shows the family of sets can form
an approximation of the partition of the universe. These ideas can easily extend
into probabilistic contexts, such as shown in Ziarko's variable precision rough
set model[15]. However, mutual exclusiveness of the target does not always hold
in real-world databases, where conventional probabilstic approaches cannot be
applied.

In this paper, �rst, we show that these phenomena are easily found in data

mining contexts: when we apply attribute-oriented generalization to attributes
in databases, generalized attributes will have fuzziness for classi�cation. In this
case, we have to take care about the conicts between each attributes, which
can be viewed as a problem with multiple membership functions. Secondly, we
will see that real-world databases may have fuzzy contexts. Usually, some kind of
experts use multi-valued attributes, corresponding to a list. Especially, in medical
context, people may have several diseases during the same period. These cases

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 212-220, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



also violate the assumption of mutual exclusiveness. Then, �nally, these contexts
should be analyzed by using fuzzy techniques, where context-free fuzzy sets will
be a key idea to solve this problem.

2 Attribute-Oriented Generalization and Fuzziness

In this section, �rst, a probabilistic rule is de�ned by using two probabilistic
measures. Then, attribute-oriented generalization is introduced as tranforming
rules.

2.1 Probabilistic Rules

Accuracy and Coverage In the subsequent sections, we adopt the following
notations, which is introduced in [9].

Let U denote a nonempty, �nite set called the universe and A denote a
nonempty, �nite set of attributes, i.e., a : U ! Va for a 2 A, where Va is called
the domain of a, respectively.Then, a decision table is de�ned as an information
system, A = (U;A [ fdg).

The atomic formulas over B � A [ fdg and V are expressions of the form
[a = v], called descriptors over B, where a 2 B and v 2 Va. The set F (B; V ) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation.

For each f 2 F (B; V ), fA denote the meaning of f in A, i.e., the set of all
objects in U with property f , de�ned inductively as follows.

1. If f is of the form [a = v] then, fA = fs 2 U ja(s) = vg

2. (f ^ g)A = fA \ gA; (f _ g)A = fA _ gA; (:f)A = U � fa

By the use of this framework, classi�cation accuracy and coverage, or true pos-
itive rate is de�ned as follows.

De�nition 1.

Let R and D denote a formula in F (B; V ) and a set of objects which belong to
a decision d. Classi�cation accuracy and coverage(true positive rate) for R! d

is de�ned as:

�R(D) =
jRA \Dj

jRAj
(= P (DjR)); and

�R(D) =
jRA \Dj

jDj
(= P (RjD));

where jAj denotes the cardinality of a set A, �R(D) denotes a classi�cation
accuracy of R as to classi�cation of D, and �R(D) denotes a coverage, or a true
positive rate of R to D, respectively.

1

1 Pawlak recently reports a Bayesian relation between accuracy and coverage[8]:

�R(D)P (D) = P (RjD)P (D) = P (R;D)
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De�nition of Rules

By the use of accuracy and coverage, a probabilistic rule is de�ned as:

R
�;�

! d s:t: R = ^j _k [aj = vk]; �R(D) � ��; �R(D) � ��:

This rule is a kind of probabilistic proposition with two statistical measures,
which is an extension of Ziarko's variable precision model(VPRS) [15].2

It is also notable that both a positive rule and a negative rule are de�ned as
special cases of this rule, as shown in the next subsections.

2.2 Attribute-Oriented Generalization

Rule induction methods regard a database as a decision table[5] and induce rules,
which can be viewed as reduced decision tables. However, those rules extracted
from tables do not include information about attributes and they are too simple.
In practical situation, domain knowledge of attributes is very important to gain
the comprehensability of induced knowledge, which is one of the reasons why
databases are implemented as relational-databases[1]. Thus, reinterpretation of
induced rules by using information about attributes is needed to acquire compre-
hensive rules. For example, terolism, cornea, antimongoloid slanting of palpebral
�ssures, iris defects and long eyelashes are symptoms around eyes. Thus, those
symptoms can be gathered into a category \eye symptoms" when the location
of symptoms should be focused on. symptoms should be focused on. The rela-
tions among those attributes are hierarchical as shown in Figure 1. This process,
grouping of attributes, is called attribute-oriented generalization[1].

Attribute-oriented generalization can be viewed as transformation of vari-
ables in the context of rule induction. For example, an attribute \iris defects"
should be transformed into an attribute \eye symptoms=yes".It is notable that
the transformation of attributes in rules correspond to that of a database because
a set of rules is equivalent to a reduced decision table. In this case, the case when
eyes are normal is de�ned as \eye symptoms=no". Thus, the tranformation rule
for iris defects is de�ned as:

[iris-defects = yes]! [eye-symptoms = yes] (1)

In general, when [Ak = Vl] is a upper-level concept of [ai = vj ], a transforming
rule is de�ned as:

[ai = vj ]! [Ak = Vl];

and the supporting set of [Ak = Vl] is:

[Ai = Vl]A =
[
i;j

[ai = vj ]a;

= P (R)P (DjR) = �R(D)P (R)

This relation also suggests that a priori and a posteriori probabilities should be easily
and automatically calculated from database.

2 This probabilistic rule is also a kind of Rough Modus Ponens[7].
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Fig. 1. An Example of Attribute Hierarchy

where A and a is a set of attributes for upper-level and lower level concepts,
respectively.

2.3 Examples

Let us illustrate how fuzzy contexts is observed when attribute-oriented gener-
alization is applied by using a small table (Table 1). Then, it is easy to see that

Table 1. A Small Database on Congenital Disorders

U round telorism cornea slanting iris-defects eyelashes class

1 no normal megalo yes yes long Aarskog
2 yes hyper megalo yes yes long Aarskog
3 yes hypo normal no no normal Down
4 yes hyper normal no no normal Down
5 yes hyper large yes yes long Aarskog
6 no hyper megalo yes no long Cat-cry

Definitions: round: round face, slanting: antimongoloid slanting of
palpebral �ssures, Aarskog: Aarskog Syndrome, Down: Down Syndrome,
Cat-cry: Cat Cry Syndrome.
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a rule of \Aarskog",

[iris-defects = yes]! Aarskog � = 1:0; � = 1:0

is obtained from Table 1.

When we apply trasforming rules shown in Figure 1 to the dataset of Table
1, the table is tranformed into Table 2. Then, by using transformation rule 1,

Table 2. A Small Database on Congenital Disorders (Transformed)

U eye eye eye eye eye eye class

1 no no yes yes yes yes Aarskog
2 yes yes yes yes yes yes Aarskog
3 yes yes no no no no Down
4 yes yes no no no no Down
5 yes yes yes yes yes yes Aarskog
6 no yes yes yes no yes Cat-cry

Definitions: eye: eye-symptoms

the above rule is trasformed into:

[eye-symptoms = yes]! Aarskog:

It is notable that mutual exclusiveness of attributes has been lost by tranforma-
tion. Since �ve attributes (telorism, cornea, slanting, iris-defects and eyelashes)
are generalized into eye-symptoms, the candiates for accuracy and coverage will
be (5/6, 2/3), (3/4, 3/3), (3/4, 3/3), (3/3, 3/3), and (3/4, 3/3), respectively.
Then, we have to select which value is suitable for the context of this analysis.

In [11], one of the authors selected the mimimum value in medical context:
accuracy is equal to 3/4 and coverage is equal to 2/3.

Thus, the rewritten rule becomes the following probabilistic rule:

[eye-symptoms = yes]! Aarskog � = 3=4 = 0:75; � = 2=3 = 0:67:

This examples show that the loss of mutual exclusiveness is directly con-
nected to the emergence of fuziness in a dataset. It it notable that the rule used
for transformation is a deterministic one. When this kind of transformation is

applied, whether applied rule is deterministic or not, fuzziness will be observed.
However, no researchers has pointed out this problem with combination of rule
induction and tranformation.

It is also notable that the conicts between attributes with respect to ac-
cuarcy and coverage correponds to the vector representation of membership
functions shown in Lin's context-free fuzzy sets[4].
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3 Multi-valued Attributes and Fuziness

Another case of the violation of mutual exclusiness is when experts use multi-
valued attributes, or a list to describe some attributes in a database. It is a very
usual way when we cannot expect the number of inputs for attributes.

For example, in medical context, tra�c accidents may injure several parts of
bodies. Some patients have the damage only on hands and other ones su�er from
multiple injuries, which makes us di�cult to �x the number of attributes. Even
if we enumerate all the possibilities of injuries and �x the number of columns
corresponding to the worst case, most of the patients may have only a small
number of them to be input. Usually, medical experts are not good at estimation
of possibile inputs, and they are tend to make a list for data storage for the worst
cases, although the probability for such cases is very low. For example, if medical
experts empirically knows that the number of injuries is at most 20, they will
set up 20 columns for input. However, if the averaged number of injuries is 4 or
5, all the remaining attributes will be stored as blank. Table 3 illustrates this
observation. Although these attributes look like missing values,they should not
be dealt with as missing values and have to be preprocessed: such large columns
should be tranformed into binary ones. For the above example, each location of
injury will be appended as a column, and if that location is not described in a
list, then the value of that column should be set to 0.

Table 3. A Small Database on Fracture

U f f f f f f f f f f f f f f f f f f f f

1. arm �nger shoulder - - - - - - - - - - - - - - - - -
2. foot - - - - - - - - - - - - - - - - - - -
3. arm - - - - - - - - - - - - - - - - - - -
4. rib - - - - - - - - - - - - - - - - - - -
5. head neck shoulder radius ulnaris �nger rib pelvis femoral - - - - - - - - - - -
6. femoral tibia calneus - - - - - - - - - - - - - - - - -

Definitions: f: fracture.

It is easy to see that mutual exclusiveness of attributes is violated in this case.
Readers may say that if data is tranformed into binary attributes then mutual
exclusiveness will be recovered. For example, if one of the above attribute-value
pairs [fracture = neck] is tranformed into [neckfracture = yes] and others are

tranformed in the same way, then the datatable will be tranformed into a reg-
ular information table with binary attributes. It is a very good approach when

this attribute is a conditional one. But when a decision attribute is described as
a list, then it may be more di�cult to deal with. For example, let us consider
the case shown in Table 3. Mutual exclusiveness of decision attributes does not
hold in this table. One solution is to construct new attributes represented by
the conjunciton of several diseases for construction of a new partition of the
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universe.3 However, when the number of attribute-value pairs is large, this solu-
tion may be quite complicated. Also, the conjunction may not be applicable to
some domains.

Table 4. A Small Database on Bacterial Tests

U Diseases Diseases Diseases

1. Heart Failure SLE Renal Failure
2. Pneumonia - -
3. Pulmonary Emboli - -
4. SLE PSS Renal Failure
5. Liver Cirrohsis Heart Failure Hypertension

4 Functional Representation of Context-Free Fuzzy Sets

Lin has pointed out problems with multiple membership functions and intro-
duced relations between context-free fuzzy sets and information tables[4]. The
main contribution of context-free fuzzy sets to data mining is that information
tables can be used to represent multiple fuzzy membership functions. Usually
when we meet multiple membership functions, we have to resolve the conicts
between functions. Lin discusses that this resolution is bounded by the con-
text: min, maximum and other fuzzy operators can be viewed as a context. The
discussion in Section 2 illustrates Lin's assertion. Especially, when we analyze
relational-database, tranformation will be indispensable to data mining of multi-
tables. However, tranformation may violate mutual exclusiveness of the target
information table. Then, multiple fuzzy membership functions will be observed.

Lin's context-free fuzzy sets shows such analyzing procedures as a simple
function as shown in Figure 4. The important parts in this algorithm are the way
to construct a list of membership functions and the way to determine whether
this algorithm outputs a metalist of a list of membership functions or a list of nu-
merical values obtained by application of fuzzy operators to a list of membership
functions.

5 Conclusions

This paper shows that mutual exclusiveness of conditional and decision at-
tributes does not always hold in real-world databases, where conventional prob-
abilstic approaches cannot be applied.

3 This idea is closely related with granular computation[3, 14].
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procedure Resolution of Multiple Memberships;
var

i : integer; La; Li : List;
A: a list of Attribute-value pairs (multisets:bag);
F : a list of fuzzy operators;

begin

Li := A;
while (A 6= fg) do
begin

[ai = vj ](k) = first(A);
Applend �([ai = vj ](k)) to L[ai=vj ]

/* L[ai=vj ]
: a list of membership function for attribute-value pairs */

A := A� [ai = vj ](k);
end.

if (F = fg) then
/* Context- Free */
return all of the lists L[ai=vj ]

;

else

/* Resolution with Contexts*/
while (F 6= fg) do
begin

f = first(F );
Apply f to each L[ai=vj ]

; �f ([ai = vj ]) = f(L[ai=vj ]
)

Output all of the membership functions �f ([ai = vj ])
F := F � f ;

end.
end fResolution of Multiple Membershipsg;

Fig. 2. Resolution of Multiple Fuzzy Memberships

It is surprising that tranformation will easily generate this situation in data
mining from relation databases: when we apply attribute-oriented generaliza-
tion to attributes in databases, generalized attributes will have fuzziness for
classi�cation. In this case, we have to take care about the conicts between
each attributes, which can be viewed as a problem with multiple membership

functions. Also, real-world databases may have fuzzy contexts when we store
multiple-values for each attribute. It is notable that this phenomenon is quite

natural at least in medical doamin. Finally, the authors pointed out that these
contexts should be analyzed by using fuzzy techniques, where context-free fuzzy
sets will be a key idea to solve this problem. It will be our future work to induce
fuzzy if � then rules from this database and to compare these fuzzy rules with
other conventional approaches.
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Abstract. Classical statistics and many data mining methods rely on “statistical
significance” as a sole criterion for evaluating alternative hypotheses. In this
paper, we use a novel, fuzzy logic approach to perform hypothesis testing. The
method involves four major steps: hypothesis formulation, data selection
(sampling), hypothesis testing (data mining), and decision (results). In the
hypothesis formulation step, a null hypothesis and set of alternative hypotheses
are created using conjunctive antecedents and consequent functions. In the data
selection step, a subset D of the set of all data in the database is chosen as a
sample set. This sample should contain enough objects to be representative of
the data to a certain degree of satisfaction. In the third step, the fuzzy
implication is performed for the data in D for each hypothesis and the results
are combined using some aggregation function. These results are used in the
final step to determine if the null hypothesis should be accepted or rejected. The
method is applied to a real-world data set of medical diagnoses. The automated
perception approach is used for comparing the mapping functions of fuzzy
hypotheses, tested on different age groups (“young” and “old”). The results are
compared to the “crisp” hypothesis testing.

Keywords. Hypothesis testing, fuzzy set theory, data mining, knowledge
discovery in databases, approximate reasoning.
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1 Introduction

The analysis of medical data has always been a subject of considerable interest for
governmental institutions, health care providers, and insurance companies. In this
study, we have analyzed a data set, generously provided by the Computing Division
of the Israeli Ministry of Health. It includes the demographic data and medical
diagnoses (death causes) of 33,134 Israeli citizens who passed away in the year 1993.
The file does not contain any identifying information (like names or personal IDs).

In the original database, the medical diagnosis is encoded by an international, 6-
digit code (ICD-9-CM). The code provides highly detailed information on the
diseases: the 1993 file includes 1,248 distinct codes. Health Ministry officials have
grouped these codes into 36 sets of the most common death causes, based on the first
three digits of the code.

It is a well-known fact that there is an association between a person’s age and the
likelihood of having certain diagnoses (e.g., heart diseases are more frequent among
older people). Though this association is present in most types of human diseases (and
even some unnatural causes of death), it is not necessarily significant, in the practical
sense, for any diagnosis. Thus, if a certain disease is more likely by only 2% among
people over the age of 40 than among younger people, this can hardly have any
impact on the Medicare system. Nevertheless, if the last fact is based on a sufficiently
large sample, its statistical significance may be very high.

Our purpose here is to find the types of medical diagnoses where the difference
between young people and elderly people is practically significant. Once these
diagnoses are detected, the Ministry of Health (like any other health care
organization) can invest a larger part of its budget in preventing the related death
causes in certain age groups of the population. Thus, for every possible cause (e.g.,
cancer, heart disease, or traffic accident) we are testing a single hypothesis saying,
“The elderly people are more (less) likely to die from this cause than the young
people.” Since the number of available hypotheses is strongly limited (the ministry
officials have identified 36 sets of major causes), each hypothesis will be tested by a
verification-oriented approach. For a concise comparison between verification-
oriented and discovery-oriented methods of data mining, see Fayyad et al [1].

This paper is organized as follows. In the next section, we describe a “crisp”
approach to hypothesis testing, aimed at measuring the statistical significance of each
hypothesis. The limitations of applying this “classical” statistical approach to real-
world problems of data analysis are clearly emphasized. In Section 3, we proceed
with representing a novel methodology of fuzzy hypothesis testing for verification-
based data mining. The analysis of the medical data set by using the “crisp” approach
and the fuzzy approach to hypothesis testing is performed in Section 4. Section 5
concludes the paper by comparing the results of the two methods and outlining other
potential applications of the Fuzzy Set Theory to the area of data mining.
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2 “Crisp” Hypothesis Testing

Statistical hypothesis testing is a process of indirect proof [6]. This is because the data
analyst assumes a single hypothesis (usually called the null hypothesis) about the
underlying phenomenon to be true. In the case of medical data, the simplest null
hypothesis may be that the likelihood of people under 40 having heart disease is equal
to the likelihood of people over 40. The objective of a statistical test is to verify the
null hypothesis. The test has a “crisp” outcome: the null hypothesis is either rejected
or retained (see [6]). According to the statistical theory, retaining the null hypothesis
should not be interpreted as accepting that hypothesis. Retaining just means that we
do not have sufficient statistical evidence that the null hypothesis is not true. On the
other hand, rejecting the null hypothesis implies that there are an infinite number of
alternative hypotheses, one of them being true. In our example, the set of alternative
hypotheses includes all non-zero differences between the probabilities of the same
disease in the two distinct population groups.

The statistical theory of hypothesis testing deals with a major problem of any data
analysis: the limited availability of target data. In many cases, it is either impossible
or too expensive to collect information about all the relevant data items. Hence, a
random sample, selected from the entire population, is frequently used for testing the
null hypothesis. In the random sample, like in the entire population, we may find
some evidence contradicting the statement of the null hypothesis. This does not
necessarily mean that the null hypothesis is wrong: the real data is usually affected by
many random factors, known as noise. Representing the distribution of noise in the
sample cases is an integral part of the null hypothesis. Thus, for comparing means of
continuous variables derived from large samples, the assumption of a Normal
distribution (based on the Central Limit Theorem) is frequently used.

To compare between the probabilities of a diagnosis in two distinct age groups, we
need to perform the comparison between proportions test (see [5]). This test is based
on two independent random samples, extracted from two populations. The sizes of the
samples do not have to be equal, but to apply the Central Limit Theorem, each sample
should include at least 30 cases. Furthermore, we assume that each person in the same
age group has exactly the same probability of having a certain disease. The last
assumption enables us to describe the actual number of “positive” and “negative”
cases in each group by using the Binomial distribution.

The massive use of the “crisp” hypothesis testing by many generations of
statisticians has not eliminated the confusion associated with its practical application.
Retaining a hypothesis is supposed to increase our belief in it – but how much greater
should our belief be now? Statistics gives no clear answer. Rejecting a hypothesis
leaves us even more confused: we are not supposed to believe in the null hypothesis
anymore. However, which alternative hypothesis should be considered true?

Apparently, the significance level may be used as a continuous measure of
evaluating hypotheses. However, as indicated by [6], “significant” is a purely
technical term and it should not be confused with the practical terms “important,”
“substantial,” “meaningful,” etc. Very large samples may lead us to statistically
significant conclusions, based on negligible differences between estimates. In other
words, statistical significance does not imply practical significance. In the next
section, we describe a novel, fuzzy method for determining the validity of a
hypothesis on a continuous scale.
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3 Fuzzy Hypothesis Testing

The concept of fuzzy testing, or more specifically, fuzzy hypothesis testing [7] is a
verification-based method of data mining. A fuzzy hypothesis test is used to
determine the truth (or falsity) of a proposed hypothesis. The hypothesis may involve
either crisp or fuzzy data; however, a fuzzy hypothesis test should produce a value
on°[0,1], which indicates the degree to which the hypothesis is valid for given sample
data. This is an extension of the classical hypothesis test, which yields a crisp value
in°{0,1} (see above). The fuzzy hypothesis test will accept the null hypothesis H0 to
some degree µ and the alternative hypothesis H1 to some degree 1-µ.

3.1 The Formal Notation

A set of collected data, i.e. a database, is defined:

X = {x1,x2,x3,...,xm}

where m is the number of cases (records) in the database and xi is an n-dimensional
vector in an n-dimensional feature space:

xi = <xi,1,xi,2,...,xi,n>

A set D⊆X is chosen, called a sample set, which will be used to test the hypothesis.
Next, choose a set of hypotheses H={H0,H1,...,Hf} where H0 is the null hypothesis to
accept or reject and H1 through Hf are the alternate hypotheses we must accept if we
reject H0. A hypothesis can be thought of as an implication of the form:

if condition1 and condition2 and ... conditionk

then x is a member of F with membership µ(xi)

In other words, a hypothesis is composed of a set C of k conjunctive antecedent
conditions and a consequent classification (e.g. cluster, fuzzy set) F. A condition is a
comparison of one of the components of xi and a constant (possibly fuzzy) value. µ is
defined as a mapping: µ(xi,H) → [0,1].

In the medical dataset, examples of conditions include:
• “A person lives in the city of Haifa” (a crisp condition)
• “A person is old” (a fuzzy condition)

The value of µ determines whether the data collected agrees with the hypothesis. A
value of µ0=1 means the data is in total agreement with the null hypothesis; a value
of°µ0=0 means the data totally contradicts the null hypothesis. Additionally, the value
of µ for the alternative hypotheses should be the inverse of that of H0,
i.e.°µ1+µ2+...µf=1-µ0.

3.2 Calculating the Sample Size

Since it may not always be practical or possible to use all collected data (i.e. the entire
database), a sampling of data, called a sample set, is used to verify the hypotheses.
The sample set D is usually chosen at random from among the set X (the entire
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database). This random sampling must be large enough to make sure that the set D is
“good”; i.e. that D reflects the contents of X. If D = X it must be accepted; the sample
is the entire database. If D = ∅, it must be rejected; the sample contains no data.
Otherwise, the number of data in D, denoted d=|D|, will determine if it is “good.”

The following function, called the degree of satisfaction (DoS), is chosen to
represent the belief that D is a good sample of X based on d (the sample size) and m
(the size of the entire data set):
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where b is a constant that controls the x-intercept of the function (the sample size of
zero satisfaction). Larger values of b make the intercept closer to 0. For example,
when b=10, the x-intercept is at 10% of m (10% of the items are guaranteed to be
selected); for b=100, the x-intercept is 1% of m (the minimal sample size is 1%).
Figure 1 shows the graph of the function f for b=10. In the graph, the x-axis is the
percentage of the total data, m, selected for D. In other words, the x-axis is d/m,
where°0 is 0% and 1.0 is 100%. The function f is used to select the number of items
for D: as f (d,m) → 1, d → m. Thus, the sample becomes closer to 100% for higher
degrees of satisfaction required.

The function is chosen as it meets the criteria given above for selecting the size of
a "good" sample set. If d=m (i.e. the entire database), then f=1.0. If d=0 (i.e. no data),
then f=0.0. The introduction of variable b allows us to set a stronger condition
of°f=0.0 when d < m/b, if we have a preference that there should be some lower limit
on the number of items selected for the sample. We chose the logarithm function
because of its shape. From the figure we see that as we add items to the sample, the
function f increases faster at the beginning than later, when the sample set is larger.
This agrees intuitively with our notion of how a sample works: more items are
generally better, but once we have a certain amount of items in our sample the
additional information provided by adding more items is less than that of adding the
same number of items to a smaller sample.
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Fig. 1. Plot of function f (b=10)

As shown above, the fuzzy method of calculating the sample size does not depend
on the hypotheses we are going to test on the data. This approach agrees with the
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common process of knowledge discovery in databases (see [1]), where the target data
is selected before the data mining stage. The procedure for selecting an appropriate
sample size, suggested by the statisticians (see [6]), is more complicated and it
assumes knowing in advance both the hypotheses to be tested and the underlying
distributions. According to [6], the first step is specifying the minimum effect that is
“important” to be detected by the hypothesis testing. The linguistic concept of
importance is certainly beyond the scope of the statistical inference. However, it is
directly related to the process of approximate reasoning, easily represented by the
Fuzzy Set Theory (see [2]).

3.3 Creating the Mapping Function for Each Hypothesis

The mapping function µi maps each vector in D for a given hypothesis Hi to a value
in°[0,1]. This number represents the degree to which each sample agrees with the
hypothesis. In order to determine the agreement, the membership function of the
consequent Fi must be known. If the data described by the vector x lies within Fi,
then°µi should equal the degree of membership of x in Fi. Usually Fi will be some
geometric function on [0,1], such as a triangular or trapezoidal shaped function.

The vectors in D are compared with the conjunctive conditions in the antecedent of
the hypothesis. For crisp conditions, any condition(s), which are false, cause x to be
excluded from consideration since they do not lend any support to the null hypothesis
or alternative hypotheses. For fuzzy conditions, it may be necessary to use some
threshold value to determine if the vector x should be excluded. For example, for a
fuzzy value of 0.5 or less, the vector x may be closer to some other fuzzy set. Each
fuzzy condition in the antecedent will have a value on [0,1] for each x, and these
values must be combined using a t-norm operation, such as min. The resulting value
indicates the degree to which x supports the antecedent conditions of H. The Dienes-
Rescher fuzzy implication [8] is then performed for the combined antecedent values
and the consequent value:

µl = max(1-Pl,fl) (2)

where P is the value of the combined antecedents and f is a function describing the
fuzzy membership of the consequent. Here the subscript l denotes to which hypothesis
each variable belongs; it will range from 0 (the null hypothesis) to k, for k alternative
hypotheses. Thus, P2 would be the antecedents for hypothesis H2, f3 would be the
fuzzy membership of the consequent for hypothesis H3, etc.

Once the membership µ0 for each x in D is determined, the values must be
aggregated to determine if the values in D, taken as a whole, support H0. This can be
done in a variety of ways including arithmetic mean (each point contributes to the
decision), minimum (pessimistic – if any x fail H0, then H0 is rejected), or maximum
(optimistic – if any x pass H0, then H0 is accepted). For arithmetic mean, denote the
overall mapping function Mk for hypothesis k:
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where δ is the number of vectors in D that are relevant to the hypothesis under
consideration.

3.4 Comparing Fuzzy Hypotheses

In the medical database, our objective is to compare between the overall mapping
functions of two hypotheses:

• Hypothesis No. 1: If the age is young, then diagnosis (cause) = x
• Hypothesis No. 2: If the age is old, then diagnosis (cause) = x

If the second mapping function is significantly greater (or significantly smaller)
than the first one, then we can conclude that older people have a higher (or a lower)
likelihood of having that diagnosis than young people. “Significantly greater
(smaller)” are fuzzy terms depending on human perception of the difference between
the mapping functions. We have outlined a general approach to automated perception
in [3-4]. For automating the perception of this difference, we are using here the
following membership function µsg:
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where β is an adjustable coefficient representing the human confidence in the
difference between frequencies, based on a given sample size. The membership
function µsg increases with the value of β.

4 Analysis of the Medical Data

4.1 Hypothesis Testing

In order to create the mapping functions for each fuzzy hypothesis, the fuzzy sets
corresponding to “young age” and “old age” have been determined. These fuzzy sets
are shown in Fig. 2. Both sets are represented by triangular membership functions.
The definition of these membership functions is completely subjective and user-
dependent.

To perform an objective comparison between the fuzzy hypothesis testing and the
“crisp” approach, we have used the threshold of 45 years to divide the records into
“young” and “old” people. Afterwards, the proportion of each diagnosis under the age
of 45 has been compared statistically to the proportion of the same diagnosis for
people over 45 years old. The statistical significance of the difference between
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proportions has been evaluated by the comparison between proportions test (see
Section 2 above).

Both methods of hypothesis testing have been applied to the same random sample.
The sample size has been determined by the fuzzy method of Section 3.2 above, using
DoS (Degree of Satisfaction) equal to 0.90 and the constant b = 100. The number of
records obtained is 20,907 (out of 33,134), including 1,908 young people and 18, 998
elderly people. For comparing fuzzy hypotheses, based on this sample size, the
coefficient β = 25 has been selected.
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Fig. 2. Fuzzy sets “young age” and “old age”

4.2 Summary of Results

The 36 diagnoses present in the medical dataset can be divided into the following
categories, by the effect of person age:

• Five diagnoses (death causes), where the difference between the young people
and the elderly people is highly significant according to both the fuzzy test and the
“crisp” test. These causes include: Ischaemic Heart Disease, Cerebrovascular
Disease, Diseases of Pulmonary Circulation, Motor Vehicle Traffic Accidents, and
Other Accidents. The likelihood increases with the age for the first three causes
and decreases for the last two. From the viewpoint of the health care system, this
means that older people have a higher risk of dying from the first three diseases.
Consequently, this age group should be subject to frequent medical assessments as
a preventive treatment. To decrease the number of traffic and other accidents in the
young age group, some restrictions may be applied (and are actually applied) with
respect to young drivers.
• Nineteen diagnoses, where the statistical significance of the difference is also
very high (over 99.9%), but the fuzzy test has shown a relatively low significance
varying from 0.50 to 0.78. For example, only 0.28% of young people have diabetes
vs. 2.77% of elderly people. The significance of the fuzzy test in this case is only
0.65. However, the statistical test of comparison between proportions has provided
us with a statistic z = 10.44, which has a very high significance (almost 1.00).
• Eleven diagnoses, where the significance of both tests is relatively low.
• One rare diagnosis, which has been completely omitted from the random sample.
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5 Conclusions

The results of the hypothesis testing represented in Section 4 above emphasize the
main drawback of statistical methods: the statistical significance should not be used
as a synonym for importance. Relying solely on the results of the “crisp” testing in
the above dataset would lead (actually, mislead) the analysts into concluding that
almost all death causes have a strong association with the age. This could cause a
wrong setting of health care priorities or even completely ignore the age for this
purpose. The main contribution of Fuzzy Set Theory to this problem is the improved
differentiation of diagnoses, starting with those completely unaffected by age, and
ending with the five causes (see sub-section 4.2 above) where the age is the leading
factor.

As we have shown in our work on automated perceptions [3], the potential benefit
of applying fuzzy logic methods to data mining is yet to be studied. After solving one
limitation of the traditional data analysis, moving from verification of hypotheses to
their discovery, many data mining methods are still anchored to the statistical methods
of significance testing. Consequently, a lot of unimportant (mostly, random)
hypotheses are “discovered” in data. The fuzzy hypothesis testing is challenging this
problem.
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Abstract. Fuzzy logic has not been applied to macro-economic modelling
despite advantages this technique has over mathematical and statistical
techniques more commonly used. The use of fuzzy logic provides a technique
for modelling that makes none of the theoretical assumptions normally made in
macroeconomics. However, in order to avoid making assumptions, we need to
elicit fuzzy rules directly from the data. This is done using a genetic algorithm
search for rules that fit the data. The technique discovered rules from artificially
generated data that was consistent with the function used to generate the data.
The technique was used to discover rules that predict changes to national
consumption in order to explore the veracity of two economic theories that
propose different causes for changes in consumption. The fuzzy rules generated
illustrate a more fine-grained analysis of consumption than is predicted by
either theory alone. Predictions made using the generated rules were more
accurate following ten-fold cross validation than those made by a neural
network and a simple linear regression model on the same data.

Introduction

Macro-economic modelling and forecasting has traditionally been performed with the
exclusive use of mathematical and statistical tools. However, these tools are not
always appropriate for economic modelling because of uncertainty associated with
decision making by humans in an economy. The development of any economy is
determined by a wide range of activities performed by humans as householders,
managers, or government policy makers. Persons in each role pursue different goals
and, more importantly, base their economic plans on decision-making in vague and
often ambiguous terms. For example, a householder may make a decision on the
proportion of income to reserve as savings according to the rule- {IF my future salary
is likely to diminish, THEN I will save a greater proportion of my current salary}.
Mathematical models of human decision-making impose precise forms of continuous
functions and overlook the inherent fuzziness of the process.

In addition to imposing a crispness that may not be appropriate, mathematical and
statistical models necessarily make assumptions that derive from economic theories.
A large variety of sometimes conflicting models have emerged over the years as a
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consequence of this. Inferences drawn from a model hold only to the extent that the
economic theoretical assumptions hold yet this is often difficult to determine.

Macroeconomic researchers solely using mathematical or statistical models are
compelled to make assumptions based on their own subjective view of the world or
theoretical background and beliefs. For example, hypotheses generated by researchers
who accept Keynesian assumptions are quite different from hypotheses from Classical
theorists. Hypotheses are not only dependent upon the subjective beliefs of their
creators but can easily become obsolete. Completely different economic systems can
rise in different times in different countries and be described by different models.
Thus, if making assumptions and deriving hypotheses about an economy leads to
subjective models, and successful theories do not last long, then the following
questions arise: Is it possible to eliminate model dependence on the subjective
researcher's assumptions about features and properties of the object of study?; Can
there exist an approach that automatically generates a hypothetical basis for
constructing a model ?; Can this approach be applied in different times to different
types of economic systems ?

In this paper we introduce a modelling approach that does not rely on theoretical
assumptions or subjective fine-tuning of system parameters. We apply fuzzy theory
and use an evolutionary programming approach to pursue two goals:
1. To provide a user with a system, which better represents uncertainty caused by the

prevalence of human decision making in an economy
2. To build a forecasting model without any initial assumptions, which aims solely to

be consistent with observed economic data.

Our approach derives fuzzy rules from macro-economic data. We use an
evolutionary programming approach to search for rules that best fit the data. A user
can glance at the rules and visualise the main dependencies and trends between
variables. Moreover, if there are exogenous variables in the model presented among
input indicators, a user is able to foresee a possible impact of their simulations on
other variables of interest. For example, quickly glancing at the fuzzy rules shown in
Table 1, we can say that in order to obtain a large values of the output we need to
increase the value of exogenous variable x2.

X1
SMALL LARGE

X2 SMALL SMALL SMALL
LARGE LARGE LARGE

Table 1. Sample fuzzy rules table

We believe that fuzzy logic, though not normally used in macro-economic
modelling is suitable for capturing the uncertainty inherent in the problem domain. An
evolutionary approach to building the system can facilitate the design of a system free
of subjective assumptions, and based only on patterns in the data.

In the following section we describe the concept of hybrid fuzzy logic and genetic
algorithms. Following that we describe our method in some detail and provide an
example with data that is generated from artificial rules. In Section 5 we apply the
method to macro-economic data before outlining future directions.
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Mining forecasting fuzzy rules with genetic algorithms

Our task is to model a macro-economic environment and capture any uncertainty in a
macro-economic agent’s decision-making behaviour in order to generate predictions
of the economic system’s development in the future. We are required to mine
knowledge of this process in flexible human-like terms. The application of the fuzzy
control architecture for this forecasting problem proceeds with the following
modifications:
1. Macro-economic data is sourced from national repositories.
2. The fuzzy sets and defuzification methods are set as parameter features of the

system. No attempt is made to automatically discover membership functions.
3. The rules governing the process are required to be discovered from the data.

Research in fuzzy control focuses on the discovery of membership functions, and
independently on the fine tuning of fuzzy rules for given data. Both research strands
are aimed at adjusting a fuzzy control system to the specific data. Several researchers
[1], [3] used genetic algorithms to simultaneously find fuzzy rules and parameters of
the membership functions. However the simultaneous search for rules and
membership functions adds complexity and may not be necessary if we are dealing
with economic data. With most economic indicators there is general agreement about
the mapping of qualitative terms onto quantitative terms. Most economists would
regard a gross domestic product (GDP) rise of 1% to be low, one of 5% to be high.
There may be some disagreement surrounding a GDP value of 3% but there is
expected to be little disagreement about the precise form of the function between high
and low.

In order to reduce the complexity of the search problem, and, in light of the nature
of economic data, we do not search for near optimal membership functions but
instead determine a membership function that seems reasonable. Fuzzy rules are
discovered using an evolutionary search procedure. Fuzzy rules derived by the genetic
algorithm are applicable only to the pre-set membership functions but this is minor
limitation.

Machine learning methods have been applied to the problem of mining fuzzy rules
from data. For example, Hayashi and Imura [2] suggested a two-step procedure to
extract fuzzy rules. In the first step, a neural network (NN) was trained from sample
data. In the second step, an algorithm was used to automatically extract fuzzy rules
from the NN. Kosko [6] interprets fuzzy rules as a mapping between fuzzy
membership spaces and proposed a system, called Fuzzy Cognitive Maps, to integrate
NN and fuzzy systems. Lin and Lee [7] proposed a NN-based fuzzy logic system,
which consists of five layers. The first is linguistic input, the second and fourth are
terms representing a membership function, the third is a set of rules and the fifth is an
output. The common weaknesses of NN, however, are the lack of analytical guidance,
where all relationships are hidden in the “black box” of the network connections.
Furthermore, training neural networks is not deterministic and the learning process
may be trapped in local solutions.

Another widely used machine learning method used is the induction of fuzzy
decision trees where fuzzy entropy is used to guide the search of the most effective
decision nodes [10], [11], [13]. Although, in most situations the decision tree
induction works well, it has some limitations. According to Yuan and Zhuang [14] the
one-step-ahead node splitting without backtracking may not be able to generate the
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best tree. Another limitation is that even the best tree may not be able to present the
best set of rules [12]. Furthermore, this method has been found to be sub-optimal in
certain types of problems such as multiplexer problems [8].

In this paper we use an evolutionary approach to find fuzzy rules from macro-
economic data. Genetic algorithms have been used by Rutkowska [9] to find near-
optimal fuzzy rules and learn the shapes of membership function. Karr [4] also
focussed his work on looking for a high-performance membership function using
genetic algorithms. Yuan and Zhuang [14] discovered fuzzy rules for classification
tasks that were most correct, complete and general.

In our work, we do not seek rules that are most general, complete and correct but
initially focus only finding a complete list of rules that best describe the data. The
generalisation of rules is a manual process exercised if required. Often with systems
as complex as dynamic economies few general rules are non-trivial and more
attention is focused on specific rules. Furthermore in order to find the most general,
complete and concise rules Yuan and Zhuang [14] proposed definitions of these
concepts. The adoption of similar definitions with macro-economic data is one step
toward re-introducing theoretical assumptions in our model and was thus avoided.

In the next section we describe the procedure used to design a genetic algorithm
search for mining fuzzy rules.

Description of method

To apply the genetic algorithm search there are two main decisions to make:
1. How to code the possible solutions to the problem as a finite bit strings and
2. How to evaluate the merit of each string.

Because solutions in our case are fuzzy terms in the fuzzy rules table, we construct
the solution strings as rows of the rules table.

Theoretically, it is possible to apply this coding for genetic search in any multilevel
fuzzy rules space. But, the length of strings increases dramatically with an increase in
number of inputs, outputs and fuzzy sets, over which these inputs and outputs are
defined. We limited our examples to two inputs and one output defined over four
fuzzy sets.

Although the use of binary coding is preferable by many researchers we use integer
numbers. Binary coding can code variables, which can take only 2 values. To code
variables, which can take more than 2 values in binary coding we have to use several
genes to code each variable and deal with unused coding patterns. To avoid this
complexity and to cover the possibility of the appearance of more than two values in
each cell of fuzzy the rule table, we used integer coding. We assign numbers from 1
to N for each of N fuzzy sets defined for the output variable. Thus, each rule is
represented with the corresponding number as a gene in the coded chromosomes.

The second task concerns the determination of the fitness function. Those
chromosomes, which represent fuzzy rules that are more consistent with the data, are
considered fitter then others. We calculate the sum of squared deviation between the
output of the fuzzy control with a given set of rules and a real value of the output
indicated in the data record. This value represents a fitness function value and is used
as criteria in producing a new generation. In early trials we used a sum of modulus
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instead of the sum of squares of the difference between actual and predicted values to
measure error, and obtained almost identical results. In order to be able to compare
our system’s performance to other techniques we preferred to use the sum of squared
metric as the evaluation criteria.

The crossover and mutation procedures are quite common for genetic algorithms
and are as follows. The current population is ranked according to the values of fitness
function. The probability for each chromosome to be chosen is proportional to the
place of chromosomes in the ranked list of the current population. Chromosomes are
paired and either get directly copied into a new generation or produce a pair of
children via a crossover operation. The newly produced children are placed in the new
generation. The probability of two parents crossing over is set as a parameter of the
algorithm. The crossover procedure can have one or several crossover points. We
break the parent chromosomes in pre-determined places and mix the consequent parts
to build a new child chromosome.

The mutation process is applied to each gene of each chromosome in all
generations. The integer number in a gene randomly increases or decreases its value
by one. This allows us to represent new genes in a population for a given place in
chromosome, whilst avoiding huge changes in the original solution pattern so as to
adjust the solution toward a mutant in the neighbourhood area.

The following section presents an implementation and tests the described method
with data generated from known rules.

Example with generated data

In order to test our method we ran the system over data generated artificially. By
defining the functional dependence between input and output variables we know
exactly what the derived fuzzy rules should be.

Two inputs and one output were used to test the system. The same four fuzzy sets –
{Negative high (NH), Negative low (NL), Positive low (PL) and Positive High (PH)}
were defined over all system’s variables as shown in the Figure 1. Thus, possible
solutions representing the 4x4 fuzzy rule table were coded into 16 gene-length
chromosomes. The most popular defuzification method, centre of gravity, was
chosen. The task was to find all rules in a view {If x1 is FuzzySet(i) AND x2 is
FuzzySet(j), THEN y is FuzzySet(k)}, where i,j,k=1..4 and FuzySet(i), FuzzySet(j)
and FuzzySet(k) belong to the set - {Negative high, Negative low, Positive low and
Positive High}.
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Fig. 1. Fuzzy sets for x1, x2 and y

Artificial data was constructed as follows. One hundred random values were
generated from the interval (-5,5) for the variables x1 and x2. Then we put them
through a pre-defined function, y=(10*x1-x2)/11 and stored output. The function
y=(10*x1-x2)/11 has been chosen randomly only to demonstrate the method’s
performance. We ran the system with a crossover probability of 40%, mutation rate of
0.1% and a population size = 50. The genetic algorithm was run 50 times with
different initial populations. In 100% of these test simulations the search converged to
the solution presented in Table 3 after approximately 50 generations.

Table 3 illustrates that the search algorithm finds a “very good” solution, for data
generated by the function y=(10*x1-x2)/11. As expected, the order of fuzzy outputs
for y in the fuzzy rule table decreases with an increase in x2 and increases with an
increase in x1. This fact is consistent with the positive coefficient on variable x1 and
negative coefficient of variable x2. Moreover, the value of x1 is more significant in
determining an output y, as we would expect given the coefficient of x1 is 10 times
larger than that for x2 in the function. This fact can be observed in the first and the
fourth row, where the values for y are Negative high and Positive high respectively
regardless of the values of x1. The rest of the cells also confirm that positive values of
x1 are more prominent in determining the value of y than negative values of x2 and
visa versa.

X2
NH NL PL PH

X1   NH NH NH NH NH
NL PL NL NL NH
PL PL PL PL NL
PH PH PH PH PH

Table 2. Fuzzy rules for the dummy data

The next section describes an example of applying the algorithm to real world
economic data.

Example with economic data looking for theoretical assumptions
e.g. keynesian theory

In this section, in order to test the algorithm with real economic data, we chose
economic indicators with well-known interrelationships. The Keynesian General
Theory is based on a fundamental assumption that the level of national income
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determines the level of consumption [5]. In his famous multiplier model he introduces
an increasing function C=f(Y), where C is consumption and Y is a national income.
This hypothesis has been quite successfully tested in many developed countries.

According to classical economic theory, interest rates impact on the level of
consumption,. Classical theorists provide the following reasoning to support this
hypothesis. If the level of interest rates rise, then people expect to earn more money in
the future on each dollar saved in the present. More people will therefore prefer not to
spend today, but wait for a future time when they will have more to spend. Provided a
given level of Production Output or National Income, more savings mean less
consumption.

In our study we expect to find evidence for well-known associations depicted by
both Keynesian and Classical theories. Economic data, describing dynamics of these
indicators in the United States was obtained from The Federal Reserve Bank of St
Louise. The records were collected on a regular basis from 1960 till 1997.

We compared our fuzzy rules generation method with linear regression and feed-
forward neural network on the same Federal Reserve Bank data.

Data transformation took the form transforming actual quarterly values of
consumption and national income into changes in those values over a quarter. 150
records representing change from one quarter to the next was collected. This data
allowed us to make our system more sensitive to changes in the modelling economic
indicators.

The first input is the change over a quarter period of the level of national income.
The second input is the change in the interest rate over a quarter. The output was
changes in the level of real personal consumption over a quarter. The interval of real
values of inputs and the output were set from minimum and maximum observed
changes in the corresponding variables. The four fuzzy sets – {Negative high (NH),
Negative low (NL), Positive low (PL) and Positive High (PH)} were set in a manner
illustrated in Figure 1. The choice of fuzzy sets is supported by the importance in
economic modelling to distinguish between an increase and a decrease in the control
variable, which reflected in the negative or positive direction of the changes.
Furthermore, it is valuable to distinguish between different degrees of change,
therefore high and low fuzzy sets are distributed over both positive and negative sides
of the variables domain.

Ten fold cross-validation was used with hold out sets of size 15 and training sets of
size 135. For each cross validation set, fuzzy rules were generated as described above.
The sum of square of differences between consumption predicted by the fuzzy rules
and actual consumption on the test set was recorded. This was repeated with a simple
linear regression model and also with a feed-forward neural network trained with
back-propagation of errors (3 layer, learning rate = 0.2, no improvement in error rates
after 40-55 epochs). Table 4 illustrates the median, average and standard deviation of
the sum of square of the difference between predicted and actual change in
consumption for the fuzzy rules, neural network and linear regression over the ten
cross-validation sets.
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Table 3. Comparison of fuzzy rules, neural network and linear regression

The fuzzy rules generated by the genetic algorithm method proposed here
performed very well in comparison to a linear regression model. This was perhaps to
be expected because the relationship between changes in national income, interest
rates and consumption is expected to be more complex than a simple linear one.
Neural networks can capture non-linear relationships and the networks trained
performed better than the linear regression models. However, the performance of the
fuzzy rules was comparable to the trained networks.

The table of rules is included in Table 4 where Y is change in national income and
I is change in interest rates. The fuzzy rules predict change in consumption.

I
NH NL PL PH

Y   NH PH PL NH NL
NL NH NL NL NL
PL NL PL PL NL
PH PH PH PH NL

Table 4. An optimal set of fuzzy rules for the data of Example 2.

The black box nature of neural networks is a distinct disadvantage for the analysis
of macro-economic data. In contrast, as Table 4 illustrates, fuzzy rules generated
without any theoretical assumptions can be used to explore patterns and to even assess
the veracity of theories. To perform this assessment let us summarise search results in
light of both theories. Firstly, taking into account that both types of economists
usually assume consumption dependencies close to linear we can approximately
define them in rule view as it shown in Table 5. Then, The Table 6 can be interpreted
as to what degree it confirm either or both theories.

I C Y C NH NL PL PH
NH PH NH NH NH Classical Classical Cl. & Kn. Cl. & Kn.
NL PL NL NL NL Keynesian Keynesian Cl. & Kn. Cl. & Kn.
PL NL PL PL PL Cl. & Kn. Keynesian Classical
PH NH PH PH PH Cl. & Kn. Cl. & Kn. Keynesian Classical

Table 5. Classical and Keynesian consumption dependecies Table 6. Rules interpretetion

The selected part of the table is areas where two theories do not contrivers each
other and both theories are confirmed by the rules. In fact, according to the table 5,
when interest rates rise and national income falls, then consumption shrinks and, on
the other corner, when interest rate fall and national income rise, consumption rises.
The (Y-PL, I-NH) cell is the only exception to the theory predictions in these areas.

In the rest of the table we can observe that high rises in interest rates make
consumption behaviour classically, while under low rises in interest rates it confirms
to Keynesian theory. Regarding national income, under high decrease in national
income consumption reacts in classical manner, while low decreases in national
income consumption is determined in Keynesian way.
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cross validation sets.
Fuzzy rules Neural network Linear regression

Mean 14.75 17.31 23.25
Std. Deviation 5.5 5.56 10.42
Median 13.59 15.4 21.98



Conclusions

In this paper we demonstrated an application of fuzzy logic to macro-economic
modelling.  Despite benefits, fuzzy logic has not been used as widely as mathematical
and statistical techniques for this purpose. Our use of fuzzy logic makes none of the
theoretical assumptions normally made in macroeconomics and is more intuitive.  We
elicited fuzzy rules directly from macro-economic data using a genetic algorithm
search for rules that best fit the data. The technique was evaluated initially with
artificially generated data and then with data from the US economy. Fuzzy rules were
successfully discovered that described the function used to generate the artificial data.
Furthermore, fuzzy rules generated from real economic data provided a fine grained
analysis of economic activity and was used to explore the relationship between two
diverse economic theories.  The fuzzy rules generated by this approach were
compared for predictive accuracy with a linear regression model and with a neural
network.  The fuzzy rules out-performed both approaches.
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Abstract. In the most of adaptive fuzzy control schemes presented so far still only the 
parameters (weights of each rule’s consequent), which appear linearly in the radial 
basis function (RBF) expansion, were tuned. The major disadvantage is that the 
precision of the parameterized fuzzy approximator can not be guaranteed. 
Consequently, the control performance has been influenced. In this paper, we not only 
tune the weighting parameters but tune the variances which appears nonlinearly in the 
RBF to reduce the approximation error and improve control performance, using a 
lemma by Annaswamy et al (1998) which was named as concave/convex 
parameterization. Global boundedness of the overall adaptive system and tracking to 
within precision are established with the proposed adaptive controller. 

1. Introduction 
The application of fuzzy set theory to control problems has been the focus of numerous 
studies. The motivation is that the fuzzy set theory provides an alternative way into the 
traditional modeling and design of control systems when system knowledge and 
dynamic models in the traditional sense are uncertain and time varying. In spite of 
many successes, fuzzy control has not been viewed as rigorous approach due to the lack 
of .formal synthesis techniques, which guarantee the basis requirements for control 
system such as global stability. Recently, various adaptive fuzzy control schemes have 
been proposed to deal with nonlinear systems with poorly understood dynamics by 
using the parameterized fuzzy approximator [ 1-31. However, most of the schemes 
presented so far still only the parameters (weights of each rule’s consequent), which 
appear linearly in the radial basis function (RBF) expansion, were tuned. The major 
disadvantage is that the precision of the parameterized fuzzy approximator can not be 
guaranteed, therefore, the control performance may be affected. In the RBF expansion, 
three parameter vectors are used, which are named as connection weights, variances 
and centers. Recently, very few results are available for adjustment of nonlinearly 
parameterized systems. Though the gradient approaches were used [4-61, however, the 
way of fusing into the adaptive fuzzy control schemes to generate a global stability is 
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still left behind. The desirable approach will be apparently to tune the three parameter 
vectors simultaneously. However, it can definitely lead complicated algorithms and 
cost of calculation. Since the RBF expansion is just a kind of approximetor and nothing 
more, we can refer to neural networks, which has perfect ability of approximation as 
known. In the neural network, it is sufficient to tune the weights and variances in 
general due to improve the precision to approximation, whereas the centers are simply 
placed on a regular mesh covering a relevant region of system space. In this paper, 
using a lemma by Annaswamy et al which was named as concave/convex 
parameterization [7], we not only tune the weighting parameters, but tune the 
variances, which appear nonlinearly in the RBF to reduce the approximation error and 
improve control performance. Global boundedness of the overall adaptive system and 
tracking to within precision are established with the proposed adaptive controller. 

2. Problem Statement 
This paper focuses our attention on the design of adaptive control algorithms for a class 
of dynamic systems whose equation of motion can be expressed in the canonical form: 

where u(t)  is the control input, f(.) and g(.) are unknown linear or nonlinear function 
and b is the control gain. It should be noted that more general classes of nonlinear 
control problems can be transformed into this structure [8]. 
The control objective is to force the state X ( t )  - E ( t ) ~ ( f ) , . . . . ~ ( ~ - ' ) ( t ) I  to follow a 
specified desired trajectory, X, (t) - [x, @),id (t),---,xr-')(t)I . Defining the tracking error 
vector, k(t) - X ( t )  - X , ( t ) ,  the problem is thus to design a control low u(t)  which 
ensures that k(r) --* 0 ,  as t --* 00 . For simplicity in this initial discussion, we take b = 1 

in the subsequent development. 

x(")  ( t )  + f (x(t),i(t); - - ,x("-') (t )) = b(x(t ) , i( t  ),- - - ,x("-*) (t))u(t ) (1) 

3. Fuzzy System 

Assume that there are N rules in considered fuzzy system and each of which has the 
following form: 

R, :IFx, is A f and x2 is A; and-s-and x,, is A,n, THEN zis B, 
where j = 1,2,..., N , x,(i  - 1,2,...,n) are the input variables to the fuzzy system, z is 
the output variable of the fuzzy system, and A; and B, are linguistic terms 
characterised by fuzzy membership functions p I ( x i )  and pB, (2)  , respectively. As in 
[2], we consider a subset of the fuzzy systems with singleton fizzifer, product 
inference, and Gaussian membership finction. Hence, such a fuzzy system can be 
written as 

A! 
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where h :  UCR" + R ,  X - ( x ~ , x ~ , . - - , x ~ ) E U  ; oj is the point in R at 

which pBj (a j )  -1 ,  named as the connection weight; p ( x i )  is the Gaussian 
Al 

where E ; ,  of, are real-valued parameters. Contrary on the traditional notation, in this 
paper we use $/of, to represent the variance just for the convenience of later 
development. 
Definition 1 : Define fuzzy basis functions (FBF's) as 

where pAi ( x i )  are 

to a FBF expansion 
E j  - ( E ; ' E f ' . - ' s ; )  and 

the Gaussian membership functions defined in (3), 

uj  = ( a ~ , ~ ~ , - - - ~ u ~ ) .  Then, the fuzzy system (2) is equivalent 

Remark: It is obvious that g (.) is convex and -g (-) is concave with respect to aj  . 
The definitions of the concave and convex can be refer to [7]. 

Theorem 1:  For any given real continuous function f on the compact set U E R" and 
arbitrary E~ > 0,  there exists optimal FBF expansion h ( X ) E A  such that 

suplf(X)-h'(X)l  < ' h  (6) 
X W  

This theorem states that the FBF expansion (5) is universal approximator on a compact 
set. Since the fuzzy universal approximator is characterized by parameters w j  , uj  and 
f j  , the optimal h' ( X )  contains optimal parameters w; , a; and E ;  . 
Without doubt, the desirable approach is to tune the three parameter vectors 
simultaneously. However, it can lead to complicated algorithms and cost of calculation 
definitely. Since in this paper, the FBF expansion is just a kind of approximator and 
nothing more, we can refer to neural networks, which has perfect ability of 
approximation as known. In the neural network, it is sufficient to tune the weights and 
variances in general due to improve the precision to approximation, whereas the centers 
are simply places on a regular mesh covering a relevant region of system space. 
To guarantee the stability of proposed adaptive fuzzy system, we lead the algorithm 
into a min-max problem in LP. Though solving the Min-max problem is an ordinary 
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problem in LP and there are a lot of approaches [9-lo], the most of the approaches are 
with a complicated procedure. In this paper, we use a lemma by Annaswamy et al 
which was named as concave/convex parameterization to develop adaptive fuzzy 
control system. 

4. A Solution of Min-Max Problem 

Let's consider a scalar function f ($(t),e) , which is continuous and bounded with 
respect to its arguments. e is an unknown parameter vector and belongs to a known 
hypercube 8 ER" , $(t)ER" is a known bounded function of X , and for any # ( t ) ,  

f ($(t),e) is either convex or concave on 8,, where 6, is a simplex in R" such that 

6, 3 0 . Suppose that vertices of 6, are denoted as OSi ( i  = 1,2,.--,n ). Then $, may 
be expressed as 

8, =Is 
Theorem 2: a' and K are the solutions of the min-max optimizations as follows: 

(7) 

K = arg min max pJ(0,e) 
O E R ~  em, 

where 6 €0, and is a known non-zero constant. Then 

A, if ff is convex on 8, 
Vf, if pf is concave on 8, (1 1) K' =[ if flf is convex on 6, 

if /3f is concave on 8, ' 
a* -r o 

where Vf, = df /ae, A = h,4T = G-%, A, is a scalar, A, ER" 

sti' - f , , )  

sti' - fs2) 

sti' - fS"+l) 

and f s i  f ($3 'si * 

Remarks: 
1) The solution to such an LP problem will generally involve numerical searches over 

the feasible set of solutions. The above Theorem introduced the simplex, 8,, 
precisely to avoid such a search. 
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2) To decide the solutions in (ll), the Theorem2 requires that either convex or concave 
of pf would be known. Moreover /? is a known non-zero constant. This is a strict 
restriction to apply the theorem into some applications. Though the convex/concave 
of discussed function f is known, however, the sign of /I could not be unknown 
generally. To deal with the problem, we introduce a concept of one-to-one mapping 
in the next section. 

We are now ready to develop the adaptive fuzzy control system in which the parameters 
0 and a will be tuning and the stability of system will be ensured. 

5. Adaptive Fuzzy Control System 

Firstly applying the Theorem 1, unknown function in (1) can be approximated by a 
fuzzy approximator f (X) , 

Where 0; ER and a; = (of’,a:’ ,---,a;*) are optimal parameters for unknown function 
f (X) in (1). It is reasonable to suppose that it exists a known constant E ,  > 0 ,  so that 
the approximation error E , defrned as in (18), satisfies that s cf . 

E - f (X) - f (XI (14) 

Normally, the unknown parameters values 0; and a; are replaced by their estimates 

uij and 6, , and the estimate function f(X) = C : , d , g j ( 6 j I I X  -Ej l l )=  zy-,&,gj(t?,) ,  

instead of f *(X) , is used to approximate the unknown function f (X) . The parameter 

in the estimate function f(X) should then be stably tuned to provide effective tracking 

control architecture. Define the estimation errors of the parameters as 

As in [2], an error metric is defined as 
G j  -0;  - h j ,  Z j  =a; - G j  (15) 

n -1 

s ( r ) = ( i + A )  z(r) with A > O  

which can be rewritten as s( t )  = Arz ( r )  with Ar - [A”-’,(n -1)A”-2 ,.-.,l] . The equation 
s(r) = 0 defines a time-varying hyperplane in R” on which the tracking error vector 
decays exponentially to zero, so that perfect tracking can be asymptotically obtained by 
maintaining this condition. In this case the control objective becomes the design of 
controller to force s(r) = 0 . The time derivative of the error metric can be written as 

S(t) = -xf’(t) + A;Z(t) +U - f (X) (17) 
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where A; = [O,A."-' ,(n - 1)A"-' ,.. - ,(n - l)A] . 
Our adaptive control law is now described below: 

u(t)  = -kds(t) + xf')(t)  - Atz(?)  + j(X) - (a' + cf )sgn(s) (18) 

(19) &(t) = -A js(t)g (& ) 

ej  = - P j K j S ( t )  (20) 

where A, and P j  ERN"""' are rates of adaptation, a' E R  and K; ERN"' will lead to 

global stability and be clear as follows. 
Consider Liapunov function candidate 

Time derivative of V is given, 

] (22) r;(t)= -k,s2(t)  - & s ( t )  - E f  Is(t)l- s ( t )  (0; (s (a;) - g (& j ) )+  K; (Gj -a; ))+ a' sgn(s) [2 
We now consider three cases, (a) ~ ( t )  = 0 ,  (b) s(t )  < 0 and (c) s(t )  > 0 ,  and show that 
v(t) s 0 in the three cases. 
(a) s( t )  - 0 .  

It is clear that v(t) = 0 . 

It follows that P(t)  s 0 if 
(b) s ( t ) < O .  

Therefore, we choose 

Since the form of the controller in equation (21) suggests that the quantity a* in like a 
gain, we seek to find an K ;  so that a* is minimized. Hence our goal is to choose K; as 

Performing the min-max optimization to find a'and K ;  is needed to complete the 
controller design. As a PL problem, there are a lot of algorithms [9-101 to solve the 
values of a* and K; , however it generally involves a numerical search over the feasible 
set of solutions with a complicated procedure. Hence, we use the theorem 2 to solve the 
values of a' and K ;  in (25). Though at first glance, the Theorem 2 looks like providing 
a way to solve the values, however, in order to determine that the function o i g  (a j )  is 
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either convex or concave, the sign of o; must be known. Namely, because g,(a,)is 
convex on 8 , so o ; g  (a,) will be convex when o; z 0 and concave when o; < 0 . 
Hence it is obvious that the Theorem 2 can not apply directly, since it does not show us 
any clue on how to determine the sign of 0;.  

Since oi is the optimal weights in (6), it is reasonable to assume that the range of wi is 
known, i.e., 0; ~ [ o : , , o : ~ ] .  Now, we set up a new parameter p ,  E[pmin ,pmu] ,  the 
boundaries pmin and p ,  are positive constants, which can be chosen by the designer. 
To deal with the problem of sign of o;, we introduce the following one-to-one 
mapping: 

where 

o; = m + n p j ;  p ,  > O  

. . . 
(> 0) 

w,--o,, II = Wmax - o m i n  

Pmx - P m i n  P m a x  - P m i n  
m = omin - P m i n  , 

Substituting (26-27) to (25), we have 

where 

Remark: The either convex or concave of w: ,g , (a j )  and n(p j  - p m i n ) g j ( a , )  could be 
determined in both (29) and (30) via the one-to-one mapping, since the sign of oiin is 
known by the assumption and n(p, -pmin)  > 0 . 

Now applying the Theorem 2 straightforwardly, we can get the solutions of a]* 

a; , K,; and K;, as follows, 

where Aj - [Ajl,Aj2] = G 7 b j ,  A,, is a scalar, Aj2 ERN" , 

G, = 

1 -1 0lin(6, -0,J 

I Y bj a 
-1 0 i i n ( G j  -ajs2)' 
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and 

where Bj = [Bj,,Bj2f =GJ'bj, B j ,  is a scalar, B j 2  E R N " ,  

Gi = 

We can get the solutions of a; , a; , x1; and K i j  as follows, 

Gj = 

and 

(39) 

The stability of the closed-loop system described by (1), (18-20), (28), (31-35) and 
(38-40) is established in the following theorem. 
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Theorem 3: If the robust adaptive control (18-20), (28), (31-35) and (38-40) is applied 
to the nonlinear plant (l), then all closed-loop signals are bounded and z(t) + 0 as 
t - m .  

6. Conclusion 
The novel feature of results in this paper is that, thanks to Min-max’s solutions of 
Annaswamy et a2 which could simplify the procedures of our proposed algorithm, a 
new adaptive fuzzy control law is presented. The adaptive fuzzy control law is capable 
of stably turning the parameters which appear nonlinearly in the fuzzy approximator in 
an effort to reduce appximation error and improve control performance. The developed 
controller guarantees the global stability of the resulting closed-loop system in the 
sense that all signals involved are uniformly bounded and tracking to within a desired 
precision. Hereafter, we will verify our theoretic analysis by computer simlation. 
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Abstract. This paper presents a new approach to controlling chaotic
systems using fuzzy regulators. The relaxed stability conditions and LMI
(Linear Matrix Inequalities) based designs for a fuzzy regulator are used
to construct a fuzzy attractive domain, in which a global solution is ob-
tained so as to achieve the desired stability condition of the closed-loop
system. In the control of chaotic systems, we use two-phases of control,
first phase uses an open-loop control with inherent chaotic features of
the system itself and a fuzzy model-based controller is employed under
state feedback control in the second phase of control. The Henon map is
employed to illustrate the above design procedure.

Keywords: Chaotic systems, Fuzzy model-based control, Evolutionary
computation, Nonlinear dynamics, System stability, Lyapunov function.

1 Introduction

Recently, development of chaos theory brings up scientist into a new era in an-
alyzing nonlinear systems. It is known that the chaos exhibits a deterministic
random behavior. Yet it needs more investigation on such nonlinear systems in
designing control algorithms. Edward Lorenze, the first experimenter in chaos
was a meteorologist and described his model of weather prediction phenomena
with a set of nonlinear differential equations in 1963. Among the various meth-
ods available to analyze such nonlinear systems, there exist fixed point analysis,
linearization, Pioncare map, Lyapunov method, spectral analysis, fractal, chaos
etc. [1,2,8]. Employing intended deterministic chaos to control nonlinear dynam-
ical systems is an interesting in the development of control theory [1]. In this
method, it is proposed that in a nonlinear dynamic system, a chaotic attraction
can be formed by an appropriate usage of open-loop control until the system

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 248–256, 1999.
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states converge within a specified area of attractive domain and then a state
feedback control can be used to converge the system states to desired values.
In this approach, the usage of state feedback control involves finding a largest
level curve based on Lyapunov stability condition in advance. However this op-
timization problem will generally have multiple local minima. Therefore to find
a global minimum, almost all such local minima have to be identified with trial
and error. That implies the complexity of this approach.

Recent advances in LMI (Linear Matrix Inequalities) theory [3,4,5,10] allowed
to handle nonlinear control system problems, via semi-definite programming.
For an example, stability condition is guaranteed by the well-known Lyapunov
approach [7] for fuzzy model-regulators and the LMI tool searches the solution
space subjected to various constraints. In particular, Takagi-Sugeno (T-S) fuzzy
model plays an important role in designing such fuzzy regulators [4,5,7]. In fact,
the fuzzy model-based control (FMC) can be applied very well to nonlinear
dynamic systems, this attempt also implies the ability of controlling chaotic
systems via FMC.

In the control of chaotic systems, there are two phases of control. First phase
uses an open-loop control such that the inherent chaotic features attract the
states to a desired area as studied in [1]. Once the system has entered a specified
area, open-loop control is cut off and the second phase of control is adopted. In
the proposed second phase, an FMC is employed under state feedback control; it
has been implemented by employing a set of IF-THEN fuzzy rules and assuring
the global stability of domain constructed by the total FMC. For this purpose,
the state feedback gain scheduling of the control system in the second phase is
achieved by solving a set of LMIs via an optimization technique based on evolu-
tionary computation. The rest of the paper is organized as follows: In section 2,
introduction of dynamic system modeling and FMC are reviewed. The proposed
fuzzy-chaos hybrid control scheme is presented in section 3. Finally, the chaotic
system, Henon map is taken into consideration to illustrate the design proce-
dure and a simulation result of the fuzzy model-based regulator is presented in
section 4.

2 System Modeling

Inherent chaotic characteristics can be useful in moving a system to various
points in state space. In the proposed method, this feature is used to drive
the system states to a pre-defined domain C. An appropriate open-loop con-
trol (OLC) input can be employed to create chaos or to use chaos in a nonlin-
ear system itself. Once it reaches to the pre-defined fuzzy attractive domain, a
fuzzy model-based controller (FMC) is employed under state feedback control
to achieve desired target. This design concept is schematically given in Fig. 1 for
a two dimensional case. Here it is intended to drive the system state P1 to P3.
The feedback controller design is based on multiple linearizations around a sin-
gle equilibrium point, i.e., so called off-equilibrium linearizations. It is known [7]
that the method will significantly improve the transient dynamics of the control
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system for a general control problem. Rather, it is interesting to note that such
a technique is useful for constructing a globally stable fuzzy attraction domain
without trial and error.
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Fig. 1. Fuzzy-chaos hybrid control scheme

2.1 Off-Equilibrium Linearization

Nonlinear dynamic continuous time systems (CS) can be described by nonlin-
ear differential equations [1,2] (or difference equations for discrete time sys-
tems (DS)) as

ẋ = F (x,u) for CS
x(t+ 1) = F (x,u) for DS (1)

where x∈Rn is the state vector and u∈Rm gives the control input vector of the
systems. The equilibrium points (x̄, ū) (or fixed points) of the dynamic system
satisfy

ε = {(x,u)∈Rn+m | F (x̄, ū) = 0 } for CS
ε = {(x,u)∈Rn+m | x̄ = F (x̄, ū) } for DS (2)

In this paper, it is proposed to select a suitable set of off-equilibrium points
such that all the subsystems compose a convex region C∈Rn+1 which keeps the
equilibrium point (x̄, ū)∈C. More generally, n-dimensional state space system
needs at least n+ 1 off-equilibrium points which represent the convex region to
ensure the stability of a particular subsystem.

Neglecting higher order terms, we obtain a linearized model around any ar-
bitrary point (x0,u0)∈ C as follows:

ẋ = A0(x− x0) +B0(u− u0) + F (x0,u0) for CS
x(t+ 1) = A0(x− x0) +B0(u− u0) + F (x0,u0) for DS (3)
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where

A0 =
∂F

∂x
(x0,u0)

B0 =
∂F

∂u
(x0,u0)

For an example, two dimensional state space model needs three off-equlibrium
points such that the equilibrium point lies on the center of mass of an equilateral
triangle keeping its corners on the three off-equilibrium points.

2.2 Fuzzy Models and Regulators

The dynamics of the nonlinear system are approximated near an arbitrary point
(x0,u0)∈ C. Then, equation (3) can be rewritten in the form:

ẋ = A0x +B0u + d0 for CS
x(t+ 1) = A0x +B0u + d0 for DS (4)

where d0 = F (x0,u0)−A0x0−B0u0. Note here that an arbitrary point (x0,u0)
need not be an equilibrium point (x̄, ū).

Fuzzy models due to Takagi-Sugeno consist of a set of IF-THEN rules [7] for
the above approximate systems. The ith plant rule of each subsystems for both
continuous-time and discrete-time fuzzy systems is given by

IF z1(t) is Mi1 and...and zp(t) is Mip

THEN






ẋ(t) = Aix(t) +Biu(t) + di for CS
x(t+ 1) = Aix(t) +Biu(t) + di for DS

y(t) = Cix(t) i = 1, ..., r

(5)

where r is the number of fuzzy rules and Mij (i = 1, ..., r and j = 1, ..., p) are
the fuzzy sets. The state vector is x(t) ∈ Rn, input vector is u(t) ∈ Rm and the
output vector is given by y(t) ∈ Rq. Ai, Bi and Ci are the system parameter
matrices and di is the offset term of the ith fuzzy model. For a given state,
z1(t), ..., zp(t) are the premise variables (or antecedent inputs).

Subjecting to the parallel distributed compensation, we can design the fol-
lowing fuzzy regulators:

Regulator Rule i :
IF z1(t) is Mi1 and...and zp(t) is Mip

THEN u(t) = −Ki[x(t)− xr] + ur, i = 1, ..., r

for the fuzzy models (5), where xr is a state reference trajectory, ur is the
corresponding input trajectory, and Ki is the local feedback gain matrix. Thus,
the fuzzy regulator rules have linear state-feedback laws in the consequent parts
and the overall fuzzy regulator can be reduced to

u(t) = −
r∑

i=1

hi(z(t))Ki[x(t)− xr] + ur (6)
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where

z(t) = [z1(t), ..., zp(t)]

wi(z(t)) =
p∏

j=1

Mij(zj(t)), hi(z(t)) =
wi(z(t))∑r
l=1 wl(z(t))

for all t, in which Mij(zj(t)) denotes the confidence (or grade) of membership
of zj(t) in Mij .

3 Fuzzy-Chaos Hybrid Controller

In order to control the original nonlinear system with a chaotic input in the
open-loop system or a fuzzy controller in the closed-loop system, a fuzzy-chaos
hybrid control scheme is proposed here. Such a control scheme can be considered
in two cases, depending on the choice of equilibrium points as the reference.

3.1 Stabilization of a Prespecified Equilibrium Point

In this case, the fuzzy-chaos hybrid control can be implemented by

IF
r∑

i=1

wi(z(t)) ≡ 0 THEN

u(t) = û(t)
ELSE (7)

u(t) = −
r∑

i=1

hi(z(t))Ki[x(t)− x̄] + ū

where û(t) is an open-loop input to make the original nonlinear system chaotic
and (x̄, ū) is the prespecified equilibrium point which would be stabilized.

3.2 Stabilization of any Equilibrium Point

If the stabilized equilibrium point is arbitrary among all the equilibrium points,
the above fuzzy-chaos hybrid control can be modified as follows.

IF
r∑

i=1

wi(z(t)) ≡ 0 THEN

u(t) = û(t)
ELSE (8)

imax = max{h1(z(t)), ..., hr(z(t))}
u(t) = −Kimax [x− x̄max] + ūmax
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where imax denotes the rule number that has largest rule confidence, Kimax is the
corresponding feedback gain matrix, and (x̄max, ūmax) is an equilibrium point
existing in the fuzzy attractive domain constructed by using the imax-th rule.

Gain scheduling of the feedback controller is determined by employing a set
of LMIs [3] and eigenvalue minimization algorithm was developed to determine
the positive definite and positive semi-definite matrices associated with various
linear matrix inequalities, using evolutionary computation technique by making
a penalty for an individual which violates the inequality condition. This opti-
mization problem can be also efficiently solved by means of recently developed
interior-point methods [5].

4 Design Example and Results

4.1 Henon Map

In this example, the chaotic system, Henon map, is presented to illustrate the
proposed design procedure. The nonlinear dynamic equations of the Henon map
are given by

x1(t+ 1) = −1.4x2
1 + x2 + 1

x2(t+ 1) = 0.3x1 (9)

Fixed points of the system of difference equations (9) are satisfied as the equa-
tion (2), resulting two fixed-points (0.6314, 0.1894) and (−1.1314, − 0.3394).
Therefore, we can design two convex regions which correspond to two fixed-
points. Here we select a triple point sub-region (Aix(t) + Biu(t) for i = 1, 2, 3)
such that it surrounds the fixed-point (xa = 0.6314, xb = 0.1894) as shown in
Fig. 2. The equilibrium point lies on the center of mass of an equilateral triangle
having the coordinates (xa1, xb1), (xa, xb2) and (xa3, xb1) in order to determine
the common P and common Q.

The open-loop control input to the system (9) u is selected as in equation (10)
in implementing the desired control system.

x1(t+ 1) = −1.4x2
1 + x2 + 1 + u

x2(t+ 1) = 0.3x1 (10)

Three linearized models corresponded to the first fixed-point are given below
taking (xa − xa1) = 0.2.

A1 =
[−1.4878 1

0.3 0

]
, B1 =

[
1
0

]
; A2 =

[−1.7678 1
0.3 0

]
, B2 =

[
1
0

]

A3 =
[−2.0478 1

0.3 0

]
, B3 =

[
1
0

]
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Fig. 2. Tripple point sub-system (i = 1, 2, 3) and its membership functions

The same procedure is repeated to select the next sub-region (Aix(t)+Biu(t)
for i = 4, 5, 6) around the second fixed-point and the three linearized models are
given below.

A4 =
[

3.4478 1
0.3 0

]
, B4 =

[
1
0

]
; A5 =

[
3.1678 1

0.3 0

]
, B5 =

[
1
0

]

A6 =
[

2.8878 1
0.3 0

]
, B6 =

[
1
0

]

4.2 Calculation of Feedback Gains

Gain scheduling of the above problem can be formulated as an optimization
problem with the LMIs [3] and it is solved by using an optimization technique
based on evolutionary computation [9]. Here we obtain the common P and com-
mon Q for the first fixed-point guaranteeing the stability. We obtained the P1

and Q1 as follows at β = 0.6020 (s = 3):

P1 =
[

292.519 39.7689
39.76891 535.242

]
, Q1 =

[
13.8323 15.8108
15.8108 142.855

]

Similarly, P2 and Q2 matrices associated with the second fixed-point can be
obtained as follows at β = 0.9581 (s = 3):

P2 =
[

633.277 29.3221
29.3221 656.3649

]
, Q2 =

[
55.4408 30.5980
30.5980 76.9469

]

The gains K1, K2 and K3 are obtained as below providing the global stability
of the fuzzy control system for the first sub-region,

K1 = [−0.3318 1.0329] , K2 = [−1.2171 0.7717]
K3 = [−2.1002 0.5644]
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Similarly, the gains K4, K5 and K6 are obtained for the second sub-region as
follows:

K4 = [3.4272 0.7360] , K5 = [3.8298 1.5356]
K6 = [2.6047 0.8615]

Based on the methodology, as proposed in section 2, the Henon map is controlled
by a fuzzy-chaos hybrid controller. Since the system has been already a chaotic,
it can be used for the first phase of control with no input (û = 0). Once the
system states reach to one of the above two sub-domains, fuzzy controller will
drive the system towards the fixed point. For example, by using the above gains
Ki (i = 1, 2, 3), the fuzzy controller is constructed from the following IF-THEN
rule base:

R1 : IF x1 is PS AND x2 is PS
THEN K = K1

R2 : IF x1 is P AND x2 is PB
THEN K = K2

R3 : IF x1 is PB AND x2 is PS
THEN K = K3

(11)

where PS, P and PB represent the words positive small, positive and posi-
tive big respectively. In order to verify the above design procedure in sections 2
and 3, the proposed fuzzy-chaos hybrid controller is applied to the chaotic sys-
tem (9). Here we allow the system to drive its states towards one of the above
two fixed points chaotically. The rule base (8) was employed here to construct
the controller as follows:

IF
6∑

i=1

wi(z(t)) ≡ 0

u = û = 0
ELSE

u = −Kimax [x− x̄imax ] (i = 1, ..., 6) (12)

where Kimax is the gain which corresponds to wimax(k) (i = 1, ..., 6). Figure 3
shows the resulting trajectory of the chaotic system controlled by the proposed
controller starting from (−0.3, 0).

5 Conclusions

Inherent chaotic features have been used to drive the system states to a prede-
fined domain using an OLC. Once it reaches to the predefined fuzzy attractive
domain, a fuzzy model-based controller is employed under state feedback control
to achieve reference target. Eigenvalue minimization algorithm was used to de-
termine the positive definite and positive semi-definite matrices associated with
various LMIs, using evolutionary computation technique.
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Fig. 3. Trajectory of the controlled Henon map starting from (−0.3, 0).

In the example, the Henon map was driven by chaotic system itself before
reaching the fuzzy attractive domain with no control input. Once it reaches to
one of the two fuzzy domains, a fuzzy model-based controller drives the system
towards the equilibrium point. The simulation result has shown the good tracking
performance of the proposed controller in spite of the uncertainties of the chaotic
system. Thus, the proposed methodology is useful for the design of nonlinear
control systems which exhibit deterministic random-behaviors.
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Abstract. The behavior based approach has been actively used in many
applications of intelligent robots due to the advantages of dividing the
control system according to the task achieving behaviors over the conven-
tional method in which the division is based on functions. One important
application that had been done is for a mobile robot to reach a target
while avoiding obstacles. The objective of this paper is for a multi-link
manipulator to reach a target while avoiding obstacles by using a fuzzy
behavior-based control approach. The control system that had been ap-
plied to the mobile robot in the previous work, is modified to suit to
the manipulator. Fuzzy behavior elements are trained by a genetic algo-
rithm. An additional component is also introduced in order to overcome
the gravitational effect. Simulation results show that the manipulator
reaches the target with an acceptable solution.

Keywords: Manipulator, Fuzzy control, Behavior-based control system,
Obstacle avoidance, Genetic algorithms

1 Introduction

Brooks [1] proposed a new architecture called “Subsumption Architecture” for
controlling a mobile robot. Layers of control system were built to let the robot
operate at increasing level of competence. Decomposition of the control system
was based on task achieving behaviors. This behavior-based control has been
actively applied to several intelligent robots [2,3,4,5,6]. Watanabe and Isumi [5]
studied a fuzzy behavior-based control system for a mobile robot by applying
the concept of subsumption-like architecture using soft computing techniques, in
which a simple fuzzy reasoning was assigned to one elemental behavior consisting
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of a single input-output relation, and then two consequent results from two
behavioral groups were competed or cooperated.

On the other hand, Rahnanian-shahri and Troch [7] presented a new method
to on-line collision-avoidance of redundant manipulators with obstacles. Ding
and Chang [8] introduced a real-time planning algorithm for avoidance of redun-
dant robots in collision-free trajectory planning. Nearchou and Aspragathos [9]
presented an algorithm for Cartesian trajectory by redundant robots in environ-
ments with obstacles. It should be noted that all the above mentioned works are
based on trajectory planning while avoiding obstacles, but none of them is based
on behavior-based control strategy.

A fuzzy behavior-based control method developed in references [4] and [5]
is used to control a multi-link manipulator to reach a target while avoiding
obstacles in this work. The basic concept used for the mobile manipulator [4,5]
is applied with some modifications. Thus, a fuzzy behavior-based control system
is applied to three-degree-of-freedom, three-link manipulator to reach a target
from a given point while avoiding obstacles.

2 Three-Link Manipulator

It is assumed that the robot has three-degree-of-freedom and it moves in a two
dimensional vertical plane. The axes are selected such a way that O−X − Y is
the vertical plane where the center of gravity acts opposite to the O − Y axis
and O − Z is selected according to the right hand rule. Let [fx fy fz]T and
[nx ny nz]T be the force vector and the moment vector at the end-effector of
the robot, where the subscripts x, y and z are used to represent O − X axis,
O−Y axis and O−Z axis respectively. Since the robot is moving in O−X −Y
plane, fz, nx and ny are zero. Link coordinate axes Oi −Xi − Yi are defined in
such a way that the origin of each link coordinate system is selected at the end of
the respective link and the Oi−Xi axis is selected along the link. Oi−Yi axis is
perpendicular to the Oi −Xi axis in the counterclockwise direction and Oi −Zi

axis is selected according to the right hand rule.
Length, joint angle and mass for link i are denoted by li, θi and mi respec-

tively. x̄i and Iixx, ȳi and Iiyy , and, z̄i and Iizz are the center of gravity and the
moment of inertia for link i in Oi −Xi, Oi − Yi and Oi − Zi directions respec-
tively. It is assumed that all links are homogenous and the center of gravity acts
in the middle and each link is symmetrical about its center of gravity. Therefore
x̄i = −li/2, yi = zi = 0.0, Iixx = 0.0, and Iiyy = Iizz = mil

2
i /12.

To simulate this model on a computer, dynamic equations for this manipu-
lator are derived using Newton-Euler method [11]. The dynamic equations are
given by Eq. (1) in the matrix-vector form:

τ (t) = D(θ(t))θ̈(t) + h(θ(t), θ̇(t)) + g(θ(t)) (1)

where D(θ(t)) is the 3×3 inertia matrix; h(θ(t), θ̇(t)) is the 3×1 Coriolis and
centrifugal force vector; and g(θ(t)) is the 3×1 gravitational vector.
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3 Behavior Model for the Manipulator
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Fig. 1. Fuzzy behavior-based control system for the manipulator

Figure 1 shows the behavior-based control system consisting of three behavior
groups for the manipulator with the higher level behavior group shown over the
lower behavior group. Inputs for the objective behavior group areDx, Dy and Ψ,
where Dx and Dy are the distances between the end-effector point and the target
in O−X direction and O−Y direction respectively, and Ψ is the relative angle
between the moving direction of the end-effector point and the objective point.
Inputs to the reactive behavior group are vx, vy and ωz, where vx and vy are the
velocities at the end-effector point in O−X direction and O−Y direction respec-
tively, and ωz is the angular velocity of the end-effector point. vx, vy and ωz must
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be calculated by using the Jacobian matrix with the angular velocities of link 1,
link 2 and link 3 (θ̇1, θ̇2, θ̇3). All the obstacles are assumed to be circles in the
O−X−Y plane and they are sensed by a CCD camera. It is assumed in this work
that the camera vision system can process its data and the center coordinates
and the radius of each obstacle are known. The center coordinate and radius of
the j-th obstacle are denoted by (xcj , ycj) and rj respectively. Together with the
obstacle data, if the angular positions of link 1, link 2 and link 3 (θ1, θ2, θ3) are
known, sij , the minimum distance from each link i to every obstacle j can be
calculated. Once all sij values are calculated, the respective dij , the minimum
distance from link i to obstacle j can be obtained by dij = sij − rj . There-
after d, the minimum within all the minimum distances from the each link to
the every obstacle, can be found and afterthat ψ, the relative angle between the
respective link and the vector d measured in counterclockwise direction, and δ,
the angle of the distance vector d with respect to the O − X axis of the base
coordinate system, are calculated. The inputs to the reactive behavior group are
given by dx, dy and ψ, where dx = d cos(δ) and dy = d sin(δ). For each behavior
group the output variables are the force required in O −X direction, the force
required in O−Y direction and the moment in O−Z direction in the respective
order. Their output vectors are represented by [f∗xo f

∗
yo n

∗
zo]

T , [f∗xf f
∗
yf n

∗
zf ]

T and
[f∗xr f

∗
yr n

∗
zr]

T for the objective behavior group, free behavior group and reac-
tive behavior group respectively. Forces and moment in the absolute coordinate
systems F = [fx fy nz]T , are obtained by fusing the reasoning results generated
from each behavior group through the nonlinear suppression unit with S [4,5].
Fuzzy rule relations and fusion of behavior groups are later explained in Sec-
tion 3.2. To transform the above quantity to the torque in the joint coordinate
system, the following Jacobian transpose is used [10]:

τ ∗ = JTF (2)

where τ ∗ = [τ∗1 τ
∗
2 τ

∗
3 ]

T is the torque vector obtained as if there are no
gravitational effects. When considering the additional gravitational torque vec-
tor ∆τ = [∆τ1 ∆τ2 ∆τ3]T , which is explained in Section 3.1, the final output
torque vector τ = [τ1 τ2 τ3]T is given by

τ = τ ∗ + ∆τ (3)

3.1 Compensation of the Gravitational Effect

Each behavior group controls the movements of the robot. For example, in the
objective behavior group, the first input element Dx must be reduced in order
to reach the target. This is obtained by controlling the output element fx. Since
none of the behaviors does not consider the gravitational effect, the required
torque to overcome the gravity is added to the output torque from the fuzzy
behavior-based control before applying to the manipulator and it is assumed in
this work that the length, mass and center of gravity of the links are available.
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The required torque equations for this calculation are given by

∆τ1 = m1g(l1 + x̄1)c1 +m2g[l1c1 + (l2 + x̄2)c12]
+m3g[l1c1 + l2c12 + (l3 + x̄3)c123] (4)

∆τ2 = m2g(l2 + x̄2)c12 +m3g[l2c12 + (l3 + x̄3)c123] (5)

∆τ3 = m3g(l3 + x̄3)c123 (6)

where, c1 = cos(θ1), c12 = cos(θ1 + θ2), c123 = cos(θ1 + θ2 + θ3), and g is the
gravitational acceleration. However for a robot moving in a horizontal plane this
additional torque is not required.

3.2 Fuzzy Rule of a Behavior Group

A simple fuzzy reasoning is applied to one behavioral element using one sensor
information or processed sensor information y, and it generates one reasoning re-
sult u∗. Gaussian-type function is used as the membership function, and uses the
simplified fuzzy reasoning. The resultant fuzzy reasoning consequent is obtained
as

u∗ =
M∑

i=1

piwbi (7)

where M denotes the total number of rules, wbi the constant in the conclusion
of the i-th rule, and pi the normalized rule confidence such as

pi =
µi∑M

j=1 µj

(8)

µi = exp{(ln(0.5)(y − wci)2w2
di} (9)

where wci denotes the center value associated with the i-th membership function,
and wdi denotes the reciprocal value of the deviation from the center wci to which
the i-th Gaussian function of the input data on the support set has value 0.5.
Consider two behavior groups i and i+1, where the behavior group i represents
the lower behavior group and the behavior i+ 1 represents the higher behavior
group. Let the two same outputs from two behavior groups be described as a
and b from behavior group i and behavior group i+ 1, respectively. The fusion
result is given by c,

c = (1− s)a+ sb (10)

with
s = |sat(a) + sat(b)|/2 (11)

Here the saturation function “sat” is given by

sat(x) =
{
sgn(x) |x| > ε
x/ε |x| ≤ ε (12)

where ε denotes a positive number.
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4 Learning Using Genetic Algorithm

For the tournament selection, the fittest individual is selected as the parent out
of the three individuals. Two-point crossover is used with a crossover probability
of 0.6. One individual has 135 training parameters, because np = Nf × Nr ×
Ne × Nb, where np denotes the number of training parameters, Nf the fuzzy
parameters (wci, wdi, wbi),Nr the number of rules (5),Ne the number of elements
in one group (3), and Nb the number of behavior groups (3). Since one parameter
is represented by an 8 bit string, the code length is 1080 (i.e., 135× 8). The
number of individuals in one generation is 60, the elite number is 8, which is
kept for the next generation, and the number of parents selected is 52, which
generate 52 offspring. The mutation rate is equal to the 1/code length which
is 1/1080.

4.1 Fitness Function

One individual run of the manipulator is over if one or more links go out of
range or any of the link collides with the obstacle or the given time is over or
the end-effector point moves 0.5 [m] away from the minimum distance between
the end-effector point and the target during the run or the end-effector point
reaches the target successfully. Fitness value, Fitness, is given by

Fitness = −dmin + (D0 − dmin)/TD − 3.0×No − 0.1×Nc (13)

where dmin is the minimum distance between the end-effector of the robot and
the target during the run, D0 is the initial distance between the end-effector and
the target, and TD is the travel distance of the end-effector point during the
period of that run. Here No is equal to the number of links went out of range
and Nc is equal to the number of links collided with the obstacle. The objective
of the optimization is to minimize the distance of travel to an acceptable solution
while avoiding the obstacles to reach the target.

5 Simulations

5.1 Parameter Settings

The manipulator parameters are 0.5 [m], 0.4 [m] and 0.3 [m] in length, 0.48 [kg],
0.36 [kg] and 0.24 [kg] in mass and −160 to +160, −135 to +135 and −110
to +170 in joint range for link 1, link 2 and link 3 respectively. C programming
was used to model the manipulator dynamically using the dynamic equations
given by Eq. (1). Sampling time interval is 0.05 [s] and the differential equations
are solved by the numerical method known as Runge-Kutta-Gill method. The
maximum time allowed for one individual run is 15 [s]. Three obstacles are
considered and two simulations were carried out. In the first simulation the robot
is placed initially on the O −X axis horizontally and in the second simulation
it is placed initially on the O − Y axis vertically. In each case, 1000 generations
were taken into account to train the fuzzy parameters.
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5.2 Results

Figure 2 shows the end-effector point path for an individual with the best fit-
ness, whose value is 0.847344, after 1000 generations in simulation 1, and Fig. 3
shows the corresponding best and the average fitness values of each generation.
Figures 4 and 5 present the similar results with the best fitness values equal
to 0.968144 for simulation 2. These results show that for all cases the robot
managed to reach the target with an acceptable solution. Therefore, it is con-
firmed from these simulations that the present approach is useful for the task
control of multi-link manipulators, while avoiding obstacles.

0 1

0

1

Starting point

Target

X coordinate [m]!!

Y
 c

oo
rd

in
at

e 
[m

]

Fig. 2. End-effector point path with a best individual for simulation 1

6 Conclusions

The fuzzy behavior-based control strategy has been applied to controlling a
multi-link manipulator. It was proved from simulations that such an approach is
effective for complex manipulators to achieve certain tasks while avoiding obsta-
cles. Also, this approach had the advantage of moving towards a particular point
without knowing the inverse kinematics while avoiding obstacles. It means that
the manipulator can be controlled to achieve the desired task with on line infor-
mation and suitable fitness function without going into actual analytical details.
This is very useful especially in robot manipulators because the kinematics and
dynamics of the manipulators are usually complex by nature and the analysis
gets more sophisticated for redundant manipulators. This approach is of course
suitable not only when the relationships of the system dynamics are linear, but
also when the relationships are nonlinear.
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Fig. 3. Best and average fitness values for simulation 1
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Fig. 5. Best and average fitness values for simulation 2
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Abstract: Cash amounts and interest rates are usually estimated by
using educated guesses based on expected values or other statistical
techniques to obtain them. Fuzzy numbers can capture the difficulties in
estimating these parameters. Fuzzy equivalent uniform annual value,
fuzzy future value are the methods examined with numeric examples in
the paper. The paper also gives the ranking methods of fuzzy number

1 Introduction

To deal with vagueness of human thought, Zadeh [1] first introduced the fuzzy set
theory, which was based on the rationality of uncertainty due to imprecision or
vagueness. A major contribution of fuzzy set theory is its capability of representing
vague knowledge. The theory also allows mathematical operators and programming to
apply to the fuzzy domain.

A fuzzy number is a normal and convex fuzzy set with membership
function°µ A x( ) which both satisfies normality: µ A x( )=1, for at least one x R∈
and convexity: µ µ µA x A x A x( ) ( ) ( )′ ≥ 1 2Λ , where µ A x( ) [ ]∈ 0,1 and

∀ ′ ∈x x x[ , ]1 2 . ‘Λ ’ stands for the minimization operator.

Quite often in finance future cash amounts and interest rates are estimated. One
usually employs educated guesses, based on expected values or other statistical
techniques, to obtain future cash flows and interest rates. Statements like
approximately between $ 12,000 and $ 16,000 or approximately between 10%
and°15% must be translated into an exact amount, such as $ 14,000 or 12.5%
respectively. Appropriate fuzzy numbers can be used to capture the vagueness of those
statements.

A tilde will be placed above a symbol if the symbol represents a fuzzy set.
Therefore,

~
,

~
,

~
,

~
, ~, ~P F G A i r are all fuzzy sets. The membership functions for these
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fuzzy sets will be denoted by µ µ µ(
~

), (
~

), (
~

)x P x F x G , etc. A fuzzy number is a

special fuzzy subset of the real numbers. The extended operations of fuzzy numbers
can be found in [11, 12]. A triangular fuzzy number (TFN) is shown in Figure 1. The
membership function of a TFN ( ~ )M defined by

µ( ~ ) ( , ( ~ ) / , / ( ~ ), )x M m f y M m m f y M m= 1 1 2 2 2 3 (1)

where m m m
1 2 3
� � , f y M1(

~
) is a continuous monotone increasing function of y

for 0 1≤ ≤y with f M m1 10(
~

) = and f M m1 21(
~

) = and f y M2 (
~

) is a continuous

monotone decreasing function of y for 0 1≤ ≤y with f M m2 21(
~

) = and

f M m2 30(
~

) = . µ(
~

)x M is denoted simply as ( / , / )m m m m1 2 2 3 .

y

1.0

x= f y M1(
~

) x= f y M2 (
~

)

0.0
m1 m2 m3 x

Figure 1. A Triangular Fuzzy Number,
~
M

A flat fuzzy number (FFN) is shown in Figure 2. The membership function of
a FFN,

~
V is defined by

µ(
~

) ( , (
~

) / , / (
~

), )x V m f y V m m f y V m= 1 1 2 3 2 4 (2)

where m m m m1 2 3 4� � � , f y V1 (
~

) is a continuous monotone increasing function

of°y for 0 1≤ ≤y with f V m1 10(
~

) = and f V m1 21(
~

) = and f y V2 (
~

) is a continuous

monotone decreasing function of y for 0 1≤ ≤y with f V m2 31(
~

) = and

f V m2 40(
~

) = . µ(
~

)y V is denoted simply as ( / , / )m m m m1 2 3 4 .
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Figure 2. A FlatFuzzy Number,
~

V

The fuzzy sets
~

,
~

,
~

,
~

, ~, ~P F G A i r are usually fuzzy numbers but n will be discrete
positive fuzzy subset of the real numbers [2]. The membership function µ( ~)x n is

defined by a collection of positive integers ni, 1 ≤ ≤i K , where

µ
µ λ λ

( ~)
( ~) ,0

x n
n n

otherwise

i i i=
= ≤ ≤�

�
�

��

1

0,
(3)

2 Fuzzy Future Value Method

The future value (FV) of an investment alternative can be determined using the
relationship

FV r P it

t

n
n t( ) ( )= +

=

−
�

0

1 (4)

where FV(r) is defined as the future value of the investment using a minimum
attractive rate of return (MARR) of r%. The future value method is equivalent to the
present value method and the annual value method.

Chiu and Park's [3] formulation for the fuzzy future value has the same logic of
fuzzy present value formulation:

{ [max(
( )

, ) (
( )

) min(
( )

, ) (
( )

)]
( )

,Pt
l y

r
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l y
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Buckley's [2] membership function µ(
~

)x F is determined by

f y F f y P f y ri n i i
n(

~
) (

~
)( ( ~))= +1 (6)

For the uniform cash flow series, µ(
~

)x F is determined by

f y F f y A n f y rni i i(
~

) (
~

) ( , ( ~))= β (7)

where i=1,2 and β( , ) ((( ) ) / )n r r rn= + −1 1 and
~
A � 0 and ~r � 0.

3 Fuzzy Equivalent Uniform Annual Value (EUAV) Method

The EUAV means that all incomes and disbursements (irregular and uniform) must be
converted into an equivalent uniform annual amount, which is the same each period.
The major advantage of this method over all the other methods is that it does not
require making the comparison over the least common multiple of years when the
alternatives have different lives [5]. The general equation for this method is

EUAV A NPV n r NPV
r r

r

n

n
= = =

+

+ −
−γ 1 1

1 1
( , ) [

( )

( )
] (8)

where NPV is the net present value. In the case of fuzziness, NPV
~

will be calculated
and then the fuzzy EUAV

~
(

~
An ) will be found. The membership function µ(

~
)x An

for°
~
An is determined by

f y A f y NPV n f y rni n i i(
~

) (
~

) ( , ( ~))= −γ 1 (9)

and TFN(y) for fuzzy EUAV is

~
( ) (

( , )
,

( , )
)

( )

( )

( )

( )
A y

NPV

n r

NPV

n r
n

l y

l y

r y

r y
=

γ γ
(10)

Example
Assume that NPV

~
( $3, . , $24. , $3,786. )= − − +525 57 47 34 and ~ (r = 3%,5%,7%).

Calculate the fuzzy EUAV.

f y A y
y y

y
6 1 6

6

6
3 5011 3 52557

103 0 02 0 02 0 03

103 0 02 1
, (

~
) ( , . , . )[

( . . ) ( . . )

( . . )
]= −

+ +

+ −

f y A y
y y

y
6 2 6

6

6
3 810 81 3 34

107 0 02 0 07 0 02

107 0 02 1
, (

~
) ( , , . ,786. )[

( . . ) ( . . )

( . . )
]= − +

− −

− −
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For y=0, f y A6 1 6 96, (
~

) $650.= −

For y=1, f y A f y A6 1 6 6 2 6 82, ,(
~

) (
~

) $4.= = −

For y=0, f y A6 2 6 13, (
~

) $795.= +

It is now necessary to use a ranking method to rank the triangular fuzzy numbers
such as Chiu and Park's [3], Chang's [6] method , Dubois and Prade's [7] method,
Jain's [8] method, Kaufmann and Gupta's [9] method, Yager's [10] method. These
methods may give different ranking results and most methods are tedious in graphic
manipulation requiring complex mathematical calculation. In the following, two of the
methods which does not require graphical representations are given. Chiu and
Park’s°(3) weighted method for ranking TFNs with parameters (a, b, c) is formulated as

( )( )a b c wb+ + +3 (11)

where w is a value determined by the nature and the magnitude of the most promising
value. The preference of projects is determined by the magnitude of this sum.

Kaufmann and Gupta (9) suggest three criteria for ranking TFNs with parameters
(a,b,c). The dominance sequence is determined according to priority of:

1. Comparing the ordinary number (a+2b+c)/4
2. Comparing the mode, (the corresponding most promise value), b, of each TFN.
3. Comparing the range, c-a, of each TFN.

The preference of projects is determined by the amount of their ordinary numbers.
The project with the larger ordinary number is preferred. If the ordinary numbers are
equal, the project with the larger corresponding most promising value is preferred. If
projects have the same ordinary number and most promising value, the project with the
larger range is preferred.

4 Conclusions

In this paper, capital budgeting techniques in the case of fuzziness and discrete
compounding have been studied. Fuzzy set theory is a powerful tool in the area of
management when sufficient objective data has not been obtained. Appropriate fuzzy
numbers can capture the vagueness of knowledge. The other financial subjects such as
replacement analysis, income tax considerations, continuous compounding in the case
of fuzziness can be also applied [11], [12]. Comparing projects with unequal lives has
not been considered in this paper. This will also be a new area for a further study.
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Abstract. In this paper we introduce the concepts of fuzzy solution for
a semi linear equation with fuzzy parameters. The extension principle
described by L. A. Zadeh [5] provides a natural way for obtaining the
notion of fuzzy solution. The fuzzy extension of the solution operator is
shown to provide the unique solution in the formar case.

1 Introduction

Fuzzy sets theory is a powerful tool for modelling uncertainty and for process-
ing vague or subjective information in mathematical models. While its main
directions of development have been information theory, data analysis, artificial
intelligence, decision theory, control, and image processing (see e.g. [1], [6], [7]),
fuzzy set theory is increasingly used as a means for modelling and evaluating the
influence of imprecisely known parameters in mathematical, technical, physical
models. The purpose of this paper is to work out this approch when the models
are constitued by partial differential equations.
Based on the fuzzy description of parameters and mathematical objects, we shall
be concerned here with partial differential equation in the scalar case of the form

ut + λux = au

u (x, 0) = u0 (x)

Here the parameters a and λ will be fuzzy numbers. The solution u (x, t) at any
fixed point (x, t) will be a fuzzy number as well.

2 Partial differential equations

Consider a semi-linear equation :

ut + λux = au (1)

for a function u = u(x, t), where λ =const. > 0. Along a line of the family

x− λt = ξ = const.

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 271–275, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



272 Said Melliani

(”characteristic line ”in the xt-plane) we have for a solution u of (1)

du

dt
=

d

dt
u(λt+ ξ, t) = λux + ut = au (2)

Hence u is constant along a line, and depends only on the parameter ξ which
distinguishes different lines. The general solution of (1) has the form

u(x, t) = u0(ξ) exp(at) = u0(x− λt) exp(at) (3)

Formula (3) represents the general solution u uniquely in terms of its initial
values

u(x, 0) = u0(x)

Conversely every u of the form (3) is a solution of (1)with initial values u0

provided u0 is of class C1(IR). We notice that the value of u at any point (x, t)
depends only on the initial value u0 at the single argument ξ = x − λt, the
abscissa of the point of intersection of the characteristic line through (x, t) with
the initial line, the x-axis. We consider Ω = IR× IR+

introducing the equation operator

E : C1(Ω)→ C(Ω) : v → [(x, t)→ vt + λvx − av] ,
the restriction operator ∀ (x, t) ∈ Ω

Rx,t : C1(Ω)→ IR : v → v(x, t) = u0(x − λt)eat,

and the solution operator

L : IR2 → C1(Ω) : (λ, a)→ L (λ, a) .

3 Fuzzy sets and fuzzy numbers

Geven a set X , a fuzzy set A over X is a map

mA : X −→ [0, 1]

called the membership of A (it is convenient to distinguish between A and its
membership functions mA to be able to employ the usual language of sets the-
ory). Thus given x ∈ A, mA(x) is considered the degree to which, respectively
the possibility that, x belong to A (In calssical sets theory, mA would correspond
to the characteristic function of A). This concept allows to model uncertainty in
situations where more information than just upper and lower bounds is available
(in contrast to interval analysis), but no probability distribution are available.
This situation often arises e.g. in engineering practice, when parameters are
estimated partially in subjective way.
We denote the family of fuzzy sets over X by IF(X). The α-level sets are the
classical sets

Aα≥ = {x ∈ X : mA(x) ≥ α}
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A fuzzy real number is an element A ∈ IF (IR) such that all level sets Aα≥ are
compact intervals (0 < α ≤ 1) and A1≥ is not empty. The graph of mA has a
monotonically increasing left branch, a central point or plateau of membership
degree one, and a monotonically decreasing right branch. Similary, one can define
fuzzy vectors, fuzzy functions etc.The extension principle introduced by [5] allows
the evaluation of functions on e.g. fuzzy numbers according to the following
definition : Let

f : IRn → IR

be a function, define the extension [1], [3]

f : (IF (IR))n → IF (IR)

by
mf(a1,...,an)(y) = sup

y=f(x1,...,xn)

inf (ma1(x1), . . . ,man(xn))

It can be shown that in case f is continuous, f(a1, . . . , an) is a fuzzy number as
well, and

f (a1, . . . , an)α≥ = f
(
aα≥
1 , . . . , aα≥

n

)

the set theoretic image of the level sets. Thus the upper and lower endpoints of
the interval f(a1, . . . , an)α≥ can be obtained by minimizing / maximizing f over
aα≥
1 × . . .× aα≥

n .
we denote by 0 the crisp zero function in IF (IRn), that is,

m0(f) =
{

1 if f = 0
0 otherwise

Definition 1. Let A a fuzzy set

– A is normalized if there exists an element x in A such that mA(x) = 1.
– The α-level sets Aα≥ for (0 < α < 1) of a fuzzy set A are the classical (crisp)

sets.
– A is convex if and only if its α-level are convexs.
– A fuzzy number is a convex, normalized fuzzy subset of the domain A

The concept of fuzzy number is an extension of the notion of real number : its
encodes approximate but non probabilistic quantitative knowledge [2].

4 Fuzzy semi-linear equation

Let us consider a fuzzy semi-linear equation
{
ũt + λ̃ux = ãũ
ũ(x, 0) = u0(x)

(4)

with λ̃ and ã are two fuzzy numbers, the initial condition u0 is a classic function
in C(IR).
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by the extension principle

E : IF
(
C1(Ω)

)→ IF (C(Ω))
Rx,t : IF

(
C1(Ω)

)→ IF(IR)
L : IF

(
IR2
) → IF

(
C1(Ω)

)

∀ (x, t) ∈ IR× IR+

Lx,t : IF
(
IR2
)→ IF (IR)(

λ̃, ã
)
�→ ũ(x, t) solution of (4)

The fuzzy value Lx,t

(
λ̃, ã
)

may be computed by the extension principle in this
way

mLx,t(λ̃,ã)(y) = sup
{
inf
(
mλ̃(λ),mã(a)

)
: y = Lx,t(λ, a)

}

Lemma 2. We have
Rx,t ◦ L = Lx,t in IF

(
IR2
)

Proof (of lemma).

mLx,t(λ̃,ã)(y) = sup (λ, a) ∈ IR2

y = Lx,t(λ, a)

min
(
mλ̃(λ),mã(a)

)

mL(λ̃,ã)(f) = sup (λ, a) ∈ IR2

f (x, t) = Lx,t(λ, a)

min
(
mλ̃(λ),mã(a)

)

mRx,t◦L(λ̃,ã)(y) = sup (λ, a) ∈ IR2

y = Rx,t ◦ L(λ, a)

min
(
mλ̃(λ),mã(a)

)

= sup (λ, a) ∈ IR2

y = u0(x− λt)eat

min
(
mλ̃(λ),mã(a)

)

= sup (λ, a) ∈ IR2

y = Lx,t(λ, a)

min
(
mλ̃(λ),mã(a)

)

= mL(λ̃,ã)(y)

�	
we have

mL(f) = sup
{
inf
(
mλ̃(λ),mã(a)

)
: f = L(λ, a)

}

and
mLx,t(λ̃,ã)(y) = sup

{
mL(f) : f ∈ C1(Ω) with y = f(x, t)

}

= sup (λ, a) ∈ IR2

y = Lx,t(λ, a)

min(mλ̃(λ),mã(a))
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Definition 3. An element ũ ∈ IF
(
C1(Ω)

)
is called a fuzzy solution with the

initial data u0 ∈ C(Ω), if E (ũ) = 0 in IF (C(Ω)), Rx,t(ũ) = u0

(
x− λ̃t

)
eãt in

IF (IR)

Proposition 4. Given λ̃, ã in IF (IR), ũ = L
(
λ̃, ã
)

is a fuzzy solution of (4)

Proof (of proposition). To show that ũ = L
(
λ̃, ã
)

solves the fuzzy partial dif-
ferential equation, we compute :

mE(ũ)=L(λ̃,ã) (w) = sup
{
mũ=L(λ̃,ã) (v) : w = E(v)

}

= sup
{
sup

{
inf
(
mλ̃(λ),mã(a)

)
: v = L(λ, a)

}
: w = E(v)

}

if w 
= 0 and w = E(v); then
{
(λ, a) ∈ IR2 : v = L(λ, a)

}
= ∅, so the inner

supremum is zero and mEL(λ̃,ã)(w) = 0.
if w = 0, we may take (λ, a) ∈ IR2 with mλ̃(λ) = mã(a) = 1 and v = L(λ, a).
Then E(w) = 0, and so the supremum equals 1.
Let S =

{
u ∈ C1(Ω) : E(u) = 0

}
. We can view IF(S) as a subset of IF

(
C1(Ω)

)
,

setting the membership degree of any u ∈ C1(Ω)\S to some ũ ∈ F (S) equal to
zero. �	
Lemma 5. If ũ ∈ IF

(
C1(Ω)

)
is a solution to (4) , then ũ belongs to IF (S)

Proof (of lemma). we have that

mE(ũ)(v) = sup {mũ(w) : v = E(w)}
suppose there exist v /∈ S , such that m(ũ)(v) > 0. Putting w = E(v) we have
mE(ũ)(w) ≥ mũ(v) > 0, contradicting the hypothesis that E(ũ) = 0. �	
Proposition 6. The fuzzy solution ũ ∈ IF

(
C1(Ω)

)
to (4) is unique.

Proof (of proposition). Since L : IR2 → S is bijective, the same is true of the
extension L : IF

(
IR2
) → IF (S). If ũ ∈ IF

(
C1(Ω)

)
is a solution, it belongs to

IF (S) by the lemma and hence is uniquely determined by the initial data. �	
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Abstract. Based on axiomatic rough set theory, first order rough logic
was developed earlier. In this paper, a new model theory for that logic
is introduced. With this new semantic, first order rough logic is shown
to be equivalent to first order S5, and hence consistent and complete.

1 Introduction

One of the most important studies of rough set theory is the study of the lower
and upper approximations of equivalence relations. Many interesting properties
have been reported [4]. In 1993, we presented an axiomatic approach to such
a study, namely, we showed two abstractor operators which are characterized
by certain axioms are the lower and upper approximations of an equivalence
relation [1]. By translating these axioms into logic terms, we constructed first
order rough logic. The syntax is similar to the modal logic S5, its semantics,
however, is different [2]; we showed the model is consistent, but we had not
proved its completeness. In this paper, we revisit the model and propose a new
semantics. With this new semantics, we show that first order rough logic is
equivalent to first order S5, and hence it is consistent and complete.

2 Possible Worlds Semantics - An Informal Overview

In this section we shall describe the relationships between rough logic and rough
set theory. Rough set theory is based on a known equivalence relation (indis-
cernibility relation). However, in applications, the equivalence relations are often
unknown, so the proposed rough logic is based solely on the notions of ”lower”
and ”upper” approximations without using an explicit equivalence relation. How-
ever, in order to see clearly the relationships between rough logic and rough set
theories, we explain the idea using explicit equivalence relations. Subsequent
expositions, the use of equivalence relations is avoided.
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2.1 Observable Worlds

Let E be the universe of discourse and P an equivalence relation. Note that
we should view P as the one induced by the axioms of two abstract opera-
tors. By abuse of notation, we will use P to denote the corresponding partition.
The collection of all equivalence classes is called quotient space, denoted by Q.
Based on the available information, all elements in the same equivalence class
are indistinguishable. To each observer, an equivalence class is a multi-set (bag)
that consists of multiple copies of one element. We should, however, also note
that different observers may see the multiple copies of different element(but in
the same equivalence class). This led us to define an observable world as the
collection of one representative from each equivalence class. Different observers
have different collections of representatives. We should also point out that not
all mathematical combinations of representatives will be observed by some one.
In other words, a collection of all observable worlds is a subset of all possible
combinations.

The intent of rough logic is

1. to describe E as much as we can, using
2. only the available imperfect observations (observable worlds).

Example. The universe E = {1, 2, 3, 4, 5, 6, 7, 8, 9} has a partition:

H1 = {3, 6, 9}, H2 = {2, 5, 8}, H3 = {1, 4, 7}.

Then, the quotient space is Q = {H1, H2, H3}
Observers may see E as, for example,

W 1 = {1, 1, 1, 2, 2, 2, 3, 3, 3}, W 2 = {1, 1, 1, 2, 2, 2, 6, 6, 6}

If we use set notations, they are

W 1 = {1, 2, 3}, W 2 = {1, 2, 6},

Other possible observable worlds are

W 3 = {1, 2, 9}, W 4 = {1, 5, 3},
. . .,

W 26 = {7, 8, 6}, W 27 = {7, 8, 9}

Each Wh is a set of representatives and equivalent to the quotient space Q.
The relational structure on each Wh is induced from E by restriction; see next
subsection.
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2.2 Induced Structures on Observable Worlds

In this section, we will explain how observable worlds get their relational struc-
tures. The material in this section is slightly different from the corresponding
structures given in [2]. The structure on relations is the same. For the structure
of functions is slightly different; in the cited paper, the function values that are
out of ”range” was treated as has missing values; in this paper, we replace the
missing values by their equivalent ones. Each Wh is a subset of E, hence all rela-
tions and functions on E can be interpreted to Wh by restricting their domain to
Wh. Intuitively, each Wh represents one particular imperfect observation. These
induced functions may be distorted and relations may have missing values.

Functions

Let E = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the universe of discourse. Let f(−) be a func-
tion defined by

f(x) = 9− [x/2],

where [z] represents the integral part of z. The function f(−) induces a new
function on each Wh, for example,

(1) In Observable World W 1 = {1, 2, 3}, the function values are:

f(1) = 9, f(2) = 8, f(3) = 8,

since these values lie outside of W 1, we replace them by their equivalent values,
namely,

f(1) = 3, f(2) = 2, f(3) = 2,

Such a new function is the induced view of f on W 1.

(2) In Observable World W 2 = {1, 2, 6}, the same function will be replaced by
their equivalent values in W 2,i.e.,

f(1) = 6, f(2) = 2, f(6) = 6.

It is the induced view of f in W 2.

So the same function f is distorted into a different, yet equivalent, function on
each observable world. These distorted functions are equivalent in the sense that
each function induces the same function in the quotient space Q. Intuitively,
each distorted function represents an imperfect observation of the ”true” func-
tion. The goal of rough logic is to recapture some essential features of the function
f via these distorted versions.

Relations

Let R denote the collection of all relations in E. Let r be an n-ary relation, and
rh its restriction to Wh; some values in r may not appear in rh. The collec-
tion of these restricted relations will be denoted by Rh. We do require Rh is an
non-empty set; see next subsection.
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2.3 Impossible World

First we should note that not all mathematical Wh’s would be an observable
world. In order for it to be qualified as an observable world, at least, one of these
n-ary relations rh’s is an non-empty relation. Informally, an impossible world is
a world in which all predicates are evaluated to false in all instances. So we do
require

no observable world is an impossible world.

Let P (x1, x2, . . .) be a n-ary predicate and the variable xi are assigned to ei ∈
E, i = 1, 2, . . .. Then the predicate P (e1, e2, . . .) is evaluated to truth at Wh

if the relation rh that interprets P contains the tuple, (e1, e2, . . .). A world in
which Rh is an empty set is an impossible world.

3 Axiomatic Rough Set Theory

In last few subsections, we explain the possible world semantics using an explicit
equivalence relations. In applications, such explicit equivalence relations may not
be available. We recall here the axiomatic rough set theory, in which only upper
and lower approximate operators are available.

Pawlak introduced rough sets via equivalence relations. He derived many
interesting properties of upper and lower approximation. In [1], we showed that
Pawlak’s lower and upper approximation can be characterized axiomatically by
the following ”Six” Axioms: Let E be the universe of discourse, X ⊆ E, and
C(X) = E ∼ X . Let L and H be the lower rough and upper (higher) rough
operators.

(1)H(∅) = ∅; (2)L(X) ⊆ X ;
(3)L(X) ⊆ L(L(X)); (4)H(X)

⋃
H(Y ) = H(X

⋃
Y );

(5)L(C(X)) = C(H(X)); (6)L(X) = H(L(X));
(6a)H(X) = L(H(X)); (6a)H(X) = L(H(X));

These seven axioms are not minimal. Since this is not a mathematical paper,
we will not digress on it. The axioms consist of the Kuratowski’s axioms of
topological spaces and one additional axiom that declare open sets are close sets
and vise versa. Essentially, the seven axioms characterize clopen spaces. It is
easy to see that a clopen space induces a partition, and hence an equivalence
relation. The two abstract operators H and L turns out to be the upper and
lower approximations of the induced equivalence relation.

4 Rough and S5 Models

The language and axioms of rough and S5 logic are not specifically referenced
in this paper, so we refer readers to [2] for details.
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In this section, we will show that the models of rough and S5 logic are
equivalent. Following [3], a frame for S5, or for short S5-frame, is:

SM = (D,N,W,B, γ)

where

1. D is a non-empty set, called domain of SM .
2. N is a subset of D, called constants.
3. W is a non-empty set of possible worlds.
4. B is a binary relation of ”accessibility” on W ; for S5 logic, B can be the

trivial one, namely, every worlds are accessible to each other.
5. γ is a function which assigns to each pair consisting of an n-ary predicate

symbol n ≥ 0, differ from ”=”, and an element w of W , an n-ary relation
on D, to the symbol ”=”, if present in the language, the identity relation on
D, and to each n-ary functions symbol, and to each n-ary function symbol
a function from Dn to D.

γ is called an interpretation. Intuitively D is ”equivalent” to the quotient set Q.

4.1 Rough Model

A Rough Model is a 7-tuple

RM = (E,N,R, F,RO,W, γ)

where:

1. E is a set of entities {e, e1, . . .};
2. N is a set of distinguished entities {n, n1, . . .}, called the domain of constants;

moreover H(ni) = ni, i = 1, 2, . . . .
3. R is a set of non-empty relations {r, r1, . . .}, each of which is defined on E;
4. F is a set of functions {f, f1, . . .}, each of which is defined on E;
5. RO is a set of rough operators satisfying six axioms, i.e., RO = {H}; H=

Upper approximation. H induces an equivalent relation on E; see Section 3.
6. γ is a function which assigns to each n-ary predicate symbol n ≥ 0, differ

from ”=”, an n-ary relation on E, to the symbol ”=”, if present in the
language, the identity relation on E, and to each n-ary functions symbol a
function from En to E.

7. W is a collection of observable worlds which are constructed from E and RO
as explained in Section 2,

Wh = (Wh, Nh, Rh, Fh),

where we require that Rh is non-empty; note that this condition exculdes the
impossible worlds.
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Roughly, the new model is the same as the one in [2], except we exclude the
”impossible worlds.”

Two rough models

RM = (E,N,R, F,RO,W, γ)
RM = (E′, N ′, R′,′ F,RO′,W ′, γ′)

are said to be equivalent, if there is a map between two models such that the
map induces an isomorphism between the two families of observable worlds.

or more formally, the map induces an isomorphism between

Wh = (Wh, Nh, Rh, Fh), and
W ′h = (W ′h, N ′h, R′h, F ′h)

in the sense there is four family of one-to-one maps

∀h, Wh → W ′h,
∀h, Nh → N ′h,
∀h, Rh → R′h,
∀h, Fh → F ′h

Remark: It should be noted we have not required the two model RM and RM ’
to be isomorphic.

4.2 The Equivalence of Two Models

Next we will have the most important result of this paper

Proposition. A rough model induces an S5-frame and vice versa.

Proof: We will prove this proposition in four steps. First we will show that
a rough model induces an S5-frame, then in the second step we construct a
rough model from a given S5-frame. In third and fourth steps, we show that two
compositions of these two steps are both identities.

(1) Step One: Assume we are given a rough model RM , namely,

RM = (E,N,R, F,RO,W, γ)

Note that the rough model has the following family W of observable worlds,

W = {Wh | h an index set }, where Wh = (Wh, Nh, Rh, Fh),

We will show that the family W determines an S5-frame:

Fist, note that all Wh’s are ”isomorphic” to each other, that is Wh ≡ W k;
see Section 2.1; so are Nh’s and Fh’s respectively. We will identify them via
respective isomorphisms.

DS5 ≡Wh, NS5 ≡ Nh, FS5 ≡ Fh, ∀h.
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Let us write,

WS5 = {NAME(Wh) |Wh ∀h are observable worlds }
We will show that DS5, NS5, FS5,WS5 together with an equivalence relation BS5

and an interpretation γS5, both to be defined below, do form an S5-frame.

A) Construction of BS5: Since all Wh’s ∀ h are isomorphic among themselves,
we define a trivial equivalence relation on WS5, namely, there is only one equiv-
alence class; We will denote this equivalence relation by BS5.

B) Define the induced interpretation γS5: Let R′h (in domain DS5) be the iso-
morphic copy of Rh(in domain Wh). The union of all those R′h, ∀h is denoted
by R. Then the induced interpretation can be defined as follows: In rough model
the interpretation γ assigns a predicate symbol to a relation r ⊆ En. In trun, r
induces a relation rh on each observable world Wh ∀h; see Section 2. The pred-
icate is interpreted to Wh ∀h via such a route. The interpretations of function
symbols is the same; see Section 2.2.

Thus we have an S5-frame,

SM = (DS5, NS5,WS5, BS5, γS5).

(2) Step Two: Conversely, given an S5-frame SM , we will construct a rough
model RM .

A) Construction of E, N and RO: First, we need to set up the notations for
symbols in SM . We write

D = {dk | k is an index } W = {wh | h is an index }.
Next, we consider E′ = D ×W , and write

E′k = {(dk, w) | dk is a fixed element in D and w varies through W }
The collection of E′k, ∀k forms a partition of E′, we call it vertical partition and
each E′k a vertical equivalence class. Now, we will consider a quotient set E as
follows: First note that N is a subset of D. If dk = nk is an element of N , then we
collapse the vertical equivalence class E′k to an element, denoted by nk. This new
set is denoted by E; the collapsing map is denoted by Q : E′ −→ E. E inherits a
partition from E′: if dk ∈ N , the equivalence class is a singleton, if dk ∈ D\N , D
minus N , then the equivalence class is the vertical equivalence class. By abuse
of terminology, we will refer to such ”collapsed” vertical partition as vertical
partition; similarly, each equivalence class still be called vertical equivalence
class. Finally, we observe that the vertical partition of E gives rise to the upper
approximation operator H , which satisfies the six axioms; see Section 3. This
constitutes the component RO.

B) Construction of R. Let p be an n-ary predicate symbol, and its interpretation
in (S5-frame SM) be

γ(p, wh) = rh,
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where rh is an n-ary relation in D, that is,

rh = {(d1
r , d

2
r..., d

n
r ) | dk

r ∈ D} ⊆ Dn

We should stress that those dk
r are associated with wh. We shall ”embed” rh

into a relation on E through the following consideration. First, we ”embed” it
to E′

(∗) rh × wh = {((d1
r, w

h), (d2
r , w

h), . . . , (dn
r , w

h)) | (d1
r , d

2
r..., d

n
r ) ∈ rh, h is fixed

}
Then we apply the collapsing map Q. Q(rh×wh) is the induced relation on E; it
will be denoted by r, i.e., r = Q(rh ×wh) Next, we consider the union (varying
h),

r =
⋃

∀hQ(rh × wh)

r is a subset of En, hence is a relation on E. This r is an interpretation of p in
E. Let the collection of all such r’s be denoted by R; a required component of
RM .

C)Construction of F : F consists of all functions that are the Cartesian product
of a function d : Dn −→ D and identity map on W .

D)Construction of W : The observable worlds will be induced from the vertical
partition of E, as explained in Section 2.1

Combining A), B), C) and D), we have constructed RM .

(3) Step Three: Now, we need to complete ”the cycle.” By Step Two, the S5-
frame SM1 produces a rough model RM2 (we use index to mean a specific
model). By Step One RM2 is transformed back to SM3. Now, we need to show
that two SM ’s are equal. In the model RM2, E has a vertical partition. To get
an observable world, we select a representative from each vertical equivalence
class. The selection can be expressed by the composition of the map d −→ (d, w)
and Q. Let f be the composite map, d −→ (d, w)) −→ w, where we understand
that when d ∈ N , w = d. We will say that f is a constant map, if f is a constant
map on D \N , outside of N . The observable world so selected will be denoted
by W f From Step One, we know that each W f is an observable world, if Rf is
non-empty. However, from the equation (∗) in Step Two, we observe that if f is
not a constant map, then Rf is an empty set, hence W f is not included in the
family of observable worlds. So the observable worlds in SM − 3 are precisely
the same as those given in SM1. This completes the proof of the cycle one.

(4) Step Four: By Step One, RM1 is transformed to SM2. We need to show, by
Step two SM2 will be transformed back to RM3. Our goal is to show that two
RM ’s are equivalent(not necessarily equal); see Section 4.1 Remark 4.1. Observe
that in (3) Step 3, SM1 is transformed by Step Two, then Step One back to SM3,
that is, SM1 = SM3. First we transormRM1 to SM2, then transform to RM3 by
Step One. Apply Step Two ro RM3, we get SM4. Apply the proof of Step Three,
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we can show that SM2 = SM4. By Section 4.1, we conclude that RM1 = RM3,
since SM2 and SM4 are the respective observable worlds. QED.

Since S5-frame is complete, we have

Theorem. Rough logic with this new interpretation is sound and complete.

5 Conclusion

Rough set theory models uncertainty by equivalence relations (indiscernibility
relations). In real world applications, such a precise knowledge of equivalence
relations is often unavailable. However, one could often observe the approxima-
tions, in other words, the knowledge of approximate operators are reasonably
available. Based on such belief, we developed the axiomatic rough set theory
and the first order rough logic [2] without explicit equivalence relation.

The rough model RM proposed is too rich in semantics for the syntax. We
found in [2] that the language can not completely determine the model. So
in this paper, we introduce the equivalence relation among those models;see
Section 4.1. Then the equivalence class contains the right amount of information
to be characterized by the syntax. In other words, RM is the ”ideal world” that
the syntax intend to address. However, due to the insufficient information, the
syntax can only determine an equivalence class of RM , the uncertainty. From
this aspect, rough logic is richer than S5.
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This paper reports some of our preliminary results. In Section 2, we first
briefly review Pawlak’s decision logic DL, and then introduce the notions of
α-degree truth and α-level truth. In Section 3, the notion of interval-set-valued
information tables is introduced. A generalized decision logic DGL is proposed
and interpreted based on two types of satisfiabilities. The concepts of interval-
degree truth and interval-level truth are proposed and studied. Inference rules
are discussed. In Section 4, two related studies are commented.

2 A Decision Logic in Information Tables

The notion of an information table, studied by many authors [3,10,11,16,21], is
formally defined by a quadruple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),
where

U is a finite nonempty set of objects,
At is a finite nonempty set of attributes,
Va is a nonempty set of values for a ∈ At,
Ia : U −→ Va is an information function.

Each information function Ia is a total function that maps an object of U to
exactly one value in Va. Similar representation schemes can be found in many
fields, such as decision theory, pattern recognition, machine learning, data anal-
ysis, data mining, and cluster analysis [11].

With an information table, a decision logic language (DL-language) can be
introduced [11]. In the DL-language, an atomic formula is given by (a, v), where
a ∈ At and v ∈ Va. If φ and ψ are formulas in the DL-language, then so are
¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ, and φ ≡ ψ. The semantics of the DL-language can be
defined in Tarski’s style through the notions of a model and satisfiability. The
model is an information table S, which provides interpretation for symbols and
formulas of the DL-language. The satisfiability of a formula φ by an object x,
written x |=S φ or in short x |= φ if S is understood, is given by the following
conditions:

(a1). x |= (a, v) iff Ia(x) = v,

(a2). x |= ¬φ iff not x |= φ,

(a3). x |= φ ∧ ψ iff x |= φ and x |= ψ,

(a4). x |= φ ∨ ψ iff x |= φ or x |= ψ,

(a5). x |= φ→ ψ iff x |= ¬φ ∨ ψ,
(a6). x |= φ ≡ ψ iff x |= φ→ ψ and x |= ψ → φ.

For a formula φ, the set mS(φ) defined by:

mS(φ) = {x ∈ U | x |= φ}, (1)
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is called the meaning of the formula φ in S. If S is understood, we simply
write m(φ). Obviously, the following properties hold [8,11]:

(b1). m(a, v) = {x ∈ U | Ia(x) = v},
(b2). m(¬φ) = −m(φ),
(b3). m(φ ∧ ψ) = m(φ) ∩m(ψ),
(b4). m(φ ∨ ψ) = m(φ) ∪m(ψ),
(b5). m(φ→ ψ) = −m(φ) ∪m(ψ),
(b6). m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪ (−m(φ) ∩ −m(ψ)).

The meaning of a formula φ is therefore the set of all objects having the property
expressed by the formula φ. In other words, φ can be viewed as the description of
the set of objectsm(φ). Thus, a connection between formulas of theDL-language
and subsets of U is established.

A formula φ is said to be true in an information table S, written |=S φ or |= φ
for short when S is clear from the context, if and only if m(φ) = U . That is, φ is
satisfied by all objects in the universe. Two formulas φ and ψ are equivalent in S
if and only if m(φ) = m(ψ). By definition, the following properties hold [11]:

(c1). |= φ iff m(φ) = U,

(c2). |= ¬φ iff m(φ) = ∅,
(c3). |= φ→ ψ iff m(φ) ⊆ m(ψ),
(c4). |= φ ≡ ψ iff m(φ) = m(ψ).

Thus, we can study the relationships between concepts described by formulas of
the DL-language based on the relationships between their corresponding sets of
objects.

The previous interpretation of DL-language is essentially based on classical
two-valued logic. One may generalize it to a many-valued logic by introducing
the notion of degrees of truth [4,5]. For a formula φ, its truth value is defined
by [4,5]:

v(φ) =
|m(φ)|
|U | , (2)

where | · | denotes the cardinality of a set. This definition of truth value is
probabilistic in natural. Thus, the generalized logic is in fact a probabilistic
logic [7]. When v(φ) = α ∈ [0, 1], we say that the formula φ is α-degree true. By
definition, we immediately have the properties:

(d1). |= φ iff v(φ) = 1,
(d2). |= ¬φ iff v(φ) = 0,
(d3). v(¬φ) = 1− v(φ),
(d4). v(φ ∧ ψ) ≤ min(v(φ), v(ψ)),
(d5). v(φ ∨ ψ) ≥ max(v(φ), v(ψ)),
(d6). v(φ ∨ ψ) = v(φ) + v(ψ) − v(φ ∧ ψ).
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Properties (d3)-(d6) follow from the probabilistic interpretation of truth value.
Similar to the definitions of α-cuts in the theory of fuzzy sets [2], we define α-
level truth. For α ∈ [0, 1], a formula φ is said to be α-level true, written |=α φ, if
v(φ) ≥ α, and φ is strong α-level true, written |=α+ , if v(φ) > α. From (d1)-(d6),
for 0 ≤ α ≤ β ≤ 1 and γ ∈ [0, 1] we have:

(e1). |=0 φ,

(e2). If |=β φ, then |=α φ,

(e3). |=α ¬φ iff not |=(1−α)+ φ,

(e4). If |=α φ ∧ ψ, then |=α φ and |=α ψ,

(e5). If |=α φ, then |=α φ ∨ ψ,
(e6). If |=α φ and |=γ ψ, then |=max(α,γ) φ ∨ ψ.

Property (e5) is implied by properties (e2) and (e6).
With the concept of α-level truth, we have the probabilistic modus ponens

rule [15]:

|=α φ→ ψ v(φ→ ψ) ≥ α
|=β φ v(φ) ≥ β
|=max(0,α+β−1) ψ v(ψ) ≥ max(0, α+ β − 1)

.

Given conditions v(φ → ψ) ≥ α and v(φ) ≥ β, from properties (d3) and (d6),
we have:

v(φ→ ψ) ≥ α
=⇒ v(¬φ ∨ ψ) ≥ α
=⇒ v(¬φ) + v(ψ)− v(¬φ ∧ ψ) ≥ α
=⇒ (1− v(φ)) + v(ψ) ≥ α
=⇒ v(ψ) ≥ α+ v(φ) − 1
=⇒ v(ψ) ≥ α+ β − 1.

Since the value v(ψ) must be non-negative, we can conclude that the proposed
modus ponens rule is correct. Similar properties and rules can be expressed in
terms of strong α-level truth.

3 A Generalized Decision Logic

Let X be a finite set and 2X be its power set. A subset of 2X of the form:

A = [A1, A2] = {X ∈ 2X | A1 ⊆ X ⊆ A2} (3)

is called a closed interval set, where it is assumed A1 ⊆ A2. The set of all closed
interval sets is denoted by I(X ). Degenerate interval sets of the form [A,A]
are equivalent to ordinary sets. Thus, interval sets may be considered as an
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extension of standard sets. In fact, interval-set algebra may be considered as
a set-theoretic counterpart of interval-number algebra [6]. A detailed study of
interval-set algebra can be found in papers by Yao [17,19].

An interval-set-valued information table generalizes a standard information
table by allowing each object to take interval sets as its values. Formally, this
can be described by information functions:

Ia : U −→ I(Va). (4)

For an object x ∈ U , its value on an attribute a ∈ At is an interval set Ia(x) =
[Ia∗(x), Ia

∗(x)]. The object x definitely has properties in Ia∗(x), and possibly
has properties in Ia

∗(x). With the introduction of interval-set-valued informa-
tion tables, a generalized decision logic language, called GDL-language, can be
established. The symbols and formulas of the GDL-language is the same as that
of the DL-language. The semantics of the GDL-language can be defined similarly
in Tarski’s style using the notions of a model and two types of satisfiabilities,
one for necessity and the other for possibility. If an object x necessarily satisfies
formula φ, we write x |=∗ φ, and if x possibly satisfies φ, we write x |=∗ φ. The
semantics of |=∗ and |=∗ are defined as follows:

(f1). x |=∗ (a, v) iff v ∈ Ia∗(x),
x |=∗ (a, v) iff v ∈ Ia∗(x),

(f2). x |=∗ ¬φ iff not x |=∗ φ,
x |=∗ ¬φ iff not x |=∗ φ,

(f3). x |=∗ φ ∧ ψ iff x |=∗ φ and x |=∗ ψ,
x |=∗ φ ∧ ψ iff x |=∗ φ and x |=∗ ψ,

(f4). x |=∗ φ ∨ ψ iff x |=∗ φ or x |=∗ ψ,
x |=∗ φ ∨ ψ iff x |=∗ φ or x |=∗ ψ,

(f5). x |=∗ φ→ ψ iff x |=∗ ¬φ ∨ ψ,
x |=∗ φ→ ψ iff x |=∗ ¬φ ∨ ψ,

(f6). x |=∗ φ ≡ ψ iff x |=∗ φ→ ψ and x |=∗ ψ → φ,

x |=∗ φ ≡ ψ iff x |=∗ φ→ ψ and x |=∗ ψ → φ,

The following property follows immediately from definition:

(g1). If x |=∗ φ, then x |=∗ φ.

Although the introduced notions of necessity and possibility are similar in nature
to the notions in modal logic [1], our semantics interpretation is different. There
is a close connection between the above formulation and three-valued logic [19].

In GDL, with respect to an interval-set-valued information system S, the
meaning of a formula φ is the interval set m(φ) defined by:

m(φ) = [{x ∈ U | x |=∗ φ}, {x ∈ U | x |=∗ φ}] = [m∗(φ),m∗(φ)]. (5)
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It can be verified that the following properties hold:

(h1). m(a, v) = [{x ∈ U | x |=∗ φ}, {x ∈ U | x |=∗ φ}],
(h2). m(¬φ) = \m(φ),
(h3). m(φ ∧ ψ) = m(φ) �m(ψ),
(h4). m(φ ∨ ψ) = m(φ) �m(ψ),
(h5). m(φ→ ψ) = \m(φ) �m(ψ),
(h6). m(φ ≡ ψ) = (\m(φ) �m(ψ)) � (m(φ) � \m(ψ)),

where \, �, and � are the interval-set complement, intersection, and union given
by [17]: for two interval sets A = [A1, A2] and B = [B1, B2],

\ A = {−X | X ∈ A} = [−A2,−A1],
A� B = {X ∩ Y | X ∈ A, Y ∈ B} = [A1 ∩B1, A2 ∩B2],
A� B = {X ∪ Y | X ∈ A, Y ∈ B} = [A1 ∪B1, A2 ∪B2]. (6)

The meaning of a formula φ is therefore the interval set of objects, representing
those that definitely have the properties expressed by the formula φ, and those
that possibly have the properties.

Given the meaning of formulas in terms of interval sets, we define the interval-
valued truth for a formula φ by extending equation (2):

v(φ) =
[ |m∗(φ)|
|U | ,

|m∗(φ)|
|U |

]
= [v∗(φ), v∗(φ)]. (7)

Both lower and upper bounds of [v∗(φ), v∗(φ)] have probabilistic interpretation,
hence we have a probability related interval-valued logic [18]. Properties corre-
sponding to (d3)-(d6) are given by:

(i1). v∗(¬φ) = 1− v∗(φ),
v∗(¬φ) = 1− v∗(φ),

(i2). v∗(φ ∧ ψ) ≤ min(v∗(φ), v∗(ψ)),
v∗(φ ∧ ψ) ≤ min(v∗(φ), v∗(ψ)),

(i3). v∗(φ ∨ ψ) ≥ max(v∗(φ), v∗(ψ)),
v∗(φ ∨ ψ) ≥ max(v∗(φ), v∗(ψ)),

(i4). v∗(φ ∨ ψ) = v∗(φ) + v∗(ψ)− v∗(φ ∧ ψ),
v∗(φ ∨ ψ) = v∗(φ) + v∗(ψ)− v∗(φ ∧ ψ).

The formula φ is said to be [v∗(φ), v∗(φ)]-degree true. For a sub-interval [α∗, α∗]
of the unit interval [0, 1], a formula φ is [α∗, α∗]-level true, written |=[α∗,α∗] φ, if
α∗ ≤ v∗(φ) ≤ v∗(φ) ≤ α∗, and φ is strong [α∗, α∗]-level true, written |=[α∗,α∗]+ φ,
if α∗ < v∗(φ) ≤ v∗(φ) < α∗. For sub-intervals [α∗, α∗] ⊆ [β∗, β∗] ⊆ [0, 1] and
[γ∗, γ∗] ⊆ [0, 1], the following properties hold:

(j1). |=[0,1] φ,
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(j2). If |=[α∗,α∗] φ, then |=[β∗,β∗] φ,

(j3). |=[α∗,α∗] ¬φ iff not |=[1−α∗,1−α∗]+ φ,

(j4). If |=[α∗,α∗] φ ∧ ψ, then |=[α∗,1] φ and |=[α∗,1] ψ,

(j5). If |=[α∗,α∗] φ, then |=[α∗,1] φ ∨ ψ,
(j6). If |=[α∗,α∗] φ and |=[γ∗,γ∗] ψ, then |=[max(α∗,γ∗),1] φ ∨ ψ,
(j7). If |=[α∗,α∗] φ ∨ ψ, then |=[0,α∗] φ and |=[0,α∗] ψ,

(j8). If |=[α∗,α∗] φ, then |=[0,α∗] φ ∧ ψ,
(j9). If |=[α∗,α∗] φ and |=[γ∗,γ∗] ψ, then |=[0,min(α∗,γ∗)] φ ∧ ψ.

They follow from (i2) and (i3). In fact, properties (j4)-(j6) are the proper-
ties (e4)-(e6) of the DL-language. Properties (j4)-(j6) show the characteristics
of the lower bound, while (j7)-(j9) state the characteristics of the upper bound.

The generalized interval-based modus ponens rule is given by:

|=[α∗,α∗] φ→ ψ α∗ ≤ v∗(φ→ ψ) ≤ v∗(φ→ ψ) ≤ α∗

|=[β∗,β∗] φ β∗ ≤ v∗(φ) ≤ v∗(φ) ≤ β∗

|=[max(0,α∗+β∗−1),α∗] ψ max(0, α∗ + β∗ − 1) ≤ v∗(ψ) ≤ v∗(ψ) ≤ α∗
.

The part concerning the lower bound is in fact the probabilistic modus po-
nens rule introduced in Section 2. The upper bound can be seen as follows.
From v∗(φ→ ψ) ≤ α∗ and (i3), we can conclude that:

v∗(ψ) ≤ v∗(¬φ ∨ ψ) = v∗(φ→ ψ) ≤ α∗.

Thus, the interval-based modus ponens rule is correct. Finally, it should be
pointed out that the logic of Section 2 is a special case of interval-valued logic.
More specifically, α-level truth can be translated into the [α, 1]-level truth.

4 Comments on Related Studies

An interval-valued logic can also be introduced in the standard information
tables through the use of lower and upper approximations of the rough set the-
ory [5,9]. For each subset of the attributes, one can define an equivalence relation
on the set of objects in an information table. An arbitrary set is approximated
by equivalence classes as follows: the lower approximation is the union of those
equivalence classes that are included in the set, while the upper approximation
is the union of those equivalence classes that have an nonempty intersection with
the set. Thus, for a formula φ with interpretation m(φ), we have a pair of lower
and upper approximations apr(m(φ)) and apr(m(φ)). An interval-valued truth
can be defined as:

v(φ) =
[ |apr(m(φ))|

|U | ,
|apr(m(φ))|
|U |

]
= [v∗(φ), v∗(φ)]. (8)

Based on this interpretation of interval-valued truth, Parsons et al. [9] introduced
a logic system RL for rough reasoning. Their inference rules are related to, but
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different from, the inference rules introduced in this paper. A problem with RL
is that the interpretation of the rough measure is not entirely clear. The measure
is not fully consistent with the definition of truth value given by equation (8). It
may be interesting to have an in-depth investigation of the interval-valued logic
based on equation (8). An important feature of such a logic is its non-truth-
functional logic connectives. This makes it different from the interval set algebra
related systems GDL and RL.

In a recent paper, Pawlak [12] introduced the notion of rough modus ponens
in information tables. The logical formula φ → ψ is interpreted as a decision
rule. A certainty factor is associated with φ→ ψ as follows:

µS(φ, ψ) =
|m(φ) ∩m(ψ)|
|m(φ)| . (9)

It can in fact be interpreted as a conditional probability. The rough modus
ponens rule is given by:

φ→ ψ : µS(φ, ψ)
φ : v(φ)

ψ : v(¬φ ∧ ψ) + v(φ)µS(φ, ψ)

.

This rule is closely related to Bayes’ theorem [13]. One may easily generalize
the rough modus ponens if α-level truth values are used. The main difference
between two modus ponens rules stems from the distinct interpretations of the
logical formula φ→ ψ.

5 Conclusion

Two generalizations of Pawlak’s information table based decision logic DL are
introduced and examined. One generalization is based on the notion of degree of
truth, which extend DL from two-valued logic to many-valued logic. The other
generalization relies on interval-set-based information tables. In this case, two
types of satisfiabilities are used, in a similar spirit of modal logic. They lead to
interval-set interpretation of formulas. Consequently, interval-degree truth and
interval-level truth are introduced as a generalization of single-valued degree of
truth. The truth values of formulas are associated with probabilistic interpreta-
tions. The derived logic systems are essentially related to probabilistic reasoning.
In particularly, probabilistic modus ponens rules are studied.

In this paper, we only presented the basic formulation and interpretation of
the generalized decision logic. As pointed out by an anonymous referee of the
paper, a formal proving system is needed and applications need to be explored.
It may also be intersting to analyze other non-probabilistic interpretations of
truth values.
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Abstract. This paper presents an integration of the dynamic logic se-
mantics and rational decision theory. Logics for reasoning about the ex-
pected utilities of actions are proposed. The well-formed formulas of the
logics are viewed as the possible goals to be achieved by the decision
maker and the truth values of the formulas are considered as the utili-
ties of the goals. Thus the logics are many-valued dynamic logics. Based
on different interpretations of acts in the logics, we can model differ-
ent decision theory paradigms, such as possibilistic decision theory and
case-based decision theory.

1 Introduction

Rational decision theory is a very important research topic in many academic
fields such as economics, politics, and philosophy. Recently, it has also received
more and more attention of the AI community due to the development of intel-
ligent agent systems. The basic execution loop of an intelligent agent consists
of three phases: perception, deliberation, and action. In the perception phase,
the agent senses the status of the environment and receives information from
other agents. Then, in the deliberation phase, the agent reasons with the ob-
served and received information and plans its actions for achieving its goals.
Finally, in the action phase, the plan is really executed. The capabilities of both
reasoning about actions and decision making are crucial to the success of the
deliberation phase since it has to know the possible effects of actions and select
the appropriate actions for achieving its goals.

A variety of formalisms for reasoning about actions have been developed in
AI, theoretical computer science, and philosophical logic. Among them, dynamic
logic is originally proposed for reasoning about program behavior[10], and sub-
sequently adopted for reasoning about actions by the AI community. Though
the advantages of using dynamic logic for reasoning about actions have been
emphasized in [6], the traditional dynamic logic has only limited capability in
handling uncertainty.

In dynamic logic, a formula [α]ϕ denotes that ϕ holds after the execution of
(possibly compound) action α, so in principle, if the agent’s goal is ϕ and [α]ϕ
can be derived from the description of the initial situation, then α is a feasible

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 294-303, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



plan for achieving the goal. This gives rise to a decision theoretic reading of
dynamic logic semantics. Since nondeterministic actions are allowed in dynamic
logic, it may capture the agent’s ignorance on the possible effects of actions to
some extent. However, uncertainty pervades the whole deliberation phase, so
further extensions of dynamic logic for handling different forms of uncertainty
are needed. In general, there are three forms of uncertainty in the deliberation
process.

– The perception of the agent may be imperfect and its received informa-
tion may be incomplete and faulty, so its knowledge in the status of the
environment is uncertain. Sometimes, the probabilistic instead of the exact
knowledge is available. However, in other times, even probabilistic knowledge
is not available, so more general consideration is also needed.

– In multi-agent systems, our agent may not be the only one which can cause
the change of the world, so it has only partial knowledge about the possible
effects of the actions. The classical dynamic logic may handle the case when
the knowledge is imprecise (i.e. the effect of an action is represented as a set
of states). However, the knowledge may be also probabilistic or possibilistic
(i.e. the effect of an action are represented as a probability or possibility
distribution on the set of states). We recall that a possibility distribution on
a set X is a mapping π : X → [0, 1] such that π(x) measures the extent to
which x is likely to be the actual consequence[14]. The dynamic logic should
be extended to cover such cases.

– Since dynamic logic is two-valued, the goal for an agent to achieve must be
crisp and non-flexible. A goal is either satisfied or non-satisfied. However,
sometimes, we may want to describe more flexible goals. A goal may be sat-
isfied to some degree. In decision theory, this is in general described by a
real-valued utility function. Recently, more general notions of ordinal pref-
erence are considered[1, 13]. To represent the flexible goals in dynamic logic,
we will generalize its semantics to a many-valued one.

On the other hand, in the decision theoretic contexts, far richer notions of
uncertainty have been explored. Besides classical decision theory, in which the
notions of probability and expected utility are of central importance, some al-
ternatives, such as possibilistic decision theory[1], case-based decision theory[7],
and belief function-based decision theory[11] have been proposed and axiomati-
cally justified in different settings recently. The main concern of decision theory
is to choose an action which will maximize the expected utility of performing
the action given some knowledge on the effects of the action and the desirability
of these effects. In the extreme case that the utility function is two-valued and
the available knowledge is imprecise, this is just a rephrasing of the decision
theoretic interpretation of dynamic logic. The only difference is that in general
the set of available acts in decision theory is not algebraically structured as in
dynamic logic. Thus, due to the usefulness of dynamic logic in reasoning about
actions and the rich notions of uncertainty in decision theories, the combina-
tion of decision theory and dynamic logic semantics will have the advantages of
cross-fertilization.
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In this paper, we suggest a kind of integration between decision theoretic
notions and dynamic logic semantics. The dynamic logic semantics is enhanced to
a many-valued one, so the truth value of a formula in a state plays a two-fold role.
One is the degree of satisfaction of the formula and the other is the utility of the
state. Since each formula corresponds to a goal and we can consider more than
one formulas in the same time, this means that we can easily describe the multiple
objective decision-making in the logic. In classical dynamic logic, each action is
interpreted as a binary transition relation on the set of states. Here, depending
on the different uncertainty handling formalisms, we can generalize it to a fuzzy
relation, a set of probability distributions, or a set of possibility distributions
generated from a similarity relation. Thus, we will try to develop several many-
valued dynamic logics for reasoning with different uncertainty formalisms.

In what follows, we will first review the basic notions from classical deci-
sion theory and some recent proposals of qualitative alternatives. Then the dy-
namic logics for possibilistic decision theory and case-based decision theory are
considered respectively. Finally, conclusion is given and some possible research
directions are suggested.

2 Review of Some Decision Theories

Classical quantitative decision theory considers expected utility maximization
(EUM) as the criteria of rational choice. In the theory, a decision framework
is a 4-tuple (D,X, µ, u), where D is a set of available decision acts, X is a set
of possible outcomes, µ : D × X → [0, 1] assigns to each decision act d ∈ D
a probability distribution µ(d, ·) on X , and u : X → � is the utility function.
Then the expected utility of a decision d is defined as

U(d) = Σx∈Xµ(d, x) · u(x),

and the decision maker will choose d0 such that U(d0) = maxd∈D U(d).
While the computation of E(d) relies on the arithmetic operations (mainly +

and ·) on real numbers, qualitative decision theory concentrates more on the de-
cision maker’s ordinal preference and uncertainty about the possible outcomes.
Recently, a qualitative decision theory(PODT) based on possibilistic logic is pro-
posed[1]. In the theory, a possibilistic decision framework is a 4-tuple (D,X, π, u),
where D and X are defined as above, π : D×X → T1 assigns to each decision act
d ∈ D a possibility distribution π(d, ·) : X → T1, and u : X → T2 is the utility
assignment function. Here, T1 and T2 are linearly ordered scales, and under the
commensurability assumption, we can assume T1 = T2 = T without loss of gen-
erality. Typical examples of T are [0,1] or a subset of [0,1]. Let n : T → T be an
order-reversing map on T , then two qualitative expected utilities for a decision
d can be defined. For the risk-averse decision maker, the pessimistic expected
utility is

U∗(d) = min
x∈X

max(n(π(d, x)), u(x)),
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and for a risk-prone decision maker, the optimistic expected utility is

U∗(d) = max
x∈X

min(π(d, x), u(x)).

The PODT is particularly suitable for complicate situations in which complete
probabilistic information is rarely available.

Another recent proposed alternative decision theory is the case-based one.
According to [7], the purpose of case-based decision theory(CBDT) is to mod-
el decision making under uncertainty by formalizing reasoning by analogies. It
suggests that decision makers tend to choose actions which performed well in
similar past cases. Each case is viewed as a triple of a situation (i.e. a decision
problem), the action chosen in it, and the consequence of performing the action.
Thus, a case-based decision framework is a 6-tuple (P,D,X,C, s, u), where D,
X , and u are defined as above, P is a set of situations, C ⊆ P ×D×X is a finite
set of cases, called the memory of the decision maker, and s : P ×P → [0, 1] is a
similarity function which measures the similarity between situations. Then, for
a given situation p, the expected utility for a decision d is defined as

Uc(d) =
∑

(q,d,x)∈C

s(p, q)u(x).

However, it is also pointed out that Uc is cumulative in nature, so the number of
times a certain act was chosen in the past will affect perceived desirability. Thus,
an act that was chosen repeatedly producing bad results may be considered
superior to an act that was chosen only once but producing good result. To
overcome the difficulty, the average utility is considered in [7], namely, in the
above equation, the similarity function s is replaced by s′ which is defined as

s′(p, q) =
{
s(p, q)/

∑
(q′,d,x)∈C s(p, q′) if well−defined

0 otherwise

In [2], a more qualitative version of expected utility is considered which can also
eliminate the cumulation assume the utility values are normalized to the range
[0, 1]. The definition is analogous to the pessimistic and optimistic expected
utility in the PODT.

Uc∗(d) = min
(q,d,x)∈C

max(n(s(p, q)), u(x)),

U∗
c (d) = max

(q,d,x)∈C
min(s(p, q), u(x)).

While in PODT, it is observed that the criterion of maximizing U∗(d) is some-
times over-optimistic[5], it seems that for CBDT, the pessimistic utility has some
counterintuitive results. For example, if an act a was only adopted in the past
for the cases that are completely different with the present situation, i.e., for all
(q, a, x) ∈ C, s(p.q) = 0, then we will have Uc∗(a) = 1 which is the maximum
value. This phenomenon is due to the fact that the case memory is only a partial
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description of the world, so we may encounter a novel situation in which no past
experience can be followed. In CBDT, we tend to find the most similar past case
and apply its solution to the new situation, so the optimistic criterion seems
more suitable.

3 Possibilistic Dynamic Logic

The possibilistic dynamic logic (PoDL) provides the integrated treatment of
possibilistic decision theory and dynamic logic. The syntax and semantics of
PoDL is an extension of that for dynamic logic[10] and fuzzy modal logic S DLMV
in [8], which in turn bases on rational Pavelka logic proposed in [9].

3.1 Syntax

The alphabet of PoDL consists of

1. A set of propositional letters, PV = {p, q, . . .},
2. a set of atomic actions, A = {a, b, c, . . .},
3. the set of truth constants r for each rational r ∈ [0, 1], and
4. the logical symbols ∼, →, ∧, ∨, [, ], ;, ∗, ∪, and ?.

The set of well-formed formulas(Φ) and the set of action expressions(Ξ) are
defined inductively in the following way.

1. Φ is the smallest set such that
– PV ⊆ Φ and r ∈ Φ for all rational r ∈ [0, 1], and
– if ϕ, ψ ∈ Φ and α ∈ Ξ, then ∼ ϕ, ϕ→ ψ, ϕ ∧ ψ, ϕ ∨ ψ, [α]ϕ ∈ Φ.

2. Ξ is the smallest set such that
– A ⊆ Ξ, and
– if α, β ∈ Ξ and ϕ ∈ Φ, then α;β, α ∪ β, α∗, ϕ? ∈ Π .

Some abbreviations of PoDL include ¬ϕ = ϕ → 0, ϕ ⊗ ψ = ¬(ϕ → ¬ψ),
ϕ⊕ ψ = ¬ϕ→ ψ, and 〈α〉ϕ = ¬[α]¬ϕ.

3.2 Semantics

The semantics of PoDL is defined relative to a given Kripke structure M =
(W, τ, [| · |], w0), where W is a set of possible worlds, τ : W × PV → [0, 1] is the
truth valuation function, [| · |] : A → (W ×W → [0, 1]) is the action denotation
function, and w0 ∈W is a designated world. The mappings τ and [| · |] is extended
to Φ and Ξ as follows.

1. τ(w, r) = r,

2. τ(w,∼ ϕ) =
{
0 if τ(w,ϕ) = 1
1 otherwise

3. τ(w,ϕ→ ψ) = I(τ(w,ϕ), τ(w,ψ)),
4. τ(w,ϕ ∧ ψ) = min(τ(w,ϕ), τ(w,ψ)),
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5. τ(w,ϕ ∨ ψ) = max(τ(w,ϕ), τ(w,ψ)),
6. τ(w, [α]ϕ) = infx∈W max(1− [|α|](w, x), τ(x, ϕ)),
7. [|α;β|] = [|α|] ◦ [|β|], i.e,, composition of two fuzzy relations [|α|] and [|β|],
8. [|α ∪ β|] = [|α|] ∪ [|β|],
9. [|α∗|] = [|α|]∗, i.e., the reflexive and transitive closure of [|α|],
10. [|ϕ?|](w, x) =

{
τ(w,ϕ) if w = x
0 otherwise

where I : [0, 1] × [0, 1] → [0, 1] is an implication function. Typical implication
functions include material implication I(x, y) = max(1 − x, y), DLukasiewicz’s
implication I(x, y) = min(1, 1 − x + y), and Gödel implication I(x, y) = 1 if
x ≤ y and = y if x > y. Here we will let I denote the DLukasiewicz’s implication.

Let w |=M ϕ denote τ(w,ϕ) = 1, then ϕ is true in M , written as M |= ϕ if
w0 |=M ϕ and for a set Σ of wffs, we write M |= Σ if M |= ϕ for all ϕ ∈ Σ.
Furthermore, ϕ is said to be an (external) logical consequence of Σ, denoted by
Σ |= ϕ, if for any model M , M |= Σ implies M |= ϕ. When Σ is the empty set,
this is abbreviated as |= ϕ and ϕ is said to be valid. Moreover, ϕ is satisfiable if
∼ ϕ is not valid and weakly satisfiable if ¬ϕ is not valid.

3.3 Discussion

In the semantics above, if we consider Ξ as the set of available acts, and Φ the
set of goals, then a Kripke structure is a generalization of possibilistic decision
framework. It can be seen that τ(w, [α]ϕ) and τ(w, 〈α〉ϕ) are respectively the
pessimistic and optimistic utility of doing α under state w with respect to the
decision objective ϕ.

To see how the PoDL model generalize a possibilistic decision framework, let
us consider the formal correspondence between them. Let M = (W, τ, [| · |], w0) be
a PoDL model and ϕ be a fixed wff, then D(M,ϕ) = (D,X, π, u) is a possibilistic
decision framework, where

– D = Ξ,
– X = W ,
– π : D ×X → [0, 1], π(α,w) = [|α|](w0, w) for all α ∈ D and w ∈ X ,
– u : X → [0, 1], u(w) = τ(w,ϕ) for all w ∈ X .

The difference is made explicit from the formal correspondence. First, in a possi-
bilistic decision framework, the set of available decision acts is taken as primitive,
so it is only needed to specify the possible effects of each act from the initial
situation w0, which is implicitly assumed. On the other hand, in PoDL, the set
of actions is composed from some atomic ones, so to know the effects of an action
under the initial situation, we have to know also effects of its constitutive ac-
tions under different situations. In other words, the decision maker choose plans
instead of a single action in PoDL model. Second, in a possibilistic decision
framework, a utility function is given, which is implicitly assumed to correspond
to a goal of the decision maker, whereas in PoDL, we have a bundle of utility
functions, each corresponding to a wff of the language. Thus, we can know the
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utilities of not only some primitive goals p and q, but also the conjunctive goal
p∧q, the aggregated goal p⊗q, the negated goal ¬p, and so on. This is in partic-
ular suitable for multiple objectives decision making. Moreover, because of the
use of rational Pavelka logic, the prioritized or thresholded goals mentioned in [3]
can also be expressed in PoDL. For example, we can write goals like ϕ∨ (1− r)
or r→ ϕ.

When we can completely specify a possibilistic decision framework or a PoDL
model M , then the decision making process amount to the model checking prob-
lem in M . For example, if M |= r→ [α]ϕ, then we know that for goal ϕ, the plan
α has pessimistic expected utility at least r. If M |=∼ ([α]ϕ → [β]ϕ), then α is
a better plan than β for satisfying ϕ according to the criterion of maximizing
U∗. Sometimes, it is not easy to have a complete specification of the decision
framework. Instead, we may have only some partial description of the status of
the environment and the preconditions and effects of the primitive actions. Some
typical sentences for the description are non-modal wffs of PoDL, or formulas of
the form ϕ→ (r→ [a]ψ) where a is atomic and ϕ and ψ are non-modal. In this
case, assume Σ ⊆ Φ is the set of descriptions, then the decision making process
amount to deduction problem in the logic. We must try to derive the formulas
like r→ [α]ϕ or ∼ ([α]ϕ→ [β]ϕ) from Σ by proof methods of the logic. Though
the development of proof methods for the logic is beyond the purely semantic
concern of the paper, it is indeed a very interesting direction for further research.

4 Case-based Dynamic Logic

Analogous to PoDL, in this section, we develop a case-based dynamic logic(CbDL)
for reasoning about actions and decisions according to CBDT. Though the syn-
tax of CbDL is similar to that of PoDL, we will add a similarity-based modal
operator which is of independent interest to fuzzy reasoning[4, 8]. Furthermore,
a more classical dynamic operator {·} is used for describing primitive actions in
case bases.

Thus, the alphabet of CbDL consists of those for PoDL and three additional
logical symbols {, },∇ and the following formation rules are added to those for
PoDL,

– if ϕ ∈ Φ and a ∈ A, then {a}ϕ and ∇ϕ ∈ Φ.

To define the semantics for CbDL, we first recall the definition of fuzzy
similarity relation. A fuzzy relation S : X × X → [0, 1] is a similarity one if it
satisfies the following three properties, for all x, y ∈ X ,

1. reflexivity: S(x, x) = 1,
2. symmetry: S(x, y) = S(y, x), and
3. transitivity: S(x, y) ≥ supz∈X min(S(x, z), S(z, y)).

Then a CbDL model is a 5-tuple M = (W, τ, [| · |]0, S, w0), where W , τ , and w0

are as above, [| · |]0 : A→ 2W×W , and S : W ×W → [0, 1] is a similarity relation.
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The mapping [| · |] : A→ (W ×W → [0, 1]) is defined by

[|a|](x, y) = sup
z∈W,(z,y)∈[|a|]0

S(x, z).

That is, [|a|] = S ◦ [|a|]0. Then the mappings τ and [| · |] is extended to Φ and Ξ
as in PoDL with the extra rules for wffs of the forms ∇ϕ and {a}ϕ,
10. τ(w,∇ϕ) = infx∈W max(1− S(w, x), τ(x, ϕ)),
11. τ(w, {a}ϕ) = infx∈W,(w,x)∈[|a|]0 τ(x, ϕ).

The definitions of logical consequence, validity, and satisfiability, etc. are analo-
gous to those of PoDL. Sometimes, to distinguish the logical consequence rela-
tions between PoDL and CbDL, we will add the subscripts to them.

The mapping [| · |]0 is to model the case memory, The definition is such that
a case (x, a, y) is in the memory iff (x, y) ∈ [|a|]0. This restricts that the actions
appearing in the memory must be atomic. This restriction is not so restrictive
as it seems at the first glance. Imagine that the agent has a detail trace of the
execution of the actions in the past cases. Then for a compound action like
α;β, if we know the intermediate state after the execution of α, then we can
decompose a case (x, α;β, y) into two cases (x, α, z) and (z, β, y), and store the
latter two on the memory. According to the original restriction of case memory
in [7], there do not exist two cases (p, a, x) and (p, a′, x′) in the memory such
that a �= a′ or x �= x′, so we can also require that [|a|]0 is a partial function in
the CbDL model. However, for generality, we do not impose the restriction on
the models.

The definition of [| · |] from [| · |]0 and S make the following a valid axiom
schema in CbDL. That is,

|= [a]ϕ ≡ ∇{a}ϕ,
for a ∈ A and ϕ ∈ Φ.

Apparently, the CbDL and PoDL models have some correspondence. In the
semantics for CbDL, we have constructed [| · |] from [| · |]0 and S, if we then ignore
the latter two components, a PoDL model is obtained. Since the language of
PoDL is a sublanguage of CbDL, this means that CbDL is an extension of
PoDL. Namely, if Σ is a set of wffs of PoDL and ϕ is a wff of PoDL, then
Σ |=PoDL ϕ implies Σ |=CbDL ϕ.

However, unlike PoDL, we can not find a direct correspondence between
CbDL models and CBDT framework. This is due to the fact that in CBDT, the
set of situation P and the set of consequence X are not necessarily the same,
whereas in CbDL models, we model the past cases by a set of binary relations
on W , so W plays both the roles of P and X . To transform a CBDT framework
(P,D,X,C, s, u) into a CbDL model, we can let W = P ∪X , and then extend
the similarity function s to W ×W and the utility function u to W . However,
is is likely that s is not well-defined outside P × P and u is not definable in P .
In this case, a simple approach is just let u(p) = 0 for all p ∈ P and s(x, y) = 0
for x ∈ X or y ∈ X . Then the extended s is just the similarity fuzzy relation
S and for the extended u, u(w) is the truth value τ(w,ϕ) for some fixed goal
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ϕ. The mapping [| · |]0 is derived from the case memory C, i.e., (p, x) ∈ [|a|]0 if
(p, a, x) ∈ C. If the process of extending s and u does not distort the original
CBDT framework, then we have a complete specification of CbDL model. This
reduces the process of reasoning about actions and decision in the original CBDT
framework to the model checking problem in CbDL as in the case of PoDL.

On the other hand, from a more practical viewpoint, we may have only a
partial description of the whole CBDT framework from the beginning. In this
case, we assume there is a subset of crisp propositional symbols PV0 ⊆ PV for
describing the case memory. Let Φ0 is the set of sentences resulting from Boolean
combinations of symbols in PV0. Then in general, we have four sets of proper
axioms for the description of the framework. The first one Σs is to describe the
similarity function, so each sentence in it is of the form ϕ→ (r→ ∇ψ) for some
ϕ, ψ ∈ Φ0, the second is Σc for the case memory, so its sentences are in the form
of ϕ→ {a}ψ for some ϕ, ψ ∈ Φ0 and a ∈ A, the third is Σu which specifies the
utility functions, so each sentence is of the form ϕ → (r → ψ) for some ϕ ∈ Φ0

and ψ ∈ Φ, and the last is Σ0 = {p∨¬p | p ∈ PV0} to enforce that each p ∈ PV0

is two-valued. These four sets are proper axioms instead of premises because we
require that they are true not only in w0 but also in all possible worlds of a
model. Let Ω = Σs ∪Σc ∪Σu ∪Σ0 and suppose the agent faces a new problem
described by a set of (possibly just propositional) wffs Σ, then our problem is a
theorem-proving one. For example, if we have Σ |=Ω∼ (〈α〉ϕ → 〈β〉ϕ), then α
will be a better plan for the goal ϕ with respect to the criterion of maximizing
U∗

c , where |=Ω means the logical consequence relation in a CbDL system with
Ω as the set of proper axioms.

5 Future Works and Conclusion

We have outlined two logical languages for reasoning about actions and decisions
based on the dynamic logic semantics and decision theory framework. One is
based on possibilistic decision theory and the other on case-based decision theory.
The language for PoDL is a subset of CbDL and it is shown that CbDL is a
conservative extension of PoDL. Both logics can be used in two ways. When we
have a complete specification of the decision frameworks, the logic can be used
in a model checking way and if we have only a partial description of the problem,
then the logic should be used in a theorem proving way.

As mentioned above, since theorem proving is in general more difficult than
model checking, the development of theorem proving methods for both logics is
the first demanding problem for further research.

Second, while the logics developed here are mainly based on qualitative de-
cision theories, we would also like to develop similar logics for quantitative de-
cision theories. In particular, probabilistic dynamic logics [12] should be a good
starting point. However, since these logics are aimed at reasoning about the be-
havior of probabilistic algorithm, they are still two-valued, so the generalization
to many-valued ones are needed. If this is successful, we can model the classical
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decision framework as well as the original quantitative criterion of maximizing
Uc in CBDT.

In conclusion, the results reported in this paper is just at the early stage of
a long-term goal to integrate logical reasoning and decision theories. We expect
the cross-fertilization of both fields can result from the research.
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Abstract. This paper is concerned with a preliminary consideration
to provide the formal specification of language of knowledge processing
system SKAUS (Super Knowledge Acquisition and Utilization System)
which incorporates uncertain knowledge processing and non-symbolic in-
formation processing units in the system. SKAUS is planned as a super
set of KAUS developed by the authors. KAUS implement multi-layer
logic (MLL for short) based on classical set theory. SKAUS is intended
to have additional capabilities of KAUS, such as representing uncertain
knowledge in the forms of language used in fuzzy set theory and proba-
bility theory. In addition to this extension, we try to incorporate matrix
logic into our extension so as to process non-symbolic information in
corporation with neural networks.

1 Introduction

For the practical AI systems, the ability of reasoning with uncertainty is very
important [1,2,3]. For example, in the application of AI technology to problem
domains of diagnosis, control and prediction, the systems are required to have
the facility of reasoning with uncertainty because these domains are usually ill-
defined and so the problems and the solving method could not be well described.
Another example is seen in intelligent information retrieval systems. The users
sometimes pose ambiguous queries to the retrieval systems. In this case, the
systems have to resolve ambiguities involved in the queries so that the systems
can retrieve the users’ surely desired data.

The aim of this paper is to give a preliminary consideration to extend
MLL [5,6] so that we can handle reasoning with uncertainty by incorporating
fuzzy sets originated by Zadeh [4] into the extended MLL. In addition to this
extension, we try to incorporate matrix logic into our system so as to process
non-symbolic information in corporation with neural networks. We have a plan
to extend KAUS [10] as SKAUS (super knowledge acquisition and utilization

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 304–314, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



I n corp orat in g Fu zzy S e t Th e ory an d Mat r ix L ogic in Mu lt i- l ayer L ogic 305

system) which enables us soft computing with these extensions. We introduce
here MLL and KAUS shortly. More details of MLL are discussed in the litera-
tures [5,6].

In 1985 we have formalized multi-layer logic (MLL for short) which is an
extended version of first order logic. MLL was formulated as a formal system
for constructing general purpose knowledge processing systems. Though ordi-
nary first order logic does not assume any structural constraints to variable and
constant terms, these in MLL may be structured in the set hierarchy. The sets
treated in MLL are crisp sets based on axiomatic set theory, specifically, based
on admissible sets [7].

Adopting MLL as the theoretical basis, we have developed KAUS (knowledge
acquisition and utilization system) and it is used as a tool for building knowledge-
based systems. Until now we have applied KAUS to various model building and
evaluation by computer [8,9].

Rules described in KAUS language are not restricted Horn clauses but arbi-
trary AND–OR clauses. Variables appearing in KAUS clauses may be universally
quantified or existentially quantified with type restrictions. For example, (1) Ev-
ery boy likes a girl, (2) The age of John is 24 or 25, (3) If a person X does not
have his own car, then X is not a car driver or X is a paper-driver, and (4) If
each member Y of the students X who is a group interested in computer science
learns a programming language are respectively expressed in KAUS as follows.

(1).[AX/boy][EY/girl](like X Y).
(2).(| (age john 24) (age john 25)).
(3).[AX/person][ACar/car]

(| (|~(carDirver X) (paper-driver X) ) (have X Car)).
(4).[AX/*student][AY/X][EL/programmingLanguage]

(| (learn Y L)~(interestedGoroup X computerScience)).

As seen above, we represent a clause A→ B by ¬A ∨B.
We have implemented inference rules given in [5,6] with the unification algo-

rithm based on resolution principle, in which if the two variables to be unified
are typed variables (as seen in the above example), type unification is also per-
formed [10]. Relating to uncertain reasoning, disjunctive logic programming [11],
though in the limited way, and building models of possible worlds using the world
constructor of KAUS are possible.

2 Incorporating Fuzzy Set Theory into MLL

The most primitive concept in a set theory and so in MLL is the membership
relation that an element x belongs to a set A. In the classical set theory we
write this relation as x ∈ A. The truth value of x ∈ A is often described using
its characteristic function φ(x) such that φ(x) = 1 if and only if x ∈ A, and
φ(x) = 0 if and only if x /∈ A. For example, John is a student will be described
as John ∈ student and φstudent(John) = 1. How about John is a tall student?
We might write it as John ∈ tall student and φtall student(John) = 1. However,
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if we want to classify Jim as Jim ∈ tall student from the fact Jim is a student
and his height is 180cm, we have to clarify the concept tall. Since ’tall ’ is a
vague concept, we cannot define exactly what is meant by tall. In the approach
of classical logic and so MLL, we can only heuristically or subjectively define
tallness in a logical form such as

(∀x ∈ student)[height(x, h) ∧ h ≥ 175↔ tall(x)]

From this we can say that the set of all tall students (denoted by tall student)
is the subset of the set student that satisfies the above relation. This is a definition
from the intensionallity of a set. Another definition is possible from the exten-
sionality of a set. In the extensional definition of a set, we explicitly enumerate
all elements of the set. For example, tall student = {John, Jim, ...}. The enu-
merated elements are thought of having the common properties and attributes.
There is no ambiguity in the definitions of intensionality and extensionality of
sets in the classical set theory. Furthermore it seems that classical set theory is
enough for describing all things including ambiguous and vague concepts in such
a way. All descriptions by the classical theory can be evaluated exactly true or
false. So, one could say that MLL is enough and there is no problem in MLL.
However if we describe ambiguous and vague concepts in MLL cooperating with
fuzzy set theory, such MLL will become more practical theory because fuzzy set
theory is very practical and intuitive theory for real applications. In the following
we describe extended MLL from the point of views describe above.

2.1 Extending Set Relationships in MLL

Our criterion of incorporating fuzzy sets into MLL is that set relationships de-
fined in MLL are special cases in that the fuzzy set membership functions are
restricted to the extreme points {0,1} of [0,1]. Because of this we adopt α-level
sets to define set relationships. The α-level set Aα of a fuzzy set A is defined as
follows [12,13].

Definition 1. (α-cuts) Given α ∈ [0, 1] and the membership function µA of a
fuzzy set A, we define α-level sets Aα of A from the following α-cuts (a) or
strong α-cuts (b).

(a). Aα = {x ∈ U |µA(x) ≥ α}
(b). Aα = {x ∈ U |µA(x) > α} (1)

We can reconstruct µA from the family of α-level sets Aα of A :

µA(x) = sup{α|x ∈ Aα} (2)

An α-level set is a crisp set and the ∈ -relation used in (2) is the ordinary
membership relation. Since as described earlier in this chapter the member-
ship relation is the most fundamental relation in a set theory, we define the
similar ∈ -relation for fuzzy sets.
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Definition 2. (∈α -relation) We write x ∈α A iff x belongs to an α-level set Aα

of a fuzzy set A, and x /∈α A iff x does not belong to an α-level set Aα of a fuzzy
set A. {

x ∈α A iff x ∈ Aα

x /∈α A iff x /∈ Aα
(3)

The inclusion relation between fuzzy sets is defined using α-cuts of fuzzy
sets.

Definition 3. (inclusion relation)

Aα ⊆ Bβ : (∀x)[x ∈ Aα → x ∈ Bβ ]↔ β ≤ α (4)

Union, intersection, and complementation operators are defined as follow.

Definition 4. (union and intersection operators) Given X whose elements are
fuzzy sets and α, β ∈ [0, 1], we define union and intersection operators as follows.

union ∪X : [x ∈α ∪X ↔ (∃Z)(∃β)[β ≥ α ∧ x ∈β Z ∧ Z ∈ X ]] (5)

intersection ∩X : [x ∈α ∩X ↔ (∀Z)(∃β)[β ≤ α ∧ x ∈β Z ∧ Z ∈ X ]] (6)

For example, if X = {A,B}, ∪X = A ∪ B. The membership function of
A∪B is defined from the α-cuts given in (1) and (2). Typically, the membership
function of A∪B is a s-norm (t-conorm) such that µA∪B(x) = ⊕(µA(x), µB(x))
where each membership function of A and B is defined from some βA-cuts and
βB-cuts such that βA ≤ α and βB ≤ α. The membership function of A ∩ B is
given by the t-norm such that µA∩B(x) = ⊗(µA(x), µB(x)).

Definition 5. (complementation) Given A as a fuzzy set and α ∈ [0, 1], we
define the complement set of A as follows.

complementation A : [x ∈α A↔ x ∈1−α A] (7)

Definition 6. (powerset) Given a fuzzy set X, we define the powerset of X as
follows.

powerset ∗X : [Y ∈ ∗X ↔ Y ⊆ X ] (8)

These definitions (1) – (8) are used for defining the inference rules of the ex-
tended MLL.

2.2 Extending Inference Rules in MLL

In a fuzzy system, a typical pattern of the fuzzy inference rules is expressed like

if x is A, then x is B
a is A∗

a is B∗
(9)

where x is a variable and a is a constant. A, A∗, B and B∗ represent fuzzy
predicates (fuzzy sets) [14]. For example, from (9), if ’if x is tall, then x is heavy’
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and ’John is very tall ’ are given as premises, we can conclude that ’John is
very heavy’. Zadeh defined such a generalized modus pones rule [14]. However,
it should be noted here that there exists the difference between ’if x is A, x
is B ’ and ’if the more x is A, the more x is B ’ and it should be clarified in the
inference system [14]. We agree to this and our inference system will reflect this
agreement. As for fuzzy unification, unification rules between fuzzy predicates
have been discussed and formulated [15,16,17,18]. Until now some real tools for
developing fuzzy systems have been also developed [19,20].

In this section we attempt to extend MLL so that we can handle such a fuzzy
inference as (9) in the extended MLL. In MLL predicates are assumed 2-valued
predicates. The variables may be quantified like (∀x/X) indicating (∀x ∈ X)
and (∃x/X) indicating (∃x ∈ X). The values of variables may be sets but they
are assumed crisp sets. Constant terms may also be sets but they are assumed
crisp sets. The inference rules of MLL are formalized in [5,6]. We show two of
these here.

{(∀x/X)P [x], a ∈ X} � P [a]. (10)

{(∀x/X)P [x], (∀y/Y )[P [y]→ Q[y]], Y ⊇ X} � (∀x/X)Q[x]. (11)

(11) is the modus pones rule in MLL. To incorporate fuzzy inference rule
into MLL, we need additional inference rules. Relating to (10) and (11), we
need

{(∀x/Xα)P [x], a ∈α X} � P [a]. (12)

{(∀x/Xα)P [x], (∀y/Yβ)[P [y]→ Q[y]], Yβ ⊇ Xα} � (∀x/Xγ)Q[x]. (13)

where γ in the conclusion of (13) is conditioned to be γ = ⊗{µX(x), µY (x)}.
The unification rule of fuzzy constants is also required to the extended MLL.

For example, unification between height(x, tall) and height(x, very.tall) should
be possible. Unification between a literal value and a numerical value of a fuzzy
constant is also considered.

In the following, we illustrate a simple example of inference involving fuzzy
predicates. We transform following (14) step by step into the form in the ex-
tended MLL.

(∀x)[person(x) ∧ tall(x)→ heavy(x)]
(∀x)[boy(x)→ person(x)]
boy(john), very.tall(john)

very.heavy(john)
(very)

(14)

In (14), ’very’ is attached to the horizontal line to indicate that the inference
is performed with fuzzy unification between ’tall ’ and ’very.tall ’. It shows that
the grade of tallness should be transmitted to the grade of heaviness in the
conclusion.

We transform (14) to (15) using the axiom of intensionality of a set and α-cuts
of a fuzzy predicate (fuzzy set). we first rewrite person(x) by x ∈ PERSON ,
boy(x) by x ∈ BOY , and boy(john) by john ∈ BOY . Next we rewrite each
fuzzy predicate. For example, tall(x) by tallα(x) indicating that ’tall ’ is a fuzzy
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predicate and its fuzziness is determined by the fuzzy membership function
induced from the α-cuts TALLα of the fuzzy set TALL. Finally we rewrite
very.tall(john) by tallvery(john). The fuzziness γ of the conclusion is calcu-
lated by the composition rule attached to the horizontal line:

(∀x)[x ∈ PERSON ∧ tallα(x)→ heavyβ(x)]
(∀x)[x ∈ BOY → x ∈ PERSON ]
john ∈ BOY, tallvery(john)

heavyγ(john) (γ = ⊕{⊗{α, very}, β}) (γ = ⊕{⊗{α, very}, β})
(15)

We next transform (15) into (16) using the notations given in (17).

(∀x/PERSON)[tallα(x)→ heavyβ(x)]
BOY ⊂ PERSON

john ∈ BOY, tallvery(john)
heavyγ(john)

(γ = ⊕{⊗{α, very}, β})
(16)

where
(∀x/X)p(x) ≡ (∀x)[x ∈ X → p(x)]
(∃x/X)p(x) ≡ (∃x)[x ∈ X ∧ p(x)] (17)

In (16), the fuzzy predicates are left as these are, but the second premise in (15)
is replaced by the set inclusion relation. Similar to (15), the calculation of fuzzi-
ness γ of the conclusion is performed using the composition rule attached to the
horizontal line.

Finally we transform (16) into the complete extended MLL form. Until now
we have represented a fuzzy predicate such as Pα(x). Here we introduce a new
notation p : α in order to declare that a predicate p is a fuzzy predicate or a fuzzy
term having α as its fuzzy parameter. If we write p : α(x), we assume that p : α
is a fuzzy predicate identifier. Otherwise, namely, if we write simply p : α, we
assume it is a fuzzy term. This results in the extension of the well formed formulas
in MLL. α may be a variable or a constant given either literally or numerically.
We note here that the truth value of p : α(x) is determined as follows.

p : α(x) =
{
true iff x ∈ Pα ∩X where Pα is an α-cut of P
false otherwise (18)

where X denotes the domain of x. Then for the first premise of (16), tallα(x) is
written as tall : α(x), heavyβ(x) as heavy : β(x). Using this notation (16) can
be rewritten as follows.

(∀x/PERSON)[tall : α(x)→ heavy : β(x)]
BOY ⊂ PERSON

john ∈ BOY, tall : very(john)
heavy : γ(john)

(γ = ⊕{⊗{α, very}, β})
(19)

As a result, if α = β in (19) and ⊗ = min and ⊕ = max, we can easily
conclude in γ = very in heavy : γ(john), that means ’John is very heavy’. The
extended MLL intends to use such a notation as (19).



310 Hiroyuki Yamauchi and Setsuo Ohsuga

2.3 Probabilistic Reasoning

We can apply probability theory to reasoning with uncertainty. However the
mixed use of probability theory and fuzzy set theory is dangerous. There exist
critical differences between them. Fuzzy set theory deals with vague and impre-
cise notions and defines partial degrees of truth. On the other hand, probability
theory deals with crisp notions and does not define partial degrees of truth but
defines the degree of belief on truth [21]. Consider the following assertion.

If x is tall (A) and x is heavy (B), then x is strong (C). (20)

In fuzzy set theory, if A and B are partially satisfied with some evidence A∗

and B∗, then the graded truth value of the conclusion C∗ can be assigned with
the composition rules between the membership functions of A∗ and B∗. In prob-
ability theory, (20) can be rewritten using probabilities such as

If A is p-probable and B is q-probable, then C is r-probable. (21)

where p, q and r are probabilities of A, B and C respectively. These proba-
bilities define the degrees of beliefs of A, B and C. If some evidences p∗(A)
and q∗(B) are given, then we can conclude r∗(C) by some probabilistic com-
position rules. For example, plausible and possibility reasoning are formulated
by using belief functions in Dempster-Shafer’s evidence theory [1,22] and prob-
abilistic measures described in [23]. The Bayes approach [22] using conditional
probabilities is strictly probabilistic approach. Baldwin et al. have relaxed prob-
ability measures and they have formulated support pairs of necessity measures
and possibility measures [19] as probabilistic measures for formulas. Dubois et
al. also have relaxed probability measures by using mass functions as probabil-
ities [18]. In any way, we can apply probabilistic approach for reasoning with
uncertainty under certain restrictions. The main problems would be what norms
of uncertainty and composition rules are available to reasoning with uncertainty
in real applications. The real implementation of SKAUS which can reason with
uncertainty should incorporate a selection mechanism of appropriate uncertainty
measures and composition rules.

3 Incorporating Matrix Logic into MLL

In August Stern’s matrix logic [25], logical truth values and connectives are rep-
resented by logic vectors and matrix operators. In this formulation, not only
the ordinary 2-valued logic but also many valued logic including fuzzy logic,
modal logic and probabilistic logic are uniformly treated in the same frame-
work. Matrix logic is closely related to neural network computing because of its
algebraic treatment of objects. By incorporating matrix logic into SKAUS as
a meta-predicate, we could expect that the fusion of symbolic processing and
non-symbolic processing is realized.
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3.1 Matrix Logic

In this section, we introduce matrix logic by August Stern shortly. First we give
some notations used in matrix logic.

row logic vector : < p| = (p, p) (called bra vector)

column logic vector : |q >=
(
q
q

)
(called ket vector) (22)

where p and q in the left side of (22) are atomic formulas, whereas p and q in the
right side represent truth values. In 2-valued logic, if p is true, then < p| = (0, 1).
The inner product and outer product of logic vectors are written as follows.

inner product : < x|y >= (x, x)
(
y
y

)
= xy + xy

outer product : |x >< y| =
(
xy xy
xy xy

)
(= Ω), ‖ Ω ‖= xy + xy + xy + xy = 1

(23)
Ω is called universal operator. A matrix operator L is written as follows.

< x|L|y >=< x|
(
L11 L12

L21 L22

)
|y >= x1L11y1 + x1L12y2 + x2L21y1 + x2L22y2

(24)
Note that < x|L|y > =< x|L|y >, x = 1 − x, |x >= 1 − |x >= ¬|x >,

and L = 1̂ − L �= ¬L, where 1 and 1̂ indicate a special vector and an operator
respectively, and these components are all one. Another point is

< x| ∧ |y >=< x|1 >< 1|y >=< 1|x >< y|1 >=< 1|L(|x >< y|)|1 > (25)

where |1 > is a column vector of < 1| = (0, 1), and L(|x >< y|) is a variable
logic operator, taking different shapes, depending on the values obtained by the
vectors |x > and < y|.

Some examples of matrix operators are shown below.

∧ =
(
0 0
0 1

)
,∨ =

(
0 1
1 1

)
,→=

(
1 1
0 1

)
,¬ =

(
0 1
1 0

)
, ↓=

(
1 1
1 0

)
, ↑=

(
1 0
0 0

)

(26)
↓ and ↑ are nand and nor operators respectively. We see →= ¬∨ from (26). In
matrix logic, the modus ponens rule is represented like

(x ∧ (x→ y))→ y = < x|1 >< x| → |y >< 0|y > = 1 (27)

Note here that (27) is obtained using (25) and < 0|y >= ¬|y >.



312 Hiroyuki Yamauchi and Setsuo Ohsuga

3.2 Neural Networks

In this section we consider the problem of adjusting membership functions of
fuzzy sets using neural network techniques. As well known, by combining fuzzy
systems with neural networks, we can add the learning ability to fuzzy systems.
On the other hand, difficulties of the plain explanation of neural computations
are overcome [25].

We consider here a fuzzy inference scheme given in (9). We encode (9) in the
neural network using matrix logic as follows.

input from neuron X hidden layer output to neuron Y
(r): < A(x)| → |B(x) >

(a): < A∗(a)|
(b): |B∗(a) >

(β∗)
(28)

The hidden layer receives input (a) and computes (b) by applying (r). In each
computing cycle of (b), the output function of the hidden neuron adjust mem-
bership functions used in (r) by applying a fuzzy version of (27), such that the
following equation is satisfied.

(1 − α∗, α∗)
(
0
1

)
(1− α, α)

(
1 1
0 1

)(
1− β
β

)
= β∗ (29)

We note here that we used the algebraic product as t-norm, and the algebraic
sum as s-norm for calculating β∗ in (29). We also assumed fuzzification of input
at (a) and defuzzification of output at (b) in (28) are performed as the preprocess
and postprocess respectively. Furthermore, we note that in a fuzzy version of (27)
under (29), < β∗| ∧ |β∗ >=< β∗| ∧ ¬|β∗ >= β∗(1− β∗) �= 0 in general.

4 Conclusion

We have applied an idea of α-cuts of fuzzy sets to formulate the extended MLL
which can perform reasoning with uncertainty. We have also considered matrix
logic as a tool for the fusion of symbolic computation and non-symbolic (numer-
ical) computation with relation to neural networks. SKAUS which is based on
the extended MLL and having a meta-predicate of matrix logic computation will
be expected to enlarge applications under the real environments.
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Abstract. In this paper, we will introduce a novel perspective on Fuzzy

Logic by referring to the theories of Chu Space and Information Flow,

i.e., Channel Theory, which results in a deep insight on the interac-

tion and coordination of agents with environments. First, a constraint-

oriented interpretation of fuzzy set is introduced yielding the notion of

Constraint-Interval Fuzzy Set (CoIFS). Then the above theories are in-

troduced, which elucidate the basic structures of fuzzy inference as con-

straint propagation yielding the spaces of Coordination and Interaction.

Also, the structure of Information Transmission Channel of constraint

propagation is clari�ed together with its relevance with the results by

the theory of Chu Space. All the results can be used to elucidate the

basic structure of \interfacing (interfacing media)" between agents and

environments.

1 Introduction

Various arti�cial systems are concerned complicatedly with human beings, soci-

etal systems, and environments. It becomes more and more important to manage

these complexities and to improve the quality of interactions among them. We

will focus ourselves to the boundaries, media, and mechanisms of interactive

systems concerned with the structural coupling between subjects and environ-

ments. Here we will introduce constraint-oriented perspectives on these interac-

tions and the symbolization of continuously valued quantities. For this symbol-

ization, we will introduce the notion of Constraint-Interval Fuzzy Set (CoIFS)

which we have introduced to tie up Fuzzy Logic and the traditional two-valued

logic which underlies the traditional AI. Namely, we encode action space of the

subject and sensation signal space from the environment into constraint-interval

fuzzy sets and also introduce spaces for representing the background structures

of situation�action relation, where the correspondence of \constraint-intervals"

with \constraint-levels" between CoIFSs is treated.

Moreover, by introducing the theories of Chu Space and Information Flow

to Fuzzy Logic, we will provide two novel perspectives on the theory of CoIFS's.

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 314-323, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



Introducing Chu Space provides us with not only formal treatment of constraint

propagation among fuzzy sets but also a new relation among fuzzy sets. Also,

introducing Information Flow gives new perspective on the constraint propa-

gation as ow of information and on systems of fuzzy sets as distributed and

decentralized systems.

2 Fuzzy Logic-Based Coding of Constraints

Based on the constraint-oriented perspectives on problem solving, a constraint-

interval fuzzy set (CoIFS) is given as an ordered collection of intervals (constraint-

intervals). We have also proposed fuzzy logic-based operations and the defuzzi-

�cation for the CoIFS and also elucidated the speci�cities of CoIFS, i.e.,

{ Symbolic (hard) inference can be related to fuzzy (soft) inference on the

same ground [1].

{ CoIFS involves chaotic characteristics in the interaction of constraint prop-

agation via symbolic reasoning [2].

{ CoIFS plays a role of distributed, concurrent and self-organizing module for

\symbiotic" problem solving [3].

4h

> 60

< 100

X

Y

Λ

C
Constraint

Λ’

320

ResortR

About
4 hours

km

Distance

Time

Fig. 1. An example of constraint-interval fuzzy set

As shown in the X � � space of Fig. 1, a CoIFS is given as an ordered col-

lection of \crisp" intervals on the universe of discourse (i.e., the space X) each

of which represents a constraint called interval constraint. The grade axis (in

the traditional Fuzzy Set Theory) is now regarded to be an \ordinal" scale axis.

By introducing this notion of fuzzy set, a continuous variable can be coded into

symbols via fuzzy sets (fuzzy labels), which divides the domain of a variable

(universe of discourse) into intervals. Fuzziness in each variable is derived by de-

composing a \joint constraint" on several variables into componential (marginal)

constraints through \projection" of the joint constraint onto componential vari-

ables.
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Relations between constraint intervals of two fuzzy sets are represented by

\rectangles" in the X�Y space as shown in Fig. 1 [1]. Namely, if we have a crisp

constraint relation C on a pair of variables (say x and y), we can approximate

constraint C by introducing an appropriate constraint interval fuzzy set on x and

that on y, respectively.

Suppose that we are now planning to go to a tourist resort R for the next

holiday. Now we have to decide a sightseeing spot in the outskirts of R to visit.

The constraint now is the speed limit on the freeway (60 � s � 100). We have

about 4 hours for one way, but it depends on the time when all of us get up. In

this case, constraint C is represented as the meshed area shown in Fig. 1, and

the \time for one way" and the \distance from our city to the sightseeing spot"

are represented by fuzzy sets. A portion of the constraint region is approximated

by \rectangles" which represent the relations between constraint-intervals of two

fuzzy sets. The vertically oblong rectangles show that if all of us assemble at the

meeting time conscientiously, there may be many alternatives for visiting spots.

Otherwise, the alternatives are limited.

CoIFS is a kind of \topological" representation of fuzzy sets. Departing from

the direct representation of fuzzy sets by numeric \membership grade value"

results in the following characteristics:

{ The \shape" of a fuzzy set is of no use, and only their \types" such as

symmetricity are meaningful.
{ In the traditional Fuzzy Set Theory, it is implicitly assumed that fuzzy

sets are related \statically" via grade values. For CoIFSs, the same rela-

tion (constraint-level equivalence) can be de�ned, which is \dynamically"

changeable according to the contexts of problems.
{ Several concepts such as �-level set [4] and L-ow set [5] have been already

proposed, where fuzzy sets are dealt with a set of intervals. However, CoIFS

involves the following novel characteristics: 1) fuzzy sets are related to each

other through the correspondence among constraint-levels in order to reect

the topological structure of universe of discourse. 2) fuzzy sets are regarded

as the organization of the crisp constraint-intervals, which is changeable

according to the order relations.

The � � �0 space of Fig. 1 shows the constraint-level equivalence relations be-

tween two fuzzy sets shown in the X � � and Y � �0 spaces in the �gure.

3 Introducing Chu Space to Fuzzy Logic

In this section, we will introduce the notion of Chu Space [6, 7] to Fuzzy Logic

for the formal treatment of constraint propagation among two fuzzy sets.

3.1 A brief review of Chu Space

A Chu space A = (I; A;R) is a binary relations between two sets I and A, where

R : I �A! � gives a binary relation, and � is the set f0; 1g. A Chu space can

be represented as a binary matrix of dimension jAj � jI j (Chu map).
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Given a Chu space A = (I; A;R), functions R̂ : I ! �A and �R : A !
�I satisfying R̂(i)(a) = R(i; a) = �R(a)(i) are the representations of I and A

respectively 1. R̂(i) : A! � and �R(a) : I ! � are called column and row of A,
respectively. R̂(i) represents i as a function from A to �, and �R(a) represents a

as a function from I to �.

Given two Chu spaces A = (I; A;R) and B = (J;B; S), a pair of functions

f : I ! J and g : B ! A is called \Chu transform" from A to B, provided that

the following adjointness condition holds:

(8i 2 I; 8b 2 B) S(f(i); b) = R(i; g(b)): (1)

The dual of A = (I; A;R) is de�ned as A? = (A; I;R[), where R[ : A� I !
�. The dual of Chu transform hf; gi from A to B is a Chu transform hg; fi from
B? to A?.

The composition of Ŝ : J ! �B and f : I ! J , denoted as Ŝf , represents

f , since Ŝ(f(i)) represents the image of f as a function from B to �. Later on,

we will write Ŝf as �̂ : I ! �B such that �(i; b) = Ŝ(f(i))(b) = S(f(i); b). The

Chu space F = (I; B; �) represents f . On the other hand, the composition of
�R : A ! �I and g : B ! A, denoted as �̂[ : B ! �I , satis�es the relation:

�[(b; i) = �R(g(b))(i) = R(g(b); i). The Chu space F? = (B; I; �[) represents g.

From the fact that the relation: �(i; b) = �[(b; i) implies S(f(i); b) = R(i; g(b)),

we can interpret the adjointness conditions as follows:

Given two Chu spaces A = (I; A;R) and B = (J;B; S), hf; gi is a Chu

transform from A to B, where F = (I; B; �) represents the function

f : I ! J from A to B, and its dual F? = (B; I; �[) represents the

function g : B ! A from B? to A?.

3.2 Coding fuzzy sets and their constraints by Chu Space

We introduce an interpretation of fuzzy set as a Chu space which consists of

the set X of universe of discourse, a constraint-level set � and their relation

R : X � �! �.

As shown in Fig. 1, a portion of the constraint C on a pair of variables X and

Y is approximated by a set of rectangles, which transmit intervals from one fuzzy

set to another. In the case where two fuzzy sets are represented by Chu spaces

A = (X;�;R) and B = (Y;�0; S), the constraint propagation (transmission)

is represented as A ! B?, which can be seen as a Chu transform hf; gi from
A = (X;�;R) to B? = (�0; Y; S[), where two functions f : X ! �0 and

g : Y ! � satisfy the following condition:

(8x 2 X; 8y 2 Y ) S[(f(x); y) = R(x; g(y)): (2)

The Chu transform hf; gi : A ! B? itself also constitutes a Chu space F =

(X;Y; �) which is represented as a Chu map with dimension jY j � jX j. Namely,

1
�
A is the collection of all maps from A to �
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Chu space F means a portion of the constraint region of space X � Y which is

approximated by rectangles.

Since F represents g and F? represents f , we can interpret the adjointness

condition as follows:

(8x 2 X; 8y 2 Y ) �(x; y) = S[(f(x); y); (3)

(8x 2 X; 8y 2 Y ) �[(y; x) = R(x; g(y)): (4)

The map between row y of F and the corresponding row g(y) of A is given by

g, and that of column x of F and the corresponding column f(x) of B? is given

by f . In other words, f and g provide projection of F onto A and B? as shown

in the left part of Fig. 2.
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 Λ’

Fig. 2. Chu transform between two fuzzy sets with adjointness relation

The function f associates each point x 2 X with an interval represented

by �0 2 �0 which equivalently represents constraint propagation. Conversely,

function g transforms a point y 2 Y to � 2 � showing a constraint propagation to

an interval, where constraint propagation is given as yielding an interval derived

by the intersection of associated intervals for points in the original interval.

Based on Chu transform hf; gi : A ! B?, we can de�ne a Chu transform

B? ! A which is a pair of function p : �0 ! X and q : � ! Y , denoted by

hp; qi, such that the following condition holds:

(8a 2 �; 8b 2 �0) R(p(b); a) = S[(b; q(a)): (5)

The Chu transform B? ! A is a Chu space denoted as P = (�0; �;  ) as shown

in the upper-right part of Fig. 2.

While space F represents the propagation of horizontal intervals in fuzzy

sets, the space P represents those of vertical intervals, i.e., the corresponding

constraint-levels. The matrix representation of F does not correspond directly

to the rectangular representation of constraint combination of fuzzy sets. The

rectangles are generated from the matrix representation of F by referring to P .
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A pair of fuzzy sets that are connected by Chu transform hf; gi = A ! B?

and hp; qi = B? ! A can be interpreted as a Chu transform from F to P . In
other words, it is a transformation from the space of constraint-intervals to that
of constraint-levels, and vice versa.

We will call A and B? Fuzzy Spaces, respectively, and F and P will be
called Interaction Space and Coordination Space, respectively. These four spaces
constitute a uni�ed construction of the interaction and coordination involved in
the setting of problems.

4 Introducing Channel Theory to Fuzzy Logic

In this section, we will introduce the notion of Channel Theory[8],[9] to Fuzzy
Logic for organizing distributed systems which consist of CoIFSs.

4.1 A brief review of Channel Theory on Information Flow

Barwise and Seligman have proposed Channel Theory which gives a mathemat-
ical framework to Dretske's qualitative theory of information. Channel Theory
is a qualitative theory of information which treats the content of information
rather than its amount. Based on the notion of classi�cation and infomorphism,
Channel Theory involves the concepts of information channel and local logic.

A \classi�cation" A = hA;�A; j=Ai consists of a set A of objects to be
classi�ed, called \tokens" of A, a set �A of objects used to classify the tokens,
called \types" of A, and a binary relations j=A between A and �A indicating
the types to which the tokens to be classi�ed into.

For any classi�cationA, a pair h�;�i of sets of types �A is called a \sequent"
of A. A token a of A satis�es h�;�i provided that if a is of type � for every
� 2 � then a is of type � for some � 2 �. If every token a of A satis�es h�;�i,
it will be written as � `A �.

Given A = hA;�A; j=Ai and C = hC;�C ; j=Ci, a pair hf ;̂ f�i of functions is
called an \infomorphism" from A to C, provided that the following holds:

f^ : �A ! �C ,
f� : C ! A,
8c 2 C;8� 2 �A;

f�(c) j=A �, c j=C f (̂�).

An information channel consists of an indexed family C = ffi : Ai ! Cgi2I of
infomorphisms with a common codomain C as shown in Fig.3. The classi�cation
C is called the \core" of the channel and its token is called \connection" among
tokens ai = fi�; i 2 I .

A local logic L = hA;`L; NLi consists of the following three components:

1. a classi�cation A = hA;�A; j=Ai.
2. a set `L of sequents of A.
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Fig. 3. An example of an information channel

3. a subset NL � A, called the normal tokens of L, each element (token) of

which satisfy all the sequents of `L.

According to the de�nition of normal tokens, there exit several local logics in a

classi�cation in general. In such a sense, local logic has \locality" in the core C

of the channel.

4.2 Coding fuzzy sets and their constraints by Channel Theory

By regarding a collection IX of intervals over the universe of discourse X and

a constraint-level set � as tokens and types, respectively, we interpret a fuzzy

set as classi�cation A = hIX ; �; j=Ai. A token which is associated with a type

represents a \constraint interval" and the collection of these tokens constitute

the fuzzy set.

X

Y

Λ

 

A

Λ’

C B

λ
λ

2

1

token

type

token

type

ix

iy

Fig. 4. A channel theoretic model of constraint propagation

Given two fuzzy sets A = hIX ; �; j=Ai and B = hIY ; �
0; j=Bi as being classi-

�cations, the \constraint region" generated by these fuzzy sets is represented as

the following classi�cation C:

1. The tokens of C is the Cartesian product of IX and IY . More precisely, the

tokens of C are pairs hix; iyi of tokens (ix 2 IX ; iy 2 IY ) and represent
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\rectangular region" which is the product of interval ix over X and interval

iy over Y .

2. The types of C is the disjoint union of � and �0. For simplicity, the types of

C are represented as pairs hi; �i, where i = 0 and � 2 � or i = 1 and � 2 �0.

3. The classi�cation relation j=C is de�ned by

hix; iyi j=C h0; �i i� ix j=A �,

hix; iyi j=C h1; �0i i� iy j=B �0.

The infomorphism h�A ;̂ �A�i : A ! C and h�B ;̂ �B�i : B ! C is de�ned as

follows:

1. �A (̂�) = h0; �i for 8� 2 �,

2. �B (̂�0) = h1; �0i for 8�0 2 �0, and

3. for each pair hix; iyi,
�A�(hix; iyi) = ix and �B�(hix; iyi) = iy.

We can describe \regularity" and \order formation" among conclusion re-

lations over several spaces through infomorphism. More precisely, when certain

relation is given as a conclusion of other relations, each infomorphism maps the

types representing these relations onto the core and the relations among mapped

images (types) is formulated as the statement that a token satis�es a \sequent",

that is a kind of proposition on C. These relation is represented by the sequent

h�;�i which consists of a pair of � = f�A(�)g and � = f�B(�
0)g, where � 2 �

and �0 2 �0. The sequents h�;�i to which every token in C should be subject

can be considered as rectangular regions generated by constraint intervals of two

fuzzy sets. Furthermore, the whole order formation given by these propositions

is formalized as a \local logic".

5 New Perspective on Fuzzy Logic by Introducing

Theories of Chu Space and Information Flow

We have introduced Chu Space and Channel Theory to Fuzzy Logic in the pre-

vious two sections. In this section, we will discuss the place where the structural

coupling between subjects and environments takes place, what we call interfac-

ing media. This structural coupling in the interfacing media will be, we think,

elucidated from two points of view, i.e., from Chu Space and Channel Theory.

We encode action space of the subject and the sensation space from the

environment into constraint-interval fuzzy sets, and also introduce spaces for

representing the background structures of situation�action relation, where the

correspondence of constraint-intervals with constraint-levels between two fuzzy

sets is treated.

By introducing Chu Space Theory to Fuzzy Logic, we can clarify that CoIFS

can naturally represents the Coordination Space which stands for the coordi-

nation relation between constraint-intervals in two fuzzy sets. A coupling of

sensation and action is represented as the adjointness relation among constraint

intervals in the Interaction Space and the adjointness relation among constraint
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levels in the Coordination Space. These spaces prescribe each other, which in

turn leads to the \stabilization of coupling" as shown in Fig.5.

While each of these spaces represents adjointness relation as a Chu transform,

they have adjointness relation of sensation and action in meta level when these

spaces have the correspondence with each other. Given certain uctuation on the

side of the subject or that of the environment, the adjointness relation in meta

level is newly formed. Such a stabilization of coupling makes the interaction with

the environment smooth and to form certain order.

X

Y

Λ

BF

A P
Λ’

Sensation
Space

Interaction
Space

Action
Space

Coordination
Space

Fig. 5. Stabilization of the structural coupling

On the other hand, Channel Theory treats information ow qualitatively,

i.e., it puts emphasis on the \content" of information rather than its amount.

Constraint propagation among fuzzy sets propagates the constraint informa-

tion (intervals) with preserving the relational structure among constraint levels.

In this sense, constraint propagation can be seen as information ow through

channel as shown in Fig.6. CoIFSs with constraint relations among them can

be interpreted as a distributed and decentralized system on the medium of the

channel.
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Fig. 6. Formation of the structural coupling
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Roughly speaking, an infomorphism which constitutes a channel is equivalent

to a Chu transform which connects Chu spaces. Chu Space and Channel Theory

respectively can be regarded as a local view and a global view on the distributed

and decentralized system.

6 Conclusion

Introducing the theories of Chu Space and Information Flow has shown to pro-

vide us with a new perspective on Fuzzy Logic. Particularly, the notion of CoIFS

prescribes the coupling structure as constraint region between two variables such

as sensation and action, and Chu Space can be used to clarify the new relational

structure in the coupling, which we have called Coordination Space. Channel

Theory gives the form of constraint propagation as ow of information and also

provides us with a novel view that elucidates CoIFSs connected by constraint

relations as a distributed and decentralized system.

There will be the following things as future works. Namely, we have to exam-

ine theoretically whether our treatment of sequents is suitable for Fuzzy Logic or

not. Since the fundamental relationship of Channel Theory with Fuzzy Logic is

still not so clear, we have to examine more detailed relationship with Shannon's

Information Theory.
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Abstract. This paper presents pattern reasoning, that is, the logical
reasoning of patterns. Pattern reasoning is a new solution for the knowl-
edge acquisition problem. Knowledge acquisition tried to acquire linguis-
tic rules from patterns. In contrast, we try to modify logics to reason pat-
terns. Patterns are represented as functions, which are approximated by
neural networks. Therefore, pattern reasoning is realized by logical rea-
soning of neural networks. A few non-classical logics can reason neural
networks, because neural networks can be basically regarded as multilin-
ear functions and the logics are complete for multilinear function space,
therefore, the logics can reason neural networks. This paper explains in-
termediate logic LC as an example of the logics and demonstrates how
neural networks can be reasoned by LC.

1 Introduction

This paper presents pattern reasoning, that is, the logical reasoning of patterns.
An example of pattern reasoning is presented. For example, expert doctors di-
agnose using a lot of images like brain images, electrocardiograms and so on,
which can be formalized as follows:
Rule 1: If a brain image is a pattern, then an electrocardiogram is a pattern.
Rule 2: If an electrocardiogram is a pattern, then an electromyogram is a pat-
tern.
Using the above two rules, we can reason as follows:
If a brain image is a pattern, then an electromyogram is a pattern.
This is a pattern reasoning. Symbols can be regarded as special cases of patterns.
For example, let a rule be
If a brain image is a pattern, then a subject has a disease.
The right side of the rule is a symbol. The rule can be regarded as a special case
of pattern reasoning.

The pattern reasoning is a new solution for knowledge acquisition problem.
The explanation is as follows. Since it is important to simulate human experts by
computer software, expert systems have been studied to simulate human experts
by computer software. Many expert systems are based on classical logic or some-
thing like classical logic (Hereinafter “ classical logic” is used for simplification).
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Knowledge acquisition is necessary, because the obscure knowledge of hu-
man experts cannot be reasoned by classical logic, while linguistic rules can be
reasoned by classical logic. Knowledge acquisition means the conversion from
obscure knowledge of human experts to linguistic rules. Knowledge acquisition
has been studied by many researchers, but the results have not been successful,
that is, the results show that knowledge acquisition is very difficult.

Generally speaking, a processing consists of a method and an object. For ex-
ample, logical reasoning consists of the reasoning as the method and the symbols
as the object. The methods of the processings by human experts are a kind of
reasoning, which are different from the reasoning by classical logic. The objects
of the processings by human experts are patterns (and symbols). That is, a lot
of the processings by human experts can be regarded as the pattern reasonings.

Therefore, the pattern reasoning is a solution for the knowledge acquisition
problem based on conversion of the knowledge acquisition to a completely differ-
ent problem. However, readers may think that it is impossible to reason patterns.
This paper shows that patterns can be reasoned by non-classical logics.

There are several possible definitions for patterns. Patterns such as images
can be basically represented as functions. For example, two-dimensional images
can be represented as the functions of two variables. Patterns are functions. Since
it is desirable to be able to deal with any function, 3-layer feedforward neural
networks, which can basically approximate any function[5], are studied.

Therefore, pattern reasonings are realized as logical reasonings of neural net-
works. However, classical logic cannot reason neural networks, while a few non-
classical logics can reason neural networks. For example, intermediate
logic LC[1,4], product logic[4], and ;Lukasiewicz logic[4] can reason neural net-
works. The reason why the above three logics can reason neural networks is as
follows: Neural networks are multilinear functions in the discrete domain and
are well approximated to multilinear functions in the continuous domain, and
the three logics are complete for multilinear function space, therefore, the three
logics can reason neural networks.

The key is the multilinear function space. In the domain {0, 1}, the multi-
linear function space is an extension of Boolean algebra of Boolean functions.
The space is the linear space expanded by the atoms of Boolean algebra of
Boolean functions and can be made into a Euclidean space. Logical opera-
tions are represented as vector operations, which are numerical computations.
In the domain [0,1], continuous Boolean functions can be obtained. Roughly
speaking, continuous Boolean functions consist of conjunction, disjunction, di-
rect proportion and inverse proportion. The multilinear function space of the
domain [0,1] is the linear space of the atoms of Boolean algebra of continuous
Boolean functions and can be made into a Euclidean space.

As explained above, multilinear function space is a model of three logics,
but due to space limitations, intermediate logic LC(Hereinafter, LC for short) is
explained in this paper. Intermediate logics are logics which are stronger than in-
tuitionistic logic and weaker than classical logic. The multilinear function space is
an algebraic model of intuitionistic logic, but intuitionistic logic is not complete
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for the space. For intuitionistic logic, refer to [1]. LC, which is stronger than
intuitionistic logic and weaker than classical logic, is complete for the space.
Therefore, multilinear functions can be regarded as propositions of LC. Neu-
ral networks which can be basically regarded as multilinear functions, can also
be regarded as propositions of LC. Therefore, neural networks can be logically
reasoned.

Section 2 explains multilinear function space which is the theoretical founda-
tion for the logical reasoning of neural networks. Section 3 explains LC. Section 4
describes how neural networks can be reasoned by LC. Section 5 states several
remarks on pattern reasoning.

2 Multilinear Function Space

First, the multiliner functions are explained. The domains are divided into dis-
crete domains and continuous domains. The discrete domain is reduced to {0, 1}
and the continuous domain is normalized to [0,1]. Therefore, {0, 1} domain
and [0,1] domain are discussed. Second, it is shown that multilinear function
space of the domain {0, 1} is a Euclidean space spanned by the atoms of Boolean
algebra of Boolean functions. Third, it is explained that the space of the do-
main [0,1] can be made into a Euclidean space. Fourth, the vector representations
are explained. Finally, the relationship between neural networks and multilinear
functions is explained.

2.1 Multilinear Functions

Definition 1 Multilinear functions of n variables are as follows:∑2n

i=1 aix
ei1
1 · ·xein

n ,
where ai is real, xi is a variable, and ei is 0 or 1.

In this paper, n stands for the number of variables.
Example Multilinear functions of 2 variables are as follows:
axy + bx+ cy + d.
Multilinear functions do not contain any terms such as
xk1

1 x
k2
2 · · · xkn

n ,
where ki ≥ 2. A function f : {0, 1}n → R is a multilinear function, because
xki

i = xi holds in {0, 1} and so there is no term like xk1
1 x

k2
2 · · · xkn

n (ki ≥ 2)
in the functions. In other words, multilinear functions are functions which are
linear when only one variable is considered and the other variables are regarded
as parameters.

2.2 Multilinear Function Space of the Domain {0, 1}
Definition 2 The atoms of Boolean algebra of Boolean functions of n variables
are as follows:
φi =

∏n
j=1 e(xj) (i = 1, ..., 2n),

where e(xj) = xj or xj .
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Example The atoms of Boolean algebra of Boolean functions of 2 variables are
as follows: x ∧ y, x ∧ y, x ∧ y, x ∧ y.
Theorem 1 The space of multilinear functions ({0, 1}n → R) is the linear space
spanned by the atoms of Boolean algebra of Boolean functions. The proof can be
found in [11,12].

Definition 3 The inner product is defined as follows:
< f, g >=

∑
{0,1}n fg.

The sum in the above formula is done over the whole domain.

Definition 4 Norm is defined as follows:
|f | = √< f, f > =

√∑
{0,1}nf2.

Theorem 2 The multilinear function space is a Euclidean space with the above
norm. The proof can be found in [11].

2.3 Multilinear Functions of the Domain [0,1]

Multilinear functions of the domain [0,1] are briefly described in this subsection.
For details, see [8].

Definition 5 Definition of τ
Let f(x) be a real polynomial function. Consider the following formula:
f(x) = p(x)(x − x2) + q(x),

where q(x) = ax+ b, where a and b are real, that is, q(x) is the remainder. τx is
defined as follows:

τx : f(x)→ q(x).
The above definition implies the following property:

τx(xn) = x.
In the case of n variables, τ is defined as follows:

τ =
∏n

i=1 τxi .

Example τ(x2y3 + y + 1) = xy + y + 1.

Theorem 3 The space of multilinear functions ([0, 1]n → R) is a Euclidean
space with the following inner product:

< f, g >= 2n
∫ 1

0 τ(fg)dx.
The proof can be found in [8].

Definition 6 Logical operations are defined as follows:
AND: τ(fg), OR: τ(f + g − fg), NOT: τ(1 − f).
Theorem 4 The functions obtained from Boolean functions by extending the
domain from {0, 1} to [0,1] can satisfy all axioms of classical logic with the
logical operations defined above. The proof can be found in [9].

Therefore, in this paper, the functions obtained from Boolean functions by ex-
tending the domain from {0, 1} to [0,1] are called continuous Boolean functions.
Example x, 1 − x(= x), and xy are continuous Boolean functions, where
x, y ∈ [0, 1]. x means a direct proportion and x̄ means an inverse proportion.
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2.4 Vector Representations of Logical Operations

Multilinear functions are divided into Boolean functions and the others.
The others can also be regarded as logical functions, which will be explained
later. The vector representations of logical functions are called logical vectors.
f((fi)),g((gi)), .. stand for logical vectors. Note that f stands for a function,
while fi stands for an component of a logical vector f .

Vector representations of logical operations are as follows:
f ∧ g = (Min(fi, gi)), f ∨ g = (Max(fi, gi)), f = (1− fi).

When multilinear functions are Boolean functions, the above vector representa-
tions of logical operations are the same as the representations below.

f ∧ g = (figi), f ∨ g = (fi + gi − figi), f = (1− fi).

2.5 The Relationship between Neural Networks and Multilinear
Functions

Theorem 5 When the domain is {0, 1}, neural networks are multilinear func-
tions.

Proof As described in 2.1, a function whose domain is {0, 1} is a multilinear
function. Therefore, when the domain is {0, 1}, neural networks are multilinear
functions.
When the domain is [0,1], neural networks are approximately multilinear func-
tions with the following:

xk = x(k ≤ a),= 0(k > a),
where a is a natural number. When a = 1, the above approximation is the linear
approximation.

3 Intermediate Logic LC and Multilinear Function Space

The section briefly explains an intermediate logic LC and multilinear function
space. Intermediate logics are weaker than classical logic and stronger than intu-
itionistic logic. An explanation of intermediate logics can be found in [1]. LC is
an intermediate logic, which was presented by Dummett[2]. The logic is defined
as follows[1].
LC=intuitionistic logic + (x→ y) ∨ (y → x),
where x and y are logical formulas. LC stands for Logic of Chain, which comes
from the fact that the model of the logic is a chain, that is, a linearly ordered
set.

First, it is explained that LC is complete for the interval[0,1]. The proof
for the completeness of LC for the model cannot be described due to space
limitations, and so an intuitive explanation is given. Second, it is explained that
the multilinear function space is an algebraic model of LC. Finally, an example
of logical reasoning of multilinear functions by LC are given.
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3.1 An Intuitive Explanation for LC

Interval [0, 1] is a Heyting algebra, which is the algebraic model of intuitionistic
logic, with the following definitions:

x ∧ y =Min(x, y), x ∨ y =Max(x, y),

x ⊃ y =
{

1(x ≤ y)
y(x > y),

� = 1, ⊥ = 0, where x and y stand for points.
The above fact can be easily verified. Let x and y stand for two points, then
(x ≤ y) ∨ (y ≤ x)
holds. Roughly speaking, by replacing≤ in the above formula by→, the following
formula is obtained.
(x→ y) ∨ (y → x),
where x and y are propositions. The above formula does not hold in intuitionistic
logic. In other words, intuitionistic logic is not complete for an interval.

If the above formula is added to intuitionistic logic, a logic which is complete
for an interval is obtained. The logic is LC.
(x→ y) ∨ (y → x),
holds in LC, therefore, LC is complete for an interval.

The completeness of LC for an interval can be proved using the fact that LC is
complete for linearly ordered Kripke models[1] and the correspondence between
Kripke models and algebraic models [3].

3.2 The Multilinear Function Space is an Algebraic Model of LC

It is explained that the multilinear function space is an algebraic model of LC
as follows[10].

1. If an interval is a model of a logic, the direct sum of the intervals is also a
model of the logic[6]. The logical operations are done componentwise. There-
fore, since an interval [0,1] is an algebraic model of LC, a direct sum of
intervals [0, 1]m(m is dimension) is also an algebraic model of LC.

2. The multilinear function space is a linear space, therefore, a subset of the
space [0, 1]m is a direct sum of the interval [0,1].

3. From item 1 and 2, the subset [0, 1]m of the multilinear function space is an
algebraic model of LC.

Theorem 6 LC is complete for the hypercube [0, 1]m of the space. The defini-
tions are as follows:

f ≤ g = ∀i(fi ≤ gi), f ∧ g = (Min(fi, gi)), f ∨ g = (Max(fi, gi)),
f ⊃ g = (fi ⊃ gi)

fi ⊃ gi =
{

1(fi ≤ gi)
gi(fi > gi),

f = (fi ⊃ 0)
where f and g stand for logical vectors. This theorem is understood from the
above discussions. The proof is omitted.
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Example
f = 0.6xy + 0.1x+ 0.1y + 0.1

is transformed to
0.9xy + 0.2xy + 0.2xy + 0.1xy,
therefore, f = (0.9, 0.2, 0.2, 0.1).
In the same way,
f = (fi ⊃ 0) = (0.9 ⊃ 0, 0.2 ⊃ 0, 0.2 ⊃ 0, 0.1 ⊃ 0) = (0, 0, 0, 0).
Therefore, from Theorem 6,
f ∨ f = (0.9, 0.2, 0.2, 0.1),
which means f ∨ f̄ �= 1
This example shows that the law of excluded middle f ∨ f̄ = 1,
which holds in classical logic, does not holds in LC. If f is limited to Boolean
functions, the law of excluded middle holds. For example, let f be xy, that is,
f = 1.0xy + 0.0x+ 0.0y + 0.0 = 1.0xy + 0.0xy + 0.0xy + 0.0xy,
then f = (1, 0, 0, 0),
f = (fi ⊃ 0) = (1 ⊃ 0, 0 ⊃ 0, 0 ⊃ 0, 0 ⊃ 0) = (0, 1, 1, 1).
Therefore, f ∨ f = (1, 1, 1, 1), that is, f ∨ f̄ = 1.

4 Logical Reasoning of Neural Networks by LC

Neural networks are multilinear functions and the multilinear function space is
an algebraic model of LC. Therefore, neural networks can be reasoned by LC.
The domain is {0, 1}n, where n is the number of variables.

Let N1 and N2 be two trained neural networks, which have 3 layers, two
inputs x and y, two hidden units, and one output. The output function of each
unit is a sigmoid function. The following tables show the training results of weight
parameters and biases of N1 and the training results of weight parameters and
bias of N2.

unit w1(w3, w5) w2(w4,w6) bias

hidden 1 -4.87 -4.86 -6.70
hidden 2 -2.86 -2.88 3.50
output 7.61 -3.83 4.50

unit w1(w3, w5) w2(w4,w6) bias

hidden 1 4.80 4.72 -2.31
hidden 2 -3.49 -3.56 1.67
output 5.81 -4.62 -0.42

N1 is as follows:
S(7.61S(−4.87x− 4.86y− 6.70)− 3.83S(−2.86x− 2.88y + 3.50) + 4.50),
From the above formula, the logical vector is calculated as follows:
(0.98, 0.01, 0.01, 0.00).
The logical vector of N2 is calculated in the same way as follows:
(0.02, 0.98, 0.98, 0.99).



Pattern Reasoning: A New Solution for Knowledge Acquisition Problem 331

The logical conjunction of the two logical vector is as follows:
(0.02, 0.01, 0.01, 0.00),
which is nearly equal to 0.
The multilinear function is as follows:
0.02xy + 0.01x(1− y) + 0.01(1− x)y + 0.00 = 0.01x+ 0.01y.

The function is nearly equal to 0. The above result shows that the logical
conjunction of two trained neural networks is almost false, which cannot seen
from the training results of neural networks. N1 has been trained using x ∧ y
and N2 has been trained using the negation of x ∧ y. Therefore, the logical
conjunction of N1 and N2 is as follows:
N1 ∧N2 � (x ∧ y) ∧ (x ∧ y) = 0.
As seen in the above example, the logical reasoning of neural networks shows
the logical relations among neural networks. If the components of logical vectors
are 0 or 1, the calculation can be done by Boolean algebra, that is, classical logic.
However, even if the training targets are Boolean functions, the training results
of neural networks are not 0 or 1, but are values like 0.01 or 0.98. These numbers
cannot be calculated by Boolean algebra, but can be calculated by LC. In the
above example, the training targets are Boolean functions for simplification.
However, any function can be the training target of neural networks and any
trained neural network can be reasoned by LC. The logical implication between
a neural network and another neural network can be calculated in a similar way
as in the above example.

The computational complexity of the logical reasoning is exponential. There-
fore, efficient algorithms are needed, which have been developed[12]. However,
due to space limitations, the efficient algorithms cannot be explained in this
paper. They will be explained in another paper.

5 Remarks on Pattern Reasoning

Patterns can be regarded as functions and the functions can be approximated
by neural networks. Neural networks can be reasoned by a few logics such as LC,
;Lukasiewicz logic and product logic. Therefore, pattern reasoning can be realized
by logical reasoning of neural networks. However, there are a lot of open problems
for pattern reasoning to be applied to real data.

1. Computational complexity
A basic algorithm is exponential in computational complexity, therefore, a
polynomial algorithm is needed. A polynomial algorithm for a unit in a neu-
ral network has been presented. For networks, an algorithm which uses only
big weight parameters has been presented. The reduction of computational
complexity is included in future work.
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2. Appropriate logics for pattern reasoning
Probability calculus is similar to a reasoning for patterns, although it does
not have the formal system. Probability calculus does not satisfy the con-
traction rule[7]:

contraction
x, x→ y

x→ y
.

Therefore, appropriate logics for pattern reasoning should not satisfy the
contraction rule. From this viewpoint, ;Lukasiewicz logic and product logic,
which do not satisfy the contraction rule, are more appropriate than LC,
which satisfies the contraction rule. It is desired that probability calculus be
formalized logically, but this is very difficult. We are investigating appropri-
ate logics for pattern reasoning.

3. Typical patterns
There are countless patterns, and some patterns are appropriate for pattern
reasoning, while other patterns are inappropriate. Therefore a dictionary of
patterns is necessary. The patterns included in the dictionary are typical pat-
terns, which cannot be described linguistically. The typical patterns can be
gathered by various methods, but we do not have to be seriously concerned
with gathering typical patterns, because pattern reasoning is flexible as ex-
plained in the next item. However, gathering typical patterns are important
for efficient pattern reasoning.

4. A difference between pattern reasoning and symbol reasoning in the reason-
ing mechanism
In symbol reasoning, when the left side of a rule is not matched, the rule
does not work, while, in pattern reasoning, even when the left side of a rule
is not matched, the rule works. For example, let a rule be a → b and the
left side of the rule be a′. If a is very similar to a′, the truth value of the
rule is almost 1. On the other hand, if a is very different from a′, the truth
value of the rule is almost 0. Pattern reasoning works like this, because the
pattern reasoning makes use of continuously valued logics. There are several
other methods which deal with matching degrees of the left sides of rules.
However, the methods are basically arbitrary, whereas the pattern reasoning
presented in this paper includes the matching degrees in the system.

5. Formal system
In pattern reasoning, for example, a question like “Is this pattern logically
deduced from the set of rules of patterns?” should be answered. Therefore,
formal systems are needed for pattern reasoning.

6. Incompleteness
In mathematical logic, completeness is important. In reality, humans can-
not reason or prove true things, that is, humans are incomplete. Therefore,
pattern reasoning should deal with incompleteness.

7. The relationship with probability theory
Probability calculus deals with continuous values, but probability events are
not continuous, that is, the objects of probability theory are not continuous,
while the objects of pattern reasoning are continuous. Therefore, pattern
reasoning can be regarded as an extension of probability calculus.
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8. Experimental study
The most typical patterns are images, therefore the final target is the reason-
ing of images. We have to begin experiments with simple examples. We have
tried to realize pattern reasoning for one-dimensional data, for example, time
series data, by logical reasoning of neural networks using LC, ;Lukasiewicz
logic or product logic. The results show that the logical reasoning of neural
networks works well, which will be reported in another paper.

6 Conclusions

This paper has presented pattern reasoning, which is a new solution for the
knowledge acquisition problem. Knowledge acquisition tried to acquire linguistic
rules from patterns. In contrast, we have tried to modify logics to reason pat-
terns. Patterns are represented as functions, which are approximated by neural
networks. Therefore, the logical reasonings of neural networks have been studied.
A few logics can reason neural networks. This paper has explained intermedi-
ate logic LC. There are a lot of open problems, therefore the author strongly
encourages the readers to join the research field.
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Abstract. Probabilistic reasoning is an essential approach of approx-
imated reasoning to treat uncertain knowledge. Bayes' theorem based

on the interpretation of a If-Then rule as the conditional probability

is widespread in applications of probabilistic reasoning. A new type of
Bayes theorem based on the interpretation of a If-Then rule as the logical

implication is introduced in this paper, where addition and subtraction

are employed in the probabilistic operations instead of multiplication

and division employed for the conditional probability of the traditional

Bayes' theorem. Inference based on both interpretations of the If-Then

rules, conditional probability and logical implication, are discussed.

1 Introduction

In propositional logic, the truth values of propositions are given either 1(true) or

0(false). Inference based on propositional (binary) logic is done using inference

rule : Modus Ponens, shown in Fig. 1. This rule implies that if an If-Then rule

\A ! B" and proposition A are given true(1) as premises, then we come to a

conclusion that proposition B is true(1).

A! B

A

B

Fig. 1. Modus Ponens

The inference rule based on propositional logic is extended to probabilistic

inference based on probability theory in order to treat uncertain knowledge.

The truth values of propositions are given as the probabilities of events that

take any value in the range of [0;1]. Here, U is the sample space (universal set),

A;B � U are events, and the probability of \an event A happens", P(A) is

de�ned as P(A) = jAj=jU j (jU j = 1, jAj = a 2 [0; 1]) under the interpretation

of randomness. Thus the probabilistic inference rule can be written as Fig. 2

adapting the style of Modus Ponens.
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P(A! B) = i

P(A) = a

P(B) = b i; a; b 2 [0; 1]

Fig. 2. Probabilistic Inference

If the probability of A ! B and A are given 1 (i = a = 1), then b is 1, since

the probabilistic inference should be inclusive of modus ponens as a special

case. Our focus is to determine the probability of B from the probabilities of

A ! B and A that take any value in [0; 1]. A ! B is interpreted as \if A

is true, then B is true" in meta-language. Traditional Bayes' theorem applied

in many probability system adopts conditional probability as the interpretation

of If-Then rule. However, the precise interpretation of the symbol \!" is not

unique and still under discussion among many researchers.

E. Trillas and S. Cubillo [1] remarked the inequality x � (x ! y) � y (where

x ! y = x� _ y) valid in an arbitrary Boolean algebra (B, _; �;� ; 0; 1), and

determined Boolean variants of modus ponens by replacing conjunction (�) and

implication (!) by other truth functions. Nilsson [2] presented a semantical

generalization of ordinary �rst-order logic in which the truth values of sentences

can range between 0 and 1. He established the foundation of probabilistic logic

through a possible-world analysis and probabilistic entailment. However, in most

cases, we are not given the probabilities for the di�erent sets of possible worlds,

but must induce them from what we are given.

Our goal is to deduce a conclusion and its associated probability from given

rules and facts and their associated probabilities through simple geometric anal-

ysis. The probability of the sentence \if A then B" is interpreted in two ways:

conditional probability and the probability of logical implication. In this paper,

we de�ne the probabilistic inferences based on the two interpretations of \If-

Then" rule, conditional probability and logical implication, and introduce a new

variant of Bayes' theorem based on the logical implication.

2 Inference Based on Probability Theory

2.1 Conditional Probability

Conditional probability, \how often B happens when A is already (or necessary)

happens", only deals with the event space that A certainly happens. Thus the

sample space changes from U to A.

P(A ! B) = P(BjA) = jA \Bj=jAj; (1)

ic = P(A \B)=a: (a 6= 0) (2)

Since P(A \B) = i
c
�a from Equation (2), the possible size of B is restricted

from jA \ Bj = ic � a to jAc [ Bj = 1 � (a � a � ic). Thus the probabilistic
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inference based on the interpretation of if-then rule as the conditional probability

determinesP(B) from givenP(A ! B) andP(A) by the following inference style

in Fig. 3.

U

BA

jA \ Bj
a � jA \ Bj

= a � ic

P(A! B) = ic

P(A) = a

P(B) 2 [a � ic; 1 � a(1 � ic)]

Fig. 3. Conditional Probability

Note, P(B) can not be determined uniquely from P(A ! B) and P(A) thus

expressed as the interval probability [3]. When the condition, a�ic = 1�a(1�ic)

(thus a = 1), holds, P(B) is unique and equal to P(A ! B).

P(A! B) = ic

P(A) = 1

P(B) 2 [1� ic; 1� 1 + 1� ic] = [ic; ic] = ic

Fig. 4. Conditional Probability a = 1

2.2 Logical Implication

The interpretations of! (implication) in logics: propositional (binary or Boolean)logic,

multi-valued logic, fuzzy logic, etc., are not unique in each logic. However, the

most common interpretation of A! B is �A _B.

P(A! B) = P(Ac

[ B) = jAc

[Bj=jU j; (3)

il = P(A \ B) + (1� a): (a+ il � 1) (4)

In order to avoid contradiction in premises, the relationship between a and il
must hold the condition: a+ il � 1.

Since P(A \B) = a � (1 � il) from Equation (4), the possible size of B is

restricted from jA\Bj = a� (1� il) to jA
c[Bj = il. The probabilistic inference

based on the interpretation of if-then rule as the logical implication determines

P(B) as the interval probability from given P(A! B) and P(A) as shown in

Fig. 5.

Similar to the conditional probability case shown in Fig. 4, P(B) is unique

and equal to P(A ! B) when the condition il + a� 1 = il (thus a = 1) holds.
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U

BA

jA \ Bj
1 � il

= a� (1 � il)

P(A! B) = il

P(A) = a

P(B) 2 [a� (1� il); il]

Fig. 5. Logical Implication

3 Bayes' Theorem

Bayes' theorem is widespread in application since it is a powerful method to trace

a cause from e�ects. The relationship between a priori probability P(A ! B)

and a posteriori probability P(B ! A) is expressed in the following equation by

eliminating P(A \B) from the de�nitions.

P(A! B) = P(BjA) = P(A \ B)=P(A),

P(B ! A) = P(AjB) = P(A \ B)=P(B),

P(B ! A) = P(A) �P(A! B)=P(B) (5)

Theorem 3.01 The interpretation of ! as the logical implication satis�es the

following equation.

P(B ! A) = P(A)+P(A ! B) �P(B) (6)

Proof. Given P(A! B) = i
l
, P(A) = a, and P(B) = b,

P(B ! A) = P(Bc

[ A)

= 1�P(B \ Ac)

= 1� (b� (a� 1 + il))

= 1� (b� a+ 1� i
l
)

= a+ il � b

= P(A) +P(A ! B)� P(B):

ut

U

BA
jAc \ Bj1 � il

a� (1 � il)

= b � (a � 1 + il)

Fig. 6. Bayes' Theorem with Logical Implication
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Note, the new variant of the Bayes' theorem based on logical implication

adopt addition + and subtraction � where the traditional one adopt multi-

plication � and division =. This property is quite attractive in operations on

multiple-valued domain, and simplicity of calculation. Farther discussion is to

apply this new variant of the Bayes' theorem to the systems that employ logical

implication.

4 Inference Applying Bayes' Theorem

4.1 Bayes' Inference Based on Conditional Probability

Now, we apply Bayes' theorem as the inference rule, and de�ne P(B ! A) from

P(A! B), P(A), and P(B). The inference based on the traditional Bayes' the-

orem (conditional probability) is shown in Fig. 7.

P(A! B) = ic

P(A) = a

P(B) = b

P(B ! A) = a� ic=b

Fig. 7. Bayes' Inference - Conditional Probability

The condition, max((a+b�1); 0)=a � ic � b=a, must be satis�ed between

the probabilities a, b, and ic. Since ic = P(A \B)=a thus max(a + b � 1; 0) �

P(A \B) � min(a; b).

From P(A! B) and P(A), P(B) is determined as the interval probability

by the inference rule, Fig. 3 in the previous discussion. Thus P(B ! A) can be

determined as follows when P(B) is unknown.

P(A! B) = ic

P(A) = a

P(B) 2 [a� ic; 1� a(1� ic)]

P(B ! A) 2 [a � ic=1 � a(1� ic); 1]

Fig. 8. P(B) : unknown

P(B ! A) is unique (P(B ! A) = 1) when a � i
c
= 1 � a(1 � i

c
), that is

a = 1. Note, P(B ! A) does not depends on ic = P(A! B).
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P(A! B) = ic

P(A) = 1

P(B ! A) = 1

Fig. 9. P(A) = 1

4.2 Bayes' Inference Based on Logical Implication

Similarly, applying the new variant of Bayes' theorem based on logical implica-

tion, we get the following inference rule in Fig. 10.

P(A! B) = il

P(A) = a

P(B) = b

P(B ! A) = a+ il � b

Fig. 10. Bayes' Inference - Logical Implication

The condition, max(b; 1� a) � i
l
� 1� a + b, must be satis�ed between

the probabilities a, b, and il. Since il = P(A \ B)=a thus max(a + b � 1; 0) �

P(A \B) � min(a; b).

P(B) is determined from P(A! B) and P(A) by the inference rule, Fig. 5.

Thus P(B ! A) can be determined as follows when P(B) is unknown. Note,

the result of inference does not depend on the probability of P(A ! B). Clearly,

P(B ! A) is unique (P(B ! A) = 1) when a = 1.

P(A! B) = il

P(A) = a

P(B) 2 [a + il � 1; il]

P(B ! A) 2 [a; 1]

Fig. 11. P(B) unknown

5 Generalization on Interval Probability

Since the results of inferences are given as interval probability, we shall discuss

the inference methods when the probability of sentences are given as the interval
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probabilities. Given the set of all interval value I,

I = f[a; b] j 0 � a � b � 1g

the interval probability of \A happens" is P(A) 2 [a1; a2].

5.1 Interval Probabilistic Inference

In the previous section, the probabilistic inference based on the conditional prob-

ability determines P(B) 2 [a� ic; 1� a(1� ic)] from given P(A ! B) = ic and

P(A) = a. Thus, given P(A ! B) and P(A) as interval probabilities [ic1; ic2]

and [a1; a2], the possible probability of P(B) is minimum a1� ic1 and maximum

1� a1(1� ic2).

P(A! B) 2 [ic1; ic2]

P(A) 2 [a1; a2]

P(B) 2 [a1 � ic1; 1 � a1(1� ic2)]

Fig. 12. Probabilistic Inference Based on Conditional Probability

Similarly, the probabilistic inference based on the interpretation of if-then

rule as the logical implication determines P(B) from given P(A ! B) 2 [il1; il2]

andP(A) 2 [a1; a2] as shown in Fig. 13. P(B) is minimum if bothP(A ! B) and

P(A) takes minimum value il1 and a1. However, in order to avoid contradiction,

the condition a + il � 1 must be satis�ed between any combination of the

probabilities a and il . Thus the minimum value of P(B) is restricted to max(a1+

il1; 1)� 1 = max(a1 + il1 � 1; 0).

P(A! B) 2 [il1; il2]

P(A) 2 [a1; a2]

P(B) 2 [a1 + il1 � 1; il2]

Fig. 13. Probabilistic Inference Based on Logical Implication

Note, in both cases, the results of inference P(B) does not depends on a2
(the maximum value of P(A)).

5.2 Inference on Interval Probability based on Bayes' Theorem

Now, we apply Bayes' theorem as the inference rule on interval probabilities.

Given P(A! B) as the conditional interval probability, P(B ! A) is deter-

mined from P(A! B) 2 [ic1; ic2], P(A) 2 [a1; a2] and P(B) 2 [b1; b2] by the

Bayes' theorem as shown in Fig. 14.
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P(A! B) 2 [ic1; ic2]

P(A) 2 [a1; a2]

P(B) 2 [b1; b2]

P(B ! A) 2 [a1 � ic1=b2; a2 � ic2=b1]

Fig. 14. Bayes' Inference - Conditional

Note, the same condition in previous section 4.1, max((a + b � 1); 0)=a �

ic � b=a, must be satis�ed between any combinations of the probabilities a, b,

and ic.

P(B) is determined as the interval probability from P(A ! B) and P(A) by

the inference rule as shown in Fig. 12 in the previous discussion. ThusP(B ! A)

can be determined as follows when P(B) is unknown.

P(B) 2 [a1 � ic1; 1 � a1(1� ic2)]

P(B ! A) 2 [a1 � ic1=1 � a1(1 � ic1); 1]

P(A! B) 2 [ic1; ic2]

P(A) 2 [a1; a2]

Fig. 15. Bayes' Inference - Conditional: P(B) unknown

P(B ! A) = 1 when a1 � ic1 = 1 � a1(1 � ic1), that is a1 = 1. P(B ! A)

does not depends on P(A ! B).

Similarly, applying the new variant of Bayes' theorem based on logical impli-

cation on interval probabilities, P(A! B), P(A) and P(B), we get the following

inference rule in Fig. 16.

P(B ! A) 2 [a1 + il1 � b2; a2 + il2 � b1]

P(A! B) 2 [il1; il2]

P(A) 2 [a1; a2]

P(B) 2 [b1; b2]

Fig. 16. Bayes' Inference - Logical Implication

The same condition in previous section 4.2, max(b; 1� a) � i
l
� 1� a+ b

must be satis�ed between the probabilities a, b, and il.

341Probabilistic Inference and Bayesian Theorem Based on Logical Implication        



P(B) is determined as the interval probability from P(A ! B) and P(A) by

the inference rule as shown in Fig. 13 in the previous discussion. ThusP(B ! A)

can be determined as follows when P(B) is unknown.

P(A! B) 2 [il1; il2]

P(A) 2 [a1; a2]

P(B) 2 [a1 + il1 � 1; il2]

P(B ! A) 2 [a1; 1]

Fig. 17. Bayes' Inference - Logical Implication: P(B) unknown

Note, the result of inference does not depend on the probability of P(A ! B).

P(B ! A) = 1 when a1 = 1.

6 Conclusion

Inference based on probability theory is discussed as a method of approximated

reasoning that treat uncertain knowledge. A new type of Bayesian theorem based

on the interpretation of a If-Then rule as the logical implication is introduced.

The new variant of the Bayes' theorem based on logical implication adopt ad-

dition + and subtraction � where the traditional one adopt multiplication �

and division =. This property is quite attractive in consideration of operations

on multiple-valued domain, and simplicity of calculation. Interesting topic for

farther discussion should be to apply this new variant of the Bayes' theorem to

the systems that employ logical implication.
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Abstract. This article presents a neural network approach for human

reasoning. It is based on a three-valued Boolean logic. We will �rst laying

down the foundations for study of a neural logic and represent it by a neural

logic network. We than realize the process of reasoning by the structure

of a neuro model. The nodes represents the function of reasoning and

the connection weights the parameter of reasoning. The model is close to

realization of the particular application. The goal of this research is to

develop a reasoning system capable of human reasoning based on neural

logic network.

1 Introduction

Rule-based systems have been successfully applied in many domains. However,

the current rule-based technology is generally lacking in learning capability and

parallism. It is also weak in dynamic reasoning, control, and uncertainty process-

ing. The reasoning proceeds through a pre de�ned tree. Neural logic networks,

on the other hand, lend themselves very well to learning and parallelism due to

their self-organization features. In additions, it is also capable of incorporating

temporal reasonings, and certainty factors with ease. In spite of these capabil-

ities, however, neural logic networks basically are con�ned to relatively simpler

problem. They generally are de�cient in the in-depth reasoning a�orded by the

rule based-based systems. In view of the above, one of the goals of current neural

logic networks research is to bridge the gap between symbolic and sub-symbolic

approaches with the fusion of hybrid systems. We propose a computional model

that combines the best of the both worlds by integrating an ordinary rule-based

system into a neural logic network architecture. The model contains a neural

logic based inference engine that dynamically chains active rules together into a

neural logic network. Parallel execution of rules becomes possible when active

rules are being chained along di�erent path. The system further exhibits learning

capability by allowing weights to be adjusted during training sessions.

Logic has traditionally been one of the foundations for symbolic paradigm. A

neural logic network model that represents propositional truth values as neural

activations and logical operations as connection weights, has been proposed by

[4, 2] to represent logic and perform logical inference by the structure and dynam-

ics of the network respectively. The underlying neural logic network demonstrates

a multitude of logical operations, besides the standard operators such as AND,

OR, NOT, NOR and NAND. Particularly, the user is free to de�ne any opera-

tions to meet any speci�c needs. The strengths of neural logic thus provide a

much greater expressive power for the systems`s rules syntax than a ordinary

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 343-351, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



rule-based systems. We present a rule inferencing system whereby the internal

representation and the inferencing mechanism of propositional rules are driven

by a neural logic network. We base our discussion on a framework for deductive

systems in A.I., namely the logic level, the calculus level, the representation level,

and the control level. We will show that neural logic does enrich the meaning

logic with DONT KNOW truth value and human-like logical operators which are

more appropriate for knowledge processing and decision making.

The paper is organized as follows. We start next section with introducing

the basic of neural logic network and give the de�nitions of standard and non

standard logical operators. We describe than the human logical reasoning. We

conclude with a discussion of the presented method and look ahead to extension

and future directions of this work.

2 Neural Logic Network

Neural logic network is a class of arti�cial neural network which is used to model

human intelligence by computing systems. It can model classical two-valued

Boolean logic e�ectively. This logic is in fact a good model to study human logic

which is multivalued, fuzzy and biased. The neural logic network considered in

this work is inspired from [4].

A Neural Logic Network (NLN for short) is a �nite directed graph. It contains

a set of input nodes and output nodes. Every node can take one of the three

order pair activation values: (1,0) for true (0,1) for false and (0,0) for unknown.

Every edge in net is also associated with an ordered pair weight (t; f) where t
and f are real numbers of positive, negative or zero value.

2.1 Mathematical de�nition of NLN

An abstract neural logic network is a mathematical system with following fea-

tures:

� It is a �nite directed graph consisting of a set of nodes N and a set of links

E;

� A non-empty subset I of N is chosen as input nodes. Another non-empty

subset O of N is chosen as output nodes. Other nodes are called hidden

nodes;

� An algebraic system < R;+;� > which is satisfying the axioms of a ring.

An association of a set of links to a set of R is de�ned by a mapping '1
'1 : E ! R

That is to say, every links of the directed graph is given a value from the

chosen ring < R;+;� >;

� A subset of A is chosen from the ring R together with a specially chosen

mapping '2 from the set of all non-input nodes (i.e. N � I ) to the set A

'2 : (N � I)! A

That is to say, non-input node of N is given a value in A. The elements in

A are to be called truth-values;
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a)

:

P1(x1, y1)

P2(x2, y2) Q(x, y)
(a2, b2)

(an, bn)

(a1, b1)

Pn(xn, yn) b)

P2

P1

P3

2

-1

1

Q

Figure 1: a) 3-valued NLN, b) Boolean NLN

� A mapping from R to A i.e.

f : R! A

called the threshold function.

An abstract neural logic can now be denoted by

Net =< N;E; I; O;R;A; '1; '2; f >

By changing ring R and the threshold function di�erent sub-classes of neural logic

network can be obtained. Three-valued NLN, Boolean NLN and Fuzzy NLN are

the three main sub-class of NLN. For instance the 3-valued NLN can be obtained

by representing the value of input Pi(i = 1; :::n) by ordered pairs (xi; yi) with
the weights (ai; bi) and the value of output Q by an ordered pair (x; y). Letting
A = A(T ) = f(1; 0); (0; 1); (0; 0)g, (where A(T ) means the truth value set in 3-

valued NLN) be the truth value set, where (1; 0); (0; 1); (0; 0) represent true, false
and don't know respectively, ai; bi be any real numbers and the threshold function

can be de�ned as

(x; y) =

8<
:

(1; 0) if
Pn

i=1 aixi �
Pn

i=1 biyi � 1
(0; 1) if

Pn

i=1 biyi �
Pn

i=1 aixi � 1
(0; 0) otherwise

Fig. 1 a) shows the general structure of a single 3-valued NLN.

Boolean NLN is the simplest type of NLN. Its theory plays a special role

because of its link to other well known neural networks such as multi-layer per-

ceptron [3], Kohonen nets [1], etc. In a boolean NLN, single real numbers ai are

used for weights of the links and boolean numbers 1 or 0 are used for value of

input Pi (i = 1; :::n) and output Q . The truth value set is then denoted by

A(B) ( where B for Boolean NLN) and A(B)
� f0; 1g . The threshold function

is de�ned as

Q =

�
1 if

Pn

i=1 aiPi � 1
0 if

Pn

i=1 aiPi < 1
Suppose we are given a boolean neural logic network and suppose Q is one of

its nodes with incoming links such as Fig. 1 b)

To �nd the value of Q we need to �nd the current values of nodes at P1; P2; P3
, say �1; �2; �3 respectively. Then we �nd sum x = 2�1 � �2 + �3 and put this

number x into the threshold function f(x) to decide whether it should be 1 or 0.

The choice of weights associated with NLN o�ers a great variety of di�erent

logic operations. In theory, for a network with two inputs, total of 39 distinct

meaningful binary logical operations are possible. The de�nition of AND; OR

and NOT are as follows:
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� An AND operation of n inputs is de�ned as a neural logic function, written

as AND(P1; P2; ::::Pn) or Q = P1 ANDP2AND; :::Pn with the weights

(ai; bi) = ( 1
n
; n) for i = 1; 2; :::n

� An OR operator of n inputs is de�ned as neural logic function asOR(P1; P2; :::Pn)
or Q = P1 OR P2 OR; :::Pn with the weights (ai; bi) = (n; 1

n
) for i =

1; 2; :::n

� A NOT operation of 1 input is de�ned as a neural logic function, written

as NOT (P ) or Q = NOT (P ) with the weight (a; b) = (�1;�1).

Fig. 2 shows several useful operations in 3-valued NLN.

3 Logical Reasoning

In section 2, we have introduced the Neural Logic model and its capability to

incorporate the local inference of Boolean logic. The interconnection of this

model called Neural Logic Network (for short NLN). In this section we introduce

a rule inferencing system based on neural logic model for propositional knowledge

base.

A proposition is represented as a neural logic neuron labelled Q. The truth

value of Q, denoted as t(Q), is given by neuron's activation. The truth values:

true, false, and don't-know are denoted by ordered pair (1, 0), (0, 1) and (0,

0) respectively. The connection weight from a neuron denoting proposition Q is

also extended to ordered pair (x; y) where x and y are real numbers that can

be viewed as the truth and false value or as the strength of the support and

opposition respective of proposition P for proposition Q.

De�nition Given proposition P1;P2;:::::Pn with truth values

(x1; y1); (x2; y2); ::::(xn; yn), which are connected to proposition Q with the weights

(a1; b1); (a2; b2); ::::(an; bn) respectively. The Netinput(Q) is de�ned as,

Netinput(Q) =
P

(aixi � biyi). The activation of neuron is de�ned as follows:

Act(Q) =

8<
:

(1; 0) if Netinput(Q) � �

(0; 1) if Netinput(Q) � ��

(0; 0) otherwise

where � is threshold, usually set to 1. The Pi 's and Q in Fig. 1 are referred

as inputs nodes and output node respectively.

3.1 Neural Logic Element

A Neural Logic Element (for short Netelm) can be seen as one layer or maximum

two layers neural network with n input nodes and one output node, and an

optional layer of hidden nodes. With reference to Fig. 1 the de�nition of a

neural logic element can be given as follows.

De�nition A neural logic element of n inputs with the proposition

P1; P2; ::::::Pn connected to proposition Q is de�ned as

Netelm : f(1; 0); (0; 1); (0; 0)gn ! f(1; 0); (0; 1); (0; 0)g

t(Q) = Netelm(P1; P2; :::::Pn) =

8<
:

(1; 0) if Netinput(Q) � 1
(0; 1) if Netinput(Q) � �1
(0; 0) otherwise
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P1               P2             P1 v P2

(1, 0)           (1, 0)           (1, 0)
(1, 0)           (0, 1)           (1, 0)
(1, 0)           (0, 0)           (1, 0)
(0, 1)           (1, 0)           (1, 0)
(0, 1)           (0, 1)           (0, 1)
(0, 1)           (0, 0)           (0, 0)
(0, 0)           (1, 0)           (1, 0)
(0, 0)           (0, 1)           (0, 0)
(0, 0)           (0, 0)           (0, 0)

P1

(2, 1/2)

(2,  1/2)

(1, 0)           (1, 0)          (1, 0)

(1, 0)           (0, 0)          (0, 0)
(0, 1)           (1, 0)          (0, 1)
(0, 1)           (0, 1)          (0, 1)
(0, 1)           (0, 0)          (0, 1)
(0, 0)           (1, 0)          (0, 0)
(0, 0)           (0, 1)          (0, 1)
(0, 0)           (0, 0)          (0, 0)

P1                 P2            P1 vP2

(1, 0)           (0, 1)
(0, 1)           (1, 0)
(0, 0)           (0, 0)

P                 Q

(1, 0)            (0, 1)          (0, 1)

P2

Q = P1 v P2

The OR operation

P1 (1/2, 2)

P2

Q = P1 v P2

(1/2, 2)

The AND operation

P1 (-1, -1) Q = P

The NOT operation

Q = k (P1, P2, ....Pn)

(1/k, 0)

(1/k, 0)

(1/k, 0)

(0, 1/n)

(0, 1/n)

(0, 1/n)

(0, 1)

Q = (1, 0) iff at least k of P1,...Pn are (1, 0)

Q = (0, 1) iff all P1,...Pn are (0, 1)

Q = (0, 0) otherwise

(1/k, 1/k)

(1/k, 1/k)

Q = (1, 0) iff there are k more (1, 0) than (0, 1)

among the values of P1, P2,.....Pn

P1

Pn

P2

The At-Least-k operation k

P1
(1/k, 1/k)

P2
.

.

.

Pn

Q = M   (P1, P2, .....Pn)
k

Q = (0, 1) iff there are k more (0, 1) than (1, 0)

among the values of P1, P2, ....Pn

Q = (0, 0) otherwise.

The Majority-K operation M k

Q = P1    if P1 == (0, 0)

Q = P2 if P1 = (0, 0) & P2 == (0, 0)

Q = P3 if P1 = P2 = (0, 0) & P3 == (0, 0)

:

:

Q = Pn

P1

P2
:

:

Pn

Q = ∆ (P1, P2,.......Pn)

n-1 n-1
(2   , 2    )

(1, 1)

The Priority operation

(2   ,  2   )
n-2n-2

∆

Figure 2: Operations in 3-valued neural logic
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a)

(1/2, 2)

(1/2, 2)

better(x, y)

stronger(x, y)

richer(x, y)

b)

(2, 2)
Q

(1, 1)

(4, 4)P1

P2

P3 c) (1/2, 2)

ES

MP

Bt (1/2, 2)

Figure 3: Examples of Netelm for rules a) better b) prioritized view c) excellent

student

Every Netelm has two equivalent forms; one is the usual textual form similar

to that in the conventional rule based system, and the other in a graphical form

that pictorially represents the network element. The following example illustrates

the equivalence between a rule in a rule based system and Netelm.

For rule: if richer(x, y) AND stronger(x,y) then better(x, y), the equivalent

Netelm is shown in Fig. 3 a). The weights attached to the edges correspond to

the AND connective in the rule.

Fig. 3 b) shows an example of how usefully and �exibly a neural element

can be used to model human inference or decision pattern. In this example the

priorities of Pi 's views in encoded are their corresponding weights:

When P1 gives his view, his view is outcome;

If P1 withhold his view i.e. P1(0; 0); then P2 's view will be the outcome.

P3's view will be the outcome only when both P1 and P2 withhold their views.

A Netelm in Fig. 3 c) represents the following rule:

if Better-Than(Academic-grade(x),A-minus)

AND Min-Percentage(class-attendance(x), 95)

then Excellent-Student(x)

3.2 Neural logic program

Neural logic program is the formal representation of the neural logic network.

We use the Horn Claus for the representation of facts and rules in knowledge

base expressed in terms of neural logic. The Horn Claus can easily transformed

to a Prolog program.

De�nition A fact clause is of the form: Q, where Q is a symbol and t(Q)
denotes truth value of Q. By default t(Q) is (1, 0). This allows compatibility

with standard Prolog syntax.

De�nition A rule clause is of the form:

Q : ��(P1; P2; � � �Pn) or Q : �P1w1; P2w2; � � �Pnwn

where Q and Pi 's are symbols for propositions, � is a neural logic function

(eg. AND;OR etc.) and wi is of the forms: < xi; yi > denoting the weight

(xi; yi) from Pi to Q for i = 1; 2; :::n. When � is a null string, it means an AND

neural element. If some propositional symbol, such as Q, appears as the head

of more than one clause, the Q 's are interpreted as the input nodes to an OR

neural element. These again allow compatibility with standard Prolog syntax.

wi in the formula is for specifying arbitrary weight to de�ne any neural logic

function. The neural logic network representation for a rule clause will be the

same as one in �g.1.
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a)

P21

P22

P2n

Q2

Q1

Qm

Q

:
:

:
:

b)

(-1, -1) (1/2, 2)P1
(1, 0)

P5
(1, 0)

P4
(1, 0)

(1/2, 2)

P1’

P2

P3

(1/2, 2)

(1/3, 3)

(2, 1/2)

(2, 1/2)(1/3, 3)
(1/2, 2)

(1/3, 3)

Q1

Q2

Q

Q :- P2, P3, P4.

Q :- not(P1), P2.

P5.

P3 :- P4, P5.

P1.

Figure 4: Neural logic network program for a) a fragment clauses, b) an example

De�nition A program clause is either a fact clause or a rule clause. A

neural logic program is a collection of program clauses. It will be represented as a

forest of neural logic net trees, each consists of a number of neural elements joined

as follows: the output node of a neural element becomes an input node of another

neural element if they both denote the same proposition. The truth values of the

proposition as speci�ed by the fact clauses are the activation attached beside the

relevant neurons. Thus, every neural logic program has a unique neural logic

network representation and the number of distinct symbols (propositions) in the

program equals the number of nodes in the neural logic minus the number of

hidden nodes in the neural elements.

To further illustrate the implicit AND and OR operators in standard Prolog

program and its corresponding neural logic network representation, consider the

following program fragment:

Q1 : �P11; P12; � � �P1n
Q2 : �P21; P22; � � �P2n
...

Qm : �Pm1; Pm2; � � �Pmn

Where Q1; Q2; � � �Qm refer to the same syntactical symbol Q. m hidden

nodes, Q1; Q2; � � �Qm will be created, each of which is an output from AND

neural element of n inputs (Pi1; Pi2; � � �Pin) as well as an input node to an OR

neural element of m input as shown in Fig. 4 a)

Fig. 4 b) shows a simple neural logic program in standard Prolog's syntax

and its corresponding neural logic network representation.

3.3 The proposed system

A schematic diagram of the system is shown in Fig. 5). The system allows conver-

sion from if..then... rules into a neural logic program. Every rule is represented

in the knowledge base by netelm. Standard logic operations in conventional rules

are readily transformed into netelms with �xed weights assigned for the corre-

sponding logic operators.

The Rule Editor and Query Manager combine two forms of user interaction

with the system. Besides providing a friendly environment for the user to convert,

create and maintain netelm knowledge base, they also derive the conclusion.

The netelm rule base is the depository area of knowledge to be used in the

inference process. It is made of the rules from three main sources: conventional
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If P1(x) AND T9
Then Q1

P1 = x

Netelm Rule base

Query Manager

Rule editorRule base

Infernce Engine

user

Query 
conclusion

T9

Figure 5: Architecture of the reasoning system

rules being transformed into netelms by the rule editor; rules added/modi�ed by

the uses; and, meta rules learned by the inference engine through consultations.

The Inference Engine dynamically links up relevant rules from the netelm

rule base in the process of deriving at a conclusion for the user. The inference

engine may run in consultation or training mode. In either case it chains active

rules together into a neural logic network like a tree structure. With the netelm

schema discussed earlier, tree structure is essentially made of fragments of neural

logic network to be �tted together dynamically during the inferencing process,

similar to the chaining of rules in the working memory of a conventional rule-

based system.

3.4 Learning

Since all logical operations in the system are presented by arc weights, this pro-

vides a mean of modifying the rules by adjustment of weights. This is especially

useful for rules that involve non standard logic operations such as that of human

logic. In such cases, weight may initialy be created on the basis of some intuition

but later tuned by training with examples.

The system may be trained in two ways. First, learning mechanism allows

alternation of the logical operation of a rule by training a corresponding body of

connected netelms with known exemplary deductions. Second, learning mecha-

nism allows �ne tuning of weights without altering the basic logical operations

de�ned in the netelms. In the dynamic linking of netelms, either forward or back-

ward, paths that fail to achieve the desired conclusions will have their weights

decreased. Other paths that con�rm the desired conclusions may have their

weights increased. In training mode, when a training example is presented to the

system, it will chain up an inference tree from the input nodes to the desired goal

node. Relevant netelm rules are selected from the knowledge base depending on

the input variables in the training example. After the activation and propaga-

tion, the activation state of the network output node is compared to the desired

value in the training example. If the network is not able to derive the desired

conclusion, the error is back propagated and the netelm in the inference tree
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will have their connection weights adjusted. However, the system assumes that

the netelm rules articulated by the human experts are su�ciently close to the

global minima of the neural network representing the domain knowledge. The

constituent netelm therefore only require small weight adjustment - perhaps out-

put nodes of certain netelms in the inference network fall slightly short for the

threshold of the neural logic network activation. This means that the iterative

process for error back propagation will only need to occur a small number of

times.

4 Conclusion

We have described a rule inferencing system based on neural logic model. The

model provides a richer set of logical operations which are close to human rea-

soning and decision making that is not easy if not impossible to be modeled by

classical logic. We de�ne a neural logic program for representation of the speci�c

application. We also suggested the search strategy with heuristic search and an

adaptive strategy for standard operators. Comparing to the rule based systems

the knowledge is usually constructed in a hierarchy. However, the prede�ned gen-

eralization hierarchy limits the system �exibility. It is di�cult to update those

assumptions that are no longer signi�cant. In this approach, when a query is

assigned to the system, it will be mapped dynamically to a neural network. In

doing so, the topology of the network is reduced to the size of query.

Furthermore, the conventional rule based systems often lack learning ability.

Finally, the system is made more resilient to the brittleness problem of conven-

tional rule based system which could fail abruptly in the face of fuzzy data

From the above discussion and examples, it is not di�cult to envisage the

power of neural logic model consisting of chain of neural logic elements to repre-

sent interesting and realistic human logic which is not possible in classical logic.

We are at the beginning of the project, therefore we can not report about a real

world application. This is a subject to future work. We will explore the limita-

tions of this approach on a number of domains and we hope to show that this

idea is extendible to many other AI problems.
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Abstract. Based on First-Order Rough Logic Studied by Lin and Liu,
this paper establishes rough propositional logical system with rough
lower (L) and upper (H) approximate operators. It discusses the res-
olution principle in the system. The soundness of resolution deduction,
soundness and completeness of the refutation are also studied in
the paper.
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1 Introduction

Lin and Liu studied a first-order rought logic based on six topological properties,
in particularly, using the axioms of Kuratowski’s closure (H) and interior (L)
operators. Thus, the first-order rough logic system with operators L and H is
developed[1]. The revision studied further by Lin and Liu considers a map f , it
is defined as the map of one to one between boundary-line region in the logic
and undefinable region in classical logic. Hence, the logic is proved to be sound
and complete with the new intertation in the revision[2].

We bear in mind the idea of studying resolution reasoning. This paper will
first establish a rough propositional logical system (RPLS) with operators (L)
and (H) which are defined rough lower and upper approximate operators[1];
Next, the paper describes the resolution principle and the soundness of resolution
deduction in the logic. Hence, this paper is different from other systems, it focuses
in the resolution reasoning, but not the logical systems based on rough concept.

� The study is supported by national natural science fund and JiangXi Province nat-
ural science fund in China
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2 Rough Propositional Logical System

Let w be a rough propositional formula, We will call m(w) ⊆ U the meaning
of w. Meaning sets of the formulas Lw and Hw with rough lower and upper
approximate operators are defined as follows:
(1). x satisfies w iff xεm(w);
(2). x satisfies Lw iff ∀y(yεH(x)→ yεm(w)), i.e., H(x) ⊆ m(w);
(3). x satisfies Hw iff ∃y(yεH(x) ∧ yεm(w)), i.e., H(x)

⋂
m(w) �= ∅.

Where H(x) is a equivalent calss containing x[1,2].
Well-formed formulas(Wffs):
(1). All atomic formulas are Wff ;
(2). If w and w1 are Wff , then so are ∼ w, w → w1 and Lw;
(3). The only Wff are those obtainable by finite applications of (1)− (2) in the
above.
Other logical connectives ∨, ∧, ↔ are defined by ∼ and → and operator H is
defined by ∼ and L[1,3].
Axiom schemas
A1. � w → (w1 → w);
A2. � (w → (w1 → w2))→ (w → w1)→ (w → w2);
A3. � (∼ w1 →∼ w2)→ (w2 → w1);
A4. � L(w1 → w2)→ (Lw1 → Lw2);
A5. � Lw→ w;
A6. � HLw→ Lw.
Rules of inference
R1. Modus Ponens (MP):From � w1 → w2 and � w1, we have � w2;
R2. L insertion (LI):From � w, we have � Lw.
Where R2 means that Lw is valid if w is valid for all obserable world[1].
The semantics of the logic
The semantic model of formulas in RPLS is defined as a triple:
M =< W,R,m >

where W is a non-empty set of observable worlds[1], if each observable world
are viewed as a state, then W is a state set[3]. R is a binary relation on W ,
such that ∀sεW , ∃s′εW , (s, s′)εR; m is a meaning function that assigns to each
propositional variable p a subset m(p) of W .
Given a model M we say that formla w is satisfied by a state s in model M ,
written by |=s w iff the following conditions are satisfied:
(1). M |=s p iff sεm(p), where p is a propositional variable;
(2). M |=s∼ w iff ∼M |=s w;
(3). M |=s w1 ∨ w2 iff M |=s w1 ∨M |=s w2;
(4). M |=s w1 ∧ w2 iff M |=s w1 ∧M |=2 w2;
(5). M |=s w1 → w2 iff M |=s∼ w1 ∨ w2;
(6). M |=s w1 ↔ w2 iff M |=s (w1 → w2) ∧ (w2 → w1);
(7). M |=s Lw iff ∀s′εW , if (s, s′)εR then M |=s′ w;
(8). M |=s Hw iff ∃s′εW , (s′, s)εR ∧M |=s′ w.

Given a model M , for each formula w in RPLS, which is assigned a set of
states in model M , detoned by m(w) = {sεW :M |=s w}.
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We introduce truth and validity of formulas. A formula w is true in a model M
iff m(w) = W ; A formula w is valid in RPLS iff w is true in every model in
RPLS; a formula w is satisfiable iff for some model M and state s, M |=s w;
If w includes operators L and H , the description is also validable by (7) and (8).

3 Conjunctive Normal Form (CNF)

Let w be a formula in RPLS, then there is a CNF corresponding to w[3,4]

C1 ∧ C2 ∧ . . . ∧ Cn

where n ≥ 1 and each clause Ci is a disjunction of the general form:

Ci = p1 ∨ . . . ∨ pn1 ∨ Lq1 ∨ . . . ∨ Lqn2 ∨Hr1 ∨ . . . ∨Hrn3 ,

where each pi is a literal; each qj is a disjunction, it possesses the general form of
the clauses; rt is a conjunction, where each conjunct possesses the general form
of the clauses.
For examples, The following formulas are conjuctive normal forms:
(1). L(p ∨ q ∨H(r ∧ t));
(2). H((p ∨ q)∧ ∼ p);
(3). ∼ p ∨ p ∨ L(r ∨ s) ∨H((p ∨ Lr) ∧ e);
(4). ∼ p ∨ L(Lp ∨ (H(q ∧ Lr)) ∨H(L(H((Lq ∨Ht) ∧ r) ∨ Lt) ∧ p).
Any formula w in RPLS is transformed eqivalently into the conjunctive normal
form. For example, w = L(p ∧H(q ∨ L(r ∧ t)) ∧ (p→ L(q ∧Ht)))
The followings are the procedure that is trasformed into CNF :
(1). Lp ∧ LH(q ∨ (Lr ∧ Lt)) ∧ (p→ L(q ∧Ht));
(2). Lp ∧ LH((q ∨ Lr) ∧ (q ∨ Lt)) ∧ (p→ (L(q ∧Ht)));
(3). Lp ∧ LH((q ∨ Lr) ∧ (q ∨ Lt)) ∧ (∼ p ∨ L(q ∧Ht));
(4). Lp ∧ LH((q ∨ Lr) ∧ (q ∨ Lt)) ∧ (∼ p ∨ (Lq ∧ LHt));
(5) Lp ∧ LH((q ∨ Lr) ∧ (q ∨ Lt)) ∧ (∼ p ∨ Lq) ∧ (∼ p ∨ LHt).
Where each conjunct is the general form of the clause.

4 The Resolutions in the RPLS

For any two clauses C1 and C2, if there is literal p1 in C1, that is complementary
to a literal p2 in C2, then delete p1 and p2 from C1 and C2 respectively, and
construct the disjunction of remaining clauses. Therefore, we have resolution
rule:

C1 with p1εC1

C2 with p2εC2

—————————————
(C1 − {p1}) ∪ (C2 − {p2})

(I)
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It is possible there are literals with operators L and H in the clauses of RPL,
and Lp is complementary pair of literals to H ∼ p. Hence following resolution is
valid:

C1 with LpεC1

C2 with H ∼ pεC2

——————————————–
(C1 − {Lp}) ∪ (C2 − {H ∼ p})

(II)

The forms of lower of level line of (I) and (II) are called resolvent obtained
from C1 and C2. Hence the resolution principles in RPLS consist of (I) and (II).
As an example, consider the following deductive resolution:

(1) L(p ∨ q) ∨ C1 premise
(2) H ∼ p ∨ C2 premise
(3) L ∼ q ∨ C3 premise
——————————————
(4) Hq ∨ C1 ∨ C2 using (1) and (2)
(5) C1 ∨ C2 ∨C3 using (3) and (4)

Where fourth step (4) has a Hq, since premise (1): ∼ (L(p ∨ q) ↔ (Lp ∨ Lq)),
but L(p ∨ q) ∧H ∼ p→ H(p ∨ q∧ ∼ p). Hence, the resolution of using L(p ∨ q)
and H ∼ p gets the resolvent Hq.

5 Transformable Strategies of the Resolutions in RPLS

Let C1 and C2 be two clausee in RPLS, we can transform for them, so that we
find out the complementary pair of literals in C1 and C2. Therefore, we give the
following transformable strategies:
(1). T (p,∼ p) = R(p,∼ p);
(2). T ((C1 ∨C2), C3) = R(C1, C3) ∨ C2;
(3). T (C1 ∧ C2 ∧ C3 ∧ C4) = R(C1, C3) ∧ C2 ∧ C4;
(4). T (LC1, LC2) = LR(C1, C2);
(5). T (LC1, HC2) = HR(C1, C2);
(6). T (LC1, C2) = R(C1, C2);
(7). T (C1 ∨ C,C2 ∨C′) = R(C1, C2) ∨ C ∨ C′;
(8). Substitution: ∅ for every occurrence of (∅ ∧ C); C for every occurrence of
(∅ ∨ C); ∅ for every occurrence of L∅ or H∅.
Where R(X,Y ) denotes that X and Y is resolvable.

6 Soundness of Resolution in RPLS

Theorem 1 (soundness theorem) If there is a deduction of resolution of a
clause C from a set of clauses, �, then � logically implies C.
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Proof The proof is achieved by simple induction on the longer of resolution de-
duction. For the induction, we need to show only that any given resolution step is
sound. Suppose, C1 and C2 are arbitrary clauses, resolution of them produces a
new clause C : (C1−{p1})∪(C2−{p2}) by (I) or C′ : (C1−{Lp})∪(C2−{H ∼ p})
by (II). By induction assumption, |=s C1 and |=s C2, that is, C1 and C2 are true,
we prove |=s C and |=s C

′, where sεW , namely C and C′ are also true.
If |=s Lp, then ∼|=s H ∼ p, because Lp and H ∼ p is a complementary pair of
literals in RPL, and so |=s (C2 − {H ∼ p}). If |=s H ∼ p, then ∼|=s Lp, and so
|=s (C1 − {Lp}). But then |=s C

′, that is, |=s (C1 − {Lp}) ∪ (C2 − {H ∼ p}).
Similarly, we obtain |=s C, that is, |=s (C1 − {p1}) ∪ (C2 − {p2}).

Given a set of clauses, it can derive empty using resolution deduction, we
call the resolution deduction a refutation. Such as, given the three clauses Lp,
H(∼ p ∨ q) and L ∼ q, the deductive steps of them are as following:

(1) Lp premise
(2) H(∼ p ∨ q) premise
(3) L ∼ q premise
———————————————
(4) Hq using (1) and (2)
(5) ∅ using (3) and (4).

The theorem of soundness and completeness for Resolution refutation is also
vaild, that is, a set of clauses, �, is unsatisfiable iff � is refutable.

7 Conclusion

We study the resolution of RPL, the aim is in order to establish a rough reason-
ing system using resolution method. The operators L and H in the paper come
from rough lower and upper approximate operators defined by Lin and Liu in
the references[1,2], they are different to necessary (✷) and possible (✸) operators
in Modal Logic in the interpretation of semantis.

References

1. T.Y.Lin and Q.Liu, First-Order Rough Logic I:Approximate Reasoning via Rough
Sets, Fundamenta Infomaticae, vol. 27, Nos.2,3 (1996),137–154.

2. T.Y.Lin and Q.Liu, First-Order Rough Logic Revised, Manuscript, 5 (1999).
3. Luis Farinas-del-Cerro, Resolution Modal Logic, Proceedings of the Eighth Inter-

national Coference on Atomata Deduction, (1985).
4. Q.Liu, The OI-Resolution of Operator Rough Logic , LNAI 1424, 6 (1998),

432–435.
5. Q.Liu, Operator Rough Logic and Its Resolution Principles, Journal of Coputer,

(Chinese), 5 (1998).



Information Granules in Distributed

Environment

Andrzej Skowron1 and Jaroslaw Stepaniuk2

1 Institute of Mathematics
Warsaw University, Banacha 2, 02-097 Warsaw, Poland,

skowron@mimuw.edu.pl
2 Institute of Computer Science

Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
jstepan@ii.pb.bialystok.pl

Abstract. We propose to use complex information granules to extract
patterns from data in distributed environment. These patterns can be
treated as a generalization of association rules.

1 Introduction

Notions of granule [15,9] and granule similarity (inclusion or closeness) are very
natural in knowledge discovery. The exact interpretation between granule lan-
guages of different information sources (agents) often does not exist. Hence close-
ness (rough inclusion) of granules is considered instead of their equality.

For example, the left and right hand sides of association rules [1] describe
granules and the support and confidence coefficients specify the inclusion degree
of granule represented by the formula on the left hand side into the granule
represented by the formula on the right hand side of the association rule.

Reasoning in distributed environment requires a construction of interfaces
between agents for learning of concepts definable by different agents. In this pa-
per we suggest one solution based on exchanging views of agents on objects with
respect to a given concept. An agent delivering concept is giving positive and
negative examples (objects) with respect to a given concept. The agent receiv-
ing this information can describe objects using its own attributes. In this way a
data table (called a decision table) is created and the approximate description
of concept can be extracted by the receiving agent.

An analogous method can be used in case of the customer-agent (agent
specifying tasks) searching for a top-level cooperating agent (root-agent). The
customer-agent is presenting examples and counter examples of objects with
respect to her/his concept. The concept specified by customer-agent is approxi-
mated by agents and an agent returning the best approximation of the customer-
agent concept is chosen to be the root agent. The goal of cooperating agents is
to produce a concept sufficiently close (or included) to the concept specified by
the customer-agent. This concept has to be constructed from some elementary
concepts available for agents called inventory or leaf-agents [8]. This is realized
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by searching for an agent scheme [8]. The schemes are represented in the paper
by expressions called terms.

We emphasize the fact of approximate (vague) understanding of concepts
received by any agent from other agents. Our solution is based on rough set
approach. We point out that our approach can be treated as an approach for
extracting generalized association rules in distributed environment.

2 Rough Sets and Approximation Spaces

We recall general definition of approximation space [11,13].

Definition 1. A parameterized approximation space is a system AS#,$ =
(U, I#, ν$), where

– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function and P (U) denotes the powerset

of U ,
– ν$ : P (U)× P (U)→ [0, 1] is a rough inclusion function.

The uncertainty function defines for every object x a set of similarly described
objects. A constructive definition of uncertainty function can be based on the
assumption that some metrics (distances) are given on attribute values. For
example, if for some attribute a ∈ A there is a metric δa : Va × Va −→ [0,∞) ,
where Va is the set of all values of attribute a then one can define the following
uncertainty function

y ∈ Ifa
a (x) if and only if δa (a (x) , a (y)) ≤ fa (a (x) , a (y)) ,

where fa : Va × Va → [0,∞) is a given threshold function.
A set X ⊆ U is definable in AS#,$ if it is a union of some values of the

uncertainty function.
The rough inclusion function defines the value of inclusion between two sub-

sets of U [11,9].
Now we can define the lower and the upper approximations of subsets of U.

Definition 2. For a parameterized approximation space AS#,$ = (U, I#, ν$)
and any subset X ⊆ U the lower and the upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0} .

Approximations of concepts (sets) are constructed on the basis of background
knowledge. Obviously, concepts are also related to unseen so far objects. Hence
it is very useful to define parameterized approximations with parameters tuned
in the searching process for approximations of concepts. This idea is crucial
for construction of concept approximations using rough set methods. In our
notation #, $ are denoting vectors of parameters which can be tuned in the
process of concept approximation.



Information Granules in Distributed Environment 359

The presented above definition of approximation space can be treated as
a semantic part of the approximation space definition. Usually there is also
specified a set of formulas Φ expressing properties of objects. Hence we assume
that together with the approximation space AS#,$ there are given

– a set of formulas Φ over some language,
– semantics ‖•‖ of formulas from Φ, i.e., a function from Φ into the power

set P (U) .

Let us consider an example [7]. We define a language LIS used for elementary
granule description, where IS = (U,A) is an information system. The syntax
of LIS is defined recursively by

1. (a ∈ V ) ∈ LIS , for any a ∈ A and V ⊆ Va.
2. If α, β ∈ LIS , then α ∧ β ∈ LIS .
3. If α, β ∈ LIS , then α ∨ β ∈ LIS .

The semantics of formulas from LIS with respect to an information system
IS is defined recursively by

1. ‖a ∈ V ‖IS = {x ∈ U : a (x) ∈ V } .
2. ‖α ∧ β‖IS = ‖α‖IS ∩ ‖β‖IS .
3. ‖α ∨ β‖IS = ‖α‖IS ∪ ‖β‖IS .

A typical method used by classical rough set approach [7] for constructive
definition of the uncertainty function is the following: for any object x ∈ U there
is given information InfA (x) (information vector, attribute value vector of x)
which can be interpreted as conjunction of selectors a = a (x) for a ∈ A and the
set I# (x) is equal to

∥∥∧
a∈A a = a (x)

∥∥
IS

. One can consider a more general case
taking as possible values of I# (x) any set ‖α‖IS containing x. Next from the
family of such sets the resulting neighborhood I# (x) can be selected. One can
also use another approach by considering more general approximation spaces in
which I# (x) is a family of subsets of U [2,6].

3 Mutual Understanding of Concepts by Agents

One of the important task for Knowledge Discovery and Data Mining (KDD) [1,4]
in distributed environment is to develop tools for modeling mutual understand-
ing of concepts definable by different agents. Mutual understanding through
communication is one of the key issues to enable collaboration among agents [5].
We assume agents specify their knowledge using data tables.

3.1 Understanding of Concept Definable by Single Agent

Let us consider two agents. There are two data tables IS1 = (U,A1) and
IS2 = (U, {a}) corresponding to agents. We assume that a : U → {0, 1} is a
characteristic function of a concept X = {x ∈ U : a (x) = 1} .
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In this, typical for rough set approach, situation the first agent is specifying
the characteristic function of its concept on examples of objects. The second
agent is trying to describe the concept using values of its own attributes from A1

on objects considered by the first agent. In this way it is constructed a decision
table with condition attributes from A1 and the decision a. Next it is computed
the lower and the upper approximation of the decision class X. The size of the
boundary region of X with respect to A1 can be used a measure of uncertainty
in understanding X by the agent with attributes A1.

Closeness of X to its approximations in the language used by the first
agent can be represented by accuracy of approximation, i.e., by the coefficient

α (ASA1 , X) =
card(LOW(ASA1 ,X))
card(UPP(ASA1 ,X)) .

The presented above approach can be used for learning by one agent of
concepts definable by another agent.

Let us consider again two agents. There are two data tables IS1 = (U,A1) and
IS2 = (U,A2) corresponding to agents. We assume that in both data tables there
is the same set of objects U and A1 =

{
a1
1, . . . , a

1
l

}
, and A2 =

{
a2
1, . . . , a

2
k

}
are

two sets of attributes, where l > 0 and k > 0 are given natural numbers. Let us
consider concepts definable by attributes from the set A2. For example suppose
that we consider concept defined by formula

(
a2
1 = 1 ∧ a2

2 = 1
)∨ a2

3 = 1. This is
a concept definable by the second agent. Hence this agent can compute values of
the characteristic function of the concept on objects from U and the first agent
can find approximations of the concept following the procedure described above.

In this way we define approximations by the first agent of concepts definable
by the second one.

Let us mention that the approximation operations are in general not dis-
tributive with respect to disjunction or conjunction. Hence one can not expect
to construct concept approximations of the good quality from approximation of
atomic concepts (e.g. descriptors).

3.2 Understanding of Concept Definable by Team of Agents

Assume that a set of agents Ag = {ag1, . . . , agp} where p > 0 is a given natural
number. Let us consider a data table ISag = (U,Aag) for any agent ag ∈ Ag.
We assume any agent from Ag is defining a concept X using the above proce-
dure. One can construct a decision table DT with condition attributes being
the characteristic functions of the lower and upper approximations of X defined
by all agents from Ag and the decision being the characteristic function of X
on given examples of objects. The lower and upper approximation of X with
respect to condition attributes of DT describe the vagueness in understanding
of X by agents from Ag. One can also use other features summarizing the result
of voting by different agents. Examples of such features are the majority voting
feature, accepting object as belonging to concept if the number of voting agents
is greater than a given threshold or the characteristic function of the intersection
of the upper approximations

⋂
ag∈Ag UPP

(
ASAag , X

)
or the intersection of the
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lower approximations
⋂

ag∈Ag LOW
(
ASAag , X

)
. One can observe that in some

cases the above intersections can be undefinable by single agent.
The described problem is analogous to resolving conflict between decision

rules voting for decision when they are classifying new objects.
One can extend our approach to the case when e.g. one agent is trying to

understand concepts definable by the second agent on the basis of understand-
ing these concepts by the third agent. Common knowledge of a given team of
agents about concepts definable by members of this team [3,14,10] can also be
considered in this framework.

One can also consider the discussed above new features as the characteristic
functions of concepts definable in some new approximation spaces constructed
from approximation spaces of agents from Ag.

4 Rough Sets in Distributed Systems

In this section we consider operations on approximation spaces which seem to be
important for approximate reasoning in distributed systems. We consider a set of
agents Ag. Each agent is equipped with some approximation spaces. Agents are
cooperating to solve a problem specified by a special agent called customer-agent.
The result of cooperation is a scheme of agents. In the simplest case the scheme
can be represented by a tree labeled by agents. In this tree leaves are delivering
some concepts and any non-leaf agent ag ∈ Ag is performing an operation o (ag)
on approximations of concepts delivered by its children. The root agent returns a
concept being the result of computation by the scheme on concepts delivered by
leaf agents. It is important to note that different agents use different languages.
Hence concepts delivered by one agent can be only perceived in an approximate
sense by another agent.

We assume any non leaf agent is equipped with an operation

o (ag) : U
(1)
ag × . . . × U

(k)
ag → U

(0)
ag . Any agent ag together with an opera-

tion o (ag) has different approximation spaces AS
(1)
ag , . . . ,AS

(k)
ag , AS

(0)
ag with uni-

verses U (1)
ag , . . . , U

(k)
ag , U

(0)
ag , respectively. We assume that the agent ag is perceiv-

ing objects by measuring values of some available attributes. Hence some ob-
jects can become indiscernible [7]. This influences the specification of any opera-
tion o (ag) . We consider a case when arguments and values of operations are rep-
resented by attribute value vectors. Hence instead of the operation o (ag) we have
its inexact specification o∗ (ag) taking as arguments I

(1)
ag (x1) , . . . , I

(k)
ag (xk) for

some x1 ∈ U
(1)
ag , . . . , xk ∈ U

(k)
ag and returning the value I

(0)
ag (o(ag)(x1, . . . , xk))

if o(ag)(x1, ..., xk) is defined, otherwise the empty set. This operation can be
extended to the operation o∗(ag) with domain equal to the Cartesian product of
families of definable sets (in approximation spaces attached to arguments) and
with values in the family of definable set (in the approximation space attached
to the result)
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o∗ (ag) (X1, . . . , Xk) =
⋃

Y1⊆X1,... ,Yk⊆Xk

o∗ (ag) (Y1, . . . , Yk) ,

where Y1, . . . , Yk are neighborhoods of some objects in definable sets X1, . . . , Xk,
respectively. In the sequel, for simplicity of notation, we write o (ag) instead
of o∗ (ag) .

This idea can be formalized as follows. First we define terms representing
schemes of agents.

Let Xag, Yag, . . . be agent variables for any leaf-agent ag ∈ Ag. Let o (ag) de-
note a function of arity k. We have mentioned that it is an operation from Carte-
sian product of Def Sets(AS

(1)
ag ), . . . , Def Sets(AS

(k)
ag ) into Def Sets(AS

(0)
ag ),

where Def Sets(AS
(i)
ag ) denotes the family of sets definable in ASi

ag. Using the
above variables and functors we define in a standard way terms, for example
t = o (ag) (o (ag1) (Xag1 , Yag1) , o (ag2) (Xag2 , Yag2)) . Such terms can be treated
as description of complex information granules. By a valuation we mean any
function val defined on the agent variables with values being definable sets sat-
isfying val(Xag) ⊆ Uag for any leaf-agent ag ∈ Ag. Now we can define the lower
and the upper values of any term t under the valuation val with respect to a
given approximation space of an agent ag

1. If t is of the form Xag′ then val
(
LOW,AS

(0)
ag

)
(t) = LOW

(
AS

(0)
ag , val(t)

)

and val
(
UPP,AS

(0)
ag

)
(t) = UPP

(
AS

(0)
ag , val(t)

)
if val(t) ⊆ Uag, otherwise

the lower and the upper values are undefined.
2. If t = o(ag)(t1, . . . , tk), where t1, . . . , tk are terms and o (ag) is an operation

of arity k then

val
(
LOW,AS(0)

ag

)
(t) = LOW

(
AS(0)

ag , o (ag)
(
val
(
LOW,AS(1)

ag

)
(t1) ,

. . . , val
(
LOW,AS(k)

ag

)
(tk)

))
,

val
(
UPP,AS(0)

ag

)
(t) = UPP

(
AS(0)

ag , o (ag)
(
val
(
UPP,AS(1)

ag

)
(t1) ,

. . . , val
(
UPP,AS(k)

ag

)
(tk)

))
.

if val
(
LOW,AS

(i)
ag

)
(ti), val

(
UPP,AS

(i)
ag

)
(ti) ⊆ U

(i)
ag for i = 1, . . . , k, oth-

erwise val
(
LOW,AS

(0)
ag

)
(t) and val

(
UPP,AS

(0)
ag

)
(t) are undefined.

Example 1. We assume Ag = {ag, ag1, ag2} and o(ag) is a binary operation
of ag. Two information systems ISag1 , ISag2 presented in Tables 1(a),(b) de-
scribe input information granules. We also consider operation o (ag) described
in Table 3. Two data tables DT1 = (U1, A1 ∪ {d1}) and DT2 = (U2, A2 ∪ {d2})
described in Tables 2(a) and 2(b) characterize interfaces between agents ag1, ag2
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d1

y1 1

y2 0

y3 1

y4 0

d2

z1 1

z2 1

z3 1

z4 0

Table 1. (a) Information System ISag1 (b) Information System ISag2

U1 a1
1 a1

2 a1
3 d1

y1 yes yes no 1

y2 no yes no 0

y3 no yes no 1

y4 no no yes 0

U2 a2
1 a2

2 a2
3 d2

z1 yes yes yes 1

z2 yes yes yes 1

z3 no no yes 1

z4 no no yes 0

Table 2. (a) Data Table DT1 (b) Data Table DT2

and ag. The first four columns of Table 2(a) (2(b)) define information system
IS

(1)
ag (IS(2)

ag ) corresponding to the approximation space AS
(1)
ag (AS

(2)
ag ).

Let t = o (ag) (Xag1 , Xag2) and val (Xag1) = {y1, y3} . Hence

val
(
LOW,AS

(1)
ag

)
(Xag1) = LOW

(
AS

(1)
ag , {y1, y3}

)
= {y1} ,

val
(
UPP,AS

(1)
ag

)
(Xag1) = UPP

(
AS

(1)
ag , {y1, y3}

)
= {y1, y2, y3} .

Let val (Xag2) = {z1, z2, z3} . Hence

val
(
LOW,AS

(2)
ag

)
(Xag2) = LOW

(
AS

(2)
ag , {z1, z2, z3}

)
= {z1, z2} ,

val
(
UPP,AS

(2)
ag

)
(Xag2) = UPP

(
AS

(2)
ag , {z1, z2, z3}

)
= {z1, z2, z3, z4} .

We obtain o (ag) ({y1} , {z1, z2}) =

o (ag)
(∥∥a1

1 = yes ∧ a1
2 = yes ∧ a1

3 = no
∥∥

IS
(1)
ag

,
∥∥a2

1 = yes
∥∥

IS
(2)
ag

)
⊆ ‖d = +‖

IS
(0)
ag

.

o (ag) a1
1 a1

2 a1
3 a2

1 a2
2 a2

3 d

(y1, z1, w1) yes yes no yes yes yes +

(y1, z3, w2) yes yes no no no yes +

(y2, z2, w3) no yes no yes yes yes +

(y3, z4, w4) no yes no no no yes -

(y4, z1, w5) no no yes yes yes yes -

(y4, z4, w6) no no yes no no yes -

Table 3. Operation o(ag)
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The support of the rule if t then d = + under the valuation val with respect to
the lower approximations is equal to

card
(
val
(
LOW,AS

(0)
ag

)
(t) ∩ ‖d = +‖

IS
(0)
ag

)
= 1 and the confidence is also

equal to 1.

We also obtain o (ag) ({y1, y2, y3} , {z1, z2, z3, z4}) =

o (ag)
(∥∥a1

2 = yes
∥∥

IS
(1)
ag

,
∥∥a2

1 = yes ∨ a2
2 = no

∥∥
IS

(2)
ag

)
= {w1, w2, w3, w4} .

The support of the rule if t then d = + under the valuation val with respect to
the upper approximations is equal to

card
(
val
(
UPP,AS

(0)
ag

)
(t) ∩ ‖d = +‖

IS
(0)
ag

)
= 3 and the confidence is equal

to 0.75.

Let us observe that the set val(UPP,AS
(0)
ag )(t)− val(LOW,AS

(0)
ag )(t) can be

treated as the boundary region of t under val. Moreover, in the process of term
construction we have additional parameters to be tuned for obtaining sufficiently
high support and confidence, namely the approximation operations.

A concept X specified by the customer-agent is sufficiently close to t under
a given set V al of valuations if X is included in the upper approximation of t
under any val ∈ V al and X includes the lower approximation of t under any
val ∈ V al as well as the size of the boundary region of t under V al, i.e.,

card

(
⋂

val∈V al

val
(
UPP,AS(0)

ag

)
(t)−

⋃

val∈V al

val
(
LOW,AS(0)

ag

)
(t)

)
,

is sufficiently small relatively to
⋂

val∈V al val
(
UPP,AS

(0)
ag

)
(t).

We conclude by formulating some examples of basic algorithmic problems.

– Synthesis of generalized association rules. Searching for a scheme (term t)
over a given set Ag of agents and for a valuation val such that the rule if t
then α, where α is a concept description specified by customer-agent, has
the support at least s and the confidence at least c under the valuation val.

– Synthesis of complex concepts close to the concept specified by the customer-
agent. Searching for a scheme (term t) over a given set Ag of agents and a
set V al of valuations such that the concept specified by the customer-agent
is sufficiently close to t under V al and the total size of the term t and the
set V al is minimal.

Conclusions

Our approach can be treated as a step towards understanding of complex in-
formation granules in distributed environment. The approximate understanding
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of concepts definable by agents in the language of other agents is an important
aspect of our approach for calculus on information granules. In our next paper
we will present bounds on the complexity of the above formulated problems as
well as heuristics for solving them.
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decision trees which are left for the next generation is nt. First, a set of decision 
trees is constructed by picking up nt decision trees from all the decision trees. 
Then, two decision trees are selected from the set. After that, vectors of size na 
(which is the number of attributes in these trees) are constructed for each tree. 
Vectors are prepared for each depth in the trees. 

index of Attribute 

veclla 

v e c l t  

v e c h  

Fig. 4. Calculation of the distance .between decision trees. 

The value of element in a vector is set to “1” when the attribute for the 
element exists at the condition node with the depth; otherwise it is set to “0”. 
Then, the vectors with the same depth are compared and the number of elements 
with different value is counted. Since the number of condition nodes grows in 
accordance with the depth in general, the attribute for the condition node with 
small depth is considered as significant. Thus, the result of counting is multiplied 
by the weight which is in inverse proportion to the depth of vector to reflect the 
degree of significance of each attribute. The above operations are carried out for 
all the combination ntC2 of each pair of decision trees and the result is treated 
as the mutual distance for a set of decision trees. 
Equation for the mutual distance of decision trees 

d= 1 a=l 

nt: #decision trees in one generation na: #attributes in decision trees 
a(< 1): weight for the depth of node D(= na): maximum depth of condition node 

4 Experiments and Evaluations 

A prototype system has been implemented on the UNIX workstation with C lan- 
guage. The experiments on motor diagnosis cases were carried out to evaluate 
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number 1st 2nd 3rd 
of 

the approach in this paper. In experiments two persons specified their knowledge 
in the form of 100 cases (as shown in Fig ??), which were composed of six at- 
tributes, two or three values and five classes, respectively. Conceptual differences 
are artificially encoded into the cases in B by modifying the original cases. 

Experiments were carried out in the condition that two kinds of conceptual 
difference occured at the same time in the test cases to see the interaction and/or 
interference between the algorithms. As the quantitative ealuation, the number 
of discovery and its probability of discovery up to the third candidate were 
collected in the experiments both for the system with ID3 and that with GA. 
As described in Section 2.2, conceptual difference is resolved by repeating the 
interaction between the suggestion by the system and the modification of cases 
by the user in our approach, however, the result for the first cycle of suggestion by 
the system was focused on in the experiments. Summary of the result of discovery 
is shown in Table 4 and Table 4. The result shows that the system with ID3 can 

probability 
of I trials I I discovery 

c11 20 120 0 0 I 100% 

v2 
c2 
v11 124 4 0 1 93% 
All 30 112 13 3 I 93% 

3 7 1 3o 1 6  
53% 

12 11 7 100% 
v2 45 2 6 88% 

Table 2. Result with GA. 

18 0 0 

119 6 2 I 90% 
C11 30 130 0 0 I 100% 
v2) 152 8 0 I 100% 
C21 30 123 1 0 I 80% 
v1 I 130 0 0 I 100% 
All 30 114 10 4 I 93% / 

38 22 0 100% 

accurately discover conceptual difference for C1 and A l .  However, it cannot 
discover other kinds of conceptual difference with high accuracy, for instance, 
the probability of discovery remains at 50 % for A2. It is noticed that conceptual 
difference is suggested as the first to third candidate. On the other hand, the 
system with GA can discover conceptual difference more accurately in general, 
and conceptual difference is suggested as the higher rank in candidates. These 
results show that the structures which are suitable for our discovery algorithms 
are not necessarily represented in the decision trees with ID3. Thus, diverse 
structure with GA can be said to contribute to improving the peformance of 
discovery of conceptual difference. Suggesting conceptual difference as the first 
candidate will also contribute to reducing the possibility of suggesting conceptual 
difference erroneously. Moreover, utilizing the average of discovery over multiple 



decision trees might make the system with GA more robust for noise due to the 
statistical effect of averaging. 

The experiments show that utilizing diverse structures with GA is superior to 
that with ID3 for the construction of decision trees with respect to the precision 
of discovery for conceptual difference. On the other hand, with respect to the 
computation complexity, ID3 takes much less times than GA and thus is suitable 
for the interactive system. 

5 Conclusion 

This paper has proposed an evolutionary approach for discovering difference in 
the usage of words to facilitate collaboration among people. In our approach 
knowledge of users is structured into decision trees and candidates for concep- 
tual difference are suggested based on the structural characteristics of decision 
trees. By pointing out the problem in utilizing deterministic approach for the 
construction of decision trees, this paper has proposed to carry out evolution 
with respect to the classification efficiency of each decision tree and diversity 
as a population. Experiments were carried out on motor diagnosis cases with 
artificially encoded conceptual difference. The result shows that our approach is 
effective to some extent as the first step for dealing with the issue of conceptual 
difference toward facilitating collaboration among people. 
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Abstract. In AHP, there exists the problem of pair-wise consistency
where evaluations by pair-wise comparison are presented with crisp value.
We propose the interval AHP model with interval data reflecting Rough
Set concept. The proposed models are formulated for analyzing interval
data with two concepts (necessity and possibility). According to necessity
and possibility concepts, we obtain upper and lower evaluation models,
respectively. Furthermore, even if crisp data in AHP are given, it is il-
lustrated that crisp data should be transformed into interval data by
using the transitive law. Numerical examples are shown to illustrate the
interval AHP models reflecting the uncertainty of evaluations in nature.
Key-word: AHP, Evaluation, Rough sets concept, Upper and lower
models, Intervals

1 Introduction

AHP(Analytic Hierarchy Process) proposed by T.L.Satty[1] has been used to
evaluate alternatives in multiple criteria decision problems under a hierarchical
structure and has frequently been applied to actual decision problems. Satty’s
AHP method is based on comparing n objects in pairs according to their relative
weights. Let us denote the objects byX1, . . . , Xn and their weights by w1, . . . , wn

. The pair-wise comparisons can be denoted as the following matrix:

A =





X1 X2 . . . Xn

X1
w1
w1

w1
w2

. . . w1
wn

X2
w2
w1

w2
w2

. . . w2
wn

...
...

...
. . .

...
Xn

wn

w1

wn

w2
. . . wn

wn





which satisfies the reciprocal property aji = 1
aij

. If the matrix A satisfies the
cardinal consistency property aijajk = aik , A is called consistent. Generally, A
is called a reciprocal matrix.
According to Satty’s method, we have

Aw = λw

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 375–381, 1999.
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where a weight vector w can be obtained by solving the above eigenvalue prob-
lem.
Now suppose that the pair-wise comparison ratios are given by intervals, al-
though they are real numbers in the conventional AHP. Intervals scales are esti-
mated by an individual as approximations. In AHP, the ratio scale for pair-wise
comparisons ranges from 1 to 9 to represent judgment entries where 1 is equally
important and 9 is absolutely more important. It should be noted that the re-
ciprocal values aji = 1

aij
are always satisfied. As an example of interval ratios,

we can give an interval Aij = [3, 5] and then, Aji must be [ 15 ,
1
3 ]. AHP with

fuzzy scales has been studied by C.H Cheng and D.L. Mon[2] where fuzzy scales
are transformed into ordinal scales. Considering fuzziness of scales, sensitivity
analysis for AHP has been done in [3].
In this paper, we propose an interval AHP model, given interval scales as pair-
wise comparison ratios. Dealing with interval data, we can obtain the upper and
lower models for AHP which are similar to Rough Sets Analysis[4]. Even when
crisp data are given, interval data can be obtained from crisp data by using the
transitive law. Thus, our proposed method can be described as reflecting the
uncertainly of evaluations in nature. Our method resorts to linear programming
so that interval scales can easily be handled. This approach to uncertain phe-
nomena has been used in regression analysis and also identification of possibility
distributions[5]. Numerical examples are shown to illustrate the interval AHP
models.

2 Interval AHP

Let us begin with interval scales in a reciprocal matrix denoted by Aij =[
aij , aij

]
where aij and aij are the lower and upper bounds of the interval Aij .

The reciprocal property is represented as

aij =
1
aji

, aij =
1
aji

(1)

Reflecting interval scales, let us suppose that weights are found as interval
weights Wij by

Wij =

[
wi

wj
,
wi

wj

]
(2)

where wi and wi are the lower and upper bounds of the interval weight Wi =[
wi, wi

]
. Given an interval matrix [A] denoted as

[A] =





A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann



 (3)
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the problem under consideration is to find out interval weights Wi =
[
wi, wi

]

which can be an approximation to the given interval matrix [A] of (3) in some
sense. Since we deal with interval data, we can consider two approximations
shown in Fig.1 as follows. The lower and upper approximations should satisfy

����������

�����

���

	 	���

Fig. 1. Upper and lower approximations

the following constrain conditions

WL
ij ⊆ [Aij ] (LowerApproximation) (4)

WU
ij ⊇ [Aij ] (UpperApproximation) (5)

where WL
ij and WU

ij are the estimations of lower and upper intervals. (4) and (5)
can be rewritten as

WL
ij ⊆ [Aij ]←→ aij ≤

wi

wj
≤ wi

wj
≤ aij

←→ aijwj ≥ wi, aijwj ≤ wi (6)

WU
ij ⊇ [Aij ]←→

wi

wj
≤ aij ≤ aij ≤ wi

wj

←→ aijwj ≤ wi, wjaij ≥ wi (7)

Now let us consider how to normalize an interval vector (W1, . . . ,Wn) , al-
though in the conventional AHP a weight vector is normalized so that its com-
ponents sum to unity. The conventional normalization can be extended into the
interval normalization[6] defined as follows:
An interval weight vector (W1, . . . ,Wn) is said to be normalized if and only if

∑

i

wi −max
j

(
wj − wj

)
≥ 1 (8)

∑

i

wi + max
j

(
wj − wj

)
≤ 1 (9)

(8) and (9) can be described as

∀j wj ≥ 1−
∑

i∈Ω−{j}
wi (10)
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∀j wj ≤ 1−
∑

i∈Ω−{j}
wi (11)

where Ω = [1, . . . , n]. Using the concepts of ”Greatest Lower Bound” and ”Least
Upper Bound”, we can formulate the lower model and the upper model, respec-
tively. The concept of two approximations is similar to Rough Set concept.

< Lower Model >

Max
∑

i

(
wi − wi

)
(12)

subject to

∀i, j (i �= j) aijwj ≥ wi

∀i, j (i �= j) aijwj ≥ wi

∀j wj ≥ 1−
∑

i∈Ω−{j}
wi

∀j wj ≤ 1−
∑

i∈Ω−{j}
wi

∀i wi ≤ wi

∀i wi, wi ≥ 0 ∀i

< Upper Model >

Min
∑

i

(
wi − wi

)
(13)

subject to

∀ i, j (i �= j) aijwj ≤ wi

∀ i, j (i �= j) wjaij ≥ wi

∀j wj ≥ 1−
∑

i∈Ω−{j}
wi

∀j wj ≤ 1−
∑

i∈Ω−{j}
wi

∀i wi ≤ wi

∀i wi, wi ≥ 0

Example1:
The pair-wise comparisons matrix is given as:

[A] =





1 [1, 3] [3, 5] [5, 7] [5, 9][
1
3 , 1
]

1
[
1
2 , 2
]

[1, 5] [1, 4][
1
5 ,

1
3

] [
1
2 , 2
]

1
[
1
3 , 3
]

[2, 4][
1
7 ,

1
5

] [
1
5 , 1
] [

1
3 , 3
]

1 [1, 3][
1
9 ,

1
5

] [
1
4 , 1
] [

1
4 ,

1
2

] [
1
3 , 1
]

1




(14)
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Using the lower and the upper models, we obtained the interval weights shown
in Table 1.

Table 1 Interval weights obtained by two models (Example1)
Alternatives Lower model Upper model

W1 [0.4225, 0.5343] [0.3333, 0.3750]
W2 [0.1781, 0.2817] [0.1250, 0.3333]
W3 [0.1408, 0.1408] [0.0417, 0.2500]
W4 [0.0763, 0.0845] [0.0536, 0.1250]
W5 [0.0704, 0.0704] [0.0417, 0.1250]

It can be found from Table 1 that the interval weights obtained by the lower
model satisfy (6) and the interval weights obtained by the upper model satisfy
(7) . The obtained interval weights can be said to be normalized, because (8)
and (9) hold.

3 Interval Scales by Transitivity

If a consistent matrix A is given, the following consistency property holds:

∀i, j aij = aikakj (15)

However, this property does not hold in general. Therefore, interval scales can
be obtained by transitivity from crisp scales. Denote an interval scales Aij as
Aij = [ aij , aij ] and an interval matrix [A] as [A] = [Aij ] . Given a crisp matrix
A, the interval matrix [A] can be obtained as follows:

aij = minV (aik · · · alj) (16)

aij = maxV (aik · · · alj) (17)

where V is a set of all possible chains from i to j without any loops.

Example2:
Let us start with a crisp scale matrix as follows.

A =





1 3 3 5 7
1
3 1 1 2 3
1
3 1 1 1 3
1
5

1
2 1 1 3

1
7

1
3

1
3

1
3 1




(18)

Using (16) and (17), we obtained the interval matrix [A] .

[A] =





1
[

7
6 , 5
] [

7
6 , 6
] [

7
3 , 6
] [

9
2 , 18

]
[
1
5 ,

6
7

]
1

[
3
5 ,

18
7

] [
7
9 ,

15
7

] [
7
5 , 6
]

[
1
6 ,

6
7

] [
7
18 ,

5
3

]
1

[
7
9 ,

18
7

] [
7
6 , 6
]

[
1
6 ,

3
7

] [
7
15 ,

9
7

] [
7
18 ,

9
7

]
1

[
7
6 , 3
]

[
1
18 ,

9
2

] [
1
6 ,

5
7

] [
1
6 ,

6
7

] [
1
3 ,

6
7

]
1




(19)
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We applied the interval matrix (19) to the lower and the upper models and
obtained the interval weights shown in Table 2.

Table 2 Interval weights obtained by two models (Example2)
Alternatives Lower model Upper model

W1 [0.2972, 0.5868] [0.2967, 0.4723]
W2 [0.1528, 0.2547] [0.0945, 0.2543]
W3 [0.0991, 0.2547] [0.0787, 0.2543]
W4 [0.1189, 0.1274] [0.0787, 0.1272]
W5 [0.0425, 0.0660] [0.0262, 0.0675]

Example3:
Let us consider the binary problem shown in Fig.2 where©i →©j means that




� �



Fig. 2. Binary Problem

i won against j. It is assumed that the value of 2 is assigned to wins and also the
value of 1

2 is assigned to defeats. Then we obtain the matrix A with unknown
scales denoted as ∗.

A =





1 2 2 1
2

1
2 1 ∗ ∗
1
2 ∗ 1 2
2 ∗ 1

2 1



 (20)

Using transitivity (16) and (17), we have

[A] =





1 2
[
1
4 , 2
] [

1
2 , 4
]

1
2 1

[
1
8 , 1
] [

1
4 , 2
]

[
1
2 , 4
]

[1, 8] 1
[
1
4 , 2
]

[
1
4 , 2
] [

1
2 , 4
] [

1
2 , 4
]

1



 (21)

We applied the interval matrix (21) to the lower and upper models and obtained
the interval weights shown in Table 3.
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Table 3 Interval weights obtained by two models (Example3)
Alternatives Lower model Upper model

W1 [0.2500, 0.2500] [0.0909, 0.3636]
W2 [0.1250, 0.1250] [0.0455, 0.1818]
W3 [0.1250, 0.3723] [0.0909, 0.3636]
W4 [0.2527, 0.5000] [0.0909, 0.3636]

4 Concluding Remarks

In the conventional AHP, pair-wise comparisons range from 1 to 9 as ration
scale. Therefore the scales range from 1

9 to 9. If we use transitivity (16) and (17),
the upper and lower bounds of interval scales obtained by (16) and (17) may be
not within the maximal interval [19 , 9]. Thus, instead of (16) and (17), we can
use

aij = min
V

f (aik · · · alj) (22)

aij = max
V

f (aik · · · alj) (23)

where the function f (x) is defined by

f(x) =






1
9 ; for x which is less than 1

9
x; for x which is within

[
1
9 , 9
]

9; for x which is larger than 9
(24)

Instead of the function f , the geometric mean can be used to obtain interval
scales.
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Abstract. Interval density functions are non-additive probability mea-
sures representing sets of probability density functions. Pawlak proposed
a novel approach called conflict analysis based on rough set theory. In
this paper, we propose a new approach of presenting expert’s knowledge
with interval importances and apply it to conflict analysis. It is assumed
that the importance degrees are given for representing expert’s knowl-
edge. Using conditions of interval density functions, we represent many
experts’ knowledge as interval importance degrees. A simple example of
the new introduced concepts is presented.

Keywords: Interval density functions; Decision analysis; Rough sets;
Conflict analysis

1 Introduction

Interval density functions (IDF)[1] are non-additive probability measures repre-
senting sets of probability density functions. An interval density function consists
of two density functions by extending values of conventional density function to
interval values, which do not satisfy additivity.

Conflict analysis plays an important role in many real fields such as busi-
ness, labor-management negotiations, military operations, etc. The mathemat-
ical models of conflict situations have been proposed [2][3] and investigated.
Conflicts are one of the most characteristics attributes of human nature and a
study of conflicts is important theoretically and practically. It seems that fuzzy
sets and rough sets [4] are suitable candidates for modeling conflict situations
under the presence of uncertainty.

In this paper, we propose a new approach of presenting expert’s knowledge
with interval importances and apply it to conflict analysis. It is assumed that an
expert’s knowledge is given as a relative importance for each attribute. When
there are plural experts, their knowledge is formulated as an interval importance
using interval density functions. Then, a conflict degree between two agents has
an interval value.

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 382–389, 1999.
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2 Interval Density Functions

In this section, we introduce the concept of interval density functions [1]. Proba-
bility distributions have one to one correspondence with their density functions.
A probability density function d : X → � on the disjoint finite universe X is
defined as:

∀x ∈ X, d(x) ≥ 0,
∑

x∈X

d(x) = 1.

Then the probability of the event A is gives as:

∀A ⊆ X, P (A) =
∑

x∈A

d(x).

For all A,B ⊆ X , the additivity holds as follows:

A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B).

Interval density functions being non-additive probability measures are defined
as follows:

Definition 1 (A interval density function on the disjoint finite universe): A
pair of functions (h∗, h∗) satisfying the following conditions is called an interval
density function (IDF):

h∗, h∗ : X → �; ∀x′ ∈ X, h∗(x′) ≥ h∗(x′) ≥ 0,
(I)

∑

x∈X

h∗(x) + (h∗(x′)− h∗(x′)) ≤ 1,

(II)
∑

x∈X

h∗(x) − (h∗(x′)− h∗(x′)) ≥ 1.

The conditions (I) and (II) can be transformed as:

(I’)
∑

x∈X

h∗(x) + max
x

[h∗(x)− h∗(x)] ≤ 1,

(II’)
∑

x∈X

h∗(x)−max
x

[h∗(x) − h∗(x)] ≥ 1.

Then, we have the following theorem.

Theorem 1 For any IDF, there exists a probability density function h′(·) satis-
fying that

h∗(x) ≤ h′(x) ≤ h∗(x),
∑

x∈X

h′(x) = 1.

To illustrate an interval density function let us consider the case shown in
Fig.1 where the number 6 is most likely occurred comparatively with the num-
ber 1 to 5. Interval density functions for the number 1 to 5 are (h∗, h∗) =
(1/10, 1/6), and interval density function for the number 6 is (h∗, h∗)=(1/6, 1/2).
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�����

Fig. 1. Example for interval density functions

It is clear that these interval density functions satisfy Definition 1. Taking
the number 6 for x

′
,

∑

x∈X

h∗(x) + (h∗(x′)− h∗(x′)) =
4
6

+
2
6
≤ 1

∑

x∈X

h∗(x)− (h∗(x′)− h∗(x′)) =
8
6
− 2

6
≥ 1

Using this functions (h∗, h∗), we can define two distribution functions as
follows:

(Lower boundary function (LB) and upper boundary function (UB) of IDF):
For h′ satisfying h∗(x) ≤ h′(x) ≤ h∗(x), ∀A ⊆ X

LB(A) = min
h′

(
∑

x∈A

h′(x)

)
,

UB(A) = max
h′

(
∑

x∈A

h′(x)

)
.

Then, lower and upper boundary functions have the following properties.

∀A ⊆ X

LB(A) =
∑

x∈A

h∗(x) ∨


1−
∑

x∈Ā

h∗(x)
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UB(A) =
∑

x∈A

h∗(x) ∧


1−
∑

x∈Ā

h∗(x)





And, the duality of LB and UB holds.

1− UB(Ā) = 1−
∑

x∈Ā

h∗(x) ∧
(

1−
∑

x∈A

h∗(x)

)

=
∑

x∈A

h∗(x) ∨


1−
∑

x∈Ā

h∗(x)



 = LB(A)

Importance degrees from experts will be formulated as interval importance
degrees using interval density functions in Section 4.

3 Conflict Analysis

In this section, we will outline about conflict analysis from Pawlak [3]. In a
conflict, at least two parties, called agents, are in dispute over some issues. The
relationship of each agent to a specific issue can be clearly represented in the
form of a table, as shown in Table 1. This table is taken from [3].

U a b c d e

1 -1 1 1 1 1
2 1 0 -1 -1 -1
3 1 -1 -1 -1 0
4 0 -1 -1 0 -1
5 1 -1 -1 -1 -1
6 0 1 -1 0 1

Table 1. Example of infomation system

Table 1 is called an information system in rough sets theory [4]. The ta-
ble rows of information systems are labelled by objects, the table columns are
labelled by attributes and the entries of table are values of attributes, which
are uniquely assigned to each object and each attribute. Then, the information
system, S, is given as (U,Q, V ) where U is the set of objects, Q is the set of
attributes and V is the set of attribute values. In conflict analysis, a conflict
situation is represented as a form of restricted information system. Then, ob-
jects correspond to agents and attributes correspond to issues. So, in Table 1,
U = {1, . . . , 6} is a set of agents and Q = {a, . . . , e} is a set of issues. And, values
of attributes are represented the attitude of agents to issues: 1 means that the
agent is favorable to the issue, −1 means that the agent is against the issue and 0
means neutral.
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In order to express the relation between agents, the follwing auxiliary function
on U2 [3] is defined as

φq(x, y) =






1 if q(x)q(y) = 1 or x = y
0 if q(x)q(y) = 0 and x �= y
−1 if q(x)q(y) = −1

(1)

where q(x) is the attitude of the agent x to the issue q. This means that, if
φq(x, y) = 1, the agents x and y have the same opinion about the issue q, if
φq(x, y) = 0, at least one agent has neutral approach to q and if φq(x, y) = −1,
they have different opinions about q.

We need the distance between x and y to evaluate the relation between x
and y. Therefore we use Pawlak’s definition as follows:

ρ∗Q(x, y) =

∑
q∈Q φ

∗
q(x, y)
|Q| (2)

where

φ∗q(x, y) =
1− φq(x, y)

2
=






0 if q(x)q(y) = 1 or x = y
0.5 if q(x)q(y) = 0 and x �= y
1 if q(x)q(y) = −1

(3)

Applying ρ∗Q(x, y) to the data in Table 1, we obtained Table 2.

U 1 2 3 4 5 6

1
2 0.9
3 0.9 0.2
4 0.8 0.3 0.3
5 1 0.1 0.1 0.2
6 0.4 0.5 0.5 0.6 0.6

Table 2. Distance functions between objects in Table 1

4 Interval Importances to Conflict Analysis

In this section, we will add subjective evaluations for issues to conflict analysis.
It is assumed that non-negative relative weights are given for all issues. Using a
non-negative weight w(q) for each issue q, a new distance function ρ′Q is defined
as follows:

ρ′Q(x, y) =

∑

q∈Q

φ∗q(x, y)w(q)

∑

q∈Q

w(q)
(4)
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where
∑

q∈Qw(q) �= 0. Let w′(q) = w(q)∑
q∈Q

w(q)
. We can rewrite ρ′Q under the

normality condition,
∑

q∈Qw
′(q) = 1, as follows:

ρ′Q(x, y) =
∑

q∈Q

φ∗q(x, y)w′(q) (5)

When an expert’s knowledge is given as the following weights, then the dis-
tance function with weights is calculated in Table 3 using (4).

w(a) = 0.2;w(b) = 0.8;w(c) = 0.5;w(d) = 1.0;w(e) = 0.6.

U 1 2 3 4 5 6

1
2 0.87
3 0.90 0.23
4 0.81 0.32 0.29
5 1.00 0.13 0.10 0.19
6 0.35 0.52 0.55 0.65 0.65

Table 3. Distance Functions with weights

When we can use many experts’ knowledge, they are formulated as interval
density functions [1] as shown in Section 2. It is assumed that an expert gives
normal weights, that is, the sum of them becomes 1. When there are plural ex-
perts, then the following functions (w∗, w∗) becomes an interval density function.

Proposition: When there exist plural normal weights, wi (i = 1, . . . , n), over
the disjoint space Q, two functions are defined as

w∗(q) = min
i∈{1,···,n}

wi(q)

w∗(q) = max
i∈{1,···,n}

wi(q)

Then, (w∗, w∗) becomes an interval density function.

Proof: It is clear that
∑

q∈Q

w∗(q) ≤ 1 and
∑

q∈Q

w∗(q) ≥ 1

holds. If there exists some q′ ∈ Q such as
∑

q∈Q w∗(q) + (w∗(q′)− w∗(q′)) > 1,
then there is no set of normal weights which w∗(q′) belongs to. Therefore, for
all q′ ∈ Q, ∑

q∈Q

w∗(q) + (w∗(q′)− w∗(q′)) ≤ 1
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holds. Similarly, for all q′ ∈ Q,
∑

q∈Q

w∗(q)− (w∗(q′)− w∗(q′)) ≥ 1

holds. Consequently, (w∗, w∗) becomes an interval density function. Q.E.D.

Using functions (w∗, w∗), instead of ρ′Q we can write a distance function
ρw

Q = (ρw
Q∗, ρ

w∗
Q ) as follows;

ρw
Q∗(x, y) =

∑

q∈Q

φ∗q(x, y)w∗(q)

∑

q∈Q

w∗(q)
(6)

and

ρw∗
Q (x, y) =

∑

q∈Q

φ∗q(x, y)w∗(q)

∑

q∈Q

w∗(q)
(7)

When many experts’ knowledge are given as Table 4, then the distance func-
tion with weights is calculated in Table 5 using (6) and (7).

Q importance

a [0.15, 0.30]
b [0.20, 0.35]
c [0.10, 0.25]
d [0.25, 0.40]
e [0.10, 0.20]

Table 4. Experts’ knowledge with interval density functions

5 Conclusion

A new approach of conflict analysis with interval importance representing ex-
perts’ knowledge is proposed under the assumption that an expert’s knowledge
is given as a relative importance for each attribute. Importance degrees from ex-
perts are formulated as interval importance degrees using interval density func-
tions and then, conflict degrees between two agents are obtained as an interval
value.

The presented approach for conflict analysis depends on experts’ knowledges
which lead to interval conflicts. In order to judge some relationship between two
agents as one of conflict, neutral, and alliance, the judgement measure proposed
by Pawlak can be used.
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1 2 3 4 5 6

1
2 [0.875, 0.886]
3 [0.933, 0.938] [0.187, 0.188]
4 [0.750, 0.753] [0.353, 0.375] [0.300, 0.313]
5 [1.000, 1.000] [0.120, 0.125] [0.063, 0.067] [0.233, 0.250]
6 [0.375, 0.400] [0.487, 0.500] [0.533, 0.563] [0.600, 0.625] [0.600, 0.625]

Table 5. Distance functions by interval density functions
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Abstract. As the end-user computing grows up, the volume of infor- 
mation defined by users is increasing. Therefore, incorporating the in- 
formation defined by users is a core component of the knowledge man- 
agement. In this paper, the author proposes a method for incorporating 
personal databases, which is based on granular computing and the rela- 
tional database theory. 

1 Introduction 

As the end-user computing grows up, the volume of information defined by users 
is increasing. Using the databases defined by users is very convenient for our daily 
work. At the same time the personal databases are also an important source of 
knowledge of an organization. It is necessary to incorporate personal databases 
for using them as primary knowledge sources. 

A possible way for the database incorporation is the relation transformation 
based on the normalization theory of relational databases[l]. However, the nor- 
malization theory focuses on the formal aspect of relational databases only. To 
incorporate the personal databases defined by users, a method that reflects the 
meaning of a domain is required. 

Data mining based on granular computing is essentially a “reverse” engineer- 
ing of database processing. The latter organizes and stores data according to the 
given semantics, while the former is “discovering” the semantics from stored 
data[5]. This assertion suggests that data mining based on granular computing 
is an efficient way for incorporating personal databases. 

In this paper, the author proposes a method for incorporating personal 
data resources. This method is based on granular computing and the relational 
database theory. At first, anomalies on personal databases are discussed, and 
then the proposed incorporating method and its theoretical background are de- 
scribed. 

2 Properties of Personal Data 

At the first step of our study, we made an inquiry about personal databases. As 
a result of this inquiry, the following derivations can be found in the databases 
defined by users. 

N. Zhong. A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 390-394, 1999. 
0 Springer-Verlag Berlin Heidelberg 1999 
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- Derivation on data definition. 
In Japanese language environment, there are many ways to  express some 
words with same meaning. However, the words with same meaning are pro- 
cessed as different words. 

- Derivation on database schema definition. 
0 Derivation on attribute definition. 

For example, when defining a field about a customer’s name, a user may 
use two attributes: the family name and the first name, but the other 
user may define only one attribute: the name. 

Functional dependencies define a relation between key values and depen- 
dent values. There may be various key definitions on same relation. Even 
though same relation definition is provided for users, each user probably 
defines different keys on the relation. 

If a relation on a database satisfies only the first normal form in the 
normalization theory, sometimes, abnormal results are obtained by an 
ordinary SQL operation. These abnormal results are caused by struc- 
ture of relation that is intermixed several different relations. Usually, a 
translation into the second normal form is considered when a database 
application developer meets these abnormal results. 

0 Functional dependencies. 

0 Relation. 

In the relational database theory, the normalization theory has become a core 
one for database normalization[l]. Many personal databases do not clear all levels 
of relational database normal forms. From the practical view, i t  is sufficient if 
every personal database satisfies the third normal form in the relational database 
theory. 

Formal translating methods from a first normal form relation to  the second 
normal form relation have been developed. Most methods translated relations 
based on their syntactical aspects, but the main task that translates a first 

‘normal form relation has semantic issues. When we translate a first form relation, 
we should pay an attention to its semantic aspects. So we need to  develop a 
semantic based translation method for translating a first normal form relation 
into a second normal form relation. 

3 Schema Discovery by Granular Computing 

3.1 Functional Dependencies and Normalization 

In this section, we give a brief overview about the functional dependencies and 
the relational database normalization theory according to the literature[2]. 

Let sets X and Y be two attribute sets of a relation R(A1, A2, .  . . , A,,), where 
X U Y = OR and X n Y = Z(# 0) where OR is the set of all attributes on a 
relation R .  The functional dependency X + Y is defined as the definition 1. 

1 
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Definition 1. We say the functional dependency from X to Y in R exits, if the 
condition (1) is satisfied in all instances r of R. 

(Vt,t’ E R ) ( t [ X ]  = t ’[X] j t[U] = t’[Y]) (1) 

The multi-valued dependency X ++ Y is a generalization of the functional 
dependency defined as Definition 2. 

Definition 2. X and Y are an attribute on a relation R. We say X decides Y in 
multi-value or Y depends on X in multi-value when the condition 2 is satisfied 
all instances r in R. 

(Vt,  t’ E R ) ( t [ X ]  = t’[X] + t [ X  U Y ]  = t’[Z]) E R (2) 
A(t’[X U Y ] ,  t [Z]  E R) 

where 2 = s 2 ~  - (X - Y). 
The definition says that the new tuples ( t [ X  U Y ] , t [ Z ] )  and (t’[X U Y ] ,  t [ Z ] )  

that are made from tuples t and t‘ are also tuples in the R where t and t‘ satisfy 
the condition t [ X ]  = t‘[X]. 

We say two projections R [ X ]  and R[U] on the relation R is information loss- 
less decomposition if R = R [ X ]  x R[Y]. The necessary and sufficient condition for 
information lossless decomposition is guaranteed by the following propositions 
and theorem. 

Proposition3. If X and Y are information lossless decomposition of R, R C 
R [ X ]  W R[Y]. 

Proposition 4. The necessary and suficient condition for R s R [ X ]  W R[Y] i s  
the multi-valued dependency X n Y ++ X I Y  that is satisfied on R. 

By the proposition 3 and 4, the following theorem can be obtained. 

Theorem5. The necessary and suflcient condition for R s R [ X ]  W R[Y] is 
the multi-valued dependency X n Y ++ X I Y  is satisfied on R. 

3.2 Granular Computing 

We introduce the notations and theorems on granular computing followed by 
Lin[5]. An equivalence relation divides the universe into disjoint elementary sets. 
A binary relation decomposes a universe into elementary neighborhoods that are 
not necessarily disjoint. The decomposition is called a binary granulation and 
the collection of the granules a binary neighborhood system[3, 41. 

Let (V;  B’; c’, i = 0 , 1 , 2 , .  . .) be a collection of granular structure where U is 
a set of entities or an NS-space imposed by B ,  B’ is elementary neighborhoods 
and C’ is elementary concepts (= NAME(Bj)  and each C’ is an NS-space. The 
relationships among attribute values of a table are defined by the elementary sets 
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of a multiple partition. Inclusion of an elementary set in another elementary set is 
an inference on the corresponding elementary concepts. A functional dependency 
of two columns is a refinement of two corresponding partitions. 

On the granular structure, the following rules are defined[5]. 

1. Continuous inference rules: 
A formula Cj 4 Dh is a continuous inference rule, if N E I G H ( P j )  C 
NEIGH(Qh) .  Here, N E I G H ( P j )  means a neighborhoods of 4. 

2. softly robust continuous inference rules: A formula Cj -+ Dh is a softly con- 
tinuous inference rule, if N E I G H ( P j )  s NEIGH(Qh)  and INEIGH(Pj)fI  
NEIGH(Qh)l 2 threshold. 

3. High level continuous inference rules: Suppose P N  = B', QN = B j ,  QN = 
B J ,  QN = B j ,  and j # i are two nested granular structures, that is, PN' 4 

and QN' 4 QN('+k) .  Write P = P N m  and Q = QN", where 
m 3 m and k > 0.. A formula Cj -+ Dh is a high level continuous inference 
rule, if N E I G H ( P j )  NEIGH(Qh) and INEIGH(Pj)  n NEIGH(Qh)l 2 
threshold. 

The above rules can be regarded as the generalization for the definition about 
functional dependencies in relational database. Furthermore, we can extend these 
concepts to the method for discovering functional dependencies. 

4 Incorporating Personal Databases 

The main procedure of incorporating personal databases is described as follows. 

1. Data normalization. 
The data normalization procedure is consist of following two sub-procedures. 
(a) Continuous data quantization. 
(b) Word correction. 
The first sub-procedure is the continuous data quantization if a data set is 
continuous values. The second sub-procedure is the data correction. For the 
word correction, we use a simple structured thesaurus. In the thesaurus, the 
following Japanese specific word correct relation are stored. 
- Conversion rules between han-kaku kana and Zen-kaku kana. 
- Special characters with same meaning. 
- Rules about okuri-gana. 

According to  these rules, different characters with same meaning is corrected 
automatically. 

2. Obtaining elementary concepts and elementary neighborhoods for each at- 
tribute on relations. 

3. Detection of originally identical attributes. 
If (C' fl Cjl 2 threshold, the attributes i and j seem to be identical at- 
tributes where C' is the elementary concepts of the attribute i, and Cj is 
the elementary concepts of the attribute j .  
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4. Detection of functional dependencies. 
Functional dependencies in a relation are found according to the following 
procedure. 
(a) For each attribute in a relation, level of the derivable rule on the granular 

(b) According to the determined level, the following schema transformations 

- If the continuous inference rule is established between C’ and Cj, a 
functional dependency between attributes i and j is established. 

- If the continuous inference rule is established from C’ to Cj and Ck 
at the same time, the attributes j and k seem to be the attributes 
in which a functional dependency between attributes i and j tl k is 
established. 

- If the softly robust continuous inference rules is established between 
C’ and Cj , a multi-valued dependency between attributes i and j is 
established. Moreover, the attribute j can be another relation. If the 
attribute j is decomposed into another relation, this decomposition is 
the information lossless decomposition. It is evident from Definition 2 
and the properties of the rules on the granular structure. 

structure is determined. 

are possible. 

5 Conclusion 

In this paper, a method for incorporating personal databases waa proposed. We 
described that incorporating information defined by users is a core component of 
the knowledge management. Some kinds of deviations of data and schema were 
argued. Another type of data deviation that was not argued in this paper is how 
to handle null values. How to handle null values is depend on different users. We 
are also developing a more sophisticated method for handling this issue. 
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Abstract. Knowledge representation which is internal to a computer
lacks empirical meaning so that it is insufficient for the investigation of
the external world. All intelligent systems, including robot-discoverers
must interact with the physical world in complex, yet purposeful and
accurate ways. We argue that operational definitions are necessary to
provide empirical meaning of concepts, but they have been largely ig-
nored by the research on automation of discovery and in AI. Individual
operational definitions can be viewed as algorithms that operate in the
real world. We explain why many operational definitions are needed for
each concept and how different operational definitions of the same con-
cept can be empirically and theoretically equivalent. We argue that all
operational definitions of the same concept must form a coherent set
and we define the meaning of coherence. No set of operational defini-
tions is complete so that expanding the operational definitions is one of
the key tasks in science. Among many possible expansions, only a very
special few lead to a satisfactory growth of scientific knowledge. While
our examples come from natural sciences, where the use of operational
definitions is especially clear, operational definitions are needed for all
empirical concepts. We briefly argue their role in database applications.

1 Operational Definitions Provide Empirical Meaning

Data about external world are obtained by observation and experiment. Sophis-
ticated procedures and instruments are commonly used to reach data of sci-
entific value. Yet we rarely think systematically about methods by which data
have been procured, until problems occur. When a set of data is inconsistent
with our expectations, we start asking: “How was this particular measurement
obtained?”, “What method has been used?”, “How is this method justified?”.
Often it turns out that a method must be changed. Because data can be wrong
in so many ways, sophisticated knowledge is required in order to examine and
improve measurement methods.

It is critical to the growth of scientific knowledge to study new situations,
for which no known method can measure a particular quantity. For instance,
we may wish to measure temperatures lower than the capabilities of all existing

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 395–404, 1999.
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instruments. Or we want to measure temperature change inside a living cell, as
the cell undergoes a specific process.

When no known method applies, new methods must be discovered. New
measurement methods must expand the existing concepts. For instance, a new
thermometer must produce measurements on a publicly shared scale of temper-
ature.

Discovery of new measurement methods, which we also call operational def-
initions, is the central problem in this paper. We provide an algorithm that
demonstrates how empirical knowledge is used to construct new operational def-
initions, how new methods can be empirically verified and how choices can be
made among competing methods.

We end each section with a few basic claims about operational definitions.
Claim 1: For each empirical concept, measurements must be obtained by repeat-
able methods that can be explained in detail and used in different laboratories.
Claim 2: The actual verification in empirical science is limited to empirical
facts. Operational definitions determine facts; thus they determine the scope of
scientific verification.
Claim 3: In contrast, scientific theories often make claims beyond the facts that
can be empirically verified at a given time. Theoretical claims often apply to all
physical situations, whether we can observe them or not.

In this paper we use examples of numerical properties of objects and their
pairs. The numbers that result from measurements, for instance temperature or
distance, we call values of empirical concepts.
Claim 4: Operational definitions can be classified in several dimensions: (a) they
apply to objects, states, events, locations and other empirical entities; (b) they
may define predicates of different arity, for instance, properties of individual
objects, object pairs (distance) or triples (chemical affinity); (c) some opera-
tional definitions provide data while others prepare states that possess specific
properties, such as the triple point of water.

2 The AI Research Has Neglected Operational
Definitions

Operational semantics links the terms used in scientific theories with direct ob-
servations and manipulations (Bridgman, 1927; Carnap, 1936). While important
in empirical science, the mechanisms that produce high quality experiments have
been neglected not only in the existing discovery systems but in the entire do-
main of artificial intelligence.

The distinction between formalism and its interpretation, also called seman-
tics, has been applied to the study of science since 1920’s and 1930’s. Scientific
theories have been analyzed as formal systems whose language is empirically
interpreted by operational definitions.

A similar distinction applies to discovery systems and to knowledge they
create. A discovery mechanism such as BACON (Langley, Simon, Bradshaw &
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Zytkow, 1987) can be treated as (1) a formal system that builds equations from
data that are formally tuples in the space of the values of independent and
dependent variables plus (2) a mechanism that procures data.

Similarly to scientists, BACON and other discovery systems use plans to pro-
pose experiments. Each experiment consists in selecting a list of values x1, ..., xk

of empirical variables X1, ..., Xk, and in obtaining the value y of a dependent
variable Y which provides the ”world response” to the empirical situation char-
acterized by x1, ..., xk. But instead of real experiments, the values of dependent
variables are either typed by the user or computed in simulation, in response to
the list of values of independent variables.

This treatment bypasses real experimentation and measurements. Other pa-
pers and collections that consider many components of the scientific methods
(Kulkarni & Simon, 1987; Sleeman, Stacey, Edwards & Gray, 1989; Shrager &
Langley, 1990; Valdes-Perez, 1995) neglect operational definitions of concepts.

In the wake of robotic discovery systems, operational semantics must, at
the minimum, provide realistic methods to acquire data. Żytkow, Zhu & Hus-
sam (1990) used a robotic mechanisms which conducted automatically experi-
ments under the control of FAHRENHEIT. In another robotic experiment,
Żytkow, Zhu & Zembowicz (1992) used a discovery process to refine an opera-
tional definition of mass transfer. Huang & Zytkow (1997) developed a robotic
system that repeats Galileo’s experiment with objects rolling down an inclined
plane. One operational definition controlled the robot arm so that it deposited
a cylinder on the top of an inclined plane, while another measured the time in
which the cylinder rolled to the bottom of the plane.

While operational semantics must accompany any formalism that applies to
the real world, it has been unnoticed in AI. Jackson’s claim (1990) is typical:
“a well-defined semantics . . . reveals the meaning of . . . expressions by virtue of
their form.” But this simply passes on the same problem to a broader formalism,
that includes all the terms used in formal semantics. Those terms also require
real-world interpretation that must be provided by operational definitions.

Plenty of further research must be conducted to capture the mechanisms in
which operational definitions are used in science and to make them applicable
on intelligent robots.

Claim 5: Formal semantics are insufficient to provide empirical meaning.

Claim 6: Robotic discoverers must be equipped in operational definitions.

3 Operational Definitions Interact with the Real World

Early analyses of operational definitions used the language of logic. For instance,
a dispositional property “soluble in water” has been defined as

If x is in water then (x is soluble in water if and only if x dissolves)

But a more adequate account is algorithmic rather than descriptive:
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Soluble (x)
Put x in water!
Does x dissolve?

As an algorithm, operational definition consists of instructions that prescribe
manipulations, measurements and computations on the results of measurements.
Iteration can enforce the requirements such as temperature stability, which can
be preconditions for measurements. Iteration can be also used in making mea-
surements. The loop exit condition such as the equilibrium of the balance, or
a coincidence of a mark on a measuring rod with a given object, triggers the
completion of a step in the measurement process.

Procedures that interpret independent and dependent variables can be con-
trasted as manipulation and measurement mechanisms. Each independent vari-
able requires a manipulation mechanism which sets it to a specific value, while
a response value of an dependent variable is obtained by a measurement mech-
anism. In this paper we focus on measurement procedures.

It happens that an instruction within procedure P does not work in a spe-
cific situation. In those cases P cannot be used. Each procedure may fail for
many reasons. Some of these reasons may be systematic. For instance, a given
thermometer cannot measure temperatures below -40C because the thermomet-
ric liquid freezes or above certain temperature, when it boils. Let us name the
range of physical situations to which P applies by RP .

Often, a property is measured indirectly. Consider distance measurement
by sonar or laser. The time interval is measured between the emitted and the
returned signal. Then the distance is calculated as a product of time and velocity.
Let C(x) be the quantity measured by procedure P . When P terminates, the
returned value of C is f(m1, ...,mk), where m1, ...,mk are the values of different
quantities of x or the empirical situation around x, measured or generated by
instructions within P , and f is a computable function on those values.

Claim 7: Each operational definition should be treated as an algorithm.

Claim 8: The range of each procedure P is limited in many ways, thus each is
merely a partial definition applicable in the range RP .

Claim 9: An operational definition of concept C can measure different quantities
and use empirical laws to determine the value of C: C(x) = f(m1, ...,mk)

Claim 10: An operational definition of a concept C(x) can be represented by a
descriptive statement: “If x is in RP then C(x) = f(m1, ...,mk)”

4 Each Concept Requires Many Operational Definitions

In everyday situations distance can be measured by a yard-stick or a tape. But
a triangulation method may be needed for objects divided by a river. It can be
extended to distance measurement from the Earth to the Sun and the Moon.
Then, after we have measured the diameter of the Earth orbit around the Sun,
we can use triangulation to measure distances to many stars.
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But there are stars for which the difference between the “winter angle” and
the “summer angle” measured on the Earth, is non-measurably small, so another
method of distance measurement is needed. Cefeids are some of the stars within
the range of triangulation. They pulsate and their maximum brightness varies
according to the logarithm of periodicity. Another law, determined on Earth and
applied to stars claims that the perceived brightness of a constant light source
diminishes with distance as 1/d2. This law jointly with the law for cefeids allows
us to determine the distance to galaxies in which individual cefeids are visible.

For such galaxies the Hubble Law was empirically discovered. It claims pro-
portionality between the distance and red shift in the lines of hydrogen spectrum.
The Hubble Law is used to determine the distance of the galaxies so distant that
cefeids cannot be distinguished.

Similarly, while a gas thermometer applies to a large range of states, in very
low temperatures any gas freezes or gas pressure becomes non-measurably small.
A thermometer applied in those situations measures magnetic susceptibility of
paramagnetic salts and uses Curie-Weiss Law to compute temperature. There are
high temperatures in which no vessel can hold a gas, or states in which the inertia
of gas thermometer has unacceptable influence on the measured temperature.
Measurements of thermal radiation and other methods can be used in such cases.

Claim 11: Empirical meaning of a concept is defined by a set of operational
definitions.

Claim 12: Each concrete set is limited and new methods must be constructed
for objects beyond those limits.

5 Methods Should Be Linked by Equivalence

Consider two operational definitions P1 and P2 that measure the same quan-
tity C. When applied to the same objects their results should be empirically
equivalent within the accuracy of measurement. If P1 and P2 provide different
results, one or both must be adjusted until the empirical equivalence is regained.

From the antiquity it has been known that triangulation provides the same
results, within the limits of measurement error, as a direct use of measuring rod
or tape. But in addition to the empirical study of equivalence, procedures can
be compared with the use of empirical theories and equality of their results may
be proven.

Triangulation uses a basic theorem of Euclidean geometry that justifies the-
oretically the consistency of two methods: by the use of yard-stick and by tri-
angulation. To the extent in which Euclidean geometry is valid in the physical
world, whenever we make two measurements of the same distance, one using a
tape while the other using triangulation, the results are consistent.

Claim 13: Methods can differ by their accuracy and by degree to which they
influence the measured quantity.

Claim 14: When two operational definitions define the same property and apply
to the same objects, their results should be empirically equivalent. If they are
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not, additional data are collected and methods are adjusted in order to restore
their equivalence.

Claim 15: When two operational definitions define the same concept C(x), it is
possible to prove their equivalence. The prove consists in deducing from a verified
empirical theory that the statements that represent them are equivalent, that is,
f1(m1, ...,mk) = f2(n1, ..., nl)

Claim 16: When the statements that represent two procedures use empirical
laws C(x) = f1(m1, ...,mk), C(x) = f2(n1, ..., nl), theoretical equivalence of both
procedures follows from those laws.

Claim 17: The more general and better verified are the theories that justify the
equivalence of two procedures P1 and P2, the stronger are our reasons to believe
in the equivalence of P1 and P2.

Claim 18: Proving the equivalence of two procedures is desired, because the
empirical verification of equivalence is limited.

6 Operational Definitions of a Concept Form a Coherent
Set

We have considered several procedures that measure distance. But distance can
be measured in many other ways. Even the same method, when applied in dif-
ferent laboratories, varies in details. How can we determine that different mea-
surements define the same physical concept? Procedures can be coordinated by
the requirements of empirical and theoretical equivalence in the areas of common
application. However, we must also require that each method overlaps with some
other methods and further, that each two methods are connected by a chain of
overlapping methods.

Definition: A set Φ = {φ1, ..., φn} of operational definitions is coherent iff for
each i, j = 1,...,n

(1) φi is empirically equivalent with φj . Notice that this condition is trivially
satisfied when the ranges of both operational definitions do not overlap;

(2) there is a sequence of definitions φ-i1,...,φ-ik, such that φ-i1 = φi,
φ-ik = φj , and for each m = 2, ..., k the ranges of φ-im and φ-im+1 intersect.

The measurements of distance in our examples form such a coherent set. Rod
measurements overlap with measurements by triangulation. Different versions
of triangulation overlap with one another. The triangulation applied to stars
overlaps with the method that uses cefeids, which in turn overlaps with the
method that uses Hubble Law.

Similarly, the measurements with gas thermometer have been used to cali-
brate the alcohol and mercury thermometers in their areas of joint application.
For high temperatures, measurements based on the Planck Law of black body
radiation overlap with the measurements based on gas thermometers. For very
low temperatures, the measurements based on magnetic susceptibility of para-
magnetic salts overlap with measurements with the use of gas thermometer.
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Claim 19: Each empirical concept should be defined by a coherent set of op-
erational definitions. When the coherence is missing, the discovery of a missing
link becomes a challenge.

For instance, the experiment of Millikan provided a link between the charge
of electron and electric charges measured by macroscopic methods.

Claim 20: By examining theoretical equivalence in a coherent set Φ of opera-
tional definitions we can demonstrate that the values measured by all procedure
in Φ are on the same scale.

Claim 21: Operational definitions provide means to expand to new areas the
range of the laws they use.

7 Laws Can Be Used to Form New Operational
Definitions

Operational definitions can expand each concept in several obvious directions,
towards smaller values, larger values, and values that are more precise. But the
directions are far more numerous. Within the range of “room” temperatures,
consider the temperature inside a cell, temperature of a state that is fast varying
and must be measured every second, or temperature on the surface of Mars. Each
of these cases requires different methods. A scientist may examine the shift of
tectonic plates by comparing the distances on the order of tens of kilometers
over the time period of a year, when the accuracy is below a millimeter.

Whenever we consider expansion of operational definitions for an empirical
concept C to a new range R, the situation is similar:

(1) we can observe objects in R for which C cannot be measured with the
needed accuracy;

(2) some other attributes A1, ..., An of objects in R can be measured, or else
those objects would not be empirically available;

(3) some of A1, ..., An are linked to C by empirical laws or theories. We can
use one or more of those laws in a new method: measure some of A1, ..., An and
then use laws to compute the value of C.

Consider the task: determine distance D from Earth to each in a set R of
galaxies, given some of the measured properties of R: A1, A2, ..., An. Operational
definitions for A1, ..., An are available in the range R. For instance, let A2 mea-
sure the redshift of hydrogen spectrum. Let D = h(A2) be Hubble Law. The
new method is:

For a galaxy g, when no individual cefeids can be distinguished:

Measure A2 of the light coming from g by a method of spectral analysis

Compute the distance D(Earth, g) as h(A2(g))

The same schema can yield other operational definitions that determine dis-
tance by properties measurable in a new range, such as yearly parallax, perceived
brightness or electromagnetic spectrum.
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Some laws cannot be used even though they apply to galaxies. Consider
D = a/

√
B (B is brightness). It applies even to the most remote sources of

light. But B used in the law is the absolute brightness at the source, not the
brightness perceived by an observer. Only when we could determine the absolute
brightness, we could determine the distance to galaxies by D = a/

√
B.

The following algorithm can be used in many applications:

Algorithm:

Input: set of objects observed in range R

attribute C that cannot be measured in R

set of attributes A1,...,Ak that can be measured in R

set {F1,...,Fp} of known operational definitions for C

set LAWS of known empirical laws

Output: a method by which the values of C can be determined in R

Find in LAWS a law L in which C occurs

Let B1,...,Bm be the remaining attributes that occur in L

Verify that C can be computed from L, and the values of B1,...,Bm

Verify that {B1,...,Bm} is subset of {A1,...,Ak},

that is, B1,...,Bm can be measured in at least some situations in R

Use L and B1,...,Bm to create new procedure F for C

Make F consistent with procedures in {F1,...,Fp}

After the first such procedure has been found, the search may continue for each
law that involves C.

In set-theoretic terms, each expansion of concept C to a new range R can be
viewed as a mapping from the set of distinguishable classes of equivalence with
respect to C for objects in R to a set of possible new values of C, for instance, the
values larger than those that have been observed with the use of the previous
methods. But possible expansions are unlimited. The use of an existing law
narrows down the scope of possible concept expansions to the number of laws
for which the above algorithm succeeds. But the use of an existing law does
not merely reduce the choices, it also justifies them. Which of the many values
that can be assigned to a given state corresponds to its temperature? If laws
reveal the real properties of physical objects, then the new values which fit a law
indicate concept expansion which has a potential for the right choice.

Claim 22: Whenever the empirical methods expands to new territories, new
discoveries follow. New procedures are instrumental to that growth.

Claim 23: Each new procedure expands the law it uses to a new range. If
procedures P1 and P2 use laws L1 and L2 respectively, and produce empirically
inconsistent results for new objects in range R, the choice of P1 will make L2

false in R.

If a number of procedures provide alternative concept expansions, various
selection criteria can be used, depending on the goal of research.

Claim 24: Among two methods, prefer the one which has a broader range, for
it justifies concept expansion by a broader expansion of an existing law.
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Claim 25: Among two methods, prefer the one which has a higher accuracy,
since it provides more accurate data for the expansion of empirical theories.
Claim 26: Methods must and can be verified in their new area of application
or else, the empirical laws they apply would be mere definitions.

8 Operational Definitions Apply to all Empirical
Concepts

While explicit operational definitions are rarely formed by experimental scien-
tists, they become necessary in autonomous robots. A robot explorer can also
benefit from mechanisms for generation of new procedures.

Operational meaning applies to databases. They are repositories of facts that
should be shared as a major resource for knowledge discovery and verification.
But data and knowledge can be only useful for those who understand their mean-
ing. Operational definitions describe how the values of all fields were produced.

Similarly to our science examples, operational definitions can be generated
from data and applied in different databases. Consider a regularity L, discovered
in a data tableD, which provides accurate predictions of attribute C from known
values of A1, ..., An. L can be used as a method that determines values of C.

Consider now another tableD1, that covers situations similar toD, but differs
in some attributes. Instead of test C, tests B1, ..., Bm are provided, which may
or may not be compatible with C. Suppose that a doctor who has been familiar
with test C at his previous workplace, issues a query against D1 that includes
attribute C which is not in D1. A regular query answering mechanism would fail,
but a mechanism that can expand operational meaning of concepts may handle
such a query (Ras, 1997). A quest Q for operational definition of concept C with
the use of B1, ..., Bm will be send to other databases. If an operational definition
is found, it is used to compute the values of C in the doctor’s query.
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ABSTRACT:  In real-life data, in general, many attribute values are missing.
Therefore, rule induction requires preprocessing, where missing attribute
values are replaced by appropriate values.  The rule induction method used in
our research is based on rough set theory.

In this paper we present our results on a new approach to missing attribute
values called a closest fit.  The main idea of the closest fit is based on
searching through the set of all cases, considered as vectors of attribute
values, for a case that is the most similar to the given case with missing
attribute values. There are two possible ways to look for the closest case: we
may restrict our attention to the given concept or to the set of all cases.
These methods are compared with a special case of the closest fit principle:
replacing missing attribute values by the most common value from the
concept.  All algorithms were implemented in system OOMIS.  Our
experiments were performed on preterm birth data sets collected at the Duke
University Medical Center.

K E Y W O R D S :  Missing attribute values, closest fit, data mining, rule
induction, classification of unseen cases,  system OOMIS, rough set theory.

1  Introduction

Recently data mining, i.e., discovering knowledge from raw data, is receiving a
lot of attention.  Such data are, as a rule, imperfect. In this paper our main focus is on
missing attribute values, a special kind of imperfection.  Another form of
imperfection is inconsistency—the data set may contain conflicting cases (examples),
having the same values of all attributes yet belonging to different concepts (classes).

Knowledge considered in this paper is expressed in the form of rules, also called
production rules.  Rules are induced from given input data sets by algorithms based on
rough set theory.  For each concept lower and upper approximations are computed, as
defined in rough set theory [4, 6, 12, 13].

Often in real-life data some attribute values are missing (or unknown).  There are
many approaches to handle missing attribute values [3, 5, 7].  In this paper we will
discuss an approach based on the closest fit idea.  The closest fit algorithm for
missing attribute values is based on replacing a missing attribute value by existing
values of the same attribute in another case that resembles as much as possible the
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 c Springer-Verlag Berlin Heidelberg 1999



case with the missing attribute values.  In searching for the closest fit case, we need
to compare two vectors of attribute values of the given case with missing attribute
values and of a searched case.

There are many possible variations of the idea of the closest fit.  First, for a
given case with a missing attribute value, we may look for the closest fitting cases
within the same concept, as defined by the case with missing attribute value, or in all
concepts, i.e., among all cases.  The former algorithm is called concept closest fit, the
latter is called global closest fit.

Secondly, we may look at the closest fitting case that has all the same values,
including missing attribute values, as the case with a missing attribute value, or we
may restrict the search to cases with no missing attribute values.  In other words, the
search is performed on cases with missing attribute values or among cases without
missing attribute values.

During the search, the entire training set is scanned, for each case a proximity
measure is computed, the case for which the proximity measure is the largest is the
closest fitting case that is used to determine the missing attribute values.  The
proximity measure between two cases e and e' is the Manhattan distance between e and
e', i.e.,

Σ 
i= 1  

n

 distance (ei, ei'),

where

distance (ei, ei') =  

 

 0  if ei and ei'  are symbolic and ei ≠ ei' ,

1  if  e i = e i' ,

1 – 
|e i – e i' |
|ai – bi|

  if e i and e i'  are numbers and ei ≠ ei' ,

where ai  is the maximum of values of Ai, bi is the minimum of values of Ai, and Ai
is an attribute.

In a special case of the closest fit algorithm, called the most common value
algorithm, instead of comparing entire vectors of attribute values, the search is reduced
to just one attribute, the attribute for which the case has a missing value.  The
missing value is replaced by the most frequent value within the same concept to
which belongs the case with a missing attribute value.

2  Rule Induction and Classification of Unseen Cases

In our experiments we used LERS (Learning from Examples based on Rough Set
theory) for rule induction.  LERS has four options for rule induction; only one, called
LEM2 [4, 6] was used for our experiments.  Rules induced from the lower
approximation of the class certainly describe the class, so they are called certain.  On
the other hand, rules induced from the upper approximation of the class describe only
possibly (or plausibly) cases, so they are called possible [8].  Examples of other data
mining systems based on rough sets are presented in [14, 16].

For classification of unseen cases system LERS uses a modified "bucket brigade
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algorithm" [2, 10].  The decision to which class a case belongs is made on the basis
of two parameters: strength and support.  They are defined as follows: Strength is the
total number of cases correctly classified by the rule during training.  The second
parameter, support, is defined as the sum of scores of all matching rules from the
class.  The class C for which the support, i.e., the value of the following expression

Σ
matching rules R describing C

 Strength(R)

is the largest is a winner and the case is classified as being a member of C.  The
above scheme reminds non-democratic voting in which voters vote with their
strengths.

If a case is not completely matched by any rule, some classification systems use
partial matching.  During partial matching, system AQ15 uses the probabilistic sum
of all measures of fit for rules [11].  Another approach to partial matching is presented
in [14].  Holland et al. [10] do not consider partial matching as a viable alternative of
complete matching and thus rely on a default hierarchy instead.  In LERS partial
matching does not rely on the input of the user.  If complete matching is impossible,
all partially matching rules are identified.  These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case.

For any partially matching rule R, the additional factor, called Matching_factor
(R), is computed.    Matching_factor is defined as the ratio of the number of matched
attribute-value pairs of a rule with a case to the total number of attribute-value pairs
of the rule.  In partial matching, the class C for which the value of the following
expression

Σ
partially matching rules R describing C

 Matching_factor(R) ∗ Strength (R)

is the largest is the winner and the case is classified as being a member of C.
During classification of unseen (testing) cases with missing attribute values,

missing attribute values do not participate in any attempt to match a rule during
complete or partial matching.  A case can match rules using only actual attribute
values.

3  Description of Data Sets and Experiments

Data sets used for our experiments come from the Duke University Medical Center.
First, a large data set, with 1,229 attributes and 19,970 cases was partitioned into two
parts: training (with 14,977 cases) and testing (with 4,993 cases).  We selected two
mutually disjoint subsets of the set of all 1,229 attributes, the first set containing 52
attributes and the second with 54 attributes and called the new data sets Duke-1 and
Duke-2, respectively.  The Duke-1 data set contains laboratory test results.  The
Duke-2 test represents the most essential remaining attributes that, according to
experts, should be used in diagnosis of preterm birth.  Both data sets were unbalanced
because only 3,103 cases were preterm, all remaining 11,874 cases were fullterm.

407A Closest Fit Approach to Missing Attribute Values in Preterm Birth Data       



Table 1.  Missing attribute values

Number of missing attribute values in data sets processed by

Global closest fit Concept closest fit Most common value

Duke-1 1,1641 505,329 0
Duke-2 615 1,449 0

Table 2.  Training data sets
Global Concept Most

closest fit closest fit common value
Number of
conflicting cases 8,691 – 10,028

Duke-1
Number of
unique cases 6,314 – 4,994
Number of
conflicting cases 7,839 0 8,687

Duke-2
Number of
unique cases 7,511 9,489 6,295

Similarly, in the testing data set, there were only 1,023 preterm cases while the
number of fullterm cases was 3,970.

Both data sets, Duke-1 and Duke-2, have many missing attribute values (Duke-1
has 505,329 missing attribute values, i.e., 64.9% of the total number of attribute
values; Duke-2 has 291,796 missing attribute values, i.e., 36.1% of the total number
of attribute values).

First, missing attribute values were replaced by actual values.  Both data sets
were processed by the previously described five algorithms of the OOMIS system:
global closest fit and concept closest fit, among all cases with and without missing
attribute values, and most common value.

Since the number of missing attribute values in Duke-1 or Duke-2 is so large, we
were successful in using only three algorithms.  The version of looking for the
closest fit among all cases without missing attribute values returned the unchanged,
original data sets.  Therefore, in the sequel we will use names global closest fit and
concept closest fit for algorithms that search among all cases with missing attribute
values.  For Duke-1 the concept closest fit algorithm was too restrictive: All missing
attribute values were unchanged, so we ignored the Duke-1 data set processed by the
concept closest fit algorithm.  Moreover, global closest fit or concept closest fit
algorithms returned data sets with only reduced number of missing attribute values.
The results are presented in Table 1.

Since using both closest fit options result in some remaining missing attribute
values, for the output files the option most common value was used to replace all
remaining missing attribute values by the actual attribute values.  Thus, finally we
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Table 3.  Rule sets
Global Concept Most

closest fit closest fit common value
Number of Preterm 734 – 618
rules Fullterm 710 – 775

Duke-1
Average
strength Preterm 4.87 – 8.97
of rule set Fullterm 39.08 – 44.73
Number of Preterm 1,202 483 1,022
rules Fullterm 1,250 583 1,642

Duke-2
Average
strength Preterm 2.71 9.69 4.60
of rule set Fullterm 15.8 43.99 11.37

obtained five pre-processed data sets without any missing attribute values.
To reduce error rate during classification we used a very special discretization.

First, in  the training data set, for any numerical attribute, values were sorted.  Every
value v was replaced by the interval [v, w), where w was the next bigger values than v
in the sorted list.  Our approach to discretization is the most cautious since, in the
training data set, we put only one attribute value in each interval.  For testing data
sets, values were replaced by the corresponding intervals taken from the training data
set.  It could happen that a few values come into the same interval.

Surprisingly, four out of five training data sets, after replacing missing attribute
values by actual attribute values and by applying our cautious discretization, were
inconsistent.  The training data sets are described by Table 2.

For inconsistent training data sets only possible rule sets were used for
classification.  Certain rules, as follows from [8], usually provide a greater error rate.
Rule induction was a time-consuming process.  On a DEC Alpha 21164 computer,
with 512 MB of RAM, 533 MHz clock speed, rule sets were induced in elapsed real
time between 21 (for Duke-2 processed by the concept closest fit algorithm) and 133
hours (for Duke-2 processed by the global concept fit algorithm).  Some statistics
about rule sets are presented in Table 3.

As follows from Table 3, as a result of unbalanced data sets, the average rule
strength for rules describing fullterm birth is much greater than the corresponding rule
strength for preterm birth.  Consequently, the error rate on the original rule sets is not
a good indicator of the quality of a rule set, as follows from [9].

Our basic concept is the class of preterm cases.  Hence the set of all correctly
predicted preterm cases are called true-positives, incorrectly predicted preterm cases
(i.e., predicted as fullterm) are called false-negatives, correctly predicted fullterm cases
are called true-negatives, and incorrectly predicted fullterm cases are called false-
positives.

Sensitivity is the conditional probability of true-positives given actual preterm
birth, i.e., the ratio of the number of true-positives to the sum of the number of true-
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Fig. 1.  P(TP) – P(FP) versus rule strength multiplier for Duke-2 data set and most
common value method used for replacing missing attribute values

positives and false-negatives.  It will be denoted by P(TP), following notation from
[15].  Specificity is the conditional probability of true-negatives given fullterm birth,
i.e., the ratio of the number of true-negatives to the sum of the number of true-
negatives and false-positives.  It will be denoted by P(TN).  Similarly, the conditional
probability of false-negatives, given actual preterm birth, and equal to 1 – P(TP), will
be denoted by P(FN) and the conditional probability of false-positives, given actual
fullterm birth, and equal to 1 – P(TN), will be denoted by P(FP).  Obviously,

Sensitivity + Specificity = P(TP) – P(FP) + 1,

so all conclusions drawn from the observations of the sum of sensitivity and
specificity can be drawn from observations of P(TP) – P(FP).  Another study of the
sum of sensitivity and specificity was presented in [1].

Following [9], we computed the maximum of the difference between the
conditional probabilities for true-positives given actual preterm birth and false-
positives given actual fullterm birth as a function of the rule strength multiplier for
the preterm rule set.  A representative chart is presented in Fig. 1.  For completeness,
a typical chart (Fig. 2) shows how the true-positive, true-negative and total error rate
change as a function of the rule strength multiplier.  The total error rate is defined as
the ratio of the number of true-positives and true-negatives to the total number of
testing cases.
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versus rule strength multiplier for Duke-2 data set and most common value method
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Again, following the idea from [9], in our experiments we were increasing the
strength multiplier for each five rules describing preterm birth and observed P(TP) –
P(FP).  For each rule set, there exists some value of the rule strength multiplier,
called critical, for which the values of P(TP) – P(FP) jumps from the minimal value
to the maximal value.  The respective values of true positives, true negatives, etc.,
and the total error rate, are also called critical.  The results are summarized in Table 4.
The total error rate, corresponding to the rule strength multiplier equal to one, is
called initial.

The corresponding values of P(TP) – P(FP) are presented in Table 4.  The critical
total error rate from Table 4 is computed as the total error rate for the maximum of
P(TP) – P(FP).

4  Conclusions

In our experiments the only difference between the five rule sets used for
diagnosis of preterm birth is handling the missing attribute values.  The maximum of
the sum of sensitivity and specificity (or the maximum of P(TP) – P(FP)) is a good
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Table 4.  Results of experiments

Global Concept Most
closest fit closest fit common value

Duke-1 Duke-2 Duke-2 Duke-1 Duke-2
Initial total
error rate 21.67 21.93 20.75 22.15 22.27

Critical total
error rate 68.48 64.09 54.30 42.40 45.88

Maximum of
P(TP) – P(FP) 3.65 5.97 11.69 17.07 14.43

Minimum of
P(TP) – P(FP) –15.96 –11.28 –5.37 –3.52 –2.67

Critical number of
true-positives 882 838 747 615 639

Critical number
of true-negatives 692 955 1535 2261 2063

Critical rule
strength multiplier 8.548 6.982 6.1983 6.1855 3.478

indicator of usefulness of the rule set for diagnosis of preterm birth.  It is the most
important criterion of quality of the rule set.  In terms of the maximum of the sum of
sensitivity and specificity (or, equivalently, the maximum of P(TP) – P(FP)), the best
data sets were processed by the most common value algorithm for missing attribute
values.  Note that the name of the algorithm is somewhat misleading because, in our
experiments, we used this algorithm to compute the most common attribute value for
each concept separately.  The next best method is the concept closest fit algorithm.
The worst results were obtained by the global closest fit.

The above ranking could be discovered not only by using the criterion of the
maximum of the sum of sensitivity and specificity but also by using other criteria,
for example, the minimum of the sum of sensitivity and specificity, the number of
critical true-positive cases, critical false-positive cases, etc.

The initial total error rate is a poor indicator of the performance of an algorithm
for handling missing attribute values.  Similarly, the number of conflicting cases in
the input data is a poor indicator.

Finally, it can be observed that the smaller values of the minimum of P(TP) –
P(FP) correspond to the smaller values of the maximum of P(TP) – P(FP), so that
the sum of the absolute values of these two numbers is roughly speaking constant.
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Abstract. This paper presents a post-processing algorithm of rule dis-
covery for augmenting the readability of a discovered rule set. Rule dis-
covery, in spite of its usefulness as a fundamental data-mining technique,
outputs a huge number of rules. Since usefulness of a discovered rule is
judged by human inspection, augmenting the readability of a discovered
rule set is an important issue. We formalize this problem as a trans-
formation of a rule set into a tree structure called a visual graph. A
novel information-based criterion which represents compressed entropy
of a data set per description length of the graph is employed in order to
evaluate the readability quantitatively. Experiments with an agricultural
data set in cooperation with domain experts confirmed the effectiveness
of our method in terms of readability and validness.

1 Introduction

Knowledge Discovery in Databases (KDD) [4] represents a novel research area for
discovering useful knowledge from large-scale data. With the rapid proliferation
of large-scale databases, increasing attention has been paid to KDD. In KDD,
rule discovery [1,7,9] represents induction of local constraints in a data set. Rule
discovery is, due to its applicability, one of the most fundamental and important
methods in KDD.

In general, a huge number of rules are discovered from a data set. In order
to evaluate interestingness of a discovered rule set precisely, it is desirable to de-
crease the number of uninteresting rules and to output the rule set in a readable
representation. However, conventional rule-discovery methods [1,7,9] consider
mainly generality and accuracy of a rule, and readability1 of a discovered rule
set has been curiously ignored. Usefulness of a rule can be only revealed through
human inspection. Therefore, visualization of a discovered rule set is considered
to be highly important since it augments their readability.

Rule discovery can be classified into two approaches: one is to discover strong
rules each of which explains many examples, and the other is to discover weak
1 In this paper, we define readability as simplicity and informativeness.

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 414–423, 1999.
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rules each of which explains a small number of examples [8,10]. This paper
belongs to the first approach, and presents a method which transforms a set
of strong rules with the same conclusion into a readable representation. As a
representation, we consider a visual graph which explains the conclusion with
premises agglomerated with respect to their frequencies. There exist methods
for discovering graph-structured knowledge, such as Bayesian network [6] and
EDAG [5]. However, our method is different from these methods since readability
is our main goal. We propose, as a novel criterion for evaluating readability of a
visual graph, compressed entropy density which is given as compressed entropy of
the data set per description length of the graph. We demonstrate the effectiveness
of our method by experiments using an agricultural data set in cooperation with
domain experts.

2 Problem Description

In this paper, we consider transforming a data set D and a rule set R into a visual
graph G(D, S), where S is a subset of R and represents the rule set contained
in G(D, S). We assume that the number |S| of rules in the rule set S is specified
as a threshold by the user prior to the transformation.

The data set D consists of several examples each of which is described with
a set of propositional attributes. Here, a continuous attribute is supposed to be
discretized with an existing method such as [3], and is coverted to a nominal
attribute. An event representing that an attribute has one of its values is called
an atom. Proportion of examples each of which satisfies an atom a is represented
by Pr(a).

The rule set R consists of |R| rules r1, r2, · · · , r|R|, which are discovered with
an existing method [7,9] from the data set D.

R = {r1, r2, · · · , r|R|} (1)

In KDD, important classes of rules include an association rule [1] and a conjunc-
tion rule [7,9]. In an association rule, every attribute is assumed to be binary,
and a value in an atom is restricted to “true”. An association rule represents a
rule of which premise and conclusion are either a single atom or a conjunction
of atoms. In a conjunction rule, every attribute is assumed to be nominal. A
conjunction rule represents a rule of which premise is either a single atom or a
conjunction of atoms, and conclusion is a single atom. In this paper, we con-
sider conjunction rules since they assume a more general class of attributes than
association rules. For simplification, we assume that each rule ri has the same
conclusion x.

ri = yi1 ∧ yi2 ∧ · · · ∧ yiν(i) → x (2)

where yi1, yi2, · · · , yiν(i), x represent a single atom with different attributes re-
spectively.

A visual graph G(D, T ) represents, in a graph format, a rule set T which
consists of |T | rules t1, t2, · · · , t|T |. As mentioned above, this rule set T is a
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subset of the input rule set R. A visual graph G(D, T ) is a tree structure in which
n(D, T ) premise nodes b1(D, T ), b2(D, T ), · · · , bn(D,T )(D, T ) has their respective
arc to a conclusion node b0(D, T ). Here, the conclusion node b0(D, T ) represents
the atom x of conclusions in the rule set T . A premise node bi(D, T ) represents
the premises of rules each of which has the i-th most frequent atom di in the rule
set T . Our method constructs a premise node bi(D, T ) with an ascending order
of i, and a rule represented in a premise node is no longer represented in the
successive premise nodes. When more than two atoms have the same number of
occurrence, the atom with the smallest subscript is selected first. Figure 1 shows
an example of a rule set and its corresponding visual graph. In the visual graph,

rule set visual graph

u,v
u,w
u,y
u
v,w,z
v
y,z

x
x
x
x
x
x
x

v
w

w,z

y,z

x

u

v

y

Fig. 1. Example of a rule set and its corresponding visual graph

the upmost atom x represents a conclusion node, and the other nodes are premise
nodes. In the figure, the most frequent atom u is first agglomerated as a node,
and the premises of the four rules each of which contains u represent the premise
node 1. Although three rules contain atom v, the premise node 2 represents two
rules since one of the three rules is employed in the premise node 1.

While a visual graph is uniquely determined by a rule set S, there are |R|C|S|
ways of selecting a subset S from the rule set R. In the next section, we describe
how to choose a subset S from the rule set R in order to obtain a visual graph
G(D, S) with high readability.

3 Transformation of a Rule Set into a Visual Graph

3.1 Compressed Entropy Density Criterion

In order to obtain a visual graph with high readability, an appropriate subset S
should be selected from the rule set R. In this paper, we consider an evaluation
criterion for the readability of a visual graph, and propose a novel method which
does not necessarily require user interaction.
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The readability of a visual graph depends on two main factors. One factor is
graph complexity which can be represented by the number of nodes and arcs in
the graph. A complex graph is considered to have low readability. For example,
if we consider intuitively, a graph with 300 nodes has lower readability than
a graph with 30 nodes. The other factor is graph description-power which can
be represented by the information content of the data set D in the graph. For
example, if a visual graph A represents a subset of a rule set represented by
another visual graph B and these two graphs have the same complexity, A has
lower readability than B.

As explained in the previous section, a visual graph represents a tree structure
of depth one in which each premise node has an arc to a conclusion node. Since
the atom in the conclusion node is fixed and the depth is one, visual graphs vary
with respect to the atoms in the premise nodes. Assuming that every atom has
the same readability, graph complexity can be approximated by the number of
atoms in the premise nodes. We can also consider the branching factor of the
conclusion node, but we ignore it since it is equal to the number of premise nodes
and can be approximately estimated by the number of atoms.

In order to provide an intuitive interpretation to the evaluation criterion,
we represent graph complexity by its description length. If there are A kinds
of atoms, the description length of an atom is log2 A bit. Therefore, complexity
U(D, T ) of a visual graph G(D, T ) is given as follows.

U(D, T ) ≡ |G(D, T )| log2 A (3)

where |G(D, T )| represents the number of atoms in the visual graph G(D, T ).
Since A is fixed, U(D, T ) is a linear function of |G(D, T )|.

Since a visual graph and a rule set has one-to-one correspondence, the in-
formation content of a data set D represented by a visual graph G(D, T ) is
equivalent to the information content of the data set D represented by the rule
set T . The information content is calculated with respect to either the whole
rule set or each rule. In rule discovery, although readability should be consid-
ered with respect to the whole rule set, usefulness is considered for each rule.
Therefore, we take the latter approach. We first obtain the information content
of a data set D represented by each rule in the rule set T , and then regard
their add-sum as the graph-description power V (D, T ) for the data set D of the
visual graph G(D, T ). Note that, this formalization ignores dependency among
rules. We have also pursued another formalization in which premises of rules are
mutually exclusive. However, this approach has turned out to be less effective
by experiments with an agricultural data set.

In ITRULE rule discovery system [7], Smyth employed compressed entropy
of a data set D by a rule t : y → x as an evaluation criterion J-measure J(t, D)
of the rule.

J(t, D) ≡ Pr(y)
[
Pr(x|y) log2

Pr(x|y)
Pr(x)

+ Pr(x|y) log2

Pr(x|y)
Pr(x)

]
(4)

where x represents the negation of the atom x. J-measure is a single quantita-
tive criterion which simultaneously evaluates the generality Pr(y), the accuracy
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Pr(x|y) and the unexpectedness Pr(x|y)/Pr(x) of a rule, and is reported to be
effective in rule discovery [7]. Interested readers can consult [7] for theoretical
foundation and empirical behavior of J-measure. In this paper, we represent
information content of a data set D by each rule t with J-measure J(t, D).
Therefore, graph description-power V (D, T ) for a data set D of a visual graph
G(D, T ) is given as follows.

V (D, T ) ≡
∑

t∈T

J(t, D) (5)

Note that readability of a visual graph G(D, T ) decreases with respect to
graph complexity U(D, T ), and increases with respect to graph description-
power V (D, T ). The former is represented by the description length of the graph,
and the latter is represented by the compressed entropy of the data set by the
graph. Here, the quotient of graph description-power by graph complexity rep-
resents compressed entropy of the data set per description length of the graph,
and can be regarded as density of compressed entropy. If this quotient of a graph
is large, we can regard the graph as representing information of the data set with
high density. We propose, as the evaluation criterion of readability of a visual
graph, compressed entropy density W (D, T ) which is given as follows.

W (D, T ) ≡ V (D, T )
U(D, T )

(6)

Behavior of W (D, T ) cannot be analyzed exactly since it is highly dependent
on the nature of the input data. Probabilistic analysis, based on average per-
formance over all possible input data sets, is too difficult to carry out directly
without invoking unrealistic assumptions concerning the nature of the inputs.
We leave more rigorous analysis of the problem for further research.

3.2 Search Method

Our algorithm obtains a rule set S by deleting, one by one, rules in the input
rule set R until the number of rules becomes |S|. In a KDD process, we cannot
overemphasize the importance of user interaction [2]. In rule visualization, users
may iterate visualization procedure by inspecting the output and specifying new
conditions. Therefore, our algorithm employs hill climbing since its computation
time is relatively short. Our algorithm is given as follows.

1. (Set) T ← R

2. (Delete rules)
(a) while(|T | > |S|)
(b) T ← arg max

T−{t}
W (D, T − {t})

3. (Return) Return G(D, T )
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4 Application to an Agriculture Data Set

In this section, we demonstrate the effectiveness of our method by applying it
to “Agriculture” data sets. “Agriculture” is a series of data sets which describes
agricultural statistics such as various crops for approximately 3200 municipal-
ities in Japan. We have followed suggestions of domain experts and analyzed
“semi-mountainous municipalities”. Japanese ministry of agriculture specified
approximately 1700 municipalities as semi-mountainous for conservation of agri-
culture in mountainous regions, and analysis on these municipalities is highly
demanded. We have used the 1992 version of “Agriculture”, and there are 1748
semi-mountainous municipalities as examples in the data set.

Since Japan has diverse climates, there are many crops each of which is
cultivated in a restricted region. An atom representing the absence of such a
crop is frequent in discovered rules. However, such an atom is uninteresting
to domain experts since it represents another view of climatic conditions. In
order to ignore such atoms, we employed 148 attributes each of which has a
positive value in at least one-third of municipalities. These attributes represent,
for instance, summaries of municipalities, shipments of crops and acreages of
crops. In discretizing a continuous attribute, we first regarded “0” and missing
values as a new value, then employed equal-frequency method [3] of three bins.

According to domain experts, conditions on high income are their main in-
terests. First, we settled the atom of the conclusion “agricultural income per
farmhouse = high”. We obtained a rule set which consists of 333 rules with a
rule discovery method [9]. For the rule set S in the output visual graph, we
settled as |S| = 15. Figure 2 shows the result of this experiment.

annual expenditures for agriculture
per farmer=high  

ratio of cultivable area=highagriculture promotion area=true

annual expenditures for agriculture per farmer=high

annual expenditures per population=high

annual revenue per population=high

annual expenditures for agriculture per farmer=high  

annual expenditures per population=high

number of companies per population=high

annual revenue per population=high

ratio of forest=low

ratio of cultivable area=high

agricultural income per farmhouse=high

number of companies per population=high

ratio of secondary industry=low

vegetable production per farmer=high

Fig. 2. Visual graph for conclusion “agricultural income per farmhouse = high”
with |S| = 15
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Atoms in this figure can be classified into four groups. The first group rep-
resents that a considerable amount of subsidies are granted by the administra-
tion. Atoms which belong to this group are “agriculture promotion area=true”,
“annual expenditures for agriculture per farmer=high”, “annual expenditures
per population=high” and “annual revenue per population=high”. These atoms
represent that agriculture is highly-promoted by administrations, and their fi-
nancial status are excellent. The second group represents that vegetables are
well-cultivated. Atoms which belong to this group are “vegetable production
per farmer=high”, “ratio of cultivable area=high” and “ratio of forest = low”.
These atoms represent that high income is gained with vegetables, and acreage
for vegetables is large. According to domain experts, difference in cultivation
technique of vegetables has considerable influence on income. The third group
represents that companies are highly-active, and “number of companies per pop-
ulation=high” belongs to this group. This atom represents that a municipality
is located close to cities, each of which gives opportunity of shipment and side
income. The fourth group represents that a municipality depends mainly on
agriculture, and “ratio of secondary industry=low” belongs to this group. This
atom represents that, for instance, each farmer has large acreage. This analysis
shows that each atom in the premise nodes in figure 2 is appropriate as a reason
of “agricultural income per farmhouse = high”.

In the next experiment, the atom in the conclusion is settled to “agricul-
tural income per farmer = high”, and a rule set which consists of 335 rules is
obtained with the same procedure. Figure 3 shows the visual graph obtained by
our method with the same conditions.

ratio of production generation=high

ratio of cultivable area=high

vegetable production per farmer=high

ratio of cultivable area=high

ratio of forestry farmer=low

ratio of aged generation=low

agriculture promotion area=true

number of companies per population=high

annual expenditures for agriculture per farmer=high

annual expenditures per population=high

annual expenditures per population=high

number of companies per population=high

annual revenue per population=high

annual expenditures for agriculture per farmer=high  

annual revenue per population=high

agricultural income per farmer=high

Fig. 3. Visual graph for conclusion “agricultural income per farmer = high”
with |S| = 15
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In Japan, municipalities of “agricultural income per farmer = high” are al-
most equivalent to municipalities of “agricultural income per farmhouse = high”.
Large-scale farmhouses are dominant in these municipalities. Since atoms in the
premise nodes in figure 3 are similar to those in figure 2, this visual graph can
be validated with similar discussions as above.

In the last experiment, the atom in the conclusion is settled to “agricul-
tural income per 10A = high”, and a rule set which consists of 319 rules is
obtained with the same procedure. Figure 3 shows the visual graph obtained by
our method with the same conditions.

agriculture promotion area=true

ratio of living area=high

vegetable production per farmer=high

ratio of forest=low

number of companies per population=high

annual expenditures per population=high

annual expenditures per population=high

number of companies per population=high

annual revenue per population=high

annual expenditures for agriculture per farmer=high  

annual revenue per population=high

ratio of forest=low

annual expenditures per population=high

number of companies per population=high

annual revenue per population=high

agricultural income per 10A=high

Fig. 4. Visual graph for conclusion “agricultural income per 10A = high”
with |S| = 15

Unlike the other two visual graphs, visual graph in figure 4 has “ratio of
living area = high”, and considers “ratio of forest = low” as more important. It
should be also noted that atoms “ratio of secondary industry=low” and “ratio of
production generation=high” have disappeared. These results can be explained
that some of municipalities in which large-scale farmhouses are dominant are
excluded in “agricultural income per 10A = high”, and cultivation techniques
are more important for this conclusion.

From figure 2 to 4, each obtained visual graph has a simple structure and
contains valid rules. Domain experts evaluated these three results, and claimed
that each visual graph has a simple structure and thus has high readability.
They also concluded that each visual graph contains accurate and valid rules in
explaining the conclusion.
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5 Conclusion

Existing rule discovery methods induce a huge number of rules, and inspection of
these rules for judging their usefulness requires considerable efforts for humans.
In order to circumvent this problem, we proposed a novel method for transform-
ing a discovered rule set into a visual graph which has a simple structure for
representing information of a data set. For this transformation, we presented a
novel criterion: compressed entropy density which is given by the quotient of
compressed entropy by the description length of the graph. Our method has
been applied to an agricultural data set for 1748 municipalities in Japan, and
the results were evaluated by domain experts. Obtained visual graphs have high
readability and contain valid rules even for these experts. We consider that this
fact demonstrates the effectiveness of our method.
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Abstract. Association rule is a kind of important knowledge extracted
from databases. However, a large number of association rules may be ex-
tracted. It is difficult for a user to understand them. How to select some
“representative” rules is thus an important and interesting topic. In this
paper, we proposed a distance-based approach as a post-processing for
association rules on numeric attributes. Our approach consists of two
phases. First, a heuristic algorithm is used to cluster rules based on a
matrix of which element is the distance of two rules. Second, after cluster-
ing, we select a representative rule for each cluster based on an objective
measure. We applied our approach to a real database. As the result,
three representative rules are selected, instead of more than 300 original
association rules.

Keywords: Association rules, Rule clustering, Rule selection, Numeric
attributes, Objective Measures, Discretization.

1 Introduction

Data mining has been recognized as an important area of database research.
It discovers patterns of interest or knowledge from large databases. As a kind
of important pattern of knowledge, association rule has been introduced. An
association rule is an implication expression: C1 ⇒ C2, where C1 and C2 are
two conditions. It means that when the condition C1 is true, the conclusion C2

is almost always true.
Association rule is first introduced in Agrawal et al.’s papers [AIS93,AS94].

They considered only bucket type data, like supermarket databases where the
set of items purchased by a single customer is recorded as a transaction.
When we focus on data in relational databases, however, we have to con-
sider various types of data, especially continuous numeric data. For exam-

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 423–433, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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ple, (age ∈ [40, 60])⇒ (own−house = yes). In this case, we may find hundreds
or thousands of association rules corresponding to a specific attribute. Fig. 1
shows all rules (about 300) that we extracted from an adult database. The rules
have the form “fnlwgt ∈ [a, b]⇒ (income < 50K)”, where fnlwgt is a numeric
attribute and income is a decision attribute. We order the rules by the ranges in
the LHS. It is not accteptable to show all rules to users. To tackle this problem,
Fukuda et. al. [FMMT96a,FMMT96b] proposed so-called optimized association
rule. It extracts a single association rule from all candidates which maximizes
some index of the rules, for example, support. In many cases, however, it is just
a common sense rule and has no value at all.

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 Rule No.

fnlwgt

Fig. 1. Many similar rules are extracted

To overcome this shortcoming, in our opinion, it is reasonable to divide the
process of discovering association rules into two steps: one is to find all candi-
dates of which support and confidence are greater than the thresholds given by
users; the other is to select some representative rules from all
candidates. Although most of existing papers contributed to the first step,
an incremental interesting has been paid on the second
step [KMR+94,MM95,Fre98,GB98,Kry98a,Kry98b,WTL98]. Various measures
for interestingness of association rules have been proposed.

In general, the evaluation of the interestingness of discovered rules has both
an objective and a subjective aspect. Kiemettinen et al.[KMR+94] proposed a
simple formalism of rule templates to describe the structure of interesting rules,
like what attributes occur in the antecedent and what attribute is the consequent.
Liu et al. [LHC97] proposed a user-defined impression to analyze discovered
rules. Other authors choose to look for objective measures for rule selection.
Gago et al.[GB98] defined a distance between two rules, and select n rules such
that they are the most distinguished. Major et al.[MM95] proposed a set of
measures, like simplicity, novelty, statistical significant, and a stepwise selection
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process. Kryszkiewicz [Kry98a,Kry98b] defined a cover operator for association
rule on bucket data, and found a least set of rules that covers all association rule
by the cover operator. However, since downward closure property is not true for
association rules on numeric attribute, Cover operation is not appropriate for
rule selection.

In this paper, we focus on selection of association rules on numeric attributes.
We assume that a set R of association rules have been extracted. We then se-
lect a subset of R as representative rules of R. Our approach is first to cluster
association rules according to the distance between rules, and then to select a
representative rule for each class. In this paper, we also focus on objective mea-
sures for association rules. We observe from Fig. 1 that many similar rules exist.
It is because a rule candidate which is close to a rule with high support and
confidence is most possibly an association rule too. Hence, it is reasonable to
define a representative rule for a set of similar rules. Two objective measures are
proposed for clustering and selection of rules, respectively.

The paper is organized as follows: In Section 2, we present basic terminology
and an overview of the work. Section 3 defines a distance between rules which
is used for grouping similar rules. In Section 4, we propose a coverage measure
for selection of representative rules. In Section 5, we present some experimental
results. Section 6 concludes and presents our future work.

2 Overview of Our Work

In this section we present basic terminology for mining association rules on
numeric attributes, and then give an overview of our approach.

Assume there is a relation D(A1, A2, · · · , An, C), where Ai is an attribute
name, and C is a decision attribute. For a tuple t ∈ D, t.Ai denotes the value
of Ai at t. An association rule is an expression of the form C1 ⇒ C2, where C1

and C2 are two expressions, called left-hand side (LHS) and right-hand side
(RHS) of the rule, respectively. In this paper, we consider association rules on
numeric attributes with the form:

R : (a1 ≤ A1 < b1) ∧ · · · ∧ (an ≤ An < bn)⇒ (C = yes)

where Ai is a numeric attribute and C is a Boolean attribute. Without confusion,
we usually denote a rule by an area P in the n dimension space. t ∈ P means
(a1 ≤ t.A1 < b1) ∧ · · · ∧ (an ≤ t.An < bn)}.

Two measures, support and confidence, are commonly used to rank associ-
ation rules. The support of an association R, denoted by supp(R), is defined by
|{t|t ∈ P}|/|D| 1. It means how often the value of A occurs in the area P as
a fraction of the total number of tuples. The confidence of an association rule,
denoted by conf(R), is defined by |{t|t ∈ P ∧ t.C = yes}|/|{t|t ∈ P}|. It is the
strength of the rule.

1 or |{t|t ∈ P ∧ t.C = yes}|/|D|.
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For a pair of minsup and minconf specified by the user as the thresholds of
support and confidence, respectively, an association rule is called “interesting” if
both its support and confidence are over the minimal thresholds. Let Ω denote
the set of all interesting rules. That is Ω = {R|supp(R) ≥ minsup ∧ conf(R) ≥
minconf}. Our purpose is to extract a set of representative rules from Ω. Our
approach consists of the following two steps:

(1) Clustering. We define a distance between two rules, and a diameter of a set
of rules based on distance of rule pairs. Intuitively, the rules in Fig. 1 should
be clustered into three groups.

(2) Selection. For each cluster, we select exactly one rule as its representative
rule. We define a coverage for each rule. It measures the degree of a certain
rule to “cover” all others.

In the following two sections, we discuss these two aspects respectively.

3 Clustering Association Rules

Let Ω = {r1, · · · , rn} be a set of association rules. Each rule ri contains an area
in LHS. We denote also the area as ri without confusion. In the followings, we
use the word “rule” and “area” in the same meaning.

Definition 1. Let r1 and r2 be two rules. The distance of r1 and r2 is defined
by

dist(r1, r2) =
√
Σn

i=1((a
(1)
i − a(2)i )2 + (b(1)i − b(2)i )2) (1)

where ri = {a(i)1 ≤ A1 < b
(i)
1 , · · · , a(i)n ≤ An < b

(i)
n } for i = 1, 2.

In this definition, we view the left and right terminals of a range on a numeric
attribute as two independent parameters. Thus a rule can be represented as a
point in a 2n dimension space. The distance of two rules is defined as the distance
of the two points in the space.

Definition 2. Let C = {r1, · · · , rm} be a set of rules, r ∈ C be a rule. A (aver-
age) distance of r to C is defined by

dist(r, C) = Σri∈Cdist(r, ri)/m (2)

Definition 3. Let C1 and C2 be two sets of rules. The (average) distance be-
tween C1 and C2 is defined by

dist(C1, C2) = Σri∈C1,rj∈C2dist(ri, rj)/(|C1| · |C2|) (3)

where |C1| and |C2| are the numbers of rules in C1 and C2, respectively.

The diameter of a cluster is the average distance of all pairs of rules in the
cluster.



A Distance-Based Clustering and Selection of Association Rules 427

Definition 4. Let C = {r1, · · · , rm} be a set of rules. A diameter of C is defined
by

d(C) = Σri,rj∈Cdist(ri, rj)/(m(m− 1)) (4)

Definition 5. Let C = {C1, · · · , Ck}, where Ci ⊆ Ω. C is called a clustering of
Ω if for a given threshold d0, the followings are satisfied.

1. Ci ∩ Cj = φ, (i = j)
2. d(Ci) ≤ d0
3. dist(Ci, Cj) ≥ d0, (i = j)

This definition gives a basic requirement for clustering. Obviously, the further
the distance between clusters, the better the clustering. In other words, we expect
to maximize the sum of the distance of all pairs of clusters. However, there are
O((n!)2/2n) number of candidates for clusterings. It is impossible to obtain an
optimized clustering by a native aproach.

In this section, we propose a heuristic approach to construct a clustering.
It is a hill-climbing algorithm working on a matrix of which cell represents the
distance of two rules. That is

D = (dist(ri, rj))n×n

We always select two rules (or two sets of rules) between which the distance is
the minimal. Hence, our algorithm consists of a loop, each of which combines
two lines/columns of the matrix of which crosspoint cell has the minimal value.

While combining two rules (or two sets of rules), we have to recompute the
distance between the combined cell and the other rules. The following properties
can be used for this increamental recomputing. They can be derived from the
definitions of diameter and distance, and Fig. 2.
Prop erty  6.  Let C 1 = {r1, · · · , rm }, C2  = {s1, · · · , sn } be two sets of rules.
Assume d(C1) = d1, and d(C2) = d2, and dist(C1, C2) = dist. The diameter
of C1 ∪C2 can be evaluated by the following formula.

d(C1 ∪ C2) =
∑

r,s∈C1∪C2
dist(r, s)/((m+ n)(m+ n− 1))

=
(
∑

r,s∈C1
+
∑

r,s∈C2
+
∑

r∈C1,s∈C2
+
∑

s∈C1,r∈C2
)dist(r, s)

(m+ n)(m+ n− 1)

=
m(m− 1)d(C1) + n(n− 1)d(C2) + (2mn)dist(C1, C2)

(m+ n)(m+ n− 1)

=
m(m− 1)d1 + n(n− 1)d2 + (2mn)dist

(m+ n)(m+ n− 1)

Prop erty  7.  Let C1 = {r1, · · · , rm }, C2  = {s1, · · · , sn } be two clusters. C3

be another cluster. Assume C1 and C2 are combined to a new cluster C1 ∪ C2,
then the distance between C3 and C1 ∪ C2 can be evaluated by the following
formula.
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dist(C3, C1 ∪C2) = (
∑

r∈C3,s∈C1∪C2
dist(r, s))/(|C3| · |C1 ∪ C2|)

=

∑
r∈C3,s∈C1

dist(r, s) +
∑

r∈C3,s∈C2
dist(r, s)

|C3| · |C1 ∪C2|
=
|C3| · |C1| · dist(C3, C1) + |C3| · |C2| · dist(C3, C2)

|C3| · |C1 ∪ C2|
=
md1 + nd2
m+ n

where d1 = dist(C3, C1), and d2 = dist(C3, C2).

d1
d2

dist

d

C1 C2

m points n points

d1=dist(C3,C1) d2=dist(C3,C2)

dist

C1 C2

m points n points

C3

(1) Diameter of C1 ∪ C2 (2) Distance between C3 and C1 ∪ C2

Fig. 2. Diameter and distance of clusters

The algorithm consists of a loop of two steps. The first step is to select the
minimal distance from the upper triangle of the matrix. If the value is less than
the threshold d0, the corresponding two rules (clusters) should be combined. The
next step is to generate a new matrix which has smaller size.
Al gorithm 8. Clustering
Input: a matrix D(i, j)
Output: clustering C = {C1, · · · , Ck}
Method:

1. Ci = {i} for i = 1, · · · , k; d = mini�=j{D(i, j)}; Assume D(s, t) is the minimal
distance element is D.

2. While (d ≤ d0) Do {
2-1. combine Cs and Ct, and let the new Cs be Cs ∪ Ct,
2-2. delete Ct from C.
2-3. generate a new matrix D′ = (ei,j)(n−1)×(n−1), where






es,s =
ns(ns − 1)ds,s + nt(nt − 1)dt,t + 2nsntds,t

(ns + nt)(ns + nt − 1)
es,j = (ns ∗ ds,j + nt ∗ dt,j)/(ns + nt), j = s, t
ei,j = di,j , i, j = s, t
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where ns and nt are the size of the s-th and t-th clusters, di,j is the
distance between Ci and Cj .

2-4. find the minimal distance fromD′: LetD′(s, t) = mini�=j{D′(i, j)} = d.
}

3. Output C. Assume the final matrix isD′
m×m. Then the diameter of cluster Ci

is ei,i.

The complex of this algorithm is O(n3). This is because that the most ex-
pensive step is finding the minimal element of the matrix in each loop.

Example 1. Let us consider a simple example. The rules contain only one at-
tribute in its LHS. That is, all rules can be represeted as a range in this case.
Let Ω = {[1, 3], [3, 5], [2, 4], [6, 7], [7, 9]}. The distance matrix is

D1 =





0 2
√
2
√
2
√
41 6
√
2

0
√
2
√
13 4
√
2

0 5 5
√
2

0
√
5
0





Assume that the threshold d0 = 2. The algorithm runs as follows.

1. FindD1(1, 3) which value is the minimal inD1. Since the valueD1(1, 3) < d0,
we combine the first and the third line/column at first. The new matrix
a 4× 4 one.

D2 =





√
2 (3/2)

√
2 (
√
41 + 5)/2 (11/2)

√
2

0
√
13 4

√
2

0
√
5
0





2. In the new matrix, the minimal value except the elements in the diagonal
line is D2(1, 2) = (3/2)

√
(2) < d0 Hence, we need to combine of the first

and second line/column of D2. The reduced new matrix D3 is,

D3 =




(4/3)

√
2 (
√
41 + 5 +

√
13)/3 5

√
2

0
√
5
0





3. Finally, since the minimal value cell D3(2, 3) > d0, the algorithm stops.

Ω is thus divided to three clusters. One is {[1, 3], [3, 5], [2, 4]}, and the others
are {[6, 7]} and {[7, 9]}.
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4 Selecting Representative Rules

The next phase of our approach is to select a representative rule for each cluster.
Since all rules in the same cluster are similar, it is reasonable to select only one
as a representative rule.

Definition 9. Le t C = {r1, · · · , rn} be a cluster of rules, and R ∈ C. The
coverage of R to C is defined as

α(R) = (Σr∈C‖r ∩R‖/‖r ∪R‖)/|C| (5)

where ‖X‖ is the volume of the area X. r∪R and r∩R are defined in an ordinary
way. A rule R is called representative rule of C if α(R) is the maximal.

The measure α(R) reflects the degree of one certain rule to cover all others.
It can be used as an objective measure for selection. In the following section, we
can see from an example that this measure is better than the others like support.

Example 2. Let us consider Example 1 once again. For cluster {[1, 3], [3, 5], [2, 4]},
we can evaluate that α([1, 3]) = 4/9, α([3, 5]) = 4/9, and α([2, 4]) = 5/9.
Hence, [2,4] should be selected as the representative rule of the cluster. The
other two clusters are single element clusters. The rule itself is thus the repre-
sentative rule of the cluster. Hence, we finally obtain a set of representative rules
for Ω. It is {[2, 4], [6, 7], [7, 9]}.

It is easy to develop an algorithm with O(n2) complexity to select a repre-
sentative rule from the cluster C .

5 Experiments

The first experiment is to apply our approach to analyse a set of associa-
tion rules extracted from an adult database. The association rule has the form
“fnlwgt ∈ [a, b] ⇒ (income < 50K)”. The RHS of the rule can be viewed as a
Boolean attribute. The database contains 32560 tuples. When we set
minconf = 0.8 and minsup = 0.03, we obtained 310 rules.

In the first step, we represent these rules as points in a 2D space. By our
algorithm, they formed three clusters (Fig 3(a)). Furthermore, three rules are
selected from three clusters, respectively. The representative rule of the cluster 1
is showed in Fig. 3(b).

The second experiment is to compare our coverage measure with the support
measure as selection metric. We consider another attribute “age” in the adult
database to see the association relation between “age” and “income”, that is,
pattern of rule “Age ∈ [a, b] ⇒ Income < 50K”. Let the threshold of confi-
dence θc be 0.8. Fig. 4 (a) shows the range which support is the maximal and
confidence is greater than θc. From the figure we can see that the selected range
covers a large part of which confidence is less than θc. It is because that the left
part of the range is with a confidence which is much higher than the θc. To be
opposite, Figure 4 (b) shows the range of which coverage is the maximal and its
confidence and support are greater than the given thresholds.
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Fig. 3. The X-axis and Y-axis represent the left and right terminal of the range
in the LHS of a rule, respectively.
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Fig. 4. Comparison of the measure of coverage and support



432 Xiaoyong Du et al.

6 Conclusions and Further Work

Selection of representative and useful association rules from all candidates is
a hard problem. Although it depends on user’s interests in nature, we believe
that some objective measures are helpful for users to select. For association
rules on numeric attributes, we observed that there exist many similar rules.
We thus propose a distance-based clustering algorithm to cluster them. The
clustering algorithm is a heuristic hill-climbing and matrix-reducing procedure.
The complexity is O(n3), where n is the number of association rules. We also
propose an objective measure called coverage for selection of representative rule
for each cluster.

Some further work is needed. How to deal with attributes with different types
and/or scales in the LHS of the rules is interesting. Further evaluation of the
effectiveness of our approach in real applications is also necessary.
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Abstract.  Mining for common motifs in protein tertiary structures holds the
key to the understanding of protein functions.  However, due to the formidable
problem size, existing techniques for finding common substructures are
computationally feasible only under certain artificially imposed constraints,
such as using super-secondary structures and fixed-length segmentation.  This
paper presents the first, pure tertiary-level algorithm that discovers the common
protein substructures without such limitations.  Modeling this as a maximal
common subgraph (MCS) problem, the solution is found by further mapping
into the domain of maximum clique (MC).  Coupling a MC solver with a graph
coloring (GC) solver, the iterative algorithm, CRP-GM, is developed to narrow
down towards the desired solution by feeding results from one solver into the
other. The solution quality of CRP-GM amply demonstrates its potential as a
new and practical data-mining tool for molecular biologists, as well as several
other similar problems requiring identification of common substructures.

1. Introduction

This paper describes a new algorithm capable of discovering maximal common
substructures from large, complex graph representations of given structures of
interest.  The ability to produce high-quality solutions in reasonable time has been a
long standing challenge, since the maximal common subgraph (MCS) problem is
known to be NP-hard.  Overcoming the size limitation of current pattern discovery
techniques based on conventional graph theory turns out to be even more significant.
Finally, the algorithm is demonstrated to be not only a general, useful data-mining
tool but also an effective method for analysis of protein structure, and function.

In recent years, molecular biologists have been devoting their efforts on the
analysis of protein structure commonality.  It is of great interest for a number of
reasons.  The detection of common structural patterns (or, motifs) between proteins
may reveal the functional relationships.  Moreover, the results of Jones and Thirup [1]
have indicated that the three-dimensional structure of proteins can often be built from
substructures of known proteins.  In other words, the mining of protein motifs may in
fact hold the key to the question of how proteins fold into unique and complicated 3D
structures.  The understanding of the ‘protein folding’ problem will further contribute
to the design of new and more effective drugs with specific 3D structures.

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 433-442, 1999. 
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A number of automated techniques have been developed for this purpose.
Rosmann et al. pioneered the technique of superimposing two proteins.  Approaches
using variations of structure representation, similarity definition, and optimization
techniques have been deployed [2,3,4].  Most representative among these techniques
include those of Grindley et al.[3], and Holm and Sander [4].  Grindley et al. pre-
processed the protein tertiary structures into a collection of coarser representations,
the secondary structures, then performed maximal common subgraph matching on the
resultant representations.  Holm and Sander discarded the notion of secondary
structure, and, instead, pre-segmented the proteins into fixed-length patterns.  Then a
Monte Carlo random walk algorithm is used to locate large common segment sets.

All the aforementioned techniques are subject to artificially imposed constraints,
such as using super-secondary structures and fixed length segmentation, which could
damage the optimality of the solution.  This paper presents a new maximal common
sub-graph algorithm that overcomes those limitations.

2. Protein Common Substructure Discovery by MCS

Similar 3D protein structures have similar inter-residue distances.  The most often

used inter-residue distance is the distance between residue centers, i.e. αC atoms.  By

using the inter- αC distance, the similarity can be measured independent of the
coordinates of the atoms.

The similarity of two proteins P1 and P2 tertiary structures can be defined as,

∑∑
= =

=
M

i

M

j

jiS
1 1

),(φ
(1)

where M is the number of matched αC atom pairs from P1 and P2, and ),( jiφ  is a

similarity measure between the matched pair i and j, which is defined as a threshold

step function that outputs 1 when 0|),(),(|
21

≥−− jidjidd PPthresholod , otherwise

0.  This removes any contribution of unmatched residues to the overall similarity.
Definition 1:  The Protein Common Tertiary Substructure (PCTS) Problem is

defined as that of maximizing similarity measure of eq. (1), seeking the maximum

number of matched αC atom pairs satisfying the distance measure.

2.1 Maximal Common Subgraph Approach

In recent years, graph matching algorithms have been liberally used to perform
protein structure analysis (such as the work of Grindley et al. [3]).

Definition 2: A graph G(V,E) is defined as a set of vertices (nodes), V, together
with a set of edges, E, connecting pairs of vertices in V ( VVE ×⊆ ).  A labeled
graph is one in which labels are associated with the vertices and/or edges.

The protein structures can be easily represented as labeled graphs.  For the purpose
of PCTS problem, proteins are considered labeled graphs with vertices being the
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αC atoms, and edges labeled with the αC -to- αC distances between the vertices.
Then the largest common substructures between two proteins is simply the maximal
common sub-graph (MCS) isomorphism problem:

Definition 3: Two graphs, G1 and G2, are said to be isomorphic if they have the
same structure, i.e. if there is a one-to-one correspondence or match between the
vertices and their (induced) edges.  A common sub-graph of G1 and G2, consists of a
sub-graph H1 of G1, and a subgraph H2 of G2 such that H1 is isomorphic to H2.

The flexibility allowed by the similarity measure can be easily incorporated into
this graph theoretical approach for solving the PCTS problem.  For example, the angle
or bond rigidity in the protein geometry could be relaxed.  The similarity measure,
then, only needs to allow a looser edge label and the distance.

2.2 Transforming to Maximum Clique Problem

Brint and Willett [5] performed extensive experiments in the 80’s and concluded that
the MCS problem can be solved more effectively in the maximum clique domain,
which can be done by using the following transformation.

Definition 4: A clique is a complete graph.  The Maximum Clique (MC) Problem
is to find the clique with the maximum number of nodes in a given graph.

[Transforming from MCS to MC]  Barrow et al. [6] gave a transform to convert
MCS into the MC problem by the following procedures:
Given a pair of labeled graphs G1 and G2, create a correspondence graph C by,
1)   Create the set of all pairs of same labeled nodes, one from each of the two graphs.
2) Form the graph C whose nodes are the pairs from (1).  Connect any two node

pairs N1(Ai, Bx), N2(Aj,By) in C if the labels of the edges from Ai to Aj in G1 and
Bx to By in G2 are the same.

Solving the MCS problem becomes that of finding the maximum clique of C and then
map the solution back into a MCS solution by the inverse transformation.

3. Algorithms

3.1 Exploiting the Relations Between MC and Graph Coloring

Both problems of maximal common subgraph and maximum clique are NP-hard.
Numerous MC algorithms have been developed over the years.  However, their
solution quality tends to vary significantly from test case to test case, mainly because
they are mostly heuristic algorithms trying to solve a multi-dimensional optimization
problem with local optima “traps”.  Another NP-hard problem of graph coloring (GC)
is tightly coupled with MC in an iterative loop aiming to converge to the optimal
solution of either problem, or in many cases both.  In this section, only the most
relevant parts to the MC-GC solver are included, leaving other details in [7].  The
algorithmic framework of the MC-GC solver is shown in Figure 1.

Given a graph G(V,E), the relation between MC and GC is fundamentally
expressed by the following well-known theorem:
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Fig. 1.  Algorithmic Framework for CRP-MCS

Theorem 1: Given the size of the maximum clique, )(Gω , and the chromatic

number, )(Gλ , then )1()()( +∆≤≤ GG λω , where ∆  is the maximum degree of

G.[8]
With the chromatic number and maximum clique size bounding each other, it

provides a perfect termination condition for the loop process shown in Figure 1.  If
such situation occurs, then the optimal solutions for both problems are solved
simultaneously.

In order to devise a set of heuristics for clique-finding and graph coloring, the
following definitions and theorems are utilized.

Definition 5: Given a coloring for G, the color-degree of vertex vi, cdeg(vi), is
defined as the number of different colors of the adjacent nodes, the color-vector of
vertex vi, cv(vi), is defined as the set of colors that vi can use not conflicting with the
colors assigned to its adjacent nodes.

Lemma 1: For any set V of vertices, let the size of the maximum clique that
includes S be )|( VGω .  Then, |)| )cdeg(()|( VVVG +≤ω .  (Proof omitted here.)

Definition 6: A set D ⊂ V is defined to be dominant if
EvuDuDVv ∈→∈∃∈∀ ),(),\( .  Given a complete coloring C for G, for

any color c, )}(|{ vcvcv ∈  forms a set of dominant Sc vertices.  The color that

corresponds to the smallest Sc is called the (minimal) dominant color.
Assuming that the graph has uniform probability for the edge connection, then the

probability of a vertex in any dominant set can be derived as follows,

Theorem 2: Given a random graph p
nG (V,E), where the graph size is n, the edge

probability for each pair of vertices e(u,v) = p, and a specific maximum clique isω ,
for a complete coloring C for G, if the minimal dominant vertex set is Sc. then

cSv ∈∀ , the probability that v belongs to a clique of size ω  is






 −−

⋅





−−

2

11||

||)1(1

ωω

p
p

p
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.

Therefore, selecting a vertex from the smallest dominant vertex set means a higher
probability for it to be in the maximum clique.  This then underlies the strategy of
using a GC solution as an initializing “seed” for the MC computing process.

Maximum
Clique cl

Transformed MCS

    MCS problem

Correspondence
Graph

Graph
Coloring

Clique
FindingHash
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Definition 7: When coloring a graph, the color reduction of node vi is defined as
the process of removing colors from cv(vi) in conflict with the colors of all of its
neighbors.

Graph coloring is generally accomplished by sequentially assigning colors to
uncolored vertices.  The risk of such sequential decision process is that once a vertex
is colored with color c when there is more than one choice, due to color reduction, the
adjacent vertices are forced to use the other available colors. Consequently, the
coloring solution could be misdirected away from the optimal due to premature color
decisions. The color reduction process is used in this work precisely to prevent
premature commitments in the effort of achieving minimal coloring.

Definition 8: A Saturated Clique (SC) is defined as a clique cl whose size is equal

to the union of all node color vectors, i.e., |||)(| clvcv
clv

=∪
∈

.

3.2 Solving MCS via MC (and GC)

Based on the observation of the close relations between graph coloring and maximum
clique problems, a complementary algorithm, CRP-MCS, that combines graph
coloring and clique-finding algorithms is designed to solve the maximum clique
problem.  A resource management methodology [9], called Constrained Resource
Planning (CRP), provides the guiding principles and motivates the solution strategies
for both the coloring and clique-finding processes of the iterative loop.  Solution from
one, and its derived information, is used to initialize the counterpart process, and
execute alternatingly until a solution is found.  Such an initialization process is called
‘seeding’ in this work.  Each sub-algorithm terminates upon completion of its targeted
goal and then hands over the result to the other.  The entire iterative process
terminates when certain criteria are met, and the maximal clique solution is
transformed into a MCS solution.

3.2.1 Clique-Finding Algorithm
Each graph coloring process produces different color distribution.  Since our clique-
finding algorithm relies on the coloring information, the coloring result C comes from
previous coloring process naturally becomes the seed for clique-finding.  The set of
nodes that use the dominant color is set to be the seed, or pivot vertices, for the
clique-finding process, and large cliques are sought in Nbr(v) for each pivot v.

In addition, for any clique in the graph, each color contributes at most one vertex.
Moreover, once a vertex is chosen to add into a temporary clique, vertices that do not
connect to it have to be disregarded, thus may result in some colors being disregarded
without contributing any vertex.  Therefore, it is highly desirable to preserve as many
colors as possible during the process of searching for a clique.  Similar to the
principle of selecting the pivot vertices above, the color that contains fewest vertices
is chosen.  Then within the selected color, the vertex v that has highest color degree is
selected and added into the temporary clique.

The clique-finding algorithm is summarized as follows.

Algorithm CLIQUE-FINDING (input: coloring C, largest
clique found cl0)
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1: Let BU = UpperBound(G, C). If | cl0 | = BU , terminate.
2: Locate dominant color c, set Pivot node set P
   = |}||'| ,'color  ),1B()cv(|{ U cccvvv =∈−≥
3: For each p in P,
    Set G’={v | v ∈Nbr(p)}. cl=NULL, set tmp-cl= [p]
    While |tmp-cl| > 0,
     bcdeg = MaxCDEG(G’)

      select c that |1)-bcdeg()(cdeg)('|{| ≥∧=∧∈ vcvcvGvvMIN

        If ties, select c that ∑
=cvcvv

vMAX
)(,

)(deg

      Pick node v from c that MAX(cdeg(v))

        If ties, pick v that |)}(,|),({| vNbrwuwueMAX ∈
      If InHash([v, tmp-cl]), select another node
       Set tmp-cl = [v, tmp-cl], add tmp-cl into HASH

       Set G’=G’- )(vNbr
       If |G’| = 0, Call BackTrack()

3.2.2 Coloring Algorithm
As discussed earlier, color reduction (CR) plays an active role in the GC algorithm.  It
not only helps to reduce the solution space by removing conflicted colors from the
color vectors, but also assists to reach the chromatic number and decide the
convergence of the solution.

Theorem 4: [Coloring Lower Bound BL] Given a graph G, assume that a coloring
initializes with k colors.  If during performing pure color reduction, there is any, (1)

node with zero size cv, or (2) clique cl and m= ||)( 
||    to1

clclvv ii
cl

<∈∪ , then G

needs at least (k+1) colors (k+m-|cl|) if (2) is the case).
Moreover, since )()( GG λω ≤ , the lower bound for any graph coloring process

would be the maximum of the BL derived from previous coloring process and the
largest clique that was found in earlier clique-finding process.

Because that the largest clique found in earlier clique-finding processes may in fact
be the new lower bound for graph coloring, it is treated as the ‘seed’ for a new
coloring process.  Specifically, for the largest clique cl with size k, each vertex in cl is
assigned with a unique color from 1 through k.

In order to perform color reduction by using the concept of saturated cliques (SC),
a set of cliques needs to be identified.  Since the proposed algorithm is an iterative
process, all the cliques found by clique-finding process and stored in the hash can be
utilized.  The more cliques collected, the higher chance of more SC’s for color
reduction, thus postpones unnecessary forced coloring.  This could lead to the use of
fewer colors for coloring the entire graph.  A supplement algorithm designed for this
purpose is described in [11].

For any state of the coloring, vertices that have smaller color vectors tend to have
less chance of being assigned colors on them.  In order to avoid overuse too many
colors, it is critical to process these vertices as earlier as possible.  Therefore, these
vertices are regarded as the most constrained tasks to be accomplished.  Meanwhile,
although there is already fewer choices than the others for coloring these vertices,
careless assigning color would still result in overuse of colors.  Thus, each color from
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the color vector needs to be examined to determine which would have least impact on
the rest.  The impact is evaluated by the reduction of color vector sizes of uncolored
neighbor set, then the color with least impact would be assigned to the vertex.
The complete algorithm is shown below.

Algorithm COLORING (input: graph G, hash memory: HASH)

1. Set BL =MAX(BL, MAX(HASH))

2. Gv ∈∀ , assign v a color vector cv(v)={1 ... BL}
3. Color the largest untried clique cl in with 1~|cl|
4. Perform color reduction, and update BL by Theorem 4
5. while there is a node uncolored,
    Select a vertex v with MIN(|cv(v)|)

     If ties, select v that ∑
∈

∈∧∈
)cv(

|)}()(|{|
vc

ucvcvNbruuMIN

    Select c )(vcv∈  that |)}()(|{| vcvcvNbruuMIN ∈∧∈
     If ties, select c that ∑

u

vcvMAX |)(|  after CR.

    Perform color reduction.

3.3 Generic Pre-Processing/Dynamic Accessing Strategy for Large Problems

Although the MC solution provides an effective means for solving MCS, the O(m2n2)
space requirement for storing the adjacent matrix for the connection information is
simply too large for applications like the protein common tertiary substructure
problem.  Discarding the adjacent matrix and re-compute the adjacency between
vertices could alleviate the space consumption, however, it still requires O(m2n2)
computation time for visiting all the possible connections, which is now taking more
time since it needs to be recalculated.

A generic pre-processing/dynamic accessing technique is developed in this work to
handle such situation.  For the convenience of discussion, it is described for the
protein substructure problem, but it can be extended to a more general context easily.

Assume that P1 of size m and P2 of size n are the two proteins to be explored.  The
dominant subroutine and needs to be repeatedly performed during the computation is
to finding the adjacent vertex pairs.  To be more specific, given that v1 in P1 and v2 in
P2 is paired (matched), it is crucial to determine which vertex pair in the
correspondence graph is compatible with vertex pair (v1, v2).  Namely, to find out all

vertex pairs ),( ji uu , 21 , PuPu ji ∈∈ thresholdji duvduvd ≤−∋ |),(),(| 21 .

The complexity for a specific vertex pair alone is O(mn), and grows to O(m2n2) if the
connections for all vertex pairs need to be re-computed.  When the problem is small
enough to fit in the primary memory space, this can be done by simply a table look-up
at the adjacency matrix for the correspondence graph.  However, the space
consumption is too expensive for the protein common tertiary problems.

Instead of searching through the mn vertex pairs repeatedly, the complexity can be
reduced by pre-sorting all vertices in P2 with respect to each vertex in P2 in ascending
order in terms of edge labels (distances).  The complexity of the sorting can be done
with O(n2logn), which needs to be done only once, with the cost of additional O(n2)
space to the storage for the protein itself, rather than the expensive O(m2n2).  Each
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time to find the adjacent vertex pairs for vertex pair (v1, v2), it can be simply done
dynamically with the following algorithm:

Algorithm DynamicFindAdjacentPairs (input: v1, v2)

1. Set L=∅ , S=sorted_list(v1)

2. For each vertex v( 1vv ≠ )in P1
,

 d=distance(v1, v), l=d-dthreshold, u=d+dthreshold

 (s,e)=RangeSearch(l, u, S)
 For i=s to e, L={L|index(v2, I)}.  Return L

4. Experiments

(a) (b) (c )

(d) (e)  (f )

Fig. 1. (a) The backbone view of Synaptotagmin (1rsy), and (b) Fibronectin Type III domain
(1fna) (c) The similar structures between (a) 1rsy and (b) 1fna after alignment. (71 pairs
matched with r.m.s.d. = 1.742632 Angstrom) Red : Similarity from (a) 1rsy, Blue : Similarity
from (b) 1fna . (d) The backbone view of Hen egg-white lysozyme (1lyz), and (e) T4 phage
lysozyme (2lzm) (f) The similar structure structures between (d) 1lyz and (e) 2lzm after
alignment.  (106 pairs matched with r.m.s.d. = 3.923571 Angstrom)  Red: Similarity from (e)
1lyz, Blue : Similarity from (f) 2lzm
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A set of protein files [6] frequently referenced in the molecular biology literature is
selected to test the CRP-MCS algorithm.  The protein sizes range from 108 to 497

αC atoms.  They are
Hen egg-white
lysozyme (1lyz), T4
phage lysozyme
(2lzm), actinoanthin
(1acx), superoxide
dismutase (1cob),
tumor necrosis factor
(1tnf), methylamine
dehydrogenase
(2mad), defensin
(1dfn), neurotoxin
(1sh1), fibronectin
cell-adhesion
module type III-10
(1fna), and
synaptotagmin I
(1rsy).  The program
is implemented in C
and run on an SGI
Onyx(R10000) machine using single processor.  Each experiment on a given pair of
proteins is set with 10 min. time limit, and the best result produced is used to align the
two proteins and derive the error measurement.

The solution quality is measured with (a) number (N) of matched αC atom pairs,

and, (b) the root-mean-square deviation (r.m.s.d.) which is defined as 
N

d
N

i
i∑

=1

2

,

where di is the distance between the i-th pair of αC atoms.  The results are compared
against those from the DALI web-server (http://www2.embl-ebi.ac.uk/dali/), which is
an implementation of Holm and Sander’s work (4).  The time cut-off of 10 minutes
for structures with a homolog in the representative set seems to be sufficient.

Two typical alignment results are shown in Figure 2, where the  optimally aligned
protiens using the discovered largest common structures are shown.  The number of

matched αC atom pairs and the r.m.s.d. values are also included.
There are totally six experiments conducted.  They are (1) 1dfn vs. 1sh1, (2) 1fna

vs.1rsy, (3) 1acx vs.1cob, (4) 1acx vs.1tnf, (5) 1acx vs. 2mad, and (6) 1lyz vs. 2lzm.
The results obtained by submitting to DALI server and by the CRP-MCS algorithm
are plotted in Figure 3, where each experiment is shown in a circled area.  Since the
DALI server usually provides only one solution for each submission, the comparison
is made by setting corresponding threshold parameters in the CRP-MCS solution such
that either the no. of matched pairs or the r.m.s.d. as close to the DLAI one as
possible.  As shown in the comparison chart, the CRP-MCS algorithm resulted in
better solutions in all six experiments.  Analysis on the corresponding pair

Fig. 3. Comparison of the protein common tertiary substructure
discovery between using DALI and proposed CRP-MCS.  Each
circled area represents one of the six experiments.
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information shows that the solutions contain fragments that can not be detected by
fixed-length approaches.  Therefore, this tool is expected to provide more flexibility
and optimality for analyzing the protein structures.

5. Discussions
Maximal common sub-graph approach has been of great interest to many areas due to
its ability to extract the largest common substructure, the ease to mapping the problem
and the flexibility to incorporating various constraints.  However, it has been limited
to small-size problems due to the lack of efficient algorithms, both in space and time
complexity.  This algorithm, CRP-MCS, solves the MCS problem in the maximum
clique domain using MC and GC as complementary solvers.  Although the problem is
NP-hard, it’s shown to reach near optimal solutions for a spectrum of benchmark
cases [7] in reasonable time.  Moreover, a generic pre-processing and dynamic-
accessing technique is developed to circumvent the space/time overhead.  The result
is shown to be a new and effective data-mining tool for discovering the large common
substructures between proteins at pure tertiary level for the first time.

The tool allows fully free matching among the αC atoms for the protein problem.
As demonstrated in the experiments, it has the capability to find near-optimal
common substructures that are not possibly to be detected by conventional techniques
that use pre-defined patterns or segments.  Thus it provides the molecular biologists
more flexibility to discover the common tertiary substructures.

Structural similarity is an important yet difficult data-mining problem.  The CRP-
MCS algorithm presented here is shown to successfully bring the graph-based
approach to an important real-world problem and is expected have more applications
in assisting the discovery of new knowledge in other related areas also [7].
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Abstract  Concept lattice is an efficient tool for data analysis. In this
paper we show how classification and association rule mining can be
unified under concept lattice framework. We present a fast algorithm to
extract association and classification rules from concept lattice.

1. Introduction

Concept lattice, also called Galois lattice, was first proposed by Wille[1]. A node of
concept lattice is a formal concept, consisting of two parts: the extension (examples
the concept covers) and intension (descriptions of the concept). Concept lattice gives
a vivid and concise account of relations (generalization /specialization) among those
concepts through Hasse Diagram.

Classification rule mining and association rule mining are two important data
mining techniques. There are already some classification systems based on concept
lattice. Empirical evaluation shows that concept lattice based systems have
comparable performance with those typical systems such as C4.5 [5]. Association rule
mining is a hot research topic in data mining recently. Some authors have shown that
concept lattice is a nature framework for association rule mining [4]. In this paper we
would show that concept lattice is an appropriate tool for integrating association and
classification rule mining. Some author also discussed the topic [2]. But we argue that
concept lattice embodies the relationships between concepts in a more understandable
way. Therefore it is very interesting dealing with the task under the context of concept
lattice.

2 Basic Notions of Concept Lattice

In this section we recall necessary basic notions of concept lattice briefly. the detail
description can be found in [1].

Suppose given the context (O, D, R) describing a set O of objects, a set D of
descriptors and a binary relation R, there is a unique corresponding lattice structure,
which is known as concept lattice. Each node in lattice L is a pair, noted (X, Y),
where X∈P(O) is called extension of the concept, Y∈P(D) is called intension of
concept. Each pair must be complete with respect to R. i.e.:
      (1)  X ={x∈O∀y∈Y, yRx}�(2) Y = {y∈D∀x∈X, yRx}�

A partial order relation can be built on all concept lattice nodes. Given H1=( X1,
Y1) and H2=( X2, Y2)�let H1< H2 ⇔ Y1⊂ Y2, the precedent order means H1 is a direct

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 443-447, 1999. 
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parent of H2. The Hasse diagram of the lattice can be generated using the partial order
relation. If H1<H2 and there is no other node H3 such that H1<H3<H2, there is an edge
from H1 to H2.

Below is an example of context and corresponding lattice and Hasse diagram.

In our algorithm a node in lattice is denoted by (C=|X|, Y), as content of X does
not matter. Now it’s easy to see if C is bigger than some threshold t, X is a maximal
large item set.

Implication rules can be derived from concept lattice. Rule Q⇒R holds if and
only if the smallest concept (intent) containing Q also contains R[6].

3 Building the Lattice

In order to reduce the number of nodes in lattice, it is necessary to introduce a support
threshold. We adapt Bordat’s algorithm [3] by introducing a support threshold ε and
making other minor improvement. Because lattice-constructing algorithm only find
only maximal itemsets, hence they’re much faster than Apriori algorithm.

The lattice L is initialized with topmost node (|O|,∅) and expanded by
constructing its subnode recursively. In the algorithm we use an array of pointer PX to
keep track of first appearance of all single attr-val pair in the lattice. This structure
will be used later in the association rule mining. Once the support of a node is found
lower than ε, the node will no longer be expanded. We improved the original
algorithm by utilizing counting information. That is, instead of checking whether
extensions of two attr-val pair set are identical, we check whether the count of either
extension is equal to the count of extension of the union of the two attr-val pair set.
Experiments show that it is about five time faster than original algorithm (when ε is
set to 0). The lattice built by this algorithm is in fact a “frequent” lattice, i.e. it
contains only those nodes whose support is greater than ε. Thus the algorithm reduces
the complexity of building the complete lattice.

A B C D
1 a1 b1 c1 d1

2 a1 b2 c1 d2

3 a2 b1 c2 d3

4 a3 b3 c1 d4

#1({1, 2, 3, 4}, ∅)

#3({1,3}, {b1})

#8({3}, {a2,b1,c2,d3})

#4({1,2,4}, {c1})
#5({1,2}, {a1, c1})

#7({2}, {a1,b2,c1,d2})

#6({4}, {a3,b3,c1,d4})

#9({1}, {a1,b1,c1,d1})

#10(∅, {a1,a2,a3,b1,b2,b3,c1,c2,d1,d2,d3,d4})
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4 Rule Extraction from the Lattice

In this section we present an algorithm which generates all non-redundant rules for a
given item set (set of attr-val pair) as right hand side (RHS). We first find the smallest
node containing the item set, then launch a breadth-first traverse to its sub-lattice.
From each node we generate all non-redundant rule. Because the way we build the
lattice, the support of all the rule generated are greater than minimal support. We first
produce all rule whose confidence is 1 (i.e. implication rules) and then appropriate
lower confidence rules. The way we generate (implication) rule relies on following
observations.
Observation 1  If a node H�(C, X) has only one parent node P=(C’, X’), then
(1) The left hand side(LHS) of rules generated from H consists of a single item.
(2) For each attr-val p∈{X−X’}, there is a rule p⇒X−p.

Suppose the LHS of a rule generated from H consists of more than one item
(attr-val). If all these item are also included in X’, they must have been already treated
in parent P because of our top down traverse fashion; if there exists an item p∈{X−X’}
in LHS, the rule is redundant with respect to p⇒X'−p, the latter is simpler.
Observation 2  If a node H�(C, X) has d parent nodes P1(C1, X1), P2(C2, X2), �,
Pd(Cd, Xd), there is a rule p⇒X−p for each item p∈{X−(X1∪Y2∪...∪Xd}.

Because any item p∈{X−(X1∪X2∪...∪Xd} is the first time appearing in the
lattice, it is obvious its confidence is 1. Any rules whose LHS strictly include p is
redundant with respect to p⇒X−p.
Observation 3 If a node H�(C, X) has two parent nodes P1(C1, X1), P2(C2, X2), ∀p1∈
{X1−X1∩X2} and ∀p2∈{X2−X1∩X2}, there is a rule p1p2⇒X−p1p2.

That is because if there are two items coming from the same parent, their
relationship must have been described before. So Any rules whose LHS strictly
include p1p2 would be redundant with respect to p1p2⇒X−p1p2.

Observation 3 can be generalized to the case of any number of parent nodes.
In the algorithm, we adopt a heuristic search strategy. If an item set can not form

a implication rule, it is saved in a candidate set. In the next loop, all items in the
candidate set are joined in an Apriori-like manner. Then new candidates are tested
against whether they can form an implication rule.

As to rules whose confidences are below 1, we use a data structure PX (see
previous section) to aid computing confidence. PX points to first appearance of every
single element of LHS. Function PX(lhs) finds the first appearance of LHS and thus
its support. If LHS of such rule is included in another rule, it will be discarded since
longer LHS rule have higher confidence.

The computation depends heavily on judging whether several elements are
included in a common parent. We introduce a bit vector V to do the judgement
efficiently. Every element in the node has a bit vector. If the element also appears in a
parent, the corresponding bit will be set. Thus any combination of those elements can
be judged by simple and fast AND operations.
Rule Extraction Algorithm for specific RHS
1. GenRule(itemset rhs)
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2.  Find first node H containing rhs by breadth-first traverse
3.  queue←H, ruleset←∅, singleset←∅
4.  while queue not empty
5.   Remove H from queue head. push all children of H into queue tail
6.   if H not visited  then { GenRuleFromNode(H); mark H as visited}
7.  endwhile
8. GenRuleFromNode(H=(C,X))
9.  d←number of parents of H: (C1,X1)…(Cd,Xd)
10.  if (d= =1)  {ruleset=ruleset∪{p→rhs | p∈{X-X1}};return;}
11.  for every parent of H compute their union S and generate array V.
12.  ruleset=ruleset∪{p→rhs, | p∈{X-S}};
13.  ruleset=ruleset∪{p→rhs, conf=||PX(p)||/||H|| | p∈S, not sameparent(p, rhs), p

not generated before}
14.  L←{S1∪S2| S1∈S, S2∈S}
15.  while L not empty
16.   S←∅
17.   for every element K in L
18.    if each item in K aren’t included in same parent and not R∈ruleset that R⊆K
19.     ruleset=ruleset∪{K→rhs, sup=C/||O||, conf=1}
20.    else
21.    S←S∪K
22.    if not sameparent(K,rhs) then ruleset=ruleset∪{K→rhs, conf=||PX(K)||/||H|| }
23.    endif
24.   endfor
25.   L←{S1∪S2| S1∈S, S2∈S, ||S1∪S2||=||S1||+1}
26.  endwhile
27.  return ruleset;

Line 14-27 generates rules whose LHS contain more than one item in an
Apriori-like manner. The algorithm is written according to above observations. The
rules generated are sorted by confidence (larger to smaller). If confidence is same,
higher support would be first. The classification is done by matching the new instance
against every rule from begin to end. If no rule fires, then the majority class is used.
When building the lattice, class attribute values are treated as an ordinary attribute
and are added to the lattice. The rule extraction algorithm is run a number of times by
assigning every class attribute value as parameter value. Then all rules are collected
together performing the classification.

5 Experiments and Conclusions

We implement our algorithm and do the comparison using MLC++. First we did some
preliminary test on lattice constructing algorithm and found it much faster than
Apriori. This is because the algorithm produces only maximal large item sets. Thus
the comparison between them doesn't seem to have much meaning.

In this section we mainly present the result of comparing C4.5 and our algorithm.
We use 10 datasets form UCI Repository for the comparison. In our experiment,
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minimum confidence is set to 0.6 and minimum support is set to 0.01. Our experiment
is done on a PC with 64Mb PII 233 running windows 98. Our algorithm is referred as
CLACF (Concept Lattice based Association and Classification rules mining
Framework). The discretization is done using entropy method in MLC++.

Datasets C4.5 CLACF Rule time No. of rules Lattice time
Breast 5.0 3.8 20.1 307 24.6
Diabetes 25.8 27.8 2.14 35 0.9
Glass 31.3 18.9 0.88 49 0.82
Heart 19.2 16.6 3.51 528 11.1
Iris 4.7 4.0 0.0 19 0.0
Led7 26.5 23.7 0.83 278 8.0
Monk1 19.0 9.0 0.22 127 2.5
Monk2 30.1 19.9 0.38 169 4.3
Monk3 8.3 5.1 0.28 113 2.4
Pima 24.5 27.1 1.0 25 0.4
Average 18.5 15.6 2.93 165 5.43

Column 2 and column 3 show error rates of C4.5 and CLACF. CLACF
outperforms C4.5 in 8 out of 10 datasets, and has an average error rate of 15.6, which
is lower than 18.5 of C4.5. Column 4 to 6 give the execution time of the two
algorithms and the number of rule generated respectively. We can see the algorithm
produces relatively smaller set of rules comparing with [2] while retaining accuracy.

In this paper we propose a framework to integrate classification and association
rule mining based on concept lattice. We adapt an existing lattice constructing
algorithm to generating a ‘frequent’ lattice and present an efficient algorithm to
produce association/classification rules from the lattice. In our future work, we will
focus on developing faster algorithm by further exploring the relationship stored in
the concept lattice.
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Abstract.  We consider the problem of discovering the conceptual clusters from
a large database. From Z. Pawlak’s information system in rough set theory, we
define an information matrix, information mappings and some concepts in data
mining literature such as large sets, association rules and conceptual cluster. We
propose a combined method of information matrix, Kohonen's neural network
for large set discovery and genetic algorithm for conceptual cluster validity. We
present an application of our method to a student database for discovering the
rules contributing to the training of the gifted students.

1 Introduction

Data Mining (DM) is to discover the interesting patterns present implicitly in large
database [7]. In this paper, we study the problem of conceptual cluster discovery from
a large database. This problem is stated as: given a set of objects, conceptual
clustering discovery is to find clusters of objects based on a conceptual closeness
among objects [1],[2],[3],[4]. We proposed a method for solving and expanding this
problem. Based on Z. Pawlak’s information system [9], we define an information
matrix and some concepts then we employ a combined Kohonen’s self-organizing
algorithm (SOA) and Genetic algorithm for conceptual cluster discovery and building
rules from these discovered concepts. We build an information matrix in the computer
memory for improving the speed of mining process. The paper is organized as
follows. Section 1: Introduction. Section 2: Formal definitions. Section 3: Problem
statement.  Section 4: Using SOA for discovering large descriptor sets. Section 5:
Using GA for cluster validity. Section 6: An application to a student database. Section
7: Conclusions and future works.

2 Formal definitions

In this section, we define an information matrix and some concepts related to our
proposed method. Based on these definitions, we implement a set of functions for
processing the mining tasks in the computer memory instead of scanning the whole
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database in disk. Therefore, we can improve significantly the speed of mining
process.

2.1 Definition 1: Information matrix

Information matrix is defined as B=(O,D) where O={o1,…,on} is a finite set of n
objects and D={d1,…,dm} is a finite set of m descriptors. Let bij (i=1,…,n and
j=1,…,m) be the element of matrix B, bij=1 if oi has dj , otherwise  bij=0.

2.2 Definition 2: Information mappings

Given a finite set O of n objects and a finite set D of m descriptors [5]. Let P(D) be a
power set of  D, P(O) be a power set of  O. Information mapping χ is defined as:
χ: D →{0,1}. Given o∈O and d∈D, χ(o,d) = 1 if o has d, otherwise χ(o,d)=0.
Mappings ρ and λ are defined as: ρ: P(D) → P(O)   and   λ: P(O) →P(D) where:

Given   S ⊆ D   then   ρ(S) = {o ∈ O:  ∀d∈S , χ(o,d) =1}
Given  X ⊆ O   then   λ(X) = {d ∈ D:  ∀o∈X, χ(o,d) = 1}

2.3 Definition 3: Large descriptor set

Given an information matrix B=(O,D) and a threshold τ which is the MINSUP of the
large item set in data mining literature[7]. A large descriptor set S is a subset of D that
satisfy condition:  Card(ρ(S))/Card(O)>=τ, where Card is the cardinality of set.

2.4 Definition 4: Binary association rule

Given an information matrix B=(O,D) and a threshold τ. Let S be a large descriptor
set of B. Let Li , Lj be the subsets of  S. A binary association rule with threshold τ is a

mapping from Li to  Lj  and is denoted as Li →  Lj .

2.5 Definition 5: Confidence factor of a binary association rule

Let S be a large descriptor set of B, Li , Lj be the subsets of  S, Li → Lj be a binary
association rule with a threshold τ. The confidence factor CF(Li →  Lj) of this rule is
calculated by Card(ρ(Li)∩ρ( Lj) ) / Card(ρ(Li)).

2.6 Definition 6: Concept

A concept is a pair C= (X,S) where  X⊆O  and  S⊆D. X and S  satisfy following
conditions:
a) X ⊆ ρ(S) and λ(X) = S
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b)    ∀ Li , Lj ⊆ S and  Card(L i) = Card(Lj) =1 then  ρ( Li) ⊆ ρ( Lj ).

3 Problem statement

Problem 1: Given an information matrix B and a threshold τ, find all large descriptor
sets of B.  The large descriptor set determines the popular descriptors of data objects.
The threshold τ determines a measure of popularity [7].
Problem 2: Given an information matrix B and a threshold τ, find k conceptual
clusters C1,…,Ck  where Cj = (Xj, Sj). These conceptual clusters satisfy: a) ∩Xi = ∅
for  i=1,…,k  ; b)  ∩Si = ∅ for  i=1,…,k ; c) Card(Xi)/Card(O)>=τ; d) Maximize the
ratio Card(X1 ∪…∪Xk)/Card(O)  e) Ci is a concept. Conceptual cluster determines an
object set that has the same set of descriptors. Based on the concept C=(X,S), we
build rule Li → Lj   where   Li∪Lj =S and Li∩Lj =∅. It means that if object has all the
descriptors of Li (rule antecedent) then object has all the descriptors of Lj (rule
consequent).

4 Using SOA  for discovering large descriptor sets

In this section, we employ SOA for discovering the potential large descriptor sets [6].
SOA can be summarized as follows:

Step 1. Initialize all weight vectors of  Kohonen’s neural network
Step 2. Select the node with minimum distance dv to the input vector v(t).
Step 3. Update weight vectors of nodes that lie within a nearest neighbor set
          of the node (ic,jc):   wij(t+1) = wij(t) + α(t)(v(t)-wij(t) )
          for ic-Nc(t) <= i <= ic+Nc(t) and  jc-Nc(t) <= j <= jc+Nc(t)
Step 4. Update time t = t+1, add new input vector and go to (Step 2)

In the above algorithm, dv is Euclidean distance, α(t) is a gain ratio (0<=α(t)<=1) and
Nc(t) is the radius of neighbor set. Nc(t) and α(t) are decreased  monotonically with
time. The algorithm finishes when α(t) =0 or Nc(t)=0.
Given an information matrix in table 1, each row of this matrix corresponds to an
input vector of Kohonen’s neural network.

Table 1.  An information matrix for large descriptor set discovery.

d1 d2 d3 d4 d5 d6
o1 1 1 1 0 0 0
o2 1 1 1 0 0 0
o3 1 1 1 1 0 0
o4 0 0 1 1 1 1
o5 0 0 0 1 1 1
o6 0 0 0 1 1 1

After running SOA, we have the potential large descriptor sets:
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{d1, d2, d3},  {d4, d5, d6}, {d1, d2, d3, d4}. With τ=50%, {d1, d2, d3},  {d4, d5, d6} are
large descriptor set; {d1, d2, d3, d4} is not a large descriptor set  because Card(ρ({d1,
d2, d3, d4}))/Card(O)=33.3%< τ.

5 Using GA for cluster validity

Large descriptor sets discovered by SOA are used for building the initial GA
population. We hold that the subset of a large descriptor set is also a large descriptor
set [7]. Let L={L1,…,Lk} be a set of k large descriptor sets, we employ GA[8] for
finding a set {S1,…,Sk} where Si ⊆ Li (i=1,…,k) and (Si,ρ(Si)) is a concept. A
chromosome is a set of BSi, each BSi is a bit string corresponding to a large descriptor
set. With two large descriptor sets {d1, d2, d3} and {d4, d6}, we have chromosome
{d1:1, d2:1, d3:1, d4:1, d5:0, d6:1}. The genetic representation of population P is a set
of chromosomes. A typical population P with 3 chromosomes is as follows:
 P(t)= {111111, 100111,001100}. The genetic operations are defined as:

5.1 Crossover operator

Given two parental chromosomes: {a1, a2, a3, a4, a5, a6} and  {b1, b2, b3, b4, b5, b6} where
ai, bi∈{0,1}(i=1,…,6). The crossover will swap a portion of two parental
chromosomes and yield the offspring: {a1, a2, a3, b4, b5, b6 }and {b1, b2, b3, a4, a5, a6}.

5.2 Mutation operator

Given a chromosome {a1, a2, a3, a4, a5, a6}. Select a random position h∈[1..6]. Let h be
the selected position, if ah = 1 then ah is changed to 0 and vice versa.

5.3 Fitness factor and fitness value

Fitness factor Sij: Let Sij be a subset of chromosome BSi, we build set Q containing
all two-element subsets of Sij. Let {a, b} be an element of Q.  From {a, b}, we build
two rules {a} → {b} and {b} → {a} and calculate the CFs of these rules. The Fitness
factor of Sij is the average of  CFs of 2xCard(Q) rules which are built up  from Q.
Fitness value of a chromosome BSi is the average of fitness factor of all Sij in
chromosome BSi.

6 An application to a student database

 We employ our proposed method for discovering the conceptual clusters from a
student database. An information matrix with 1000 rows and 100 columns is built up
from this database. In this matrix, each row corresponds to a record and each column

451Using Rough Genetic and Kohonen’s Neural Network          



corresponds to a descriptor. Some descriptors of the information matrix are “parent of
student are teachers”;  “student is ranked in good level of learning”; “student wins a
prize of computer science competition”.
 The size of Kohonen’s output layer is 100x100. With the threshold τ=0.7 (70%), we
discover some large descriptor as {student wins a prize of a math competition; student
is interested in math}; {student is ranked in good level of learning,; parents of student
are teachers}; {student is interested in math; student is interested in foreign language;
student is interested in computer science}.
 We employ the following values for GA parameters: number of chromosomes is 50;
number of generations is 300; crossover probability is 0.1; mutation probability is 0.1.
The GA give us some discovered conceptual clusters as {student is ranked in good
level of learning; student has good behavior; parents of student are teachers; Student
has the self-learning time greater than 6 hours every day}; {student is interested in
math; student is interested in foreign language; student is interested in computer
science}; {student lives in country; income of student family is lower than $100 every
month;  student is ranked in fair level of learning}.

7 Conclusions and future works

We gathered some preliminary result in using a combined information matrix, GA
and  SOA for cluster discovery in data mining. The experiment shows very encourage
in large data set. A matrix expressed in bit is also used for keeping the whole
information matrix in main memory to increase the efficiency of conceptual cluster
discovery. We continue to study how to change binary information matrix to fuzzy
information matrix and use fuzzy cluster discovery for the fuzzy database.
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Abstract. We propose a knowledge discovery process for multi-factor
portfolio management on a financial decision support system. We first
construct an OPen Intelligent Computing System (OPICS) to support
time series management and knowledge management. A system, Cyclone,
which efficiently supports financial applications, is developed under the
OPICS. We then introduce a data mining solution for equity portfolio
construction using the simulated annealing algorithm. Two data sets con-
sist of small stocks ranging from 11/86 to 10/91 and from 6/93 to 5/96
are used. The corresponding rates of return of Russell 2000 index are
collected as benchmarks for evaluation based on the Sharpe ratios and
the turnover ratios. The result shows that the simulated annealing algo-
rithm outperforms both the market index and the gradient maximization
method.

1 Introduction

Competition in the investment business is intense and increasing. Historically,
investment managers who actively select stocks employ a team of analysts who
understand various industries, visit companies, and utilize quantitative tech-
niques to learn important information to help them recommend which stocks to
own. While the Internet technology and data availability are rapidly changing,
quantitative techniques also become more sophisticated. The data warehousing
and data mining techniques are thus acquired across the financial services as
well as the banking industry.
We propose a knowledge discovery process for multi-factor portfolio manage-

ment on a financial decision support system. The process consists of two con-
struction phases: the knowledge management functionality, and the data mining
solution. We first construct an OPen Intelligent Computing System (OPICS)
to support time series management and knowledge management. A system, Cy-
clone, is developed under the OPICS. The Cyclone is designed to allow power
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users to adjust parameters, simulate portfolios easily and efficiently, and even-
tually, to share knowledge with other power users. We then introduce a data
mining solution for equity portfolio construction using the simulated annealing
algorithm. Two data sets consist of small stocks ranging from 11/86 to 10/91 and
from 6/93 to 5/96 are used. The corresponding rates of return of Russell 2000
index are collected as benchmarks. The evaluation is based on the Sharpe ratios
as well as the turnover ratios. The result shows that the simulated annealing
algorithm outperforms the market index as well as the gradient maximization
method.

2 A Motivating Example

The process of constructing a portfolio involves defining a universe of stocks,
dealing with data integrity issues, selecting an appropriate construction tech-
nique, determining the way of using training and testing data, setting up the
construction rules and constraints, and selecting a publicly available benchmark
for evaluating the test results. The whole process is known as the back-testing
model in the financial investment society. Schock and Brush in [1] show an exam-
ple in managing a small-stock portfolio, which exploits the above process. The
first step is to construct a sequence of monthly universe, by ranking a database
on market capitalization, then eliminating the largest 1,000 stocks and using the
next 600 excluding limited partnerships, investment trusts and stocks with very
low trading volumes.
The second step is to include values and other proven measures to the uni-

verse. The common factors are earnings to price ratio, book value to price ratio,
cash flow to price ratio, volatility adjusted price momentum, etc. The rest of
work is to apply a decision model to construct monthly portfolios through time
and compute the corresponding returns. The resulting returns of portfolios are
then used to compare with those of the selected benchmarks. To optimize the
flow of information and ”knowledge-worker-to-knowledge-worker” interaction so
that companies can make better trading decisions, the specific data and model-
ing results should then be shared and managed. This is the essence of knowledge
management.

3 Knowledge Management

A successful knowledge management means that our data processes enhance
the way people work together, enable knowledge workers and partners to share
information easily so that they can build on each other’s ideas and work more ef-
fectively and efficiently. Though data for financial applications are simple data,
the data typically includes time series. The empirical research based on time
series thus is a data intensive activity that needs a knowledge management sys-
tem with data and time modeling capabilities, computational intelligence and
performance functionalities (see Schmidt and Marti [2], Dreyer, Dittrich, and
Schmidt [3]).
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We develope a time-series management system, OPICS, specifically for se-
curity investment research. The OPICS is a component-based system enhanced
with distributed processing capability. To effectively manage the data sets de-
rived by security firms’ knowledge workers, a time series data set is organized
into two parts, the header and the data. The header is a meta-data about the
time series basis and its derived data sets. We also develop a time series manage-
ment system (TSMS), Cyclone, under the OPICS platform to enable knowledge
workers in a security research firm to share their idea and models with others.
See Lu and Cheng in [4] and [5] for the inter-modules, the system architecture,
as well as other functionalities.

4 Data Mining for Multi-factor Portfolio Construction

Building a multi-factor excess return model to select a portfolio stocks becomes
a widely used tool for portfolio management. We consider the portfolio con-
struction model as a global optimization problem. To control risk throughout
a portfolio construction process, we consider the model’s objective function as
to maximize the return over risk. The optimization algorithms to be examined
in this paper are the gradient maximization method (see Brush [6]) and the
simulated annealing technique (see kirkpatrick [7]).
We use the Sharpe excess return (see Sharpe [8]) to illustrate the concerns

of portfolio managers who seek for high returns with low risks. We apply the
simulated annealing algorithm in conjunction with the above integrated re-
turn/risk portfolio model. Since the values of the Sharpe excess return can be
either positive or negative, we write the dynamic rule in a symmetrical form
E = 1/(1+eSharpeExcessReturn), which is referred as an energy measure. For each
given temperature, the thermal equilibrium can be described by a probability
distribution function with respect to the occurrence of a state with energy E,
that is,

P (E) = (1/Z(T ))e(−E/(KB∗T )), (1)

where Z(T ) is a normalized constant, E is the energy of the state, P (E) is the
probability of finding a unit in that state, T is the temperature, and KB is the
Boltzmann’s constant. Let ∆E be the change of the energy E. The traditional
hill-climbing algorithm only accepts ∆E when it is less than zero, while the sim-
ulated annealing algorithm allows positive ∆E being accepted with probability
greater than 0. The process of the simulated annealing involves three steps: the
generation of a new state, the acceptance criterion of the new state, and the
condition of the cooling schedule, which will be briefly discussed as follows.
Generating a new state for the purpose of portfolio optimization is to ex-

plore the current state region around the current weighting combination. By
sequentially changing each factor’s weight up and down a bit from the original
weighting combination, local search determines a combination of factor changes
that identifies a best direction of improving the portfolio return. Having estab-
lished a direction of local search, we next make a bigger step to weight changes
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Table 1. Portfolio construction using data during 11/86 - 10/91

Data Set
(11/86 - 10/91)

Year(s)
Portfolio
Return

Becnmark
Return

Excess
Return

Sharpe
Ratio

Turnover
Ratio

GM

1
2
3
4
5

-11.31%
6.45%
11.73%
1.61%
8.02%

-18.04%
3.21%
8.64%
-0.08%
6.97%

6.73%
3.24%
3.09%
1.69%
1.05%

0.24
0.18
0.18
0.09
0.05

8.14%
8.01%
7.48%
6.75%
6.16%

SA

1
2
3
4
5

-9.95%
7.21%
13.06%
2.01%
8.64%

-18.04%
3.21%
8.64%
-0.08%
6.97%

8.09%
4.00%
4.42%
2.09%
1.67%

0.32
0.26
0.23
0.11
0.09

8.97%
9.20%
10.43%
11.31%
12.06%

in the portfolio. When ∆E is less than zero, we accept the new state with prob-
ability 1. If ∆E is greater than zero, then we accept the new state with the
probability e−∆E/T , where T represents the current temperature.
The annealing schedule is also critical to the performance of the algorithm.

Without any prior knowledge of energy landscapes, one can only hope to derive
an appropriate cooling schedule for a specific random process. As being a cool-
ing schedule of the temperature T (t), it must be able to decrease from a given
sufficiently high temperature T0 down to a zero degree. To experiment an initial
temperature, we first let the system be free running with a 100% acceptance
rate for a certain number of iterations. By sampling all energy states, we can
calculate the standard deviation to estimate an initial temperature. We then
implement the cooling schedule using the formula, T (t) = T0/(1 + t), where T0

is the initial temperature. The equilibrium detection during a particular tem-
perature is measured by the formula, |Test − Tc| < 0.01 ∗ Tc, where Test is the
estimated temperature from N samples and Tc is the current temperature (see
Szu [9]).

5 Implementation and Results

We focus on the universe, which is designed to capture the attractive long-term
return potential associated with small stocks. We purchase a stock when it ranks
above 10% in any economic sectors. A stock will be sold when it ranks below
the 30% by economic sector. The round-trip trading cost is 3.6%. The total
number of stocks in our portfolio is between 50 and 60. We also choose two
widely used value measures and two widely used growth measures to form an
integrated return/risk portfolio. The value measures are earning to price ratio
and book value to price ratio, whereas the growth measures are short-term (four
quarters) earnings change to price ratio and long-term (three-year) earnings
change to price ratio.
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Table 2. Portfolio construction using data during 6/93 - 5/96

Data Set
(6/93 - 5/96)

Year(s)
Portfolio
Return

Becnmark
Return

Excess
Return

Sharpe
Ratio

Turnover
Ratio

GM
1
2
3

36.51%
19.31%
20.62%

4.41%
11.97%
15.81%

32.10%
7.34%
4.81%

1.06
0.26
0.23

8.67%
7.74%
6.88%

SA
1
2
3

36.11%
20.92%
24.03%

4.41%
11.97%
15.81%

31.70%
8.95%
8.22%

1.06
0.35
0.32

7.96%
8.41%
9.10%

We collect two data sets: one from 11/86 to 10/91 and the other from 6/93
to 5/96. The corresponding rates of return of Russell 2000 index are collected as
benchmarks. The results in Tables 1 and 2 show that the simulated annealing
algorithm (SA) outperforms both the gradient maximization (GM) and market
index in all time periods. Also, the longer the time period, the lower the Sharpe
ratio, that indicates the risk is proportional to the time period. Although the
simulated annealing has superior rates of returns, it has higher turnover ratios.
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This paper presents a genetic model and a software tool (Rule-Evolver) for the
classification of records in Databases (DB). The model is based on the
evolution of association rules of the IF-THEN type, which provide a high level
of accuracy and coverage. The modeling of the Genetic Algorithm consists of
the definition of chromosomes representation, the evaluation function, and the
genetic operators. The Rule-Evolver is a tool that provides an environment for
the evaluation of the genetic model and implements the interface with DBs. The
case studies evaluate the performance of the model in several benchmark DBs.
The results obtained are compared with those of other  models, such as
Artificial Neural Nets, Neuro-Fuzzy Systems and Statistical Models.

1.� Evolutionary Data Mining Systems

Genetic Algorithms (GAs) have been successfully used in optimization problems [1]
and some data mining models can be found in the literature [2]. In the context of GAs,
classification consists of the evolution of association rules.

The quality of the rules evolved is measured through their Accuracy and Coverage.
The accuracy of an association rule, IF C THEN P, measures the rule’s degree of
confidence (Equation 1).
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Rule’s coverage may be interpreted as the comprehensive inclusion of all the
records that satisfy the rule. Equation 2 represents the definition of rule’s coverage.
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2.� Genetic Algorithm Modeling for Data Mining

The genetic algorithm consists of 4 main components: Chromosome Representation,
Evaluation Function, Genetic Operators and Initialization of the Population.

In chromosome representation, categorical or discrete attributes represent a finite
value-set, or mapped values, within a set of integers. Quantitative or continuous
attributes represent value ranges in the attribute domain.

Thus, a chromosome must represent an association rule by means of the value
range of the predictive, quantitative and categorical attributes (Fig. 1).

Attribute � Attribute � Attribute 1

min Max min Max mim Max

Lower limit
Minimum value

Upper limit
Maximum value

Fig. 1. Representation of the chromosome for the classification task by a vector of 2N values.

In Fig. 1, each gene has two real numbers: the minimum and the maximum values.
This representation makes it possible to formulate rules such as:

IF  {(Attr. 1 ∈ [mim 1, max 1]) and (Attr. 2 ∈[mim 2, max 2]) and ... and (Attr N ∈
[mim N, max N])}THEN Target Attribute = P

where min. ; and max. ; indicate the minimum and maximum values of each
predictive attribute that has been defined as quantitative (for categorical attributes,
only min. X is used), and P is the value of the Target Attribute, which has been
identified as an objective in the initial phase of the process.

The advantage of this representation lies in its high level of comprehensibility and
in the fact that the domain of the attributes values are evolved as real numbers.

Several evaluation functions were implemented and tested with three types of
rewards: accuracy, coverage, and/or both [3], according to Equation 3.

�L���L�I�L�ILWQHVV�L�

���WKHQ�L���DQG�RU���L�LI���

coverageaccuracy

0coverage0accuracy

=
≠≠ (3)

Among the functions (ten) that were implemented, the Cbayesian [3] function is
worthy of note. The Cbayesian function is inspired by the Bayesian classifiers [4] and
represents the product of the probabilities that the values of a rule’s attributes pertain
to an interval, given that the class of the current record is the one that has been
specified as the objective. Equation 4 presents this function, where Ai is an attribute,
ai is a value interval, C is the target attribute, and c is the value of the specified class.

P(A1 = a1| C = c) * P(A2 = a2| C = c) * ... P(Ak = ak| C = c) (4)

Several genetic operators have been tested in this project: one-point, two-point,
average, and uniform crossovers, simple mutation, and a new mutation operator called
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“don’t care”. This operator eliminates a given attribute in the composition of the rule,
i.e., the entire domain of the attribute is considered valid for the rule.

Methods to constrain the Genetic Algorithm’s search space or to introduce
promising solutions were implemented to initialize the population, thus increasing its
performance:
1. Random seedless initialization methods: a) including the average value of this

attribute; b) including the median value of this attribute;
2. Random initialization methods with seeds: a) Seeds from previous evolutions; b)

Seeds from random Database records.
The initialization methods for group 1 consist of establishing the limits so as to

include the average value or the mean value of those attributes, and the second group
makes use of genetic material which has already been evolved in previous
experiments and of information from the database itself.

3.� Rule-Evolver

The Rule-Evolver is a data mining environment which incorporates a dedicated
genetic algorithm model to evolve classification rules.

The 5XOH�(YROYHU is capable of extracting all the association rules which
differentiate a specific record cluster from the other records in a database. It
comprises 4 dedicated modules:
• Selection of database attributes → Allows the user to choose attributes of interest

based on each attribute’s average, variance, and variation coefficient;
• Interpretation → Presents the best rules found in the IF (A1 and A2 and A3 and

... An) THEN P format;
• Graphic Previewing → Plots the accuracy, coverage, and fitness value

(evaluation function) graphs of the individuals in the course of genetic evolution;
• Parameterization of the environment → Allows the user to specify rates,

parameters, evaluation functions, operators, and evolutionary techniques.

4.� Case Studies

The benchmark databases used in this study were obtained from
“ftp://ftp.ics.uci.edu/pub/machine-learning-databases/” repository. Two case studies
are summarized in this article: Iris Plants Database and Tic-Tac-Toe Endgame
Database. These databases were divided into 2 sets: a training set and a test set.

The “,ULV�3ODQWV�'DWDEDVH” comprises 150 records divided into 3 classes of 50
records each (Iris Setosa, Versicolour, and Virginica), with 4 attributes: the plant’s
petal and sepal width and length.

In Table 1, the classification results obtained by the Rule-Evolver are compared
with those obtained by means of other techniques: the NEFCLASS Neuro-Fuzzy
System; the Hierarchical Neuro-Fuzzy System (NFHQ), the Bayesian Neural Net with
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the gaussian approximation method, and a Bayesian Neural Net with the Markov
Chain Monte Carlo method (MCMC).

Table 1. Iris and Tic-Tac-Toe database as benchmark

IRIS DATABASE (Error In The Training And
Test Set - %)

TIC-TAC-TOE DATABASE (Error In The
Test Set - %)

MODEL TRAINING TEST MODEL TEST
NEFCLASS [5] 2,67 4 NewId [6] 84

NFHQ [7] 2,67 2,67 CN2 [6] 98,1
RNB (BNN) [8] 0 2,67 MBRTalk [6] 88,4

RNB (MCMC) [8] 0 2,67 IB3-CI [6] 99,1
RULE-EVOLVER (GA) 0 13,34 RULE-EVOLVER (GA) 97,6

The results indicate that, though the 5XOH�(YROYHU obtained good results in the
training set, it presented a low performance level in the test set. Of the 10 records
reported as errors (13,34%), 3 records were wrongly classified between the ,ULV
9HUVLFRORXU and 9LUJLQLFD�classes, and 7 records were QRW classified, i.e., they were
not covered by any of the rules obtained during training. This problem is typical of
models that use training and test sets: the model does not succeed in finding rules
whose attribute values are not in the training set.

The second database tested was the “7LF�7DF�7RH�(QGJDPH�GDWDEDVH”, which
encodes the complete set of possible final configurations of the game board under the
assumption that ‘x’ has made the first move. It is composed of 958 records, of which
626 are “x wins” with 9 attributes, each corresponding to a position on the game
board.

Table 2 presents the decoding of the rules found by the Rule-Evolver which lead
“x to win”, where symbol # (don’t care) means that “x wins” regardless of the values
contained in that position of the board. Symbol “b” represents a blank field, and
symbol “o” represents the other player.

Table 2. Decoding of the rules found by the Rule-Evolver for Tic-Tac-Toe

Rule 1 Rule 2 Rule 3 Rule 4
bx # # # # bx x # # # x #
# bx # # bx # x xo # # x #
# # bx bx # # x # # # x #

216 Records 153 Records 41 Records 39 Records

Rule 5 Rule 6 Rule 7 Rule 8
# # x x x x # # # # # #
# # x # # # x x x # # #
# # x # # # # # # x x x
46 Records 43 Records 39 Records 44 Records

This example shows that 621 of the 626 (99,2%) records were covered by the
rules evolved by the 5XOH�(YROYHU and 5 records were not covered on account of the
Rule 3, which specialized in position 5 on the board (xo).

The results indicate that 4 records have been classified as being characteristics of
“x’s” victory, though they are not, and 3 records that lead to “x wins” have not been
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classified. The model therefore fits 280 of the 287 records of the test set, thus
presenting a success rate of 97,6 %.

5.� Conclusions

Record classification through the evolution of associative rules with the use of
Genetic Algorithms has proved to be a promising procedure for characterizing the
record clusters in a database. When compared with other methods (Artificial Neural
Nets, Statistical Models), the advantage of rule discovery by means of GAs is that the
rules evolved are self-explanatory.

The current model is incapable of evolving correctly the interval of a rule’s
attribute values  for values which are not exemplified in the training set. However, the
genetic model is capable of generating highly accurate rules with a high level of
coverage without any conflicts for the intervals present in training.

To evaluate one generation of chromosome rules, the 5XOH�(YROYHU makes a
single pass over the data, which may be all available in the memory, thus reducing
processing time. The 5XOH�(YROYHU  automatically  tries to load the whole database
into memory; if not possible, it will access the data through the DBMS.

For the databases tested (hundred of records of less than ten attributes), the 5XOH�
(YROYHU’s run time was satisfactory - about 6 minutes in average on a Pentium II 350
Mhz for the evaluation of 80 generations of populations of 100 individuals each.

The scalability of the genetic model in applications with large databases (say with
millions of records) has not been accessed yet.
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Abstract. The paper is concerned with the decision making with pre-
dictive models acquired from data called probabilistic decision tables.
The methodology of probabilistic decision tables presented in this arti-
cle is derived from the theory of rough sets. In this methodology, the
probabilistic extension of the original rough set theory, called variable
precision model of rough sets, is used. The theory of rough sets is ap-
plied to identify dependencies of interest occurring in data. The identified
dependencies are represented in the form of a decision table which subse-
quently is analyzed and optimized using rough sets-based methods. The
original model of rough sets is restricted to the analysis of functional, or
partial functional dependencies. The variable precision model of rough
sets can also be used to identify probabilistic dependencies, allowing for
construction of probabilistic predictive models. The main focus of the
paper is on decision making aspect of the presented approach, in partic-
ular on setting the parameters of the model and on decision strategies
to maximize the expected gain from the decisions.

1 Introduction

Standard decision tables are tabular models of the functional dependencies be-
tween input conditions and decisions or actions taken in response to the oc-
currence of some combinations of conditions. They have been used in software
engineering, circuit design and other application areas for years [6]. The depen-
dency is encoded by the table designer in the form of a set a disjoint decision
rules covering all possible input situations. However, in many problems related
to decision making with uncertainty, machine learning, pattern recognition and
data mining, the condition-decision dependency is typically unknown and almost
always non-deterministic. Often, it is hidden in empirical data. A number of an-
alytical methodologies have been developed in recent years to approximate this
kind of the dependency for the purpose of prediction or better understanding
of the nature of the relationship, for example, by using decision trees, neural
networks or rough sets [3,5, 9-12].

In this paper, we will focus on using decision tables extracted from data for
that purpose. The research into decision tables acquisition from data was initi-
ated by Pawlak in the context of rough sets theory[1,2]. His original works were
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concerned with the acquisition of deterministic, or partially deterministic tables.
We demonstrate how an extended approach, called variable precision rough sets
model (VPRS), can be applied to acquistion of non-deterministic decision ta-
bles with probabilistic characterization of their decision accuracy [8]. In what
follows, the review of the methods of rough sets for the above mentioned data-
based modeling problem is presented and illustrated with simple examples. A
comprehensive discussion of the optimal decision making strategies and param-
eter setting for the model is also included. Generally, the objective is not to
construct a predictive system which would guarantee always correct predictions
(which is typically impossible) , but to have a system which would support de-
cisions with sufficient success rate in the longer run, or sufficient expected gain
or profit from the decision making.

The paper is organized as follows. We first discuss the basics of the formal
model of decision tables acquired from data. Then, the main definitions of the
variable precision model of rough sets are introduced. In the next sections, they
are used to define extended notions of the dependency between attributes, of
the extended reduct and core attributes. A separate section is devoted to the
discussion of the optimal decision making with the probabilistic decision tables.

2 Decision Tables Acquired from Data

Generally, the decision table is defined here as a tabular representation of a
relation discovered in data. The relation is identified through a classification
process in which data objects having the same values of selected attributes,
or having the same values of properly selected functions of the attributes (for
example, using some attribute value discretization technique), are considered to
be identical. It should be noted, however, that this kind of the decision table does
not necessarily represent functional relationship as it is the case with ”classical”
decision tables known in software engineering and other areas. More precisely,
the data-extracted decision table is defined as follows:

Let U be the universe of objects e ∈ U and a ∈A be the attributes of
the objects, that is functions a : e → a(e) assigning some features (attribute
values) to objects. We assume that every attribute maps into a finite set of
values, va ∈ range(a). The attributes are divided into two categories, condition
attributes C = {a1, a2, ..., am} and the decision attributes D. Typically, the
condition attributes represent measurable properties of objects whereas decision
attributes are the ”predictive” attributes (variables) whose values are normally
predicted based on known values of condition attributes. We will assume here,
without loss of generality, that there is only one binary-valued decision attri-
bute d ∈ D and one value vi

d (i = 0 or 1) of this attribute has been selected as a
prediction or modeling ”target”. With all these assumptions, the decision table
can be expressed as a quadruple < U,C, d, vi

d > . Each of the two values v0
d, v

1
d of

the decision attribute d corresponds to a set of objects matching that particular
value. We will denote these sets as X0 and X1 respectively. Clearly, X0 = ¬X1

and X0∪X1 = U. Our objective in the construction and analysis of the decision
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CLASS S H E C P (T = 1|Ei) P (T = 0|Ei)
E1 0 0 1 0 0.10 0.90
E2 1 0 2 1 0.85 0.15
E3 1 1 1 0 0.01 0.99
E4 0 2 1 1 1.00 0.00
E5 1 2 1 0 0.82 0.18
E6 1 0 1 0 0.12 0.88
E7 1 2 2 1 0.92 0.08
E8 0 0 2 1 0.91 0.09

Table 1. Classification by condition attributes only

tables is to develop a simple predictive model for the target set which would
enable us to predict, with an acceptable confidence, whether an object matching
a combination of attribute values occurring in the decision table belongs to the
target set, or to its complement.

3 VPRS Model of Rough Sets

In data mining and predictive modeling applications the variable precision model
of rough sets (VPRS) was used for analysis of decision tables extracted from data.
The VPRS model extends the capabilities of the original model of rough sets
to handle probabilistic information. The main aspects of the VPRS model are
presented below.

Let R be an equivalence relation ( called the indiscernibility relation) and
let R∗ be the set of equivalence classes of R. Typically, the relation R represents
the partitioning of the universe U in terms of the values of condition attributes as
defined in Section 2. Also, let E ∈ R∗ be an equivalence class (elementary set) of
the relation R. With each class E we can associate the estimate of the conditional
probability P(X |E ) by the formula: P(X |E ) = card(X ∩ E )/card(E ) assum-
ing that sets X and E are finite. This situation is illustrated in Table 1 which
represents the classification of raw data in terms of condition attributes S,H,E,C,
with each class Ei being assigned probabilities P (T = 1|Ei) and P (T = 0|Ei).

Let 0 ≤ l < u ≤ 1 be real-valued approximation precision control parameters
called lower and upper limits respectively. For any subset X ⊆ U we define
the u-positive region of X , POSu(X) as a union of those elementary sets whose
conditional probability P(X |E ) is not lower than the upper limit , that is

POSu(X) =
⋃
{E ∈ R∗ : P(X |E ) ≥ u}

The u-positive region of X represents an area in the universe which contains
objects with relatively high probability of belonging to the set X .

The (l,u)-boundary region BNR	,u(X) of the set X with respect to the lower
and upper limits � and u is a union of those elementary sets E for which the
conditional probability P(X |E ) is higher than the lower limit � and lower than
the upper limit u. Formally,

BNR	,u(X) =
⋃
{E ∈ R∗ : � < P (X |E) < u}
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CLASS S H E C Ei REGION
E1 0 0 1 0 NEG
E2 1 0 2 1 POS
E3 1 1 1 0 NEG
E4 0 2 1 1 POS
E5 1 2 1 0 POS
E6 1 0 1 0 NEG
E7 1 2 2 1 POS
E8 0 0 2 1 POS

Table 2. The probabilistic decision table with u = 0.8 and l = 0.2

The boundary area represents objects which cannot be classified with suffi-
ciently high confidence (represented by u) into set X and which also cannot be
excluded from X with the sufficiently high confidence ( represented by 1− l).

The l-negative region NEGl(X) of the subset X , is a collection of objects
which can be excluded from X with the confidence not lower than 1− l , that is,

NEGl(X) =
⋃
{E ∈ R∗ : P (U −X |E) ≥ 1− l}

The l-negative region represents objects of the universe for which it is known
that it is relatively unlikely that they would belong to X.

In the Table 2, each of the classes Ei of the Table 1 is assigned to one of the
rough approximation regions, according to the above definitions,
with u = 0.8 and l = 0.2. The decision table in which each combination of
condition attributes is assigned its approximation region with respect to the tar-
get value of the decision attribute (in this example, T = 1) is called probabilistic
decision table [8]. The probabilistic decision table can be used to predict the
target value of the decision attribute, or its complement, with probabilities not
lower than u and 1− l, respectively.

4 (l, u)-Dependency in Decision Tables

The analysis of decision tables extracted from data involves inter-attribute de-
pendency analysis, identification, elimination of redundant condition attributes
and attribute significance analysis [2]. The original rough sets model-based anal-
ysis involves detection of functional, or partial functional dependencies and sub-
sequent dependency-preserving reduction of condition attributes. In this paper,
we extend this idea by using (l,u)-probabilistic dependency as a reference rather
than functional or partial functional dependency. To define (l, u)-probabilistic
dependency we will assume that the relation R corresponds to the partitioning
of the universe U in terms of values of condition attributes C in the decision
table < U,C, d, vi

d > , (i = 0 or 1). In other words, we assume that objects
having identical values of the attributes are considered to be equivalent.

The (l,u)-probabilistic dependency γl,u(C, d, i) between condition attributesC
and the decision attribute d in the decision table < U,C, d, vi

d > is defined as



Decision Making with Probabilistic Decision Tables 467

CLASS S H E C Ei REGION
E1 0 0 1 0 NEG
E2 1 0 2 1 POS
E3 1 1 1 0 NEG
E4 0 2 1 1 POS
E5 1 2 1 0 BND
E6 1 0 1 0 BND
E7 1 2 2 1 POS
E8 0 0 2 1 POS

Table 3. The probabilistic decision table with u = 0.83 and l = 0.11

the total relative size of (l, u)-approximation regions of the subset X i⊆U
corresponding to target value of the decision attribute . In other words, we have

γl,u(C, d, i) = (card(POSu(X i)) + card(NEGl(X i)))/card(U)

The dependency degree can be interpreted as a measure of the probability that
a randomly occurring object will be represented by such a combination of con-
dition attribute values that the prediction of the corresponding value of the
decision attribute could be done with the acceptable confidence, as represented
by (l, u) pair of parameters.

To illustrate the notion of (l,u)-dependency let us consider the classification
given in Table 1 again. When u = 0.80 and l = 0.15 the dependency equals
to 1.0. This means that every object e from the universe U can be classified
either as the member of the target set with the probability not less than 0.8, or
the member of the complement of the target set, with the probability not less
than 0.85. The lower and upper limits define acceptable probability bounds for
predicting whether an object is, or is not the member of the target set.

If (l, u)−dependency is less than one it means that the information contained
in the table is not sufficient to make either positive, or negative prediction in some
cases. For instance, if we take u = 0.83 and l = 0.11 then the probabilistic deci-
sion table will appear as shown in Table 3. As we see, when objects are classified
into boundary classes, neither positive nor negative prediction with acceptable
confidence is possible. This situation is reflected in the (0.11, 0.83)−dependency
being 0.7 (assuming even distribution of atomic classes E1, E2, ..., E8 in the uni-
verse U).

5 Optimization of Precision Control Parameters

An interesting question, inspired by practical applications of the variable preci-
sion rough set model, is how to set the values of the precision control parameters l
and u to achieve desired quality of prediction. It is, in fact, an optimization prob-
lem, strongly connected to the external knowledge of possible gains and losses
associated with correct, or incorrect predictions, respectively. It also depends on
the quality of the information encoded in data used to create the probabilistic
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decision table. In general, setting lower values of l and higher values of u re-
sults in increasing the size of the boundary area on the expense of positive and
negative regions. In practical terms, this means that we my not be always able
to make decisions with the confidence level we would like it to be. If nothing
is known about the potential gains or losses associated with the decisions, the
reasonable goal is to increase the likelihood of positive correct prediction about
the target value of the decision attribute, i.e. above random guess probability
of success (by positive correct prediction we mean correctly predicting that the
selected value will occur). Similarly, we are interested in increasing the proba-
bility of negative correct prediction, i.e. predicting correctly that a particular
target value will not occur. We would like this probability to be above random
guess probability of success as well. That is, given the distribution of the target
value of the decision attribute to be (p, 1 − p), where p is the probability that
an object has the target value of the decision attribute, and 1− p is the proba-
bility that it does not, the reasonable settings of the parameters are 0 ≤ l < p
and 1 ≥ u > p. With the settings falling into these limits, in the negative
region the prediction that object does not belong to the target set would be
made with the confidence higher than random guess, i.e. with the probability
not less than 1 − l > 1 − p and, in the positive region, the prediction that an
object belongs to the target set would be made with the probability not less
than u, 1 ≥ u > p.

Clearly, other factors can affect the selection of the precision control param-
eters. In particular, an interesting question is how to set those parameters in a
game playing situation, where each decision making act is carrying a cost (bet
cost b > 0) and incorrect decision results in a loss whereas correct decision re-
sults in a win. Because there are two possible outcomes of the decision, and one
can pick any of these outcomes, there are two kinds of losses and two kinds of
wins:

– positive win, when positive outcome is bet (that is, that the target value will
occur) and that outcome really occurred; the win is denoted here as q++ > 0
and the cost of this betting is denoted as b+;

– positive loss, when positive outcome is bet but that outcome did not occur;
the loss is denoted here as q+− < 0;

– negative win, when the negative outcome is bet (that is, that the target value
will not occur) and that outcome really occurred; the win is denoted here
as q−− > 0 and the cost of this betting is denoted as b−;

– negative loss, when the negative outcome is bet but that outcome did not
occur; the loss is denoted here as q−+ < 0;

In addition to the assumptions listed above we will assume that both positive
and negative wins are not smaller than the cost of betting, that is q−− ≥ b− > 0
and q++ ≥ b+ > 0, and that the absolute values of both negative and positive
losses are not smaller than the bet, that is |q−+| ≥ b− and |q+−| ≥ b+.

Also, with each approximation region we will associate an expected gain func-
tion, which is the weighted average of wins and losses in the respective region.
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Our decision making strategy assumes that in the positive region the positive
outcome is bet, and that in the negative region, the negative outcome is bet.
The bet in the boundary region will depend on the value of the expected gain
function, and we will assume that the bet which maximizes the gain function is
selected. The gain functions Q(approximation region) are defined as follows:

– Q(POS) = p(+|POS) ∗ q++ + p(−|POS) ∗ q+− where p(+|POS) and
p(−|POS) are conditional probabilities of positive and negative outcomes
respectively within the positive region;

– Q(NEG) = p(+|NEG) ∗ q−+ + p(−|NEG) ∗ q−− where p(+|NEG) and
p(−|NEG) are conditional probabilities of positive and negative outcomes
respectively within the negative region;

– Q(BND) = p(+|BND)∗q+++p(−|BND)∗q+− or Q(BND) = p(+|BND)∗
q−+ + p(−|BND) ∗ q−− , depending on the bet, whichever value is higher
with the positive, or negative bet, where p(+|BND) and p(−|BND) are con-
ditional probabilities of positive and negative outcomes respectively within
the boundary region.

Let us note that:

1. Q(POS) ≥ u ∗ q++ + (1− u) ∗ q+− and
2. Q(NEG) ≥ l ∗ q−+ + (1− l) ∗ q−− .

The uncertain decision is considered advantageous and justified if the ex-
pected gain is not lower than the cost of the bet, i.e. if Q(POS) ≥ b and
Q(NEG) ≥ b, assuming that positive outcome is bet in the positive region
and negative outcome is bet in the negative region. By focusing on these two
regions we can determine from (1) and (2) the bounds for parameters l and u
to maximize the size of positive and negative regions while guaranting that
Q(POS) ≥ b and Q(NEG) ≥ b. From conditions u∗ q+++(1−u)∗ q+− ≥ b and
l ∗ q−+ + (1− l) ∗ q−− ≥ b we get the following bounds for the precision control
parameters:

1 ≥ u ≥ b+−q+−

q++−q+− and 0 ≤ l ≤ b−−q−−

q−+−q−− .

To maximize the sizes of both positive and negative areas the upper limit
should assume the minimal range value and the lower limit should assume the
maximal range value, that is:

u = b+−q+−

q++−q+− and l = b−−q−−

q−+−q−− .

We should be aware however that these bounds set only the requirements how
the rough approximation regions should be defined in order to obtain desired
expected results of decision making processes. The actual data set may not
support these bounds in the sense that the positive, negative or both regions may
be empty resulting in the boundary area covering the whole universe. In general,
it can be demonstrated that in the boundary area, regardless whether positive
or negative bet is made, the expected gain is always less than the respective
bet, that is Q(BND) < b+, if the positive bet is taken, and Q(BND) < b−,
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if the negative bet is taken. Consequently, if the decision has to be made in
the boundary area, one should take the one which maximizes Q(BND), but in
the longer run the ”player” is in the loosing position anyway in the boundary
area. The expected gain G from making decisions based on the whole decision
table, according with the assumptions and decision strategy described above, is
given by:

G = p(POS) ∗Q(POS) + p(NEG) ∗Q(NEG) + p(BND) ∗Q(BND)

where p(POS), p(NEG) and p(BND) are the probabilities of respective
approximation regions (the probabilities mentioned here can be approximated
based on frequency distribution of data records belonging to the respective re-
gions). Only if the overall expected gain G is higher than the expected cost of
betting the ”player” is winning in the longer run. This clearly sets the limit on
the applicability of the probabilistic decision tables to support decision making.

6 Summary

We briefly review in this section the main points of the described approach to
predictive modeling and decision making.

The main distinguishing feature of this approach is that it is primarily con-
cerned with the acquisition of decision tables from data and with their analy-
sis and simplification using notions of attribute dependency, reduct, core and
attribute significance. The decision tables represent ”discovered” inter-data de-
pendencies which implies that, in general, a number of decision tables can be
extracted from a given data collection. An important issue in the whole process
of decision table acquisition from data is a choice of the mapping from original
attributes, in which raw data are expressed, to finite-valued attributes used in
the decision table. This is an application domain-specific task, often requiring
deep knowledge of the domain. One popular technique is discretization of con-
tinous attributes. However, the discretization of continuous attributes [7], is a
comprehensive research topic in itself whose discussion goes beyond the scope of
this article. The decision making with probabilistic decision tables is typically
uncertain. The decision strategy involves making positive prediction in the pos-
itive region, negative prediction in the negative region, and positive or negative
prediction in the boundary region, depending on the value of the gain function.
The techniques described in this article are aimed at constructing probabilistic
decision tables which would support uncertain decision making leading to long
range gains rather than to correct decisio! ! ns in each case. They seem to be
applicable to practical problems involving making guesses based on past data,
such as stock market price movements prediction or market research.
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Abstract. Inspired with Version Space learning, the Iterated Version

Space Algorithm (IVSA) has been designed and implemented to learn

disjunctive concepts. IVSA dynamically partitions its search space of

potential hypotheses of the target concept into contour-shaped regions

until all training instances are maximally correctly classi�ed.

1 Introduction

Since mid 1950s, many AI researchers have developed learning systems that au-

tomatically improve their performance. Vere's Multiple Convergence Algorithm

[12] and Mitchell's Candidate Elimination Algorithm [6] introduced a novel ap-

proach to concept learning known as the Version Space Algorithm (VSA). Un-

like other learning algorithms, which used either generalization or specialization

alone, VSA employed both. VSA has advantages { no back tracking for any seen

training instances and a unique concept description that is consistent with all

seen instances. VSA has weaknesses { training instances must be noise free and

the target concept must be simple. These problems have prevented VSA from

practical use outside the laboratories.

During the last few years, many improved algorithms based on VSA have

been designed and/or implemented. In section 2, we �rst introduce VSA and

then highlight two improved methods compare with the IVSA approach. The

discussion in section 2 focuses on learning a disjunctive concept from six training

instances, which are noise free so that problems caused by learning disjunctive

concepts can be isolated from problems caused by noise training instances. Sec-

tion 3 presents the overall approach of IVSA. Preliminary experimental results

on several ML databases [10] and English pronunciation databases [13] are pre-

sented in Section 4. Discussions on each speci�c test and sample rules are also

given in Section 4. In Section 5, we summarize current research on IVSA and

give suggestions for future research.

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 472-481, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



2 Version Space Related Research

2.1 The Version Space Algorithm

A version space is a representation that contains two sets of hypotheses, the

general hypotheses (G set) and the speci�c hypotheses (S set). Both G and S

must be consistent with all examined instances. Positive instances make the S

set more general to include all positive instances seen, while negative instances

make the G set more speci�c to exclude all negative instances seen. If the training

instances are consistent and complete, G and S sets eventually merge into one

hypothesis set. This unique hypothesis is the learned concept description.

G1

S1

P1: [lunch, expensive, rice, coffee, Sam’s, 1]

P2: [supper, cheap, rice, tea, Tim’s, 1]

[?, ?, ?, ?, ?, ?]

 [lunch, ?, ?, ?, ?, 1] [?, ?, rice, ?, ?, 1] [?, ?, ?, ?, Sam’s, 1]

G2 G3 G4

S2 [?, ?, rice, ?, ?, 1]

N1: [supper, expensive, bread, coffee, Tim’s, 0]

[lunch, expensive, rice, coffee, Sam’s, 1]

prunedpruned

no sulution

S3

P3: [breakfast, cheap, bread, tea, Tim’s, 1]

[?, ?, ?, ?, ?, ?]
pruned

pruned

[  ]

Fig. 1. The Version Space after the Fourth Instance (P3)

The following six noise-free training instances have been selected to illustrate

problems with VSA. The value `1' or `0' in each instance indicates that the

patient had a positive or negative allergic reaction respectively.

P1 = (lunch, expensive, rice, co�ee, Sam's, 1)

N1 = (supper, expensive, bread, co�ee, Tim's, 0)

P2 = (supper, cheap, rice, tea, Tim's, 1)

P3 = (breakfast, cheap, bread, tea, Tim's, 1)

P4 = (supper, expensive, rice, tea, Bob's, 1)

P5 = (supper, cheap, rice, co�ee, Sam's, 1)

Figure 1 shows that as soon as instance P3 is processed, the new speci�c

hypothesis S3 must be discarded due to over-generalization. When either G or
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S set becomes empty, the version space is collapsed, and thus \No legal concept

description is consistent with this new instance as well as all previous training

instances" [6], although a concept description of \tea or rice" can be easily

derived by hand. To improve VSA learning, Hirsh has designed a new algorithm,

the Incremental Version Space Merging (IVSM) [3].

2.2 The Incremental Version Space Merging

Instead of building one version space, IVSM constructs many version spaces

V S1:::n where n is the number of training instances. For each i 2 n, IVSM

�rst constructs V S
i
using only one training instance, and then computes the

intersection of V S
i
and V S(i�1). That is, for each pair of boundary hypotheses

G1, S1 in V S
i
and G2, S2 in V S(i�1)\(i�2), IVSM repeatedly specializes each

pair of hypotheses in G1 and G2, and generalizes each pair of hypotheses in S1

and S2 to form a new version space V S
i\(i�1). This merging process repeats

until all the instances have been learned.

G1

S1

P1: [lunch, expensive, rice, coffee, Sam’s, 1]

[?, ?, ?, ?, ?, ?]

[lunch, expensive, rice, coffee, Sam’s, 1]

VS :1 VS :2

G1

S1

[?, ?, ?, ?, ?, ?]

G3
G4 G5

N1: [supper, expensive, bread, coffee, Tim’s, 0]

[0, 0, 0, 0, 0, 0][lunch,?,?,?,?,1]

[?,?,rice,?,?,1]

[?,?,?,?,Sam’s,1]

[?,cheap,?,?,?,1]
[?,?,?,tea,?,1]G2

G6

[breakfast,?,?,?,?,1] G7VS  =3 VS   merges1 VS 2

S1

[lunch, expensive, rice, coffee, Sam’s, 1]

G1

[?, ?, ?, ?, ?, ?]

G2 G3 G4

[lunch, ?, ?, ?, ?, 1] [?, ?, rice, ?, ?, 1] [?, ?, ?, ?, Sam’s, 1]

VS :4

G1

S1

[?, ?, ?, ?, ?, ?]

P2: [supper, cheap, rice, tea, Tim’s, 1]

 [supper, cheap, rice, tea, Tim’s, 1]

VS  =5 VS  merges3 VS 4

G1

S1

 [?, ?, rice, ?, ?, 1]

 [?, ?, rice, ?, ?, 1]

VS :6

G1

S1

[?, ?, ?, ?, ?, ?]

P3: [breakfast, cheap, bread, tea, Tim’s, 1]

[breakfast, cheap, bread, tea, Tim’s, 1]

VS  =7 VS  merges5 VS 6

G1

[?, ?, rice, ?, ?, 1]
pruned

S1

 [?, ?, ?, ?, ?, 1]
pruned

No Solutions[  ]

Fig. 2. The IVSM Approach after Processing the Fourth Instance (P3)

The same six training instances are used to demonstrate IVSM learning.

In Figure 2, after IVSM has computed the intersection for V S5 and V S6, the

resulting speci�c hypothesis [?, ?, ?, ?, ?, 1] is overly generalized. According to
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the IVSM merging algorithm [3], the current speci�c hypothesis must be pruned.

IVSM, therefore, does not o�er a solution for this particular exercise.

2.3 The Parallel Based Version Space Learning

Another recent research into VSA is Parallel Based Version Space (PBVS) learn-

ing [4]. Like the IVSM approach, PBVS also uses a version space merging al-

gorithm, except that PBVS divides the entire set of training instances into two

groups and constructs two version spaces simultaneously from each group, and

then merges these two version spaces as IVSM does. Figure 3 shows the PBVS

learning process using the the same six instances. Again when PBVS merges the

V S1 into V S2, the resulting boundary sets are empty. Therefore, PBVS learning

fails to learn this set of training instances due to the same reason that causes

the IVSM learning fails.

G1

S1

P1: [lunch, expensive, rice, coffee, Sam’s, 1]

[?, ?, ?, ?, ?, ?]

G2 G3 G4

N1: [supper, expensive, 
bread, coffee, Tim’s, 0] 

[lunch, expensive, rice,
coffee, Sam’s, 1]

[lunch, ?, ?, ?, ?,1] [?, ?, rice, ?, ?, 1]  [?, ?, ?, ?, Sam’s,1]

VS1

S1

P3: [breakfast, cheap, bread, tea, Tim’s, 1]

P4: [supper, expensive, 
       rice, tea, Bob’s, 1]

S2

[breakfast, cheap
       bread, tea, Tim’s,1]

[?, ?, ?, tea, ?, 1]

VS2 VS1 VS2merge

[?, ?, ?, ?, ?, 1]

[?, ?, rice, ?, ?, 1]  

S1

no solutions

[   ]

G1

S2

[?, ?, rice, ?, ?, 1]

P2: [supper, cheap,
 rice, tea, Tim’s, 1]

pruned pruned

G1

[?, ?, ?, ?, ?, ?]

P5: [supper,cheap, rice, 
  coffee, Sam’s, 1]

S3

[?, ?, ?, ?, ?, 1]

pruned

pruned

Fig. 3. The PBVS Approach after Processing the Fourth Instance

3 The Iterated Version Space Learning

The allergy example is simple and can be described with two hypotheses. But

when the number of training instances, attributes, and classes are getting larger

and larger, it becomes more and more di�cult to detect which attribute value

would be a true feature that distinguishes instances of di�erent classes. However,

VSA has already provided a natural way of separating di�erent features. That

is, whenever VSA collapses, the search has encountered a new feature. This is

one of the new idea behined IVSA.

3.1 Learning the Allergy Example with IVSA

Before showing the detailed algorithm and approach, let us apply the same six

allergy instances to IVSA. As Figure 1 shows when the version space is collapsed

by processing P3, instead of failing, IVSA �rst collects G3 and S2 as candidate
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G1

S1

P1: [lunch, expensive, rice, coffee, Sam’s, 1]

P2: [supper, cheap, rice, tea, Tim’s, 1]

[?, ?, ?, ?, ?, 1]

 [?, ?, rice, ?, ?, 1] [?, ?, ?, ?, Sam’s, 1]

G2 G3 G4

S2 [?, ?, rice, ?, ?, 1]

N1: [supper, expensive,
bread, coffee, Tim’s, 0]

[lunch, expensive, rice,
 coffee, Sam’s, 1]           

prunedpruned

take G3 or S2 as
a partial solution S3

P3: [breakfast, cheap,
              bread, tea, Tim’s, 1]

[?, ?, ?, ?, ?, 1]

pruned

Take G1 and   
 S2 as a partial
 solution         

 [lunch, ?, ?, ?, ?, 1]

S1

P3: [breakfast, cheap, bread, tea, Tim’s, 1]

P4: [supper, expensive, rice, tea, Bob’s, 1]

S2

[breakfast, cheap, bread, tea, Tim’s,1]

[?, ?, ?, tea, ?, 1]

VS2 G1

[?, ?, ?, ?, ?, 1]

P5: [supper,cheap, rice,
  coffee, Sam’s, 1]

S3

[?, ?, ?, ?, ?, 1]
pruned

[ ]

VS1

Candidates:

 [?, ?, rice, ?, ?, 1]
 [?, ?, ?, ?, ?, 1]

 [?, ?, ?, tea, ?, 1]

Descriptions:

 [?, ?, rice, ?, ?, 1]
discarded

  [?, ?, ?, tea, ?, 1] 

Assembling:

 -->  4/5   -->
 -->    0     -->
  -->  3/5   --> 

(R value)

Fig. 4. Using IVSA for the Allergy Example

hypotheses, and then constructs a new version space with P3 to learn a di�erent

feature of the same concept. When all six training instances have been processed,

IVSA has collected three candidate hypotheses: [?, ?, rice, ?, ?, 1]; [?, ?, ?, ?, ?,

1]; and [?, ?, ?, tea, ?, 1]. These candidate hypotheses then are evaluated using

R
i
=

jE
+

i
j

jE
+
j
�

jE
�

i
j

jE
�

j
, where E+ and E� are sets of all positive and negative training

instances respectively. E+
i

� E+ is a set of positive instances covered by the ith

candidate hypothesis, and E�

i

� E� is the set of negative instances covered by

the same candidate hypothesis. For the allergy example, R1 = 4
5
, R2 = 0, and

R3 =
3
5
. Therefore, [?, ?, rice, ?, ?, 1] and [?, ?, ?, tea, ?, 1] are selected as the

concept description: ((A3 = rice) _ (A4 = tea))! allergy.

3.2 Learning from Noisy Training Instances

When training instances contain noise, the noise interferes or even stops the

learning. With IVSA, noisy training instances are simply ignored. Here we use

the same allergy example in Section 2.1 plus a noise instance N2 = (supper,

cheap, rice, tea, Tim's, 0). Figure 5 shows this learning process. In the �rst

version space, IVSA simply ignores N2 just like it ignores instances representing

di�erent features such as P3 in Figure 4 in the second version space. Because

N2 is negative, IVSA amalgamates the second version space with P3. But if

the incorrect instances was classi�ed as possitive, IVSA would start with this

instance and later the hypothesis generated from this noisy instance would be

discarded. The learned concept description does not interfered by N2 because

IVSA recognizes that N2 does not represent the feature of the concept.
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G1

S1

P1: [lunch, expensive, rice, coffee, Sam’s, 1]

P2: [supper, cheap, rice, tea, Tim’s, 1]

[?, ?, ?, ?, ?, 1]

 [?, ?, rice, ?, ?, 1] [?, ?, ?, ?, Sam’s, 1]

G2 G3 G4

S2

[?, ?, rice, ?, ?, 1]

N1: [supper, expensive,
bread, coffee, Tim’s, 0]

[lunch, expensive, rice,
 coffee, Sam’s, 1]           

prunedpruned

take G3 or S2 as
a partial solution

Take G1 and   
 S2 as a partial
 solution          [lunch, ?, ?, ?, ?, 1]

S1

P3: [breakfast, cheap, bread, tea, Tim’s, 1]

P4: [supper, expensive, rice, tea, Bob’s, 1]

S2

[breakfast, cheap, bread, tea, Tim’s,1]

[?, ?, ?, tea, ?, 1]

VS2 G1

[?, ?, ?, ?, ?, 1]

P5: [supper,cheap, rice,
  coffee, Sam’s, 1]

S3

[?, ?, ?, ?, ?, 1]
pruned

[ ]

VS1

Candidates:

 [?, ?, rice, ?, ?, 1]
 [?, ?, ?, ?, ?, 1]

 [?, ?, ?, tea, ?, 1]

Descriptions:

 [?, ?, rice, ?, ?, 1]
discarded

  [?, ?, ?, tea, ?, 1] 

Assembling:

 -->  4/6   -->
 -->    0     -->
  -->  3/6   --> 

(R value)

N2: [supper, cheap, rice, tea, Tim’s, 1]

G5

[  ]

Fig. 5. Learning Noisy Training Instances with IVSA

3.3 The IVSA Model

Learning a concept is similar to assembling a multi-dimensional jigsaw puzzle

from a large selection of possible pieces. The target concept can be viewed as the

puzzle and an ordered list of disjunctive hypotheses can be viewed as groups of

puzzle pieces. One method of solving this problem is to repeatedly generate any

possible missing pieces and add them to the puzzle until it is complete. IVSA is

based on this puzzle assembling method.

As shown in Figure 6, IVSA contains the Example Analyser, Hypothesis

Generator, Assembler, and Remover. The Example Analyser provides statistical

evaluation for each attribute value provided by the instance space to determine

the order of input trining instances. The Hypothesis Generator produces a set of

candidate hypotheses from the given set of training instances. The Hypothesis

Assembler repeatedly selects the most promising hypothesis from a large num-

ber of candidate hypotheses according to the statistical evaluation provided by

the Example Analyser, and then tests this hypothesis in each position in a list

of accepted hypotheses. If adding a new hypothesis increases concept coverage,

it is placed in the position that causes the greatest increase; otherwise this hy-

pothesis is discarded. After the candidate hypotheses have been processed, the

list of accepted hypotheses is examined by the Hypothesis Remover to see if any

of the hypotheses can be removed without reducing accuracy. If the learning ac-

curacy is satisfactory, the accepted hypothesis set becomes the learned concept

description. Otherwise, the set of incorrectly translated instances are fed back

to the generator, and a new learning cycle starts.
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Generator

Assembler
       A  Subset of
 Training Instances

  Accepted
Hypotheses

Remover

Candidate
Hypotheses

      All
 Training
 Instances

?
    Concept
  Description

No YesIncorrectly
 Classified
 Instances

Classification Accuracy

Example 
Analyser

Fig. 6. The IVSA Model

4 Experimental Results on UCI Databases

IVSA is tested on some machine learning databases [10]. To demonstrate the

consistency of IVSA, a ten-fold cross validation test is used. the cross validation

test is de�ned as follows:

De�nition 1. Let I be the set of positive and negative instances given,

i be the index for 10 ten-fold tests, and j be the index for test instances,

then

n
Test

i
= fx

j
jx

j
2 Ig

(j=j+10)�jIj

j=i

o10
i=1

and

fTrain
i
= fI � Test

i
gg

10
i=1.

That is, for each fold of the test, use 90% of instances to train the system

and then with the rules learned from the 90% instances, testing on 10% unseen

instances.

4.1 Learning the Mushroom Database

The mushroom database [7] has a total of 8,124 entries (tuples or instances).

Each tuple has 22 feature attributes and one decision attribute. The 22 feature

attributes have 2{5 values and the decision attribute has two values (or classes)

`p' (poison) or `e' (eatable). Because the mushroom database is noise-free, any

machine learning program should be able to learn it accurately. For example,

STAGGER \asymptoted to 95% classi�cation accuracy after reviewing 1,000

instances" [8], HILLARY has learned 1,000 instances and reported an average

accuracy about 90% on ten runs [5], a back propagation network developed in

[2] has generated `crisp logical rules' that give correct classi�cation of 99.41%,

and variant decision tree methods used in [11] have 100% accuracy by a ten-fold

cross validation test [11]. With IVSA, the predictive accuracy shown in Figure

1 on the mushroom database has reached 100% with 9 rules.
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Table 1. Ten-fold Tests on Mushroom Data (CPU: MIPS R4400)

Run Number of Instances Accuracies Number CPU Time

Number 90% 10% Training Testing of Rules (h/m/s)

1 7,311 813 100.00% 100.00% 9 01/42/14

2 7,311 813 100.00% 100.00% 9 02/09/42

3 7,311 813 100.00% 100.00% 9 01/45/41

4 7,311 813 100.00% 100.00% 9 01/53/12

5 7,312 812 100.00% 100.00% 9 01/40/58

6 7,312 812 100.00% 100.00% 9 02/30/08

7 7,312 812 100.00% 100.00% 9 01/46/51

8 7,312 812 100.00% 100.00% 9 01/59/00

9 7,312 812 100.00% 100.00% 8 01/46/40

10 7,312 812 100.00% 100.00% 9 01/56/16

Ave. 7,312 812 100.00% 100.00% 9 01/55/04

S.D. 0.49 0.49 0.00 00.00 0.30 859.94

4.2 Learning the Monk's Databases

The Monk's Databases contains three sets: Monk-1, Monk-2, and Monk-3. Each

of the three sets is originally partitioned into training and testing sets [10] [9].

IVSA is trained and tested on Monk-1, Monk-2, and Monk-3. In Table 2, the

experiment shows that 5, 61, and 12 rules learned from Monk-1, Monk-2, and

Monk-3 databases gives 100%, 81.02%, and 96.30% classi�cation accuracies on

three sets of 432 previously unseen instances.

Table 2. Tests on Monk's Databases (CPU: 296 MHz SUNW, UltraSPARC-II)

Data Instances Accuracy # of CPU Time

Base Training Testing Training Testing Rules (seconds)

Monk-1 124 432 100.00% 100% 5 3

Monk-2 169 432 100.00% 81.02% 61 38

Monk-3 122 432 100.00% 96.30% 12 5

Rules learned from Monk-1, (2 2 ? ? ? ? 1), (3 3 ? ? ? ? 1), (1 1 ? ? ? ? 1),

(? ? ? ? 1 ? 1), (? ? ? ? ? ? 0), show exactly the desired concept description

with minimum number of rule allowed by the concept language, which can be

rewritten as: (head shape = body shape) _ (jacket = red) ! monk. For the

Monk-2 database, 61 rules learned which is relatively large compared with the

other two sets (Monk-1 and Monk-3) due to a highly disjunctive (or irregular)

concept. However, it can be improved with more statistical analysis or some
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improved instance space (or representation space) shown in [1] the predictive

accuracy can be as high as 100% [Bloedorm et al., 1996, p.109]), although this

method is highly speci�ed for only Monk-2 database. Twelve rules are learned

from the Monk-3 database with 96.3% classi�cation accuracy despite 5% noise

added to the Monk-3 training instances: (1 1 1 1 3 1 0), (1 2 1 2 3 1 0), (2 2 1 2

2 1 0), (2 2 1 3 3 1 0), (2 2 1 3 3 2 0), (2 3 1 1 3 1 1), (3 3 1 1 3 2 1), (3 3 1 1 4

1 1), (? ? ? ? 4 ? 0), (? 1 ? ? ? ? 1), (? 2 ? ? ? ? 1), (? ? ? ? ? ? 0)

4.3 Learning English Pronunciation Databases

IVSA has been applied to learn English pronunciation rules [13]. The task is

to provide a set of rules that transform input English words into sound sym-

bols using four steps: (1) decompose words into graphemes, (2) form syllables

from graphemes, (3) stress marking on syllables, and (4) transform them into a

sequence of sound symbols. Learning and testing results are shown in Table 3.

Table 3. Learning and Testing Results for Individual Steps

Learning Accuracy Testing Accuracy # of

Step Inst. Words Inst. Words Inst. Words Inst. Words Rules

(1) 118,236 17,951 99.58% 99.19% 13,050 1,995 98.18% 94.89% 1,030

(2) 56,325 23,684 97.23% 96.34% 6,241 2,656 96.36% 95.41% 248

(3) 56,325 23,684 78.30% 72.26% 6,241 2,656 77.95% 72.78% 2,080

(4) 118,236 17,951 98.14% 95.31% 16,418 2,656 96.93% 92.23% 1,971

5 Conclusions

We have presented a new concept learning method IVSA, its approach, and

test results. Our analysis of previous research shows that the empty version

space signals a new feature of the same target concept presented by a particular

instance. The hypotheses generated by previous version spaces belong to one

region of the target concept while the current hypotheses generated by a new

version space belong to another region of the same concept. IVSA takes the

advantage of an empty version space, using it to divide the regions of a concept,

and correctly handles noisy training instances.

A concept description can be divided into regions, and each region can be

represented by a subset of training instances. These subsets can be collected

according to the statistical analysis on each attribute value provided by the

Example Analyser. The technique of re-arranging the order of training instances

according to the importance of a particular attribute value provides a practical

method to overcome order bias dependency of the training instances.
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The demonstration on learning noisy training instances shows that IVSA has

strong immunity to noisy data, and has the ability to learn disjunctive concept.

The preliminary experimental results show that rules learned by IVSA obtain

high accuracy when applied to previously unseen instances. In the future, we

will intensively test IVSA with additional databases and improve the Example

Analyser to obtain higher learning speed and smaller numbers of rules.
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Abstract. We describe statistical and empirical rule quality formulas

and present an empirical comparison of them on standard machine learn-

ing datasets. From the experimental results, a set of formula-behavior
rules are generated which show relationships between a formula's per-

formance and dataset characteristics. These formula-behavior rules are

combined into formula-selection rules which can be used in a rule in-
duction system to select a rule quality formula before rule induction.

1 Introduction

A rule induction system generates decision rules from a set of data. The decision
rules determine the performance of a classi�er that exploits the rules to classify
unseen objects. It is thus important for a rule induction system to generate deci-
sion rules with high predictability or reliability. These properties are commonly
measured by a function called rule quality. A rule quality measure is needed in
both rule induction and classi�cation. A rule induction process is usually consid-
ered as a search over a hypothesis space of possible rules for a decision rule that
satis�es some criterion. In the rule induction process that employs general-to-
speci�c search, a rule quality measure can be used as a search heuristic to select
attribute-value pairs in the rule specialization process; and/or it can be employed
as a signi�cance measure to stop further specialization. The main reason to focus
special attention on the stopping criterion can be found in the studies on small

disjunct problems [9]. The studies indicated that small disjuncts, which cover a
small number of training examples, are much more error prone than large dis-
juncts. To prevent small disjuncts, a stopping criterion based on rule consistency
(i.e., the rule is consistent with the training examples) is not suggested for use
in rule induction. Other criteria, such as the G2 likelihood ratio statistic as used
in CN2 [7] and the degree of logical su�ciency as used in HYDRA [1], have been
proposed to \pre-prune" a rule to avoid overspecialization. Some rule induction
systems, such as C4.5 [12] and ELEM2 [2], use an alternative strategy to prevent
the small disjunct problem. In these systems, the rule specialization process is
allowed to run to completion (i.e., it forms a rule that is consistent with the
training data or as consistent as possible) and \post-prunes" over�tted rules by
removing components that are deemed unreliable. Similar to pre-pruning, a cri-
terion is needed in post-pruning to determine when to stop this generalization
process. A rule quality measure is also needed in classi�cation. It is possible that
an unseen example satis�es multiple decision rules that indicate di�erent classes.

In this situation, some conict resolution scheme must be applied to assign the

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 482-491, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



unseen object to the most appropriate class. It is therefore useful for each rule
to be associated with a numerical factor representing its classi�cation power,
its reliability, etc. We survey and evaluate statistical and empirical rule quality
measures, some of which have been discussed by Bruha [5]. In our evaluation,
ELEM2 [2] is used as the basic learning and classi�cation algorithms. We re-
port the experimental results from using these formulas in ELEM2 and compare
the results by indicating the signi�cance level of the di�erence between each
pair of the formulas. In addition, the relationship between the performance of a
formula and a dataset is obtained by automatically generating formula-behavior
rules from the experimental results. The formula-behavior rules are further com-
bined into formula-selection rules which can be employed by ELEM2 to select
a rule quality formula before rule induction. We report the experimental results
showing the e�ects of formula-selection on ELEM2's predictive performance.

2 Rule Quality Measures
Many rule quality measures are derived by analysing the relationship between a
decision rule R and a class C. The relationship can be depicted by a 2�2 contin-

gency table [5], which consists of a cross-tabulation of categories of observations
with the frequency for each cross-classi�cation shown:

Class C Not class C

Covered by rule R nrc nr�c nr
Not covered by R n�rc n�r�c n�r

nc n�c N

where nrc is the number of training examples covered by rule R and belonging to
class C; nr�c is the number of training examples covered by R but not belonging
to C, etc; N is the total number of training examples; nr , n�r, nc and n�c are
marginal totals, e.g., nr = nrc + nr�c, which is the number of examples covered
by R. The contingency table can also be presented using relative rather than
absolute frequencies as follows:

Class C Not class C

Covered by rule R frc fr�c fr
Not covered by R f�rc f�r�c f�r

fc f�c 1
where frc =

nrc
N
, fr�c =

nr�c
N
, and so on.

2.1 Measures of Association

A measure of association indicates a relationship between the classi�cation for
the columns and the classi�cation for the rows in the 2� 2 contingency table.

Pearson �2 Statistic assumes contingency table cell frequencies are propor-
tional to the marginal totals if column and row classi�cations are independent,
and is given by

�2 =
X (no � ne)

2

ne

where no is the observed absolute frequency of examples in a cell, and ne is the
expected absolute frequency of examples for the cell. A computational formula
for �2 can be obtained using only the values in the contingency table with

absolute frequencies [6]: �2 = N(nrcn�r�c�nr�cn�rc)
2

ncn�cnrn�r
: This value measures whether

the classi�cation of examples by rule R and one by class C are related. The lower
the �2 value, the more likely the correlation between R and C is due to chance.
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G2 Likelihood Ratio Statistic measures the distance between the observed
frequency distribution of examples among classes satisfying rule R and the ex-
pected frequency distribution of the same number of examples where rule R
selects examples randomly. The value of this statistic can be computed as

G2 = 2(
nrc

nr
loge

nrcN

nrnc
+
nr�c

nr
loge

nr�cN

nrn�c
):

The lower the G2 value, the more likely the apparent association between the
two distributions is due to chance.

2.2 Measures of Agreement

A measure of agreement concerns the main diagonal contingency table cells.

Cohen's Formula Cohen [8] suggests comparing the actual agreement on the
main diagonal (frc + f�r�c) with the chance agreement (frfc + f�rf�c) by using the
normalized di�erence of the two:

QCohen =
frc + f�r�c � (frfc + f�rf�c)

1� (frfc + f�rf�c)

When both elements frc and f�r�c are reasonably large, Cohen's statistic gives a
higher value which indicates the agreement on the main diagonal.

Coleman's Formula Coleman [3, 5] de�nes a measure of agreement between
the �rst column and any particular row in the contingency table. Bruha [5]
modi�es Coleman's measure to de�ne rule quality, which actually corresponds
to the agreement on the upper-left element of the contingency table. The formula
normalizes the di�erence between actual and chance agreement:

QColeman =
frc � frfc

fr � frfc
:

2.3 Measure of Information
Given class C, the amount of information necessary to correctly classify an in-
stance into class C whose prior probability is P (C) is de�ned as �log2P (C).
Given rule R, the amount of information we need to correctly classify an in-
stance into class C is �log2P (CjR), where P (CjR) is the posterior proba-
bility of C given R. Thus, the amount of information obtained by rule R is
�log2P (C) + log2P (CjR). This value is called information score [10]. It mea-
sures the amount of information R contributes and can be expressed as

QIS = �log2
nc

N
+ log2

nrc

nr
:

2.4 Measure of Logical su�ciency
The logical su�ciency measure is a standard likelihood ratio statistic, which has
been applied to measure rule quality [1]. Given a rule R and a class C, the degree
of logical su�ciency of R with respect to C is de�ned by

QLS =
P (RjC)

P (Rj �C)

where P denotes probability. A rule for which QLS is large means that the
observation of R is encouraging for the class C { in the extreme case of QLS

approaching in�nity,R is su�cient to establish C in a strict logical sense. On the
other hand, if QLS is much less than unity, the observation of R is discouraging

for C. Using frequencies to estimate the probabilities, we have QLS =
nrc

nc
nr�c

n�c

:
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2.5 Measure of Discrimination

Another statistical rule quality formula is the measure of discrimination, which
is applied in ELEM2 [2]. The formula was inspired by a query term weight-
ing formula used in the probability-based information retrieval. The formula
measures the extent to which a query term can discriminate relevant and non-
relevant documents [13]. If we consider a rule R as a query term in an IR setting,
positive examples of class C as relevant documents, and negative examples as
non-relevant documents, then the following formula can be used to measure the
extent to which rule R discriminates positive and negative examples of class C:

QMD = log
P (RjC)(1� P (Rj �C))

P (Rj �C)(1� P (RjC))

where P denotes probability. The formula represents the ratio between the rule's

positive and negative odds and can be estimated as QMD =
nrc

n�rc
nr�c

n�r�c

:

2.6 Empirical Formulas
Some rule quality formulas are not based on statistical or information theories,
but from intuitive logic. Bruha [5] refers to these as empirical formulas. We de-
scribe two empirical formulas that combine two characteristics of a rule: consis-
tency and coverage. Using the elements of the contingency table, the consistency
of a rule R can be de�ned as cons(R) = nrc

nr
and its coverage as cover(R) = nrc

nc
.

Weighted Sum of Consistency and Coverage Michalski [11] proposes to
use the weighted sum of consistency and coverage as a measure of rule quality:

QWS = w1 � cons(R) + w2 � cover(R)

where w1 and w2 are user-de�ned weights with their values belonging to (0; 1)
and summed to 1. This formula is applied in an incremental learning system
YAILS [14]. The weights in YAILS are speci�ed automatically as: w1 = 0:5 +
1
4
cons(R) and w2 = 0:5� 1

4
cons(R): These weights are dependent on consistency.

The larger the consistency, the more inuence consistency has on rule quality.

Product of Consistency and Coverage Brazdil and Torgo [4] propose to
use a product of consistency and coverage as rule quality:

QProd = cons(R) � f(cover(R))

where f is an increasing function. The authors conducted a large number of
experiments and chose to use the following form of f : f(x) = ex�1. This setting
of f makes the di�erence in coverage have smaller inuence on rule quality, which
results in the rule quality formula to prefer consistency.

3 Experiments with Rule Quality Measures

3.1 The Learning System

ELEM2 uses a sequential covering learning strategy; it reduces the problem of
learning a disjunctive set of rules to a sequence of learning a single conjunctive
rule that covers a subset of positive examples. Learning a conjunctive rule begins
by considering the most general rule precondition, then greedily searches for an
attribute-value pair that is most relevant to class C according to the following
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function: SIGC (av) = P (av)(P (Cjav) � P (C)); where av is an attribute-value
pair and P denotes probability. The selected attribute-value pair is then added
to the rule precondition as a conjunct. The process is repeated until the rule
is as consistent with the training data as possible. Since a \consistent" rule
may be a small disjunct that over�ts the training data, ELEM2 \post-prunes"
the rule after the initial search for the rule is complete. To post-prune a rule,
ELEM2 �rst computes a rule quality value according to the formula of measure
of discrimination QMD (Section 2.5). It then checks each attribute-value pair in
the rule in the reverse order in which they were selected to see if removal of a
pair will decrease the rule quality value. If not, the pair is removed.

After rules are induced for all classes, the rules can be used to classify
new examples. The classi�cation procedure in ELEM2 considers three possi-
ble cases: (1) Single match. The new example satis�es one or more rules of the
same class. In this case, the example is classi�ed to that class. (2) Multiple

match. The new example satis�es more than one rules of di�erent classes. In
this case, ELEM2 computes a decision score for each of the matched classes as:
DS(C) =

Pk

i=1QMD(ri); where ri is a matched rule that indicates class C, k
is the number of this kind of rules, and QMD(ri) is the rule quality of ri. The
new example is then classi�ed into the class with the highest decision score.
(3) No match. The new example is not covered by any rule. Partial matching
is conducted. If the partially-matched rules do not agree on classes, a partial
matching score between new example e and a partially-matched rule ri with n

attribute-value pairs, m of which match the corresponding attributes of e, is
computed as PMS(ri) =

m
n
� QMD(ri). A decision score for a class C is com-

puted as DS(C) =
Pk

i=1 PMS(ri); where k is the number of partially-matched
rules indicating class C. The new example is classi�ed into the class with the
highest decision score.

3.2 Experimental Design

We evaluate the rule quality formulas described in Section 2 by determining
how rule quality formulas a�ect the predictive performance of ELEM2. In our
experiments, we run versions of ELEM2, each of which uses a di�erent rule qual-
ity formula. The formulas: QMD; QCohen; QColeman; QIS; QLS ; QWS , and QProd

are used exactly as described in Section 2. The �2 statistic is used in two ways:
(1) Q�2

:05
: In post-pruning, the removal of an attribute-value pair depends on

whether the rule quality value after removing an attribute-value pair is greater
than �2:05, i.e., the tabular �2 value for the signi�cance level of 0:05 with one
degree of freedom. If the calculated value is greater than �2:05, then remove the
attribute-value pair; otherwise check other pairs or stop post-pruning if all pairs
have been checked. (2) Q�2

:05+
: In post-pruning, an attribute-value pair is re-

moved if and only if the rule quality value after removing the pair is greater
than �2:05 and no less than the rule quality value before removing the pair. The
G2 statistic, denoted as QG2:05+ , is used in the same way as Q�2

:05+

.

Our experiments are conducted using 22 benchmark datasets from the UCI
Repository of Machine Learning database. The datasets represent a mixture of

characteristics shown in Table 1. ELEM2 removes all the examples containing
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missing values before rule induction. For datasets with missing values (such as
\crx") , the number of examples shown in Table 1 is the number after removal.

Number of Class
Datasets classes attributes examples Distribution Domain

1 abalone 3 8 4177 Even Predicting the age of abalone
from physical measurements

2 australia 2 14 690 Even Credit card application approval

3 balance-scale 3 4 625 Uneven Balance scale classi�cation

4 breast-cancer 2 9 683 Uneven Medical diagnosis

5 bupa 2 6 345 Uneven Liver disorder database

6 crx 2 15 653 Uneven Credit card applications

7 diabetes 2 8 768 Uneven Medical diagnosis

8 ecoli 8 7 336 Uneven Predicting protein localization sites

9 german 2 20 1000 Uneven Credit database to classify people

as good or bad credit risks

10 glass 6 9 214 Uneven Glass identi�cation for

criminological investigation

11 heart 2 13 270 Uneven Heart disease diagnosis

12 ionosphere 2 33 351 Uneven Classi�cation of radar returns

13 iris 3 4 150 Even Iris plant classi�cation

14 lenses 3 4 24 Uneven Database for �tting contact lenses

15 optdigits 10 64 3823 Even Optical recognition of handwritten
digits

16 pendigits 10 16 7494 Even Pen-based recognition of handwritten

digits

17 post-operative 3 8 87 Uneven Postoperative Patient Data

18 segment 7 18 2310 Even image segmentation

19 tic-tac-toe 2 9 958 Uneven Tic-Tac-Toe Endgame database

20 wine 3 13 178 Uneven Wine recognition data

21 yeast 10 8 1484 Uneven Predicting protein localization sites

22 zoo 7 16 101 Uneven Animal classi�cation

Table 1. Description of Datasets.

3.3 Results

On each dataset, we conduct a ten-fold cross-validation of a rule quality measure
using ELEM2. The results in terms of predictive accuracy mean over the 10
runs on each dataset for each formula are shown in Figure 1. The average of the
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Fig. 1. Results on the 22 datasets

accuracy means for each formula over the 22 datasets is shown in Table 2, where
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QWS QMD QLS QColeman QProd QG2
:05+

QIS Q
�
2

:05+

QCohen Q
�
2

:05

Average 82.09 81.34 81.33 80.66 80.33 79.85 79.63 79.51 79.05 72.95

Table 2. Average of accuracy means for each formula over the datasets.

the formulas are listed in decreasing order of average accuracy means. Whether
a formula with a higher average is signi�cantly better than a formula with a
lower average is determined by paired t-tests using the S-Plus statistics software.
The t-test results in terms of p-values are reported in Table 3. A small p-value
indicates that the null hypothesis (the di�erence between the two formulas is due
to chance) should be rejected in favor of the alternative at any signi�cance level
above the calculated value. The p-values that are smaller than 0.05 are shown
in bold-type to indicate that the formula with higher average is signi�cantly
better than the formula with the lower average at the 5% signi�cance level.
For example, QWS is signi�cantly better than QColeman, QG2:05+ , QIS, Q�2

:05+

,

QWS QMD QLS QColeman QProd QG2
:05+

QIS Q
�
2

:05+

QCohen Q
�
2

:05

QWS NA 0.0819 0.1421 0.0119 0.0692 0.002 0.002 0.0073 0.0463 0.0026

QMD - NA 0.9719 0.1323 0.4032 0.0183 0.01 0.0545 0.1328 0.0069

QLS - - NA 0.0539 0.4389 0.0026 0.0046 0.0694 0.149 0.0076

QColeman - - - NA 0.7858 0.0526 0.035 0.256 0.3187 0.0137

QProd - - - - NA 0.6947 0.5621 0.4325 0.3962 0.0111

QG2
:05+

- - - - - NA 0.5088 0.7512 0.6316 0.0282

QIS - - - - - - NA 0.9117 0.733 0.0316

Q
�
2

:05+

- - - - - - - NA 0.6067 0.0144

QCohen - - - - - - - - NA 0.0179

Q
�
2

:05

- - - - - - - - - NA

Table 3. Signi�cance levels (p-values from paired t-test) of improvement.

QCohen and Q�2
:05
; QMD and QLS are signi�cantly better than QG2:05+, QIS and

Q�2
:05
; and all formulas are signi�cantly better than Q�2

:05
at the 5% signi�cance

level. Generally speaking, QWS , QMD and QLS are comparable even if their
performance does not agree on a particular dataset. QColeman and QProd , and
Q�2

:05+
and QCohen are comparable. QG2:05+ and QIS are not only comparable,

but also similar on each particular dataset, indicating that they have similar
trends with regard to nrc; nr; nc and N in the contingency table.

4 Learning from the Experimental Results
From our results, we posit that, even if the learning performance on some
datasets (such as breast cancer dataset) is not very sensitive to the rule quality

formula used, the performance greatly depends on the formula on most of the
other datasets. It would be desirable that we can apply a \right" formula that
gives the best performance among other formulas on a particular dataset. For
example, although formula Q�2

:05
is not a good formula in general, it performs

better than other formulas on some datasets such as heart and lenses. If we can
�nd conditions under which each formula leads to good learning performance, we
can select \right formulas" for di�erent datasets and can improve the predictive

performance of the learning system further.
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To �nd out this regularity, we use our learning system, i.e., ELEM2, to learn
the formula selection rules from the experimental results shown in the last sec-
tion. The learning problem is divided into (1) learning formula-behavior rules for
each rule quality formula that describe the conditions under which the formula
produces \good", \medium" or \bad" results, and (2) combining the rules for
all the formulas that describe the conditions under which the formulas give the
\good" results. The resulting set of rules is the formula-selection rules that can
be used by the ELEM2 classi�cation procedure to perform formula selection.

4.1 Data Representation
To learn formula-behavior rules we construct training examples from Figure 1
and Table 1. First, on each dataset, we decide the relative performance of each
formula as \good", \medium", or \bad". For example, on the abalone dataset, we
say that the formulas whose accuracy mean is above 60% produce \good" results;
the formulas whose accuracy mean is between 56 and 60 produce \medium" re-

sults; and other formulas give \bad" results. Then, for each formula,we construct
a training dataset in which an training example describes the characteristics of
a dataset and the performance of the formula on the dataset. Thus, to learn
behavior rules for each formula, we have 22 training examples. The dataset char-
acteristics are described in terms of number of examples, number of attributes,
number of classes and the class distribution. Samples of training examples for
learning behavior rules of QIS are shown in Table 4.

Number of Class
Examples Attributes Classes Distribution Performance

4177 8 3 Even Good

690 14 2 Even Medium

625 4 3 Uneven Bad

683 9 2 Uneven Medium

Table 4. Sample of training examples for learning the behavior of a formula

4.2 The Learning Results

ELEM2 with its default rule quality formula (QMD) is used to learn the \behav-
ior" rules from the training dataset constructed for each formula. Table 5 shows
samples of generated rules for each formula, where N stands for the number of
examples, NofA is the number of attributes, NofC is the number of classes, and
the column \No. of Support Datasets" means the number of the datasets that
support the corresponding rule. These rules serve two purposes. We summarize

predictive performance of each formula in terms of dataset characteristics. We
build a set of formula-selection rules by combining all \good" rules, i.e., the
rules that predicts \good" performance for each formula, and use them to select

a \right" rule quality formula for a (new) dataset. For formula selection, we
can use the ELEM2 classi�cation procedure that takes formula-selection rules
to classify a dataset into a class of using a particular formula.

4.3 ELEM2 with Multiple Rule Quality Formulas

With formula-selection rules, we can apply ELEM2's classi�cation procedure to

select a rule quality formula before using ELEM2 to induce rules from a dataset.
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Rule No. of Support
Formula Condition Decision Quality Datasets

QWS (NofA�20)and(NofC=2) Good 1.23 8

(N�3823)and(classDistr=Even) Good 0.77 4

QMD (N>625)and(8<NofA�18) Good 1.56 6
(NofC>8) Good 1.07 3

QLS (ClassDistr=Even) Good 1.22 6

(N�24) Bad 1.61 1

QColeman (N>768)and(NofA>8) Good 1.52 5

(N>1484) Good 1.34 4

(351<N�683)and(NofA�9) Bad 1.57 2

QProd (N�214)and(NofA�13) Good 1.66 5
(NofA>20) Good 1.05 2

(351<N�653) Bad 1.40 2

QG2
:05+

(N>1484) Good 1.77 4

(NofA>20) Good 1.26 2
(NofA�7)and(NofC>2)and(ClassDistr=Uneven) Bad 1.38 3

QIS (N>1484) Good 1.77 4

(NofA>20) Good 1.26 2
(NofA�7)and(NofC>2)and(ClassDistr=Uneven) Bad 1.38 3

Q
�
2
:05+

(87<N�178) Good 1.27 3

(13<NofA�15) Bad 1.57 2

QCohen (101<N�1484)and(NofA�8)and(NofC>2) Good 1.34 4
(768<N�2310)and(8<NofA�18) Bad 1.40 2

Q
�
2

:05

(N�87) Good 1.57 2

(9<NofA�14)and(NofC�2) Good 1.57 2
(N>87) Bad 1.15 15

Table 5. Formula Behavior Rules

Thus, ELEM2 can use di�erent formulas on di�erent datasets. To show this
strategy, we conduct ten-fold evaluation of ELEM2 on the 22 datasets we used.
The result is shown in Figure 2, in which the average accuracy mean from the
\exible" ELEM2 (labeled \Combine" in the graph) is compared with ones using
individual formulas. We also conduct paired t-tests to see how much the exible

Average Accuracy Mean %

70

75

80

85

MD
Chi.05

Chi.05+
G2.05+

Cohen
Coleman IS LS WS Prod

Combine

Fig. 2. Average of accuracy means of each formula on the 22 datasets

ELEM2 improves over ELEM2 with a single rule quality formula. The p-values
from the t-test are shown in Table 6. \Combine" improves QWS , QMD and QLS

at the 2.5% signi�cance level; and it improves other formulas more signi�cantly
at the 0.5% signi�cance level.

QWS QMD QLS QColeman QProd QG2
:05+

QIS Q
�
2
:05+

QCohen Q
�
2
:05

Combine 0.0182 0.0217 0.0228 0.0031 0.0002 0.0009 0.0007 0.0005 0.0083 0.0006

Table 6. Signi�cance levels of the improvement of \Combine" over individual formulas
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5 Conclusions
We have described and evaluated various statistical and empirical formulas for

de�ning rule quality measures. The performance of these formulas varies among
datasets. The empirical formulas, especially QWS , work very well. Among sta-
tistical formulas, QMD and QLS work the best on the tested datasets and are
comparable with QWS . To determine the regularity of a rule quality formula's
performance in terms of dataset characteristics, we used ELEM2 to induce rules
from a dataset constructed from the experimental results. These rules provided
ideas about the situations in which a formula leads to good, medium or bad
performance. These rules can also be used to automatically select a rule qual-
ity formula before rule induction. Our experiment showed that this selection can
lead to signi�cant improvement over the rule induction system using a single for-
mula. Future work includes testing our conclusions on more datasets to obtain
more reliable formula-selection rules.
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Rules as Attributes in Classi�er Construction
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Abstract. A method for constructing classi�cation (decision) systems

is presented. The use of decision rules derived using rough set methods

as new attributes is considered. Neural networks are applied as a tool

for construction of classi�er over reconstructed dataset. Possible prof-

its of such an approach are briey presented together with results of

preliminary experiments.

1 Introduction

In the process of constructing classi�cation (decision) sytems we have several

objectives in mind. Among others, we concern robustness, versatility, adaptive-

ness, compactness and intuitive understanding of produced solution. Of course

it is tough job to ful�ll all the expectations, especially if our system is based

only on the information contained in the data. In this paper we are trying to

address the issue of compactness and adaptiveness of a classi�er. We propose a

method of treating decision rules as a source for new features. Using those rules

we construct new set of data that is easier to classify. A simple arti�cial neural

network is used for this purpose

The classi�er constructed in such a way shows, according to preliminary

experiments, some nice features. It is usually smaller and simpler than rough set

classi�er having comparable quality. It is also easier to explain intuitively as it

has less components.

The paper begins with introduction of basic notions. Then some foundational

features of rule based rough set classi�ers are presented. Next sections contain

short description of proposed solution and the initial experimental results.

2 Basic notions

The structure of data that is subject of our study is represented in the form of

information system [9] or, more precisely, the special case of information system

called decision table.

Information system is a pair of the form A = (U;A) where U is a universe

of objects and A = (a1; :::; am) is a set of attributes i.e. mappings of the form

ai : U ! Va , where Va is called value set of the attribute ai. The decision

table is also a pair of the form A = (U;A [ fdg) where the major feature

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 492-499, 1999. 
 c Springer-Verlag Berlin Heidelberg 1999



that is di�erent from the information system is the distinguished attribute d:

In case of decision table the attributes belonging to A are called conditional

attributes or simply conditions while d is called decision (sometimes decision

attribute). We will further assume that the set of decision values is �nite and

by rank(d) we will refer to its cardinality. The i�th decision class is a set of

objects Ci = fo 2 U : d(o) = dig, where di is the i�th decision value taken from

decision value set Vd = fd1; :::; drank(d)g

For any subset of attributes B � A indiscernibility relation IND(B) is de�ned

as follows:

xIND(B)y , 8a2Ba(x) = a(y) (1)

where x; y 2 U:

Having indiscernibility relation we may de�ne the notion of reduct. B � A

is a reduct of information system if IND(B) = IND(A) and no proper subset

of B has this property.

Decision rule is a formula of the form

(ai1 = v1) ^ ::: ^ (aik = vk) ) d = vd (2)

where 1� i1 < ::: < ik � m, vi 2 Vai . Atomic subformulae (ai1 = v1) are called

conditions. We say that rule r is applicable to object, or alternatively, the object

matches rule, if its attribute values satisfy the premise of the rule. With the

rule we can connect some characteristics. Support denoted as SuppA(r) is equal

to the number of objects from A for which rule r applies correctly i.e. premise

of rule is satis�ed and the decision given by rule is similar to the one preset in

decision table. MatchA(r) is the number of objects in A for which rule r applies

in general. Analogously the notion of matching set for a collection of rules may

be introduced. By MatchA(R; o) we denote the subset M of rule set R such that

rules in M are applicable to the object o 2 U .

3 Rule based decision systems

Among the others, we may use the decision (classi�cation) support systems based

on rules derived from data. There are several approaches to generate such rules.

They di�er in the way the rules are generated as well as in the form of rule

representation and use. Nevertheless, all the approaches have some common,

basic questions to answer. One of them, probably most important one while

classifying new, unseen objects is this about trustworthness of a rule or group of

rules. Depending on approach, there may be several issues to solve while deciding

what the decision for new-coming object should be.

Given a set of decision rules R = (r1; :::; rm) derived from data by some

method and the new object oi, we may face several problems while trying to

make decision. Namely:

1. They may be no rule in R that is applicable to oi. In other words the values

of conditional attributes of oi do not satisfy conditions of any rule in R: In
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such a case we cannot make decision since there is no knowledge within our

rule set that covers the case of oi.
2. There are several rules in R that are applicable to oi but they give con-

tradictory outputs. This situation, known as conict between rules must be

resolved by applying procedures to measure the con�dence of particular rules

(or groups of them).

There is a number of possible solutions to above two problems. Usually to

resolve the problem of non-applicability of rules one of three methods may be

applied:

{ The object is assigned the default value of decision according to preset as-

sumptions.
{ The rule that has best (according to a given criterion) applicability is chosen

and the decision is determined by this rule. The applicability criterion may

be based e.g. on number of conditions in the rule that are satis�ed by object.

Other such criterion may be induced by preferences about decision value like

in case of ordered decision domain.
{ The "don't know" signal is returned to the user.

Of course, rule based decision systems are usually build in the manner to

avoid the situation of not recognizing new object. But still, the actual accuracy

depends on the quality of derived rules.

The matter of resolving conicts between rules may be even more compli-

cated, especially in case when we have bunch of them and no external, additional

information about their applicability and importance. To cope with that prob-

lem, several techniques may be applied (refer to [7]). Bringing all of them here

is rather impossible but we discuss some below.

The most popular way to establish �nal decision is based on comparison of

the number of rules form di�erent decision classes that are applicable to a given

object. The object is assigned to the class determined by majority of the rules

(in comparison with other classes). This method, however, causes uni�cation of

rule importance. This may be a serious weakness and in order to avoid it weights

may be assigned to rules (or groups of them). The method we exploit in our

experiments is based on the following formula describing weight for set of rules:

WBSS(M; o) =

=

8
><
>:

P

r2Match(M;o)

card(SuppA(r)�SCA(r)

P

r2M

card(SuppA(r)�SCA(r)
if
P
r2M

card(SuppA(r) � SCA(r) > 0

0 otherwise

(3)

where SCA(r) is called stability coe�cient and it is determined during the pro-

cess of rule calculation using dynamic reducts (see [3], [4] for detailed explana-

tion). To give some intuition about SCA(r) is is worth knowing that it mainly

depends on frequency of occurrence of rule r in the set of optimal rules at sub-

sequent steps of the dynamic algorithm for rule generation (see [4]). We use this

method because numerous experiments (see [4], [3], [11]) prove that it is, on the

average, better than other.
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4 Rough set rule induction

The process of creating rules with use of rough set techniques is essential for our

ideas of classi�er construction. Therefore some basic information about methods

for rule induction is needed. The base for deriving rules is reduct calculation.

Numerous practical experiments show that usually there is a need for calculation

of several reducts in order to get satis�able quality of classi�cation. Most of the

cases involving larger set of data require calculation of reducts and rules with use

of dynamic techniques. From technical point of view the process of calculating

the reducts and rules is computationally exhaustive and for real-world solutions

some approximate techniques like heuristics or genetic algorithms are engaged

(see e.g.[12]).

The derived set of rules R may be for some reason unsatisfactory. The major

concerns are:

{ The number of rules is excessive so the cost of storing, checking against and

explaining the rules is not acceptable.
{ The rules are too general, so they do not really contain any valid knowledge,

or too speci�c, so they describe very small part of the universe in too much

detail.

To avoid at least part of the problems mentioned above we may apply shorten-

ing procedures. Those procedures allow to shorten the rules and, in consequence,

reduce the number of them. The process of rule shortening comprises of several

steps that, in consequence, lead to removing some descriptors from a particular

rule. Usually, after shortening, the number of rules decreases as repetitions occur

in the set of shortened rules. There are several methods leading to this goal, for

details review e.g. [1], [4], [13].

5 Rules as attributes

In the classical approach, once we have decision rules we are at the end of

classi�er construction. But there is also other way of treating the rules since

they describe relations existing in our data. Therefore we may treat them as

features of objects. In this view, the process of rule extraction becomes the one

of new feature extraction. These features are of higher "order" since they are

taking into account speci�c con�gurations of attribute values with respect to

decision.

Let us consider set of rules R = (r1; :::; rm). We may construct the new

decision table based on them.

With every rule ri in R we connect a new attribute ari. The decision attribute

remains unchanged as well as the universe of objects. The values of attributes

over objects may be de�ned in di�erent ways depending on the nature of data.

For the purposes of this research we use the following three possibilities:

{ ari(oj) = dk where dk is the value of decision returned by rule ri if it is

applicable to object oj , 0 (or any other constant) otherwise.
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{ ari(oj) = const (usually const equal 1 or -1) if the rule ri applies to the

object oj , 0 (or any other constant) otherwise.

{ In case of tables with binary decision ari(oj) = 1 if the rule ri applies to the

object oj and the output of this rule points at decision value 1. ari(oj) = �1

if the rule ri applies to the object oj and the output of this rule points at

decision value 0. When the rule is not applicable ari(oj) = 0.

Due to technical restrictions in further steps of classi�er construction it is

sometimes necessary to modify above methods by e.g. encoding the decision

values in �rst of the approaches in order to use neural network as it is in our

case.

It can be easily seen how important is to keep the rule set within reason-

able size. Otherwise the newly produced decision table may become practically

unmanageable due to the number of attributes.

6 The making of classi�er

Equipped with the decision table extracted with use of the set of rules we may

now proceed with construction of �nal classi�cation (decision) system. In order

to keep computation within reasonable size with respect to time and spatial

complexity we apply very simple and straight methods. Namely we use a simple

sigmoidal neural network with no hidden layers (see [6]). The overall process of

classi�er construction is illustrated in Figure 1.

Initial decision
table

Reduct
calculation

Rule calculation

Rule shortening

New table
creation

ANN design

ANN learning

New clasifier

Fig. 1. The layout of new classi�er

We start with initial, training decision table for which we calculate reducts

and the set of possibly best rules. We may derive rules in dynamic or non-

dynamic way depending on the particular situation (data). These rules are then

used to construct new decision table in the manner described in previous section.
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Over such constructed new data table we build neural network based classi�er

to classify newly formed objects. Then classi�er is checked against quality on

testing set.

Of course with the proposed scheme we may construct various classi�ers as

some parameters may be adjusted on any step of this process. In the process

of reduct and rule calculation we may establish restrictions for number and size

of reducts (rules) as well as on rule speci�city, generality, coverage and so on.

During neural network construction we may apply di�erent learning algorithms.

The learning coe�cients of those algorithms may vary as well.

To complete the picture of classi�er it is important to add a handful of

technical details. For the purpose of the research presented in this paper we used

dynamic calculation of rules based on genetic algorithm and incorporating some

discretisation techniques for attributes continuous in their nature. For details

consult [5]. On the side of neural network we used simple architecture with

neurons having classical sigmoid or hyperbolic tangent as the activation function.

Usually, the network is equipped with bias and trained using gradient descent

with regularisation, momentum and adaptive learning rate (see [6],[2]).

The simple architecture of neural network has one additional advantage.

From its weights we may decipher the importance of particular attributes (rules)

for decision making. It is usually not the case of more complicated neural archi-

tecture for which such an interpretation is di�cult and the role of single inputs

is not transparent.

7 Experimental results

The proposed methods have been tested against real data tables. For testing we

used two benchmark datasets taken from repository [14] and one dataset received

from medical sources. Table 1 below describes basic parameters of decision tables

used in experiments. The EEG data was originally represented as matrix of

Dataset Objects Attributes Attribute type rank(d)

Monk1 432 6 binary 2

Monk2 432 6 binary 2

Monk3 432 6 binary 2

Lymphography 148 18 symbolic 4

EEG 550 105 binary 2

Table 1. Datasets used for experiments.

signals that was further converted to binary form by applying wavelet analysis

and discretisation techniques as originally proposed in [11], [5] and developed

in [10]. The MONK datasets have preset partition into training and testing set,

rest of the data sets were tested using cross-validation method.
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The rules were calculated using dynamic techniques. Then we performed sev-

eral experiments using di�erent rule shortening ratio. The table 2 below shows

best results. Columns in this table describe number of rules used for new table

Data Number Shortening Method Error

sets of rules ratio Proposed Other

Monk1 31 0.6 TT 0/0.03 0/0

Monk2 26 0.6 TT 0/0.06 0/0.049

Monk3 44 0.6 TT 0/0.051 0/0.046

Lymphography 78 0.8 CV-10 0.03/0.19 0/0.15

EEG 13 0.3 CV-5 0/0.01 0.11/0.16

Table 2. The results of experiments.

(Number of rules), shortening ratio of rules (between 0 and 1), method of train-

ing/testing (TT=train & test, CV-n = n-fold cross-validation), average error on

training/testing set as a fraction of the number of cases and best results got

from other rough set methods for comparison. The experiments were performed

several times in order to get averaged (representaive) results. The comparison

is made with best result got from application of combined rough set methods.

However, it is important to mention that those best classi�ers are usually based

on much larger sets of rules.

The results are comparable to those published in [8] and [3] but they usually

use much less rules and simpler setting of classi�er than in case of best results

in [4] and [3]. The most signi�cant boost is visible if we compare the outcome

of classi�cation using only the calculated rules with classical weight setting.

Especially, in the case of small shortening ratio which corresponds to signi�cant

reduction of rules, the impact of methods proposed is clearly visible.

8 Conclusions

The proposed approach allows to construct classi�er with combination of rule

based systems and neural networks. The rough set rules derived with respect

to the discernibility of object seem to posses extended importance, if used as

new feature generators. Application of neural network in last stage of classi�er

construction allows better �tting to particular set of data and makes further

addition of new knowledge to th system easier due to its adaptiveness.

Initial experiments show promising results, especially in cases of binary deci-

sion. Reduction of the number of rules used makes system obtained in this way

closer to natural intuitions.

As the work on this issue is on its beginning, there is still a lot to do in many

directions. Most interesting from our point of view is further investigation of

relationships between process of rule induction with rough sets and their further

quality as new attributes.
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Abstract. In this paper 1 we show a new learning algorithm for pattern
classification. A scheme to find a solution to the problem of incremental
learning algorithm is proposed when the structure becomes too complex
by noise patterns included in the learning data set. Our approach for this
problem uses a pruning method which terminates the learning process
with a predefined criterion. Then an iterative model with a 3 layer feed-
forward structure is derived from the incremental model by appropriate
manipulation. Note that this network is not fully connected between the
upper and lower layers. To verify the effectiveness of the pruning method,
the network is retrained by EBP. We test this algorithm by comparing
the number of nodes in the network with the system performance, and
the system is shown to be effective.

1 Introduction

Conventional iterative models such as EBP usually have a fixed feedforward net-
work structure and use an algorithm to gradually modify the weights of networks
as learning proceeds. So this approach does not allow to expand the network dur-
ing training. This approach sometimes has a critical limitation, depending on the
trial and error method or ad hoc schemes to obtain an appropriate architecture
for learning patterns.
Therefore another approach is devised to solve this problem by adding nodes
to the network when necessary. This type of learning is referred to as incre-
mental learning as the network grows as training occurs. As a procedure, Lee
et al.[2] have proposed an incremental algorithm using Fisher’s Linear Discrimi-
nant Function(FLDF)[1]. This model searches an optimal projection plane based
on the statistical method for pattern classification. And then, after projecting
patterns on this projection plane, this model starts a search procedure for an
optimal hyperplane based on an entropy measure and thus determines the neu-
ron in the structure.
1 This research is supported by Brain Science and Engineering Research Program in

Korea
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Lee et al.[3] introduced a neural network learning algorithm which transforms a
structure of an incremental model into that of an iterative model. This model
showed that the weights and thresholds as well as the structure of the 3 layer
feedforward neural network can be found systematically by examining the in-
stances statistically. It is well known that a major part of the learning capability
is in the architecture of its models.
In iterative models the approaches to solving this problem are as follows. Kung
et al.[5] proposed a method which is learning with a network structure with a
predefined node number. But this method had a problem in that it converges
less than the theoretical bases. Sietsma and Dow[7] devised an algorithm which
assigns many nodes in prior learning and then removes nodes by making an ob-
servation of inactive nodes in learning. Though this algorithm can be applied to
simple problems, when a problem is more complex one encounters many difficul-
ties. Hanson and Pratt[9] proposed an algorithm which removes hidden nodes
with a constraint term in EBP function. But this algorithm has a side effect
which reduces the probability of the convergence. Hagiwara[8] proposed an al-
gorithm which considers a proper node number and weight values concurrently.
But this algorithm needs much time to converge. Moody and Rognvaldsson[10]
proposed adding the complexity-penalty term, but it has much more compli-
cated form and also demands much more computational complexity. Wangchao
et al.[11] introduced the sparselized pruning algorithm for a higher-order neural
network, but it is applied after all the higher-order weights are trained.
The incremental model uses an algorithm trying to produce a neural network
with near-optimal architecture intelligently. But this model has a drawback in
that it can be extremely extended by noises included in patterns. In this paper
we propose a method to solve this problem.

2 Background

2.1 The Incremental Network Model

In this paper we present a pattern by a vector of n components and describe
a pattern classifier as a mapping of the input pattern space, a subset of n di-
mensional real space, to the set of classes 1,2,...,k. In order to make the output
decisions we develop the constructs which build internal representations of a
class description. For doing this, we represent one unit as a hyperplane specified
by elements (weight vector, threshold value) and then partition the space as
follows.

Hyperplane(P ) = {X |X ∈ Rn and WTX = T } (1)

where, X : Input pattern, Rn : Real space, W : Weight, T : Threshold
The hyperplane P separates the space Hn into two sets, PL and PR. Thus
input X belongs to PR or PL by P.

PR = {X |X ∈ Hn and WTX ≥ T }
PL = {X |X ∈ Hn and WTX < T }
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The network structure of the model consists of one input unit, a number of
hidden units and output units as many as the number of classes. Each unit has
a weight vector and a threshold value. The input X is broadcasted to all units
and for each unit at most one path is activated. Thus, in the whole network one
path at most is activated for each input vector.

2.2 The Training Process

During the training phase, a collection of classified patterns describing a de-
sired class is presented to an incrementally formed network of neurons. And the
weight vector and threshold values of units of the network are determined by
an adaptation process. Each unit is assigned to represent a certain hyperplane
which is part of the discriminant hypersurface represented by the network. The
training set is presented a number of times and at each presentation the network
is expanded by adding a number of new units. The adaptation process is carried
out at each unit independently of others.
In the adaptation process, the Fisher’s linear discriminant function[2] is used
in order to determine the optimal hyperplane. Fisher’s linear discriminant func-
tion provides the optimal weight for the input pattern data for an arbitrary
distribution. Fisher’s formula for n classes is shown in (2). The optimality is
characterized by the overall measure representing the mutual distances between
a set of projected points of a class and that of another class and is achieved by
maximizing the overall measure, B, standardized by V. We use Cauchy-Schwartz
inequality for obtaining maximum value of V −1B.

WTBW

WTVW
=

WT [
∑

i(Xi −X)(Xi −X)
T
]W

WT [
∑

i

∑
j(Xij −Xi)(Xij −Xi)T ]W

(2)

Let β = V 1/2W , then (2) becomes βT V −1/2BV −1/2β
βT β . This formulus attains the

highest value when vector β becomes the eigenvector e1 which is associated with
the highest eigenvalue λ of the matrix V −1/2BV −1/2. Thus weight vector(W) is
obtained as V −1/2e1.
The threshold value determining the position of the hyperplane is obtained based
on the following entropy function.

H(C|(δd)) = PL(∗)H(p1) + PR(∗)H(p2) d : cursor position (3)

After projection(WTX), the projected points are divided into two parts by a
dividing plane placed on a cursor position. After entropy is measured, the plane
is moved one at a time from d1(WTX1) to dn−1(WTXn−1). The optimal position
is where the smallest value of entropy is found. Let n1(n2) be the number of left
(right) region, then PL∗ = n1/(n1+n2) and PR∗ = n2/(n1+n2). Let xij be the
number of class j events in each region i(left, right). The probability pij whose
class will be j is xij/ni. Then, H(pi) = −

∑
pij log2pij i=1,2 j=1,...,class number
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2.3 Translation into an Iterative Model Structure

In this section we present a transforming procedure which converts the incre-
mental network topology into an iterative one.

Step 1 : The input layer consists of as many nodes as the number of variables
(dimensions) in learning patterns.

Step 2 : The first layer has the same number of nodes as that of the hidden
nodes except for leaf nodes in the incremental model. The weight and the
threshold between the input layer and the first layer are fully connected and
have the same values as those of hidden nodes in the incremental model.

Step 3 : The second layer has as many nodes as the number of leaf nodes
representing the region of each class in the incremental model. Each region
is made by the intersection of hyperplanes in the first layer, thus this layer
is characterized by AND : when all the inputs are active, the output is
active. Weight and threshold between the first layer(j) and the second layer(i)
is determined by each path, from the input node to the leaf node in the
incremental model : that is,

σiL = −1, σiR = +1
Wij(weight) = σiD, Ti = Σ|σiD| − 0.5

Here, i=0,...,(the number of discriminated region-1) and σiD(D=L(left
space), D=R(right space)) denotes ith path.

Step 4 : In the third layer there are as many nodes as the number of classes.
The intersected regions from the second layer are unioned in each class re-
gion. Weight and threshold between the second(j) and the third(i) layer is
determined by the class of each region.

If the region from ith path contains class j : Rij = 1
Otherwise : Rij = 0

Wij(Weight) = Rij

Ti(Threshold) =ΣRij − 0.5

For further information, please refer to [3].

3 Pruning in the Incremental Learning Model

3.1 Pruning Algorithm for the Proposed Incremental Model

Most of the network structure of the incremental learning algorithm have the
shape of the binary trees and hence the number of the nodes does not need
to be predetermined as the structure is determined. But an incremental model
has to solve a new problem, as there can be too many nodes to be added. This
is because a learning pattern set can contain many noisy data. The algorithm
above also has this problem as it iterates until there is only one class of data
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contained at a divided space. As the algorithm proceeds recursively, not only the
computational time but also the memory wastes are increased. Moreover, the
network performance can be degraded because of the noise effect. Therefore, an
algorithm must be devised to overcome these problems. The following formulas
are added to the algorithm introduced in the section 2.2 to solve those problems:

IF (N(•) > PruneRate) Continue the learning procedure.
ELSE Terminate the learning procedure.

where Prune Rate is a criterion for the percentage of the noise. And N(•) for
the learning pattern P at node i is determined as follows:

Ni(P ) =
(#TE −#MCE)

#MCE
× 100.0 (4)

– #TE : Total number of patterns at node i.

– #MCE : The number of patterns of a class with the most number among
the #TE patterns.

3.2 Selective-Learning Algorithm

In the section of 2.3 we introduced a method which transforms the structure of
an incremental model into that of a 3 layer iterative model. This transformed
network structure is not a fully connected but partially connected one except
for between the input layer and the hidden layer. In this section we propose a
method to reduce the network structure using an iterative learning algorithm.
This algorithm is based on the observation that, in the algorithm explained in
the section 3.1, the pruning procedure corresponds to a node reduction, and
the partial connection between layers corresponds to a reduction of weights set
size. The network structure of this model consists of nodes with the threshold
function and the sigmoid function. This structure is shown in Fig. 1. We use
the EBP algorithm to train the structure. As an initial structure, the first layer
is constructed with the nodes with the same weights and threshold values de-
termined in incremental learning. And the bias nodes are added to the second
hidden layer and the output layer.

The learning procedure of this model is described below. The first hidden
layer(O) is activated as follows:

IF ((
∑

wijXj) > Ti) Oi = 1
ELSE Oi = 0

An EBP learning is performed on the upper layer using the output from the
first layer. As our model is partially connected, the EBP is done according to
the following:

∆pwji(n+ 1) = Cji(ηδpjOpi + α∆pwji(n)) (5)

where Cji is 1 if there is a connection between node j in the upper layer and
node i in the lower layer, and 0 otherwise.
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Fig. 1. The network structure of the selective learning model

4 Implementation

To test our system, we use sleep stage scoring data sets and the speech data
used by Peterson and Barney. And we implemented the following and measured
the performance.

1. Fisher : Weight vector and threshold values are determined using the al-
gorithm in section 2.2. Prun Rate(PR, 0 ≤ PR ≤ 100) is varied and the
performance is measured.

2. Prun : After transforming into the network topology explained in section
2.3, we train the fully connected network by EBP with the weights and the
thresholds initialized from the procedure 1.

3. Sel : After transforming into the network topology explained in section 2.3,
we train the partially connected network by EBP with weights and thresholds
initialized from the procedure 1. The performance is measured as the number
of connections varies.

PR is increased by 1% from 0 to 30 %, and by 5% after 30%. The learning
rate η and the momentum rate α are set to 0.2 and 0.7, respectively. From the
experiment, we observe that the performance of the ”Sel” upto PR equals 21%
and the ”Prun” upto PR equals 40% is similar or even better than that of the
”Fisher”. The result is shown in Fig. 2. Fig. 3 shows that the number of the
nodes decreases as PR increases. Fig. 4 shows that the number of connections
decreases as the PR increases. As ”Prun” has fully connected network structure
while ”Sel” has a partially connected one, the number of the connections of the
”Prun” is more than that of the ”Sel”.
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Fig. 2. The performance comparison of 3 learning methods

Fig. 3. The number of nodes vs. PR.
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Fig. 4. The number of connections vs. PR.

5 Conclusion

In this paper a solution is proposed to solve the problem that the network struc-
ture of an incremental model can be extended excessively when the learning
pattern contains many noisy patterns. The proposed method uses a predefined
parameter, PR, to stop the recursive process in making the network structure.
After this binary tree network structure is transformed into the three layer feed-
forward structure, the EBP is employed to train the structure further. An ap-
propriate number of nodes and the corresponding weights between the nodes are
determined, which is the aim of the pruning process.
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Abstract. Intuitively, patterns of numerical sequences are often inter-
preted as formulas. However, we observed earlier that such an intuition
is too naive. Notions analogous to Kolmogorov complexity theory are in-
troduced. Based on these new formulations, a formula is a pattern only
if its pattern complexity is simpler than the complexity of data.

1 Introduction

Mathematicians routinely write down the general term of a given sequence by
inspecting its initial terms. Such actions involve pattern discovery and sequence
prediction. The automation of the latter has been an important area in machine
learning [5].

Intuitively, the pattern of a numerical finite sequence is often interpreted as
a formula that generates the finite sequence. Earlier, we observed [3], somewhat
surprisingly, that such a simple minded formulation leads to no prediction phe-
nomenon; see Section 3. Briefly, given any real number, there is a ”pattern” that
predicts it. This phenomenon prompts us a more elaborated notion of patterns.

One possible fundamental approach is Kolmogorov complexity theory [4], in
which patterns are interpreted as algorithms. This approach is theoretical; there
is no practical way to determine the complexity of any explicitly given finite
sequence. Aiming toward practical applications, various notions of pattern com-
plexities, analogous to that of Kolmogorov’s, are proposed; see Section 5. Follow-
ing Kolmogorov, we define the complexities of patterns and data, but based on
function theoretic views, instead of algorithmic views; as a conclusion, a formula
is a pattern, only if its complexity is simpler than that of the numerical data .

The proposed theories are probably overly simplified notions, but are practi-
cally manageable approximations to that of Kolmogorov. Finally, we may want
to point out that mathematicians use not only the numerical values but also
their ”physical” expressions to predict the sequence. In this paper, we focus,
however, only on the numerical values.

N. Zhong, A. Skowron, S. Ohsuga (Eds.): RSFDGrC’99, LNAI 1711, pp. 509–513, 1999.
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2 Patterns of Numerical Data

Given a finite numerical sequence,

Seq : a1, a2, . . . an.

What would be the most natural meaning of its pattern? Intuitively, a pattern is
a formula G(x) that generates the finite sequence. Mathematically, a formula is
not a precisely defined term, roughly, it can be interpreted as a function that can
be expressed by well-known functions, such as polynomials, trigonometric, radial
basis or other special functions. Since the formula G(x) is often valid beyond n,
such a formula is also referred to as a generalization.

Next let us rephrase the problem in geometry; the finite sequence can be
viewed as a set of points in Euclidean plan.

(1, a1), (2, a2), . . . (n, an) . . .

and the problem is to find a function

G : i −→ ai, i = 1, 2, . . . n

whose graph is a ”nice” curve passing through these given points. It seems clear
there would have many ”nice” curves. Occam’s razors are needed; so pattern
complexity theories are developed.

3 Intuitive Solution - No Prediction Phenomenon

Let us recall the following arbitrary prediction phenomenon [3]: Suppose we are
given a sequence

1, 3, 5, 7

What would be the next number? Commonly, one would say, according to the
pattern of the initial four terms,

the next number would be 9.

However, we have a somewhat surprising observation. We got following examples
from using Matlab:

1. f6(x) predicts: 1, 3, 5, 7, 6

f6(x) = −0.1250x4 + 1.2500X3 − 4.3750X2 + 8.2500X − 4.0000

2. f8(x) predicts: 1, 3, 5, 7, 8

f8(x) = −0.0417x4 + 0.4167X3 − 1.4583X2 + 4.0833X − 2.0000
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Let us recall the folowing elementary algebra: If m values are assigned to m
points in a Euclidean space (of dimension n), then there is a polynomial of n
variables which assumes the given m values at m given points.

NO PREDICTION THEOREM
Given a finite numerical sequence

a1, a2, a3, ...an

and any real number r, there is a pattern that would predict the following pattern

a1, a2, a3, ...an, r.

It is clear that mere formula can not be the right notion for patterns. In the next
few sections, we develop various complexity theories, analogous to Kolmogorov’s,
to formulate the notion of patterns.

4 An Attempt from Algorithmic Information Theory

A finite numerical sequence is, of course, expressible as a bit stream. So one
might be able to apply Kolmogorov complexity theory here. Let us recall few
notions. Let K denote the Kolmogorov complexity: Let length(p) be the length
of the program p using a consistent method of counting, such as binary length.

K(a) = Min{length(p) | p is any conceivable program that generates the
string a}

Let length(a) be the length of a string a. Then a is said to be Kolmogorov
random, if K(a) ≥ length(a). A finite sequence is said to have a pattern if
K(a) < length(a). Intuitively K(a) measures the complexity of a pattern and
length(a) the complexity of data. Next let us quote few interesting propositions:

1. Almost all finite sequences are random (have no patterns).
2. Gödel type incomplete theorem: It is impossible to effectively prove that

they are random.

Due to the last assertion, algorithmic information theory can not be useful here.
More practically approaches that could approximate the Kolmogorov compexity
are needed.

5 Complexity Theories of Patterns

Instead of capturing the algorithm that defines G(x), we are looking for a method
to describe G(x) in terms of a class of known functions.



512 T.Y. Lin

5.1 Algebraic Information Theory

In this section, we will use the class of polynomial functions as our basis. Though
in apriori, it is not known that G(x), x = 1, 21, . . . n is a polynomial, but Weis-
trass approximation theorem states that G(x) can be approximated by a poly-
nomial. Since the domain {x | x = 1, 2, . . . n} is a finite set of points, so it
is.

It is our religious belief that a shortest algorithm defines a simplest polyno-
mial, and the degree is the best measure of its simplicity. So we believe G is the
least degree of the polynomials that generate the finite sequence a = {ax | x =
1, 2, . . . n}. Note that length(a) = (n− 1). By mimic Kolmogorov, let D denote
the algebraic complexity and define

D(a) = Min{degree(p) | p is any conceivable polynomials that generates
the finite sequence a}

From the well ordering principle ([1], pp 11), there is a polynomial H whose
degree is D(a). This polynomial H is the desirable G on the domain {x | x =
1, 2, . . . n)}. However, the natural domain of H is the real numbers; it is well
beyond the original domain of G.

We need few notions: Let length(a) be the length of a finite sequence a.
Then a is said to be algebraic random, if D(a) ≥ length(a). A finite sequence
is said to have a pattern if D(a) < length(a). Intuitively D(a) measures the
complexity of an algebraic pattern and length(a) the complexity of data. So H
is the algebraic pattern, if a is not algebraic random.

Let us apply the theory to answer the no-prediction phenomenon. Note that
deg(f6(x)) = 4 and length(Seq) = 4, so deg(f6(x)) ≥ length(Seq). By our
theory, the polynomials found in Section 3 are not patterns. We should point
out that f6(x) is excluded out by its degree (algebraic complexity). Certainly, it
is conceivable that f6(x) may not be excluded out from algorithmic view, but
our religious belief will not admit that.

Finally, we would like to point out that both algorithmic and algebraic pat-
terns do meet the requirements of the first and second razors of Pedro Domin-
gos [2], except the simplicity for the first razor is measured by two different
metrics. Even though our religious belief stating that they are the same, in re-
ality, it may be different, and the results may be addressing some deep issues;
they will be investigated in near future.

5.2 Functional Information Theory

Instead of polynomial functions, we can also consider any Schauder basis (as
Banach space [6]) of the function space (under consideration), such as, trigono-
metric functions in L2-space, radial basis functions in Lp-space, and many others.
In these categories of functions, it is less clear what would be the simplest one.
For trigonometric functions, such as sin(nx) or cos(mx), we believe the least
positive n or m are the simplest. Roughly, the weights (as used in neural net-
works) are the measures of their simplicity. The exact meaning of weights is, of
course, Schauder basis specific; we shall not be specific here.
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To mimic Kolmogorov, we need some notations: Let B be a selected Schauder
basis. A linear combination of functions in B will be denoted as B-combination.
As before, G denotes the function that generates the sequence x. Now, let F
denote the functional complexity and define

F (x) = Min{weight(p) | p is any conceivable B-combination that
approximates G }

As in previous section, the domain is a finite set of points, so G is actually a B-
combination. To illustrate the idea, we will use the terminology of this section
to explain the results in previous section. Let B be the set of all monomials. B is
a Schauder basis. Since the domain is a finite set of points, G is exactly a linear
combination of monomials, in other words, a polynomial. We got the result of
previous section using the reasoning in this section.

As before, a finite sequence is said to have a pattern if F (x) < length(x).

6 Conclusion

This paper examines various notions of patterns in finite numerical sequences. By
adopting the approach of classical algorithmic information theory (Kolmogorov
complexity theory), two approximations, called algebraic and functional infor-
mation theories are proposed. Base on these theories, we conclude that a formula
is a pattern only if its pattern complexity (with respect to its proper theory) is
simpler than that of data. We believe the theories should be useful in scientific
discovery or financial data mining.
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Abstract. Performance prediction for classi�cation systems is impor-

tant. We present new techniques for such predictions in settings where

data items are to be classi�ed into two categories. Our results can be in-

tegrated into existing classi�cation systems and provide an accurate and

predictable tool for data mining. In any given classi�cation case, our

approach uses all available training data for building the classi�cation

scheme and guarantees zero classi�cation errors on the training data. We

re-use the same training data to predict the performance of that scheme.

The method proposed here enables control of errors over two types of

error for the classi�cation task.

Keywords: Classi�cation, Data Mining, Decision Support, Error Pre-

diction.

1 Introduction

Performance prediction is useful for evaluating the performance of a classi�cation

system and for comparing or combining such systems. Thus, it is an important

part of data mining [2]. Traditional performance prediction methods [5] withhold

a portion of the given data during training and estimate the errors after training

from that portion. Typically, the same process is done iteratively, and the average

of all error estimations is the �nal estimate.

We have developed a new approach for estimating performance of classi�ca-

tion systems. We carry out training using all available data and estimate errors

using the same data. In two-class classi�cation, the predicted error distribution

can be used to control classi�cation errors. In the next section, we describe how

to choose a reliable classi�cation method and create a classi�cation family as

the classi�er in our system via the provided training data. Section 3 introduces

how to use the same training data to estimate the performance of the classi-

�cation family and come out a decision scheme for the classi�er based on the

performance estimation. We give experimental results and conclusions in Section

4 and 5 respectively.

? This work was done when the author studied in the Computer Science Department

of the University of Texas at Dallas. The author is currently working for Alcatel

Network Systems.
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2 Construction of a Classi�cation Family

One can employ any existing classi�cation method such as decision tree, Bayesian

classi�er, neural network, to construct the classi�cation family in this module,

providing that the method will generate a vote count to a record to indicate its

classi�cation preference. In our system, we use a method which is developed in

our lab to generate the classi�cation family C [3]. We emphasize the way of how

to generate the classi�cation family, and because of the way we choose, we are

able to do a good estimation of the system performance.

There are two disjoint populations A and B of records. We are given subsets

A � A and B � B as training data. Given the training sets A and B, we �rst
select an integer d � 5 and partition A into d nonempty subsets A1, A2; : : : , Ad

of essentially equal cardinality and view A1, A2; : : : , Ad as a circular list. We

choose another variable c be the smallest integer that is larger than d=2; We take

the union of Ai and of the (c� 1) subsequent Aj and call that union Ai; that is,

Ai =
Si+c�1

j=i
Aj . We obtain A1, A2; : : : , Ad accordingly. Applying the analogous

process to B, we obtain the similar sets of Bi. Between each pair of Ai and

Bi, we use the chosen classi�cation method to generate a classi�cation family

member Ci which gives e votes depending on di�erent criteria [3]. Overall, the

classi�cation family C will give d � e votes to any record. If we de�ne one vote

for A is +1 and vote for B is �1, the �nal total number is referred as vote total.

Obviously, due to the cancellation e�ect, the vote total could be in the range

between �d � e and +d � e. We use z to denote the vote total. In our experiments,

we use d = 10 and e = 4. Thus, z is within the range between �40 and +40. We

use all the training data to generate a classi�cation family C. And this C will

be used to classify new data, it is the classi�er in this classi�cation system. The

vote total that C will produce to A(resp. B) can be viewed as a random variable

Z
A
(resp. Z

B
). The following section describes how to estimate the probability

distributions of Z
A
and Z

B
.

3 Performance of the Classi�cation Family

In this section, we introduce how to estimate the vote total distribution that C
will give to the new data. We useA class as an explanatory example and the same

methodology applies to B class as well. We need to estimate three parameters,

namely the mean, variance, and distribution shape of the vote total.

From last section, we know that C is composed by C1, C2, � � �, Cd. A record

is unseen to Ci if it is not included in Ai or Bi. The way that we generated Ci

leaves some records in training data are unseen to Ci. That is equal to say, if

we analyze how Ci performs on these unseen data, we are able to predict the

performance of Ci on new data. Applying the same argument to all Ci in C, the
aggregated performance is exactly the vote total prediction of C.

The vote count of Ci given to an unseen record k is denoted as v(i; k). Let
Xi be the random variable to represent the vote count given by Ci for unseen
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records. The unseen records for Ci is indeed Ai = A� Ai. Thus, the mean and

variance of Xi can be estimated by

(3:1) �̂Xi
= [1=jAij]

X

k2Ai

v(i; k)

(3:2) �̂2
Xi

= [1=(jAij � 1)]
X

k2Ai

[v(i; k)� �̂Xi
]2

respectively.

Since Z
A
is the vote total of C and thus the mean value for Z

A
is estimated

by

(3:3) �̂ZA =

dX

i=1

�̂Xi

For the covariance estimation between Xi and Xj , we have two situations.

First, if the set Aij = Ai \Aj is nonempty, then we can estimate the covariance

of Xi and Xj by

(3:4) �̂XiXj
= [1=jAij j]

X

k2Aij

[v(i; k)� �̂Xi
][v(j; k) � �̂Xj

]

If Aij is empty, we estimate the covariance for the Xi and Xj by a linear

approximation function which is constructed by the known covariance values

and the amount of intersection of Aij [7].

We achieve estimating the distribution shape of Z
A

by �rst estimating a

smaller distribution of the total unseen vote of each record and scale up this dis-

tribution to the same mean and variance values of ZA. The mathematical details
are described in [7]. Applying the above described methods to both training data

classes A and B, we have two estimated distributions of how the classi�cation

family will vote for new data.

Based on C, a family D of decision schemes Dz is generated, where z ranges
over the possible vote totals of C. We use this decision scheme Dz to declare a

record to be in A if the vote total produced by C for that record is greater than or
equal to z and declares the record to be in B otherwise. The scheme Dz classi�es

a record correctly if the vote total is greater than or equal to z, and thus does so
with probability P (Z

A
� z). Conversely, misclassi�cation by Dz of a record of

A�A and thus a type A error occur with probability � = P (Z
A
< z). Analogous

results hold for B. Clearly, if we know the distributions of Z
A
on A�A and of

Z
B
on B �B, we will have the � and � for each Dz.

One can de�ne a decision function of Dz based on the two error values,

namely � and �. The function can be utilized to control the classi�cation error

according to di�erent requirements [7].
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4 Experiments

We have implemented the above approaches to a classi�cation system with de-

cision support as Lsquare. This system takes the input training data, constructs

a classi�cation family C, estimate the vote total distributions on two classes,

and provide the decision function. The user can choose the decision threshold

in the decision function to ful�ll the needs of controlling the error of misclassi-

�cation. Several well-known datasets from the Repository of Machine Learning

Databases and Domain Theories of the University of California at Irvine [6]

have been tested with Lsquare. We show the results of graphs for the Australian

Credit Card problem in (5.1). The data were made available by J. R. Quinlan.

They represent 690 MasterCard applicants of which 307 are declared as positive

and 383 as negative. We declare A (resp. B) to be the set of negative (resp.

positive) records. We obtain from A and B randomly selected subsets A and B,
each containing 50% of the respective source set. We apply Lsquare to A and

B, obtain the family C of classi�cation methods, and compute the estimated

error probabilities �̂ and �̂. Then we apply C to A�A and B �B to verify the

error probabilities. The graphs below show the results. The curves plotted with

diamonds are the estimated �̂ and �̂, while the curves plotted with crosses are

the veri�ed values.

(5.1)

�

0

0.25

0.5

0.75

1

-39 -31 -21 -11 0 11 21 31 39

Estimate
Verification

Decision Parameter z

�

0

0.25

0.5

0.75

1

-39 -31 -21 -11 0 11 21 31 39

Estimate
Verification

Decision Parameter z

Australian Credit Card

Estimated and veri�ed � and �

517Performance Prediction for Classification Systems     



5 Conclusions and Future Research

We have developed new strategies and techniques to predict the performance of

two-class classi�cation systems. We predict its performance using the same data

as in training the system. In two-class classi�cation, the predicted error distri-

butions can be used to control classi�cation errors when new data are classi�ed.

Predicting performance by training data lets the learning system learn more

without holding a portion of data for evaluation. The performance prediction is

based on a system that has learned all the given data, hence it is representative

of future performance.

The approaches have been implemented within a learning system Lsquare.

It was tested by many well-known datasets in the machine learning community.

It shows our performance prediction mechanism to be very reliable. We plan to

test this scheme on using di�erent classi�cation methods such as Decision Trees,

Neural Networks, and Nearest Neighbors Algorithm, etc. This will further trigger

di�erent analysis on performance prediction for di�erent classi�ers.
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Abstract. The “Ocean SAmpling MObile Network” (SAMON) Project is a
simulation testbed for Web-based interaction among oceanographers and
simulation based design of Ocean Sampling missions. In this paper, the current
implementation of SAMON is presented, along with a formal model based on
process algebra. Flexible optimization handles planning, mobility, evolution,
and learning. A generic behavior message-passing language is developed for
communication and knowledge representation among heterogeneous
Autonomous Undersea Vehicles (AUV's). The process algebra subsumed in this
language expresses a generalized optimization framework that contains genetic
algorithms, and neural networks as limiting cases.

1 Introduction

The global behavior of a group of interacting agents goes beyond juxtaposition of
local behaviors. Wegner [15] indicates that interaction machines, formed by multiple
agents, have richer behavior than Turing machines. Milner [7] indicates sequential
processes cannot always represent concurrent interactive ones. Realistic applications
of autonomous agents require new models and theories. Three fundamental questions
remain open:

• How to produce intelligent global results from group local behaviors?
• How to decompose problems for solution by independent individual agents?
• How to integrate reactive and deliberative behaviors?

Our application uses process algebra and resource-bounded computation to solve
these problems and plan mobile underwater robot group missions. In this paper, we
describe a flexible optimization methodology for agent control and evolution. The
optimization model unifies genetic algorithms and neural networks in a manner suited
to reacting to changing dynamic environments with constrained resources.

                                                       
1 Research supported by grant N00014-96-1-5026 from Office of Naval Research
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2

2 SAMON Underwater Mobile Robot Testbed

ARL's SAMON testbed builds upon the ARL Information Science and Technology
Division's existing AUV technology. The ONR SAMON project [11],[12] studies
networks of Autonomous Underwater Vehicles (AUVs) for adaptive ocean sampling.
It contains a Web-based testbed for distributed simulation of heterogeneous AUV
missions, and advances adaptive autonomous agent design. A group of AUV's
attempts missions in hazardous environments. The group is organized in a four level
hierarchy (see Fig. 1).

                            
Fig. 1. SAMON hierarchy of Tactical Coordinator (TC), Supervisory Autonomous
Underwater Vehicle (SAUV), Autonomous Underwater Vehicle (AUV) and Fixed
Sensor Packages (FSP’s)

A Tactical Coordinator initiates missions by transmitting orders to several
Supervising Autonomous Underwater Vehicles (SAUVs). Each SAUV uses sonar to
spontaneously form a group of subordinate AUV's. Each AUV collects data from
Fixed Sensor Packages (FSPs) distributed throughout the region. This data is relayed
to the commanding SAUV and Tactical Coordinator. SAUVs and AUVs all have
identical controllers. Continuous sensor inputs are responded to by discrete decisions.
It is a typical sense-plan-act system. ARL's AUV controller combines fuzzy logic
with artificial neural networks as described in [13]. Signal processing routines use
sensor inputs to estimate physical variables. Tasks are sequences of behaviors, which
are sequences of atomic actions. Goal Achievement Functions (GAF) monitor system
progress. The sequence of behaviors is flexible. New elements are inserted as
required. The testbed allows remote access. It integrates remote heterogeneous
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simulators. A Geographic Information System (GIS) ARCINFO supports the Tactical
Coordinator.

3.  Process Algebra Model for Adaptive Autonomous Agents

Expressing and formulating emerging behavior requires a rigorous formal model, with
the following characteristics:

• Agents are autonomous.
• Agents communicate asynchronously using message-passing.
• Agents are encapsulated.
• Agents can be heterogeneous.
• Agents communicate with a finite number of neighbors.
• Group reconfiguration, such as link and node migration, is possible.
• Groups exhibit complex behavior due to interaction among agents.
• Agents and groups adapt to bounded resources.

Appropriate formal models for autonomous agent design are π-calculus [7],
interaction machines [15], cellular automata, and automata networks [4]. None adapt
to bounded resources. Our model does, and it is as expressive as any other model.

Resource bounded computation is known under a variety of names, including
anytime algorithms [16]. It trades off result quality for time or memory used to
generate results. It is characterized by:
• Algorithm construction to search for bounded optimal answers.
• Performance measure and prediction.
• Composability.
• Meta-control.

We use a process algebra variant of resource-bounded computation to integrate
deliberative and reactive approaches for action selection in real time. Our approach
has been developed independently of anytime algorithms under the names modifiable
algorithms [2], and $-calculus [3].

$-calculus proposes a general theory of algorithm construction. Everything is a $-
expression: agents, behaviors, interactions, and environments. Elementary behaviors
are $-expressions representing atomic process steps. Simple $-expressions consist of
negation ¬, cost $, send →, receive ←, mutation ↵, and user defined functions. More
complex actions combine $-expressions using sequential composition °, parallel
composition ||, general choice , cost choice ∪, and recursive definition :=. $-
expressions use prefix notation similar to Lisp. Each $-expression has an associated
cost value. Data, functions, and meta-code are written as (f x

&

), where f is name and

x
&

=(x1,x2,…) is a possibly countably infinite vector of parameters. $-expression
syntax is summarized below. Let P denote compound $-expressions and α simple $-
expressions:
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 α ::= (¬ α)  negation
|    ($ P) cost

|   (→ (a Q
&

)) send

     |   (← (a X
&

)) receive

|   ( ↵ (a Q
&

))  mutation

|   (a Q
&

))    user def. simple $-expr.

 P ::= (°i∈I Pi)  sequential composition
| (||i∈I Pi)    parallel composition
| (∪i∈I Pi)   cost choice
| (i∈I Pi)   general choice

| (f Q
&

)      user def. $-expression

| (:= (f X
&

) P)  recursive def.

I is a possibly countably infinite indexing set. We write empty parallel composition,
general and cost choices as ⊥, and empty sequential composition as ε. ⊥ expresses
logic false, and ε masks parts of $-expressions. Sequential composition is used when
$-expressions run in order, and parallel composition when they are parallel. Cost
choice expresses optimization, i.e. it selects the cheapest alternative. General choice is
used when we are not interested in optimization. Call and definition, such as
procedure and function definitions, specify recursion or iteration. This approach can
describe all current heuristic methods, and provide a framework for choosing between
heuristics.

Meta-control is a simple algorithm that attempts to minimize cost. Solution
quality improves if time is available. Performance measures are cost functions, which
represent uncertainty, time, or available resources. Crisp, probabilistic, and fuzzy-
logic cost functions are part of the calculus. Users may define their own.
Incomplete/uncertain information takes the form of  invisible expressions whose cost
is either unknown or estimated. Meta-control can choose between local search and
global search. Global search methods, like genetic algorithms, process multiple points
in the search space in parallel.

Scalability and composability is achieved by building expressions from
subexpressions. Recursive definitions decompose expressions into atomic
subexpressions. Composability of cost measures is assumed. Expression costs are
functions of subexpression costs. Deliberation occurs in the form of select-examine-
execute cycles corresponding to sense-deliberate-act. An empty examine phase
produces a reactive algorithm.

Short (long) deliberation is natural for interruptible (contract) algorithms.
Interruptible algorithms can be interrupted down to the level of atomic expressions.
Interruptibility is controlled at two levels: choice of atomic expressions and the length
of the deliberation phase. Contract algorithms, although capable of producing results
whose quality varies with time allocation, must be given an agreed upon time
allocation to produce results.

At the meta-level, execution is monitored and modified to minimize cost using
"k-Ω optimization." Solutions are found incrementally. They may optimize any of
several factors. Depending on problem complexity, cost function volatility and level
of uncertainty, deliberation can be done for k=0,1,2,…. steps or until termination.
Optimization is limited to alphabet Ω, a subset of the complete expression alphabet.
This increases run-time flexibility.

We define an adaptive agent model, as parallel composition of component agents:

( ||i Ai)
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where  (:= (Ai) MAi) defines agent i with meta-system control MAi. Agent MA0 is the
environment. Each agent MAi , i>0 has a finite neighborhood it communicates with,
and $-expression:

(:= MAi (° (init Pi0) (loop Pi))),

where loop is the select-examine-execute cycle performing k-Ω optimization until the
goal is satisfied. At which point, the agent re-initializes and works on a new goal:
               (:= (loop Pi) (   (° (¬ goal Pi) (sel Pi) (exam Pi) (exec Pi) (loop Pi))
                                           (° (goal Pi) MAi)))
This general model is an instance of resource-based computation, based on process
algebras. It covers a wide class of autonomous agents, including SAMON AUV's.
The graph and nodes can be arbitrary. We only require that the nodes “understand”
the messages in the network. The environment is modeled as a $-expression, which
can be a non-deterministic or stochastic (assuming incomplete knowledge of the
environment). A distributed environment, if needed, can be modeled as a subnetwork,
instead of a single node.
    The SAMON network  topology combines a 4 level tree (starting from the root:
TC, SAUVs, AUVs, FSPs) and a star topology with the environment as a central node
connected to all remaining nodes. All nodes communicate by message-passing
through sensor and effectors. The input and output messages consist of orders (sonar
or radio), reports (data or status), and sensory data from and to environment. In the
distributed SAMON testbed, messages take the form of TCP/IP socket
communication.

The hierarchical structure hides complexity, improves reliability, increases
adaptation and execution speed. However, an optimal tree structure must be derived
for a specific task. To find an acceptable tree, the architecture should evolve. For
complicated tasks, a strict hierarchy may not suffice. For example, multiple robots
pulling a heavy object must communicate with peer nodes to be successful.
Temporary mobile links can do this. Cooperating agents need performance metrics
with feedback to achieve their objectives.

4 Generic Behavior Message-Passing Language

SAMON allows vehicles from collaborating institutions to communicate and
cooperate. However, existing AUVs (e.g., NPS Phoenix [1], FAU Ocean Explorer
[12]) employ incompatible designs. It is too early to enforce a single standard AUV
design. On the other hand, AUVs designed to perform similar missions should be able
to cooperate. A unique aspect of SAMON is collaboration among heterogeneous
AUVs. For this purpose, we propose a common communications language: Generic
Behavior Message-Passing Language.

Our collaborative infrastructure (Fig.2) is a network of cooperating agents
communicating by send and receive primitives. $-calculus provides the
communications framework, and groups elementary behaviors into complex
behaviors (missions), or scenarios (programs). Missions are programs of elementary
behaviors. The amount of decomposition supported depends on the AUV
implementation.
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Each node is described by a cost expression, and implemented as an autonomous
unit. Nodes can have heterogeneous architectures, but they share a generic behavior
message-passing language to interact and cooperate. The nodes can be real or
simulated vehicles, for instance FAU, NPS or ARL PSU AUV's, TC's  (situated on
land, air, or sea), SAUVs, environment, and base recovery vehicle. Nodes can be
connected by an arbitrary topology, which we depict as a bus. Nodes  communicate
using their own message formats. Wrappers will convert messages to the generic
language specification. Future controllers could produce messages directly in the
standard form. Wrappers should be eliminated as a long term goal.

Generic behavior message-passing requirements language include:
• Modularization – each node should be independent, easy to replace and modify;
• Autonomy  – objects communicate only by message-passing;
• Flexibility - allows arbitrary execution of behaviors;
• Extensible - for new types of vehicles, or new environments;
• Evolving - mechanisms for adaptation optimization;
• Research oriented - communication between real and simulated vehicles;
• Simple - but relatively complete;
• Programmable - messages can be added, but may not be accepted by all.

Fig. 2  SAMON testbed collaborative mission execution infrastructure

To satisfy these requirements, the language syntax is based on $-calculus. All
behaviors are functions, transmitted between nodes using send and receive primitives.
A set of predefined generic-behavior functions is a library on the node. Users can
define new behaviors, which may not be understood by other controllers. Our
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definition does not specify function implementation. Functions are black boxes. The
language has two behavior types:
• elementary behaviors, low level communication between entities, and
• agglomerate behaviors, group behaviors by scripting programs.
Send and receive primitives provide message-passing communication and
synchronization between agents. They use the same communication channel name.
Channels can be sonar, radio, satellite, etc. If a matching channel name is not found,
the operation blocks. Parallel composition of send and the rest of program models
asynchronous communication. A set of elementary behaviors has been formulated for
undersea applications of hierarchical AUV networks.

5  Optimization and Adaptation

Adaptation occurs at all levels in the hierarchy. Optimization is limited. Individual
AUV's, and the system as a whole, make decisions based on incomplete information
about dynamic processes. Time is not available to compute strictly optimal solutions
on-line. Instead, we compute a satisficing solution that provides a "good enough"
answer; the best that can be found given current resources and constraints. The
testbed uses multiple heterogeneous AUV's to collect data from an arbitrary undersea
environment. Work takes place in hostile environments with noise-corrupted
communication. Components are prone to destruction or failure. Under these
conditions, efficient operation can not rely on static plans. Each AUV is self-
contained and makes as many local decisions as possible. Operational information
and sensor data travel in both directions in the hierarchy. The final two points imply
informal activities that are difficult to implement in automated systems.

An AUV at any level in the hierarchy, when it receives a command, must choose
from a number of strategies. Decisions are made by evaluating $-functions for the
behaviors defining a strategy. Current network and AUV states are used as data by the
$-function. $-functions can be derived in a number of ways. Much of computer
science is based on deductively deriving asymptotic measures of algorithm
computational complexity based on characteristics of the data input. They provide
order of magnitude equations for best, worst, or possibly average algorithm
performance based on input volume. Constants are irrelevant in asymptotic measures,
since at some point the value of a higher order factor will be greater than a lower
order one; no matter what constants are used. These measures are useful for
determining algorithm scalability, but inadequate for deciding between two specific
alternatives where constant factors are relevant. In addition, average complexity
measures are generally based on questionable assumptions concerning the statistical
distribution of input data, such as assuming all inputs are equally likely.

Computational complexity is almost irrelevant to NP-complete problems.
However, computational complexity does provide a starting point for defining $-
functions. In some cases, deduction alone can provide useful functions. In other cases,
especially when noise is an important factor, deduction is insufficient. If that is so,
empirical testing can be used. Testing is often simulation, where a number of runs are
replicated with controllable factors set to fixed values and uncontrollable factors
given random values. Results from a large number of tests provide data points, which
can be used to derive functional approximations. Derivation of functional
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approximation can be done using a number of approaches, including statistical
regression [8], rough sets [5], [14], and visualization [6], [9]. The $-functions found
should then be tested to verify their ability to approximate the desired quality
measures. Tests could involve either simulations or preferably physical experiments
for AUV's.

The AUV's evaluate $-functions using values for the relevant factors, which
express the current physical environment. Two natural limits exist to this approach:
not all relevant factors can always be known with sufficient certainty, and the
physical environment is subject to change. For that reason, we limit our optimization,
performing what we call  k-Ω optimization. The variable k refers to the limited
horizon for optimization, necessary due to the unpredictable dynamic nature of the
environment. The variable Ω  refers to a reduced alphabet of information. No AUV
ever has reliable information about all factors that influence all AUV's participating in
a mission. To compensate for this, we mask factors where information is not available
from consideration; reducing the alphabet of variables used by the $-function. This
can be done by substituting a constant value, or a default function for the masked
variables.

This approach allows each AUV to choose between strategies and accomplish its
mission. $-functions provide a metric for comparing alternatives. By using k-Ω
optimization to find the strategy with the lowest $-function, the AUV finds a
satisficing solution. This avoids wasting time trying to optimize behavior beyond the
foreseeable future. It also limits consideration to those issues where relevant
information is available. This approach, using local optimizations to find globally
acceptable satisficing solutions, can be generalized to other genetic approaches.

7  Conclusions

As part of an ONR program, a testbed is being established for combining
heterogeneous AUV's for oceanographic sampling. A language describing generic
AUV behaviors will be used to communicate between vehicles designed by
independent research groups. Part of the language is a process algebra, which uses
evolutionary primitives like mutation. The process algebra provides a framework for
limited optimization. This optimization contains genetic algorithms and neural
networks as limiting cases. Limiting the optimization allows it to be performed in
real-time. Currently, the work is underway to implement the Generic Behavior
Message-Passing Language, to experiment with cooperation and emerging behavior
using resource-bounded optimization, and  integrating Virtual Environment  for
nowcasting and forecasting based on models and data form Harvard and Rutgers
Universities.
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Abstract. The paper is focused on a distributed agent-based information secu-
rity system of a computer network. A multi-agent model of an information se-
curity system is proposed. It is based on the established ontology of the infor-
mation security system domain. Ontology is used as a means of structuring dis-
tributed knowledge, utilized by the information security system, as the common
ground of interacting agents as well as for the agent behavior coordination.

Keywords: multi-agent system, information security, ontology.

1  Introduction

Existing computer security systems consist of a number of independent components
that require an enormous amount of distributed and specialized knowledge facilitating
the solution of their specific security sub-problems. Often, these systems constitute a
bottleneck of the throughput, reliability, flexibility and modularity of the computa-
tional process. A modern information security system (ISS) should be considered as a
number of independent, largely autonomous, network-based, specialized software
agents operating in a coordinated and cooperative fashion designated to prevent par-
ticular kinds of threats and suppressing specific types of attacks. The modern multi-
agent system technology presents a valuable approach for the development of an ISS
that, when implemented in a distributed large scale multi-purpose information system,
is expected to have important advantages over existing computer security technolo-
gies. An ontology-based multi-agent model of an ISS is considered herein. In Section
2, the conceptual level of an ISS model is outlined. In Section 3, we propose the on-
tology of an information security domain. The topology of a task-oriented distributed
agent’s knowledge and belief, providing a common ground for agent information ex-
change and utilized for agent behavior coordination and mutual understanding, is con-
sidered. In Section 4, we outline the ISS architecture and general principles of agents'
negotiation and coordination within an agent-based ISS. In Section 5, modeling ap-
proach of an ISS is described. Section 6 contains brief analysis of relevant research
associated with agent-based ISS. In conclusion, we outline the main results and future
work aimed at utilizing agent-based technology for the ISS development.
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2  Conceptual Agent-Based Model of ISS

Conceptually, a multi-agent ISS is viewed as a cooperative multitude of the following
types of agents, distributed both across the network and on the host itself. (1) Access
control agents that constrain access to the information according to the legal rights of
particular users by realization of discretionary access control rules (ACR) specifying
to each pair "subject - object" the authorized kinds of messages. Various access con-
trol agents cooperate for the purpose of maintaining the compliance with discretionary
ACR on various sites of network. These agents supervise the flows of confidential
information by realization of mandatory ACR not admitting an interception of confi-
dential information. (2) Audit and intrusion detection agents detecting non-authorized
access and alerting the responsible system (agent) about potential occurrence of a
security violation. As a result of statistical processing of the messages formed in the
information system, these agents can stop data processing, inform the security man-
ager, and specify the discretionary ACR. A statistical learning process, crucial for the
successful operation of these agents, is implemented. It utilizes available information
about normal system operation, possible anomalies, non-authorized access channels
and probable scripts of attacks. (3) Anti-intrusion agents responsible for pursuing,
identifying and rendering harmless the attacker. (4) Diagnostic and information re-
covery agents accessing the damage of non-authorized access. (5) Cryptographic,
steganography and steganoanalysis agents providing safe data exchange channels
between the computer network sites. (6) Authentication agents responsible for the
identification of the source of information, and whether its security was provided
during the data transmission that provides the identity verification. They assure the
conformity between the functional processes implemented and the subjects initiated
by these processes. While receiving a message from a functional process, these agents
determine the identifier of the subject for this process and transfer it to access control
agents for realization of discretionary ACR. (7) Meta-agents that carry out the man-
agement of information security processes, provide coordinated and cooperated be-
havior of the above agents and assure the required level of general security according
to a global criteria.

3  Ontology of Information Security Domain

Agents of a multi-agent ISS, performing the global information security task in a dis-
tributed and cooperative fashion, must communicate by exchanging messages. Mes-
sage exchange requires that the agents are able to "understand", in some sense, each
other. Mutual agent understanding implies that each agent "knows" (1) what kind of
task it must and is able to execute, (2) what agent(s) it has to address when requesting
help if its functionality and/or available information are not sufficient for dealing with
a problem within its scope of responsibility, and (3) what are the forms and terms of
message representation that are understood by the addressee. Therefore, each agent
must possess its’ own model and models of other agents.
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One of the most promising approaches to model the distributed agents’ knowledge,
beliefs constituting the common ground of an entire multi-agent-system, is the utili-
zation of domain ontology [3]. Like any other domain, ontology of the information
security domain is a description of the partially ordered concepts of this domain and
the relationships over them that should be used by the agents. This ontology de-
scribes, in a natural way, ontological commitments for a set of agents so that they
might be able to communicate about a domain of discourse without a necessary op-
eration of a globally shared theory. In such ontology, definitions associate the names
of entities in the space of discourse with human-readable text describing the meanings
of names, and formal axioms that constrain the interpretation and well-established use
of these terms [3]. A part of the developed fragments of the information security do-
main ontology, that is associated with the tasks of agents responsible for auditing,
detecting non-authorized access, and authentication, is depicted in Fig.1.

Fig.1. Fragment showing ontology of information security domain

4  ISS Architecture and General Principles of Agents' Negotiation

Consider a number of basic ISS construction principles functioning as a community
of integrated agents distributed in a network environment and allocated on several
hosts. Each security agent should be host-based and operate on some segment of the
computer network. In this case, we assume that each meta-agent is host-based as well.
A meta-agent manages a set of the above-mentioned specialized agents, that, in turn,
receive information from the agents-"demons" investigating the input traffic (login,
password, etc.).  The agents-demons perform monitoring of the input traffic to differ-
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ent servers located on the same host. In essence, they are software sensors that form
various metrics of input traffic. All agents are expected to communicate that enables
the ISS to detect attacks on the network when intrusion attempts are undertaken "lo-
cally" and (or) serially, even when each individual intrusion attempt cannot be inter-
preted as an intrusion. The offered set of agents can reside on any host and can coop-
erate through the meta-agent, which operates with the "top level" knowledge base and
makes conclusions within the framework of one host. The information interchange
between hosts is carried out either on a peer-basis, or by means of the meta-agent
acting as the network layer manager.
The subsets of nodes and relations of ontology, used by particular agents for task
solving, are determined by agents' functions. The nodes placed on the intersections of
ontology fragments, reflecting the functions of two individual agents, constitute the
shared knowledge jointly
used by both agents in deci-
sion making (see Fig.2). As-
sume that in order to make a
decision, agent 2 needs to
access knowledge of nodes 1
and 2. But agents 1 and 3
have more detailed knowl-
edge associated with these
nodes. Therefore, agent 2
should receive this knowledge from them. Similar situations will take place during the
interaction of other agents. It could be seen that agent 2 “is aware” only of nodes 1
and 2, it formulates its request in the terms understood by agents 1 and 3, receives
from them knowledge, and is able to interpret it correctly.

5  ISS modeling approach

To demonstrate the validity of our approach we are in the process of developing a
modeling testbed of an ISS. The hardware part of the testbed includes local computer
network that has access to Internet. The software part is based on Unix and Windows
OS and specialized agent-based program package that is being developed in Java and
Visual C++. At the first step of the testbed realization, the attack intrusion detection
environment was built. It includes facilities for network attack modeling, simple
agents investigating the input traffic, intrusion detection agents and meta-agents.

6  Related works

Many existing and proposed ISSs use a monolithic architecture. Several approaches
that exploit the idea of distributed ISS are given in [2, 4, 6, 7]. There exist few papers,
for example, [1, 5, 8, 9] that consider an agent-based approach for an information

Fig.2. Representation of agents' ontologies intersection
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security system design. Unfortunately, these papers (1) restrict themselves by solving
only intrusion detection task, (2) do not pay needed attention to the agent cooperation
problem and multi-agent system architecture, (3) ignore advantages of using intelli-
gent agents. Nevertheless, even such a relatively simple agent-based approach as a
model of ISS leads to a number of advantages such as efficiency, fault tolerance, re-
silience to subversion, scalability, etc. In our approach we have borrowed the idea to
overcome all of these shortcomings.

7  Conclusion and Future Work

In this paper a multi-agent model of ISS is proposed based on ontology. The main
paper results include: (1) development of information security domain ontology, that
is associated with the multitude of information security tasks under consideration, and
that is considered as the framework for distributed common knowledge and agent's
individual knowledge development and representation; (2) development of an agent-
based architecture of ISS that aims at solving the entire multitude of problems related
to particular tasks. In the future work it is planned to develop the domain ontology,
the agent-based architecture and the formal frameworks for distributed knowledge
and beliefs representation in more detail. One more intention is to exploit "learning by
feedback" methods to provide ISS by real-time adaptation properties.
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Abstract. Wavelet analysis as a recently data filtering method (or multi-scale
decomposition) is particularly useful for describing signals with sharp spiky,
discontinuous or fractal structure in financial markets.
This study investigates the optimal several wavelet thresholding criteria or

techniques to support the multi-signal decomposition methods of a daily Korean
won / U.S. dollar currency market as a case study, specially for the financial
forecasting with a neural network. The experimental results show that a cross-
validation technique is the best thresholding criterion of all the existing
thresholding techniques for an integrated model of the wavelet transformation
and the neural network.

Keywords: Discrete Wavelet Transform, Wavelet Packet Transform, Wavelet
Thresholding Techniques, Neural Networks, Nonlinear Dynamic Analysis

1 Introduction

Traditionally, the fluctuation in financial market is treated as white noise. However, it
is not true when trend is properly removed and we can clearly observe some business
cycles, though they evolve with time. The goal of forecasting is to identify the pattern
in the time series and use the pattern to predict its future path.
The issue of generalization in this interpretation becomes one of how to extract

useful information from the noise-contaminated data, and to rebuild the pattern as
closely as possible, while ignoring the useless noises.

Specially, the joint time-frequency filtering techniques such as wavelet transforms
also have been shown to be useful in estimating coefficients of forecasting models.
The principal advantage of applying the filtering methods is that the techniques make
it possible to isolate relevant frequencies.

During the last decade a new and very versatile technique, the wavelet transform
(WT), has been developed as a unifying framework of a number of independently
developed methods (Mallat [34], Daubechies [18]). Recently, the literatures about the
applications of wavelet analysis in financial markets were introduced (See Table 1).

One of the most important problems that has to be solved with the application of
wavelet filters is the correct choice of the filter type and the filter parameters. The
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most difficult choice is that of the cut-off frequency of the filter which has to be
specified either explicitly or implicitly (Mittermayr et al. [37]).
This study is intended to explore the wavelet universal thresholding algorithms to

denoise data and compare its performance on the basis of the root mean squared error
(RMSE) with that of other commonly used smoothing filters in financial forecasting.
We also evaluate the effectiveness of both these transform such as discrete wavelet

transform and wavelet packet transform on daily Korean Won / US Dollar exchange
rate market.
The remainder of this study is organized as follows. The next section reviews time-

frequency decomposition, and then discrete wavelet transform (DWT) and wavelet
packet transform (WPT). Section 3 introduces thresholding techniques for financial
forecasting and describes best basis selection and best level criteria techniques (Tree
Pruning Algorithm). Section 4 describes our model framework and Section 5 analyzes
our experimental results. Finally Section 6 contains final comments.

Table 1. Prior Case Studies Using Wavelet Transform Techniques Applied to Financial Markets

Author
(Year)

Purpose Data Basis
function

Methodology Results

Pancham
(1994)

Test the multi-fractal
market hypothesis

Monthly, weekly,
daily Index

- - Accepted the
multi-fractal
market hypo.

Cody (1994) Present the concept of
wavelets and the WT

methods

General financial
market data

DWT, WPT Multi-scale linear
prediction system

Suggested
possible

applications of
the DWT to

financial
market analysis

Tak (1995) Forecasting univariate
time series

Standard & Poor’s
500 index

Mexican-hat
wavelet

ARIMA, detrending
and AR, random

walk, ANN

Outperformed
than original

data

Greenblatt
(1996)

Analysis for structure in
financial data

Foreign exchange
rates

Coif-1,Coif-5 Best orthogonal
basis, Matching

pursuit, Method of
frames, Basis pursuit

Found
structure in

financial data

McCabe and
Weigend
(1996)

Determine at which
time-scale the series is

most predictable

DM/US Dollar Haar wavelet Predictive linear
models for

multiresolution
analysis

Rarely better
than predicting
the mean of the

process

Hø g (1996) Estimate the fractional
differencing parameter in

Fractional Brownian
Motion models for

interest rate having the
term structure

Monthly US 5-year
yields on pure
discount bonds

(1965.11-1987.02)

Haar wavelet ARFIMA(0,d+1,0)
where H =d+1/2

d = 0.900

95%
confidence

interval for d =
[0.8711,
0.9289]

Hø g (1997) Analyze non-stationary
but possibly mean-
reverting processes

US interest rate Haar wavelet ARFIMA Showed mean
reversion of

US interest rate

Aussem et al.
(1998)

Predict the trend-up or
down - 5 days ahead

S&P 500 closing
prices

Ă trous
wavelet

Dynamic recurrent
NN & 1 nearest

neighbors

86% correct
prediction of

the trend
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2 Discrete Wavelet Transform and Wavelet Packet Transform

Recently, local atomic decompositions (wavelets, wavelet libraries) have become
popular for the analysis of deterministic signals as an alternative to non-local Fourier
representations. The Fourier transform is usually not to be used in case of non-
stationary signals.

Each scale of wavelet coefficients provides a different dimension of the time series
in the both time and frequency domains. Recently, due to the similarity between
wavelet decomposition and the idea of combining both wavelet and NN has been
proposed in various works (Bakshi and Stephanopoulos [4], [5]; Delyon et al. [19];
Geva [25]; Zhang [52]; Zhang and Benveniste [51]).

Recently, the wavelet transform was introduced as an alternatively technique for
time-frequency decomposition (Daubechies [17], [18]). Wavelets are any of a set of
special functions satisfying certain regularity conditions. Their support is finite; they
are non-zero on a finite interval, and they are defined within finite frequency bands..
WT is a powerful method for multiresolution representation of signal data (Szu

et°al., [44]). The discrete wavelet transform (DWT) expresses a time series as a
linear combination of scaled and translated wavelets. Knowing which wavelets
appear in a transform can provide information about the frequency content of the
signal for a short time period.

DWT is generally calculated by the recursive decomposition algorithm known as the
pyramid algorithm or tree algorithm (Mallat [34]), which offers the hierarchical,
multiresolution representation of function (signal). As shown in Fig. 1(a), in the tree
algorithm, the set of input data is passed through the scaling and the wavelet filters.

a0 original signal

a1 d1

a2 d2

G

G

H

H

�

ap dp

G H

Level 0

Level 1

Level 2

Level p

a0 original signal

a1 d1

a2 d2

G

G

H

H

�

ap dp

G H

Level 0

Level 1

Level 2

Level p

a2 d2

G H

G HG H G H

�

ap dp

�

ap dp

�

ap dp

(a) Tree or Pyramid algorithm (b) Wavelet packet transform
(Mallat, 1989) (Coifman et al., 1993)

Fig. 1.. Discrete Wavelet Transform and Wavelet Packet Transform (G: The lowpass
(or scaling) filter; H: The highpass (or wavelet) filter; dp: = {d0

p, d1
p, …, dN/2-1

p}, the
detail coefficients (highpass filtered data) at the pth level of resolution; ap: = {a0

p, a1
p,

…, aN/2-1
p}, the approximation coefficients (lowpass filtered data) at the pth level of

resolution.)

Coifman and Meyer [12] develop wavelet packet functions as generalization of
wavelets (DWT). In the pyramid algorithm the detail branches are not used for
further calculations, i.e. only the approximations at each level of resolution are treated
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to yield approximation and detail obtained at level m+1. Application of the transform
to both the detail and the approximation coefficients results in an expansion of the
structure of the wavelet transform tree algorithm to the full binary tree (Coifman and
Wickerhauer [15]; Coifman et al. [14]).
The main difference is that while in the DWT the detail coefficients are kept, and the

approximation coefficients are further analyzed at each step, in the WPT both the
approximation signal and the detail signal are analyzed at each step. This results in
redundant information, as each level of the transform retains n samples. The process
is illustrated in Fig. 1(b).

3 Wavelet Thresholding Techniques As Optimal Signal
Decomposition for Financial Forecasting

Thresholding is a rule in which the coefficients whose absolute values (energies) are
smaller than a fixed threshold are replaced by zeroes. The purpose of thresholding is
to determine which are the good coefficients to keep, so as to minimize the error of
approximation.

In this study, we define wavelet thresholding techniques as denoising, and smoothing
techniques including best basis selection and best level algorithm to extract significant
multi-scale information from the original time series.

Several approaches to thresholding have been introduced in the literature (See
Table°2).

Table 2. Wavelet Thresholding Techniques

Authors(Year) Thresholding Methods Thresholding Rules
Donoho and Johnstone (1994) Universal(VisuShrink)

- Minimax approach
σλ ~)nlog(2= ,

δ λ λd d d= >
for all the wavelet coefficients d

Donoho and Johnstone (1995) Adaptive (SureShrink)
- Minimax approach

Based on Estimator of Risk

Nason(1994,1995,1996),
Weyrich and Warhola, 1995)
Jensen and Bultheel (1997)

Cross-Validation
�

=

−=
n

i
ii )y~y(

n
CV

1

21

Abramovich and Benjamini
(1995, 1996),

Ogden and Parzen (1996a, 1996b)

Multiple hypothesis tests Test if each wavelet coefficient is
zero or not.

Vidaković (1994), Clyde et al.
(1995), Chipman et al. (1997)

Bayes Rule

Goel and Vidaković (1995) Lorentz curve p
n

d di
i

= ≤�

Abramovich and Benjamini
(1995)

The False Discovery Rate
(FDR) approach to

multiple hypo. Testing
Johnstone and Silverman (1997) Level-dependent

Threshold
Wang (1996), Johnstone and

Silverman (1997)
Correlated errors
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Table 3. Wavelet Packet Basis Selection Algorithms

Authors (Year) Basis Selection
Algorithms

Contents

Daubechies (1988) Method of
Frames (MOF)

- Synthesis direction approach
-A straight-forward linear algebra

Coifman and Wickerhauser
(1992)

Best Orthogonal
Basis

- Shannon entropy
- Bottom-up tree searches

Mallat and Zhang (1993) Matching Pursuit -Synthesis direction approach
Chen (1995), Chen and Donoho

(1995b), Chen et al. (1998)
Basis Pursuit - Similar to MOF

-A large-scale constrained opt.
Donoho (1995b) CART - Shannon entropy

In wavelet packet functions as generalization of wavelets (DWT), a best basis can
explicitly contain the criterion of the coefficient selection. For stance, the best basis
can be defined as the basis with the minimal number of coefficients, whose absolute
value is higher than the predefined threshold.

Besides, best level algorithm (Coifman et al. [13]) computes the optimal complete
sub-tree of an initial tree with respect to an entropy type criterion. The resulting
complete tree may be of smaller depth than the initial one. The only difference from
best basis selection algorithms is that the optimal tree is searched among the complete
sub-tree of the initial tree.

4. Research Model Architecture

Our study is to analyze wavelet thresholding or filtering methods for extracting
optimal multi-signal decomposed series (i.e. highpass and lowpass filters) as a key
input variable fitting a neural network based forecasting model specially under
chaotic financial markets (Fig. 2).

Theory based or Data-driven
Thresholding criteria (λ )
for Optimal Multi-scale

Decomposition

input x(t) Prediction
Error
e(t+1)

Wavelet
Transformation

Multi-Scale decomposition

Neural Network ArchitectureNeural Network Architecture

x(t-1)
x(t-2)
x(t-3)
...

{Nonlinear
Dynamic
Analysis

Supervised Learning
(Hill Climbing)

( )11 ++ − tt XX̂

Fig. 2. Integration Framework of Wavelet Transformation and Neural Networks
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4.1 Nonlinear Dynamic Analysis

In the chaos theory, it is proved that the original characteristics of the chaos can be
reconstructed from a single time series by using a proper embedding dimension.
In this study, we use the dimension information specially to determine the size of

time lagged input variables of neural network models. For example, the embedding
dimension, 5 estimated in our study indicates that 4 time-lag data are matched to input
factors of a neural network to predict the 5th data point of the time series.

4.2 Neural Networks

For time series predictions, the most popularly used neural networks are clearly time
delay neural networks (TDNN; Weigend et al. [49]) and recurrent neural networks
(RNN; Elman [24]). While in the dynamic context the recurrent neural networks can
outperform the time delay neural networks, they occasionally are difficult to be
trained optimally by a standard backpropagation algorithm due in part to the
dependence of their network parameters (Kuan and Hornik [33]).

In this study, The basic model we experiment with is Backpropagation neural
network (BPN) models which have a parsimonious 4 input nodes, 4 hidden nodes
and°1 output node with single wavelet filter, i.e. highpass or lowpass filter within the
network structure. The other model we experiment with is BPN models which have 8
input nodes, 8 hidden nodes and 1 output node with all the multiple filters.

5 Experimental Results

In this section, we evaluate prior methodology about wavelet thresholding using a
case of the daily Korean Won / U.S. Dollar exchange rates are transformed to the
returns using the logarithm and through standardization from January 10, 1990 to
June 25, 1997. The learning phase involved observations from January 10, 1990 to
August 4, 1995, while the testing phase ran from August 7, 1995 to June 25, 1997.
We transform the daily returns into the decomposed series such as an approximation

part and a detail part by Daubechies wavelet transform with 4 coefficients for neural
network forecasting models in our study.

In summary, we use a few thresholding strategies shown in Table 2, 3 and then
compare each other in forecasting performance using test samples. The results are
shown in Table 4-6. In our experiments, lowpass and highpass filters are both
considered in the wavelet transform, and their complementary use provides signal
analysis and synthesis.

First, we select the most efficient basis out of the given set of bases to represent a
given signal (See Fig. 3.).
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(a) WPT (b) Best Orthogonal Basis (c) Best Level

Fig. 3. WPT Analysis Using Daily Korean Won / US Dollar Returns Data
[Parentheses contain a information about wavelet level index (left hand size) and
wavelet coefficient index at the same level (right hand size)]

Table 4, 5, and 6 compare thresholding performances from different preprocessing
methods in forecasting models.

Firstly, our experimental results (Table 4-6) show that WTs have proved to be very
good methods for noise filtering and compressing data. This is doubtlessly due to the
fact that varying resolution scales are treated, thus taking into account a range of
superimposed phenomena.
Table 4 and 5 contain the comparison between hard and soft thresholding. Soft

thresholding is hardly different from hard thresholding in the experimental results.
Table 4-6 also show the results about the different performances among compression,
denoising, best basis method, best level method, and cross-validation, etc.

But, except cross-validation method by DWT, any other method didn't significantly
out-perform the others in viewpoint of neural network based forecasting performance.
That is, only cross-validation method significantly has the best performance among
their techniques and the other methods have almost the same results.

However, the data driven approach has some limitation as follows. That is, in fact,
varying results can be obtained with different experimental conditions (signal classes,
noise levels, sample sizes, wavelet transform parameters) and error measures, i.e. a
cost function for global model optimization.

Ideally, the interplay between theory based and experimental (or data driven)
approach to implement an optimal wavelet thresholding should provide the best
performance of a model according to the above experimental conditions.
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Table 4. A Discrete Wavelet Transform Thresholding Performance Using Test Samples

Threshold
Techniques

Threshold
Strategy

Filter
Types

Network
Structure

RMSE

- - - Random Walks 2.939007
- - - BPN(4-4-1)c 1.754525

Cross-validation - HP&LPa BPN(8-8-1) 1.676247
LPb BPN(4-4-1) 1.766189Data Compression Hard

Thresholding HP&LP BPN(8-8-1) 1.760744
LP BPN(4-4-1) 1.767864Soft

Thresholding HP&LP BPN(8-8-1) 1.751537
LP BPN(4-4-1) 1.766579

Data Denoising

Hard
Thresholding

HP&LP BPN(8-8-1) 1.754131

a: Highpass and Lowpass filters, b: Lowpass filter,
c: BPN(I-H-O) = Backpropagation NN(I: Input Nodes; H: Hidden Nodes; O: Output Nodes).

Table 5. Wavelet Packet Transform Thresholding Performance Using Test Samples

Thresholding
Techniques

Tresholding
Strategy

Filter
Types

Network
Structure

RMSE

- - BPN(4-4-1) 1.754525

LP BPN(4-4-1) 1.774456
Data Compression

Hard
Thresholding

LP&HP BPN(8-8-1) 1.759434

LP BPN(4-4-1) 1.774456
Data Denoising

Soft
Thresholding

LP&HP BPN(8-8-1) 1.759434

Table 6. Best Basis Selection and Best Level Technique Performance Using Test samples

Criteria Contents Filter Types BPN Structure RMSE
LP (4-4-1) 1.764243Best

Orthogonal
Basis

Coifman and
Wickerhauser (1992) LP&HP (8-8-1) 1.74329

LP (4-4-1) 1.767424Best Level Coifman et al. (1994)
LP&HP (8-8-1) 1.748388
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6 Concluding Remarks

Our research was motivated by a few problems central in time series analysis, i.e. how
to extract non-stationary signals which may have abrupt changes, such as level shifts,
in the presence of impulsive outlier noise under short-term financial time series. Our
research indicates that a wavelet approach is basically an attractive alternative,
offering a very fast algorithm with good theoretical properties and predictability in
financial forecasting model design.

From our experimental results, wavelet shrinkage or denoising has also been
theoretically proven to be nearly optimal from the following perspective: spatial
adaptation, estimation when local smoothness is unknown, and estimation when
global smoothness is unknown (Taswell [46]). In the future, the availability of these
techniques will be promising more and more according to the domain features.
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Computerized Spelling Recognition of Words

Expressed in the Sound Approach
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Abstract. This article deals with the possible computer applications of
the Sound Approach to English phonetic alphabet. The authors review
their preliminary research into some of the more promising approaches
to the application of this phonetic alphabet to the processes of machine
learning, computer spell-checking, etc. Applying the mathematical ap-
proach of rough sets to the development of a data-based spelling recog-
nizer, the authors delineate the parameters of the international coopera-
tive research project with which they have been engaged since 1997, and
point the direction of both the continuation of the current project and
of future studies, as well.

1 Introduction

In 1993-1994, the first author developed and did initial testing on a new system
of phonetic spelling of the sounds in English as an aid to learning better English
pronunciation and improving listening and spelling skills in English for Japanese
students of English. The method, subsequently entitled Sound Approach was
tested initially on Japanese high school and university students. The results of
the testing indicated that the creation of a sound map of English was very help-
ful in overcoming several common pronunciation difficulties faced by Japanese
learners of English as well as improving their English listening, sight reading,
and spelling skills [1]. It was further tested on Japanese kindergarten children
(ages 3-6), primary school pupils (ages 6-11), and Russian primary school pupils
(ages 9-10) and secondary school students (ages 11-13) with similar results [2-3].
It was further tested on a wide range of international ESL (English as a Second
Language) students at the University of Regina. These latest results, while still
preliminary, indicate that it is an effective and useful tool for helping any non-
native speaker of English to overcome pronunciation and orthographic barriers
to the effective use of English. The current stage of development for ESL/EFL
(English as a Second Language/ English as a Foreign Language) includes les-
son plans for teachers, flip-cards and a workbook for students, and laminated
wall charts. The next stage of development includes interactive CD-ROMs and
various computer applications.
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One of the objectives of the Sound Approach to teaching English language
is the development of a spelling recognition system for words expressed in a
phonetic alphabet of forty-two symbols known as the Sound Approach Phonetic
Alphabet (SA). The SA alphabet represents without ambiguity all sounds appear-
ing in the pronunciation of English language words, and does so without using
any special or unusual symbols or diacritical marks; SA only uses normal English
letters that can be found on any keyboard but arranges them so that consistent
combinations of letters always represent the same sound. Consequently, any spo-
ken word can be uniquely expressed as a sequence of SA alphabet symbols, and
pronounced properly when being read by a reader knowing the SA alphabet. Due
to representational ambiguity and the insufficiency of English language charac-
ters to adequately and efficiently portray their sounds phonetically (i.e., there
are between 15 and 20 English vowel sounds depending on regional dialect, but
only five letters to represent them in traditional English orthography), the rela-
tionship between a word expressed in SA alphabet and its possible spellings is
one to many. That is, each SA sequence of characters can be associated with a
number of possible, homophonic sequences of English language characters. How-
ever, within a sentence usually only one spelling for a spoken word is possible.
The major challenge in this context is the recognition of the proper spelling of
a homophone/homonym given in SA language. Automated recognition of the
spelling has the potential for development of SA-based phonetic text editors
which would not require the user to know the spelling rules for the language
but only being able to pronounce a word within a relatively generous margin
of error and to express it in the simple phonetic SA-based form. Computerized
text editors with this ability would tremendously simplify the English language
training process, for example, by focusing the learner on the sound contents of
the language and its representation in an unambiguous form using SA symbols,
and in a wider sense, allow for more equal power in the use of English by any
native or non-native speaker of English.

2 Approach

The approach adapted in this project would involve the application of the math-
ematical theory of rough sets in the development of a data-based word spelling
recognizer. The theory of rough sets is a collection of mathematical tools mainly
used in the processes of decision table derivation, analysis, decision table reduc-
tion and decision rules derivation from data (see, for instance references [4-9]).
In the word spelling recognition problem, one of the difficulties is the fact that
many spoken words given in SA form correspond to a number of English language
words given in a standard alphabet. To resolve, or to reduce this ambiguity, the
context information must be taken into account. That is, the recognition proce-
dure should involve words possibly appearing before, and almost certainly after
the word to be translated into standard English orthography. In the rough-set
approach this will require the construction of a decision table for each spoken
word. In the decision table, the possible information inputs would include context
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words surrounding the given word and other information such as the position
of the word in the sentence, and so on. Identifying and minimizing the required
number of information inputs in such decision tables would be one of the more
labor-intensive parts of the project. In this part, the techniques of rough sets,
supported by rough-set bas ed analytical software such as KDD-R [10-11], would
be used in the analysis of the classificatory adequacy of the decision tables, and
their minimization and extraction of classification (decision) rules to be used in
the spelling recognition. It should be emphasized at this point, that the process
of minimization and rule extraction would be automated to a large degree and
adaptive in the sense that inclusion of new spoken word-context combinations
would result in regeneration of the classification rules without human inter-
vention. In this sense the system would have some automated learning ability
allowing for continuous expansion as more and more experience is accumulated
while being used.

3 Rough Sets

The theory of rough sets and their application methodology has been under
continuous development for over 15 years now. The theory was originated by
Zdzislaw Pawlak [4] in the 1970’s as a result of long term fundamental research
on logical properties of information systems, carried out by himself and a group
of logicians from the Polish Academy of Sciences and the University of Warsaw,
Poland. The methodology is concerned with the classificatory analysis of impre-
cise, uncertain or incomplete information or knowledge expressed in terms of
data acquired from experience. The primary notions of the theory of rough sets
are the approximation space and lower and upper approximations of a set. The
approximation space is a classification of the domain of interest into disjointed
categories. The classification formally represents our knowledge about the do-
main, i.e., knowledge is understood here as an ability to characterize all classes
of the classification, for example, in terms of features of objects belonging to the
domain. Objects belonging to the same category are not distinguishable which
means that their membership status with respect to an arbitrary subset of the
domain may not always be clearly definable. This fact leads to the definition
of a set in terms of lower and upper approximations. The lower approximation
characterizes domain objects about which it is known with certainty, or with a
controlled degree of uncertainty [7-8] that they do belong to the subset of inter-
est, whereas the upper approximation is a description of objects which possibly
belong to the subset. Any subset defined through its lower and upper approxi-
mations is called a rough set.The main specific problems addressed by the theory
of rough sets are:

– representation of uncertain, vague or imprecise information;
– empirical learning and knowledge acquisition from experience;
– decision table analysis;
– evaluation of the quality of the available information with respect to its

consistency and presence or absence of repetitive data patterns;
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– identification and evaluation of data dependencies;
– approximate pattern classification;
– reasoning with uncertainty;
– information-preserving data reduction.

A number of practical applications of this approach have been developed in
recent years in areas such as medicine, drug research, process control and others.
One of the primary applications of rough sets in artificial intelligence (AI) is for
the purpose of knowledge analysis and discovery in data [6]. Several extensions
of the original rough sets theory have been proposed in recent years to better
handle probabilistic information occurring in empirical data, and in particular
the variable precision rough sets (VPRS) model [7-8] which serves as a basis of
the software system KDD-R to be used in this project. The VPRS model extends
the original approach by using frequency information occurring in the data to
derive classification rules.

In practical applications of rough sets methodology, the object of the analysis
is a flat table whose rows represent some objects or observations expressed in
terms of values of some features (columns) referred to as attributes. Usually, one
column is selected as a decision or recognition target, called a decision attribute.
The objective is to provide enough information in the table, in terms of attributes
of a sufficient number and quality, and a sufficient number of observations, so
that each value of the decision attribute could be precisely characterized in terms
of some combinations of various features of observations. The methodology of
rough sets provides a number of analytical techniques, such as dependency anal-
ysis, to asses the quality of the information accumulated in such table (referred
to as a decision table). The decision table should be complete enough to en-
able the computer to correctly classify new observations or objects into one of
the categories existi! ! ng in the table (that is, matching the new observation
vector by having identical values of conditional attributes). Also, it should be
complete in terms of having enough attributes to make sure that no ambiguity
would arise with respect to the predicted value of the target attribute (which
is the spelling category in the case of this application). One of the advantages
of the rough sets approach is its ability to optimize the representation of the
classification information contained in the table by computing so-called reduct,
that is, a minimal subset of conditional attributes preserving the prediction ac-
curacy. Another useful aspect is the possibility of the extraction of the minimal
length, or generalized decision rules from the decision table. Rules of this kind
can subsequently be used for decision making, in particular for predicting the
spelling category of an unknown sound.

In the current preliminary testing of SA, a selection of homonyms were put
into representative “training” sentences. For each group of “confusing” words one
recognition table was constructed. For example, one decision table was developed
to distinguish spelling of sounding similar words ade, aid, ate and eight. Some
of the training sentences used in deriving the table were as follows:

“we need aid”, ”she is a nurse’s aid”, “we ate chicken for dinner”, and so on.
The relative word positions (relative to the target word) in the sentences were
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CLASS -5 -3 -1 spell
1 0 2 5 ade
2 a 1 2 ade
3 0 0 3 aid
4 0 0 5 aid
5 0 0 1 aid
6 0 0 b aid
7 0 2 c aid
8 0 1 2 aid
9 0 2 9 aid
10 0 0 2 ate
11 0 8 1 eight

Table 1. Classification training sentences by using grammatical categories

plying the role of attributes of each sentence. That is, attribute -1 represented
the predecessor of the target word, attribute denoted by -2 was the next preced-
ing word, and so on. Only up to five positions preceding the target word were
used in the representation. The values of such defined attributes were grammati-
cal categories of the words appearing on particular positions, eg. verb (value=1),
noun (value=2), etc. These values were then used to synthesize decision tables
by categorizing training sentences into a number of classes. The decision tables
were subsequently the subject of dependency analysis and reduction to elimi-
nate redundant inputs. For instance, an exemplary final reduced decision table
obtained for words ade, aid, ate and eight is shown in Table 1. ! !

In the preliminary experiments, it was found that using the decision ta-
bles the computer could accurately choose the correct spelling of non-dependent
homonyms (i.e., those homonyms for which the simple grammatical protocol was
unable to determine the correct spelling from the context) 83.3 percent of the
time, as in the sentence, The ayes/eyes have it. With dependent homonyms, as
in the sentence,ate eight meals, the computer could accurately choose the correct
spelling more than 98 percent of the time.

4 Major Stages of the Initial Project

The initial project was divided into the following major stages which, depending
on funding, could have significantly shortened time-frames:

1. Construction of decision tables for the selected number of English language
homonyms or homophones. This part would involve research into possi-
ble contexts surrounding the selected words in typical sentences and their
representation in decision table format. This would also involve rough set
analysis, optimization and testing (with respect to completeness and pre-
diction accuracy) of the constructed tables using existing software systems
Dataquest [12,13] or KDD-R. The related activity would be the extraction
of classification rules from such tables. This is a very labor-intensive part of
the project since the number of possible homonyms or homophones is in the
range of approximately 3000. The time-frame for this part of the project is
approximately two years.
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2. Editor development using the tables constructed in Stage 1 as a main compo-
nent of the spelling recognition system. The editor would have some learning
capabilities in the sense of being able to automatically acquire new feedback
word combinations in cases of unsuccessful recognitions. The editor will be
constructed in a similar pattern to Japanese Romaji-Hiragana-Kanji word
processing selection tables. The estimated time for this stage of the project
is approximately one year to construct a working prototype system assuming
two full-time programmers would be involved in the system development.

3. This stage would involve both system testing and refinement, going through
multiple feedback loops until satisfactory system performance and user sat-
isfaction is achieved. The system would be tested with English language
students at Yamaguchi University and other international locations. The
accumulated feedback would be used to retrain and enhance the system’s
spelling recognition capabilities and to refine the user’s interface to make it
as friendly as possible. It is also felt that using SA, it can be adapted to
any regional pronunciation style (e.g., Australian, British Received, Indian,
Irish, etc.) by offering the user their choice of keyboard’s for their particular
area. For example, in standard International Broadcast English the word
table would be represented in SA by spelling it teibul , whereas in Australian
English it could be represented in SA by spelling it taibul and the com-
puter would still offer the standard orthographic representa! ! tion of table
in the spell-checking process in either keyboard format. At this stage, not
only could it be used as an ordinary spell checker, but could be programmed
for speech as well so that the user could have the word or passage read
and spoken by the computer in either sound spelling or in regular spelling.
As a normal spell checker, for example, it would be difficult to distinguish
between the words bother and brother. However, with speech capacity, the
user could potentially hear the difference and catch the mistake. This could
also become an excellent teaching/learning device for practicing and learning
correct pronunciation whether for native or for non-native English speakers.

5 Conclusions

In the initial study on the efficacy of the Sound Approach phonetic alphabet in
meeting the requirements for the development of easily accessible and accurate
computer word recognition capability conducted at the University of Regina
in 1997, the rough set model was used to construct decision tables on a list
of various English homonyms. It was found that the Sound Approach phonetic
alphabet and the rough set model were quite compatible with each other in
determining decision tables used in decision making for predicting the correct
spelling of a word written either phonetically or in standard English orthography.
It was found in preliminary experiments that even using a relatively unrefined
grammatical protocol and decision tables, we were able to correctly identify the
correct spelling of non-dependent homonyms 83.3 percent of the time. This ac-
curacy rate rivals already extant forms of standard spelling recognition systems.
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When confronted with dependent homonyms, the ! ! computer could accurately
choose the correct spelling more than 98 percent of the time.

It is felt that with further refining of the grammatical protocol and expan-
sion of the sample sentences using the approximately 3000 English homonyms,
a spelling recognition system could be constructed that would allow even non-
native speakers of English to gain equal access and power in the language. Fur-
ther, this would be but one of the necessary building blocks for the construction
of a total voice recognition operating system, and a major step forward in com-
puter speech technology. It is also considered that these advancements have
considerable commercial possibilities that should be developed.
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Abstract. This paper describes a recognition system for on-line cursive 
handwriting that requires very little initial training and that rapidly learns, and 
adapts to, the handwriting style of a user. Key features are a shape analysis 
algorithm that determines shapes in handwritten words, a linear segmentation 
algorithm that matches characters identified in handwritten words to characters 
of candidate words, and a learning algorithm that adapts to the user writing 
style. Using a lexicon with 10K words, the system achieved an average 
recognition rate of 81.3% for top choice and 91.7% for the top three choices. 

1 Introduction 

As more people use and depend on computers, it is important that computers become 
easier to use. Many systems for handwriting recognition have been developed in the 
past 35 years [1][4][5][6][7][8]. In contrast to those systems, the method proposed in 
this paper 

Dispenses with extensive training of the type required for Hidden Markov Models 
and Time Delay Neural Networks [6][7]. Initialization of the knowledge base 
consists of providing four samples for each character. 
Uses a shape analysis algorithm that not only supports the identification of 
characters but also allows efficient reduction of the lexicon to a small list of 
candidate words [1][4]. 
Uses a linear-time segmentation technique that optimally matches identified 
characters of the handwritten word to characters of a candidate word, in the sense 
that the method completely avoids premature segmentation selections that may be 
made by some techniques [6][8]. 
Learns not only from failure but also from correctly identified words, in contrast to 
other prior methods [5][7]. 
The dictionary words need not be provided in script form. Thus, switching to a new 
vocabulary becomes very simple, requiring merely a new lexicon[6][7]. 

0 
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2 Modules of The System 

The system consists of three modules. The preprocessing module accepts as input the 
raw pixel sequence of a handwritten word recorded by a digitizing tablet and converts 
it to a sequence of feature vectors called the basic code. The interpretation module 
receives the basic code of a handwritten word as input, deduces word shapes, selects 
from a lexicon a list of candidate words, and from these candidates deduces by a 
matching process the interpretation. The learning module analyzes the correct word, 
which is either the output word of the interpretation module or the intended word 
supplied by the user, and locates opportunities for learning from misidentified letters 
and from identified letters with low match quality values. The insight so obtained 
results in addition, adjustment, or replacement of templates. The next three sections 
describe the preprocessing, interpretation and learning module respectively. 

.i 'i 
Fig. 1 . An example of handwritten word 'help' with extracted features and regions; and 
possible shapes of strokes. 

3 Preprocessing Module 

An on-line handwriting recognition system accepts handwriting from a digitizer. Due 
to technical limitations of the tablet, the raw pixel sequence of a handwritten word 
includes imperfections and redundant information. We first delete duplicate pixels 
caused by a hesitation in writing and interpolate non-adjacent consecutive pixels 
caused by fast writing, to produce a continuous pixel sequence. We then identify 
pixels with particular characteristics such as local maxima and local minima. We also 
normalize the handwritten word and extract other features such as locations of 
extrema, shapes of strokes, slopes of strokes, curvatures of strokes, connections of 
strokes, and openings associated with maxima and minima. We organize these 
features into a sequence of feature vectors called basic code which is input of the 
interpretation module. The left part of Figure 1 shows an example of a handwritten 
word with extracted extrema and regions. The right part gives some sample shapes of 
strokes. 
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4 Interpretation Module 

The interpretation module takes the basic code as input and interprets it as some word 
of a given lexicon. The module carries out that task as follows. It initially extracts the 
shape of the handwritten word, such as ascenders, descenders and their positions with 
respect to the baseline of the word. By using the shape information, it reduces a large 
reference lexicon to a list of candidates which have the same shape as the handwritten 
word. For each candidate, the module carries out the following steps. First, the 
module identifies letters of the candidate in the basic code using template matching 
and computes a match quality for each identified letter. We emphasize that the 
portions of the basic code corresponding to identified letters can, and often do, 
overlap. Second, for each contiguous segment of basic code connecting identified 
letters, a certain length is computed. Similarly, for the unidentified letters of the 
candidate, a certain length is determined as well. Third, a linear-time segmentation 
algorithm fmds an optimal matching of identified characters of the handwritten word 
to the characters of the given candidate word, in the sense that the matching 
maximizes the sum of the match quality values for the identified letters minus the sum 
of the length differences for the unidentified letters. Once all candidate words have 
been processed, the optimal matching of each candidate word is scored and the 
candidate with the highest score is selected as the desired word. 

5 Learning Module 

The learning algorithm adapts the system to a specific writing style by learning user 
behavior and updating the template set. User-adaptive systems reported in the 
literature conduct their adaptive processes only when a word is not recognized 
correctly [5][7]. We employ a more elaborate adaptive learning strategy. The system 
learns the user's writing not only when the output word of the system is wrong, but 
also when it is correct. In the latter case, the system learns individual characters or 
sub-strings of the word that have not been recognized correctly. 

With knowing the correct word of a handwritten word, which is either the output 
word of the interpretation module confirmed by the user, or the intended word 
supplied by the user, the learning module analyzes the identified segments and 
unidentified segments of the basic code to identify errors for learn. We do learning on 
the unidentified segments and the identified segments with low match quality. For 
each learning case, the learning module picks up one of the following three methods 
subsequently: 
1. Adding the segment of basic code as a new template if the number of templates 

does not reach the maximum allowed in the systems. 
2. Adjusting the parameters of a template so that the match quality is increased. Such 

a change may cause the template less often occurrences of other letters/strings. 
Hence, we evaluate the positive and negative impact of such adjustments to decide 
if we want to adjust a template or use the next method. 

3. Replacing the least frequently used templates by the basic code segment. 
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Writer 

A 
B 
C 
D 

6 Experimental Results 

Top I Top 3 Top 5 Candidate Shape 
list Clase 

84% 93% 93% 96% 100% 
80% 91% 92% 97% 100% 
75% 89% 91% 95% 100% 
86% 94% 94% 97% 100% 

The handwriting data is collected using the Wacom ArtZ I1 tablet (140 samples per 
second and 100 lines per inch). The initial set of templates was collected from one 
writer who did not participate in the testing. Test data were collected from four 
writers. The user-independent system using preprocessing and interpretation modules 
had an average recognition rate of 65.5%, and the user-adaptive system using three 
modules reached 81.3%. Thus, the learning module improved the average system 
accuracy by 15.8%. 

We have conducted experiments to analyze the error distribution. Table 1 shows 
the percentage of correct words appearing in different ranges using the user-adaptive 
system. The table shows that the system always determines the correct shape class. 
The screen process, which reduces the shape class to a small list of candidates, causes 
an average 4% error. The average performance at the top 1 choice is 81.3%. In the 
experiment of the top three choices, the average performance is improved to 91.7%. 
However, the average recognition rate of the top five choices is 92.5% which does 
not improve much on the top 3 choices. 

Table 1. Recognition rates of the sytem on different criteria 

7 Conclusions 

This paper has presented a new approach for on-line handwriting recognition. The 
framework of our approach dispenses with elaborate training of the type required for 
statistical pattern recognition. Initialization of the system consists merely in providing 
four samples for each character, written in isolation by one writer. The dictionary 
words need not be provided in script form. Thus, even switching to a new vocabulary 
becomes very simple, requiring merely a new lexicon. While principles underlying 
the present approach are general enough, the techniques of segmentation and learning 
are particularly well suited for Roman scripts. Tests have shown that the method is 
robust because performance does not degrade significantly even when words written 
by one writer are interpreted using reference characters from another. 

In creating a complete handwriting interpretation system, one must decide where 
effort can be most effectively applied to increase the performance. It is felt that in this 
system, the effort has been distributed with an emphasis on the work of the 
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interpretation module. The preprocessing module could be improved upon, for 
example, by extracting a set of better features from the raw pixel sequence. 
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Żytkow, J. M. 395


	0000
	0001
	Introduction
	Information System and Decision Table
	Approximations
	Decision Rules
	Decision Rules and Approximations
	Decision Rules and Bayes' Rules
	Conclusions

	0010
	0012
	Introduction
	Categorization Systems
	Content Based Collaborative Filtering Systems
	Conclusions and Summary

	0019
	0020
	Introduction
	Granules of Knowledge: Rough Set Approach

	Rough Mereology
	Mereology
	Rough Mereology: First Notions
	Rough Mereological Component of Granulation

	Adaptive Calculus of Granules for Synthesis in Distributed Systems
	Distributed Systems of Agents
	Approximate Synthesis of Complex Objects
	Approximate Logic of Synthesis


	Calculi of Granules in (Inv, Ag)
	Calculi of Pre-granules

	Associated Grammar Systems: A Granular Semantics for Computing with Words

	0029
	Introduction
	Reasoning about Complications
	Probabilistic Rules
	Accuracy and Coverage
	Definition of Rules

	Rough Set Model of Complications
	Definition of Characterization Set
	Characterization as Exclusive Rules
	Rough Inclusion
	Rule Induction Algorithm

	Induction of Complication Rules
	Discussion
	Conflict Analysis
	Granular Fuzzy Partition


	0038
	Introduction
	Brief Review of Genetic Algorithms
	Definition of Rough Genetic Algorithms
	An Application of Rough Genetic Algorithms
	Summary and Conclusions

	0047
	Introduction
	Power System Faults
	Classifying Faults
	Basic Concepts of Rough Sets
	Example
	Design of Rough Neurons

	Rough-Fuzzy Neural Network Computation
	Calibration
	Learning Performance of Two Types of Networks

	Concluding Remarks
	References

	0055
	Introduction
	Ontology
	Ontology Axiom

	Mereology
	Mereology Axioms
	Classes
	Mereotopology: First Notions

	Rough Mereology
	Rough Mereology Axioms
	Models
	Mereotopology: Cech Topologies

	From Cech Mereotopologies to Mereotopologies
	A t-norm Model

	Connections
	From Graded Connections to Connections
	Infinitesimal Parts Model
	Introducing Connections
	Restoring Rough Mereology from Connections


	Geometry via Rough Mereology
	Conclusion

	0064
	Introduction 
	Aim and Purpose in Handling NIS 
	An Algorithm for Checking Definability of Set in DIS 
	Some Definitions and Properties in NIS 
	Proposal of an Algorithm in NIS 
	Implementation of Proposing Algorithm in NIS 
	Data File for NIS 
	File Translator from Data File to Internal Expression 
	An Algorithm for Translator 
	An Algorithm for Handling Usable inf and sup 
	Realization of Query Interpreter and Its Subcommands 

	Concluding Remarks 

	0073
	Introduction
	Tolerance Relations
	Similarity Relations
	Valued Tolerance Relations
	Conclusions

	0082
	Introduction
	Two Formulations of Rough Set Approximations
	Rough Relation Approximations
	A Commonly Used Formulation
	A New Formulation

	Conclusion

	0091
	Introduction
	Background
	Existing Approach
	Formal Rough Concept Analysis
	Approximating a Set of Objects
	Approximating a Set of Features
	Approximating A Concept
	Both A and B are Definable
	A is Definable and B is not
	B is Definable and A is not
	Both A and B are Nondefinable


	Conclusion and Future Work

	0100
	Introduction
	Psychoacoustics Principles
	Description Of The Perceptual Noise Reduction System
	Implementation of the Noise Reduction System
	Noise Estimation Module
	Decision System
	Perceptual Noise Reduction Module

	Experiments
	Conclusions
	References

	0109
	Introduction
	Method of Speech Processing
	Examination of the Patients
	Database of Electorstimulation Test Results
	Rough Set Analysis of Electrostimulation Database
	Rough Set Class Library
	The Rough Set Class Implementation
	Rough Set Processing of Electrostimulation Data

	Conclusions
	References

	0118
	Introduction
	Background
	The Rough Set Attribute Reduction Method (RSAR)
	Text Classification

	The Proposed System
	Keyword Acquisition
	Rough Set Attribute Reduction

	Experimental Results
	Conclusion

	0128
	Introduction
	Fuzzy MLP
	Rough Fuzzy MLP
	Modular Knowledge-Based Network 
	Evolutionary Design
	Chromosomal Representation
	Genetic Operators
	Crossover 
	Mutation

	Choice of Fitness Function
	Selection

	Implementation and Results
	Conclusions

	0137
	Introduction
	Approximate reducts
	Approximate association rules
	Application of approximate reducts to the search of approximate association rules
	Conclusions
	References

	0146
	Introduction
	Rough approximations defined on data tables with missing values
	Multi-attribute classification problem with missing values
	Decision rules for multi-attribute classification with missing values
	Multi-criteria sorting problem with missing values
	Decision rules for multi-criteria sorting with missing values

	Conclusions
	References

	0158
	Introduction
	Formal Definitions of the gRS--ILP Model
	The RSILP System
	Equivalence Relation, Elementary Sets and Composed Sets
	Consistency and Completeness in the gRS--ILP Model
	Some Useful Declarative Biases

	The gRS--ILP Model and Motifs in Strings
	Definition of a Motif--RSILP--ESD System
	An Example
	Experimental Illustration

	Conclusions

	0168
	Introduction
	The Normal Problem Setting for ILP
	Imperfect Data in ILP
	Rough Set Theory
	Rough Problem Settings for ILP
	Rough Problem Setting for Missing Predicates / Clauses
	Rough Problem Setting for Indiscernible Examples
	Related Work

	Conclusions and Future Work

	0178
	Introduction
	Dispensable and Indispensable Features
	Searching Indispensable Features
	Feature Subset Selection
	The Filter Approach
	The Wrapper Approach

	Heuristics for Feature Subset Selection
	Experiment Results
	Conclusions

	0188
	Introduction
	Compatibility Rough Set
	Obtaining the Initial Set of Split Points
	Selecting the Optimal Set of Split Points
	Experiments and Conclusions
	References

	0193
	Introduction
	Necessity Measures Defined by Level Cut Conditions
	Level Cut Conditions Derived from Necessity Measures

	0203
	Introduction
	Fuzzy Methods and Probabilistic Methods
	Two Methods of Fuzzy c-Regression
	Mixture Distribution Model for c-Regression
	Deterministic Annealing
	Deterministic Annealing and Entropy Method

	Classification Functions
	A Numerical Example
	Conclusion

	0212
	Introduction
	Attribute-Oriented Generalization and Fuzziness
	Probabilistic Rules
	Attribute-Oriented Generalization
	Examples

	Multi-valued Attributes and Fuziness
	Functional Representation of Context-Free Fuzzy Sets
	Conclusions
	References

	0221
	Introduction
	"Crisp” Hypothesis Testing
	Fuzzy Hypothesis Testing
	The Formal Notation
	Calculating the Sample Size
	Creating the Mapping Funktions for Each Hypothesis
	Comparing Fuzzy Hypotheses

	Analysis of the Medical Data
	Hypothesis Testing
	Summary of Results

	Conclusions
	References

	0230
	Introduction
	Mining forecasting fuzzy rules with genetic algorithms
	Description of method
	Example with generated data
	Example with economic data looking for theoretical assumptions e.g.keynesian theory
	Conclusions
	References

	0239
	Introduction
	Problem Statement
	Fuzzy System
	A Solution of Min-Max Problem
	Adaptive Fuzzy Control System
	Conclusion
	References

	0248
	Introduction
	System Modeling
	Off-Equilibrium Linearization
	Fuzzy Models and Regulators

	Fuzzy-Chaos Hybrid Controller
	Stabilization of a Prespecified Equilibrium Point
	Stabilization of any Equilibrium Point

	Design Example and Results
	Henon Map
	Calculation of Feedback Gains

	Conclusions

	0257
	Introduction
	Three-Link Manipulator
	Behavior Model for the Manipulator
	Compensation of the Gravitational Effect
	Fuzzy Rule of a Behavior Group

	Learning Using Genetic Algorithm
	Fitness Function

	Simulations
	Parameter Settings
	Results

	Conclusions

	0266
	Introduction
	Fuzzy Future Value Method
	Fuzzy Equivalent Uniform Annual Value (EUAV) Method
	Conclusions
	References

	0271
	Introduction
	Partial differential equations
	Fuzzy sets and fuzzy numbers
	Fuzzy semi-linear equation

	0276
	Introduction
	Possible Worlds Semantics - An Informal Overview
	Observable Worlds
	Induced Structures on Observable Worlds
	Impossible World

	Axiomatic Rough Set Theory
	Rough and S5 Models
	Rough Model
	The Equivalence of Two Models

	Conclusion

	0285
	Introduction
	A Decision Logic in Information Tables
	A Generalized Decision Logic
	Comments on Related Studies
	Conclusion

	0294
	Introduction
	Review of Some Decision Theories
	Possibilistic Dynamic Logic
	Syntax
	Semantics
	Discussion

	Case-based Dynamic Logic
	Future Works and Conclusion
	References

	0304
	Introduction
	Incorporating Fuzzy Set Theory into MLL
	Extending Set Relationships in MLL
	Extending Inference Rules in MLL
	Probabilistic Reasoning

	Incorporating Matrix Logic into MLL
	Matrix Logic
	Neural Networks

	Conclusion

	0314
	Introduction
	Fuzzy Logic-Based Coding of Constraints
	Introducing Chu Space to Fuzzy Logic
	A brief review of Chu Space
	Coding fuzzy sets and their constraints by Chu Space

	Introducing Channel Theory to Fuzzy Logic
	A brief review of Channel Theory on Information Flow
	Coding fuzzy sets and their constraints by Channel Theory

	New Perspective on Fuzzy Logic by Introducing Theories of Chu Space and Information Flow
	Conclusion
	References

	0324
	Introduction
	Multilinear Function Space
	Multilinear Functions
	Multilinear Function Space of the Domain {0,1}
	Multilinear Functions of the Domain [0,1]
	Vector Representations of Logical Operations
	The Relationship between Neural Networks and Multilinear Functions

	Intermediate Logic LC and Multilinear Function Space
	An Intuitive Explanation for LC
	The Multilinear Function Space is an Algebraic Model of LC 

	Logical Reasoning of Neural Networks by LC
	Remarks on Pattern Reasoning
	Conclusions

	0334
	Introduction
	Inference Based on Probability Theory
	Conditional Probability
	Logical Implication

	Bayes' Theorem
	Inference Applying Bayes' Theorem
	Bayes' Inference Based on Conditional Probability
	Bayes' Inference Based on Logical Implication

	Generalization on Interval Probability
	Interval Probabilistic Inference
	Inference on Interval Probability based on Bayes' Theorem

	Conclusion
	References

	0343
	Introduction
	Neural Logic Network
	Mathematical definition of NLN

	Logical Reasoning
	Neural Logic Element
	Neural logic program
	The proposed system
	Learning

	Conclusion
	References

	0352
	Introduction
	Rough Propositional Logical System
	Conjunctive Normal Form (CNF)
	The Resolutions in the RPLS
	Transformable Strategies of the Resolutions in RPLS
	Soundness of Resolution in RPLS
	Conclusion

	0357
	Introduction
	Rough Sets and Approximation Spaces
	Mutual Understanding of Concepts by Agents
	Understanding of Concept Definable by Single Agent
	Understanding of Concept Definable by Team of Agents

	Rough Sets in Distributed Systems

	0366
	Introduction
	Framework of Discovering Difference in the Usage of Words
	Difference in the Usage of Words
	Discovering Conceptual Difference
	Discovery Algorithms for Conceptual Difference

	Discovery Method for Conceptual Differences based on Diverse Structures
	Problems in Utilizing ID3
	Constructing Decision Trees with Diverse Structures

	Experiments and Evaluations
	Conclusion
	References

	0375
	Introduction
	Interval AHP
	Interval Scales by Transitivity
	Concluding Remarks

	0382
	Introduction
	Interval Density Functions
	Conflict Analysis
	Interval Importances to Conflict Analysis
	Conclusion

	0390
	Introduction
	Properties of Personal Data
	Schema Discovery by Granular Computing
	Functional Dependencies and Normalization
	Granular Computing

	Incorporating Personal Databases
	Conclusion
	References

	0395
	Operational Definitions Provide Empirical Meaning
	The AI Research Has Neglected Operational Definitions
	Operational Definitions Interact with the Real World
	Each Concept Requires Many Operational Definitions 
	Methods Should Be Linked by Equivalence
	Operational Definitions of a Concept Form a Coherent Set
	Laws Can Be Used to Form New Operational Definitions
	Operational Definitions Apply to all Empirical Concepts

	0405
	Introduction
	Rule Induction and Classification of Unseen Cases
	Description of Data Sets and Experiments
	Conclusions
	References

	0414
	Introduction
	Problem Description
	Transformation of a Rule Set into a Visual Graph
	Compressed Entropy Density Criterion
	Search Method

	Application to an Agriculture Data Set
	Conclusion

	0423
	Introduction
	Overview of Our Work
	Clustering Association Rules
	Selecting Representative Rules
	Experiments
	Conclusions and Further Work

	0433
	Introduction
	Protein Common Substructure Discovery by MCS
	Maximal Common Subgraph Approach
	Transforming to Maximum Clique Problem

	Algorithms
	Exploiting the Relations Between MC and Graph Coloring
	Solving MCS via MC (and GC)
	Clique-Finding Algorithm
	Coloring Algorithm

	Generic Pre-Processing/Dynamic Accessing Strategy for Large Problems

	Experiments
	Discussions
	References

	0443
	Introduction
	Basic Notions of Concept Lattice
	Building the Lattice
	Rule Extraction from the Lattice
	Experiments and Conclusions
	References

	0448
	Introduction
	Formal definitions
	Definition 1: Information matrix
	Definition 2: Information mappings
	Definition 3: Large descriptor set
	Definition 4: Binary association rule
	Definition 5: Confidence factor of a binary association rule
	Definition 6: Concept

	Problem statement
	Using SOA for discovering large descriptor sets
	Using GA for cluster validity
	Crossover operator
	Mutation operator
	Fitness factor and fitness value

	An application to a student database
	Conclusions and future works
	References

	0453
	Introduction
	A Motivating Example
	Knowledge Management
	Data Mining for Multi-factor Portfolio Construction
	Implementation and Results

	0458
	Evolutionary Data Mining Systems
	Genetic Algorithm Modeling for Data Mining
	Rule-Evolver
	Case Studies
	Conclusions
	References

	0463
	Introduction
	Decision Tables Acquired from Data
	VPRS Model of Rough Sets
	( l, u )-Dependency in Decision Tables
	Optimization of Precision Control Parameters
	Summary

	0472
	Introduction
	Version Space Related Research
	The Version Space Algorithm
	The Incremental Version Space Merging
	The Parallel Based Version Space Learning

	The Iterated Version Space Learning
	Learning the Allergy Example with IVSA
	Learning from Noisy Training Instances
	The IVSA Model

	Experimental Results on UCI Databases
	Learning the Mushroom Database
	Learning the Monk's Databases
	Learning English Pronunciation Databases

	Conclusions
	References

	0482
	Introduction
	Rule Quality Measures
	Measures of Association
	Measures of Agreement
	Measure of Information
	Measure of Logical sufficiency
	Measure of Discrimination
	Empirical Formulas

	Experiments with Rule Quality Measures
	The Learning System
	Experimental Design
	Results

	Learning from the Experimental Results
	Data Representation
	The Learning Results
	ELEM2 with Multiple Rule Quality Formulas
	Conclusions
	References

	0492
	Introduction
	Basic notions
	Rule based decision systems
	Rough set rule induction
	Rules as attributes
	The making of classifier
	Experimental results
	Conclusions
	References

	0500
	Introduction
	Background
	The Incremental Network Model
	The Training Process
	Translation into an Iterative Model Structure

	Pruning in the Incremental Learning Model
	Pruning Algorithm for the Proposed Incremental Model
	Selective-Learning Algorithm

	Implementation
	Conclusion

	0509
	Introduction
	Patterns of Numerical Data
	Intuitive Solution - No Prediction Phenomenon
	An Attempt from Algorithmic Information Theory
	Complexity Theories of Patterns
	Algebraic Information Theory
	Functional Information Theory

	Conclusion

	0514
	Introduction
	Construction of a Classification Family
	Performance of the Classification Family
	Experiments
	Conclusions and Future Research
	References

	0519
	Introduction
	SAMON Underwater Mobile Robot Testbed
	Process Algebra Model for Adaptive Autonomous Agents
	Generic Behavior Message-Passing Language
	Optimization and Adaptation
	Conclusions
	References

	0528
	Introduction
	Conceptual Agent-Based Model of ISS
	Ontology of Information Security Domain
	ISS Architecture and General Principles of Agents' Negotiation
	ISS modeling approach
	Related works
	Conclusion and Future Work
	Bibliography

	0533
	Introduction
	Discrete Wavelet Transform and Wavelet Packet Transform
	Wavelet Thresholding Techniques As Optimal Signal Decomposition for Financial Forecasting
	Research Model Architecture
	Nonlinear Dynamic Analysis
	Neural Networks

	Experimental Results
	Concluding Remarks
	References

	0543
	Introduction
	Approach
	Rough Sets
	Major Stages of the Initial Project
	Conclusions

	0551
	Introduction
	Modules of the System
	Preprocessing Module
	Interpretation Module
	Learning Module
	Experimental Results
	Conclusions
	References

	9999



