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Preface

The 20th International Conference on Information Processing in Medical Imag-
ing (IPMI) was held during July 2–6, 2007, at Rolduc Abbey, located in Kerkrade
in the south of the Netherlands. Following the highly successful IPMI in Glen-
wood Springs in the Rocky Mountains, Colorado, USA (2005), the conference
was the latest in a series of biennial scientific meetings where new developments
in acquisition, analysis, and use of medical images are presented. IPMI is one of
the longest running conferences in medical imaging. It was started in 1969 by
a group of young scientists working in nuclear medicine. With a few iterations
the conference expanded to other areas and became established as an important
meeting for in-depth discussion of new methodological developments in medi-
cal imaging. Nowadays it is widely recognized as one of the most exciting and
influential conferences in its field.

At IPMI meetings a wide variety of topics are covered by a relatively small
selection of papers presented in single-track sessions. This year, there were 210
manuscripts submitted to the conference. Of these papers, 26 were accepted for
oral presentation, and 37 papers were accepted as posters. Papers were care-
fully judged by three reviewers and two paper selection committee members,
with emphasis on originality, methodological development, scientific rigor, and
relevance. Selection of papers was difficult, but using the rankings and detailed
comments of the reviewers we were able to make a great selection in an objective
way. Unfortunately, due to the large number of submissions, it was inevitable
that many high-quality papers did not make it into the final program.

One of the key goals of IPMI is to encourage participation of the most promis-
ing and talented young researchers in the field, allowing them to explore new
ideas with some of the leading researchers in this area. Also this year, active in-
volvement was stimulated by preparation of the sessions in small study groups,
in which each conference attendee participated. After reading the papers of their
session, the study group members met to discuss the papers before they were
presented, and to formulate questions and comments to kick off the discussions.
The prestigious Erbsmann award for first time IPMI presenters added an ex-
tra stimulus for young researchers to be actively involved in the meeting. Of
the accepted papers, 37 were from first time presenters, and 18 of the 26 oral
presentations were given by candidates for the prize.

This year we also had a keynote lecture. We were very honored that Freek
Beekman from the University Medical Center Utrecht accepted our invitation to
present an overview of exciting ongoing research in “high resolution radionuclide
imaging”. Image acquisition and reconstruction have traditionally been topics
that were well represented at earlier IPMIs, before image analysis became the
dominant topic. In fact, the speaker who is now a world-leading authority in this
field, was attending and contributing to IPMI in his younger years. Therefore we
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were very pleased that Freek’s stimulating lecture brought the innovative recent
advances in this area to the attention of the IPMI audience.

IPMI has many traditions and we made every effort we could to maintain
its character. The most important tradition is allocation of sufficient time for
presentations to allow speakers to give a detailed explanation of their work and
to have time for in-depth and lively discussions without time constraints. It
has happened that debates have gone on for hours. With the risk of ruining a
carefully scheduled program we instructed the session chairs never to cut off a
discussion. We strongly believe that it is this unique format that makes IPMI
such a remarkable forum for the interchange of ideas in medical imaging..

IPMI is typically situated in a relatively small and sometimes remote location.
This year, IPMI was set in a historical location: the abbey Rolduc is a most im-
pressive historical abbey complex that has served as a monastery, where culture,
religion and science have gone hand in hand since the 12th century. Since 1970,
the major part of the abbey complex has been converted into a unique histori-
cal conference venue with modern meeting, lodging and catering facilities. This
made Rolduc the perfect setting for the highly informal atmosphere that makes
IPMI such a special event. All attendees were housed inside the abbey complex,
and the availability of a bar with late opening hours in the abbey basement
guaranteed continued scientific, and under the influence of the original Rolduc
beer, increasingly non-scientific discussions. On Wednesday afternoon, attendees
could explore the beautiful surroundings of Valkenburg on foot, enjoying some
of the steepest (and rarest) hills that the Netherlands has to offer. Also, a visit
to the beautiful town of Maastricht was organized. Later that evening, everyone
joined together for the conference dinner in the magnificent Kasteel Oost, on
the river banks of the Geul in Valkenburg. On Thursday, the traditional football
(soccer) match, US against “the rest of the world”, was played on the Rolduc
soccer field. At the time of writing the outcome is still uncertain, but it is ex-
pected that the Europeans will continue to dominate this remarkable series of
games, with or without impartial refereeing.

In these proceedings all IPMI 2007 papers are published in the order in which
they were presented at the meeting. We hope that these papers will form an in-
valuable source of information for participants, and a reminder of the great con-
ference we had. For those who did not attend the meeting these proceedings pro-
vide an excellent overview of some of the best research in medical imaging today.
We are already looking forward to IPMI 2009. Use www.ipmi-conference.com to
stay informed.

May 2007 Nico Karssemeijer
Boudewijn Lelieveldt
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Mike Brady University of Oxford, UK
Aaron Bertrand Brill Vanderbilt University, USA
Elizabeth Bullitt University of North Carolina, USA
Gary E. Christensen University of Iowa, USA
Ela Claridge University of Birmingham, UK
Timothy F Cootes University of Manchester, UK
Christos Davatzikos University of Pennsylvania, USA
Marleen de Bruijne University of Copenhagen, Denmark
Herve Delingette INRIA, France
James S. Duncan Yale University, USA
Alejandro F. Frangi Universitat Pompeu Fabra, Spain
James C. Gee University of Pennsylvania, USA
Guido Gerig University of North Carolina at Chapel Hill, USA
Bram van Ginneken University Medical Center Utrecht, The Netherlands
Polina Golland Massachusetts Institute of Technology, USA
Michael L. Goris Stanford University School of Medicine, USA
Ghassan Hamarneh Simon Fraser University, Canada



XII Organization

David J. Hawkes University College London, UK
Pierre Hellier IRISA/INRIA, France
Kenneth R. Hoffmann State University of New York at Buffalo, USA
Henkjan Huisman Radboud University Nijmegen Medical Centre,

The Netherlands
Sarang C. Joshi University of Utah, USA
Jan Kybic Czech Technical University, Czech Republic
Rasmus Larsen Technical University of Denmark, DTU, Denmark
Richard M. Leahy University of Southern California, USA
Gabriele Lohmann Max-Planck Institute of Cognitive Neuroscience,

Germany
Frederik Maes Katholieke Universiteit Leuven, Belgium
Jean-Francois Mangin CEA, France
Rashindra Manniesing Erasmus Medical Center Rotterdam,

The Netherlands
Calvin R. Maurer, Jr. Accuray, Inc., USA
Charles Meyer University of Michigan, USA
Kyle J. Myers U.S. Food and Drug Administration, USA
J. Alison Noble University of Oxford, UK
Xenophon Papademetris Yale University, USA
Xavier Pennec INRIA, France
Dzung L. Pham Johns Hopkins University, USA
Stephen M. Pizer University of North Carolina at Chapel Hill, USA
Jerry L. Prince Johns Hopkins University, USA
Anand Rangarajan University of Florida, USA
Joseph M. Reinhardt University of Iowa, USA
Torsten Rohlfing SRI International, USA
Karl Rohr University of Heidelberg, Germany
Punam Kumar Saha University of Iowa, USA
Julia A. Schnabel University College London, UK
Pengcheng Shi Hong Kong University of Science Technology

Hong Kong
Oskar Skrinjar Georgia Institute of Technology, USA
Colin Studholme University of California, San Francisco, USA
Martin A. Styner University of North Carolina at Chapel Hill, USA
Gabor Szekely Swiss Federal Institute of Technology Zurich,

Switzerland
Chris Taylor University of Manchester, UK
Bart M. ter Haar Romeny Eindhoven University of Technology,

The Netherlands
Andrew Todd-Pokropek University College London, UK
Carole J. Twining University of Manchester, UK
Dirk Vandermeulen Katholieke Universiteit Leuven, Belgium
Baba C. Vemuri University of Florida, USA



Organization XIII

IPMI 2007 Board

Stephen L. Bacharach
Harrison H. Barrett
Yves J.C. Bizais
Aaron B. Brill
Gary E. Christensen
Alan C.F. Colchester
Robert DiPaola
James S. Duncan
Michael L. Goris
Nico Karssemeijer
Richard M. Leahy
Douglas A. Ortendahl
Stephen M. Pizer
Chris Taylor
Andrew Todd-Pokropek
Max A. Viergever



Table of Contents

Segmentation

A Shape-Guided Deformable Model with Evolutionary Algorithm
Initialization for 3D Soft Tissue Segmentation . . . . . . . . . . . . . . . . . . . . . . . 1

Tobias Heimann, Sascha Münzing, Hans-Peter Meinzer, and
Ivo Wolf

Shape Regression Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Shaohua Kevin Zhou and Dorin Comaniciu

Active Mean Fields: Solving the Mean Field Approximation in the
Level Set Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Kilian M. Pohl, Ron Kikinis, and William M. Wells

Liver Segmentation Using Sparse 3D Prior Models with Optimal Data
Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Charles Florin, Nikos Paragios, Gareth Funka-Lea, and
James Williams

Cardiovascular Imaging

Adaptive Non-rigid Registration of Real Time 3D Ultrasound to
Cardiovascular MR Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Weiwei Zhang, J. Alison Noble, and Mike Brady

Multi-slice Three-Dimensional Myocardial Strain Tensor Quantification
Using zHARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Khaled Z. Abd-Elmoniem, Matthias Stuber, and Jerry L. Prince

Bayesian Tracking of Elongated Structures in 3D Images . . . . . . . . . . . . . . 74
Michiel Schaap, Ihor Smal, Coert Metz, Theo van Walsum, and
Wiro Niessen

Effective Statistical Edge Integration Using a Flux Maximizing Scheme
for Volumetric Vascular Segmentation in MRA . . . . . . . . . . . . . . . . . . . . . . 86

Ali Gooya, Hongen Liao, Kiyoshi Matsumiya, Ken Masamune, and
Takeyoshi Dohi

Detection and Labeling

Joint Sulci Detection Using Graphical Models and Boosted Priors . . . . . . 98
Yonggang Shi, Zhuowen Tu, Allan L. Reiss, Rebecca A. Dutton,
Agatha D. Lee, Albert M. Galaburda, Ivo Dinov,
Paul M. Thompson, and Arthur W. Toga



XVI Table of Contents

Rao-Blackwellized Marginal Particle Filtering for Multiple Object
Tracking in Molecular Bioimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Ihor Smal, Katharina Draegestein, Niels Galjart, Wiro Niessen, and
Erik Meijering

Spine Detection and Labeling Using a Parts-Based Graphical Model . . . . 122
Stefan Schmidt, Jörg Kappes, Martin Bergtholdt, Vladimir Pekar,
Sebastian Dries, Daniel Bystrov, and Christoph Schnörr
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Abstract. We present a novel method for the segmentation of volu-
metric images, which is especially suitable for highly variable soft tissue
structures. Core of the algorithm is a statistical shape model (SSM) of
the structure of interest. A global search with an evolutionary algorithm
is employed to detect suitable initial parameters for the model, which
are subsequently optimized by a local search similar to the Active Shape
mechanism. After that, a deformable mesh with the same topology as
the SSM is used for the final segmentation: While external forces strive
to maximize the posterior probability of the mesh given the local ap-
pearance around the boundary, internal forces governed by tension and
rigidity terms keep the shape similar to the underlying SSM. To pre-
vent outliers and increase robustness, we determine the applied external
forces by an algorithm for optimal surface detection with smoothness
constraints. The approach is evaluated on 54 CT images of the liver and
reaches an average surface distance of 1.6 ± 0.5 mm in comparison to
manual reference segmentations.

1 Introduction

Statistical shape models (SSMs), as introduced by Cootes et al. [1], have become
a popular choice for analyzing medical images. Due to their strict constraints
on the allowable shapes, they offer robust performance even in case of image
artifacts and low signal-to-noise ratio. The price for this robustness, however, is
that the limited deformations often impede the exact adaptation to the structure
of interest. This holds especially true if the target structure consists of soft tissue
with a large amount of natural variability: Besides the systematic variation, there
is always a part of essentially random perturbation that cannot be captured
adequately by a global deformation model as used in SSMs. A solution to this
problem is to combine the SSM with a freely deformable, energy-based model
as the original Snake by Kass et al. [2]. In this hybrid approach, the external
energy describes the difference to the data and the internal energy is based on
the difference between the current shape and the closest SSM [3,4]. The challenge
is to balance both forces properly and to ensure that the additional freedom does
not affect the robust convergence properties of the SSM.

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Another critical element when using deformable models is the question of
initialization: Although multi-resolution techniques provide a fairly large capture
range, the model still has to be roughly aligned and oriented to the structure of
interest so that the iterative search procedure can lock onto the target. Apart
from the obvious manual initialization, there have been several suggestions how
to estimate the target location automatically, e.g. by gray-value thresholding
and subsequent morphological operations [5]. While these estimates can work for
specialized cases, a more general solution is to conduct an initial global search:
In the early 90s, Hill et al. already used a genetic algorithm for this purpose [6],
but the method was later given up in favor of the iterative search of the Active
Shape Model (ASM). Recently, de Bruijne and Nielsen successfully employed
particle filtering for detecting 2D SSMs in radiographs [7]. We are not aware of
any former attempts to localize a 3D SSM by global search methods.

In this paper, we present a segmentation method that offers a solution for
both of the above presented shortcomings: A reliable initialization of the model
using a global search in a down-sampled version of the image, and a robust
deformable surface model with enough variability for an accurate segmentation.
As an example application, we will employ the case of liver segmentation in
abdominal CT datasets.

2 Statistical Model

The foundation of the proposed segmentation approach is a statistical model of
the structure of interest, as introduced by Cootes et al. in [1]. It is built from a
set of segmented training images and consists of two parts: A geometrical model
describing the shape and a local appearance model describing the boundary.

2.1 Geometrical Model

The geometrical model is represented by a point distribution model (PDM), i.e.
a dense collection of landmark points on the surface of the object. Each training
shape t is described by a single vector xt of concatenated landmark coordinates.
Averaging all vectors produces the mean shape x̄, and a principal component
analysis (PCA) on the covariance matrix yields the principal modes of variation
pm and the respective variances λm. Using a limited number of c parameters ym,
all valid shapes x can then be approximated by

x ∼= x̄ +
c∑

m=1

ympm (1)

A prerequisite for building a shape model is that all landmarks are situated
at corresponding locations on all training samples. A number of different meth-
ods of how to automatically establish the required correspondences in 3D have
been proposed in recent years, including registering mesh to mesh [8], volume to
volume [9] or mesh to volume [10]. In this work, we employ a population-based
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approach for finding correspondences which minimizes a cost function based on
the description length of the resulting shape model [11]. As proposed in [12], we
utilize continuous landmark resampling during optimization to achieve a homo-
geneous point distribution over the entire surface.

2.2 Local Appearance Model

To detect the modeled shape in new image data, an additional model of the local
gray-value appearance around the boundary is employed. A common method is
to sample profiles git perpendicular to the surface at each landmark i in all
training images t. Mean profiles ḡi and the modes of variation for each landmark
can then be determined using PCA. However, due to the essentially non-linear
profile distributions in many medical imaging tasks, this method may not be
optimal. In [13], an alternative approach to model local appearance based on
kNN-classifiers is proposed: In addition to the true profiles git, a number of
shifted profiles (i.e. translated towards the inside and outside of the object)
is sampled. During model search, the probability p(b|g) of a profile lying on
the boundary can then be estimated by querying the k nearest neighbors to g
and calculating the ratio of true profiles bk(g) among them. To prevent zero
probabilities, we use a moderated kNN-classifier [14] and define:

p(b|g) =
bk(g) + 1

k + 2
(2)

Obviously, the accuracy of the classifier improves with the quantity of data avail-
able. With a limited number of training images on-hand, clustering landmarks
to groups of similar appearance can help to raise the performance.

3 Model Initialization

In this work, we use an algorithm based on the concepts of evolutionary pro-
gramming [15] and evolution strategies [16] to initialize the shape model. Though
these two methods were developed independent from each other, they only differ
in details and share most of the important properties. Both are global search
algorithms maintaining a population of different solutions which evolve by fol-
lowing the ”survival of the fittest” rule: A higher fitness value, as determined
by an evaluation function, increases the probability that individual solutions are
mutated and reproduced. After several generations (i.e. iterations of the process),
the population converges to one or several local maxima (see also Fig. 1). The
basic procedure is:

Initialize population
Repeat
Evaluation of fitness
Selection by random sampling
Gaussian mutation

End
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Fig. 1. Shape population in an image after initialization (left) and after convergence
(right). All shapes are rendered as transparent solids, overlap increases the density
color-coded from light to dark. While the left population is spread widely and only
appears as a diffuse cloud, the right population is centered closely around the final
solution. Both images display 5000 individual shapes.

The main differences to genetic algorithms [17] that were employed for model
matching by Hill et al. [6] are the following: First, solutions do not have to be
encoded as bit-strings in artificial chromosomes but are stored as real-valued
vectors. Second, there is no cross-over operator for mutation (recombination)
and no bit-inversion: Instead, solutions are modified by adding a random vector
from a multivariate zero-mean Gaussian distribution.

3.1 Step by Step

One individual in our population represents one possible shape configuration,
consisting of a similarity transform and c shape parameters. For initialization,
all shape parameters ym are randomized according to their variance λm. The
pose parameters (translation, rotation, scale) are estimated from the respective
mean values of the training samples (using relative coordinates for location) and
are also randomized using a Gaussian distribution.

To evaluate the fitness ws of an individual shape s, the probabilities p(b|g)
from Eq. 2 are estimated for all landmarks i and multiplied:

ws = exp

(
v

n

∑

i

log pi(b|gi)

)
(3)

Here, n represents the number of landmarks and v is a constant determining the
speed of convergence. We use v = 5 for all experiments. The subtle difference
to the weighting function used by de Bruijne and Nielsen [7] for particle filter-
ing is that we use the posterior probabilities pi(b|gi) instead of the likelihoods
pi(gi|b). Thus, our fitness function directly expresses the statistical evidence for
the individual shape in the image.

The selection process is implemented using a random sampling in which each
individual s gets a chance of reproduction proportional to its fitness ws. Subse-
quently, all drawn individuals are mutated with the current standard deviation



A Shape-Guided Deformable Model 5

σt. For the next iteration t + 1, the standard deviation is reduced using σt+1 =
0.95σt. This corresponds to a reduction in step size of the optimizer and enables
us to use a relatively large σ0 to conduct an exhaustive search in the beginning
and still obtain a stable convergence towards the end. After a fixed number of
x iterations, we consider the optimization as converged. The individual reaching
the maximum fitness during the evolution is the final solution.

3.2 Landmark Reduction

In our segmentation scheme, the evolutionary algorithm is run to find a rough
initialization in a strongly down-sampled version of the image. For this purpose, a
simplified version of the SSM (i.e. with fewer landmarks) is equally suitable, but
considerably faster during the search. The process of choosing the best landmarks
for the reduced model is essentially a mesh simplification problem: While we prefer
to eliminate landmarks with poorly performing appearance models (details follow
in the next section), we have to assure that the reduced landmark set still covers
all parts of the surface. Consequently, we do not delete a landmark if the resulting
gap would be larger than a certain geodesic radius r, which is estimated by the
number of traversed edges in the SSM. For r = 1, this means there must exist at
least one ”surviving” landmark in the direct neighborhood of each deleted one.

3.3 Benchmarking Local Appearance Models

To compare the performance of different appearance models on a per-landmark
basis, we propose the following method: In all training images, the probability
p(b|g) is estimated at the true boundary position and at 2K positions shifted
along the respective normal vector. To simulate realistic search conditions and
to avoid testing on the actual training data, the true boundary position g0 is
randomized around each landmark i with a uniform distribution in the polygon
determined by the direct neighbors of i. In addition, the employed normal vectors
are randomized with a standard deviation of σ = 10 degrees. This way, a number
of R = 30 tests is run for each landmark in every image. The performance of
one test r is evaluated by a weighted sum of differences between the boundary
probability at the true position gr0 and the ones at shifted positions grk:

fir =

(
K∑

k=−K

|k|d (pi(b|gr0) − pi(b|grk))

)
/

(
K∑

k=−K

|k|d
)

(4)

where d determines the influence of the shifting distance (d = 1 in our case).
By averaging the results over all tests, a performance index fi ∈ [−1..1] is esti-
mated for each landmark. The obtained benchmark values are used for the mesh
simplification from Sect. 3.2.

4 Deformable Model

The deformable model used for the final segmentation is defined as a triangulated
mesh M = (V, E) with vertices p, q ∈ V and edges [p, q] ∈ E. M has the
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same topology as the statistical shape model, i.e. for each vertex p in the mesh,
there is a corresponding vertex p̃ in the SSM. The evolution of the deformable
model is controlled by the Lagrangian equation of motion: At every vertex pi, a
regularizing internal force Fint(pi) and a data-driven external force Fext(pi) are
applied. In the following, we will present the derivations for both internal and
external forces in detail.

4.1 Internal Forces

The internal forces should keep the shape of the deformable model similar to the
one of the underlying SSM. We define this similarity by evaluating differences in
edge lengths (also used by Weese et al. in [4]) and differences in angles between
neighboring faces. This approach is based on the concepts of tension and rigidity
which are also used to define the internal energy of a snake [2].

To implement the tension forces, every edge [p, q] is modeled as a linear spring
with the neutral length |p̃ − q̃|, which is the length of [p, q] in the template.
Consequently, the tension force on a vertex p in the direction towards q is:

FT (p, q) = α

(
1 − |p̃ − q̃|

|p − q|

)
(p − q) (5)

where α defines the strength of the tension force and is constant for all [p, q] ∈ E.
Thus, the total tension force for a vertex is the sum over the forces along all of
its edges:

FT (p) =
∑

[p,q]∈E

FT (p, q) (6)

For the description of rigidity forces, we use the following definitions: For every
edge [p1, p2] ∈ E, the adjacent triangles [p1, p2, q1] and [p2, p1, q2] form an angle
θ that strives towards the corresponding angle θ̃ in the SSM (see Fig. 2). We call
q1, q2 the outer vertices of [p1, p2]; both together form the set VO([p1, p2]). The
rigidity force for an outer vertex q ∈ VO([p1, p2]) is defined as

FR(q, [p1, p2]) = T (q, [p1, p2], βδ)) − q (7)

where T (q, [p1, p2], ϕ) is a rotation of point q around the edge [p1, p2] by ϕ de-
grees, and β is the strength of the rigidity force. To define δ for both outer
vertices, we have to consider the case of a constellation where the distance d1
between [p1, p2] and q1 is different from d2. To balance forces on both outer ver-
tices, the triangle with the shorter distance d has to rotate more than the other
one:

δ =
dop

d1 + d2

(
θ − θ̄

)
(8)

where dop is the distance from [p1, p2] to the opposing outer vertex (i.e. d2 when
calculating δ for q1 and vice versa). An important point to take care of is that
the internal forces may not alter the overall position of the deformable surface,
i.e. all internal forces must sum up to zero. Therefore, the forces on q1 and q2
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Fig. 2. Two adjacent triangles form the angle θ. Internal rigidity forces striving for a
larger angle directly affect the outer vertices q1 and q2 (large, curved arrows), but also
the edge vertices p1 and p2 to maintain the equilibrium of the constellation.

have to be neutralized. The neutralizing force acts equally on all four vertices of
a constellation and is defined as

FN ([p1, p2]) = −1
4
(FR(q1, [p1, p2]) + FR(q2, [p1, p2])) (9)

Overall, this results in a total rigidity force of

FR(p) =
∑

[p1,p2]∈E

⎧
⎪⎨

⎪⎩

FR(p, [p1, p2]) + FN ([p1, p2]) if p ∈ VO([p1, p2])
FN ([p1, p2]) if p = p1 ∨ p = p2

0 else
(10)

Finally, the internal force for a given vertex is the sum of tension and rigidity
force:

Fint(p) = FT (p) + FR(p) (11)

4.2 External Forces

The external forces drive the deformable surface towards the best fit to the data.
As in the Active Shape Model search [1], the goodness of fit is evaluated using
the local appearance models for all p ∈ V ; once at p itself and additional at K
positions on each side of the surface. This procedure leads to 2K + 1 probes for
each vertex, enumerated as k ∈ [−K..K]. Defining the optimum probe position
as s(p), a linear spring force drives the vertex in the corresponding direction:

Fext(p) = γ(s(p) − p) (12)

where γ is the strength of the external forces. Usually, s(p) is determined inde-
pendently for each vertex p by picking the maximum fitness value, a procedure
generating a considerable amount of outliers. Behiels et al. have shown that a
smoothness constraint on the allowable changes significantly increases the ro-
bustness of deformation in SSMs [18], albeit only for the 2D case. For 3D, no
efficient algorithm to adhere to such constraints was known until recently, when
Li et al. presented a graph-based approach to detect optimal surfaces [19]. In
the following section, we will briefly summarize this algorithm and show how it
integrates with our local appearance models.
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Fig. 3. Optimal surface detection for closed triangle meshes: On the left, a section of
the mesh is displayed; the different probe positions for each vertex are displayed by
a vertical line. The right side illustrates how two adjacent probe lines are represented
in the graph (here for K = 2 and Δ = 1). All edges have infinite weight, the dotted
connections are optional.

4.3 Optimal Surface Detection

To employ the optimal surface detection algorithm from [19], the first step is
to build a directed graph G = (N, D) from the mesh M and its surroundings:
For each vertex p ∈ V , 2K + 1 nodes (corresponding to the probe positions) are
inserted into the graph as n(p, k). These nodes are connected by directed edges
of infinite weight from n(p, k) to n(p, k − 1) for k > −K and form a so-called
column. Next, directed edges between neighboring columns col(p1) and col(p2)
are added from n(p1, k) to n(p2, max(−K, k − Δ), where Δ is the smoothness
constraint and specifies how many steps adjacent probes may shift against each
other during deformation. col(p1) and col(p2) count as adjacent if [p1, p2] ∈ E.
A simplified visualization of this graph structure is given in Fig. 3.

The next step is to assign a weight w(p, k) to each n(p, k) ∈ N . Assuming
that the costs for each probe are stored in c(p, k), weights are computed as

w(p, k) =

{
c(p, k) for k = −K

c(p, k) − c(p, k − 1) for k > −K
(13)

Since the algorithm finds the solution that minimizes the sum of costs, we have
to transform the probabilities p(b|g) from Eq. 2 accordingly. As in the weight
calculation for the evolutionary algorithm (3), we want to maximize the posterior
probability of the shape, i.e. the product of all boundary probabilities. Thus, we
define the costs as

c(p, k) = − log pp(b|gpk) (14)

Subsequently, an additional source node ns and a sink node nt are added
to the graph. All previously inserted nodes are connected to these two in the
following way: Every node with w(p, k) ≥ 0 is connected to nt by a directed
edge of weight w(p, k), and ns is connected to every node with w(p, k) < 0 by
a directed edge of weight −w(p, k). Employing an s-t cut algorithm like the one
presented in [20], the graph can now be divided into a source set S with ns ∈ S
and sink set T with nt ∈ T . The optimal displacements s(p) are given by the
largest k with n(p, k) ∈ S.
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Fig. 4. Reduced set of landmarks on the shape model of the liver (front and back
view): The performance fi of the local appearance models is color-coded over the entire
surface. The full set of landmarks is displayed using a triangular grid, the reduced set
is shown as small spheres. The maximum gap-radius r is 2. It is clearly visible how
landmarks evade the low-performance sections of the surface by grouping around them.

5 Experiments and Results

We chose the task of liver segmentation as an example to validate our approach:
An automatic segmentation of this organ without prior shape information is
prone to fail due to the low contrast to neighboring structures. However, the
large amount of anatomical variation makes it particularly challenging to model
and detect using classical SSMs.

5.1 Image Data and Model Generation

All used images are contrast-enhanced CT volumes of the abdomen with an in-
plane resolution of 512x512 pixels and 60 to 130 slices (spacing ∼0.7x0.7x3mm).
In most cases the anatomy is pathologic, i.e. interspersed with tumors. Addition-
ally, the data was acquired using different protocols, which should allow a reliable
prediction of the clinical performance of the presented segmentation scheme.

Out of 86 volumes, 32 were selected as training data for the statistical model,
which was built using 2562 equally distributed landmarks. The remaining 54
volumes were used for evaluation. Appearance models as described in Sect. 2.2
were generated for five different resolutions R0 (original resolution) to R4 (four
times down-sampled), featuring a profile-length of 7 pixels and a pixel-spacing
of 1mm in R0. The k-Means algorithm [21] was employed to group all landmarks
into 22–42 clusters (depending on the resolution) and to improve the accuracy
of the kNN-classifiers. After that, the performance of the appearance models
for the lowest resolution R4 was benchmarked with the method from Sect. 3.3.
The obtained results were used to create a reduced set of 204 landmarks for the
evolutionary algorithm (see Fig. 4).

5.2 Segmentation Workflow and Parameter Values

The segmentation of one image consisted of three major steps: To find the ini-
tial position and shape parameters of the SSM, the evolutionary algorithm was
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Table 1. Parameter values used in the different phases of the deformable model seg-
mentation: Convergence criteria are either the maximum vertex movement per iteration
dmax or the number of iterations I

Resolution Convergence criterion α β γ Δ

3 dmax < 0.3mm 0.125 0.25 0.01 1

2 dmax < 0.4mm 0.125 0.25 0.02 2

2 dmax < 1.0mm 0.125 0.25 0.05 2

2 I = 50 0.125 0.25 0.10 2

1 I = 50 0.125 0.25 0.10 2

0 I = 20 0.125 0.25 0.10 2

run with a population of 1000 individuals over 40 iterations. Fitness was eval-
uated on the 204 reduced landmarks in R4. The initial standard deviation for
mutation σ0 was set to 0.4, resulting in a final σ40 around 0.05. After that, a
normal ASM search (i.e. without allowing extra deformation) was conducted to
improve the solution if possible. It was first run in R4 until the maximum vertex
movement Dmax was less than 4mm, then in R3 until Dmax < 2mm. Finally,
the deformable model search was started in R3 down to R0. As in the previous
steps, the underlying SSM used 10 modes of variation. To improve the runtime
of the algorithm, the external forces were updated every 10 iterations. For an
overview over the used parameter values, see Table 1.

5.3 Results

All 54 generated segmentations were compared to manual delineations by radio-
logical experts using three different error metrics: Symmetric average surface dis-
tance Davg, symmetric RMS surface distance DRMS and volumetric error VD. VD

is based on the Dice coefficient and is calculated as VD = 1−(2·|A∩B|)/(|A|+|B|)
for two sets of voxels A and B. The results achieved by the presented deformable
model, a standard ASM search with 30 modes of variation after manual initial-
ization and two other approaches from literature are summarized in Table 2. The
three worst segmentations (VD>10% for the deformable model) were treated as
outliers and omitted from the statistics. For a visual performance assessment,
the image featuring the median average surface distance is displayed in Fig. 5.
The computation time on a 3GHz desktop PC is approximately 10 minutes per
image, of which the automatic initialization requires the major part of 6 minutes.

6 Conclusion

We have presented an automated segmentation procedure combining techniques
from statistical shape models and deformable surfaces. Main contributions are
the initialization of a 3D SSM using an evolutionary algorithm on a simplified
model and a robust deformation scheme by means of a constrained optimal
surface detection. Fitting costs for both searches are estimated by the posterior
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Table 2. Segmentation error in comparison with a standard ASM and numbers from
previous work (customized ASM [22] and deformable simplex mesh [5]), given as μ ±σ

Segmentation method Davg[mm] DRMS [mm] VD[%]

Deformable model 1.6 ± 0.5 3.3 ± 1.2 5.1 ± 1.4

Active Shape Model 2.9 ± 1.1 5.2 ± 2.3 8.9 ± 2.4

Lamecker et al. [22] 2.3 ± 0.3 3.1 ± 0.5 7.0 ± 1.8

Soler et al. [5] 2±? n.a. n.a.

Fig. 5. Transversal, sagittal and coronal slices for the image with median average
surface error. The result of the deformable model is displayed in white, the manually
traced reference contour in dark gray.

probability for the model given the data. The obtained results on liver CT images
are excellent and encourage us to employ the approach for other soft tissue
objects in the near future.
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Shape Regression Machine
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Abstract. We present a machine learning approach called shape regres-
sion machine (SRM) to segmenting in real time an anatomic structure
that manifests a deformable shape in a medical image. Traditional shape
segmentation methods rely on various assumptions. For instance, the de-
formable model assumes that edge defines the shape; the Mumford-Shah
variational method assumes that the regions inside/outside the (closed)
contour are homogenous in intensity; and the active appearance model
assumes that shape/appearance variations are linear. In addition, they
all need a good initialization. In contrast, SRM poses no such restrictions.
It is a two-stage approach that leverages (a) the underlying medical con-
text that defines the anatomic structure and (b) an annotated database
that exemplifies the shape and appearance variations of the anatomy. In
the first stage, it solves the initialization problem as object detection and
derives a regression solution that needs just one scan in principle. In the
second stage, it learns a nonlinear regressor that predicts the nonrigid
shape from image appearance. We also propose a boosting regression
approach that supports real time segmentation. We demonstrate the ef-
fectiveness of SRM using experiments on segmenting the left ventricle
endocardium from an echocardiogram of an apical four chamber view.

1 Introduction

Deformable shape segmentation is a long-standing challenge in medical imaging.
Numerous algorithms have been proposed in the literature to tackle the problem,
among which there are three important approaches: the deformable model or
snake [1], the Mumford-Shah variational method [2], and the active appearance
model (AAM) [3].

The deformable model or snake [1] seeks a parameterized curve C(s) that
minimizes the cost function Esnake(C):

Esnake(C) =
∫ 1

0
{−μ|∇I(C(s))|2 + w1(s)|C′(s)|2 + w2(s)|C′′(s)|2}ds, (1)

where μ controls the magnitude of the potential, ∇ is the gradient operator,
I is the image, w1(s) controls the tension of the curve, and w2(s) controls the
rigidity of the curve. The implicit assumption of the snake model is that edge
defines the curve due to the use of the gradient operator.

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 13–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Examples of A4C echocardiogram. The expert annotation of the LV endo-
cardium is marked by the green line. The shape is represented by 17 landmarks and
the cubic spline is used for intepolation.

In the Mumford-Shah variational method [2], the minimal partition problem
is mostly studied, where a curve C is sought to minimize the cost function Ems(C):

Ems(C) =
∫

Ωi

|I(x, y) − ui|2dxdy +
∫

Ωo

|I(x, y) − uo|2dxdy + μL(C), (2)

where Ωi and Ωo denote the inside and outside regions, respectively, with respect
to the curve C, ui and uo are piecewise constants for the two regions, and L(C)
is the length of the curve. The region homogeneity is assumed here.

The AAM [3] jointly characterizes the appearance I and shape C using a linear
generative model:

C = C̄ + Qca; I = Ī + Qia, (3)

where C̄ is the mean shape, Ī the mean appearance in a normalized patch, and a
is the blending coefficient vector shared by both the shape and appearance. The
model parameter a, along with a similarity transformation parameter, is found
by fitting the AAM to the observed image using the mean square error criterion.

However, the above assumptions are easily violated in practice. Consider the
problem of segmenting the left ventricle (LV) endocardium from an echocardio-
gram of an apical four chamber (A4C) view. The echocardiogram is an ultra-
sound image of human heart and the A4C view is a canonical view in which
all four heart chambers are visible. Fig. 1 presents several A4C examples that
manifest the following facts: (i) The LV endocardium is not defined by the edge.
For example, it cuts the papillary muscle attached to the LV; (ii) The region
homogeneity is severely violated due to ultrasound imaging artifacts and signal
dropouts; and (iii) The shape and appearance variations are hardly linear due
to differences in instrument, patient, and sonograher, respiratory interferences,
unnecessary probe movements, etc. Furthermore, the above three methods need
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a good initialization and different initializations might yield very different results
due to the attraction of local minima.

In this paper, we present a machine learning approach called shape regres-
sion machine (SRM), which poses none of the above restrictions. It deals with
deformable contour not necessarily supported by the edge, allows region inho-
mogeneity, and utilizes nonlinear models to characterize shape and appearance
in a discriminative manner. In addition, it is fully automatic with no manual
initialization and runs in real time. SRM is mostly appropriate for segmenting
an anatomical structure. The core of SRM is to effectively leverage the underly-
ing structural context present in medical images and, using regression, to extract
knowledge from an annotated database that exemplifies the shape and appear-
ance variations. Section 2 depicts the principle of the SRM approach and section
3 elaborates an image-based boosting regression method that underpins SRM.
Section 4 presents the experimental results of segmenting the LV endocardium
from the A4C echocardiogram.

2 Shape Regression Machine

The shape C is represented by two parts: rigid and nonrigid. The rigid transfor-
mation is parameterized by θ and the nonrigid part by S. If the rigid similarity
transformation is used, then the above shape representation reduces to Kendall’s
interpretation. To rigidly align the LV shape in the A4C echocardiogram more
accurately, we use a 5D-parameterization θ = (tx, ty, log(sx), log(sy), α), with
(tx, ty) for translation, α for orientation, and (sx, sy) for scale (or size) in both
x- and y-directions. Due to the multiplicative nature of the scale parameter, we
take the logarithm operator to convert it to additive. Fig. 2(a) illustrates the
meaning of the five parameters.

SRM is a two-stage approach. It first solves the rigid transformation θ as
object detection and then infers the nonrigid part S, both using the machine
learning technique of regression.

2.1 Regression-Based Object Detection

A promising approach to medical anatomy detection is to use the classifier-based
object detection approach like [4]: It first trains a binary classifier, discriminating
the anatomic structure of interest from the background, and then exhaustively
scans the query image for anatomy targets. In [4], the so-called integral image is
proposed to enable real time evaluation of the classifier when applied for search-
ing the translation parameter exhaustively and the scale parameter sparsely. No
orientation is scanned. However, the medical anatomy such as LV often mani-
fests arbitrary orientation and scale. To give an accurate account of orientation
and scale, which is required for subsequent tasks like LV endocardial wall seg-
mentation, the detection speed is sacrificed if a dense set of orientations and
scales is tested. In general, the computational complexity of the classifier-based
approach linearly depends on the image size (for the translation parameter), and
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the number of tested orientations and scales. Also, multiple integral images ac-
cording to different rotations need to be computed. Therefore, the bottleneck of
the classifier-based detection approach lies in its exhaustive scanning native. To
avoid exhaustive scanning, we propose a regression-based detection approach.
By leveraging the anatomical structure that manifests regularization and con-
text in geometry and appearance, we formulate a novel regression task that, in
theory, necessitates only one scan. Also, we compute only one integral image.

Basic idea. Fig. 2(b) demonstrates the basic idea of the regression-based med-
ical anatomy detection. For illustrative purpose only, we address only the trans-
lation parameter θ as in Fig. 2(b). In other words, we are only interested in
finding the center position θ0 = (tx,0, ty,0) of the LV in an A4C echocardiogram,
assuming that the orientation of the LV is upright and the scale/size of the LV
is fixed. It is straightforward to extend the 2D case to the 5D-parameterization.

(a) (b)

Fig. 2. (a) The regression setting of a 5D parameter space: (tx, ty) is the LV center,
(sx, sy) the LV size, and α the LV angle. (b) A graphical illustration of regression-based
medical anatomy detection based on a 2D translation parameterization.

Suppose that, during running time, we confront an image patch I(θ) centered
at position θ = (tx, ty). If there exists an oracle F1 that does the following: given
an image patch I(θ), it tells the difference vector dθ between the current position
θ and the target position θ0 = (tx,0, ty,0), i.e., dθ = θ0 − θ, then we achieve the
detection using just one scan. In other words, through the oracle that defines a
mapping F1 : I → dθ, the ground truth position θ̂0 is estimated as follows.

dθ = F1(I(θ)), θ̂0 = θ + dθ = θ + F1(I(θ)). (4)
Learning the function F1(I(θ)) is referred to as regression in machine learning.

Does such an oracle F1 exist? Since the anatomic structure of interest is tied
with human body atlas, there is a known number of objects appearing within
geometric and appearance contexts. Often only one object is available. For ex-
ample, in the A4C echocardiogram, there is only one target LV available and its
relation with respect to other structures such as left atrium, right ventricle and
right atrium is geometrically fixed (that is why they are called left/right ven-
tricle/atrium). Also there exists a strong correlation among their appearances.
By knowing where the LA, RV, or RA is, we can predict the LV position quite
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accurately. In principle, by knowing where we are (i.e., knowing θ) and then
looking up the map/atlas that tells the difference to the target (i.e., telling dθ
through the oracle), we can reach the target instantaneously in a virtual world.

Medical atlas is widely used in the literature [5,6]. However, the methods in
[5,6] use the atlas as an explicit source of prior knowledge about the location,
size, and shape of the anatomic structures and deform it to match the image
content for registration, segmentation, tracking, etc. In this paper, we take an
implicit approach, that is, embedding the atlas in a learning framework. After
learning, the atlas knowledge is fully absorbed and the atlas is no longed kept.

How to learn the oracle F1? We leverage machine learning techniques, based
on an annotated database. As in Fig. 3, we first collect from the database input-
output pairs (as many as possible) as training data. By varying the location, we
crop out different local image patches while recording their corresponding differ-
ence vectors. Similarly, for the 5D parameterization, we can extract the training
data. We now confront a multiple regression setting with a multidimensional
output, which is not well addressed in the machine learning literature. In this
paper, we propose the image-based boosting regression (IBR) algorithm to fulfill
the learning task.

(-15,-12) (-3,-8) (-4,-6) (-5,-17)

(-7,-21) (15,16) (15,-6) (17,6)

Fig. 3. Training image examples (generated based on the image in Fig. 2(b)): image I
and its associated rigid transformation parameter dθ = (dx, dy)

Detection algorithm. In theory, only one scan is needed to find the target;
in practice, we conduct a sparse set of random scans and then estimate the
parameter using fusion. Suppose that in total M random samples are scanned
at positions {θ<1>, θ<2>, . . . , θ<M>}. For each θ<m>, we invoke the regressor to
predict the difference parameter dθ<m> and, subsequently, the target parameter
θ<m>
0 as follows:

dθ<m> = F1(I(θ<m>)), θ<m>
0 = θ<m> + dθ<m>, m = 1, 2, . . . , M. (5)

We also learn a binary classifier (or detector) D that separates the object from
the background and use its posterior probability pd(I) of being positive as a
confidence scorer. After finding the mth prediction θ<m>

0 , we apply the detector
D to the image patch I(θ<m>

0 ). If the detector D fails, we discard the mth sample;
otherwise, we keep the confidence score p<m>

d . This way, we have a weighted set
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Fig. 4. The odd-indexed images show the 100 predicted target outputs (red) and the
even-indexed images show only the predicted target outputs (red) passing the detector.
The green point is the final estimate of the target position, the green curve is the 95%
confidence curve, and the yellow point indicates the ground truth position. Note that
the region bounded the 95% confidence curve on the even-indexed images is significantly
smaller than that on the odd-indexed images.

{(θ<j>
0 , p<j>

d ); j = 1, 2, . . . , J} (note that J ≤ M as samples might be dropped),
based on which we calculate the weighted mean as the final estimate θ̂0

θ̂0 = {
∑

j=1:J

p<j>
d θ<j>

0 }/{
∑

j=1:J

p<j>
d }. (6)

In practice, we stop scanning when J ≥ Jvalid in order to further save compu-
tation. If there is no sample θ<m>

0 passing D, then we use the unweighted mean
of θ<m>

0 as the final estimate.
Combining the regressor and binary detector yields an effective tool for med-

ical anatomy detection; empirical evidence tells that, when compared with the
method using only the regressor, it needs only a smaller number of scans to reach
a better performance. Fig. 4 demonstrates the intuition behind this improvement
using the 2-D translational case. Two example images are shown along with their
M = 100 predicted target positions (the red points). The majority of the predic-
tion is close to the ground truth position (the yellow point) although there are
outliers. Fig. 4 also shows the predicted points passing the detector: All the out-
liers are eliminated, thereby significantly improving the precision of the estimate
as evidenced by the smaller region bounded by the 95% confidence curve.

2.2 Regression-Based Nonrigid Shape Inference

After the first stage that finds the bounding box (parameterized by θ) to contain
the object, we have the object rigidly aligned. In the second stage, we are inter-
ested in inferring the nonrigid part S. In this paper, we assume that S consists of
N landmark points, i.e., S = [x1, y1, . . . , xN , yN ]T. Other shape representations
can be used with no difficulty.

Basic idea. We formulate the nonrigid shape inference again as a regression
problem. In other words, we seek an oracle F2 that tells the shape S based on
the image patch I that is known to contain the object.

S = F2(I). (7)

Does such an oracle F2 exist? Because we deal with one particular anatomic
structure (say LV), it is obvious that a regularity exists in terms of its appearance
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Fig. 5. Training image examples: image I and its associated nonrigid shape S. The first
six images correspond to those in Fig. 1. The image size is 104 by 80.

and shape although the variations in them can be quite significant. Fig. 5 displays
several images with corresponding shapes that are rigidly aligned to the mean
shape. As mentioned earlier, a linear modeling of the appearance and shape is
insufficient. One goal of the paper is to provide a nonlinear modeling of the shape
and appearance.

How to learn the oracle F2? Given an annotated database, we extract corre-
sponding pairs of (already rigidly aligned) shape and appearance as in Fig. 5. We
also slightly perturb the rigid parameter to accommodate imperfect localization
derived from the first stage. We now again confront a multiple regression setting
with a multidimensional output, except that this time the output cardinality is
even higher.

Inference algorithm. To improve robustness, we slightly perturb the bound-
ing box1 to generate K random samples {I<1>, I<2>, . . . , I<K>} and apply
the regressor to obtain shape estimates {S<1>, S<2>, . . . , S<K>}, where S<k> =
F2(I<k>). We also build a nonparametric density ps(S) based on the prior shape
examples and use it as a confidence scorer. Finally, we output the weighted mean
as the final estimate Ŝ for the shape parameter (we empirically choose K = 10):

Ŝ = {
∑

k=1:K

p<k>
s S<k>}/{

∑

k=1:K

p<k>
s }. (8)

3 Image-Based Boosting Regression

The underpinning of the above two stages of SRM is a regression procedure that
takes an image as input and outputs a multidimensional variable. In this section,
we invoke the influential boosting framework [7,8] to derive a novel regression
algorithm called image-based boosting regression (IBR).

We denote a scalar by a, a column vector by a, and a matrix by A. We also
denote the input by x ∈ Rd, the output by y(x) ∈ Rq , the regression function
by g(x) : Rd → Rq and the training data points by {(xn, yn); n = 1, 2, ..., N}.

1 The perturbation is limited to translation and scaling as they share one integral
image. There is no perturbation in rotation.



20 S.K. Zhou and D. Comaniciu

Further, we denote xTx = ‖x‖2 and tr(XTX) = ‖X‖2. In SRM, x is the image I,
y is the difference vector dθ in the first stage and the nonrigid shape parameter
S in the second stage, and the regression function g(x) = F(I) is the oracle.

IBR minimizes the following cost function, which combines a regression output
fidelity term and a regularization term:

J(g) =
∑

n=1:N

{‖y(xn) − g(xn)‖2} + λR(g), (9)

where λ is a regularization coefficient and R(g) is the regularization term that
will be subsequently defined. As in any boosting procedure [7,8], IBR assumes
that the regression output function g(x) takes an additive form:

gt(x) = gt−1(x) + ht(x) =
∑

i=1:t

hi(x), (10)

where each hi(x) : Rd → Rq is a weak learner (or weak function) residing in a
dictionary set H, and g(x) is a strong learner (or strong function).

Boosting [7,8] is an iterative algorithm that leverages the additive nature of
g(x): At iteration t, one more weak function ht(x) is added to the target function
g(x) to maximally reduce the cost function. Because we associate each weak
function with visual features (as shown next), boosting operates as a feature
selector that singles out relevant features to the regression task.

Weak function. We use a bank of over-complete features to represent the image
x. In particular, we use the Haar-like local rectangle features [4], whose rapid
evaluation is enabled by the use of integral image. As shown in [4], (i) it is easy to
construct numerous local rectangle features and (ii) the local rectangle feature,
whose response is normalized by the standard deviation of the image patch, is
relatively robust to appearance variation. Each local rectangle feature f(x; μ)
has its own attribute μ, namely feature type and window position/size.

Based on the local rectangle features, we construct one-dimensional (1D) re-
gression stumps as primitives of the dictionary set H. A regression stump h(x; μ),
illustrated in Fig. 6(a), is defined as

h(x; μ) =
∑

k=1:K

wk [f(x; μ) ∈ Rk] = e(x; μ)Tw, (11)

where [.] is an indicator function and {Rk; k = 1, 2 . . . , K} are K evenly spaced
intervals (except that R1 and RK go to ∞). The interval boundary points are
empirically determined. We first find the minimum and maximum responses for
the feature and then uniformly divide them. In (11), all the weights wk are
compactly encoded by a vector wK×1 = [w1, w2, . . . , wK ]T and the vector e(x; μ)
is some column of the identity matrix: only one element is 1 and others are 0.

A weak function is constructed as a q-dimensional (q-D) regression stump
h(x)q×1 that stacks q different 1D regression stumps, i.e.,

h(x; μ1, . . . , μq) = [h1(x; μ1), ..., hq(x; μq)]T = [e1(x; μ1)Tw1, ..., eq(x; μq)Twq]T,
(12)
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(a)

(b)

1. Initialization t = 0.
(a) Set λ (the regularization coefficient) and η (the

shrinkage factor).
(b) Set the values related to the stopping criteria:

Tmax (the maximum number of iterations) and
Jmin (the minimum cost function).

(c) Set initial values for t = 0: g0(x) = 0 and r0(x) =
y(x).

2. Iteration t = 1, . . . , Tmax

(a) Find the optimal ĥt that solves (13).
(b) Form the new function gt(x) = gt−1(x) + ηĥt(x).
(c) Evaluate the approximation error rt(x) = y(x) −

gt(x) and the cost function J(gt).
(d) Check convergence, e.g., see if J(gt) < Jmin.

(c)

Fig. 6. (a) Regression stump. (b) Binary decision stump. The regression stump carries
more representational power than the decision stump. (c) The proposed image-based
boosting regression (IBR) algorithm.

where wj is the weight vector for the jth regression stump hj(x; μj). We fur-
ther encode the weights belonging to all regression stumps into a weight matrix
WK×q = [w1, w2, . . . , wq]. A binary decision stump is used in [4]. Fig. 6(a,b) com-
pares the regression and binary decision stumps.

Boosting ridge regression. The model complexity of the regression out-
put function gt(x)=

∑
i=1:t hi(x) now depends on its weight matrices {Wi, i =

1, . . . , t}. We incorporate the ridge regression principle [9] (also known as
Tikhonov regularization) into a boosting framework to penalize overly complex
models. Because boosting regression proceeds iteratively, at the tth boosting iter-
ation, we set up the following ridge regression task that only involves the weight
matrix Wt:

argmin
Wt

{Jt(g) =
∑

n=1:N

{‖rt(xn) − ht(xn)‖2} + λ‖Wt‖2}, (13)

where rt(xn) = y(xn) − gt−1(xn) is the residual.
As the weight vectors {w1, w2, . . . , wq} in the matrix Wt are associated with q

different local rectangle features, the optimization in (13) implies two subtasks:

1. Given a set of q features with attributes μ1, . . . , μq, respectively, find the
optimal matrix Ŵt(μ1, . . . , μq) and its minimum cost Ĵt(μ1, . . . , μq);

2. Find the optimal set of q features with respective attributes μ̂1, . . . , μ̂q that
minimizes the cost Ĵt(μ1, . . . , μq). This corresponds to feature selection.

However, to transform the above optimization into an efficient implementa-
tion, there is a computational bottleneck: The second subtask necessitates a
greedy feature selection scheme, which is too expensive to evaluate given a large
local rectangle feature pool. In practice, approximate non-greedy solutions [10]
can be derived to speedup the feature selection process; however, this is beyond
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the scope of the paper. Finally, IBR invokes shrinkage [9] to derive a smooth
output: gt(x) = gt−1(x) + ηht(x). Fig. 6(c) summarizes the IBR algorithm.

4 Experimental Results and Discussions

We applied the SRM approach to segmenting the LV endocardium from 2D
echocardiograms. We had in total 527 A4C sequences. Though we had video
sequences, we focused on detecting the LV at the end of diastole (ED) frame,
when the LV dilates to its maximum. We randomly selected 450 ED frames for
training and used the remaining 77 for testing.

4.1 Rigid Object Detection

In this experiment, we tested the first stage of SRM to detect the LV using
the 5-D parameterization. Figure 1 shows six ED images with the unaligned LV
present. The range of the five parameters is empirically found as: tx ∼ [43, 118],
ty ∼ [24, 70], sx ∼ [26, 86], sy ∼ [37, 92] and α ∼ [−25, 35]. We scanned the
image following the above range. The average image size is 111 × 151.

There are several tuning parameters in the IBR algorithm. For the number
of threshold levels K of a weak function, the regularization coefficient λ and the
shrinkage coefficient η, we empirically tested different combinations and decided
to use the following: K = 64, λ = 0.1/K, and η = 0.1. We trained the regressor
based on 450 randomly selected ED frames, each yielding 30 image patches; in
total we had 13,500 training data. It takes more than two days to train the
regressor (on a high-end workstation with four Xeon 3GHz CPUs and 3GB
RAM), which consists of 10,000 local rectangle features or 200 weak functions.
Training the detector D is not straightforward because here the image rotation
is involved. To avoid computing integral images for all rotations, we followed [11]
to train the detector, which is able to simultaneously classify the object as well
as infer its rotation yet using only one integral image.

We implemented three scanning methods: “IBR”, “IBR+Det”, and “Det”.
The “IBR” means that we randomly scanned the image within the prior range
using the learned IBR function and used the unweighted average as the final
estimate of the target position. The “IBR+Det” means that we further equipped
the “IBR” method with the trained detector and used (6) as the final estimate.
We also set Jvalid = 10 to enable early exit when scanning. The “Det” means that
we exhaustively scanned the image within the same range using the detector and
used the parameter that maximizes the detector response as the final estimate.
For the “Det” method, we exhaustively scanned the image every 4 pixels in both
translations and every 4 pixels in both scales.

Table 1(a) compares the three scanning methods2. The error in scale is mea-
sured as sdetected/sgroundtruth − 1. Because we did not observe significant per-
formance difference between training and testing, we pooled them together and
2 To count the number of effective scans in Table 1, we excluded those scans if their

associated image patches have less than 40% of their pixels inside the known fan.
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Table 1. (a) Detection performance comparison of the three methods for the 5-
parameter case. (b) Segmentation performance comparison of four regression methods.

Method IBR IBR+Det Det
# of features 10000 10000+1201 1201
median err. in tx (pixels) 0.32 ± 3.13 0.65 ± 2.07 1.69 ± 3.40
median err. in ty (pixels) 0.67 ± 2.40 1.25 ± 1.95 0.84 ± 3.73
median err. in sx 0.02 ± 0.12 0.04 ± 0.12 0.05 ± 0.17
median err. in sy 0.01 ± 0.08 0.02 ± 0.08 0.04 ± 0.15
median err. in α (degree) −1.76 ± 7.17 −0.98 ± 6.39 0.22 ± 6.74
# of eff. scans 200 38 29383
avg. speed (ms) 704 118 6300

(a)

Method SRM KRR NPR AAM
25% seg. err. (pixels) 1.778 1.695 2.013 2.323
median seg. err. (pixels) 2.207 2.372 2.482 2.734
75% seg. err. (pixels) 2.753 3.347 3.101 4.002
avg. speed (ms) ≤ 1 692 865 30

(b)

jointly reported the results. The speed was recorded on a laptop with a Pentium
2.1GHz CPU and 2GB RAM. The “IBR+Det” achieves appealing detection
performance while running the fastest. It runs about 7 times faster than the
“IBR” method and more than 50 times faster than the “Det” method, while
yielding comparable performance to the “IBR” in terms of bias and improving
the localization precision. The slowest “Det” method does not always yield the
best performance in terms of either bias or variance because it does not exhaust
all possible configurations. Fig. 7(a) shows example images with estimated and
ground truth boxes overlaid.

4.2 Nonrigid Shape Inference

In this experiment, we invoked the complete SRM approach to automatically
delineate the LV endocardium. The above “IBR+Det” algorithm was first used
to locate the LV and then the second stage of SRM was applied. The shape S is
parameterized by 17 landmark points and PCA was used to reduced the shape
dimensionality from 34 to 20. Through random perturbations, we generated
6,750 training data points (one data point is a pair of image and shape) based
on 450 ED frames and trained an IBR model consisting of 20,000 local rectangle
features or 1,000 weak functions.

For comparison, we implemented three other regression methods: “KRR”,
“NPR”, and “AAM” where kernel rigid regression (KRR) and nonparametric
kernel regression (NPR) are two off-the-shelf nonlinear regression methods [9],
and AAM is from [3]. In AAM, the appearance and shape are assumed to be
jointly Gaussian, which amounts to multiple linear regression [9]. The num-
ber of principal components was chosen to keep 95% of the energy in AAM.
When comparing different nonrigid shape regressors, we fixed the detection
part.

To quantify the shape segmentation performance, we measured the average
pixel error for the landmark points:

√
||C1 − C2||2/34. We did this measurement

on the aligned domain of size 104 by 80 to overcome the difference in physical
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(a)

(b)

Fig. 7. (a) The estimated LV box versus the ground truth. The red box is from the
“IBR” method, the green is from the “IBR+Det” method, and the blue is the ground
truth. (b) The inferred LV endocardium versus the ground truth. The red contour is
from the SRM approach and the green is the ground truth.

units of difference images. Table 1(b) shows the error statistics and computa-
tional time (only for the regression part though). We collected the error statistics
for all testing images and reported their 25% percentile, median, and 75% per-
centile. From Table 1(b), we observe that the proposed SRM approach achieves
favorable contour localization performance over other methods while running sig-
nificantly faster. The AAM method that uses linear models performs the worst,
implying the need for nonlinear modeling of the appearance and shape. The
KRR and NPR methods are slow because they require comparing the query im-
age with the whole database, while the IBR absorbs the database knowledge into
the weak functions whose rapid evaluation is guaranteed by using the integral
image. In sum, it takes less than 120ms on the average to automatically localize
the LV endocardium in an A4C echocardiogram with a better accuracy. Fig. 7(b)
visualizes the ground truth and predicted contours.
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5 Conclusion

We have presented a machine learning approach called shape regression machine
for fast medical anatomy detection and segmentation. SRM effectively utilizes
the structural context in medical images with annotations to eliminate unfavor-
able restrictions posed by conventional deformable shape segmentation methods.
In particular, the detection solution in SRM replaces the exhaustive scanning of
the query image required by the classifier-based detector by a sparse scanning
and reaches improved detection accuracy with significantly less computation and
no need for image rotation. In terms of shape inference, the IBR solution in SRM
outperforms other regression methods such as kernel ridge regression, nonpara-
metric kernel regression, and active appearance model. In the future, we will
apply the SRM approach to other medical applications such as organ segmen-
tation from a full body 3D CT scan. We will also address the scalability and
trainability issues related to learning the regression function.
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Abstract. We describe a new approach for estimating the posterior probabil-
ity of tissue labels. Conventional likelihood models are combined with a curve
length prior on boundaries, and an approximate posterior distribution on labels is
sought via the Mean Field approach. Optimizing the resulting estimator by gra-
dient descent leads to a level set style algorithm where the level set functions are
the logarithm-of-odds encoding of the posterior label probabilities in an uncon-
strained linear vector space. Applications with more than two labels are easily
accommodated. The label assignment is accomplished by the Maximum A Poste-
riori rule, so there are no problems of “overlap” or “vacuum”. We test the method
on synthetic images with additive noise. In addition, we segment a magnetic res-
onance scan into the major brain compartments and subcortical structures.

1 Introduction

Many clinical researchers rely on automatic segmentation techniques to analyze med-
ical images [1]. Popular approaches for this task are curve evolution methods, which
evolve the boundary of an object coupling image data with smoothness constraints of a
zero-level set [2,3,4,5,6,7,8,9]. Some of these methods evolve multiple zero-level sets
but they usually do not provide a simple interpretation for overlapping curves. We ad-
dress this issue by using an alternative representation called LogOdds that views the
entire level set function as a representation of posterior probabilities of label maps.

We derive the corresponding curve evolution framework, called Active Mean Fields
(AMF), by revisiting the Mean Field approximation; a method frequently used in med-
ical imaging for estimating the posterior probabilities of label maps [10,11]. When esti-
mating the solution to the Markov Random field model [12], simplifications result from
approximating some random field variables by their mean value. Similar to other ap-
proximations of Markov Random field models [13,14,15] the methods by [10,11] lack
the notion of objects’ boundaries – this often leads to fragmented label maps. We ad-
dress this issue by incorporating a curve length prior into the Mean Field model. This
results in the AMF algorithm, which approximates the solution via a level set frame-
work in the LogOdds space.
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The contributions of this paper are three-fold. First, we derive a new level set rep-
resentation based on multinomial Logarithm-of-Odds (LogOdds). For the probability p
of a binary variable, the LogOdds (also called logit) is the logarithm of the ratio be-
tween the probability p and its complement 1 − p. As a generalization of [16], here
LogOdds defines a vector space structure that relates the evolution of multiple curves in
the level set formulation to space conditioned probabilities. An advantage of this new
representation is that it replaces the potentially ambiguous interpretation of overlapping
zero-level sets with a simpler Maximum A Posteriori (MAP) Probability criteria.

Second, we compute the Mean Field solution of the posterior probabilities of label
maps via a level set formulation. We do so by projecting the probabilities into the vector
space of LogOdds maps and determining the solution via gradient descent. This, com-
bined with our choice of prior model, results in a curve evolution algorithm coupling
the curve shortening prior from the level set model with the posterior probabilities tradi-
tionally associated with the Mean Field approximation. The resulting curve evolution,
called AMF, not only updates the zero-level set but also evolves the entire family of
curves, as it is common in the level set community, which now correspond to levels of
the posterior probabilities of labels.

Third, to the best of our knowledge, this is the first time for a level set framework to
simultaneously segment 3D MR images into the three major brain compartments and
subcortical structures. As we show in our example, if AMF is initialized by a noisy
automatic segmentation [17] it can improve the 3D segmentations by removing outliers
and islands that violate the smoothness constrains of the prior model.

This paper is organized as follows. In Section 2, we provide the mathematical defin-
ition of LogOdds, as well as their relationship with discrete probabilities. In Section 3,
we derive the AMF which approximates the Mean Field solution via a level set frame-
work. In Section 4, we apply AMF to synthetic and medical images.

2 Multinomial LogOdds

In this section, we generalize the binomial LogOdds representation discussed in [16] to
discrete distributions, which we call multinomial LogOdds. We show that the LogOdds
space has a one-to-one mapping to the space of discrete probabilities and defines a
vector space. These two properties are very important for the derivations in Section 3
where we determine an approximation for the Mean Field solution via gradient descent.

LogOdds are an example of a class of functions that map the space of discrete dis-
tributions [18] to the Euclidean space. Let PM be the open probability simplex for M
labels PM =

{
p |p = (p1, . . . , pM−1,1 − ∑i=1,...,M−1 pi) ∈ (0,1)M

}
. Note that PM is an

M-1 dimensional space as the Mth entry is defined by the first M-1 entries. Furthermore,
the space is open avoiding distributions that are certain about the assignment. For the
specific case of M = 2, P2 = {(p,1 − p)|p ∈ (0,1)} is the Bernoulli distribution [19].
Many binary classification problems use the Bernoulli distribution where p represents
the probability that a voxel belongs to a particular anatomical structure and its comple-
ment p̄ = 1 − p represents the probability of the voxel being in the background.

The multinomial LogOdds function logit(·) : PM → R
M−1 of a discrete distribution

p ∈ PM is defined as the logarithm of the ratio between the ith and last entry of p:
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[logit(p )]i � log

(
pi

pM

)
,

with i ∈ {1, . . . ,M − 1}. The inverse of the log odds function logit(·) is the generalized
logistic function

[σ(t )]i �
{

eti

Z , for i ∈ {1, . . . ,M − 1}
1
Z , if i = M

, (1)

where Z � 1 + ∑ j=1,...,M−1 et j is the normalization factor. Having defined logit(·) and
σ(·), we now induced from PM the M-1 dimensional space of LogOdds
LM−1 � {logit(p)|p ∈ PM}. Note that LM−1 is equivalent to (M-1) dimensional real
vector space. In Appendix A, we make use of this vector space structure to induce a
vector space on PM.

3 Approximating the Mean Field Solution Via Curve Evolution

We now combine the Mean Field approximation with the level set framework by using
the LogOdds parametrization. We do so by embedding the Mean Field parameters into
the LogOdds space. We then determine the optimal parameters via gradient descent
which we is realized in the level set formulation. This results in the AMF algorithm
which computes space conditioned probabilities while incorporating regional as well as
boundary properties of objects.

3.1 Using Gradient Descent

We now derive a model for segmenting medical images via the Mean Field approxima-
tion. The segmentation problem can be described as assigning each voxel of the image
I to an anatomical compartment, which results in the label map T . Without priors,
the relationship between the label map T and the image I is generally unclear as the
image might not visualize some anatomical boundaries or is corrupted by noise and
other image artifacts. Some of these difficulties can be addressed by the use of prior
models. This results in estimating posterior probabilities which can, in some cases, be
accomplished via the Mean Field approximation [11,15].

The Mean Field approach makes the problem of estimating the posterior
probabilities P(T |I ) feasible by approximating P(T |I ) as a factorized distribution
Q(T ;θ) = ∏x Qx(Tx;θ), where θ are the parameters defining Q(T ;θ). The approach
now computes the parameter setting θ̂ that minimize Kullback-Leibler (KL) divergence
between the true posterior probability P(T |I ) and the approximation Q(T ;θ)

D(Q(T ;θ)||P(T |I )) = EQ

(
log

Q(T ;θ)
P(T |I )

)
= ∑T ∈T

Q(T ;θ) log
Q(T ;θ)
P(T |I )

,

where T is the space of all label maps T and EQ(·) is the expected value. In a nutshell,
the Mean Field approximation determines the solution to

θ̂ � minθ D(Q(T ;θ)||P(T |I )). (2)
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Frequently, the multinomial distribution Q(T ;θ) is parametrized by the component
probabilities, in which case Equation (2) is a constrained minimization problem. We ob-
tain an unconstrained problem by using the LogOdds parametrization.
θ � (θ1, . . . ,θn) ∈ L

n
M parametrizes the multinomial distribution Qx as Qx(Tx = j;θx) =

[σ(θx)] j. Equation (2) is now an unconstrained problem whose solution can be approx-
imated via the following gradient descent:

θ(k+1) = θ(k) − λ · ∂
∂θ

D(Q(T ;θ)||P(T |I ))|θ=θ(k) ,

where λ is the step size parameter.
In the remainder of this section we derive the update term, which can be rewritten

using the expected value EQ [log(P(T ))] of the log prior of the label map log(P(T )),
and the KL divergence D(Q(T ;θ)||P(I |T )) of the estimated probability distribution
Q(T ;θ) and label likelihood P(I |T ). For notational convenience, we will continue to
use the KL divergence even when its second argument is a not a probability distribution
over T . (We also note that the likelihood could be re-normalized without affecting the
solution).

∂
∂θ

D(Q(T ;θ)||P(T |I )) =
∂

∂θ
EQ [log(Q(T ;θ))− log(P(T |I ))]

=
∂

∂θ
EQ [log(Q(T ;θ))−log(P(I |T ))]− ∂

∂θ
EQ [log(P(T ))]

=
∂

∂θ
D(Q(T ;θ)||P(I |T ))− ∂

∂θ
EQ [log(P(T ))] .

(3)

The first term drives the estimate Q(T ;θ) towards the normalized label likelihood
P(I |T ). The prior P(T ) is defined in Section 3.3 in such a way that the second term
∂

∂θ EQ [log(P(T ))] encourages smoothness along the boundary of the object.

3.2 The Derivative of the KL Divergence of Q(T ;θ) and P(I |T )

To simplify the computation of the derivative of the KL divergence D(Q(T ;θ)||P(I |T ))
we assume that the likelihood of the label map P(I |T ) = ∏x∈I P(Ix|Tx) is factorized
over the image domain I, which is typically a valid assumption. In this case,
D(Q(T ;θ)||P(I |T )) is the sum of KL divergences over I:

D(Q(T ;θ)||P(I |T )) = ∑x∈I
D(Qx(Tx;θx)||P(Ix|Tx))

For temporary convenience, we omit the voxel index x. If we now denote the probability
of label i according to the parameter θ � (θ1, . . . ,θM) with qi � Q(T = i;θ) = [σ(θ)]i
and the normalized likelihood of label i as pi � P(I |T = i) then the derivative of the
KL divergence with respect to θi is

d
dθi

D(Q(T ;θ)||P(I |T )) =
d

dθi
qi log

qi

pi
+

d
dθi

qm log
qm

pm
+∑ j �={i,m}

d
dθi

q j log
q j

p j
. (4)
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The derivative of q j is d
dθi

q j = d
dθi

eθ j

1+eθi+∑
j �=ie

θ j
=

{
−q jqi , j �= i

qi(1 − qi) , i = j

and d
dθi

q j log
q j
p j

=

{
−q jqi(1 + log

q j
p j

) , j �= i

qi(1 − qi)(1 + log qi
pi

), i = j
so that Equation (4) can be rewritten as

qi(1−qi)(1+log
qi

pi
)−qi(1−qi −∑ j �={i,m}q j)(1+log

qm

pm
)−qi∑ j �={i,m}q j(1+log

q j

p j
)

=qi · (1−qi) · (log
qi

pi
− log

qm

pm
)−qi∑ j �={i,m}q j · (log

q j

p j
− log

qm

pm
)

=[σ(θ)]i(1−[σ(θ)]i)(θi−[logit(p)]i) −∑ j �={i,m}[σ(θ)]i[σ(θ)] j(θ j−[logit(p)] j) (5)

When used within gradient descent, the derivative of KL divergence combines a driving
force towards the LogOdds of the label likelihood [logit(px)]i with a second term, which
we call the coupling term. In areas with high uncertainty (qxi ≈ 0.5) the equation weighs
heavily to move towards the LogOdds function [logit(px)]i . However, if θxi has high
certainty about the label (qxi ≈ 0 or qxi ≈ 1) then the likelihood term is less important.

Unlike with binary representations of curves, our method allows zero-contours to
overlap as the curves now represent level set of the posterior probabilities Q(T ;θ),
where Q(T ;θ) is a multinomial distribution in P

n
m. In P

n
m, the probability maps indicate

a label map via the MAP criteria.

3.3 Determining the Smoothing Term

We now compute ∂
∂θ EQ [log(P(T ))], the second term of Equation (3). First, we define

the probabilistic model for the label map prior P(T ) as a distribution preferring smooth
boundaries in T . We do so by making the prior P(T ) a function of the arc length of
the binary maps that is defined by T [20]. For this purpose, we define T as a vector
of indicator random variables Tx ∈ {e1, . . . ,em} with the indicator [e j] j = 1 and zero
otherwise. We can then extract from T a binary map [T ]i � (T1i , . . . ,Tni) for each
label i. The arc length L([T ]i) of the binary map [T ]i is defined as the length of the
boundaries in [T ]i. Based on the arc length for each label we can then specify the prior
as P(T ) � 1

Z e−∑i L([T ]i) = 1
Z ∏ie

−L([T ]i) ∼ ∏iP([T ]i) and rewrite the derivative of the
expected value as

∂
∂θ

EQ(T ;θ) [log(P(T ))] = −∑i=1,...,m

∂
∂θ

EQ(T ;θ) [L([T ]i)]

= −∑i=1,...,m

∂
∂θ

EQ([T ]i;θ) [L([T ]i)] .

It is intractable to compute EQ([T ]i;θ) as we have to sum over all possible label maps
[T ]i with i = 1, . . . ,m. According to Lemma 2 of Appendix B, however, an approxima-
tion for the expected value is

EQ([T ]i;θ) [L([T ]i)] ≈ −
� ∞

−∞
σ(α)(1 − σ(α))L(H ([θ]i − α))dα

= −
� ∞

−∞
σ(α)(1 − σ(α))

��
I

δ(θxi − α)dx dα,
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where H (y) � {1 for y > 0,0 otherwise} is the Heaviside Function, δ(·) the Dirac Delta
function, and [θ]i � (θ1i , . . . ,θni) are the parameters of label i. The above approximation
would be accurate if L([T ]i) were a sum of functions (or P(T ) were independent in
space) as outlined in Lemma 2.

We compute the derivative of the above approximation by applying the Euclidean
curve shortening flow [21], which states that d

dθ
��

I
δ(θ−α)dx = κα(θ)|∇α(θ)|δ(θ−α),

where ∇α(θ) is the derivative of the LogOdds map θ with respect to the α-contour in

θ and κα(θ) = div( ∇α(θ)
|∇α(θ)| ) is the corresponding curvature. Thus, we approximate the

derivative of the expected value as the weighted integral over the curve shortening flow
of all contours in the LogOdds map θ,

∂
∂θ

EQ [log(P(T ))] ≈ −
� ∞

−∞
σ(α)(1 − σ(α))κα(θ)|∇α(θ)|δ(θ− α)dα.

The derivative for each voxel location x and label i is defined as

∂
∂θxi

EQ [log(P(T ))] ≈ −σ(θxi) · (1 − σ(θxi))κθxi
(θxi)|∇θxi

(θxi)|. (6)

Combining the results of this section, we compute the solution to the Mean Field ap-
proximation as defined in Equation (2) through the following curve evolution

θ(k+1)
xi = θ(k)

xi − λ ·
(
[σ(θ(k)

x )]i · (1 − [σ(θ(k)
x )]i) · (θ(k)

xi − [logit(px)]i)

−∑ j �={i,m}[σ(θ(k)
x )]i · [σ(θ(k)

x )] j ·
(
θx j − [logit(px)] j

)

+σ(θ(k)
xi ) · (1 − σ(θ(k)

xi )) ·κ
θ(k)

xi
(θ(k)

xi )|∇
θ(k)

xi
(θ(k)

xi )|
)

.

(7)

This update function defines the AMF algorithm. In a level set framework, the first
term of the update formulation corresponds to the image coupling term. This coupling
term is defined by the LogOdds of the corresponding normalized likelihoods, which
are normally determined beforehand (e.g. with Gaussian classification techniques as
in Section 4.3). The second part of our method defines the curve shortening flow,
which controls the smoothness of the boundary. Both terms are weighted by the product

[σ(θ(k)
x )]i · (1 − [σ(θ(k)

x )]i) or [σ(θ(k)
x )]i · [σ(θ(k)

x )] j so that it may be possible to use the
“narrow-band” style frequently discussed in the level set community.

The above derivations are greatly simplified by embedding θ in the vector space
of LogOdds. The more usual parametrization requires each entry of θ to be confined
to the interval [0,1] and each vector θx needs to sum up to one. The corresponding
gradient descent would therefore need to map each update to the manifold of discrete
probabilities. Another advantage of the LogOdds representation is that our algorithm
can simultaneously evolve multiple curves. The curves are level sets of LogOdds maps,
which define posterior probabilities in our case. Applying MAP rule, each voxel is
clearly assigned to a label. AMF is therefore free of complications with overlap or
vacuum, which is a common problem in other multi-label level set formulations.

This completes our derivation of the AMF method. The resulting algorithm com-
bines local constraints at each voxel location with global smoothness constraints of the
boundaries.
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Fig. 1. Our level set evolution (green line) over a noisy image with corresponding LogOdds maps.
The fragmented maps (last column) are obtained from a Gaussian likelihood model. In compari-
son, our results are smooth and connected even though the initial curve did not overlap with the
square.

4 Experiments

We now apply the AMF to two examples. We first discuss the curve evolution of our al-
gorithm on a noisy image that was segmented by a Gaussian classifier into a fragmented
label map. The corresponding probability maps are the inputs to our algorithm, which
robustly identifies the boundary of the structure. The second experiment includes real
MRI images, in which AMF automatically segments the major brain compartments as
well as subcortical structures. Due to the LogOdds parametrization, our method natu-
rally evolves families of curves.

4.1 Segmenting Noisy Images

We now apply the AMF algorithm of Section 3 to a noisy image of a square (see top row
of Figure 1). Before doing so, we compute the likelihood through a Gaussian intensity
model, which results in a noisy LogOdds map (bottom, right) and, when thresholded,
in a fragmented segmentation (top, right). The robustness of the classifier is greatly im-
pacted by the noise as the approach ignores dependencies between neighboring voxels.

We initialize our curve evolution with the distance map of a small circle (see black
circle in top, left image and distance map below) and the input is the noisy LogOdds
map of the normalized likelihood (bottom, right). The initial curve is disconnected from
the square forcing our method to split the zero-level set into two separate curves by
Iteration 1. The circle connected to the square is expanding while the other curve is
shrinking. Our curve evolution further evolves both curves until the connected curve
converges to the shape of the square and the disconnected curve vanishes.

The evolution produces the LogOdds maps shown in the bottom row of Figure 1.
Initially, the dark blue region shrinks, i.e. the number of voxels with high certainty
about the presence of the square is decreasing. The shrinking is due to the discrepancy
between the initial LogOdds map and the input label likelihoods. As the method pro-
gresses, the blue region assimilates towards the predefined LogOdds map. Unlike the
segmentation produced through thresholding the initial likelihoods, our level set method
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Fig. 2. The subcortical 3D models and two samples slices of the 3D data set segmented by [17]
and AMF. The maps of [17] are fragmented and show many falsely identified regions. AMF
produces smoother segmentations where most of the outliers are removed.

filters out the noise. The final LogOdds map is smooth and the binary map shows the
square as one connected region.

4.2 Segmenting Magnetic Resonance Images

In this experiment, we apply the AMF algorithm to a real 3D Magnetic Resonance (MR)
scan (T1-weighted, matrix=256×256×124, dimension=0.9375×0.9375×1.5mm) to
automatically segment the scan into the major brain compartments (gray matter = dark
gray, white matter = white, cerebrospinal fluid = dark) as well as the ventricles (light
gray), the thalamus (darker gray), and the caudate (gray). Figure 2 shows example
slices of the segmentations, which were produced in 1.8 hours on a PC (dual processor
Xoen, 3.0 GHz, 2 gig ram). We also segmented the scan using the approach of [17]. We
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Initial → Final

Fig. 3. Revisiting Example 1 of Figure 2, where the level set framework is initialized by nine
circles. The resulting level set evolution is very similar to the segmentation of Figure 2.

determined the accuracy of each subcortical segmentation by computing its Dice score
with respect to the manually generated label maps, which we view as ground truth.

The segmentation of [17] received a Dice Score of 0.778 for the left caudate, 0.770
for the right caudate, 0.895 for the left thalamus, and for the right thalamus 0.896.
The label map is fragmented and has many misclassified regions. For example, in the
temporal region a part of the skull is identified as gray matter. The segmentation AMF
improves this segmentation using the corresponding space conditioned probabilities of
[17] for the definition of the label likelihoods px in Equation (7). This improvement is
also reflected in the Dice score, which is higher for each structure (left caudate: 0.789,
right caudate: 0.774, left left thalamus: 0.897, right thalamus: 0.906).

The second and forth column of Figure 2 show example slices of the label map gener-
ated by our method. Our curve evolution model is not only robust enough to simultane-
ously segment the 3D Volume into 10 compartments, but also produces a much smoother
label map with fewer islands than [17]. Unlike in the results of [17], the 3D model and
slice of Example 1 show a subcortical region composed of oval-shaped structures, which
closely match the expected anatomy in that region. In addition, the skull is properly sep-
arated from the brain (see temporal region in Example 2). Furthermore, the label map
in the supra-sella region does not seem to be influenced by the noise in the image.

In the final experiment, we test the robustness of AMF by again segmenting the 3D
MR image scan of Figure 2. This time the approach is initialized with a set of LogOdds
maps representing nine circles as shown in Figure 3. Figure 3 shows the segmentation
corresponding to the MR image of Example 1 of Figure 2. The method converges again
to a solution that is very similar to the previously discussed results. Based on the these
results, joining the Mean Field approach with the smoothness constraints of the level
set formulation seems to be a robust framework for removing outliers and islands.

5 Conclusion

We described a new approach for estimating the posterior probabilities of tissue la-
bels. We combined conventional likelihood models with a curve length prior on bound-
aries, and obtained posterior distributions by way of the Mean Field method. We used
the LogOdds parametrization to facilitate optimization of the estimator by gradient de-
scent, and with our choice of prior model, the influence of the prior is defined by the
curve shortening flow. As demonstrated by our experiments, the approach can robustly
segment multiple 3D objects in MR scans.
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We tested the accuracy of our model by automatically identifying a single square in a
noise synthetic image. In the final experiment, our approach segmented a 3D MR scan
into the major brain compartments and subcortical structures; to our knowledge, this
is the first time for a level set approach achieved this. The AMF algorithm accurately
identified the structures and generated a smooth segmentation.
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Appendix A Define a Vector Space for Discrete Probabilities

The function logit(·) and its inverse comprise a homeomorphism between PM and LM−1

so that we can borrow the vector space structure on LM−1 to induce one on PM .

A.1 Addition in PM

The probabilistic addition pa ⊕ pb in PM is constructed by mapping pa and pb into
LogOdds space, performing the addition between logit(pa) and logit(pb), and then
mapping the result back into PM via the logistic function. This operation is equivalent
to a normalized multiplication of two discrete probabilities within PM:

pa ⊕ pb � σ(logit(pa)+ logit(pb)) =
1

∑i=1,...,M pai · pbi

(pa1 · pb1 , . . . , paM · pbM) . (8)

(PM,⊕) with the zero element being the uniform distribution
(

1
M , . . . , 1

M

)
forms an

Abelian group as the probabilistic addition ⊕ is closed in PM . The additive inverse
of a discrete probability p ∈ PM is its complement p̄, defined as p̄i � 1

1+∑ j �=i
pi
p j

, for all

i ∈ {1, ..,M}. Similar to [16], it can be shown that for certain probabilistic models of pa

and pb the probabilistic addition carries out the arithmetic of Bayes’ rule.
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A.2 Scalar Multiplication in PM

For PM to be a vector space we also need to define a scalar multiplication operator. As
with the probabilistic addition, the probabilistic scalar multiplication α � p in PM is
defined as the logistic function of the product between α and the LogOdds logit(p):

α� p � σ(α∗ logit(p)) =
1

∑i=1,...,M pα
i

(pα
1 , . . . , pα

M) .

This operation is equivalent to exponentiating the discrete distribution with α and nor-
malizing it. The technique of exponentiating and normalizing probabilities is frequently
used in areas such as Markov Random fields [12] for controlling the “sharpness” of dis-
crete distributions. As shown for the Binomial case in [16], α can also represent the
certainty in the boundary location within an image space.

This completes our discussion of vector space (PM,⊕,�) with 1 as the identity ele-
ment of the scalar multiplication and p̄ = −1� p the complement of p. By construction,
this vector space is equivalent to (LM−1,+,∗) and its addition and scalar multiplication
can be used to perform statistical computations in P

n
M .

Appendix B Define the Expected Value Via the Heaviside Function

Lemma 1: If Y is a random variable with Bernoulli distribution P(Y = 1) = p ∈ [0,1]
then the expected value of F(·) : {0,1} → R with respect to Y can be defined by
the integral over the LogOdds space and the Heaviside function H (y) � {1 for y >
0,0 otherwise}: EP(Y)(F(Y )) =

� ∞
−∞ σ(α) · (1 − σ(α)) ·F(H (logit(p)− α) dα.

Proof: EP(Y)(F(Y )) � pF(1)+ (1 − p))F(0) =
� p

0 F(1)dβ +
� 1

p F(0)dβ

=
� 1

0
F(H (p − β))dβ =

� ∞

−∞
F(H (logit(p)− α))

(
d

dα
σ(α)

)
dα

=
� ∞

−∞
σ(α) · (1 − σ(α)) ·F(H (logit(p)− α)) dα �

Lemma 2: If Y = (y1, . . . ,yn) is a vector of independent random variable with Bernoulli
distribution P = (p1, . . . , pn) where P(yx = 1) = px ∈ [0,1] for x ∈ I = {1, . . . ,n} and
the function F(·) is defined as F(Y ) = ∑x∈I fx(yx) then the expected value of F with
respect to Y is defined within the LogOdds space as

EP(Y)(F(Y )) �
� ∞

−∞
σ(α)(1 − σ(α))F(H (logit(P)− α)) dα

Proof: EP(Y)(F(Y )) = ∑x∈I EP(Yx)(F(Yx)). Then according to Lemma 1

EP(Y)(F(Y )) = ∑
x∈I

� ∞

−∞
σ(α) · (1 − σ(α)) · fx(H (logit(px)− α)) dα

=
� ∞

−∞
σ(α) · (1 − σ(α))∑

x∈I

fx(H (logit(px)− α)) dα

=
� ∞

−∞
σ(α) · (1 − σ(α))F(H (logit(P)− α) dα �
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Abstract. Volume segmentation is a relatively slow process and, in certain cir-
cumstances, the enormous amount of prior knowledge available is underused.
Model-based liver segmentation suffers from the large shape variability of this
organ, and from structures of similar appearance that juxtapose the liver. The
technique presented in this paper is devoted to combine a statistical analysis of
the data with a reconstruction model from sparse information: only the most reli-
able information in the image is used, and the rest of the liver’s shape is inferred
from the model and the sparse observation. The resulting process is more effi-
cient than standard segmentation since most of the workload is concentrated on
the critical points, but also more robust, since the interpolated volume is consis-
tent with the prior knowledge statistics. The experimental results on liver datasets
prove the sparse information model has the same potential as PCA, if not better,
to represent the shape of the liver. Furthermore, the performance assessment from
measurement statistics on the liver’s volume, distance between reconstructed sur-
faces and ground truth, and inter-observer variability demonstrates the liver is
efficiently segmented using sparse information.

1 Introduction

Computerized medical imaging analysis aims at detecting and delineating anatomical
structures for surgery planning and diagnosis. It has gained significant importance in he-
patic procedures, specially in oncology to detect tumors and lesions, quantify the ratio
of tumors’ volume and liver’s volume (future liver remnant volume and total liver vol-
ume), their localization with respect to the liver’s vasculature and the different lobes of
the liver [12][15]. Also, in the context of liver transplantation, graft from living donors
is increasingly performed due to the shortage of cadaveric donors. This particular pro-
cedure requires a pre-operative quantification of the donor’s liver volume [6]. However,
the segmentation of the liver is an arduous task for two main reasons. First, the liver’s
appearance and shape has a large inter-patient variability; it is one of the largest organ
of the human body, after the skin, and imaged patients may suffer from heavy dis-
eases such as cancer. Second, the neighboring structures have similar appearance in CT
and MR, and may juxtapose the liver in a way that corresponds to a statistical shape
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variation, or without clear edge between the two. In this paper, we propose a novel
method for liver segmentation that combines a statistical analysis of the data with a re-
construction model from sparse information: only the most reliable information in the
image is used, and the rest of the liver’s shape is inferred from the model and the sparse
observation.

Given the difficulty of segmenting the liver, a model is commonly used, either as
a localization, a shape or an appearance constrain. In [20], a cascading segmentation
scheme sequentially detects the different abdominal structures for hepatic surgery plan-
ning. In [13][19], the liver is detected by a classification procedure based on the pixels
intensity. A semiautomatic procedure is presented in [18] where a live-wire based on
dynamic programming assists the user in drawing the liver’s contour slice by slice. In
the context of deformable models, the reason for using prior knowledge is that this seg-
mentation method is a local optimization, and therefore is sensitive to local minima.
Therefore, the prior work on liver segmentation includes models based on shape vari-
ations, and constrains on pixel intensities learned from classification. Intensity based
methods are used in [10] with snakes segmenting the liver’s contour in a slice-by-slice
fashion. However, the vicinity of the liver to neighboring structures of similar appear-
ance makes models attractive for this task [5]. The models used in [5] are based on
Cootes et al.’s Active Shape Models [1]. The results obtained in [5] demonstrate Ac-
tive Shape Models may represent to a certain extent the liver’s shape. However, they
fall short of accurately segmenting the liver because of the large shape variability of
this organ. Furthermore, Active Shape Models are highly dependent on initialization, a
problem the authors deal with using multi-resolution. Nonlinear models, such as shape-
based Kernel PCA [2] or Fourier coefficients [3], are also a solution that have been
investigated more recently for segmentation. The main limitation of these methods (lin-
ear or non-linear) is the explicit assumption of the data distribution that, for example,
forms a linear subspace in the case of PCA. These methods process the total amount of
data and find the optimum trade-off between an image term and a prior term. Further-
more, the quality of image support is at no point taken into account; it is assumed that
should an image region quality be low, another region would compensate. Most of these
methods treat segmentation as a statistical estimation problem, where the quality and the
support of the training set’s exemplars is often ignored. Instead, the approach presented
in this paper relies on observation at key locations, and on a reconstruction model ; both
the key locations and the reconstruction models are learned from prior knowledge. This
technique gives better results because the segmentation is only supported by the data
with the strongest image support, and is also of low complexity because it uses the data
in an optimal fashion.

Interpolation models have been studied before. The simplest and most common
method is to use a spline or piecewise polynomial function [14,21] that interpolates
the contour between explicit points. Other methods use an implicit representation of the
contour (a continuous function that takes a zero value on the contour) and interpolating
functions such as thin-plate splines [22]. An example of surface reconstruction is the
work of Hoppe et al. [7] who computed a signed distance function in 3D which is the
distance in R

3 to any input point. Then, from the zero levelset of this function is ex-
tracted the surface using the Marching Cubes [11]. At last, deformable models [9] are
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used to minimize an energy function of the mesh by deforming the mesh so that the
mesh is simultaneously attracted to the data by an image term, kept smooth by a tension
term and by an optional prior term.

The approach we propose here is different: we propose a liver model that encodes
the shape variations using a small number of carefully chosen key-slices where the or-
gan’s contours can be optimally recovered. First, the image or shape to reconstruct is
discretized along the longitudinal axis, and all the liver exemplars are registered so that
they fit into the same reference region. Then, a set of slice indices are determined so
that it minimizes three different criteria: image support, quality of the reconstruction
and sensibility to variations in the projection’s subspace. Finally, the reconstruction op-
erator itself is learned over the given liver exemplars. To present this approach, section
(2) contains a rather generic formulation of Sparse Information Models. Then, section
(3) is devoted to explicit this model to the particular problem of 3D liver segmentation.
To validate the methodology, section (4) aims at proving the liver’s shape is indeed well
recovered from few contours at key-slices, and quantifying the quality of the segmen-
tation obtained in this way.

2 Choice of Sparse Information

Let us consider a shape x and its partition into m elements x = (x1, ..., xm) (see figure
(1)) associated to m measures w = (w1, ...,wm) which reflect the data support for the
observations. Without loss of generality, we assume the m sub-elements are obtained by
a discretization process along one or several axis v0 using an operator ρ : [Ωr × R] →
Ωr/v0:

∀ k ∈ [1, m], xk = ρ(x, k) (1)

In the remaining of the paper, this continuous parameterization is assumed when not
specified. The aim of our approach is to recover a minimal description length set of
|B| sub-elements B = {xtk

}k∈[|1,K|] with K small compared to m, and a continuous
operator φ, from which the whole data x is deducted:

∀ k ∈ [1, m], φ(xt1 , ...,xtK , k) = x(k). (2)

2.1 Optimal Reconstruction of the Data

Let us consider a training set of P exemplars X = {x1, x2, ..., xP } registered in a
reference space Ωr. Toward optimal reconstruction of the training set from the basis
B, the distance between the reconstruction and the existing samples is minimized. To
this end, let a metric ψ : [Ωr × Ωr] → R

+ measures the distance between two sub-
elements. Then, assuming the number of components of the training set is fixed, such
reconstruction minimizes

Eint(B, φ) =
P∑

p=1

m∑

i=1

ψ
(
xp

i , φi(x
p
t1 , ...,x

p
tK

)
)
. (3)

Such an approach is purely geometric and does not account for the image support of
each sub-element.
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Fig. 1. Example of a 3D liver surface x whose subcomponents (x1, ..., xm) are obtained by inter-
secting the 3D shape with the axial plane (dark contours) at specific slice indices s1, s2, ...sK .

2.2 Optimal Image Support

We recall that the sub-elements of a given exemplar xp have some underlying image
support noted wp = (wp

1, ...,w
p
m). The optimum basis B consists of elements that are

confidently extracted from the data; therefore, the basis minimizes

Esup(B) =
P∑

p=1

K∑

k=1

g
(
wp

k

(
T −1

θ (xp
tk

)
))

(4)

where g is a monotonically decreasing function, and T −1
θ (xp

tk
) is the inverse mapping

between the basis B and the observation space. The use of such inverse mapping is also
to be considered during the application of the model to new data. Therefore, it is critical
to have a selection of B that is relative robust to errors when locating the basis elements
in a new exemplar.

2.3 Robustness to Parameters Variability

Let us consider a slight variation on the selection of the basis, noted δxt. For the inter-
polation precision of the model not to be significantly affected,

lim
|δxt| → 0

Eint(B, φ) − Eint(B + δxt, φ)
δxt

= 0 (5)

that is reformulated in terms of a cost by defining a smoothness function η(), like the
error-two norm,

Evar(B, φ) = η (∇BEint(B, φ)) . (6)

Such a penalty term introduces robustness in the basis selection step, as well to the
reconstruction process. Now, one integrates these three constraints into a single cost
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function: E(B, φ)=Eint(B, φ)+αEsup(B)+βEvar(B, φ) where α and β are problem-
specific normalizing constants (results have shown little sensibility to small variations
of α and β). The cost function E is minimized with respect to the interpolation func-
tion φ and the basis B. Such a process cannot be described in a general fashion, but
a gradient descent is an excellent choice when considering linear interpolation models,
while more advanced non-linear optimization methods like neural networks can be con-
sidered for non-linear cases. Last, but not least the residual cost that characterizes the
Sparse Information Model is used to determine the best number K of key components
that optimizes the Minimum Description Length. In order to demonstrate the efficiency
of such a model for volumetric organ segmentation, we consider the particular case of
liver segmentation in CT images. The same approach is easily adapted to any other
organ, in any dimension.

3 Sparse Knowledge-Based Segmentation

Knowledge-based segmentation is one of the dominant approaches to organ extraction
from 3D images. First, the Sparse Model is built by selecting a minimal set B of 2D
contours (represented in an explicit or an implicit fashion) along with an interpolation
function φ to reconstruct the whole 3D surface in the reference space Ωr. During the
segmentation, the global transformation Tθ that relates the reconstructed model to the
observation volume is to be determined, along with the set B of 2D contours that fits
the observation.

3.1 Model Construction

The experiment is conducted on segmentation for medical imaging for the case of liver
in Computed Tomography (CT). We represent the training set exemplars x by 3D dis-
tance maps to the closed surface Γ defined by the liver’s edge C in the volumetric data:

∀p ∈ Ω, x(p) =

⎧
⎪⎨

⎪⎩

0, p ∈ C
+D(p) ≥ 0, p ∈ Γ

−D(p) < 0, p ∈ Γ̄

(7)

Such a selection is motivated from its implicit nature, as well as the ability to introduce
surface-based as well as area based criteria in the segmentation process. Classic explicit
parameterizations like triangulated surfaces, or other form of parametric snakes can also
be considered.

The acquisition process guides our choice for the definition of the sub-elements:
since the image volume is reconstructed slice by slice, with maximum resolution in the
slice plane, the axis of projection vi0 (see section (2)) is the longitudinal axis. There-
fore, a sub-element xi corresponds to a particular slice (see figure (1)). The geometric
transformation Tθ is a translation-scaling that sets x in a reference space Ωr with m
slices (x1, ...xm).

In order to determine the best possible interpolation class, different models for φ
have been tested. We have concluded that generalized linear interpolation for each slice
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i is a good compromise between complexity and interpolation quality. In other words,
the solution (2D contour) at each slice xi is reconstructed using a particular linear com-
bination Hi of the key contours xt1 , ...xtK . This notation is kept in the remaining of the
paper: φ = H. The interpolation quality is defined according to sum of square differ-
ence between the reconstructed distance map and the observed shape’s distance map in
the reference space Ωr:

Eint(B, H) =
m∑

i=1

∫

Ωr

∣∣∣Hi [xt1 , ...xtK ]T − xi

∣∣∣
2

(8)

Eint is a quadratic function with global minimum, and since the reference space Ωr

is a continuous space, the minimization of Eint benefits from the large literature on
quadratic functions minimization.

The image support wi at slice i is defined by the Kullback-Leibler distance between
the pixels intensity distributions inside and outside the 2D contour and the a priori
learned histograms. Knowing a priori the normalized histogram hin (resp. hout) of
the pixels intensity inside (resp. outside) the liver, and computing the pixels intensity
distribution pin and pout inside and outside of the reconstructed shape on the key slices,

Esup(B)=
K∑

k=1

∫
hin(k, s)log

(
hin(k, s)
pin(k, s)

)
ds+

K∑

k=1

∫
hout(k, s)log

(
hout(k, s)
pout(k, s)

)
ds.

(9)
Finally, the key contours are chosen so as to minimize the impact of little variations

in their position, and of little errors in the contours extraction in the key slices. Since a
continuous interpolation of the 2D contours is introduced in equation (1), the impact of
an infinitesimal change ∂k in the slice index may be written as the squared magnitude
of the gradient of xtk

with respect to tk: ‖∇tk
xtk

‖2. In practice, since the contours are
represented using distance functions (see equation (7)), the derivative of the distance
function at index tk, with respect to the index, is a field of 2d vectors whose squared
magnitude is ‖∇tk

xtk
‖2. Therefore, the key contours are chosen so as to minimize the

integral over the image space of the distance map’s gradient at the key locations:

Evar(B) =
K∑

k=1

∫

Ωr

‖∇tk
xtk

‖2 . (10)

In order to determine the number K , the indices of the key contours t1, ...tK as well
as the interpolation operator H, a gradient descent optimization method is used and
combined with the Schwarz Bayesian criterion [4] to determine the optimum cardinality
of the basis. After registering the volumes with m = 100 slices, the optimum number
of key slices is 5.

3.2 Model-Based Segmentation

With sparse model in hand, the volumetric segmentation is boiled down to the segmen-
tation of the shape at key slices; in other words, the whole 3D segmentation problem
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is reduced to a small set of parallel 2D contours to be segmented at specific locations.
Therefore, one needs to optimize an image-based cost function with respect to both the
set of key contours B = xt1 , ...xtK in the reference space and the transformation Tθ

simultaneously. In an iterative optimization scheme, the transformation Tθ at a given
iteration is used to relate the current set of 2D contours xt1 , ...xtK to the image so that
both the transformation and the sparse set of contours are optimized concomitantly.

To this end, the cost function consists of the intensity-based likelihood of each pixel,
assuming that normalized histograms inside (hin) and outside (hout) the liver are avail-
able (if not, one recovers them on-the-fly). Then, the posterior likelihood of the partition
with respect to the two classes is maximized to obtain the key contours B and the trans-
formation Tθ:

Eseg (B, Tθ) =
K∑

k=1

∫

Ω

−log
(
hin(I(s))

)
H(xtk

(Tθ(s))) ds

+
K∑

k=1

∫

Ω

−log (hout(I(s))) (1 − H(xtk
(Tθ(s)))) ds,

(11)

where H(xtk
(s)) denotes the Heaviside function that is equal to 1 inside the contour

xtk
, and 0 outside. During the sparse model’s construction the image support has been

taken into account in the selection of the key slices. This information has been inherited
to the segmentation and, in principle, the slices where one best separates liver from
the rest of the background are used (see equation (9)). When (B, Tθ) have reached the
energy minimum, the whole volumetric shape x is reconstructed in Ωr by applying the
linear combination Hi for each slice i. Finally, the inverse of Tθ is used to transform
the reconstructed volume from Ωr to the image space Ω. In a subsequent step, one may
consider refining the results by locally optimizing the solution x on each slice i, using
the sparse model’s result as a prior such as [?].

4 Experimental Validation

4.1 Dimensionality Reduction Using Sparse Information Model

Before proving Sparse Information Models are efficiently used to segment an organ
in volumetric data, one needs to quantify the error introduced by the Sparse Models
dimension reduction and compare it with common techniques such as PCA. The volu-
metric data is acquired on Sensation 16 CT scanners, with an average resolution of 1
mm in axial plane and 3 mm along the longitudinal axis. 31 volumes (different oncol-
ogy patients, with or without pathologies such as tumors) are used in our experiments
on a leave-one-out basis: 30 volumes are used to build the models (sparse and PCA)
and the last one is used for testing.

Table (1) summarizes the error introduced by dimensionality reduction for PCA
(30 modes), linear interpolation and Sparse Information Model with 5 slices. This er-
ror measure is defined as the symmetric difference [18] between the two volumes V1
and V2:

ε = 1 − |V1 ∩ V2|
0.5 ∗ (|V1| + |V2|)

(12)
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Table 1. Results table showing the median, maximum and minimum symmetric difference be-
tween ground truth volumes and reconstructed volumes using PCA (30 modes), linear interpola-
tion from 5 key slices and Sparse Information Model (SIM) with 5 key slices

method PCA Linear interp. SIM
median symmetric diff. 11.70% 10.72% 8.35%

maximum symmetric diff. 23.32% 16.13% 13.14%
minimum symmetric diff. 6.56% 7.69% 6.28%

The results demonstrate that the Sparse Information Model with 5 key elements pro-
vides the same reconstruction quality than linear PCA with 30 modes of variation. How-
ever, the PCA results have a large variance because diseased organs are poorly repre-
sented by a Gaussian model in the linear PCA space. Nevertheless, a larger study with
different pathologies could demonstrate kernel PCA [8] best represents the shapes.

Figure (2) illustrates different error measures for liver segmentation with linear PCA,
liner interpolation and Sparse Information Model. The quality assessment is performed
with four error measures: the volumetric error in %, the average surface distance, the
RMS distance, and the percentage of surface father than 5mm from the ground truth.

4.2 Sparse Information Model for Segmentation

The second step consists in demonstrating Sparse Information Models can efficiently
be used for segmentation. For that purpose, it is assumed an expert (i.e. either a hu-
man expert, or an expert system such as the ones described in the literature) roughly
initializes the rigid transformation and the key contours. When no user interaction is
available, a preprocessing step, such as exhaustive search or coarse-to-fine search, is to
be developed. In the case of PCA [16], the segmentation problem is solved by minimiz-
ing the cost function resulting from the intensity-based likelihood of each pixel in the
volumetric image:

Eseg =
m∑

k=1

∫

Ω

−log
(
hin(I(s))

)
H(xk(Tθ(s))) dΩ

+
m∑

k=1

∫

Ω

−log (hout(I(s))) (1 − H(xk(Tθ(s)))) dΩ,

(13)

As in [16], equation (13) is minimized in the PCA’s parametric space, where the
shapes’ distribution is modeled using kernels. The kernels are justified by the poor
modeling of the samples distribution by a Gaussian. For the PCA segmentation, all the
m slices of the volume are used, whereas the Sparse Information Model only segments
the K slices determined during the model construction (see equation (11)).

Table (2) summarizes the symmetric difference (see equation (12)) between ground
truth and the segmented liver obtained using the Sparse Information Model and PCA
[16] (see figure (3)). Neighboring structures of similar intensities juxtapose the liver in a
way that PCA estimates as a shape variation. On the contrary, the Sparse Model ignores
the regions with low support, and reconstructs the information in these regions based on
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Volumetric error [%] Avg. Distance [mm]

RMS Distance [mm] Deviations > 5mm [%]

Fig. 2. Segmentation result boxplots comparing PCA (5 and 30 modes), linear interpolation and
Sparse Information Model. The box has lines at the lower quartile, median, and upper quartile
values. The whiskers are lines extending from each end of the box to show the extent of the rest
of the data. Outliers are data with values beyond the ends of the whiskers.

other visual clues elsewhere in the image. For information, the inter-observer symmetric
difference in table (2) indicates the symmetric difference between livers segmented by
different experts using the same semi-automatic tool. Overall, when compared with [5],
the results seem to demonstrate Sparse Information Models outperform Active Shape
Models. Nevertheless, it must be underlined that the training and evaluation datasets are
different. Furthermore, in [5], the shape model is built from smoothed surface meshes,
while the training shapes used in this paper are represented by distance functions (see

Table 2. Results table showing the average symmetric difference and maximum symmetric be-
tween hand-segmented livers and automatic segmentation with PCA and Sparse Information
Model (SIM). Also, is also given the Inter-Observer Variability (IOV) statistics.

method PCA SIM IOV
median symmetric diff. 26.41% 11.49% 5.56%

maximum symmetric diff. 36.84% 17.13% 7.83%
minimum symmetric diff. 16.68% 9.49% 2.96%
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Fig. 3. Comparison of liver segmentation obtained by SIM (left column) and expert segmentation
(right column)

equation (7)) and are not smoothed. However, as one suspects, Sparse Information Mod-
els are sensitive to initialization. To quantify this, two different Sparse Segmentations
were performed by segmenting by hand the key slices in the datasets, and comparing
the reconstruction results with the ground truth. The difference in quality (symmetric
difference with ground truth) between the different reconstructions ranges from 0.02%
to 6.73%. Moreover, this variance is not correlated to the IOV (correlation coefficient of
0.47); otherwise stated, a volume with high inter-observer variability may be segmented
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by the SIM in a way that is robust to initialization, and reciprocal may be true. Indeed,
the IOV depends on the whole organ’s structure while the SIM’s quality only depends
on the key slices. Furthermore, the maximum quality difference of 6.73% is below the
maximum IOV symmetric difference (7.83% in table (2)).

5 Conclusion

In this paper, we have introduced a novel family of dimension reduction techniques
based on intelligent selection of key sub-elements with respect to reconstruction quality,
image support and variability of these key sub-elements. It is demonstrated that Sparse
Information Models can be used for dimensionality purposes, and can efficiently be
integrated into a segmentation framework in the context of volumetric organ segmenta-
tion. We have applied this technique to the problem of liver segmentation in volumetric
images with successful results compared to common dimensionality reduction tech-
niques based on linear projections and kernel distributions. On top of interpolation and
segmentation quality, this method is also very fast since only the most important and
most reliable information is processed for the reconstruction of the whole information.
However, as noted in [5], a statistical shape model may not be sufficient to represent
the exact shape of the liver ; in a post-processing step, a local optimization - using ac-
tive contours for instance - may be necessary for better results. This local optimization
would not be computed from Sparse Information. Further work will investigate the use
of non-linear models for the interpolation function, as well as a subsequent refinement
step that will locally adjust the reconstruction from the model to the actual image in-
formation by taking into account the confidence in the reconstruction. More advanced
prior models using axial coronal and sagittal sparse information would be an interest-
ing extension of our approach, as it would diminish the quality difference between two
differently initialized segmentations. Last, but not least, the use of such methods for
feature extraction, classification and content-based image indexing and retrieval is a
natural extension on the application side.
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Abstract. We present a new method to non-rigidly co-register a real-
time 3D ultrasound volume slice to a cardiovascular MR image. The
motivation for our research is to assist a clinician to automatically fuse
the information from multiple imaging modalities for the early diagnosis
and therapy of cardiac disease. The local phase presentation of both
images is utilized as an image descriptor of the “featureness”. The local
deformation of ventricles is modeled by a polyaffine transformation. The
anchor points (or control points) used in the polyaffine transformation
are automatically detected and refined by calculating a local mis-match
measure based on phase mutual information. The registration process
is built in an adaptive multi-scale framework to maximize the phase-
based similarity measure by optimizing the parameters of the polyaffine
transformation. Registration results have demonstrated that this novel
method is superior to our prior work [1], yielding an accurate registration
to local cardiac regions.

1 Introduction

Cardiovascular disease is one of the world’s leading causes of death. With the aid
of advanced imaging techniques, the cardiovascular examination has helped to
improve early diagnosis and therapy. Among the existing imaging techniques, car-
diovascular magnetic imaging (CMR) and real-time three-dimensional echocar-
diography (RT3DUS) are receiving a lot of attention at the current time [2].

Due to the 3D nature of the heart and its complex motion in 3D space, the
RT3DUS is well-suited for 3D analysis of the cardiac disease. However, RT3DUS
has lower specificity and sensitivity than the high spatial resolution CMR, which
makes it difficult to interpret. Therefore the comparison and fusion of infor-
mation from multiple cardiac image modalities is of increasing interest in the
medical community for physiological understanding and diagnostic purposes. In
this paper, our objective is to non-rigidly register the RT3D echocardiography to
CMR images from the same patient. Current cardiac image registration methods
can be divided into two main categories: 1) those based on geometric image fea-
tures and 2) those based on voxel similarity measures [3]. When considering the
feature-based method, there exist only few salient anatomical landmarks due to
the complex shape of the heart. Moreover, in certain pathological conditions, the

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 50–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Adaptive Non-rigid Registration of Real Time 3D Ultrasound 51

functional alterations may also hide a sparse set of anatomical landmarks, which
makes it difficult to accurately identify the same landmarks in both modality im-
ages [3]. Voxel similarity measures have an important advantage that no a priori
segmentation of the registered features is required. These methods are based on
the assumption that the registered images are strongly correlated by the pixel
(voxel) values. Mutual information based registration methods have proved par-
ticularly promising for inter-modality voxel based image registration such as
MR-CT, CT-PET and MR-PET in the area of neurology, since no assumptions
are made regarding the nature of the relation between the image intensities in
the registered images [4]. However, its application to cardiovascular non-rigid im-
age registration, especially to the RT3D-CMR image registration, has not been
reported before.

Even though US-MR image registration is a challenging task, some authors
have proposed to pre-processed both US and MR images with a ’feature trans-
form’, so that the appearance of features is approximately compatible. For in-
stance, Roche et al [5] present a novel correlation ratio to incorporate the US
intensity with both MR intensity and MR gradient magnitude. For this rigid
registration case applied to intra-operative US and pre-operative MR images, he
maximized the bi-variate extension of the correlation ratio. In other work, Pen-
ney and Black et al [6] report a method to register a pre-operative MR volume to
a sparse set of intra-operative US slices of abdominal images. Liver vessels were
detected as the main feature to be registered. The grayscale intensity images of
both modalities were transformed into a probability image where intensity values
represented the probability of a voxel containing a vessel. This rigid registration
was then carried out by maximizing the normalized cross-correlation between
the vessel probability images of both modalities. Extending these methods to
non-rigid registration has not been done to our knowledge.

In our prior work [1], we proposed a registration method to align a RT3DUS
volume slice with a CMR image using a differential transformation technique, but
the deformation was limited to the global affine transformation. In this paper,
we extend our previous work to non-rigid registration that combines the best
aspects of both feature-based and intensity-based image registration methods.
In our new method, the mutual information of local phase is derived as the
similarity measure to capture the feature relationship between both modality
images. The polyaffine transformation, a diffieomorphic transformation, which
mixes several local displacements via an ordinary differential equation (ODE),
is adopted to model the local deformation of ventricles. By calculating the mis-
match measure based on phase mutual information, the anchor points (or control
points) of polyaffine transformation is automatically identified where the most
misaligned region is located. The registration proceeds in an adaptive and multi-
scale manner to reduce computation. In the following sections, we will first detail
our method in section 2, followed by the adaptive non-rigid registration algorithm
presented in section 3. In section 4, the result and validation of one volunteer
dataset is demonstrated. Finally, section 5 summarizes the proposed work and
describes possible future work.



52 W. Zhang, J.A. Noble, and J.M. Brady

2 Method

Our method consists of three main steps. First of all, both modality images are
transformed into their corresponding phase maps. A local mis-match measure
using phase mutual information then automatically identifies the centers of sev-
eral misaligned regions that act as the anchor points (the regional parameter)
for a polyaffine transformation. Finally, the parameters of the polyaffine trans-
formation are adaptively tuned in a multi-scale framework in order to reduce
the expensive computation of non-rigid registration. In this section, we present
the different stages of our method.

2.1 Monogenic Signal and Phase Mutual Information

Most image registration methods use the intensity as the natural image descrip-
tor, while local phase is an alternative image descriptor that better describes
image structure (rather than signal magnitude). It has previously been argued
as a good representation for ultrasound image analysis [7,8]. Local image phase
can be efficiently estimated using the monogenic signal [9], which is derived by
a pair of vector valued filters H1 and H2 that are odd and distributed with
isotropic energy in the frequency domain:

H1(u, v) =
u√

u2 + v2
i, H2(u, v) =

v√
u2 + v2

i (1)

where u, v are the Fourier domain coordinates. Let I be the image, then in the
space domain, local phase φ can be caculated using the filer in equation (1) and
the bandpass filtered image g = f ∗ I (where f is the bandpass filter) as:

φ(x, y) = tan−1
(

g√
(h1

⊗
g)2 + (h2

⊗
g)2

)
(2)

The local phase can thus be interpreted as a qualitative description of a detected
feature, such as the edge or ridge in a signal.

It should be noted that it is necessary to carefully choose a zero mean bandpass
filter for affine (or non-rigid) registration as some bandpasss filters are not affine
invariant, which make it difficult to accurately predict the effect of an increment
to the affine transformation so as to bring about a desired change in phase. We
propose to use the scale invariant filter to estimate the local phase, which reduce
this problem significantly [8]. Figure 1 shows the phases estimated from a 2D
CMR image and a RT3DUS volume slice.

It is now straightforward to extend the intensity based mutual information to
one based on phase:

MI(φI , φJ ) =
∑

P(φI , φJ ) ln
(

P(φI , φJ)
P(φI)P(φJ )

)
(3)

where P(φI , φJ ) is the phase joint probability and P(φI), P(φJ ) is the individual
phase probability. Replacing the intensity-based mutual information with the
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Fig. 1. An example of the phase representation with scale invariant filter. From left
to right: CMR image and its phase representation; RT3DUS slice and its phase
representation.

local phase one can detect a meaningful structural relationship between the local
shapes of an image pair. Furthermore, the mutual information of local phase
avoids the intensity changes cross multi-modalities and makes no assumption
of a like-with-like correspondence, which make it well-suited for cardiovascular
image registration.

2.2 Polyaffine Transformation

The heart is undergoing a spatially varying motion during the cardiac cycle. Even
at the same phase of the cardiac cycle, multi-modal cardiac images exhibit local
differences due to the motion between the examinations and the different ways
to acquire and slice the datasets, which are not easily modeled by only a rigid
transformation. In this paper, we assume that the deformation of the ventricles
in multi-modal cardiac images is composed of locally affine transformations.

In order to model the deformation that presents several local behaviours,
we propose to employ the polyaffine frame work to obtain a globally non-rigid
transformation [10]. The idea behind the polyaffine transformation is to weight
the sum of local displacements according to a weight function for each arbitrary
image region:

Tglobal(x) =
∑

i wi(x)Ti(x)∑
i wi(x)

(4)

where Tglobal(x) denotes the globally weighted transformation for a point x in the
image domain; wi and Ti denote the weight function and the local displacement
for an image region i respectively.

In equation 4, the local displacement is obtained via an ODE to guarantee the
invertibility property as all transformations induced by an ODE are reversible
[11]. Therefore it can avoid the ”folding” effect that a traditional spline-based
transformation tends to produce at the high image resolution [12,13]. More pre-
cisely, if the locally affine transformation is associated with the speed vector
field of a first order ODE, a point x under its motion can be considered as a
trajectory governed by the following ODE:

∂(x)
∂(s)

= Vi(x, s) = Ti(x, s) = (Ai + exp(sAi)Si exp(−sAi)).(x − sti) + ti (5)
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Fig. 2. An example of polyaffine transformation. From left to right: regular grids (in
green) deformed by the polyaffine transformation with one, two and four anchor points
respectively and the inversed grid (in blue).

where Vi(x, s) is the speed vector field characterized by a time parameter s
varying between 0 and 1 and defined to be smooth with respect to x. The last
term in equation 5 is obtained by differentiating the trajectory equation x(s) =
exp(sAi). exp(sSi) + sti with respect to the time parameter s, where Mi and
ti are the deformation (rotation, scaling and shearing) and translation parts in
the locally affine transformation respectively; Ai and Si are the real skew square
matrix and symmetric matrix respectively.1 The local displacement Ti is then
obtained by continuously integrating the flow in speed vector between time 0
and time 1.

The local displacement in an arbitrary image region affects the global trans-
formation unequally and its influence needs to be weighted. A weight function
can act as a pre-defined shape for each region and play an important role in
modeling its influence in the image space. The globally weighted transforma-
tion can encompass all the weighted influences of each region. In this paper, we
propose to adopt the Gaussian model to define the weight function:

wi(x) = pi

ni∑

i=1

G(aj
i ,σj

i )(x) (6)

where p denotes the relative weight that ranks the global influence of each region,
σ denotes the standard deviation that controls the smoothness of the weighted
transformation and a indicates the anchor point that describes how each region
of core influence is geometrically anchored. In each region i, it can have its own
number of j anchor points which are obtained either by automatic identification
or by manual selection. In summary, there are two categories of parameters of

1 To define the local polyaffine transformation, it is required that there exists a real
logarithm of Mi and a real skew square matrix Ai, which satisfy the relationship
Mi = exp(Ai). Unfortunately, for a locally affine transformation, this can not be
satisfied since not all real invertible matrices Mi admit a real logarithm. However,
Wustner point out that any element of a real connected Lie Group is equal to the
product of two exponentials [14]. Thus the deformation part can be represented as
Mi = exp(Ai) exp(Si) by the singular value decomposition (SVD).
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the polyaffine transformation for any registration task: the local deformation
parameters defined in the speed vector field and the regional parameters defined
in the weight function.

2.3 Local Mis-match Measure

In the polyaffine frame work, it would be desirable for the anchor point to carry
some information about where the misaligned regions are located so that the
polyaffine transformation can effectively adjust these control points to make
them aligned and correct the spatial difference. Further more, the automatic
identification of these anchor points can be adapted from the grid refinement
methods that use the gradient of the mutual information or the local entropy of
the image to put an irregular grid of control points on the image pair [15,16,17].

In this paper, we extended the local mis-match measure proposed by Park et
al [15] to automatically identify the anchor point (the centre of local misaligned
region) of a polyaffine transformation by using the local phase mutual informa-
tion. If a region between an image pair is observed to have a low phase MI, it is
said that the region is less correlated by local features. On the other hand, a low
phase MI may imply that either a corresponding region has low entropy or is
devoid of features. A region with low entropy is less ”interesting” as it contains
fewer features such as the image background and noise. Therefore those regions
with high local entropy and a low phase MI are found to be the most misaligned.
These notions are formalized in a normalized measure:

Mφ = 1 − MI(φI , φJ)
min(H(φI), H(φJ ))

(7)

where MI(φI , φJ) is the phase mutual information between two images and
H(φI), H(φJ ) are the local phase entropy of the images. If the phase MI goes
down to zero or the phase MI is relatively smaller than min(H(φI), H(φJ )),
the mis-match measure gets the largest value (close to one), which implies
a less aligned or a featureless region needs to be corrected by the proposed
transformation.

All the values of the mis-match measure are locally computed on a finite
sub-block across the whole image. The measure yields the best performance
on detecting the misaligned region whose scale is similar to the sub-block size.
Therefore the size of the sub-block can be viewed as the scale parameter that
determines the range of locally misaligned region. If the sub-block size is de-
fined to be larger, the detected centre of the misaligned region might be less
reliable since the mis-match measure has to calculate over a larger sub-block
than the real deformation and the most misaligned location may be blurred
by a larger sub-block. On the contrary, multiple detected locations will occur
within the same deformation if we employ the local mis-match measure on a
smaller sub-block size. Thus in practice some prior knowledge about the ex-
pected deformation is needed. In this paper, we use a sub-block size of 31×31
pixels.
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3 The Algorithm

The proposed adaptive non-rigid registration operates on multi-scales from
coarse to fine. There are two loops in the algorithm. The outer loop is controlled
by the standard deviation σ of the weight function, whose value determines the
density of the global transformation. For the coarse scale, we set a large value
σ to ensure the smoothness of the global transformation. However, for the finer
scale, we set a small value σ to model a dense local deformation. The inner
loop adaptively tunes the deformation parameter of the polyaffine transforma-
tion and places extra anchor points, followed by the maximization of the global
phase mutual information.

For the first iteration, affine registration is performed to ensure that the global
registration has taken effect before attempting the further local deformation. For
the subsequent non-rigid registration, only the angle of local rotation and the
anchor points of each region are respectively increased until the algorithm reaches
a pre-defined threshold of optimal phase mutual information.

For both registrations, the local phase maps of both modality images are
firstly estimated using the monogenic signal. In the initialization step when the
initial affine registration is done, N ≥ 4 initial anchor points are placed where
the maximum misalignment occurs between the divided N regions of the image
pair, based on an estimate of the local misaligned measure using phase mu-
tual information. The polyaffine transformation is then estimated by iteratively
adding an increment to the angle of the local rotation vector ranged from 0.1π
to 0.2π(we have limited the full range of the local deformation to reduce com-
putational cost). At each iteration, the optimization of the transformation is
performed by maximizing the global phase mutual information. If the optimized
global phase mutual information tends to increase but does not arrive at the user
defined threshold, which implies that tuning the angle of rotation vector can no
longer recover more localized deformation, an extra anchor point is placed in
each pre-divided region for the next iterations at the higher resolution level.

When there is a need to place an extra anchor point in the misaligned region,
we seek a minimum distance constraint to avoid placing two anchor points at
the same location and to determine the distance between the extra anchor point
and the existing anchor point. The minimum distance constraint is similar to the
deformation scale, whose value determines the scale of local deformation that
can be corrected. Therefore the sub-block size used to calculate the mis-match
measure is the best choice to define the distance between any two anchor points.
We suggest that the minimum distance constraint should be smaller than the
sub-block size so that the extra anchor points can correct the local deformation
only within the sub-block.

4 Results

One volunteer dataset was used in the experiments. The CMR images were ac-
quired using a 1.5 Tesla Siemens Sonata. A 20 slice acquisition was used with a
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Algorithm 1. Adaptive Non-Rigid Multi-Modal Registration
Ensure: affine registration
Require: transform both modality images into their corresponding local
phase maps

Require: place N ≥ 4 anchor points where the maximum misalignment occurs
in the pre-divided regions, based on an initial estimate of the local
mis-match measure
for S = large σ to small σ do

for R = 0.1π to 0.2π do
Tune the rotation vector of the polyaffine transformation
Calculate the global phase mutual information

end for
if the global phase mutual information increases but is smaller than
the user defined threshold then

Add one more anchor point to the maximum misaligned region
according to the minimum distance constraint

end if
end for

280×340 mm field of view, a 1.8×1.8 mm in-plane resolution and a 7.5 mm slice
thickness with a 7.5mm gap between slices. ECG gating was used and breath-
hold commands issued via the intercom system. The short axis (SA) slices were
automatically aligned with the heart axis with one localizer sequence, using the
method presented by Jackson et al [18]. One of the cropped SA slice was arbitrar-
ily selected as the reference image. The RT3D echocardiography was acquired
using a Philips Sonos 7500. The SA slice was taken from a RT3D apical acqui-
sition. The volunteer dataset had 17 frames in one cardiac cycle. One slice from
one of the frames was visually identified to match the ECG gated end-diastole
MR reference image and the two matched to estimate the transformation para-
meters (i.e. every 104th slice from frame 1 of volunteer’s scan). The estimated
transformation was then applied to each slice of the ultrasound frames.

4.1 Global Affine Registration

The global affine registration is the special case of the polyaffine transforma-
tion, in which the image is not split into several regions; therefore the mis-
match measure is calculated across the whole image domain. In addition to the
global rotation, the affine transformation considers the translation between the
RT3DUS slice and CMR image, which is achieved by using two common land-
marks between the image pair. The landmark in the RT3DUS slice is the centre
of the maximum misaligned region. In figure 3, the identified location is marked
as the red star in the RT3DUS slice, whose Euclidean coordinate is (176, 156).
The other landmark in CMR image is the equivalent point to the one found in the
RT3DUS (this is generally easy to do in the example we have considered).
The translation vector is simply calculated as the Euclidean distance between
the two landmarks, while the rotation vector is adaptively tuned by adding a
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small increment, following an optimization of the global phase mutual informa-
tion at each iteration.

Figure 3 illustrates the registered RT3DUS slice superimposed with the CMR
image and the CMR contour for visual comparison. Although the result gets
close to the optimal transformation, there are still misalignments around the
left ventricle and the papillary muscle, which implies a need for further local
deformation to correct for the spatial difference. The value of the global phase
mutual information increases from 0.93 to 1.18 after the affine registration. By
comparison of our previous work [1], the new global affine transformation has
less parameters to optimize (the differential transformation was working on a
regular size grid of 64x64 pixels). Therefore it is very efficient to compute.

Fig. 3. Illustrating the result of the global affine registration. From left to right: the ref-
erence image (cardiovascular MR image) on, the floating image (RT3DUS volume slice)
with one anchor point (in red star) and the registered ultrasound images superimposed
by the reference image and the contour estimated by Canny edge detector.

4.2 Adaptive Non-rigid Registration

Following the affine registration and the initialization step, the adaptive non-
rigid registration starts from the coarse scale and continues to the finest scale.
In figure 4, four anchor points marked as red stars in the RT3DUS slice are
identified in the initialization step at the coarse scale (σ = 100). Three additional
anchor points marked as to blue stars are placed in the divided regions at the
next finer scale (σ = 60), according to the minimum distance constraint. At
the third and finest scale (σ = 40), only one more anchor point marked as
the yellow star has been placed in the maximum misaligned region. Although
more localized deformations can be modeled by adding more anchor points, we
propose to reduce the number of additional anchor points at each scale. This is
because some local misalignment can be well corrected by using only one anchor
point. Moreover, a large number of anchor points at the finest scale iteration
would demand expensive computation and cause “shearing” which produces an
unrealistic warped image. Therefore, after each inner loop, we recalculate the
mis-match measure and accordingly place the extra anchor points only where
the misaligned regions is not well recovered from lower scale iterations.

Figure 4 shows the registered RT3DUS slice superimposed with the CMR
image and the CMR contour at the coarse scale and the finest scale respectively.
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Fig. 4. Illustrating the result of the adaptive non-rigid registration. Left column: the
reference image and the floating image with anchor points calculated by the local mis-
match measure at scale 2 and 3. Middle columns: the registered images superimposed
by the reference image and the edge contours.

Only four anchor points have already recovered most spatial difference of the
myocardium around the left ventricle between the image pair. However, the
papillary muscle still appears off aligned. By adding extra anchor points at the
finest scale, the spatial difference of the papillary muscle is corrected to some
extent.

5 Validation

Validation of registration accuracy is a difficult task, because the ground truth
is not generally available. In cardiovascular image registration, a global measure
of registration accuracy is not really what is required; the main interest is the
target registration error in the cardiac area. Registration methods are also often
validated by using external marks, anatomical landmarks, or external fiducial
frames as gold standards and we use this method here. In our work, the anatom-
ical landmarks in cardiovascular images, such as, the conjoint of the anterior and
anterior septum, the conjoint of the septum and inferior PPM, and the APM,
were carefully identified by an experienced clinical expert in the RT3DUS slice.
The identified anatomical landmarks were registered to the CMR image as the
reference standard. The measure of the registration accuracy is defined as the
root mean square error (RMS) distance of the identified anatomical landmarks
between the registered RT3D slice and the reference standard. The results of the
registration accuracy were 2.32mm and 3.47mm for the adaptive non-rigid regis-
tration and the global affine registration respectively. Alternatively, we provide
the visual (qualitative) assessment of alignment by superimposing the registered
RT3D slice with the reference standard.
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Fig. 5. Illustrating the result of the registration accuracy. Left to right: the reference im-
age and the floating image with expert-identified landmarks; the globally affine registered
and adaptively non-rigid registered RT3DUS slices superposed by the reference standard.

6 Discussion

In this paper, a novel algorithm has been presented to solve the problem of non-
rigidly registering a pair of US and MR images. The deformation is modeled by
a polyaffine transformation. Small local deformation particular cardiac regions,
e.g. the papillary muscle between the image pair, can be recovered by adding
extra anchor points to the maximal misaligned regions. The anchor point is au-
tomatically identified by the local mis-match measure using the phase mutual
information. Adopting the local phase as the image descriptor is shown to in-
crease the accuracy of non-rigid registration in terms of the information theory
based similarity measure. In particular, the RMS TRE (non-rigid registration)
is better than the one found in related research on MR-US registration (Penney
et al. [6]), but in a very different clinical domain.

In this initial work we have assumed temporal alignment of multi-modal
frames so registration has been reduced to a static image registration problem.
For the complex motion of the heart, we expect an accurate spatial-temporal
non-rigid registration result with the polyaffine transformation. We are look-
ing at this in current work together with extending the method to RT3DUS to
multi-slice CMR registration which will be computationally more demanding but
enable correlation of 3D information between these two modalities. Challenges
here relate to the difference in spatial and temporal resolution and producing a
final method that is fast enough to be useful in clinical practice. Clinical uses of
the alignment will also be explored.
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Abstract. In this article we propose a novel method for calculating
cardiac 3-D strain. The method requires the acquisition of myocardial
short-axis (SA) slices only and produces the 3-D strain tensor at every
point within every pair of slices. Three-dimensional displacement is cal-
culated from SA slices using zHARP which is then used for calculating
the local displacement gradient and thus the local strain tensor. There
are three main advantages of this method. First, the 3-D strain tensor is
calculated for every pixel without interpolation; this is unprecedented in
cardiac MR imaging. Second, this method is fast, in part because there
is no need to acquire long-axis (LA) slices. Third, the method is accurate
because the 3-D displacement components are acquired simultaneously
and therefore reduces motion artifacts without the need for registra-
tion. This article presents the theory of computing 3-D strain from two
slices using zHARP, the imaging protocol, and both phantom and in-vivo
validation.

1 Introduction

Magnetic resonance imaging (MRI) of cardiac regional function has gained a
wide acceptance in the diagnosis of cardiac diseases that are related to abnor-
mal cardiac mechanics. Regional cardiac imaging methods, e.g., MR tagging [1,2]
and DENSE [3], encode 1-D or 2-D in-plane displacement components. These
displacements are used to calculate in-plane strain. Harmonic phase (HARP)
imaging[4,5] is a fast method to acquire and calculate in-plane displacement and
strain from tagged data. Strain-encoding (SENC) imaging is used to directly im-
age the through-plane strain of a particular slice. Extending strain quantification
from 1-D or 2-D to the quantification of the 3-D strain tensor for each material
point has been a challenging task because of the prohibitively long scan times
and its susceptibility to mis-registration caused by patient motion, breathing,
and heart rate variation.

A quick but incomplete 3-D strain quantification is done by acquiring SENC
and tagging for the same imaged slice. The technique is less accurate because
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both tagging and SENC are insensitive to through-plane tilting and SENC is
not a slice-following procedure. Other methods proposed applying tagged MRI
to an SA slice and as many LA slices as possible in order to produce 3-D strain
at the intersection lines of the SA and LA slices[6,7,8,9,10]. Three-dimensional
displacement tracking from a single slice (zHARP) [11,12] has been recently
developed for simultaneous tracking of the 3-D displacement of every material
point within the acquired slice.

In this article, we propose a method that overcomes the limitations of the
previous 3-D strain quantification methods. The method produces the full 3-D
strain tensor for every material point in N slices for every N + 1 zHARP par-
allel SA slices. A complete 3-D strain tensor covering the whole left ventricle is
therefore possible in as few as fourteen breath-hold scans1. Results from a com-
pressible phantom and in-vivo experiments show a strong correlation between
the proposed method and a conventional 3-D method both visually and from
linear regression and Bland-Altman statistics.

2 Background

2.1 Definitions

A region S of tissue is assumed to be the reference configuration of a moving
object in Euclidean space E . Points p ∈ S are called material points. A motion
of S is a class C 3 function

X : S × R → E
with X(·, t). For each fixed time t, X is a deformation of S. The spatial position
occupied by the material point p at time t is given by

x=X(p, t), where x ≡ [x, y, z]T (1)

and the region of space occupied by the object at time t is

St = X(S, t) .

At each t, X(·, t) is a one-to-one mapping of S onto St; hence it has an inverse
P(·, t) : St → S such that P(X(p, t)) = p and X(P(x, t)) = x. The spatial
vector u(·, t) : St → E

u (x, t) ≡ [ux , uy , uz ]
T = x − P (x, t),

is called the spatial (Eulerian) displacement vector and ∇u is called the displace-
ment gradient and is given by

∇u (x, t) =

⎛

⎜⎝

∂ux

∂x
∂ux

∂y
∂ux

∂z
∂uy

∂x
∂uy

∂y
∂uy

∂z
∂uz

∂x
∂uz

∂y
∂uz

∂z

⎞

⎟⎠ (2)

The deformation gradient F is defined by

F−1 = (I − ∇u) . (3)
1 Using seven zHARP slices. Each of them is acquired in two breath-hold scans.
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2.2 zHARP Pulse Sequence

zHARP is an MRI tagging pulse sequence that is an extension of slice-following
CSPAMM (SF-CSPAMM)[13,14]. Instead of only encoding the in-plane displace-
ment of the imaged slice as it is the case in SF-CSPAMM, zHARP also encodes
the through-plane displacement, which allows tracking the 3-D path-lines of any
point in the image plane. As shown in Fig. 1, zHARP is a segmented k-space
pulse sequence that requires 4R heartbeats where R is the number of segments
per cine data set. Each cine data set contains Q time-frames. The four cine
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Fig. 1. Single-slice zHARP pulse sequence

data sets are tagged with vertical cosine, vertical minus cosine, horizontal co-
sine, and horizontal minus cosine tagging patterns, respectively. A gradient Genc

in the slice-select direction is turned on before the acquisition with positive and
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negative polarities in the vertical and horizontal tagging, respectively. After the
complex addition of the vertical and the horizontal data sets, separately, we end
up with the two data sets

Iv (x, y, t) ≈ ρ (x, t) ejϕe(x)e jκz cos (ω (x − ux (x, t))) ,

=
ρ(x,t)

2

[
ej(ϕe+κz+ωux−ωx) + ej(ϕe+κz−ωux+ωx)

] (4)

Ih (x, y, t) ≈ ρ (x, t) ejϕe(x)e−jκz cos (ω (y − uy (x, t))) ,

=
ρ(x,t)

2

[
ej(ϕe−κz+ωuy−ωy) + ej(ϕe−κz−ωuy+ωy)

] (5)

where ρ is the spin density, ω is the tag frequency, κ ≡ γGenc is the z-encode
frequency, γ is the gyromagnetic ratio, and ϕe is the artefactual phase caused
by susceptibility and general field inhomogeneity.

2.3 zHARP 3-D Displacement Extraction

The Fourier transform of each of Iv and Ih consists of two distinct harmonic
spectral peaks and no peaks at the origin. Therefore, applying HARP filtering
to these four peaks produces four distinct HARP phases

φA ≡ ϕe + ϕz − ϕx

φB ≡ ϕe + ϕz + ϕx

φC ≡ ϕe − ϕz − ϕy

φD ≡ ϕe − ϕz + ϕy

where ϕx, ϕy, and ϕzare the elements of the the 3-D harmonic phase vector map
Φ, defined as

Φ (x,t) ≡

⎛

⎝
ϕx

ϕy

ϕz

⎞

⎠ = W

⎛

⎝

⎛

⎝
ω 0 0
0 ω 0
0 0 κ

⎞

⎠

⎛

⎝
ux

uy

uz

⎞

⎠

⎞

⎠ . (6)

The operator W (·) is the wrapping function

W (θ) = mod (θ + π, 2π) − π .

Upon solving for ϕx, ϕy , and ϕz, we get

ϕx = (φB − φA) /2 ,

ϕy = (φD − φC) /2 ,

ϕz = [(φA + φB) − (φC + φD)] /4 .
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3 Theory

3.1 Three-Dimensional Strain

The Eulerian strain tensor E (x, t) is defined by[15]

E (x, t) ≡

⎛

⎝
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞

⎠ ,where εij = εji .

It is related to the deformation gradient F by

E =
1
2

[
I −

(
F−1)T

F−1
]
. (7)

3.2 zHARP 3-D Displacement Gradient

Restoration of the actual displacement u (x, t) requires a sophisticated
unwrapping algorithm that is not necessary for strain calculation. Instead ∇u
is readily computed using

∇u (x, t) =

⎛

⎝
ω−1 0 0
0 ω−1 0
0 0 κ−1

⎞

⎠ ∇�Φ (x, t) (8)

where

∇�Φ (x, t) ≡

⎛

⎝
∇�ϕx

∇�ϕy

∇�ϕz

⎞

⎠

and

∇�ϕk ≡
{

∇ϕk ‖∇ϕk‖ ≤ ‖∇W (ϕk + π)‖
∇W (ϕk + π) otherwise , k = x, y, z. (9)

3.3 zHARP 3-D Strain Algorithm

Given two parallel zHARP slices, the following steps are used to calculate the
pixel-wise 3-D strain tensor E (x, t).

Step1. Extract the the 3-D harmonic phase vector maps Φ
(
x(1), t

)
and Φ

(
x(2), t

)

on an equidistant mesh of points of size N covering the myocardium region-
of-interest where

x(n) ≡ x(n) (i, j) ≡

⎛

⎝
x(i)

y(j)

z(n)
(
x(i), y(j)

)

⎞

⎠ , 1 ≤ i, j ≤ N
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Step2. Given Φ
(
x(1), t

)
and Φ

(
x(2), t

)
, calculate ∇�Φ

(
x(1.5), t

)
as in Eq. (9)

using finite difference scheme such that

∇ϕk

(
x(1.5), t

)
=

1
2

[
∇ϕk

(
x(1), t

)
+ ∇ϕk

(
x(2), t

)]

where

∇ϕk

(
x(n), t

)
≈

⎛

⎝
ϕk

(
x(n) (i + 1, j)

)
− ϕk

(
x(n) (i, j)

)

ϕk

(
x(n) (i, j + 1)

)
− ϕk

(
x(n) (i, j)

)

ϕk

(
x(2) (i, j)

)
− ϕk

(
x(1) (i, j)

)

⎞

⎠
T

Step3. Compute E (x, t), the Eulerian strain tensor, by substituting the output
of Eq. (9) into Eqs. (8) and (7).

3.4 3-D Strain Tensor Tracking

The strain tensor E (x, t) is calculated pixel-by-pixel in the spatial coordinate
system. To track the 3-D strain tensor of a specific material point p the following
steps are used:

Step1. Compute E (x, tq) as described in Sec. 3.3 at all cardiac phases tq, 1 ≤
q ≤ Q

Step2. Consider a given material point p from the myocardium at the cardiac
phase t12. The path-line or the trajectory T (p), defined as

T (p) ≡ {(x, tq) |P (x, tq) = p, 1 ≤ q ≤ Q} , (10)

is calculated by tracking p throughout the entire cardiac cycle using zHARP
tracking algorithm [11].

Step3. Compute the 3-D strain time-profile E (T (p))

E (T (p)) ≡ {E (x, tq) | (x, tq) ∈ T (p)} . (11)

This is done using bi-linear interpolation of E (·, tq) of the four closest points
to (x, tq).

4 Methods

The zHARP pulse sequence was implemented on a Philips 3.0T Achieva MRI
scanner (Philips Medical Systems, Best, NL). A six-channel phased array cardiac
receiver coil is used in the experiments. Channels are distributed between the
anterior and the posterior sides surrounding the chest for human subjects and
35 cm apart for phantom experiments.

2 In general, any time frame tq can be chosen as the reference time frame. To simplify
mathematical manipulation, t1 is selected here as such.
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4.1 Phantom Experiments

The goal of these experiments was to show that it is possible to measure 3-D
strain from parallel image slices.

Setup. A gel phantom was built using Sylgard� 527 Silicone Dielectric Gel
(Dow Corning, Midland, Michigan) with 33% of material A and 67% of material
B which experimentally possesses magnetic properties (T1 and T2) and elasticity
similar to in-vivo muscular tissues.

As shown in Fig. 2, the de-
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Fig. 2. Phantom Setup in the original and the full-
compression states

formable phantom had a rectan-
gular shape (70 × 50 × 60mm)
and was tightly contained in a
rigid plastic box except on one
side where there was an air-bag
and from the top where the gel
phantom was allowed to bulge
in the y-direction when it got
compressed. The air-bag was
made to periodically inflate and
deflate in the x-direction at a
fixed rate of 30 cycles/min. A
TTL pulse simulating the
R-wave of the heart was gener-
ated at the beginning of each compression cycle in order to trigger the air-bag
inflation and the MRI scanning simultaneously.

Data Acquisition. Two phantom experiments were done in which the images
were acquired in three orthogonal orientations. The imaging orientations are
the sagittal, coronal, and the axial planes. Sagittal planes are orthogonal to the

Fig. 3. Strain tensor validation scheme in phantom and in-vivo
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x-direction are hence called short-axis (SA) planes. Axial and coronal planes are
orthogonal to the SA plane and hence called long-axis (LA) planes. Ten con-
tiguous SA zHARP slices were acquired with κ = 2π

33 rad/mm, FOV=160 mm,
and slice-thickness=8 mm. For the validation of the through-plane strain com-
ponents, twenty contiguous LA SF-CSPAMM slices were acquired (10 axial and
10 coronal).

Analysis and Validation. In each SA slice, a fine mesh of points was created
covering the whole phantom area in the slice. The 3-D strain tensor E (x, t)
was then calculated and tracked for each point in the mesh in all the SA slices
using zHARP as described in Sec. 3.4. For validation, the intersection region
between every SA slice and LA slice was divided into three segments. The 3-
D strain in each segment is calculated as the average 3-D strain from all the
points in the segment. The segmental though-plane strain (calculated from SA
slice) was again calculated from the corresponding LA slice using conventional
HARP (see Fig. 3). As an example of the method’s performance, linear regression
and Bland-Altman plots were generated comparing the through-plane strain
component εzz as calculated from SA and LA slices using zHARP and regular
HARP, respectively.

4.2 In Vivo Experiments

Three or four SA zHARP slices were acquired from basal to apical position.
Slices were 8 mm thick and 8 mm spaced (center-to-center) with a 35 ms tem-
poral resolution, a FOV of 300 mm and 15 cardiac phases. Four radially-spread
LA SF-CSPAMM were acquired for validation. From every two contiguous SA
slices, a mesh of points were created. The strain tensor E (x, t) was calculated
and tracked throughout the cardiac cycle. The intersection regions between SA
and LA slices were used for comparison and validation similar to the phantom
procedure.

5 Results

5.1 Phantom Results

Images of the SA and LA slices are shown in Fig. 4(a,b). Notice that the com-
pression is shown in the SA slice as a bulging of tag lines while in the LA slice it
is shown as in-plane narrowing of the tag lines. As shown in 4(c,d), εzz in the SA
slice agrees with εxx from the LA slice at the intersection line (shown dotted).
The complete list of the 3-D strain tensor components is shown in Fig. 5. Notice
the bulging of the phantom is represented in the SA slice as stretching in the εxx

and εyy components. The 3-D position and tracking of representative SA and
LA slices are also shown in Fig. 6. The agreement is further shown quantitatively
using linear regression and Bland-Altman plots (Fig. 7).
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Fig. 4. εzz in a SA slice and the corresponding εxx in an orthogonal LA slice. The
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(b) in a SA slice and the corresponding in an LA slice
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Fig. 6. 3-D representation of εzz and path line tracking in a compressible phantom SA
slice and the corresponding εxx in a LA slice

5.2 In Vivo Results

The 3-D strain tensor components in a basal SA are shown in Fig. 8. A 3-D
representation of εzz in the SA slice and the corresponding εxx in the LA slice are
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Fig. 9. 3-D representation of εzz in the SA slice and the corresponding εxx in a LA slice

shown in Fig. 9. Finally, the quantitative comparison shows a strong correlation
(R¿0.85) between εxx, εyy, εzz calculated using zHARP and conventional HARP
(Fig. 10).
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6 Discussion and Conclusion

We developed a cine multi-slice zHARP imaging scheme dedicated for fast 3D
strain tensor quantification using only SA slices with the result being a point-by-
point 3-D displacement and 3-D strain tensor maps. In addition, the sequence
follows the exact excited slice and therefore the measured quantities are proper-
ties of the original material point not just the apparent point.

The scheme has potential clinical application when there is needs for full
heart scan coverage and 3-D functional quantification. With the rich amount of
information, another potential scientific application is in 3-D cardiac modeling
where accurate modeling requires as much information as possible given that the
registration error is minimized compared to conventional imaging methods that
acquire multi-orthogonal slices. In addition, combining point tracking with 3-D
strain measurement allowed the display of the strain of every point as it moves
throughout the cardiac cycle.

The scheme was validated against typical SF-CSPAMM approach. The in-
plane and through-plane strain components compare well with that measured
from conventional tagging in both compressible phantom and in-vivo. Since no
LA slices are required, the scheme has the potential to significantly abbreviate
a 3D cardiac strain imaging as compared to more conventional approaches
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Abstract. Tracking of tubular elongated structures is an important goal
in a wide range of biomedical imaging applications. A Bayesian tube
tracking algorithm is presented that allows to easily incorporate a priori
knowledge. Because probabilistic tube tracking algorithms are computa-
tionally complex, steps towards a computational efficient implementation
are suggested in this paper.

The algorithm is evaluated on 2D and 3D synthetic data with differ-
ent noise levels and clinical CTA data. The approach shows good perfor-
mance on data with high levels of Gaussian noise.

Keywords: Bayesian tracking, efficient, high noise, CTA.

1 Introduction

Tracking of tubular elongated structures is an important goal in a wide range of
biomedical imaging applications. For example, vessel tracking in medical images
has received considerably attention, as it can be used as a preprocessing step
towards stenosis evaluation and grading, by generating multi-planar reformatted
images [1]. For a review of several vessel tracking methodologies, we refer to
papers of Kirbas and Quek [2], Suri et al. [3], and Florin et al. [4].

State-of-the-art methods to track elongated structures use a priori knowledge
of the tubular appearance in the image and the geometry of the tube. Appearance
information include zeroth, first and second order image intensity information
(e.g. in [5]) and geometric measures include the minimal surface curvature of the
tracked tube (see, for example, [6]).

Until recently only deterministic approaches were presented, which take only
one assumption of the track configuration into account during tracking. The path
is found by updating the track to the most probable configuration at each itera-
tion of the method. This may lead to situations where imaging data that locally
does not meet the a priori assumptions, e.g. owing to pathologies, corrupted or
missing data, can steer the track to incorrect configurations.

By taking into account multiple hypotheses during tracking this problem can
be circumvented. Probabilistic approaches to track elongated structures using
Monte Carlo sampling (particle filtering)[4,7] have been presented in order to

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 74–85, 2007.
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search globally for the path that reflects the priors as good as possible. It has been
reported that these methods can better overcome corrupted and missing data
than deterministic approaches. Because the probabilistic methods track multiple
hypotheses at once, they are computationally more complex than deterministic
approaches.

The novelty of the current paper is twofold. First, it presents a Bayesian
tracking approach which allows to easily incorporate a priori knowledge. It is
shown that this approach enables tracking of tubular structures, even in the case
of very high noise levels. Second, to overcome the computational complexity of
probabilistic tracking algorithms, a computationally efficient implementation is
proposed.

2 Bayesian Tracking of Elongated Structures

In this section the iterative Bayesian tracking approach is presented. We will
first discuss the tubular model that we employ. Subsequently we will describe
the observation model, hypotheses prediction and update step.

2.1 Tube Model

Out tracking method will consider a tube as a series of tube segments. A tube
segment at iteration t is described by its location pt = (xt, yt, zt)T , orienta-
tion vt = (θt, φt), radius rt, and average intensity It. Thus each tube segment
is characterized by a state vector xt = (pt, vt, rt, It)T . This results in a tube
configuration described by x0:t � {x0, . . . ,xt}, see Figure 1(a).

With every tube segment we associate a region of interest, defined by the
components pt, rt, and vt of xt (see Fig. 1b). Subsequently, we let zt denote the
image measurements within this ROI. Hence, all measurements corresponding
to tube x0:t are denoted with z0:t. As an example, the image intensity within the
tube and outside the tube (Iin and Iout) are computed, using nearest neighbor
interpolation, from zt, see Figure 1(b).

2.2 Observation Model

In our observation model, we assume tubes to be bright relative to their back-
ground. Given the tube segment xt and the measurements zt, the likelihood of
the measurements given the state xt, p(zt|xt), is constructed as follows:

p(zt|xt) ∝ p(zt|pt, vt, rt, It) = p(Iin, Iout)N (Iin|It, σ
2
ς ), (1)

where

p(Iin, Iout) =

{
( Iin−Iout

Ic
)s, Iin > Iout,

0, Iin ≤ Iout.
(2)

with Ic and s contrast regulating parameters and N (.|μ, σ2) a real normal dis-
tribution with mean μ and variance σ2. The term N (Iin|It, σ

2
ς ) describes the
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Fig. 1. Figure (a) shows a part of the tube configuration x0:t. Figure (b) demonstrates
how the values Iin and Iout are obtained from patch zt. The prediction of new tubular
segments, as explained in Section 2.3, is presented in Figure (c).

likelihood that the measured intensity Iin resembles the intensity It, which is
predicted from the previous iterations using the Kalman filter described in Sec-
tion 2.4.

2.3 Prediction

Using the Bayesian rule, the probability density function (pdf) p(x0:t|z0:t), that
describes the posterior probability of the tube configuration, having all the ob-
servations up to iteration t can be estimated with the following recursion [8]

p(x0:t|z0:t) ∝ p(xt|xt−1)p(zt|xt)p(x0:t−1|z0:t−1), (3)

where the transition prior p(xt|xt−1) is assumed to be Markovian (xt only de-
pends on xt−1 and not on any other past states) and is factorized as

p(xt|xt−1) = p(pt, vt|pt−1, vt−1)p(rt|rt−1)p(It|It−1), (4)

The likelihood p(zt|xt) relates the conditionally independent measurements at
iteration t to the state xt, as defined in equation (1).

At each iteration step, we represent the probability of the tube configuration
with a set of Nt weighted states X0:t = {xi

0:t, w
i
t}Nt

i=1, thus

p(x0:t|z0:t) =
Nt∑

i=1

wi
tδ(x0:t − xi

0:t), (5)

where δ(·) is the Dirac delta function and the weights are normalized such that∑Nt

i=1 wi
t = 1.

In each iteration we use the variance of the weights wi
t to determine how

many and which hypotheses should be kept in the next iteration. The Ne most
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probable hypotheses are kept according to the weights wi
t, i ∈ {1, ..., Nt}, where

Ne =
1

∑Nt

i (wi
t)2

(6)

From each of these states, N i
t = nint(wi

tN) new states are created, where nint(.)
denotes a nearest integer round and N is pre-defined and describes the maxi-
mum number of hypotheses created. This approach will keep only the relevant
hypotheses and effectively distribute them according to the described pdf.

2.4 Update

In the update step, prior knowledge on the curvature of the centerline, the vari-
ance of the tube radius along the centerline, the intensity variance in the tube
and the contrast-to-noise ratio in the image are incorporated. This is achieved
as follows.

The formation of the N i
t new hypotheses xj

t , j = {0, ..., N i
t − 1}, at iteration

t from the previous hypothesis xi
t consist of a transition to a new position pt,

which is deterministically defined by

pj
t = pi

t−1 + Rz(θt−1)Ry(φt−1)Rz(ϑ
j
t )Ry(ϕj

t )(0, 0, lit)
T (7)

where Rz(.) and Ry(.) are rotation matrices around the z- and y-axis [9]. The
length of a tube segment lit depends on the radius of the tube ri

t−1 and a prede-
fined parameter α.

lit =
ri
t−1

tan(α)
(8)

Figure 1(c) gives a schematic explanation of the transition in eq. (7). The angles
(ϑj

t , ϕ
j
t ) describe a point in the local spherical coordinate system with the z-axis

orientated in the direction of vi
t−1 and origin at pt−1. Therefore, the angle ϕj

t

is equal to the enclosed angle between vt−1 and vt. The two angles (ϑj
t , ϕ

j
t ) are

constructed with an algorithm that uniformly distributes points on a sphere, as
described by Saff and Kuijlaars [10]. This algorithm is used to distribute the N i

t

new hypotheses uniformly on the half sphere in front of pt−1 oriented in the di-
rection of vt−1. In this case, the transition density p(pt, vt|pi

t−1, v
i
t−1) is given by

p(pt, vt|pi
t−1, v

i
t−1) =

Ni
t−1∑

j=0

ω̃jδ(pt − pj
t ) (9)

where the weight ω̃j of a given enclosed angle is given by

ω̃j =
ω(φj)

∑Ni
t

k=0 ω(φk)
(10)

ω(ϕ) = N(ϕ|0, σ2
ϕ) (11)

with σϕ being a pre-defined parameter.
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The transition of rt and It is assumed to be Markovian and described by

rt = rt−1 + ηt, (12)

It = It−1 + ξt (13)

where ηt and ξt are uncorrelated Gaussian random variables with variances σ2
r

and σ2
I , respectively. In this case

p(rt|rt−1) = N (rt|rt−1, σ
2
r ) (14)

p(It|It−1) = N (It|It−1, σ
2
I ) (15)

The observation model for the intensity It is a linear (conditional on the rest
of the state parameters) Gaussian model given by

Iin = It + ςt (16)

where ςt ∼ N (ς|0, σ2
ς ). The model (13),(16) is a linear Gaussian model that can

be solved analytically using the Kalman filter [8]

It|t−1 = It−1, It = It|t−1 + Kt(Iin − It|t−1),

Pt|t−1 = Pt−1 + σ2
I Pt = (1 − Kt)Pt|t−1

where Pt denotes the estimated variance of It and the Kalman gain Kt =
Pt|t−1

Pt|t−1+σ2
ς
.

For each prediction Ij
t|t−1 of the Kalman filter for the intensity Ii

t−1 we esti-

mate the radius of the tube segment rj
t as follows

r̂j
t = argmax

rt

p(zt|pj
t , φ

j
t , rt, It|t−1)p(rt|rt−1) (17)

Then, the Kalman update is performed for the intensity It with the new mea-
surement Iin. If no a priori knowledge about the image intensity distribution is
available, the Kalman filter is not used in the first iteration, then Ii

1 is set to Iin.

3 Implementation Details

Each of the possible new states xj
t is described by a relative angle vj

t and a
radius rt, where rt ∈ (0..R), with R = rt−1 + σr being the maximum evaluated
tube radius.

For each voxel in a patch around pi
t−1 we can easily calculate to which angle

and radius combination it belongs. Using these measurements it is possible to
quickly calculate for all the possible N i

t ×R combinations the values Iin and Iout.
The advantage of this procedure is that each voxel in the image is accessed only
once per state xi

t−1 and several redundant computations are avoided, which has
computational benefits.
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4 Evaluation

In this section, the developed probabilistic tracking algorithm is evaluated on
2D and 3D synthetic data, simulated computed tomography angiography (CTA)
data and real CTA data.

4.1 Parameters

For all the evaluations we used fixed parameter settings that were empirically
selected based on experiments on synthetic data not belonging to the test set.
In these studies it was observed that the method was not sensitive to parameter
changes. The following parameter settings were used, N = 500, Ic = 1.0, s = 1.0,
σ2

ϕ = 1.5, σ2
r = 2, σ2

I = 1000, σ2
ς = 10, and α = 0.25.

4.2 Initialization

The algorithm is initialized with a seed point and a radius estimation. The set
of state vectors X0 contains two state vectors, with locations p0

0 and p1
0 equal to

the seed point and radii r0
0 and r1

0 equal to the estimated radius. The orientations
are initialized with v0

0 = (0, 0) and v1
0 = (π, 0).

4.3 2D Synthetic Data

In order to investigate the accuracy of the developed method as a function of
image noise, a quantitative study on 2D synthetic data was carried out.

Rose has introduced a distinguishability measure MD = CNR
√

A in [11],
where CNR is the ratio of the contrast between an object and its background
and the standard deviation of the noise in the image and A denotes the amount
of voxels of the object.

For our experiments, four random tubes were created with radii and dis-
tinguishability values of respectively r = {2.5, 5.0, 7.5, 10} pixels and MD =√

2{0.5, 1.0, 1.5, 2.0} pixels, resulting in 64 different test images.
These synthetic tubes were created by fitting 3rd order splines through five

randomly selected points in a 2D grid of 512×512 pixels. Tubes were excluded
if a part of the tube had a distance to other parts of the tube, not being direct
neighbors, of less than 100 pixels or if the maximum curvature of the tube
centerline was higher than 0.04 pixels−1. See Figure 3(a) for an example tube.

The tubes were tracked automatically and manually which allows comparison
between the obtained accuracy and the human capabilities of tracking tubes in
noisy data. Four observers each annotated centerlines in 16 of the 64 images. The
different radii and noise levels were equally distributed over the four observers.

In the automatic tracking, the radius was initialized at the average size of the
synthetic tubes evaluated, being 6.25 pixels. It is believed that this simulates
typical a priori knowledge of an expected tube size.

As an evaluation criterion we determine the root mean squared distance
(RMSD) between the automatically or manually tracked tube and the centerline
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of the golden standard. This number is divided by the radius of the tube in order
to present the accuracy of tracking relative to the tube size (RMSD/r).

Only distances for paths where at least 95% of the track is found at a distance
within twice the radius of the golden standard are taken into account. In this
way the ability of tracking the tube and the accuracy of tracking is presented.

4.4 3D Synthetic Data

A 3D synthetic evaluation was carried out to evaluate the performance of the
algorithm for tracking 3D tubes with varying radius and high image noise. A 3D
synthetic tube with varying radius from r = 4 voxels to r = 10 voxels is created
and Gaussian noise is added, resulting in a CNR value of 0.25 and thereby
distinguishability measures of MD = 1.8 to MD = 4.4 voxels. The algorithm was
initialized with a seed point at the beginning of the tube and radius was set to 7
voxels. The performance of the algorithm is evaluated by measuring the RMSD
to the centerline of the synthetic tube.

4.5 Simulated CTA Data

To simulate clinical data with high noise, a computed tomography angiography
(CTA) artery segmentation was manually extracted from CTA data. The seg-
mentation was given a contrast of 200 intensity units to its background, similar
to the contrast of arteries in CTA. This segmentation was smoothed with a
Gaussian kernel with standard deviation of 1 voxel, similar to the point spread
function of CT. Afterward Gaussian noise was added, with a standard devia-
tions of 240 intensity units, approximately eight times higher than the clinical
noise value of 30 intensity units. The algorithm was initialized with a seedpoint
at the approximate beginning of the tube and the radius was set to twice the
(approximate) average radius of the simulated vessel. The RMSD difference to
a manual tracked centerline is used as a performance measure.

4.6 Tracking in Real CTA Data

In order to demonstrate the applicability of the algorithm on real data, we have
used the algorithm to track two arteries in a CTA dataset. We used a datasetwhere
the imaged patient had a chronic total occlusion, meaning that an artery was
blocked and (almost) no blood was passing the point of occlusion. Such a dataset
is problematic for conventional deterministic algorithms, because of the lack of
local image contrast. The algorithm was initialized by putting a seedpoint in the
vessels and setting the radius to approximately twice the radius of the vessel.

5 Results

5.1 2D Synthetic Data

The results of the evaluation on 2D synthetic data are shown in Figure 2 and
Table 1. Figure 2 shows the relation between the accuracy of the manually and
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Table 1. Evaluation results for the evaluation with 2D synthetic data. A tube is found
if at least 95 percent of the length of the path was tracked at a distance to the golden
standard of less than two times the radius of the tube. For tubes that were found both
manually and automatically, the root mean squared difference (RMSD) and the root
of the average of the squared ratio between distance and radius RMSD/r is shown.

Manual Automatic
MD√

2
#found RMSD RMSD/r #found RMSD RMSD/r

0.5 14/16 3.12 0.40 5/16 2.85 0.39
1.0 16/16 1.37 0.25 16/16 1.72 0.31
1.5 16/16 1.11 0.21 16/16 1.60 0.30
2.0 16/16 1.05 0.19 16/16 1.52 0.28

automatically tracked paths. Table 1 shows the performance of the manual and
automatic trackings, for the four different distinguishability measures.

For the automatically tracked path that had an overlap of less than 95%, the
overlap was always less than 45%. Two of these tracks were also not found man-
ually with an overlap of at least 95% (respectively 85% and 88%). An example
of the input data and the automatic tracking is presented in Figure 3.

5.2 3D Synthetic Data

The algorithm tracked the full length of the path in the 3D synthetic tube. The
RMSD to the golden standard was 2.3 voxels. Figure 4 visualizes this result.
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Fig. 2. Scatter plot demonstrating the relation between the accuracy, measured in
RMSD/r, of the manually and automatically tracked tube centerlines. The different
symbols denote different radii (♦ = 2.5, � = 5.0, © = 7.5, � = 10.0, all in voxels),
and different colors denote different noise levels.
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(a) (b) (c)

Fig. 3. An example of the data and results of the 2D synthetic evaluation. Figure (a)
is a randomly created tube with radius of 5 voxels and 200 intensity units contrast.
Figure (b) is the image after Gaussian noise with a standard deviation of 894 was
added, resulting in CNR = 0.224 and Md = 0.5

√
2. Figure (c) shows the tracking

result of the algorithm.

5.3 Simulated CTA Data

The automatically found track in the simulated CTA dataset was found with
a RMSD of 1.7 voxels to the manually annotated reference standard. Figure 5
shows the simulated CTA dataset, found path and reference standard.

5.4 Clinical Examples

The two clinical examples are shown in Figure 6. Both trackings were visually
evaluated and found to be well within the boundary of the vessel.

(a) (b)

Fig. 4. A demonstration of tracking with the developed algorithm of a 3D synthetic
tube with radius varying between 5 and 10 voxels and CNR of 0.25. In (a) the tracking
result in 3D is shown with the tube without noise and a slice of the volume with noise.
(b) shows the noisy slice in 2D.
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(a) (b)

Fig. 5. (a) An automatically found track (shown with arrows) in a simulated CTA
dataset displayed together with the simulated dataset without noise, manual reference
standard (white dots), and a slice from the dataset with noise. (b) shows the slice with
noise in 2D.

(a) (b)

Fig. 6. Examples of clinical applications of the probabilistic tracking algorithm. (a)
shows a tracked right coronary artery in a CTA dataset. In (b) it is shown that an
artery with a chronic total occlusion (CTO) in a CTA dataset is successfully tracked.

6 Discussion

The evaluation on 2D synthetic data showed that the algorithm was capable of
tracking tubes with a distinguishability measure MD of 1.4 with accuracies that
were in the same order of magnitude as the tracking results of the human observers.
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As a reference for values of MD we would like to refer to [5] and [12] for
respectively tube enhancement and tracking. In [12] it is reported that straight
tubes were successfully enhanced at MD > 5.3. The values presented in [5] are
more difficult to compare, because varying tube radii were used, but indicative
values can be obtained from this article.

The algorithm is also applied to 3D synthetic data (with a CNR of 0.25) and
simulated high noise CTA data. Both tracks were found automatically with a
RMSD of approximately 2 voxels to the reference standard. Furthermore, track-
ing results in real CTA data are presented, to demonstrate the clinical applica-
bility of the proposed algorithm. The accuracy of the method is sufficient for
using it as a first processing step in automated vessel quantification techniques.

Because probabilistic tube tracking algorithms are computationally complex,
several computational improvements are suggested in this paper.

The development of automatic stopping criteria, bifurcation detection, and a
comparison with existing deterministic and probabilistic algorithms are subject
to future work.

The results are already promising for a wide variety of applications, but it
should be noted that when using the presented algorithm for a specific appli-
cation more a priori knowledge can be incorporated, such as expected intensity
distributions and more specific observation models, and thereby probably im-
proving the results.

7 Conclusion

A probabilistic tube tracking algorithm is presented in this article. The algorithm
was evaluated on 2D synthetic data and tubes with CNR

√
radius = 1.0 were all

successfully tracked with accuracies that were in the same order of magnitude
as the tracking results of the human observers. Furthermore, the approach was
applied, with good performance, to 3D synthetic and clinical data.
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Abstract. Evolutionary schemes based on the level set theory are ef-
fective tools for medical image segmentation. In this paper, a new vari-
ational technique for edge integration is presented. Region statistical
measures and orientation information from ramp-like edges, are fused
within an energy minimization scheme that is based on a new interpre-
tation of edge concept. A region driven advection term simulating the
edge strength effect is directly obtained from this minimization strategy.
We have applied our method to several real Magnetic Resonance Angiog-
raphy data sets and comparison has been made with a state-of-the-art
vessel segmentation method. Presented results indicate that using this
method a significant improvement is achievable and the method can be
an effective tool to extract vessels in MRA intracranial images.

1 Introduction

Magnetic Resonance Angiography (MRA) is increasingly used to provide vol-
umetric information of vascular system. Accurate assessment of MRA images
requires that the vessel structures to be extracted from MRA data sets. Cur-
rently, a number of techniques have been developed for vessel segmentation based
on the advanced level set evolutionary methods. Lorgio et al [1] has proposed
CURVES using image gradient strength information, and the surface minimum
curvature as the smoothing term. Also capillary active contours is invented by
Yan et al. [2], a method that is based on the capillary force acting on the free
fluid surface through a capillary tube. In [3], based on the natural continuity of
vessel a shape prior is introduced that forces the surface to expand anisotrop-
ically so that it can pass over small noise speckels. A shape prior has been
introduced in [4] for minimizing the leakage from noisy edges. Despite of rela-
tive success from some of these methods, segmentation of long thin structures is
still considered as a delicate task. Edge intensity based methods fail to capture
elongated low contrast structures well. Ramp-like pattern of edge observed in
many non-contrast agent vascular imaging techniques, such as phase contrast

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 86–97, 2007.
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and time-of-flight MRA data sets, prevents the custom geodesic active contours
model to fit the problem effectively. On the other hand, gradient information
inside the vessels is rather week and even gets singular. In this paper, based on
textured regional measures, such as mean value, a new“statistical” interpreta-
tion of edge is presented. To obtain the optimum performance, it is combined
with flux maximizing framework [5], to take the advantage of directional infor-
mation. By this means, statistical information from both regions are fused into
orientation information available on the border of object.

1.1 Related Work

In a related work to our algorithm, a level set method is introduced by Vasilevsky
[5] that integrates the directions of gradient vectors into the evolution equation
so that the gradient flux through the evolving curve is maximized. Since esti-
mation of flux requires that the divergence of image to be calculated, this may
be problematic at locations where the image gradient is becoming singular, such
as blood vessels. Therefore rather than explicitly calculating the divergence, a
multi-scale method is used. This can be slow and needs a prior knowledge of
the scale of the vessel. In another closely related paper for segmentation of thin
structures, a combinational method is proposed by Gazit et al.[6], using Haralik
edge detector and Chan-Vese minimal variance functional and geodesic active
contours [7]. In their work, minimization of topological variation inside the ves-
sels needs the second order of image intensity derivations to be computed. This
can be singular inside the vessels. Also, their proposed functional still relies on
Geodesic active contours model to provide advection term. We show that, in-
formation provided by Chan-Vese model can be effectively used to regularize
“edge areas”. Our new energy functional mimics the geodesic active contours
model by providing a new advection term driven by the statistical information
obtained from both regions. Update algorithm of regional parameters is unique
and benefits from the edge information. By this means, we have also eliminated
using the geodesic active contours.

2 Formation of Energy Functional

Assume for a given open region D, the evolving surface is represented as the
zero level of the level set function φ(x) where φ(x) < 0 for inside of the object,
and φ(x) > 0 for outside. H(x) is representing Heaviside function such that
H(x) = 1 if x ≥ 0 otherwise H(x) = 0. Also δ(x) = d

dxH(x) is the Dirac delta
function. Further, we assume that I(x) : Ω → [0, 1] is a grey level given image
that the object of interest appears brighter than background

2.1 Statistical Edge Detector

In this section based on a new definition of edge, we develop optimization func-
tional. The distance of a point from a set is a general concept. It is a useful
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way of determining similarity of an unknown sample set to a known one and
differs from Euclidean distance. For example, Mahalanobis distance of a point
from a given set, is defined using the covariance and mean value of the set. In
this paper, such general function is considered in our definition.

We consider the edge as the area with maximum statistical distance from
both regions. If, for example, 0 ≤ d1(x) ≤ 1 and 0 ≤ d2(x) ≤ 1 represent
some statistical distance functions of point x from outside and inside regions
respectively,

Definition 1 (Statistical Edge). we say that x on the surface S (in three
dimension) is placed on the (statistical) edge if:

d(x) = d1(x)d2(x) (1)

attains a maximum along the normal vector to S.

In the frame work of level set theory, this means that norm of the vector d(x)∇φ
is maximized. Straight functional development based on this fact can consist of
maximization of this functional:

Es(φ) =
∫

[−α + d(x)]δ(φ(x))|∇φ|dx (2)

Where α > 0 enforces the smoothness. Using principles outlined in [8], it is easy
to see that in this case Euler-Lagrange equation of the above equation is:

∂φ

∂t
= −δ(φ){∇d · ∇φ + (−α + d)∇ · ( ∇φ

|∇φ| )} (3)

Since the ∇d has the same and opposite directions of ∇φ inside and outside
the object respectively, (d(x) has a maximum on the border), the first term is
an advection term that fixes the contour on the most admissible place. By this
means based on the regional properties, we implicitly eliminate necessity of a
separate edge detector operator as is the case for [9]. Therefore an enhancement
can be obtained for low contrast edges, e.g, thin vessel structures. On the other
hand the second term, enforces the smoothness provided that α is chosen to be
a large enough positive value.We remind that although in this paper we utilize
a simple form of distance function- basically distance to mean value- it can be
any other general form.

2.2 Flux Maximizing Flow

Flux maximizing edge integration method finds the image location where |∇I ·
∇φ| is maximized [5]. Therefore, no matter how |∇I| is faint, it has ability
to obtain the edge using angular information between these two vectors. The
functional to be minimized in this case can be witten in a similar variational
framework:

Ef (φ) =
∫

δ(φ(x))∇φ(x) · ∇Idx (4)
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Here we remind that it is assumed that on the object border ∇I · ∇φ < 0,
therefore this integration is an estimation of in-ward flux. The Euler-Lagrange
equation can be easily shown to be:

∂φ

∂t
= δ(φ)∇ · (∇I) (5)

Evolution over time, results in a flux inward maximizing flow, that takes the
advantageous of directional information provided by the image gradient. How-
ever, leakage happens if the divergence term is not effectively computed using a
multi-scale method as explained in [5].

2.3 Enhanced Edge Detection Framework

Statistical edge detectors as defined in section 2.1, can be effectively combined
with flux maximizing framework. The idea is to maximize the norm of dot prod-
uct of d(x)∇φ and ∇I. In this case enhanced edge detection energy functional
be written as:

Enf (φ) =
∫

δ(φ)d(x)∇φ · ∇Idx (6)

Therefore, this formulation combines regional properties through d(x) and di-
rectional information provided by ∇I on the border. The EL equation for the
minimization of eq.(6) can be obtained by applying Frechet derivate in the di-
rection of a test function ψ:

< Enf , ψ >=
∫

ψδ′(φ)d(x)∇φ(x) · ∇Idx +
∫

δ(φ)d(x)∇ψ(x) · ∇Idx

Where using Green’s formula:
∫

δ(φ)d(x)∇ψ(x) · ∇Idx = −
∫

ψ(x)∇ · (δ(φ)d(x)∇I)dx

=
∫

−ψ{δ′(φ)d(x)∇φ(x) · ∇I + δ(φ)∇ · (d(x)∇I)}dx

From above we have:

< Enf , ψ >= −
∫

ψ(x)δ(φ)∇ · (d(x)∇I)}dx

This should vanish for every ψ, therefore by using gradient decent method we
obtain:

∂φ

∂t
= δ(φ)∇ · (d(x)∇I) (7)

this can be further expanded to:

∂φ

∂t
= δ(φ){∇d(x) · ∇I + d(x)ΔI) (8)
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Since we are assuming that the object of interest is brighter than the background
as it is the case with MRA images), i.e, ∇I · ∇φ < 0, it easy to see that the first
term has a similar advection property as described in equation (3). The effect
of multiplication of d(x) at ΔI is damping of divergence term from the current
estimate of the border (where d(x) is maximized) toward both regions. Here,
we remind that one may not consider eq.(8) as a subclass of general divergence
equation outlined in [5], since d(x) is a regional dependent measure that changes
along with the evolution of both regions.

3 Distance from Mean Values

In this section we first briefly review Chan-Vese model, and then represent our
complete evolutionary equation for vessel segmentation.

3.1 Chan-Vese Model

Chan and Vese in [10], proposed a measure based on the minimal variance crite-
ria. The image is divided in two regions, the anterior and exterior of the closed
surface. This model minimizes the variance in each segment. Given a gray level
image, Chan and Vese proposed to use a minimal variance criterion given by the
functional:

Ecv(φ, c1, c2) =
∫

δ(φ)|∇φ|dx +

α

∫
H(φ)(I(x) − c1)2dx + α

∫
H∗(φ)(I(x) − c2)2dx (9)

Where H∗(φ) = 1 − H(φ) indicates inside the contour and α determines the
regularization level. While minimizing this functional, c1 and c2 obtain the mean
intensity values outside and inside the contour. The optimal curve would separate
the interior and exterior with respect to their expected values.

3.2 Combinational Model

For the sake of simplicity, we propose to set: d1(x) = |I(x) − c1| and d2(x) =
|I(x) − c2|, where c1 and c2 are the mean intensity values outside and inside the
contour. Therefore according to (1) d can be written as:

d(x) = |I(x) − c1||I(x) − c2| (10)

If we assume a ramp profile for edge, so that the gray levels on the edge are
between the mean values of both regions, i.e., c1 < I(x) < c2, on the border we
can set: d(x) = −(I(x) − c1)(I(x) − c2) > 0, this reduces the non-linearity from
gradient operator applied on d(x). In the next step we will need to set mean
values constraint in both regions. A Lagrangian application of this constraint
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can be regarded as the combination of our proposed functional Enf with Ecv.
In other word, our functional to be minimized is:

Ecvf (φ, c1, c2) = Ecv + ρEnf (11)

Where ρ is a user defined positive constant and Enf is defined according to
equation (6) as:

Enf (φ, c1, c2) =
∫

δ(φ)(I(x) − c2)(c1 − I(x))∇φ(x).∇Idx (12)

The function (I(x) − c2)(c1 − I(x)) is maximized by: I(x) = c1+c2
2 ( a nominal

value for edge) and reaches at zero in c1 and c2 respectively. Regularized version
of δ(φ) has a vanishing effect far from the current border. Therefore, the proposed
functional will be selective on the current edge. Minimization of Ecvf , according
to equations (9) and (8) can be easily achieved by the following evolutionary
equation:

∂φ

∂t
= δ(φ){ρ∇ · (d(x)∇I) − α(I(x) − c1)2 + α(I(x) − c2)2 + ∇ · (

∇φ(x)
|∇φ(x)| )}(13)

However the term ∇ · (d(x)∇I) can be written as:

∇.(d(x)∇I) = 2(c1 + c2 − 2I)|∇I|2 + f(I)ΔI (14)

Equation eq.(14) has interesting property: (c1 + c2 −2I) inside the object is neg-
ative and causes expansion while outside becomes a contraction term. Therefore
similar to advection term property in geodesic active contour model, it can reduce
the leakage from spurious noisy edges. The term ∇φ(x)

|∇φ(x)| is the mean curvature
of the evolving surface, however, since we are segmenting thin structures, this is
replaced by the surface minimum curvature k̂2 as explained in [1]. In the next
step we need to estimate unknown mean values.

3.3 Estimation of Parameters

Estimation of c1 and c2 takes the advantage of directional gradient information
on the border and is basically interconnected to later. Since Ecvf (φ, c1, c2) is
not a convex functional, estimation of unknown parameters is not trivial. One
should guarantee energy minimization while update of these values. We propose
algorithm 1 that guarantees the minimization of Ecvf at every iteration of eq.(13)
with a given level set function φn.

3.4 Implementation

For prevention of convergence into local minimum implementation of the eq. (13)
is achieved using C∞(Ω̄) regularization of H (and δε = H ′

ε) introduced in [10]:

H2,z =
1
2
(1 +

2
π

arctan(
z

ε
))

δ2,z =
ε

π(ε2 + z2)
(15)
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Algorithm 1. Estimation of c1 and c2

1: En ← Ecvf (φn, cn);
2: α ← −1
3: flag ← 1

4: gn ← [
∂Ecvf (φ,c)

∂c1
,

∂Ecvf (φ,c)
∂c2

]t|cn

5: while flag = 1 do
6: cn+1 ← cn + α gn

|gn|
7: E ← Ecvf (φn, cn+1);
8: if (En < E) then
9: α ← 0.5α

10: else
11: flag ← 0
12: end if
13: end while

Computation of advection terms such as ∇φ · ∇I involved in estimation of c1
and c2, is done using up-winding schemes. We need also to compute the surface
minimum curvature k̂2. To that end, the Hessian matrix ∇2(φ) , is first projected
into the tangential direction of the underlining curve [11]:

J =
1

|∇(φ)|P∇(φ)∇2(φ)P∇(φ) (16)

Where the projection operator is defined as below:

P∇(φ) = I − ∇(φ) ⊗ ∇(φ)
|∇(φ)|2 (17)

Thus the first nonzero minimum eigenvalue of J , is taken as the surface min-
curvature k̂2. For the numerical computation of curvature we use central differ-
encing scheme. The solution of eq.(13) is achieved using forward Euler method
and optimized using the narrow band level set method. Every few iterations φ
is reinitialized to the signed distance function of the zero level set by solving:

φt = sign(φ)(1 − |∇φ|) (18)

using the method described in [12].

4 Experimental Results

Figure 1, is an illustration of a sample evolution under equation eq.(13). A finite
length 3D cross cylinder is taken as the target shape as shown in part (b).
Uniform intensities inside and outside of the model are smoothed by a Gaussian
low pass filter and added with a Gaussian noise as indicated in part (a). Evolution
starts from an initial volume specified inside the object. As it can be seen by
comparing part (c) and (d) while minimization of Ecv + ρEf model in (c) has
produced a “convolved version” of the object, our functional, i.e, Ecv + ρEnf is
able to utilize edge information to better specify the object by closer estimates
of the object border.
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(a) (b) (c) (d)

Fig. 1. (a)Noise added slice from the midst of the model, (b) Final shape to be recov-
ered, (c) Recovered shape from by minimization of Ecv + ρEf , (d) Recovered shape by
minimizing Ecvf

4.1 Vessel Segmentation in MRA Images

In this section we have used our method to segment the brain vessels in MRA im-
ages. We have applied our method to several Time-of-Flight (TOF) and Phase-
Contrast (PC) MRA data sets and consistently obtained robust extraction of
vascular structures. Some typical examples are presented here. The first ex-
periment is a qualitative evaluation study for different values of α and fixed
amount of ρ. Figure 2 is a ROI selected from a PCMRA data set with the size
of 256×256×60 voxels and spacing of 0.625×0.625×0.9 mm3, that is obtained
from a 0.4 Tesla MR scanner. Column (a) indicates maximum intensity projec-
tions (MIP) of a selected ROI from three different views. Initial segmentation is
obtained with a user specified threshold value. Column (b) and (c) are the seg-
mentations after approximately 300 iterations of eq.(13) for α = .03 and α = .035
As it can be seen, although extracted structures are smoother in part (c), vessels
with lower contrast is obtained better in part (b). Typically, depending on the
noise level one can select for the best value of α for a given type of data set.
During our experiments, we observed that for higher noise levels, α to should
be set to slightly higher values. We have compared the output of our model
to the well-established CURVES method [1]. CURVES is an evolutionary level
set method that its energy functional is based on the geodesic active contours
Eg =

∫
δ(φ(x)).g(x)|∇φ(x)|dx where g(x) = g(|∇I(x)|) is a uniform decreasing

function of the image gradient. The final level set equation of CURVES algo-
rithm is:

∂φ

∂t
= δ(φ){k̂2 + ρ(∇φ.∇I)

∇g

g
.

∇φ

|∇φ| } (19)

where introducing ρ(∇φ.∇I) is heuristic and required for successful segmentation
of vessels. The data set shown in figure 3 is a PCMRA data set with the same
specifications as above. Colmun (a) is showing the MIP from three different
views. Segmentation using CURVES algorithm is indicated in column (b) and
(c) shows the obtained result using our proposed method by choosing α and ρ
to positive user selected values. For this low Tesla data set, while both methods
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(a) (b) (c)

Fig. 2. Segmentation of ROI from a sample PCMRA data set, (a) MIP images in
different directions, (b) Segmented vessels using α = 0.03, (c) Segmented structures
using α = 0.035

have extracted the main vascular structures, by visual comparison to MIP images
we observe that in low-contrast areas our method has produced more continuous
and longer structures.

The data set shown in figure 4 is a TOF 256×256×120 matrix with spacing of
0.625×0.625×0.7 mm3, obtained from a 0.3 Tesla MR scanner. MIPs are indi-
cated from three different orientation. Segmentation using CURVES algorithm
and our proposed algorithm is indicated in column (b) and (c) respectively. Note
that elongation of segmented structures is achieved better in (c) compared to
(b). Comparison of these two figures reveals that our proposed can be very useful
to improve the continuity of the extracted vessels.

5 Discussion and Future Work

The main contribution of this paper is introduction of a new segmentation func-
tional using both region statistics and gradient information available on the
borders. Our method can be regarded as a new extention to flux maximizing
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(a) (b) (c)

Fig. 3. Segmentation of a PCMRA data set, (a) MIP images in different directions,
(b) Segmented vessels using CURVES, (c) Segmented structures using our proposed
method

method. While the later requires a multi-scale computation of image divergence,
our method eliminates such computation by integrating a statistical distance
measure. Several application of our method to real MRA images, reveals its effi-
ciency to robust extraction of vessels even in low Tesla MRA data sets. Also, the
method is qualitatively compared to CURVE algorithm. Though both methods
use the minimum surface curvature as a regularization term, tangential expan-
tion along thin vessels in our proposed method is more efficient. This results in
better elongation of these structures. A usefull direction for future work would
include quantitative validation as well as comparison to other methods. We hope
to gain access to the data sets used in previous works. Although, we used Chan-
Vese model as our statistical model, outlined concept of statistical edge, in the
framework of variational level set methods, can be extended to include non-
parametrical probability distance functions. This will be a challenging formula-
tion, since in that case the distance functions are explicitly defined using level
set heavy side functions. We are currently developing such explained frame work.
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(a) (b) (c)

Fig. 4. Segmentation of a TOFMRA data set, (a) MIP images in different directions,
(b) Segmented vessels using CURVE , (c) Segmented structures using our proposed
method
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Abstract. In this paper we propose an automated approach for joint
sulci detection on cortical surfaces by using graphical models and boosting
techniques to incorporate shape priors of major sulci and their Markovian
relations. For each sulcus, we represent it as a node in the graphical model
and associate it with a sample space of candidate curves, which is gener-
ated automatically using the Hamilton-Jacobi skeleton of sulcal regions.
To take into account individual as well as joint priors about the shape of
major sulci, we learn the potential functions of the graphical model using
AdaBoost algorithm to select and fuse information from a large set of fea-
tures. This discriminative approach is especially powerful in capturing the
neighboring relations between sulcal lines, which are otherwise hard to be
captured by generative models. Using belief propagation, efficient infer-
encing is then performed on the graphical model to estimate each sulcus
as the maximizer of its final belief. On a data set of 40 cortical surfaces, we
demonstrate the advantage of joint detection on four major sulci: central,
precentral, postcentral and the sylvian fissure.

1 Introduction

Cortical sulci are important landmarks in human brain mapping because they
encode rich information about the convolution patterns of human brains[1] and
provide guidance for registration tasks[2], but the variability of the brain mor-
phometry poses serious challenges for their automatic detection, thus manual
annotation remains the golden standard in practice. In this paper, we propose a
novel approach to incorporate prior knowledge from manual tracing by modeling
the relation of major sulci with boosting techniques and detect them jointly via
the solution of an inference problem on graphical models.

Many algorithms were proposed for sulci detection in previous works. Cur-
vature features were used in [3,4,5] to detect sulci semi-automatically with the
need of manually inputing the starting and ending points. Depth features with
respect to a shrink wrap surface were also used for sulci detection on surfaces[6,7].
The extraction of sulci from volume images were proposed in [8,9,10], but hu-
man interactions are still necessary to pick out specific sulci from the results.

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 98–109, 2007.
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(a) (b)

Fig. 1. An illustration of joint sulci detection. (a) Seven major sulci on a cortical
surface. (b) A graphical model representing the local dependency between neighboring
sulci.

To address this challenge, learning-based approaches were introduced into the
detection process. Because of its simplicity, techniques based on the principal
component analysis(PCA) of point sets[11] were used in[12,13]. Graphical mod-
els and neural networks were used in [14] for automatic recognition of sulcal
ribbons, which only identify subsets of major sulci. A learning-based technique
based on probabilistic boosting trees[15] was proposed in [16] for the automatic
detection of cortical sulci from volume images, but each sulcus was detected
separately.

We propose in this work to detect multiple sulci jointly with graphical mod-
els. From the experience of manual tracing, this seems a natural choice as the
knowledge about the relative location of sulci is frequently utilized for the correct
identification of these curves. Modeling the relation of multiple objects has also
been shown useful in medical image segmentation[17]. As an example, seven ma-
jor sulci are plotted on the lateral surface of a cortex in Fig. 1(a). Even though
we can see that most parts of sulci follow furrows of high curvature, choices have
to be made at intersections of multiple furrows because of the variability of the
cortex. What makes this task more difficult is that the gyral regions have to be
crossed sometimes to ensure a continuous curve is generated for each sulcus. To
counter this kind of complications, protocols are defined in practice on how to
use local dependency of sulcal lines for manual annotation. For the example in
Fig. 1(a), the precentral sulcus has to cross a gyrus to meet the requirement
that it should follow a path as parallel as possible to the central sulcus. In de-
termining the inferior portion of postcentral sulcus that is highly variable, its
relation with respect to the tail of the sylvian fissure also helps to provide critical
information.

There are two main challenges, however, to formulate a tractable inference
problem over graphical models for joint sulci detection. (1) With each node of
the graph representing a sulcus, the random variables of interest here live in high
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dimensional shape spaces and it is generally hard to do inferences directly over
such spaces. (2) Every major sulcal curve observes flexible shape and it is hard
to capture their individual as well as joint regularity by a good prior.

In our joint detection framework, we tackle these challenges by first construct-
ing a sample space containing a finite number of candidate curves at each node
of the graph. These sample spaces greatly reduce the search range of inference
algorithms and they are generated automatically based on the Hamilton-Jacobi
skeleton of sulcal regions on triangulated cortical surfaces. We then use boost-
ing techniques[18] to learn discriminative shape models of each sulcus and their
neighboring relations. The advantages are twofold. (1) The algorithm is able to
automatically select and fuse a set of informative shape features, characterizing
unary as well as binary relationships of the sulcal curves, from a large set of can-
didate features. (2) The priors are learned directly from the training data and
there is no parameter to tune for different sucal curves. Traditional generative
model based algorithms, e.g. PCA, have difficulty in modeling such complicated
priors due to its Gaussian assumptions. In making the inference, a belief propa-
gation algorithm[19,20] is used to perform inferences efficiently on these sample
spaces for joint sulci detection.

In the rest of the paper, we first propose our joint detection framework with
graphical models in section 2. The generation of sample spaces for each node
of the graph is then described in section 3. After that, we develop a boosting
approach in section 4 to learn potential functions in graphical models for sulci
of interest. In section 5, experimental results on the joint detection of four ma-
jor sulci: central, precentral, postcentral and the sylvian fissure on 40 cortical
surfaces are presented. Finally, conclusions are made in section 6.

2 The Joint Detection Framework

For the detection of a set of major sulci C1, C2, · · · , CL on a cortical surface
M, we assume an undirected graphical model G = (V, E) that represents the
Markovian relation among sulci, where V = {C1, C2, · · · , CL} are the set of
nodes, and E is the set of edges in the graph. As an example, a graphical model
for the seven sulci in Fig. 1(a) is shown in Fig. 1(b). Because the number of
major sulci is small on the cortical surface, it is straightforward to construct the
graph structure of such models and this only needs to be done once for the same
detection task.

To perform inferences on sulcal lines with graphical models, it is critical to
first specify a proper sample space for each node as the general space of curves
is infinite dimensional. One possible solution is to reduce the dimension of shape
spaces with PCA, but there is no guarantee that these parameterized curves will
live on the cortical surface and follow the bottom of sulcal regions. To overcome
this problem, we generate a set of candidate curves Si automatically for each
sulcus Ci using a novel algorithm that will be developed in section 3. These
candidate curves are weighted geodesics on the cortical surface and follow the
skeleton of sulcal regions closely. By adopting the set of candidate curves Si as



Joint Sulci Detection Using Graphical Models and Boosted Priors 101

Table 1. The AdaBoost algorithm[18]

Given training data: (x1, y1, w
1
1), · · · , (xn, yn, w1

n) where xi are the sample data,
yi ∈ {−1, 1} are the corresponding class labels, and w1

i are the initial weights.

For t = 1, · · · , T

– Train a weak classifier ht given the current weights.
– Compute the weighted error rate εt of the classifier ht.
– Update the weights:

wt+1
i =

wt
ie

−αtyiht(xi)

Zt

where αt = log((1 − εt)/εt)/2 and Zt is a normalization constant such that�n
i=1 wt+1

i = 1.

Output the final classifier H = sign(f) with the decision function f =
�T

t=1 αtht.

the sample space for each node Ci, we are able to model each sulcus as a discrete
random variable with values in a finite set and this makes the inference on the
graphical model computationally tractable.

Over the sample spaces of all the nodes in a graphical model, we define two
types of potential functions to complete the construction of the graphical model:
the local evidence function φi : Si → R at each node Ci and the compatibility
function ψi,j : Si × Sj → R for (Ci, Cj) ∈ E. To incorporate shape priors about
individual sulcus and their relations, we propose a discriminative approach using
AdaBoost[18] in section 4 to learn both types of potential functions from man-
ually annotated training data. Given input data x, the discriminative method
learns the posterior probability p(y|x) of a label y. With the discriminative ap-
proach, there is no need of specifying parametric forms for prior models of sulcal
lines and their neighboring relations. Instead we use a large set of features derived
from training data and selectively combine information from these features with
boosting techniques. The central idea of AdaBoost, as listed in Table I, is the
formation of a strong classifier through the combination of a series of weak clas-
sifiers. Using the decision function f generated from AdaBoost, an approximate
posterior can then be defined and used as the potential function.

With the graphical model defined, we can write down the joint distribution
of all the sulci as:

p(C1, · · · , CL) =
1
Z

∏

(Ci,Cj)∈E

ψi,j(Ci, Cj)
∏

Ci∈V

φi(Ci) (1)

where Z is the partition function for normalization. For sulci detection, we use
belief propagation to compute the marginal distribution of each sulcus from the
joint distribution because it is applicable to graphs both with and without cycles.
With belief propagation, each node in the graph receives and sends out messages
at every iteration of the algorithm. For a node Ci, the message it sends to its
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Fig. 2. An example of message passing in the graphical model of Fig. 1(b)

neighbor Cj is defined as:

mi,j(Cj) =
∑

Ci∈Si

ψi,j(Ci, Cj)φi(Ci)
∏

Ck∈N (Ci)\Cj

mk,i(Ci) (2)

where N (Ci) are neighbors of Ci in the graph. This message takes into account
not only the local evidence φi and the compatibility function ψi,j , but also the
messages the node Ci received from its neighbors except Cj . As an illustration,
we show in Fig. 2 the flow of messages from the node C4 and C5 to C3, and then
to C1 in the graphical model shown in Fig. 1(b). If we continue this message
passing process until it converges, i.e., when the messages stop changing, we
obtain the final belief at each node of the graph as:

bi(Ci) = φi(Ci)
∏

Cj∈N (Ci)

mj,i(Ci) i = 1, 2, · · · , L. (3)

Using belief propagation, we collect information from all the nodes to form the
final belief for every sulcus. For graphs without cycles[19], such as trees, the final
belief function corresponds to the marginal distribution of each sulcus derived
from the joint distribution in (1), thus we can detect a sulcus by maximizing the
final belief:

C∗
i = arg max

Ci∈Si

bi(Ci) i = 1, 2, · · · , L. (4)

Even for graphs with cycles, belief propagation is known to frequently perform
well and generate excellent results[20], most notably for its near Shannon limit
performance in turbo decoding[21]. Thus the above equation is also applicable
for joint sulci detection in the case that the graphical model has loops.

3 Generation of Sample Spaces

Given a cortical surface, there are three main stages in our algorithm of sample
space generation for each node of a graphical model: skeletonization of sulcal
regions, a learning-based approach that picks out candidates for the starting
and ending point of the sulcus, and the generation of member curves of the
sample space as weighted geodesics on the cortical surface.
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(a) (b)

(c) (d)

Fig. 3. The process of generating sample spaces for sulci detection. (a) The original
cortical surface. (b) Mesh segmentation results. Red: sulcal regions; blue: gyral regions.
(c) The skeleton of sulcal regions plotted in black. (d) Curves from the sample space
of the central sulcus plotted in red.

In the first stage, we compute the skeleton of sulcal regions with the method
we reported in[22]. For completeness we briefly review the main steps of this
algorithm. We represent the cortical surface M as a triangular mesh and first
compute the principle curvatures at each vertex. Using the curvature features,
the cortical surface is then partitioned into sulcal and gyral regions using graph
cuts. As an illustration, we show in Fig. 3(b) the result of the partition algo-
rithm for the cortical surface in Fig. 3(a). Finally an extension of the method of
Hamilton-Jacobi skeleton[23] is used to calculate the skeleton of sulcal regions
as shown in Fig. 3(c). For all vertices of M in the skeleton, we classify them into
three types using the neighboring system of the triangular mesh:

– End points: vertices with one neighbor in the skeleton.
– Knot points: vertices with three or more neighbors in the skeleton.
– Middle points: vertices with two neighbors in the skeleton.

We learn a two-class classifier with AdaBoost in the second stage to pick a set
of candidate points from the union of end and knot points in the skeleton for the
starting and ending point of each sulcus. We use a set of K cortical surfaces with
manually labeled sulci for the construction of our training data. These cortical
surfaces are assumed to be registered to a common coordinate space such as
ICBM. To learn the classifier for the starting point of a sulcus Ci, we construct
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the training data as follows. The starting point of the manually labeled sulcus
Ci on the K cortical surfaces are assigned label 1 and weight 1/2K. The union
of all the knot and end points from the skeletons of the K cortical surfaces
are assigned label −1 and weight 1/2Ñ where Ñ is the total number of points
in this set. At each iteration of AdaBoost, we train a perceptron as the weak
classifier using the pocket algorithm with ratchet[24]. As shown in Table I, the
final decision function generated from AdaBoost is of the following form:

f =
T∑

t=1

αtht (5)

where ht : R
3 → {−1, 1} is the weak classifier at the t-th iteration of AdaBoost

and αt is the weight for this weak classifier. Applying the decision function f
to all the end and knot points in the skeleton of a cortical surface, we pick the
candidates for the starting point of Ci as M points with the largest f values.
Typically we choose M = 10 in our experiments and this generates a sufficiently
large candidate set for the final detection of sulcal lines according to our experi-
ence. Similarly, a candidate set of M points can also be generated for the ending
point of Ci.

Given the candidate set for the starting and ending points of the sulcal line
Ci, we connect them with weighted geodesics on M to generate the sample
space Si. The weights are derived from the geodesic distance transform d of the
skeleton on M generated in the first stage. We compute these geodesics with the
fast marching algorithm on triangular meshes[25]. For a candidate of starting
point Xs and a candidate for the ending point Xe, we connect them through a
weighted geodesic with the weight defined as

F = e−d2/2σ2
(6)

to encourage the weighted geodesic overlapping as much as possible with the
skeleton of sulcal regions. To find this geodesic, we first compute a weighted
distance transform dw on M by solving the Eikonal equation

∇dwF = 1 (7)

intrinsically over the cortical surface and trace backward from Xe to Xs in
gradient descent directions. This geodesic is then added to the sample space
Si. We choose the parameter σ = 1, 2, 3, 4, 5 to cover a wide range of possible
routes. So overall the sample space Si of Ci is composed of 5M2 curves. As an
illustration, all the candidate curves in the sample space of the central sulcus on
the cortical surface in Fig. 1(a) are plotted in Fig. 1(d) and we can see that the
true central sulcus is included in this sample space.

4 Learning Potential Functions Using AdaBoost

In this section, we describe our learning-based approach for the construction
of the potential functions in graphical models to take into account individual
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and joint shape priors of major sulci. Our approach is discriminative and learns
both the local evidence functions φi and the compatibility functions ψi,j with
AdaBoost. For each potential function, we construct a set of features and learn
a strong two-class classifier by combining with AdaBoost a series of weak clas-
sifiers on these features. It is shown in [26] that AdaBoost approximates logistic
regression and its result can be used to estimate the probability of a class label,
which we then use to define the potential function.

For a sulcus Ci we learn its local evidence function φi from a training data set
of K cortical surfaces with the sulcus manually labeled on each surface. We also
assume these cortical surfaces are registered to the same common coordinate
system as in section 3. For the same sulcus, we generate a sample space on each
of the cortical surface in the training data. All curves are parameterized with N
(typically 100) uniformly sampled points such that one-to-one correspondences
are established between curves. In the training data set, all manually labeled
sulcus for Ci on the K cortical surfaces are assigned label 1 and weight 1/2K
and all the curves in the sample spaces are assigned a label −1 and weight
1/10KM2. The same perceptron in section 3 is used as our weak classifier. At
each iteration of AdaBoost, we train N perceptrons Pn(1 ≤ n ≤ N) with the
n-th point from all the curves and pick the one with the best performance as
the weak classifier ht. By combining all the weak classifiers, we obtain the final
decision function f(Ci) =

∑T
t=1 αtht(Ci). Following [26], we define the local

evidence function for Ci as:

φi(Ci) =
e2f(Ci)

1 + e2f(Ci)
∀Ci ∈ Si. (8)

The local evidence function approaches the value 1 at curves in the sample space
that are similar to the manually labeled sulcus in the training data, indicating
intuitively that they exhibit strong evidence to be the sulcus we want to detect.

To learn the compatibility function between two sulci Ci and Cj , we define the
feature used for training as di,j = Ci − Cj , which is the difference between the
two curves. For each cortical surface in the training data, the manually labeled
sulci for Ci and Cj are used to construct the feature vector di,j with label 1 and
weight 1/2K. From the sample spaces of Ci and Cj on the K cortical surfaces,
we randomly pick 5KM2 pairs to construct the negative sample data with label
−1 and weight 1/10KM2. The same boosting process as above is applied to
learn a decision function for the compatibility between the two sulci f(Ci, Cj) =∑T

t=1 αtht(di,j) and we can define the compatibility function between Ci and Cj

as:

ψi,j(Ci, Cj) =
e2f(Ci,Cj)

1 + e2f(Ci,Cj)
∀Ci ∈ Si, Cj ∈ Sj. (9)

With AdaBoost, we have developed a common solution for the learning of both
local evidence functions and compatibility functions. Even though we used only
features derived from coordinate information in our current work, the boosting
method for learning priors is general and allows the inclusion of more features
in future work. By inserting the potential functions into graphical models, the
belief propagation process can then be used for the joint detection of major sulci.
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(a) Without graphical models. (b) With graphical models.

(c) Without graphical models. (d) With graphical models.

Fig. 4. Sulci detection results on two cortical surfaces. (a) and (b) show results from
a surface in the training data. (c) and (d) show results from one of the surface in
the testing data. For all the results, manually labeled results are plotted in black for
comparison. The detected curves for the central, precentral, postcentral, and sylvian
fissure are plotted in red, green, blue and cyan.

5 Experimental Results

In this section we present preliminary experimental results for the joint detection
of four major sulci: the central, precentral, postcentral sulcus and sylvian fissure.
The graphical model used for the joint detection of these four sulci is the sub-
graph in Fig. 1(b) that includes the nodes C1, C2, C3 and C4.

In our experiments, we have a dataset of 40 cortical surfaces with the four
sulci manually labeled. We used 20 of them as the training data and the other
20 for testing. During the training stage, we first computed the skeleton of sulcal
regions for the 20 training data. Decision functions were then learned for each
sulcus such that a set of candidate points can be generated for both of its starting
and ending point. After that, a sample space was generated for each sulcus with
weighted geodesics as described in section 3. With these sample spaces, the local
evidence functions and the compatibility functions between neighboring vertices
in the graphical model were learned using the boosting method developed in
section 4. For every cortical surface in the testing data, the sample space of each
sulcus was generated with the same classifier learned from the training data.

Once all the potential functions and sample spaces were constructed, we ap-
plied the joint detection algorithm with graphical models in section 2 to detect
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the four sulci on all 40 cortical surfaces. As a comparison, we also detected each
sulcus independently without using graphical models. This is realized by simply
picking the curve in the sample space that maximizes the local evidence function.
To illustrate the advantage of the joint detection algorithm, we show in Fig. 4
the detection results on two cortical surfaces, one from the training data and
the other from the testing data, using these two different methods. For the first
surface, the results without using graphical models is shown in Fig. 4(a) and
we can see the inferior part of the postcentral sulcus overlaps with the central
sulcus and this is clearly undesirable. In the joint detection results shown in Fig.
4(b), it is easy to see the postcentral sulcus is correctly detected. Thanks to
the compatibility functions learned with boosting, the tail of the sylvian fissure
detected in Fig. 4(b) also agrees better with manually labeled results than the
sylvian fissure detected in Fig. 4(a). In results of the second surface shown in Fig.
4(c) and (d), improved results were also obtained with graphical models for the
central and precentral sulcus as compared to the results detected independently.

We next perform a quantitative analysis of the performance of our sulci de-
tection algorithm by comparing with manually labeled curves. For two curves
C̃1 and C̃2 that are parameterized with N points, we define two distances:

Da(C̃1, C̃2) =
1
N

∑

xn∈C̃1

min
ym∈C̃2

‖ xn − ym ‖ (10)

and

Dh(C̃1, C̃2) = max
xn∈C̃1

min
ym∈C̃2

‖ xn − ym ‖ . (11)

The distance Da is an average of the distance from points on C̃1 to C̃2, while Dh

measures the Hausdorff distance from C̃1 to C̃2. For a detected sulcus Ci and
its manually labeled result Ci, we use four distances to measure the difference
between them: D1

a = Da(Ci, Ci), D2
a = Da(Ci, Ci), D1

h = Dh(Ci, Ci), and
D2

h = Dh(Ci, Ci).
Quantitative comparisons to manually labeled results were performed for

both the sulci detected jointly with graphical models and independently without
graphical models. For these two different groups of results, the average of the
four distances over the training and testing data were computed and listed sep-
arately for each sulcus in Table 2. Overall we have 32 average distances for each
group of results. The advantage of the jointly detected results are clear as they
outperform results without graphical models in 28 of the 32 distances. A more
detailed analysis shows that we achieve very good performance with our joint
sulci detection algorithm in terms of D1

a and D2
a for all four sulci, and the results

are especially encouraging for the central sulcus where an average distance of
around 1mm is obtained to the manually annotated curves. The relatively large
distances in terms of D1

h and D2
h are mostly due to the variability of the start-

ing and ending part of sulci. Considering the lack of consensus among manual
tracers on these parts, it might be interesting to use other metrics in our future
research to measure how well the main body of each sulcal curve is detected.
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Table 2. Differences between sulci detected jointly with graphical models and inde-
pendently as compared to manually annotated results (in millimeters)

Without graphical models With graphical models

Sulci

Central (training)

Precentral (training)

Postcentral(training)

Sylvian (training)

Central (testing)

Precentral (testing)

Postcentral (testing)

Sylvian (testing)

D1
a D2

a D1
h D2

h

1.86 1.91 7.88 8.40

3.01 2.50 11.48 11.87

5.65 5.00 15.34 14.58

2.68 2.55 11.14 13.05

3.04 2.98 10.52 11.01

4.37 4.48 13.19 14.75

2.80 3.10 11.33 11.80

3.07 2.75 13.41 13.59

D1
a D2

a D1
h D2

h

0.99 1.36 5.64 6.98

2.57 2.56 10.03 11.13

2.90 3.26 11.75 12.19

2.88 2.32 11.15 10.83

1.10 1.59 6.59 8.55

2.92 3.41 10.55 12.60

2.50 3.04 10.16 12.42

2.65 2.48 12.09 12.55

6 Conclusions

A general framework for the joint detection of major sulci was proposed in this
paper. Using boosting techniques, we integrated discriminative shape priors of
each sulcus and their Markovian relations into graphical models and transformed
sulci detection into a tractable inference problem over sample spaces of candidate
curves. The boosting approach is flexible and allows the inclusion of new features
to capture more detailed priors in future work. We are also testing the joint
detection of more major sulci with our algorithm.
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Abstract. Modern live cell fluorescence microscopy imaging systems,
used abundantly for studying intra-cellular processes in vivo, generate
vast amounts of noisy image data that cannot be processed efficiently
and accurately by means of manual or current computerized techniques.
We propose an improved tracking method, built within a Bayesian proba-
bilistic framework, which better exploits temporal information and prior
knowledge. Experiments on simulated and real fluorescence microscopy
image data acquired for microtubule dynamics studies show that the
technique is more robust to noise, photobleaching, and object interac-
tion than common tracking methods and yields results that are in good
agreement with expert cell biologists.

Keywords: Bayesian estimation, particle filtering, multiple object track-
ing,Rao-Blackwellization,microtubuledynamics,fluorescencemicroscopy.

1 Introduction

Live cell imaging using time-lapse fluorescence microscopy has rapidly advanced
in the past decade and has opened new possibilities for studying intra-cellular dy-
namic processes in vivo. Motion analysis of nanoscale objects, such as proteins,
vesicles, or microtubules (Fig. 1), requires tracking of large and time-varying
numbers of spots in noisy image sequences [1, 2, 3]. Manual analysis of such
image data is laborious and often produces results with poor accuracy and/or
reproducibility. Hence, the development of automated tracking methods is of
great importance. Commonly used tracking methods fail to yield reliable results
in the case of poor imaging conditions (SNR<5) [4], because the detection is
usually based on simple intensity thresholding or model fitting, and available
temporal information and prior knowledge are largely ignored. Alternative tech-
niques, based on spatiotemporal segmentation [5], are also prone to errors in the
case of very noisy images containing many objects at high densities.
� Corresponding author.
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Fig. 1. Microtubules tagged with fluorescently labeled plus end tracking proteins
(bright spots) and imaged using fluorescence confocal microscopy. The images are sin-
gle frames from three 2D time-lapse studies, acquired under different experimental
conditions. The quality of the images ranges from SNR≈5–6 (a) to ≈2–3 (c).

Recently, sequential Monte Carlo (SMC) methods [6], also known as particle
filters (PF) [7], have become a popular tool to perform tracking in many fields. In
this paper we extend our previous PF approach [8] and present a substantially
more efficient Rao-Blackwellized marginal particle filter (RBMPF) for robust
and accurate tracking of multiple nanoscale targets in two-dimensional (2D) and
three-dimensional (3D) fluorescence microscopy image sequences. The RBMPF
takes into account the analytical structure of the modeled processes and makes
it possible to reduce the variance of the estimates in the case of high-dimensional
state spaces, where standard PF fails. We compare the performance of standard
PF and RBMPF with manual tracking using simulated as well as real image
data acquired for microtubule dynamics studies.

2 Tracking Framework

Bayesian estimation for tracking aims at inferring knowledge about the unob-
served state xt of an object, which changes over time, using noisy measurements
z1:t � {z1, . . . , zt} up to time t. The state evolution is modeled as a Markov
process of initial distribution p(x0) and transition prior p(xt|xt−1). The idea is
to sequentially estimate the time evolving joint filtering distribution p(x0:t|z1:t)
or the marginal filtering distribution p(xt|z1:t) and associated features, such as
expectation. A recursive formula for the former is given by [6]

p(x0:t|z1:t) ∝ p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1). (1)

It is assumed that the initial pdf, p(x0|z0) ≡ p(x0) is available (z1:0 = z0 being
the set of no measurements). The distribution p(xt|z1:t) follows from (1) as

p(xt|z1:t) ∝p(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (2)



112 I. Smal et al.

The optimal Bayesian solutions defined by the recurrence relations (1) and
(2) are analytically tractable only in a restrictive set of cases [7]. For most
practical models of interest, SMC methods [7,9] are used as an efficient numerical
approximation. Here, the required posterior, p(x0:t|z1:t), is represented as a set
of Ns random samples (particles), and associated weights {x(i)

0:t, w
(i)
t }Ns

i=1:

p(x0:t|z1:t) ≈
∑Ns

i=1 w
(i)
t δ(x0:t − x(i)

0:t), (3)

where δ(·) is the Dirac delta function and the weights are normalized such that∑Ns

i=1 w
(i)
t = 1. These samples and weights are propagated through time to give

an approximation of the filtering distribution at subsequent time steps. The
weights w

(i)
t are chosen using sequential importance sampling (SIS) [10], which

applies when auxiliary knowledge is available in the form of an importance den-
sity q(xt|x0:t−1, z1:t) describing which areas of the state-space contain most infor-
mation about the posterior. In order to calculate the weights recursively, the im-
portance density is factorized as q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1).
The particle representation of the posterior at time t is obtained by augmenting
the set of existing particles x(i)

0:t−1 with the new state x(i)
t ∼ q(xt|x(i)

0:t−1, z1:t). A
detailed formulation of q(·|·) is given in Section 3.4. The weights w

(i)
t in (3) may

be recursively updated as [10]

w
(i)
t ∝ p(x0:t|z1:t)

q(x0:t|z1:t)
=

p(zt|x(i)
t )p(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

0:t−1, z1:t)
w

(i)
t−1. (4)

In order to obtain the particle representation of p(xt|z1:t), only x(i)
t need to be

stored and the path x(i)
0:t−1 can be discarded. Each particle at time t, used to aug-

ment the previous state, is a draw from the joint space p(x0:t|z1:t), sampled se-
quentially. At each time step, the dimension of the sampled paths is increased by
the dimension of the state space, nx, quickly resulting in a very high-dimensional
space. Because of the sequential nature of the algorithm, the variance of the im-
portance weights can only increase (stochastically) over time [10], leading to most
paths having vanishingly small probability. The degeneracy effect can be reduced
by a good choice of importance density (Section 3.4) and by resampling [7,10] to
eliminate particles with small weights. Additionally, it can be reduced by using
the marginal particle filter (MPF) [11], where the filtering is performed directly
on the marginal distribution p(xt|z1:t) defined by (2) instead of on the joint
state. Having a representation of p(xt|z1:t) in the form of (3), we can approxi-
mate the integral in (2) as the weighted kernel estimate

∑Ns

j=1 w
(j)
t−1p(xt|x(j)

t−1).
The importance weights are now on the marginal space:

w
(i)
t ∝ p(xt|z1:t)

q(xt|z1:t)
=

p(zt|x(i)
t )

∑Ns

j=1 w
(j)
t−1p(x(i)

t |x(j)
t−1)

q(x(i)
t |z1:t)

. (5)

The variance of the importance weights is less than or equal to the variance of the
standard SIS scheme [11]. By using particle representations, statistical inferences
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such as expectation, maximum a posteriori, and minimum mean square error
(MMSE) estimators, can easily be approximated. For example,

x̂MMSE
t =

∫
xtp(xt|z1:t)dxt ≈

∑Ns

i=1 x(i)
t w

(i)
t . (6)

Straightforward generalization of SMC methods to the problem of multiple
object tracking leads to an increase in dimensionality and an exponential ex-
plosion of computational demands [6]. We represent the multi-modal posterior
distribution, in which multiple modes are caused by ambiguity about the ob-
ject state due to either insufficient measurements or measurements coming from
multiple objects being tracked, by an M -component mixture model [12]:

p(xt|z1:t) =
∑M

m=1 πm,tpm(xt|z1:t), (7)

with
∑M

m=1 πm,t = 1 and a non-parametric model is assumed for the individual
mixture components. In this case, the particle representation of the filtering
distribution, {x(i)

t , w
(i)
t }N

i=1 with N = MNs particles, is augmented with a set
of component indicators, {c

(i)
t }N

i=1, with c
(i)
t = m if particle i belongs to mixture

component m. This representation can be updated in the same fashion as the
standard Bayesian sequential estimation [12].

3 Tailoring the Framework

3.1 State-Space and Dynamics

In this paper the framework is tailored towards microtubule (MT) tracking.
MTs are cylindrical structures (diameter ∼25 nm) in the cytoskeleton that play
a crucial role in several cellular processes [13]. We approximate the dynamic
behavior of the visible ends of MTs by a nearly constant velocity model [14]
with the state vector xt = (xt, ẋt, yt, ẏt, zt, żt, σmax,t, σmin,t, σz,t, It)T , where
(σmax,t, σmin,t, σz,t)T � st is the object shape feature vector (Section 3.2), (xt, yt,

zt)T � rt is the radius vector, ṙt � vt velocity, and It object intensity.
In practice, the analysis of time-lapse fluorescence microscopy image sequences

is complicated by photobleaching, a light-induced chemical process by which flu-
orescent proteins lose their ability to fluoresce. The two commonly used approx-
imations of the process are given by [15]

I(t) = Ae−at + B, and I(t) = I0

(
1 + (t/L)k

)−1
, (8)

where A, B, a, I0, L, k are experimentally determined constants. Photobleaching
is ignored by common tracking techniques but in many practical cases it is
necessary to model it so as to increase robustness. To conveniently incorporate
the photobleaching effect into our framework, we approximate it as a first-order
Gauss-Markov process, It = (1 − α)It−1 + ut, where ut is zero-mean Gaussian
noise and α ≤ 1 an experimentally obtained rate of photobleaching, which can
be estimated from image data, using (8), by model fitting.
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In summary, in our implementation, the state evolution p(xt|xt−1) is a linear
Gaussian model [10], which can easily be evaluated pointwise in (4):

p(xt|xt−1) ∝ exp
(

−1
2
(xt − Fxt−1)T Q−1(xt − Fxt−1)

)
, (9)

with process transition matrix F = diag[F1,F1,F1, 1, 1, 1, 1 − α] and covariance
matrix Q = diag[Q1,Q1,Q1, q2T, q2T, q2T, q3T ]. Here,

F1 =
(

1 T
0 1

)
, Q1 =

( q1
3 T 3 q1

2 T 2

q1
2 T 2 q1T

)
,

where q1, q2 and q3 denote the level of process noise in object motion, appearance
and intensity, respectively, and T is the sampling interval. The proposed model
correctly approximates small accelerations in object motion and fluctuations in
object appearance and intensity. To obtain a more realistic motion model and
avoid track coalescence in the case of multiple objects, we explicitly model object
interaction using a Markov random field (MRF) [8, 16]. The model (9) can also
be successfully used for tracking structures with higher motion nonlinearity, by
adapting the process noise level, defined by Q.

3.2 Observation Model

The image formation process can be modeled as a convolution of the true, unob-
served 3D image with the point-spread function (PSF) of the microscope. The
PF framework can accommodate any PSF that can be calculated pointwise. De-
spite its minor imperfection, the 3D Gaussian approximation of the PSF [3] is
commonly favored over the more accurate Gibson-Lanni model [1], for its com-
putational advantages. To model the shape of the intensity profile of an imaged
object, one would have to use the convolution with the PSF for every state x(i)

t .
To overcome this computational overload, we model the PSF together with ob-
ject shape using a 3D Gaussian approximation. The elongation in the intensity
profile of MTs can be modeled by utilizing the velocity components from xt as
parameters in the PSF. In this case, for an object of intensity It at position rt,
the intensity contribution to pixel (i, j, k) is approximated as

ht(i, j, k;xt) = at(i, j, k; rt,vt, st)It + bt, (10)

where bt is the background intensity and

at(i, j, k; rt,vt, st) = exp
(

−1
2
mT

t RT Σ−1
t Rmt − (kΔz − zt‖mt‖ tan θt)2

2σ2
z,t

)
(11)

with σz,t (≈ 235nm) modeling the axial blurring, zt denoting the measured
intensity, and R = R(φt) denoting a rotation matrix

R(φt) =
(

cosφt sinφt

− sinφt cosφt

)
, Σt =

(
σ2

m,t(θt) 0
0 σ2

min,t

)
, mt =

(
iΔx − xt

jΔy − yt

)
,
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σm,t(θt) = σmin,t − (σmin,t − σmax,t) cos θt,

tan θt =
żt√

ẋt
2 + ẏt

2
, tan φt =

ẏt

ẋt
, −π < φt, θt ≤ π.

In these formulae, each pixel (i, j, k) is assumed to correspond to a rectan-
gular volume of dimensions Δx × Δy × Δz nm3. The parameters σmax,t and
σmin,t represent the amount of blurring and, at the same time, model object
elongation along the direction of motion. For subresolution structures such as
vesicles, σmin = σmax ≈ 80nm, and for the elongated MTs, σmin ≈ 100nm and
σmax ≈ 300nm. For the background level estimate bt we use the average image
intensity at time t, taking into account the contribution of object intensity values
to the total image intensity (mainly formed by background structures with lower
intensity) is negligible. For a typical 2D image of size 103 ×103 pixels containing
a thousand objects, the number of object pixels is only about 1%.

3.3 Rao-Blackwellization and Likelihood

As mentioned in Section 2, in the case of high-dimensional state spaces (in
our case nx=10), the SIS becomes inefficient and leads to variance increase of
the estimator. However, when the transition and observation models have an
analytically tractable structure, the size of the state space can be drastically
reduced by analytical marginalization of some of the state variables, also called
Rao-Blackwellization [6]. In our case, for each realization of state variable yt =
(rt,vt, st)T , we have a linear Gaussian transition and observation model for the
intensity It. For such models the optimal solution can be obtained analytically
using the Kalman filter. We therefore combine a PF to compute the distribution
of the discrete states yt with a bank of Kalman filters to compute exactly the
distribution of the continuous state. With the factorization

p(yt, It|z1:t) = p(It|yt, z1:t)p(yt|z1:t), (12)

the density p(It|yt, z1:t), which is Gaussian, can be computed analytically by
applying the Kalman filter:

p(It|yt, z1:t) = N (It|It|t, Pt|t), (13)

with N (·|μ, σ2) the normal distribution with mean μ and variance σ2,

It|t−1 = (1 − α)It−1|t−1, It|t = It|t−1 + Kt(Zt − HtIt|t−1),

Pt|t−1 = (1 − α)2Pt−1|t−1 + q3T, Pt|t = Pt|t−1 − KtHtPt|t−1,

St = HtPt|t−1H
T
t + Rt, Kt = Pt|t−1H

T
t S−1

t ,

and the vectors Ht and Zt are formed as

Ht = (. . . , at(i, j, k; rt,vt, st), . . . )T , Zt = (. . . , z(i, j, k) − bt, . . . )T , (14)
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for all triplets (i, j, k) ∈ C(xt), where C(xt) is the region of pixels that are
affected by the object with state xt and is defined as C(xt) = {(i, j, k) ∈ Z

3 :
at(i, j, k; rt,vt, st) > 0.1}. The covariance matrix of the measurement noise Rt

models the Poisson noise, the main source of noise in fluorescence microscopy
imaging, and is given by Rt = diag[. . . , ht(i, j, k;xt), . . . ]. The recursive Bayesian
solution is applicable as long as the statistics of the measurement noise is known
for each pixel. Thus, we need to estimate only p(yt|z1:t), using a PF, in a space
of reduced dimension, which satisfies the alternative recursion

p(yt|z1:t) ∝ p(yt−1|z1:t−1)p(zt|yt, z1:t−1)p(yt|yt−1). (15)

The likelihood p(zt|yt, z1:t−1) does not simplify to p(zt|yt) because there is a
dependency on past values through I0:t. For conditionally linear models, we have
p(zt|yt, z1:t−1) = N (bt+HtIt|t−1, St) [6]. The variance of the importance weights
for RB(M)PF is lower than for (M)PF [11]. Also, for the same performance, fewer
MC particles are needed. This is because the dimension of p(yt|z1:t) is smaller
than that of p(xt|z1:t). Another reason is that optimal algorithms are used in
order to estimate the linear state variables.

3.4 Data-Dependent Sampling

Basic PFs [9,7], which use the proposal distribution q(xt|xt−1, zt) = p(xt|xt−1),
usually perform poorly because too few samples are generated in regions where
the desired posterior p(xt|z1:t) is large. In order to construct a proposal dis-
tribution which alleviates this problem and takes into account the most recent
measurements zt, we propose to transform the image sequence into probability
distributions. True spots are characterized by relatively high intensities with con-
vex profiles. Noise-induced local maxima typically exhibit a random distribution
of intensity changes in all directions, leading to a low local curvature [3]. These
two discriminative features (intensity and curvature) are used to construct an
approximation of the likelihood L(zt|xt), using the image data available at time
t. For each object we use the transformation

p̃m(rt|zt) =
(Gσ ∗ z̃t(rt))rκs

t (rt)∫
Cm,t

(Gσ ∗ z̃t(rt))rκs
t (rt)dxdydz

, ∀rt ∈ Cm,t, (16)

where Gσ is the Gaussian kernel with scale σ, z̃t denotes a first-order interpo-
lation of zt, Cm,t is the circular region (with radius defined by the covariance
matrix of p(xt|xt−1), e.g. 3-standard-deviation level) centered at the object po-
sition predicted from the previous time step, the curvature κt is given by the
determinant of the Hessian matrix H of the intensity z̃t:

κt(rt) = det(H(rt)), H(rt) = ∇ · ∇T z̃t(rt), (17)

and the exponents r > 1 and s > 1 weigh each of the features and determine the
peakedness of the likelihood. Using this transformation, we define the new data
dependent proposal distribution for object m as

q̃m(yt|yt−1, zt) = p̃m(rt|zt)N (vt|rt − r̂MMSE
m,t−1 ,Σv)N (st|sMMSE

m,t−1 , q2T ), (18)
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where the covariance matrix Σv = diag[q1T, q1T, q1T ]. Contrary to the original
proposal distribution, which fails if the likelihood is too peaked, (18) generates
samples that are highly consistent with the most recent measurements in the
predicted (using the information from the previous time step) regions Cm,t. A
mixture of both proposal distributions gives excellent results:

qm(yt|yt−1, zt) = γp(yt|yt−1) + (1 − γ)q̃m(yt|yt−1, zt),

where 0 < γ < 1. Compared to the regular one, this proposal distribution scales
much better to smaller sample sizes.

3.5 Track Initialization and Management

The initialization of the proposed RBMPF can be done by manually specifying
the objects of interest in the first frame, or by using a completely automatic
initialization procedure [8]. The latter, also used for detection of newly appearing
objects in subsequent frames, divides the image space into rectangular 3D cells
and samples Ns particles according to importance function (16). The number
of sampled particles in each cell represents the degree of belief in object birth.
In cells (not containing any of the M existing objects) with counts larger than
some threshold Ntd, new tracks are initiated with initial mixture weights πbd.
The threshold Ntd can be estimated experimentally and depends on Ns, cell
volume and the number of bright spots in the image data.

Whenever objects pass close to one another, the object with the best like-
lihood score typically “hijacks” particles of nearby mixture components. This
problem is partly solved using the MRF model for object interactions [8]. To
better resolve the ambiguity in such situations, the Hough transform is used
for each spatiotemporal ROI of 3-5 frames, Cm,t−τ :t+τ , to correctly model
velocity changes. If object m passes close to a new object, the distribution
pm(xt|z1:t) becomes too diffuse in a few time steps and the reclustering proce-
dure ({c′(i)t }, M ′) = F ({x(i)

t }, {c
(i)
t }, M) [12] is performed to initiate new tracks.

Merging of objects does not occur in our application and is therefore forbid-
den. If the mixture weight πm,t is below some predefined threshold level πtd,
component m is removed from the mixture and the track terminated.

4 Experimental Results

4.1 Evaluation on Synthetic Data

The RBMPF was first evaluated and compared to the standard PF using syn-
thetic but realistic 2D image sequences (20 frames of 512×512 pixels) of moving
MT-like objects (10−20 objects per frame), generated according to (9) and (10),
for different SNRs (Fig. 2) in a range around SNR=4, which has been identi-
fied by previous studies [4] as a critical level at which several popular tracking
techniques break down. Object velocities ranged from 200 to 700 nm/sec, rep-
resentative of published data [13]. The PFs used 300 samples per object and
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4μm

SNR = 4

SNR = 2

SNR = 64μ
m

Fig. 2. Examples of synthetic images used in the experiments. The left image is a frame
from one of the sequences (SNR=7) with the trajectories of the 20 moving objects
superimposed, illustrating the motion patterns allowed by the linear state evolution
model (9). The right image is a frame from another sequence (SNR=4), giving an
impression of object appearance. The insets show zooms at different SNRs.
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Fig. 3. Average RMSE (left) for different SNRs, and RMSE per track (right, SNR=4),
for manual and automatic tracking in the described synthetic data sets.

the algorithm parameters were as follows: σmax = 250 nm, σmin = 100 nm,
Δx = Δy = 50 nm, r = 5, s = 1, q1 = 3, α = 10−3 and q2 = 0.04, q3 = 1, T = 1
sec. SNR is defined as the difference in intensity between the object Io and
background Ib, divided by the object noise, σo =

√
Io [4]. Tracks were initialized

manually in desired regions of interest in the first frame, or automatically using
the described procedure, giving similar results.

Having the ground truth for the synthetic data, we evaluated the accuracy
of the tracking and compared the PF techniques and manual tracking (done by
five independent expert observers). To quantify the localization error, we used
the traditional root mean square error measure [3]. Figure 3 shows the RMSE in
the object position estimates as a function of SNR for the manual tracking and
using the PF techniques. The localization error of our algorithm is in the range
of errors made by experts. The error bars represent interobserver variability and
indicate that manual tracking performance degrades significantly for low SNRs.
The figure also shows the reduction of the variance when the RBMPF is used,
compared to the standard PF. The RBMPF was also evaluated on 3D synthetic
image sequences, with 20 optical slices, σz = 250 nm, Δz =200 nm. The RMSE
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Fig. 4. Examples of velocity distributions (left) and velocity estimation for 10 rep-
resentative MT objects (right) obtained with our RBMPF-based automatic tracking
algorithm versus manual tracking applied to real fluorescence microscopy image se-
quences of growing MTs (data set in Fig. 1(a), SNR≈5).

in this case was higher (about 300-400 nm), due to the approximately three times
lower optical resolution of the modeled imaging system in the axial direction,
and the variance reduction by using RBMPF was not significant, due to the
increase of the state space dimension for the PF from 6 to 9.

4.2 Evaluation on Real Data

The algorithm was also applied to real 2D fluorescence confocal microscopy
image sequences acquired for MT dynamics studies [13]. Three representative
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Fig. 5. Left: Results (six tracks) of automatically tracking MTs in the presence of
photobleaching, illustrating the capability of our algorithm to capture newly appearing
objects (tracks 5 and 6) and to detect object disappearance (track 4). It also shows
the robustness of the algorithm in the case of closely passing objects (tracks 1 and 5).
Right: Visualization of tracking results produced by our algorithm in the case of the
real data of Fig. 1(a). Shown are five frames (time is increasing from bottom to top)
with the trajectories rendered as small tubes.
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data sets (of size 512 × 512 pixels, 30 time frames, examples of which are shown
in Fig. 1) were preselected from larger volumes by manually choosing the regions
of interest. In these experiments, the parameters of the algorithm were fixed to
the same values as in the case of the synthetic data. Using the automatic track
initiation procedure, the tracker simultaneously followed 10–30 spots during 3–20
consecutive frames until their disappearance.

Lacking ground truth for the real data, we evaluated the performance of our
algorithm by comparison with manual tracking results from two expert cell bi-
ologists. Distributions of instant velocities estimated using our RBMPF-based
algorithm versus manual tracking for SNR≈5 are presented in Fig. 4. Application
of a paired Student t-test per track revealed no statistically significant difference
between the results of our algorithm and that of manual tracking, for both ex-
pert human observers (p�0.05 in all cases). The difference in average velocity
(over 10 tracks) between automatic and manual tracking was less than 1%, for
both observers. Our velocity estimates are also comparable to those reported
previously based on manual tracking in the same type of image data [13]. Two
different example visualizations of real data together with the results of tracking
using our algorithm are given in Fig. 5.

5 Discussion and Conclusions

We have presented a Rao-Blackwellized marginal particle filter for tracking of
multiple objects in molecular bioimaging data. The proposed approach contains
several improvements over previous PF-techniques. Specifically, the robustness
and reproducibility of the algorithm are improved by means of a new importance
function for data-dependent sampling and by using marginalization for both the
filtering distribution and selected variables from the state vector. These modifi-
cations reduce the number of MC samples required for tracking from 105−106 [8]
to 102 − 103. Compared to existing deterministic approaches, which perform ob-
ject detection prior to linking using non-Bayesian maximum likelihood or least
squares estimators, the proposed estimator optimally exploits temporal infor-
mation and prior information about the parameters, resulting in lower variance.
As the experiments show, even in data with SNR as low as 2 (which is not un-
common in practice), our algorithm still yields reliable tracking results, whereas
common frame-by-frame approaches break down at SNR<4–5 [4].

The results of the experiments on synthetic image data suggest that our algo-
rithm is potentially more accurate than manual tracking by expert human ob-
servers. The experiments on real fluorescence microscopy image sequences from
MT dynamics studies showed comparable performance. This is explained by the
fact that in the latter experiments, we were limited to comparing distributions
and averages (Fig. 4), which may conceal small local discrepancies, especially
when the objects’ velocities vary over time. Instant velocities were also analyzed
per track but could not be quantitatively validated due to the lack of ground
truth. Nevertheless, the results indicate that our algorithm may replace labori-
ous manual procedures. Currently we are evaluating the method also for other
biological applications to further demonstrate its advantages over current means
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of manual and automated quantification of subcellular dynamics. Our findings
encourage use of the method to analyze complex biological image sequences not
only for obtaining statistical estimates of average velocity and life span, but also
for detailed analyses of complete life histories.
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Abstract. The detection and extraction of complex anatomical struc-
tures usually involves a trade-off between the complexity of local feature
extraction and classification, and the complexity and performance of the
subsequent structural inference from the viewpoint of combinatorial op-
timization. Concerning the latter, computationally efficient methods are
of particular interest that return the globally-optimal structure.

We present an efficient method for part-based localization of anatomi-
cal structures which embeds contextual shape knowledge in a probabilis-
tic graphical model. It allows for robust detection even when some of the
part detections are missing. The application scenario for our statistical
evaluation is spine detection and labeling in magnetic resonance images.

1 Introduction

Problem Description. We investigate a new method for automatically locating
the human vertebral column (spine) and for simultaneously labeling the inter-
vertebral disks in 3D T1-weighted magnetic resonance (MR) survey images of
total spine. The method provides robust input for further automatic processing,
e.g. initialization of vertebra models to segment individual vertebrae or extrac-
tion of regions of interest for subsequent image acquisition or processing.

The human spine typically consists of 24 vertebrae (7 cervical: C1-C7, 12
thoracic: T1-T12, 5 lumbar: L1-L5) with in-between situated intervertebral disks,
aligned in a double-S shaped curve. In T1-weighted fast field-echo (FFE) images,
the disks typically appear as bright structures, and the vertebrae themselves
give virtually no signal and appear dark. We therefore use the disks as high
level features (parts) for localizing the spine column and individual vertebrae.
Integration of spatial context is essential, however, for coping with erroneous
local detections and missing features, in order to label vertebrae anatomically.

There are several pathologies that may significantly affect the appearance of
the spine such as fracture, neoplasm, deformity (e.g. scoliosis) and degeneration.
Also the number of vertebrae may differ from 24, e.g. by lumbalization of the
cranial sacral segment into an L6. Our objective is the design of a probabilis-
tically sound model for reliably detecting and localizing the spine column, that
copes with the complexity of the depicted anatomy and the variability in image
quality. In this paper, we concentrate on the standard case of 24 vertebrae.

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 122–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Approach. We use a probabilistic graphical model for representing both the
appearance of local parts and the shape of the anatomy in terms of geometric
relations between parts. Features for detecting parts are learned from a set of
training data in manually marked image regions.

In the detection stage, a multi-class classifier is applied to detect potential
locations for each part in a new image. In a subsequent step, the graphical
model provides a contextual decision by fusing these data with the geometrical
prior knowledge and inferring the globally optimal configuration of the parts.

2 State of the Art and Contribution

Related Work. At present, not many fully automated methods for locating
the spine in MR images have been reported in the literature.

Peng et al. [1] detect the intervertebral disks in MR images in connection with
segmenting the whole spine column. The detector used convolves a gray value
template of a disk with the image, followed by searching for the disk centers and
further local postprocessing. The method is not 3D but processes (sagittal) 2D
slices only which may not intersect the whole spine. Furthermore, the approach
does not model and employ contextual (non-local) prior knowledge. The study
reports good results for 5 subjects, but the performance of the method for low-
quality scout data, or when local disk detection fails, is unclear.

Weiss et al. [2] propose a semi-automatic algorithm for localizing the spine
and for labeling the intervertebral disks. Operator assistance is used to provide
a single seed point in the C2-3 disk. The procedure relies on intensity thresholds
for detecting the remaining disks, rendering the method highly dependent on
image quality and intensity correction in a preprocessing step. This also applies
to the approach of Vrtovec et al. [3] who locate the spinal canal by searching
for circular areas of homogeneous intensity in axial slices.

A well-known class of approaches that exploits geometrical prior knowledge
for anatomy segmentation tasks is based on the Active Shape Model (ASM) [4].
ASMs are known for their dependency on a good search initialization, and on
the reliability of local feature detection. Despite using a non-local shape model,
the optimization strategy is merely local. If the search is misled by ambiguous
landmarks, the optimization process cannot recover. In principle, the same crit-
icism applies to the Active Appearance Model (AAM) [5,6], that extends the
ASM by additionally representing the texture within the shape.

Recently, a combination of ASM and robust point-matching (RPM) has been
proposed [7], that uses soft-assign for matching the model and image features.
This work is closer to our approach regarding the ability to revise erroneous
local decisions through contextual prior knowledge. The success of the method
for finding the globally optimal configuration depends crucially on the annealing
schedule that is used in the nonconvex energy minimization whereas the inference
algorithm that combines local and global information in our approach guarantees
global optimality.

Our model can be regarded as an instance of the object recognition framework
suggested in [8] that describes the image as a deformable configuration of local
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parts. While this work only considers tree-structured constellations for computa-
tional efficiency, we use a fully interconnected model which enables the efficient
detection of missing parts. Other instances of this class of approaches include
[9], [10] and [11] where the geometry is described by a multivariate normal dis-
tribution of part positions relative to a non-occluded reference part. Our model
does not rely on any particular reference part and is invariant against translation
and rotation. The graphical shape templates proposed by Amit [12] for anatomy
detection are defined by potential functions on triples of parts, and require a de-
composable graph structure enabling the application of a dynamic programming
algorithm for second order Markov chains. The specific graph structure causes
the approach to be sensitive to missing part detections, a limitation which is
overcome in our formulation.

Contribution. The basic features of our approach are:

– The design of the part detectors is completely determined by learning from
the data. It does not involve any model assumptions (e.g., template).

– Local information is fused with non-local geometrical prior information and
results in a globally optimal configuration. Favorable consequences of this
globally optimal inference are (i) that problems due to a poor initialization
are obsolete, and (ii) that evaluations of the result only judge the model and
cannot be misinterpreted as poor local minima.

– Missing parts are explicitly taken into account by the probabilistic graphical
model. In case of failure of a local detector, we are still able to predict the
most probable position of a missing part.

– Any further available information, e.g., identification of the up-most inter-
vertebral space (C1-2) as anchor point, can be easily integrated and fully
exploited during inference.

3 Methods

Graphical Model. Our probabilistic model represents the image appearance of
single parts as well as the relative geometry of pairs of parts, in terms of vertices
V and edges E of a graph G = (V, E). Each vertex s ∈ V indexes a random
variable xs that assigns to the part its unknown image location. Accordingly,
x = {x1, x2, . . . , x|V |} denotes a configuration of parts.

Given an image I, the objective is to localize the object of interest by deter-
mining the most probable configuration x that maximizes

P (x|I, θ) = PA(x|I)PS(x|θ) , (1)

where PA represents the appearance of parts and PS captures shape information
using a set of parameters θ. We model P (x|I, θ) by the Gibbs distribution

P (x|I, θ)=
1
Z

exp(−E(x|I; θ)) , E(x|I; θ)=
∑

s∈V

ψs(I, xs)+α
∑

(s,t)∈E

ψst(xs, xt; θ),

(2)
whose components will be detailed below.
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Part Appearance Potentials. The unary potential functions ψs in (2) are
directly given by the output probability P (xs|I) provided by the classifier that
is used to detect candidates for part s in an image, as described below. Note
that we assumed mutual independence of local detections in (2).

Relative Geometry of Part Pairs. The potential functions ψst in (2) repre-
sent the relative geometry of pairs s, t of parts.

We evaluate two alternative models: The first version models the distance of
the parts by the 1D Gaussian,

ψst(xs, xt) =
(‖xs − xt‖ − μst)2

2σ2
st

. (3)

This representation is invariant against joint translations and rotation of both
parts. The second version uses instead of (3) a multivariate normal distribution
to represent the part locations relative to each other:

ψst(xs, xt) =
1
2
(xs − xt − μst)�Σ−1

st (xs − xt − μst) . (4)

This variant captures the geometry more accurately but is no longer rotational
invariant. In applications where the absolute orientation of the structure of in-
terest does not vary too much relative to the image frame (i.e. scanner axis),
this second formulation is preferable.

In connection with spine detection, it is undesirable to allow disks to over-
lap. To account for this, we truncate the Gaussians by multiplying them with
the indicator functions ICst(xs, xt) that take the value 1 inside the sets Cst :=
{(xs, xt) | ast ≤ ‖xs−xt‖ ≤ bst}, where the parameters ast and bst are determined
in relation to the minimum and maximum lengths in the training set. Hence,
overlapping parts and pairs too far apart are assigned a pairwise probability of
0 and effectively are no longer considered together.

We point out that, while truncated Gaussian distributions are appropriate for
the application studied in this paper, the model adopted from [13] also copes
with more general, e.g. multimodal, local distributions.

Part Detection. Randomized classification trees allow for fast evaluation and
can be used to detect points of interest [14]. Training such a classifier amounts
to creating a set of decision trees and collecting the statistics of the training data
under the trees’ classifications. The branching tests at tree nodes are chosen at
random from a set of very simple tests, each involving only few feature space
dimensions.

For our application, we use sub-volumes of 15x15x15 voxels as local feature
vectors. The tree tests are plain comparisons of two of their dimensions, trans-
lating to simple ”brighter than resp. darker than” decisions for pairs of voxels
in a neighborhood. The overall performance and robustness against noise results
from the aggregation of the statistics over a large number of such tests, that
are distributed over the ensemble of decision trees used. As only the ordering of
intensity is taken into account, the resulting detector is insensitive to intensity
distribution variation as commonly observed in MR images.
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Local rotation and scale tolerance is achieved by augmenting the training set
by resampled copies of the training images, which have been randomly trans-
formed to vary within the expected range of orientation and scale changes.

Applying the classifier to an image yields a probability volume for each class
(Fig. 1). After sorting by descending probability, we pick candidates for each
class, starting with the most probable location, and add further candidates as
long as a specified number of candidates and a given probability threshold are not
exceeded. We impose a minimum spacing constraint between a class’s candidate
points to suppress non-maxima, and to restrict further the set of candidates.

Modeling Undetected Parts. Missing detections of individual parts are han-
dled by introducing an artificial candidate for each node of the graphical model,
the location and appearance of which is declared ”hidden”. As its position is
not known, we would need to marginalize the associated potentials over the im-
age domain, which is computationally infeasible. Instead, we approximate this
marginalization by setting the hidden candidate’s potentials to their expectation
with respect to the training data plus a penalty for the miss:

ψs(·)=− log β Exs

[
exp(−ψs(xs))

]
, ψst(·, ·) = − log γ Exs,xt

[
exp(−ψst(xs, xt))

]

(5)
Here, Exs resp. Exs,xt denote the expectation with respect to the ground

truth training data, and the parameters β, γ are empirically determined from
the training set such that these ”hidden”-probabilities indeed incur a penalty
for omitting parts in the majority of training cases.

Inference Algorithm. We use the graphical model as specified above to infer
the most likely configuration x (position and overall pose) of the model in any
novel image I. This maximum a posteriori (MAP) estimate

x̂ = argmax
x∈Ω

P (x|I, θ) (6)

is obtained by searching over all configurations consistent with detected part
candidate points. This is done using the A∗ algorithm [15] based on a tight
upper-bound estimate for efficiently pruning the search space. This estimate
is computed by exact inference on a tree-structured subgraph and guarantees
not to miss the global optimum [13]. As described below, it turned out empir-
ically that A∗-search terminates after reasonable computation time. Therefore,
we preferred this method over alternative approaches to approximate graphical
inference based on nonconvex optimization [16].

Missing Part Postprocessing. We can estimate the approximate location of
parts detected as missing in a postprocessing step. This is done by greedily
searching for these locations while keeping the already inferred parts fixed. For
each missing part h, treated individually now, we predict its position by aggregat-
ing the evidence from all neighbors Nh of h that have been successfully identified.
Specifically, using the learned distributions xt−xs ∼ N (μst, Σst) and the identity
N (a, A) · N (b, B) ∝ N (c, C) where C = (A−1 + B−1)−1, c = CA−1a + CB−1b
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Fig. 1. Left: Labeling result. Yellow labels denote the graphical model’s MAP es-
timate(+), green labels represent parts found by postprocessing(#), and blue labels
show the ground truth annotation(*). Larger dots indicate positions located in the
viewing plane and smaller dots positions next to it. Right: Classifier probability
maps for four classes in a new image, produced by the randomized tree classifier that
was trained on independent datasets. Clockwise, the corresponding classes are C1-2,
C2-3, L1-2, and S1-2. The depicted slices from the probability volumes were normalized
for visualization such that the value 1 represents the most likely pixels with respect
to these classes. Note that particularly in case of the L1-2 class, the neighboring disks
are highly similar in appearance. Thus, local classification cannot discriminate between
them, but has to be complemented by “geometrical context” as studied in this paper.
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for the multiplication of Gaussians, we compute the maximum at the mean of
the product

x̂h = max
xh

∏

s∈Nh

N (xs + μsh, Σsh) = (
∑

s∈Nh

Σ−1
sh )−1(

∑

s∈Nh

Σ−1
sh (xs + μsh)) . (7)

Optionally, we incorporate the appearance term by multiplying the product of
Gaussians by the classifier’s probability map of the missing part, and then locate
the maximum.

Scale Estimation and Invariance. The learned geometry representation ex-
hibits a high variance if the training examples are not normalized in scale. Hence,
tighter geometry constraints are obtained if both training and test data are on a
common scale. For training images, this can be achieved by Procrustes analysis,
for instance. But for the test images, the scale information is not readily avail-
able, because the correspondences have not been established prior to detection.

In order to compensate for global changes in scale in a new image, we extend
our algorithm by a second run of the graphical model inference. After the first
run, which is performed with the original geometry model without scale nor-
malization, we obtain an estimate for the global scale correction parameter as
follows: For each pair of detected parts, the ratio of their distance to the model’s
mean distance is entered into a weighted histogram H( (||xs−xt||

μst
; 1

σst
) with the

weight derived from the model’s standard deviation, so that less reliable pairs
of parts have lesser influence on the estimate. After smoothing the histogram H
using kernel density estimation with a Gaussian kernel, we use its mode as the
global scale compensation parameter for this image.

A second inference run is then performed using the scale-compensated inter-
part geometry together with a geometry model learned from scale-normalized
training examples. The scale estimates for the training data needed to build
this latter model are extracted using the same histogram-based procedure, using
ground truth pairs of parts instead of part detections.

4 Experimental Results

We evaluate the performance of our graphical model and its components for
spine detection and localization, based on annotated ground truth data.

Data Sets. T1-weighted MR images were acquired on a Philips 1.5T Achieva
scanner with a multi-station 3D FFE sequence. These 30 datasets each consist
of two station scans (224 × 224 × 180 voxels of extent 1.96mm × 1.96mm
× 1.5mm), which were combined into a single image and resampled to obtain
an isotropic voxel size of 2mm edge length. The image quality of these MR
acquisitions varied greatly. Artefacts and intensity distribution fluctuations due
to field inhomogeneities as well as pathologies such as vertebra fractures were
present in these data.

Training and Parameter Values. The tree classifiers were trained on 5000
positive examples for each of the 26 classes (intervertebral disks C1-2 to S2-3)
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Fig. 2. Local detection performance. A part is detected if any of the best k can-
didates is within 14mm of the ground truth location. Left: Detection performance
increases as more classification trees are used. Searching among the best 10 candidates
for each class gives about 70% detection rate with 150 trees. Right: Producing more
candidates increases the probability of detection, shown here for 150 trees. The line
indicates our choice of 10 candidates used in subsequent experiments. Note that using
a single local decision (the best candidate only) yields a poor detection rate of 36%.

and 50000 background examples (randomly picked patches from other image
regions), all generated by resampling from a training set of 16 images. During
resampling, the images were anisotropically scaled (±20%) and rotated (±π/4)
about a randomly defined axis.

For scale detection, we always used model (4). It identifies sufficiently many
parts such that the estimated scale correction factor differs from an estimate
using ground truth by at most 4%. Further parameters used were β = 0.01 and
γ = 0.1 in Eq. 5. In (2), we set α = 2

|V | . The parameters ast, bst for truncating
the Gaussians (3) and (4) were determined by multiplying by 0.8 (1.15) the
minimum (maximum) distance between parts observed in the training data.

Part Detector Performance. The part detectors are parametrized by the
number of trees and the tree depth. We limited the maximum tree depth to 30
and pruned at branches with less than 10 training samples, so that most branches
are actually much shorter. In order to set the number of trees to a reasonable
value, we conducted a series of experiments for assessing the detection accuracy
relative to annotated ground truth positions.

A detection is considered as “correct” if it occurs within a radius of 14mm
from the ground truth annotation, resulting in good overall localization.1 Fig. 2,
left, shows the results.

Another important parameter is the number of candidate points we produce
for each part class. This number determines the average running time of the
inference algorithm based on the graphical model. Motivated by the experimental
findings (cf. Figs. 2 right, and Fig. 3), we set the number of candidates per class

1 This value equals the minimum intervertebral disk distance in our data.
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Fig. 3. Local detection performance for each part. While the detection proba-
bility increases with the numbers of trees, it varies significantly for different parts. The
subsequent non-local inference using the graphical model is therefore essential in order
to cope with parts that are more difficult to detect.
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Fig. 4. Localization accuracy of the overall model variants. The box plots show
the median (center line), the lower and upper quartiles (box), and the extent of the
data (whiskers extending by at most 1.5 times the interquartile distance) excluding
outliers, which are separately plotted as crosses. Symbol A indicates the use of orienta-
tion information in the geometry model (4); symbol B indicates the rotational invariant
geometry model (3). Symbol p1 indicates missing-part postprocessing with appearance
information, and p0 without. Left: Distances to ground truth locations, averaged over
all classes, for each model variant A,p0A, p1A, B, p0B, p1B. Right: Proportion of cor-
rectly identified parts for each model variant.

to 10 in all subsequent experiments. An obvious modification is to let this number
vary for different part classes. We did not investigate this option, however.
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Overall Performance and Cross Validation. We determined the localization
accuracy and robustness of the complete model by leave-one-out cross validation
with 30 annotated images. In each of the 30 runs, 29 datasets were used for train-
ing the randomized tree classifier as well as either of the two geometry models
(3) and (4), and the remaining dataset was used for testing the resulting model,
utilizing the classifier together with graphical model inference, scale estimation,
and missing part postprocessing.

Localization accuracy results are summarized in Fig. 4. Due to the restriction
to interest points on the voxel grid as candidate locations, our model is not
expected to yield sub-voxel accuracy. Nevertheless, Fig. 4, left, shows that most
detected part locations are within a few millimeters of the ground truth position.

Using the geometry model with orientation (4) yielded an average ground
truth distance of 6.2mm (lower quartile 4.6mm, upper quartile 6.5mm) and a
part detection rate of 0.91. The rotational invariant model (3) resulted in an
average ground truth distance of 5.8mm (lower quartile 4.8mm, upper quartile
6.3mm) and a part detection rate of 0.95. Including appearance in the search for
missing parts improved this to 5.5mm and 5.1mm (part detection rates 0.94 and
0.97), respectively. Fig. 5 shows the localization errors for each class separately.
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Fig. 5. Localization accuracy for each part class. The class numbers correspond
to intervertebral disks C1-2 (class 1) to S2-3 (class 26). Left: Model using a geometry
model with orientation, and missing part postprocessing with appearance information.
Right: Rotational invariant geometry model, and missing part postprocessing with
appearance information.

Using the rotational invariant geometry model results in more accurate localiza-
tions with less outliers. An example result of the overall model fit, i.e. the most
probable configuration x, is visualized in Fig. 1.

Generalization to Novel Images. We tested the algorithm also on a set of 37
new images, that were not used for training nor for optimizing the parameters.
Using the rotational invariant geometry model and appearance information in
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the search for missing parts, yielded an average ground truth distance of 7.8mm
(lower quartile 5.3mm, upper quartile 9.5mm). This indicates that our models
generalizes well to novel data.

Semi-automated Incorporation of Expert Knowledge. We investigate
if, and to what extent the incorporation of expert knowledge (as used in semi-
automatic algorithms by ”clicking” on relevant anatomical structures) improves
the localization accuracy. We repeated the same series of experiments as described
above, but replaced the candidates for C1-2 with the expert’s annotation (ground
truth) and assigned to them an appearance probability of 1, while disallowing to
declare it as missing. The results improved slightly: The model including orien-
tation yielded an average ground truth distance of 5.8mm (lower quartile 3.9mm,
upper quartile 5.5mm) and a part detection rate of 0.94. The rotational invari-
ant model resulted in an average ground truth distance of 5.7mm (lower quartile
4.2mm, upper quartile 5.3mm) and also a part detection rate of 0.94.

5 Conclusion and Further Work

We presented a probabilistic graphical approach to the localization of spinal
structures, by fusing local part detection with non-local geometrical context.
The latter enables to revise local detections in case of ambiguous image data
or missing features. The inference algorithm returns always the globally optimal
configuration of parts conditioned on the observed image data, and does therefore
not suffer from initialization problems.

While our approach enables robust localization and appears to generalize well
to novel image data, it fails in cases of severe fractures that lead to geometrical
configurations not covered by the training data. Enlarging the latter will most
likely fix this problem.

Surprisingly, regarding computational complexity, the limiting component of
our current implementation are the local part detectors. For a full volume, they
take several minutes computation time. The subsequent combinatorial search
for the optimal configuration, on the other hand, runs below 1 second on the
average, despite the size of 1026 possible configurations. This proves empirically
the tightness of our upper-bound estimate used within the A∗-algorithm.

Our approach can be extended in several ways. For example, subvoxel localiza-
tion can be achieved by fitting more elaborate part models in a post-processing
step. Reduction of the processing time mainly depends on a more sophisticated
implementation of the part detectors. We also would like to point out, that our
model is sufficiently flexible to be adapted to the localization of other anatomical
structures.

An important topic of our future work concerns to handle also cases where
the total number of vertebrae differs from the standard of 24. The latter can be
achieved by extending the graphical model to include a latent unknown variable
that represents the major cases of anatomy deviation and has to be inferred as
part of the overall process.
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Abstract. This paper describes a system for detecting pulmonary nodules in CT
images. It aims to label individual image voxels in accordance to one of a number
of anatomical (pulmonary vessels or junctions), pathological (nodules), or spuri-
ous (noise) events. The approach is orthodoxly Bayesian, with particular care
taken in the objective establishment of prior probabilities and the incorporation
of relevant medical knowledge. We provide, under explicit modeling assump-
tions, closed-form expressions for all the probability distributions involved. The
technique is applied to real data, and we present a discussion of its performance.

1 Introduction

There are significant clinical motivations for the pursuit of computer-aided detection
(CAD) systems for lung cancer, which is the leading cause of cancer deaths worldwide.
According to the GLOBOCAN survey [1] the global death toll in 2002 was over 1.1
million people and 1.3 million new cases were diagnosed. The overall survival rate of
a lung cancer patient is about 14% [2], a figure that can be improved to 70% for early-
stage patients that undergo a lung resection [3]. The medical community sees CAD as a
necessary tool for meeting the demands of a CT screening program for lung cancer [4].

The choice of a Bayesian voxel labeling technique to address the problem of pul-
monary nodule detection is justified for several reasons. The uncertainty inherent to the
detection problems commonly faced in medical imaging is best accounted for through
statistical techniques. Moreover, there often is useful medical knowledge that can be
utilized to regularize or bound the solution of such problems. Bayesian methods are
therefore a natural choice, due to their ability to incorporate informative prior probabil-
ities (or simply priors) that encode and account for pertinent data and meta-data, such
as patient family history or prior medical examinations. Besides, as nicely put in [5],
the use of priors forces the explicit acknowledgment of otherwise hidden assumptions.

As for the choice of a voxel labeling scheme for nodule detection, it should be con-
trasted with the alternative method of generating candidate detections through segmen-
tation followed by classification of the segmented regions ([6] is a good example). This
is a perfectly sound approach, with potential advantages over voxel labeling — in par-
ticular, it eases the reckoning of spatial information. However, such detection systems
are hostages of the segmentation step. First, the detection rate of the segmentation step
places an upper bound on the detection rate of the complete system. Even if the seg-
mentation provides a full partition of the image, in our experience undersegmentation
(common with small and vascularized nodules) and oversegmentation (common with
large and complex nodules) occur frequently. This issue could perhaps be tackled by

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 134–146, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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a joint segmentation and detection algorithm, but the state of the art on such tasks [7]
assumes a few discrete data sources, unsuitable to describe a space of segmentations.
Voxel labeling bypasses such issues by incorporating information from neighboring
pixels in a predefined way and making decisions only at a local level.

There is a wealth of research in the area of CAD systems applied to the detection of
lung nodules from CT exams [34]. Local shape analysis of the 3D data was presented in
[8]. A 2½D technique was employed in [6], with solid results on noisy low-dose screen-
ing data. Nonetheless, the method uses 2D segmentation to generate candidates and the
number of false positives grows with the use of thinner CT slices. The distribution of
surface normals at the air-tissue interface was used in [9]; the algorithm was tested on
only eight images and results were reported for nodules larger than the minimum size
of 4 mm for which a follow up is recommended [10]. Recent works [11] report strong
results, but the dose violates the requirements of current screening protocols [10].

At a high level, this work applies a Bayesian statistical framework akin to that of
[6] to the problem of local shape analysis. It departs from that work by not requiring
a training step, avoiding image segmentation, building statistical models from geomet-
ric abstractions of label classes rather than data, and making extensive use of available
medical data to generate priors for the parameters of the models. It is also distinct from
previous works in differential shape analysis [8,12] that follow a purely deterministic
approach. Great care was taken in developing rigorous statistical models, in avoiding
the often hasty adoption of off-the-shelf Gaussian likelihoods, uniform priors and max-
imum likelihood estimators; concessions to mathematical simplicity were made in gen-
erating a practical solution to the problem, but less so in the problem statement. We
make specific choices of features, models and priors, but acknowledge that different
choices are possible and that such choices are paramount to algorithm performance.

The next section will introduce the mathematical framework of this paper. Sections
3-5 describe the relevant models and probability distributions. Implementation and re-
sults are discussed in section 6.

2 The Voxel Labeling Problem from a Bayesian Perspective

The symbol P(A) denotes the probability of the event A in an adequate probability
space. The symbol pX(x) denotes the value of the probability density of the random
variable X at x. We omit the subscript X in pX (x) when doing so is not ambiguous.

Let {Mi, i = 1, ...,N} be a set of parametric models, a model being a mathematical
description of an object. Each Mi has parameters mi in the domain Mi. Given a choice
of Mi, if D can be assumed to be a set D = {D j, j = 1, ...,M} of independent datum D j

associated with voxel x, we have, using Bayes’ law and marginalizing over the model
parameters,

P(Mi|D ,x) = p(D |Mi,x)
P(Mi|x)
p(D|x)

= M! ×
M

∏
j=1

p(D j|Mi,x)
P(Mi|x)
p(D|x)

= M! ×
M

∏
j=1

∫

Mi

p(D j|mi,Mi,x)p(mi|Mi,x)dmi
P(Mi|x)
p(D|x)

. (1)
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The independence assumption embedded in (1) is admittedly strong, but there is little
hope that a practical solution can be achieved under weaker hypotheses. The integral in
(1) is complicated enough; without this assumption, it would be unmanageable.

In the first line of the derivation of (1) the posterior, likelihood, and prior terms are
P(Mi|D ,x), p(D |Mi,x), and P(Mi|x), respectively. The independence assumption al-
lows for the factorization of the likelihood term and M! must be included because D is
a set of M individual datum D j, not an M-tuple. The marginalization step underscores
the distinction between the problems of detection and that of joint detection and fitting.
While in the latter the parameters of the selected model are also estimated, in the former
they are simply nuisance parameters whose values are accounted for, but not explicitly
computed. The identity p(mi|D j,Mi,x) = p(mi|Mi ,x)

p(D j |Mi,x) p(D j|mi,Mi,x) justifies referring

also to p(D j|mi,Mi,x) and p(mi|Mi,x) as likelihood and prior terms, and it is to in-
dicate these probability densities that these words are henceforth reserved. Whenever
a reference to p(D |Mi,x) and P(Mi|x) is made, we will avoid confusion by using the
terms data likelihood and model prior instead.

2.1 Modeling the Likelihood Term

To compute the likelihood term p(D j|mi,Mi,x) in (1) we first need to define the para-
metric model Mi and the datum D j ∈ D for the set D associated to the voxel x. We
consider four models: a nodule model M1, a vessel model M2, a vessel junction model
M3, and an outlier model M4. The first three are jointly referred to as anatomical mod-
els, as they are representative of structures found in lungs; the last model is a catchall
for everything that does not correspond to any of the anatomical models.

The above choices are reasonable if one considers the anatomy and pathology of
the lungs, but what constitutes a good choice of D is less clear. A number of works
in computer-aided detection of lung nodules [8,12] or colonic polyps [13,14] have
demonstrated that differential operators such as the Hessian or the structure tensor
can be efficiently used to discriminate between round and elongated structures in im-
ages. A comparison of differential operators was carried out in [12], suggesting an
advantage for the curvature tensor. In view of this we choose to use principal curva-
tures κ = (κ1,κ2), with κ1 ≤ κ2, as the datum D j ∈ D . This, in turn, makes geomet-
ric representations a natural choice for our anatomical models. The likelihood term
p(D j|mi,Mi,x) = p(κ|mi,Mi,x) is thus defined as the probability density of the ran-
dom vector Ki which maps a voxel x to a pair (κ1,κ2), given the geometric model Mi

with parameters mi.

2.2 Modeling the Prior

At the heart of the still ongoing philosophical debate on the validity of Bayesian meth-
ods [15] is the alleged subjectivism with which prior distributions are selected. Since
Jeffreys [16], however, there are firm grounds to reject such criticism, and there are now
a number of objective methods to elicit prior probabilities [17]. Of these, the maximum
entropy principle [18] is particularly attractive to our problem, due to its amenability to
the incorporation of external information. In a nutshell, the maximum entropy principle
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prescribes as the prior the distribution p of maximal entropy S = −
∫

p(x) log p(x)dx,
subject to the available constraints, expressed in the form

∫
p(x) fk(x)dx = ck for given

functions fk and constants ck. We therefore obtain p through the solution of a standard
variational problem.

Bringing medical scholarship into the design of the prior distribution of the model pa-
rameters is of fundamental importance in this work. A popular alternative is the learning
of parameter distributions from training data [19,20], where prior knowledge is encoded
in the form of prelabeled data samples. In this work, the probability distributions of the
model parameters are inferred from data in the medical literature. Obviously, both ap-
proaces have merits. In many situations, particularly in more exploratory research, the
very point of the work is to gain medical knowledge by understanding the parameters of
a given model [21], in which case data-driven learning techniques are the best option.

Volume Normalization. The procedure above computes p(mi|Mi), not p(mi|Mi,x).
But once p(mi|Mi) is obtained, p(mi|Mi,x) can be found with the help of the identity
p(mi|Mi,x) = p(x|mi,Mi)p(mi|Mi)/p(x|Mi). Taking a frequentist detour from our
Bayesian orthodoxy we argue that p(x|mi,Mi)/p(x|Mi) is proportional to the volume
V(mi,Mi), since, all else being equal, we are more likely to sample a voxel from the
instance of Mi that has more voxels. Therefore, given p(mi|Mi), p(mi|Mi,x) can be
obtained as p(mi|Mi,x) = p(mi|Mi)V(mi,Mi)/

∫
Mi

p(mi|Mi)V(mi,Mi) dmi. This
frequentist argument can also be used to determine P(Mi|x).

The Bayesian Horizon. The constraints on the priors are, in general, not directly ac-
cessible from medical literature, but must themselves be inferred from available in-
formation. This estimation problem could, in turn, be tackled with the introduction of
hyperpriors [35], a process that should not be iterated indefinitely; the ad hoc point at
which one stops is one’s Bayesian horizon (a term, to our knowledge, coined by Nils
Krahnstoever [22]).

2.3 Overview of the Modeling Procedure

We can now describe the general steps of the modeling procedure. All of these steps
must be adapted to the particular model under consideration and are prescribed here
only as general guidelines. They are: (i) selection of a geometric representation for
Mi, (ii) design of the priors p(mi|Mi,x) and P(Mi|x), (iii) derivation of the likelihood
p(κ|mi,Mi,x), and (iv) marginalization of p(κ|mi,Mi,x) over p(mi|Mi,x).

The marginalization is further broken down into two steps: simplification of the in-
tegrand and solution of the simplified integral. The integral in (1) is, in general, in-
tractable, and a conservative variant of Laplace’s method [23] is employed to simplify
it. The procedure affects only the likelihood term, resulting in

p(κ|mi,Mi,x) ≈
J

∑
j=1

wjδ (κ1 − g j(κ2,mi,Mi))p j(κ2|mi,Mi,x), (2)

where the number of terms J, the weights wj, with ∑J
j w j = 1, the functions g j and the

densities p j depend on p(κ1|κ2,mi,Mi,x). The roles of κ1 and κ2 may be exchanged
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as long as the necessary modifications in g j and p j are made. While most variants of
Laplace’s method completely replace the integral in (1) with an integral-free term, our
approximation only reduces the number of nested integrals, resulting in an expression
that can be solved in closed form.

3 The Nodule Model

The model M1 chosen to represent a nodule is a solid ellipsoid with similar concentric
ellipsoidal isosurfaces such that the outermost isosurface has semi-axes a, b and c with
a = b ≤ c, i.e.,

M1 : Π ×Θ × Φ→ R
3

(ρ ,θ ,φ) �→ x =
[

aρ cosθ cosφ
aρ sinθ cosφ

cρ sinφ

]
, (3)

where Π = [0,1], Θ = [0,2π), Φ = [−π/2,π/2]. The parameters of the model are
m1 = (a,c), with domain M1 = {(a,c) ∈ R

2|0 < a ≤ c}. Each choice of ρ ∈ Π defines
a different isosurface, at any point of which the principal curvatures can be computed.
Moreover, using standard results from differential geometry [24], it can be shown that

ρ = (c/a2)
√

κ1/κ3
2 and sin2 φ = (c2 − a2(κ2/κ1))/(c2 − a2). (4)

3.1 Design of the Priors

Let A and C be random variables that map a nodule to the half-size of its minor and ma-
jor axes (a,c). Assuming that nodules have non-negative dimensions with an average
diameter of 2/λ , as yet to be determined, the choice of an exponential distribution for A
is supported by both the principle of maximum entropy and data from the medical liter-
ature [25]. The same is true for the random variable C, but now the additional constraint
that 0 < A ≤C must be satisfied. Observe that the second inequality is arbitrary: A and C
are chosen from the pair (A′,C′) with 0 < A′ < ∞ and 0 < C′ < ∞ so that A ≤ C. There-
fore, the maximum entropy principle can be first applied to (A′,C′), resulting in a prob-
ability density for the pair (A′,C′) given by p(a′,c′) = λ 2e−λ (a′+c′)

I(0,∞)(a′)I(0,∞)(c′),
where IX is the indicator function of the set X , i.e., IX (x) = 1 if x ∈ X and 0 other-
wise. This expression implies that A′ and C′ are independent, which, in the absence of
contrary evidence, is the maximum entropy solution. The joint distribution for (A,C)
can then be obtained via the transformation A = min(A′,C′), C = max(A′,C′), resulting
in p(m1|M1) = p(a,c) = 2λ 2e−λ (a+c)

IM1(m1). Given the volume V(a,c) = 4πa2c/3
of an instance of M1, following the procedure discussed in Section 2.2 we obtain the
desired prior p(m1|M1,x) for m1 = (a,c) as

p(m1|M1,x) = (8/5)λ 5a2ce−λ (a+c)
IM1(m1). (5)

Using data from [25], a maximum likelihood estimation of λ results in λ ≈ 0.5 mm−1.
To determine P(M1|x) we again used the data in [25], which places the likelihood of
finding a nodule in a given exam of a screening cohort as 60%, with average nodule
volume of 0.033 ml.
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3.2 Derivation of the Likelihood

Let x be a point in the range M1(Π ×Θ × Φ) = R1 ⊂ R
3 of M1, randomly chosen

according to a uniform distribution on R1. Define now the random variables Π1, Φ1

and K1 = (K1
1 ,K1

2 ), given by

Π1 : R1→ R

x �→ ρ(x) ∈ Π ,
Φ1 : R1→ R

x �→ φ(x) ∈ Φ and
K1 : R1→ R

2

x �→ κ(x) = (κ1,κ2).
(6)

The joint probability density function of Π1 and Φ1 can be computed from the fractional
volume element dx/dV in polar coordinates and is given by

p(ρ ,φ) = (3/2)ρ2 cosφIΠ (ρ)IΦ(φ). (7)

Using (7) and the Jacobian of (4), the joint probability density p(κ|m1,M1,x) of K1

can be computed via a simple transformation of random variables, yielding

p(κ|m1,M1,x) = 3c3
(

2a4
√

κ9
2 (c2 − a2)(c2κ1 − a2κ2)

)−1

IK1(κ), (8)

where K1 =
{
κ ∈ R

2
∣∣∣ a

c2 ≤ κ1 and max
(

κ1,
(

c2κ1
a4

)1/3)
≤ κ2 < c2

a2 κ1

}
.

3.3 Marginalization over the Model Parameters

The probability density in (8) is sharply peaked (in fact, infinite) on the set K ∞
1 = {κ ∈

K1|c2κ1 − a2κ2 = 0}, and quickly falls as the distance d(κ,K ∞
1 ) grows. Therefore, at

the isosurface of M1 defined by a given ρ , the expressions

κ1(ρ) � E[K1
1 |ρ ] =

∫

Φ
κ1(φ ,ρ)p(φ |ρ) dφ = h1(ρ) = (cρ)−1, (9)

κ2(ρ) � E[K1
2 |ρ ] =

∫

Φ
κ2(φ ,ρ)p(φ |ρ) dφ = h2(ρ) =

carccos(a/c)
aρ

√
c2 − a2

, (10)

which suppress the dependence of κ1 and κ2 on φ , are excellent approximations for the
actual values of κ1 and κ2. From (9) and (10) one can write

κ2 ≈ g(κ1,m1,M1) = κ1
c2 arccos(a/c)

a
√

c2 − a2
≈κ1(4c − a)/(3a). (Taylor series) (11)

Furthermore, computing the marginal probability density pΠ1(ρ) of Π1 from (7) and
using the Jacobian of (9), we obtain p(κ1|m1,M1,x) = pΠ1(h

−1
1 (κ1))dh−1

1 (κ1)/dκ1 =
3/(c3κ4

1 )I{1/c≤κ1}(κ1). Using this result together with the expression for g(κ1,m1,M1)
defined by (11), we obtain the simplified likelihood term

p(κ|m1,M1,x) ≈ 3δ (κ2 − κ1(4c − a)/(3a))
c3κ4

1

I[1/c,∞)(κ1)I[0,κ2](κ1). (12)

Using the approximation in (12) and the prior (5), the integral in (1) can be computed,
resulting in

p(κ|M1,x) ≈ 4608λ 3e
− λ(5κ1+3κ2)

κ1(κ1+3κ2)
κ1(κ1 + 3κ2)+ λ (5κ1 + 3κ2)
5κ2

1(κ1 + 3κ2)3(5κ1 + 3κ2)2
I[0,κ2](κ1). (13)
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4 The Vessel Model

The vessel model M2 is represented as a section of a solid torus with similar concentric
isosurfaces such that the outermost isosurface has minor and major radii r and R with
r ≤ R, i.e.,

M1 : Π ×Θ0 ×Ψ→ R
3

(ρ ,θ ,ψ) �→ x =
[

(R+rρ cosψ)cosθ
(R+rρ cosψ)sinθ

rρ sinψ

]
,

(14)

where Π = [0,1], Θ0 = [0,θ0], Ψ = [−π/2,3π/2), and each choice of ρ ∈ Π defines
a different isosurface. The parameters of the model are m2 = (θ0,r,R), with domain
M2 = {(θ0,r,R) ∈ R

3|0 < θ0 < 2π and 0 < r ≤ R}. The principal curvatures (κ1,κ2) at
any point x in the torus can be expressed in terms of the model parameters (ρ ,θ ,ψ) as

ρ = 1/(rκ2) and cosψ = κ1κ2R/(κ2 − κ1). (15)

4.1 Design of the Priors

The first step in determining the priors on the parameters m2 of the vessel model is
examining available clinical data. Murray’s work on vessel structures [26] provides the
basis for deriving several mathematical relationships between the vessel model parame-
ters. Two particular corollaries of Murray’s law are a power-law distribution for vessel
radius, p(r) ∝ 1/r3 [27], and a linear relationship between vessel length and diameter,
θ0R ∝ r [28], with the latter implying that the vessel volume is proportional to r3. The
volume normalization step produces a prior p(r|x) ∝ 1, which is improper. To address
this issue we assume an upper bound for r and take one further step in our Bayesian
horizon. Invoking the maximum entropy principle under the appropriate constraints,
we obtain as a hyperprior for rmax a gamma distribution with shape parameter 1 and
scale parameter t, such that E[rmax] = t. We then marginalize the bounded prior over
rmax, yielding p(r|x) = e−r/t/t, where t is the average maximum radius of a pulmonary
vessel (≈ 15 mm using the radius of the aorta).

Now, a probability distribution on R must satisfy the constraint R ≥ r and expert
advice [29] indicated that pulmonary vessels tend to be straight, i.e., R ≈ ∞, suggesting
a better representation for the model parameters as (IR = 1/R,r), with 0 ≤ IR ≤ 1/r. The
maximum entropy distribution for IR is simply the uniform distribution, i.e., p(IR|r) =
rI[0,1/r](IR), and therefore p(R|r) = (r/R2)I[r,∞)(R), which combined with p(r|x) yields

p(m2|M2,x) = (r/(R2t))e−r/t
IM2(m2). (16)

Finally, P(M2|x) is proportional to the volume of the pulmonary tree (≈ 300 ml [30]).

4.2 Derivation of the Likelihood

We omit the derivation of the likelihood term, p(κ|m2,M2,x) for the vessel model,
because it follows exactly the same steps as that of the nodule model. The final result is

p(κ|m2,M2,x) =
2R/(πr2)

(κ2 − κ1)2
√

(κ2 − κ1)2 − (κ1κ2R)2
IK2(κ), (17)

where K2 is the set K2 =
{

κ ∈ R
2
∣∣∣1/r ≤ κ2 and κ2

1−Rκ2
≤ κ1 ≤ κ2

1+Rκ2

}
.



Lung Nodule Detection Via Bayesian Voxel Labeling 141

4.3 Marginalization over the Model Parameters

The probability density in (17) is infinite on the set K ∞
2 = K ∞,−

2 ∪ K ∞,+
2 , where

K ∞,−
2 = {1/r ≤ κ2 and κ1 = κ2/(1−κ2R)} and K ∞,+

2 = {1/r ≤ κ2 and κ1 = κ2/(1+
κ2R)} and falls sharply as the distance d(κ,K ∞

2 ) grows. Observe that the sets K ∞,−
2

and K ∞,+
2 are disjoint, and using (15) they can be identified with the sets Ψ− =

[π/2,3π/2) and Ψ+ = (−π/2,π/2], with Ψ = Ψ− ∪Ψ+. Analogous to the case of
the simplified nodule model, we have, for a given ρ defining a specific isosurface,

κ−
1 (ρ) � E[K1

1 |ρ ,ψ ∈ Ψ−] =
∫
Ψ− κ1(ψ ,ρ)p(ψ |ρ) dψ∫

Ψ− p(ψ |ρ) dψ
= h−

1 (ρ) =
−2

Rπ − 2rρ
, (18)

κ+
1 (ρ) � E[K1

1 |ρ ,ψ ∈ Ψ+] =
∫
Ψ+ κ1(ψ ,ρ)p(ψ |ρ) dψ∫

Ψ+ p(ψ |ρ) dψ
= h+

1 (ρ) =
2

Rπ + 2rρ
, (19)

which approximate κ1 in Ψ− and Ψ+, despite suppressing its dependence on ψ . There
is no need to approximate κ2, since we see from (15) that it is already independent of
ψ . From (18), (19) and (15) we obtain

κ−
1 ≈ g1(κ2,m2,M2) =

2κ2

2 − Rπκ2
and w1 =

∫

Ψ−
p(ψ) dψ =

1
2

− 2r
3πR

(20)

κ+
1 ≈ g2(κ2,m2,M2) =

2κ2

2 + Rπκ2
and w2 =

∫

Ψ+
p(ψ) dψ =

1
2

+
2r

3πR
. (21)

Proceeding as with the nodule model and again using (15), we have p(κ2|κ1,m2,M2,x)
= 2/(κ3

2 r2)Iκ2≥1/r(κ2) and finally

p(κ|m2,M2,x) ≈
((

1 − 4r
3πR

)
δ
(

κ1 − 2κ2

2 − Rπκ2

)

+
(

1 +
4r

3πR

)
δ
(

κ1 − 2κ2

2 + Rπκ2

))
1

κ3
2 r2

Iκ2≥1/r(κ2). (22)

The integral in (1) for the vessel model can now be estimated, using the approxima-
tion in (22) and the prior in (16), resulting in

p(κ|M2,x) ≈ π

(
κ1

(
e

−1
tκ2 − e

2(κ1−κ2)
tπκ2|κ1 |

)

3(κ2 − κ1)3 −
Ei

(
−1
tκ2

)
− Ei

(
2(κ1−κ2)
tπκ2|κ1|

)

2tκ2(κ2 − κ1)2

)
IK ∗

2
(κ), (23)

where K ∗
2 = {κ ∈ R

2
∣∣∣κ2 ≥ 0,−2κ2/(π − 2) ≤ κ1 ≤ 2κ2/(π + 2)} and Ei denotes the

exponential integral function.

5 The Vessel Junction and Outlier Models

Junction detection is an interesting problem on its own and the derivation of the junction
model is quite involved. Here, we limit ourselves to a superficial discussion of its prior
and likelihood terms and refer the reader to [36] for details.
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By appropriately “slicing” and “stitching” three tori with parameterizations as in
(14) but different values for R, we obtain the object M3 depicted in Figure 1. Vessel
junctions are often described as the most common source of false positives in lung
CAD systems aimed at detecting nodules [31,32], and to account for that we fill the gap
between the three tori with an ellipsoid. For the joint prior of this structure, we have

p(m3|M3,x) = δ (a − c3/2
0 /c1/2)× μ2ce−μ(c−c0)

1 + μc0
× e−r/t

t
IM3(m3), (24)

where m3 = (a,c,r), c0 = αr, α ≈ 0.41 (an exact form is available), M3 = {m3 ∈
R

3
∣∣r ≥ 0,0 ≤ a ≤ c0 ≤ c}, and t is the same as in (16). For the likelihood term we have

p(κ|m3,M3,x) = (1 − ω2 − ω3)p1(κ|a,c)+ ω2 p2(κ|r)+ ω3 p3(κ|r), (25)

where p1 is given by (12), p2 is given by (22) with

Fig. 1. Three tori with adequate
parameters form the junction
model. The cylinders are in-
cluded for clarity.

R = r, p3 is also given by (22), but with R = r sin β/(1+
sinβ ), β = arccos(2−1/3), ω2 ≈ 0.25, and ω3 ≈ 0.69,
for which exact but lengthy expressions are available.
The result of the marginalization is an enormous ex-
pression that can be obtained with the aid of a symbolic
computation package.

The outlier model does not comply with the steps
provided in Section 2; there is no deterministic shape on
which we can base its computation. Instead, we adapt
recent results in the theory of Gaussian random fields
[33], which directly establish the joint probability dis-
tribution of random isosurfaces of an initially spatially
uncorrelated Gaussian random field after smoothing by
an isotropic kernel. For our purpose, we choose this ker-
nel to be Gaussian with zero mean and scale parameter
σ0, and the resulting probability distribution is

p(κ|M4,x) =
256σ3

0 (κ2 − κ1)
π(4 + 3σ2

0 κ2
2 − 2σ2

0 κ2κ1 + 3σ2
0 κ2

1 )3
I[0,κ2](κ1). (26)

6 Algorithm and Results

An algorithm for lung nodule detection in CT volumes using the models described in
sections 3 to 5 was implemented with the Insight Toolkit [37]. The volume image is
first smoothed with a Gaussian kernel to reduce the effect of noise in the computation
of derivatives. The lung volume is automatically extracted to obtain a region of interest
(ROI) for all subsequent operations. Given a voxel x in the extracted ROI, the principal
curvatures κ(x) of the implicit isosurface at x are computed directly from the image
intensities [14,12]. Given the curvatures, the probabilities p(κ|mi,Mi,x) are computed
at each voxel x for each model Mi. The probability distributions involve parameters
such as the expected nodule diameter and the expected maximum vessel radius that
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(a) (b) (c)

Fig. 2. (a) A 2D slice of a high-resolution CT scan with nodule labels overlaid in green on the
intensity image. (b) A 3D rendering of the voxel labeling for a small region from the same case
showing nodules (green), vessels (red), and junctions (blue). (c) FROC curves comparing perfor-
mance of the Bayesian voxel labeling framework to a curvature-based non-probabilistic approach
given in [12].

were set to typical anatomical values. The curvatures at every voxel in a neighborhood
N centered at x are used to define the set D and p(D |Mi,x) is computed as the product
∏ j∈N p(D j|mi,Mi,x). The neighborhood shape is a simple cube with size set to 4 mm,
the diameter of the smallest nodule of interest [10]. Finally, multiplying by the model
prior probabilities, P(Mi|x), yields the individual posterior probabilities, P(Mi|D ,x).

The posterior model probabilities can be used to design a utility function over mis-
classification errors (false negatives and false positives) but this can be quite involved in
the case of distinguishing between more than two alternatives or models [38]. Since the
target application is nodule detection, we reduce the decision problem to two classes
(nodule and non-nodule) by combining all model posteriors other than P(M1|D ,x)
into a single probability and evaluating the Bayes factor [23] for the nodule model as
P(M1|D ,x)/P(Mi = M1|D ,x). Figure 2(a-b) shows results of the Bayesian voxel la-
beling using this scheme on a high resolution 0.625 mm slice thickness CT scan of a
patient with over 80 nodules due to metastatic lung cancer.

Validation of the algorithm was performed against ground truth provided by three ra-
diologists through FROC analysis. A dataset of 50 low-dose CT scans of asymptomatic
high-risk subjects, acquired via a screening protocol (40 mAs, 120 kVp, slice thick-
ness of 1.25 mm), was used to validate the proposed lung nodule detection algorithm.
Ground truth was defined as all nodules with diameter greater or equal to 4 mm marked
by at least 2 out of 3 radiologists, and included 60 non-calcified solid parenchymal nod-
ules. For performing the FROC analysis, a connected component algorithm was run to
group neighboring voxels as a single detection. After applying a diameter threshold of 3
mm to remove small, clinically irrelevant detections, the average Bayes factor over the
constituent voxels of each detection was used as the threshold parameter to generate the
FROC curve. The algorithm achieved 90% sensitivity at 5.1 false positives per case. In
comparison, the algorithm from [12] which uses the ratio κ1/κ2 as the decision thresh-
old gave only 70% sensitivity at the same false positive rate. The corresponding FROC
curves are shown in Figure 2(c). The Bayesian framework shows better specificity and
achieves a much higher overall maximum sensitivity (95%).
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7 Conclusions and Future Work

This paper introduces a Bayesian technique for lung nodule detection. The emphasis
is on careful development of likelihood and prior probability distribution using geome-
try, available clinical knowledge, and physical principles. Assumptions made in model
construction are directly motivated by the clinical application and always incorporated
explicitly into the resulting probability distributions. The prior probabilities are quite
general and have applications to any lung CAD algorithm for which the size and shape
of nodules and the diameter of vessels are relevant parameters [6,11]. In future work, we
plan to extend the Bayesian framework to account for variations in acquisition protocol
and include models for other pulmonary lesions such as subsolid nodules, and also to
validate the algorithm on larger datasets.
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Abstract. This paper presents novel statistical methods for estimating brain 
networks from fMRI data. Functional interactions are detected by 
simultaneously examining multi-seed correlations via multiple correlation 
coefficients. Spatially structured noise in fMRI is also taken into account during 
the identification of functional interconnection networks through non-central F 
hypothesis tests. Furthermore, partial multiple correlations are introduced and 
formulated to measure any additional task-induced but not stimulus-locked 
relation over brain regions so that we can take the analysis of functional 
connectivity closer to the characterization of direct functional interactions of the 
brain. Evaluation for accuracy and advantages of the new approaches and 
comparison with the existing single-seed method were performed extensively 
using both simulated data and real fMRI data.  

Keywords: Functional connectivity, fMRI, partial correlation, multiple 
correlation, spatial noise modeling, time series analysis, hypothesis testing. 

1   Introduction 

Recent advances in functional magnetic resonance imaging (fMRI) provide an 
unparalleled opportunity for measuring and characterizing brain function in humans. 
A thorough understanding of the neural mechanisms not only requires the accurate 
delineation of activation regions but demands precise description of function in terms 
of the information flow across networks of areas. Various approaches have been 
proposed to extract information of interaction from fMRI datasets, most of which rely 
on either functional or effective connectivity [7]. In this work, we present novel 
statistical methods for robust estimation of functional connectivity or interactivity. In 
addition, we provide comprehensive comparisons of our proposed multi-seed based 
methods using multiple and partial correlation analyses of fMRI data with the existing 
single-seed based method using marginal correlation. 

For functional connectivity study, a common approach is to calculate the temporal 
correlation coefficients of a signal from a selected voxel or region (so called “seed”, 
or “seed region”) in a region of interest with all other voxels in the brain. Each 
correlation map is resulting from the cross-correlation of only one seed region. 
However, when areas with quite different time series patterns are used as seed regions 
for brain connectivity inference, they should not be grouped as a single region; in 
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some applications, functional co-activation to multiple seeds rather than a single one 
would be of particular interest. Multiple seeds can be chosen to calculate multiple 
correlation maps to separately discover the functional connectivity to different seeds. 
But how to reasonably integrate multiple connectivity maps for brain function 
inference is still unresolved and ambiguous. Furthermore, it is often forbidding to 
examine all pair-wise correlations. Thus, it is desirable to have a single correlation 
map resulting from the cross-correlation of multiple seed regions simultaneously.  

Dynamic connections in fMRI are thought to be reflected by high temporal 
correlations of the time series. The strong correlation between the time series of each 
region in the network with that of another distant region implied by the functional 
interactions may be related to the spatially structured noise in fMRI. The spatial 
correlations of the noise must therefore be taken into account when dealing with the 
robust inference of the network. Recently, an approach for large-scale network 
identification in fMRI was proposed in [2] by considering the noise structure in the 
data. However, this method is again entirely restricted to connectivity detection 
between pair-wise (one to one) brain areas through regular Pearson’s correlation (i.e. 
marginal correlation) analysis and can not handle multiple regions simultaneously.  

Brain functional connectivity based on marginal correlation can be dominated by 
the stimulus-locked responses. For example, if visual and auditory stimuli are 
presented concurrently, the stimulus-locked neural responses would cause increases in 
the BOLD signal in the primary auditory cortex (A1) and the primary visual cortex 
(V1) simultaneously. Correlation between A1 and V1 would thus be high, though not 
due to any intrinsic task-induced functional couplings but due to the responses in both 
regions to externally driven stimuli. Partial correlation is the conditional correlation 
which estimates any remaining correlation between time series after taking into 
account the relationship of each to one or more reference time series. This allows us 
to measure any additional task-induced, but not stimulus-locked relation over brain 
regions. Recently, methods using partial correlation (or coherence) have been 
proposed [9, 8], though they are for pair-wise correlation / coherence analysis and not 
applicable to multiple seeds. In addition, the partial correlation in [8] is for subtracting 
and removing mutual dependencies on common influences from other brain areas 
rather than from stimulus-locked responses. How to mathematically compute and 
estimate the partial correlation to multiple seed regions and how to apply this to brain 
connectivity are challenging and have not yet been pursued in the literature.  

The aim of the present paper is to develop new statistical methods to estimate brain 
networks based on multiple correlations and partial multiple correlations of fMRI 
data. To the best of our knowledge, this work shows for the first time an innovative 
and successful application of multiple and partial multiple correlation analyses to 
study brain connectivity caused by multiple seed regions.   

2   Methods and Formulations 

In this section, we present our methods and our mathematical formulations for 
functional connectivity inference based on multiple seeds using multiple correlations 
(section 2.2) and partial multiple correlations (section 2.3). 
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2.1   Determining Multiple Homogeneous Seed Regions 

We select multiple seed regions based on their respective homogeneity as well as their 
known involvement in the functional or behavioral task and our interest in 
characterizing their interactions with other regions of the brain. The homogeneity is 
achieved with a region growing algorithm, which can start from a peak activation 
voxel during categorical comparisons, and grows by merging with other neighboring 
voxels based on a similarity criterion, such as the Pearson’s linear correlation between 
the time series of the peak voxel and the candidate voxel considered to be merged. In 
this way, we can find the regions of interest, i.e. seed regions, PSSS ,, 21 , where P is 

the total number of regions. For subsequent statistical analysis, the mean time series 
of any seed region is utilized as the time series of that seed, and the centroid of any 
seed region is considered to be the position of that seed. 

2.2   Method 1 – Functional Connectivity Using Multiple Correlations 

2.2.1   Estimating Temporal/Sample Multiple Correlations  
The temporal or sample multiple correlation coefficient considers the fMRI time 
series correlation between a given voxel X and a combination of seed regions, 

PSSS ,, 21 . Its estimation is based on the variance-covariance matrix: 
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ˆrâv
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Xvar  and 

pSvar  are the 

time series variances for voxel X  and seed pS  ( Pp ,2,1= ), respectively; and 

psX ,cov  is their covariance. Their estimation can be achieved through time series 

samples of size T. The temporal multiple correlation coefficient temR
∧

 between voxel X 
and the multiple seeds '

21 ],,[ PSSS  can be calculated as [1]:  
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ˆ SSSS vocΣvoc ⋅⋅ −

= . 

2.2.2   Estimating Spatial Multiple Correlations in Noise 
Main factors contributing to the spatial correlation of the noise include fMRI data 
preprocessing, partial volume effect, non-white measurement noise, and motion-
related artifacts. Despite the strategies and efforts to reduce such structured noise  
[10, 11], some residual and further corrections are still essential for robust fMRI data 
analysis.  

2.2.2.1   Voxel-Based Spatial Correlograph of Noise. We assume the spatial noise is 
stationary and has a multivariate Gaussian distribution with variance-covariance 
matrix ( )M

jiji 1,, =
= σΣ , where M is the total number of voxels; 

iσ and 
jσ are positive 
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standard deviations for voxels
iX and 

jX . The spatial correlations in noise then 

depend only on the spatial distance between voxels: ( )|||| jijiij −= ρσσσ , where 

|||| ji − denotes the spatial distance or lag between
iX and 

jX ; and ρ  is the spatial 

correlogram, a real-valued function that satisfies 1)0( =ρ and is bounded by -1 and 1. 

Such a spatial model is valid if and only if the resulting variance-covariance matrix 
Σ is positive-definite [5]. 

Since it is unknown what voxels or regions are predominantly influenced by the 
noise, the entire set ( ){ }hjiXXD jih =−= |,  of pairs of voxels at lag h over the whole 

brain area is considered for the non-parametric estimate based on the median: 
( ){ },, ,)(ˆ hjiij DXXrmedianh ∈=ρ , where ijr  is the Pearson’s linear correlation between 

the time series of the two voxels. As in general the empirical estimator ρ̂  of the 

correlogram does not provide a positive-definite correlation matrix, we focus on a 
parametric class of valid matrices, based on the empirical values ρ̂  estimated from 

the fMRI data. The rational-quadratic model )(hθρ  in [5, 2] is utilized for such 

purpose with 1)0( =θρ  (θ  is the involved parameter). The derived spatial correlogram 

of noise, )(hθρ , decreases rapidly from a correlation level between nearby voxels, 

+0ρ , towards an asymptotic correlation, ∞ρ . A critical distance ∞h  can be determined 

beyond which the correlogram is almost equal to the asymptote.  

2.2.2.2   Spatial Multiple Correlations in Noise. The spatial multiple correlations of 
the noise consider the correlations between any voxel X and a combination of 
multiple seeds PSSS ,, 21 . Suppose the distances between the voxel X and the seeds 

PSSS ,, 21  are respectively Phhh ,, 21 , and the distances between any pair-wise seeds 

are 
ijh  (for iS and jS , 

jiij hh = ). The noise spatial correlation matrix for 

[ ]′PSSSX ,,, 21 can then be constructed as: 
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where )(hθρ  is the correlogram estimated above. Let 2
Xσ  and 2

pSσ  respectively denote 

the noise variance for voxel X, and seed 
pS Pp ,2,1=  (see Appendix for their 

estimation). Then the corresponding variance-covariance matrix is: 
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The spatial multiple correlation coefficient of the noise between any voxel X and the 

seeds [ ]′PSSS ,, 21
 is estimated as: 2

'

X

XX

spa

R
σ

S
1

SSS σΣσ ⋅⋅ −

= , and can be simplified to:   

S
1

SS
'

S ρΛρ ⋅⋅= −

spa
R                                                   (1) 

2.2.3   Identifying Functional Connectivity of the Brain 

We would like to test whether the temporal multiple correlation temR
∧

 is likely to be 
found only by chance from the noise correlation. Under the null hypothesis that the 

temporal multiple correlation, temR
∧

, arises from a population whose multiple 
correlation equals the spatial multiple correlation of the noise, 

spaR , the following 

quantity is a non-central F [1, pp. 153-154]: 
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Here, the degrees of freedom are P and PT −−1 , and the noncentrality parameter is 
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SSS σΣΣΣσ , where we condition on the seeds’ time series. In the 

present work, due to the simplified Rspa in Eq. (1), the noncentrality parameter can be 

shown to be: 
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SSSSSSSS
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11'

1

)1(T , where Ψ  is a PP× diagonal matrix with 

diagonal element Pp
pS ,,2,1for  ,/1 …=σ . In this way, the p-value for each voxel can be 

calculated from this noncentral F distribution. A voxel shall be included in the 
functional connectivity network if the corresponding p-value is smaller than a pre-
chosen type I errorα (note: 05.0=α  is used in this paper). 

It can also be shown that under the null hypothesis of the population multiple 
correlation, Rspa, is zero, the F in Eq. (2) [1, pp. 149-150] is a central F, with P  and 

PT −−1 degrees of freedom. In fact, this is equivalent to multiple correlation analysis 
of multi-seed functional connectivity but without taking the spatial correlations of the 
noise into consideration.  

A departure from the temporally i.i.d. (independent and identically distributed) 
assumption due to the temporal autocorrelation will result in an increase in the 
degrees of freedom in the above hypothesis testing. To correct such possible bias, we 
estimate the effective degrees of freedom Teff. This can be achieved through the 
context of the general linear model [12]. We then use the estimated Teff to replace the 
T-1 in the F statistic’s calculation in Eq. (2).  

Furthermore, we have to perform numerous tests equal to the total number of 
voxels over the brain area. In order to correct this multiple testing problem, we apply 
a Bonferroni correction for simplicity. Other more advanced techniques can also be 
employed for this purpose.  
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2.3   Method 2 – Functional Interactivity Using Partial Multiple Correlations 

2.3.1   Estimating Temporal Partial Multiple Correlations 
The temporal partial multiple correlation coefficient considers the fMRI time series 
correlation between a given voxel X and a combination of seed regions PSSS ,, 21  

conditioned on fixed stimuli (experimental paradigms or reference functions) 

NVVV ,, 21 . Its estimation is based on the matrix: 
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where 
nVvar  is the time series variances of the stimulus

nV  ( )Nn ,2,1= ; 
nVX ,cov is the 

covariance between voxel X and 
nV , and 

np VS ,cov is the covariance between the seed 

pS and 
nV . Their estimation can be achieved through time series and reference 

function samples of size T, though they are not technically variances and covariances 
because the 

nV  are fixed stimuli. With the assumption that the conditional distribution 

( )′=== NNP vVvVvVSSX ,,,,, 22111 is a multi-normal distribution [1], its variance-

covariance matrix can be calculated as: 
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SSΣ are variances of voxel X  and the seeds holding the reference functions (stimuli) 

fixed, *ˆ Svoc X is their corresponding covariance under the same condition. Based on 

section 2.2.1, the temporal partial multiple correlation is thus: 
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2.3.2   Estimating Spatial Partial Multiple Correlations in Noise 
In section 2.2.2.1, we estimate the voxel-based spatial correlograph of noise using the 
median of Pearson’s linear correlation, i.e. marginal correlation. Here, we take the 
similar approach but replace the marginal correlation with partial correlation because 
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the stimuli are now considered to be fixed, i.e., ( ){ },, ,)(ˆ *
hjiij DXXrmedianh ∈= ⋅Vρ , 

where V⋅ijr is the partial correlation coefficient between voxels Xi and Xj holding 

NVVV ,, 21  fixed, and its calculation is as below. Let the variance-covariance matrix 

of ( )′Nji VVXX ,,,, 1
be
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σ [1]. The corresponding parametric correlogram )(* hθρ based on 

V⋅ijr  can then be estimated as in section 2.2.2.1. 

The noise spatial partial correlation matrix for [ ]′PSSSX ,,, 21 holding NVVV ,, 21   
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where )(* hθρ  is the correlogram estimated above. Let *
pSσ  denote the residual standard 

deviation of the noise for seed 
pS , Pp ,2,1= , holding NVVV ,, 21   fixed (see 

Appendix for its estimation). As in section 2.2.2.2, the spatial partial multiple 
correlation coefficient of the noise between any voxel X and the seeds 

[ ]′PSSS ,, 21
holding the stimuli fixed is estimated as: *

S
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2.3.3   Identifying Conditional Functional Connectivity of the Brain 

We would like to test whether the temporal partial multiple correlation V⋅

∧

temR  is 

likely to be found only by change from the noise correlation. The hypothesis is 

VVVV ⋅⋅ >= spatemspatem RRHvsRRH .1.0 :: . Here, we can show that 
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we condition on the seeds’ time series; *ψ  is a PP× diagonal matrix with diagonal 

element *1
pSσ , for Pp ,2,1= . Note that the effective degrees of freedom and the 

multiple testing problem mentioned in section 2.2.3 shall also be applied here. 
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3   Experiments and Results 

3.1   Simulated Data 

The simulated time series were composed of time- and space-correlated noise on a 
base 3D brain image with size 64x64x20. The space correlation was based on a 
rational-quadratic parameter model, with 

+0ρ =0.4, 
∞ρ =0.001, and ∞h =20 mm. The 

spatial Gaussian noise was generated using a Cholesky decomposition of the space 
correlation matrix [5, pp. 201-203]. The time series (T=128) have added to them 
ARMA(1,1) temporal noise, resulting in separable space-time correlation structure. In 
addition, some randomly selected regions were further summed with different types 
of signal time series (boxcar functions convolved with the hemodynamic response 
function as defined by the SPM software package; signal amplitude: 3%~5%) to 
simulate functional networks with multiple seed regions. We generated the data at 
four different noise levels.     

3.1.1   Validation of Our Multi-seed Method Using Multiple Correlations 
In this experiment, two types of networks were simulated, highly correlated with the 
two types of seed regions respectively. We used receiver operating characteristic 
(ROC) analysis for evaluation. The essence of ROC analysis is the comparison of true 
positive rates (TPR, proportion of voxels correctly detected as significant to all voxels 
with added connectivity) obtained with different analysis techniques for a given false 
positive rate (FPR, proportion of voxels incorrectly detected as significant to all 
voxels without added connectivity). The ROC curves in Fig. 1 indicate that our 
multiple correlation method can robustly detect the true multi-seed connectivity when 
the signal-to-noise ratio (SNR) is greater than or equal to -1.5dB, though the 
performance increases for increased SNR.  
 

 

Fig. 1. (a): Ground truth of a simulated seed; (b): Normalized time series of an associated 

connectivity voxel at SNR = -0.5dB. Note SNR is defined as:  

(c): ROC curves at SNR (in dB) = 0.0, -0.5, -1.0, -1.5 (top to bottom). 

3.1.2   Comparison of Our Multi-seed Method and the Single-seed Method 
In Fig. 2, three types of networks were simulated, with the green region highly 
correlated to seed 1, the blue region highly correlated to seed 2, and the brown having 
medium (relatively low) correlation to both of the two seed regions. Fig. 2 shows that 
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the identified connectivity (at 05.0=α , corrected) by our multi-seed method and by 
the single seed method (spatial correlations in noise also considered using the 
technique in [2]): i) With our multi-seed method using multiple correlations, all three 
types of connectivity are detected, both the highly correlated ones to the seeds (green 
and blue) and the medium correlated one (brown). ii) Using any one seed alone, only 
the corresponding one type of highly correlated connectivity is detected in each case; 
in addition, compared to our multi-seed method, the significance level is lower, and 
there are more false negatives and false positives; the correlation over the brown 
region is not high enough in either of the cases to be shown as significant when using 
any single seed alone. 

Fig. 2. Comparison of our muti-seed method 
(multiple correlation) and the sindle-seed 
method(with spatial noise considered, too). 

Fig. 3. comparison of our multi-seed meth- 
ods using multiple and partial multiple 
correlations 

3.1.3   Comparison of Our Methods: Multiple vs. Partial Multiple Correlations 
We also generated simulated data with four different types of connectivity (see Fig. 
3): light green and light blue denote the stimulus-locked activation regions to the type 
1 and type 2 seeds respectively; dark green and dark blue denote the stimulus-locked 
activation plus the task-induced functional coupling to the type 1 and type 2 seeds 
respectively. With the multiple correlations, all four types of regions are shown as 
significant, though at different significance levels. However, using partial multiple 
correlations, only the regions imbedding task-induced functional coupling (dark green 
and dark blue) are identified as significant because the partial correlation analysis is 
able to adjust for the stimulus-locked effects. 

3.2   Real fMRI Data 

The real fMRI dataset (53x63x46x360) was obtained from the SPM data site 
(http://www.fil.ion.ucl.ac.uk/~wpenny/datasets/attention.html) with a visual motion 
task (see [4] for the detailed description). The subject was scanned during four runs, 
with 90 image volumes in each run. Four conditions – ‘fixation’, ‘attention’, ‘no 
attention’, and ‘stationary’ – were used, and there were 10 multi-slice volumes per 
condition. The structural model for the dorsal visual pathway is shown in Fig. 4. Here 
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we examine the functional interactions by using the different seed regions: V1, or V5 
or both V1 and V5, and by using different methods. The seed regions were defined 
through categorical comparisons using a t-test and their anatomical coordinates listed 
in [4], followed by a region growing strategy described in Section 2.1.  

 

 

Fig. 4. Structural model for the dorsal visual 
stream (modified from [4]), including primary 
visual cortex (V1), V5, posterior parietal 
cortex (PP), and modulatory interaction term 
involving dorsolateral prefrontal cortex (PFC) 

Fig. 5. Estimated correlograms from the real 
fMRI data, showing the asymptotic 
correlation, ρ∞, in ρθ(h) (marginal correlation) 
is lower than the one in  (partial 
correlation).  This might be closely related to 
the “default mode” network of the human 
brain investigated in [6]. 

 

3.2.1   Partial Correlation Effects – Multiple vs. Partial Multiple Correlations 
From Fig. 6 (a) and (b), we can see that using multiple correlation (2nd row), both 
stimulus-locked and task-induced networks are identified, with all the involved 
regions in Fig. 4 shown as highly significant (yellow). However, using partial  

 

 

Fig. 6. Comparison of functional interaction maps for the real fMRI data 
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multiple correlation (1st row), since the stimulus-locked effects are accounted for, the 
network regions and their sizes are considerably reduced. Specifically:  i) with V1 as 
seed regions (Fig. 6(a), 1st row), mainly the low level visual network is identified as 
highly significant implying task-induced coupling among the visual areas, such as V1 
to V5; ii) withV5 as seed regions (Fig. 6(b), 1st row), the two PP and the right PFC 
regions are still shown as highly significant, suggesting the involved task-induced 
coupling of attention to motion modulation described in Fig. 4, after taking account of 
the stimulus-locked effects.  

3.2.2   Effects of Multiple Seeds - Comparison Using Both V1 and V5 as Seeds 
The partial multiple correlation results using V1 or V5 (Fig. 6 (a) and (b), 1st row) as 
seed regions have been illustrated in the above section. With a combination of a V1 and 
a V5 as seed regions (Fig. 6(c)), using partial multiple correlation, we can not only 
detect the highly significant low level visual network regions (as in Fig. 6(a) and (b), 1st 
row, last slice), but also identify the highly significant attention to motion modulation 
PP areas (as in Fig. 6(b), 1st row; also compare to Fig. 6(a), 1st row), achieving the 
combined effects of multiple seed regions involving both V1 and V5. Note that since 
only one V5 is used here, the region sizes and significance levels for the PP and right 
PFC are not as large as the ones using both V5 regions in Fig. 6(b) (1st row). 

3.2.3   Effects of Spatial Noise - Comparison of Non-central and Central F-Tests 
The results without taking the spatial noise correlations into consideration (central F-
test) are shown in Fig. 6 (a) and (b), 3rd row, with many unjustified areas identified as 
functionally correlated with the V1 and/or V5 seed regions due to the spatial 
structured noise in the fMRI data. 

4   Conclusions 

This paper presents novel statistical methods for robust inference of brain 
connectivity from fMRI based on multiple and partial multiple correlation analyses 
and multiple seed regions. The networks of functional interconnections are found by 
comparing the temporal multiple (and/or partial multiple) correlations against a model 
of the spatial multiple (and/or partial multiple) correlations in the noise. Compared 
with the existing single-seed method, using multiple seeds can not only lead to more 
robust inference of functional connectivity, but also more sensitive identification of 
functional co-activation networks or regions to multiple seeds that may not be 
detected in the single-seed method. The use of the partial multiple correlation has the 
interesting features of providing a convenient summary of conditional independences 
and hence of being more closely related to the direct functional interactions (i.e. 
effective connectivity) of the brain than marginal correlation. Experimental results 
from both simulated and real fMRI data demonstrate that the proposed approaches 
allow detecting and differentiating in robust and sensitive way functional networks in 
the working brain caused by stimulus-locked and/or task-induced responses. 
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Appendix – Estimation of Noise Variance 

Let 2σ denote the noise variance for each individual voxel in the fMRI data. It can be 

estimated with an ARMA(1,1) model. First, we use the general linear model to take 
away the part related to neural activity. The residual noise error is assumed to be the 

ARMA(1,1) process, generated from a temporally i.i.d. ),0( 2σN . 
∧

2σ can then be 

estimated as in [3] through a parametric fitting, which is the estimated noise variance 
at each individual voxel.  

Let 2
Sσ denote the noise variance for a seed region S (i.e., the noise variance for the 

mean time series of this seed region). Suppose there are w voxels in S, and the voxels 
within this region are correlated rather than independent. In order to estimate 2

Sσ , we 
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first calculate the ww×  variance-covariance matrix, A. The diagonal elements in A 
are ),2,1( 2 wii =σ , the variance of the noise at voxel i estimated above; and the off 

diagonal elements in A are ),,2,1,( )( j wjid iij …=⋅⋅ σσρθ
, where )( ijdθρ  is the 

correlogram estimated in section 2.2.2.1 for lag 
ijd , the spatial distance between voxel 

i and j. Let the entries in matrix A be 
ija . We then have: 

2

1 12

w

a
w

i

w

j
ij

S

∑∑
= ==σ , which is used as 

the noise variance of the seed region S, needed in the F statistic’s calculation in 
section 2.2.3 (multiple correlation case). If we replace the )( ijdθρ with )(*

ijdθρ  (see 

section 2.3.2) in matrix A, using the same procedure, we can estimate *
Sσ  , the residual 

standard deviation of the noise for seed region S holding the stimuli fixed, which is 
needed in the F statistic’s calculation in section 2.3.3 (partial correlation case). 



N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 160 – 171, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Learning Best Features and Deformation Statistics for 
Hierarchical Registration of MR Brain Images 

Guorong Wu1,2, Feihu Qi1, and Dinggang Shen2,* 

1 Department of Computer Science and Engineering 
Shanghai Jiao Tong University, Shanghai, China 200240 

{grwu,fhqi}@sjtu.edu.cn 
2 Section of Biomedical Image Analysis, Department of Radiology 

University of Pennsylvania, Philadelphia, PA 19104 
dinggang.shen@uphs.upenn.edu 

Abstract. A fully learning-based framework has been presented for deformable 
registration of MR brain images. In this framework, the entire brain is first 
adaptively partitioned into a number of brain regions, and then the best features 
are learned for each of these brain regions. In order to obtain overall better per-
formance for both of these two steps, they are integrated into a single frame-
work and solved together by iteratively performing region partition and learning 
the best features for each partitioned region. In particular, the learned best fea-
tures for each brain region are required to be identical, and maximally salient as 
well as consistent over all individual brains, thus facilitating the correspondence 
detection between individual brains during the registration procedure. More-
over, the importance of each brain point in registration is evaluated according to 
the distinctiveness and consistency of its respective best features, therefore the 
salient points with distinctive and consistent features can be hierarchically se-
lected to steer the registration process and reduce the risk of being trapped in 
local minima. Finally, the statistics of inter-brain deformations, represented by 
multi-level B-Splines, is also hierarchically captured for effectively constrain-
ing the brain deformations estimated during the registration procedure. By using 
this proposed learning-based registration framework, more accurate and robust 
registration results can be achieved according to experiments on both real and 
simulated data. 

1   Introduction 

Deformable registration for medical images is very important for many clinical applica-
tions. So far, many registration algorithms [1-4], based on image intensities or features, 
have been developed. Generally, the same type of features is used for all points in the 
entire images, and each point is equally treated during the whole registration procedure. 
For regularizing the deformations estimated between two images under registration, 
simple smoothness constraints such as Laplacian smoothness term are typically  
employed. As indicated next, many previous methods are limited at several aspects. 
                                                           
* Corresponding author. 
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First, the same type of image features is not always effective in distinguishing dif-
ferent parts of images. For example, in registering MR brain images of different sub-
jects, the cortical regions might need very different types of features to distinguish 
themselves, compared to the uniform white matter regions. Also, the distinctiveness 
of features is highly related to the size of neighborhood used for the calculation of 
features. As clearly demonstrated in [5, 6], the best-scale Geometric Moment Invari-
ants (GMIs) show better performances in brain image registration, compared to GMIs 
of the identical scale used in the HAMMER algorithm [4]. Therefore, it is important 
to investigate the best scales as well as the best types of features for different  
brain regions, in order to best differentiate each brain region during the registration 
procedure.  

Second, equally treating each point during the registration procedure might eventu-
ally undermine the registration performance. Actually, some brain regions, such as 
roots of sulci and crowns of gyri, are more reliable to be distinguished, compared to 
other regions. Therefore, it is important to develop methods for differentiating those 
reliable regions and hierarchically using them to steer the brain image registration.  

Third, simple constraints on the smoothness of voxel-wise deformation fields 
might be not effective for registration. Actually, the statistics of deformations among 
different brain images can be captured from a set of training samples, by performing 
PCA on each band of wavelet coefficients (wavelet-PCA) of deformations [7] or 
performing PCA on the parameters of control points of B-Splines [8]. It has been 
shown that, by using this statistical constraint on deformation fields, the performance 
of registration algorithm can be greatly improved [7, 9]. It is worth noting that  
B-splines can efficiently represent the deformation fields, while wavelet-PCA can 
effectively capture both global and local statistical information of deformations. 
Therefore, it is important to integrate the advantages of both methods [7, 8], for  
efficiently and effectively capturing the deformation statistics.  

Accordingly, a learning-based registration framework for MR brain images is pre-
sented in this paper. To overcome the first limitation, a systematic approach is pro-
posed to adaptively learn the best scale and the best types of image features for each 
brain region. This is achieved by requiring the learned best features consistent across 
the correspondences of individual brains, while distinctive from those of neighboring 
points. The former actually requires the consistency of learned best features, while the 
latter requires the saliency of learned best features. Both consistency and saliency 
measures can be integrated and used as an important guide for selecting the reliable 
points to primarily drive the image registration especially during the initial registra-
tion stages, thus overcoming the second limitation of treating different points equally 
in the registration. Moreover, to integrate the advantages of both methods [7, 8] men-
tioned above, multi-level B-splines [10] with adaptively placed control points are 
employed to efficiently represent the deformation fields in multiple levels, and thus 
different levels of deformation statistics (i.e., both global and local) can be captured 
by performing separate PCAs on each level of control points.  

Compared to the method presented in [11], the steps of learning best features and  
deformation statistics have been significantly improved. In particular, the partition of 
brain region and the selection of best features are integrated into a single framework 
in this paper, since these two steps intimately depend on each other. This formulation 
potentially overcomes the limitation by ad hoc brain region partition method used  
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in [11]. Moreover, multi-level B-Splines, instead of single-level B-Splines, are used to 
represent the deformation fields, thereby facilitating the adaptive placement of control 
points and capturing the deformation statistics from coarse to fine levels.  

Promising results have been obtained on both real and simulated data. For real 
data, good registration results have been achieved in warping subject brains to the 
template space. On the other side, our method out-performs HAMMER in the aspect 
of registration consistency when independently warping longitudinal data. For simu-
lated data, the average deformation error is decreased from 0.92 mm by HAMMER to 
0.72 mm by the proposed method. 

2   Method 

2.1   Learning the Best Features 

In this subsection, we will first demonstrate the importance of using best feature in 
point matching. Then, we present a systematical approach of adaptively learning the 
best scales and best types of features for different brain regions, by iteratively repeat-
ing the steps of brain region partition and best features determination, according to 
some heuristic criteria. 

Importance of Learning Best Features: For each point v in an image I, different 
local image descriptors can be used to calculate local features from its local spherical 
neighborhoods with different scales. Without loss of generality, three typical image 
descriptors, i.e., RIFT [12], SPIN [12], and local spatial histograms [13], are em-
ployed. RIFT, standing for Rotation Invariant Feature Transform, is a generalization 
of famous SIFT descriptor [14], and it can be efficiently calculated without the deter-
mination of dominant orientation of the local patch. SPIN is another rotation invariant 
descriptor, which can capture the distribution of image intensities along the radial 
direction of the point v. Local spatial histograms capture the overall intensity distribu-
tions within neighborhoods of different scales, thus preserving spatial information 
simultaneously [13].  

In order to obtain the compact feature representation on each point, the statistical 
features, i.e., mean and variance, are collected for each of these three local image 
descriptors. Therefore, totally six features, i.e., two for each local image descriptor, 
are obtained. Since scale is highly related to the distinctiveness of features, each local 
image descriptor is calculated from spherical neighborhoods of four scales, i.e., 4, 8, 
12, and 16mm, around the point v. Thus, totally M=6×4=24 features, i.e., 
G(v)={gk(v)|k=1…M}, are obtained for each point v, and can be used as attributes for 
this point. Notice that G(v) includes six types of features at four different scales.  

It is worth noting that no single type of features can be used as a universal signa-
ture to reliably distinguish all brain regions, as demonstrated by Fig. 1. For example, 
by using RIFT, SPIN, and local-histogram features calculated in a scale of 8mm, the 
similarities between the red-crossed points in Fig. 1(a) and all points in Fig. 1(b) can 
be calculated, as color-coded and shown in Figs. 1(c)-(e), respectively. Dark red de-
notes high similarity, while deep blue denotes low similarity. It can be observed that 
the corresponding points can not be distinguished. On the contrary, by using the best 
features that will be selected by the method described next, we can successfully  
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distinguish correspondences, as shown in Fig. 1(f). This example demonstrates the 
importance of learning the best features for each brain region, in order to maximally 
distinguish all brain regions simultaneously.  

1

0 

(a) Model       (b) Subject      (c) By RIFT   (d) By SPIN      (e) By Histo  . (f) By Best Features 

Fig. 1. The similarities between each red-crossed point in (a) and all points in (b), measured by 
RIFT, SPIN, local histograms, and our best features, respectively. The color-coded similarity 
maps in (c)-(f) indicate the importance of using best features for image registration.  

Method: To learn the best features for different brain regions, the step of adaptive brain 
region partition and the step of best features determination should be completed simul-
taneously. This is because the partition of brain regions depends on the best features 
selected for each brain location, while the determination of best features also depends on 
the partition of brain regions since each brain region is reasonable to have the same set 
of best features. In particular, we iteratively perform (1) the partition of brain regions 
based on the tentatively estimated best features, and (2) the selection of best features for 
each tentatively partitioned brain region, until the algorithm converges.  

It is worth noting that, the statistics of the selected best features for each brain point 
can also be estimated from all training samples. This information can be used to statisti-
cally measure the similarity between the best features of two points under comparison 
during the registration procedure, thus helping look for correct correspondences. 

Partition of Brain Regions: Brain partition is achieved by adaptively grouping the 
neighboring points with the similar image features into various regions. Notice that 
the similarity between image features of neighboring points highly depends on the 
particular features used, which will be determined by a learning step detailed in the 
next. For convenience, a weighting vector ω(v)=(ω1(v), …,ωk(v), …,ωM(v)) is de-
signed for each point v, to represent whether a particular feature gk(v) is selected (if 
ωk(v)=1) or not (if ωk(v)=0). After brain partition, all points in the same brain region 
should have the same weighting vector, since they are required to have the same set of 
best features.  

To achieve brain partition, we can first calculate for each point v the difference of 
tentatively selected best features between this point and the points in its neighborhood 
N(v). The difference degree s(v) can be defined as follows:  
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Notice that s(v) will be small if features are similar in the neighborhood, while 
large if features are very different in the neighborhood. By calculating the feature 
difference measure s(v) for all points in the brain image, we can obtain a map of fea-
ture difference measures, {s(v) |v∈ I}. Then, the partition of brain regions can be 
straightforwardly completed by a region competition algorithm [15], or a graph cut-
ting algorithm [16], or watershed segmentation algorithm [17]. In this paper, we use 
watershed segmentation algorithm to partition the entire brain into various brain re-
gions, i.e., {Ri}. 

Selection of Best Features: As mentioned, it is required that all points in the same 
brain region, Ri, have the same set of best features. But the selected best features for 
each brain region Ri should make all points in this region as distinctive as possible, for 
facilitating the feature-based image registration. The distinctiveness can be measured 
by both saliency and consistency of features on each point v in Ri. The saliency evalu-
ates whether the selected best features on this point v are different from those on 
nearby points. The consistency evaluates whether the selected best features on this 
point are statistically similar across its corresponding points of individual subjects.  

For convenience, the saliency and the consistency can be first measured for each 
feature gk(v) on each point v. Jenson-Shannon (JS) divergence and entropy (E) can be 
used to formulate the saliency Sal(gk(v)) and the consistency Con(gk(v)) of each fea-
ture gk(v), respectively:  

( ) ( )))(;())((,))(;()),(;())(( 121 vNgHEvgConvNgHvNgHJSvgSal kkkkk −==  (2) 

where N1 denotes a small neighborhood around the point v and N2 denotes the ring 
neighborhood outside of N1. H(gk; N(v)) denotes for the histogram of feature gk in the 
neighborhood N(v), calculated from all samples with different weights that will be 
iteratively updated in each round of adaboosting as described next.  

Then, the saliency and the consistency of all features on each point v can be ob-
tained as follows:  

1 1
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where ωk represents whether feature gk is currently selected.  
Thus, the overall saliency and consistency measurement of a brain region, Ri, can 

be obtained by integrating all saliency and consistency measures over all points in the 
region, as given next:  
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where λ is a parameter used to balance between saliency and consistency measure-
ments, and it is set to 1.0 in our study. E(Ri) is a function of weights {ωk}. By finding 
a suitable set of weights {ωk} for all points in the region, we can minimizing E(Ri) 
with the result of obtaining the best features for this region.  

To more effectively optimizing E(Ri), we might also need to treat different point 
samples within neighborhoods N1(v) and N2(v) adaptively. First, given the current 
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weight for each point sample, we can conveniently calculate the integrated saliency 
and consistency measurement for each feature according to the definition of E(Ri). This 
measurement can be used to rank all features, thus allowing us to select the top ranked 
features as best features. Second, by considering the points in N1(v) as positive samples 
and points in N2(v) as negative samples for the point v, we classify both positive and 
negative samples by using each of the best features currently selected. The adaboosting 
strategy can be used to update the weights for these samples, i.e., weights on correctly 
classified samples will be decreased while weights on wrongly classified samples will 
be increased. By repeating the above two steps until convergence, we can finally select 
a set of best features, i.e., selecting the top ranked features in each round of adaboost-
ing. In our study, four best features are selected for each brain region. 

Results: In order to evaluate the selected best features by our method, Fig. 2 shows 
the detailed distributions of various features selected in a cross-sectional brain image. 
Fig. 2(b) provides the average scales used by the selected best features for the tem-
plate in Fig. 2(a). As expected, small scales are used for boundary areas, while large 
scales are used for uniform regions. The right panel of Fig. 3 shows the selection 
result for a rectangular region in Fig. 2(a), with red color designating the selection of 
particular feature at particular position. It can be observed that RIFT features, which 
are based on edge orientation, are often selected for the points around the boundaries. 
Local histogram based features, often calculated from large scales, are selected for the 
points in the uniform regions. Overall, these results indicate that our learning-based 
method can well utilize the characteristics of each type of features. 

2.2   Learning Active Points 

Two main measurements are considered, when selecting the reliable and salient 
points, called as active points, to hierarchically steer the image registration. The first 
measurement is the saliency of a point v, i.e., Sal(G(v)), which is defined in Eq. (3). 
The large saliency value means that the point v can be easily distinguished from its 
nearby points, thus reducing the ambiguity in image matching. The second measure-
ment is the consistency of the best features of the point v across different individuals, 
i.e., Con(G(v)), which is also defined in Eq. (3). The large consistency measurement 
means that it is relatively easy to find the correspondence of point v in the other brain 
images. By combining these two measurements into a single measurement, i.e., 
A(v)=Con(G(v))+λ·Sal(G(v)), we can rank all brain points according to their overall 
measurements, {A(v)}.  

Fig. 3 demonstrates the hierarchical selection of active points during image regis-
tration. In the initial stage of registration, only the most reliable and salient points are 
selected, as shown in Fig. 3(a). It can be observed that most active points locate at 
roots of sulci, crowns of gyri, and boundaries of ventricles, all of which can be distin-
guished reliably from others. With the progress of registration, more and more points 
are selected as active points and gradually added into the registration process, as 
shown by green and yellow in Figs. 3(b) and 3(c). By hierarchically focusing these 
active points during the registration procedure, the registration performance can be 
greatly improved, as demonstrated latter by our experimental results. 
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Fig. 2. The selected best features for the template brain in (a). The average scale used to calcu-
late the best features is displayed in (b). To visually appreciate the actual features finally se-
lected for each point in the pink block of (a), the selection results on all 24 features, from 4 
scales and 6 features of 3 types, are displayed in the right panel.  

 

    (a)             (b)              (c)  

Fig. 3. Hierarchical selection of active points for a template brain. Initial active points are 
shown in red (a) and gradually added ones are shown in green (b) and yellow (c), respectively.  

2.3   Learning Deformation Statistics 

We propose to build up the statistical model on deformation parameters to regularize the 
deformation fields estimated during the registration procedure. There are three major 
properties with this model. First, multi-level B-Splines are used to represent the defor-
mation fields from coarse to fine levels, thus potentially overcoming the limitation of 
using single-level B-Splines, i.e., high dimensionality. Second, at each level, the control 
points are adaptively placed according to both deformation approximation degree and 
overall saliency & consistency measurement around the control points. Third, the statis-
tical model is built up at each level, for capturing the statistics of deformations at each 
particular level, thus facilitating both efficient and effective representation of deforma-
tion fields. All of these three properties are explained in detail below.  
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Multi-Level Representation: Let Ω={(x,y,z)|0≤x<X, 0≤y<Y, 0≤z<Z} be the domain of 
deformation fields in the xyz coordinate system, and Φ(δ)={φi,j,k|0≤i<Nx, 0≤j<Ny, 
0≤k<Nz} be the mesh of control points with uniform spacing δ overlaid on Ω. The 
deformation d(x,y,z) of each point (x,y,z) in Ω can be represented as dδ(x,y,z) by a set 
of cubic B-spline functions B: 

3 3 3

, , , ,
0 0 0

( , , ) ( ) ( ) ( ) , ( )l m n i l j m k n i l j m k n
l m n

d x y z B u B v B wδ ϕ ϕ δ+ + + + + +
= = =

= ∈Φ∑∑∑  (5) 

where i=[x/δ]-1, j=[y/δ]-1, k=[z/δ]-1, u=x/δ-[x/δ], v=y/δ-[y/δ], and w=z/δ-[z/δ]. [x/δ] 
returns the maximum integer less than x/δ, and Br, Bs, Bt are uniform cubic B-spline 
basis functions as defined next: 

3 3 2 3 2 3
0 1 2 3( ) (1 ) / 6, ( ) (3 6 4) / 6, ( ) ( 3 3 3 1) / 6, ( ) / 6B u u B u u u B u u u u B u u= − = − + = − + + + =  (6) 

The parameters on φi,j,k can be estimated from all known deformations {d(x,y,z)} of 
the points {(x,y,z)} within the neighborhood Pi,j,k(δ): 

Pi,j,k(δ)={(x,y,z)|(i-2)·δ≤x<(i+2)·δ, (j-2)·δ≤y<(j+2)·δ, (k-2)·δ≤z<(k+2)·δ} 

In order to represent deformation field d(x,y,z) from coarse to fine levels, multi-
level B-Splines are used. Using a mesh of control points with large uniform spacing, 
i.e., δ0, the deformation field d(x,y,z) can be represented as dδ0(x,y,z), with the residual 
deformation field as e(x,y,z)=d(x,y,z)-dδ0(x,y,z). The residual deformation field e(x,y,z) 
can be represented by a mesh of control points with small uniform spacing, i.e., δ0/2, 
resulting in a representation of e(x,y,z) as fδ0/2(x,y,z) and a new residual as 
e(x,y,z)=e(x,y,z)-fδ0/2(x,y,z). Notice that fδ0/2(x,y,z) can be estimated from e(x,y,z) simi-
larly according Eq. (5). By repeatedly halving the spacing, i.e., δ0/h (with h=4,8,…), 
we can obtain various new representation fδ0/h(x,y,z) for new residuals. Accordingly, 
the deformation field d(x,y,z) can be represented as: 

0 0 /
2,4,...

( , , ) ( , , ) ( , , )h
h

d x y z d x y z f x y zδ δ
=

≈ + ∑  
(7) 

In our case, total four levels of B-Splines with spacing {δ=δ0/h | h=1,2,4,8} are 
used. Notice that, in the application stage, the parameters on φi,j,k of each level will be 
estimated from the given deformations on the active points, which actually provides a 
new way of statistically interpolating the entire deformation fields by multi-level B-
Splines, using the deformations available only on a small number of active points. 

Adaptive Placement of Control Points: The control points of B-Splines can be 
adaptively placed at each level according to two criteria described next, by taking the 
advantage of multi-level representations. First, if the residual error around a particular 
control point is below a certain threshold, it is not necessary to split the current cube 
into smaller cubes in the next levels. Second, if the overall measurement of image 
saliency and consistency around a particular control point is higher than a certain 
value, it is worth splitting the current cube into smaller cubes, considering the sali-
ency and importance of images in the current cube. By applying these two criteria, 
about 50% of control points can be discarded in the coarsest level, with most of them 
as background points. Also, nearly 85% of the control points are not necessarily kept 
in the finest level, since deformations on those locations have been well represented 
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by the previous levels. Accordingly, the dimensionality of our statistical model can be 
significantly reduced. Fig. 4 shows the adaptive lattices at three levels (a)~(c), using 
the spacing of control points 16mm, 8mm, and 4mm, respectively. Fig. 4(d) shows the 
overlay of all control points from three different levels, indicating dense control 
points in the complex areas and sparse control points in the uniform regions. 

Statistical Regularization: Due to significant dimensionality reduction at each level, 
it is feasible to use a PCA to learn the statistics of Φ(δ) at each level, based on a rela-
tively small number of training samples. The learned statistics can be used to rea-
sonably constrain the deformation fields estimated during the image registration pro-
cedure. In particular, the regularization of tentatively estimated deformation fields can 
be achieved as follows:  

• The parameter of each φi,j,k on Φ(δ) at current level is computed from the residual 
error within neighborhood Pi.j.k.  

• The statistical model of this level is applied to statistically constraining the parame-
ters on Φ(δ).  

• Update residual error, and repeat the above two steps until the total number of lev-
els is reached.  

 

 

       (a) spacing: 16mm        (b) spacing: 8mm        (c) spacing: 4mm        (d) all levels overlaid 

Fig. 4. Adaptively placed control points at three different levels, with the spacing of 16mm, 
8mm, and 4mm, respectively. The overlay of all control points from all levels, as shown in (d), 
indicates the control points are dense in the complex areas and sparse in the uniform regions.  

2.4   Summary of Our Learning-Based Registration Framework 

Our registration framework includes two parts, i.e., training stage and application 
stage. In the training stage, the best features are learned from a pool of features by 
adaboosting, and active points are hierarchically selected according to the overall 
saliency and consistency measures. The multi-level statistical models are learned from 
the deformation fields represented by multi-level B-Splines. 

In the application stage, the most salient points are initially selected as active 
points to drive the registration. The deformations on other brain points are statistically 
interpolated by the multi-level B-Splines with learned parameters. With the progress 
of registration, other less salient points are gradually added and used as active points 
to start driving the registration. In the procedure of point matching, the learned best  
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features are used to achieve better correspondence detection. In the end of each itera-
tive registration, the tentatively estimated deformation fields are represented by multi-
level B-splines, and the parameters of control points at each level are statistically 
constrained by their respective statistical models learned at that level.  

3   Experiments 

Our learning-based registration method has been extensively evaluated on both real 
and simulated data, and its performances are also compared with those of the HAM-
MER algorithm. It’s worth noting that our learning-based registration method is  
developed for achieving similar performance as HAMMER’s, but avoiding tissue 
segmentation as required before the HAMMER registration algorithm. For real data, 
our learning-based registration method obtained the similar accuracy of registration as 
HAMMER’s, but it is more robust in registering the longitudinal data as demonstrated 
next. For simulated data, our learning-based registration method produced 0.72 mm 
registration error, which is less than 0.92 mm produced by HAMMER. 

For all experiments described next, total 18 MR brain images are used to learn both 
the best features and the active points, while 100 deformation fields from [18] are 
used to learn the deformation statistics. It’s worth noting that all results reported in the 
next are obtained from the testing samples, which are not included in the training set. 

3.1   Experiments on Real Data 

In the first experiment, both our learning-based registration method and HAMMER 
are tested on a number of real brain images obtained from our datasets. According to 
visual inspection, most registration results by these two methods are very similar. 
However, in some special cases, as shown in Fig. 5, our learning-based registration 
method produces better results than HAMMER, i.e., circled regions in Fig. 5.  

   (a) Template   (b) Linear registration   (c) HAMMER     (d) Our method   

Fig. 5. Results produced by linear method, HAMMER, and our method, respectively 

In the second experiment, the consistency of both methods in registering different 
time-point images of the same subject is evaluated. Since the warping consistency is 
very important to measure longitudinal brain changes, it is expected that the  
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corresponding points in different time-point images of the same subject are consis-
tently warped to the same location in the template space. Fig. 6 shows the warping 
results of five different year images of the same subject, produced by HAMMER 6(a) 
and our method 6(b), respectively. For better comparison of warping results on the 
cortex, 3D renderings of all warped different-year images are provided, with the dot-
ted curves in the same spatial locations placed as landmarks to facilitate the visual 
comparison. For the region indicated by a green arrow in the year 4 image of Fig 6(a), 
its warping result is inconsistent with those in other years. On the contrary, the warp-
ing results on this region are relatively consistent by our method.  

                           (a) HAMMER 

                           (b) Our Method  

Fig. 6. The warped results by HAMMER and our method are shown in (a) and (b) respectively, 
where the warping in the year 4 seems inconsistent by HAMMER in the region indicated by a 
green arrow.  

3.2   Experiments on Simulated Data 

The accuracy of our learning-based registration method is quantitatively evaluated by 
simulated data. For our method, the average registration error is 0.72mm, while, for 
HAMMER, its average registration error is 0.92mm. This indicates nearly 25% of 
error reduction by our method.  

4   Conclusion 

A fully learning-based framework has been developed for deformable registration of 
MR brain images. Learning methods have been designed to learn (1) the best features 
to enhance the accuracy of correspondence detection, (2) the active points to hierar-
chically steer the image registration, and (3) the multi-level deformation statistics to 
constrain the deformations. By using this learning-based registration framework, both 
registration accuracy and robustness have been achieved by our method. Our future 
work will include the investigation of more image features into our framework and 
the extension of our framework to other registration problems.  
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Abstract. We propose a new information-theoretic metric, the symmetric Kull-
back-Leibler divergence (sKL-divergence), to measure the difference between 
two water diffusivity profiles in high angular resolution diffusion imaging 
(HARDI).  Water diffusivity profiles are modeled as probability density func-
tions on the unit sphere, and the sKL-divergence is computed from a spherical 
harmonic series, which greatly reduces computational complexity. Adjustment 
of the orientation of diffusivity functions is essential when the image is being 
warped, so we propose a fast algorithm to determine the principal direction of 
diffusivity functions using principal component analysis (PCA). We compare 
sKL-divergence with other inner-product based cost functions using synthetic 
samples and real HARDI data, and show that the sKL-divergence is highly  
sensitive in detecting small differences between two diffusivity profiles and 
therefore shows promise for applications in the nonlinear registration and multi-
subject statistical analysis of HARDI data. 

1   Introduction 

High angular resolution diffusion imaging (HARDI) is a variant of conventional MRI 
that uses multiple radially-distributed gradients to encode directional profiles and 
orientations of water diffusion [1]. In conventional diffusion tensor imaging (DTI), 
the 3D diffusion profile of water molecules at each point in the brain is considered to 
have an ellipsoidal profile, which can be modeled using a second-rank tensor. Theo-
retically, 7 diffusion-encoding gradients are sufficient for fitting a tensor. By contrast, 
HARDI applies many more diffusion-encoding gradients to measure diffusivity at 
high angular resolution, revealing the detailed orientation profile for water diffusion 
within each voxel. Diffusivity profiles can be resolved more clearly in brain regions 
where fiber tracts cross, providing more accurate information for fiber-tracking  
(tractography), disease detection, and analysis of anatomical connectivity.  

Several successful algorithms exist for linear and nonlinear registration of DTI  
[2-4]. Registration of HARDI data has not been widely studied, perhaps because 
HARDI yields high-dimensional datasets, often with 30-100 observations per voxel 
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(corresponding to the number of gradient directions), compared with 6 independent 
parameters per voxel in DTI. Modeling and comparing diffusivity profiles is therefore 
computationally expensive, but vital for guiding alignment (registration) of HARDI 
data across subjects or time, prior to multisubject statistical analysis.  

Several cost functions have been proposed for DTI registration, such as Euclidean 
or log-Euclidean distance between two diffusion profiles, or the multichannel sum of 
squared differences (SSD) [5]. Here we evaluate a new information-theoretic metric, 
the symmetric Kullback-Leibler divergence (sKL-divergence), for measuring differ-
ences between diffusivity profiles in HARDI. Information theory is relevant for esti-
mating diffusivity profiles and also for measuring anisotropy (e.g., the cumulative 
residual entropy method [6, 7]). Vemuri [8] successfully used the sKL-divergence to 
measure the distance between two Gaussian tensors, for DTI segmentation. Here we 
compute sKL-divergence from spherical harmonic expansions of the orientation-
dependent diffusion functions (ODFs).  Spherical harmonic series are widely used in 
HARDI visualization and regularization [9, 10]; they can help in efficiently computing 
the diffusion displacement probabilities [11], and visualizing the ODF at each voxel 
[12]. We show that sKL-divergence is more robust than standard inner product meas-
ures for detecting small rotational deviations between HARDI data, at various diffu-
sion weights and noise levels, making it an attractive measure for HARDI registration.  

2   Methods  

2.1   Kullback-Leibler Divergence of Two Diffusivity Functions 

In HARDI, the signal attenuation in a specific direction, g, is given by the Stejskal-
Tanner equation [13]: 

S(g) = S0 exp(−bD(g)) . (1) 

where b is the diffusion weighting factor, D is the scalar diffusivity (apparent diffu-
sion coefficient) and g is the diffusion-encoded gradient direction, with 

g = g(θ ,φ) = sinθ cosφ sinθ sinφ cosθ[ ]T
; θ and φ are the polar and azimuthal 

angles.  Inspired by [14], we model the diffusivity function as a probability density 
function (pdf), by normalizing its integral over the spherical angle Ω to 1: 

p(θ,φ) = D(θ,φ) gtr(D),

gtr(D) = D(θ,φ)dΩ,
Ω
∫

 (2) 

where gtr is the generalized trace of D [14]. For two diffusivity functions Dp and Dq, 
we define the symmetric KL-divergence based on the corresponding pdfs p(θ, φ) and 
q(θ, φ): 
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Applying Eq (2) to the integrals in Eq (3), for example, 
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we then have 
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. (5) 

Direct estimation of sKL in Eq (5) is computationally expensive, but is faster if we 
expand the diffusivity functions D(θ, φ) as a spherical harmonic (SH) series [9, 10]: 

D(θ,φ) = cl
mYl

m (θ,φ)
m=−l

l

∑
l= 0

∞

∑ , 

Yl
m (θ,φ) =

(2l +1)

4π
(l − m)!

(l + m)!
Pl

m (cosθ)eimφ ; 

(6) 

here Pl
m(cosθ) are the associated Legendre polynomials. D(θ, φ) is real and radially 

symmetric, so it is sufficient to adopt a real basis function set Ylm while retaining the 
orthonormality of Yl

m [10]: 

D(θ,φ) = clmYlm(θ,φ)
m=− l
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     l = 0, 2, 4,... 

(7) 

As the Ylm are orthonormal, the inner product of the real functions D1 and D2 can be 

expressed in terms of their SH coefficients ( clm
D1 and clm

D2 ):  

 .
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D1(θ,φ)D2(θ,φ)dΩ
Ω
∫ = clm

D1clm
D2
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∞

∑ . (8) 

Moreover, it can be shown that (see Appendix for derivations): 

D(θ,φ)dΩ
Ω
∫ = 2 πc00 . (9) 

Therefore, sKL in Eq (5) can be expanded in terms of the SH series, as follows: 
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where D j = clm
j Ylm

m=− l

l
∑

l= 0,even

∞
∑ , log(D j ) = dlm

j Ylm
m=− l

l
∑

l= 0,even

∞
∑ , and  j ∈ {p, q}. 

 
For numerical implementation, we use a truncated SH series with l ≤ lm, where lm is a 
positive even integer; the total length of the SH series is nb = (lm+1)(lm+2) / 2.  We 
follow the least-squares method [9, 10] to solve Eq (7), yielding the SH coefficients:  

C = BT B( )−1
BT D . (11) 

Here C = c0 c1 .. cnb −1[ ]T
, and D = D(θ0,φ0 ) D(θ1,φ1) .. D(θns

,φns
)[ ]T

which repre-

sents the diffusivity function measured in ns gradient directions, and B is the matrix of 
basis functions, with elements Bij = Y j (θ i ,φi ) .  Here we map (clm, Ylm) in Eq (7) to (cj, 

Yj), using the relationship j = [(l2+l) / 2] + m.  Usually nb << ns, so it is more cost-
effective to compute sKL using the SH method (Eq (10)) rather than using Eq (5) 
directly.  

2.2   Reorientation of Diffusivity Functions 

Similar to diffusion tensors in DTI, the diffusivity functions in HARDI are oriented 
and their directions must be adjusted when the HARDI data are linearly or nonlinearly 
transformed.  We adopt the “Preservation of Principal Directions (PPD)” method [15], 
which preserves the shape of the diffusivity function along the local principal fiber 
orientation. With DTI, given the local Jacobian matrix J of the image transformation, 
the PPD procedure yields a rotation matrix that rotates the first eigenvector e1 

onto Je1 Je1  and the second eigenvector e2 onto the plane spanned by Je1 Je1  and 

Je2 Je2 . In HARDI, however, a single diffusivity function may have multiple local 

maxima that are computationally expensive to determine [16], and thus not practical 
to perform at every iteration during image warping.  Here we propose a fast algorithm 
to determine the principal direction of the diffusivity function, based on the principal 
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component analysis (PCA) of its shape [17].  At each direction sampled by the diffu-
sion gradient g(θi, φi), 0 ≤ i < ns, we define a point with distance to the origin di = 
D(θi, φi) g(θi, φi) = (di0, di1, di2), where the last term is the Cartesian coordinates of di. 
The mean and the covariance matrices, μ and Σ, of the point set { di } are given by 

μ j = 1

ns

dij
i= 0

ns −1

∑ ; Σij = 1

ns

(dki − μ i)(dkj − μ j )
k= 0

ns −1

∑ , 0 ≤ i , j < 3. (12) 

The principal direction of the diffusivity function is determined by the first eigenvec-
tor of Σ. The rotation matrix R, which adjusts the direction of the diffusivity function, 
is then obtained using the PPD procedure, and the new gradient directions 
g( ′ θ i , ′ φ i) = R ⋅ g(θ i ,φi). 

However, it is advantageous to have values of the reoriented diffusivity function in 
the original directions (θ i ,φi ), rather than the new ones ( ′ θ i , ′ φ i ), because (1) we do 
not need to keep track of new reoriented gradient directions at each iteration of image 
warping, and (2) sKL (or other cost functions) can be compared on diffusivity func-
tions sampled at identical gradient directions for the target image (which is fixed) and 
the source (which is moving and in which the diffusivity functions are being reori-
ented).  Because the gradient directions are only discretely sampled, the reoriented 
diffusivity functions are constructed by “pushing” the values sampled at the original 
directions to the new directions, so the values of the reoriented function at the original 
directions are not known.  These new values can be computed from the SH series, as 
the basis functions Ylm are continuous and defined at all spherical angles. If 
(Δθ i ,Δφi) = ( ′ θ i − θ i , ′ φ i − φi) , then the values of the reoriented diffusivity functions D′ 
in the original directions (θ i ,φi ) are given by 

′ D (θi,φi) = D(θi − Δθi ,φi − Δφi) = clmYlm(θi − Δθi ,φi − Δφi)
m=− l

l

∑
l= 0,even

∞
∑ , (13) 

where clm are the SH coefficients of the original diffusivity function D (see Eq (7)). 

2.3   Interpolation of Diffusivity Functions 

Diffusivity functions must be interpolated when the HARDI data is warped and the 
new voxel locations are not on lattice points.  It is natural to interpolate diffusivity 
functions separately for each gradient direction (i.e., multichannel interpolation).  We 
therefore performed linear interpolation of D(θi, φi), log(D(θi, φi)), and of the MR 
signals S(θi, φi) in synthetic samples and compared the swelling effect (i.e., loss of 
anisotropy) of these three interpolation schemes. 

3   Experiments and Results 

Synthetic examples.  We constructed a two-fiber diffusivity function using two or-
thogonal Gaussian tensors, T0 and T1, with typical eigenvalues for white-matter (WM) 
fibers [9, 10]. We set T0 =  diag(200, 200, 1700) × 10−6 (mm2/s); T1 was obtained by 
rotating T0 90 degrees around the y-axis.  We also generated an isotropic gray-matter 
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(GM) diffusivity function by setting Tiso = diag(700, 700, 700) × 10−6 (mm2/s).  Then 
the diffusivity function D is given by  

D = − 1
b

pi exp(−bgT Tig)
i= 0

n−1
∑ , (14) 

where n is the number of fibers. p0 = p1 = 0.5 for two-fiber structures and p0 = 1 for 
the isotropic diffusivity function.  The gradient direction vector g consisted of 162 
sampled points determined using an electrostatic approach [18].  Different b values 
(500, 1500, 3000) s/mm2 were tested. The order of the SH series (lm) was set to 8. 

HARDI data. The HARDI data was acquired from a healthy 22-year-old man imaged 
as part of a research study of twins on a 4T Bruker Medspec MRI scanner using an opti-
mized diffusion tensor sequence [18]. Imaging parameters were: 21 axial slices (5 mm 
thick), FOV = 24 cm, TR/TE 6090/104.5 ms, 0.5 mm gap, with a 128x100 acquisition 
matrix and 30 images acquired at each location: 3 low (b = 0) and 27 high diffusion-
weighted images in which the encoding gradient vectors were uniformly radially distrib-
uted in space (b = 1100 s/mm2) using the electrostatic approach in [18].  The reconstruc-
tion matrix was 128x128, yielding a 1.875x1.875 mm2 in-plane resolution.  The total 
scan time was 3.09 minutes.  We set lm = 4 for the spherical harmonic analysis.  

Fig. 1 shows that the principal directions determined from HARDI by the PCA 
method are compatible with those computed by DTI and persistent angle structures 
(PAS) fitting using the software Camino developed at University College, London [19], 
in major WM fiber structures. Fig. 2 compares the fiber directions when the HARDI 
data was rotated by 60 degrees around the inferior-superior axis passing through its 
center of mass, with and without reorientation of the diffusivity functions. As observed 
in [15, 20], our results show that the orientation of the diffusivity functions must be 
adjusted when the image is transformed, to maintain the spatial coherence 
 

 

Fig. 1. The eigendirection map for the HARDI data, determined using the PCA method.  Fibers 
with right-left orientation are shown in red, anterior-posterior in green, and inferior-superior in 
blue. The eigendirections correctly depict the orientations of major WM fiber structures, and 
are compatible with the tensor glyphs and PAS computed using the visualization software 
“Camino” [19]. FA: fractional anisotropy. 



178 M.-C. Chiang et al. 

of the principal fiber directions.  To do this, we used the PPD procedure, which is 
more accurate than other methods (e.g., Finite Strain [3, 15]) as it takes the original 
fiber directions into account. PCA determines one eigendirection, so it is appropriate 
for diffusivity functions with a single global maximum, or with a dominant local 
maximum relative to other small local maxima.  In diffusivity functions with multiple 
local maxima, such as in regions where fibers cross (e.g. the synthetic samples in  
Fig. 3), the principal direction estimated by PCA becomes arbitrary, and the simple 
PPD procedure may not be applicable in these regions.  

Fig. 3 shows diffusivity functions at intermediate positions x = 0.1, 0.3, .. 0.9, ob-
tained by linear interpolation of the diffusivity function D, log(D), and MR signals S 
in each gradient direction, when the two-fiber synthetic function was placed at x = 0, 
and the isotropic one at x = 1. 
 

 

Fig. 2. The orientation-dependent diffusivity functions in the splenium of the corpus callosum 
are no longer consistent with the known directions of the underlying WM fibers when the 
image voxels are simply resampled to new locations by rotation but without reorientation of 
diffusivity functions. The PPD procedure corrects this, and the diffusivity functions remain 
aligned with the WM fibers that they represent. 

Direct interpolation of the MR signals results in the least swelling, or loss of ani-
sotropy, in the diffusivity function. Euclidean interpolation may also be more appro-
priate for the MR signals, which are physical entities. Linear interpolation using 
log(D) performs better than D (as least in terms of degrading the signal geometry). 
Computing log(D) may therefore be an acceptable alternative to computing S. Log(D) 
can be computed in the spherical harmonic domain (see Eq (10)), which is more eco-
nomical in terms of memory than performing interpolation on S - this may be benefi-
cial for HARDI registration. 

We compared the symmetric KL-divergence (sKL) with other two cost functions, 
the inner product of diffusivity functions in Eq (8) with and without the linear (l = 0) 
term [3, 21], on synthetic examples that were noise-free, or with Rician noise added to 
MR signals S such that the signal-to-noise ratio (SNR) was 35 or 10 [22]. The inner 
product without the l = 0 term is designed to compare only the anisotropic part of the 
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Fig. 3. Comparison of diffusivity functions obtained by linear interpolation of D, log(D) and S.  
Interpolation using the MR signal S best preserves the anisotropy of the diffusivity function.  

 

Fig. 4. Two identical synthetic diffusivity samples (no noise or with Rician noise added) were 
initially overlapped and rotated by ϕ = 0 to 90°. We compared the differences between the rotated 
and non-rotated samples with the symmetric KL-divergence (sKL) and inner product (IP) 
with/without l = 0 term.  In noise-free samples, ϕ = 45° gives the maximum sKL and minimum IP 
values.  To facilitate comparisons, sKL and IP values have been normalized such that the normal-
ized sKL(ϕ) = 100 × sKL(ϕ)/sKL(ϕ = 45°), and normalized IP(ϕ) = 100 × [1 − IP(ϕ)/IP(ϕ = 0°)]. 

diffusivity functions [3]. Two identical two-fiber synthetic diffusivity functions 
served as the source and the target objects, with the source object rotating from 0 
(complete overlap) to 90 degrees. The three metrics were normalized for comparisons 
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(as detailed in Fig. 4). Fig. 4 shows that at different noise levels, the sKL cost func-
tion detects angular discrepancies in diffusivity functions more sensitively than the 
inner product with/without the l = 0 term, in low b-settings. sKL is also still compara-
ble in performance with the inner product without l = 0 term, at a high b-value.  The 
performance of sKL is therefore stable under various diffusion weightings, and it is 
applicable in ordinary MRI/DTI acquisition settings, though a high b-value can detect 
higher-order angular structures in WM fibers, at the cost of a decreased SNR [1]. 

 

Fig. 5. Comparisons of the changes in symmetric KL-divergence (sKL) and inner product (IP) 
(with/without l = 0 term) at different rotation angles ϕ (from -20° to +20°, in increments of 2°) 
for two identical HARDI diffusion profiles.  sKL and IP values have been normalized, with 
normalized f(ϕ) = abs[(f(ϕ) − f(ϕ = 0°))/(f(ϕ = 20°) − f(ϕ = 0°))].  The angular profile of sKL is 
very sharp, and can detect rotational deviations of the image, with a magnitude as small as 2°. 

We further compared the three cost functions, which were summed over all vox-
els, in the 3D HARDI data. Two identical HARDI data was initially overlapped 
(rotation angle = 0 degree), and then one image was rotated (with diffusivity func-
tions reoriented) up to ±20 degrees, with sKL and inner products (with/without l = 0 
term) computed at every two degrees. Fig. 5 shows that sKL has very sharp gradient 
near the optimal solution, and is sensitive enough to detect 2-degree deviation of the 
images.  The symmetric KL-divergence is therefore a good candidate cost function 
for registration of HARDI, which we expect to evaluate in the near future. 
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Here we use the definition of Ylm in Eq (7), where Ylm comes from linear combinations 
of Yl

m. Therefore, Eq (A1) becomes  
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As the associated Legendre polynomials are orthogonal, such that 
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δkl , where δkl is the Kronecker delta, we have 
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where P0
0(x) = 1.  Therefore, 
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Abstract. We propose a novel algorithm called graph-shifts for per-
forming image segmentation and labeling. This algorithm makes use of a
dynamic hierarchical representation of the image. This representation al-
lows each iteration of the algorithm to make both small and large changes
in the segmentation, similar to PDE and split-and-merge methods, re-
spectively. In particular, at each iteration we are able to rapidly compute
and select the optimal change to be performed. We apply graph-shifts to
the task of segmenting sub-cortical brain structures. First we formalize
this task as energy function minimization where the energy terms are
learned from a training set of labeled images. Then we apply the graph-
shifts algorithm. We show that the labeling results are comparable in
quantitative accuracy to other approaches but are obtained considerably
faster: by orders of magnitude (roughly one minute). We also quanti-
tatively demonstrate robustness to initialization and avoidance of local
minima in which conventional boundary PDE methods fall.

1 Introduction

Segmenting an image into a number of labeled regions is a classic vision and
medical imaging problem, see [1,2,3,4,5,6] for an introduction to the enormous
literature. The problem is typically formulated in terms of minimizing an energy
function or, equivalently, maximizing a posterior probability distribution. In this
paper, we deal with a special case where the number of labels is fixed. Our specific
application is to segment the sub-cortical structures of the brain, see section (2).
The contribution of this paper is to provide a novel algorithm called graph-shifts
which is extremely fast and effective for sub-cortical segmentation.

A variety of algorithms, reviewed in section (2), have been proposed to solve
the energy minimization task for segmentation and labeling. For most of these
algorithms, each iteration is restricted to small changes in the segmentation.
For those methods which allow large changes, there is no procedure for rapidly
calculating and selecting the change that most decreases the energy.

Graph-shifts is a novel algorithm that builds a dynamic hierarchical repre-
sentation of the image. This representation enables the algorithm to make large
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changes in the segmentation which can be thought of as a combined split and
merge (see [4] for recent work on split and merge). Moreover, the graph-shifts
algorithm is able to exploit the hierarchy to rapidly calculate and select the best
change to make at each iteration. This gives an extremely fast algorithm which
also has the ability to avoid local minima that might trap algorithms which rely
on small local changes to the segmentation.

The hierarchy is structured as a set of nodes at a series of layers, see
figure (1). The nodes at the bottom layer form the image lattice. Each node is
constrained to have a single parent. All nodes are assigned a model label which is
required to be the same as its parent’s label. There is a neighborhood structure
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Fig. 1. Intuitive Graph-
Shifts Example

defined at all layers of the graph. A graph shift alters
the hierarchy by changing the parent of a node, which
alters the model label of the node and of all its descen-
dants. This is illustrated in figure (1), which shows
three steps in a three layer graph coloring potential
shifts that would change the energy black and oth-
ers gray. The algorithm can be understood intuitively
in terms of competing crime families as portrayed in
films like the Godfather. There is a hierarchical orga-
nization where each node owes allegiance to its unique
parent node (or boss) and, in turn, to its boss’s boss.
This gives families of nodes which share the same alle-
giance (i.e. have the same model label). Each node has
a subfamily of descendants. The top level nodes are the
“bosses of all bosses” of the families. The graph-shifts
algorithm proceeds by selecting a node to switch alle-
giance (i.e. model label) to the boss of a neighboring
node. This causes the subfamily of the node to also
switch allegiance. The algorithm minimizes a global
energy and at each iteration selects the change of alle-
giance that maximally decreases the energy.

The structure of this paper is as follows. In sec-
tion (2) we give a brief background on segmentation.
Section (3) describes the graph-shifts algorithm for a
general class of segmentation problems. In section (4),
we formulate the task of sub-cortical labeling in terms
of energy function minimization and derive a graph-shifts algorithm. Section (5)
gives experimental results and comparisons to other approaches.

2 Background

Many algorithms have been applied to segmentation, so we restrict our review to
those methods most related to this paper. A common approach includes taking
local gradients of the energy function at the region boundaries and thereby
moving the boundaries. This region competition approach [2] can be successful
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when used with good initialization, but its local nature means that at each
iteration step it can only make small changes to the segmentation. This can cause
slowness and also risks getting stuck in local minima. See [7] for similar types
of partial differential equations (PDE) algorithms using level sets and related
methods. Graph cuts [3] is an alternative deterministic energy minimization
algorithm that can take large leaps in the energy space, but it can only be applied
to a restricted class of energy functions (and is only guaranteed to converge for
a subset of these) [8]. Simulated annealing [1] can in theory converge to the
optimal solution of any energy function but, in practice, is extremely slow. The
data-driven Markov chain Monte Carlo method [4] can combine classic methods,
including split and merge, to make large changes in the segmentation at each
iteration, but remains comparatively slow.

There have been surprisingly few attempts to define segmentation algorithms
based on dynamic hierarchical representations. But we are influenced by two re-
cent papers. Segmentation by Weighted Aggregation (SWA) [9] is a remarkably
fast algorithm that builds a hierarchical representation of an image, but does not
attempt to minimize a global energy function. Instead it outputs a hierarchy of
segments which satisfy certain homogeneity properties. Moreover, its hierarchy
is fixed and not dynamic. The multiscale Swendson-Wang algorithm [10] does
attempt to provide samples from a global probability distribution. But it has
only limited hierarchy dynamics and its convergence rate is comparatively slow
compared to SWA. A third related hierarchical segmentation approach is pro-
posed in [11], where a hyperstack, a Gaussian scale-space representation of the
image, is used to perform a probabilistic linking (similar to region growing) of
voxels and partial volumes in the scale-space. Finally, Tu [12] proposed a related
segmentation algorithm that was similarly capable of making both small-scale
boundary adjustments and large-scale split-merge moves. In his approach, how-
ever, a fixed size hierarchy is used, and the split-merge moves are attempted
by a stochastic algorithm, which requires the evaluation of (often difficult to
compute) proposal distributions.

Our application is the important task of sub-cortical segmentation from three-
dimensional medical images. Recent work on this task includes [5,6,13,14,15,16].
These approaches typically formulate the task in terms of probabilistic estima-
tion or, equivalently, energy function minimization. The approaches differ by the
form of the energy function that they use and the algorithm chosen to minimize
it. The algorithms are usually similar to those described above and suffer similar
limitations in terms of convergence rates. In this paper, we will use a compara-
tively simple energy function similar to conditional random fields [17], where the
energy terms are learned from training examples by the probabilistic boosting
tree (PBT) learning algorithm [18].

3 Graph-Shifts

This section describes the basic ideas of the graph-shifts algorithm. We first
describe the class of energy models that it can be applied to in section (3.1). Next
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we describe the hierarchy in section (3.2), show how the energy can be computed
recursively in section (3.3), and specify the general graph-shifts algorithm in
section (3.4).

3.1 The Energy Models

The input image I is defined on a lattice D of pixels/voxels. For medical image
applications this is a three-dimensional lattice. The lattice has the standard
neighborhood structure and we define the notation N(μ, ν) = 1 if μ ∈ D and
ν ∈ D are neighbors on the lattice, and N(μ, ν) = 0 otherwise. The task is to
assign each voxel μ ∈ D to one of a fixed set of K models mμ ∈ {1, ..., K}.
This assignment corresponds to a segmentation of the image into K, or more,
connected regions.

We want the segmentation to minimize an energy function criterion:

E[{mω : ω ∈ D}] =
∑

ν∈D

E1(φ(I)(ν), mν ) +
1
2

∑

ν∈D,μ∈D:
N(ν,μ)=1

E2(I(ν), I(μ), mν , mμ).

(1)
In this paper, the second term E2 is chosen to be a boundary term that pays a
penalty only for neighboring pixels/voxels which have different model labels (i.e.
E2(I(ν), I(μ), mν , mμ) = 0 if mν = mμ). This penalty can either be a penalty
for the length of the boundary, or may include a measure of the strength of local
edge cues. It includes discretized versions of standard segmentation criteria such
as boundary length

∫
δR ds and edge strength along boundary

∫
δR |∇I|2ds. (Here

s denotes arc length, R denotes the regions with constant labels, and δR is their
boundaries).

The first term E1 gives local evidence that the pixel μ takes model mμ, where
φ(I)(μ) denotes a nonlinear filter of the image evaluated at μ. In this paper, the
nonlinear filter will give local context information and will be learned from train-
ing samples, as described in section (4.1). The model given in equation (1) includes
a large class of existing models. It is restricted, however, by the requirement that
the number of models is fixed and that the models have no unknown parameters.

3.2 The Hierarchy

We define a graph G to be a set of nodes μ ∈ U and a set of edges. The graph
is hierarchical and composed of multiple layers. The nodes at the lowest layer
are the elements of the lattice D and the edges are defined to link neighbors on
the lattice. The coarser layers are computed recursively, as will be described in
section (4.2). Two nodes at a coarse layer are joined by an edge if any of their
children are joined by an edge.

The nodes are constrained to have a single parent (except for the nodes at the
top layer which have no parent) and every node has at least one child (except
for nodes at the bottom layer). We use the notation C(μ) for the children of μ,
and A(μ) for the parent. A node μ on the bottom layer (i.e. on the lattice) has
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no children, and hence C(μ) = ∅. We use the notation N(μ, ν) = 1 to indicate
that nodes μ, ν on the same layer are neighbors, with N(μ, ν) = 0 otherwise.

At the top of the hierarchy, we define a special root layer of nodes comprised
of a single node for each of the K model labels. We write μk for these root nodes
and use the notation mμk

to denote the model variable associated with it. Each
node is assigned a label that is constrained to be the label of its parent. Since,
by construction, all non-root nodes can trace their ancestry back to a single
root node, an instance of the graph G is equivalent to a labeled segmentation
{mμ : μ ∈ D} of the image, see equation (1).

3.3 Recursive Computation of Energy

This section shows that we can decompose the energy into terms that can be
assigned to each node of the hierarchy and computed recursively. This will be
exploited in section (3.4) to enable us to rapidly compute the changes in energy
caused by different graph shifts.

The energy function consists of regional and edge parts. These depend on
the node descendants and, for the edge part, on the descendants of the neigh-
bors. The regional energy E1 for assigning a model mμ to a node μ is defined
recursively by:

E1(μ, mμ) =

⎧
⎪⎨

⎪⎩

E1 (φ(I)(μ), mμ) if C(μ) = ∅∑

ν∈C(μ)

E1(ν, mμ) otherwise (2)

where E1 (φ(I)(μ), mμ) is the energy at the voxel from equation (1). The edge
energy E2 between nodes μ1 and μ2, with models mμ1 and mμ2 is defined recur-
sively by:

E2(μ1, μ2, mμ1 , mμ2) =
⎧
⎪⎪⎨

⎪⎪⎩

E2(I(μ1), I(μ2), mμ1 , mμ2) if C(μ1) = C(μ2) = ∅∑

ν1∈C(μ1), ν2∈C(μ2) :
N(ν1,ν2)=1

E2(ν1, ν2, mμ1 , mμ2) otherwise (3)

where E2(I(μ1), I(μ2), mμ1 , mμ2) is the edge energy for pixels/voxels in
equation (1).

The overall energy (1) was specified at the voxel layer, but it can be computed
at any layer of the hierarchy. For example, it can be computed at the top layer by:

E
(
{mμk

: k = 1, ..., K}
)

=
K∑

k=1

E1(μk, mμk
) +

1
2

∑

i,j:1,..,K
N(μi,μj)=1

E2(μi, μj , mμi
, mμj

).

(4)
3.4 Graph-Shifts

The basic idea of the graph-shifts algorithm is to allow a node μ to change its
parent to the parent A(ν) of a neighboring node ν, as shown in figure (1). We
will represent this shift as μ → ν.



188 J.J. Corso et al.

This shift not have any effect on the labeling of nodes unless the new parent
has a different label than the old one (i.e. when mA(μ) �= mA(ν), or equivalently,
mμ �= mν). In this case, the change in parents will cause the node and its
descendants to change their labels to that of the new parent. This will alter the
labeling of the nodes on the image lattice and hence will change the energy.

Consequently, we only need consider shifts between neighbors which have
different labels. We can compute the changes in energy, or shift-gradient caused
by these shifts by using the energy functions assigned to the nodes, as described
in section (3.3). For example, the shift from μ to ν corresponds to a shift-gradient
ΔE(μ → ν):

ΔE(μ → ν) = E1(μ, mν) − E1(μ, mμ) +
∑

η:N(μ,η)=1

[E2(μ, η, mν , mη) − E2(μ, η,mμ, mη)] . (5)

The graph-shifts algorithm begins by initializing the graph hierarchy (section
4.2). Then we calculate the shift-gradients of all the shifts using equations (2),(3),
and (5). We exploit recursion to calculate these shift-gradients extremely rapidly,
see section (4.3). In practice, very few of the neighbors in the hierarchy have dif-
ferent labels and so the shift-gradients only need be computed for a small fraction
of the total nodes. We throw away all shift-gradients which are positive or zero,
since these shifts do not decrease the energy. The remaining shift-gradients are
stored in a sorted, or unsorted, shift-gradient list, denoted S in figure 2 (we
discuss the tradeoffs in section 4.3).

GRAPH-SHIFTS
Input: Volume I on lattice D.
Output: Label volume L on lattice D.
0 Initialize graph hierarchy (figure 3).
1 Compute exhaustive set of potential shifts S.
2 while S is not empty
3 s ← the shift in S that best reduces the energy.
4 Apply shift s to the graph.
5 Update affected region and edge properties.
6 Recompute affected shifts on boundary and

update S. (5 & 6 discussed in section 4)
7 Compute label volume L from final hierarchy.

Fig. 2. Graph-shifts pseudo-code

Graph-shifts proceeds by se-
lecting the steepest shift-gradient
in the list and makes the cor-
responding shift in the hier-
archy. This changes the labels
in the part of the hierarchy
where the shift occurs, but leaves
the remainder of the hierarchy
unchanged. The algorithm re-
computes the shift-gradients in
the changed part of the hier-
archy and updates the weight
list. We repeat the process un-
til convergence, when the shift-
gradient list is empty (i.e. all
shift-gradients in the graph are positive or zero).

Each shift is chosen to maximally decrease the energy, and so the algorithm is
guaranteed to converge to, at least, a local minimum of the energy function. The
algorithm prefers to select shifts at the coarser layers of the hierarchy, because
these typically alter the labels of many nodes on the lattice and cause large
changes in energy. These large changes can ensure that the algorithm can escape
from some bad local minima.
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4 Segmentation of 3D Medical Images

Now we describe the specific application to sub-cortical structures. The specific
energy function is given in section (4.1). Sections (4.2) and (4.3) describe the
initialization and how the shifts are computed and selected for the graph-shifts
algorithm.

4.1 The Energy

Our implementation uses eight models for sub-cortical structures together with
a background model for everything else. The regional terms E1(μ, mμ) in the
energy function (1) contain local evidence that a voxel μ is assigned a label mμ.
This local evidence will depend on a small region surrounding the voxel and
hence is influenced by the local image context. We learn this local evidence from
training data where the labeling is given by an expert.

We apply the probabilistic boosting tree (PBT) algorithm [18] to output a
probability distribution P (mμ|φ(I)(μ)) for the label mμ at voxel μ ∈ D condi-
tioned on the response of a nonlinear filter φ(I)(μ). This filter depends on voxels
within an 11 × 11 × 11 window centered on μ, and hence takes local image con-
text into account. The non-linear filter φ is learned by the PBT algorithm which
is an extension of the AdaBoost algorithm [19], [20]. PBT builds the filter φ(.)
by combining a large number of elementary image features. These are selected
from a set of 5,000 features which include Haar basis functions and histograms
of the intensity gradient. The features are combined using weights which are also
learned by the training algorithm.

We define the regional energy term by:

E1(μ, mμ) = − log P (mμ|φ(I)(μ)), (6)

which can be thought of as a pseudolikelihood approximation [18].
The edge energy term can take two forms. We can use it to either penalize the

length of the segmentation boundaries, or to penalize the intensity edge strength
along the segmentation boundaries. This gives two alternatives:

E2(I(ν), I(μ), mν , mμ) = 1 − δmν ,mμ , (7)
E2(I(ν), I(μ), mν , mμ) = {1 − δmν ,mμ}ψ(I(μ), I(ν)), . (8)

where ψ(I(μ), I(ν)) is a statistical likelihood measure of an edge between μ and
ν; a simple example of such a measure is given in equation (9).

4.2 Initializing the Hierarchy

We propose a stochastic algorithm to quickly initialize the graph hierarchy that
will be used during the graph shifts process. The algorithm recursively coarsens
the graph by activating some edges according to the intensity gradient in the
volume and grouping the resulting connected components up to a single node in
the coarser graph layer. The coarsening procedure begins by defining a binary
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edge activation variable eμν on each edge in the current graph layer Gt between
neighboring nodes μ and ν (i.e., N(μ, ν) = 1). The edge activation variables are
then sampled according to

eμν ∼ γU({0, 1}) + (1 − γ) exp [−α |I(μ) − I(ν)|] (9)

where U is the uniform distribution on the binary set and γ is a relative weight
between U and the conventional edge gradient affinity (right-hand side).

After the edge activation variables are sampled, a connected components al-
gorithm is used to form node-groups based on the edge activation variables. The
size of a connected component is constrained by a threshold τ , which governs the
relative degree of coarsening between two graph layers. On the next graph layer,
a node is created for each component. Following, edges in the new graph layer
are induced by the connectivity on the current layer; i.e., two nodes in the coarse
graph are connected if any two of their children are connected. The algorithm re-
cursively executes this coarsening procedure until the size of the coarsened graph
is within the range of the number of models, specified by a scalar β. Complete
pseudo-code for this hierarchy initialization is given in figure 3.

Let GT be the top layer of the graph hierarchy after initialization (example in
figure 3(b)). Then, we append a model layer GM on the hierarchy that contains
a single node per model. Each node in GT becomes the child of the node in GM

to which it has best fit, which is determined by evaluating the model fit P (m|μ)
defined in section 4.1. One necessary constraint is that each node in GM has at
least one child in GT , which is enforced by first linking each node in GM to the
node in GT with highest probability to its model and the remaining links are
created as described earlier.

HIERARCHY INITIALIZATION
Input: Volume I on lattice D.
Output: Graph hierarchy with layers G0, . . . , GT .
0 Initialize graph G0 from lattice D.
1 t ← 0.
2 repeat
3 Sample edge activation variables in Gt using (9).
4 Label every node in Gt as OPEN.
5 while OPEN nodes remain in Gt.
6 Create new, empty connected component C.
7 Put a random OPEN node into queue Q.
8 while Q is not empty and |C| < 1/τ .
9 μ ← removed head of Q.
10 Add ν to Q, s.t. N(μ, ν) = 1 and eμν = 1.
11 Add μ to C, label μ as CLOSED.
12 Create Gt+1 with a node for each C.
13 Define I(C) as mean intensity of its children.
14 Inherit connectivity in Gt+1 from Gt.
15 t ← t + 1.
16 until

˛
˛Gt

˛
˛ < β ∗ K.

(b) Example initialization. Top-left is coronal,
top-right is sagittal, bottom-left is axial, and
bottom-right is a 3D view.

Fig. 3. Initialization pseudo-code (left) and example (right)
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4.3 Computing and Selecting Graph-Shifts

The efficiency of the graph-shifts algorithm relies on fast computation of poten-
tial shifts and fast selection of the optimal shift every iteration. We now describe
how to satisfy these two requirements. To quickly compute potential shifts, we
use an energy caching strategy that evaluates the recursive energy formulas (2)
and (3) for the entire graph hierarchy following its creation (section 4.2). At
each node, we evaluate and store the energies, denoted Ê1(μ, mμ) .= E1(μ, mμ)
and Ê2(μ, ν, mμ, mν) .= E2(μ, ν, mμ, mν) for all μ, ν : N(μ, ν) = 1. These are
quickly calculated in a recursive fashion. The computational cost of initializing
the energy cache is O(n log n).

Subsequently, we apply the cached energy to evaluate the shift-gradient (5) in
the entire hierarchy; this computation is O(1) with the cache. At each node, we
store the shift with the steepest gradient (largest negative ΔE), and discard any
shift with non-negative gradient. The remaining shifts are stored in the potential
shift list, denoted S in figure 2. In the volumes we have been studying, this list
is quite small: typically only about 2% of all edges numbering about 60, 000 for
volumes with 4 million voxels. The entire initialization including caching energies
in the whole hierarchy takes 10 – 15 seconds on these volumes, which amounts
to about 30% of the total execution time.

At step ?? in the graph-shifts algorithm (figure 2), we must find the optimal
shift in the potential shift list. One can use a sorted or unsorted list to store
the potential shifts, with tradeoffs to both; an unsorted list requires no initial
computation, no extra computation to add to the list, but an O(n) search at
each iteration to find the best shift. The sorted list carries an initial O(n log n)
cost, an O(log n) cost for adding, but is O(1) for selecting the optimal shift.
Since every shift will cause modifications to the potential shift list, and the size
of the list decreases with time (as fewer potential shifts exist), we choose to store
an unsorted list and expend the linear search at each iteration.

As the graph shifts are applied, it is necessary to dynamically keep the hier-
archy in synch with the energy landscape. Recomputing the entire energy cache
and potential shift set is prohibitively expensive. Fortunately, it is not necessary:
by construction, a shift is a very local change to the solution and only affects
nodes along the boundary of the recently shifted subgraph. The number of af-
fected nodes is dependent on the node connectivity and the height of the graph
(it is O(log n)); the node connectivity is relatively small and constant since the
coarsening is roughly isotropic, and the height of the graph is logarithmic in the
number of input voxels.

First, we update the energy cache associated with each affected node. This
amounts to propagating the energy change up the graph to the roots. Let μ →
ν be the executed shift. The region energy update must remove the energy
contribution to A(μ) and add it to A(ν), which is the new parent of μ after the
shift. The update rule is

Ê1(A(μ), mμ))′ = Ê1(A(μ), mμ) − Ê1(μ,mμ) (10)

Ê1(A(ν), mν))′ = Ê1(A(ν), mν ) + Ê1(μ,mν) , (11)
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and it must be applied recursively to each parent until the root layer. Due to lim-
ited space, we do not discuss the details of the similar but more complicated proce-
dure to update the edge energy cache terms Ê2. Both procedures are also O(log n).

Second, we update the potential shifts given the change in the hierarchy. All
nodes along the shift boundary both below and above the shift layer must be
updated because the change in the energy could result in changes to the shift-
gradients, new potential shifts, and expired potential shifts (between two now
nodes with the same model). Generally, this remains a small set since the shifts
are local moves. As before, at each of these nodes, we compute and store the shift
with the steepest negative gradient using the cached energies and discard any
shift with a non-negative gradient or between two nodes with the same model.
There are O(log n) affected shifts.

5 Experimental Results

A dataset of 28 high-resolution 3D SPGR T1-weighted MR images was acquired
on a GE Signa 1.5T scanner as series of 124 contiguous 1.5 mm coronal slices

Shift 5 Shift 50 Shift 500 Shift 5000

Fig. 4. Example of the graph-shifts process sampled during the minimization. Coronal
and sagittal planes are shown, top and bottom respectively.
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Fig. 5. (a) Graph shows the number of voxels (mass) that are moved per shift for 5000
shifts. (b) Graph shows the level in the hierarchy at which at shift occurs. (c) Graph
shows the cumulative fraction of the total energy reduction that each shift effects.
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(256x256 matrix; 20cm FOV). Brain volumes were roughly aligned and linearly
scaled to perform 9 parameter registration. Four control points were manually
given to perform this global registration. Expert neuro-anatomists manually la-
beled each volume into the following sub-cortical structures: hippocampus (LH,
RH for left and right, resp. shown in green in figures), caudate (LC, RC in blue),
putamen (LP, RP in purple), and ventricles (LV, RV, in red). We arbitrarily
split the dataset in half and use 14 subjects for training and 14 for testing. The
training volumes are used to learn the PBT region models and the boundary
presence models. During the hierarchy initialization, we set the τ parameter to
0.15. We experimented with different values for τ , and found that varying it does
not greatly affect the segmentation result.

The graph-shifts algorithm is very fast. We show an example process in fig-
ure 4 (this is the same volume as in figure 3(b)). Initialization, including the
computation of the initial potential shift set, takes about 15 seconds. The re-
maining part of the graph shifts normally takes another 35 seconds to converge
on a standard Linux PC workstation (2GB memory, 3Ghz cpu). Convergence
occurs when no potential energy-reducing shift remains. Our speed is orders of
magnitude faster than reported estimates on 3D medical segmentation: Yang et
al. [13] is 120 minutes, FreeSurfer [5] is 30 minutes, Region Competition (PDE,
obtained from a local implementation) is 5 minutes.

In figure 5-(c), we show the cumulative weight percentage of the same sequence
of graph-shifts as figure 4. Here, we see that about 75% of the total energy
reduction occurs within the first 1000 graph shifts. This large, early energy
reduction corresponds to the shifts that occur at high layers in the hierarchy
and have large masses as depicted in figure 5-(a) and (b). The mass of a shift is
the number of voxels that are relabeled as a result of the operation. Yet, it is also
clear from the plots that the graph-shifts at all levels at considered throughout
the minimization process; recall, at any given time the potential shift list stores
all energy reducing shifts and chooses the best one. Considering the majority
of the energy reduction happens in the early stages of the graph-shift process,
it is possible to stop the algorithm early when the shift gradient drops below a
certain threshold.
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Fig. 6. Total energy reduction com-
parison of graph-shifts to a PDE
method

In figure 6, we compare the total energy
reduction of the dynamic hierarchical graph-
shifts algorithm to the more conventional
PDE-type energy minimization approach. To
keep a fair comparison, we use the same
structure and initial conditions in both cases.
However, to approximate a PDE-type ap-
proach, we restrict the graph shifts to occur
across single voxel boundaries (at the low-
est layer in the hierarchy) only. As expected,
the large-mass moves effect an exponential
decrease in energy while the decrease from
the single voxel moves is roughly linear.
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Table 1. Segmentation accuracy using volume and surface measurements. A com-
parison to the FreeSurfer method run on the same data is included for the volume
measurements in table 2.

Training Set Testing Set

LH RH LC RC LP RP LV RV LH RH LC RC LP RP LV RV

Prec. 82% 70% 86% 86% 77% 81% 86% 86% 80% 58% 82% 84% 74% 74% 85% 85%

Rec. 60% 58% 82% 78% 72% 72% 88% 87% 61% 49% 81% 76% 67% 68% 87% 86%

Haus. 11.4 21.6 10.1 11.7 14.7 11.6 26.9 19.0 17.1 26.8 10.4 10.1 15.7 13.7 20.8 21.5

Mean 1.6 4.0 1.1 1.1 2.3 1.8 1.0 0.8 1.8 7.6 1.2 1.2 2.7 2.5 0.9 0.9

Med. 1.1 3.1 1.0 1.0 1.4 1.2 0.4 0.3 1.1 6.9 1.0 1.0 1.6 1.6 0.4 0.5

To quantify the accuracy of the segmentation, we use the standard volume
(precision and recall), and surface distance (Hausdorff, mean and median) mea-
surements. These are presented in table 1; in each case, the average over the set
is given. In these experiments, we weighted the unary term four times as strong
as the binary term; the power of the discriminative, context-sensitive models
takes the majority of the energy while the binary term enforces local continuity
and smoothness. Our accuracy is comparable or superior to the current state

Table 2. FreeSurfer [5] accuracy

LH RH LC RC LP RP LV RV

Prec. 48% 51% 77% 78% 70% 76% 81% 69%

Rec. 67% 75% 78% 76% 83% 83% 76% 71%

Haus. 25.3 11.5 23.0 26.1 13.1 10.8 31.9 51.8

Mean 3.9 2.1 1.9 2.0 1.8 1.4 1.8 9.6

Med. 2.1 1.5 1.0 1.0 1.3 1.0 0.9 3.9

of the art in sub-cortical
segmentation. To make a quan-
titative comparison, we com-
puted the same scores using the
FreeSurfer [5] method on the
same data (results in table 2).
We show a visual example of the
segmentation in figure 7.

Graph-Shifts Manual

Fig. 7. An example of the sub-cortical structure segmentation result using the graph-
shifts algorithm
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Next, we show the graph-shifts algorithm is robust to initialization. We sys-
tematically perturbed the initial hierarchy by taking random shifts with positive
gradient to increase the energy by 50%. Then, we started the graph-shifts from
the degraded initial condition. In all cases, graph-shifts converged to (roughly)
the same minimum; to quantify it, we calculated the standard deviation (SD)
of the precision + recall score for over 100 instances. For all structures the SD
is very small: LH: 0.0040, RH: 0.0011, LC: 0.0009, RC: 0.0013, LP: 0.0014, RP:
0.0013, LV: 0.0009, RV: 0.0014.

1

2
Truth Init GS PDE

Fig. 8. Graph-shifts (GS) can avoid
local minima. See text for details.

We now show that the large shifts pro-
vided by the hierarchical representation help
avoid local minima in which PDE meth-
ods fall. We created a synthetic test im-
age containing three separate i.i.d. Gaussian-
distributed brightness models (depicted as
red, green, and blue regions in figure 8). Fol-
lowing a similar perturbation as described
above, we ran the graph-shifts algorithm as
well as a PDE algorithm to compute the seg-

mentation and reach a minimum. As expected, the graph-shifts method success-
fully avoids local minima that the PDE method falls into; in figure 8, we show
two such cases. In the figure, the left column shows the input image and true
labeling; the next three columns show the initial state, the graph-shifts result
and the PDE result for two cases (rows 1 and 2).

6 Conclusion

We proposed graph-shifts, a novel energy minimization algorithm that manipu-
lates a dynamic hierarchical decomposition of the image volume to rapidly and
robustly minimize an energy function. We defined the class of energy functions
it can minimize, and derived the recursive energy on the hierarchy. We discussed
how the energy functions can include terms that are learned from labeled train-
ing data. The dynamic hierarchical representation makes it possible to make
both large and small changes to the segmentation in a single operation, and the
energy caching approach provides a deterministic way to rapidly compute and
select the optimal move at each iteration.

We applied graph-shifts to the segmentation of sub-cortical brain structures
in high-resolution MR 3D volumes. The quantified accuracy for both volume and
surface distances is comparable or superior to the state-of-the-art for this prob-
lem, and the algorithm converges orders of magnitude faster than conventional
minimization methods (about a minute). We demonstrated quantitative robust-
ness to initialization and avoidance of local minima in which local boundary
methods (e.g., PDE) fell.

In this paper, we considered the class of energies which used fixed model terms
that were learned from training data. We are currently exploring extensions
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to the graph-shifts algorithm that would update the model parameters during
the minimization. To further improve sub-cortical segmentation, we are inves-
tigating a more sophisticated shape model as well as additional sub-cortical
structures. Finally, we are conducting more comprehensive experiments using a
larger dataset and cross-validation.
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Abstract. In this paper, we extend some recent provably correct Delaunay-based
meshing algorithms to the case of multi-label partitions, so that they can be
applied to the generation of high-quality geometric models from labeled med-
ical datasets. Our approach enforces watertight surface meshes free of self-
intersections, and outputs surface and volume meshes of the different tissues
which are consistent with each other, including at multiple junctions. Moreover,
the abstraction of the tissue partition into an oracle that, given a point in space,
answers which tissue it belongs to, makes our approach applicable to virtually
any combination of data sources. Finally, our approach offers extensive control
over the size and shape of mesh elements, through customizable quality crite-
ria on triangular facets and on tetrahedra, which can be tuned independently for
the different anatomical structures. Our numerical experiments demonstrate the
effectiveness and flexibility of our approach for generating high-quality surface
and volume meshes from real multi-label medical datasets.

1 Introduction

1.1 Motivation

The generation of realistic geometric patient models from high-resolution medical im-
ages is of great significance in many clinical and research applications. An increasing
number of numerical simulations of physical or physiological processes (e.g. electroen-
cephalography (EEG) and magnetoencephalography(MEG) [1,2], image-guided neuro-
surgery [3,4], electromagnetic modeling [5,6], . . . ) require geometrically-accurate and
topologically-correct models. The latter consist either of surface meshes representing
boundaries between different anatomical parts, or of volume meshes.

However, due to the lack of reliable fully-automated tools for the unstructured dis-
cretization of medical datasets, simplistic geometric models are still of wide use. For
example, in electromagnetic modeling, such as specific absorption rate studies, for
which finite element methods (FEM) on unstructured grids conforming to anatomical
structures would be desirable [6], most numerical simulations have been conducted
using finite difference methods on rectilinear grids, although the poor definition of
tissue boundaries (stair-casing effect) strongly limits their accuracy. Similarly, in the
EEG/MEG source localization problem using the boundary element method (BEM), as
pointed out in [2], popular simplistic head models consisting of nested tissue layers may
yield a significantly lower accuracy than realistic models featuring multiple junctions.

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 198–210, 2007.
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Fig. 1. Surface meshes. Left: Meshing the boundaries of brain tissues with a tissue-dependent
resolution. We requested the cortical surface (colored in dark gray) to have a resolution twice
higher than other tissues. As a result, output surface meshes of other anatomical structures have
a coarse resolution except in local regions where they neighbor gray matter. This is apparent in
the magnified view of the white matter mesh (in light gray), in which the gray matter interface
has been partially removed for visualization purposes. Right: The quality of the obtained surface
meshes is much higher than with the marching cubes algorithm.

In addition to accuracy, geometric patient models often have to fulfill several re-
quirements in terms of smoothness, number, size and shape of mesh elements, sampling
density, among others, in order to obtain acceptable results and make useful predictions,
avoid instabilities in the simulations, or simply reduce the overall processing time. For
instance, during image-guided neurosurgery, real-time constraints impose strong limi-
tations on the complexity of the geometric brain model being dynamically registered
onto the patient anatomy [3].

1.2 Previous Work

While different strategies can be used to obtain realistic geometric models from labeled
medical datasets, few of them offer sufficient flexibility: handling of data coming from
different sources, control over the density and quality of the mesh elements. Also, most
existing approaches have been designed to extract surface meshes corresponding to
boundaries between labeled anatomical structures, hence necessitating post-processing
steps to generate volume meshes needed by finite element methods.

The most celebrated technique for producing surface meshes from sampled data is
undoubtedly the marching cubes algorithm, introduced by Lorensen and Cline [7], and
its variants (e.g. [8]). Given a scalar field sampled on a rectilinear grid, the marching
cubes algorithm efficiently generates a triangular mesh of an isosurface by tessellating
each cubic cell of the domain according to a case table constructed off-line.

Initially dedicated to binary classification, this method has been extended to non-
binary volumes [9,10,11,12]. Unfortunately, these techniques produce unnecessarily
large meshes (at least one triangle per boundary voxel) of very low quality (lots of
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skinny triangles). Frequently, the resulting meshes have to be regularized, optimized
and decimated in order to obtain suitable representations, while simultaneously con-
trolling the approximation accuracy and preserving some topological properties, such
as the absence of self-intersections, which turns out to be a difficult task.

Delaunay-based meshing is recognized as one of the most powerful techniques for
generating surface and volume meshes with guaranteed quality. It offers easy control
over the size and shape of mesh elements, for instance through a (possibly non-uniform)
sizing field.

Our work builds on some recent provably correct Delaunay-based algorithms for
meshing smooth surfaces [13] and volumes bounded by such surfaces [14]. These two
algorithms are proven to terminate and to construct good-quality meshes, while offering
bounds on the approximation accuracy of the original boundary and on the size of the
output mesh. The refinement process is controlled by highly customizable quality crite-
ria on triangular facets and on tetrahedra. A notable feature of the method of Boissonnat
and Oudot [13] is that the surface needs only to be known through an oracle that, given
a line segment, detects whether the segment intersects the surface and, in the affirma-
tive, returns an intersection point. This makes the algorithm useful in a wide variety of
contexts and for a large class of surfaces. Very recently, Oudot, Rineau and Yvinec [14]
have proposed to combine the latter Delaunay-based surface mesher with a Delaunay
refinement volume mesher [15]. This algorithm has the particularity of sampling the
interior and the boundary of the object at the same time.

However, the case of multi-label partitions is not addressed in these works, there-
fore restricting their applicability to real datasets. The contribution of our paper is to
reformulate the two above methods in the non-binary perspective.

1.3 Novelty of Our Approach

Our work extends the method of Boissonnat and Oudot [13] and the method of Oudot,
Rineau and Yvinec [14] to the case of multi-label partitions, so that they can be applied
to the generation of high-quality geometric models from labeled medical datasets.

To that end, we define a partition of Delaunay tetrahedra induced by a space subdi-
vision. It is related to the concept of restricted Delaunay triangulation, borrowed from
computational geometry. In our approach, the subdivision of the domain of interest is
approximated by a discrete partition of the Delaunay tetrahedralization of a point set:
each Delaunay tetrahedron is labeled with one adequate tissue type. Output surface
meshes are composed of the triangular facets adjacent to two tetrahedra having dif-
ferent labels. The point set is iteratively refined until it forms a “good” sample of the
boundaries between the different anatomical structures, and, if a quality volume mesh
is desired, a “good” sample of their interior.

Interestingly, our approach directly enforces watertight surface meshes free of self-
intersections. Also, the consistency of surface meshes and volume meshes of the differ-
ent tissues with each other is guaranteed by construction, including at multiple junctions.

Another notable feature of our approach is that the continuous partition need not
to be represented explicitly. It is known only through a labeling oracle that, given a
point in space, answers which tissue it belongs to. This makes our approach applicable
to virtually any combination of data sources, including labeled 3D images, polyhedral
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surfaces, unstructured volume meshes, fuzzy membership functions, possibly having
different resolutions and different coordinate systems. The different data sources may
even be inconsistent with each other due to noise or discretization artefacts. In this case,
the labeling oracle has the responsibility of resolving the conflicts using some user-
defined rules. As a result, our meshing algorithm is not affected by the heterogeneity
and possible inconsistency of the input datasets.

Finally, another major advantage of our approach is that the customizable quality
criteria on boundary facets and/or on tetrahedra can be tuned independently for the
different anatomical structures.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground on the basic computational geometry concepts needed in our approach: Voronoi
diagrams, Delaunay triangulations and restricted Delaunay triangulations. Our method
is described in Sect. 3. In Sect. 4, we report on some numerical experiments which
demonstrate the effectiveness and flexibility of our approach for generating high-quality
surface and volume meshes from real multi-label medical datasets.

2 Background

2.1 Voronoi Diagram and Delaunay Triangulation

Voronoi diagrams are versatile structures which encode proximity relationships be-
tween objects. They are particularly relevant to perform nearest neighbor search and
motion planning (e.g. in robotics), and to model growth processes (e.g. crystal growth
in materials science). Delaunay triangulations, which are geometrically dual to Voronoi
diagrams, are a classical tool in the field of mesh generation and mesh processing due
to its optimality properties.

Most of the following definitions are taken from [13]. We also refer the interested
reader to some computational geometry textbooks [16,17].

In the sequel, we call k-simplex the convex hull of k +1 affinely independent points.
For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a
triangle and a 3-simplex is a tetrahedron.

Let E = {p1, . . . , pn} be set of points in R
d. Note that in this work, we are mainly

interested in d = 3. The Voronoi region, or Voronoi cell, denoted by V (pi), associated
to a point pi is the region of space that is closer from pi than from all other points in E:

V (pi) = {p ∈ R
d : ∀j, ‖p − pi‖ ≤ ‖p − pj‖} . (1)

V (pi) is the intersection of n−1 half-spaces bounded by the bisector planes of segments
[pipj ], j �= i. V (pi) is therefore a convex polytope, possibly unbounded. The Voronoi
diagram of E, denoted by Vor(E), is the partition of space induced by the Voronoi cells
V (pi).

See Fig. 2(a) for a two-dimensional example of a Voronoi diagram In two dimen-
sions, the edges shared by two Voronoi cells are called Voronoi edges and the points
shared by three Voronoi cells are called Voronoi vertices. Similarly, in three dimen-
sions, we term Voronoi facets, edges and vertices the geometric objects shared by one,
two and three Voronoi cells, respectively. The Voronoi diagram is the collection of all
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(a) (b) (c) (d)

Fig. 2. (a) Voronoi diagram of a set ot points in the plane. (b) Its dual Delaunay triangulation.
(c) The Delaunay triangulation restricted to the blue curve is plotted with a thick red line. (d)
The Delaunay triangulation restricted to the region bounded by the blue curve is composed of the
filled red triangles, whose circumcenters (blue crosses) are inside the region.

these k-dimensional objects, with 0 ≤ k ≤ d, which we call Voronoi objects. In partic-
ular, note that Voronoi cells V (pi) correspond to d-dimensional Voronoi objects.

The Delaunay triangulation Del(E) of E is defined as the geometric dual of the
Voronoi diagram: there is an edge between two points pi and pj in the Delaunay trian-
gulation if and only if their Voronoi cells V (pi) and V (pj) have a non-empty intersec-
tion. It yields a triangulation of E, that is to say a partition of the convex hull of E into
d-dimensional simplices (i.e. into triangles in 2D, into tetrahedra in 3D and so on).

The fundamental property of the Delaunay triangulation is called the empty circle
(resp. empty sphere in 3D) property: in 2D (resp. in 3D), a triangle (resp. tetrahedron)
belongs to the Delaunay triangulation if and only if its circumcircle (resp. circumsphere)
does not contain any other points of E in its interior.

The algorithmic complexity of the Delaunay triangulation of n points is O(n log n)
in 2D, and O(n2) in 3D. Fortunately, as was recently proven in [18], the complexity in
3D drops to O(n log n) when the points are distributed on a smooth surface, which is
the case of interest here.

2.2 Restricted Delaunay Triangulation

Each k-simplex in the Delaunay triangulation is dual to a (d − k)-dimensional Voronoi
object. In 3D, the dual of a Delaunay tetrahedron is the Voronoi vertex which coincides
with the circumcenter of the tetrahedron, the dual of a Delaunay facet is a Voronoi edge,
the dual of a Delaunay edge is a Voronoi facet, and the dual of a Delaunay vertex pi is
the Voronoi cell V (pi).

Given a subset Ω ∈ R
d, typically a manifold of dimension k ≤ d, we call the

Delaunay triangulation of E restricted to Ω, and we note Del|Ω(E) the subcomplex
of Del(E) composed of the Delaunay simplices whose dual Voronoi objects intersect
Ω. For example, in 2D, as illustrated in Fig. 2(c), the Delaunay triangulation restricted
to a curve C is composed of the Delaunay edges whose dual Voronoi edges intersect
C. Similarly, as shown in Fig. 2(d), the Delaunay triangulation restricted to a region R
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is composed of the Delaunay triangles whose circumcenters are contained in R. The at-
tentive reader may have noticed that in both cases the restricted Delaunay triangulation
forms a good approximation of the object.

Actually, this is a general property of the restricted Delaunay triangulation. It can
be shown that, under some assumptions, and especially if E is a “sufficiently dense”
sample of Ω, in some sense defined in [19], Del|Ω(E) is a good approximation of
Ω, both in a topological and in a geometric sense: as regards topology, Del|Ω(E) is
homeomorphic to Ω; as regards geometry, the Hausdorff distance between Del|Ω(E)
and Ω can be made arbitrarily small; normals and curvatures of Ω can be consistently
approximated from Del|Ω(E).

Based on these approximation properties, a family of provably correct algorithms for
mesh generation and mesh reconstruction from point clouds have been designed in the
last decade. We refer the reader to [13] and references therein for more details.

3 Methods

3.1 Partition of Delaunay Tetrahedra

Let us consider P = {Ω0, Ω1, . . . , Ωn} a partition of space into the background Ω0
and n different tissues, i.e.

R
3 = �i∈{0,...,n}Ωi , (2)

and let Γ denote the boundaries of the partition:

Γ = ∪iδΩi . (3)

Given a set of points E in R
3, we define the partition of Delaunay tetrahedra induced

by P , denoted by Del|P (E), as the partition of the tetrahedra of Del(E) depending on
the region containing their circumcenter. In other words,

Del|P(E) = {Del|Ω0(E), . . . , Del|Ωn(E)} ,

where Del|Ωi(E) is the set of tetrahedra of Del(E) whose circumcenters are contained
in Ωi.

Del|P(E) induces mutually-consistent surface meshes and volume meshes of the dif-
ferent tissues. In particular, the surface meshes are composed of the triangular facets ad-
jacent to two tetrahedra assigned to different tissues (i.e. belonging to different parts of
Del|P(E)) and of the convex hull facets adjacent to non-background tetrahedra. These
facets are called boundary facets in the sequel.

It can be proven that the resulting surface and volume meshes form a good approx-
imation of the original partition P as soon as E is a “sufficiently dense” sample of
its boundaries, in some sense defined in [19]. The proof is omitted here due to space
limitations. The outline of the proof is the same as in [13].

With this concept in hand, our meshing algorithm boils down to generating a point
sample E which fulfills the above sampling condition as well as some additional user-
defined quality criteria on boundary facets and tetrahedra.
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3.2 Incremental Construction of the Point Sample

Our algorithm for generating E closely parallels the surface meshing algorithm of Bois-
sonnat and Oudot [13]. The algorithm starts with a small initial point sample E0 of Γ
and, at each iteration, it inserts a new point of Γ into E and updates Del|P(E). Each
point inserted into E is the intersection between Γ and the dual of a boundary facet
(that is to say, a ray or a segment of the Voronoi diagram of E). We call surface De-
launay ball of a boundary facet the ball circumscribing the boundary facet and centered
on the intersection point. Note that such an intersection always exists, by construction.
In case there are several intersections, any of them can be chosen, without compromis-
ing the good continuation of the algorithm. The algorithm stops when there are no bad
boundary facets left.

The surface is known only through a labeling oracle that, given a point in space,
answers which tissue it belongs to. This oracle can be formulated as a labeling function
LP : R

3 → {0, . . . , n} associated to the partition P , such that LP(p) = i if and only
if p ∈ Ωi. Intersections of a segment or a line with Γ can be computed to the desired
accuracy using a dichotomic search on LP .

When high-quality volume meshes are needed in addition to quality surface meshes,
this procedure is complemented with the refinement of bad tetrahedra by insertion of
their circumcenter in E. This technique, pioneered by Ruppert [15], is known as De-
launay refinement. Very recently, Oudot, Rineau and Yvinec [14,20] have described
how to properly combine these two meshing levels (facet refinement and tetrahedron
refinement) in the binary case.

Under these considerations, the overview of our algorithm is given below:

while there is a bad boundary facet or a bad tetrahedron do
if there is a bad boundary facet then

let f be the worst boundary facet
let p be an intersection between Γ and the dual of f
insert p in E

else {there is a bad tetrahedron}
let c be the circumcenter of the worst tetrahedron
if there is a boundary facet f whose surface Delaunay ball contains c then

let p be the center of the surface Delaunay ball
insert p in E

else
insert c in E

end if
end if
update Del|P(E)

end while

3.3 Quality Criteria

In the above algorithm, the determination of “good” and “bad” boundary facets and
tetrahedra is devoted to some user-defined criteria, that are typically a combination of
thresholds on the following elementary quality measures:
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– Boundary facets: aspect ratio (minimum angle), size (circumradius of surface De-
launay ball), curvature (distance between facet circumcenter and center of surface
Delaunay ball), edge length, . . .

– Tetrahedra: aspect ratio (ratio between tetrahedron circumradius and shortest
edge length), size (tetrahedron circumradius), edge length, minimum angle, . . .

Note that these thresholds are possibly non-uniform over space, which allows to
locally increase accuracy in a region of interest, while keeping the total size of the
geometric model, and hence the computational and memory cost, sustainable. This ca-
pability is illustrated in Experiment 2 in Sect. 4.

Another important source of flexibility of our approach is that the quality criteria can
be tuned independently for the different anatomical structures. Thus, a boundary facet
must be tested against the criteria of its two adjacent tissues. It is classified as a good
facet if it fulfills both criteria. For example, as illustrated in Experiment 3 in Sect. 4,
if different resolutions are required for the two tissues adjoining the facet, the higher
resolution is enforced.

3.4 Sliver Removal

While Delaunay refinement techniques can be proven to generate tetrahedra with a good
radius-edge ratio (ratio between tetrahedron circumradius and shortest edge length),
they cannot guarantee against badly-shaped tetrahedra of a special type called slivers.
A sliver is a tetrahedron whose four vertices lie close to a plane and whose projection
to that plane is a quadrilateral with no short edge. Such tetrahedra have a good radius-
edge ratio but a very poor radius-radius ratio (ratio between circumradius and radius
of largest contained sphere). Unfortunately, the latter measure typically influences the
numerical conditioning of finite element methods.

In order to remove slivers from our volume meshes, we use a post processing step
called sliver exudation [21]. This step does not include any new vertex in the mesh, nor
does it move any of them. Simply each vertex is assigned a weight and the Delaunay tri-
angulation is turned into a Delaunay weighted triangulation. The weights are carefully
computed in such a way that no vertex nor any boundary facet disappear from the mesh.
Within these constraints, the weight of each vertex is chosen in turn to maximize the
minimum dihedral angles of tetrahedra incident to that vertex. Although the guaranteed
theoretical bound on radius-radius ratio is known to be miserably low, this algorithm is
efficient in practice and generates almost sliver-free meshes.

3.5 Implementation Aspects

By using CGAL (Computational Geometry Algorithms Library, homepage:
www.cgal.org) [22], we have been able to implement our approach with only
1000 lines of C++ code. CGAL defines all the needed geometric primitives and
provides an excellent algorithm to compute the Delaunay triangulation in 3D: it is
robust to degenerate configurations and floating-point error, thanks to the use of exact
geometric predicates, while being able to process millions of points per minute on a
standard workstation.
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Moreover, the incremental surface meshing algorithm of Boissonnat and Oudot [13]
is now available as a CGAL package. Although this algorithm is dedicated to restricted
Delaunay triangulations, the code can be modified to compute the partition of Delaunay
tetrahedra induced by a partition. Although this is not optimal as regards computation
time, we have chosen this option for our prototype. Also, our implementation of sliver
pumping could be heavily optimized.

4 Experimental Results

In order to illustrate the wide applicability and the high flexibility of the proposed algo-
rithm, we generated several meshes from real labeled medical datasets, under various
parameter settings. The parameters (number of tissues and refinement criteria) and the
quantitative results (number of vertices, of boundary facets and of tetrahedra; computa-
tion time) of our different experiments are gathered in Table 1.

Table 1. Parameters and quantitative results of our different numerical experiments

Experiment 1 2 3 4
# tissues 15 72 72 77
# vertices 11K 36K 112K 389K
# boundary facets 23K 79K 228K 536K
# tetrahedra 73K 231K 728K 2370K
Time (sec) 35 54 340 1363

+ 5080 (sliver pumping)
Refinement criteria minimum angle > 30◦

size < 1mm non-uniform size cortex: size < 1mm
others: size < 2mm
tets: radius-edge ratio < 2
cortex tets: size < 1.5mm

other tets: no size constraint

Experiment 1: Uniform surface meshing. In a first experiment (Fig. 3-Left), we
meshed the interfaces of a labeled MR angiography of iliac veins and arteries ([23])
with a uniform boundary facet quality criterion: the output surface meshes are required
not to contain any triangle greater than 1mm. The resulting angle distribution illustrates
the high-quality of the surface meshes that do not contain any badly-shaped triangles
- no triangle forms an angle smaller than 30◦ (or larger than 120◦). Note also that the
angle distribution peaks around 60◦.

Experiment 2: Non-uniform surface meshing. In the three following experiments,
we use some segmented brain data which were automatically generated from a T1-
weighted magnetic resonance (MR) image using FreeSurfer’s Whole Brain Segmenta-
tion tool [24].

The second experiment demonstrates the ability of our algorithm to produce surface
meshes with non-uniform resolution (Fig. 3-Right). The facet size criterion was chosen
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to be spatially-varying so that the occipital cortex would be more finely sampled than
the frontal cortex. Although for clarity, only four surfaces are displayed (for each hemi-
sphere, the cortical and cerebellum surfaces), a total number of 72 tissues were meshed
using the aforementioned criteria.

Experiment 3: Surface meshing with tissue-dependent resolution. Figure 1 dis-
plays brain anatomical interfaces meshed with different sampling resolutions - different
boundary facet quality criteria were assigned to different anatomical structures. The re-
sulting meshes are consistent with each other (i.e. common anatomical interfaces share
the same mesh representation) and interfaces are meshed with the finer density required
for the neighboring anatomical structures.

Fig. 3. Surface meshes. Left: Vascular mesh model, obtained by meshing uniformly 15 tissue
interfaces. Right: Non-uniform surface meshing of brain tissues.

In this experiment, the cortical surface was required to have a finer resolution
(≤ 1mm) than all other structures (≤ 2mm). Consequently, interfaces of anatomi-
cal structures other than cortical gray matter were meshed less densely, except for local
regions where the structures were in contact with the cortex. This is clearly illustrated in
the magnified region of Fig. 1, where the white matter interface is more densely meshed
in regions that are in direct contact with gray matter.

In order to show the quality of the output surface meshes, we computed their angle
distribution and compared it to the one of meshes extracted by a marching cubes algo-
rithm [8]. Figure 1-Right shows both histograms. Contrarily to our method, which pro-
duces well-shaped triangles only, the MC algorithm yields meshes with lots of skinny
triangles and whose angle distribution peaks around 45◦ and 90◦.

Experiment 4: Surface and volume meshing with tissue-dependent resolution. The
last experiment illustrates the ability of our method to generate high-quality consistent
surface and volume meshes under elaborate tissue-dependent criteria. Similarly to the
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Fig. 4. Consistent tissue-dependent surface and volume meshes of head tissues. Left: The cor-
tical surface and volume meshes (in yellow) both have a high resolution. Other anatomical struc-
tures have a coarser resolution except in regions adjacent to the cortex. Center: The magnified
view exemplifies some consequences of tissue-dependent volume resolution: the unconstrained
white matter tetrahedra (in red) become smaller as they approach the cortical surface. Right:
Angle and radius-radius ratio distributions of surface meshes and volume meshes, respectively.

previous experiment, tissue-dependent boundary facet criteria constrained the cortical
surface to be more finely meshed than other interfaces. In addition, we also meshed
the anatomical volumes with tissue-dependent resolution. Tetrahedra in cortical gray
matter were required to be smaller than 1.5mm, while no size constraint was imposed
on tetrahedra in other anatomical structures; on the other hand, the aspect ratio of all
tetrahedra was required to be smaller than 2.

Figure 4 displays the resulting surface and volume meshes. Some cross-sections,
obtained by cutting the models by different planes, reveal the high quality of tetrahe-
dra. The surface meshes, which have tissue-dependent sampling densities, are consis-
tent with the volume meshes. Note the size variation of white matter tetrahedra, which
become very large as they get further from the cortical surface. The angle and radius-
radius ratio distributions show that the obtained surface and volume meshes constitute
high-quality geometric models of brain anatomical structures, well-adapted to numeri-
cal simulations.

5 Discussion and Conclusion

An increasing number of simulation tasks in clinical and research imaging necessitate
more and more realistic geometric models (i.e. surface or volume meshes), whose el-
ements (i.e. size, shape, number, . . . ) are often constrained by the numerical methods
they are being designed for. The proposed approach has been designed to meet all these
requirements, extensive control over the constructed meshes being achieved through
two user-defined quality criteria on triangular facets and on tetrahedra (Sect. 3.3).

The produced models are watertight surface meshes, free of self-intersections and
consistent with volume meshes of the different tissues. Contrarily to existing meth-
ods [14], the algorithm is not restricted to nested topologies and can handle multiple
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junctions. Our current implementation does not guarantee that each surface mesh con-
stitutes a valid two-manifold when the resolution requested by the user is too low. A
more elaborate refinement criterion automatically enforcing the manifold property is
under development.

In conclusion, we have proposed a very flexible Delaunay-based technique for the
generation of high-quality meshes from medical datasets. We plan to make our code
available, and we hope that it will contribute to facilitate the creation of realistic geo-
metric patient models.
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Abstract. A common goal in deformable registration applications is to produce
a spatial transformation that is diffeomorphic, thereby preserving the topology of
structures being transformed. Because this constraint is typically enforced only
on the continuum, however, topological changes can still occur within discretely
sampled images. This work discusses the notion of homeomorphisms in digital
images, and how it differs from the diffeomorphic/homeomorphic concepts in
continuous spaces commonly used in medical imaging. We review the differences
and problems brought by considering functions defined on a discrete grid, and
propose a practical criterion for enforcing digital homeomorphisms in the context
of atlas-based segmentation.

1 Introduction

Deformable image registration has established itself as an important field of medical
image analysis. It has been proposed as a computational framework for the study of
anatomy [1,2], and is perhaps most prevalent in the neuroimaging literature, having
been used for studying brain development, aging, and disease [3,4,5].

Among the desirable features of deformable registration methods, the ability to pre-
serve the topological structure of the imaged anatomy while adapting to varying shapes
has been a central issue. Topology is usually invariant in normal anatomy, and is an
instrumental property for cortical unfolding and morphometric analysis. Starting with
the work of Christensen et al. [6], many registration methods have sought to generate
diffeomorphic deformations, which are bijective, smooth, and maintain the topology of
the underlying space being deformed. Obtaining rigorous diffeomorphisms is far from
trivial, and several competing approaches have been proposed, most based on constrain-
ing the Jacobian of the deformation [7,8,9,10,11,12]. Other approaches do not explicitly
enforce the diffeomorphism constraint, and instead rely on simply regularizing the com-
puted deformation field that, given appropriate parameter selection, should result in a
diffeomorphism [13,14,15,16].

The problem with these methods is that they consider the images being transformed
to be continuous functions. This becomes an issue particularly in atlas or template-based
segmentation applications, where the image is made of a collection of solid objects.
It can be shown that without proper care, the topology of the objects in a discretely
sampled image is not guaranteed to be preserved after transformation, even when the
Jacobian is constrained. Changes in topology can occur even in simple transformations,
such as rotations. The main reason behind such a counter-intuitive result is the fact that
topological properties of digital images can not be preserved based on constraining the
transformation alone. One must consider the scale of the digital grid, its connectivity,

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 211–222, 2007.
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as well as the geometry of the objects themselves. Therefore, the classical notions of
diffeomorphism and homeomorphism, which are based on continuity properties, have
to be carefully translated into the digital world.

In this paper, we describe a simple model of images as a set of continuous objects,
and show how the topology of these objects, represented on a discrete grid either as bi-
nary objects or levelset functions, is affected by rigid and nonrigid deformations. Unlike
the fully continuous case, the constraints required to make diffeomorphisms preserve
the objects topology on the grid depend on the thickness of the deformed objects and
may be impractical to compute. We propose an alternative approach to enforce topol-
ogy preservation in spatial transformations based on the notion of simple point, which
is well defined in digital topology [17,18]. We define such transformations as digital
homeomorphisms, and derive a criterion that characterizes them for any number of ob-
jects in 2D and 3D images. We integrate this criterion into an approximation algorithm
to build a digital homeomorphism from any transformation, and study how the objects
interact with deformations encountered both in rigid and deformable registration.

2 Continuous Diffeomorphisms and Digital Homeomorphisms

Let Ω be a compact region of R3 of the form [0, Nx] × [0, Ny] × [0, Nz], and {O1, . . . ,
OK} be the partition of Ω into K compact regions representing objects of interest. We
assume that the objects fill the region such that Ω =

⋃
1,...,k Ok, and that the objects do

not overlap (formally, the intersection of any open sets inside Ok and Ol is empty, for
all pairs k, l). If it exists, the boundary between two volumes k and l is a closed surface
patch Sk,l = Ok ∩Ol. Note that because Sk,l are compact,

⋃
l Sk,l is not the same as the

closed surface bounding Ok, referred to as Bk. Where three objects meet, the common
boundary is a line curve Lk,l,m = Ok ∩ Ol ∩ Om = Sk,l ∩ Sl,m ∩ Sk,m (see Fig. 1-b).

An image can be obtained from this partition by applying an observation model that
associates intensity values or functions to a given object or set of objects. In medical
images, the observation model includes noise, signal inhomogeneity, and many objects

a b

Fig. 1. Partition of an image into objects: a) the segmentation of a brain image into anatomical
regions, b) the surface patches and line curves at the boundary between four objects
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can have similar intensities. The topology of interest here is not the topology of the
actual image, but of the underlying set of objects.

Given an image with a known partition into objects (the source), we seek to register
it to a new image (the target) with a transformation that will preserve the topology of
the partition. In the following, we consider the question of enforcing the preservation
of topology for a given transformation.

2.1 Topology of Continuous and Discrete Objects

Although medical images represent a collection of objects in continuous space, these
objects are nearly always represented discretely for computational reasons. The most
common representation is the triangular surface mesh that approximates the continuous
bounding surface of an object with arbitrary precision. Under this representation, the
topology of the object can be characterized by the Euler characteristic of its bounding
surface: χ(Ok) = V −E+F where V is the number of vertices, E the number of edges
and F the number of faces in the mesh. The Euler characteristic describes the genus of
the surface, which intuitively counts the number of handles in the object [19]. In case
there are several disconnected parts or cavities in the object, the Euler characteristic of
the object is the sum of Euler characteristics for each bounding surface.

If triangular surface meshes cannot be used directly, an alternative representation
based on levelset functions has become the preferred approach for its ability to easily
handle simple and complex geometries and the existence of efficient methods to solve
partial difference equations on them [20]. Let ΩD be a cubic grid that samples the re-
gion Ω along the x, y, z coordinates at a regular interval (set to 1 for simplicity). The
sampling points are linked by edges along the x, y, z directions to form a cubic lattice
(see Fig.2). Given the closed bounding surface Bk, a signed distance function can be
constructed over each sampling point of ΩD to build the levelset representation, and a
surface mesh can be recovered by the marching cubes technique [21]. The recovered
surface is a geometric approximation with the same topology as the original surface
if the original surface cuts at most once through each edge between two neighboring

a b c

Fig. 2. Representation of an object on the digital grid: a) a continuous smooth surface, b) its
approximation from a levelset function and marching cubes reconstruction, c) its approximation
as a collection of voxels. Note that the voxel edges are different from the grid edges in this last
case.
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points and if its connectivity is consistent with a choice of digital connectivity on the
grid [23]. Without loss of generality, we assume the segmentation has these two prop-
erties so that the continuous objects Ok are equivalent to the digital objects obtained by
sampling them on ΩD.

The marching cubes reconstruction performs only a trilinear interpolation of space,
but more elaborate interpolation techniques introduce small perturbations on the dis-
tance function that may become topology artifacts and so the link between topologi-
cal properties of the continuous and digital representations can be broken. The other
interpolation method that will preserve topological properties is the nearest neighbor
interpolation, which represents each sample point inside the object by a voxel. In either
case, for matters of topology, the levelset representation can be replaced by a label im-
age that associates the label k for each point inside Ok. For simplicity, we consider the
voxel representation, though the following results apply identically to the levelset rep-
resentation. The grid points are considered connected to their neighbors following usual
connectivity rules: 6-connected points must share a voxel face, 18-connected points can
share only a voxel edge, 26-connected points need only to share a voxel vertex.

2.2 Homeomorphisms and Diffeomorphisms in the Continuum

Two objects that have the same topology are called homeomorphic, and have the same
Euler characteristic. By definition, two objects are homeomorphic if there exists a bi-
jective transformation that maps one into the other and both the transformation and its
inverse are continuous (the transformation is called a homeomorphism). The question
of preserving topology is thus equivalent to finding a transformation that is a homeo-
morphism.

In the work of Christensen et al. [6], the topology preservation problems is refor-
mulated into ensuring the transformation between two spaces is a diffeomorphism. A
diffeomorphism is a bijective transformation that is differentiable and has invertible
derivatives. To have invertible derivatives, it is necessary and sufficient that the transfor-
mation has a Jacobian strictly positive (or strictly negative) everywhere. In dimension 2
and 3, diffeomorphisms and homeomorphisms are strictly equivalent [22]. In practice,
Christensen’s method requires the Jacobian to be above 0.5, to avoid numerical singu-
larities in solving the equations for computing the transformation. If it goes below that
limit, the algorithm performs a regridding: the source image is transformed with the
current diffeomorphism, and a new transformation is computed from this intermediary
image to the target.

2.3 Diffeomorphisms on the Digital Grid

Continuous diffeomorphisms are not sufficient to prevent changes in the topology of
objects represented on the digital grid. Let us take the simple example of an affine
transformation: ∀X ∈ Ω, T (X) = AX + B. The Jacobian is JT (X) = ‖A‖, which
is a positive or negative constant provided that the transformation is not a projection.
Yet, applying a rotation or scaling to the digital label or levelset image representing
an object and then recovering the continuous surface will result in topological changes
(see Fig. 3). In the case of a rotation, the connectivity of objects can change where the
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a b c

Fig. 3. Simple examples of transformations that affect topology on the digital grid: a) original
object, b) after a rotation of 45 degrees, c) after a scaling of 2/3. Independently of the connectivity
choice, the objects all have different topology.

distance between two boundaries is less than the largest distance between connected
grid points (

√
3 in 3D,

√
2 in 2D). In the case of a scaling with a scale s < 1, all the

details smaller than 1/s may disappear from the transformed object.
Combining both effects, we have the following property:

Theorem 1. An affine transformation T (X) = AX +B applied to an object O defined
on a digital cubic grid ΩD is guaranteed to preserve the topology of O if and only if
the distance between any two points outside of O on the grid such that the line between
them intersects O is strictly higher than

√
3/λ in 3D or

√
2/λ in 2D, where λ is the

smallest eigenvalue of A.

Full proof is a straightforward exercise in elementary geometry and omitted here. This
constraint, unlike those for continuous homeomorphisms and diffeomorphisms, explic-
itly depends on the thickness of the object. It can be extended to any non-linear de-
formation by assuming that the transformation is locally affine at each grid point and
computing the minimum thickness in that neighborhood of the object. In the case that
the thickness requirement is not met, it is necessary either to change the deformation or
to resample the object to a finer grid resolution. Compared to the previous requirements
of regridding or imposing bounds on the transformation parameters, this is more com-
plex. However, as we must now explicitly take into consideration the objects, we can
utilize the simple points of digital topology instead.

2.4 Digital Homeomorphisms: Single Object

Let us consider the case of a single object O1 and its bounding surface B1. Implied here
is a second object O2 = Ω\O1 representing the background, with B2 = B1 = B. In
this case, it has been shown [24,25] that the boundary B can move over a grid point
(changing it from object to background, or background to object) without changing
its topology if and only if the grid point is a simple point. A point is simple if there
is exactly one connected object region and one connected background region in the
neighborhood of the point. The definition of connected region and neighborhood de-
pends on the choice of connectivity: if the object is 26-connected, then the background
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is 6-connected and the neighborhood is the set of 26-connected neighbors of the point.
In the case of an 18-connected object, the background is 6-connected and the neighbor-
hood is the set of 18-connected neighbors. The other cases are obtained by swapping
object and background in the definition.

By analogy with the continuous case, we define as digital homeomorphism a trans-
formation of B that only exchanges simple points between O1 and O2. Any object
deformation algorithm that preserves its topology implies a digital homeomorphism,
from homotopic morphological operators [26,27] to topology-preserving levelset evo-
lution [23]. In many cases, this homeomorphism is not explicitly computed, though
topology-preserving levelset evolution could be directly integrated into levelset-based
registration methods [15]. However, most image registration problems consider more
than a single object, and an extension of this definition is needed for the general case.

2.5 Digital Homeomorphisms: Multiple Objects

The topological properties of a set of objects can be summarized by the Euler charac-
teristic of all possible sub-groups of objects. By its definition, the Euler characteristic
follows the inclusion-exclusion principle:

χ(Ok ∪ Ol) = χ(Ok) + χ(Ol) − χ(Ok ∩ Ol)

For a group of objects, this becomes:

χ(
⋃K

k=1 Ok) =
∑

k χ(Ok) −
∑

k,l χ(Ok ∩ Ol) +
∑

k,l,m χ(Ok ∩ Ol ∩ Om)
− . . . + (−1)k−1χ(O1 ∩ . . . ∩ OK)

With our model, we have objects Ok, surface patches Sk,l = Ok ∩ Ol, and lines
Lk,l,m = Ok∩Ol∩Om. Higher order intersections are either the empty set, disjoint sets
of points, or coincide with an existing line. The intersection points cannot change their
shape, and thus keep their (spherical) topology and have constant Euler characteristic.
Points can appear and disappear as a byproduct of changes in the topology of the lines
Lk,lm, linking them, but this involves a change of topology for the lines themselves.

To ensure the topology of the set of objects is preserved, we have to find a transfor-
mation that maintains the Euler characteristic of all Ok, Sk,l and Lk,l,m. Two objects
can maintain their own topology and change the topology of their common boundary,
and even when those are preserved, the surface patches can slide with regard to each
other along the lines and affect their topology.

From the inclusion-exclusion principle, the Euler characteristic of Sk,l and Lk,l,m

can be computed from the Euler characteristic of object groups:

χ(Sk,l) = χ(Ok) + χ(Ol) − χ(Ok ∪ Ol)
χ(Lk,l,m) = χ(Ok) + χ(Ol) + χ(Om) − χ(Ok ∪ Ol)

−χ(Ol ∪ Om) − χ(Om ∪ Ok) + χ(Ok ∪ Ol ∪ Om)

Thus, the topology of the segmentation is preserved if the transformation preserves the
topology of individual objects, object pairs and object triplets. Note that in the 2D case,
we only need to preserve the topology of individual objects and pairs.

On the digital grid, this leads to a multi-object criterion for homeomorphisms:
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a b c

Fig. 4. Simple points for multiple objects: a) the central point can be exchanged between 2 and 4,
but not 1 and 2 or 2 and 3 since these latter two cases would allow 1 and 3 to touch, b) the central
point can swap from 1 to 3, but not 2 or 4, c) the central point is non-simple for any change if the
objects are 6-connected, but can move from 3 to 2 if the objects are 26-connected (note that the
groups 2-3 and 1-4 intersect each other in the latter case).

Theorem 2. (The Digital Homeomorphism Constraint) A digital homeomorphism is a
transformation that enforces, for a given partition of Ω, that any sample point X ∈ ΩD

may change from Ok to Ol if and only if X is a simple point for Ok, Ol, {Ok ∪ Om}
Om∩NX �=∅,m �=k,l, {Ol ∪Om}Om∩NX �=∅,m �=k,l, {Ok ∪Om ∪On}Om,On∩NX �=∅,m,n�=k,l,
{Ol ∪ Om ∪ On}Om,On∩NX �=∅,m,n�=k,l, each considered as a single object.

In other words, a point can change from Ok to Ol if it is a simple point for all groups
of up to three objects including either Ok or Ol. The main difference with the single
object case here is that simple points become object-dependent (see Fig. 4). In practice,
the number of cases to test at each point is still low: two on most of the surfaces Sk,l,
four at the lines Lk,l. More complex cases do appear when objects become one voxel
thin, and when multiple objects meet, but such occurrences are very sparse in Ω.

All of these properties hold regardless of the choice of connectivity. In general,
consistency would dictate that the connectivity be the same for all objects, but other
choices are perfectly valid. Note, however, that having multiple objects with 18- or 26-
connectivity means that objects may intersect each other. Having one connectivity for
all objects is also more restrictive than the single object case, because both object and
background would be required to be simple with the connectivity of the objects and its
complement.

2.6 Homeomorphic Field Approximation

To study the impact of digital homeomorphisms as a constraint on registration, we de-
veloped an algorithm to approximate a given transformation with a digital homeomor-
phism. Given a transformation vector field such that T (X) = X + u and a partition
{Ok}, we compute an approximation u′

i of the vector field for every point Xi ∈ ΩD as
follows:

1. Start from u′
i = 0,

2. Find the closest 6-connected neighbor Xj along the direction ui − u′
i,
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3. If Xi and Xj are inside the same object, move from Xi to Xj and update the
transformation u′

i = u′
i + (Xj − Xi) and residual difference ui − u′

i,
4. If Xi and Xj are in different objects Ok and Ol, check the homeomorphic constraint

at Xj for Ok, Ol. If the constraint is satisfied move from Xi to Xj and update the
transformation as above.

The algorithm terminates when no more objects can be moved in a complete sweep
of the domain, or when the norm of the maximum residual transformation goes below
one voxel. As the approximated deformation evolves smoothly from the identity to the
given deformation, only one point is changed at a time and thus the topology can be
preserved.

3 Experiments

3.1 Continuous Diffeomorphisms

First, let us assess how much the topology is affected by the digital grid in practical
cases. We will consider four different partition images used in 3D brain segmenta-
tion: the automatically classified tissues obtained from a classification algorithm with
no constraint on the topology (four classes, including the background), the manually

Table 1. Euler characteristics of segmented objects for different partitions and deformations. The
connectivity is 6/26, although other choices yield similar results.

Euler characteristics

Automated
tissue
classification
(AT)

ORI 182, -6338, -3162, -110
R05 204, -7042, -3386, -108
S95 202, -6408, -3172, -152
NRR1 560, -9616, -7918, -388
NRR2 274, -11188, -4818, -342

Manual
tissue
classification
(MT)

ORI 48, -14, -128, -448
R05 64, -2, -148, -518
S95 60, 2, -164, -470
NRR1 442, 66, -1254, -732
NRR2 134, 38, -634, -848

Manual
region
labeling
(MR)

ORI 44, 4, -18, -18, -56, 2, 2, 2, 4, -22, -428
R05 64, 4, -6, -22, -78, 4, 4, 0, -4, -36, -484
S95 56, 4,- 2, -26, -86, 2, 2, 2, 4, -8, -464
NRR1 396, 14, 52, 18, -1156, 34, 54, 18, 40, 6, -734
NRR2 112, 4, 34, -32, -476, 14, 4, 4, 14, -38, -812

Topology
corrected
template
(TT)

ORI 4, 2, 2, 2, 2, 4, 4, 4, 0, 4, -6
R05 4, 2, 2, 2, 2, 4, 4, 4, 0, 4, -6
S95 4, 2, 2, 2, 2, 4, 4, 4, 0, 4, -6
NRR1 134, -1904, -30, 16, -9334, 4, 24, 38, 14, 10, -392
NRR2 42, -508, 4, 6, -2500, 6, 2, 14, 16, 0, -228
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labeled tissues for the same image as provided by an expert, an image with eleven man-
ually labeled regions and finally a template image of the same regions each with cor-
rected topology and a minimum thickness of 2 voxels. Both manual segmentations come
from the Internet Brain Segmentation Repository (IBSR) [28] and the topologically cor-
rected template was obtained from [29]. All images are 3D volumes with 1mm cubic
resolution.

For all these images, we compare the Euler characteristic for all groups of up to
four objects before (ORI) and after transformation with a rotation of 5 degrees (R05),
a scaling with factor 0.95 (S95), and two deformations obtained from the registration
of the IBSR image to another brain image within the IBSR dataset with a nonrigid
registration algorithm [30] with low (NRR1) or high regularization constraints (NRR2).
The second deformation is a continuous diffeomorphism for all but nine voxels of the
image. The results for individual objects are summarized in Table 1. Groups of objects
are omitted due to space limitations but yield similar numbers.

Both rotation and scaling significantly affect the topology, even though they are dif-
feomorphic and impose only small variations. The issue becomes even more important
with a larger non-rigid deformation, diffeomorphic or not. The nature of the objects has
also an influence on the results, as partitions with arbitrary topology (automated classi-
fication) vary most and manually edited images (with or without topology correction)
have lower but similar variations in their Euler characteristics. The number of objects
in an image increases the number of surface patches and line curves, while maintaining
or lowering their complexity, and the transformations affect those similarly. Note that
the topology-corrected template is not affected by the rotation or the scaling, because
its minimum thickness is above

√
3/λ in these cases.

3.2 Digital Homeomorphic Approximation

We now study the effect of imposing the digital homeomorphic constraint on the trans-
formations themselves. The transformations described above are approximated with our
homeomorphic approximation algorithm for the same four image partitions, and the
original IBSR segmentation with 35 labels shown in Fig. 1. Table 2 quantifies the dif-
ference between original and approximated vector fields. During the approximation, the
field is prevented to cross the image boundaries. As this correction amounts to an image
boundary condition, we discarded in the measurements the corresponding differences

Table 2. Differences between original and approximated transformations: mean, standard devia-
tion and maximum of the residual distance (in voxels) and percentage of changed vectors. Image
acronyms are defined in Table 1.

R05 S95 NRR1 NRR2
image mean std max % mean std max % mean std max % mean std max %
AT 1.21E-2 0.198 7.3 0.504 8.60E-3 0.126 4.5 0.562 6.02E-2 0.621 24.9 1.493 4.38E-2 0.491 18.9 1.193
MT 6.40E-4 0.042 6.4 0.032 2.81E-3 0.060 4.2 0.230 6.24E-3 0.170 22.2 0.229 2.99E-3 0.112 16.2 0.115
MR 6.46E-4 0.042 6.4 0.032 2.81E-3 0.060 4.2 0.230 6.63E-3 0.176 22.2 0.240 3.12E-3 0.115 16.2 0.119
TT 4.03E-7 6.7E-4 1.4 3.7E-5 2.63E-3 0.057 2.8 0.218 5.11E-3 0.127 15.8 0.250 7.79E-4 0.040 10.4 5.2E-4
IBSR 7.05E-4 0.043 6.4 0.036 2.82E-3 0.060 4.2 0.232 7.31E-3 0.184 22.2 0.268 3.43E-3 0.119 16.2 0.134
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Non-rigid deformation

deformed image deformation field (X component) deformed IBSR labels

Homeomorphic approximation

Fig. 5. Comparison of the non-rigid registration result NRR1 before (top) and after (bottom)
applying the homeomorphic approximation. The mean Dice coefficient of overlap between the
two transformed partition into the IBSR labels is 0.937.

which would otherwise mask the amount of change due to topology constraints at the
objects boundary. The Euler characteristics for all transformed objects and groups of
objects were computed and found identical to the originals in all cases.

The homeomorphic approximations are very close to the original transformations,
in particular for partitions with simpler topology. In the case of large, non-rigid defor-
mations, the template with corrected topology requires fewer changes than the manual
labelings. The automated segmentation has an arbitrarily complex topology, and the
homeomorphic approximation tends to prevent large deformations in such areas. When
comparing the objects before and after the homeomorphic approximation, only small
changes are noticeable and areas with a noisy aspect due to the lack of regularity in the
deformation field are not smoothed (see Fig. 5). Thus, the homeomorphic approxima-
tion successfully transforms any diffeomorphic or irregular deformation into a digitally
homeomorphic deformation with little impact on the deformation field or the trans-
formed image, provided we have a labeling with simple topology.

4 Discussion

In this paper, we studied the impact of digital images on classical notions of topology.
We demonstrated the limitations of continuous diffeomorphisms, which cannot guar-
antee to preserve the topology of segmented regions defined on the digital grid, unless
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additional constraints on the Jacobian and the regions of interest are taken into account.
Using digital topology properties, we proposed an alternative, local criterion that en-
forces strict homeomorphisms for the digital images. The homeomorphic constraint is
limited to the objects boundaries, instead of the entire 3D image space, and may provide
more freedom for defining deformable transformations using flows or levelsets.

We proposed a field approximation technique based on this criterion, which creates
homeomorphic transformations for images and the structures therein with little change
from the original deformation field. Our experiments outlined the properties of differ-
ent categories of image partitions into sets of objects, and indicated that corrected and
simple object topology helps minimize the computed amount of approximation. The
question of adequately modeling the topology of anatomical regions has been largely
ignored up to now, yet it appears to have a significant impact on our ability to build
homeomorphisms on the digital images.

We expect the homeomorphic criterion can be integrated directly into registration
algorithms, complementing or replacing other regularization techniques. The shape and
scale of the digital grid plays a key role in the issue, and multiscale representations
might increase the flexibility of the grid [31]. Finally, even when preserving the topol-
ogy of the digital segmentation is not required, continuous diffeomorphisms would ben-
efit from integrating a topologically correct model of the anatomy to concentrate the
computational effort at the boundary between the structures of interest.
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Abstract. Deformation tensor morphometry provides a sensitive ap-
proach to detecting and mapping subtle volume changes in the brain
from conventional high resolution T1W MRI data. However, it is limited
in its ability to localize volume changes within sub-regions of uniform
white matter in T1W MRI. In contrast, lower resolution DTI data pro-
vides valuable complementary microstructural information within white
matter. An approach to incorporating information from DTI data into
deformation tensor morphometry of conventional high resolution T1W
imaging is described. A novel mutual information (MI) derived criteria is
proposed, termed diffusion paired MI, using an approximation to collec-
tive many-channel MI between all images. This approximation avoids the
evaluation of high dimensional joint probability distributions, but allows
a combination of conventional and diffusion data in a single registration
criteria. The local gradient of this measure is used to drive a viscous
fluid registration between repeated DTI-MRI imaging studies. Results
on example data from clinical studies of Alzheimer’s disease illustrate
the improved localization of tissue loss patterns within regions of white
matter.

1 Introduction

Tracking of change in brain anatomy over time has emerged as a powerful tool in
detecting and studying changes relating to disease diagnosis and progression in
neurodegeneration and development. In particular, non-rigid registration based
methods have been developed to map subtle geometric changes in brain anatomy
over time, and separate true volume changes from tissue displacements [8,14,5].
Such methods have been almost entirely focused toward the analysis of con-
ventional T1 weighted (T1W), T2 weighted (T2W) or proton density weighted
(PDW) structural MRI data. These images provide basic contrast between gray
matter, white matter and cerebro-spinal fluid, but are limited in their ability
to spatially localize geometric change within regions of uniform tissue. In par-
ticular, current serial morphometry of MRI cannot probe within the bulk of
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white matter that holds the underlying connections between functional brain
regions. White matter is known to be lost during normal aging [10] and many
forms of dementia. These regions are critically important in relating structural
changes occurring over time in different anatomical regions, in a range of neuro-
degenerative conditions including Alzheimer’s, Semantic and Fronto-Temporal
Dementia, alcohol abuse and HIV.

DTI data [2] provides significant micro-structural information about tissues in
the brain, which significantly compliments that provided by high resolution T1W
imaging. There has been significant recent work on the alignment of DTI data
to other DTI data, both within and between subjects. The alignment problem of
DTI is more complex than the alignment of conventional scalar MRI values. This
is because of the inherent local geometry of the diffusion measurements, which
is modified by any spatial transformation of the data. DTI data itself, unlike
T1W imaging, provides relatively calibrated measurements which are consistent
between studies and this motivates the direct application of tensor metrics to
evaluate their alignment. Recent work has seen the incorporation of these ideas
into deformable DTI registration algorithms such as the elegant work of [4,3]. The
work of [20] derives a novel method of incorporating this rotational information
into an elastic registration scheme to align tensor orientations and locations
simultaneously.

This paper examines a related but different problem: one of incorporating
DTI alignment information within high resolution deformation morphometry of
conventional T1W MRI data, in order to provide additional spatial constraints
in deformation morphometry. T1W data is not directly compatible with the
geometrically derived local diffusion measurements, but provides much greater
spatial resolution in many areas of the brain (basic tissue boundaries and grey
matter structure).

2 Method

Entropy based methods such as those using mutual information have been used
to form a robust measure of image similarity between T1W images for accu-
rate deformation morphometry, where, unlike the DTI tensor components, the
intensity and contrast is essentially un-calibrated and can vary spatially within
imaging studies. Given a pair of conventional T1 weighted images, with intensi-
ties m1(x) and m2(x) (superscripts denoting time point) in the same common
space x ∈ X , we can derive a measure of the mutual information between the
sets of intensities M1 and M2 occurring together in the two images:

I(M1; M2) = H(M1) + H(M2) − H(H1, M2) (1)

The local gradient of this criteria [9] can be used to drive a fluid registration
allowing non-rigid alignment of images as in [7]. In this work we want to build
on this by introducing information from DTI data.

If we assume that we additionally have sets of reconstructed diffusion tensor
values over the same field of view of the T1 weighted MRI data at each time
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point D1 and D2, then we want to evaluate both MRI and DTI similarity simul-
taneously. In practice, here we will assume that the tensor contains six individual
diffusion measures D = {Dxx, Dyy, Dxy, Dxz, Dyz, Dzz}, but the methods can be
extended to larger numbers of directions. For DTI data these calibrated tensor
components can be related geometrically using methods such as [20,4,3] to derive
a measure of similarity for DTI alignment. However, these measurements cannot
be directly related conventional scalar image data. Ideally, a combined similarity
measure is needed, which takes into account the changing relationship between
the local orientation of the DTI data and the conventional structural data, as
well as between the DTI information. A direct approach would be to evaluate
the mutual information between all 7 image pairs (T1W intensity and the 6 dif-
fusion tensor components) acquired for two imaging studies. This would make
use of multi-channel mutual information methods previously proposed [15,17,11]
to evaluate the collective mutual information between studies. For conventional
matching where there is some shared information between image types, as illus-
trated in the upper part of figure 2, we can consider the shared information due
to a combination of all the images. Given that the spatial relationships within
studies is fixed [15], the registration similarity between studies can be evaluated
from the mutual information between the two studies collectively:

I(M1,D1; M2,D2) = H(M1,D1) + H(M2,D2) − H(M1,D1, M2,D2) (2)

where, H(M1,D1) is the collective information provided by the first study,
H(M2,D2) is the collective information provided by the second study, and
H(M1,D1, M2,D2) is the information of the combined studies. However, both
of these criteria would require, for six DTI directions, the estimation of the
(6 + 1) × 2 = 14 dimensional joint probability distribution for the joint entropy
H(M1,D1, M2,D2). i.e. we need to estimate the probability of co-occurrence of
all possible combinations of 14 different values (M1, D1

xx, . . . M2, D2
xx . . .D2

zz).
This estimate would be extremely sparsely populated and require expensive com-
putational methods to store and evaluate. One alternative approach is to simply
ignore changes in shared information between different types of images and form
a measure from a simple summation of MI between image pairs, each derived
from the matching of one image type in one study to the same image type in
the second study. This simplification however clearly ignores any influence that
one image type may have in explaining the structure in the other image types.

An alternative formulation explored here is to use a simplification of the gen-
eral case of equation (2). This simplification is based on the fact that the infor-
mation provided by the different diffusion directions within a study is relatively
un-correlated. For example: In conventional multi-channel MI based image regis-
tration, meaningful shared information between channels occurs when regions of
a given intensity in one modality co-occur with intensities in a second modality
(e.g. grey matter intensities in MRI co-occur with some fraction of a ’soft tissue’
intensity range within CT). In DTI data complex curved tracts are exhibited as
different combinations of diffusion strengths in each axis along its length. Thus,
within a single DTI study, high values of diffusion components in the X axis Dxx
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Fig. 1. An illustration of the derivation of different MI measures of similarity between
multiple sets of images for conventional scalar images (top) and combined scalar and
DTI data types (bottom). In conventional MRI data sets (T1W,PDW,T2W) there is
appreciable shared information. For DTI data there is little shared information between
individual diffusion direction maps. We can therefore consider the simplified relation-
ship between DTI directional measurements separately paired with conventional MRI.

would not be expected to co-occur more frequently with a particular diffusion
strength in the Y axis Dyy. (i.e. given a diffusion strength in direction X , we
cannot guess what the diffusion strength in direction Y is going to be.) However,
considering the pairing conventional MRI with diffusion measurements: within
regions of white matter as seen in T1W MRI, there will be a certain fraction
of voxels exhibiting a specific level of X axis diffusion Dxx, and a certain frac-
tion exhibiting Y axis diffusion Dyy, reflecting for example anterior-posterior or
inferior-superior connections within white matter. In addition, low MRI T1W in-
tensities delineate regions of unreliable diffusion measurements in CSF and bone.
Thus, the statistical co-occurrence of DTI diffusion components and conventional
structural MRI intensity can provide a meaningful partitioning of diffusion in-
formation to clarify the alignment measure. In order to account for this shared
structure, a criteria formed by combining mutual information measures evalu-
ated between T1/Diffusion image pairs, say M1, D1

xx, at each time point can be
considered. For each diffusion image, its match to the same diffusion direction
at the later time point is evaluated, together with the high resolution T1W im-
age intensities at each time point. Denoting this by I(M1, D1

φ; M2, D2
φ), where

φ ∈ {xx, xy, yy, xz, yz, zz} are the set of directions considered, the measure can
be expressed as:

Iρ(M1,D1; M2,D2) =
∑

∀φ

I(M1, D1
φ; M2, D2

φ) (3)
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where

I(M1, D1
φ; M2, D2

φ) = H(M1, D1
φ) + H(M2, D2

φ) − H(M1, D1
φ, M2, D2

φ). (4)

This combined measure, termed diffusion paired MI, requires only 4 dimen-
sional joint intensity distributions to be estimated, but takes into account the
co-occurrence of structural and diffusion measures as image alignment is eval-
uated. The local gradient of this global measure, ∇Iρ(M1,D1; M2,D2), with
respect to the local deformation at a given spatial location, can be derived from
the sum of the gradients of each of the paired MI terms I(M1, D1

φ; M2, D2
φ).

These, in turn, can be derived using the approach of [9], to create a single force
field driving the image sets into alignment.

2.1 Implementation

For these experiments in deformation tensor morphometry, a dense field image
registration scheme is used, where the local voxel displacement mapping from
one image to the other is given by a vector field such that:

x2 = x1 + u(x1) (5)

The registration force field F(x) = ∇Iρ(M1,D1; M2,D2) derived from the local
gradient of the similarity measures with respect to the local displacement esti-
mate is then used to drive a velocity based, viscous fluid deformation model to
ensure topology preservation. The solution to the registration is formed by in-
tegrating steps along an instantaneous velocity field which is itself derived from
a balance between the registration force field F(x) and the energy of a flowing
viscous fluid. The instantaneous velocity vector v(x) of a point in the image is
estimated such that:

μ∇2v(x) + (μ + λ)∇(∇.v(x)) = F(x), (6)

where μ and λ are constants determining the relationships between stresses in
the flow field. This is solved numerically in a similar way to [6] and [8], using
Successive Over Relaxation [12]. From this velocity field estimate, a gradient
ascent approach is used to refine the displacement estimate at each iteration. An
iterative gradient ascent scheme is used to optimize the registration estimate.
Although deformation will generally be small, larger changes can occur in serial
studies. As a result we also include an updating of the local diffusion directions
using the method of preserving the principal directions of diffusion [1], during
the iterative registration.

At each step, the set of 6 4D joint probability distributions between the struc-
tural T1W MRI data paired each of the diffusion measurements at each time
point is estimated. A discrete binned estimate, using 64 bins in each intensity
range, is formed and smoothed using a recursive filter. From this probability
distribution, a force field is estimated from the observed intensities and inten-
sity gradients of the T1W and diffusion images. For the estimation of a given
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joint probability and its gradients with respect to intensity from this discrete
binned histogram, a 4D Cubic B-Spline approximation [19] is used. As described
by Thevenaz [18], the B-spline provides a positive function of data values es-
sential for an interpolation model of probability estimates. Corresponding 2D
histograms are formed for the marginal distributions and 2D Cubic B-Splines
are used for approximation.

3 Results

3.1 Image Data

A subject with an initial clinical diagnosis of Alzheimer dementia was imaged
on a 4T Siemens imaging system twice over a period of 9 months. Each imag-
ing study included 3D T1 weighted MPRAGE acquisition with a resolution
of 1 × 1 × 1mm (256 × 256 FOV with 256 × 256 matrix, 176 slices) acquired
with a sagittal orientation with RF spoiling. The scan time is 5min 30sec.
The phase encoding direction is anterior to posterior. The TR/TE/TI/flip an-
gle=2300ms/3.37ms/950ms/7 degree. The acquisition was carried out using an
8 channel coil, using Grappa encoding and an acceleration factor of 2, with 50
reference lines of phase encoding. A diffusion tensor imaging protocol was then
acquired consisting of a 2D double refocused spin-echo EPI sequence with a spa-
tial resolution of 2x2x3mm with either 4 averages. The overall scan time was
3min with an axial acquisition of 40 slices without a gap between slices. The
field of view 256 × 224mm and the slice thickness is 3mm. The acquisition uses
an interleaved scan with TR/TE=6sec/77ms and a Matrix size of 128x128. An
8 channel coil is used with Grappa reconstruction using 2 acceleration factors
and 35 reference lines. For directional encoding of diffusion, two b-values (0 and
800 sec/cm2) and 6 diffusion directions were used.

3.2 Data Pre-processing

The DTI data of each study was reconstructed into a rank 2 tensor and the b=0
image was rigidly and then non-rigidly aligned to the T1 MPRAGE data using
a method derived from [13]. The non-rigid deformation estimate of the data
was then applied to bring the diffusion tensors into the coordinate system and
sampling resolution of the MPRAGE data (using cubic interpolation), taking
into account the local change in geometry using the method of preservation of
principal directions [1]. The initial rigid transformation mapping between the
two MPRAGE images of the two studies was then estimated by maximization
of normalized mutual information between scans [16].

3.3 Data and Registration Forces

Figure 2 shows a representation of the structural information being provided
by the DTI dta and the MRI data together, in terms of the principal diffusion
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Fig. 2. Left: Sagittal and coronal slices though DTI and MRI data for the two stud-
ies of the subject analyzed in figure 3, showing the principal direction vectors (colour
coded by direction) of the two DTI datasets overlayed onto the corresponding T1W
MPRAGE studies. Right: Components of the force fields driving the studies into align-
ment, derived from conventional T1W MRI and DTI data. Note expanding ventricular
boundary force in conventional MRI and additional forces within uniform regions of
white matter from DTI data.

directions. This are displayed after initial rigid alignment, relative distortion cor-
rection and reorientation of the diffusion and MRI data (using the rview software
tool http://rview.colin-studholme.net). In addition, a map of the components of
the induced force field resulting from the conventional structural MRI and DTI
data is shown, illustrating in particular, the alignment forces from DTI within
bulk white matter.

3.4 Estimated Maps of Atrophy

The determinant of Jacobian matrix of the estimated deformation field was eval-
uated at each point in the first time point image and used to create a map
of relative expansions and contractions required to force the anatomy at the
first study to match the anatomy of the second. Results comparing the use of
the proposed approach with conventional T1W deformation morphometry are
shown in figure 3, for a subject diagnosed with Alzheimer’s disease. The figure
shows an improved localization of tissue contractions around the expanding ven-
tricular space, when incorporating a measure of DTI alignment into the map-
ping process. Without DTI information, contractions of white matter around
the expanding ventricle are significantly less constrained by the T1W imaging
alone.
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Fig. 3. A subject diagnosed with Alzheimer’s Dementia scanned twice with an interval
of 9 months (MMSE 25, Age 61.7), exhibiting tissue loss and ventricular expansion.
The scan pairs were fluidly aligned using T1 only (bottom right) and T1 with the full
diffusion tensor (top right). The incorporation of the additional structural information
on the internal white matter structure provided by DTI assists in constraining the local
volume changes mapped by the fluid registration within a more focal region of white
matter.)

4 Discussion

This paper began be describing a new area of work in the general problem of
deformation morphometry, that of using a combination of high resolution con-
ventional scalar MRI data with diffusion tensor image data. The key motivation
for this is the commonly observed loss of bulk white matter volume in conven-
tional serial MRI of neurodegeneration. Without any structural features present
within white matter in T1W MRI, this loss is simply distributed uniformly over
large brain regions. By including information present within diffusion images,
the aim is to provide improved localization of any volume losses in deformation
morphometry studies, which may reveal characteristic losses related to cognitive
decline.

An approach to solving this problem was described which makes use of an ex-
tension of mutual information based fluid registration techniques. The approach
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is aimed at making use of complimentary information provided by the modal-
ities. Specifically, regions in brain diffusion images contain low or zero signal,
particularly within fluid spaces, where they provide unreliable directional infor-
mation. However, regions of low or high diffusion signal correspond to different
intensities within the structural MRI data (dark CSF and bright tissue). At its
simplest level, the use of the paired MI of values between structural and diffusion
images can be seen as partitioning the DTI data into more and less useful regions
of directional information. The conventional structural MRI data provides the
majority of shared content between the two studies, since it has highest reso-
lution and contrast to noise. However, in regions of uniform white matter, the
gradient of the criteria will contain stronger contributions from the DTI data.

An alternative approach would have been to derive scalar, orientation inde-
pendent measures of image values from the DTI data, and combine these with
conventional image data. However, sub-structures in white matter are charac-
terized by both rotationally invariant microstructural tissue integrity (FA, diffu-
sivity) and the microstructural orientation. Neighboring regions of white matter
may have identical integrity but differing orientation of tracts. This information
is provided by the orientation components of the diffusion tensor, not FA or dif-
fusivity. By using the diffusion values directly, but including their re-orientation
during the warping process, we can use their relationship between studies to
more fully constrain the deformation solution within white matter.

An interesting extension of this work is to look at optimal smoothing of the DTI
data to help to maximize the complimentary registration information it provides
to the higher resolution, lower noise T1W images. Methods for dealing with re-
gional variations in tissue contrast arising from disease in conventional MRI data,
as in [14], also need to be developed for the case of fusing MRI and DTI data. How-
ever, these preliminary results showing the basic step of combining image data are
promising, and work is under way to evaluate this approach further using phan-
tom imaging, and to examine its value in studying patterns of white matter and
grey matter tissue loss in different forms of neurodegenerative condition.
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Abstract. LV segmentation is often an important part of many
automated cardiac diagnosis strategies. However, the segmentation of
echocardiograms is a difficult task because of poor image quality. In
echocardiography, we note that radio-frequency (RF) signal is a rich
source of information about the moving LV as well. In this paper, first,
we will investigate currently used, important RF derived parameters:
integrated backscatter coefficient(IBS), mean central frequency (MCF)
and the maximum correlation coefficients (MCC) from speckle tracking.
Second, we will develop a new segmentation algorithm for the segmen-
tation of the LV boundary, which can avoid local minima and leaking
through uncompleted boundary. Segmentations are carried out on the
RF signal acquired from a Sonos7500 ultrasound system. The results are
validated by comparing to manual segmentation results.

1 Introduction

The segmentation of the LV boundary is important for a variety of tasks re-
lated to the quantification of heart disease. Echocardiography continues to be
one of the most promising noninvasive imaging modalities for quantifying this
disease. However, the images can be difficult to interpret due to degradations in
the B-mode (envelope detected) image data including intensity inhomogeneity,
distortion, and speckle noise which cause most segmentation methods to fail.

The uncompressed RF signal from the ultrasound transducer carries a variety
of useful information about the object being imaged. Thus, the RF ultrasonic
signal is widely used in tissue characterization [1,2,3,4]. However, very little work
has been dedicated to object segmentation based on the RF signal. The images
usually used for segmentation are obtained by demodulating and interpolating
the RF signal, and the spectral content is lost in this process.

Since echocardiography leads to very noisy images with low contrast differ-
ences between regions, most gray level-based segmentation methods are not suit-
able to find object boundaries. In some cases, the contrast between blood pool
and myocardium is so low that even the manual segmentation is impossible. For
these reasons, we set out to also extract information from RF signal in hope of
using this additional information to help better segment the LV. Furthermore,
we plan to exploit these parameters in a frame work based on fuzzy feature infor-
mation and a Multilevel Free Form Deformation (MFFD) model defined active
contour.
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This paper is organized as follows. Section 2 reviews the related work in
the area. Section 3 introduces methods for deriving parameters from RF signal
and the 3D segmentation method: Fuzzy-MFFD-Active Contour. Experiments
are carried out on the B-mode image and the parametric images constructed
from IBS, MCF and MCC. Quantitative evaluation is performed by comparing
the results from our approach and other approaches with manual segmentation
results. Finally, conclusions are drawn in section 5.

2 Related Work

As noted above, there are little efforts in the RF segmentation area to date.
Recently, Boukerroui [5] used MCF and IBS as the parameters of their multi-
parametric and multiresolution segmentation algorithm. In their approach, they
estimate the parameters through a short-time Fourier analysis, which yields a
well-known trade-off between spatial resolution and variance. Dydenko [6] intro-
duced two types of RF-derived parameters: spectral autoregressive parameters
and velocity-based parameters for their segmentation framework. The velocity-
based parameters are based only on axial velocities along the RF line and this
work assumes that the velocities in the muscle are relatively homogeneous, while
the estimates in the blood approach random noise. The accuracy of these para-
meters are questionable. Davignon [7] proposed a parametric imaging approach
for the segmentation of ultrasound data. They investigate the relevance of several
parameters from both RF and B-mode image data computed from the envelope
of the RF signal for the segmentation of ultrasonic data. This method was only
tested on simulated data and using a gelatine-agar phantom.

Several approaches have been proposed to segment the B-mode image. Most
of them are based on the pixel intensity and suffer from poor accuracy. In au-
tomatic segmentation approaches, a priori shape knowledge has been used to
aid in accurate localization [8,9]. This shape knowledge is often learned via an
off-line training process, which can require tedious human effort and is expertise-
dependent. Tao [10] proposed an evolution strategy termed tunneling descent to
avoid getting trapped in the spurious minima. In his model, the contour must be
initialized totally outside or inside of the desired boundary and it leaks through
incomplete boundary. Some groups introduce filtering methods to correct inten-
sity inhomogeneity [11] and to reduce speckle noise in the ultrasound image [12].
It has been shown that the performance of image feature-based threshold meth-
ods will be improved after intensity correction and de-noising. But the evaluation
of the effectiveness of these filtering methods still needs to be addressed.

3 Methods

3.1 RF Derived Parameters

Integrated Backscatter Coefficient. One of the most frequently used pa-
rameters for acoustical characterization is the integrated backscatter coefficient
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(IBS) [13]. The IBS is an estimate of the backscattered energy, so it contains
information about the number and the structure of the scatterers in the medium.
It can be computed from an RF image using equation 1:

IBS =
∑

BW

PSD(I(f)) (1)

where PSD is the power spectral density and I(f) is the RF signal in the fre-
quency domain f. The FFT and the auto regressive (AR) modeling are two
popular techniques used for computing PSD, but they are limited by tradeoffs
that must be made between spatial resolution and variance. Gorce proposed
an AR model with spatial smoothing in a Bayesian approach for local spectral
feature estimation [14]. In this work, we use the continuous wavelet transform
(CWT) to derive the IBS from RF signal [15]. The CWT is more flexible and
achieves a good tradeoff between time and frequency localization. The wavelet
chosen in this work is the Morlet wavelet. In this work, the bandwidth(BW) is
set as 0.6.

Mean Central Frequency (MCF). The MCF is another mostly used para-
meter for tissue characterization [14]. The MCF is related to the attenuation of
the medium because of the dependence between attenuation and frequency. The
attenuation increases with frequency and consequently modifies the frequency
spectrum of a propagating acoustic wave. The MCF is given by 2:

MCF =
∑

BW f · PSD(I(f))
IBS

(2)

The Maximum Correlation Coefficients (MCC) from Speckle Track-
ing. Speckle is not random in the same sense as noise. It is caused by con-
structive and destructive interference between the backscattered wavelets from
the small scatters inside one ultrasound resolution cell. It is found that when an
object is scanned twice under exactly the same conditions, one obtains identical
speckle patterns [16]. Lubinski et al proposed the phase-sensitive method for
speckle tracking [17].

A 3D motion vector (u, v, w) can be estimated at each position in a 3D image
by performing a 3D correlation search on local speckles over successive volumetric
frames as long as 3D speckle patterns remain correlated at the acquisition frame
rate. The full-width, half maximum(FMHM) of the 3D autocorrelation function
of the initial complex image defines the speckle size. This kernel is then cross-
correlated with the complex frame following the initial one. Mathematically, 3D
cross-correlation using phase-sensitive images can be generally formulated as:

ς1 = [
∑

i

∑

j

∑

h

Wijh|It(x + i, y + j, z + h)|2] 1
2 (3)

ς2 = [
∑

i

∑

j

∑

h

Wijh|It+1(x + lx + i, y + ly + j, z + lz + h)|2] 1
2 (4)
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ρ
′
=

�
i

�
j

�
h Wijh[It(x + i, y + j, z + h)I∗

t+1(x + lx + i, y + ly + j, z + lz + h)]

ς1 · ς2
(5)

where ρ
′

is the unit-normalized, complex, resultant 3D correlation coefficient
at pixel (x, y, z) as a function of lags (lx, ly, lz), It and It+1 are two successive
complex images at time t and t+1, and Wijh is a simple 3D weighting function
over the 3D correlation kernel. The symbols i,j and h index every pixel within
the 3D kernel. The 3D correlation coefficient is then filtered with a unity gain
function (

∑
Fijh = 1) defined over a region of support (usually 2 times the

speckle size [17]):

ρxyz(lx, ly, lj) =
∑

i

∑

j

∑

h

Fijh[ρ
′

x+i,y+j,z+h(lx, ly, lz)] (6)

The MCC is the maximum correlation coefficient within the searching window.
Since the motion of blood is irregular, the MCC in blood pool are relatively small
(< 0.5). The MCC in myocardium are usually bigger than 0.7.

3.2 Fuzzy-MFFD-Active Contour

Here we describe an ’Active Contour’ based on a Multilevel cubic B-Spline grid.
The active contour moves to the boundary in the image by minimizing an energy
function, which is defined by fuzzy feature information and a MFFD model. This
method can avoid local minima and leaking through uncompleted boundary. The
detail of the advantages of this method can be found in [18].

Energy Functions. The energy function for an active contour is defined as:

E = M · ‖τ(C) − I‖2 + T
∑ ∑

MlogM (7)

The C and the I represent the coordinates of contour and image pixels, respec-
tively. The τ is defined as the transformation constrained by a MFFD model.
Fuzzy theory provides a powerful mathematical tool for modeling the human
ability to reach conclusions when the information is imprecise and incomplete.
That is sometimes the case of segmenting medical images with noise, low contrast
densities. The fuzzy matching matrix M is defined as:

M =
1√

2πT 2
e−

‖τ(C)−I‖2

T · Q(e−
1

1+|�Gσ∗g(I)|2 ) (8)

The M shown in table 1 will be normalized in the range of [0,1] and the sums of
rows and columns in M are equal to 1. S is the number of the points on boundary
and N is the number of image pixels. Gσ is the Gaussian function with standard
deviation σ. The Q(∗) is a threshold function. The g(I) is the gray level of I. The T
is the annealing temperature which will gradually decrease during the iteration.
The smaller the T, the bigger the impact of the points near the deforming active
contour. In order to have fine control over the fuzziness, we use Deterministic An-
nealing(DA) technique [19]. It is done by adding an entropy term in the form of
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H = T
∑ ∑

MlogM . The entropy term is minimized when all the elements in
M are equal, i.e, the correspondence is most fuzzy. At higher temperatures, the
entropy term dominates the energy function. As T is lowered, the influence of the
entropy decreases and less fuzzy configurations of M are allowed. The new position
of the contour measured by fuzzy feature information reads:

τ(C) =
N∑

i=1

mijci/

N∑

i=1

mij (9)

where N is the number of I. S is the number of points on the contour.

Table 1. Match table

m I1 I2 ... IN−1 IN

C1 m11 m12 ... m1,N−1 m1,N

C2 m21 m22 ... m2,N−1 m2,N

... ... ... ... ... ...

CS−1 mS−1,1 mS−1,2 ... mS−1,N−1 mS−1,N

CS mS,1 mS,2 ... mS,N−1 mS,N

3.3 Multilevel Free Form Deformation (MFFD)

MFFD is an extension to Free Form Deformation (FFD) [20]. The essence of the
FFD is to deform an object by manipulating a regular control lattice overlaid on
its volumetric embedding space. For example, the contour C is defined through
a tensor product of Cubic B-spline:

C =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)Φi+l,j+m,k+n (10)

where i = �x�−1, j = �y�−1, k = �z�−1, u = x−�x�, v = y−�y�, w = z−�z�.
�∗� denotes the largest integer smaller than *. The Bl(u), Bm(v) and Bn(w) are
the uniform cubic B-spline basis functions evaluated at u,v and w, defined as:

B0(t) = (1 − t)3/6,
B1(t) = (3t3 − 6t2 + 4)/6,
B2(t) = (−3t3 + 3t2 + 3t + 1)/6,
B3(t) = t3/6

(11)

One can consider a deformation of this grid starting from an initial configu-
ration Φ, and the deforming control lattice as Φ + ΔΦ. Once a deformation has
been applied, the new position of the contour is defined by:

τ(C) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)(Φ + ΔΦ) (12)
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From above equations, we know that the motion of any point on the contour
relates to the motion of 4× 4× 4 = 64 control points in its neighborhood. Thus,
the spacing of control points will have an impact on the deformation of the active
contour. In the MFFD, a hierarchy of control lattices, Φ0, Φ1, ..., Φk, are used
to derive a sequence of deformation functions with the FFD manipulation. Let
hk be the space between control points on the initial configuration of lattice Φk.
We assume that h0 is given and that hk+1 = δhhk. δh is the decreasing rate
for the space between control points. When the active contour C is deformed
with a coarse control lattice, the positional constraints merge with each other
and result in a smooth deformation, although they are not exactly satisfied.
The remaining deviations between the deformed and specified positions will be
handled by subsequent deformations with finer control lattices. In this method,
the contour C is defined implicitly by the MFFD.

4 Experiments

4.1 RF Data Acquisition

The RF data is captured from a board termed Acoustic Frame Link (AFLink).
It is an ultrasound RF signal capture system for the Sonos 7500 system that
permits access to the beamformed RF acoustic data from the probe supported
by the sonos system. In figure 2, we display a single line of Raw, Compressed
and logged RF data, respectively.

4.2 Constructing Parametric Images

The raw-RF data is captured in the Frustum coordinate system as shown in
figure 1. The data is saved as (R, θ, ϕ). We first calculate the parameters from
the RF data in the Frustum coordinate system, then we reconstruct the image
slice by slice as shown in figure 3. We display the RF data in the Frustum
coordinate system in the left of figure 4 and a 2D image constructed in the
new coordinate system in the right of figure 4. In the new coordinate system,
the data is stored as (x, y, ϕ), where x = R ∗ sin(θ) and y = R ∗ cos(θ). A
2D slice of constructed B-mode image is shown in figure 5a. Figures 5b-c show
the parametric images constructed by IBS, MCF and MCC. We find that the
parametric image constructed from MCF has worse quality than the B-mode
image, the parametric image constructed from IBS has a little better quality
than the B-mode image and the parametric image constructed from MCC has
the best quality. In this example, it is very hard to find the epicardium on the
bottom from B-mode image because of the attenuation, but we can easily locate
the epicardium on the parametric image constructed from MCC.

In order to get accurate speckle tracking estimates, we need to acquire images
with a high frame rate. There is a trade-off between the high frame rate and the
volume size for a Sonos 7500 imaging system. The frame rate is about 21-22Hz.
In the experiments, we find only the images during the end diastole (ED) can
get accurate speckle tracking estimates. We will improve the image acquisition
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Fig. 1. The Frustum Coordinate System for X4 xMatrix transducer

Fig. 2. A single line of Raw (Top), Compressed (Middle) and Logged (Bottom) RF
data
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Fig. 3. The new Coordinate System RF image

Fig. 4. Left: The RF image in the rectilinearly formatted Frustum coordinate system;
Right: The B-mode image in the new coordinate system

method in the future, but it is not the importance of this paper. Thus, without
special notice, in this paper, the images used are only from end diastole.
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Fig. 5. A 2D slice of (a)B-mode image; parametric images constructed from (b)IBS;
(c) MCF; (d) MCC

4.3 Segmentation

We apply the Fuzzy-MFFD-Active Contour algorithm on B-mode image and
parametric images constructed from IBS, MCF and MCC, respectively. The
results are shown in figure 6. Segmentation on the parametric image constructed
from MCF failed because of the poor image quality. It is not realistic to track
the boundary on such images. The segmentations are only carried out on the
endocardium because most of epicardium is missing. While AFLink could not
acquire full volume data at the time of these experiments. The full volume data
will be available in the near future.

We then compared segmentation results from different approaches with man-
ual segmentation results. Given two curves C1 and C2, we measured the extent
of mismatch ratio of the surface as:

ε = 1 − Area(ΩC1 ∩ ΩC2)
(Area(ΩC1) + Area(ΩC2))/2

(13)

where ΩC defines the region inside the contour C. In any given data, we measured
mismatch ratios for the results from B-mode images and parametric images con-
structed from IBS and MCC, respectively, as shown in figure 7. The mismatch
ratios for the results from the parametric images constructed from MCC are
smaller than the results derived from the other images for all 10 studies. The
parametric image constructed from MCC can improve the segmentation results.
The parametric images constructed from IBS and MCF don’t improve the seg-
mentation results.
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Fig. 6. The segmentation results of (a)B-mode image; parametric images constructed
from (b)IBS; (c) MCF; (d) MCC
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Fig. 7. Mismatch ratios of the endocardium segmentation results from B-mode im-
age(light gray), parametric image constructed from IBS (dark), parametric image
constructed from MCC (dark gray) on 10 2D RF images

5 Conclusions and Future Work

In this paper, we presented a new method for LV segmentation from RF data. RF
data has rich information including not only the intensity, but also the spectrum
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and phase. The RF data used in this paper was acquired from the AFLink of
Philips Sonos7500 imaging system.

We used the continuous wavelet transformation (CWT) to extract the para-
meters IBS and MCF from the RF signal. We also calculated the MCC using
the phase-sensitive speckle tracking method on RF image sequences. The derived
parameters IBS, MCF and MCC were used to construct parametric images. The
parametric image constructed from MCC had the best quality and was the only
useful one.

The Fuzzy-MFFD-Active Contour method can successfully avoid local minima
and leaking through uncompleted boundary [18]. The method has been qualita-
tively compared against the approach with FFD and a level set approach. Further
quantitative evaluation has been carried out by comparing the method generated
boundaries against those drawn manually on four 3D echocardiographic images.
The analysis shows that our method can successfully locate endocardial bound-
aries. When the image quality is very poor, this method still fails at finding the
boundary. We use Fuzzy-MFFD-Active Contour method to find the boundaries
on B-mode images and three different parametric images. The final results are
compared to manual segmentation results. It shows that the results by using
Fuzzy-MFFD-Active Contour on the parametric images constructed from MCC
are the most accurate.

Currently, the AFLink system has the trade-off between image volume and
frame rate. The phase sensitive speckle tracking method can only get accurate
results when the deformation is small. Thus, our segmentation is only carried
out on the image frames during end-diastole. In the near future, we will upgrade
our AFLink system to get the RF data with full volume and high frame rate.
We will extend this method to a 3D+T segmentation and tracking system.
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Abstract. A deformable volume segmentation method is proposed to
detect the breast parenchyma in frontal scanned 3D whole breast ultra-
sound. Deformable volumes are a viable alternative to the deformable
surface paradigm in noisy images with poorly defined object boundaries.
A deformable ultrasound volume model was developed containing breast,
rib, intercostal space and thoracic shadowing. Using prior knowledge
about grey value statistics and shape the parameterized model deforms
by optimization to match an ultrasound scan. Additionally a rib shadow
enhancement filter was developed based on a Hessian sheet detector. An
ROC chestwall detection study on 88 multi-center scans (20 non-visible
chestwalls) showed a significant accuracy which improved strongly using
the sheet detector. The results show the potential of our methodology
to extract breast parenchyma which could help reduce false positives in
subsequent computer aided lesion detection.

1 Introduction

Breast cancer screening with mammography is effective in women over 50. In
younger women screening is controversial [1], because the high breast density in
premenopausal women reduces the sensitivity of mammography and increases
radiation risk. Screening below the age of 50 is desirable, in particular in women
at risk due to genetic profile or family history. Ultrasound can be effective in
this population and has been shown to detect cancers that are occult on dense
mammograms and are not palpable [2]. Moreover, ultrasound does not involve
ionizing radiation. The detection comes at the expense of an increased false
positive (FP) rate, which is partly due to lack of experience of radiologists.
More research is needed to develop ultrasound as a breast screening modality.

Conventional 2D, handheld ultrasound requires a skilled radiologist to exam-
ine both breasts. This renders ultrasound screening expensive, and also depen-
dent on the operator. Recently, automated whole breast ultrasound scanning has
become commercially available [3]. The scanner sweeps the breast with a 14.7
cm wide-aperture linear transducer during supine positioning. A technician us-
ing the scanner can acquire a bilateral breast exam in approximately 15 minutes.
One such frontal scan covers an average whole breast. The digital 3D ultrasound
exam is then read offline on a dedicated workstation by a skilled observer. Due
to the large amount of data and the complexity of the images there is a large
potential for using computer aided detection (CAD).

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 245–256, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Sagittal view of a frontal 3D breast ultrasound scan (left), schematic drawing
on the right describes the visible structures. See text for detailed description.

CAD for ultrasound has received limited attention on 2D [4,5] and on localized
3D [6,7]. Actual testing of CAD was infeasible as no whole breast 3D ultrasound
was available. We are developing and testing a CAD system to help radiologists
with finding breast cancer in 3D whole breast ultrasound. The system consists of
an initial detector that locates suspect areas based on a set of dedicated image
features sensitive to echogenicity and spiculation. A whole image segmentation
step automatically localizes the breast parenchyma which serves to masks out
initially detected locations that are outside the breast. Each remaining suspicious
location within the breast is then analyzed in more detail by segmenting the
lesion it identifies. Additional features from within and below the lesion and
from the segmented lesion topology are fed to a classifier which is trained to
respond with the lesion malignancy likelihood.

In this paper we focus on a method to automatically detect and segment breast
parenchyma in 3D ultrasound. During frontal scanning the transducer is scanned
linearly over the flattened breast. Starting from the transducer surface and going
downward the following tissues are visualized: skin, breast parenchyma, pectoral
muscle, chestwall and thoracic volume. The image volume further exhibits near
black areas (only electronic noise) where the transducer surface extended outside
the breast tissue. It appears that the discrimination between breast parenchyma
and chestwall is often very challenging, in particular in larger breasts where ribs
are depicted less clear due to a larger distance to the transducer. Global infor-
mation extracted from the image and prior knowledge is required to establish a
reliable procedure for chestwall segmentation. Although many methods for ul-
trasound image segmentation exist [8] we will show that a deformable volume
model is well suited for this task. In addition, we design a method to detect the
presence of a chestwall, as in larger breasts it may be outside the imaged area.

2 Method

2.1 Overview

The thorax volume in a frontal 3D ultrasound scan is characterized by shad-
owing behind the ribs (see Figure 1). The presence of echoes from within the
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lung volume is due to an ultrasound artefact. The tissue-air interface reflects all
ultrasound due to a large acoustic impedance mismatch between tissue and air.
Strong reflective interfaces introduce mirror artefacts. Looking again at Figure 1
one can observe that ultrasound echoes appear to originate from within the lung
volume that are actually mirror reflections of breast parenchyma scattering. This
pattern depends strongly on the shape and orientation of the reflecting surface.
The shadowing behind the rib is due to the lower reflectivity of the tissue-rib
interface and strong attenuation within the rib resulting in a rapid decrease in
the intensity of the mirror reflections. Because of the lower reflectivity at the
rib surface, scattering from within the rib is present. In a coronal (or c-plane)
view the ribs have a different texture compared to the surrounding tissue (see
Figure 2). As ultrasound is a coherent imaging system we further have the com-
mon relatively high levels of so-called speckle noise. Finally, the presence of cysts
or malignant lesions can it self introduce artefacts. Cysts are commonly diag-
nosed by the presence of a ’bright tail’ due to the lower attenuation of the cysts
content. Lesions accompanied by a dark tail are more often malignant which
can be explained by the higher gross attenuation features of malignant tissue.
In conclusion, segmenting the thorax in 3D breast ultrasound is a challenging
task.

We chose to use a deformable volume to segment the thorax. Conventional
thresholding and region growing paradigms are not suited because of a lack of
homogeneity in the thorax area. Our idea is to use a physical chestwall model
containing individual ribs. The model allows for inclusion of prior knowledge
such as: expected rib size range and distance and shape characteristics. The
model should also include rib shadow and inter costal tails as these allow for the
positioning of the ribs such that they optimally describe the visible shadows. In
doing so the whole volume of thorax is described and the remaining volume is the
breast tissue volume of interest. A cost function is defined that maximizes when
the ribs are at the correct location. The physical model can be defined either by
a surface mesh or a set of volume elements. As the edge definition of the tails
and other objects is rather poor, we feel that a deformable volume approach
best fits this problem. We let the ribs define the whole model, and thus it is
the deformation of the ribs that is of interest. We propose a multi-tubular rib
model, where each tube’s center line can be positioned. Internal shape constraints
are imposed via the cost function. Furthermore, we limit the detail of tubes
shapes by deriving local changes from a spline interpolated 3x3 deformation
grid. This enforces smooth yet realistic rib cage shapes and a reasonable amount
of parameters during optimization.

We have further developed a rib shadow detection feature that can serve as
input to the deformable model detection and segmentation step. The feature
comprises a Gaussian smoothed Laplacian filter followed by a Hessian operator.
This is a well known technique where features can be derived from the eigen
values of the Hessian matrix to be sensitive to blobs, lines or sheets. We have
further restricted a sheet detection filter to be sensitive to vertical dark sheets
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Fig. 2. A coronal (or c-plane) view of a frontal 3D breast scan. Rib size, shape, and
distance form a pattern that help to identify individual rib shadows. As an example,
all rib locations in the left image may not be obvious. Extending the image to include
the other ribs (right image) allows to be more certain about the position of the same
ribs in the left image.

only. We hypothesize that using the rib shadow detection feature will reduce
artefacts in in vivo images and should thus improve the detection and segmen-
tation performance.

2.2 Deformable Volume Model Definition

Each rib is modelled by a tube about a center line. Ribs are deformed by de-
forming the center line. A tube is divided into segments, represented by cuboids
(rectangular box) with its center on the rib centerline. The cuboid axes are par-
allel to the image coordinate system (see figure 2.2). This cuboid orientation
allows for fast computation of the cuboid’s (and therefore a rib’s) internal grey
value statistics. The area below a rib segment extending to the bottom of the
image defines a rib shadow segment. Although the rib cross-section is rectan-
gular, the shadow projection can be quite smooth provided a sufficiently high
number of segments (we use 60 per rib). The cuboid between two adjacent rib
segments (with the same rib segment index) defines an intercostal segment. The
area below an intercostal segment, similar to the rib segment, defines an inter
costal ’shadow’. The area above a rib or intercostal segment extending to the
top of the image is a breast segment. In this manner the whole image volume is
divided into cuboids. Five sets (or compartments) of cuboids exist: Breast, Rib,
Intercostal, Ribshadow, Intercostalshadow.

The previously defined volume model covers the whole image volume, and is
defined only by the centerlines and rib size. The number of parameter needed
to deform this model can be rather large. If we assume each rib comprises 60
segments and if we use 6 ribs and each segment is individually positioned, then
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Fig. 3. Cross-section of the chestwall model showing one rib. Each rib is modelled
by a series of segments (cuboids) centered about the centerline. The area below a rib
segment that extents to the bottom of the image is a rib shadow segment, the area
above the rib segment extending to the top of the image is the breast segment.

1080 parameters need to be optimized. This is too much and also redundant as
the rib cage shape is rather smooth. Reducing the number of segments is not
an option as that would degrade the model. Thus we reduced the number of
model parameters by deriving the centerlines shape from a spline interpolated
3x3 grid. The 9 grid vertices contain displacement vectors that deform a basic
flat equidistant set of centerlines by cubic B-spline interpolation. Moreover by
creating ribs long enough to extent well outside the volume we need only defor-
mations in two directions. This amounts to only 18 parameters that fully define
the rib cage position and shape (see figure 4). Additional model parameters are:
rib distance, length and number of ribs.

2.3 Deformable Volume Model Optimization

Segmentation with deformable volume models is to optimize the model parame-
ters by minimizing a cost function. The deformable volume model is fully de-
scribed by a reduced set of parameters: pcw = {O, θy, d, w, h, di,j : i = 1 . . . 3, j =
1 . . . 3}), where O is the position, θy is the rotation in the coronal plane, d the
rib distance, w rib width, h rib height, di,j the centerline displacement vector
(di,j,x, di,j,z) in grid cell i,j, and assuming the usual x, y, z directions: left-right,
ventral-dorsal, cranio-caudal. The optimal parameters pcw,opt are found by min-
imizing a cost function. Let Cext(pcw) and Cint(pcw) be an external and internal
cost function (to be defined later). Then the optimal parameters pcw,opt are
found by minimizing the total cost:

pcw,opt = arg min
pcw

{Cext(pcw) + Cint(pcw)}, (1)
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Fig. 4. Gridded rib deformation. The deformed rib centerlines start out as straight
lines. At the grid locations a deformation vector is set. In between grid locations these
deformation vectors are interpolated. Each rib centerline location is then displaced to
finally form the deformed rib centerlines.

In our implementation the optimization is performed using the simplex method.
The optimization process is sub divided into three sequential stages each op-

timizing a part of the segmentation process:

– Chest wall detection. First the presence of a chest wall is detected. A small
chestwall model at the bottom center of the volume is optimized only for
position, and rib distance. No deformation takes place. A chestwall likelihood
is defined and if above a certain threshold processing proceeds with the next
step. Otherwise, processing stops as no chestwall is detected.

– Chest wall shadow fit. In the second stage the detected chest wall is
further deformed in the z-direction (cranio-caudal) to match the shape of the
ribs shadows. The optimization is restricted to: number of ribs, rib length
and the z-deformation components of the grid displacement vectors.

– Chest wall full fit. The third and final segmentation step tries to find
y-deformation (ventral-dorsal) components of the grid displacement vectors
to match the visible rib cage. The ribs and intercostal segments and shadow
segments then form the thorax volume. This thorax volume can be used as a
mask to limit the detection search space in subsequent 3D breast ultrasound
lesion detection methods.

Chest wall detection. The chestwall detection tries to find a characteristic
chestwall shadow pattern (see Figure 2) at the dorsal end of the image volume.
This detection step is again split up into two steps. First a single rib with small
length (0.3 x available width in the x-direction) is initialized at the center bottom
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of the image and is rotated (θ) and translated (x, z) to match a single rib. The
cost function is the average grey value of that rib:

Cdetect1 = vribshadow, (2)

where vX is the mean gray value of the voxels in model compartment X and s
denotes standard deviation.

Secondly, the number of ribs is set to 3 and the search parameter list is
extended with the rib distance. The rib width is set to half the rib distance during
optimization. The optimizer then tries to find a combination of parameters that
produce dark rib shadows and bright intercostal shadows. The cost function is
defined as:

Cdetect2 =
vribshadow − vintercostalshadow

sribshadow
, (3)

The presence of a chestwall is detected by evaluating the value of the cost func-
tion after optimization Cdetect2,opt. If below a preset threshold, then processing
continues to chestwall segmentation stage 2, otherwise processing stops. In case
of no chestwall detection the model parameters are set such that the whole image
volume is labeled as breast tissue.

Chest wall shadow fit. In the second optimization stage the whole rib shadow
area is detected by determining the length, total number and shape of the ribs in
the z-direction. The chestwall parameters angle (θ) and position (O) are fixed.

The initially detected chestwall is deformed to fit the shadow area by mini-
mizing the cost function using only the z-components of the 9 grid coordinates
(dz). The cost function now comprises an external and internal part. The ex-
ternal cost function is the same as during detection (Eq. 3) and favors dark rib
shadows and bright intercostal shadows. The internal cost function constrains
the shape such that local rib spacing is in between a minimum and maximum
distance and imposes a maximum z-curvature constraint.

Final chest wall fit. The chest wall at this stage of the segmentation process
covers the coronal plane and has the correct z-shape deformations. In this fi-
nal stage the optimal deformation of the chestwall model in the y-direction is
searched. To find the correct rib height in the y-direction the external cost func-
tion is based on the following concept. Each rib defines two curved sheets: the
area above the rib should be breast parenchyma (ribbreast) and the area below
the rib should be rib shadow. If the rib is too low, then the the ribbreast part
will extend into the shadow area and consequently have an average grey value
that is too low. On the other hand, if the rib is too high then the ribshadow
extends into the breast parenchyma resulting in gray value that is too high. Sim-
ply maximizing the contrast between ribshadow and ribbreast leads to incorrect
shapes as shadow and breast tissue area are rather inhomogeneous, and due to
insufficient depth-gain compensation. An improvement resulted when incorpo-
rating information on the location of the rib. The local contrast between rib and
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intercostal grey values is high when the rib is within the rib shadow area, the
contrast is less or even negative when in the breast area. This information is
used construct a steerable cost function:

Cfinal,ext,i,j = (1 − wi,j)vribshadow,i,j − wi,jvribbreast,i,j (4)

where w is a weighting variable that switches between optimizing breast or
shadow fit. The weight w is determined from the normalized difference between
rib and intercostal mean value:

wi,j = (vrib,i,j − vintercostal,i,j)/srib (5)

where w is limited to 0 < w < 1. If the rib is in the rib shadow area, w is high
and breast gray value should increase to decrease cost. If the rib is at the correct
location the weight will be intermediate and the cost function thus has a smooth
transition zone.

The internal cost function assigns costs to infeasible y-deformations. Local rib
curvature and rib slopes are computed to construct a continuous assessment of
the y-deformation shape cost of the rib cage. Each rib is required to be convex.
Transducer - chestwall distance should increase in the caudal direction.

2.4 Rib Shadow Detection Feature

The deformable chestwall segmentation method is extended with a preprocess-
ing step that helps to enhance the rib shadows and reduce noise. We used a
sheet detector based on a smoothed second order derivative matrix (Hessian)
[9,10,11,12]. The eigenvalues of the Hessian matrix λ1 < λ2 < λ3 each identify
the strength of a second order derivative in a perpendicular direction. Rib shad-
ows are dark sheets or plate like structures. These should have only one strong
eigenvalue. An operator sensitive for sheets is:

fsh = σ2λ3 ∗ exp(−λ2
2 − λ2

1), (6)

which has positive maxima at dark sheet locations. The smoothing scale (σ) was
set to 5mm.

The sheet detector (Eq. 6) in our 3D breast ultrasound is obviously also sen-
sitive to the edges of the area in which the transducer had good contact with
the breast. This could lead to erroneous chestwall detections and therefore we
applied a mask to the Hessian sheet detector output blocking this breast-noise
zone. The noise zone is well defined by image values below a certain thresh-
old. The remaining ’valid’ ultrasound zone was then eroded to form the sheeth
detector mask. The result of which is shown in Fig. 5)

2.5 Experiment

The method was validated on a set of 88 3D ultrasound clinical breast scans.
The scans are the first set of whole breast ultrasound exams of 25 women from
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Fig. 5. The output of the rib shadow detector after (on the left) and before masking
(right). Notice the removal of false rib locations at the edge of the valid ultrasound
region.

3 imaging centers in the united states in the first quarter of 2006. The detec-
tion performance was estimated by performing an ROC study. For each scan
the presence or absence of a chestwall was determined by visual assessment. For
each scan the chestwall detection step of the segmentation method was applied
to determine the likelihood that a chestwall is present. The detection was re-
peated for three settings: using the original grey value image, using the Hessian
based sheet detector, and the same Hessian, but extended with a mask operator.
Significance was determined using bootstrapping [13].

The data from the previous experiment was also used to determine a threshold
of detection likehood above which the subsequent chestwall segmentation stages
were carried out. Example segmentations will be shown.

3 Results

Annotation resulted in 20 scans that did not show and 68 that did show a
chestwall. Figure 6 shows two results of the chestwall detection. The detected
chestwall shadow pattern in a scan with a visible chestwall clearly matches the
shadow pattern. In the scan with no visible chestwall the detected shadow pat-
tern does not align with a shadow pattern. The calculated likelihood in the scan
with chestwall present is higher. The general ability of the detection likelihood to
separate chestwall presence and absence is visualized in the ROC curves shown in
Figure 7. Three detection settings have been studied. Settings 1 and 2 (Hessian
sheet detector) produce ROC curves that are indicative of a better detection
performance over a wide range of thresholds compared to setting 0 (gray value
based). However, differences between the methods were not statistically signif-
icant. Setting 2 was used for further processing and a threshold of detection
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Fig. 6. Top row. Coronal slice of a scan with a visible chestwall (left). Detected chest-
wall rib shadows overlayed in red (Likelihood=0.91). Bottom row. Coronal slice of a
scan with no visible chestwall (left). Detected chestwall rib shadows overlayed in red
(Likelihood=0.27).

likelihood was then selected with a specificity of 100% (the 20/0 point on curve
2). At this setting only visible chestwalls are detected. Scans with a detection
likelihood above this threshold were processed further with the following two
chestwall segmentation steps. The segmented chestwall area in all these scans
was at or below the actual chestwall. No breast tissue was incorrectly labeled as
thorax.

4 Discussion

We have developed and tested a chestwall segmentation method that can op-
erate on 3D whole breast ultrasound data. Using a Hessian based rib shadow
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Fig. 7. Receiver operating curves summarising the diagnostic accuracy in detecting
chestwall presence. Three settings for the detector were evaluated.

enhancement filter and a deformable volume model we were able to detect the
presence of a visible chestwall with a reasonable accuracy. At a 100% specificity
level a detection sensitivity of 20% was achieved. The subsequent full 3D seg-
mentation of the actual chestwalls and thoracic volume did not include breast
tissue. The proposed segmentation method can reduce the search space for a sub-
sequent computer aided detection algorithm, and can thus reduce the number
of false positives without missing lesions due to oversegmentation/detection.

The method in its current state is a first working prototype and it is obvious
that the detection sensitivity needs to be increased to substantially decrease the
number of false positives in a CAD system for actual use. Still, considering the
challenging segmentation and detection task we feel that the deformable volume
paradigm is good choice for this segmentation problem. The deformable volume
method is appealing as it simulates real physical objects allowing for intuitive
constraints (e.g. rib distance, shape). The volumetric definition enables fast com-
putation of regional grey value properties. The deformable volume method in this
application is not yet fully exploited and we expect further improvements.

The acquired data is a limited set of first series of a new 3D ultrasound ma-
chine for the acquisition of whole breast scans. The data quality can be expected
to improve in future routine scanning. We need to further investigate scans with
a missing chestwall as that may also lead to missing cancers. Preliminary results
in this paper are a first step towards the development of a CAD system for detec-
tion of abnormalities in whole breast ultrasound. CAD can help reduce the level
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of required reading experience and reduce reading time and is already indicated
by radiologists due to the overwhelming amount of data to be visualized.
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Abstract. The segmentation of neonatal cortex from magnetic resonance (MR) 
images is much more challenging than the segmentation of cortex in adults. The 
main reason is the inverted contrast between grey matter (GM) and white matter 
(WM) that occurs when myelination is incomplete. This causes mislabeled par-
tial volume voxels, especially at the interface between GM and cerebrospinal 
fluid (CSF). We propose a fully automatic cortical segmentation algorithm, de-
tecting these mislabeled voxels using a knowledge-based approach and correct-
ing errors by adjusting local priors to favor the correct classification. Our results 
show that the proposed algorithm corrects errors in the segmentation of both 
GM and WM compared to the classic EM scheme. The segmentation algorithm 
has been tested on 25 neonates with the gestational ages ranging from ~27 to 45 
weeks. Quantitative comparison to the manual segmentation demonstrates good 
performance of the method (mean Dice similarity: 0.758 ± 0.037 for GM and 
0.794 ± 0.078 for WM).  

1   Introduction 

Clinical studies have shown delayed cortical folding, decreased thalamic volume and 
WM macro- and micro-structural changes in preterm infants at term equivalent age  
[1, 2]. By analyzing anatomically the development of the neonatal cortex, it is possi-
ble to detect these cerebral abnormalities in surviving preterm infants at term equiva-
lent age. However, manual segmentations of the neonatal brains, particularly of the 
cortex are time-consuming, extremely tedious and have low inter-operator reproduci-
bility. As a result, studies of cortical development involving multiple subjects are 
problematic. Note that a key requirement for any such developmental studies is the 
ability to automatically segment the cortex not only in normal term born infants, but 
also in preterm subjects.  

An infant is usually referred to as term-born if its gestational age (the age from 
the beginning of pregnancy, GA) at birth is around 40 weeks. Infants who are born 
before 34 weeks are considered premature [3]. A key difference between the neonatal 
and adult brain is that the white matter (WM) / gray matter (GM) contrast on both T1 
weighted (T1w) and T2 weighted (T2w) Magnetic Resonance (MR) images is usually  
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(a) (b) (c)  

Fig. 1. Representative coronal MRI slices of neonates and adults show the different contrast 
patterns. (a) T2w and (b) T1w images for a neonate (GA at scan 39.86 weeks). Due to the 
inverted WM/GM contrast, many voxels on the CSF-GM boundary have the similar intensities 
to WM. If the brain is not properly extracted, the PVs will also appear between the non-brain 
tissues and CSF. For the purpose of comparison, an enlarged coronal T1w slice of an adult 
(male, 40 years) is shown in (c).  

reversed. This is caused by the increased water content of all cerebral structures and 
the presence of unmyelinated WM. During the third trimester most of the WM is 
unmyelinated. The first structures to be covered with myelin are the WM tracts in the 
brain stem and mesencephalon (ca. 28 weeks GA). At full-term the posterior limb of 
internal capsule is myelinated. During the first two years of life various processes 
such as cortical organization and the myelination of all WM tracts cause dynamic 
changes in the T1 and T2 relaxation times. At the age of 2 years, the myelination 
process is nearly complete and the contrast is similar to that of adult brains. An excel-
lent description of this brain development process can be found in [4]. For the sake of 
simplicity and since the majority of WM in neonatal brains is non-myelinated, we 
refer to non-myelinated WM in the remainder of the paper simply as WM.  

Automatic segmentation of cortical GM in neonatal MRI is more challenging than 
segmentation of adult brains, which is mainly caused by the inverted WM/GM con-
trast. This leads to mislabeled voxels at the interface between the cerebrospinal fluid 
(CSF) and GM. Because CSF has the highest intensity in neonatal T2w images and 
the image resolution of neonatal MRI is limited, many voxels between CSF and GM 
will have similar intensities to WM which is brighter than GM and darker than CSF 
(Fig. 1a). These voxels can be incorrectly classified as WM by conventional intensity-
based segmentation approaches (see Fig. 2). The same problem occurs in neonatal 
T1w images. In this case, CSF is the darkest and GM is the brightest; thus voxels at 
the interface between CSF and GM will have intensities similar to those of WM (Fig. 
1b). In the following we refer to these voxels as mislabeled partial volume voxels 
(MLPVs) since the mislabeling is primarily a consequence of the mixing of tissues 
within voxels (partial volume). In T1w/T2w images of adult brains, partial volume 
effects also occur but these do not lead to similar MLPVs because the WM is fully 
myelinated and has the highest/lowest intensity. 

Brain segmentation is usually preceded by brain extraction to exclude non-brain 
tissue. If brain extraction does not exclude all non-brain tissues, there will be another 
source of MLPVs at the CSF-non-brain tissue boundary. Because CSF has high signal 
intensity in T2w images and non-brain tissues generally have low signal intensity, 



 Automatic Cortical Segmentation in the Developing Brain 259 

there are voxels on the intermediate boundary having similar intensities to both GM 
and WM. In T1w images, CSF has low signal intensity and scalp has high signal in-
tensity, so that similar MLPVs can appear. Please note that this kind of MLPVs can 
occur in adult images. 

Besides the MLPV problem on the CSF/GM interface which is unique for neonatal 
MRI, there are some other issues which make the task of cortical segmentation more 
challenging. In particular, neonatal brain MRI shows substantial intra-class intensity 
variability, especially in WM. For preterm-born neonates, there are often diffuse high 
signal intensities in WM which are recognized as a common form of brain damage 
[5]. More issues include the lower signal-to-noise ratio in neonatal MRI caused by the 
shorter scanning time normally used to avoid motion artifacts, age dependent 
GM/WM contrast and rapid evolution of cortical morphometry. 

Segmentation methods for neonates previously published [6, 7] are generally not 
optimal for the segmentation of the neonatal cortex. The MLPVs problem on the 
CSF-GM boundary has not been explicitly tackled in any of them. Thus, there are 
noticeable MLPVs left in their segmentation results, as shown in [6] and [7]. Also, 
previous methods use essentially spatially global intensity classification schemes, 
meaning that either parametric or non-parametric probability density estimators are 
used to estimate the distribution of tissue classes throughout the whole brain. How-
ever, in our experience the large intra-class intensity variability is also regionally 
different, especially in WM. This leads to a sub-optimal local segmentation of the 
cortical GM-WM boundary.  

In this paper we develop a cortical segmentation algorithm addressing the difficul-
ties of segmenting the developing neonatal cortex. Specifically, we propose a modi-
fied expectation-maximization (EM) scheme to perform the tissue classification in 
combination with a Markov Random Field (MRF) model to ensure spatial homogene-
ity in the tissue classification. The key contribution of our approach is the detection 
and removal of MLPVs using knowledge-based approach that identifies MLPVs after 
each EM iteration. In the proposed approach the corresponding MRF priors for 
MLPVs are adjusted to favor the correct classification classes. Once the modified EM 
algorithm converges most of the MLPVs are eliminated. To deal with the WM inten-
sity variability, a brain splitting step is exploited after the global EM segmentation 
which refines the final segmentation.  

2   Methods 

2.1   Brain Extraction and Removal of Central Deep Tissues 

As the first step in the segmentation process, we use a segmentation approach based 
on label propagation to achieve both brain extraction and removal of central deep 
tissues, since they are not relevant for the segmentation of the cortex and their signal 
intensities are similar to those of cortical GM. A template-based segmentation using 
label propagation was used (multiple templates were used here to favor the registra-
tion. see Section 3 for more details). Specifically, the GA range from 27wks to term 
was divided into 3 ranges and one subject from our study population from each age  
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range was randomly selected to be used as a template. For each template, subcortical 
GM (including basal ganglia and thalamus), myelinated WM, corpus callosum and 
cerebellum were manually labeled by an expert observer. The template was non-
rigidly aligned to all other subjects and the labels were propagated to new images. By 
performing the non-rigid registration between the template and new images, the brain 
extraction can also be achieved by propagating the brain mask of the template. The 
non-rigid registration algorithm we used is based on the maximization of normalized 
mutual information and free-form deformations (FFDs) [8]. 

2.2   Expectation-Maximization (EM) Algorithm for Tissue Classification 

The EM algorithm is a general statistical technique to estimate missing information 
based on observed data. It has been widely used for the segmentation of brain MR 
images. Wells et al. [9] proposed an EM algorithm in which the PDF of every tissue 
class is modeled by a Gaussian distribution. This method was extended by introducing 
a probabilistic atlas to provide spatially varying prior probabilities at every voxel [10].  

The EM algorithm consists of an Expectation step (E-step) which performs a clas-
sification and a Maximization step (M-step) which updates the Gaussian parameters. 
Given the initial parameters ( )0

kμ  and ( )0
kσ , the algorithm iteratively maximizes the data 

likelihood and updates the tissue classification.  

E-step:  ( ) ( ) ( )
( )i

i
i xp

kpriorkxp
xkp =             (1) 

M-step: ( )

( )( )

( )( )∑

∑

=

=+ =
N

i
i

m

N

i
ii

m

m
k

xkp

xxkp

1

11μ
 ( )( )

( )( )( )

( )( )∑

∑

=

=+
−

=
N

i
i

m

N

i

kii
m

m
k

xkp

xxkp

1

1

2

21

μ
σ

 

Here ix  is the intensity of a voxel i  and ( )kprior  is the prior probability for every 

tissue component. ( )kxp i  is the class likelihood probability which is a Gaussian distri-

bution. The corresponding class posterior probabilities are computed in the E-step. 
The EM algorithm requires an initial estimate of the probabilities at every voxel. 

Probabilistic atlases or templates are often used for this purpose. They act as the prior 
( )ixkp  to predict the probability of a voxel ix  belonging to the tissue class k  and 

combine spatial distribution information of different tissues into the EM algorithm. 
However, the large anatomical changes that occur in the neonatal period preclude the 
use of a single standard atlas for the full age range in this study. To initialize the EM 
algorithm, we simply performed a k-means clustering on each individual to generate 
an initial segmentation. This initial segmentation is slightly blurred by a convolution 
with a Gaussian kernel ( voxelsize. ×= 51σ ) and normalized to simulate an atlas 
which is then used to initialize the M scheme. Pilot experiments showed there to be 
sufficient contrast between cortical GM and WM in T2w images of developing neo-
nates for successful GM-WM segmentation to be obtained without a probabilistic 
atlas of the cerebral anatomy.  
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2.3   Mislabeled Partial Volume (MLPV) Voxel Detection and Removal 

The EM algorithm in its original form will wrongly classify partial volume voxels on 
the CSF-GM boundary. An example illustrating this problem in a T2w image is 
shown in Fig. 2a-b: Many voxels on the CSF-GM boundary are incorrectly classified 
as WM.  A similar problem occurs at the CSF-nonbrain tissue boundary because 
CSF has the highest signal intensity and non-brain background has the lowest signal 
intensity. 

These undesired MLPVs are partly caused by the voxel-wise tissue classification 
used in the EM scheme, where every voxel is independently classified based on its 
signal intensity and prior probability. In many approaches Markov Random Fields 
(MRFs) are used to enforce spatial homogeneity of the tissue labeling [11, 12, 13].  

Specifically, the tissue class k  is assumed to be a realization of a random process 
and the Hammersley-Clifford theorem states that this random field can be described 
as a Gibbs Random Field [13]. Its configuration obeys the Gibbs distribution: 

                             ( ) ( ) ( )( )ΦΦΦ ,xkUexpZ,xkf imrfi −= −1           (2) 

where ( ) ( )( )∑ −=
k

imrf ,xkUexpZ ΦΦ  is the normalization constant and ( )Φ,xkU imrf  is the 

energy function and Φ is the MRF parameters. 
We exploit a first-order neighborhood system, i.e., only the six nearest neighbors 

on the 3D image grid are used. Given a voxel i , its neighborhood is defined by 

{ }btewsn
i i,i,i,i,i,i=Ν  where wsn i,i,i and ei are four neighbors in the plane and 

ti and bi are top and bottom voxels out of the plane. Following the Potts model, the 
MRF energy function [12] at voxel i  is: 

                            ( ) i
t
imrf ,ikU GgzΦ =                  (3) 

                                 ki ez =  

             
btewsn iiiiiii zzzzzzg +++++=  

where ki ez =  is a unit vector with the thk component being one and ig  counts for 

every tissue class k the number of neighbor voxels belonging to k . The KK × ma-
trix G is the so-called tissue class compatibility matrix. The ( )n,m  element in G  

denotes the contribution of a neighbor voxel belonging to class n  to the energy  
function ( )Φ,immrfU . 

Mean field theory is exploited to compute the optimal parameters for the MRF 
model [12]. The update equation (1) is kept unchanged while the posterior is now 
computed from both atlas prior ( )iatlas xkp  and MRF prior ( )imrf xkp . 

                       ( ) ( ) ( )
( )i

ii
i xp

xkpriorkxp
xkp

⋅
=          (4) 
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Although isolated mislabeled partial volumes can be removed by the MRF  
approach, a large number of voxels on the CSF/GM boundary can be misclassified. If 
two voxels are misclassified and neighboring each other, one can prohibit the other 
from being correctly classified by contributing to its MRF energy function via the 
tissue class compatibility matrix (eq. 3). For example, if two WM MLPVs ix  and jx  

are adjacent ( ix  is a first-order neighbor of jx ), the prior ( )imrf xwmp  will be posi-

tively influenced by jx  which is currently classified as WM. Therefore, to mostly 

favor the removal of MLPVs, we developed a knowledge based approach to enhance 
the EM-MRF scheme. We use the knowledge that WM MLPVs may appear on the 
CSF-GM boundary for neonatal T1w and T2w images. If a voxel is classified as WM 
and within its first-order neighborhood there are both CSF and GM voxels, this voxel 
is more likely to be a partial volume voxel. The same detection rule can be used for 
WM and GM MLPVs on the CSF-nonbrain tissue boundary in neonatal T2w images.  

After each EM step we identify all candidate MLPVs. To avoid misclassifications 
that lead to MLPVs we adjust the MRF prior probabilities to enable more accurate 
tissue classes. For example, if a voxel ix  is likely to be incorrectly classified as WM 

on the CSF-GM boundary, the MRF prior probability ( )imrf xwmp  should be de-

creased. Because the sum of prior probability of all tissue classes should always be 
one, the other possible tissue classes can be favored by increasing their prior prob-
abilities. Specifically, the following rules are used to adjust ( )imrf xwmp : 

( ) ( ) ( )( )i
m

mrfi
m

mrf xwmrpxwmrp λ=+1 , 10 << λ           (5) 
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The idea behind these equations is that the decrease of ( )imrf xwmp  is proportion-

ally added to the prior probabilities of CSF and GM to keep the sum of all prior prob-
abilities constant. The final classification of ix  will be determined by its prior and 

intensity value (influencing the class likelihood ( )kxp ). As a result, the original two-

step classification (EM-MRF) is extended into a three-step (EM-MRF-MLPVs) proc-
ess. Fig. 2a-d indicates the segmentation results after the MLPVs removal step is 
integrated into the EM algorithm. The more iterations are preformed, the fewer mis-
classifications can be seen in the results. Finally, after the last iteration nearly all 
MLPVs are removed. The algorithm is stopped either when the parameters converge 
(the maximal change among all EM parameters is less than 0.01) or a maximal  
number of iterations is reached (in our experiments we found that 35 iterations are 
sufficient). Note that the only parameter that needs to be chosen in our algorithm is λ . 
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We have found that the segmentation results are insensitive to precise choices of λ , 
which mainly influences the speed of convergence. As a result we set λ  to be 0.5 for 
all experiments. 

(a) (b) (c) (d)

(e) (f) (g) (h)  

Fig. 2. An illustration of the three-step EM scheme with the PVs removal. (a) An enlarged 
neonatal T2w image; (b) Partial volume voxels (highlighted by arrows) on the CSF-GM and 
CSF-non-brain boundaries are incorrectly classified by the original EM method; (c) The seg-
mentation results after the 4-th iteration of three-step EM method; (d) The final results after 14 
iterations. Similarly, (e-f) shows that the CSF voxels in the sulci which are originally classified 
as WM due to partial volumes from adjacent GM are finally segmented properly. (g) Results 
after 8-th iteration; (h) Final results after 14-th iteration. 

The MLPVs removal strategy can be extended to refine the classification of CSF 
voxels in sulci. Because of the limited image resolution, the CSF voxels in sulci are 
often mixed with the adjacent GM and have intensities similar to WM. As a result, 
they are often mislabeled as WM (Fig. 2e-f, arrows). We can detect these mislabeled 
CSF voxels and decrease their prior probability in a similar fashion. The prior of CSF 
is then increased to favor the correct tissue class and also keep the sum of priors con-
stant. Mislabeled CSF voxels are detected by performing a connected component 
labeling on the WM volume after every iteration. Small unconnected components are 
identified if they are much smaller in volume than the largest component. The first-
order neighborhood of every small component is checked. If the component is in-
cluded within CSF or GM, it is suspected to be representing CSF voxels and the prior 
probabilities are then adjusted. Fig. 2g-h shows the detection and classification of 
CSF voxels in sulci. The misclassification is gradually corrected and the CSF voxels 
are properly segmented. 

2.4   Local Segmentation by Brain Splitting 

Neonatal brain MR images exhibit higher intra-tissue intensity variability than adult 
brain MR images mainly due to the immaturity of developing brain tissues. The effects 
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of the innate intensity variations can not be totally eliminated by inhomogeneity  
correction. Therefore, its influence on the tissue classification cannot be ignored. On 
the other hand, the three-step EM method described in the previous section is essen-
tially a global scheme, which means that a tissue class throughout the image is mod-
eled by only one Gaussian distribution. The global scheme is not appropriate if the 
intensity variability is significant.  

As the tissue boundaries are visible, a local segmentation should be able to im-
prove the results. Because the local fluctuations of voxel intensities are small, the 
estimation of tissue-class PDF can be improved if the brain is split into multiple re-
gions and a separate set of Gaussians is used for each region; that is, only voxels 
within in one region are used to estimate Gaussian parameters for this part. We have 
not found it necessary to use overlapping regions, to ensure reliable segmentation at 
region boundaries although this is an option.  

A reasonable split of the brain should balance the ability to robustly estimate the 
PDF, the ability to tackle local intensity variability and the segmentation stability to 
noise. To perform the brain splitting, we assemble a 4D vector ( )Izyxd ,,,=  from all 

GM and WM voxels which have been labeled by the global segmentation step, as 
these two tissues have the most intensity variability. ( )z,y,x  is the 3D coordinates of 

a voxel and I  is its intensity. A k-means clustering is performed on the 4D vector and 
the coordinates of clustering centers are used to define a Voronoi tessellation on the 
brain space. We add the intensity I  into the feature vector is to prevent the regions 
with consistent local intensity from being split. The k-means algorithm is initialized 
by the centroids of large voxel groups. To avoid the convergence to local minima, the 
clustering process is repeated 10 times with random perturbations of the initial cluster 
centers. The segmentation step is finally independently performed on every region of 
the Voronoi tessellation, and is initialized by the output of global segmentation.  

To quantitatively evaluate the segmentation results, a human rater manually seg-
mented three orthogonal slices for every subject. Manual segmentation of the whole 
cortex in 3D was not attempted due to the complexity of the structure and the large 
number of partial volume voxels which make this task prohibitively time consuming. 
The overlap rate between the automatic and manual segmentation is quantified by the 
Dice similarity coefficient (DSC). The Dice measure is normalized so that zero means 
the complete dissimilarity and one means perfect overlapping. Dice measures above 
0.7 are usually regarded as a satisfactory level of agreement between two independent 
segmentations [16]. 

3   Results and Evaluation 

We applied our method to 25 subjects selected from a large longitudinal MR study of 
cerebral development of term-born and premature neonates. The preterm infants were 
recruited from the Neonatal Intensive Care Unit at Hammersmith Hospital, and term 
born control infants were recruited from the postnatal wards.  

MR images were acquired on a 3T Philips Intera system (Best, Holland) using a 
standard 6 head channel array coil. Preterm infants were sedated with chloral hydrate 
and term born controls were fed, swaddled and the examination was carried out in 
natural sleep. The MR sequence parameters were as follows: T2-weighted fast spin 
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echo pseudo volumes: TR=1712/TE=160ms, FOV=220mm, matrix 224 × 224, flip 
angle 90°, voxel size of 0.86 × 0.86 × 2mm with the 50% slice overlapping, SENSE 
factor 1 with intensity normalized to a body coil image. All T2 weighted images were 
acquired in the transverse plane. Following acquisition, the T2 images were interpo-
lated to isotropic 0.86mm3 voxels using cubic B-spline interpolation [14].  
T1-weighted images were also acquired for all neonates. However, the contrast be-
tween cortical GM and WM/CSF is less pronounced on T1w images. Therefore, we 
have only used T2w images in this study. As RF inhomogeneity is more serious for 
high field MRI, a bias correction procedure is performed for all images using the N3 
software [15] prior to application of our segmentation algorithm. 

Since the brain development in neonates is rapid during the GA range from ~27 to 
45 weeks, we divided the 25 neonates into three groups: ~27 – 34 weeks (simple 
brains, 9 subjects), 34 – 39 weeks (medium brains, 6 subjects) and 39 – 45 weeks 
(complex brains, 10 subjects). For each group one image was selected as a template 
and its subcortical GM, myelinated WM, corpus callosum and cerebellum were manu-
ally segmented. The template image was not used for evaluating the segmentation. The 
reason for this strategy is that choosing a template with a similar GA to the subject 
being segmented significantly simplifies the non-rigid registration. The resulting label 
propagation is effectively used to segment deep central tissues for new subjects.  

Fig. 3 illustrates the improvements produced by the MLPVs removal step and local 
segmentation. A preterm neonate scanned at the term equivalent age, whose images 
showed WM intensity variability is presented in coronal view in Fig. 3a. When only 
the global Gaussian mixture model and two-step EM method is used, clear mislabeled 
partial volume voxels can be seen on the CSF-GM and CSF-non brain tissue bounda-
ries (Fig. 3b). These voxels are assigned to the correct tissue class labels after the 
MLPVs removal step is integrated into the EM iteration (Fig. 3c). The segmentation 
of the inner cortical surface is refined after the brain splitting strategy is further used, 
as shown in Fig. 3d.  

Results of the automatic segmentation of a number of neonates at different gesta-
tional ages are presented in Fig. 4. Visual inspection of these results shows that corti-
cal GM is reasonably well segmented. Partial volume voxels on the CSF-GM and 
CSF-non brain boundaries are successfully removed. The CSF voxels in sulci are 
often correctly classified. Table 1 summarizes the results of comparison with the 
manual segmentation. The mean DSC values for cortical GM and WM for each GA 
group are presented. The WM results exclude the corpus callosum and any WM 
within the region of deep GM removed by the initial label propagation step.  

(a) (b) (c) (d)  

Fig. 3. An illustration to show the refined segmentation 
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Fig. 4. 3D automatic brain segmentation results.  From top to bottom, GAs are 30, 34, 40 and 
44 weeks. From left to right, pictures listed are the transverse slice of T2w neonatal images, 
segmented WM, cortical GM and CSF respectively. The corpus callosum has been masked off 
by the label propagation. Last two columns show the 3D renderings of inner and outer cortical 
surfaces of the hard segmentation, where the visible imperfections, like holes and abruptions 
caused by image noises can be removed after the effective cortical reconstruction. 

As a result, we draw the conclusion that the EM-MRF-MLPV scheme significantly 
improves the segmentation of cortical GM and WM compared to the EM-MRF 
method where no MLPV removal step is integrated (for GM: 4313.t = , P<0.0001; for 
WM: 90.4=t , P<0.0001; paired t-test). The performance of EM-MRF-MLPV scheme 
is further improved by combining the local segmentation (for GM: 07.7=t , P<0.0001; 
for WM: 35.5=t , P<0.0001). This improvement is more noticeable in preterm infants 
with non cystic WM disease who have diffuse excessive high signal intensity injury 
(DEHSI) on T2W images. Furthermore, for the simple brain group, as the intra-tissue 
class intensity variability is even more serious, we found that dividing the WM of 
these very premature infants into two tissue classes can improve the segmentation. A 
total of five classes (WM is modeled by two Gaussian distributions) were therefore 
used. The second row in Table 1 summarizes the corresponding DSC values. Com-
pared to the results with four tissue classes (the first row in Table 1), the improvement 
for GM are significant (for GM: 65.5=t , P=0.0005 ; for WM: 34.2=t , P=0.0472). 
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Table 1. The Dice similarity values of cortical GM and WM for every GA groups 

GM WM 
GA 

Global Global+PVs 
Global+Local

+PVs 
Global Global+PVs 

Global+Local
+PVs 

27w–34w 0.665 ± 0.036 0.696 ± 0.038 0.708 ± 0.038 0.773 ± 0.019 0.810 ± 0.017 0.816 ± 0.016 

27w–34w 
Five tissue classes 0.689 ± 0.034 0.716 ± 0.038 0.726 ± 0.032 0.765 ± 0.024 0.822 ± 0.012 0.824 ± 0.013 

34w–39w 0.741 ± 0.026 0.763 ± 0.025 0.770 ± 0.022 0.748 ± 0.030 0.809 ± 0.019 0.813 ± 0.018 

39w–45w 0.763 ± 0.019 0.781 ± 0.019 0.785 ± 0.016 0.711 ± 0.053 0.751 ± 0.113 0.757 ± 0.116 

The current grouping according to gestational ages is, to some extent, empirical. 
To review the overall performance of automatic segmentation on developing neo-
nates, the DSC values for all 25 subjects are computed. The mean DSC is 
0.758 ± 0.037 for GM and 0.794 ± 0.078 for WM. The overall performance is good to 
excellent compared to the manual labeling as neonates become more mature. This 
supports the statement that from the very premature to term-equivalent age neonatal 
T2w MRI can consistently provide sufficient GM/WM contrast for intensity based 
segmentation. 

 

Fig. 5.  3D rendering of reconstructed central cortex surfaces for neonates. From left to right, 
the inner, central and outer surfaces are shown. From top to bottom, the GAs are 30w, 35w and 
40w respectively. The mean curvature is used for color-coding. 

After segmentation of the cortical GM and WM, an implicit cortical surface recon-
struction algorithm [17] was applied to all subjects. We visually inspected the surface 
reconstructed by rendering the intersection contours on 2D slices as well as 3D sur-
faces to verify the performance of this method. Fig. 5 shows the reconstructed 3D 
surfaces of inner, central and outer cortical surfaces for neonates over a representative 
range of GA. The colors on the surfaces indicate the mean curvature.  
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4   Discussion and Conclusions 

It is worth mentioning that only an atlas or template may not be sufficient to eliminate 
all MLPVs. First, the non-rigid registration between atlas and images may not be 
perfect throughout the images, especially in cortical regions. Second, the final poste-
rior is determined by the combination of prior and class likelihood. The former is 
derived from the atlas while the latter is evaluated from the voxel intensity. As the 
MLPVs voxels on the GM-CSF boundary can have exactly the same intensity levels 
as the WM, even a prior from an atlas may not be sufficient to guarantee the accurate 
classification. Thus, the explicit MLPVs removal step is necessary.  

Some authors have proposed different algorithms to address partial volumes in 
segmentation for adults T1w MRI [18, 19]. However, their applicability are based on 
the fact that the intensity levels of partial volumes in adult T1w do not largely overlap 
the characteristic intensity of any pure tissue class, which is not true for neonatal MRI 
due to the inverted gray-white matter contrast. As a result, these methods for adults 
may not work well in neonatal T2w MRI without sufficient spatial prior information. 

By identifying the MLPVs problem associated with the specific signal properties 
of MR images of the brain for developing neonates at varying gestational ages during 
the third trimester, we have developed and evaluated segmentation methods designed 
specifically to extract the cortical GM. The resulting methods are effective for seg-
mentation of cortical GM over a wide range of GA. The inner, central and outer corti-
cal surfaces are then successfully reconstructed using the implicit surface evolution, 
which serves as a starting point for the longitudinal and cross-sectional studies of 
cortical morphometry for developing neonates. 
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Abstract. The interest in registering a set of images has quickly risen
in the field of medical image analysis. Mutual information (MI) based
methods are well-established for pairwise registration but their extension
to higher dimensions (multiple images) has encountered practical imple-
mentation difficulties. We extend the use of alpha mutual information
(αMI) as the similarity measure to simultaneously register multiple im-
ages. αMI of a set of images can be directly estimated using entropic
graphs spanning feature vectors extracted from the images, which is
demonstrated to be practically feasible for joint registration.

In this paper we are specifically interested in monitoring malignant
tumor changes using simultaneous registration of multiple interval MR or
CT scans. Tumor scans are typically a decorrelating sequence due to the
cycles of heterogeneous cell death and growth. The accuracy of joint and
pairwise registration using entropic graph methods is evaluated by regis-
tering several sets of interval exams. We show that for the parameters we
investigated simultaneous joint registration method yields lower average
registration errors compared to pairwise. Different degrees of decorrela-
tion in the serial scans are studied and registration performance suggests
that an appropriate scanning interval can be determined for efficiently
monitoring lesion changes. Different levels of observation noise are added
to the image sequences and the experimental results show that entropic
graph based methods are robust and can be used reliably for multiple
image registration.

1 Introduction

Most malignant tumors are rapidly changing structures that threaten the life
of the patient. Interval MR or CT scanning is often performed to follow these
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changes. Quantification of such changes is important especially for early detec-
tion of response to therapy, or even more importantly as a means of validat-
ing mechanistic hypotheses regarding therapeutic action and cellular response.
While segmentation of the interval exams is one method of quantifying response
to therapy, since segmentation can be quite noisy, it is quite possible that such
an approach is not capable of reliably detecting small changes. Another approach
to quantifying tumor change is nonlinear registration of the serial interval exams
followed by regional integration of the resulting Jacobian determinants [1]. Here
the boundaries of the regional analysis need to be identified in only one of the
interval exams as the registration will propagate those boundaries in a consistent
manner to the remainder of the registered interval exams. Over the duration of
interval imaging the tumor may morph significantly in a background of acquisi-
tion system related noise. For example, growing tumors generate heterogeneous
regions of increased hypoxia and cellular density, as well as apoptosis and necro-
sis; likewise cells responding regionally to therapy die and necrose as well. Over
the total span of interval imaging the tumor typically decorrelates with its ini-
tial appearance even with perfect registration due to cycles of heterogeneous cell
death and growth.

There are typically two approaches to detecting these geometric deformations
in serial interval exams – pairwise and joint registration. The pairwise registra-
tion method is to repeatedly perform pairwise registration over all the images
in the set and settle for a transformation of all the images with a fixed ref-
erence frame based on a series of compositions. But this would not guarantee
jointly optimal or unique results. On the other hand, joint registration achieves
a consistent correspondence of pixels across all images and thus aligns them to
a common spatial frame by optimizing an objective function that is calculated
using all the images in the group. Recently several papers have discussed the im-
portance of registering multiple images simultaneously and have shown improved
registration accuracy compared to pairwise methods.

Bhatia et al. [2] binned all pairs of intensities, comprising the voxel inten-
sity in the reference and the corresponding intensity in each image into a single
histogram and computed normalized mutual information (NMI). This was ap-
plied to an atlas construction problem where the maximization of NMI was
subjected to the condition that the total deformation onto the common spatial
frame summed to zero. A minimum description length based framework was
proposed in [3]. Groupwise registration was achieved by minimizing the length
of the encoded messages consisting of the reference image, the reference frame,
the transformation model and its parameters, and discrepancy images. Learned-
Miller [4] discussed joint registration in the context of bias removal where entropy
was computed at the same voxel across the image stack and summed over all
voxels. Its applicability to small image sets (too few samples) may be limited by
noisy entropy estimates.

All the above methods targeted same modality applications. A method of
group alignment minimizing the summation of pairwise dissimilarity while im-
proving inverse consistency and transitivity was discussed in [5]. Studholme and
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Cardenas [6] estimated the joint density function of the image set and used a mea-
sure of self information to drive alignment. Zhang and Rangarajan [7] reported
a study of several higher dimensional information theoretic measures for joint
registration. In the last two methods joint densities are estimated and optimally
stored. These methods are directly applicable to multi-modality registration.

Maximizing mutual information between images is one of the most broadly
used methods for pairwise image registration [8,9,10]. Its primary advantage is
the ability to accomplish reliable and accurate alignment between the image
pairs although their intensities may be non-linearly related and thus it is the
method of choice for multi-modality image registration. Even in isomodality
registration applications such as interval MRI exams of tumors, the use of mutual
information as an objective function can be beneficial over others such as cross-
correlation, sum of square errors, etc. For example white matter tracts in the
brain can change gray values for the same MR imaging sequence following initial
tumor invasion without changes in associated morphology. In such cases the use
of typical isomodality objective/cost functions would cause the white matter
tracts to be mapped onto the wrong structures in the earlier interval exam due
to the presence of simple intensity changes, while mutual information would
recognize such changes as just another cluster in the joint density histogram to
be optimized along with other clusters.

In mutual information based approach, probability densities are usually esti-
mated using histogram or kernel techniques, which are well established for low-
dimensional problems. While using histograms to compute mutual information
for pairwise registration has been vastly studied and validated in registration
literature, its extension to higher dimensions has encountered computational
difficulties due to the sparse nature of the multi-dimensional histograms.

Neemuchwala et al. used alpha mutual information (αMI) – an extension of
mutual information – as the similarity measure for image registration [11]. The
introduction of entropic graphs enables the practical computation of the similar-
ity measure in high dimensions. In this paper we extend the utilization of αMI to
simultaneous registration of multiple images. With this unified similarity mea-
sure calculated based on all the images in the group we can maximize the joint
correspondence through the optimization of a single objective function that mea-
sures the statistical dependency of all images simultaneously. Since this similarity
measure is a mutual information it can be used for multi-modality registration.
The alpha mutual information of a set of images is calculated through entropic
graphs spanning the feature vectors extracted from the images. It eliminates the
need to estimate joint densities of the feature vectors, which could become very
computationally intensive for multiple image cases. Using k-nearest neighbor
graphs we have demonstrated its computational feasibility by registering several
images simultaneously.

While our effort is focused on following tumor shape change, clearly there
are many other sources of serially decorrelating image sequences for which the
following techniques and comparisons are applicable. In this paper we examine
the relative registration accuracy of both pairwise and joint registration applied



Comparing Pairwise and Simultaneous Joint Registrations 273

to 2D decorrelated image sequences; the 2D results can be generalized directly
to 3D. Additionally entropic estimation of mutual information was implemented
by extraction of wavelet feature vectors followed by entropic graph estimation of
αMI [12]. Both joint and pairwise registration has been implemented and tested
on the same data sets using the same initialization and geometric deformation
model for performance comparison.

2 Methods

2.1 Alpha Mutual Information and Entropic Graphs

The alpha divergence between two densities f1 and f2 of fractional order α ∈
(0, 1) is given by [13,14]

Dα(f1||f2) =
1

α − 1
log

∫
fα
1 (z) f

(1−α)
2 (z) dz. (1)

Dα(f1||f2) is a measure of dissimilarity between f1 and f2 and it converges to
the Kullback-Liebler divergence

∫
f1(z) log f1(z)

f2(z)dz as α → 1[13].
Let Z1 and Z2 be two random variables with marginal densities f1(z1) and

f2(z2) and joint density f1,2(z1, z2). Similar to Shannon MI, the alpha mutual
information between Z1 and Z2 is defined as the divergence between their joint
density and the product of their marginal densities,

αMI(Z1, Z2) = Dα (f1,2(z1, z2) || f1(z1)f2(z2))

=
1

α − 1
log

∫∫
fα
1,2(z1, z2) [f1(z1)f2(z2)]

1−α
dz1 dz2. (2)

If Z1 and Z2 are independent, we have f1,2(z1, z2) = f1(z1)f2(z2) and thus
αMI = 0, which means that the random variables do not provide any information
about each other and thus agrees with their independence assumption. A limiting
case of αMI when α approaches 1 is Shannon MI given by

MI(Z1, Z2) =
∫∫

f1,2(z1, z2) log
f1,2(z1, z2)
f1(z1)f2(z2)

dz1 dz2. (3)

The αMI among multiple random variables Z1, Z2, · · · , ZM is a generaliza-
tion of (2)

αMI(Z1, Z2, · · · , ZM ) =
1

α − 1
log

∫
· · ·

∫
fα
1,2,··· ,M (z1, z2, · · · , zM )

· [f1(z1) f2(z2) · · · fM (zM ) ]1−α
dz1 dz2 · · · dzM (4)

The computational advantage of αMI relies on its direct estimation using
entropic graphs (see [12] for details). Examples of entropic graphs are minimal
spanning trees, Steiner trees, traveling salesman problems, k-nearest neighbor
graphs, etc. By circumventing the intermediate estimation of the marginal and
joint densities, entropic graph approaches to estimating αMI are suitable in
multiple image registration.
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2.2 Alpha Mutual Information as Similarity Measure for Image
Registration

Since alpha mutual information is capable of capturing the information content
across the whole set of images and it can be directly estimated using entropic
graphs, we choose it as the similarity measure in simultaneous registration of
multiple images.

The basic framework for entropic graph image registration is as follows. Given
multiple images I1, I2, · · · , IM , let X represent the common coordinate space
and x ∈ X is a spatial coordinate on which an image pixel is defined. To em-
phasize image dependence on the geometric space, we denote the images with
explicit coordinates as I1(x), I2(x), · · · , IM (x). For a geometric transformation
set T = {T1, T2, · · · , TM} ∈ T , the transformed images after interpolation are
I1(T1(x)), I2(T2(x)), · · · , IM (TM (x)), respectively. Notice that we have applied
a transformation for each image which is not always required. If a certain image
is selected as the reference, the transformation posed on it will be identity. We
specify each transformation to show that if a common spatial frame other than
any of the images is chosen as the reference, each image can be transformed to
that common coordinate space. In such a framework, simultaneous multiple im-
age registration can be solved by finding the optimal transformation set T̂ ∈ T
such that the alpha mutual information is maximized:

T̂ = arg max
T∈T

αMI ( I1(T1(x)), I2(T2(x)), · · · , IM (TM (x)) ) (5)

2.3 Feature Extraction

The αMI between a set of images is estimated using the entropic graphs spanning
the feature vectors extracted from these images. Examples of feature vectors
include: the intensity and spatial location of representative samples; the position
and orientation of a randomly chosen edge; a vector of samples in a textured
region; or the output vector of a spatial prediction filter. The choice of feature
vectors is typically application dependent. The desirable feature vectors should
be capable of thoroughly representing the images while keeping the number of
feature vectors small since the construction of entropic graphs becomes more
computationally expensive with the increase of the number of vectors.

To study the effect of different types of feature vectors on the estimation of
αMI, we examine the estimated αMI as a function of transformation parameters.
An axial MR T1 weighted slice (shown in Fig. 1(a)) is selected as the reference
image and it is affine transformed to generate the floating image. We limit the
geometric transformation to affine only since here our objective is to get a basic
idea of the profile of this similarity measure. αMI between the reference and
floating images is estimated using two types of features: (a) pixel intensity scalar
and (b) concatenated wavelet coefficient vector.

Intensity value of a representative pixel is a straightforward choice for feature
vector. In this case, the feature vector is in fact a scalar. In Fig. 1(b), αMI values
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Fig. 1. Profiles of αMI calculated based on different feature vectors: (a) An axial MR
T1 weighted slice as the reference image; (b) intensity value of each pixel as the feature
vector (scalar in this specific case); (c) concatenated wavelet coefficients except the
high frequency component as the feature vector

are plotted with respect to the translation in the horizontal direction. The general
trend of estimated αMI is as expected, i.e., peak at the center and tapering off
from the center, but it suffers many local extrema due to high frequency noise
in the MRI scan.

An immediate solution to this noisy objective function is to remove high
frequency noise before estimating αMI. Over the past several years wavelet
transforms have gained widespread acceptance in signal processing and image
compression in particular with the establishment of the JPEG2000 standard [15].
They are capable of well representing an image using relatively small number
of wavelet coefficients. We have taken advantage of the efficiency of wavelet
transforms and used concatenated wavelet coefficients as feature vectors. The
Daubechies wavelet transform with 4 coefficients is applied to the images and
all coefficients except the high-frequency components are used to form the fea-
ture vector. Fig. 1(c) illustrates the objective function profile using the wavelet
feature vectors. Note that the αMI curve is much smoother than its pixel inten-
sity counterpart (Fig. 1(b)). Although calculating wavelet coefficients introduces
some computational overhead, the much less noisy objective function not only
leads to faster convergence, but is also less likely for the optimizer to get trapped
in local optima. We used wavelet feature vectors in our experiments.

3 Experimental Results

In this paper we jointly register a series of decorrelating images using the pro-
posed algorithm. While our effort is focused on following tumor shape change,
the proposed joint registration algorithm applies to general multiple image reg-
istration as well since the derivation of the registration algorithm does not make
any assumptions on the nature of the images.
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3.1 Synthetic Decorrelating Image Sequences

Since our primary goal is to quantitatively compare the performance of joint and
pairwise registration methods, it is necessary to know the ground truth. One way
is to work on real image sequences and consult experts to manually draw the
ground truth based on landmark correspondences. This is very time-consuming,
labor-intensive and costly because a reasonably large number of experts are
needed to provide reliable ground truth due to human subjectivity. An alter-
native is to use synthetic data via Monte Carlo simulations to demonstrate the
statistical performance. We take the latter approach and systematically generate
image sequences that mimic lesion changes.

1. Image Deformation and Decorrelation
During chemotherapy the lesion usually changes in the following fashion: some
malignant cells die as a result of drug and/or radiation therapy; in the mean
time some benign cells turn malignant due to the propagation of pathological
cells. For a given patient during the monitoring period the existing lesion may
change its shape and new lesion structure may be introduced as well. The lesion
change can be modeled as a low order Markov chain due to the short temporal
dependence between scans – simply put, in a series of exams, the lesion at a
certain time point relies heavily on the previous Q exams (Q is a small integer).
In our simulations, we choose first-order Markov model to generate the test
image sequences.

Let X represent the coordinate space of the region we are interested. For
x ∈ X , Yi(x), i = 1, · · · , N , is the scene at x at the i-th scanning time point.
The scenes are generated using the following rule:

Yi(x) = β Yi−1(T (x)) + (1 − β)Gi(x), i = 2, · · · , N (6)

where Y1(x) and Gi(x), i = 2, · · · , N are Rayleigh random variables
√

v2
1 + v2

2 ,
where v1 and v2 are lowpass filtered Gaussian random variables. A Gaussian filter
of kernel size 23× 23 was used in our experiments. T is a geometric deformation
and Yi−1(T (x)) is the interpolated scene after applying the deformation T . Y1(x)
represents the structures that exist at the beginning of the imaging period while
Gi(x) includes new structures introduced along the imaging period.

β ∈ (0, 1] is a constant which controls the correlation between adjacent image
pairs assuming perfect registration. The smaller β is, the images are more decor-
related. In the trivial case of β = 1 the image sequence consists of deformations
of existing structures only.

In the ideal noise-free case, the obtained images are exactly the scenes, i.e.,
Ii = Yi. From the properties of first order Markov sequence, MI(I1, I2, . . . , IN ) =
MI(I1, IN ). Since the mutual information of the sequence is the same as the
smallest mutual information between the image pairs, joint registration does not
hold an advantage over pairwise.
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(a)

(b)

Fig. 2. Geometric deformations and generated images. (a) Consecutive TPS deforma-
tion; (b) An example of generated image sequence with β = 0.8.

However, during the image acquisition procedure random observation noise is
inevitable and the images in the sequence are modeled as

Ii(x) = Yi(x) + ni(x), i = 1, 2, · · · , N (7)

where ni(x) is a Rayleigh noise of the same characteristic as described above
except that the lowpass Gaussian filter is of a much smaller kernel size (5 × 5 in
our experiments).

The images for the simulations were generated serially based on (6) and (7).
Each new image was obtained by first applying a geometric deformation (T )
to the previous scene in the series and then adding Rayleigh noise and finally
adding a random acquisition noise.

In our experiments, thin plate splines (TPS) model [16] is used as the geomet-
ric deformation T and thus the introduced deformation is a serially increasing
TPS deformation shown in Fig. 2(a). An example of realizations of the Markov
process for β = 0.8 is shown in Fig. 2(b), where both deformation of existing
structures in the first image and introduction of new structures are included in
the subsequent images. At the bottom left corner of the images (indicated by
circles in white), there is a structure in the fifth image which has not shown in
the first one. This is an example of new structures introduced during the Markov
process since this area is out of the deformation field and thus the possibility
that the structure is the result of geometric deformations is excluded.

2. Registration Results
To register a series of images, two approaches have been applied: sequentially
pairwise registration and simultaneously joint registration of multiple images. In
both approaches, αMI (5) is used as the similarity measure.
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Fig. 3. Registration errors for both joint and pairwise registrations. (a) Average reg-
istration errors for different acquisition noise levels (β = 0.9); (b) Average registration
errors for different β values (the acquisition noise level is 20%). The labels in the hori-
zontal axis: ‘P’ and ‘J’ indicate pairwise and joint registration, respectively; the number
following ‘n’ indicates the observation noise level, e.g., ‘n20’ means the noise level is
20% of the signal power; the number after ‘b’ is the value of β.

In all registration efforts TPS was employed as the deformation interpolant
with 49 uniformly distributed control points placed on the nodes of a 7x7 rectan-
gular grid spanning the deformed area in the image. k-nearest neighbor graphs
were used to estimate αMI (α = 0.99) due to their computational advan-
tage.Optimization was implemented using Nelder-Mead simplex minimization
[17] by moving the control points in the floating images. On a Pentium 4, 3.06
GHz with 4 Gb memory, it took approximately 12 minutes to register a pair of
images and 4-5 hours for joint registration of five images.

The registration errors are illustrated with boxplots. In each boxplot, the
bottom, middle, and upper lines of the box represent the 25th percentile, median,
and 75th percentile of the errors. The whisker shows the extent of the rest of
the data and the outliers are shown as “+”. The performance comparison of
pairwise and joint registration is shown in Fig. 3.

Fig. 3(a) shows the average registration errors for image sequences generated
with β = 0.9. Joint registration outperforms its pairwise counterpart yielding
lower registration errors. One common cause for pairwise registration errors is
the propagation of errors along image pairs. This is due to the composition
used to map all the floating images to a common reference. In joint registration,
since every floating image is registered to the reference image simultaneously
under the constraints of one unified objective function, this error propagation
does not occur. Another reason for joint registration’s better performance is that
when all the images are registered simultaneously, they can provide additional
information to other images. For example, with acquisition noise some structure
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is corrupted in an image, the other images may be able to provide supplemental
information regarding the same structure and thus help the corrupted image to
align with others.

Fig. 3(a) also shows the effects of additive acquisition noise on registration
performance. Two noise levels have been tested: 20% and 40% of the signal
power. At 40% noise level, the image quality is more deteriorated. As a result,
the performance of both joint and pairwise registration methods is more ad-
versely affected. For pairwise registration at such high noise levels, inaccurate
registration is more likely to occur for some pair and the registration error will be
carried over to the subsequent pairs. Therefore, although the observation noise
is uncorrelated in each image, the noise in an image actually has affected the
performance of registering the other images. On the other hand, for joint registra-
tion, even if every image in the sequence is severely corrupted, the uncorrelated
observation noise will not affect the matching of other images. Therefore, the
performance degradation is less severe for joint registration. So the higher the
noise, the greater is the improvement observed for joint registration compared
to pairwise.

β controls the weight of new structures in the whole signal component. The
smaller the value of β, the more decorrelation and thus less mutual informa-
tion between adjacent pairs of exams. For both joint and pairwise registration
there must be adequate amount of mutual information between the images to
achieve good registration accuracy. Therefore, β plays a crucial role in regis-
tration performance. The average errors for different values of β are shown in
Fig. 3(b). The registration errors for both pairwise and joint methods increase
as β decreases. With preliminary experimental results we observe that joint
registration produces significantly lower average registration errors than pair-
wise when β ≥ 0.8. When β is smaller than 0.8, the registration error increases
significantly for both methods and there is no observable advantage of either
method.

This study can be used to determine appropriate intervals for patient scan-
ning to efficiently monitor lesion change. With small time interval between ex-
ams the adjacent exam pairs are highly correlated and registration results are
expected to be excellent. However, imaging too frequently can be expensive and
the difference between adjacent exams may be too trivial to track or analyze.
On the other hand, long intervals render the registration problem intractable be-
cause of poorly correlated images with very different lesion structure. Clearly the
sampling interval is an important consideration factor to monitor lesion change
effectively.

3.2 Artificial Lesion Changes

With the promising results we have obtained above, we proceed to track lesion
change in brain MRI scans. We choose a 256×256 brain MRI scan (the lower left
image in Fig. 4) as the base image and introduce consecutive B-spline deforma-
tion to simulate a series of lesion changes. The introduced B-spline deformation
is shown in the upper row of Fig. 4. The lower row shows an example of the image
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(a)

(b)

Fig. 4. Geometric deformations and corresponding brain images. (a) Consecutive B-
spline geometric deformation; (b) Corresponding brain image sequence.
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Fig. 5. Registration errors for both joint and pairwise registration of the brain se-
quences. (a) Registration errors between image pairs; (b) Average registration errors
across the image sequence. The labels in the horizontal axis: ‘P’ and ‘J’ mean pairwise
and joint registration, respectively; the two digits following ‘P’ or ‘J’ are the indices
for an image pair, e.g., ‘14’ means the alignment of I4 to I1; ‘-av’ after ‘P’ or ‘J’ means
average.

sequence generated with known deformation plus a random Rayleigh observation
noise.

20 realizations of image sequences generated using the formula (6) and (7)
with β = 1 underwent registration with both joint and pairwise approaches.
Registration errors are calculated in the approximate area where the lesion is
located. The registration errors plotted in Fig. 5 show that the joint method
outperforms pairwise.
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4 Conclusion

We have developed a joint registration algorithm using αMI as the similarity
measure. We have implemented and tested the joint registration algorithm for
multiple image registration on several sets of image data. For comparison, we
have also registered the same data sets using the pairwise approach. The ex-
perimental results have affirmed that the joint method outperforms pairwise in
registering noisy image sequences by yielding lower average registration errors.
The high registration accuracy of αMI based joint registration shows that it can
be used as a reliable means to simultaneously register multiple images.

We have studied the performance change of joint registration as correlation (β)
decreases. In conclusion joint registration works well for sufficiently large β values
(> 0.8) and this observation can help us pick the optimal scanning interval to
efficiently and effectively monitor lesions.
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Abstract. Segmentation of anatomical structures via minimal surface
extraction using gradient-based metrics is a popular approach, but ex-
hibits some limits in the case of weak or missing contour information.
We propose a new framework to define metrics, robust to missing image
information. Given an object of interest we combine gray-level informa-
tion and knowledge about the spatial organization of cerebral structures,
into a fuzzy set which is guaranteed to include the object’s boundaries.
From this set we derive a metric which is used in a minimal surface
segmentation framework. We show how this metric leads to improved
segmentation of subcortical gray matter structures. Quantitative results
on the segmentation of the caudate nucleus in T1 MRI are reported on
18 normal subjects and 6 pathological cases.

Index terms: minimal surface segmentation, level sets, spatial relations,
fuzzy knowledge representation.

1 Introduction

Segmentation of structures expressed as a minimal surface extraction problem
has been widely discussed in the medical imaging literature. Different optimiza-
tion methods have been proposed in [1,2,3,4]. Minimal surface segmentation can
be performed using geodesic deformable models involving an image-based metric
computed from image gradients. An issue arises in the presence of noise and for
low contrast structures, such as subcortical gray nuclei in brain magnetic reso-
nance images (MRI), generating weak contour information. To overcome these
limitations, some prior information can be incorporated in these methods. For
instance, shape priors specific to the structures to segment were introduced in
[5] as a non-geodesic additional term in the energy functional constraining the
solution to correspond to an admissible shape. Another approach relies on the
combination of region and edge information, as for instance in the geodesic active
regions introduced in [6].
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In this paper, to preserve a strict geodesic formulation, we show how gray lev-
els and structural spatial information can also be efficiently exploited in a metric,
and we illustrate this idea on the segmentation of brain internal structures. In-
deed, the spatial organization of brain structures is quite stable, and available as
prior knowledge. Descriptions of this spatial organization through spatial rela-
tions between objects [7,8] were used in [9] to constrain a parametric deformable
model, acting as an external force, to segment internal brain structures on nor-
mal brains. In [10], this approach was extended to level-set deformable models,
in particular using a geodesic formulation. Although the combination of spa-
tial relations information and edge information succeeded in constraining the
segmentation to produce acceptable solutions, missing information in the image
edge map was not explicitly balanced by the introduction of spatial priors.

We propose a new method to introduce structural information during the
metric computation process, in order to obtain a map including complete object
boundaries. We first summarize our approach for representing structural infor-
mation as spatial fuzzy sets in Sect. 2. Our contribution for defining a metric
taking into account such information is then detailed in Sect. 3. The integra-
tion of this metric into a level-set deformable model formulation is presented in
Sect. 4 and applied to the segmentation of subcortical gray nuclei in normal and
pathological brain MRI.

2 Representation of Structural Information Using Fuzzy
Sets

Fuzzy sets constitute an appealing framework to represent spatial relations, mod-
eling different types of imprecision, related to the imperfections of the image,
and to the intrinsic vagueness of some relations [7]. The satisfaction of a given
relation is then a matter of degree rather than a “true-or-false” fact. The seman-
tics of spatial relations, which are imprecise but deterministic, is appropriately
encoded using fuzzy representations, which then constitute better models than
probabilistic ones. Given a relation with respect to a reference fuzzy object A,
two types of questions can be formulated:

(i) compute to which degree a target object B fulfills this relation;
(ii) define the points in space where this relation is satisfied.

Formulations of the first type of question have been proposed for a wide range of
relations including adjacency, distances, directions and symmetries. In this work,
as in [9], we consider the second formulation, based on spatial representations
of relations. We do not detail the definitions of the fuzzy sets representations of
spatial relations here (see [7] for a review). A spatial relation SR with respect
to some reference object is expressed as a fuzzy set in 3D space, with member-
ship function denoted by μSR (i.e. μSR(x) denotes the degree to which a point
x satisfies the relation). Most spatial relations can be computed using fuzzy
mathematical morphology operations. When several relations are associated to
describe the location of an object (as for the caudate nucleus as described below),
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the corresponding membership functions are combined using a fusion operator.
In the following, μSR will be used to denote either one relation, or the fusion of
several ones.

Spatial relations constitute an important part of the available knowledge
about the spatial organization of the brain structures, as evidenced by usual
anatomical descriptions, and they remain stable, even in the presence of tumors.
In this paper, we rely on the following knowledge:

• for any structure A of the brain, the set Adj(A) of adjacent structures Oi is
known, and is assumed to completely surround A;

• the caudate nucleus (CN) is exterior to the lateral ventricle (LV) and close
to it. We denote by μSRCN

the membership function of the spatial fuzzy set
representing the fusion of these relations;

• the accumbens nucleus (AN) is located below the lateral ventricle and ap-
proximately equidistant from the ventricle and the brain surface; the fuzzy
representation of these relations is denoted by μSRAN

.

Note that the computation of μSRCN
and μSRAN

is based on a previous seg-
mentation of the lateral ventricles and of the brain surface.

3 Metric Based on Gray-Levels and Spatial Information

Most approaches for minimal surface segmentation rely on low level features such
as image gradient. In this section, we illustrate some limits of these approaches
and propose to make use of structural knowledge. We derive a generic method-
ology to include both gray-level and spatial relations in the metric computation.

3.1 Fuzzy Map from Image Gradient

The simplest way to derive a fuzzy edge map μI from an image I is to apply an
increasing function g : R

+ → [0, 1] to the norm of the image gradient. To reduce
noise, a Gaussian filter Gσ can be applied, leading to: μI(x) = g(‖Gσ ∗∇I(x)‖).
Various functions g can be used. As an illustrative example, we use a sigmoid
function. This approach does not overcome classical problems related to weak
gradients, for instance between the thalamus (Th) and the white matter (WM),
as illustrated in Fig. 1 (b).

In [9] a method to enhance weak boundaries was proposed, using the radio-
metric mean and standard deviation of each type of tissue or structure:

μI(x) = g(‖∇(pA(I))(x)‖) = g(‖p′A(I(x))∇(I)(x)‖) (1)

where pA is a Gaussian function defined for each individual structure A. This
formula amounts to make g less sensitive to its parameters since it is applied to
a contrast-independent representation. Figures 1 (c) and (f) illustrate this fuzzy
gradient map for the caudate nucleus. The coronal view shows that there are
still parts of the contour missing (cf. red frame).



286 O. Nempont et al.

3.2 Using Region Membership Functions

We propose an alternative method to reinforce the boundary map even in the
absence of significant gradients, by using membership functions of the target
object and all adjacent structures. Let A be a subset of the spatial domain Ω. The
boundary of A may be defined by its morphological gradient: ∂A = D(A, Bc) \
E(A, Bc) where D denotes the dilation operator, E the erosion operator, and
Bc an elementary structuring element. This definition extends to the fuzzy case:
let μA be a fuzzy subset of Ω representing object A. The fuzzy morphological
boundary of A is defined as [11]: μ∂A = �(D(μA, Bc), D(c(μA), Bc)), where � is
a t-norm (i.e. a fuzzy conjunction) and c a fuzzy complementation [12].

We can extend this definition to the boundary between two objects A and B,
with membership functions μA and μB:

μ∂(A,B) = �(D(μA, Bc), D(μB, Bc)).

Note that this definition may lead to an empty set. On the other hand it may
provide a large fuzzy subset if the objects intersect over a large area.

These definitions require the knowledge of the objects localization, i.e. prior
segmentation results defining μA and μB, which are not yet available. However,
from the available knowledge (gray levels, spatial relations...), we can easily
obtain fuzzy subsets defining an approximate region of interest for A, denoted
by μGlA in case of gray levels information, which is guaranteed to include A.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) One axial slice of a brain MRI volume. (b) ‖∇I‖. (c) g(‖∇(pCN(I))‖) on
an axial view. (d-f) Coronal views.
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The fuzzy set μGlA is typically derived from a rough classification performed
on the histogram. It does not need to be very accurate and only has to provide
an overestimation so as to guarantee the inclusion property μA ⊆ μGlA . The
following inclusion property also holds: μ∂A ⊆ D(μGlA , Bc).

The fuzzy subset D(μGlA , Bc) contains both the object A and its boundaries,
and therefore constitutes a poor representation of the object boundaries. To
refine this estimation we propose to use prior knowledge about objects adjacent
to A, i.e. in Adj(A). Indeed, the boundary of an object A can be expressed as
the union of its boundaries with adjacent objects. Since this set is exhaustive,
we can write:

μ∂A = ⊥
i

μ∂(A,Oi) , Oi ∈ Adj(A),

where ⊥ is a t-conorm (i.e. a fuzzy union operator). Since we also have (μA ⊆
μGlA and μB ⊆ μGlB ) ⇒ μ∂(A,B) ⊆ �(D(μGlA , Bc), D(μGlB , Bc)), we can derive
the following inclusion:

μ∂A ⊆ ⊥
i

�(D(μGlA , Bc), D(μGlOi
, Bc)), Oi ∈ Adj(A). (2)

This computational process is illustrated in Fig. 2. Our approach always pro-
vides a superset of the boundary, denoted by μ∗

∂A. From prior information on
gray levels, we compute the fuzzy subsets μGlCN (b), μGlLV (c) and μGlWM (d) for
other structures composed of white matter (WM), to guarantee μLV ⊆ μGlLV ,
μCN ⊆ μGlCN and μWM ⊆ μGlWM . From these fuzzy sets we compute a fuzzy
set μ∗

∂(CN,LV ) including the boundary μ∂(CN,LV ) between caudate nucleus and

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a) Zoom on one axial slice. (b) μGlCN . (c) μGlLV . (d) μGlW M . (e)
μ∗

∂(CN,LV ). (f) μ∗
∂(CN,WM). On one coronal slice: (g) μGlCN = μGlAN . (h)

⊥(μ∗
∂(CN,LV ), μ

∗
∂(CN,WM)).
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lateral ventricle (e), and μ∗
∂(CN,WM) including the boundary μ∂(CN,WM) be-

tween caudate nucleus and white matter (f).
While gray-level priors are sufficient to compute an accurate fuzzy subset

including the boundary between the caudate nucleus and white matter or lat-
eral ventricle, this is not the case for the accumbens nucleus. Since the caudate
nucleus and the accumbens nucleus have similar biological compositions, they
cannot be distinguished based on gray levels only (see Fig. 2 (g)). On the other
hand considering only the boundary with white matter and lateral ventricle
leads to a partial boundary detection, hence having similar drawbacks as gra-
dient based methods (see ROI defined by the red frame in Fig. 2 (h)). Spatial
information will allow us to overcome this problem.

3.3 Fusion of Fuzzy Edge Maps with Spatial Information

Prior information on the spatial arrangement of structures, as given in a medical
knowledge database (see Sect. 2), is of great help to complete missing information
in MRI images. In [10], spatial relations represented as fuzzy sets μSR were
merged with boundary information computed by (1) in a conjunctive manner:
�(μI , μSR). However, as illustrated in Fig. 3, while this fusion operator removes
some undesired boundaries, it cannot fill in missing information.

As an alternative approach, we propose to introduce spatial relations, formu-
lated according to the methodology proposed above for fuzzy regions. Since the
spatial relations defined for an object A are modeled as regions of interest μSRA

including the object to be segmented, we always have μA ⊆ μSRA . A conjunc-
tive fusion with the fuzzy set representation of gray-level priors is performed so
that the property μA ⊆ �(μSRA , μGlA) is fulfilled. A fuzzy subset including the
object boundary is then computed using (2).

In our example this fusion defines a permitted region for the caudate nu-
cleus μ∗

CN = �(μGlCN , μSRCN ) (Fig. 4 (c)) and one for the accumbens nucleus
μ∗

AN = �(μGlAN , μSRAN ) (Fig. 4 (d)), which allows for a rough discrimination
between the two structures. The boundary between the two structures is then
computed (Fig. 4 (e)) and combined with the previous results to obtain a fuzzy
subset μ∗

∂CN (Fig. 4 (f)) including the whole boundaries of the caudate nucleus

(a) (b) (c) (d)

Fig. 3. (a) μI computed from (1). (b) μSRCN . Fusion �(μI , μSRCN ) on a axial view
(c) and a coronal view (d).
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Zoom on one coronal slice. (b) μSRCN . (c) �(μSRCN , μGlCN ). (d)
�(μSRAN , μGlAN ). (e) μ∂(CN,AN). (f) μ∂CN .

μ∂CN (μ∂CN ⊆ μ∗
∂CN ), according to the following equation:

μ∗
∂CN = ⊥(μ∗

∂(CN,WM), μ
∗
∂(CN,LV ), μ

∗
∂(CN,AN)), (3)

with μ∗
∂(CN,AN) = �(D(μ∗

CN , Bc), D(μ∗
AN , Bc)). The comparison between

Fig. 4 (f) and Fig. 3 (d) shows the improvement achieved by the proposed
approach. The boundary is now somewhat wide where contour information is
missing, but complete, and will be used to constrain the segmentation.

3.4 New Metric Definition

The minimal surface segmentation problem can be expressed as a minimization
problem, of an integral formulation involving a metric fA that should take low
values on object boundaries and high values elsewhere. This approach is robust
to noise in the sense that high metric values can be compensated by low ones
in the integral. Therefore the result may include points corresponding to quite
high metric values.

The complementary of the fuzzy set μ∗
∂A defined by (3) takes low values on

object boundaries and therefore could define a suitable metric (fA = c(μ∗
∂A))

to our minimal surface segmentation problem. However, as discussed above, this
formulation may lead to solutions for object A whose boundaries contain low
values of μ∗

∂A and thus do not satisfy the key property 2: μ∂A ⊆ μ∗
∂A, which

ensures that μ∗
∂A takes high values on all points of ∂A. In order to discard low
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values of μ∗
∂A from the resulting surface, we propose to define the metric as:

fA = − log(μ∗
∂A), which will strongly disfavor surfaces including points with

low values of μ∗
∂A. For numerical purpose, we add an offset to μ∗

∂A, and we
define the metric that will be used in the following as:

fA = − log((1 − ε)μ∗
∂A + ε).

4 Level-Set Based Segmentation of Internal Structures of
Normal and Pathological Brains

We now describe how the proposed metric can be incorporated in a minimal
surface segmentation framework, using a level-set formulation.

4.1 Level-Set Formulation

From the superset of the boundary fuzzy set μ∗
∂A described above, the mini-

mal surface extraction problem is formulated in the level-set framework as the
minimization of the following functional [13]:

E(φ) =
∫

Ω

fA(x)δ(φ(x))|∇φ(x)|dx, (4)

where φ implicitly represents the surface as its zero level and is classically ini-
tialized using a signed distance function from an initial shape. The associated
Euler-Lagrange equation given by:

∂φ

∂t
= δ(φ)

(
fAdiv

(
∇φ

‖∇φ‖

)
+ < ∇fA, ∇φ >

)
(5)

is used to find a local minimum of E(φ) from an initial surface. The result will
thus be strongly dependent on the initial surface. To avoid a convergence towards
the empty solution or a weak local minimum, a balloon force can be added.

4.2 Segmentation Protocol

We apply this segmentation method to subcortical gray matter nuclei on MRI
brain data. We first extract the brain surface, the lateral ventricles and in patho-
logical cases the tumor [14]. The used methods are robust enough to make the
assumption that the resulting segmentations are correct. A Gaussian mixture
estimation is performed to obtain gray level fuzzy subsets. Spatial relations are
then computed and a boundary map is obtained using (3). This computational
framework completely defines E(φ). The level-set based deformable surface evo-
lution is driven by (5), from an initial shape. This initial shape is obtained
automatically by combining spatial relation maps with gray level information.
Due to lack of space we do not detail the procedure here but for instance the
initialization of the segmentation of the caudate nucleus is based on the following
relations: closed to the body of lateral ventricle, strictly to its right.
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4.3 Data

Segmentation results are evaluated on the caudate nucleus for 18 healty subjects
and 6 pathological cases.

The normal database is provided on the Internet Brain Segmentation Repos-
itory (IBSR) (http://www.cma.mgh.harvard.edu/ibsr). It contains 18 T1-wei-
ghted MR scans (256 × 256 × 128 volumes, with 1 × 1 × 1.5 mm3 resolution). A
manual segmentation of 43 structures performed by an expert is also provided
and is considered as the ground truth to evaluate our results.

The pathological database is composed of 6 cases illustrated in Fig. 6 af-
fected by brain tumors. The tumors induce various degrees of deformation on
the internal nuclei from weak to very large in case of subcortical tumors. The
MR scans are 256 × 256 × 128 axial volumes obtained by a SPGR sequence
with 0.93 × 0.93 × 1.5 mm3 voxel size. Manual segmentation of 8 structures is
considered as the ground truth.

4.4 Results

Some results are illustrated in Fig. 5 and 6. The influence of the spatial priors
on the segmentation of the lower part of the caudate nucleus is clearly visible
on these results. Segmentation accuracy is assessed through comparison with
manual segmentations using the following measures:

(i) kappa coefficient: 2∗|A∩B|
|A|+|B| , which measures agreement between A and B,

(ii) average distance between the surfaces of A (reference) and B (our result),
(iii) Hausdorff distance between A and B.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Segmentation of the caudate nuclei on a normal case. (a) Initialization. (b)
Segmentation result without spatial priors. (c, d) Segmentation with spatial priors on
a coronal slice and on an axial slice. (e) Coronal slice of a pathological case. (f) μ∗

∂CN .
(g) Initialization. (h) Segmentation with spatial priors.
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1 2 3

4 5 6

Fig. 6. Axial views of 6 pathological cases. Segmentation results are overlayed in red.

Table 1. Evaluation of the segmentation of the caudate nuclei on IBSR database

Case Kappa Average Hausdorff Case Kappa Average Hausdorff
(mm) (mm) (mm) (mm)

left right left right left right left right left right left right

1 0.86 0.82 0.68 0.63 6.78 5.74 10 0.82 0.82 0.66 0.57 5.83 5.10

2 0.81 0.85 0.62 0.43 4.90 3.46 11 0.78 0.86 0.61 0.42 5.74 3.46

3 0.80 0.74 0.75 0.81 9.89 4.24 12 0.83 0.84 0.59 0.52 4.90 4.12

4 0.78 0.78 0.77 0.67 5.48 5.48 13 0.82 0.84 0.78 0.59 9.43 5.48

5 0.85 0.85 0.47 0.47 3.00 3.16 14 0.84 0.85 0.50 0.54 3.74 3.74

6 0.83 0.78 0.63 0.96 5.10 7.07 15 0.85 0.85 0.43 0.57 3.00 6.16

7 0.81 0.79 0.50 0.52 4.58 3.61 16 0.83 0.84 0.57 0.69 3.74 5.66

8 0.74 0.74 0.77 0.65 8.54 8.54 17 0.83 0.86 0.77 0.59 6.40 5.74

9 0.82 0.83 0.57 0.52 5.39 6.56 18 0.75 0.75 0.99 1.23 5.48 8.60

Mean 0.81 0.64 5.50

Results on normal cases are summarized in Table 1. As an example, results
can be compared to those reported in [15] for the same database (where a mean
kappa of 0.65 and average distance of 1.71mm are reported), or in [16] and [17]
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Table 2. Evaluation of the segmentation of the caudate nuclei on pathological cases

Case Kappa Average Hausdorff Case Kappa Average Hausdorff
(mm) (mm) (mm) (mm)

left right left right left right left right left right left right

1 0.84 0.83 0.67 0.55 10.95 5.83 4 0.75 0.75 0.67 0.72 5.20 9.00

2 0.78 0.85 0.77 0.55 8.06 6.32 5 0.72 0.82 1.58 0.70 19.41 9.11

3 0.80 0.82 0.69 0.55 6.78 5.00 6 0.82 0.85 0.66 0.93 6.17 7.68

Mean 0.80 0.75 8.29

for other databases (respectively average distances of 1.60mm and 0.60mm).
We can note that the average distance is less than the voxel size (generally
1×1×1.5 mm3), and kappa coefficients over 0.7 indicate high agreements between
the segmentations [18]. The Hausdorff distance, which corresponds to the worst
point, is much more variable, due to imprecise delineation between CN and AN,
leading to an arbitrary cut in both manual and automatic segmentations, and
thinness of the tail (and also the end of the body) for which minimal surface
segmentation is not suited. Results for pathological cases are summarized in
Table 2. Among the 12 segmentations, 11 show similar accuracy as in the normal
cases. Despite the deformations, spatial knowledge and thus our segmentation
framework remain stable. Concerning subject 5, the tumor is adjacent to the
left caudate nucleus and induces very large deformations. Improving the results
in such cases could rely on an adaptation of the spatial relations, as proposed
in [19].

5 Conclusion

The main contribution of this paper is to define a new metric for minimal surface
segmentation, incorporating, in a original way, radiometric and structural infor-
mation. We have shown that missing contour information can be compensated
for by exploiting spatial information, based on region gray levels and spatial
relations, and how to integrate all these pieces of information in a fuzzy set
framework to define metrics for minimal surface extraction. Our approach has
been applied, in a geodesic level-set framework, to the segmentation of the cau-
date nuclei in normal and pathological brain MRI with promising results. Future
work aims at extending this approach to other brain structures: while the ap-
proach is general, including fuzzy sets have to be specified according to spatial
relations specific to each structure.
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Abstract. This paper presents a novel statistical fuzzy-segmentation
method for diffusion tensor (DT) images and magnetic resonance (MR)
images. Typical fuzzy-segmentation schemes, e.g. those based on fuzzy-
C-means (FCM), incorporate Gaussian class models which are inherently
biased towards ellipsoidal clusters. Fiber bundles in DT images, however,
comprise tensors that can inherently lie on more-complex manifolds. Un-
like FCM-based schemes, the proposed method relies on modeling the
manifolds underlying the classes by incorporating nonparametric data-
driven statistical models. It produces an optimal fuzzy segmentation by
maximizing a novel information-theoretic energy in a Markov-random-
field framework. For DT images, the paper describes a consistent statisti-
cal technique for nonparametric modeling in Riemannian DT spaces that
incorporates two very recent works. In this way, the proposed method
provides uncertainties in the segmentation decisions, which stem from
imaging artifacts including noise, partial voluming, and inhomogeneity.
The paper shows results on synthetic and real, DT as well as MR images.

1 Introduction

Diffusion tensor (DT) magnetic resonance (MR) imaging has become exceedingly
popular because of its ability to measure the anisotropic diffusion of water in
structured biological tissue. It allows us to differentiate between the anatomical
structures of cerebral white/gray matter, that was previously impossible with
MR imaging (MRI), in vivo and noninvasively. The segmentation of fiber tracts
in the brain, such as the corpus callosum or the lateral corticospinal tract, is of
key interest in several clinical applications [1,2]. DT imaging also helps to nonin-
vasively differentiate between thalamic nuclei based on the DT characteristic in
each nucleus [3]. The study of thalamic changes holds importance in the study
of schizophrenia and Parkinson’s disease. Hippocampus analysis is important in
the diagnosis of several diseases such as Alzheimer’s disease and schizophrenia.
The hippocampal substructures, which can not be easily differentiated in MR
data, might be separable using DT images [4].

DT imaging is a relatively new modality and is persistently plagued by the
presence of artifacts such as noise, partial voluming, and inhomogeneity in im-
ages. Typically, these artifacts reduce the efficacy and utility of post-processing
methods on DT images. Such methods include classic segmentation methods

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 296–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and tractography methods that exclusively label each voxel to one or the other
classes/structures. For instance, tractography methods that typically incorporate
thresholds on the fractional anisotropy and fiber curvature to terminate tracing,
can consistently underestimate the size of the fiber bundles [5]. The problem,
with tractography, is exacerbated for thin tracts undergoing sharp changes in
orientation. One way of accounting for the noise/partial-voluming artifacts is by
not assigning voxels exclusively to one class or the other, but rather to estimate
the membership of each voxel in the classes. The membership values effectively
provide information about the uncertainties in delineating tracts/structures.
This necessitates the formulation of a statistical fuzzy-segmentation framework
for DT images. Advantages of fuzzy segmentation of MR tissue intensities are
well known [6]. For DT images, we can use such fuzzy-membership information
to: (a) increase the reliability and accuracy of tract extraction associated with
clinical studies, (b) improve the accuracy of DT processing methods such as
tractography, (c) aid experts in reliably labeling fiber bundles for constructing
tract-based atlases, etc.

Many previous works in DT-image segmentation [2,1] employ Gaussian mod-
els, in Riemannian spaces, to model the DT statistics in specific structures of
interest. These Gaussian models, however, may not effectively model the DT
statistics because they are inherently biased towards ellipsoidal clusters [7]. The
fundamental anatomical characteristics of fiber bundles are such that the fibers
can change their orientation significantly—they bend—as they connect different
brain structures. Thus, tensors in fiber bundles inherently lie on manifolds that
do not conform to Gaussian models that are characterized by the mean. For
instance, tensors in U-shaped bundles, where the tensors start and end at the
similar orientations, must lie on a closed manifold in the tensor space.

This paper makes several contributions. It proposes a novel fuzzy-segmentation
approach in the nonparametric-statistical framework that does not impose strong
parametric models on the data. Rather, it provides the power to model and
adapt to arbitrary (but smooth) probability density functions (PDFs) via data-
driven strategies. Such nonparametric PDFs capture the manifold(s) underlying
the classes as well as the variability of the data around the manifold(s). Re-
cent work have clearly demonstrated the advantages of nonparametric-statistical
modeling for general image segmentation [8] as well as MR-image tissue classi-
fication [9]. We employ a kernel-based approach for the nonparametric model-
ing [10]. We combine results from two very recent works—one describing a generic
(tensor-metric independent) Riemannian kernel PDF estimation scheme [11] and
the other describing the Log-Euclidean Riemannian metric [12]—to propose a
statistically consistent nonparametric PDF estimation scheme for DT data.
Subsequently, we propose a novel information-theoretic generalization of the
fuzzy-C-means (FCM) framework [13] that replaces the classic ellipsoidal mod-
els/clusters for classes by generic manifold-based models. In this way, the pro-
posed method provides the uncertainties in the segmentation decisions, which
are caused by artifacts including noise, partial voluming, and inhomogeneity. We
show results on synthetic and real data, including DT and MR images.
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2 Related Work

Early work on DT segmentation [14] relied on a simplified feature space of an
invariant anisotropy measure. It employed a level-set framework to differenti-
ate between the anisotropic and isotropic regions in the brain. Such anisotropy
measures, however, make it impossible to distinguish between fiber bundles with
different orientations. Wiegell et al. [3] and Rousson et al. [15] use the Euclid-
ean Frobenius norm between tensors during the segmentation. Lenglet et al. [1]
present a Riemannian distance measure between tensors and model each class
by a single Gaussian in the Riemannian space. The proposed method extends
their modeling approach by incorporating a generic nonparametric model for
each class that is able to accurately model tensor statistics in fiber bundles.
Wang and Vemuri [2] propose an affine-invariant distance measure based on
the J-divergence of two Gaussians corresponding to two diffusion tensors. They
employ a piecewise-smooth Mumford-Shah segmentation framework to capture
the tensor statistics. The proposed method, however, relies on a nonparamet-
ric statistical approach in the Markov-random-field framework. Furthermore, it
provides fuzzy segmentations by optimizing an information-theoretic energy.

The utility of Riemannian tensor metrics for processing DT images is well
established in the literature [16,12,1,17]—Euclidean metrics lead to averages
that cause artificial tensor swelling, where the determinant, and thus dispersion,
of the average tensor can be larger than the individual tensors. The proposed
kernel-based PDF estimation scheme also relies on a weighted-averaging scheme
that incorporates contributions from several tensors to measure the probability
at a particular point in tensor space. Riemannian metrics avoid such swelling
effects and, therefore, we employ such a metric in this paper.

FCM relies on representing each class by only a single point in the feature
space, namely, the class mean [13]. In this way, FCM measures class membership
based on the Euclidean or Mahalanobis distance to the class mean. Modeling
each class by a single Gaussian extends the FCM scheme into a probabilistic
scheme popularly known as the Gaussian-mixture PDF modeling [18] that has
been widely used for MR image segmentation [19]. Such a scheme, however,
continues to measure class membership based on the Mahalanobis distance to
the Gaussian mean. We propose a method that generalizes the representation of
a class—instead of a single point (mean) in the feature space—to the manifold
underlying the class in order to measure class membership based on the distance
from the manifold that accurately represents the class.

Pham and Prince [6] employ the FCM method for fuzzy tissue classification of
MR images by iteratively adapting to the intensity homogeneity. The proposed
method, on the other hand, extends FCM by generalizing the underlying rep-
resentation of the classes to an arbitrary manifold. This generic approach also
retains the efficacy of the method for inhomogeneity-corrupted images. Kim et
al. [8] and Awate et al. [9] employ nonparametric models for texture segmenta-
tion and MR-image segmentation, respectively. This paper proposes a different
objective function that produces fuzzy segmentations and extends the result-
ing scheme for DT images. O’Donnell et al. [20] present a scheme for interface
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detection in DT data, based on a generalized local structure tensor, as a step to-
wards segmentation, registration, and automatic detection of the visually-elusive
fiber-bundle interfaces in DT images. The proposed fuzzy-segmentation method
also fits in this context; voxels having significant memberships to more than
one class indicate the presence of an interface. On the other hand, the pro-
posed method is more general—giving a membership value at each voxel—and
performs this in a mathematically-sound statistical framework.

3 Nonparametric Tensor Statistics

This section describes the statistical formulation underlying the proposed non-
parametric modeling technique. It starts by describing a generic kernel-based
modeling scheme, that is independent of the particular metric associated with
the Riemannian space. It then presents an appropriate tensor metric that con-
siderably simplifies the scheme, from a practical point of view, while maintaining
the mathematical soundness of the framework.

The statistics literature presents several methods for nonparametric model-
ing of the data based on Fourier expansions, splines, kernels, etc. We propose
to use the kernel-based PDF approach known as Parzen-window PDF estima-
tion [10] that essentially performs scattered-data interpolation by superposing
kernel functions placed at each datum. For DT data, the kernel functions are
smooth functions of the Riemannian geodesic distance on the tensor manifold.
The mathematical expression for the Parzen-window tensor-PDF estimate is con-
sistent with the expression of the usual kernel-PDF estimate in Euclidean spaces.
For instance, it also relies on the intuitive notion of a kernel function that has the
highest value at the datum and monotonically-decreasing values with increasing
distance from the datum. In the Riemannian case, each datum is the intrinsic
mean of the associated kernel provided for sufficiently small bandwidths.

3.1 Kernels in Riemannian Spaces

This section first describes the mathematical expression for the Parzen-window
estimate on generic Riemannian manifolds from the very recent work by Pel-
letier [11]. We start by providing the associated notation.

Let M be a compact Riemannian manifold without boundary, of dimension D,
with an associated metric-tensor g. The metric tensor induces an inner product
on the manifold, that in turn leads to the notion of the geodesic distance function
dg(·, ·) between two entities on M. Let Z be a random variable on the probability
space (Ω, A, P ) that takes values in (M, B) where B denotes the Borel sigma-field
of M. Assume that the image of the probability measure P , under the map Z, is
continuous with respect to the volume measure on M. Let {z1, z2, . . . , zn}, where
each zi ∈ M, be an independently-drawn and identically-distributed random
sample derived from the PDF P (Z). Let K(·) be a nonnegative and sufficiently-
smooth kernel function.

In order to make sure that the PDF P (Z) on M integrates to one, we need
to set up a framework that allows us to perform the integration. This entails
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computing the ratio of the volume measures on the Riemannian manifold M
and its tangent space Ta(M) at each point a. If a and b be two points on M,
then the volume density function on M is

θa(b) =
μexp∗

ag

μga

(
exp−1

a (b)
)
, (1)

which is the quotient of the canonical measure of the Riemannian metric exp∗
ag

on Ta(M) (pullback of the metric-tensor g by the exponential-map expa) by the
Lebesgue measure of the Euclidean structure ga on Ta(M). This is the same
as the square root of the determinant of the metric-tensor g expressed in the
geodesic normal coordinates at a and evaluated at exp−1

a (b). This also gives an
indication of the curvature of the Riemannian space. For the special case where
M is the Euclidean space �D, θa(b) = 1. Thus, the PDF estimate is

P̂ (z) =
1
N

N∑

i=1

1
θzi(z)

1
σD

K

(
dg(z, zi)

σ

)
, (2)

where σ is the bandwidth of the associated kernel. Pelletier [11] recently proved
the asymptotic (as N → ∞) consistency of the estimator with respect to the
true PDF P (Z) with an L2 rate of convergence. In this paper, we define K(·) to
be the standard-Normal PDF: K(β) = (1/(2π)D/2) exp(−β2/2).

To evaluate the probability at any one point z we need to, in general, compute
θzi(z) separately for all the points zi in the Parzen-window sample. Evaluating
Parzen-window probabilities in this framework can become cumbersome, de-
pending on the particular Riemannian tensor metric employed. For Gaussians
using the affine-invariant Riemannian metric [17], Lenglet et al. [1] give the
first-order Taylor-series approximation of the square root of the metric tensor
in the case of small bandwidth σ. The next section employs the Log-Euclidean
Riemannian metric to eliminate this issue altogether.

3.2 Riemannian Kernels with Log-Euclidean Metrics

Recently, Arsigny et al. [12] proposed a Riemannian tensor metric, namely the
Log-Euclidean metric. In contrast to the affine-invariant Riemannian metric
in [16,1,17], the Log-Euclidean metric induces a Riemannian space having zero
curvature. The Log-Euclidean framework defines a mapping where the DT space
of 3 × 3 symmetric positive definite matrices is isomorphic, diffeomorphic, and
isometric to the associated Euclidean vector space of 3 × 3 symmetric matrices.
This mapping is precisely the matrix logarithm, namely Log .

The isometry property equates geodesic distances in the Riemannian space to
Euclidean distances in the vector space, i.e.

dg(z, zi) =‖ Log (z) − Log (zi) ‖Frobenius . (3)

Isometry also implies that the determinant of the metric tensor is unity every-
where [21]. Indeed, the Log-Euclidean metric defines a Euclidean structure on



A Fuzzy, Nonparametric Segmentation Framework 301

the tensor space. This simplifies θzi(z) to evaluate to unity. The Parzen-window
PDF estimate simplifies to

P̂ (z) =
1
N

N∑

i=1

G(z; zi, σ), where (4)

G(z; zi, σ) =
1

(2π)D/2

1
σD

exp
(

− ‖ Log (z) − Log (zi) ‖2
Frobenius

2σ2

)
(5)

is the Riemannian analogue (with the Log-Euclidean metric) for the Euclidean
Gaussian kernel. In practice, this allows us to map the diffusion tensors, through
the matrix logarithm, to a Euclidean space and, in turn, compute probabilities
from standard Parzen-window PDF estimation in the Euclidean space.

4 Fuzzy Segmentation with Manifold-Based Models

This section proposes a novel extension to the FCM fuzzy segmentation frame-
work. Specifically, we generalize FCM’s representation of classes in feature-space
by the manifolds underlying the classes and, subsequently, measure class mem-
berships based on the distances from these manifolds. For DT images, we achieve
this by employing the accurate and practical Parzen-window PDF estimation
scheme proposed in the previous section. This section first describes a fuzzy seg-
mentation framework by formulating an information-theoretic objective function
relying on the nonparametric class models. It then proposes an iterative opti-
mization strategy and presents the segmentation algorithm.

To have a generic framework, we consider a Markov random field (MRF)
image model. Assume that the tensor image is derived from an underlying MRF
X = {Xt}t∈T , where T is the set of voxels on the Cartesian grid and the random
variable Xt, at each voxel t, is defined on the sample-space Ω. Denote the tensor
values in the image by xt that lie in the Riemannian space M. Let N = {Nt}t∈T
be the neighborhood system associated with the MRF for the voxel set T . Define
random vectors Yt = {Xt}t∈Nt—note that t /∈ Nt—and Zt = (Xt,Yt). The
PDF P (Zt) is the joint PDF of the tensors in DT-image neighborhoods.

4.1 Information-Theoretic Objective Function

Our goal is to segment the image into C different classes (c = 1, 2, . . . , C) which
are distinguished by their respective PDFs {Pc(·)}c=1,2,...,C . The segmentation
problem is, in a way, equivalent to that of deducing these PDFs. Voxels in a
fuzzy-segmentation framework can be members of more than one class. This is a
standard notion in fuzzy set theory that does not constrain entities to belong to
one set alone. We incorporate this notion using the fuzzy-membership functions
that we define next. Consider C random variables {Fc}c∈C where, for each c, the
random variable Fc : M → � gives a class-membership value for each element
z ∈ M belonging to class c. The constrains on the membership values are:

∀t ∈ T , ∀c = 1, . . . , C : 0 ≤ Fc(zt) ≤ 1, and (6)
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∀t ∈ T :
C∑

c=1

Fc(zt) = 1. (7)

Typical hard (non-fuzzy) segmentation approaches capture the homogeneity of
classes using the Shannon’s entropy of the classes. To achieve fuzzy segmentation,
we replace the Shannon’s entropy for the class c by the following function:

hc(Z) = −
∫

M
Fc(z)Pc(z) Log Pc(z)dz. (8)

In this way, each observation z ∈ M contributes an amount to the newly-
defined “entropy” of class c that is proportional to its membership in class c.
This modification alone, however, is insufficient and the optimization defaults
to zero/one values for Fc(z), thereby implying a hard segmentation. To over-
come this problem, we must also, simultaneously, maximize the entropy of the
fuzzy-membership function. Thus, we define the optimal fuzzy segmentation as:

argmax
{Fc(·)}C

c=1

C∑

c=1

(∫

M
Fc(z)Pc(z) Log Pc(z)dz − α

∫

M
Fc(z) Log Fc(z)dz

)
, (9)

under the constraints on the membership function given in (6) and (7). Here, α is
a user-controlled parameter that controls the degree of fuzziness imposed on the
segmentation. Setting α ← 0 gives a hard segmentation, while α → ∞ gives a
completely-fuzzy segmentation, i.e. where Fc(z) = 1/C, ∀t ∈ T , ∀c = 1, 2, . . . , C.

We now simplify the formulation in (9) by rewriting it as:

argmax
{Fc(·)}C

c=1

C∑

c=1

(
EP (Z)

[
Fc(Z) Log Pc(Z)

]
− α

∫

M
Fc(z) Log Fc(z)dz

)
(10)

≈ argmax
{Fc(·)}C

c=1

C∑

c=1

∑

t∈T

[
Fc(zt) Log Pc(zt) − αFc(zt) Log Fc(zt)

]
, (11)

where EP (Z)[·] denotes an expectation over the PDF P (Z). The approximation
for the first term comes from an ergodicity assumption on the MRF X—this
(asymptotically) equates ensemble averages to spatial averages.

4.2 Constrained Optimization Using Lagrange Multipliers

This section describes the optimization strategy to maximize the proposed ob-
jective function in (10) and presents the associated algorithm. We employ the
method of Lagrange multipliers to solve the constrained optimization problem—
the constraints are given in (6 and (7). Using the short-hand terms Fct and Pct

for the terms Fc(zt) and Pc(zt) respectively—the objective function becomes

J =
C∑

c=1

∑

t∈T

[
Fct Log Pct − αFct Log Fct

]
+

∑

t∈T
λt

[
C∑

c=1

Fct − 1

]
, (12)

where {λt}t∈T is the set of Lagrange multipliers and the probabilities Pct are
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Pct =
1

|Sc|
∑

s∈Sc

G(zt; μcs, σc), (13)

where the tensors {μcs}s∈Sc and the bandwidth σc together model class c. This
PDF captures both: the manifold(s) underlying the data in class c as well as the
variability of the data around the manifold(s).

We need to maximize J with respect to Fct, μcs, and λt. Solving the Karush-
Kuhn-Tucker (KKT) necessary conditions for optimality gives the update for
the fuzzy memberships as:

∀t ∈ T , ∀c = 1, 2, . . . , C : Fct =

(
Pct

) 1
α

∑C
c=1

(
Pct

) 1
α

. (14)

Observe that, as expected, a large probability Pct for voxel t to be in class c
produces a correspondingly larger membership value Fct of that voxel in class c.
As α → ∞, we see that Fct → 1/|C| and we get a completely fuzzy segmentation.
As α → 0, we see that Fct → 1 if class c with the largest Pct; otherwise Fct → 0.

Solving the KKT conditions gives the update for the class parameter μcs as:

∀s ∈ Sc, ∀c = 1, 2, . . . , C : μcs =

∑
t∈T Fct

G(zt;μcs,σc)
Pct

zt
∑

t∈T Fct
G(zt;μcs,σc)

Pct

, (15)

where the updated parameter μcs is a weighted average of the data zt. Observe
that the weights take values between 0 and 1. Moreover, one need not worry
about numerical-stability issues during implementation because, by construction,
0 ≤ Fct ≤ 1 and 0 ≤ G(zt−μcs;σc)

Pct
≤ 1. Furthermore, the limiting case of |Sc| → 1

implies that G(zt; μcs, σc) = Pct that causes the updates to default to the FCM
updates using Mahalanobis distances.

Given an initial segmentation, the proposed algorithm iterates as follows:

1. For each class, assign the bandwidth σc ← σML, where σML is a penalized
maximum-likelihood estimate for the entire image zt∈T [22].

2. Select a fraction of voxels γ from the initialized classes to produce feature
vectors {μcs}s∈Sc . Selecting too many voxels entails estimating too many
parameters from the given (finite) data. Too few parameters reduce the
capability of the model to accurately represent the PDF, or the manifold
underlying, the class. Results in this paper use γ = 0.5.

3. Use (14) to update Fct for c = 1, . . . , C,∀t ∈ T .
4. Use (15) to update the class models μcs for all c = 1, . . . , C,∀s ∈ Sc.
5. Repeat steps 3 and 4 until convergence.

5 Results, Discussion, and Conclusion

This section gives the results on real and synthetic DT images as well as MR
images. For synthetic DT images, we simulate noise using the method described
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Fig. 1. (a) Synthetic DT image with 2 classes (C = 2) (tensor orientations encoded
in glyph colors, finite anisotropy encoded in the grayscale background) showing noise
and partial voluming near the interface. (b) Fuzzy-membership values for one of the
classes (without any Markov model): blue (red) implies low (high) membership values.
(c) Comparing membership functions for a specific horizontal scanline: estimated and
the true (obtained from the image without noise and partial voluming).
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Fig. 2. (a) Real DT image (coronal slice) showing the lateral corticospinal tract. Fuzzy
segmentations (α = 1, C = 2): (b) without a Markov model and (c) with a 3×3 Markov
neighborhood.

in [2]. We simulate partial voluming by spatially averaging (Gaussian smoothing)
the tensors in the Riemannian space using a Log-Euclidean metric. We initial-
ize the segmentation based on thresholding the fractional-anisotropy values and
tensor orientations to approximately obtain the tract of interest. Figure 1(a)
shows a DT image with 2 classes with partial voluming and noise. The one on
the right (left) has anisotropic (isotropic) tensors. Figure 1(b) gives the fuzzy
membership values (no Markov model used) for the anisotropic-tensor class that
indicates uncertainties in the segmentation near the interface and in excessively
noisy regions. Figure 1(c) plots the estimated membership function for one scan-
line of the noisy image and compares it with the actual membership function
obtained from the noiseless image—the latter shows the amount of averaging.

Figure 2 gives fuzzy segmentations (2 class) on one slice of real DT image that
shows the lateral corticospinal tract. It shows the effects of partial voluming,
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Fig. 3. (a) Real DT image (sagittal slice) showing the corpus callosum. Fuzzy-
segmentations (C = 2, no Markov model) with a degree of fuzziness of: (b) α = 1,
and (c) α = 2 (more fuzzy).
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Fig. 4. (a) Uncorrupted simulated BrainWeb [23] T1-weighted MR image, (b) its
zoomed inset, and (c) its corrupted version with 5% noise and a 40% inhomogeneity
field. Note: intensities in each image have been scaled to use the entire grayscale range
in order to provide maximum contrast. Fuzzy-segmentations (C = 3) with a 3 × 3
Markov neighborhood and α = 1 for: (d) cerebrospinal fluid (CSF), (e) gray matter
(GM), and (f) white matter (WM). Fuzzy-segmentations (C = 3) with a 3 × 3 Markov
neighborhood and α = 3 for: (g) CSF, (h) GM, and (i) WM.
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especially as the tracts reach closer to the cortex. This is where the fibers from
this tract come close to those emerging from the corpus callosum. Figure 2(c)
demonstrates the regularizing effect of Markov statistical modeling on the tensor
image relative to the result in Figure 2(b). Figure 3 gives the results for a sagittal
view of the corpus callosum. It demonstrates the effect of varying the parameter
α that controls the degree of fuzziness in the segmentation (Section 4.2).

Figure 4 gives results on T1-weighted simulated BrainWeb [23] MR image (5%
noise and 40% inhomogeneity field) that employ 3 × 3 Markov neighborhoods
with two different degrees of fuzziness: α = 1 and α = 3. The figures clearly
indicate the partial voluming at the interfaces of tissue classes, especially those
of the cerebrospinal fluid. The nonparametric scheme does well in spite of the
significant inhomogeneity field present in the image.

To summarize, the paper presents a statistical framework for fuzzy segmenta-
tion using nonparametric PDF models. Such models capture the manifold(s) un-
derlying the classes as well as the variability of the data around the manifold(s).
The paper generalizes the FCM framework by replacing the classic ellipsoidal
models/clusters for classes by generic manifold-based models and computing
an optimal segmentation by maximizing a information-theoretic energy in a
Markov-random-field framework. Furthermore, the proposed fuzzy-classification
framework extends in a straightforward manner to multimodal MR images and
data from Q-ball imaging. Future work includes application of the proposed
method for tract extraction in DT images and validation for MR images.
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Abstract. In Diffusion Weighted Magnetic Resonance Image (DW-MRI)
processing a 2nd order tensor has been commonly used to approximate
the diffusivity function at each lattice point of the DW-MRI data. It is
now well known that this 2nd-order approximation fails to approximate
complex local tissue structures, such as fibers crossings. In this paper we
employ a 4th order symmetric positive semi-definite (PSD) tensor approx-
imation to represent the diffusivity function and present a novel technique
to estimate these tensors from the DW-MRI data guaranteeing the PSD
property. There have been several published articles in literature on higher
order tensor approximations of the diffusivity function but none of them
guarantee the positive semi-definite constraint, which is a fundamental
constraint since negative values of the diffusivity coefficients are not mean-
ingful. In our methods, we parameterize the 4th order tensors as a sum of
squares of quadratic forms by using the so called Gram matrix method
from linear algebra and its relation to the Hilbert’s theorem on ternary
quartics. This parametric representation is then used in a nonlinear-least
squares formulation to estimate the PSD tensors of order 4 from the data.
We define a metric for the higher-order tensors and employ it for regular-
ization across the lattice. Finally, performance of this model is depicted on
synthetic data as well as real DW-MRI from an isolated rat hippocampus.

1 Introduction

Data processing and analysis of matrix-valued image data is becoming quite
common as imaging sensor technology advances allow for the collection of matrix-
valued data sets. In medical imaging, during the last decade, it has become
possible to collect magnetic resonance image (MRI) data that measures the
apparent diffusivity of water in tissue in vivo. A 2nd order tensor has commonly
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been used to approximate the diffusivity profile at each image lattice point in a
DW-MRI [3]. The approximated diffusivity function is given by

d(g) = gT Dg (1)

where g = [g1 g2 g3]
T is the magnetic field gradient direction and D is the

estimated 2nd-order tensor. This approximation yields a diffusion tensor (DT-
MRI) data set Di, which is a 3D matrix-valued image, where subscript i denotes
location on a 3D lattice. These tensors Di are elements of the space of 3 × 3
symmetric positive-definite matrices. Mathematically, these tensors belong to
a Riemannian symmetric space, where a Riemannian metric assigns an inner
product to each point of this space. Using this metric, one can perform various
computations, e.g. interpolation, geodesics, geodesic PCA [2,7,12].

Use of higher order tensors was proposed in [9] to represent more complex
diffusivity profiles which better approximate the diffusivity of the local tissue
geometry. To date however, none of the methods reported in literature for the
estimation of the coefficients of higher order tensors preserve the positive defi-
niteness of the diffusivity function.

The use of a 4th-order covariance tensor was proposed by Basser and Pajevic
in [4]. This covariance tensor is employed in defining a Normal distribution of
2nd order diffusion tensors. This distribution function has been employed in
[5] for higher-order multivariate statistical analysis of DT-MRI datasets using
spectral decomposition of the 4th-order covariance matrix into eigenvalues and
eigentensors (2nd order). However, 2nd order tensors are used to approximate the
diffusivity of each lattice point of a MR dataset, failing to approximate complex
local tissue structures, such as fiber crossings.

In this paper we approximate the diffusivity profile using 4th-order tensors. We
propose a novel parametrization of these positive-definite higher order tensors
as a sum of squares of quadratic (2nd-order) forms. This parametrization is en-
forced by employing the Gram matrix method in conjunction with the Hilbert’s
theorem on ternary quartics [8]. We present an efficient algorithm which esti-
mates 4th-order symmetric positive semi-definite diffusion tensors from diffu-
sion weighted MR images. We also propose a distance measure for the space
of higher-order tensors that can be computed in closed form, and employ it to
regularize the estimated data across the lattice. Finally, we present experimental
results using real diffusion-weighted MR data from an isolated rat hippocampus.
The motivation for processing and analyzing the hippocampus lies in its impor-
tant role in semantic and episodic formation, which is particularly vulnerable
to acute or chronic injury [1,16]. Based on knowledge of hippocampal anatomy,
complex local tissue structures such as fiber crossings are commonly present at
the anatomical regions of stratum lacunosum-moleculare, hilus, molecular layer
(see fig. 3(d) region 4) and stratum lucidum (fig. 3(d) region 5). The techniques
being developed here can approximate accurately such crossings and complex
fiber structures and thus could prove useful in improving the sensitivity and
specificity of diffusion MRI for detecting and monitoring hippocampal diseases.
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The rest of the paper is organized as follows: In section 2, we present a novel
parametrization of the 4th-order tensors that is used to enforce the positivity
semi-definiteness of the estimated tensors. In section 2.1, we present a method to
estimate 4th-order tensors from diffusion-weighted MR images. Furthermore, in
section 2.2 we propose a distance measure for the space of 4th-order tensors, and
we employ it for regularization of the estimated tensor field. Section 3 contains
the experimental results and comparisons with other methods using simulated
diffusion MRI data and real MR data from an isolated rat hippocampus. In
section 4 we conclude.

2 Diffusion Tensors of 4th Order

The diffusivity function can be modeled by Eq. (1) using a 2nd-order tensor.
Studies have shown that this approximation fails to model complex local struc-
tures of the diffusivity in real tissues [10] and a higher-order approximation
must be employed instead. A 4th-order tensor can be employed in the following
diffusivity function

d(g) =
∑

i+j+k=4

Di,j,kgi
1g

j
2g

k
3 (2)

where g = [g1 g2 g3]
T is the magnetic field gradient direction. It should be noted

that in the case of 4th-order symmetric tensors there are 15 unique coefficients
Di,j,k, while in the case of 2nd-order tensors we only have 6.

In DW-MRI the diffusivity of the water is a positive quantity. This property is
essential since negative diffusion coefficients are nonphysical. However there is no
guarantee that the estimated coefficients Di,j,k by the above process, will form a
positive semi-definite tensor. Therefore, we need to develop a new parametriza-
tion of the 4th-order tensor, which enforces the positive semi-definite property
of the estimated tensor.

Regarding gi in (2) as variables, the equivalence between symmetric tensors
and homogeneous polynomials is straightforward. Moreover if a symmetric tensor
is PSD, then its corresponding polynomial must be nonnegative for all real-
valued variables. Hence here we are concerned with the positive definiteness of
homogenous polynomials of degree 4 in 3 variables, or the so called ternary
quartics. In this work we propose a novel parametrization of the symmetric 4th-
order PSD tensors, using the Hilbert’s theorem on positive ternary quartics, was
first proved by Hilbert in 1888 (see [14] for modern exposition):

Theorem 1. Every positive real ternary quartic is a sum of three squares of
quadratic forms.

Assuming the most general case, a PSD ternary quartic can be expressed as
a sum of N squares of quadratic forms as.

d(g) = (vT q1)2 + ... + (vT qN )2 = vT QQT v = vT Gv (3)

where v is a properly chosen vector of monomials, (e.g. [g2
1 g2

2 g2
3 g1g2 g1g3

g2g3]T ), Q = [q1|...|qN ] is a 6 × N matrix by stacking the 6 coefficient vectors
qi and G = QQT is the so called Gram matrix.
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Using this Gram matrix G expression, Eq. (2) can be written as d(g) = vT Gv,
and the correspondence between the 4th-order tensor coefficients Di,j,k of Eq.
(2) and the Gram matrix G can be established as follows:

G =

⎛

⎜⎜⎜⎜⎜⎜⎝

D4,0,0 a b 1
2D3,1,0

1
2D3,0,1 d

a D0,4,0 c 1
2D1,3,0 e 1

2D0,3,1
b c D0,0,4 f 1

2D1,0,3
1
2D0,1,3

1
2D3,1,0

1
2D1,3,0 f D2,2,0 − 2a 1

2D2,1,1 − d 1
2D1,2,1 − e

1
2D3,0,1 e 1

2D1,0,3
1
2D2,1,1 − d D2,0,2 − 2b 1

2D1,1,2 − f
d 1

2D0,3,1
1
2D0,1,3

1
2D1,2,1 − e 1

2D1,1,2 − f D0,2,2 − 2c

⎞

⎟⎟⎟⎟⎟⎟⎠
(4)

where a, b, c, d, e, f are free parameters, i.e for any choice of those parameters
the obtained Gram matrix represents the same 4th-order tensor [13]. According
to Theorem 1, if N = 3 (i.e. Gram matrix G has rank 3) then the whole space
of PSD ternary quartics is spanned. For some specific choices of the parameters
a, b, c, d, e, f of Eq. (4), the rank of matrix G becomes 3 [13]. Powers and Reznick
in [13] worked on finding fundamentally different choices of those parameters that
yield the same given PSD ternary quartic, i.e. in how many different ways can
a ternary quartic be expressed as a sum of squares of three quadratic forms.
However, given a Gram matrix G we can uniquely compute the coefficients
Di,j,k of the tensor (see Eq. (4)). Therefore, we can employ the Gram matrix
method for the estimation of the coefficients Di,j,k of the diffusion tensor from
MR images using the following two steps: 1) first we estimate a Gram matrix G
from the MR signal of the given images, and then 2) we uniquely compute the
coefficients Di,j,k of the 4th-order tensor by using formulas obtained from Eq.
(4). Note that although the estimated matrix G is not unique, the coefficients
Di,j,k are uniquely determined.

In the following section we will employ this Gram matrix method to enforce
the positive semi-definite property of the estimated diffusion tensors from the
diffusion weighted MR images.

2.1 Estimation from DWI

The coefficients Di,j,k of a 4th order diffusion tensor can be estimated from
diffusion-weighted MR images by minimizing the following cost function:

E(Q, S0) =
M∑

i=1

(Si − S0e
−bivT

i QQT vi)2 (5)

where M is the number of the diffusion weighted images associated with gradient
vectors gi and b-values bi; Si is the corresponding acquired signal and S0 is the
zero gradient signal. Using the magnetic field gradient directions gi we construct
the 6-dimensional vectors vi = [g2

i1 g2
i2 g2

i3 gi1gi2 gi1gi3 gi2gi3]T . In Eq. (5), the
4th order diffusion tensor is parameterized using the Gram matrix G = QQT ,
where Q is a 6×N matrix and N ≥ 3 is a predefined constant. In our experiments
we used N = 3, which is justified by Theorem 1. Having estimated the matrix
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Q that minimizes Eq. (5), the coefficients Di,j,k can be computed directly from
the Gram matrix using the relation described by the matrix of Eq. (4). S0 can
either be assumed to be known or estimated simultaneously with the coefficients
Di,j,k by minimizing Eq. (5).

Starting with an initial guess for S0 and Q, we can use any optimization
method in order to minimize Eq. (5). For the optimization schemes that employ
the gradients of Eq. (5) with respect to the unknown coefficients of Q, the
gradient is given by the following equation

∇QE(Q, S0) = 4
M∑

i=1

biS0e
−bivT

i QQT vi(Si − S0e
−bivT

i QQT vi)vT
i viQ (6)

Now given Q at each iteration of the optimization algorithm we can update S0
by again minimizing Eq. (5). The derivative of this equation with respect to the
unknown S0 is

∇S0E(Q, S0) = −2
M∑

i=1

(Si − S0e
−bivT

i QQT vi)e−bivT
i QQT vi (7)

By setting Eq. (7) equal to zero, we derive the following update formula for S0

S0 =
M∑

i=1

Sie
−bivT

i QQT vi/

M∑

i=1

e−2bivT
i QQT vi (8)

In our experiments we used the well known Lavenberg-Marquardt (LM) nonlin-
ear least-squares method, which has advantages over other optimization meth-
ods, in terms of stability and computational burden.

As pointed out earlier, although the coefficients Di,j,k are uniquely estimated,
the Gram matrix parametrization G = QQT is not unique, i.e. there exist dif-
ferent matrices Q which parameterize the same Gram matrix. For example there
are infinitely many matrices Q that yield the same G, due to the orthogonality
property (RRT = I) of the rotation matrices R, where I is the identity matrix.
Thus, in the case that Q is of size 6 × 3, for any 3 × 3 orthogonal matrix R we
have (QR)(QR)T = QQT . In order to reduce this infinite solution space to a
finite set of solutions, which theoretically can be handled by the optimization
techniques, we use the well known QR decomposition of real square matrices to

uniquely decompose any given 6 × 3 matrix Q in the form Q =
[
TR
A

]
, where

all matrices are of size 3 × 3 and specifically T is lower triangular, and R is an

orthogonal matrix. Then by setting R = I we reformulate Q as Q =
[
T
A

]
and

thus the infinitely non-unique issue is replaced by a countably non-uniqueness
issue, which can be handled by the optimization algorithm. Note that using this
formulation there are only 15 unknown parameters in matrix Q, which is equal
to the number of the unknown coefficients Di,j,k of the estimated tensor.
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2.2 Distance Measure

In the previous section we discussed about estimating PSD 4th-order tensors
from DW-MRI data. After having estimated the tensor coefficients Di,j,k, we
can perform tensor regularization across the lattice. The regularization can be
performed by a functional minimization method using the following regulariza-
tion term ∑

j

∑

i∈ηj

dist(Dj ,Di)
2 (9)

where ηj is the set of lattice indices whose distance from lattice index ’j’ is 1.
In the regularization term defined in Eq. (9) we need to employ an appropriate
distance measure between the tensors Di and Dj . Here we use the notation D
in order to denote the set of 15 unique coefficients Di,j,k of a 4th-order tensor.

We can define a distance measure between the 4th-order diffusion tensors D1
and D2 by computing the normalized L2 distance between the corresponding
diffusivity functions d1(g) and d2(g) leading to the equation,

dist(D1,D2)
2 =

1
4π

∫

S2
[d1(g) − d2(g)]2dg (10)

=
1

315
[(Δ4,0,0 + Δ0,4,0 + Δ0,0,4 + Δ2,2,0 + Δ0,2,2 + Δ2,0,2)2 +

4[(Δ4,0,0 + Δ2,2,0)2 + (Δ4,0,0 + Δ2,0,2)2 + (Δ0,4,0 + Δ2,2,0)2 +
(Δ0,4,0 + Δ0,2,2)2 + (Δ0,0,4 + Δ0,2,2)2 + (Δ0,0,4 + Δ2,0,2)2] +

23(Δ2
4,0,0 + Δ2

0,4,0 + Δ2
0,0,4) − 6(Δ2

2,2,0 + Δ2
0,2,2 + Δ2

2,0,2) +

2(Δ4,0,0 + Δ0,4,0 + Δ0,0,4)2 + (Δ2,1,1 + Δ0,3,1 + Δ0,1,3)2 +
(Δ1,2,1 + Δ3,0,1 + Δ1,0,3)2 + (Δ1,1,2 + Δ3,1,0 + Δ1,3,0)2 +

2
[
(Δ3,1,0 + Δ1,3,0)2 + (Δ3,0,1 + Δ1,0,3)2 + (Δ0,3,1 + Δ0,1,3)2

]
+

2(Δ2
3,1,0 + Δ2

3,0,1 + Δ2
1,3,0 + Δ2

0,3,1 + Δ2
1,0,3 + Δ2

0,1,3)]

where, the integral of Eq. (10) is over all unit vectors g, i.e., the unit sphere S2

and the coefficients Δi,j,k are computed by subtracting the coefficients of the
tensor D1 from the corresponding coefficients of the tensor D2.

As shown above, the integral of Eq. (10) can be computed analytically and
the result can be expressed as a sum of squares of the terms Δi,j,k. In this
simple form, this distance measure between 4th-order tensors can be implemented
very efficiently. Note that this distance measure is invariant to rotations in 3-
dimensional space since it was defined as an integral over all directions g.

Another property of the above distance measure is that the average ele-
ment (mean tensor) D̂ of a set of N tensors Di, i = 1 . . .N is defined as the
Euclidean average of the corresponding coefficients of the tensors. This property
can be proved by verifying that D̂ minimizes the sum of squares of distances∑

dist(D,Di)2. Similarly, it can be shown that geodesics (shortest paths) be-
tween 4th-order tensors are defined as Euclidean geodesics.
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3 Experimental Results

In this section we present experimental results on our method applied to sim-
ulated DW-MRI data as well as real DW-MRI data from an isolated rat hip-
pocampus.

In order to motivate the need of the PSD constraint in the 4th-order estimation
process, we performed the following experiment using a synthetic dataset. The
synthetic data was generated by simulating the MR signal from a single fiber us-
ing the realistic diffusion MR simulation model in [15]. Then, we added different
amounts of Riccian noise to the simulated dataset and we estimated the 4th-order
tensors from the noisy data by: a) minimizing

∑M
i=1(Si−S0exp(−bid(gi)))2 with-

out using the proposed parametrization to enforce PSD constraint, by employing
the method in [11] and b) our method, which guarantees the PSD property of
the tensors. (Si is the MR signal of the ith image and S0 is the zero-gradient
signal).

It is known that the estimated 4th-order tensors represent more complex dif-
fusivity profiles with multiple fiber orientations which better approximate the
diffusivity of the local tissue geometry compared to the traditional 2nd-order
tensors [9]. Studies on estimating fiber orientations from the diffusivity profile
have shown that the peaks of the diffusivity profile do not necessarily yield the
orientations of the distinct fiber bundles [10]. One should instead employ the
displacement probability profiles . The displacement probability P (R) is given
by the Fourier integral P (R) =

∫
E(q)exp(−2πiq ·R)dq where q is the recipro-

cal space vector, E(q) is the signal value associated with vector q divided by the
zero gradient signal and R is the displacement vector. In our experiments, we
numerically estimated the displacement probability profiles from the 4th-order
tensors.

Then, we computed the displacement probability profiles of the 4th-order ten-
sors estimated earlier with the two different methods, and we computed the fiber
orientations from the maxima of the probability profiles. The error angles (mean
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Fig. 1. Comparison of the fiber orientation errors for different amount of noise in the
data, obtained by using: a) our parametrization to enforce positivity and b) without
enforcing positivity of the estimated tensors
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and standard deviation) of the two methods for different amount of noise in
the data are plotted in Fig. 1. As expected, our method yields smaller errors in
comparison with the method that does not enforces the PSD property of the ten-
sors. When we increase the amount of noise in the data, the errors observed by
the later method are significantly increased, while our proposed method shows
clearly much smaller errors. This conclusively demonstrates the need for enforc-
ing the PSD property of the estimated tensors and validates the accuracy of our
proposed method.

Furthermore, in order to compare our proposed method with other existing
techniques that do not employ 4th-order tensors, we performed an other exper-
iment using synthetic data. The data were generated for different amounts of
noise by following the same method as previously using the simulated MR signal
of a 2-fiber crossing (see Fig. 2(a)) . We estimated 4th-order tensors from the
corrupted simulated MR signal using our method and then we computed the
fiber orientations from the corresponding probability profiles. For comparison
we also estimated the fiber orientations using the DOT method described in
[10] and the ODF method presented in [6]. For all three methods we computed
the estimated fiber orientation errors for different amount of noise in the data
(shown in Fig. 2(b)). The results conclusively demonstrate the accuracy of our
method, showing small fiber orientation errors (∼ 6o) for typical amount of noise
with signal to noise ratios (SNR): 12.5-16.6. Furthermore, by observing the plot,
we also conclude that the accuracy of our proposed method is very close to that
of the DOT method and is significantly better than the ODF method.

In the following experiments, we used MR data from an isolated rat hippocam-
pus. The diffusion weighted MR images of this dataset were acquired using the
following protocol. This protocol included acquisition of 22 images using a pulsed
gradient spin echo pulse sequence with repetition time (TR) = 1.5 s, echo time
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Fig. 2. Fiber orientation errors for different SNR in the data using our method for the
estimation of positive 4th-order tensors and two other existing methods: 1) DOT and
2) ODF. In the experiment we used simulated MR signal of a 2-fiber crossing, whose
probability profile is shown in (a).
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(TE) = 28.3 ms, bandwidth = 35 kHz, field-of-view (FOV) = 4.5×4.5 mm, ma-
trix = 90 × 90 with 56 continuous 200-μm-thick axial slices (oriented transverse
to the septo-temporal axis of the isolated hippocampus). After the first image set
was collected without diffusion weighting (b ∼ 0 s/mm2), 21 diffusion-weighted
image sets with gradient strength (G) = 415 mT/m, gradient duration (δ) =
2.4 ms, gradient separation (Δ) = 17.8 ms and diffusion time (Tδ) = 17 ms
were collected. Each of these image sets used different diffusion gradients (with
approximate b values of 1250 s/mm2) whose orientations were determined from
the 2nd order tessellation of an icosahedron projected onto the surface of a unit
hemisphere. The image without diffusion weighting had 36 signal averages (time
= 81 min), and each diffusion-weighted image had 12 averages (time = 27 min
per diffusion gradient orientation) to give a total imaging time of 10.8 h per
hippocampus. Temperature was maintained at 20 ± 0.2oC throughout the ex-
periments using the temperature control unit of the magnet previously calibrated
by methanol spectroscopy. Figures 3(a) and 3(b) show the S0 image and the FA
map respectively of a slice extracted from the 3D volume of the above dataset.

(a) (b) (c) (d)

Fig. 3. Isolated rat hipppocampus. a) S0, b) FA, c) White pixels indicate locations
where the estimated 4th-order tensor was not positive-definite, d) Manually labeled
image based on knowledge of hippocampal anatomy. The index of the labels is: 1)
dorsal hippocampal commissure, 2) fimbria, 3) alveus, 4) molecular layer, 5) mixture
of CA3 stratum pyramidale and stratum lucidum.

First, we estimated a 4th-order diffusion tensor field from this dataset by
minimizing

∑M
i=1(Si − S0exp(−bid(gi)))2 without using the proposed parame-

trization to enforce positivity [11]. As expected, some of the estimated tensors
were not positive. In Fig. 3(c) we show in white color the locations where those
non-positive-definite tensors were estimated. These tensors are mainly located
in the regions “dorsal hippocampal commissure”, “fimbria” and “alevus”, which
correspond to the regions 1, 2 and 3 respectively, shown in Fig. 3(d). Based on
knowledge of hippocampal anatomy, those regions are highly anisotropic with
FA ∼ 0.9. Therefore, from the experimental results (Fig. 3(c)) we conclude that
highly anisotropic diffusivities are most likely to be inaccurately approximated
by a non-positive semi-definite tensor. Thus one needs to employ a method that
guarantees the PSD property.
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(a) (b) (c)

Fig. 4. The estimated 4th-order tensor field from an isolated rat hippocampus dataset
using our method. (a) top:S0 and bottom:FA, (b) the estimated displacement proba-
bility profiles of the 4th-order tensor field in the region of interest (ROI) indicated by
a green rectangle in (a). (c)Comparison of the estimated 2nd-order tensors (top)and
the estimated probability profiles of the 4th-order tensors without (middle) and with
regularization (bottom) in a ROI indicated by a black rectangle in (b).

We computed the displacement probability profiles from: a) the 4th-order ten-
sor field estimated previously without the positive-definite constraint, and b) the
4th-order tensor field estimated by our proposed method. In order to compare
the results of the above algorithms, in Fig. 5 we plot the corresponding proba-
bility profiles from a region of interest in the “dorsal hippocampal commissure”.
By observing this figure, we can say that the field of probability profiles is noisy
if we do not enforce the PSD constraint (Fig. 5 middle). On the other hand the
profiles obtained by our method (Fig. 5 right) are more coherent and smooth.
Note that this is a result of enforcing the PSD constraint, since in this experiment
we did not use any regularization. This demonstrates the superior performance
of our algorithm and motivates the use of the proposed PSD constraint.

Finally Fig. 4(b) shows displacement probability profiles computed from the
estimated (by our method) 4th-order tensor field in another region of hippocam-
pus. This tensor field corresponds to the region of interest denoted by a green
rectangle in S0 and FA map shown in Fig. 4a. The X, Y, Z components of the
dominant orientation of each profile are assigned to R, G, B (red, green, blue)
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Fig. 5. Left: The region of interest from the “dorsal hippocampal commissure”, which
is magnified in the next plates of this figure. Comparison between the displacement
probability profiles computed from non-PSD 4th-order tensors (middle) and PSD ten-
sors estimated by our method (right).

components of the color of each surface. By observing Fig. 4(b) we can see several
fiber crossings in different regions of the rat hippocampus. One of those regions
is marked by a black rectangle and it is presented enlarged in Fig. 4(c). This re-
gion is consisted of a mixture of CA3 stratum pyramidale and stratum lucidum,
and it is most likely to contain fiber-crossings. As expected, in the center of this
region there are profiles presenting fiber crossings. These fiber crossings cannot
be resolved by using 2nd-order diffusion tensors estimated from the same dataset
(shown on the top of Fig. 4(c)). Finally in the bottom plate of Fig. 4(c), we show
an example using the regularization term defined in section 2.2. By comparing
the probability profiles shown in this image with those of the middle plate of Fig.
4(c) we can see that the regularization of the estimated data removes some of
the noise in the dataset, and as a consequence some of the crossings are observed
more clearly (see at the center of the image).

4 Conclusions

In diffusion weighted MR imaging 2nd-order tensors have commonly been used
to approximate the diffusivity profile. 4th-order tensors were employed in this
work, showing better approximation capabilities compared to the 2nd-order case.
We presented a method for estimating the coefficients of 4th-order tensors from
diffusion-weighted MR images. Our technique guarantees the positive
semi-definite property of the estimated tensors, which is the main contribution
of our work. This property is essential since non-PSD diffusivity profiles are not
meaningful from the point of view of physics of diffusion. To date, there is no
other reported work in literature which handles this constraint for rank-4 ten-
sors. We applied our proposed algorithm to a real MR dataset from an isolated
rat hippocampus. The superior performance of our method in the experimental
results demonstrates the need for employing the constraint and motivates the
use of our technique. The accuracy of our model was validated by using simu-
lated MR data of fiber crossings, and compared to other existing methods. In
our future work we plan to employ the methods proposed here to extend various
techniques used for the 2nd-order tensor fields such as segmentation, registration
and fiber-tracking, to the space of higher-order tensors.
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Abstract. In this paper an algorithm for atlas-to-image non-rigid regis-
tration based on regional entropy minimization is presented. Tissue class
probabilities in the atlas are registered with the intensities in the target
image. The novel aspect of the paper consists in using tissue class prob-
ability maps that include the three main regions (for the brain, white
matter, gray matter and csf) and a further partitioning thereof. For ex-
ample, gray matter is further subdivided into basal ganglia (each of them
defining its own class) and the rest (of gray matter). This guarantees a
regional entropy minimization instead of just a global one.In other words,
the local labels in the atlas will be adjusted in order to obtain the best
explanation for the intensity distribution in the corresponding subregion
of the target image.

1 Introduction

In medical image analysis, object segmentation is complicated by the complex na-
ture of the 3-D image data and the ambiguity about object boundaries induced
by noise, poor local contrast and all kinds of image artefacts. Traditional low-
level segmentation approaches are therefore in general not sufficient and model-
based approaches are required that incorporate prior knowledge of the shape and
the photometric appearance of the objects in the scene. A powerful approach for
model-based image segmentation is to represent such prior knowledge as an iconic
template or atlas, that is matched to the image under study by a 3-D deformation
field obtained by local non-rigid image registration, such that object labels an-
notated in the atlas are correctly projected onto the anatomically corresponding
structures in the study image. Non-rigid image registration within the context
of atlas-based segmentation involves the optimization of a suitable registration
criterion or similarity measure of the atlas and study images, constrained by an
appropriate regularization to ensure that the resulting deformation field is physi-
cally valid and well behaved depending on the application (e.g. one-to-one, locally
smooth or volume preserving, elastic, viscous, . . . ).

A popular choice for the registration criterion is maximization of mutual infor-
mation (MI) [1]. MI measures the statistical dependence between corresponding
voxel intensities, which is assumed to be maximal when the images are properly
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aligned. The fact that MI is histogram-based rather than intensity-based (the co-
occurrence of intensity values is evaluated, rather than differences between these
values) makes the approach applicable to multimodal registration applications
and more robust against intensity degradations and artifacts in case of unimodal
registration. MI has been shown to yield subvoxel registration accuracy for rigid
body registration of CT, MR and PET brain images [1]. Its extension to non-
rigid registration is an active area of research in the field and several approaches
using different schemes for histogram estimation and spatial regularization of
the deformation field have been proposed [2,3,4] (just to name a few).

The use of mutual information of corresponding voxel intensities as a similar-
ity measure for non-rigid registration in the context of atlas-based segmentation
has some important drawbacks. First of all, it assumes that the atlas contains a
grayscale image template whose intensities are similar (i.e. statistically related)
to the intensities in the study image. This is typically obtained by intensity av-
eraging of a training set of images of different subjects, all co-registered to the
same reference space. Such a template will hence be necessarily biased by the
choice of the reference space and affected by residual geometric (e.g. topologi-
cal) and intensity differences between the registered images, which will induce
local ambiguity in the atlas and in the atlas-to-image registration process it-
self. Moreover, with highly constrained rigid body or affine registration using
MI, evidence about local intensity similarity is combined from all over the im-
age domain in order to find the registration solution that can be expected to
correspond to globally optimal object alignment in the images to be registered.
With intensity-based non-rigid registration, however, local deformations will be
optimized as to maximize local intensity similarity without guarantee that this
indeed also aligns the underlying objects, as the relation between image intensi-
ties and object labels is in general not one to one.

In previous work [5], we introduced a novel information-theoretic registra-
tion criterion that matches probabilistic voxel label information in the atlas di-
rectly to the image intensities in the target image without need for an intensity-
averaged atlas template. The algorithm minimizes the class conditional image
intensity entropy, i.e. the uncertainty about a voxel’s intensity in the study im-
age given its object class derived from the atlas, weighted over all classes. This
is akin to deforming the atlas to match the study image in such a way that
the intensity variance within each class is minimized, however without assuming
that the intensity within each class is normally distributed. The algorithm was
applied and evaluated in the context of atlas-based MR brain image registration
and segmentation, using 4 different atlas classes, namely white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF) and other (OTHER), and a viscous
fluid deformation model for regularization, allowing for large deformations that
are assured to be one to one everywhere [5].

The WM, GM, CSF and OTHER classes relate to a limited number of ob-
jects that are fairly globally distributed over the entire registration domain (in
casu the brain). Hence, intensity information from all over the image domain
pertaining to a single class is combined in a single distribution, which is assumed
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to be spatially stationary. However, the presence of spatial intensity inhomo-
geneity in the image data is not unlikely in case of MR data, which introduces
artificial uncertainty that is not related to the quality of the non-rigid registra-
tion, but to the fact that a single global similarity measure is used where in fact
a more local similarity measure may be more appropriate. Also, when the atlas-
based segmentation is intended to target subcortical structures such as the basal
ganglia, ventricles or corpus callosum, it makes sense to include these objects
specifically in the registration process, rather than only the global tissue classes
(GM, CSF and WM respectively) which they belong to.

In this work, we extend the approach of [5] to include more extensive voxel
label information consisting of a probabilistic atlas with prior spatial distrib-
utions of global tissue classes L1 (WM, GM, CSF, OTHER) and of different
local subregions L2 (basal ganglia, corpus callosum, brain stem, ...). Atlases L1
and L2 are co-registered with each other by construction, but are otherwise
independent. In our case, atlas L1 was obtained by inter-subject averaging of
the WM, GM, CSF and OTHER segmentation maps of a training set of MR
brain images obtained by automated model-based pixel classification using the
algorithm of [6], while atlas L2 was obtained by applying the same averaging
process on manual expert delineations of subcortical structures in these same
images, as described in [7]. Hence, each tissue L1 is divided in anatomical sub-
regions L2. Likewise, each anatomical region L2 may consist of different tissue
classes L1. Our method assume that the image intensities in the study image
should have minimal entropy (i.e. be maximally clustered) within each subregion
r ∈ L1 × L2.

Encoding the labels L1 and L2 on a same axis (therefore in a 2D histogram),
would first require a remapping of all labels onto Lk, where k represents the
combination of all possible regions i, in labels L1 and j in labels L2. However
this wouldn’t imply any computational simplification and would furthermore
yield a less easy generalizable model when dealing with more than 2 label sets.

2 Material and Methods

2.1 Joint Histogram Definition

In a previous work [5], we introduced a registration algorithm where probabilis-
tic atlas labels, for white matter, gray matter and csf, where registered with
intensities in a target image. The joint histogram defined there, was character-
ized by a number of columns equal to number of intensity bins used to represent
the histogram of the target image and a number of rows corresponding to the
number of prior classes coming with atlas (four classes: white and gray matter,
csf and the rest class).In this work, we extend such approach by using ulterior
atlas knowledge. In fact, we have at our disposal not only prior distributions
for the main brain regions (already mentioned) but also for different subregions.
This gives us the possibility to further partition each main region into different
relevant structures. For example, the gray matter prior is subdivided into basal
ganglia and cortex.
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This new prior information is used to build a 3D joint histogram h, where the
third dimension has a number of entries equal to the total number of subregions
used. In our experiments we had 25 different subregions, including nucleus cau-
date (left and right), hippocampus (left and right), ventricles (different horns,
left and right) and corpus callosum, just to name a few. These regions were se-
lected because of their particular clinical interest. Figure 1 shows a schematic
representation of the histogram.

Fig. 1. Sketch of the 3D joint histogram

The joint histogram h has the following expression:

h(r, l1, l2) =
N∑

i=1

8∑

n=1

wi,jn(i).δ(r − ri).cjn(i),l1 .cjn(i),l2 (1)

with wi,jn(i) the trilinear interpolation weights of yi with respect to the its eight
nearest neighbors jn(i), n = 1, ...8, on the grid of the template (atlas) image,
cjn(i),l1 the probability for label l1 (main region) at voxel j in the atlas, cjn(i),l2
the probability for label l2 (sub-partition) and δ(r − ri) = 1 if r = ri, zero
otherwise. Furthermore the following holds:

∑

l1

cjn(i),l1 = 1 ,

∑

l2

cjn(i),l2 = 1

As it can be seen from the previous formula, given a contribution to a par-
ticular main class with label l1, this contribution will be further divided into
different labels l2.

Figure 2 shows the atlas used in the registration algorithm. The main prior
distributions (white matter etc,) and (some of) the substructures, are shown.
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Fig. 2. Representation of the atlas priors for the main regions (left column) and for
the substructures (right column). Top: white matter and corpus callosum; middle: gray
matter and caudate nuclea; bottom: csf and lateral ventricles.
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2.2 Similarity Measure and Its Derivative

In the algorithm we discuss in this paper, minimization of local entropy is used
as similarity measure for the registration. The entropy is defined as follows:

H =
∑

l1

∑

l2

H(r|l1, l2)p(l1, l2) (2)

where l1 and l2 represent the two sets of labels (the main and the sub partition).
H(r|l1, l2) is the conditional entropy of having a certain intensity i, given the
labels l1 and l2. In the following we will recompute the expression of the entropy
as a function of the histogram, as it was defined in the previous section.

The conditional entropy can be written as:

H(r|l1, l2) = −
∑

r

p(r|l1, l2)log2p(r|l1, l2) (3)

where we introduced the conditional probability p(r|l1, l2) of having intensity r,
given the labels l1 and l2. This probability can be written as function of the joint
histogram as follows:

p(r|l1, l2) =
p(r, l1, l2)
p(l1, l2)

(4)

where the following holds:

p(r, l1, l2) =
h(r, l1, l2)

N

and

p(l1, l2) =
∑

r h(r, l1, l2)
N

h being, as already mentioned, the joint histogram and N the total number of
voxels, also obtained from h:

N =
∑

r

∑

l1

∑

l2

h(r, l1, l2)

We can now rewrite the entropy as a function of the joint histogram:

H = −
∑

r

∑

l1

∑

l2

p(r, l1, l2)
p(l1, l2)

log2
p(r, l1.l2)
p(l1, l2)

p(l1, l2) (5)

= −
∑

r

∑

l1

∑

l2

p(r, l1, l2)log2
p(r, l1.l2)
p(l1, l2)

=
∑

r

∑

l1

∑

l2

p(r, l1, l2)log2
p(l1.l2)

p(r, l1, l2)
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Last we can introduce h explicitly:

H =
1
N

∑

r

∑

l1

∑

l2

h(r, l1, l2)log2

∑
r h(r, l1, l2)
h(r, l1, l2)

(6)

Starting from this last expression, we can compute the variation of the entropy
for a small spatial displacement ui:

∂H

∂ui
=

∂H

∂h

∂h

∂ui
(7)

We start computing the first term. We have:

∂H

∂h
=

1
N

log2
h(l1, l2)

h(r, l1, l2)
− 1

N

h(r, l1, l2)
h(l1, l2)

h(l1, l2)
h(i, l1, l2)

+
∂H

∂N

∂N

∂h
+

∂H

∂h(l1, l2)
∂h(l1ml2)

∂h

where, for sake of generality, we assumed that the number of voxels can change
during the registration. The second term can be rewritten as:

∂H

∂N

∂N

∂h
= −H

N

where we exploited the fact that
N =

∑
r

∑
l1

∑
l2

h(r, l1, l2) and therefore ∂N
∂h = 1.

The last term in equation 9 can be reformulated as:

∂H

∂h(l1, l2)
∂h(l1, l2)

∂h
=

1
N

∑
r h(r, l1, l2)
h(l1, l2)

where in this case we used the fact that h(l1, l2) =
∑

r h(r, l1, l2) and also
∂h(l1,l2)

∂h = 1.
The term ∂h

∂ui
is easily computed. If we use trilinear interpolation to compute

the joint histogram, we obtain:

∂h

∂ui
=

N∑

i=1

8∑

n=1

δwi,jn(i)

∂ui
.δ(r − ri).cjn(i),l1 .cjn(i),l2 (8)

which is still a joint histogram with the trilinear weights given by the spatial
derivatives of the original weights.

2.3 Viscous Fluid Regularization

Allowing each voxel i to be displaced independently of all others by ui is likely to
yield deformation fields that are physically not acceptable, such that some form
of regularization is required to impose local smoothness. We adopt the free-form
registration approach of [5] and use the force fields F as derived in the previous
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section (as the derivative of the similarity measure) to drive a viscous fluid
regularizer by iteratively solving its simplified Navier-Stokes governing equation:

∇2v + ∇ (∇.v) + F (x, u) = 0 (9)

with v(x, t) the deformation velocity experienced by a particle at position x and
time point t. An approximate solution of (9) is obtained by convolution with a
spatial Gaussian kernel ψσ characterized by a (spatially isotropic) variance σ:

v = ψσ � F (10)

The deformation field u(k+1) at iteration (k + 1) is found by integration over
time:

R(k) = v(k) −
3∑

i=1

v
(k)
i

[
∂u(k)

∂xi

]
(11)

u(k+1) = u(k) + R(k).Δt (12)

The time step Δt is constrained by Δt ≤ max(‖R‖).Δu, with Δu the maximal
voxel displacement that is allowed in one iteration. Regridding and template
propagation are used to preserve topology.

2.4 Image Database

The set of 20 high-resolution normal brain MR images (10 females, 10 males,
median age 31 years) used in this study for atlas construction and validation was

(a) (b)

Fig. 3. (a) Manual segmentation for two images in the database; (b) Maximum proba-
bility label image of the AT3 atlas constructed from statistical probabilistic anatomical
maps of 49 regions computed from the 20 segmentations in the database
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acquired at Hammersmith Hospital, Imperial College London, UK [8]. All images
have voxel sizes around 0.937 mm3 and image dimensions of [165−195]× [198−
199]× [155−175]. Each brain was manually segmented into 49 sub-structures as
illustrated in figure 3. These include major brain structures such as the ventricles,
cerebellum or corpus callosum, as well as the major lobes and gyri and the deep
gray matter structures such as hippocampus, putamen, caudate nucleus and
thalamus.

The images are first globally aligned by affine registration of each image to
our own T1-weighted MR template (atlas) using maximization of mutual infor-
mation [1].

In a second step our T1-weighted MR template was registered to the 20 im-
ages, using the algorithm discussed here.

2.5 First Results

In this section we will show some first results of the new algorithm and especially
try to show the effect of local entropy minimization, in different brain substruc-
tures. In all our experiments white matter, gray matter, csf and ’rest’,were used
as main classes and the following substructures (in total 25) were included to
define the third dimension of the joint histogram:

-Brain stem
-Corpus callosum
-Hippocampus (left and right apart)
-Amygdala (left and right apart)
-Basal ganglia (left and right apart)
-Ventricles (left and right and frontal/temporal apart)

Along with these substructures the respective complementary structures were
also used (for example, white matter was partitioned in brain stem, corpus cal-
losum and the rest of white matter as complementary region). At each voxel

Table 1. Overlap coefficients, averaged over 20 registrations, after affine (left column),
IC non-rigid (second column) registration and ICC registration. Significance values
(issued from a t-test) are also shown.

Affine registration IC registration ICC registration t-test p value

Hippocampus 69.98 76.81 78.07 0.016

Amygdala 72.81 78.56 76.89 0.058

Brain Stem 87.38 92.87 91.98 0.003

Caudate Nucleus 75.98 81.10 83.80 0.000

Nucleus Accumbens 57.38 63.11 62.50 0.691

Putamen 75.55 72.25 76.41 0.006

Thalamus 82.97 81.98 88.15 0.000

Globus Pallidum 70.22 66.77 74.44 0.000

Corpus Callosum 74.20 84.07 83.88 0.669

Ventricles 56.24 70.78 72.23 0.000
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Fig. 4. Conditional histograms for white matter, gray matter, csf (right column) and
three of their substructures (left column). Top: corpus callosum and white matter;
middle: caudate nucleus and gray matter; bottom: lateral ventricle and csf.

the sum over all substructures was equal to one such that the probability of the
main regions, at that place, was preserved.

Figure 4 shows the change in entropy for two different substructures, after
affine and non-rigid registration. As it can be seen (especially in the white matter
and csf substructures), the presented algorithm determines an important re-
clustering of the intensity profiles for different substructures. This is equivalent
to a local minimization of the conditional entropy of the intensities, given the
labels. This effect is less evident in the caudate nucleus (although still present)
because of the smaller number of voxels included in this region.
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Fig. 5. Overlay of the corpus callosum and the anatomical (T1 MPRAGE) image. Top:
ground truth (manual delineation); middle: result after affine registration; bottom:
result after non-rigid registration.
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Table 1 shows the overlap coefficient, for different registration algorithms. In
particular, we considered affine registration, IC registration and ICC registration,
averaged over 20 experiments. The IC algorithm was introduced in a previous
work of our group and uses what we called hybrid mutual information, as simi-
larity measure (IC stands for intensities vs class probabilities). Atlas priors are
registered onto intensity histogram of the study image. The ICC algorithm is
the one introduced in this paper.

In figure 5 we show the segmentation of the corpus callosum overlaid on top
of the the anatomical image, after affine and non-rigid registration.

3 Discussion and Conclusion

In this paper we presented a novel non-rigid registration similarity measure based
on minimization of regional conditional entropy. With respect to other methods
where heuristic rules are used to determine the extension of the neighborhoods
where the entropy is minimized, we propose here a global measure that implicitly
minimizes entropy in different anatomical related substructures. The minimiza-
tion of conditional entropy approach presented in this work, is equivalent to
maximization of mutual information between the reference image intensities, on
one side, and the atlas labels, on the other one.

The advantages of this approach are twofold: on the one hand the optimization
is, as told, global, which should ensure an increased robustness of the method; on
the other hand only anatomical relevant substructures are taken into account in
the registration process, instead of fictitious partitions (i.e. not anatomy related)
of the image. We can enforce local (i.e. anatomy related) entropy minimization in
cortical subregions along with entropy minimization in the more global regions
(such as, in our experiments, WM, GM and CSF). This is not possible when
using standard mutual information, where only a single joint histogram is used
for the entire image.

Moreover, our approach yields a segmentation of the study image in both
global tissue classes as well as in subcortical regions (nucleus caudate, corpus
callosum, etc. in our application). The potential thereof for atlas-based segmen-
tation will be investigated in further work, along with an extended comparison
with state-of-the-art algorithms, such as HAMMER [9].
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Abstract. This paper presents a new method for constructing compact
statistical point-based models of ensembles of similar shapes that does
not rely on any specific surface parameterization. The method requires
very little preprocessing or parameter tuning, and is applicable to a wider
range of problems than existing methods, including nonmanifold surfaces
and objects of arbitrary topology. The proposed method is to construct
a point-based sampling of the shape ensemble that simultaneously max-
imizes both the geometric accuracy and the statistical simplicity of the
model. Surface point samples, which also define the shape-to-shape corre-
spondences, are modeled as sets of dynamic particles that are constrained
to lie on a set of implicit surfaces. Sample positions are optimized by gra-
dient descent on an energy function that balances the negative entropy
of the distribution on each shape with the positive entropy of the en-
semble of shapes. We also extend the method with a curvature-adaptive
sampling strategy in order to better approximate the geometry of the
objects. This paper presents the formulation; several synthetic exam-
ples in two and three dimensions; and an application to the statistical
shape analysis of the caudate and hippocampus brain structures from
two clinical studies.

1 Introduction

Statistical analysis of sets of similar shapes requires quantification of shape dif-
ferences, which is a fundamentally difficult problem. One widely used strategy
for computing shape differences is to compare the positions of corresponding
points among sets of shapes, often with the goal of producing a statistical model
of the set that describes a mean and modes of variation. Medical or biologi-
cal shapes, however, are typically derived from the interfaces between organs or
tissue types, and usually defined implicitly in the form of segmented volumes,
rather than explicit parameterizations or surface point samples. Thus, no a pri-
ori relationship is defined between points across surfaces, and correspondences
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must be inferred from the shapes themselves, which is a difficult and ill-posed
problem.

Until recently, correspondences for shape statistics were established manually
by choosing small sets of anatomically significant landmarks on organs or regions
of interest, which would then serve as the basis for shape analysis. The demand
for more detailed analyses on ever larger populations of subjects has rendered
this approach unsatisfactory. Brechbühler et al. pioneered the use of spherical
parameterizations for shape analysis that can be used to implicitly establish
relatively dense sets of correspondences over an ensemble of shape surfaces [1].
Their methods, however, are purely geometric and seek only consistently reg-
ular parameterizations, not optimal correspondences. Davies et al. [2] present
methods for optimizing correspondences among point sets that are based on
the information content of the set, but these methods still rely on mappings
between fixed spherical surface parameterizations. Most shapes in medicine or
biology are not derived parametrically, so the reliance on a parameterization
presents some significant drawbacks. Automatic selection of correspondences for
nonparametric, point-based shape models has been explored in the context of
surface registration [3], but because such methods are typically limited to pair-
wise correspondences and assume a fixed set of surface point samples, they are
not sufficient for the analysis of sets of segmented volumes. Several methods
have been proposed that warp a set of images to a reference image, establishing
correspondence among images through the deformations [4,5]. These methods
are purely image based, however, and do not deal with the problem of select-
ing surface landmarks for correspondence or establishing geometrically accurate
surface samplings.

This paper presents a new method for extracting dense sets of correspon-
dences that also optimally describes ensembles of similar shapes. The proposed
method is nonparametric, and borrows technology from the computer graph-
ics literature by representing surfaces as discrete point sets. The method it-
eratively distributes sets of dynamic particles across an ensemble of surfaces
so that their positions optimize the information content of the system. This
strategy is motivated by a recognition of the inherent tradeoff between geomet-
ric accuracy (a good sampling) and statistical simplicity (a compact model).
Our assertion is that units of information associated with the model implied
by the correspondence positions should be balanced against units of informa-
tion associated with the individual surface samplings. This approach provides
a natural equivalence of information content and reduces the dependency on
ad-hoc regularization strategies and free parameters. Since the points are not
tied to a specific parameterization, the method operates directly on volumet-
ric data, extends easily to higher dimensions or arbitrary shapes, and provides
a more homogeneous geometric sampling as well as more compact statistical
representations. The method draws a clear distinction between the objective
function and the minimization process, and thus can more readily incorporate
additional information such as high-order geometric information for adaptive
sampling.
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2 Related Work

The strategy of finding parameterizations that minimize information content
across an ensemble was first proposed by Kotcheff and Taylor [6], who represent
each two-dimensional contour as a set of N samples taken at equal intervals from
a parameterization. Each shape is treated as a point in a 2N -dimensional space,
with associated covariance Σ and cost function,

∑
k log(λk + α), where λk are

the eigenvalues of Σ, and α is a regularization parameter that prevents the very
thinnest modes (smallest eigenvalues) from dominating the process. This is the
same as minimizing log |Σ + αI|, where I is the identity matrix, and | · | denotes
the matrix determinant.

Davies et al. [2] propose a cost function for 2D shapes based on minimum
description length (MDL). They use quantization arguments to limit the ef-
fects of thin modes and to determine the optimal number of components that
should influence the process. They propose a piecewise linear reparameteriza-
tion and a hierarchical minimization scheme. In [7] they describe a 3D extension
to the MDL method, which relies on spherical parameterizations and subdivi-
sions of an octahedral base shape, with smoothed updates that are represented
as Cauchy kernels. The parameterization must be obtained through another
process such as [1], which relaxes a spherical parameterization onto an input
mesh. The overall procedure requires significant data preprocessing, including a
sequence of optimizations—first to establish the parameterization and then on
the correspondences—each of which entails a set of free parameters or inputs in
addition to the segmented volumes. A significant concern with the basic MDL
formulation is that the optimal solution is often one in which the correspon-
dences all collapse to points where all the shapes in the ensemble happen to be
near (e.g., crossings of many shapes). Several solutions have been proposed [7,8],
but they entail additional free parameters and assumptions about the quality of
the initial parameterizations.

The MDL formulation is mathematically related to the min-log |Σ + αI| ap-
proach, as noted by Thodberg[8]. Styner et al. [9] describe an empirical study
that shows ensemble-based statistics improve correspondences relative to pure
geometric regularization, and that MDL performance is virtually the same as
that of min-log |Σ +αI|. This last observation is consistent with the well-known
result from information theory: MDL is, in general, equivalent to minimum
entropy [10].

Another body of relevant work is the recent trend in computer graphics to-
wards representing surfaces as scattered collections of points. The advantage of
so-called point-set surfaces is that they do not require a specific parameterization
and do not impose topological limitations; surfaces can be locally reconstructed
or subdivided as needed [11]. A related technology in the graphics literature is
the work on particle systems, which can be used to manipulate or sample [12] im-
plicit surfaces. A particle system manipulates large sets of particles constrained
to a surface using a gradient descent on radial energies that typically fall off with
distance. The proposed method uses a set of interacting particle systems, one for
each shape in the ensemble, to produce optimal sets of surface correspondences.
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3 Methods

3.1 Entropy-Based Surface Sampling

We treat a surface as a subset of �d, where d = 2 or d = 3 depending whether
we are processing curves in the plane or surfaces in a volume, respectively. The
method we describe here deals with smooth, closed manifolds of codimension
one, and we will refer to such manifolds as surfaces. We will discuss the ex-
tension to nonmanifold curves and surfaces in Section 5. We sample a surface
S ⊂ �d using a discrete set of N points that are considered random vari-
ables Z = (X1, X2, . . . , XN) drawn from a probability density function (PDF),
p(X). We denote a realization of this PDF with lower case, and thus we have
z = (x1, x2, . . . , xN ), where z ∈ SN . The probability of a realization x is
p(X = x), which we denote simply as p(x).

The amount of information contained in such a random sampling is, in the
limit, the differential entropy of the PDF, which is H [X ] = −

∫
S p(x) log p(x)dx=

−E{log p(X)}, where E{·} is the expectation. When we have a sufficient number
of points sampled from p, we can approximate the expectation by the sample
mean [10], which gives H [X ] ≈ −(1/N)

∑
i log p(xi). We must also estimate

p(xi). Density functions on surfaces can be quite complex, and so we use a
nonparametric, Parzen windowing estimation of this density using the particles
themselves. Thus we have

p(xi) ≈ 1
N(N − 1)

N∑

j=1,j �=i

G(xi − xj , σi) (1)

where G(xi −xj , σi) is a d-dimensional, isotropic Gaussian with standard devia-
tion σi. The cost function C, is therefore an approximation of (negative) entropy:
−H [X ] ≈ C(x1, . . . , xN ) =

∑
i log 1

N(N−1)

∑
j �=i G(xi − xj , σi),

In this paper, we use a gradient-descent optimization strategy to manipulate
particle positions. The optimization problem is given by:

ẑ = arg min
z

E(z) s.t. x1, . . . , xN ∈ S. (2)

The negated gradient of C is

− ∂C

∂xi
=

1
σ2

i

∑N
j �=i(xi − xj)G(xi − xj , σi)

∑N
j �=i G(xi − xj , σi)

= σ−2
i

N∑

j �=i

(xi − xj)wij , (3)

where
∑

j wij = 1. Thus to minimize C, the surface points (which we will call
particles) must move away from each other, and we have a set of particles moving
under a repulsive force and constrained to lie on the surface. The motion of each
particle is away from all of the other particles, but the forces are weighted by a
Gaussian function of inter-particle distance. Interactions are therefore local for
sufficiently small σ. We use a Jacobi update with forward differences, and thus
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each particle moves with a time parameter and positional update xi ← xi−γ ∂C
∂xi

,
where γ is a time step and γ < σ2 for stability.

The preceding minimization produces a uniform sampling of a surface. For
some applications, a strategy that samples adaptively in response to higher order
shape information is more effective. From a numerical point of view, the mini-
mization strategy relies on a degree of regularity in the tangent planes between
adjacent particles, which argues for sampling more densely in high curvature
regions. High-curvature features are also considered more interesting than flat
regions as important landmarks for biological shapes. To this end, we extend
the above uniform sampling method to adaptively oversample high-curvature
regions by modifying the Parzen windowing in Eqn. 1 as follows

p̃(xi) ≈ 1
N(N − 1)

N∑

j=1,j �=i

G

(
1
kj

(xi − xj), σi

)
(4)

where kj is a scaling term proportional to the curvature magnitude computed at
each neighbor particle j. The effect of this scaling is to warp space in response to
local curvature. A uniform sampling based on maximum entropy in the warped
space translates into an adaptive sampling in unwarped space, where points pack
more densely in higher curvature regions. The extension of Eqn 3 to incorporate
the curvature-adaptive Parzen windowing is straightforward to compute since
kj is not a function of xi, and is omitted here for brevity.

There are many possible choices for the scaling term k. Meyer, et al. [13]
describe an adaptive surface sampling that uses the scaling ki = 1+ρκi( s

2π )
1
2 s cos(π/6) ,

where κi is the root sum-of-squares of the principal curvatures at surface location
xi. The user-defined variables s and ρ specify the ideal distance between particles
on a planar surface, and the ideal density of particles per unit angle on a curved
surface, respectively. Note that the scaling term in this formulation could easily
be modified to include surface properties other than curvature.

The surface constraint in both the uniform and adaptive optimizations is
specified by the zero set of a scalar function F (x). This constraint is maintained,
as described in several papers [12], by projecting the gradient of the cost function
onto the tangent plane of the surface (as prescribed by the method of Lagrange
multipliers), followed by iterative reprojection of the particle onto the nearest
root of F by the method of Newton-Raphson. Principal curvatures are computed
analytically from the implicit function as described in [14]. Another aspect of this
particle formulation is that it computes Euclidean distance between particles,
rather than the geodesic distance on the surface. Thus, we assume sufficiently
dense samples so that nearby particles lie in the tangent planes of the zero sets of
F . This is an important consideration; in cases where this assumption is not valid,
such as highly convoluted surfaces, the distribution of particles may be affected
by neighbors that are outside of the true manifold neighborhood. Limiting the
influence of neighbors whose normals differ by some threshold value (e.g. 90
degrees) does limit these effects. The question of particle interactions with more
general distance measures remains for future work.
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Finally, we must choose a σ for each particle, which we do automatically, be-
fore the positional update, using the same optimality criterion described above.
The contribution to C of the ith particle is simply the probability of that particle
position, and optimizing that quantity with respect to σ gives a maximum likeli-
hood estimate of σ for the current particle configuration. We use Newton-Raphson
to find σ such that ∂p(xi, σ)/∂σ = 0, which typically converges to machine pre-
cision in several iterations. For the adaptive sampling case, we find σ such that
∂p̃(xi, σ)/∂σ = 0, so that the optimal σ is scaled locally based on the curvature.

There are a few important numeri-

Fig. 1. A system of 100 particles on a
sphere, produced by particle splitting

cal considerations. We must truncate
the Gaussian kernels, and so we use
G(x, σ) = 0 for |x| > 3σ. This means
that each particle has a finite radius
of influence, and we can use a spatial
binning structure to reduce the com-
putational burden associated with

particle interactions. If σ for a particle is too small, a particle will not interact
with its neighbors at all, and we cannot compute updates of σ or position. In this
case, we update the kernel size using σ ← 2 × σ, until σ is large enough for the
particle to interact with its neighbors. Another numerical consideration is that
the system must include bounds σmin and σmax to account for anomalies such as
bad initial conditions, too few particles, etc. These are not critical parameters.
As long as they are set to include the minimum and maximum resolutions, the
system operates reliably.

The mechanism described in this section is, therefore, a self tuning system
of particles that distribute themselves using repulsive forces to achieve optimal
distributions, and may optionally adjust their sampling frequency locally in re-
sponse to surface curvature. For this paper we initialize the system with a single
particle that finds the nearest zero of F , then splits (producing a new, nearby
particle) at regular intervals until a specific number of particles are produced
and reach a steady state. Figure 1 shows this process on a sphere.

3.2 The Entropy of the Ensemble

An ensemble E is a collection of M surfaces, each with their own set of parti-
cles, i.e. E = z1, . . . , zM . The ordering of the particles on each shape implies a
correspondence among shapes, and thus we have a matrix of particle positions
P = xk

j , with particle positions along the rows and shapes across the columns.
We model zk ∈ �Nd as an instance of a random variable Z, and propose to
minimize the combined ensemble and shape cost function

Q = H(Z) −
∑

k

H(P k), (5)

which favors a compact ensemble representation balanced against a uniform dis-
tribution of particles on each surface. The different entropies are commensurate
so there is no need for ad-hoc weighting of the two function terms.



Shape Modeling and Analysis with Entropy-Based Particle Systems 339

For this discussion we assume that the complexity of each shape is greater
than the number of examples, and so we would normally choose N > M . Given
the low number of examples relative to the dimensionality of the space, we must
impose some conditions in order to perform the density estimation. For this
work we assume a normal distribution and model p(Z) parametrically using a
Gaussian with covariance Σ. The entropy is then given by

H(Z) ≈ 1
2

log |Σ| =
1
2

Nd∑

j=1

log λj , (6)

where λ1, ..., λNd are the eigenvalues of Σ.
In practice, Σ will not have full rank, in which case the entropy is not finite.

We must therefore regularize the problem with the addition of a diagonal matrix
αI to introduce a lower bound on the eigenvalues. We estimate the covariance
from the data, letting Y denote the matrix of points minus the sample mean
for the ensemble, which gives Σ = (1/(M − 1))Y Y T . Because N > M , we
perform the computations on the dual space (dimension M), knowing that the
determinant is the same up to a constant factor of α. Thus, we have the cost
function G associated with the ensemble entropy:

log |Σ| ≈ G(P ) = log
∣∣∣∣

1
M − 1

Y T Y,

∣∣∣∣ and − ∂G

∂P
= Y (Y T Y + αI)−1. (7)

We now see that α is a regularization on the inverse of Y T Y to account for the
possibility of a diminishing determinant. The negative gradient −∂G/∂P gives
a vector of updates for the entire system, which is recomputed once per system
update. This term is added to the shape-based updates described in the previous
section to give the update of each particle:

xk
j ← γ

[
−∂G/∂xk

j + ∂Ek/∂xk
j

]
. (8)

The stability of this update places an additional restriction on the time steps,
requiring γ to be less than the reciprocal of the maximum eigenvalue of (Y T Y +
αI)−1, which is bounded by α. Thus, we have γ < α, and note that α has the
practical effect of preventing the system from slowing too much as it tries to
reduce the thinnest dimensions of the ensemble distribution. This also suggests
an annealing approach for computational efficiency (which we have used in this
paper) in which α starts off somewhat large (e.g., the size of the shapes) and is
incrementally reduced as the system iterates.

The choice of a Gaussian model for p(Z = z) is not critical for the proposed
method. The framework easily incorporates either nonparametric, or alternate
parametric models. In this case, the Gaussian model allows us to make direct
comparisons with the MDL method, which contains the same assumptions. Re-
search into alternative models for Z is outside the scope of this paper and remains
of interest for future work.
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3.3 A Shape Modeling Pipeline

The particle method outlined in the preceding sections may be applied directly
to binary segmentation volumes, which are often the output of a manual or
automated segmentation process. A binary segmentation contains an implicit
shape surface at the interface of the labeled pixels and the background. Any
suitably accurate distance transform from that interface may be used to form the
implicit surface necessary for the particle optimization. Typically, we use a fast-
marching algorithm [15], followed by a slight Gaussian blurring to remove the
high-frequency artifacts that can occur as a result of numerical approximations.

A collection of shape segmentations must often be aligned in a common co-
ordinate frame for modeling and analysis. We first align the segmentations with
respect to their centers of mass and the orientation of their first principal eigen-
vectors. Then, during the optimization, we further align shapes with respect
to rotation and translation using a Procrustes algorithm [16], applied at regu-
lar intervals after particle updates. Because the proposed method is completely
generalizable to higher dimensions, we are able to process shapes in 2D and 3D
using the same C++ software implementation, which is templated by dimension.
For all the experiments described in this paper, the numerical parameter σmin is
set to machine precision and σmax is set to the size of the domain. For the an-
nealing parameter α, we use a starting value roughly equal to the diameter of an
average shape and reduce it to machine precision over several hundred iterations.
Particles are initialized on each shape using the splitting procedure described in
Section 3.1, but are distributed under the full correspondence optimization to
keep corresponding points in alignment. We have found these default settings to
produce reliably good results that are very robust to the initialization. Process-
ing time on a 2GHz desktop machine scales linearly with the number of particles
in the system and ranges from 20 minutes for a 2D system of a few thousand
particles to several hours for a 3D system of tens of thousands of particles.

4 Results

This section details several experiments designed to validate the proposed
method. First, we compare models generated using the particle method with
models generated using MDL for two synthetic 2D datasets. Next, a simple
experiment on tori illustrates the applicability of the method to nonspherical
topologies. Finally, we apply the method to a full statistical shape analysis of
several 3D neuroanatomical structures from published clinical datasets.

Fig. 2. The box-bump experiment

We begin with two experiments
on closed curves in a 2D plane and a
comparison with the 2D open-source
Matlab MDL implementation given
by Thodberg [8]. In the first experi-
ment, we used the proposed, particle
method to optimize 100 particles per
shape under uniform sampling on 24
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Fig. 3. The mean and ±3 std. deviations of the top 3 modes of the hand models.

box-bump shapes, similar to those described in [8]. Each shape was constructed
as a fast-marching distance transform from a set of boundary points using cubic
b-splines with the same rectangle of control, but with a bump added at a random
location along the top of its curve. This example is interesting because we would,
in principle, expect a correspondence algorithm that is minimizing information
content to discover this single mode of variability in the ensemble.

MDL correspondences were computed using 128 nodes and mode 2 of the Mat-
lab software, with all other parameters set to their defaults (see [8] for details).
Principal component analysis identified a single dominant mode of variation for
each method, but with different degrees of leakage into orthogonal modes. MDL
lost 0.34% of the total variation from the single mode, while the proposed method
lost only 0.0015%. Figure 2 illustrates the mean and three standard deviations
of the first mode of the two different models. Shapes from the particle method
remain more faithful to those described by the original training set, even out to
three standard deviations where the MDL description breaks down. A striking
observation from this experiment is how the relatively small amount of variation
left in the minor modes of the MDL case produce such a significant effect on the
results of shape deformations along the major mode.

The second experiment was conducted on the set of 18 hand shape contours
described in [2], again applying both the particle method and MDL using the
same parameters as described above. Distance transforms from from spline-based
contour models again form the inputs. In this case, we also compared results with
a set of ideal, manually selected correspondences, which introduce anatomical
knowledge of the digits. Figure 3 compares the three resulting models in the
top three modes of variation to ±3 standard deviations. A detailed analysis of
the principal components showed that the proposed particle method and the
manually selected points both produce very similar models, while MDL differed
significantly, particularly in first three modes.

Non-spherical Topologies. Existing 3D MDL implementations rely on spher-
ical parameterizations, and are therefore only capable of analyzing shapes topo-
logically equivalent to a sphere. The particle-based method does not have this
limitation. As a demonstration of this, we applied the proposed method to a set



342 J. Cates et al.

Mean Mode 1 (-3) Mode 1 (+3) Mode 2 (-3) Mode 2 (+3)

Fig. 4. Right hippocampus model mean and ±3 standard deviations in two modes

of 25 randomly chosen tori, drawn from a 2D, normal distribution parameterized
by the small radius r and the large radius R. Tori were chosen from a distribu-
tion with mean r = 1, R = 2 and σr = 0.15, σR = 0.30, with a rejection policy
that excluded invalid tori (e.g., r > R). We optimized the correspondences using
a uniform sampling and 250 particles on each shape. An analysis of the resulting
model showed that the particle system method discovered the two pure modes
of variation, with only 0.08% leakage into smaller modes.

Shape Analysis of Neuroanatomical Structures. As a further validation
of the particle method, we performed hypothesis testing of group shape dif-
ferences on data from two published clinical studies. The first study addresses
the shape of the hippocampus in patients with schizophrenia. The data consists
of left and right hippocampus shapes from 56 male adult patients versus 26
healthy adult male controls, segmented from MRI using a template-based semi-
automated method [17]. The second study addresses the shape of the caudate
in males with schizo-typal personality disorder. The data consists of left and
right caudate shapes from 15 patients and 14 matched, healthy controls, and
was manually segmented from MRI brain scans of the study subjects by clinical
experts [18]. All data is normalized with respect to intercranial volume.

For each study, we aligned and processed the raw binary segmentations as de-
scribed in Section 3.3, including Procrustes registration. Models were optimized
with 1024 correspondence points per shape and the curvature-adaptive sampling
strategy, which proved more effective than uniform sampling. Separate models
were created for left and right structures using the combined data from patient
and normal populations. Models were generated without knowledge of the shape
classifications so as not to bias the correspondences to one class or the other. On
inspection, all of the resulting models appear to be of good quality; each major
mode of variation describes some plausible pattern of variation observed in the
training data. As an example, Figure 4 shows several surface meshes of shapes
generated from the pointsets of the right hippocampus model.

After computing the models, we applied statistical tests for group differences
at every surface point location. The method used is a nonparametric permutation
test of the Hotelling T 2 metric with false-discovery-rate (FDR) correction, and
is described in [19]. We used the open-source implementation of the algorithm
[19], with 20,000 permutations among groups and an FDR bound set to 5%.
The null hypothesis for these tests is that the distributions of the locations of
corresponding sample points are the same regardless of group.

Figure 5 shows the raw and FDR-corrected p-values for the left and right
hippocampi from the schizophrenia study. Areas of significant group differences



Shape Modeling and Analysis with Entropy-Based Particle Systems 343

Fig. 5. P-value maps for the hippocampus and caudate shape analyses, shown on the
mean shape. Red (dark in grayscale) indicates significant group differences (p <= .05).

(p <= 0.05) are shown in red. Areas with insignificant group differences (p >
0.05) are shown in blue. The right hippocampus shows significant differences in
the mid-region and the tail, even after FDR-correction. The left hippocampus
appears to exhibit few group differences, with none detected after FDR correc-
tion. Differences in the tail, especially on the right side were also observed by
Styner et al. in [9]. Our results also correlate with those reported for the spherical
harmonics method (SPHARM) [17] and spherical wavelet analysis [20].

Raw p-values for the caudate analysis are shown at the bottom of Fig 5. No
significant differences on either shape were found after FDR correction. The raw
p-values, however, suggest that both structures may exhibit group differences
in the tail, and that the right caudate contains more group differences than the
left, an observation that agrees with results given in [19], [18], [17], and [20].
The current formulation of the particle method optimizes point correspondences
under the assumption of a Gaussian model with a single mean, and may introduce
a conservative bias that reduces group differences. We are investigating methods,
such as nonparametric density estimation, for addressing this issue.

5 Conclusions

We have presented a new method for constructing statistical representations of
ensembles of similar shapes that relies on an optimal distribution of a large set of
surface point correspondences, rather than the manipulation of a specific surface
parameterization. The proposed method produces results that compare favorably
with the state of the art, and statistical analysis of several clinical datasets
shows the particle-based method yields results consistent with those seen in the
literature. The method works directly on volumes, requires very little parameter
tuning, and generalizes easily to accommodate alternate sampling strategies such
as curvature adaptivity. The method can extend to other kinds of geometric
objects by modeling those objects as intersections of various constraints. For
instance, the nonmanifold boundaries that result from interfaces of three or more
tissue types can be represented through combinations of distance functions to the
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individual tissue types. Curves can be represented as the intersection of the zero
sets of two scalar fields or where three different scalar fields achieve equality (such
as the curves where three materials meet). The application of these extensions
to joint modeling of multiple connected objects is currently under investigation.
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Abstract. In this paper we present a volumetric approach for quantita-
tively studying white matter connectivity from diffusion tensor magnetic
resonance imaging (DT-MRI). The proposed method is based on a mini-
mization of path cost between two regions, defined as the integral of local
costs that are derived from the full tensor data along the path. We solve
the minimal path problem using a Hamilton-Jacobi formulation of the
problem and a new, fast iterative method that computes updates on the
propagating front of the cost function at every point. The solutions for
the fronts emanating from the two initial regions are combined, giving a
voxel-wise connectivity measurement of the optimal paths between the
regions that pass through those voxels. The resulting high-connectivity
voxels provide a volumetric representation of the white matter pathway
between the terminal regions. We quantify the tensor data along these
pathways using nonparametric regression of the tensors and of derived
measures as a function of path length. In this way we can obtain vol-
umetric measures on white-matter tracts between regions without any
explicit integration of tracts. We demonstrate the proposed method on
several fiber tracts from DT-MRI data of the normal human brain.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) has the ability to reveal
in vivo properties of white matter tissue in the human brain. As such, DT-MRI is
becoming a powerful technique for clinical studies of white matter abnormalities
in neurological disorders as well as studies of normal brain development. The
usefullness of diffusion imaging relies on the fact that the motion of water is
impeded in directions that are not parallel to the axons. In DT-MRI a diffusion
tensor at each voxel gives an estimated model of the pattern of water diffusion
aggregated over a point-spread function of the measurements. The neural fiber
orientation is typically inferred from the principal eigenvector of the diffusion
tensor, which is the direction of highest probability of water motion.

Clinical studies have been mostly limited to analysis of white matter prop-
erties in a region of interest (ROI) [1,2]. Typically, statistics are computed on
derived tensor measurements, such as fractional anisotropy (FA) or mean dif-
fusivity (MD). This analysis is done either on a voxel-by-voxel basis or as an
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aggregate measurement within the ROI. Because of the complexity of the diffu-
sion tensor data, registration of images to a common atlas for voxelwise statistics
is particularly problematic. Recent work has explored statistical analysis of de-
rived measures [3,4] and also of the entire tensors [5] along fiber pathways.

Much of the work in DT-MRI connectivity focuses on fiber tractography [6],
in which streamlines are computed, by forward integration from a seed point,
of the field of vectors defined by the principal eigenvector of the tensor at each
point (interpolated between voxels), and where the twofold ambiguity of eigen-
vector directions is resolved by the continuity of paths. While tractography is an
excellent tool for visualization of white matter pathways, it is not ideal for quan-
titative analysis for several reasons. First, imaging noise can cause fiber tracts to
stray due to accumulating errors in the integration. The second issue is partial
voluming. The finite size of a voxel measurement at fiber crossings (combined
with sensor noise) can cause the direction of the major eigenvector to be am-
biguous, further misleading the streamlines. This problem is aggravated by the
fact that streamlines are often computed, displayed, and analyzed at subvoxel
resolution—suggesting a level of precision that is not warranted by the data.
Finally, region-to-region analysis with conventional tractography is challenging,
because there is no way to steer tracts from a seed point toward a particular
target region. To address these problems, several researchers propose tractogra-
phy algorithms that rely on a stochastic integration, in which flow vector are
chosen from a distribution around the principal eigenvector. These stochastic
techniques can be combined with Monte-Carlo simulations, which may include
tens of thousands of paths from a single seed, of which only a small fraction will
typically reach the target [7,8,9,10].

Several Hamilton-Jacobi (H-J) methods for white matter connectivity have
been proposed to overcome some of the difficulties arising in tractography. These
methods compute the cost of the shortest path from a seed region to every pixel
in the volume (usually a white-matter mask). This cost function consists of an
integral that depends on path position and orientation, and typically penalizes
paths that do not agree with the tensors. These H-J formulations result in first-
order partial differential equations (PDEs) which model evolving fronts whose
speeds are determined by information from the diffusion tensor. These methods
are inherently more robust to noise in the diffusion weighted measurements than
standard tractography. Parker et al. [11] evolve a front with speed related to the
inner product of the front normal with the principal eigenvector of the tensor.
O’Donnell et al. [12] propose using the diffusion tensor as a Riemannian metric
in the image domain and compute a front representing arrival time of geodesics
beginning at a single seed point. Connectivity to that point is defined as a ratio
of Euclidean path length to Riemannian distance. Jackowski et al. [13] use a
speed derived as a function of the diffusivity magnitude in the front normal
direction. They solve this Hamiltonian equation using a Lax-Friedrichs scheme,
also beginning with an intial seed point. Pichon et al. [14] define a directionally
dependent local cost function that extends the H-J framework to high-angular
diffusion data. In all of these works, the end result is either a dense field of
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connectivities to regions or a set of optimal paths emanating from a seed region,
which are determined by integrating the characteristics of the PDEs.

In this paper we present a new method for quantifying white matter con-
nectivity based on a H-J formulation, which we solve with a front propagating
method. However, unlike previous H-J methods, which solve for the minimal cost
of paths emanating from a single region, we formulate a cost for a very large num-
ber of paths between two regions. This results in a measure of region-to-region
connectivity as well as a volumetric representation of the pathway between the
two regions, without any explicit integration of individual paths. This approach
is targeted to the study of white matter circuits between functional regions of
the grey matter. We demonstrate the quantification of white matter properties,
including both full tensor and derived measurements, along fiber pathways using
nonparametric regression.

2 Region-to-Region Connectivity

Our formulation of region-to-region connectivity is based on the principle of min-
imal cost paths. Using information from the entire diffusion tensor, we construct
a local cost function based the current position and directionality of a path.
This leads to a first-order nonlinear PDE that computes the minimal cost from
a starting region to each point in the image. Unlike previous front-propagation
methods for DT-MRI, we then solve for minimal cost from a second target re-
gion. The two solutions are then combined, giving the minimal cost through each
voxel of paths restricted to travel between the two target regions.

2.1 Minimum Cost Paths

Given a path c : [a, b] → Ω, where Ω is a compact image domain, we define the
total cost of c as

E(c) =
∫ b

a

ψ(c(t), T (t))dt, (1)

where T (t) = c′(t)/‖c′(t)‖ is the unit tangent vector of c. The total cost is
defined as the integral of a local cost function, ψ : Ω × S1 → R, where ψ(x, v)
gives the cost of moving in the unit direction v ∈ S1 from the point x ∈ Ω. We
require that the local cost be symmetric, ψ(x, v) = ψ(x, −v), which is generally
consistent with the model of diffusion through passive media.

This metric in (1) allows for a wide range of cost functions ψ that incorporate
tangents. Pichon et al. [14] describe the properties of this metric, the choices of ψ
for high-angular diffusion data, and the relationship between this cost function
and the corresponding speed that controls the motion of the wavefront in the H-J
formulation. In this work we use a quadratic (bilinear) local cost function, with
the understanding that all of the results in this paper generalize to high-angular
data using the methods described in [14]. Thus we have

ψ(x, v) = vT M−1(x)v, (2)

where M(x) is a symmetric, positive-definite matrix defined at each point x ∈ Ω.
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The relationship between the measured diffusion tensor and M must be con-
sidered carefully. For instance, several researchers [12,15] use as their cost, the
bilinear product with the inverse of the diffusion tensor itself. However, even in
ideal situations (straight bundles of healthy axons) [16], the tensors are not be
perfectly anisotropic, because of some degree of diffusion between or through
cells. Thus, good measurements of tissue with relatively high FA, such as in the
corpus collosum, might have values as low as 0.7, which would not offer suf-
ficient penality for paths that cross the principal eigen directions. Because of
this, the paths are relatively unconstrained by the diffusion tensors themselves,
and solutions tend toward the shortest paths in the Euclidean sense, rather than
following the white matter tracts. The same is true if we use the tensors directly
in a second order PDE and model the diffusion of water from the tensors [12]—
the resulting connectivities spread too easily outside of the paths defined by the
principal eigenvectors, which limits their usefulness. On the other extreme, we
could construct tensors from the principal eigenvectors that produce a virtually
infinite penalty (zero speed) for all other directions. This, however, would ig-
nore any meaningful differences between different tensor shapes, including the
case of oblate tensors which are thought to represent fiber crossings and provide
virtually equal evidence for all directions spanned by the first two eigenvectors.

One middle ground between these two extremes is to sharpen the tensor, which
is done by raising it to a power α. This must be combined with a normalization,
and for this work we normalize by the tensor volume. If we consider the sharpened
tensor to be speed (in the H-J formulation), which gives low cost along the
principal eigen directions, the cost is the inverse, and we have

M(x) = |D(x)| 1
3

(
D(x)

|D(x)| 1
3

)α

, (3)

where α > 1 is a constant and |D(x)| denotes the determinant of D(x). The
sharpened tensor field M has the following properties:

1. If D(x) has eigenvalues λi(x), then M(x) has eigenvalues λi(x)α|D(x)| 1−α
3 .

2. |M(x)| = |D(x)| for all x ∈ Ω, i.e., tensor volume is preserved.
3. If D(x) = aI, then M(x) = D(x), in other words, isotropic tensors are left

unchanged.

We can consider all paths emanating from a region R1 ⊂ Ω. Let u1(x) denote
the minimal cost as defined by (1) over all paths beginning in the region R1 and
terminating at the point x. Then u1 satisfies the first-order equation

‖∇u1(x)‖ = ψ (x, ∇u/‖∇u‖) , (4)

with initial conditions u1(R1) = 0.

2.2 Costs Between Regions

While u1 gives us a measure of the connectivity from the region R1 to any point
in the image, we would like to assess the specific connectivity to a second target
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Fig. 1. An axial slice from the FA image with regions R1 and R2 highlighted (left).
The cost functions u1 and u2 (middle two). The total cost function u = u1 +u2 (right).

region. To do this, we define a second region R2 ⊂ Ω and corresponding minimal
cost function u2 also satisfying (4). Consider all paths beginning in the region R1
and terminating in R2. Now we define the total cost function for regions R1 and
R2 to be u(x) = u1(x)+u2(x). The value of u(x) is the minimal cost of all paths
between R1 and R2 that are constrained to pass through x. This is formalized in
the following theorem.

Theorem 1. Let x ∈ Ω, and let Γ be the space of all paths γ : [aγ , bγ ] → Ω
such that γ(aγ) ∈ R1 and γ(bγ) ∈ R2 and γ(t) = x for some t ∈ [aγ , bγ ], then
u(x) satisfies

u(x) = min
γ∈Γ

E(γ).

Proof. By definition of the path space Γ , we can break any path γ ∈ Γ into a
path γ1 from R1 to the point x and a path γ2 from the point x to the region R2.
We thus have E(γ) = E(γ1) + E(γ2). Because u1(x) minimizes the cost E(γ1)
and u2(x) minimizes the cost E(γ2), u(x) = u1(x) + u2(x) must also minimize
the cost E(γ). ��

Thus, the function u assigns to each point x in the image the cost of that point
being included in a pathway between regions R1 and R2. The construction of
the total cost function u is demonstrated in Figure 1, showing a tract through
the genu of the corpus callosum in DT-MRI data from a normal brain. If we
assume a compact image domain Ω, then u must have a minimum value in Ω.
As the next theorem shows, this minimal value is in fact achieved everywhere
along the minimal cost path connecting the two regions.

Theorem 2. Let γ : [a, b] → Ω be the minimal total cost path with γ(a) ∈ R1
and γ(b) ∈ R2. Then u is constant along γ with u(γ(t)) = E(γ) for all t ∈ [a, b].
Furthermore, u(γ(t)) = minx u(x).

Proof. Let T (t) = γ′(t)/‖γ′(t)‖ be the unit tangent vector of γ. Given any
point t0 ∈ [a, b], we have E(γ) =

∫ t0
a

ψ(γ(t), T (t))dt +
∫ b

t0
ψ(γ(t), T (t))dt. Due

to the symmetry of the local cost, ψ(x, v) = ψ(x, −v), this implies that E(γ) =
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Fig. 2. Diagram of the volumetric connectivity framework

∫ t0
a

ψ(γ(t), T (t))dt +
∫ t0

b
ψ(γ(s), −T (s))ds = u1(γ(t0)) + u2(γ(t0)) = u(γ(t0)).

Finally, if u(γ(t)) 	= minx u(x), then there is a point y ∈ Ω with u(y) < u(γ(t)).
However, by Theorem 1 this would mean there is a path from R1 to R2 with
lower cost than γ, which is a contradiction. ��

The properties described in Theorems 1 and 2 all generalize to the high-angular
form of (1) so long as the solutions are symmetric, which is guaranteed by
ψ(x, T (x)) = ψ(x, −T (x)).

2.3 Volumetric Connectivity

Here we define the framework for volumetric connectivity. Let γ be the minimal
total cost path, and fix a threshold ε > 0, which is the tolerance of paths relative
to the optimum. We define an ε-point as a point whose constrained minimum
cost is less than (1 + ε)E(γ). The set of all such ε-points defines a volumetric
pathway between R1 and R2. This region is the set of voxels that belong to the
fiber connection between R1 and R2. By definition, a volumetric pathway must
contain γ for any value of ε > 0. Figure 2 gives a pictoral representation of a
volumetric pathway.

The total cost u along a pathway is obviously affected by the Euclidean length
of that path. We wish to define a connectivity measure that is independent of
the length of a path. Let cx be the minimal total cost path constrained to pass
through the point x ∈ Ω. By definition, this path has total cost E(cx) = u(x).
As described in Section 3.1, we can solve for g(x), the Euclidean arclength of cx

using a first-order PDE. This allows us to define a normalized cost function, ũ,
in a volumetric pathway as ũ(x) = u(x)/g(x). The integral over the ε-region of
the normalized cost in a volumetric pathway gives a length-invariant measure of
the total connectivity of the represented pathway.

2.4 Numerical Implementation

We do not consider the problem of numerical solutions to (4) to be a significant
aspect of this paper. However, in the analysis of circuits between large sets of
cortical regions, the speed of solutions is a consideration, and the availability of
the efficient numerical algorithms will be important.
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Several options exist to solve (4) for the cost functions u1, u2. For instance, the
Lax-Friedrichs method used in [13] is stable but excessively diffusive. Tsai et al.
[17] propose a Gudonov approximation for the Hamiltonian, which includes one-
sided deratives, and a sweeping method for iteratively updating the solution. In
this case, the number of sweeps depends on the complexity of the data. We solve
(4) using a new numerical method, the Fast Iterative Method (FIM), which solves
the general static Hamilton-Jacobi equation using the Gudonov approximation,
which gives an explicit solution for the characteristic direction, and thereby does
not require differentiating the cost to obtain path lengths. The FIM updates a
list of points whose solutions depend on updated points but are not yet final.
This list of points is maintained by removing or adding points based on the
convergence of the solution and their dependencies on solved points. The method
iteratively updates solutions of the points until the list becomes empty. For full
details of the FIM algorithm and implementation, see [18]. Because we are only
interested in connectivity in the white matter, we use a white matter mask in
which to compute the cost function solutions. For improved numerical accuracy
we compute the solution on a grid supersampled by two from the original data.
Supersampling is done on the original DWI measurements.

3 Nonparametric Regression of Path Data

Identifying white matter fiber connections as volumetric pathways leaves us with
a collection of unparameterized voxels, defined on the original DTI grid, each
of which contains information on the tensor, path cost, path length, and path
orientation. This collection of raw voxel data offers several possibilities for quan-
tification of the tensor data along these paths. One interesting possibility is the
set of integral properties such as average FA, connectivity, etc. In this section we
describe a nonparametric regression method for generating a compact statistical
description of diffusion tensor data as a function of position along a fiber path-
way. The first step is to compute a parameter s for each voxel in the pathway,
which is the Euclidean arclength along the minimal cost curves. This arclength
will serve as the independent variate in a nonparametric regression of the tensor
data along the pathway. Using this regression, we compute mean and variance
statistics along fiber pathways of the full diffusion tensor data as well as derived
measurements, without any explicit integration of paths.

3.1 Solving for Distance Along Paths

For a given pathway we wish to find the Euclidean arclength along the con-
strained minimum cost paths between regions R1 and R2. We do this by solving
a first-order, linear PDE that results in distance along the minimal path to in-
dividual targets. If g1(x) denotes Euclidean arclength along a minimal cost path
from R1 to the point x, it satisfies the advection equation

∇g1 · T1 = 1, (5)
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where T1 is the unit length tangent vector to the minimal path connecting each
point in Ω to R1. Likewise for g2, T2, R2, and u2. There are two possible strate-
gies for evaluating the tangents, T1. One strategy is the use the characteristics
of u1, which are given by T1 = M−1∇u1, where ∇u1 is approximated with fi-
nite differences, as described in [13]. Alternatively, the Gudonov approximation
given in [17], which we use for this paper, requires an explicit calculation of the
characteristic direction at each iteration. For this work, we save these vectors,
after the solution has converged, and use them for T1 in Eq. 5.

To solve (5), we use an iterative, fixed point strategy with an up-wind approx-
imation of the gradient of g1. The initial solution for g1 is set to a Manhattan
distance computed on the set of points for which the speed function is nonzero.
It typically converges in several dozen iterations.

In this way, we can also compute the Euclidean arclength, g2(x), of the min-
imial cost path from R2 to the point x. Summing these two distances, g1 and
g2, we get the total arclength of the minimal cost path from R1 to R2 that
is constrained to pass through the point x. We denote this total arclength as
g = g1 +g2. The parameter that we use for the dependent variable in our regres-
sion is s = g1/g, the percentage of arclength along the minimal cost path from
R1 to R2. As such, the parameter s takes values in [0, 1].

3.2 Path Regression

Let P be a volumetric pathway, and let {xi}N
i=1 be the collection of voxel loca-

tions within P . Each voxel has an associated parameter si = s(xi), as defined
abovve. Denote by fi a data value at the location xi. This data may be a dif-
fusion weighted value, a full diffusion tensor, or a derived measure, such as
FA or MD. We compute a continuous description of the data as a function of
s using a Nadaraya-Watson nonparametric regression [19,20] with a Gaussian
kernel.

f(s) =
∑N

i=1 fiG(s − si, σ)
∑N

i=1 G(s − si, σ)
, (6)

where G(μ, σ) denotes a Gaussian with mean μ and standard deviation σ. We
choose the kernel width σ used in the regression equation automatically, by
minimizing the sum-of-squares cross-validation error. We solve this optimization
using a Golden Ratio search. Typical values for the optimal σ are 1–4% of the
path length. The function f defined above gives a continuous average of the data
along the pathway. Given this mean function, we can use the same regression to
estimate the variance of the data along the path:

σ2
f (s) =

∑N
i=1(fi − f(s))2G(s − si, σ)

∑N
i=1 G(s − si, σ)

. (7)

In addition to computing diffusion properties along a pathway, it is also possi-
ble to statistically quantify the geometry of the path in a similar fashion. Using



354 P.T. Fletcher et al.

Fig. 3. Volumetric pathways for the GCC (cyan), BCC (yellow), SCC (red), LCG
(green) and RCG (blue). Axial, coronal and sagittal views are shown against FA slices.

(6), we can compute the average voxel position along a pathway as a function of s.
This results in an curve (x(s), y(s), z(s)), which represents the average geome-
try of the fibers in the connection. Once again, the σ is determined through
optimality of the cross validation.

4 Results

We apply our quantitative DTI connectivity analysis to a single high-resolution
(2 × 2 × 2.5mm3) 3T image from a database of healthy controls. We selected
five tracts for analysis: three bundles through the genu (GCC), splenium (SCC),
and body (BCC) of the corpus callosum, and the left (LCG) and right (RCG)
cingulum bundles. Using the FA image, we outlined the terminal regions R1
and R2 at the white/grey matter interface for each tract. An example of the
segmented regions is shown in Figure 1.

For each of the five tracts, we solved for the total cost function u as described
in Section 2.3. We chose an ε value of 0.10, i.e., we included voxels in the vol-
umetric pathway within ±10% of the optimal total cost curve. Figure 3 shows
the resulting volumetric pathways for the five tracts. Next we quantified the FA
along each pathway using the nonparametric regression analysis. Figure 4 shows
the original raw FA data from all the voxels included in the GCC volumetric
pathway and also the mean and standard deviation result from the regression.
The regression analysis for the FA of the other four tracts is shown in Figure 5.
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Fig. 4. FA along the GCC: (a) scatterplot of raw data, and (b) nonparametric regres-
sion. The solid curve shows average FA, and dashed curves show standard deviation.
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Fig. 5. Nonparametric regression of FA along the (a) BCC, (b) SCC, (c) LCG, and (d)
RCG

Notice the similar pattern in each of the corpus callosum pathways, where the FA
increases as it passes through the tightly packed fibers of the corpus callosum.
In Table 1 we show the aggregate connectivity measurements for each tract,
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Table 1. Mean connectivity metrics, normalized cost and alignment, for the five tracts

Measure GCC BCC SCC LCG RCG

Norm. Cost 10.8 16.1 7.5 22.8 18.6
Alignment 0.797 0.789 0.708 0.611 0.788

Fig. 6. Average diffusion tensors along the pathways displayed on the average fiber
geometries. Rendered using superquadric glyphs [21].

including the average normalized cost ũ, and the average alignment, i.e., dot
product, of the major tensor eigenvector and the tangent of the optimal curve
at each voxel. Notice that the tracts through the corpus callosum, which have
higher anisotropy, also have lower normalized cost (higher connectivity) than
the cingulum tracts. The connectivity of the cingulum tracts is also reduced
due to partial voluming with the adjacent corpus callosum tensors. Finally, we
computed the average positions and average diffusion tensors along each tract,
resulting in compact average fiber descriptions, shown in Figure 6.
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Abstract. Volumetric registration of brains is required for inter-subject
studies of functional and anatomical data. Intensity-driven registration
typically results in some degree of misalignment of cortical and gy-
ral folds. Increased statistical power in group studies may be achieved
through improved alignment of cortical areas by using sulcal landmarks.
In this paper we describe a new volumetric registration method in which
cortical surfaces and sulcal landmarks are accurately aligned. We first
compute a one-to-one map between the two cortical surfaces constrained
by a set of user identified sulcal curves. We then extrapolate this map-
ping from the cortical surface to the entire brain volume using a harmonic
mapping procedure. Finally, this volumetric mapping is refined using an
intensity driven linear elastic registration. The resulting maps retain the
one-to-one correspondence between cortical surfaces while also aligning
volumetric features via the intensity-driven registration. We evaluate per-
formance of this method in comparison to other volumetric registration
methods.

1 Introduction

Morphometric and functional studies of human brain require that neuro-
anatomical data from a population be normalized to a common template. The
goal of registration methods is to find a map that assigns a correspondence from
every point in a subject brain to a corresponding point in the template brain.
Since cytoarchitectural and functional parcellation of the cortex is intimately
related to the folding of the cortex, it is important when comparing cortical
anatomy and function in two or more subjects that the cortical surfaces are
accurately aligned. However, it is a non-trivial problem to find a map from a
subject brain to a template brain which maps grey matter, cortical surface and
white matter to the corresponding regions in the template brain.

Volumetric brain image registration methods [1,2,3,4,5,6,7,8] find a deforma-
tion field that aligns one volume to another using intensity values, ideally to
establish a diffeomorphism between the two brain image volumes. Using in-
tensity only typically results in accurate registration of subcortical structures,

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 359–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



360 A. Joshi et al.

but poorer alignment of cortical features. Information such as landmark points,
curves and surfaces can be incorporated as additional constraints in an intensity-
based warping method to improve alignment of the cortical surface
[9,10,11,12,13,14,15]. For example, landmarks, curves [13] and image matching
[12] can be applied in a hierarchical manner in a large deformation framework
to ensure generation of diffeomorphisms [16,17]. Hybrid methods such as HAM-
MER [18] implicitly incorporate surface as well as volume information in the
alignment.

An alternative approach for studying the cortex is to use a surface based
analysis. A number of surface-based techniques have been developed for inter-
subject registration of cortices. These techniques involve flattening the two corti-
cal surfaces to a plane [19,20] or to a sphere [21,22] and then registering the two
surfaces in the intermediate flat space [23,21] or in the intrinsic surface geome-
try via covariant derivatives [24,25]. These approaches can be automatic [26,23],
or semi-automatic using sulcal landmarks [24,25]. Although progress has been
made towards automatic surface registration [26,23], accurate fully automatic
registration remains a challenge.

The main advantage of a purely surface based method is that the cortical
surface can be modeled at high resolution, producing a precise point correspon-
dence between cortical surfaces such that sulcal landmarks are aligned. However,
these methods do not define a volumetric correspondence, so one is restricted
to analyzing only cortical effects. The goal of this paper is to develop a regis-
tration method in which we retain the advantage of accurate cortical and sulcal
alignment within a fully 3D volumetric registration. This approach takes advan-
tage of strengths of both types of methods: the ability of surface based methods
to accurately align complicated folding patterns and the ability of volumetric
intensity based methods to align internal subcortical structures.

The algorithm we develop consists of three steps: (i) extraction, labelling and
alignment of the cortical surfaces, (ii) extrapolation of the surface mapping to
the volume using harmonic maps, and (iii) refinement of the volumetric map
using an intensity driven linear elastic warp. We describe the cortical surface
extraction and alignment procedure in Section 3. The result of this alignment
is a 2D parameterization of the two cortical surfaces in which sulcal landmarks
are aligned. The extrapolation of these parameterizations to three dimensions is
then computed using harmonic mapping, an approach which we review below.
Finally, we use an intensity-driven linear elastic warp as described in Section 5.

A number of existence, uniqueness, and regularity results have been proven for
harmonic maps [27,28,29]. Harmonic maps and their generalized counterparts,
p-harmonic maps [30], have been used for various applications such as surface
parameterization and registration [31,32], [20] and image smoothing [33]. Wang,
et al. [34] describe a method for volumetric mapping of the brain to the unit ball
B(0, 1). In recent papers, Joshi, et al. [35][36] described a method for combined
surface and volume registration that used a similar three step procedure. In that
case, the harmonic mapping used an intermediate unit ball representation which
has the advantage of allowing the cortical surfaces to flow within each other. The
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distortion introduced in the intermediate space was corrected by associating a
Riemannian metric with that representation. The limitation of this approach is
that by using the map to the unit ball, the method is restricted to mapping
only the cerebral volume contained within the cortical surface. Here we avoid
this restriction by computing the harmonic map directly in Euclidean space
so that the entire brain volume can be registered. We do this by fixing the
correspondence between all points on the cortical surface rather than just the
sulcal curves as in [35][36]. Since the map between the cortical surfaces is fixed,
there is no longer a need for the intermediate spherical representation. While
this approach places a more restrictive constraint on the mapping of the surface,
in practice we see little difference between the two methods in the mapping of
the interior of the cerebrum.

2 Problem Statement and Formulation

The registration problem is formulated in the following manner. We start by
aligning the cortical surfaces, semi-automatically, using sulcal landmarks. We
then use harmonic maps to extrapolate this surface mapping to the entire cor-
tex. It is nontrivial to extend the surface map to the full 3D volumetric map
due to large inter-subject variability in sulcal structures and the complicated
folding pattern of the sulci. For example, the widely used linear elastic or thin-
plate spline registration methods based on landmarks are not useful for this
extrapolation due to their tendency to generate folds [37]. Harmonic maps, on
the other hand, are particularly suitable for this task since they tend to be bi-
jective provided that the boundary (the cortical surface in this case) is mapped
bijectively [38,34]. The volumetric point correspondence obtained from these
harmonic maps is then refined further using volumetric registration based on
image intensity.

Given two 3D manifolds M and N representing brain volumes, with ∂M1,
∂M2 and ∂N1, ∂N2 representing surfaces corresponding to cortical grey/white
matter and grey/CSF boundaries, we want to find a map from M to N such
that (i) ∂M1, the grey/white matter surface of M , maps to ∂N1, the grey/white
matter surface of N ; (ii) ∂M2, the grey/CSF surface of M , maps to ∂N2, the grey
matter/CSF surface of N ; and (iii) the intensities of the images in the interior
of M and N are matched. The surfaces, ∂M1, ∂M2 and ∂N1, ∂N2, are assumed
to have a spherical topology. We solve the mapping problem in three steps:

1. Surface matching which computes maps between surface pairs - the corti-
cal surfaces and the grey matter/csf surfaces of the two brains, with sulcal
alignment constraints (Section 3);

2. extrapolation of the surface map to the entire cortical volume. This is done by
computing a harmonic map between M and N subject to a surface matching
constraint (Section 4), and

3. Refinement of the harmonic map on the interiors of M and N to improve
intensity alignment of subcortical structures (Section 5).
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3 Surface Registration

Assuming as input two T1-weighted MRI volumes corresponding to the subject
and the template, cortical surfaces are extracted using the BrainSuite software
[39]. BrainSuite includes a six stage cortical modeling sequence. First the brain
is extracted from the surrounding skull and scalp tissues using a combination of
edge detection and mathematical morphology. Next the intensities of the MRI
are corrected for shading artifacts. Each voxel in the corrected image is labeled
according to tissue type using a statistical classifier. Co-registration to a stan-
dard atlas is then used to automatically identify the white matter volume, fill
ventricular spaces and remove the brain stem and cerebellum, leaving a vol-
ume whose surface represents the outer white-matter surface of the cerebral
cortex. It is likely that the tessellation of this volume will produce surfaces with
topological handles. Prior to tessellation, these handles are identified and re-
moved automatically using a graph based approach. A tessellated isosurface of
the resulting mask is then extracted to produce a genus zero surface which is
subsequently split into two cortical hemispheres. These extracted surfaces are
hand labeled with 23 major sulci on each cortical hemisphere according to a sul-
cal labeling protocol with established intra- and inter-rater reliability [39]. Grey

Fig. 1. (a) Our surface registration method involves simultaneous flattening and sul-
cal landmark alignment of the two cortical surfaces, which produces accurate sulcal
mapping from one cortex to another. The outer grey matter/CSF surface is shown in
semi-transparent grey color and the inner grey/CSF surface is opaque. Shown below
are flat maps of a single hemisphere for the inner cortical surface of the two brains. (b)
Mapping of the aligned sulci in the flat space and (c) sulci mapped back to the inner
cortical surface of the template.



Brain Image Registration Using Cortically Constrained Harmonic Mappings 363

matter/CSF surfaces are extracted similarly except that topology correction was
done manually by morphological operation tools in BrainSuite.

One method for alignment of surfaces with sulcal constraints is based on in-
trinsic thin-plate spline registration [25]. In that method, a deformation field
is found in the intrinsic geometry of the cortical surface, which results in the
required sulcal alignment. Covariant derivatives with the metric for the flat co-
ordinates are used in order to make the deformation independent of the flat rep-
resentation. The method requires the surfaces to be re-sampled on a regular or
semi-regular grid in the flat space for discretization of the covariant derivatives.
In addition to the loss of resolution, this leads to an added computational cost
of interpolations for the re-sampling brain surface in the flat space. To overcome
this problem, we follow a registration method described in [40] which registers
surfaces by simultaneously parameterizing and aligning homologous sulcal land-
marks. In order to generate such a parameterization with prealigned landmarks,
we model the cortical surface as an elastic sheet by solving the linear elastic
equilibrium equation in the geometry of the cortical surface using the form:

μΔφ + (μ + λ)∇(∇ · φ) = 0, (1)

where μ and λ are Lamé’s coefficients and φ denotes 2D coordinates assigned to
each point on the surface. The operators Δ and ∇ represent the Laplace-Beltrami
and covariant gradient operators, respectively, with respect to the surface geom-
etry. The solution of this equation can be obtained variationally by minimizing
the integral on the cortical surface [41]:

E(φ) =
∫

S

λ

4
(Tr ((Dφ)T + Dφ))2 +

μ

2
Tr (((Dφ)T + Dφ)2)dS, (2)

where Dφ is the covariant derivative of the coordinate vector field φ. The integral
E(φ) is the total strain energy. Though the elastic equilibrium equation models
only small deformations, in practice we have found that it is always possible to
get a flat map of the cortex by setting the parameters μ = 10 and λ = 1.

Let φM and φN denote the 2D coordinates to be assigned to corresponding
hemispheres of M and N brains respectively. We then define the Lagrangian
cost function C(φM , φN ) as

C(φM , φN ) = E(φM ) + E(φN ) + σ2
K∑

k=1

(φM (xk) − φN (yk))2, (3)

where φM (xk) and φN (yk) denote the coordinates assigned to the set of K
sulcal landmarks xk ∈ M , yk ∈ N and σ2 is a Lagrange multiplier. The cost
function is then discretized in the intrinsic surface geometry by finite elements
as described in [40] and minimized by conjugate gradients. This procedure is
applied to both the inner and outer pairs of cortical surfaces ∂M1, ∂N1 and
∂M2, ∂N2 to achieve a bijective point correspondence between each pair. This
surface alignment and parameterization procedure is illustrated for the inner
grey/white cortical boundary in Fig. 1.
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4 Harmonic Mapping

The surface registration procedure described in Section 3 sets up a point to point
correspondence between the pairs of surfaces ∂M1, ∂M2 and ∂N1, ∂N2. As noted
earlier, treating these surfaces as landmarks is not helpful since they are highly
convoluted and finding a volumetric diffeomorphism consistent with the surface
map is non-trivial. One approach that can achieve such a diffeomorphism is to
compute a harmonic map. A harmonic map u = (u1, u2, u3) from 3D manifold
M to 3D manifold N is defined as the minimizer of the harmonic energy [29],

Eh(u) =
1
2

∫

M

3∑

i=1

3∑

α=1

(
∂uα(x)

∂xi

)2

dV. (4)

Note that (4) is quadratic in uα and that the summands are decoupled with
respect to α. Consequently the harmonic energy Eh(u) can be separately mini-
mized with respect to each component uα, α ∈ {1, 2, 3}.

We compute the minimizer of Eh(u) using a conjugate gradient method with
Jacobi preconditioner. The mapping of the two surfaces computed in the previous
sections act as constraints such that ∂M1 maps to ∂N1 and ∂M2 maps to ∂N2.
This harmonic mapping extrapolates the surface mappings to the entire volume
such that the surface alignments are retained.

5 Volumetric Intensity Registration

The previous harmonic mapping step matches inner and outer cortical bound-
aries by computing a large deformation of the template brain to obtain a con-
strained bijective mapping between the two brain volumes. However, this map
uses only the shape and not the MRI intensity values. Consequently we need
a final small scale deformation to refine the mappings so that subcortial and
extra-cerebral structures are also aligned. To compute this refinement we use
a linear elastic registration method [6] as described below. We impose the con-
straint that cortical boundaries remain stationary during this refinement so that
the cortical correspondence is retained.

Let fM (x) denote the MRI intensity value at location x = (x1, x2, x3)t for
the brain M and let fN(x) denote the MRI intensity value at location x =
(x1, x2, x3)t for the brain N . In order to find a smooth deformation field d =
(d1, d2, d3)t such that the mean squared error between MRI intensity values of
the two brains fM (x+d) and fN (x) is minimized, we minimize the cost function

C(d) = ‖Ld‖2 + α‖fM (x + d) − fN (x)‖2 (5)
subject to d(s) = 0 for s ∈ ∂M1, ∂M2

where L = ∇2+μ∇(∇·) denotes the Cauchy-Navier elasticity operator in M . By
imposing the constraint (6) on the deformation field, we ensure that the surface
alignment is not affected. Assuming that the deformation d is small compared
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Fig. 2. (a) Illustration of the extrapolation of the surface mapping to the 3D volume by
harmonic mapping. The pairs of surfaces are shown in red and green. The deformation
field is represented by placing a regular grid in the central coronal slice of the brain
and deforming it according to the harmonic map. The projection of this deformation
onto a 2D plane is shown with the in-plane value encoded according to the adjacent
color bar. (b) The result of harmonic mapping and linear elastic refinement of the
subject brain to the template brain. Note that the inner and outer cortical surfaces, by
constraint, are exactly matched. The linear elastic refinement produces an approximate
match between subcortical structures. The deformation field here shows the result of
cortically constrained intensity-driven refinement. Note that the deformations are zero
at the boundary and nonzero in the vicinity of the ventricles, thalamus and other
subcortical structures.

to the rate of change of fM , then using a Taylor series approximation, we have
fM (x + d) ≈ fM (x) + ∇fM (x) · d. Substituting this approximation in (5) and
(6), we get

C(d) ≈ ‖Ld‖2 + α‖∇fM (x) · d(x) + fM (x) − fN(x)‖2 (6)
subject to d(s) = 0 for s ∈ ∂M1, ∂M2

Note that this is a quadratic cost function and can again be minimized by the
conjugate gradient method. We use a preconditioned conjugate gradient method
with Jacobi preconditioner.

This final refinement completes the surface-constrained registration proce-
dure. While there are several steps required to complete the registration, each
step can be reduced to either a surface or a volume mapping cast as an energy
minimization problem with constraints, and can be effectively computed using
a preconditioned conjugate gradient method. Thus, the entire procedure can be
completed efficiently.
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6 Results

In this section we demonstrate the application of the surface constrained reg-
istration procedure to T1-weighted MR brain images. We took the genus zero
cortical mask, the tessellated cortical surface, the sulcal labels, and the orig-
inal image intensities for two brains and applied our alignment procedure as
described above. Shown in Fig. 3 are three orthogonal views of a subject before
and after alignment to the template image. Note that before alignment the sur-
faces of the subject and template are clearly different, while after matching the
subject surface almost exactly matches the morphology of that of the template.
However, since at this point we do not take the image intensities into account,
the interior structures are somewhat different. Following the final intensity-based
alignment procedure the interior structures, such as the subject ventricles, are
better matched to those of the template. There is no gold standard for evaluat-
ing the performance of registration algorithms such as the one presented here.
However, there are several properties that are desirable for any such surface

Fig. 3. Examples of surface constrained volumetric registration. (a) Original subject
volume; (b) template; (c) registration of subject to template using surface constrained
harmonic mapping, note that the cortical surface matches that of the template; (d)
intensity-based refinement of the harmonic map of subject to template.
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and volume registration algorithm. Our method for evaluating the quality of our
registration results is based on the following two desirable properties:

1. Alignment of the cortical surface and sulcal landmarks. We expect the sulcal
landmarks to be accurately aligned after registration and for the two surfaces
to coincide.

2. Alignment of subcortical structures. We also expect the boundary of subcor-
tical structures (thalamus, lateral ventricles, corpus callosum) to be better
aligned after coregistration than before.

For evaluating performance with respect to the first property, we compared the
RMS error in sulcal landmark registration for pair-wise registration of a total of
five brain volumes. We performed a leave-one-out validation in which we removed
one sulcus from the set of curves to be aligned and then computed the RMS
error in alignment for that sulcus; the procedure was repeated for each sulcus in
turn. The mean squared distance (misalignment) between the respective sulcal
landmarks was 11mm using a 5th order intensity-only registration with AIR [3]
and 11.5mm for the HAMMER algorithm [18,42], which uses a feature vector
based on a set of geometric invariants. The RMS error for our approach was
2.4mm. The difference reflects the fact that our approach explicitly constrains
these sulcal features to match, which AIR and HAMMER do not.

For the second property, we used manually labeled brain data from the IBSR
database at the Center for Morphometric Analysis at Massachusetts General
Hospital. These data include volumetric MRI data and hand segmented and la-
beled structures. We first traced the 23 sulci for each brain. We then applied the
HAMMER software and our method using the sulcal landmarks as additional
constraints. To evaluate accuracy, we computed the Dice coefficients for each
structure, where the structure names and boundaries were taken from the IBSR
database. The Dice coefficient measures overlap between any two sets represent-
ing regions S1 and S2, and is defined as 2|S1∩S2|

|S1|+|S2| where | · | denotes size of the
region [43]. A comparison of the Dice coefficients is shown in Table 6, where we
show Dice coefficients for our method before and after application of the final
intensity-based alignment step.

These results show superior alignment of cortical grey matter while HAMMER
achieves superior alignment of subcortical structures. These results appear rea-
sonable since HAMMER uses boundary information throughout the volume as
part of the feature vector and thus can produce superior alignment of subcortical
boundaries than our method which is based solely on image intensity. Conversely,
the more specific cortical information in our approach leads to superior results
in the cortical grey matter. Based on these preliminary observations, we believe
that the approach described here could be appropriate for use in applications
where cortical alignment may be of particular importance such as morphome-
tric studies of cortical thinning, fMRI studies and analysis of DTI fiber tract
data.
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Table 1. Comparison of Dice coefficients and RMS errors in sulci

Subcortical Structure AIR HAMMER Harmonic Harmonic
with intensity

Left Thalamus 0.7943 0.7365 0.6852 0.7163
Left Caudate 0.3122 0.5820 0.5036 0.6212
Left Putamen 0.6136 0.5186 0.4040 0.4700
Left Hippocampus 0.3057 0.6837 0.5661 0.5918
Right Thalamus 0.7749 0.8719 0.6645 0.7291
Right Caudate 0.3232 0.8107 0.4607 0.5474
Right Putamen 0.5370 0.6759 0.5229 0.5862
Right Hippocampus 0.3373 0.5974 0.5877 0.6988
Left Cerebral WM 0.5826 0.7858 0.9029 0.9118
Left Cerbral GM 0.6233 0.8388 0.9094 0.9117
Left Cerebellum WM 0.4092 0.6170 0.5333 0.6793
Left Cerebellum GM 0.5246 0.8597 0.7857 0.8227
Right Cerebral WM 0.5897 0.7938 0.9014 0.9113
Right Cerbral GM 0.6048 0.7208 0.9022 0.9050
Left Cerebellum WM 0.3686 0.5763 0.6474 0.6721
Left Cerebellum GM 0.5252 0.8535 0.8303 0.8604

RMS Error in Sulci 11mm 11.5mm 2.4mm 2.4mm
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Abstract. A novel framework for joint clustering and point-by-point
mapping of white matter fiber pathways is presented. Accurate clus-
tering of the trajectories into fiber bundles requires point correspon-
dence determined along the fiber pathways. This knowledge is also crucial
for any tract-oriented quantitative analysis. We employ an expectation-
maximization (EM) algorithm to cluster the trajectories in a Gamma
mixture model context. The result of clustering is the probabilistic as-
signment of the fiber trajectories to each cluster, an estimate of the
cluster parameters, and point correspondences along the trajectories.
Point-by-point correspondence of the trajectories within a bundle is ob-
tained by constructing a distance map and a label map from each cluster
center at every iteration of the EM algorithm. This offers a time-efficient
alternative to pairwise curve matching of all trajectories with respect to
each cluster center. Probabilistic assignment of the trajectories to clus-
ters is controlled by imposing a minimum threshold on the membership
probabilities, to remove outliers in a principled way. The presented re-
sults confirm the efficiency and effectiveness of the proposed framework
for quantitative analysis of diffusion tensor MRI.

1 Introduction

In recent years, a significant amount of work has been devoted to extracting
information from diffusion tensor images to study brain changes related to de-
velopment, aging, and different pathologies. Developing tools to perform accurate
and comprehensive quantitative analysis is thus of great interest [1]. However,
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most clinical studies performed to date are limited to the analysis of local pa-
rameters, such as fractional anisotropy, measured in a manually defined region
of interest (ROI) and averaged over groups of healthy and patient cases. Such
methods are sensitive to the accuracy of specifying the ROIs and are prone to
user errors. Others have performed a voxel-based analysis of a registered DTI
dataset, which requires non-linear warping of the tensor field [2], which in turn
needs re-orientation of the tensors [3,4].

An alternative approach is to compute the quantitative parameters of interest
along the trajectories [1,5] which makes more sense as the underlying anatomical
unit in DTI is a fiber tract, not a voxel. Such analysis is valuable especially if
performed on a group of trajectories that correspond to an anatomical bundle
of a fiber tract. To accomplish this goal, algorithms are required to segment
the trajectories into bundles and to obtain correspondence between points on
trajectories within a bundle.

Several papers have addressed the issue of grouping the trajectories into bun-
dles [6,7,8] but without going further into quantitative analysis. The outcome of
these methods is a set of labeled trajectories, each assigned to a cluster. Point-
by-point correspondence between the trajectories of each cluster, however, is not
determined rigorously. In one of the early works on DT-MRI analysis, Ding et
al. [9] tackled the issue of quantification of tracts by finding the corresponding
segments, which they defined as the portion of a trajectory that has point-wise
correspondence to a portion of another trajectory. They assumed that the seed
points of two trajectories to be compared correspond to each other, which is
not the case unless all trajectories are seeded from a small ROI. The algorithm
is thus inadequate for whole brain fiber analysis. Batchelor et al. [10] proposed
different tools to quantify the shape of fiber tracts. They noted the problem of
point correspondence but made the assumption that it is approximately achieved
by proper choice of the seed point and regularly sampling the arc-length. With
point correspondence roughly known, they applied the Procrustes algorithm to
register the trajectories. There is also a series of work by Gerig et al. (see for
example [1]), which described methods and applications for tract-oriented quan-
titative analysis. They dealt with the issue of correspondence by letting the user
define a common origin for the set of trajectories in each cluster based on geo-
metric criteria or based on anatomical landmarks. In their latest work [11], they
also proposed the Procrustes algorithm for the registration of the trajectories
to compute the average tensor. Although these methods provide some valuable
information about the fibers, they suffer from a number of issues. They need
manual setting of the common start points for all the trajectories in a cluster.
Also, they assume the trajectories in a cluster have the same length, which is a
reasonable assumption only if a small ROI is considered as the tractography seed
points and the tractography algorithm gives full-length trajectories. Otherwise
a thorough preprocessing is required. In our earlier work [12], we used a string
matching algorithm to align all extracted trajectories with each cluster center
at each iteration of our expectation-maximization (EM) clustering. The accu-
racy of this approach was limited by the simple curve matching algorithm used.
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More sophisticated three-dimensional (3-D) curve matching methods could be
performed but at the expense of increased computational effort [10].

This paper presents a clustering method that aims to facilitate quantitative
analysis as the next step in the study of DT images. A statistical model of the
fiber bundles is calculated as the mean and standard deviation of a parametric
representation of the trajectories. Using this model representation, expectation-
maximization (EM) is performed to cluster the trajectories in a mixture model
framework. We obtain correspondence between points on trajectories within a
bundle by building distance maps for each cluster center. The proposed method
can potentially benefit from an atlas for the initialization step and as the prior
map in the EM algorithm. All these tasks are done in a unified framework and
the results are soft assignment of trajectories to labels and the point-by-point
correspondence to each cluster center.

2 Similarity Measure

Determining the point correspondence between a pair of trajectories is not trivial
[9,7] but if achieved, it not only makes the computation of their similarity, needed
for clustering, straightforward but also makes it possible to measure the quan-
titative parameters within a bundle. Although many authors acknowledge that
point-by-point correspondence of the trajectories should be defined by a curve
matching algorithm for accurate clustering and quantitative analysis [1,10,9], to
our knowledge this problem has not been solved to date. The difficulty lies in the
fact that the number of trajectories is usually very large, especially when trac-
tography is performed on the whole brain. This makes it computationally very
inefficient, if not impossible, to perform a rigorous curve matching algorithm on
every pair of trajectories. Here, we propose a novel approach for measuring the
similarity of 3-D curves in a large dataset that includes the whole information
of the curve for more accurate clustering and further quantitative analysis.

We treat each trajectory as a 3-D curve, i.e., an ordered set of points, ri =
{rij}. The set of trajectories is clustered into a number of subsets by assigning
a membership probability pik to each trajectory, ri, to denote its membership
in the kth cluster (∀i,

∑
k pik = 1). For each cluster, a 3-D curve, μk = {μkj},

is defined as the cluster center where each point, μkj , is obtained as the average
of all of its corresponding points on the trajectories: μk =

∑
i pikr

(k)
i , where r(k)

i

is the trajectory ri, re-parametrized to have point correspondence to cluster k,
and the summation is performed over all trajectories.

Our space includes a set of 3-D curves and a number of cluster centers. From
each center, μk, we construct an Euclidean distance map:

Dk(x) = min
j

d(x, μkj) (1)

and the nearest-neighbor transform, Lk:

Lk(x) = argmin
j

d(x, μkj) (2)
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(a) (b)

Fig. 1. (a) Distance map from sample points on a cluster center and (b) the point
correspondence label map with the center overlaid. Each region in the label map,
displayed by a different color, consists of all of the points in the space that have the
minimum distance to a specific point on the cluster center. Therefore, projecting any
curve onto this label map determines the point correspondence of each of its samples
to the center based on which region that sample is located.

where d(x, μkj) is the Euclidean distance from the point x in the space to the
jth point on the kth center. Each element of Lk will thus contain the linear index
of the nearest point of the center μk. Fig. 1 shows the distance map and label
map constructed from a sample 2-D curve. The label map partitions the space
into Voronoi cells that each correspond to a point of the center. Now, for every
curve, ri = {rij} in the space, the distance to the center μk can be measured
simply as:

dE(ri, μk) =
∑

j

Dk(rij), (3)

and by projecting it onto the label map, its point correspondence to the center
is readily achieved.

A spatial distance by itself does not encode enough information for measuring
the pair-wise similarity. One obvious issue is the variable lengths of the trajecto-
ries. Another issue is whether the trajectory has one-to-one point correspondence
to the cluster center, which is the case when they are similar in shape. Thus, any
repeated or missing match represents shape dissimilarity. A penalty is therefore
added if there are multiple points on the trajectory that correspond to a single
point on the cluster center. We add the penalty term, dpenalty to the Euclidean
distance and normalize it to the length of the fiber trajectory, Li, to obtain the
adjusted distance, da(ri, μk):

dik = da(ri, μk) =
dE(ri, μk) + dpenalty(ri, μk)

Li
. (4)

3 Mixture Model

In the previous section, we mapped our variable-length 3-D curves to a distance
matrix, da = {dik}N×K where N is the number of curves and K is the number of
clusters. Note that dik’s depend on the cluster centers, μk’s, which evolve during
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the EM algorithm as will be discussed in the next section. In other words, the
trajectories are mapped to the distance space through the cluster centers. The
goal of this section is to estimate the likelihood membership of each curve to
each cluster based on the values of the dik’s.

In mixture-model clustering, the data set is modeled by a finite number of
density functions, where each cluster is represented by a parametric distribution.
A common choice for the density functions of the data points, dik’s here, is the
Gaussian distribution. However, a Gaussian distribution does not accurately rep-
resent the nature of the 3-D distance of the trajectories from the cluster centers.
In the simplest form, the number of possible trajectories with a given distance
from the center grows linearly with the distance, while the probability that they
belong to that cluster decays exponentially. Among the well-known distributions,
the Gamma distribution well models this combined trend. Furthermore, this dis-
tribution belongs to the exponential family of distribution functions for which
the convergence of the EM algorithm is guaranteed. Given that the dik’s are
non-negative, we assume that distance metrics for each cluster follow a Gamma
distribution with shape and scale parameters αk and βk, respectively:

Gamma(d|αk, βk) = dαk−1 βαk

k e−βk d

Γ (αk)
for d ∈ [0, ∞) (5)

where Γ (.) is the gamma function. The mixture model then takes the following
form:

p(ri|Θ) = p(di|{θk, wk}) =
∑

k

wkGamma(dik|θk), (6)

where ri represents a trajectory which is mapped to a vector of distance metrics,
di = [di1, ..., diK ] as described in the previous section, wk’s are mixing weights,
and Θ is the collection of cluster parameters, θk = {αk, βk}, and the mapping
parameter, μk. The goal is to infer Θ from a set of data points, ri’s, assumed to
be samples of distributions with density given by Equ. 6:

Θ̂ = arg max
Θ

{log p(r|Θ)} (7)

which gives a maximum likelihood (ML) estimation of the parameters. Since this
estimation cannot be found analytically, the usual approach is to incorporate
the Expectation-Maximization (EM) approach, which finds the local maximum
of the likelihood function. Details are presented in the next section.

Cluster “no-match”(Outliers) – In mixture-model clustering, it is assumed
that each data point is modeled by the mixture of a finite number of density
components. However, in our case, there might be trajectories generated by the
tractography that do not resemble any of the user- or atlas-initialized cluster
centers or are not valid at all due to errors in the tractography stage. One
way to deal with this issue is to allow the variance of densities to increase to
accommodate these data. This would result in producing very spread bundles or
even instability of the algorithm. A more practical alternative is to set a threshold
so that if the membership likelihood of a particular trajectory in all clusters
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were less than that value, that trajectory would be removed from the processing
data. In fact, with this threshold, the heterogeneity of the trajectories within
each cluster is controlled. The larger the threshold is, the more compact are the
resulting bundles, and consequently the greater is the number of unclustered
trajectories. Handling outliers in such a principled way is not straightforward in
previously proposed clustering schemes [7,8,12]. Unlike those methods, we allow
the distribution of each cluster to have a different set of parameters (αk’s, βk’s),
all inferred from the data by using the EM algorithm, and hence the user needs
to set only the mentioned threshold to effectively remove the outliers.

4 Expectation Maximization Clustering

The EM algorithm produces a sequence of estimates of the parameters, Θ, and
the hidden data, pik’s, in two consecutive steps:

Membership assignments(E-Step)– Assuming that the parameters of the
clusters are known, the probability that the trajectory ri belongs to cluster k is

pik = Pr(k|ri, Θ) =
wkp(ri|θk)∑
k wkp(ri|θk)

, (8)

where p(ri|θk) = Gamma(dik|αk, βk).

Updating model parameters(M-Step)– The updated mixing weights are
calculated as

wk =
1
N

N∑

i=1

pik. (9)

Unlike the Gaussian mixture model, there is no closed form to update the ML
estimate of the shape parameter of the Gamma distribution. A good approxi-
mation can be made as [13]:

αk ≈ 3 − x +
√

(x − 3)2 + 24x

12x
, (10)

where

x = log
(∑

i pikdik∑
i pik

)
−

∑
i pik log(dik)∑

i pik
. (11)

The ML estimate of the scale parameter is then updated by:

βk = αk

∑

i

pik/
∑

i

pikdik. (12)

With the point correspondence between each trajectory and cluster centers de-
termined, the mapping parameter for each cluster is readily updated at each
stage as:

μk =
∑

i pikr
(k)
i∑

i pik
(13)
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(a) (b) (c)

Fig. 2. About 3000 trajectories clustered to 25 user-initialized bundles. Clusters in-
clude different segments of the corpus callosum, tapetum, middle cerebellar peduncle,
corticobulbar and corticospinal tracts, and different portions of thalamic radiation.

Initialization – We set the shape parameter of the Gamma distribution equal
to one to have an exponential distribution which favors those trajectories most
similar to the initial center. The scale parameter is then initialized to the mean
values of data points of each cluster. The centers of clusters can be initialized
manually by selecting a set of trajectories with different shapes from the data.
Dependency of the algorithm on the initial centers will be discussed in Section 5.
As an alternative, the initial cluster centers can be supplied by an atlas of fiber
tracts, if available, such that the mean trajectories of the atlas clusters are
employed after registering of the case to the atlas.

5 Results and Discussion

We applied our method on 3T DT-MR images with a spatial resolution of
1.054×1.054×2 mm, acquired from healthy volunteers. The streamline tractog-
raphy [14] was used to reconstruct the trajectories from 3-D diffusion tensor
data. The stopping criteria was reaching a point with fractional anisotropy (FA)
less than 0.15 or a change of direction greater than 45◦. As a three-dimensional
curve, we represent each trajectory with an equally-spaced sequence of points.
In our implementation, the distance between the successive samples is 5 mm, so
the number of samples are different for each trajectory.

Fig. 2 shows the results of clustering roughly 3000 trajectories from corpus
callosum, middle cerebellar peduncle, corticobulbar, and corticospinal tracts into
25 bundles. As the initial centers, 25 trajectories from the data were selected
manually, each representing an expected cluster. The membership probability of
the trajectories to each cluster is obtained using the EM algorithm as described
in Section 4. The trajectories in Fig. 2 are colored based on their maximum
membership probabilities. One of the difficult bundles of fiber tracts to cluster
is the cingulum. Even starting tractography from a user-defined ROI results in a
set of disordered trajectories, mostly short in length because of low FA. Also, due
to its adjacency to the corpus callosum, many callosal trajectories are included
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Fig. 3. Clustering of cingulum trajectories (top) into 2 bundles (bottom) for two
healthy subjects. Saggital and axial views are shown for each case. Two arbitrary
trajectories from the superior and inferior parts of the left cingulum were selected as
the initial centers.

that adversely affect any further analysis of the bundle. As shown in Fig. 3 for
two subjects, our method is well capable of clustering these trajectories into
the desired bundles. Two arbitrary trajectories, one from the the superior and
one from the posterior part of the cingulum were selected as the initial cluster
centers. Knowledge of the point correspondence and hence rigorous calculation
of the similarity measure is essential for clustering of such a disordered set of
trajectories. Fig. 4 illustrates the evolution of the Gamma distribution for the
clusters of the first case shown the Fig. 3. Convergence is achieved just after a
few iterations of the EM algorithm. The Gamma distribution was initialized with
α = 1, corresponding to a exponential distribution, to value those trajectories
that have no distance to the initial cluster center. However, as the algorithm
proceeds, the Gamma distribution evolves from a very broad distribution to a
narrow distribution with small but non-zero mode.

A spatial model of the fiber bundles represented by the mean trajectory and
its spatial variation is also obtained. This is shown in Fig. 5 in which the abstract
models of five fiber bundles are visualized by their spatial mean and isosurfaces
corresponding to the mean plus three standard deviations (3σ) of the 3-D coor-
dinates along the cluster center. Such an abstract spatial model for fiber bundles
could be used for neurosurgery applications. It enables one to easily visualize the
extent of the fiber tracts adjacent to the brain lesions to minimize the damage
to the bundles when removing the lesion. Moreover, having the mean trajectory
for each bundle of fiber tract allows us to study the shape of the bundle. As an
example, the curvature versus the normalized arc length of the cluster centers
are plotted in Fig. 6 for each cluster shown in Fig. 5.

To investigate the sensitivity of the clustering to the initial centers, we ran-
domly selected different sets of trajectories from each cluster shown in Fig. 5.
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Fig. 4. Evolution of the Gamma distributions that describe the normalized distance
metric for the two clusters shown on the left in Fig. 3. After just a few iterations, the
distribution converges to a narrow distribution with small but non-zero mode.

At each run with one of the sets as the initial centers, the final centers obtained
by the clustering algorithm are almost identical as shown in Fig. 7. This demon-
strates the robustness of the algorithm with respect to the variations in the initial
centers within each cluster. To demonstrate the suitability of our framework for
tract-oriented quantitative analysis, we compute the mean and variation of the
anisotropy parameters along the trajectories for clusters shown in Fig. 5. If any
anisotropy measure, such as fractional anisotropy (FA) or the eigenvalues, or
any of the local shape descriptors, such as curvature and torsion, are available
along the trajectories, calculation of the mean and standard deviation of that
parameter is quite straightforward. In fact, with the point correspondence ob-
tained using the distance map described in Section 2, no further alignment of
the quantitative parameters is necessary. Thus, similar to the computation of
spatial mean and covariance of the clusters, performed in the M-stage of the EM
algorithm, the mean and standard deviation of the parameters are obtained con-
sidering the membership probabilities of trajectories. Fig. 8 shows the mean and
standard deviation of FA values along the normalized arc length of the cluster
centers for each of the bundles in Fig. 5. To highlight the accuracy of our ap-
proach in aligning the fiber trajectories, the FA values along the aligned versions
of all trajectories are also plotted (blue curves). These plots reveal the pattern
of the FA values in the examined bundles.

Being able to perform such an analysis is valuable since it enables us to study
the local changes of quantitative parameters along the fibers. This is especially
interesting for study of temporal changes of fiber tracts during brain development
and also opens new possibilities to compare normal and pathological subjects.
The unavailability of efficient tools for tract-oriented quantitative analysis has
limited most clinical studies to date to evaluation of scalar averages of parameters
over an ROI. Local variations that provide significant information about brain
development [15] and pathologies [16] are thus lost in the course of study.
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(a) (b)

Fig. 5. (a) Trajectories of 5 different clusters used for quantitative analysis: splenium
(yellow), corticospinal (red), corticobulbar (green), middle cerebellar peduncle (blue),
and genu (magenta). (b) A model representation of the bundles as the mean trajectory
and the isosurfaces corresponding to spatial variation of the clusters.
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Fig. 6. Curvature of the cluster center along its normalized arc length for fiber bun-
dles shown in Fig. 5: (a) splenium, (b) genu, (c) middle cerebellar peduncle, (d) corti-
cospinal, and (e) corticobulbar fiber tracts.
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Fig. 7. Robustness of the EM algorithm with respect to the initial cluster centers. The
algorithm was run 5 times with different initial centers (a) to cluster the trajectories in
Fig. 5. Final cluster centers collected in (b) show little dependence on initial centers.
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Fig. 8. Fractional anisotropy vs. normalized arc length for fiber bundles in Fig. 5: (a)
splenium, (b) genu, (c) middle cerebellar peduncle, (d) corticospinal, and (e) corticob-
ulbar fiber tracts

6 Conclusion

We demonstrated joint clustering and point-by-point mapping of white matter
fiber trajectories using an EM algorithm in a Gamma mixture model context.
The Gamma distribution enabled us to effectively model the normalized distance
of the trajectories from each cluster center. Point correspondence of trajectories
was obtained by constructing a distance map from each cluster centers at every
EM iteration. This provides a time-efficient alternative to pairwise curve match-
ing of all trajectories with respect to each cluster center. Probabilistic assignment
of the trajectories to clusters was controlled with a minimum threshold on the
membership posteriors, to offer flexibility in trading off between the robustness
of the clusters and the number of outliers. Point correspondence calculated in
our algorithm is an essential requirement of the tract-orientated quantitative
analysis which is overlooked in previous works.
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Abstract. In this paper, we present a novel continuous mixture of diffusion ten-
sors model for the diffusion-weighted MR signal attenuation. The relationship
between the mixing distribution and the MR signal attenuation is shown to be
given by the Laplace transform defined on the space of positive definite diffusion
tensors. The mixing distribution when parameterized by a mixture of Wishart dis-
tributions (MOW) is shown to possess a closed form expression for its Laplace
transform, called the Rigaut-type function, which provides an alternative to the
Stejskal-Tanner model for the MR signal decay. Our model naturally leads to a
deconvolution formulation for multi-fiber reconstruction. This deconvolution for-
mulation requires the solution to an ill-conditioned linear system. We present sev-
eral deconvolution methods and show that the nonnegative least squares method
outperforms all others in achieving accurate and sparse solutions in the presence
of noise. The performance of our multi-fiber reconstruction method using the
MOW model is demonstrated on both synthetic and real data along with compar-
isons with state-of-the-art techniques.

1 Introduction

As the only noninvasive and in vivo imaging method available today which allows
neural tissue architecture to be probed at a microscopic scale, diffusion-weighted mag-
netic resonance imaging (DW-MRI) provides unique clues to the microstructure of tis-
sues and to changes associated with various physiological and pathological states. By
producing quantitative data of water molecule motion that naturally occurs in brain tis-
sues as part of the physical diffusion process, DW-MRI has also been used to map the
fiber orientation in the brain white matter tracks. This valuable information can be fur-
ther exploited for neuronal connectivity inference and brain developmental studies [1].

Assuming a displacement probability characterized by an oriented Gaussian prob-
ability distribution function, diffusion tensor MRI (DT-MRI) [2] provides a relatively
simple way of quantifying diffusional anisotropy as well as predicting the local fiber
direction within the tissue from multidirectional DW-MRI data. However, the major
drawback of diffusion tensor MRI is that it can only reveal a single fiber orientation in
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each voxel and fails in voxels with orientational heterogeneity [3], which makes DT-
MRI an inappropriate model for use in the presence of multiple fibers within a voxel.

This limitation of diffusion tensor model has prompted interest in the development
of both improved image acquisition strategies and more sophisticated reconstruction
methods. Both spherical harmonic expansion [4] and the equivalent higher order tensor
model [5] have been used to represent the diffusivity profile based on the Stejskal-
Tanner mono-exponential attenuation model. Knowing that the peaks of the diffusivity
profile do not necessarily yield the orientations of the distinct fiber populations, a num-
ber of model-independent approaches attempt to transform the multi-directional signals
into a probability function describing the probability of water molecular displacement.
The q-ball imaging (QBI) method approximates the radial integral of the displacement
probability distribution function (PDF) by the spherical Funk-Radon transform [6].
More recent studies have expressed QBI’s Funk-Radon transform in a spherical har-
monic basis [7, 8, 9]. Diffusion spectrum imaging (DSI) can measure the microscopic
diffusion function directly based on the Fourier relation between the diffusion signal
and the diffusion function, but is limited by the time-intensive q-space sampling bur-
den [10]. The diffusion orientation transform (DOT) transforms the diffusivity profiles
into probability profiles by explicitly expressing the Fourier relation in spherical coor-
dinates and evaluating the radial part of the integral analytically [11].

Some multi-compartmental models have also been used to model the diffusion-
attenuated MR signal using a finite mixture of Gaussians [3, 12, 13]. A continuous ex-
tension of the finite discrete mixture model is the spherical deconvolution method [14].
Compared to the multi-compartment models, the spherical deconvolution framework
has two significant advantages. First, it is not required to specify the number of under-
lying fiber populations before deconvolution while this number has to be known in order
to build the multi-compartment models. Second, the spherical deconvolution methods
often yield a linear system which can be solved efficiently while the multi-compartment
models usually involve the expensive nonlinear fitting. Recognizing these merits of the
spherical deconvolution framework, recently many researchers have proposed a number
of variants of spherical deconvolution approaches [7, 15, 16] with different choices of
basis functions, deconvolution kernels and regularization schemes.

In this paper, we present a novel probabilistic model that significantly generalizes
the traditional diffusion tensor model [2]. First, we assume that each voxel is associated
with an underlying probability distribution defined on the space of diffusion tensors (the
manifold of 3×3 positive-definite matrices). Conceptually, our model can be viewed as
a natural extension of the multiple-compartment models [3, 13]. Moreover, this exten-
sion relates the continuous mixture model to MR signal attenuation through a Laplace
transform defined for matrix-variate functions. It is worth noting that the Laplace trans-
form can be evaluated in closed form for Wishart distributions and the resulting closed
form leads to a Rigaut-type function which has been used in the past to explain the
MR signal decay [17]. Our model naturally leads to a deconvolution formulation of
the multi-fiber reconstruction problem, where the deconvolution kernel is the Laplace
transform kernel and the basis functions are Wishart distributions. We develop an effi-
cient and robust scheme for reconstructing the multiple fiber bundles using the proposed
model and show several comparisons with other state-of-the-art methods.
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2 Theory

By generalizing the discrete Gaussian mixture model to the continuous case, we pos-
tulate that at each voxel there is an underlying probability measure associated with the
manifold of n×n symmetric positive-definite matrices, Pn (by default P3). Let f(D) be
its density function with respect to some carrier measure dD on Pn. Then the diffusion
weighted MR signal S(q) can be modeled as:

S(q)/S0 =
∫

Pn

f(D) exp[−bgT Dg] dD , (1)

where S0 is the signal in the absence of diffusion weighting gradient, q encodes the
magnitude (G) and direction (g) of the diffusion sensitizing gradients, and b is the dif-
fusion weighting factor depending on the strength as well as the effective time of diffu-
sion. Note that Eq. (1) implies a continuous form of mixture model with f(D) being a
mixing density over the components in the mixture. Clearly, our model simplifies to the
diffusion tensor model when the underlying probability measure is the Dirac measure.

Since b gT Dg in Eq.(1) can be replaced by trace(BD) where B = b ggT , the equa-
tion (1) can be expressed as the Laplace transform (matrix variable case) [18]:

S(q)/S0 =
∫

Pn

exp(−trace(BD)) f(D)dD = (Lf )(B) , (2)

where Lf denotes the Laplace transform of a function f which takes its argument as
symmetric positive definite matrices from Pn.

This expression naturally leads to an inverse problem: recovering of a distribution
defined on Pn that best explains the observed diffusion signal S(q). This is an ill-posed
problem and in general is intractable without prior knowledge of the probabilistic struc-
ture. In conventional DT-MRI, the diffusion tensor is usually estimated by solving a
linear or nonlinear least squares problem, which amounts to applying the maximum
likelihood estimator. Instead our approach views the diffusion tensor as random vari-
able (matrix) belonging to some known distribution family, which allows us to model
the uncertainty in the diffusion tensor estimation. Note that in DT-MRI, the diffusion
tensor can be interpreted as the concentration matrix (inverse of the covariance matrix)
of the Gaussian distribution in the q-space. It is a common practice to put a Wishart
distribution (see definition below) prior, on the concentration matrix in multivariate
analysis. Moreover, in the case of a Wishart distribution, a closed form expression for
the Laplace transform exists and leads to a Rigaut-type asymptotic fractal law for the
MR signal decay behavior which has been observed in the past (see explanation below).

Definition 1. [18] For Σ ∈ Pn and for p in
(

n−1
2 , ∞

)
, the Wishart distribution γp,Σ

with scale parameter Σ and shape parameter p is defined as 1

dγp,Σ(Y) = Γn(p)−1 |Y|p−(n+1)/2 |Σ|−p e−trace(Σ−1Y) dY, (3)

where Γn is the multivariate gamma function and | · | is the matrix determinant.

1 Note that the correspondence between this definition and the conventional Wishart distribution
Wn(p,Σ) is given simply by γp/2,2Σ = Wn(p,Σ).
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The Wishart distribution γp,Σ is known to have the closed-form Laplace transform:
∫

e−trace(ΘY) dγp,Σ(Y) = (1 + trace(ΘΣ))−p where (Θ + Σ−1) ∈ Pn. (4)

Let f in (2) be the density function of γp,Σ with the expected value D̂ = pΣ. We have

S(q) = S0 (1 + (b gT D̂g)/p)−p . (5)

This is a familiar Rigaut-type asymptotic fractal expression [19] implying a signal decay
characterized by a power-law which is the expected asymptotic behavior for the MR
signal attenuation in porous media. Note that although this form of a signal attenuation
curve had been phenomenologically fitted to the diffusion-weighted MR data before
[17], until now, there was no rigorous derivation of the Rigaut-type expression used
to explain the MR signal behavior as a function of b-value. Therefore, this derivation
may be useful in understanding the apparent fractal-like behavior of the neural tissue
in diffusion-weighted MR experiments. Also note when p tends to infinity, we have
S(q) → S0 exp(−bgT D̂g) , which implies that the mono-exponential model can be
viewed as a limiting case (p → ∞) of our model.

The single Wishart distribution model has a drawback in that it can not resolve the
intra-voxel orientational heterogeneity due to the single mode of the Wishart distribu-
tion. Hence it is natural to use a discrete mixture of Wishart distribution model where
the mixing distribution in Eq.(2) is expressed as dF =

∑N
i=1 widγpi,Σi . In order to

make the problem tractable, several simplifying assumptions are made as follows. First,
in this model (pi, Σi) are treated as the basis and will be fixed as described below. This
leaves us with the weights, w = (wi), as the unknowns to be estimated. Note that the
number of components in mixture, N , only reflects the resolution of the discretization
and should not be interpreted as the expected number of fiber bundles. We assume that
all the pi take the same value, pi = p = 2, based on the analogy between the Eq.(5)
and Debye-Porod law of diffraction [20] in 3D space. Since the fibers have an approxi-
mately cylindrical geometry, it is reasonable to assume that the two smaller eigenvalues
of diffusion tensors are equal. In practice, we fix the eigenvalues of Di = pΣi to spec-
ified values (λ1, λ2, λ3) = (1.5, 0.4, 0.4)μ2/ms consistent with the values commonly
observed in the white-matter tracts [3]. This rotational symmetry leads to a tessellation
where N unit vectors evenly distributed on the unit sphere are chosen as the principal
directions of Σi. For K measurements with qj , the signal model equation:

S(q) = S0

N∑

i=1

wi(1 + trace(BΣi))−p (6)

leads to a linear system Aw = s, where s = (S(q)/S0) contains the normalized
measurements, A is the matrix with Aji = (1 + trace(BjΣi))−p, and w = (wi) is the
weight vector to be estimated.

Like many existing reconstruction methods, our method can be cast into a unified
convolution framework as follows:

S(q)/S0 =
∫

M
R(q, x)f(x)dx (7)
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In Eq. (7), the signal is expressed as the convolution of a probability density func-
tion and a kernel function. The integration is over a manifold M whose elements x
contain the useful information like orientation and anisotropy. The convolution kernel,
R(q, x) : R

3 × M �→ R represents the response derived from a single fiber. In order to
handle the intra-voxel orientational heterogeneity, the volume fractions are represented
by a continuous function f(x) : M �→ R. The deconvolution problem is to estimate
the f(x) given the specified R(q, x) and measurements S(q)/S0. In literature, f(x) is
usually expressed as a linear combination of N basis functions: f(x) =

∑
wjfj(x).

The choices of convolution kernels and basis functions are related to the underlying
manifold M. A simple example is to set M to the unit sphere, which leads to the
spherical deconvolution problem [15]. Though involving the manifold of diffusion ten-
sors, several other approaches still reduce to the sphere deconvolution problem since
only rotationally symmetric tensors are considered. [14, 13, 7].

The types of basis functions include radial basis functions [15], spherical harmon-
ics [14, 7]. Like in [14, 13, 7], our method uses the standard diffusion tensor kernel.
However, it is the Wishart basis function that distinguishes our method from these re-
lated methods. It is worth noting that the Wishart basis reduces to the Dirac function
on Pn when p = ∞ and thus leading to the tensor basis function method introduced
in [13]. The fiber orientation estimated using the continuous axially symmetric tensors
(FORECAST) method proposed in [7] also resembles (very closely) our method with
the basis function being chosen as the spherical harmonics.

3 Stable, Sparse and Positive Deconvolution

The deconvolution problem can be formulated in a general form of as,

Aw = s + η, (8)

where s contains K measurements S(q)/S0, the K × N matrix A = {Aij} is given by
Aij =

∫
M

R(qi, x)fj(x)dx and η represents certain noise model. Note that the integral
to compute the entries of A may have an analytical solution as in our model and others
that use the tensor kernel [14,13,7], or needs to be numerically approximated as in [15].
But, once the response kernel R(q, x) and the basis function are specified, the matrix
A can be fully computed (or approximated) and only w, a column vector containing K
unknown coefficients, remains to be estimated.

Under the assumption that the measurement errors η are i.i.d. and normally distrib-
uted, the maximum likelihood estimate of w naturally leads to the L2 norm as a mea-
sure of goodness of the fit. Without inequality constraints, the corresponding quadratic
programming (QP) problem minimizing the residual sum of squares

(P1) min ‖Aw − s‖2 (9)

can be efficiently solved by solving a linear system using for instance, direct methods
when the size of the linear system in Eq. (9) is not large as in our application. The so-
lution in the least squares sense is given by w = A+s where A+ = (AT A)−1AT is the
pseudoinverse of the A. The advantage of applying the pseudoinverse is in its light com-
putational burden since the matrix A is identical in each voxel and its pseudoinverse only
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Fig. 1. Left plot shows the case where the A matrices are constructed from the radial basis function
and the tensor kernel model as in [15]. Right plot shows the case with a standard diffusion tensor
kernel weighted by a mixture of Wisharts. Both assume 81 diffusion gradient directions and two
tessellation schemes (81 and 321 directions) are considered for each model.

needs to be computed once. However, this simplicity and efficiency comes at the cost of
higher susceptibility to noise, due to the fact that the matrix A is usually ill-conditioned
in our application as illustrated in Fig. 1. Efforts at reliable multi-fiber reconstruction in
the presence of noise have included low-pass filtering [14], the maximum entropy prin-
ciple [15] and Tikhonov regularization [16]. In the Tikhonov regularization framework,
the problem in Eq. (8) can be formulated as:

(P2) min ‖Aw − s‖2 + α‖Tw‖2 (10)

where α is a regularization parameter and T is a regularization operator. In order to
penalize the magnitude of the estimates, (P2) in (10) with T being the identity operator
I is often used and yields the relation: w = (AT A + αI)−1AT s. Recently, a Damped
Singular Value Decomposition was used to regularize the fiber orientation distribution
[21] where the damping factor α is determined by minimizing the Generalized Cross
Validation (GCV) criterion, which provides a simple and objective method, though not
really optimal, for choosing the regularization parameter.

In practice, the number of diffusion MR image acquisition sequence, K , is rarely
greater than 100. On the other hand, a high resolution tessellation with N > 100 is
usually taken to obtain an accurate reconstruction. This under-determined linear system
has infinite solutions in the least squares sense and usually produces the w with many
negative-valued components which are not physically meaningful. Another issue related
to this configuration is the sparsity constraint. Since the number of significant spikes in
w is indicative of the number of maxima in the displacement probability surfaces, w
is expected to have a sparse support. Recently a series of significant research articles
have been published by Candés and collaborators (see [22] and references therein) on
a theory of signal recovery from highly incomplete information. The central result rel-
evant to us here, states that a sparse vector w ∈ R

N can be recovered from a small
number of linear measurements s = Aw ∈ R

K , K � N (or s = Aw + η when
there is measurement noise) by solving a convex program. Among the several problems
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they have discussed, we are particularly interested in the following two problems: (1)
Min-L1 with equality constraints:

(P3) min ‖w‖1 subject to Aw = s (11)

and (2) Min-L1 with quadratic constraints:

(P4) min ‖w‖1 subject to ‖Aw − s‖2 ≤ ε (12)

where ε is a user specified parameter. Both problems (P3) and (P4) find the vector
with smallest L1 norm (‖w‖1 =

∑
i |wi|) that best explains the observation s. (P3)

can be recast as an linear-programming (LP) problem while (P4) can be recast as a
second order cone programming (SOCP) problem (see [22, 23] and references therein
for details). We will report the results of implementation of these methods for the sake
of comparisons in the next section.

However, (P3) and (P4) do not explicitly enforce the nonnegative constraints. The
straight forward solution is to incorporate a nonnegative constraint while minimizing
the least-squares criterion:

(P5) min ‖Aw − s‖2 subject to w ≥ 0. (13)

This non-negative least squares (NNLS) minimization is precisely a quadratic program-
ming problem: Find the minimum point of a concave quadratic function in a linearly
bounded convex feasible hyperspace. The most used algorithm for NNLS was devel-
oped in [24, Ch. 23], which treats the linear inequality constraints using an active set
strategy. Though the sparsity constraint is not explicitly imposed, the active set strategy
tends to find the sparse solution quickly if there exists such one. Additionally, unlike
other iterative methods mentioned above, this algorithm requires no arbitrary cutoff pa-
rameter and hence the output is not susceptible to mis-tuning of the input parameters.
More comparisons of these methods on simulation data are shown in Section 4.

After w is estimated, the displacement probabilities can be approximated by the
Fourier transform P (r) =

∫
(S(q)/S0) exp(−iq · r) dq where r is the displacement

vector. Assuming a continuous diffusion tensor model (1) with mixing distribution
F (D) =

∑N
i=1 widγpi,Σi , we have

P (r) =
∫

R3

∫

Pn

e−qT DqtdF (D)e−iq·rdq ≈
N∑

i=1

wi√
(4πt)3|D̂i|

exp(
−rT D̂i

−1
r

4t
)

(14)

where D̂i = pΣi are the expected values of γp,Σi . Note that the end result is expressed
as a mixture of oriented Gaussians. Due to its good analytic properties, many of the
quantities produced by other methods including the radial integral of P (r) in QBI [6]
and the integral of P (r)r2 in DSI [10] are analytically computable using our technique.
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4 Experimental Results

4.1 Numerical Simulations

Prior to performing the experiments on real diffusion MRI data, we first test the perfor-
mance of the methods described in the previous section on the HARDI simulations of
1-,2- and 3-fiber geometries with known fiber orientations as shown in Fig. 2. The diffu-
sion MR signals were realistically simulated by using the formulas from the cylindrical
boundary restricted diffusion model in [25] with the same parameter settings as in [11].

Fig. 2. HARDI simulations of 1-, 2- and 3-fibers
(b = 1500s/mm2) visualized in QBI ODF surfaces
using [7, Eq.(21)]. Orientation configurations: az-
imuthal angles: φ1 = 30◦, φ2 = {20◦, 100◦}, φ3 =
{20◦, 75◦, 135◦}; polar angles are all 90◦.

In order to compare the performance
of the five deconvolution methods de-
scribed in Section 3, we first apply
all of them on the noiseless 1-fiber
HARDI simulation data and the re-
sults of w obtained from these meth-
ods are plotted in Fig. 3. We observe
that the least squares solution to (P1)
contains a large portion of negative
weights and has relatively large mag-
nitude. A zeroth-order Tikhonov reg-
ularization (P2) is able to reduce the
magnitude significantly but does not
help achieve the sparsity and non-
negativity. By minimizing the L1 norm with equality constraints, (P3) yields relative
sparse solution but the magnitude and the negative values are not controlled. The re-
sult produced by (P4) has better sparsity and non-negativity. Evidently, the best result
is obtained by solving (P5) using NNLS. Among the 321 components, there are only
two nonzero and significant spikes which both lie in the neighborhood of true fiber
orientation (30◦, 90◦). It is important to note that (1) the true fiber orientations do not
necessarily occur at the maximum of the discrete w vector; and (2) although all of these
different results for w actually lead to a very good approximation of the true displace-
ment probability function P (r) after taking the Fourier transforms, a sparse positive
representation of w obviously offers a great advantage in setting the initial guess in the
optimization procedure used to find the fiber orientations by estimating the extrema of
P (r). Considering the additional computational overhead for solving (P3), (P4) and
(P5) due to the iterative optimization, (P5) is slightly slower than (P3) (LP) but sig-
nificantly faster than (P4) (SOCP). It only takes MATLAB’s built-in lsqnonneg around
20-200ms to solve a problem of size 81 × 321. Fig. 4 further shows the results of using
NNLS on the noisy simulated data. Clearly, NNLS is still able to produce quite accurate
solutions which also are sparse representations.

Finally, as a conclusion to our experiments on the simulated data, we compare the
proposed method mixture of Wisharts (MOW) model with two model-free methods,
namely, the Q-ball ODF [6] and the DOT [11]. In order to provide a quantitative com-
parison, all the resulting P (r) surfaces were represented by spherical harmonics coef-
ficients up to order l = 6. As before, the Q-ball ODF is computed using the formula
in [7, Eq.(21)]. First, to gain a global assessment of these methods in terms of stability,
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Fig. 3. Deconvolution-based computation of w in the 1-fiber HARDI simulation. The matrix A is
of size 81×321 and is built from the Wishart model but with p = ∞. The Min-L1 algorithms are
solved using the package developed in [23]. The NNLS solver is the MATLAB built-in lsqnonneg
function based on Lawson and Hanson’s algorithm [24].

we calculated the similarity between each noisy P (r) and the corresponding noiseless
P (r) using the angular correlation coefficient formula given in [7, Eq.(71)]. The angu-
lar correlation ranges from 0 to 1 where 1 implies identical probability profiles. Then,
we estimated the fiber orientations of each system by numerically finding the maxima of
the probability surfaces with a Quasi-Newton algorithm and computed the deviation an-
gles between the estimated and the true fiber orientations. Figure 5 shows the mean and
standard deviation of the angular correlation coefficients, and error angles, respectively,
for the two-fiber simulation. Note that among the three methods examined, only MOW
results in small error angles and high correlation coefficients in presence of relatively
large noise. This trend also holds for the 1-fiber and the 3-fiber simulations. This can be
explained by noting that NNLS is able to locate the sparse spikes quite accurately even
in the presence of large noise.

4.2 Real Data Experiments

The rat optic chiasm provides an excellent “platform” to experimentally validate our
approach due to its distinct myelinated structure with both parallel and descussating
(crossing) optic nerve fibers. Decussating fibers carry information from the temporal
visual fields to the geniculate body. A HARDI data set was acquired from a perfusion-
fixed excised rat optic chiasm at 14.1T using a Bruker Avance imaging system with a
diffusion-weighted spin echo pulse sequence. DW-MRI data were collected using 46
directions with a b-value of 1250s/mm2 and a single image with b ≈ 0s/mm2. Echo
time and repetition time were 23ms and 0.5s respectively; Δ and δ values were set to
12.4ms and 1.2ms respectively; bandwidth was set to 35kHz; signal average was 10;
a matrix size of 128×128×5 and a resolution of 33.6×33.6×200μm3 was used. The
optic chiasm images were signal averaged to 67.2× 67.2× 200μm3 resolution prior to
computation of the water molecule displacement probability field.
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Fig. 4. Deconvolution-based computation of w using NNLS on simulated data in presence of
Riccian noise with σ = .06. The matrix A is constructed by using the Wishart model with
p = 2 and the tessellation of size N = 321. From left to right are the 1-fiber, 2-fiber and 3-
fiber simulations, respectively. The spikes in each resulting w are marked with the corresponding
azimuthal and polar angles in degrees. Note all the spikes detected are close to the ground truth
orientations specified in Figure 2.

Three methods are used to generate the displacement probability functions for the
optic chiasm image. The results on a region of interest are shown in Figure 6. The cor-
responding S0 image is also shown in the upper left corner as a reference. As seen from
the figure, the fiber-crossings in the optic chiasm region is not identifiable in Figure
6 (c). Note that both the DOT method and the MOW method are able to demonstrate
the distinct fiber orientations in the central region of the optic chiasm where ipsilateral
myelinated axons from the two optic nerves cross and form the contralateral optic tracts.
However, it is evident from the figure that compared to all other solutions, the MOW
scheme yields significantly sharper displacement probability surfaces. This is particu-
larly borne out in the central location of the figure labeled, the optic chiasm. One of the
reasons for the blurred appearance of these probability surfaces in the QBI and DOT
models is due to the fact that neither of them yield the actual displacement probability
surfaces but a corrupted P (r) where the corrupting factor is a a zeroth order Bessel
function in the QBI method and a function that does not have an analytic form in the
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Fig. 5. Mean and standard deviation of (a) angular correlation coefficient and (b) error angles for
the two-fiber simulation. The displayed values for error angles are averaged over the two fibers.
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Fig. 6. Probability surfaces computed from a rat optic chiasm image using three methods. Note
the decussation of myelinated axons from the two optic nerves at the center of the optic chiasm.

case of DOT. This corruption effects the accuracy of the reconstructed fiber orientations
as evidenced in the simulated data case where ground truth was known.

5 Conclusions

In this paper, we present a novel mathematical model which relates the diffusion MR
signals and probability distributions for positive definite matrix-valued random vari-
ables through Laplace transforms. We further show that the closed form expression for
the Laplace transform of Wishart distributions leads to Rigaut-type asymptotic fractal
law for the MR signal decay behavior which has been observed experimentally in the
past [17]. Moreover in this case, the traditional diffusion tensor model is the limiting
case of the expected signal attenuation. We further develop a spherical deconvolution
method for resolving multiple fiber orientations using the mixture of Wisharts (MOW)
model. To address the numerical issues and sparsity constraints raised in solving this de-
convolution problem, we investigate a number of deconvolution techniques and demon-
strate that the classic non-negative least squares (NNLS) algorithm developed in [24]
is most suitable for our deconvolution problem in achieving sparseness and robust-
ness. Experimental results on both synthetic and real data sets have also shown that
the proposed MOW model combined with NNLS deconvolution provides better overall
performance than other state-of-the-art techniques for multi-fiber reconstruction.
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Abstract. Diffeomorphic image registration, where images are aligned
using diffeomorphic warps, is a popular subject for research in medical
image analysis. We introduce a novel algorithm for computing diffeomor-
phic warps that solves the Euler equations on the diffeomorphism group
explicitly, based on a discretisation of the Hamiltonian, rather than using
an optimiser. The result is an algorithm that is many times faster than
those considered previously.

1 Introduction

Image registration has received much research over the past few years, not least
because of its many applications in medicine. For example, it is useful for re-
moving motion artefacts caused by patient breathing, heartbeat, and patient
movement [1], aligning to an atlas [2], monitoring disease progression [3], as-
sisting in disease diagnosis [4], and measuring anatomical variability between
subjects [5]. For further details about these applications see [5]. A more general
survey of image registration, highlighting its uses in synthetic aperture radar
and other applications is given in [6].

For applications in disease diagnosis and measuring anatomical variability,
some form of measurement on the space of images is essential, to allow sta-
tistical analysis of the image warps. This generally requires using diffeomorphic
image registration, where the choice of image warps that can be used to solve the
registration problem are constrained to be diffeomorphisms, i.e., smooth func-
tions that have smooth inverses. There has therefore been recent interest in the
use of diffeomorphic deformations (warps) to align medical images.

In 1966 Arnold made the profound discovery that the Euler equations for a
perfect fluid are geodesic equations on the group of volume-preserving diffeomor-
phisms with respect to a group-invariant metric defined by the kinetic energy
of the fluid [7]. This point of view allowed stability and existence results [8]
that have not been bettered today. For diffeomorphic image warping, it is the
group of all diffeomorphisms that is considered, and the warp φ is constructed
as a geodesic (shortest path) between two images, leading to a right-invariant
Riemannian metric. This diffeomorphism has typically been computed as an
optimisation problem; see [9,4] for an overview.
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In this paper we introduce a novel formulation of the problem that is based
on solving the partial differential equations that govern the motion. These PDEs
are the Euler equations for the full diffeomorphism group, given by equations (1)
and (2) below; for derivations, following [7], see [9,10]. We introduce a particle
method that enables us to solve for the diffeomorphism directly, resulting in an
algorithm that is orders of magnitude faster than previous ones. We demonstrate
the algorithm using standard forward-Euler and Runge-Kutta integrators, and
discuss the benefits of using a symplectic integrator.

1.1 Problem Formulation

The aim of diffeomorphic image registration is to find a diffeomorphism φ that
takes a free image F to a reference image R, i.e., R = F ◦φ. The diffeomorphism φ
is defined on some domain Ω ∈ R

2 or R
3, and the images are typically greyscale,

so that R, F : R
2 → R or R, F : R

3 → R. The method used to find the desired φ
is generally optimisation of some norm ‖R − F ◦ φ‖. Typical choices include the
L2 norm (sum-of-squares error) and mutual information [11,12], although there
are other alternatives, including the correlation ratio [13] and the normalised
gradient-based method [14].

In this paper, we describe a novel method of constructing the diffeomorphisms.
The standard approach is to use an energy minimisation, which produces the dif-
feomorphism as a geodesic [4,17,15,16]. Instead, we compute the Hamiltonian of
the Euler equations on the diffeomorphism group, discretise them and integrate
them explicitly. For the case of the full diffeomorphism group, G = Diff(Rn),
that we consider here, the Euler equations are (see [18,19] for further details):

ṁ + u · ∇m + ∇uT · m + m(div u) = 0, (1)

where ṁ denotes differentiation with respect to time, u(x, t) (u, x ∈ R
n, t ∈ R)

is a velocity field, and m(x, t) its associated momentum. The velocity u and
momentum m are related by:

m = Au, (2)

where A is an elliptic operator (e.g., A = (1 − ∇2)k) called the inertia operator.
The inverse of A is given by convolution with the Green’s function G of A, i.e.,
u = G∗m, where ∗ denotes convolution and AG(x, x′) = δ(x−x′) for x, x′ ∈ R

n.
A striking feature of Euler equations on diffeomorphism groups is that they

admit (formally, at least) exact solutions in which the momentum is concentrated
at a finite set of points. For fluid equations these are point vortices, which are
widely studied both in their own right and as a means of approximating the
evolution of smooth or other vorticities [20,21]. In analogy with the point vortices
of fluid dynamics, we call the image registration equivalents point particles.

2 A Particle Method for Image Registration

We are considering the deformation of an image Ω, with the deformation de-
fined by a set of points i (some subset of the pixels of the image) with position
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and momentum (qi(t), pi(t)), where pi = q̇i as they move from their initial state
(qi

0, p
i
0) to their endpoints at t = 1. Starting from the Euler equations on the

diffeomorphism group ((1) and (2)) we compute the Hamiltonian (see [22] for
a derivation of the Hamiltonian from the Lagrangian via the Legendre trans-
form), which is the kinetic energy, and then discretise it by introducing the
particle ansatz m(x, t) =

∑N
j=1 pj(t)δ(x − qj(t)), where δ(·) is Kronecker delta

function.The evolution of the particles is then given by the Hamiltonian:

H =
1
2

∑

i,j

pi · pjG(qi − qj), (3)

where G(·) is the Green’s function corresponding to the chosen metric on Diff(Ω).
The most common choice in image registration, and the one that we will use in
this paper is the H∞ metric, which corresponds to using a Gaussian Green’s
function G(r) = 1

ε2 exp(−r2/ε2), where ε is the length-scale in the metric. Other
choices include the thin-plate and clamped-plate splines – see [4] for a review.

Solutions to (1) of this form obey Hamilton’s equations for (3), in which the
components of qi and pi are canonically conjugate variables (see [23] for further
details). Here q1, . . . , qN represent the positions of the N particles that define
the deformation, and p1, . . . , pN their momenta. The equations of motion of the
point particles are:

q̇i =
N∑

j=1

G(‖qi − qj‖)pj , (4)

ṗi = −
∑

j

(pi · pj)G′(‖qi − qj‖)
qi − qj

‖qi − qj‖
. (5)

Computing the diffeomorphism defined by qi and pi is then simply a case of
integrating the motion forward in time using (4) and (5), and then interpolating
the motion of the rest of the image in some way. The integration requires fewer
timesteps than the optimisation methods, enables the accuracy of the method
to be computed explicitly, and is computationally significantly faster. This leads
us to a description of our complete algorithm for image registration, following
which we discuss several important implementation details.

Our Image Registration Algorithm

– Choose point particle positions q on image T
– Initialise the particle momenta p randomly
– Optimise ‖R − T ◦ φ‖ over p:

• For current p, integrate point particles forward in time
• Integrate positions of the test particles
• Interpolate between the test particles
• Compute ‖R − T ◦ φ‖ for chosen distance measure

– Add more point particles and iterate
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Position of point particles. There are several possible choices for placing the
point particles, such as placing them in a grid, positioning them on points
of interest in the image (such as edges and corners), or using the discrep-
ancy image [24] to select places where the two images do not match. In line
with [24], for registration of brains, we initially place some points around the
skull of head images and, after optimising them, place more points using the
discrepancy image method. For the hand images shown in the next section,
we use a uniform grid.

Initialisation of point momenta. In the current implementation, the mo-
menta of the point particles are initialised with a uniform random direction,
and with a small uniform random magnitude for the warp. One option that
improves the results, although at a moderate computational cost, is to per-
form a coarse search over this relatively small number of parameters (2 for
each of the point particles, of which there may be 10-20 on the initial pass).

Choice of integrator. The primary component of our method is the computa-
tion of the current geodesic, based on q and the current p. This is calculated
by numerically integrating the particle dynamics forward in time using (4)
and (5). We can choose a timestep for the integration, and the method of nu-
merical integration. The standard choices would generally be Euler’s method,
or a second-order improvement, such as second-order Runge-Kutta.

The factors that affect the computation of the diffeomorphism are the
number of point particles and test particles, the number of timesteps, and
the order of the integrator (how errors accumulate during the integration).
In consideration of the last two of these points, in section 5 we discuss the
possible benefits and disadvantages of using a symplectic integrator, together
with a possible reduction in the computational complexity of the algorithm.

Test particles and interpolation. We can induce the value of the actual dif-
feomorphism φ(x) by the current geodesic on each pixel by placing test
particles with zero momentum (so q(0) = x, p(0) = 0) on the pixels, and
computing their trajectories under the induced velocity field (i.e., solving the
ODE q̇ = f(q, t)). Assuming that the deformation is not too large (‖Tφ−1‖
is small), we can make some computational savings by placing a test particle
every k pixels, and interpolating φ between them. This saves a factor of k2

computations, but changes the computed diffeomorphism from the exact one
that relates to the flow (it may actually stop the warp being diffeomorphic,
although this does not seem to be a problem in general). We have found that
using k = 4 and bi-linear interpolation has negligible effect on the accuracy
in real registrations, as is demonstrated in the table on the left of Fig. 3.

Choice of metric. Inherent in the choice of Green’s function G(r) is a choice
of the metric under which the particle dynamics occur. There is complete
freedom of choice over this metric. By far the most common choice to date for
image registration has been to use a Gaussian metric, i.e., Green’s function
G(r) = 1

ε2 exp(−r2/ε2), where ε is the length-scale in the metric. The role
of this length-scale is important. If it is set too small (say smaller than the
pixel spacing) then the kernels will not overlap, and the movement of each
particle will be entirely independent of the rest of the image. This will require
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the number of point particles to tend to infinity to represent an arbitrary
diffeomorphism. We do not consider how to choose the length-scale in this
paper, but it may be that starting with a large value of ε and allowing it to
shrink is a useful method of iteratively refining the solution.

The Gaussian is by no means the only possible choice of metric. One fairly
general formulation, which includes the Gaussian as the limit as k → ∞, are
the Hk metrics, (1 − ε2∇2)k; see [25] for a discussion of these. Finally, it
may well be useful to choose the metric so that it vanishes on some set of
motions that are not important. Examples could be affine or rigid motions.

Optimisation method. The choice of a suitable optimiser is obviously crucial,
together with the choice of objective function for the image matching. In the
current implementation we are using the sum-of-squares distance measure,
which leads fairly naturally to a least-squares non-linear optimiser. We use
the lsqnonlin function in Matlab 7.1, which is a subspace trust region
method based on the interior-reflective Newton method. Experimentation
has found that allowing 100 iterations is usually more than sufficient for
the algorithm to converge, although further work will investigate this more
thoroughly.

Adding more points. In our implementation we position new point particles
for further levels of optimisation using the discrepancy image. This uses the
objective function (here the sum-of-squares error) to find regions where the
two images do not match, and then places new point particles there. We
tested initialising the momenta of these particles as either zero, or small
random numbers, and found that the first was the most effective. This is not
surprising, because points with zero momentum are carried along with the
flow, which is a reasonable initial guess for how they should behave, and the
optimiser then improves on this.

3 Experiments

We present four main experiments in this paper. In all of them, the image is
scaled into [−1, 1]2 and a value of ε = 1 was used. The first experiment considers
how far apart the spacing should be between the test particles – the wider apart,
the faster the implementation, but the less accurate the approximation to the
true diffeomorphism. In order to decide a suitable spacing, we took a series
of 10 registrations of hands, as used for the registration shown in Fig. 2 and
described below, and tested out different spacings between the test particles for
two different numbers of point particles (with the initial values for the momenta
of the point particles fixed between the runs). The average results over the
10 registrations are shown in the table on the left of Fig. 1, and show that a
spacing of 4 between test particles provides a reasonable compromise between
computational time and final function value, hence we have used a spacing of 4
for all the computations used in this paper.

For the second experiment, we investigated how the performance of the inte-
grators change as the number of timesteps is varied. The right of Fig.1 shows
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Spacing Time (s) Final function value

9 point particles

12 39.13 7.78e7
8 43.13 7.43e7
4 47.71 7.08e7
1 112.6 6.95e7

25 point particles

12 123.17 1.06e8
8 133.95 9.82e7
4 163.05 9.37e7
1 944.72 8.85e7

Timesteps 1 2 4 8

Small perturbation, initial error 60.2%

Integrator
Euler 5.2% 3.6% 2.9% 2.5%
RK2 4.3% 2.2% 2.2% 2.2%

Large perturbation, initial error 84%

Euler 16.3% 10.3% 8.6% 8.1%
RK2 4.3% 5.9% 6.4% 6.7%

Fig. 1. Left: Comparison of changing the spacing between the test particles. Results
are the average of 10 values. A spacing of 4 appears to give a reasonable compromise
between computational cost and the final diffeomorphism. Right: The effect of changing
the number of timesteps (errors relative to reference image). For RK2 the integration
error is far below other sources, but for Euler it is significant for large perturbations.

the results for registrations with 9 point particles using the peaks(40) function
in Matlab to make the reference image, with the free image being the same
image with a rotation applied. The second-order method needs fewer timesteps
than the first-order forward-Euler. Indeed, adding more timesteps can make the
second-order results worse. The reason for this is currently under investigation.

Fig. 2. Chequer-board plots showing the difference between the initial images of the
hands (left), the final images (centre), and the change between the initial and final
versions of the free image (right).

We now present two different image registrations. The first is of a pair of hand
images, while the second are two 2D T1-weighted MR scans of the human brain.
The hand results shown in Fig. 2 were computed using 9 knotpoints, positioned
in a 3×3 grid on the image. The optimiser ran for 40 iterations before converging,
and then an additional 7 points were added to the image using the discrepancy
image. It can be seen that even after this relatively small amount of computation,
the registration is very good. Computing this registration took 251.4 seconds on
a 1.8GHz G5 Apple Macintosh. Another 37 iterations were then performed by
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Fig. 3. The registration of the two hands. The reference image, together with the
positions of the particles and their momenta are shown on the left, the final result is
shown in the middle, and the effect of the warp on a grid is shown on the right.

Fig. 4. Chequer-board plots showing the different between the initial images of the T1-
weighted brains(left), the final images (centre), and the change between the initial and
final versions of the free image (right). The registration has lined up the skulls and the
major structures within the brain, but there is still more fine-scale work to be done.

the optimiser, with the final result being that shown. Fig. 3 shows the positions
of the points and the initial momenta on the reference image, the final output,
and the effect of the warp on a regular grid.

Fig. 4 show a sample registration of 2 brains. A set of 10 points were posi-
tioned evenly around the skull, and the result optimised for 20 iterations. Fol-
lowing this, an additional set of 11 knotpoints were added, with 50 iterations
of optimisation then being performed. This registration took under 7 minutes
on the same computer, and it can be see that the final result is not bad. There
is still work to be done on the interior (and further optimisations do indeed
correct this), but the skull and major structures have all been brought into
alignment.

These results are much faster than using an optimisation method for finding
the diffeomorphism – the method described in [4] took just under 2 hours to
perform the brain registration described above. One of the main reasons for
this is that those optimisation methods take many more timesteps to find the
diffeomorphism, usually 20 timesteps are used to guarantee a diffeomorphism.
With our current method, for relatively small deformations, only 1-4 timesteps
are needed.
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Reference Free Image Grid

Reference Free Image Grid

Fig. 5. Two regimes of optimisation. Top: Optimatisation of particle momenta only.
Bottom: Simultaneous optimisation of both particle locations and momenta. The par-
ticles form into a ring showing the rotation that occurred.

4 Optimising Positions and Momenta

In the experiments described above we chose locations for the point particles,
and then optimised their momenta. However, there is no reason why one cannot
optimise the point locations as well as their momenta. We have performed some
initial experiments with this based on the images produced by the peaks(40)
function in Matlab. A typical result is shown in Fig. 5. The free image is a rotated
version of the reference image (note that no affine registration is performed).
The top line shows the optimisation if only the momenta of the particles are
optimised, not their positions, while the bottom line shows the results when both
are optimised, starting from the points being arranged on the uniform grid. It
can be seen that the particle locations move to form a circle that reflects the
rotation that was applied. Averaged over registrations of 10 random rotations,
the final objective function value after 20 optimisation iterations was 5.85 for
the momenta-only optimisations, and 1.59 for the full optimisation (the initial
objective function value is around 2000).

The problem is that the method becomes more prone to becoming stuck in
poor local minimas as the complexity of the image grows, since the dimensional-
ity of the optimisation is so large. When it works it does very well, and resolves
smaller image features, but for medical images it is only successful about half of
the time. Finding suitable implementation methods to get around this problem,
possibly using multiple scales of resolution, is a current area of research.
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5 Use of Symplectic Integrators

The equations of motion (4, 5) are Hamiltonian and their flow is therefore sym-
plectic [26]. In long-time simulations of Hamiltonian systems (in celestial and
molecular mechanics, for example) it has been found extremely advantageous to
use symplectic integrators, which preserve the symplectic structure. This leads
to good energy behaviour and a lack of dissipation. Therefore, it is natural to
consider their use here; it is also in accord with the ‘Discrete Mechanics and
Optimal Control’ philosophy in which both the cost function and dynamics are
discretized in a parallel, Hamiltonian way [27]. In fact, some implementations of
image registration by diffeomorphisms have used symplectic integrators, because
calculating geodesics by minimizing a discrete path length gives such an inte-
grator [4]. However, the diffeomorphism itself, calculated from the motion of the
test particles, has never been done symplectically. We give a preliminary analysis
of the cost and benefits of using a symplectic integrator in image registration.

At first sight, the cost is a problem. The cheapest, explicit symplectic inte-
grators apply to separable Hamiltonians of the form T (p) + V (q); Eq. (3) is not
separable, so only implicit symplectic integrators, notably the Gaussian Runge-
Kuttas [26], are available; these methods have unconditional stability for linear
problems, which allows larger time-steps to be used. These involve solving a set
of equations for s internal stages; when s = 1, we have the midpoint rule

xk+1 = xk + Δtf(x̄k), x̄k = (xk + xk+1)/2.

Moreover, to ensure exact symplecticity and that the solution varies smoothly
with respect to the initial conditions, the equations must be solved extremely
accurately, generally down to round-off error. In most situations, it is best to
simply solve the equations by iteration

xl+1
k+1 = xk + Δtf((xk + xl

k+1)/2), l = 0, 1, 2, . . .

after choosing some initial guess x0
k+1. If m iterations are required then the cost

per time step is ms times the cost of Euler’s method. In initial value problems
with a large time step, as we want to use here, m can be quite large, say 5–15.

However, this cost penalty for initial value problems vanishes for optimization
problems, in which we want to repeatedly solve the same initial value problem
for a sequence of nearby initial values. We simply store the internal stage val-
ues as part of the orbit segment and use this as initial guesses (e.g. x0

k+1 for
the midpoint rule) when the initial conditions are changed. Most optimization
algorithms estimate the derivatives of the objective function using finite differ-
ences, which requires repeatedly altering the initial conditions by about 10−6;
for these evaluations we can solve the implicit equations in a single iteration.
The error constants of the Gaussian Runge-Kutta methods are extremely small
so we expect that this method could be superior both for cost and accuracy.

For the point particles, the simple iteration (5) can be improved using the
4N × 4N Jacobian derivative matrices of f ; calculating these is essentially cost-
free, because the entries are simply related to the Green’s functions, which have
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already been evaluated. Newton’s method would cost O(N3), which is presum-
ably prohibitive, but the modifed iteration

x̄l = (xk + xl
k+1)/2, wl = xk + Δtf(x̄l) (6)

xl+1
k = wl +

1
2
Δtf ′(x̄l)(wl − xl

k) (7)

converges much more quickly than (5) and still costs only O(N2). Moreover,
the derivatives of the stage values with respect to the initial momenta can be
approximated in a similar way, giving excellent initial guesses. Experiments will
determine whether this cost is justified.

For very large numbers of point particles, the cost O(N2 +NM) of evaluating
the vector field may be too expensive. The cost can be reduced to O(N +M) us-
ing the marker-and-cell method [28], while still using symplectic integrators for
the particle paths [29]. A regular grid with O(N) grid points is laid over the do-
main and the particle momenta interpolated to the grid. Then the velocity field
induced by the momentum field is calculated on the grid using a fast algorithm,
such as multigrid (O(N)) or Fourier transform (O(N log N)). This velocity field
is interpolated back to the particle positions, which are then updated. This al-
gorithm has been implemented with enormous numbers (more than 1 million)
particles in an initial value problem in atmospheric dynamics [29]. However, very
large numbers of point particles, which may well be required for convergence to
an arbitrary diffeomorphism, will introduce new difficulties for the optimiza-
tion has the problem has now become ill-posed. Some degree of regularization,
enforcing smoothness of the initial momentum field, will be required.

6 Conclusions and Open Questions

We have presented a method of performing diffeomorphic image registration
that has links to the methods of discrete mechanics and optimal control. The
implementation described in this paper has been demonstrated to perform high
quality registrations in reasonably short computational time – orders of magni-
tude less than using energy minimisation methods. While they are not necessary
for all image registration tasks, for applications where it is variation that is of
interest, for example in disease diagnosis or measurement of anatomical vari-
ability, the access to a right-invariant Riemannian metric on the diffeomorphism
group makes diffeomorphic registration methods essential.

There are a great many unanswered questions and areas for future research.
We are particularly interested in the dynamical behaviour of the Euler equa-
tions on the diffeomorphism group, and how it relates to point vortices in fluid
dynamics, which act on the volume-preserving subgroups. Some of our work on
these topics is available in [25,30].

However, with regard to using the method for image registration, there are
also several areas for further work. Firstly, we are currently investigating the use
of the midpoint rule symplectic integrator and the marker-and-cell method, as
discussed in section 5, and a second question that we highlighted earlier in the
paper is that of a suitable choice of metric and corresponding length-scale.
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6. Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision

Computing 21, 977–1000 (2003)
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Abstract. In this paper we propose a novel non-rigid volume registration based
on discrete labeling and linear programming. The proposed framework reformu-
lates registration as a minimal path extraction in a weighted graph. The space of
solutions is represented using a set of a labels which are assigned to predefined
displacements. The graph topology corresponds to a superimposed regular grid
onto the volume. Links between neighborhood control points introduce smooth-
ness, while links between the graph nodes and the labels (end-nodes) measure
the cost induced to the objective function through the selection of a particular de-
formation for a given control point once projected to the entire volume domain.
Higher order polynomials are used to express the volume deformation from the
ones of the control points. Efficient linear programming that can guarantee the
optimal solution up to (a user-defined) bound is considered to recover the opti-
mal registration parameters. Therefore, the method is gradient free, can encode
various similarity metrics (simple changes on the graph construction), can guar-
antee a globally sub-optimal solution and is computational tractable. Experimen-
tal validation using simulated data with known deformation, as well as manually
segmented data demonstrate the extreme potentials of our approach.

Keywords: Discrete Optimization, Deformable Registration, Linear Programming.

1 Introduction

Deformable registration is one of the most challenging problems in medical imaging.
The problem consists of recovering a local transformation that aligns two signals that
have a non-linear relationship often unknown. Several methods exist in the literature
where specific metrics are designed to account for this non-linearity and optimize the
transformation that brings together these two signals. This optimization is often sub-
optimal due the non convexity of the designed cost functions. The aim of our approach
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is to overcome both limitations present in all registration methods. Dependency on the
similarity metric selection, as well as to the initial conditions.

Local image alignment is often performed according to geometric or photometric
criteria. Landmark-based methods [1] are a classic example of geometric-driven regis-
tration. In such a setting, a number of anatomical key points [2]/structures (segmented
values) are identified both in the source and the target image and a transformation that
aims to minimize the Euclidean distance between these structures is to be recovered.
The main limitation of these methods related to the selection and extraction of land-
marks, while their main strength is the simplicity of the optimization process.

Iconic registration methods seek for “visual” correspondences between the source
and the target image. Such a problem is tractable when one seeks registration for im-
ages from the same modality due to an explicit photometric correspondence of the im-
age intensities. Sum of squared differences [3], sum of absolute differences [3], cross
correlation [3] or distances on subspaces that involve both appearance and geometry
(intensities, curvature, higher order image moments) [4] have been considered. On the
other hand it becomes more challenging when seeking transformations between differ-
ent modalities where a non-linear transformation often relates them. Non-linear metrics
have often been used [5] like normalized mutual information [6], kulback-leiber diver-
gence [7] and correlation ratio [8] are some of the metrics used to define similarity
between different modalities.

In this paper we propose a novel technique that can either be used for inter or in-
tra modal image registration. Towards satisfying smoothness of the deformation field
and reducing the dimensionality of the problem we represent deformation through Free
Form Deformations. Our method reformulates registration as an MRF optimization
where a set of labels is associated with a set of deformations, and one seeks to at-
tribute a label to each control point such that once the corresponding deformation has
been applied, the similarity metric between the source and the target is maximal for
all voxels. The optimization procedure is independent from the graph construction, and
therefore any similarity metric can be used.

The reminder of this paper is organized as follows; In section 2 we introduce the pro-
posed registration framework, while in section 3 we discuss the optimization aspects.
Implementation and experimental validation are part of section 4. The last section con-
cludes our paper.

2 Deformable Registration in a Discrete Setting

In order to introduce the concept of our approach, we consider (without loss of general-
ity) the 2D image domain. Let us consider a source f : [1,N]× [1,M] → R n and a target
image g. In general, these images are related with a non linear transformation as well
as a non-linear relation between intensities, that is

g(x) = h ◦ f (T (x)) (1)

where T is the transformation and h is a non-linear operator explaining the changes of
appearance between them. The most common way to formulate the registration prob-
lem, is through the definition of a distance between the source and the target image that
is to be minimized in the entire domain Ω, or
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E(T ) =
��

Ω
ρ(g(x),h ◦ f (T (x))dx (2)

where ρ is a similarity metric used to determine meaningful correspondence. Since in
most of the cases the non-linear transformation relating the two images is not known, the
selection of similarity metric ρ explicitly or implicitly accounts for this non-linearity,
or

E(T ) =
��

Ω
ρh(g(x), f (T (x))dx (3)

2.1 Continuous Domain

Since we are interested in local registration, let us introduce a deformation grid G :
[1,K]× [1,L] (usually K � M and L � N) super-imposed to the image (no particular
assumption is made on the grid resolution). The central idea of our approach is to de-
form the grid (with a 2D displacement vector dp for each control point) such that the
underlying image structures are perfectly aligned. Without loss of generality one can
assume that the transformation of an image pixel x can be expressed using a linear or
non-linear combination of the grid points, or

T (x) = x + D(x) with D(x) = ∑
p∈G

η(|x − p|)dp (4)

where η(·) is the weighting function measuring the contribution of the control point p to
the displacement field D. The position of point p is denoted as p. In such a theoretical
setting without loss of generality we consider Free Form Deformations (FFD) based
on cubic B-splines as a transformation model. FFD are successfully applied in non-
rigid image registration [9,10]. Deformation of an object is achieved by manipulating
an underlying mesh of uniformly spaced control points. The displacement field for a
two-dimensional FFD based on cubic B-Splines is defined as

D(x) =
3

∑
l=0

3

∑
m=0

Bl(u)Bm(v)di+l, j+m (5)

where i = �x/K�−1, j = �y/L�−1, u = x/K −�x/K�, and v = y/L−�y/L� and where
Bl represents the lth basis function of the B-Spline. The three-dimensional version is
defined straightforward.

By defining the registration problem based on such a deformation model we can now
rewrite the criterion earlier introduced,

Edata(T ) = ∑
p∈G

��
Ω

η−1(|x − p|) ·ρh(g(x), f (T (x)))dx. (6)

where η−1(·) is the inverse projection for the contribution to the objective of the image
pixel x according to the influence of the control point p.

Such a term will guarantee photometric correspondence between the two images.
Hence, this term is also called the data term. The transformation due to the interpolation
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inherits some implicit smoothness properties. However, in order to avoid folding of the
deformation grid, one can consider a smoothness term on the grid domain, or

Esmooth(T ) = ∑
p∈G

φ(|∇G dp|) (7)

with φ being a smoothness penalty function for instance penalizing the first derivatives
of the grid deformation. The complete term associated with the registration problem is
then defined as the sum of the data and smoothness term, or

Etotal = Edata + Esmooth. (8)

The most common way to obtain the transformation parameters is through the use
of a gradient-descent method in an iterative approach. Thus given an initial guess, one

updates the estimate according to the following formula
[
T m = T m−1 − δt Etotal

∂T

]
. Such

a process involves the derivative of the similarity metric with respect to the transforma-
tion parameters and therefore it is model and criterion dependent. Slight modifications
on the cost function could lead to a different derivative and require novel numerical
approximation methods.

2.2 Discrete Domain

Let us now consider a discrete set of labels L = {u1, ...,ui} corresponding to a quantized
version of the deformation space × = {d1, ...,di}. A label assignment up to a grid node
p is associated with displacing the node by the corresponding vector dup . The image
transformation associated with a certain discrete labeling u becomes

D(x) = ∑
p∈G

η(|x − p|)dup. (9)

One can reformulate the registration as a discrete optimization problem, that is assign
individual labels up to the grid nodes such that

Edata(u) = ∑
p∈G

��
Ω

η−1(|x − p|)ρh(g(x), f (T (x)))dx ≈ ∑
p∈G

Vp(up) (10)

where Vp(·) represents a local similarity metric. There is a main issue coming along
when using MRF-based optimization methods for our proposed setting. Here, the sin-
gleton potential functions Vp(·) are not independent, thus the defined data term can
only be approximated. Hence, we pre-compute the |L| × |G | data term look-up table
for a given image pair by simple shift operators. The entry for node p and labels up is
determined by

Vp(up) =
��

Ω
η−1(|x − p|)ρh(g(x), f (x + dup))dx. (11)

The computation of such functions is very fast and straightforward. Any similarity met-
ric can be simply plugged in this formulation without any changes or adaptations. Since
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the metrics are only considered on the image domain and no further analytical differen-
tiation is needed, our approach is extremely flexible. Due to the approximation of the
data term we allow to improve the estimation by successive optimizations resulting in a
series of cost functions, or

Et
data(u) = ∑

p∈G

��
Ω

η−1(|x − p|)ρh(g(x), f (T t−1(x)+ dup))dx. (12)

We should note, that from the optimization point of view we achieve (quasi) optimal
solutions for the discrete labeling in every cycle. However, we can achieve a higher
accuracy by successive cycles using the previous transformation T t−1.

The number of labels and their range play a significant role to the registration process.
It is clear that setting the number of labels to infinity will converge to the continuous for-
mulation which though it is intractable from computational perspective. However, the
fact that we perform several cycles to improve the accuracy of the deformation allows
us to keep the set of labels quite small.

The next aspect to be addressed, is the definition of the smoothness term in the label
domain. One can express distances between the deformation vectors using difference
between labels if a ranking has been considered within the definition of the label set, or

Esmooth(u) = ∑
p,q∈E

Vpq(up,uq) (13)

where E represents the neighborhood system associated with the deformation grid G .
For the distance Vpq(·, ·) we consider a simple piecewise smoothness truncated term
based on the euclidean geometric distances between the deformations corresponding to
the assigned labels:

Vpq(up,uq) = λpq min(|dup − duq |,T ) (14)

with T being the maximum penalty and λpq being a (spacial varying) weighting to
control the influence of the prior term. Basically, this is a discrete approximation of
the smoothness term defined in equation 7 extended by the piecewise property. Such a
smoothness term together with the data term allows to convert the problem of image
registration into the form of a Markov Random Field (MRF) [11] in a discrete domain,
or

Etotal(u) = ∑
p∈G

Vp(up)+ ∑
p,q∈E

Vpq(up,uq). (15)

3 MRF Optimization Based on Linear Programming

For optimizing the resulting MRF, we seek to assign a label up ∈ L to each node p ∈ G ,
so that the MRF energy in (15) is minimized. To this end, a recently proposed method,
called Fast-PD, will be used [12]. This is an optimization technique, which builds upon
principles drawn from the duality theory of linear programming in order to efficiently
derive almost optimal solutions for a very wide class of NP-hard MRFs. When applied
to the image registration task, this technique thus offers a series of important advantages
compared to prior art (see section 3.2).
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(a) The primal-dual principle (b) The primal-dual schema

Fig. 1. (a) By weak duality, the optimal cost cT x∗ will lie between the costs bT y and cT x of
any pair (x,y) of integral-primal and dual feasible solutions. Therefore, if bT y and cT x are close
enough (e.g. their ratio r1 is ≤ f ), so are cT x∗ and cT x (e.g. their ratio r0 is ≤ f as well), thus
proving that x is an f -approximation to x∗. (b) According to the primal-dual schema, dual and
integral-primal feasible solutions make local improvements to each other, until the final costs
bT yt , cT xt are close enough (e.g. their ratio is ≤ f ). We can then apply the primal-dual principle
(as in Fig. (a)) and thus conclude that xt is an f -approximation to x∗.

For more details about the Fast-PD algorithm, the reader is referred to [12,13]. Here,
we will just provide a brief, high level description of the basic driving force behind
that algorithm. This driving force will consist of the primal-dual schema, which is a
well-known technique in the Linear Programming literature.

3.1 The Primal-Dual Schema for MRF Optimization

To understand how the primal-dual schema works in general, we will need to consider
the following pair of primal and dual Linear Programs (LPs):

PRIMAL: min cT x DUAL: max bT y
s.t. Ax = b,x ≥ 0 s.t. AT y ≤ c (16)

Here A represents a coefficient matrix, while b,c are coefficient vectors. Also, x, y
represent the vectors of primal and dual variables respectively. We seek an optimal
solution to the primal program, but with the extra constraint of x being integral. Due
to this integrality requirement, this problem is in general NP-hard and so we need to
settle with estimating approximate solutions. A primal-dual f -approximation algorithm
achieves that by use of the following principle (illustrated also in Fig. 1(a)):

Primal-Dual Principle 1. If x and y are integral-primal and dual feasible solutions
having a primal-dual gap less than f , i.e.:

cT x ≤ f ·bT y, (17)

then x is an f -approximation to the optimal integral solution x∗, i.e. cT x∗ ≤ cT x ≤
f · cT x∗

Based on the above principle, that lies at the heart of any primal-dual technique, the
following iterative schema can be used for deriving an f -approximate solution (this
schema is also illustrated graphically in Fig. 1(b)):
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Primal-Dual Schema 1. Keep generating pairs of integral-primal, dual solutions
{(xk,yk)}t

k=1, until the elements xt , yt of the last pair are both feasible and have a
primal-dual gap which is less than f , i.e. condition (17) holds true.

In order to apply the above schema to MRF optimization, it suffices that we cast the
MRF optimization problem as an equivalent integer program. To this end, the following
integer programming formulation of (15) has been used as the primal problem:

min ∑
p∈G

∑
l∈L

Vp(l)xp(l)+ ∑
(p,q)∈E

∑
l,l′∈L

Vpq(l, l′)xpq(l, l′) (18)

s.t.∑l
xp(l) = 1 ∀ p ∈ G (19)

∑l
xpq(l, l′) = xq(l′) ∀ l′ ∈ L, (p,q) ∈ E (20)

∑l′ xpq(l, l′) = xp(l) ∀ l ∈ L, (p,q) ∈ E (21)

xp(·), xpq(·, ·) ∈ {0,1}

Here, in order to linearize the MRF energy, we have replaced the discrete variables up

with the binary variables xp(·) and xpq(·, ·). More specifically, the {0,1}-variable xp(l)
indicates that node p is assigned label l (i.e., up = l), while the {0,1}-variable xpq(l, l′)
indicates that vertices p,q are assigned labels l, l′ respectively (i.e., up = l, uq = l′).
Furthermore, the constraints in (19) simply express the fact that each node must receive
exactly one label, while constraints (20), (21) maintain consistency between variables
xp(·),xq(·) and variables xpq(·, ·), in the sense that if xp(l) = 1 and xq(l′) = 1 holds true,
then these constraints force xpq(l, l′) = 1 to hold true as well (as desired).

The linear programming relaxation of the above integer program is then taken (by
relaxing the binary constraints to xp(·) ≥ 0,xpq(·, ·) ≥ 0), and the dual of the resulting
LP is used as our dual problem. The Fast-PD algorithm is then derived by applying
the primal-dual schema to this pair of primal-dual LPs, while using f =2 dmax

dmin

1 as the
approximation factor in (17).

3.2 Advantages of the Primal-Dual Approach

Fast-PD has many nice properties, which makes it a perfect candidate for our image
registration task. In particular, it offers the following advantages: 1) Generality: Fast-
PD can handle a very wide class of MRFs, since it merely requires Vpq(·, ·) ≥ 0. Hence,
by using Fast-PD, our image registration framework can automatically incorporate any
similarity metric, as well as a very wide class of smoothness penalty functions. 2) Op-
timality: Furthermore, Fast-PD can always guarantee that the generated solution will
be an f -approximation to the true optimum (where f=2 dmax

dmin
). 3) Per-instance approx-

imation factors: In fact, besides the above worst-case approximation factor, Fast-PD
can also continuously update a per-instance approximation factor during its execution.
In practice, this factor drops to 1 very quickly, thus allowing the global optimum to be
found up to a user/application bound. 4) Speed: Finally, Fast-PD provides great com-
putational efficiency, since it can reach an almost optimal solution very fast and in an
efficient manner.

1 dmax ≡maxa�=b d(a,b), dmin ≡mina�=b d(a,b).
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4 Implementation Details and Validation

4.1 Implementation Details

In order to prove our concept, we implemented a non-rigid image registration frame-
work based on discrete optimization. We are using multi-level free-form deformations
[14] together with a pyramidal image representation. The deformations are computed on
each level in a course-to-fine manner. We define the set of labels for the finest pyramid
by setting a minimum and maximum displacement and the number steps. Additionally,
the displacements are scaled for the coarser levels to recover a larger deformations. In
general, before running our algorithm, we rescale the image intensities of the source
and target image to values between 0 and 1. Thus, the weighting of the prior term is less
sensitive. In all experiments, we use an empirically determined λpq = 0.0001 equally
for all grid nodes. In order to demonstrate the flexibility of our framework, we imple-
mented a range of well-known similarity metrics, namely the Sum of Absolute Dif-
ferences (SAD) [3], the Sum of Squared Differences (SSD) [3], the Normalized Cross
Correlation (NCC) [3], the Normalized Mutual Information (NMI) [6], the Correlation
Ratio (CR) [8], and the Sum of Absolute Differences plus image gradient information
(SADG). The SADG metric involves an intensity-based and a geometric-based term.
An additional weighting factor γ is used to control the influence of these two terms. The
SADG metric is defined as

ρ(g(x), f (T (x))) = (1 − γ)|g(x)− f (T (x))|+

+γ arccos

(
∇g(x)
|∇g(x)| · ∇ f (T (x))

|∇ f (T (x))|

)
.

(22)

4.2 Validation Using Known and Unknown Deformations

In order to evaluate our framework we test our method on several data sets. In gen-
eral, the evaluation and thus, validation of non-rigid image registration methods is a
difficult task. Usually, ground truth data for real deformations, especially, in medical
applications is not available. Therefore, we performed several experiments hopefully
illustrating the great potentials of our approach.

Realistic Synthetic Registration. The first two experiments are concerning the nature
of the free choice of similarity metrics inherent in our framework. In order to evaluate
the efficiency of different metrics we test our method on simulated realistic data. The
target image is generated from the 2D MRI source image by randomly displaced de-
formation grid. Additionally, we added uniformly distributed noise up to 15 percent of
the original target intensities. For the multi-modal experiment we use the inverse tar-
get image and squared intensities. The image resolution is 256x256. The registration
is performed using a three-level image and grid pyramid. The range of the set of la-
bels is from 0.25 to 5 pixels in 5 steps for the finest pyramid level defined on the 8 main
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Table 1. Angular error (in degrees) and magnitude of difference error (in pixels) for the realistic
synthetic image registration using different similarity metrics

Metric AE Mean AE Median AE Std MOD Mean MOD Median MOD Std

SSD 2.290 1.143 2.854 0.242 0.139 0.297
SADG γ = 1.0 1.957 1.077 2.350 0.227 0.136 0.349
SAD 1.220 0.675 1.653 0.123 0.071 0.194
SADG γ = 0.75 1.129 0.709 1.313 0.122 0.082 0.169
SADG γ = 0.25 1.046 0.603 1.307 0.104 0.067 0.142
SADG γ = 0.5 1.036 0.589 1.292 0.111 0.066 0.159
NMI 0.999 0.629 1.060 0.099 0.079 0.080
CR 0.927 0.536 1.116 0.089 0.068 0.092
NCC 0.765 0.402 1.082 0.070 0.047 0.076

CR 2.244 1.039 3.465 0.234 0.110 0.373
NMI 0.846 0.607 0.826 0.086 0.071 0.070

directions (horizontal, vertical, and diagonal) leading to 41 labels in total (including the
zero displacement). We perform 3 optimization cycles per pyramid level. The initial grid
resolution is 6x6 increased to 11x11 and finally 21x21. One registration takes between
5-30 seconds depending on the similarity metric. The results are shown in Table 1. For
the evaluation, two error metrics are considered, namely the angular error (AE) [15]
and the magnitude of difference (MOD). We only consider the deformation field within
a region of interest which is determined by the image mask shown in Fig. 2(d).

Automatic Cartilage Segmentation. Our third experiment is aiming at the registration
accuracy. The medical application is similar to the one described in [16]. An automatic
segmentation of the cartilage should be performed. Assuming that manual segmenta-
tions are available, one may create statistical models for an atlas-based segmentation
procedure.

Table 2. Results for the carti-
lage segmentation experiment

Image OR SD In SD Out HD
1 0.922 0.079 0.632 1.398
2 0.914 0.068 1.280 3.064
3 0.876 0.089 1.626 3.250
4 0.884 0.081 1.469 3.250
5 0.873 0.099 1.434 3.064
6 0.905 0.070 0.641 1.976

In our experiment, 7 data sets (256x256x20), all man-
ually segmented by medical experts, are available. The
MRI data was acquired for a follow-up experiment. Due
to the intra-subject property and the limited number of
data sets we simply selected one of it as a template seg-
mentation. By deforming the template to the six other
data sets and warping the corresponding segmentations,
we are able to achieve a fully automatic segmentation in
less than 80 seconds. We use a three-level pyramid, the
SAD metric and a set of labels from 0.25 to 5 pixels in 5 steps in the six main direc-
tions (±x, ±y, and ±z) leading to 31 labels in total. We perform 5 optimization cycles
per pyramid level. The segmentation results are then compared to the manual segmen-
tations. With our method we achieve an average overlap ratio (OR) of 0.90(±0.02),
an average surface distance inside (SD In) of 0.08(±0.01)mm, average surface dis-
tance outside (SD Out) of 1.18(±0.44)mm, and an average Haussdorf distance (HD) of
2.67(±0.79)mm (which is less than the slice thickness of 3mm). (see also Table 2 and
Fig. 3). The comparison of the segmentations is done using the tool2 described in [17].

2 Available on http://www.ia.unc.edu/dev/download/valmet/



Inter and Intra-modal Deformable Registration 417

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Realistic synthetic data. (a) The source image, and (b) target image of the first (mono-
modal) experiment. (c) Target image of the second (multi-modal) experiment. (d) Image mask
used for error evaluation. (e) Checkerboard visualization before and (f) after registration using
NCC for the mono-modal experiment. (g) Checkerboard visualization before and (h) after regis-
tration using NMI for the multi-modal experiment.

(a) (b) (c) (d)

Fig. 3. Results for the cartilage segmentation of the first image. (a) Checkerboard visualization
before and (b) after registration. (c) Template segmentation. (d) Warped template on top of the
target image.

Comparison to State-of-the-art. Schnabel et al. [10] propose a non-rigid image regis-
tration method3 based on B-Spline FFD together with a gradient-descent optimization.
In order to obtain meaningful comparable results we try to set the registration para-
meters as similar as possible. Both algorithms are using the same deformation model
and the SSD metric. We use a set of labels from 0.1 to 2 pixels in 5 steps and allow
20 optimization cycles. The test data are two CT volumes showing the heart of a pig.
The image resolution is 128x128x88 with a voxel size of 0.848x0.848x1.25mm. Due

3 Available on http://wwwhomes.doc.ic.ac.uk/˜dr/software/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) Checkerboard visualization before registration, (b) after registration using the method
in [10], and (c) after registration using our method (d) After registration using our approach with
pyramidal settings. Same order for the difference images in (e)-(h).

to the heart beat a deformation of the shape is clearly visible. We run both methods
on a deformation grid with 10mm control point spacing. Within the region of interest
enclosing the heart and an average SSD error of 12278 before registration, we achieve
an average SSD error of 3180, where the other method converges to a value of 3402.
Also, by visual perception of the difference images we can achieve better results (see
Fig. 4). Last but not least, the running time of our algorithm is less than 2 minutes in
contrast to a running time of more than 2 hours for the other method (AMD Athlon64
2.21 GHz). We should note, that this experiment was not performed to obtain the best
registration of the two data sets, but rather to compare the two algorithms. With our
standard pyramidal approach we obtain a SSD error of 1233 by same running time of
about 2 minutes.

5 Discussion

In this paper we have proposed a novel framework to deformable image registration
that bridges the gap between continuous deformations and optimal discrete optimiza-
tion. Our method reformulates registration using a MRF definition, and recovers the op-
timal solution to the designed objective function through efficient linear programming.
Towards capturing important deformations, we propose an incremental estimation of
the deformation component. These objectives are met through a min cut problem de-
fined over a graph with two terminal links. Graph edges introduce smoothness on the
deformation field, while edges with the terminal links encode the image support for a
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given deformation hypothesis versus another. Therefore, the method is gradient free,
can encode any similarity metric and can recover the optimal solution up to a bound.

In several applications, building anatomical atlases and models of variations between
training examples is feasible. In such a context, one can consider a partial graph where
connections, as well as t-links hypotheses are determined according to the density of
expected deformations. Such a direction will introduce prior knowledge in the registra-
tion process and will make the optimization step more efficient. Moreover, the use of
shape and appearance models can be considered to perform segmentation through reg-
istration. Assuming a prior model that involves both geometry and texture, and given a
new volume one can define/recover segmentation through the deformation of the model
to the image that is a natural registration problem which can be optimally addressed
from the proposed framework.
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Abstract. Dynamic PET reconstruction is a challenging issue due to
the spatio-temporal nature and the complexity of the data. Conventional
frame-by-frame approaches fail to explore the temporal information of
dynamic PET data, and may lead to inaccurate results due to the low
SNR of data. Due to the ill-conditioning of image reconstruction, proper
prior knowledge should be incorporated to constrain the reconstruction.
In this paper, we propose a tracer kinetics guided reconstruction frame-
work for dynamic PET imaging. The dynamic reconstruction problem
is formulated in a state-space representation, where compartment model
serves as a continuous-time system equation to describe the tracer kinetic
processes, and the imaging data is expressed as discrete sampling of the
system states in a measurement equation. The reconstruction problem
has therefore become a state estimation problem in a continuous-discrete
hybrid paradigm, and sampled-data H∞ filtering is applied to for the
estimation. As H∞ filtering makes no assumptions on the system and
measurement statistics, robust reconstruction results can be obtained for
dynamic PET imaging where the statistical properties of measurement
data and system uncertainty are not available a priori.

1 Introduction

Dynamic positron emission tomography (PET) imaging can provide measure-
ments of the spatial distribution and kinetics of radiotracer-labeled biological
substrates in living tissue [1]. The spatio-temporal nature and the complexity
of the data, however, makes the reconstruction of dynamic PET a challenging
issue. The conventional approach is to reconstruct a sequence of activity images
independently at each of the measurement times, using analytical or statistical
methods from static image reconstruction [2,3]. These frame-by-frame strate-
gies, however, fail to explore the temporal information of dynamic PET data,
and may lead to inaccurate results due to the low signal-to-noise ratio (SNR) of
data (SNR is sacrificed for temporal resolution in dynamic imaging). Moreover,
although statistical methods have produced much superior performance, and
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there have been numerous attempts on object function design and optimization
for their improvement [2], it remains true that all statistical methods are based
on specific assumptions on the measurement distribution (Poisson or Shifted
Poisson [4]). In practice, however, PET data has complicated statistics due to
various sources of uncertainties [1], and such assumptions may not capture the
statistics well, especially for low SNR cases in dynamic imaging. As a result, the
quality of the reconstruction will be subject to limits imposed by the statistical
quality of data in these statistical approaches.

Due to the ill-conditioning of image reconstruction, the importance of incor-
porating prior knowledge into statistical reconstruction is well appreciated [2].
For static reconstruction, such efforts can be largely classified as mathematical
regularization with various smoothness constrains [5], and anatomy-constrained
reconstruction with shape priors [6], all of which attempt to capture the spatially
structured properties of images. There have also been attempts to incorporate
temporal priors in dynamic reconstruction via signal sub-spaces or splines [7,8].
While such works can improve the SNR, their temporal models have only ex-
plored the temporal correlation of the data, and the underlying physiological
processes that generate the PET data are not taken into account.

From the above analysis, the reconstruction problem of dynamic PET need
to be addressed with proper consideration of the following issues: the temporal
kinetics of underlying physiological processes, the need for proper priors, and
the complicated statistics and noisy nature of data.

Tracer kinetic studies aim to understand the physiology and pathophysiol-
ogy of the metabolism of substances in a biological system. The kinetics of a
substance are its spatial and temporal distributions in the system, which result
from complex physiological events including circulatory dynamics, transport and
utilization [9]. Various models have been proposed to convert the radiotracer
concentrations reconstructed from PET data into measures of the physiological
processes, which can be classified as noncompartmental, compartmental, and
distributive models [1]. As these models provide quantitative description of the
kinetic processes that generate the PET measurements, it is natural to incorpo-
rate tracer kinetic modeling as prior information in dynamic PET reconstruction.

In this paper, we propose a tracer kinetics guided reconstruction framework
for dynamic PET imaging. The dynamic reconstruction problem is formulated in
a state-space representation, where compartment model serves as a continuous-
time system equation to describe the tracer kinetic processes, and the imaging
data is expressed as discrete sampling of the system states in a measurement
equation. The reconstruction problem has therefore become a state estimation
problem in a continuous-discrete hybrid paradigm, and sampled-data H∞ filter-
ing is applied to achieve robust estimation. The main contribution of our work
lies in the following aspects. Firstly, as tracer kinetics is adopted to guide the
reconstruction, information of the underlying physiological processes is included,
and physiologically more meaningful results can thus be expected. Secondly, in-
stead of using a frame-by-frame approach, the temporal information of the data
is fully explored. Thirdly, since H∞ filtering makes no assumptions on the system
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and measurement statistics, it is particular suited for PET imaging where the
statistical properties of measurement data and system uncertainty remain diffi-
cult to acquire. Finally, our work provides a general framework for incorporating
prior knowledge to guide reconstruction. Anatomical priors or mathematical reg-
ularization can be integrated with tracer kinetics in the state equation, so that
the spatio-temporal nature of the data can be exploited to assist reconstruction.

2 Methodology

2.1 Two-Tissue Compartmental Modeling of PET Tracer Kinetics

Due to their simple implementation and biological plausibility, compartment
models have been widely employed to quantitatively describe regional tracer ki-
netics in PET imaging [1], where one need to postulate a linear or nonlinear
structure in a number of compartments and their interconnections, and resolve
them from the measurement data [9]. A compartment is a mathematical ab-
straction which represents a particular form or location of tracer that behaves
in a kinetically equivalent manner, while the interconnections represent fluxes of
material and biochemical conversions.

In this paper, a two-tissue compartment model is adopted to describe the ra-
diotracer kinetic processes, so that the model can serve as physiologically mean-
ingful priors to guide the dynamic PET reconstruction. This model is commonly
used to describe the uptake and retention of an analog of glucose, 2-deoxy-2-
[18F ] fluoro-D-glucose (FDG). The structure of the model is illustrated in Fig.1,
where CP is the arterial concentration of nonmetabolized tracer in plasma, CE

is the concentration of nonmetabolized tracer in tissue, CM is the concentration
of the radioisotope-labeled metabolic products in tissue, and the kinetic parame-
ters k1, k2, k3, k4 (min−1) are first-order rate constants specifying the the tracer
exchange rates between compartments. While our reconstruction framework will
be derived under this particular model, the framework itself is very general per
se, and compartment models of other forms or in higher complexities can also
be incorporated without fundamental changes.

By applying the model in Fig.1 to all voxels and assuming a space-invariant
tracer delivery CP , the kinetic process for any voxel i (i = 1, ..., N) is governed
by the following differential equation [9]:

[
ĊEi(t)
ĊMi(t)

]
=

[
−(k2i + k3i) k4i

k3i −k4i

] [
CEi(t)
CMi(t)

]
+

[
k1i

0

]
CP (t) (1)

with the subscript i denoting different voxel locations. The above kinetic equa-
tion can be expressed in a compact notation as:

ẋi(t) = aixi(t) + biCP (t) (2)

where xi(t) = [CEi(t) CMi(t)]T , ai =
[
−(k2i + k3i) k4i

k3i −k4i

]
, bi = [k1 0]T . The

input CP (t) is assumed known here, which in practice can be measured directly
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Fig. 1. Two-tissue compartment model with four kinetic parameters

from arterial plasma samples during the imaging procedure [1], or estimated from
imaged volumes that consist primarily of blood [10]. The total concentration of
radioactivity in tissue CTi(t), which directly generates the PET measurements
through positron emission, can be expressed as:

CTi(t) = (1 − VBi)[CEi(t) + CMi(t)] + VBiCWB(t) (3)

where VBi is the vascular volume fraction at voxel i, and CWB(t) is the radioac-
tivity concentration in whole blood. In practice, VBi can be obtained from vessel
segmentation in MR angiography (MRA), followed by registration of PET and
MRA images. For computational simplicity and without losing generality [9,11],
CTi(t) is simplified in this paper as the sum of the concentrations of nonmetab-
olized and metabolized tracer at that voxel location:

CTi(t) = CEi(t) + CMi(t) = [1 1]xi(t) (4)

Our emphasis here is to illustrate the rationales of the tracer kinetics guided
reconstruction framework, while Eq.(3) can also be adopted without fundamental
changes (VBiCWB(t) can be considered as a known input).

2.2 Imaging Model for Dynamic PET Data

Dynamic PET imaging involves a sequence of contiguous acquisition with dif-
ferent temporal resolutions, and a time series of activity images need to be re-
constructed from the measurement data. For voxel i (i = 1, ..., N), the kth scan
(k = 1, ..., K) attempts to measure the accumulation of the total concentration
of radioactivity on the scanning time interval [tk−1, tk], so the measured activity
in scan k for voxel i is expressed as:

λik =
∫ tk

tk−1

CTi(t)dt =
∫ tk

tk−1

[1 1]xi(t)dt (5)

with the subscript k denoting the scan index. The activity image of the kth
scan Λk is obtained by lexicographic ordering of the integrated radioactivity at
different voxels λik, i.e. Λk = [λ1k, λ2k, ..., λNk]T .

In PET imaging, the true coincidences are contaminated by the accidental
coincidence (AC) and the scattered coincidence (SC) events, so the the raw
emission data y

(p)
k is usually pre-corrected for AC events to produce the corrected

measurements yk. The raw data is measured by coincidence detection using a
prompt time window with mean E[y(p)

k ] = DΛk +rk +sk, where D is the imaging
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matrix, rk is mean of the AC events, and sk is mean of the SC events. The AC
events are estimated in a delayed window with mean E[y(d)

k ] = rk. The corrected
measurements yk = y

(p)
k − y

(d)
k are thus with mean E[yk] = DΛk + sk, and can

be further expressed in a measurement equation as:

yk = DΛk + gk (6)

where yk is an M × 1 vector with M being the number of the detector bins, and
the measurement noise gk is to account for all the unknown measurement errors
(including the SC events) during the imaging. The imaging matrix D = [dji]M×N

contain the probabilities of detecting an emission from voxel site i at detector
pair j, and depends on various factors: the geometry of the detection system,
detector efficiency, attenuation effects, dead time correction factors, the extent
of scattering between source and detector, etc. Due to the AC correction, yk is
not Poisson-distributed, violating the assumption in most statistical reconstruc-
tion methods. Consequently, other models like the Shifted-Poisson model have
been proposed for the AC-corrected data [4]. In practice, however, yk has very
complicated statistics due to SC events, scanner sensitivity and dead time, mak-
ing it difficult to well capture its distribution with one certain model a priori.
As this problem become more severe for dynamic PET imaging where the data
has low SNR, we propose to formulate the dynamic reconstruction as a filtering
problem in a state-space setting.

2.3 State-Space Formulation for Dynamic PET Reconstruction

Eq.(2) and (6) form a state-space-like representation for the dynamic PET re-
construction problem, with (2) describing the tracer kinetics and (6) expressing
the measurement model. However, the intermediate step in Eq.(5) makes the
problem in a nonstandard state-space formulation, and thus hinders direct ap-
plication of filtering strategies to the activity reconstruction. The integration of
activity in Eq.(5) also leads to difficulty in other statistical reconstruction ap-
proaches, and is often simplified with direct sampling of CTi(t) at the midpoint
of the scan interval or assuming CTi(t) piece-wise constant during each scan
[11]. These approximations become very crude for long scan intervals or fast
changing kinetics, and we believe an accurate integration model is necessary for
proper dynamic reconstruction. In our work, several transforms are performed
to convert the problem into a more standard state-space representation.

Constructing the state equation via time integration. Let fi(t)=
∫ t

0xi(τ)dτ,
Eq.(2) can then be integrated to generate an equivalent form as:

ḟi(t) = aifi(t) + biC̃P (t) (7)

with C̃P (t) =
∫ t

0 CP (τ)dτ , and the measured activity in Eq.(5) can be written
as:

λik = [1 1][fi(tk) − fi(tk−1)] (8)
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Defining the state vector F (t) = [f1(t)T , f2(t)T , ..., fN (t)T ]T (a 2N × 1 vector),
and also introducing a system noise term ṽ(t), the system kinetic equation for
all voxels can be constructed from Eq.(7) as:

Ḟ (t) = AF (t) + BC̃P (t) + ṽ(t) (9)

where the system matrix A is a 2N × 2N block diagonal matrix with blocks
ai, the input gain B is of size 2N × 1 as B = [bT

1 , bT
2 , ..., bT

N ]T , and ṽ(t) is to
account for the uncertainties in tracer kinetics coming from input disturbances
and modeling errors. The activity image Λk can then be expressed as:

Λk = Tr[F (tk) − F (tk−1)] (10)

where the N × 2N transformation matrix Tr is block diagonal with each block
being [1 1].

The reason why we introduce tracer kinetic modeling into the reconstruction
problem can be understood more clearly here. With Eq.(9) describing the radio-
tracer kinetic process, we are able to incorporate prior knowledge of physiological
meaningfulness to guide our reconstruction.

Deriving the measurement equation. Defining the new measurements zk =∑k
l=1 yl, the new measurement equation can be derived from Eq.(6) and (10) as

zk = DTrF (tk) + ek = CF (tk) + ek (11)

where C = DTr is the measurement matrix, and ek is the measurement noise
after the transform with ek =

∑k
l=1 gl.

Eq.(9)(11) have formed a standard state-space representation for dynamic PET
reconstruction, where (9) describes the continuous-time radiotracer kinetics, and
(11) models the transformed PET data as discrete sampling of the continuous
system states. Given the sampled measurements zk, our goal is to estimate the
state of the continuous kinetic process F (t), and to obtain the reconstructed ac-
tivity images Λk using Eq.(10). In consequence, the dynamic PET reconstruction
problem can be formulated as a state estimation problem in such a continuous-
discrete hybrid paradigm of Eq.(9) and (11), and a sampled-data H∞ filtering
strategy is proposed in Sec.2.4 for estimation in the hybrid paradigm.

2.4 Sampled-Data H∞ Filtering Framework for Dynamic PET
Reconstruction

As mentioned in Sec.2.2, the PET data after AC correction is not Poisson-
distributed, and has highly complicated statistics due to SC events, scanner
sensitivity and dead time. Instead of imposing certain distribution (Poisson or
Shifted Poisson) on the data, the mini-max H∞ estimation criterion is adopted
in our filtering framework, which minimizes the worst possible effects of the dis-
turbances on the state estimation errors, and requires no a priori knowledge of
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noise statistics, making it an appropriate choice for PET reconstruction where
the noise statistics is complicated. The mini-max H∞ criterion has been applied
in [12] for static PET reconstruction, which has a similar spirit to our motiva-
tion here to achieve robustness in the estimation. Despite this similarity, our
work formulates dynamic PET reconstruction in a hybrid paradigm of Eq.(9)
and (11) based on tracer kinetic modeling, so a sampled-data filtering solution
is needed for the estimation due to the incompatibility of system and measure-
ments(continuous kinetics, discrete measurements).

The performance of the sampled-data H∞ filter is measured by the value of
the estimation error relative to the values of the process noise, the measurement
noise, and the uncertainty in the initial state, defined as the following:

J =
‖F (t) − F̂ (t)‖2

S(t)

‖ṽ(t)‖2
Q(t)−1 + ‖e(k)‖2

V (t)−1 + ‖Fo − F̂o‖2
P −1

0

(12)

with F̂ (t) denoting the estimate of F (t). The notation ‖x‖2
G is defined as the

square of the weighted (by G) L2 norm of x, i.e. ‖x‖2
G = xT Gx. Here, S(t), Q(t),

V (t) and P0 are the weighting matrices for the estimation error, the process
noise, the measurement noise, and the initial estimate, respectively, and F̂o is
the initial state estimate. The denominator of J can thus be regarded as ”mixed
L2/l2” norm [13] on the uncertain disturbances affecting the system. The per-
formance measure of the sampled-data H∞ filter is defined directly in terms of
the continuous-time system state F (t) and disturbance ṽ(t), and inter-sample
behavior of the system(i.e. kinetics between samples) is thus taken into account.

Given a prescribed noise attenuation level γ > 0, the sampled-data H∞ filter
will search F̂ (t) such that the optimal estimate of F (t) should satisfy

supJ ≤ γ2 (13)

where the supremum is taken over all possible disturbances and initial states.
The sampled-data H∞ filter can be interpreted as a mini-max problem where
the estimator strategy plays against the exogenous disturbances ṽ(t), e(k) and
the uncertainty in the initial state Fo. The problem formulation in equation (13)
guarantees the bounded estimation error over all possible disturbances of finite
energy, regardless of the noise statistics. As a result, the filter achieves greater ro-
bustness to disturbance variations and is well suited to such real-world problems
as in PET reconstruction, where system disturbances and data uncertainties
have highly complicated statistics and can not be well modeled a priori.

The sampled-data H∞ filtering algorithm for our hybrid paradigm of dynamic
PET reconstruction described by Eq.(9) and (11) is given as follows [13]:

˙̂
F (t) = AF̂ (t) + BC̃P (t) (14)

F̂ (tk) = F̂ (t−k ) + P (tk)CT V (t)−1[zk − CF̂ (t−k )] (15)

where F̂ (t−k ) = limε→0 F̂ (tk − ε), and P (tk) is the stabilizing solution to the
following Riccati equation with jumps:
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Table 1. Kinetic parameters for different tissue regions in Zubal thorax phantom

Region k1(min−1) k2(min−1) k3(min−1) k4(min−1)

ROI a 0.55951 2.75288 0.44793 0.01101

ROI b 0.37811 1.04746 0.13483 0.00857

ROI c 0.78364 1.15641 0.11200 0.02706

Ṗ (t) = AP (t) + P (t)AT +
P (t)S(t)P (t)

γ2 + Q(t) (16)

P (tk) = P (t−k )[I + CT V (t)−1CP (t−k )]−1 (17)

with the initial condition P (0) = P0.
The filter given above is a linear system with finite jumps at discrete instants

of time, which also has an intuitively appealing structure. Between the sampling
instants when the PET data is collected, the state estimate evolves according to
the continuous-time system kinetics, and the predicted state F̂ (t−k ) is obtained
by solving equation (14) on the time interval [tk−1, tk], with the previous state
estimate F̂ (tk−1) as the initial condition of the differential equation. Then at the
observation time t = tk, the new measurement zk is used to update the estimate
with the filter gain being P (tk)CT V (t)−1. P (t−k ) is also obtained by solving the
differential equation (16) with P (tk−1) as the initial condition.

Numerical integration is usually required for solving Riccati differential equa-
tion (16), and its property of movable singularities usually leads to stability
problems when Runge-Kutta routines are applied. The Möbius schemes pro-
posed in [14] are based on viewing the Riccati equation in its natural geometric
setting, as a flow on the Grassmannian of the vector space. Since there are no
singularities in the associated flow, the schemes are able to deal with numerical
instability and pass accurately through the singularities. Thus we adopt Möbius
schemes in our implementation, and the detailed algorithm can be found in [14].

3 Experiments and Discussions

3.1 Simulation Experiments on Phantom

Simulation experiments have been conducted to illustrate the accuracy and ro-
bustness of the sampled-data H∞ filtering strategy. Fig.2(a) shows a schematic
representation of the Zubal thorax phantom, which has 4 regions including the
background. The phantom is digitized at 32 × 32 pixels. The kinetic parameters
of different regions are obtained from tracer kinetic study of glucose utilization
[15], and are given in Table.1, with their corresponding time activity curves
shown in Fig.2(b). The two-tissue compartment model is simulated with these
parameters, and time frames of activity images are generated via accumulation
of total activity concentration on each scan interval according to Eq.(5). The
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Fig. 2. (a): Zubal thorax phantom with multiple tissue regions indicated by differ-
ent colors. (b): Time activity curves for three distinct tissue regions in Zubal thorax
phantom.

total scan time is 60min, divided into 18 time frames with 4×0.5min, 4×2min,
and 10 × 5min. The plasma function CP (t) is generated using [10]:

CP (t) = (A1t − A2 − A3)eαt + A2e
βt + A3e

γt (18)

with A1 =851.1225μCi/mL/min, A2 =20.8113μCi/mL, A3 = 21.8798μCi/mL,
α = −4.133859min−1, β = −0.01043449min−1, and γ = −0.1190996min−1.
The decay of FDG tracer is also included with a decay constant of 0.0063min−1.

The 18 frames of activity images obtained from the above compartment model
simulation are projected into sinograms using a Poisson model to generate the
raw data y

(p)
k . The imaging matrix is modeled using the MATLAB toolbox de-

veloped by Prof. Jeff Fessler. Poisson-distributed AC events are then generated
for each frame to simulate y

(d)
k , and the corrected measurements yk are produced

through subtraction. The AC events rate is assumed to be constant throughout
each sinogram, and two fractions: 30% and 50%, of the total counts per scan are
used to simulate low and high noise levels respectively. The effect of different
counts is also simulated, where the low count case has 105 counts for the entire
dynamic data set (divided among the 18 sinograms in accordance with the time
behavior), and the high count case has 107 counts.

Given the above data sets with different counts and noise levels, our task is to
reconstruct the 18 activity images based on tracer kinetic models. Ideally, if we
have perfect prior knowledge of the model, the reconstruction can be performed
with very high accuracy. In practice, however, the kinetic parameters of the
model are usually not known a prior for a specific subject or tissue region, so
information from previous studies has to be used instead. To simulate this model
mismatch, we perform two kinds of recovery, denoted as the ”perfect model” and
”disturbed model” cases. In the first case, the parameters in recovery are the
same as those in forward data generation, while in the second one a disturbed
model is used in data generation with 10% noise added to the parameters. For
each case of recovery, the statistical method maximum likelihood-expectation
maximization(ML-EM) is also implemented for comparison.
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Fig. 3. Reconstructed activity images with perfect model from low noise data at frames
#4, #8, #12 (top to bottom). (a): ground truth. (b): ML-EM results for low counts.
(c): H∞ results for low counts. (d): ML-EM results for high counts. (e): H∞ results for
high counts and color scale.

Fig.3 shows the ground truth and estimated activity images at frames #4,
#8, #12 for the ”perfect model” case, where all the reconstructions in this fig-
ure are performed on data with 30% noise level. The purpose here is to compare
the strategies (ML-EM and H∞ filter) at different counts. While ML-EM can
give reasonable estimates for high counts in Fig.3(d), it fails for low count case
(Fig.3(b)) where the SNR is sacrificed for the temporal resolution. In contrast,
with the guidance of the compartment model, our filtering strategy generates sig-
nificantly better results (Fig.3(c)(e)), illustrating the advantages of introducing
physiologically meaningful priors into reconstruction. Moreover, as the mini-max
H∞ criterion guarantees bounded estimation error for all disturbances of finite
energy, regardless of types and levels of noises, the filtering performance is still
very satisfying even for the low count case in Fig.3(c). This has important im-
plications for small animal imaging and drug discovery, where the low tracer
dosage produces data of very low counts.

The ground truth and reconstructed activity images for the ”disturbed model”
case are shown in Fig.4, where all the recoveries are from low counts data. Not
surprisingly, ML-EM fail for all low count cases due to the low SNR and vio-
lation of Poisson assumption. In contrast, although the kinetic model used for
reconstruction here is not the same as the one for data generation (10% dis-
turbance on parameters), the sampled-data H∞ filter can still reliably and ac-
curately estimate the activity images from the noisy measurements. These results
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Fig. 4. Reconstructed activity images with disturbed model from low counts data at
frames #4, #8, #12 (top to bottom). (a): ground truth. (b): ML-EM results for low
noise. (c): H∞ results for low noise. (d): ML-EM results for high noise. (e): H∞ results
for high noise and color scale.

further validate the necessity and importance of incorporating kinetic models
(even not perfect ones) into reconstruction.

Table.2 provides a quantitative comparison of the strategies for different data
sets (different counts, different noise levels) and different prior models (per-
fect model and disturbed model), where the reconstruction results are evalu-
ated using absolute bias and variance defined as bias = 1

N

∑N
i=1 |λik − λ̂ik|/λik,

variance = 1
N−1

∑N
i=1(|λik − λ̂ik|/λik)2. The error bias and variance are av-

eraged over the 18 frames of reconstruction to give the estimates E[bias] and
E[variance]. From Table.2, we can see that the sampled-data H∞ filter provides
stable and accurate reconstruction results for different counts and noise levels,
demonstrating its desired robustness for dynamic PET reconstruction, where the
data has complicated statistics and can not be well modeled a priori.

3.2 Discussions on Future Works

We have developed a tracer kinetics guided reconstruction framework for dy-
namic PET imaging, where sampled-data H∞ filtering is applied to provide
physiologically meaningful and robust reconstruction results. Other prior knowl-
edge can also be incorporated into our framework, such as shape priors from
anatomy, and attenuation information from CT-PET imaging, which can help
to build more accurate kinetic models for different tissues. Parametric recon-
struction can also be naturally dealt with in our framework.
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Table 2. Quantitative analysis of estimated activity images for different data sets and
different prior models, with var denoting variance

Low Counts High Counts
30%noise 50%noise 30%noise 50%noise

bias var bias var bias var bias var

H∞(perfect model) 0.0346 0.0255 0.0367 0.0264 0.0410 0.0351 0.0421 0.0372

ML-EM(perfect model) 0.9303 2.3751 0.9722 2.6883 0.1745 0.0831 0.1837 0.0934

H∞(disturbed model) 0.0450 0.0025 0.0445 0.0025 0.1284 0.1030 0.1499 0.1163

ML-EM(disturbed model) 0.9416 2.6547 0.9464 2.6459 0.1748 0.0850 0.1813 0.0892

Currently, we are trying to apply the framework to real dynamic PET data.
Efforts on Monte Carlo simulations and algorithm speedup are also underway.
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Abstract. Images of the MRI signal intensity are normally constructed
by taking the magnitude of the complex-valued data. This results in a
biased estimate of the true signal intensity. We consider this as a prob-
lem of parameter estimation with a nuisance parameter. Using several
standard techniques for this type of problem, we derive a variety of es-
timators for the MRI signal, some previously published and some novel.
Using Monte Carlo experiments we compare the estimators we derive
with others previously published. Our results suggest that one of the
novel estimators we derive may strike a desirable trade-off between bias
and mean squared error.

1 Introduction

Greyscale MR images are normally produced by taking the pixel-wise magnitude
of a complex-valued image with zero-mean complex additive white noise. The
magnitude operation performed on this data produces an image with a Rician
noise distribution [1,2]. This distribution has a spatially varying bias that is in-
versely related to signal strength, and thus reduces image contrast. In order to re-
duce the bias of this signal estimate, a variety of approaches have been presented
in the literature. The first major group assumes pixels are independent, and
attempts to construct a less-biased estimator for the signal value using only in-
formation recorded at a single location[1,3,4,5,6,7,8]. The second group assumes
that pixels are related either in signal or phase values and uses inference between
neighbouring pixels in order to estimate pixel values [9,10,11,12,13,14,15,16].

In this work, we will focus on the first group. In particular, we are interested
in how the notion of a nuisance parameter can be used to construct a variety
of different estimators from the established model of the MRI data. As we will
see, in the majority of MR imaging situations, only one of the two parameters is
of interest. The choice of how these parameters’ effects are separated is funda-
mental in determining what sort of estimator will be produced. However, despite
the rich statistical literature on estimation with nuisance parameters, the notion
does not seem common in the literature on MRI signal magnitude estimation
[17,18,19,20]. In this work, we will attempt to employ some of the variety of tech-
niques available for maximum likelihood estimation with a nuisance parameter.
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In doing so, we will derive some estimators that are previously published as well
as new estimators.

To begin, in section 2 we introduce the model we will use for the MRI data.
In section 3 we proceed to derive a variety of estimators using the maximum
likelihood framework. In section 4 we describe some other estimators for this
problem that have been presented in the MRI literature but do no arise from
the maximum likelihood estimator. Finally, in section 5 we compare all of the
estimators. Since closed form expressions for the bias and mean squared error
(MSE) are not available for all of the estimators we derive, our comparison is
based on Monte Carlo experiments using clinically realistic parameters.

2 MRI Data

For many clinically useful pulse sequences, the recorded MRI data f can be well
described at each pixel as a complex-valued signal with magnitude s and phase
φ, summed with two independent noises qr and qi which are both drawn from
the zero-mean normal distribution N (0, σ) with σ fixed for all pixels. The two
noises are aligned in the complex plane such that qr is noise in the real direction
and qi is noise in the imaginary direction. Thus, for a given pixel we have [3]

f = s exp(iφ) + qr + iqi . (1)

Since we are assuming that each pixel is independent and that the values of
s and φ and unrelated between pixels, we can model each pixel independently
with f = a + ib and the multinormal distribution

p(a, b; s, φ, σ) =
1

2πσ2 exp
(

− (a − s cos(φ))2 + (b − s sin(φ))2

2σ2

)
. (2)

Converting this to polar coordinates f = r exp(iθ), where we will find most of
our work more natural, we get

p(r, θ; s, φ, σ) =
r

2πσ2 exp
(

−s2 + r2 − 2sr cos(θ − φ)
2σ2

)
. (3)

Since multiple excitations are often used in order to repeat measurements, we
will use ai and bi to represent the measurements from the ith excitation and a
and b to represent the vectors of real and imaginary measurements at a given
location. Similarly, we will use ri and θi for the ith excitation and r and θ to
represent the vectors of polar measurements. Finally, we will simplify notation
in some places by using A =

∑n
i=1 ai and B =

∑n
i=1 bi.

In the majority of clinical imaging cases, we desire to display a greyscale
image where the intensities represent the value of s. This leaves φ, a nuisance
parameter required to complete the model but not of interest in producing our
images. We will be given n replicated samples from each pixel and asked to
produce an estimate of s from these values.
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Note that for the purposes of this paper, we will assume that σ is known.
In practice σ will usually be estimated either from a region of air where it is
known that s = 0 or from the aggregate of image pixels. In the latter case, we
take advantage of the fact that, for the pulse sequences we will consider, σ is
the same for all pixels in the image and so it is relatively easy to estimate given
more than one replication at each pixel.

3 Maximum Likelihood Estimators with Nuisance
Parameters

If we desire to estimate s cosφ and/or s sinφ, then the MLE is a good approach.
To find this estimate given the likelihood function L(s, φ; a, b), we set the score
function with respect to each parameter equal to zero, substitute in the measured
values of a and b, and then solve the system

∂

∂(s cosφ)
log L(s, φ; a, b) = 0 (4)

∂

∂(s sinφ)
log L(s, φ; a, b) = 0 . (5)

This produces an unbiased estimate of (s cosφ, s sinφ). However, unbiasedness
does not apply when we attempt to estimate s alone. Due to the nonlinear change
of parameters between (s cosφ, s sin φ) and (s, φ), there is not one estimator of s
that can be easily justified theoretically. In this section we will consider several
different approaches to estimating s without φ. Some of the estimators derived
are previously published, while some are new to the MRI literature.

3.1 Maximum Likelihood Estimate

Let (ŝML, φ̂ML) be the MLE of (s, φ) computed by solving

∂

∂s
log L(s, φ; r, θ) = 0 (6)

∂

∂φ
log L(s, φ; r, θ) = 0 . (7)

If we take ŝML as our estimate of s alone, this is also called the maximum
likelihood estimate. This is the same as substituting φ̂ML into the score function
for s, and then solving the equation

d
ds

log L(s; φ̂ML, r, θ) = 0 . (8)

Noting that ŝML is just the magnitude image computed at each pixel from the
average of the excitations, one should not be surprised to find this estimator is
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biased since it has a Rician distribution as discussed in section 1. The bias and
MSE of this estimator are

E[ŝML − s] =
√

2πσ

2
√

n
1F1

(
−1

2
; 1; −ns2

2σ2

)
− s (9)

E[(ŝML − s)2] = 2(s2 + σ2/n) − s
√

2πσ√
n

1F1

(
−1

2
; 1; −ns2

2σ2

)
, (10)

with 1F1 being the confluent hypergeometric function. Despite the non-zero bias,
this is the most prevalent form of MR signal estimate, being commonly known
as the ‘magnitude image’ in MRI.

For this problem, we also find that the maximum profile likelihood estimate
is the same as the maximum likelihood estimate [18]. The profile likelihood for
s is defined as

Lp(s; r, θ) = max
φ

L(s, φ; r, θ) (11)

We find that ŝML = max
s

Lp(s; r, θ) by noting the maximum value of L(s, φ; r, θ)
with s fixed is independent of the choice of s. Thus, for the problem of estimating
the MRI signal, the ŝML can be thought of as either the maximum likelihood
estimate or the maximum profile likelihood estimate.

3.2 Maximum Marginal Likelihood Estimate

We note that equation (3) can be marginalized with respect to θ to produce

p(r; s, φ) =
∫ π

−π

p(r, θ; s, φ, σ) dθ

=
r

2πσ2 exp
(

−s2 + r2

2σ2

) ∫ π

−π

exp
(

sr cos(θ − φ)
σ2

)
dθ . (12)

Using the identity
∫ π

−π exp (z cos(θ)) dφ = 1
2π I0 (z), where I0 (z) is the zeroth-

order modified Bessel function, we can rewrite this as

p(r; s, φ) =
r

σ2 exp
(

−s2 + r2

2σ2

)
I0

( sr

σ2

)
. (13)

We can see that by performing this marginalization we have removed the depen-
dence on φ since it does not appear anywhere on the right side of the equation.
Thus, if we measure only the magnitude and not the phase (or simply ignore the
measured phase) then φ has no effect on our magnitude measurement. We can
use this probability to produce a marginal likelihood function, which can then
be maximized to produce an estimate of s [18].

This procedure is exactly the one employed by Sijbers et al., although in this
previous work the justification for discarding the phase was the assumption that
bias correction was being performed given only a magnitude image [6]. Regardless
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of how we justify the marginalization, given that we have n independent mea-
surements of this value, we can follow a similar derivation and write

p(r; s) =
n∏

i=1

p(ri; s)

=
n∏

i=1

ri

σ2 exp
(

−s2 + r2
i

2σ2

)
I0

(sri

σ2

)
. (14)

From this we can find

d
ds

log L(s; r) =
1
σ2

(
m∑

i=1

ri

I1
(

sri

σ2

)

I0
(

sri

σ2

) − ns

)
. (15)

Setting this equal to zero produces an equation whose solutions have been studied
previously using catastrophe theory [6]. The basic result of this previous work is
that the maximum marginal likelihood estimate of s is 0 when

∑n
i=1 r2

i ≤ 2nσ2.
Otherwise, there is one positive maximum which can be found numerically.

3.3 Maximum Integrated Likelihood Estimate

A very similar result to the above is produced if, instead of marginalizing out θ,
we choose a uniform distribution on the range (−π, π] as a prior for φ. The choice
of a uniform prior in this case can be supported with two arguments. First, for a
variable with a restricted range like φ, a uniform prior is often considered non-
informative in Bayesian terms [21]. Second, although it is known experimentally
that φ is likely to have a low-curvature structure [9,10,16], the estimators we
are considering assume that each pixel’s parameters are independent. With this
restriction, based on experimental results it is approximately equally likely that
a single pixel chosen at random could have any value for φ in the valid range.

Proceeding with the uniform prior, we can then write

p(r, θ; s) =
∫ π

−π

p(r, θ; s, φ)p(φ) dφ . (16)

We first note that

p(r, θ; s, φ)p(φ) =
1
2π

n∏

i=1

ri

2πσ2 exp
(

−s2 + r2
i − 2sri cos(θi − φ)

2σ2

)
. (17)

Then we can substitute this in and simplify to produce

p(r, θ; s) =
1
2π

∫ π

−π

n∏

i=1

ri

2πσ2 exp
(

−s2 + r2
i − 2sri cos(θi − φ)

2σ2

)
dφ

= exp
(

−ns2

2σ2

) (
n∏

i=1

ri

2πσ2 exp
(

− r2
i

2σ2

))
I0

(
s
√

A2 + B2

σ2

)
.(18)
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We can then write the score function as

d
ds

log L(s; r, θ) =
1
σ2

⎛

⎝
√

A2 + B2
I1

(
s
√

A2+B2

σ2

)

I0
(

s
√

A2+B2

σ2

) − ns

⎞

⎠ . (19)

This can be set equal to zero and solved for s using the same approach as in the
previous section. The only difference between this new estimator and the one
in the previous section is that this approach first averages the measurements
together before applying the previous estimator.

3.4 Maximum Profile Likelihood Estimate with Saddlepoint
Correction

In section 3.1 we saw that the maximum profile likelihood estimate is ŝML =
1
n

√
A2 + B2. One approach to removing the bias from this estimate involves

a form of a technique called saddlepoint correction [19]. Using this approach,
we compute a correction to the score function, equation (8), and then set the
corrected score to zero and solve for our estimate. In our problem, the correction
suggested by Levin et al. is given by [19]

d
ds

log L(s; φ̂ML, r, θ) + B = 0 . (20)

with

B = − σ2

2ns2 E

(
∂

∂s

∂2

∂φ2 log p(r, θ ; s, φ)
)

= − 1
2s

. (21)

Setting the corrected profile score function to zero and solving for s gives the
maximum corrected profile likelihood estimate

ŝCorr =
ŝML +

√
ŝ2
ML − 2σ2/n

2
, (22)

where ŝML is the uncorrected profile likelihood estimate as defined in section 3.1.
This corrected estimator raises a difficulty when ŝ2

ML < 2σ2/n as our estimate
becomes complex valued. We will resolve this by taking the real part as the
estimate.

4 Other Published Estimators

In addition to the estimators derived above, there are several others that are
significant in the MRI literature. A variety of previous approaches to reducing
bias in magnitude MRI images are all based on noting that [1,3,4,5,8]

E[r2
i ] = s2 + 2σ2 . (23)
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The estimator proposed independently by McGibney et al. and Miller et al. was
created by replacing E[r2

i ] with r2
i in this equation, and then solving for s, giving

(in the general case with n measurements) [4,5]

ŝMM =

√√√√ 1
n

n∑

i=1

r2
i − 2σ2 . (24)

As with the corrected profile likelihood estimate, we take the real component of
equation (24) as the estimated value. Practically, this means setting ŝMM = 0
whenever 1

n

∑n
i=1 r2

i < 2σ2.
The estimator proposed by Gudbjartsson et al. is quite similar. Starting with

just the Rician-distributed magnitude measurements, they propose to make the
resulting estimator’s distribution closer to Gaussian by using [1]

s̃G =

√√√√
∣∣∣∣∣
1
n

n∑

i=1

r2
i − σ2

∣∣∣∣∣ . (25)

With the introduction of the absolute value inside the square root, we are guar-
anteed a real-valued estimate.

Lastly, the estimator due to Koay et al. was designed for the situation where
σ is unknown and may vary between pixels [8]. Since, for the purposes of our
experiment, we assume that σ is known or can be estimated well and further
that it is fixed for all pixels, we will not consider this estimator further.

5 Comparison of Estimators

5.1 Methods

It is hypothesized that the spatially varying bias of magnitude MRI images
causes difficulties for observers [12,22]. This is assumed to be due to the reduction
in image contrast. Bright image regions have essentially zero bias in magnitude
images while dark regions are biased positively. Experiments involving human
observers looking at biased and unbiased MRI images indicates that bias may
hamper detection of dim features against a dark background (e.g., weak edges)
[23]. Additionally, we assume that the variance of an estimator likely has some
impact on detectability as well. Noting this, we will compare estimators both in
terms of bias and MSE.

To perform these comparisons, we used Monte Carlo experiments under a
series of realistic conditions, similar to those presented by Sijbers et al.[6,7]
since we do not have analytic forms for the MSE and bias of the estimators.
The one exception to this was the MLE, where the bias and MSE are given in
equations (9) and (10) and so are simply evaluated directly. The experiments
were conducted with signals between 0 and 4 at intervals of 0.25 with noise
fixed at σ = 1. We tried each signal value with one, two, and four simulated
excitations. In order to ensure a low error in our experiment, we ran 20,000
iterations of each condition for use in computing the relevant statistics.
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Fig. 1. Biases of the estimators. Each plot displays the bias of one estimator (a: max-
imum likelihood, b: maximum marginal likelihood, c: maximum integrated likelihood,
d: maximum saddlepoint corrected profile likelihood, e: McGibney et al. and Miller et
al., f: Gudbjartsson et al.). The x-axis is the true signal value, and the y-axis is the
mean bias of the estimate either computed directly or via the Monte Carlo experiments.
The three lines in each plot correspond to n = 1 (solid), n = 2 (dashed), and n = 4
(dotted).
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Fig. 2. MSEs of the estimators. Each plot displays the MSE of one estimator (a: max-
imum likelihood, b: maximum marginal likelihood, c: maximum integrated likelihood,
d: maximum saddlepoint corrected profile likelihood, e: McGibney et al. and Miller et
al., f: Gudbjartsson et al.). The x-axis is the true signal value, and the y-axis is the
MSE of the estimate either computed directly or via the Monte Carlo experiments.
The three lines in each plot correspond to n = 1 (solid), n = 2 (dashed), and n = 4
(dotted).
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5.2 Results and Discussion

In figure 1, we show the bias results. We can see that the McGibney et al. and
Miller et al. estimate (e), along with the integrated and marginal likelihood
estimators (b, c) are the least biased when the signal is 0. However, the corrected
profile likelihood (d) is the most quick to converge to having no bias as the true
signal increases. We note as the number of excitations increases the integrated
likelihood estimate improves more rapidly than the marginal likelihood estimate.
However, the corrected profile likelihood estimate converges to zero bias more
quickly than the others with one, two, or four excitations.

In figure 2, we show the MSE results. The maximum likelihood estimate (a)
produces the lowest MSE once s > 1.5. The next closest estimators are the
corrected profile likelihood (d) and the Gudbjartsson et al. estimator (f). For
signal values approaching 0, the McGibney et al. and Miller et al. estimator has
the lowest MSE, followed by the integrated and marginal likelihood estimators
(b, c). Again we note that the MSE of the integrated likelihood estimate improves
more rapidly than the marginal likelihood estimate. Additionally, we find that
the corrected profile likelihood estimate becomes increasingly competitive with
the integrated and marginal likelihood estimates in terms of MSE as the number
of excitations increases.

Considering these results together, our experiments suggest that the corrected
profile likelihood estimate (d) provides less bias than the maximum likelihood
estimate while trading a lower MSE at s < 1.5 for a slightly higher MSE at s >
1.5. These results seem to indicate that this new estimator offers a competitive
alternative to those already published.

One practical consideration is the computational costs of these estimators.
The marginal and integrated likelihood estimates both require several steps
of some optimization algorithm. Although an efficient optimization algorithm
for this problem has been previously presented [6], they are still substantially
more expensive to compute than the the maximum corrected profile likelihood,
McGibney et al. and Miller et al., or Gudbjartsson et al. estimators. As such,
we suspect that in a practical setting, the benefits achieved by applying the
maximum corrected profile likelihood estimator could be sufficient to offset the
minimal computational cost required for every image.

6 Conclusions

We have demonstrated that a variety of estimators for MRI, both previously pub-
lished and new, can be generated by applying some of the statistical approaches
to maximum likelihood estimation in the presence of nuisance parameters. Our
results suggest that the rich literature on this type of problem in statistics offers
useful tools that can be applied to signal estimation in MRI.

As there is no clear theoretical grounds for choosing one of these estimators, we
have used Monte Carlo experiments to compare the estimators. We have shown
that a novel MRI signal estimator, the maximum corrected profile likelihood,
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offers a decrease in bias compared to the magnitude image, in exchange for a
slight increase in variance. Additionally, our results suggest that in situations
with multiple excitations there can be substantial advantage to using this new
estimator. Due to the limitations of the metrics being used for the evaluations,
the results can only be considered to suggest further work. Experiments with
humans observing estimated images are necessary to determine if any of these
estimators provide a practical improvement in MR images.
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Abstract. In this paper we describe a new method for quantifying
metabolic asymmetry modulo structural hemispheric differences. The
study of metabolic asymmetry in Alzheimer’s disease (AD) serves as a
driving application. The approach is based on anatomical atlas construc-
tion by large deformation diffeomorphic metric mapping (LDDMM) first
introduced in [1]. Using invariance properties of the LDDMM, we define
a structurally symmetric coordinate frame in which metabolic asymme-
tries between the left and the right hemispheres can be studied. This
structurally symmetric coordinate system of each subject provides the
correspondence between left and right hemispheric structures in an in-
dividual brain. These correspondences are used for measuring metabolic
asymmetry modulo structural asymmetry. Again using the atlas con-
struction framework, we build a common symmetric coordinate system
of a entire population. The metabolic asymmetry maps of individuals
in a population under study are mapped into the common structurally
symmetric coordinate frame, allowing for a statistical description of the
populations metabolic asymmetry. In this paper we prove certain in-
variance properties of the LDDMM atlas construction framework that
make the definition of structurally symmetric coordinate systems possi-
ble. We present results from applying the methodology to images from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)[2].

1 Introduction: Metabolic Asymmetry in Alzheimer’s
Disease

Glucose metabolism in normal elderly individuals is, on average, symmetric. In-
dividual patients with dementia, however, can have remarkable asymmetry. Some
of the earliest studies of FDG-PET in AD noticed that patients sometimes had
predominant left or right hemisphere hypometabolism and that this metabolic
asymmetry corresponded to individual differences in symptoms and cognitive
deficits [3,4,5] While metabolic asymmetry has been frequently reported, its
cause is still unknown.

An understanding of why AD causes asymmetric glucose hypometabolism in
some patients would provide new insights into the disease mechanisms that could
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be exploited to develop novel approaches to diagnosis and treatment. The lack
of progress in understanding the origin of metabolic asymmetry is largely be-
cause most research has been conducted using grouped, rather than individual
data for analyses. Explanatory studies focused on typical or average changes in
different diseases or clinical correlations and were not concerned with individual
variations. Different kinds of analyses are needed to account for individual het-
erogeneity. Recently, as FDG-PET has become widely available as a diagnostic
test for dementia, it has become even more important to recognize the normal
range of individual metabolic asymmetry and its possible variation with dement-
ing diseases. This has spurred a reconsideration of asymmetry and its underlying
cause.

Despite significant advances in image analysis methods, little that is new to
evaluate metabolic asymmetry has been developed since the 1980s when ratios
of volume or metabolic rates were calculated in corresponding left and right
anatomic regions of interest. Although deformable image registration techniques
have been applied in the past to study structural asymmetry [6,7,8], they have
not been applied to the study of metabolic asymmetry. Clinical brain scans
almost always are interpreted using only visual inspection. The eye can detect
subtle asymmetries and this is exploited to identify disease clinically. However,
it is easy to misinterpret asymmetries and difficult to judge accurately when it is
pathologic. Tilting of the patient’s head can make symmetric structures appear
asymmetric or exaggerate differences. Furthermore, the structure and function
of the normal brain is not truly symmetric, and some variation in right and left
glucose metabolism is expected.

In this paper we present a new quantitative method based on large deforma-
tion diffeomorphic atlas construction for the analysis of metabolic asymmetry.
Our method builds a symmetric structural MRI for each individual, in which
asymmetries in that subject’s PET data can be quantified without artifacts due
to structural asymmetry. We also build a symmetric, normative structural MRI
atlas along with the associated atlas of metabolic asymmetry. By mapping an
individual’s data to this atlas, the method highlights metabolic asymmetry any-
where in the brain and identifies the statistical significance of the asymmetry in
comparison to a normal control population.

2 Methods

One of the most confounding factors in measuring metabolic asymmetry is the
inherent structural asymmetry associated with the normal brain. Shown in the
top row of Figure 1 are midaxial MRI slices from four representative normal
control subjects from the ADNI database [2]. Following the ADNI protocol, all
the images were corrected for intensity inhomogeneity and oriented in to a stan-
dard coordinate system based on the AC-PC. Notice the structural asymmetry
as well as the individual structural variability in all the subjects.

The method presented herein, based on large deformation diffeomorphic met-
ric mapping (LDDMM) accommodates structural asymmetry and is able to
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Fig. 1. Midaxial slices from 4 representative normal control subjects from the ADNI
database

quantify the metabolic asymmetry volumetrically modulo the structural asym-
metry. The process involves the following general steps:

1. Quantifying individual structural asymmetry by
– Estimating the plane of structural symmetry for each subject.
– Building large deformation diffeomorphic transformations characterizing

structural asymmetry.
2. Quantifying individual metabolic asymmetry modulo structural asymmetry.
3. Building statistical cross-sectional normal metabolic asymmetry atlas.
4. Statistically testing individual asymmetry against the cross-sectional asym-

metry atlas.

Underlying the above process is the methodology for the construction of an
unbiased atlas from a collection of brain images. Although the atlas construction
methodology has been previously published[1], we briefly review it here as the
invariance properties of the atlas construction process, proved here for the first
time, allow us to precisely study metabolic asymmetry.

2.1 Large Deformation Diffeomorphic Atlas Construction and Its
Invariance Properties

The study of anatomical shape is inherently related to the construction of trans-
formations of the underlying coordinate space, which map one anatomy to an-
other. Recent work has suggested that representing the geometry of shapes or
images in flat spaces undermines our ability to represent natural variability in
populations [9,10]. Several researchers have proposed the use of nonlinear spaces
defined as groups, in which each point in the space is related to another via the
transformation. These groups vary in dimensionality from simple global trans-
lations and rigid rotations to the infinite-dimensional group of diffeomorphisms
(denoted H) [11].

We rely on the theory of large deformation diffeomorphisms [12,13], in which
the dense field of image displacements, h ∈ H, are integrals of smooth vector
fields v(x, t), defined on an image domain Ω and varying with time t ∈ [0, 1]. The
diffeomorphic property is important as it provides us with the ability to trans-
form points between atlases and subjects and back without the loss of structure
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or information. Furthermore, the space of diffeomorphisms has an associated
metric induced by a function space norm (Sobolov norm) via a partial differen-
tial operator L on the velocity fields v. The metric is defined via the squared
distance, d(e, h)2, between a transformation h and the identity transformation
e as

d(e, h)2 = min
v

∫ 1

0

∫

Ω

‖Lv(x, t)‖2 dx dt, subject to : h(x) =
∫ 1

0
v(h(x, t), t) dt.

(1)
The differential operator L ensures smoothness, which guarantees that when
we integrate v, the resulting displacements, h, will be diffeomorphic. Thus, a
right invariant metric between any two diffeomorphisms, which satisfies all of
the properties of a metric [14], is given by d(h1, h2) = d(e, h2 ◦ h−1

1 ). As we will
see, this property will play a crucial role in our study of asymmetry.

Averages in metric spaces: In a vector space with addition and scalar multi-
plication well defined, an average representation of the training set can be com-
puted as the arithmetic average. Linear averaging cannot be directly applied to
the space of diffeomorphisms because it is not a vector space and is not closed
under addition. The space of diffeomorphisms is a nonlinear infinite-dimensional
group. We do, however, have a metric for diffeomorphisms, and thus use the
approach presented in [1], which applies the statistical method of averaging in
general metric spaces proposed by Fréchet [15]. For a metric space M with a
distance d : M × M → R, the intrinsic mean for a collection of data points
xi ∈ M is the minimizer of the sum-of-squared distances to each of the data
points. That is, μ = arg minx∈M

∑N
i=1 d(x, xi)2.

The input data for the construction of an MRI brain template or atlas is a
collection of N structural MRIs. For such a collection the challenging variability
is not that of the noise of the imaging modality, but the inherent biological vari-
ability of the geometry or shape of the underlying anatomy. The Fréchet mean
estimation problem for atlas construction is formulated using the metric on the
space of diffeomorphisms combined with a squared-error dissimilarity measure
on the image intensities. The template image Î that is the best representative
for a population of N anatomical images {Ii}N

i=1, is the image that on average
minimizes the sum-of-squared distances between it and each Ii. That is,

Î = Atlas({I1, . . . , IN})

= arg min
hi,I

N∑

i=1

∫

Ω

(
Ii ◦ h−1

i (x) − I(x)
)2

dx + d(e, hi)2. (2)

This involves a minimization procedure that considers all the images at once.
The procedure is unbiased and not dependent on the order of processing of the
images.

Invariance Properties of LDDMM Atlas Construction: We now prove
some invariance properties of the above atlas construction process that form the
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basis of its application to the study of metabolic asymmetry. We first prove the
following general invariance lemma:

Lemma 1. Let φ be an isometry of Ω. Let Î be the LDDMM atlas of images
Ii, i = 1, . . . , N . Assuming the operator L in (1) is invariant to isometries, then
the LDDMM atlas of images I

′

i = Ii ◦ φ−1 is given by Î ′ = Î ◦ φ−1.

Proof. Since L is invariant to isometries, we have d(e, h) = d(e, φhφ−1). From
(2), using the change of variables gi = φhiφ

−1 and y = φ−1(x), we get

Atlas({I
′

i}) = argmin
gi,I

N∑

i=1

∫

Ω

(
I

′

i ◦ g−1
i − I

)2
dx + d(e, gi)2

= argmin
hi,I

N∑

i=1

∫

Ω

(
(Ii ◦ φ−1) ◦ (φh−1

i φ−1) − I
)2

dx + d(e, φhiφ
−1)2

= argmin
hi,I

N∑

i=1

∫

Ω

(
Ii ◦ (h−1

i φ−1) − I
)2

dx + d(e, hi)2

= argmin
hi,I

N∑

i=1

∫

Ω

(
Ii ◦ h−1

i − I ◦ φ
)2

dy + d(e, hi)2

= Atlas({Ii}) ◦ φ−1.

��

Using the above lemma, we now prove the following two important symmetry
properties of the LDDMM atlas formation methodology, which will enable us to
study asymmetry in brain images.

Theorem 1. Let Hp be a reflection about the plane p, and let I2 = I1 ◦ Hp.
Then the unbiased diffeomorphic average, Î, of I1, I2 is symmetric about p, i.e.,
Î = Î ◦ Hp.

Proof. This follows directly from Lemma 1 and using the fact that Hp is idem-
potent. Since Hp is idempotent, we get the equality Atlas(I1, I2) = Atlas(I2 ◦
Hp, I1 ◦ Hp). Now using the fact that Hp is an isometry, we get the identity
Atlas(I2 ◦ Hp, I1 ◦ Hp) = Atlas(I2, I1) ◦ Hp. ��

Theorem 2. Let Hp be a reflection about the plane p. Given N symmetric im-
ages about the plane p, that is, Ii = Ii ◦Hp, i = 1, . . . , N , then the diffeomorphic
average, Î = Atlas({I1, . . . , IN}) is symmetric about p, i.e., Î = Î ◦ Hp.

Proof. This again directly follows from applying the Lemma 1. As each of the
images are symmetric about the plane p, Atlas({I1, . . . , IN}) = Atlas({I1 ◦
Hp, . . . , IN ◦ Hp}). Now by Lemma 1, we have Atlas({I1 ◦ Hp, . . . , IN ◦ Hp}) =
Atlas({I1, . . . , IN}) ◦ Hp, implying that Î = Î ◦ Hp. ��
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2.2 Quantifying Individual Structural Asymmetry

The application of the above theorems allows us to effectively employ the LD-
DMM atlas building technology to quantify structural asymmetry. We first build
a structurally symmetric image from an individual MRI and quantify structural
asymmetry as the deviation from this symmetric image. A symmetric structural
image also acts as an anatomical coordinate system in which metabolic asym-
metry can be quantified. Quantifying individual structural asymmetry involves
the following steps:

1. Estimating the Plane of Symmetry: Given a scalar 3D MR image, I1(x),
we begin by estimating the plane of symmetry, based on the approach de-
veloped in [8]. The method here uses the equivalent, but somewhat simpler,
computations over rigid transformations rather than affine. We define the
plane of symmetry as the plane about which a reflection of the image re-
sults in maximal similarity (least difference) with the original. If Hp denotes
reflection about the plane p, the plane of symmetry is defined formally as

p̂ = arg min
p

∫

Ω

‖I1(x) − I(Hp(x))‖2dx.

The symmetry plane is found by first reflecting the image I1 about the mid-
sagittal plane, p0, which forms the initialization, and then rigidly registering
the reflected image I1 ◦ Hp0 to the image I1 through iterative updates using
a gradient descent. If (R, v) is the resulting rotation and translation, then
the plane of symmetry, p̂, is given by rotating the midsagittal plane p0 by
half the amount, R1/2, and translating it by (1/2)R1/2v. This process is
illustrated in Figure 2.

2. Characterizing Structural Asymmetry: Let I2 = I1 ◦Hp̂ denote the im-
age I1 reflected about its plane of symmetry. The symmetric structural image
is defined as the unbiased average, Î = Atlas({I1, I2}). By Theorem 1 the
average image is guaranteed to be symmetric. Intuitively, Î is the symmetric
image that requires minimal deformation to both I1 and its reflection I2.
Figure 3 illustrates the construction of the symmetric structural image. The
magnitude of the diffeomorphism h1 captures the degree of structural asym-
metry, which is the minimal amount of deformation needed to symmetrize
the structural image.

2.3 Quantifying Individual Metabolic Asymmetry

Having quantified the structural asymmetry of a brain, we can study the metabolic
asymmetry modulo the structural asymmetry by transforming the PET data into
this symmetric image space. We begin by rigidly aligning the PET data to the
original MRI image, I1, using mutual information and a gradient descent algo-
rithm. A reflected version of the PET data is also aligned to the reflected MR
image, I2, in the same manner. This results in a PET image P1, aligned with the
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Fig. 2. Calculation of the structural
symmetry plane

Fig. 3. Illustration of the construction of
the symmetric structural image via dif-
feomorphic averaging

structural image, I1, and a reflected PET image P2, aligned with the reflected
MR image, I2. The PET images P1 and P2 are then mapped into the symmetric
structural image space by applying the mappings h1 and h2, respectively. The
resulting images, P̂1 = P1 ◦h1 and P̂2 = P2 ◦h2, are now in the same structurally
symmetric image space and can be directly compared. Given a point x in the
structurally symmetric image space, the PET response at this point is given by
P1(h1(x)). The PET response at the corresponding point on the opposite hemi-
sphere of the brain is given by P2(h2(x)). Therefore, metabolic asymmetry may
be now quantified via the difference image, Pasym(x) = (P1(h1(x))−P2(h2(x))).

Because we have removed any variations in the PET signal due to structural
asymmetry,Pasym measures onlymetabolic asymmetry, i.e., the differences in PET
response between corresponding structures in the left and right hemisphere. Shown
in Figure 4(d) is the result of applying this procedure to a representative data set.

2.4 Statistical Quantification of Metabolic Asymmetry

To study normative cross-sectional asymmetry we build an aggregate symmet-
ric structural atlas from the individual symmetric structural images. Given a
collection of symmetric structural images {Îi}, computed as described above,
symmetric structural atlas is built from this collection as the unbiased diffeo-
morphic average of these images. By Theorem 2 the resulting atlas image is also
symmetric about the yz-plane.

Shown in Figure 5(a) are the symmetric structural images associated with
four of the 10 normal subjects that were used to build a normative symmetric
atlas. Figure 5(b) shows the resulting symmetric atlas.
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(a) (b)

(c) (d)

Fig. 4. a) Axial slice of original MR image and the associated PET image. b) The
symmetric structural image constructed using unbiased diffeomorphic averaging and
the associated PET image transformed. c) Difference in the PET image and its reflec-
tion about the structural plane of symmetry. d) Metabolic asymmetry image modulo
structural asymmetry, i.e., difference in the PET image and its reflection after map-
ping to the symmetric structural image space. Notice the reduction in the asymmetry
signal due to removal of the structural asymmetry from the PET image. (See electronic
version for color images.)

The symmetric structural atlas for a group serves as a coordinate system for
quantifying the metabolic asymmetry of that group. Each individual’s metabolic
asymmetry image, Pasym, is mapped into the symmetric structural atlas using
the structural diffeomorphism that maps that subject’s symmetric structural
image to the atlas. In this way the asymmetry of every individual in the group
is represented in a common reference frame.

3 Results

We now present results from a pilot study of quantifying metabolic asymmetry
from 10 normal subjects from the ADNI database. For each of the subjects we
begin with co-registered PET and the MRI scans rigidly aligned to the AC-
PC coordinate system. Following methods outlined above, for each subject a
structural symmetric image was constructed. Shown in Figure 5(a) are examples
of four such structurally symmetric images. A symmetric structural atlas from
these 10 structurally symmetric images was also constructed and is shown in
Figure 5(b). Using the transformation computed during the atlas construction
process, all the PET images were transformed into this coordinate system for
quantifying the metabolic asymmetry of the group modulo structure. Shown in
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(a) (b)

Fig. 5. (a) Axial slices through four of the individual structurally symmetric images
that were used to build the symmetric atlas, shown in (b)

(a) (b)

Fig. 6. Shown in (a) are the mean and standard deviation of 10 normal PET images
transformed into the symmetric structural atlas coordinate system. Shown in (b) are
the mean and standard deviation of original 10 normal PET images rigidly registered
to the AC-PC coordinate system.
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Fig. 7. The mean and standard deviation of the metabolic asymmetry of the 10 normal
subjects transformed to the symmetric structural atlas coordinate system

(a) (b)

(c)

Fig. 8. Shown in (a) are original MRI scan (top) and the associated structurally sym-
metric image (bottom) of a subject with AD. Shown in (b) top is the subjects PET scan.
Shown in the (b) bottom is the metabolic asymmetry image mapped in to the atlas
space. Shown in (c) is the image of the statistical significance of metabolic asymmetry
as compared to the normative atlas.

Figure 6(a) are the means and the standard deviation of the PET images of
the 10 normal subjects transformed to the symmetric structural atlas coordi-
nate system. For comparison, shown in Figure 6(b) are the mean and standard
deviations of original 10 PET images rigidly registered to the AC-PC coordinate
system. Notice the reduction in variance accomplished by the atlas construction
process.

For studying asymmetry across the population, each individual metabolic
asymmetry image was also transformed to atlas space using the corresponding
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structural transformation. Shown in Figure 7 are the mean and the standard de-
viations of the difference images statistically capturing the metabolic asymmetry
of the normal population.

Having constructed a statistical description of normative metabolic asymme-
try modulo structure, we now present results of quantifying an individual AD
patient’s asymmetry. Shown in top row of Figure 8 are MRI and associated PET
scans of an AD patient as part of the ADNI study. After close inspection of the
PET image, subtle asymmetries in the metabolism of the subject can be noticed.
The left hemisphere appears to be hypometabolic as compared to the right. We
now statistically quantify this observation. To quantify metabolic asymmetry
modulo structure of the subject, a structurally symmetric image of the subject
was constructed. Shown in Figure 8(a bottom) is the structurally symmetric
MRI image of the patient. To statistical quantify the asymmetry as compared to
the normal population, the individual structural symmetric image was mapped
to the normative atlas. Shown in panel (b) bottom is the metabolic asymme-
try in the structurally symmetric atlas space. Using the mean and the standard
deviation of the metabolic asymmetry of the normal population, a voxel-wise z-
score was computed. Shown in right panel of Figure 8 are the significant z-scores
(abs(z) > 2.0) for the subject. The asymmetric metabolic areas can be clearly
identified.

4 Discussion

In this paper we present a new framework for the statistical quantification of
metabolic asymmetry modulo inter-hemispheric structural differences. Although
the results presented herein are from a pilot study consisting of only 10 normative
subjects, the ADNI initiative aims to longitudinally follow 800 subjects, 200
patients diagnosed with AD, 400 with MCI, and 200 normal controls. As the
ADNI data becomes available, we plan to execute a large scale study on the entire
ADNI database and correlate the degree of metabolic asymmetry of patients
diagnosed with AD to clinical symptoms and hope to gain new insights into
the disease mechanisms that could be exploited to develop novel approaches to
diagnosis and treatment.
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Abstract. A new method is introduced for estimating single-trial
magneto- or electro-encephalography (M/EEG), based on a non-linear fit
of time-frequency atoms. The method can be applied for transient activ-
ity (e.g. event-related potentials) as well as for oscillatory activity (e.g.
gamma bursts), and for both evoked or induced activity. In order to ben-
efit from all the structure present in the data, the method accounts for
(i) spatial structure of the data via multivariate decomposition, (ii) time-
frequency structure via atomic decomposition and (iii) reproducibility
across trials via a constraint on parameter dispersion. Moreover, a novel
iterative method is introduced for estimating the initial time-frequency
atoms used in the non-linear fit. Numerical experiments show that the
method is robust to low signal-to-noise conditions, and that the intro-
duction of the constraint on parameter dispersion significantly improves
the quality of the fit.

1 Introduction

A classical method for analyzing brain electric and magnetic waves in humans
consists in averaging many EEG or MEG trials, obtained in similar conditions,
in order to improve the signal to noise ratio (SNR).

When the waves are sufficiently time-locked with respect to the reference time
(usually the time of stimulation), the average can be performed directly in the
time-domain (“event-related potentials”, ERPs, in EEG and “event-related
fields”, ERFs, in MEG). For activity with higher time dispersion with respect to
one wave period, the resulting variation of phase across trials can cause the waves
to cancel out in the average signal. This is particularly relevant for high-frequency
activity (above 20 Hz), where a small time delay can cause a large phase differ-
ence. This cancellation can be circumvented by averaging the power of the signal
in the time-frequency or time-scale plane. Several methods have been introduced
for evaluating the average increase of energy in given frequency band, whether
time-locked (“evoked” energy) or not (“induced” energy) (e.g. [1]).

For both ERPs and oscillations, the averaging procedure relies on the assump-
tion of similarity of the activity of interest across trials. However, there is often
significant variability in shape and latency from one trial to another, even when
measuring responses to repetitions of the exact same stimulus. This variabil-
ity can arise from habituation effects, fluctuations in the level of attention and
arousal, or different response strategies.

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 458–469, 2007.
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Inter-trial variations are problematic when averaging. In particular, fluctu-
ations in latency result in a blurring of the average signal, producing a false
impression of events lasting longer than their actual duration. Moreover, com-
paring the amplitude of averages between conditions (for example, response to
rare events versus response to frequent events), as done routinely in event-related
potentials, does not permit to distinguish between an actual amplitude effect
across conditions or a higher dispersion in latencies within one condition.

Nevertheless, variability can also be a source of information. For example,
Jung and colleagues have demonstrated different trial-to-trial behaviors of event-
related waves measured on ICA components, some being phased-locked to the
stimulus and others to the subjects’ responses [2]. Recently, studies have demon-
strated correlations between the fluctuations of energy in the gamma band and
the phase of theta oscillations, indicating an interaction between activities at
different frequencies [3]. Variability between trials can also be used to mea-
sure relations between brain regions, or relations between different modalities
recorded simultaneously, such as EEG and functional MRI [4].

Many different classes of methods have been introduced for detecting trial-to-
trial variations in event-related potentials (ERPs) or event-related fields (ERFs).
These include spline models, autoregressive models, template matching, neural
networks and other multivariate classification methods, Bayesian analysis, non-
linear analysis.

A promising class of methods is based on time-scale (i.e. wavelet) analysis
and on time-frequency analysis. These methods permit to adapt the analyzing
functions to the signals of interest, based on prior shape information. Quian
Quiroga and colleagues have proposed to estimate single-trial ERPs by building
fixed wavelet filters based on the average signal [5]. Estimating the wavelet fil-
ters from the average signal is subject to the difficulties mentioned above, i.e.
that the average may not be fully representative of the single trials. The wavelet
basis used is orthogonal, which allows fast decomposition and reconstruction of
filtered signals, but is not translation-invariant and therefore ill-suited to repre-
sent latency jitters. Finally, the inter-trial fluctuations in latency or scale may
necessitate the selection of a large number of coefficients in the time-scale plane,
independently of the trial under consideration, which can be sensitive to noise.
Some of these drawbacks have been addressed by Benkherrat and colleagues [6],
who consider the average energy of the wavelet transforms of single trials instead
of the transform of the average, and by [7] who use translation-invariant wavelet
transforms. Statistical issues in the detection of activity have been studied in
the work of Durka and colleagues, who use the matching pursuit approach and
bootstrap resampling [8].

Up to now, most effort in single-trial analysis has been directed to slow-varying
ERPs (in the range of 1-20Hz). Less attention has been given to the estimation of
single-trial oscillatory activity, for example gamma activity around 40 Hz. Such
oscillatory activity has been hypothesized to play a major role in the communi-
cation between different brain areas, for example in feature binding or matching
stimuli to a target stored in memory (reviews in [9], [10]).
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Another important aspect is the use of the full range of structure contained
in the data, i.e. not only according to its the temporal structure, but also to its
spatial structure (obtained directly across sensors or via estimated brain sources)
[11], [2] and its time-frequency signature.

The new method presented here is designed to track fluctuations in brain elec-
tromagnetic activity, for any given set of frequency bands. Our method has sev-
eral original features. First, we introduce a methodology for defining a reference
set of Gabor time-frequency atoms, or ”template”, that is capable of modelling
both low frequency event-related potentials and high frequency oscillations. Sec-
ond, the template is deformed across trials with nonlinear optimization, which
permits to follow accurately the fluctuations of the actual signal and obtain a
sparse final representation of the data. Third, the deformations for each trial
are constrained using information arising from all the trials, which increases the
robustness of the fit even for low SNRs.

Our method is closely related to Bayesian modelling, and can be in fact seen
as a Maximum a Posteriori (MAP) approach, but we are concentrating here on
the nonlinear minimization aspect. Our model could be be extended in order
to incorporate richer a priori information, or trial-to-trial variations in spatial
patterns (i.e., topographies) of the signals.

The principles of the method and the mathematical framework are introduced
first, followed by a description of the validation procedure and its results.

2 General Principles and Mathematical Framework

2.1 Decomposition into Realizations of Deformable Templates

We suppose that the signal contains classes of EEG or MEG activity that have
a similar spatio-temporal structure. Such a structure will be approximated by
a parametric template with parameters par. The signal S(t, θ), as a function of
time t and spatial position θ, is modelled as the sum of a model signal Ŝ and a
noise term:

S(t, θ) = Ŝ(t, θ|par) + E(t, θ) . (1)

The model signal Ŝ is in turn composed of K repetitions (or trials) of N para-
metric templates

Ŝ(t, θ|par) =
N∑

n=1

K∑

k=1

βn,kTn(t − tn,k, θ − θn,k|par) . (2)

In the above model, inter-trial variability is apparent in the form of a spatio-
temporal shift by (tn,k, θn,k), and an amplitude modulation by βn,k. Additional
sources of inter-trial variability can be incorporated in the additional parameters
par. The expected value of the noise E(t, θ) is assumed to be zero.

We further assume that a given template Tn, n ∈ {1...N}, can be decom-
posed as the product of a temporal pattern An and a spatial pattern (or topog-
raphy) Mn (see Section 3.1 for more details).
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Tn(t, θ) = An(t)Mn(θ) . (3)

In the sequel, a simplified version of this model will be used, with N = 1, i.e.
only one template, making the template index n no longer necessary. Moreover,
the topography will be assumed stable across trials (θk = 0), simplifying the
model to

Ŝ(t, θ|par) =
K∑

k=1

βkA(t − tk|par)M(θ) . (4)

2.2 Time-Frequency Analysis

As we are interested in modelling signals across a wide range of frequencies
(e.g., event-related potentials or induced oscillations), we propose to use time-
frequency descriptors. With this in view, the Gabor atoms offer the best trade-off
between time and frequency compactness. The temporal template is modeled as
the linear combination of P Gabor atoms, in the real domain:

A(t) =
P∑

p=1

βk,pe
− 1

2σ2
k,p

(t−dk,p)2

cos(ωk,p(t − dk,p)). (5)

The number of atoms P is fixed (see section 3.1); the template temporal shift
dk,p is equal to the onset of the stimulation (i.e. the initial time for each trial).
The trial-specific parameters to be estimated are, for each atom, its latency,
amplitude, width and modulating frequency: par = {dk,p, βk,p, σk,p, ωk,p}.

The present study aims to model evoked potentials, hence the ratio between
the width and the frequency is kept fixed (similar to Morlet wavelets). For bursts
of oscillation, this constraint can be relaxed, in order to also adapt the number
of oscillations to each trial.

2.3 Cost Function

The model defined by (1), (4) and (5) can be fitted to the data by the non-linear
minimization of a cost function C(par) composed of two parts. The first part
C1(par) maximizes the fit to the data. The second part C2(par) minimizes the
dispersion of the parameters around their mean and avoids over-fitting the noise.
This can be formulated as:

C1(par) =
∑

t

[
S(t) − Ŝ(t|par)

]2
, C2(par) =

∑

k,j,p

[
parp

j,k − parp
j

std(parp
j )

]2

, (6)

with : t index of time samples, j index on parameters, p index on time-frequency
atoms; parp

j and std(parp
j ) the sought values for the parameter mean and stan-

dard deviation across trials, respectively.
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The complete cost function is

C(par) = C1(par)/var(E) + λC2(par) , (7)

where var(E) is the variance of the background noise, and λ a regularization
hyperparameter which balances the dispersion constraint.

The minimization is performed using the Levenberg-Marquardt algorithm,
which is suited for minimizing cost functions consisting of sum of squares. We
use the implementation provided in the immoptibox toolbox1 [12]. In a first step,
some quantities need to be estimated:

– the projection of the spatio-temporal dataS(t, θ) into a single time-topography
template,

– the initial values of the parameters parinit = {βk,p, σk,p, dk,p, ωk,p}init,
– the hyperparameters λ, var(E), parp

j and std(parp
j ).

The next section presents strategies for estimating the time-topography signal
projection, the hyperparameters and the initial values of the parameters.

3 Initialization of the Parameters

3.1 Time-Topography Decomposition

Many methods are available for decomposing spatio-temporal data (sensors ×
time) into fixed spatial topographies and corresponding time courses, as in (3).
Examples of such methods include dipolar source localization with fixed dipoles,
principal component analysis (PCA), independent component analysis (ICA),
and PARAFAC (e.g. when including the frequency dimension). Such decompo-
sitions rely on the assumptions that (i) the spatial and temporal aspects of the
activity of interest are independent of one another within a trial and (ii) that
there is no spatial variability from one trial to the other. Albeit these are strong
assumptions, they have however proven useful in a variety of situations. More-
over, they can be seen as a way of initializing spatially adaptive models such
as (2).

The Singular Value Decomposition allows to project the data into a lower
dimensional space that is tractable. In particular, if the data can be assumed to
originate from a single source, the SVD allows to recover its spatial topography
on the sensors. In a more realistic situation with several sources, the SVD can
be performed as a dimension reduction preprocessing, prior to ICA. In order to
select automatically the component that captures the temporal activity of the
source, we assess the reproducibility of the component across trials. A score for
each component is computed at each time point by dividing the mean energy by
the standard deviation of the component; we select the component with highest
score.
1 Available at www2.imm.dtu.dk/ hbn/immoptibox/, in the Matlab (Mathworks, Nat-

ick, MA, USA) environment.
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3.2 Initial Time-Frequency Atoms

The parameter initialization for the time-frequency atoms is performed via an iter-
ative wavelet analysis. For this, Morlet wavelets are introduced, which are Gabor
atoms with a fixed number of oscillations, defined in the frequency domain by:

Ψ ξ
s (ω) =

√
s

(4π)
1
4
e−

1
2 (sω−ξ)2 (8)

The shifting frequency ξ determines the number of oscillations of the wavelet over
its time-support. For a given shifting frequency ξ, the scale parameter s stretches
or compresses the wavelet, controlling simultaneously the time-support (propor-
tional to s) and the frequency (equal to ξ/(2πs)) at which the wavelet oscillates.
The optimal number of oscillations depends on the type of activity under exam-
ination, smaller for evoked potentials/fields and larger for oscillations. Therefore
a set of shifting frequencies is considered : ξ ∈ {1, 1.5, 3, 5, 9}.

An initial time-frequency decomposition W 0
k (t, ω) is obtained by projecting

each trial Sk(t) on a set of analyzing functions:

W 0
k (t, s, ξ) =

∫
Sk(t′)ψ

ξ

s(t − t′)dt′ . (9)

In the above relation, the time index t belongs to a time window [tk, tk + L]
containing the kth trial (tk defined in Section 2.2), and ψ denotes the complex
conjugate of ψ. The energy for each ξ is then averaged across trials

TF 0(t, s, ξ) =
1
K

∑

k

|W 0
k (t − tk, s, ξ)|2. (10)

The average energy TF 0(t, s, ξ) could be normalized by the average power
value in a baseline part of the window [1], [13]. One can also consider dividing
by the standard deviation of the noise power estimated at the point of inter-
est [6]. Such normalizations allow to be more robust to noise and to detect high-
frequency activity that is hidden in the original signal due to the 1/f behavior
of EEG and MEG.

The iterative parameter selection proceeds à la matching pursuit [14], itera-
tively subtracting from the single-trial data its projection on the atom ψξ0

s0 whose
parameters maximize the average energy:

(t0, s0, ξ0) = argmax(TF 0(t, s, ξ))

This leads to a new set of trials S1
k(t) on which the above-described proce-

dure can again be applied. The number of iterations P is determined by hand;
however, one could consider using a quantitative criterion, based for example on
the energy of the residuals after subtraction. The main difference with matching
pursuit resides in the use of the data over a collection of trials, thereby taking
advantage of the information arising from reproducibility across trials.
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3.3 Constraint on Parameters Dispersion

The hyperparameters parp
j and std(parp

j ) help to reduce the parameter disper-
sion across trials, in order to increase robustness to noise. We choose to estimate
these parameters from the data itself, in a first step that consists in minimizing
only the first part C1(par) of the cost function (6) (i.e., without the control of the
parameter dispersion). We make the assumption that the fit will be successful
for a majority of trials, failing only in a small proportion of outliers due to the
noise. The mean and standard deviation of each parameter are then estimated
with a robust MM-estimator [15].

3.4 Regularization Hyperparameters

The hyperparameters var(E) and λ appearing in (7) control the relative weights
given on the one hand to the quality of the fit (6), and on the other hand to the
constraint on dispersion C2 in (6).

The variance of the noise var(E) is estimated on the residuals after the first
fit (i.e., using only the first part of the cost function (6)), using robust estimators
as in 3.3.

The regularization parameter λ is estimated with the L-curve method. The
fit is performed using (7) for a series of λ ranging from 10−4 to 104, with a
higher sampling around λ = 1. The minimization procedure results in optimal
values Copt

1 and Copt
2 , for each λ. The L-curve method consists in finding the

inflection point in the curve Copt
2 (λ) = f(Copt

1 (λ)). This point is estimated as
the minimum of the cost function

c(λ) =
Copt

1 (λ)
std(Copt

1 )
+

Copt
2 (λ)

std(Copt
2 )

(11)

with std standard deviation across values of λ.

4 Methodology of Evaluation

First of all, simulations were performed to evaluate the robustness of the method
to different levels of noise, with a particular emphasis on the contribution of the
regularization term C2 in (6). Secondly, the method was applied to real data
originating from an oddball experiment [4].

4.1 Simulated Data

A series of 50 event-related potentials (ERPs) were computed, corresponding to a
central radial source within a sphere, with 83 electrodes (10/10 system), at a sam-
pling frequency of 1 kHz. The potentials consisted of a sum of Gaussian-shaped
waves (N100-like and P300-like) and of high frequency oscillations (range 38-
42 Hz) with a Gaussian envelope. The latency, amplitude, width and frequency
parameters of the waves and oscillations were pseudo-random numbers with a
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Fig. 1. Left column: Simulated data after spatial filtering, for a SNR of 0.5 (upper part)
and 100 (lower part) (the SNR corresponds to the data before filtering). Middle and
right column: time-frequency analysis used for the iterative definition of time-frequency
atoms, for p=1 (first atom) and p=2 (second atom). The maximum value indicated is
the maximum energy in the time-frequency plane with respect to the maximum energy
of the first iteration (i.e, first atom).

truncated distribution, with values lying three standard deviations around the
mean. The latency parameter was assigned a skewed distribution, similar to that
of realistic reaction times. See figure 1 for an overview of the simulated signals.

Stationary background noise was simulated, with spatial and temporal cor-
relations ressembling real EEG data. This noise was obtained by distributing
dipoles uniformly within a sphere, with a random amplitude following a nor-
mal distribution [16]. Each channel was then filtered and scaled with an auto-
regressive filter, whose parameters had been fitted on real EEG data. The re-
sulting correlated noise was added to the simulated ERPs, with a multiplica-
tive factor corresponding to different values of the signal-to-noise ratio: SNR
∈ {0, 0.1, 0.5, 1, 3, 5, 10, 100, 106}. The SNR was computed as the ratio of the
sums of squares across all channels. For the high frequency oscillations, the data
and noise were first filtered with a 35-45 Hz bandpass filter before computing
the scaling factor.

For each SNR, a singular value decomposition (SVD) was applied to the sim-
ulated data, and the time-course with the highest reproducibility across trials
was retained. Reproducibility was assessed by computing the average energy
across trials. The method was then applied on the time-course, across trials, as
described in the previous sections.
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Fig. 2. Left: original data for a SNR of 1. For display purposes, the data is sorted with
respect to the simulated latency of the second wave, an information that was not used
during the fit. Right: fitted atoms, with constraint on parameter dispersion.

4.2 Real Data

We used an EEG dataset recorded within the MRI scanner, from an simultaneous
EEG-fMRI oddball protocol presented in detail in [4]. In summary, the stimula-
tion consisted in pure tones, with low frequency tones presented frequently, and
high frequency tones presented rarely. The subject was asked to respond to the
rare tones by a button press. This protocol is known to provoke a stereotyped
positive response on the EEG around 300 ms, called P300.

5 Results

The data obtained after spatial filtering by SVD are presented in figure 1, along
with the iterative time-frequency decomposition, for a SNR of 100 and a SNR of
0.5. This demonstrates that the iterative decomposition is robust even for low
SNR. Figure 2 presents raster plots of the data across trials, for a SNR of 1, for
the raw data (left plot) and for the estimated atoms (right plot). For display
purposes, the data is sorted with respect to the simulated latency of the second
wave, an information that was not used during the fit. The algorithm was able to
recover the simulated waves. For each SNR, we have computed the correlation
at each trial between the fitted data on a SNR of 106 and the fitted data at
the SNR under consideration, with and without the constraint on parameter
dispersion (figure 3). Without the constraint on the parameters, the quality of
the fit deteriorates rapidly with decreasing SNR. The constraint allows the fit
to maintain a good quality up to a SNR of 0.5.

The outcome of the fit on real data (auditory oddball in simultaneous EEG-
fMRI) is presented in figure 4. The application of the proposed method results
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in a very significant denoising of this data, which had extremely low SNR due
to the simultaneous fMRI scanning.

6 Discussion

A new method has been presented for estimating single-trial EEG or MEG ac-
tivity, based on a non-linear fit. The method can be used for both transient (e.g.,
event-related potentials) and oscillatory (e.g., gamma bursts) activity, and for
both evoked or induced activity.

The method aims to use all the structure present in the data. First, it takes
advantage of the spatial structure via multivariate decomposition. Second, it uses
the time-frequency structure via atomic decomposition. Third, reproducibility
across trials is imposed via a constraint on parameter dispersion.

A novel method was introduced for estimating the initial time-frequency
atoms used in the non-linear fit, which runs in an iterative manner. This method
is similar to matching pursuit [14], with the originality of operating across trials.
We use Gabor atoms, which have good time-frequency properties, but it could be
interesting to learn the atom structure directly from the data. We also present a
novel non-linear minimization framework, contrary to previous approaches using
wavelet transforms [6], [7]. This leads to a more parcimonious (sparse) descrip-
tion of the data, in particular for large jitters in the parameters (for example
latency jitters), which could result in higher robustness to noise.

The same data was used to estimate the hyper-parameters (mean and stan-
dard deviation of the parameters, used in the dispersion constraint) and the
actual parameters of the time-frequency atoms. Such an approach must be per-
formed with caution, since estimating (the hyper-parameters) and detecting (the
parameters of the atoms) on the exact same dataset could lead to a bias of the
results. However the risk of bias is low in our case, as the parameters for only
one trial are being estimated, based on hyper-parameters estimated on all trials;
i.e. the influence of the trial under investigation on the definition of the hyper-
parameters is low. Moreover, the robust estimation of the hyper-parameters fur-
ther lowers the influence of a given trial: if the parameters of a trial are outliers,
they are not taken into account in the computation of the hyper-parameters,
and therefore do not influence the estimation.

As shown by the tests on simulated and real data, the proposed method
is robust to low signal-to-noise conditions. The introduction of a constraint
on parameter dispersion, estimated from the data itself, significantly improves
the quality of the fit. Future work will concentrate on the estimation of high-
frequency (gamma) activity and on taking into account the structure of the
noise.
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Abstract. We report on mathematical methods for the exploration of
spatiotemporal dynamics of Magneto- and Electro-Encephalography
(MEG / EEG) surface data and/or of the corresponding brain activ-
ity at the cortical level, with high temporal resolution. In this regard, we
describe how the framework and numerical computation of the optical
flow — a classical tool for motion analysis in computer vision — can be
extended to non-flat 2-dimensional surfaces such as the scalp and the
cortical mantle. We prove the concept and mathematical well-posedness
of such an extension through regularizing constraints on the estimated
velocity field, and discuss the quantitative evaluation of the optical flow.
The method is illustrated by simulations and analysis of brain image
sequences from a ball-catching paradigm.

1 Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) respec-
tively measure magnetic fields and electric potentials on the scalp surface, which
provides investigation of neural processes with exquisite time resolution within
the millisecond range. Estimation techniques of MEG/EEG generators have been
considerably improving recently [5], thereby making electromagnetic brain map-
ping become a true functional imaging modality. However, most studies report
on the classical brain mapping questions of ‘Where?’ and When?’ specific brain
processes have occurred, but rarely address ‘How?’ these latter might be embed-
ded in space and time altogether.

The theory of electrographic objects [18] was the first computational approach
with the objective of deciphering the ‘Rosetta Stone’ of brain language at the
macroscopic scale. The concept of spatiotemporal elements, that were assumed to
structurally sustain neural activity, was later reformulated by Lehmann in terms
of microstates as ‘building blocks of mentation’ [14]. This concept emerged from
empirical observations of the time-evolving topographies of scalp potential maps
in EEG, which could be described as the succession of episodes of relatively-
stable spatial configurations. Multiple techniques have been proposed to detect
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and characterize microstates and they have been applied in a great number
of paradigms, from cognitive to clinical experimental neuroscience (e.g. [22]).
However, they all refer to some static and geometrical analysis of EEG scalp
patterns — through PCA analysis of time segments [17], dissimilarity measures
on successive EEG topographies [24] — and have never been adapted to the
analysis of brain image sequences so far.

Our contribution suggests a new framework to investigate the spatiotemporal
dynamics of brain activations in terms of the estimation and analysis of their
displacement field.

We first prove in Section 2 the concept and work at the theoretical aspects
of the computation of optical flow on a 2-dimensional surface, through the gen-
eralization of existing variational formulations. In Section 3, we evaluate the
consistency of the estimates and run realistic numerical simulations. Finally, the
method is illustrated from experimental data in the context of a ball-catching
experimental investigation with MEG.

2 Velocity Field of Neural Activity

In multiple applications, analysis of dynamical phenomena through the compu-
tation of a velocity vector field has contributed to the description and extraction
of informational contents about the processes involved (see e.g. [7],[9]). Such
approaches have barely been suggested for the analysis of structured patterns
within brain signals and image sequences with high temporal resolution (e.g.
using MEG/EEG or optical imaging). In [13], estimation of velocity fields was
restricted to 2D images of narrow-band scalp EEG measures in the α range (i.e.
typically within [7, 14] Hz), with limited quantitative analysis.

Our approach to the computation of the velocity vector field descends from
optical flow techniques as introduced originally by Horn & Schunk [12]. These
techniques have been demonstrating efficiency in the analysis of video sequences
for about the last two decades (see e.g. [8, 15] which review a selection of com-
putational methods associated with sound performance evaluation). The com-
putation of vector flow is generally driven by basic assumptions which postulate
conservation of brightness of moving objects. These restrictive hypotheses may
not fit rigourously the exact nature of phenomena but have proven to yield com-
mensurate estimations of vector fields provided they are valid locally in time
and space [8]. The exquisite time-resolution of MEG/EEG images is generally
compatible with these assumptions, as brain responses unfold to a large extent
with substantial spatiotemporal smoothness.

In the context of brain imaging though, we are facing the issue of distributed
intensity variations in 3D. Detection can be restricted to the cortical surface
as a first approach, hence recent surface flattening tools could be applied [23]
prior to using classical 2D flow estimators. However, such a transform entails
multiple kinds of limitations: the required topological cuts in the closed surface
of the brain induce linking problems at boundaries; moreover, local distortions
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of angles and distances are problematic when it comes to estimate the local
orientation of the flow.

Here we introduce a formalism based on differential geometry to extend the
computation of optical flow equations on non-flat surfaces (see [10] for an intro-
duction), hence on the folded geometry of the brain.

2.1 Optical Flow on a Non-flat Domain

Let us define M, a 2-Riemannian manifold representing the imaging support (i.e.
the scalp or cortical surfaces), parameterized by the local coordinates system
φ : p ∈ M �→ (x1, x2) ∈ R

2 . We introduce a scalar quantity defined in time on a
2-dimensional surface — e.g. brain activity from scalp MEG/EEG topographies
or cortical activation maps — as a function I(p, t) ∈ M, where (p, t) ∈ M × R.
We note eα = ∂xαp := ∂αp, the canonical basis of the tangent space TpM at a
point p of the manifold, and TM =

⋃
p TpM the tangent bundle of M.

M is equipped with a Riemannian metric, meaning that at each point p of
manifold M, there exists a positive-definite form:

gp : TpM × TpM → R,

which is differentiable with respect to p. We later denote (gp)α,β = gp

(
eα, eβ

)
.

A natural choice for gp is the restriction of the Euclidian metric to TpM, which
we have adopted for subsequent computations. For concision purposes, we will
now only refer to gp as g.

As in classical computation approaches to optical flow, we now assume that
the activity of a point moving on a curve c(t) in M is constant along time. The
condition dI = 0 yields :

∂tI + Dc(t)I(ċ) = 0, (1)

where Dc(t)I is the differential of I at point c(t) applied to ċ = V = (V 1, V 2),
the unknown vector field. We express the linear application Dc(t)I as a scalar
product and introduce ∇MI, the gradient of I which is defined as the vector
field satisfying at each point p :

∀V ∈ TpM, g(∇MI,V) = DpI
(
V

)
.

(1) can thereby be transformed into an optical-flow type of equation:

∂tI + g(V, ∇MI) = 0. (2)

We note that (2) takes the same form as general conservation laws defined on
manifolds in [19]. Here, only the component of the flow V in the direction of the
gradient is accessible to estimation. This corresponds to the well-known aperture
problem [12], which requires additional constraints on the flow to yield a unique
solution. This approach classically reduces to minimizing an energy functional
such as in [12]:

E(V) =
∫

M

(
∂I

∂t
+ g(V, ∇MI)

)2

dμM + λ

∫

M
C(V)dμM, (3)
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where dμM is a volume form on M, for which we suggest
√

det(gα,β)dx1dx2 as
a natural choice.

The first term is a measure of fit of the optical flow model to the data, while
the second one acts as a spatial regularizer of the flow. The scalar parameter
λ tunes the respective contribution of these two terms in the net energy cost
E(V). Here we use the smoothness term from [12], which can be expressed as a
Frobenius norm:

C(V) = Tr(t∇V.∇V), (4)

where (
∇V

)β

α
= ∂αV β +

∑

γ

Γβ
αγV γ

is the covariant derivative of V, a generalization of vectorial gradient. ∂αV β is
the classical Euclidian expression of the gradient, and

∑
γ Γβ

αγV γ reflects local
deformations of the tangent space basis since the Christoffel symbols Γβ

αγ are
the coordinates of ∂βeα along eγ . This rather complex expression ensures the
tensoriality property of V, i.e. invariance with parametrization changes.

This constraint will tend to generate a regularized vector field with small
spatial derivatives, that is a field with weak local variations. Such a regularization
scheme may be problematic in situations where spatial discontinuities occur in
the image sequences. For example, in the case of a moving object on a static
background, the severe velocity discontinuities around the object contours are
eventually blurred in the regularized flow field. In the case of brain activations
revealed by MEG/EEG though, spatial patterns are naturally smooth thus we
adopt the basic Horn & Schunk regularization scheme (see [25] for a taxonomy
of other possible terms).

2.2 Variational Formulation

Variational formulation of 2D-optical flow equation has been first proposed by
Schnörr in [20]. The advantage of such formulation is twofold. Theoretically,
it ensures the problem is well-posed; that is there exists a unique solution in
a specific and convenient function space e.g. a Sobolev spacen [20], or a space
of functions with bounded variations [4]. Numerically, it allows to solve the
problem on discrete irregular surfacic tessellations and to yield discrete solutions
belonging to the chosen function space. We demonstrate these assertions in the
case of Horn & Schunk isotropic smoothness priors, but the general framework
remains the same for Nagel’s anisotropic image-driven regularization approach
[16].

Considering M, we need to define a working space of vector fields Γ 1(M) on
which functional E(V) will be minimized. Let us first denote the Sobolev space
H1(M) defined in [11] as the completion of C1(M) (the space of differentiable
functions on the manifold) with respect to ‖ . ‖H1 derived from the following
scalar product :

< u, v >H1=
∫

M
uv dμM +

∫

M
g(∇u, ∇v) dμM.
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We chose a space of vector fields in which the coordinates of each element are
located in a classical Sobolev space:

Γ 1(M) =
{
V : M → TM / V =

∑2
α=1 V αeα, V α ∈ H1(M)

}
,

with the scalar product :

< U,V >Γ 1(M)=
∫

M
g(U,V) dμM +

∫

M
Tr(t∇U∇V) dμM.

E(V) can be simplified from (3) as a combination of the following constant, linear
and bilinear forms :

K(t) =
∫

M

(
∂tI

)2dμM ,

f(U) = −
∫

M
g(U, ∇MI)∂tI dμM,

a(U,V) =
∫

M
g(U, ∇MI)g(V, ∇MI)dμM

︸ ︷︷ ︸
Fit to data

+λ

∫

M
Tr(t∇U∇V) dμM

︸ ︷︷ ︸
Regularizing term

.

Minimizing E(V) on Γ 1(M) is then equivalent to the following problem :

min
V∈Γ 1(M)

(
a(V,V) − 2f(V) + K(t)

)
. (5)

Lax-Milgram theorem ensures unicity of the solution with the following assump-
tions [3]:

1. a and f are continuous forms;
2. Γ 1(M) is complete, the bilinear form a(., .) is symmetric and coercive (el-

liptic), that is, there exists a constant C such that :

∀ V ∈ Γ 1(M), a(V,V) ≥ C ‖ V ‖2
Γ 1(M) .

Moreover, the solution V to (5) satisfies:

a(V,U) = f(U), ∀ U ∈ Γ 1(M). (6)

Continuity of f and a are straightforward. Completeness of Γ 1(M) is ensured
because any Cauchy sequence has components in H1(M) which are also Cauchy
sequences since ‖ . ‖H1 is bounded by ‖ . ‖Γ 1(M).

Proof of coercivity can be adapted — analogously to flat domains [20] —
thanks to isothermal coordinates. Indeed, the Korn–Lichtenstein theorem (1914)
allows to find a system of coordinates for which the two basis vectors of tangent
space are orthogonal. In this basis, calculus are similar to those in Euclidian case
by introducing a multiplicative coefficient equal to the norm of the basis vectors.

The coercivity and therefore well-posedness requires only a similar assumption
about linear independency of the two components of the gradient ∇MI.
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2.3 FEM Computation of the Optical Flow

Now that we have proven the well-posedness of the regularized optical flow prob-
lem on a manifold M, we derive computational methods from the variational
formulation, which are defined on a tessellation Mh which approximates the
manifold.

Let us consider the vector space of continuous piecewise affine vector fields
on Mh which belong to the tangent space at each node of the tessellation. A
convenient basis is:

wα,i = w(i)eα(i) for 1 ≤ i ≤ Card
(
Mh

)
, α ∈

{
1, 2

}
,

where w(i) stands for the continuous piecewise affine function which is 1 at node
i and 0 at all other triangle nodes, and eα(i) is a basis of tangent space at node i.

The variational formulation in (6) yields a classical linear system:

∀j ∀β ∈
{
1, 2

}
,

Card(Mh)∑

i=1

2∑

α=1

a(wα,i,wβ,j)Vα,i = f(wβ,j), (7)

where Vα,i are the components of the velocity field V in the basis wα,i. Note
that a(wα,i,wβ,j) and f(wβ,j) can be explicitly computed with first-order finite
elements by estimating the integrals on each triangle T of the tessellation and
summing the different contributions.

Practically, ∇MI is obtained on each triangle T = [i, j, k] from the linear
interpolation:

∇MI ∼ I(i)∇T w(i) + I(j)∇T w(j) + I(k)∇T w(k).,

with

∇T w(i) =
hi

‖ hi ‖2 ,

where hi is the height of triangle T from vertex i.
Let us define Pn(i) as the projection operator onto the local tangent plane,

which is obtained at node i by estimating the local normal n as the sum of
normals of each triangle containing i. For each i, eα(i) is chosen as a basis of
the kernel of Pn(i). The Christoffel symbols Γk

ij vanish in our discretization with
first-order finite elements since the eα(i) have no variations on each triangle.

3 Simulations

We address the quantitative and qualitative evaluation of optical flow with simple
and illustrative simulations on a selection of surfaces.
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3.1 Angular Error Estimation Via Parallel Transport

Most of optical flow techniques are evaluated with quantitative comparison be-
tween the true velocity field V and the estimated optical flow V̂. This criterion
can be reduced as the evaluation of an angular error (AE) between two vectors,
taking into account their relative amplitude.

We introduce ||.|| =
√

g(., .) + 1 and adapt the angular error estimate origi-
nally introduced in [6]:

AE(V, V̂) = arccos

(
g(V, V̂) + 1
||V||.||V̂||

)
.

Nevertheless, there remains the nontrivial issue of defining a velocity field
on a manifold. During the uniform translation of a uniformly-colored patch for
instance, the velocity vectors of moving points are not parallel in the Euclidian
sense anymore. Hence we extend the definition of parallelism via the notion of
parallel transport.

Let us consider the centroid G of a translating illuminated patch with given
velocity VG. In order to calculate the velocity at any point A of the patch, we
transport VG along γ, a geodesic curve joining G to A (γ(0) = G, γ(1) = A).
Practically we have to solve the differential equation :

∇γ̇(u)Y(u) = 0,

with
∇γ̇(u)Y(u) =

∑

i

γ̇(t)i
(
∇Y

)j

i
, Y(0) = VG.

The velocity at point A is obtained taking Y(1).
In the case of spherical geometry, the parallel transport along a geodesic

reduces to a simple rotation whose axis is orthogonal to the plane containing
the geodesic1 (Fig. 1). The implementation of general parallel transport has not
been addressed since it reaches far beyond the scope of this study.

The angular error provides a simple evaluation index as well as a quantitative
criterion to adjust the regularizing parameter λ in (3), which was fixed to λ = 0.1
in the rest of the study.

3.2 Results on Synthetic Data

Two types of synthetic data were created. They approximate typical situations
encountered when dealing with EEG or MEG images evolving on the surface of
the head or on the cortical surface.

The first set of simulations illustrates the emergence and fading of activity
within on a single region of the brain (see Fig. 2). Even if this situation infringes
the hypothesis of intensity conservation across time 1, the radial structure of

1 Note the parallel transport cannot be defined for diametrally-opposite points.
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Fig. 1. Evaluation of computation of the vector flow: a patch with Gaussian distribu-
tion of intensity travels on a sphere. The outcome of the optical flow computation is
shown in green and compared with the true velocity field in red at two time instants.
Mean angular error AE is given in degrees.

optical flow gives an indication about how the system is evolving, spreading
then collapsing.

The second kind of synthetic data simulates propagations of activity across
distant brain regions. Fig. 1 shows the translation of a Gaussian patch of activity
and compares the true displacement field with its optical-flow estimation. At each
step of time, we indicate the mean angular error as defined in Section 3.1 for
each point of the patch. A similar type of unfolding patterns of activation is
shown Fig. 3 on real brain surface geometry. An approximation of a Gaussian
patch propagates from a rather flat domain of the cortical manifold and travels
down into a sulcal fold. We represent the velocity of the patch centroid and
the mean optical flow projected on a plane containing the true displacement.
We speculate the irregular angular error could be improved with the method
exposed in Section 3.1.

4 Application to the Investigation of Spatiotemporal
Dynamics of MEG Signals

4.1 The Electromagnetic Brain Imaging Problem

Magneto and electroencephalography stem from similar physical principles since
they are directly related to the electromagnetical activity of neurons. Magnetic
fields (and similarly electric potentials) are sampled on s sensors, M1, . . . , Ms,
as a linear combination of p sources signals S1, . . . , Sp which can be written as
M = AS, where A is the gain matrix from the forward model.
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Fig. 2. Simulating local emergence and waning of brain activity with resulting flow.
Top row illustrates the progressive emergence followed by fading of a 33 cm2 region in
the posterior medio-temporal brain area. The entire process unfolds within 100 time
samples. Bottom row displays the corresponding distributions of vector flow; initially
diverging from (left) then converging to (right) the center of the activation zone.

Fig. 3. Simulation of brain activation propagating at the surface of the cortex. Top row,
from left to right: displacement field of an activation patch is translating along a prede-
fined path during 100 steps of time. Bottom row: the mean vector field and true displace-
ment are shown in green and blue, respectively, with indication of instantaneous angular
error. For clarity purposes, only one brain hemisphere is shown within the scalp surface.
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Fig. 4. MEG Activities in the catch (top) and no-catch (middle) experimental condi-
tions. The corresponding velocity field in the catch condition is shown in green (bot-
tom). The shrinking of activities specific to the catch condition is clearly elucidated by
the convergent structure of the flow.

Electromagnetic brain mapping consists of the estimation of MEG/EEG
sources S from scalp measures M . However, this inverse problem is underdeter-
mined since there are far more possible cortical sources than sensors. s is typically
on the order of a few hundreds while p amounts to about 10000 elemental sources
constrained onto the surface of the cortical manifold, which was extracted from
MRI image sequences [1]. Inversemodelling can therefore be approached as inmany
other image reconstruction applications, i.e. though the introduction of priors in
addition to data. Here we used a weighted-minimum norm estimate (WMNE) of
source amplitudes and its implementation in the BrainStorm software [2].

4.2 Evaluation on Experimental Data

We applied optical flow computation to magnetic evoked-fields in a ball-catching
paradigm [21]. The subjects had to catch a free-falling tennis ball which fall was
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initiated at time t = 0 ms. The second experimental condition (‘NoCatch’)
consisted for the subject in only looking at the ball falling without catching it.

Fig. 4 shows a rapid decrease of cerebellar activity around 40 ms after the ball
hits the subject’s hand (371 ± 7 ms). We can notice the convergent and radial
structure of the flow. This phenomenon was not found in the NoCatch condition
where no motor program was required at the time of ball-impact.

5 Conclusion

This article introduced an extension of computational approaches to optical flow
on non-flat domains. The framework of Riemannian geometry allows to adapt a
variational formulation for this ill-posed problem and to derive evaluation tools.
We suggest new applications of the quantization of the displacement field to
spatiotemporal data in MEG and EEG and to the question of neural informa-
tion directionality. Results from simulations indicate the flow has satisfactory
behavior in terms of spatial structure and angular errors for the application
in question. Encouraging preliminary results have been presented from real ex-
perimental data. Ongoing developments consist in relating measures from this
computational approach to their physiological origins. Particularly we intend to
use these new indices for data mining and visualization, which could offer local
and global descriptors of the brain dynamic.
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Abstract. Inferring the position of functionally active regions from a
multi-subject fMRI dataset involves the comparison of the individual
data and the inference of a common activity model. While voxel-based
analyzes, e.g. Random Effect statistics, are widely used, they do not
model each individual activation pattern. Here, we develop a new pro-
cedure that extracts structures individually and compares them at the
group level. For inference about spatial locations of interest, a Dirichlet
Process Mixture Model is used. Finally, inter-subject correspondences
are computed with Bayesian Network models. We show the power of
the technique on both simulated and real datasets and compare it with
standard inference techniques.

1 Introduction

Functional neuroimaging aims at finding brain regions specifically involved in the
performance of cognitive tasks. In particular, functional MRI (fMRI) is based
on the detection of task-related Blood Oxygen-Level Dependent (BOLD) ef-
fect in the brain. Inference about putative regions of activity is generally based
on several subjects (∼10-15 subjects typically), and the current standard pro-
cedure consists in detecting voxels for which the average task-related BOLD
signal increase is significant across subjects (Random/Mixed Effects analyzes,
R/MFX)[2]. Such voxel-based inference schemes require the images to be warped
to a common space, which is usually performed by coregistration of the anatom-
ical, then functional data with a template image [1], generally the average T1
image provided by the Montreal Neurological Institute (MNI).

Traditional voxel-based inference suffers from several shortcomings. On the
one hand, BOLD signal is not a quantitative measure of brain activity, i.e. the
measured signals are uncalibrated, and it is unclear how signals acquired across
subjects should be scaled. On the other hand, a given voxel does not neces-
sarily represent the same anatomical and/or functional areas across subjects;
mis-registrations remain after spatial normalization of the datasets. The magni-
tude of such local shifts is probably as far as 10 mm in many brain regions (this

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 482–494, 2007.
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can be observed for regions like the the motor cortex or the visual areas [15,14] or
the position of anatomical landmarks [3,6,8]). Inference is also hampered by the
small number of subjects, and by unrealistic hypotheses used in some statistical
models (e.g. modelling the data as a smooth random field [18]).

To deal with these issues, it has been proposed [4,5,15,17,7] to perform group
analysis at a higher level than mere voxel-based BOLD signal. These structural
approaches are motivated by several reasons: first, regional units might better
represent functional brain modules than voxels ; second high-level models may
be less sensitive to mis-registrations than voxel-based approaches ; third, one can
assess the significance of a region by testing other features than the positivity
of the average cross-subject signal. However, such approaches have to address a
number of challenges:

– The first one is to find adequate descriptors of the individual data/structures
of interest. Importantly, there is no consensus on this point. Scale-space
blobs [4], large supra-threshold clusters [5,13], local maxima of the functional
maps [16], anatomo-functional parcellations [15], watersheds [17] have been
proposed. In this work we propose a perhaps more intuitive approach : we
describe the maps through their blobs, i.e. the connected regions comprised
between their critical points.

– Any description procedure will unavoidably yield false detections. In order to
separate structures of interest from noise, it is essential to have some validity
index about the selected structures. This point has certainly been neglected
in previous contributions, and we address it more thoroughly in this work,
where we associate the structurally defined ROIs with confidence levels.

– Structures of interest extracted at the subject-level should be compared
across subjects. This is conceptually the most important part, since it con-
sists in finding cross-subjects homologies at a high level of description. In
this work, we improve the approach of [17] by using Bayesian Networks.

– Finally, one needs to have some ways to perform group inference, i.e. to
make clear statements about brain regions involved in the task under con-
sideration, with an explicit specificity control. This is not simple in high-level
settings, since assessing the significance of a structure of interest across sub-
jects is much more complex than testing the sign of an effect or the size of
a region, using e.g. permutation techniques [5,9]. In this work, we rely on a
Bayesian perspective : we assign to each region in each subject a posterior
probability of being truly activated given its signal and position.

In the present work, we address the aforementioned issues in a sequential fash-
ion, resulting in a pipeline of data processing. The different steps are described
in Section 2, and some experiments on synthetic and real benchmark datasets
in Section 3. In particular we illustrate the improvement in terms of sensitiv-
ity and reliability of fMRI group analyzes. Reliability is assessed by Jackknife
subsampling in a population of 130 subjects, and we show that the results of
the proposed method are less dependent on the particular subgroup of subjects
under study than standard voxel-based tests. Technical issues and implications
for neuroimaging studies are discussed in Section 4.
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2 Materials and Methods

2.1 Notations

Let us assume that a group of S subjects take part in an fMRI acquisition
protocol while they undergo a certain cognitive experiment. After some standard
pre-processing (distortion correction, correction of differences in slice timing,
motion correction, normalization), the dataset of each subject is analyzed in
the General Linear Model (GLM) framework: Let c be a linear combination of
the experimental conditions (termed a functional contrast) that is of particular
interest. A certain statistic φs can be computed in each subject s ∈ {1, .., S} to
assess the presence of a positive effect in each voxel of the dataset. (v → φs(v))
is called a functional map, and is the basic input of our group analysis method,
whose main steps are described in Fig. 1.

2.2 High-Level Descriptions of Individual Maps

The φs images are subject to a structural and a probabilistic analysis procedure.

Structural modelling. The structural model considers the critical points, i.e.
the maxima, minima and saddle points of φs. ROIs are defined as blobs, i.e.
sets of connected voxels that are comprised between two critical points. Let
(as

j)j=1..I(s)
be the corresponding regions for subject s. The smallest ROIs (less

than e.g. 5 voxels) are merged into the region that includes them. This set of
regions is naturally endowed with a tree structure, which describes the inclusion
relationships between regions. The regions that correspond to maxima of the
map are the leaves of the tree, while the saddle regions are branches. Each root
of the tree corresponds to a connected supra-threshold region in the image. This
graphical structure is used in order to define inter-subject correspondences (see
Sec. 2.4). For each region as

j , let (tsj) be the spatial coordinates of the center of
the areas in the subtree rooted in as

j . Only the regions above some threshold θ
are considered. This is necessary, since low (close to 0) level sets of the maps are
likely to represent noise only, thus having a non-informative structure. However,
it is desirable to mitigate the impact of the hard threshold θ by endowing the
regions with a significance value that represents the signal level in the ROI.

Probabilistic modelling. In order to obtain intra-subject estimates of the re-
gions significance, the images φs are subject to mixture modeling (MM) with a
Gamma-Gaussian MM, where the Gaussian mode represents the inactive mode,
while the positive and negative Gamma modes represent positively and neg-
atively activated voxels of the dataset. This model endows each voxel with a
likelihood under the positive, null and negative hypotheses (which we denote
H1, H0 and H−1), p(φs(v)|Hi), for i ∈ {−1, 0, 1}, and with the corresponding
posterior. The Gamma-Gaussian MM is estimated using an EM algorithm.



High Level Group Analysis of FMRI Data 485

(a) (b)

(c) (d)

Fig. 1. Description of our method for structural analysis of group data. (a) Flowchart
that represents the main steps of the method: intra-subject structural and statistical
modeling, inter-subject spatial modeling, computation of correspondence probabilities
and creation of region cliques. (b) The first step consists in a structural modeling, which
finds the critical points of the functional image, and segments the blobs separated by
the critical points. The smallest regions are merged into their parent regions. (c) In
parallel, each dataset is subject to mixture modeling, in order to characterize the
positively/negatively or non-activated regions of the dataset, given the values of each
map φs. (d) The spatial model, a Dirichlet Process Mixture Model, defines the regions
where the most reliable maxima are found across subjects, and validates the individual
regions with high probability of being a true positive.
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Putting things together. The voxel-based posterior probability of (Hi), i ∈
{0, 1}1 is pulled to the region level so that p(H1(as

j)|φs) = minv∈as
j
p(H1|φs(v)).

2.3 A Dirichlet Process Model for Spatial Data

The next step consists in validating the ROIs at the group level; the idea is to
retain only spatially clustered regions, i.e. to improve the p-values p(Hi(as

j)), i ∈
{0, 1} based on spatial information. Formally, this analysis is performed in a
Bayesian setting:

p(Hi(as
j)|tsj , φs) =

p(tsj |Hi(as
j), φ

s)p(Hi(as
j)|φs)

p(tsj |φs)
(1)

where p(tsj |φs) =
∑

i p(tsj |Hi(as
j), φ

s)p(Hi(as
j)|φs). Moreover, we further assume

the conditional independence of the positions of ROIs and of their significance
given a certain hypothesis on these ROIs p(tsj |Hi(as

j), φ
s) = p(tsj |Hi(as

j)). In
order to estimate the spatial densities p(tsj |Hi(as

j)) we rely on two models:

– under H0, the selected ROIs are distributed uniformly across the brain, so
that p(tsj |H0(as

j)) = 1/|Ω|, where Ω is the brain volume.
– under H1, the distribution p(tsj |H1(as

j)) is also unknown, but is expected to
be clustered in some regions of the brain. To model this density, we use a
Gaussian Mixture Model with an unspecified number of components imple-
mented through a Dirichlet Process Mixture Model (DPMM).

A Dirichlet Process DP (α, G) with a concentration parameter α > 0 and a
base measure G can be used as a nonparametric prior distribution on mixing
proportion parameters in a mixture model when the number of components
is unknown a priori [10,12]. The generative process for a mixture of Gaussian
distributions with component means μk and DP prior DP (α, G) can be written

π|α ∼ Stick(α),
zj|π ∼ π,

(μk)∞k=1|G ∼ G,

tsj |zs
j , (μk)∞k=1, σ

2 ∼ N (μzs
j
, σ2

I), (2)

where zs
j is the variable that denotes the cluster with which aj is associated.

The base measure G is uniform over the brain volume, and the second-level
densities are normal densities with fixed covariance, σ2

I. The estimation of such
models can be performed fairly easily using MCMC techniques. Gibbs sampling
is carried out by integrating out all the random variables except zs

j (collapsed
Gibbs sampling). The algorithm iteratively samples zs

j from

p(zs
j = k|tsj , z−j , α) ∝ p(tsj |t−s, z−j, z

s
j = k)p(zs

j = k|z−j , α), (3)

1 Due to the thresholding above θ > 0, the posterior probabilities p(H−1|φs(v)) of
H−1 are systematically null.
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where z−j represents the values of z for the ROIs other than as
j and t−s represents

all the ROI positions in subjects other than s. The first term of Eq. (3) simply
corresponds to a 3D Gaussian cluster model

p(tsj |t−s, z−j, z
s
j = k) = N (tsj ; μk, σ2

I) (4)

or a constant if the component is empty. The second term comes from the par-
tition structure of the Dirichlet process:

p(zs
j = k|z−j , α) =

{
n−s

k

α+N−s if n−s
k > 0,

α
α+N−s otherwise,

(5)

where n−s
k is the number of instance of z = k for all regions in subjects other than

s and N−s =
∑

k n−s
k ; n−s

k > 0 amounts to considering that k is a previously seen
component; k is unvisited otherwise. In our setting, we include an alternative
case, in which the region as

j is false positive. The sampling scheme is thus

p(H0(as
j)|tsj , φs) =

1
c

1
|Ω|p(H0(as

j)|φs), (6)

p(H1(as
j), zj = k|tsj , z−j , α, φs) =

1
c

{
α

α+N−s
1

|Ω|p(H1(as
j)|φs) if n−s

k = 0,
n−s

k

α+N−s N (tsj ; μk, σ2
I)p(H1(as

j)|φs)
(7)

otherwise,

where c is the normalizing constant. The parameters μk are updated natu-
rally according to the current value of zj . Once the Markov chain has run for
long enough, the samples of the chain will be samples from the true posterior
p(Hi(as

j), z
s
j = k|tsj , z−j, α, φs), and the approximate distribution of

p(Hi(as
j)|tsj , z−j, α, φs) is given by averaging over the samples. Inference pro-

ceeds by selecting the regions as
j for which p(H1(as

j)|tsj , z−j, α, φs) is above some
threshold q. We found that 1000 iterations over all the ROIs of all subjects are
sufficient to achieve a reliable estimate of the posterior.

In summary, the spatial model used here yields the posterior probabilities of
the target regions being truly activated regions, given that truly activated regions
should be clustered spatially across subjects. This procedure thus infers what
are the true regions of activity among all the candidate regions, in each subject.
In addition, the algorithm also yields the spatial likelihood of the position of
activated regions p(t|H1), which is a second level of inference of the method.
Next, we try to obtain a more explicit relationship between individual ROIs and
to derive group-level clusters.

2.4 Finding Cross-Subject Correspondences in Structured Data

Although the DPMM yields a clustering of the individual regions through the
zs

j variables, the inter-subject correspondence implied by this model may not be
very reliable, due to the relative simplicity of the Gaussian generative model.
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P(i ) P(j ) P(k )

P(. l) 0.93 0.07 0.00

P(. m) 0.55 0.37 0.08

P(. n) 0.17 0.52 0.31

P(i ) P(j ) P(k )

P(. l) 0.98 0.02 0.00

P(. m) 0.13 0.84 0.03

P(. n) 0.10 0.18 0.72

P(l ) P(m ) P(n )

P(. i) 0.33 0.49 0.18

P(. j) 0.03 0.37 0.60

P(. k) 0.00 0.18 0.82

P(l ) P(m ) P(n )

P(. i) 0.66 0.32 0.11

P(. j) 0.00 0.53 0.47

P(. k) 0.00 0.03 0.97

P(i ) P(j ) P(k )

P(. l) 0.97 0.00 0.03

P(. m) 0.00 0.28 0.72

P(. n) 0.02 0.12 0.88

P(l ) P(m ) P(n )

P(. i) 0.98 0.02 0.00

P(. j) 0.66 0.24 0.1

P(. k) 0.02 0.46 0.52

P(l ) P(m ) P(n )

P(. i) 1.00 0.00 0.00

P(. j) 0.01 0.99 0.00

P(. k) 0.02 0.46 0.52

P(i ) P(j ) P(k )

P(. l) 0.40 0.57 0.03

P(. m) 0.01 0.27 0.72

P(. n) 0.00 0.12 0.88

Fig. 2. Illustration of the probabilistic correspondence computation algorithm on a
toy (1D) example: Recall that the input data corresponds to a synthetic model of the
level sets of two activation maps of two subjects. The maps maxima are called (l, m, n)
and (i, j, k) in the two subjects. (Top) the underlying structure is the same in the two
subjects, but there is a translation, so that the trivial association scheme (see Eq. (9))
provides unreliable initial probabilities. After convergence of the probabilities through
the BN model (see Eq. (8)), the probabilities are closer to the ground truth (diagonal
terms get higher values). (Bottom) the underlying structure is different in the two
subjects. Nevertheless, the algorithm considerably improves the correspondences.

In order to improve it, it is useful to take into account the topology of the
individual patterns, which is coded in the graphical model of the nested level
sets model defined in Sec. 2.2. Recall that these nested ROIs in each subjects are
embedded in a forest (i.e. multiple trees) graphical model. Only the leaves of the
forest will be included in the association model, since they represent maxima,
i.e. putative foci of activity. Other (saddle, see section 2.2) regions are only used
in order to code the large-scale structure of the functional activity pattern in the
data. Probabilistic associations are searched for each pair of subjects. Given a
reference subject s1 and a target subject s2, let p(as2

i ← as1
j ) be the probability

that region aj in subject s1 is associated with region ai in subject s2; let as1
f(j)

be the father of as1
j in the graphical sense. The global association model is given

by a Bayesian Network (BN) defined by the conditional probabilities:

p(as2
k ← as1

j |(as2
l ← as1

f(j))) ∝ δfather(as2
k )=a

s2
l

Kσ(ts1
j − ts2

k − (ts1
f(j) − ts2

l )) (8)
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Here Kσ is a standard RBF kernel with parameter σ. The second term in Eq.
(8) is crucial, since it implies that the children of two nodes in subjects s1 and
s2 with a similar relative position will have a stronger probability of association,
which is our core intuition. The associations are initialized at the leaf level as

p(as2
i ← as1

j ) ∝ exp

(
−

‖ts2
i − ts1

j ‖2

2σ2

)
(9)

The association probabilities are updated using a belief propagation (BP) al-
gorithm [11]. This procedure is known to converge given that all the graphs
involved in the model are trees. An interpretation and examples of this proce-
dure are shown in Fig. 2.

2.5 Extracting Homologous Regions Across Subjects

Once all the probabilities of pairwise associations between individual ROIs are
arranged in a common, asymmetric belief matrix B, it is possible to extract from
it maximal cliques of strongly associated regions, using e.g. replicator dynamics.
This point has been developed in [17], thus we do not detail it. The only difference
is that we use only one pass of the clique extraction procedure.

Finally, all the cliques that contain maxima from at least ν subjects over S are
retained. This method provides us with across subjects correspondences between
activated regions. It does not require that all subjects are represented for a
given activated region, and therefore is able to account for some inter-individual
differences. In order to make group maps, we assume that the positions of the
maxima tsj within each clique are normally distributed, and thus represent the
cliques through their 95% confidence regions (CR) in the common (MNI) space.

The method requires few prior parameters:

– the initial threshold of activity maps θ is chosen to correspond to a p-value of
0.01 uncorrected for multiple comparisons. Note that this is a rather lenient
choice. Importantly, the impact of this choice is mitigated by the fact that
the ROIs are given a p-value which is related to their CNR (see section 2.2).

– α > 0 is the parameter of the DPMM which controls the cluster creation
process. α = 0.5 is a standard choice (see [12] for a Bayesian choice of α).

– q controls the posterior significance of the regions. We choose q = 0.5.
– A spatial variability parameter σ is used in several parts of this work; we set

systematically σ = 10mm which is a reasonable estimation of inter-subject
variability in fMRI group data analysis.

– ν is important since it explicitly controls the reproducibility of a region across
subjects. For instance ν = S

3 (our choice) yields regions that can be expected
to be found in one third of the subjects.

Note that some of these parameters (θ, α, σ, q) might be changed reasonably
without creating inconsistencies, while ν has a more critical impact. The com-
putation time of the method, implemented with a C/Python code based on
nipy environment (http://projects.scipy.org/neuroimaging/ni/), is a couple of
minutes minute for a dataset of 10 subjects on 3GHz Pentium IV PC running
linux.



490 B. Thirion et al.

3 Simulations and Results

3.1 Cluster-Level ROC Curves Obtained on Synthetic Data

The algorithm was tested on synthetic datasets, which consisted in filtered noise,
with activation added to the correlated noise. Ten distant regions are added
with some signal in order to model spatially coherent activity in the group of
subjects. The size of the activated regions varied from 20 to 50 voxels. According
to the simulation, their mean position (center of mass) was jittered with isotropic
normal shifts of 0, 1 or 2 voxels, which represents 0, 5.2 and 10.4mm standard
deviation. The activation magnitudes were chosen to correspond to a mean CNR
of either −10dB or −6dB in each dataset, which corresponds to a realistic CNR
in fMRI datasets. In order to model inter-subject differences in the CNR, we let
this value vary across subjects in the ranges [-18dB -6dB] and [-11 -3dB].

The CR maps, as well as the RFX maps computed on these datasets, are
submitted to Receiver Operating Characteristic (ROC) Analysis. However, false
or true positives are not computed at the voxel level, which does not really
make sense, but at the cluster level (clusters comprise 10 voxels or more): each
cluster whose centre falls less than 10mm apart from a simulated activity locus
is counted as true, while the other clusters are counted as false positives. True
and false positive clusters were computed while the q parameter (CR) or the
threshold (RFX) is varied, resulting in a (sensitivity, specificity) plot (see Fig.
3(a)). Results were averaged over n = 100 repetitions of the simulation.

This shows that at different CNR and jitter levels, the specificity/sensitivity
compromise is much more favorable with our method than with standard RFX
analyzes techniques. We have also tested the robustness of the method with
respect to mis-specification of first-level p-values, by resampling the values to
make them have the histograms of unrelated datasets. This results in a mis-
match between the empirical histogram and the true significance levels, hence
biased first-level p-values. In that case, the performance of the proposed method
decreases, but it remains similar to the RFX performance (see Fig. 3(b)).

3.2 Real fMRI Dataset

We used an event-related fMRI paradigm that comprised ten experimental con-
ditions. This is described in more details in [17]. Among other tasks, the subjects
had to perform subtractions, which resulted in maps of the computation activ-
ity, which we study here. 130 right-handed subjects participated in the study.
Detailed acquisition parameters can be found in [17].

FMRI data pre-processing and statistical analysis were performed using the
SPM2 software (www.fil.ucl.ac.uk, [2]). In particular, spatial normalization was
performed using default parameters (non-rigid, low frequency deformation with
8*8*7 basis functions [1]); the normalized images were checked in all the subjects
to prevent any gross mistake in the image coregistration.

For the sake of place, we limit ourself to a brief comparison of our method
with a Mixed Effects analysis thresholded at the cluster level (CMFX, p < 0.05,
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(a) (b)

(e)

(c) (d) (f)

Fig. 3. (a) Cluster-level ROC curves for both RFX and our group analysis procedure.
The number of detected regions (among 10 targets) is plotted against the number of
false positive detections (at the cluster level) for our definition of the regions of activ-
ity at the group level, compared with traditional RFX inference. Simulated activated
regions are jittered of 2 voxels in each direction. (b) The same, but based on the his-
togram of unrelated datasets (see main text). (c-e) Analysis of a particular group of
10 subjects: (c) confidence regions found with our method (17 regions) ; (d) regions
found with a Mixed-Effects test, thresholded at the cluster level (p < 0.05 corrected,
5 regions) (e) Final significant regions of activity in three subjects of the datasets. (f)
Inter-cluster distance penalty computed for 13 disjoint random samples of 10 subjects,
and 6 different group analyzes techniques: Random Effects (RFX), cluster-level RFX
(CRFX), Mixed Effects (MFX), cluster-level Mixed Effects (CMFX), our estimation
of regions where activity occurs at the group level (CR), and the regions obtained
with the method in [17] (CR*). CR, CR* and CMFX get the lowest penalty, which
corresponds to an average inter-cluster distance of 6mm.
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corrected) on a subset of 10 randomly chosen subjects. The results are given in
Fig. 3(c,d) respectively. The proposed method extracts 17 regions of activity,
while the CMFX extracts 5 supra-threshold clusters; the reason is that i) the
CMFX merges several regions that are distinguished with our technique ii) some
small activated clusters detected with our method are not significant for the
CMFX test. Additionally, we present 3 individual maps in Fig. 3(e), in order to
suggest that the results are not limited to group maps, but include individual
patterns. Corresponding regions have the same color.

3.3 Assessment of the Reproducibility

Taking advantage of the large cohort, we controlled the reliability of the results
obtained in small groups of subjects by assessing the reproducibility of the result-
ing regions across R = 10 disjoint groups of 13 subjects. We consider group-level
binary maps obtained with different inference procedures, extract the clusters
of size greater than η = 10 voxels and compute the following penalty, which
measures how far supra-threshold clusters are from each other across groups:

Ψ =
1

R(R − 1)

R∑

r=1

∑

s∈{1,..,R}−{r}

1
I(r)

I(r)∑

i=1

minj∈{1,..,I(s)}ψ(‖tri − tsj‖), (10)

where (tri ) are the positions of the cluster centers, and ψ(x) = 1−exp
(
− x2

2σ2

)
. We

do this for five statistics: voxel-based Random Effects, thresholded at p < 0.001,
uncorrected (RFX), cluster-level RFX, where the map is thresholded at the
p < 0.01,uncorrected level, then at the p < 0.05, corrected, cluster-level (CRFX),
the same procedures and thresholds with Mixed-Effects models (MFX/CMFX),
the group-level confidence regions obtained with our procedure and the proce-
dure presented in [17] (CR/CR*). All the significance levels are obtained using
permutation techniques, so that the tests can be considered as exact [9]. The
results are given in Fig. 3(f). It turns out that the proposed method gets the
lowest penalty in average, similar to CR* and CMFX, and moreover with less
variability than the other methods. This proves its reliability for group studies.
Note that the good results of CMFX are mitigated by the fact that this method
only detects large clusters (see Fig. 3(d)).

4 Discussion

This paper presents three novelties in the field of group analysis of fMRI data:
the first one consists in a conceptually simple, but useful framework for the struc-
tural description of individual maps, where the map is partitioned into a nested
structure, which codes the topology of the activation patterns. The second one
is the use of DPMM to model the positions of activated regions across subjects;
the new features of this technique are that i) it does not require a pre-definition
of the number or extent of putative regions of activity in the population ii) it
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can incorporate prior information on the significance of the regions, which was
not available in previous contributions. Finally, we have introduced an improved
correspondence estimation algorithm, which constrains the inter-subject pair-
ings by the global organization of the activation patterns. These contributions
improve previous work on structural modelling of group fMRI data [17], and
allow a statistical assessment of the individual and group-level target regions.

The DPMM is used here in a quite basic setting, which certainly benefits
the robustness of the method. Other use of the DPMM for fMRI data has been
proposed in [7], with more complex hierarchical models, but in that case, the
DPMM was used to model the signal itself, not a high-level representation of it.
Our approach is thus computationally more efficient; moreover, low-level differ-
ences, such as those related to CNR, have less impact on the group model.

Our method is quite effective on synthetic datasets, especially when the ac-
tivation position is jittered. Moreover, the method is quite robust to deviation
from its underlying hypotheses (see Fig. 3(f)) ; it benefits the reliability of group
analyses in terms of activation positions, with respect to the inter-group variabil-
ity (see section 3.3). Although the present work was carried out using standard
normalization procedures, thus MNI coordinates, it is worthwhile to note that
these coordinates do not play any particular role, so that more adapted spatial
coordinate systems (e.g. surface-based) are perfectly usable. This is an important
matter for future developments. Lastly, our approach opens the way to intrinsic
ROI-based group analysis, population comparison, which might be much more
relevant than the current use of defining spheres in the MNI/Talairach space.
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Abstract. As image registration becomes more and more central to
many biomedical imaging applications, the efficiency of the algorithms
becomes a key issue. Image registration is classically performed by op-
timizing a similarity criterion over a given spatial transformation space.
Even if this problem is considered as almost solved for linear registration,
we show in this paper that some tools that have recently been developed
in the field of vision-based robot control can outperform classical solu-
tions. The adequacy of these tools for linear image registration leads us to
revisit non-linear registration and allows us to provide interesting theo-
retical roots to the different variants of Thirion’s demons algorithm. This
analysis predicts a theoretical advantage to the symmetric forces variant
of the demons algorithm. We show that, on controlled experiments, this
advantage is confirmed, and yields a faster convergence.

1 Introduction

As the integration of information from multiple images finds more and more
applications in the fields of biomedical research and clinical applications, the
efficiency of the image registration procedures becomes a crucial point for the
end-users. Correspondingly there is a growing interest from the scientific com-
munity to better understand and optimize the registration procedures.

In this paper, we present an efficient approach to image registration that en-
compass both linear and non-linear registration with a focus on mono-modal
image registration. In this setting, registration is classically performed by opti-
mizing a similarity criterion such as the mean squared error. Literature on image
registration and optimization theory already provide a wealth of algorithms that
can be used to solve this problem. However they do not always use all the speci-
ficity of mono-modal image registration. Our first contribution is to shed a new
light on this problem by showing that the tools that have recently been developed
by Malis [1] in the field of vision-based robot control can be used for biomedical
image registration and that they outperform the well-known optimizers. The
efficient second-order minimization (ESM) technique [1] takes advantage of the
specificity of mono-modal image registration to boost its convergence rate. It is
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not tailored to a particular class of spatial transformations and can thus be used
for a broad class of problems.

Looking at non-linear image registration, one of the most efficient methods is
the demons algorithm proposed by Thirion [2]. Several variants of the algorithm
have been proposed depending on how the forces are computed. In [3,4] an ad
hoc symmetrization of the demons force similar to the one proposed by Thirion
was shown to improve the results of the original demons algorithm. In [5] the
authors showed that the demons algorithm had connection with gradient descent
schemes. However, to the best of our knowledge, the different variants of the
demons have not been given a strong unified theoretical justification. Our second
and main contribution is to show that the image registration framework we use
in this work provides strong theoretical roots to the demons algorithm and that
the different variants are related to the use of different optimizers. One of the
main results of our theoretical analysis is to show that the symmetric forces
variant is related to the ESM scheme. This study thus explains why, from a
theoretical point of view, the symmetric forces demons algorithm seems to be
more efficient in practice. Our third contribution is to provide evidence that, in
practice, using symmetric forces indeed leads to a higher convergence rate.

The paper is organized as follows. In Section 2, we develop a unified framework
for mono-modal image registration and show how the classical optimizer fit in the
framework. Section 3 focuses on the efficient second-order minimization (ESM)
with an emphasis on sound mathematical treatment. A practical example is
worked out to compare the performance of the different approaches. In Section 4
we show how to extend the framework for the study of the demons algorithm.
Finally Section 5 concludes the paper.

2 Registration Using Newton Methods on Lie Groups

2.1 Image Registration Model

Given a fixed image F (.) and a moving image M(.) in a D-dimensional space,
intensity-based image registration is treated as an optimization problem that
aims at finding the spatial mapping that will align the fixed and moving images.
The transformation s(.), R

D → R
D, p �→ s(p), models the spatial mapping of

points from the fixed image space to the moving image space. The similarity
criterion Sim(F, M ◦ s) measures the quality of a given transformation. In this
paper we will only consider the mean squared error similarity measure which
forms the basis of the intensity-based image registration algorithms:

Sim(F, M ◦ s) =
1
2

‖F − M ◦ s‖2 =
1

2 |ΩP |
∑

p∈ΩP

|F (p) − M(s(p))|2 , (1)

where ΩP is the region of overlap between F and M ◦ s.
In order to register the fixed and moving images, we need to optimize (1) over

a given space of spatial transformations. This can often be done by parameter-
izing the transformations. However most of the spatial transformations we use
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do not form vector spaces but only Lie groups (e.g. rigid body, affine, projective,
diffeomorphisms...), meaning that we can invert or compose these transforma-
tions and obtain a spatial transformation of the same type. We thus need to
perform an optimization procedure on a Lie group such as in [1,6,7].

2.2 Newton Methods for Lie Groups

Optimization problems on Lie groups can often be related to constrained opti-
mization by embedding the Lie group in an Euclidean space. The classical way of
dealing with the structure of the group is to use Lagrange multipliers or when the
constraints are simple to have an ad hoc procedure to preserve the constraints
(e.g. renormalize a quaternion to have a unit quaternion). In this work we use an
alternative strategy known as geometric optimization which uses local canonical
coordinates [6]. This strategy intrinsically takes care of the geometric structure
of the group and allows the use of unconstrained optimization routines.

Let G be a Lie group for the composition ◦. We refer the reader to the stan-
dard textbooks for a detailed treatment of Lie groups. To any Lie group can be
associated a Lie algebra g, whose underlying vector space is the tangent space
of G at the neutral element Id. This Lie algebra captures the local structure of
G. The Lie group and the Lie algebra are related through the group exponential
which is a diffeomorphism from a neighborhood of 0 in g to a neighborhood of
Id in G. Let e1, . . . , en be a basis of the Id-tangent space TId(G) corresponding
to a basis of g. Canonical coordinates provide local coordinate charts so that for
any x ∈ G in some neighborhood of s, there exists a vector u =

∑
i uiei ∈ TId(G)

such that x = s ◦ exp(u) = s ◦ exp(
∑

i uiei). They can be used to get the Taylor
expansion of a smooth function ϕ on G:

ϕ (s ◦ exp(u)) = ϕ(s) + Jϕ
s .u +

1
2
uT .Hϕ

s .u + O(‖u‖3), (2)

where [Jϕ
s ]i = ∂

∂ui
ϕ(s ◦ exp(u))

∣∣
u=0 and [Hϕ

s ]ij = ∂2

∂ui∂uj
ϕ(s ◦ exp(u))

∣∣
u=0. It

is shown in [6], that this expansion allows us to adapt the classical Newton-
Raphson method by using an intrinsic update step,

s ← s ◦ exp(u) (3)

where u solves Hϕ
s .u = −Jϕ

s
T .ϕ(s). As in the vector space case, this algorithm

has a local quadratic convergence, and is independent of the chosen basis of g.
In many cases, using the Newton-Raphson method is not advocated or sim-

ply not possible. The Hessian matrix is indeed often difficult or impossible to
compute, is not numerically well-behaved and convergence problem may arise
when it is not definite positive. To address these problems in the context of non-
linear least squares optimization, most of the available efficient methods (e.g.
Levenberg-Marquardt) are related to the Gauss-Newton method [8].

Let φ(.) = 1
2 ‖ϕ(.)‖2 = 1

2

∑
p ϕp(.)2 be a sum of squared smooth func-

tions. The Gauss-Newton method is based on a linear approximation of ϕ in
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a neighborhood of the current estimate. From (2), we have ϕ (s ◦ exp(u)) =
ϕ(s) + Jϕ

s .u + O(‖u‖2). By keeping only the linear part we obtain a quadratic
approximation that we use to derive the Gauss-Newton method on a Lie group:

φ(s ◦ exp(u)) =
1
2

‖ϕ(s ◦ exp(u))‖2 ≈ 1
2

‖ϕ(s) + Jϕ
s .u‖2 . (4)

It is well known that if Jϕ
s has full rank, this equation admits a unique min-

imizer which is the solution of the so-called normal equations:
(
Jϕ

s
T .Jϕ

s

)
.u =

−Jϕ
s

T .ϕ(s). By using this solution in the intrinsic update step, s ← s ◦ exp(u),
we get the Gauss-Newton method for Lie Groups. In a vector space, the local
convergence of the Gauss-Newton (and Levenberg-Marquardt) method is in gen-
eral not quadratic. In the Lie group setting, we also see that (4) is a first-order
approximation. We must therefore also expect only local linear convergence.

2.3 Gauss-Newton for Image Registration

For the registration problem (1), the Gauss-Newton algorithm can be used with
the following function involved in the nonlinear least squares problem:

ϕp(s ◦ exp(u)) = F (p) − M ◦ s ◦ exp(u)(p). (5)

We now need to know how to compute the Jacobian J
ϕp
s of this function.

In practice, we need a computational representation. By Whitney’s theorem,
we know that there exists an embedding Θ, G → R

N , s �→ Θ(s) of the Lie group
in an Euclidean space. This embedding also allows us to represent the Lie algebra.
An example is the matrix representation of the common spatial transformations
(e.g. rigid body, affine, projective) in homogeneous coordinates. In practice, this
Euclidean representation is used to compute the spatial transformation (using
e.g. matrix multiplication in homogeneous coordinates). Let us denote w(Θ(s), p)
the expression, in the Euclidean embedding space R

N , of the transformation of a
point p ∈ R

D through the mapping s ∈ G. Using this Euclidean representation,
the chain rule and the fact that the differential map of the exponential at Id is
the identity, the Jacobian of (5) can be decomposed as (cf. appendix):

Jϕp
s =

∂

∂uT
ϕp(s ◦ exp(u))

∣∣∣
u=0

= −∇T
p (M ◦ s).Jwp .eΘ, (6)

where ∇p(M ◦ s) is the gradient of the warped moving image (D × 1 vector),
Jwp = ∂w(X,p)

∂XT

∣∣
X=Θ(Id) is the derivative of the mapping action expressed the

Euclidean embedding space (D ×N matrix) and eΘ = [Θ(e1), . . . , Θ(en)] stacks
the basis vectors of g expressed in the Euclidean embedding space (N×n matrix).
A practical case for 2D rigid-body registration is given in Section 2.3.

3 Efficient Second-Order Minimization (ESM)

Image registration (especially mono-modal) is not any generic optimization prob-
lem, the algorithms can take advantage of the specificity of the problem to de-
velop more efficient schemes. We focus on the efficient second-order minimization
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(ESM) procedure of [1] that uses the following fact: when the images are aligned
with the optimal spatial transformation sopt, the fixed image and the warped
image as well as their gradient should be very close to each other.

The main idea behind the ESM is that we can use this information to improve
the search direction of the Newton methods. The Newton-Raphson uses the value
of ϕp, its first and second derivatives around 0 to build a second-order polynomial
approximation of ϕp. The Gauss-Newton case discards the second derivative and
can thus only build a first-order polynomial. What we do with the ESM is to use
the value of ϕp, its first derivative around 0 as well as its first derivative around
sopt to build a second-order polynomial without the need of second derivative
information. The ESM is thus a second-order minimization method that does
not need the computation of the Hessian matrix.

3.1 A Second-Order Linearization

With the ESM, the information about the Hessian that is discarded with the
Gauss-Newton iteration is recovered with a Taylor expansion of a Jacobian cal-
culated at the optimal transformation. Such an information can only be used
in the image registration settings because we should have ∇pM ◦ sopt ≈ ∇pF
up to a noise term. In order to use this very special property, let us define a
generalization of the Jacobian used in Section 2.2:

Jϕ
s (u) =

∂

∂vT
ϕ(s ◦ exp(v))

∣∣∣
v=u

. (7)

Note that Jϕ
s (0) = Jϕ

s . By using a first-order Taylor expansion around 0 we get:

Jϕ
s (u) = Jϕ

s (0) + uT .Hϕ
s + O(‖u‖2),

that can be rewritten as uT .Hϕ
s = Jϕ

s (u) − Jϕ
s (0) + O(‖u‖2). By incorporating

this expression into (2), this provides us with a true second-order approximation:

ϕ (s ◦ exp(u)) = ϕ(s) + Jϕ
s (0).u +

1
2

(Jϕ
s (u) − Jϕ

s (0)) .u + O(‖u‖3)

= ϕ(s) +
1
2

(Jϕ
s (u) + Jϕ

s ) .u + O(‖u‖3)
(8)

The non-linear least squares problem of Section 2.2 can thus be revisited to get
a second-order approximation of (4):

φ(s ◦ exp(u)) =
1
2
‖ϕ(s) +

1
2

(Jϕ
s (u) + Jϕ

s ) .u‖2. + O(‖u‖3) (9)

The computation of Jϕ
s (u) is a difficult problem in the general setting. Even

if we get a closed-form expression of it, a minimization problem that involves
this term might not be easy to solve in practice. In order to be able to use (9),
we need to use the special properties of our optimization problem.

From the current transformation s, the optimum step uopt
s that an optimizer

can make is such that sopt = s ◦ exp(uopt
s ). From a computational point of view,
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the main result of the ESM procedure is that, for this optimal step, the product
Jϕ

s (uopt
s ).uopt

s is linear in uopt
s . This allows for a simple minimization of (9).

The idea is to replace the gradient of the optimally warped image M ◦ sopt =
M ◦ s ◦ exp(uopt

s ) by its equivalent, the gradient of the fixed image F . We then
get a simple linear approximation: Jϕ

s (uopt
s ).uopt

s ≈ ∇T
p F.Jwp .eΘ.uopt

s as shown
in the appendix. This can be used with (8) to get:

ϕ
(
s ◦ exp(uopt

s )
)

= ϕ(s) + JESM
s .uopt

s + O(‖uopt
s ‖3) (10)

JESMp
s � −1

2
(
∇T

p F + ∇T
p (M ◦ s)

)
.Jwp .eΘ (11)

where we omit the image noise and where Jwp and eΘ are given in Section 2.3.
This efficient procedure can thus be summarized by the following algorithm:

Algorithm 1 (ESM and Gauss-Newton for Image Registration)

– Choose a starting spatial transformation s
– Iterate until convergence:

• Given s, let
∗ Jp = − 1

2

(
∇T

p F + ∇T
p (M ◦ s)

)
.Jwp .eΘ for ESM

∗ Jp = −∇T
p (M ◦ s).Jwp .eΘ for Gauss-Newton

• Compute the update u by solving the linear system
(JT .J).u = −JT .ϕ(s) using e.g. a QR factorization of J

• Let s ← s ◦ exp(λu), with λ = 1 or is given by a line search

Note that the two options have the same computational complexity since ∇pF
needs only be computed once during initialization.

3.2 A Practical Example: 2D Rigid Body Transformations

Let us now focus on the optimization of (1) for the Lie group SE(2) of 2D
rigid body transformations. In order to use the optimization method presented
in Algorithm 1, we need to know what the corresponding Lie algebra se(2) is
and to be able to compute the exponential map and the necessary Jacobian.

A 2D rigid body transformation r is composed of a rotation of angle α followed
by a translation τ = (τx, τy). This Lie group SE(2) can be represented using
homogeneous coordinates by a 3 × 3 matrix group of the form Θ(r) =

[
Rα τ
0 1

]
,

where Rα is a rotation matrix. Since we have a matrix Lie group, the exponen-
tial map coincides with the matrix exponential. In this special case, we even
have a closed-form expression of the matrix exponential. Thanks to this matrix
representation (which is the Euclidean embedding space used in Section 2.3),
we see that the Lie Algebra can be represented by the vector space of matrices
of the form

[
dRα dτ

0 0

]
, where dRα is any skew-symmetric matrix and dτ is any

vector. We thus see that a convenient basis of se(2) is given (in matrix form)
by Θ(e1) =

[
0 −1 0
1 0 0
0 0 0

]
, Θ(e2) =

[
0 0 1
0 0 0
0 0 0

]
and Θ(e3) =

[
0 0 0
0 0 1
0 0 0

]
. In order to use

Algorithm 1, the only expression we still need to compute is Jwp . The spatial
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Fig. 1. Simple convergence experiment using two consecutive live mouse colon images
of a dynamic fibered confocal microscopy (FCM) sequence (left, image courtesy of D.
Vignjevic, S. Robine, D. Louvard, Institut Curie, Paris). We initialize the different
optimizers with a random rigid body transformations to compare them. The random
generator is Gaussian centered around the optimal transformation (validated by an
expert), uses σα = 0.3 rad for the rotation part and στ = 10 pixels for the translation
parts so as to get a sufficient number of divergent optimizations. The ESM is both
faster to converge with 50% of the trials converging in less than 19 iterations vs. 34
for the Gauss-Newton and more robust as 60% converge in less than 36 iterations with
ESM but we never reach 60% of convergence with the Gauss-Newton.

transformation r(p) of a point p through a 2D rigid body transformation r is a
simple matrix multiplication and this leads to Jwp =

[
px 0 0 py 0 0 1 0 0
0 px 0 0 py 0 0 1 0

]
. After

some basic simplifications we obtain a simple expression: Jwp .eΘ =
[
−py 1 0
px 0 1

]
.

Registration results: In the context of tracking for vision-based robot control,
a detailled comparison of the optimization schemes showed that, for the space
of homographies, the ESM outperformed classical solutions [9]. In this section,
we compare the performance of the ESM optimizer with respect to the Gauss-
Newton optimizer on a real-life biomedical image registration problem. A 2D+ t
dynamic sequence is acquired with a fibered confocal microscope (FCM) and we
need to perform a rigid body registration between the consecutive frames. In or-
der to get a statistically meaningful example, we chose two representative frames
and compared the optimizers with random starting points. Since the emphasis is
on the comparison of the various schemes and not on the final performance, no
multi-resolution scheme was used. Our results in Fig. 1 show that the analysis
of [9] can be extended to the problem of biomedical image registration. We in-
deed see that for rigid body registration the ESM has a faster convergence rate
and is more robust than the Gauss-Newton optimizer.

4 An Insight into the Demons Algorithm

In [2], the author proposed to consider non-linear registration as a diffusion
process. He introduced demons that push according to local characteristics of



502 T. Vercauteren et al.

the images in a similar way Maxwell did for solving the Gibbs paradox. The
forces are inspired from the optical flow equations and the method alternates
between computation of the forces and their regularization by a simple Gaussian
smoothing. This results into a computationally efficient algorithm. Several teams
[5,10,11] have worked towards providing theoretical roots to the demon’s in order
to understand the underlying assumptions and potentially modify them.

The goal of this section is twofold. We first go one step further in providing
theoretical explanations of the demons and show that the different variants of
of this algorithm can all be cast into the image registration framework derived
above. One of the main results of this analysis is to show that the symmetric
forces demons can be cast to the ESM optimization method of [1]. This variant
should therefore be the most efficient one. Our second goal is thus to verify if
the theoretical advantage of the symmetric variant are noticeable in practice.

4.1 An Alternate Optimization Framework

In order to end-up with the global minimization of a well posed criterion, it
was proposed in [11] to introduce a hidden variable in the registration process:
correspondences. The idea is to consider the regularization criterion as a prior
on the smoothness of the transformation s. Instead of requiring that point cor-
respondences between image pixels (a vector field c) be exact realizations of
the transformation, one allows some error at each image point. Considering a
Gaussian noise on displacements, we end-up with the global energy:

E(c, s) = ‖ 1
σi

(F − M ◦ c)‖2 +
1
σ2

x

dist (s, c)2 +
1

σ2
T

Reg (s) (12)

where σi accounts for the noise on the image intensity, σx accounts for a spatial
uncertainty on the correspondences and σT controls the amount of regularization
we need. We classically have dist (s, c) = ‖c − s‖ and Reg (s) = ‖∇s‖ but the
regularization can also be modified to handle fluid-like constraints [11].

The interest of this auxiliary variable is that an alternate optimization over c
and s decouples the complex minimization into simple and very efficient steps:

Algorithm 2 (Demons Algorithm as an Alternate Optimization)

– Choose a starting spatial transformation (a vector field) s
– Iterate until convergence:

• Given s, compute a correspondence update field u by minimizing
Ecorr

s (u) = ‖F − M ◦ (s + u)‖2 + σ2
i

σ2
x

‖u‖2 with respect to u

• If a fluid-like regularization is used, let u ← Kfluid � u. The convolution
kernel will typically be a Gaussian kernel.

• Let c ← s + u
• If a diffusion-like regularization is used, let s ← Kdiff �c (else let s ← c).

The convolution kernel will also typically be a Gaussian kernel.

We focus on the first step of this alternate minimization and refer the reader
to [11] for a detailed coverage of the regularization questions.
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4.2 The Symmetric Forces Demons as an ESM Optimization

As one can see in Algorithm 2, the minimization of Ecorr
s (u) is very close to the

mean squared error image registration problem (1) we have been focusing on. The
space of free-form deformations used within the demons algorithm is a simple
vector space. It is therefore a trivial Lie group where the group composition is
the addition of free-form deformation fields, and the group exponential simply
maps a free-form deformation field onto itself. This implies that the optimization
step s◦exp(u) we have been using so far is simply expressed by an addition s+u.
The only remaining difference lies in the term ‖u‖2. We now show that the same
framework allows us to take care of this additional term.

The efficient image registration tools we showed in the previous sections can
easily be applied to get the following approximations:

F (p) − M ◦ (s + u)(p) ≈ F (p) − M ◦ s(p) + Jp.u(p)

where Jp = −∇T
p (M ◦ s) with Gauss-Newton, Jp = − 1

2

(
∇T

p F + ∇T
p (M ◦ s)

)

with ESM and Jp = −∇T
p F with Thirion’s rule. As shown previously, the ap-

proximation order depends on this choice of Jp. These approximations can be
used to rewrite the correspondence energy used in the demons algorithm:

Ecorr
s (u) ≈ 1

2 |ΩP |
∑

p∈ΩP

∥∥∥
[

F (p)−M◦s(p)
0

]
+

[
Jp

σi(p)
σx

I

]
.u(p)

∥∥∥
2
,

where we recall that ΩP is the overlap between F and M ◦ s.
As opposed to the global transformation case (e.g. 2D rigid body transforma-

tions) we see that here, the approximations given for each pixel are independent
from each other. This greatly simplifies the minimization of Ecorr

s by splitting it
into very simple systems for each pixel. We indeed only need to solve, at each

(a) Original image (b) Random warped grid

Fig. 2. Experiment using a random warp on a normal human colonic mucosa image
(FCM). Image Courtesy of PD. Dr. A. Meining, Klinikum rechts der Isar, Munich.
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pixel p, the following normal equations:
[
JpT σi(p)

σx
I
]
.

[
Jp

σi(p)
σx

I

]
.u(p) = −

[
JpT σi(p)

σx
I
]
.

[
F (p) − M ◦ s(p)

0

]

(
JpT .Jp +

σ2
i (p)
σ2

x

I

)
.u(p) = −(F (p) − M ◦ s(p)).JpT

From the Sherman-Morrison formula (matrix inversion lemma) we finally have:

u(p) = −F (p) − M ◦ s(p)

‖Jp‖2 + σ2
i (p)
σ2

x

JpT (13)

We see that if we use the local estimation σi(p) = |F (p) − M ◦ c(p)| of the image
noise, and the ESM approximation of Jp we end up with the exact expression
of the symmetric forces demons algorithm. Note that σx then controls the max-
imum step length: ‖u(p)‖ ≤ σx/2.

4.3 Demons Results

To compare the performance of the different variants of the demons algorithm, we
present some results using synthetic data. We use a fibered confocal microscopy
image as our original image. For each random experiment, we generate a random
(MRF) smooth deformation field and warp the original image. We add some
random noise both to the original and the warped image. We then run the
different demons algorithm starting with an identity spatial transformation.

We used the same set of parameters for all the experiments: a maximum step
length of 2 pixels, a Gaussian fluid-like regularization with σfluid = 1 and a
Gaussian diffusion-like regularization with σdiff = 1. As previously, no multi-
resolution scheme was used because the emphasis is on the comparison of the
various schemes and not the final performance. We can see on Fig. 3 that the
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Fig. 3. Registration on 100 random experiments such as the one presented in Fig. 2.
Note the faster convergence of the symmetric forces demons in terms of images intensi-
ties agreement (MSE), smoothness of the non-linear spatial transformation (harmonic
energy) and more importantly in terms of distance to the actual spatial transformation.
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symmetric forces variants converges faster in terms of MSE, smoothness and
more importantly in terms of distance to the actual field.

5 Conclusion

We showed in this paper that some tools that have recently been developed in
the field of vision-based robot control can outperform classical image registration
algorithms by exploiting the special nature of the image registration problem.
We have focused on mono-modal registration but the ESM scheme can also
be extended to handle more complex intensity relationships. Robust estimation
techniques can be used to account for outliers in the cost function and we plan to
investigate on iterative intensity matching for the optimization of other simple
similarity metrics such as the correlation coefficient and the correlation ratio.

The adequacy of the ESM for linear image registration led us to revisit non-
linear registration and especially the demons algorithm. By using the ESM, the
matrix inversion lemma and the local estimation of the image noise, we improved
our understanding of the demons algorithm. This analysis predicted a theoretical
advantage to the symmetric forces variant of the demons algorithm which we
confirmed on the practical side.

If the confluence of the ESM theory and the alternate minimization framework
of the demons algorithm indeed leads to a unified theoretical explanation of the
demons, it could still be argued that all the aspects of the Lie group structure
used in the ESM theory are not fully exploited there. We believe contrastingly
that this Lie group point of view makes this theory much more powerfull. The
final goal of understanding an algorithm is indeed to improve it. One of the
main limitations of the demons algorithm is that it doesn’t provide diffeomorphic
transformations contrarily to the algorithms developed in [12,13]. Our next goal
will be to show how the ESM theory can be used in combination with the Lie
group structure of diffeomorphic transformations to adapt the demons algorithm
to this Lie group.
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Appendix

Derivation of (6): We apply the chain rule to J
ϕp
s = −∂M◦s◦eu

∂uT |u=0 and get
(using the Euclidean embedding space),

[Jϕp
s ]i = −∂M ◦ s(q)

∂qT

∣∣∣
q=p

.
∂w(X, p)

∂XT

∣∣∣
X=Θ(Id)

.
∂Θ(exp(uiei))

∂ui

∣∣∣
ui=0

= −∇T
p (M ◦ s).

∂w(X, p)
∂XT

∣∣∣
x=Θ(Id)

.Θ(ei),

where we used that the differential map of the exponential at Id is the identity.

Derivation of (10): We start by incorporating uopt
s into M ◦ s ◦ ev by writing

it as M ◦ s ◦ euopt
s ◦ e−uopt

s ◦ ev. By using the chain rule we find that J
ϕp
s (uopt

s )
can be decomposed into a product of three terms. The first one is given by:

∂

∂qT
M ◦ s ◦ euopt

s (q)
∣∣∣
q=e−u

opt
s ◦eu

opt
s (p)

= ∇T
p (M ◦ sopt) = ∇T

p F + ε,

where ε is a noise term. The second term is the same as the one appearing
in (6): ∂w(X,p)

∂XT

∣∣
X=Θ(e−u

opt
s ◦eu

opt
s )

= Jwp . And finally, the last term is given by

∂Θ(e−u
opt
s ◦eu)

∂uT

∣∣
u=uopt

s
. This last term is in general very difficult to compute but

in fact we only need to compute its product with uopt
s . This appears to be a

directional derivative. We can thus also write it as a rate of change to get:

∂Θ(e−uopt
s ◦ euopt

s +tuopt
s )

∂t

∣∣∣
t=0

=
∂Θ(etuopt

s )
∂t

∣∣∣
t=0

= eΘ.uopt
s .
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Abstract. This paper introduces a novel framework for diffusion tensor com-
bination, which can be used for tensor averaging, clustering, interpolation, and
regularization. The framework is based on the physical interpretation of the ten-
sors as the covariance matrices of Gaussian probability distributions. The sym-
metric Kullback-Leibler divergence provides a natural distance measure on these
distributions, which leads to a closed-form expression for the distance between
any two diffusion tensors, as well as for the weighted average of an arbitrary
number of tensors. We illustrate the application of our technique in four different
scenarios: (a) to combine tensor data from multiple subjects and generate pop-
ulation atlases from ten young and ten older subjects, (b) to perform k-means
clustering and generate a compact Gaussian mixture of multiple tensors, (c) to
interpolate between tensors, and (d) to regularize (i.e., smooth) noisy tensor data.
For boundary-preserving regularization, we also propose a non-linear two-stage
smoothing algorithm that can be considered remotely similar to a median filter.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is an increasingly popular
method for non-invasive mapping of in vivo brain connectivity [1]. The most com-
mon applications of DT-MRI currently are voxel-based comparisons [2] and fiber track-
ing [3]. In voxel-based studies, statistics are performed on scalar fields derived from the
tensor data, e.g., fractional anisotropy (FA) maps. Fiber tracking, on the other hand,
uses the complete tensor information to extract geometrical models that represent the
course of white matter fiber tracts through the brain. Methods are also being developed
that perform statistics on tensors directly (e.g., Xu et al. [4]).

To apply many common image processing tasks (e.g., smoothing, interpolation, av-
eraging) to tensor images, multiple tensors must be combined in a meaningful way.
For averaging, these tensors originate from corresponding positions in multiple images,
whereas for interpolation and smoothing they originate from a local neighborhood of a
given location in a single image. It is possible simply to add the tensor matrices element
by element [5], but this ignores the fact that the manifold of diffusion tensors does not
define a Euclidean vector space. More appropriate tensor combination schemes have
therefore been proposed, such as the geodesic approach by Fletcher & Joshi [6] or the
algebraic framework by Batchelor et al. [7]. Both are motivated by the abstract mathe-
matical properties of the diffusion tensors, e.g., their positive definiteness.

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 507–518, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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We introduce herein a new framework for the combination of multiple diffusion ten-
sors that is motivated by the physical interpretation of the tensors. These are the co-
variance matrices of Gaussian probability distributions of local Brownian motion of
hydrogen atoms [1]. Unlike [6] and [7], our combination method also has the advan-
tage of providing a closed-form (i.e., non-iterative) solution for the weighted average of
an arbitrary number of diffusion tensors. It also provides a closed-form expression for a
distance measure between any two tensors. Compared with our method, the frameworks
put forth by Fletcher & Joshi [6] and Batchelor et al. [7] require iterative procedures.

As a proof of concept, this paper presents initial results of applying our new frame-
work to four different scenarios. First, we use it to construct inter-subject population
atlases by averaging several diffusion tensor images (DTI). Such atlases are potentially
useful, for example, in cross-sectional studies of disease effects and longitudinal stud-
ies of aging and brain disease. Second, we use tensor average and distance to construct
a k-means clustering algorithm [8] and generate Gaussian mixture representations of
multiple tensor fields. Third, we illustrate the application of our framework for regu-
larization (i.e., smoothing) of noisy tensor fields. Fourth, we illustrate the interpolation
between different tensors that is useful for tensor image reformatting.

2 Methods

In the original (and still most commonly used) diffusion imaging method [1], the dif-
fusion tensor represents the covariance matrix of a zero-mean multivariate Gaussian
probability distribution. For general Gaussian distributions, Myrvoll [9] developed a
divergence-based clustering framework. We describe below the application of this
framework to Gaussian diffusion distributions. The mathematical details are substan-
tially simplified compared with [9], because a priori all distributions must have zero
means. Thus, Myrvoll’s iterative joint estimation of centroid mean and covariance ma-
trix is reduced to a closed-form expression for the covariance matrix.

Divergence-based Tensor Distance. For two arbitrary probability distributions f and g
over a domain Ω (here: Ω = R

3), the symmetric Kullback-Leibler (SKL) divergence is
a distance measure (but not a metric) that is defined as

d(f, g) =
∫

Ω

f log
f

g
+

∫

Ω

g log
g

f
. (1)

When f and g are zero-mean multivariate Gaussians with covariance matrices Σf and
Σg, then Eq. (1) can be evaluated in closed form as

d(f, g) =
1
2

trace
(
ΣfΣ−1

g + Σ−1
f Σg − 2I

)
. (2)

Simple Tensor Average. For M zero-mean Gaussians with covariance matrices Σm,
m = 1, . . . , M , their “centroid” is the zero-mean Gaussian that minimizes the total
distance (2) from all M input Gaussians. This centroid, therefore, follows the common
definition of the mean (or average) of the input Gaussians. Its covariance matrix Σc can
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be computed as the solution of the simplified matrix Ricatti equation

M∑

m=1

Σm − Σc

(
M∑

m=1

Σ−1
m

)
Σc = 0. (3)

We determine Σc by computing the eigensystem of the 6×6 block matrix

M =

⎛

⎜⎜⎜⎜⎜⎝

0
M∑

m=1

Σm

M∑

m=1

Σ−1
m 0

⎞

⎟⎟⎟⎟⎟⎠
. (4)

To determine the solution of Eq. (3) from the block matrix M, let �v1 through �v3 be
those three of its eigenvectors for which the real part of the corresponding complex
eigenvalue is positive. Furthermore, for i = 1, 2, 3 let �ui denote the upper halves (first
three elements) of �vi and �wi the lower halves of �vi. Then the 3×3 matrix product

Σc =
(

�u1 �u2 �u3
) (

�w1 �w2 �w3
)−1

(5)

is a positive semi-definite solution of Eq. (3). Details of the derivation and the relevant
proofs of existence are provided by Myrvoll [9] and the references therein. A shorter
summary is also given in [10].

k-Means Clustering. Tensor average and distance as introduced above are sufficient
to implement a k-means clustering algorithm [8] for diffusion tensors. The topic of
clustering is an active field of research in its own right and is well beyond the scope of
this paper. For now, we use an ad hoc implementation of a simple iterative clustering
algorithm. All input tensors are first combined to form an initial centroid. They are then
grouped by their distances to that centroid, where the number of groups is the user-
defined number of output clusters. This initial clustering is then iteratively refined by
alternatingly updating cluster centroids and tensor-to-cluster assignments.

Weighted Tensor Average and Regularization. Using a real-valued vector �w ∈ R
M of

weights, where
∑M

m=1 wm = 1, the weighted average Σ(�w)
c = w1Σ1⊕· · ·⊕wmΣm can

be computed by analogously solving the eigensystem equation of the modified matrix

M�w =

⎛

⎜⎜⎜⎜⎜⎝

0
M∑

m=1

wmΣm

M∑

m=1

wmΣ−1
m 0

⎞

⎟⎟⎟⎟⎟⎠
. (6)

The weighted tensor average allows for the divergence-based regularization of tensor
images by using weights of a filter kernel (e.g., Gaussian) in the weighted average.
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(a) (b)

Fig. 1. Ellipsoid glyph visualization of average tensor fields (coronal slice through lateral ventri-
cles, corpus callosum, and basal ganglia). The FA map of each tensor field is shown in the image
background. (a) Average of 10 young subjects. (b) Average of 10 older subjects.

The appropriateness of the definition in Eq. (6) follows from the following three
observations: (a) Eq. (5) is invariant under multiplication of M with a positive real
number. (b) Rational weights wm ∈ Q

+ can be replaced with integers by multiplying
each of them with the product of all denominators; the resulting matrix then represents
an inflated set of input tensors, which are replicated in exact proportion to their relative
weights. (c) The generalization to irrational weights wm ∈ R

+ \ Q follows from conti-
nuity of mapping M �→ Σc (the eigenvalues of a matrix are the roots of a polynomial,
i.e., a function in C∞).

Tensor Interpolation. Interpolation between two tensors, Σ1 and Σ2, can also be ex-
pressed as a special case of the weighted tensor average: the linear interpolation be-
tween two tensors is computed as the weighted average Σ12(w) = (w − 1)Σ1 ⊕ wΣ2
for w ∈ [0, 1]. Higher-order interpolation kernels can be applied accordingly.

3 Results

In this section, we demonstrate the application of our framework for tensor averaging,
clustering, regularization, and interpolation. First, tensor averaging is applied to ten-
sor data from young and elderly healthy individuals. Second, we illustrate the potential
benefits of k-means clustering for diffusion tensors on a set of synthetic tensor fields.
Third, tensor regularization is illustrated using synthetic noisy tensor data. Finally, ten-
sor interpolation is illustrated between multiple synthetic tensors.

3.1 Tensor Averaging

DTI data were acquired on a 3 T GE scanner with the following parameters: FOV =
24 cm; 2.5 mm isotropic voxel size; TR = 11,000 ms; TE = 97.6 ms; slice thickness
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= 2.5 mm; inter-slice gap = 0 mm; slices = 62; six non-collinear gradient orientations
+x +y, +y +z, +x +z, -x +y, -y +z, +x -z (each repeated with opposite gradient polar-
ity); 1.5 Gauss/cm with 32 ms duration and 34 ms separation, resulting in a b-value of
860 s/mm².

We acquired data on two groups of healthy subjects: ten young subjects (mean = 28.6,
range = 22–37 years, 17.2 years of education; five men, five women) and ten older sub-
jects (mean = 72.2, range = 65–79 years, 16.3 years of education; five men, five women).
The older subjects were part of an ongoing study on aging [11]. One subject from the
young group (23.8 year old woman) was randomly picked as the reference subject. From
the b = 0 image of this subject, nonrigid coordinate transformations were computed to
the b = 0 image of each of the remaining subjects. In a multi-resolution strategy, the
nonrigid transformation had an initial control point spacing of 40 mm, which was re-
fined three times to a final resolution of 5 mm. The benefits of higher spatial resolutions
of the deformation appear marginal, based on the limited resolution and geometric fi-
delity of the diffusion-weighted images (DWI). Through the respective transformations,
all seven images (b = 0, and b1 through b6) from each subject were warped into the co-
ordinate system of the reference subject. The method used for tensor reconstruction is
described in detail in Appendix A.1, and for image registration in Appendix A.2.

The divergence-based averages of the tensor images from all ten young and all
ten older subjects are shown using ellipsoid glyphs (Fig. 1(a,b)). The average of the
older subjects shows greater diffusivity (i.e., increased tensor volume) and decreased
anisotropy (i.e., more spherical tensors) than the young group. This is consistent with
published studies on the effects of aging on FA [12].

3.2 k-Means Clustering

A synthetic example of k-means clustering and Gaussian superposition of tensor fields
is shown in Fig. 2. Ten synthetic noisy input tensor fields were generated, five with a
horizontal simulated “fiber,” and the other five with a vertical fiber. The clustering al-
gorithm was set to generate two output clusters and was generally successful at distin-
guishing between the horizontal and vertical tensors (Fig. 2(c),(d)). The superposition
of the centroids of both clusters (Fig. 2(e)) thus represents a mixture in which both
fiber directions are preserved. This is a substantial improvement over the simple tensor
average (Fig. 2(f)), in which tensors degenerate to isotropic distributions. The assign-
ment which cluster represents which centroid is essentially arbitrary, so the horizontal,
vertical, and spherical tensors are split somewhat randomly between the two clusters.
The single spherical tensor in the crossing region in Fig. 2(e) illustrates a weakness
of the k-means clustering algorithm (but not the divergence-based tensor combination
framework), especially for even numbers of inputs. It is simply not always possible for
the clustering algorithm to determine how many modes there truly are in the input data,
independent of the type of input data and distance measure used.

3.3 Tensor Field Regularization

In Fig. 3, a synthetic noisy tensor field is regularized using our framework. The noise-
free tensor field (Fig. 3(a)) was generated by tensor reconstruction from simulated DWI
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Synthetic example for k-means clustering with ten inputs and two output clusters. (a)
One out of five input tensors fields with a horizontal “fiber.” (b) One out of five input fields
with a vertical “fiber.” (c) Tensor field showing centroids of cluster #1. (d) Tensor field showing
centroids of cluster #2. (e) Superposition of cluster centroid tensor fields (c) and (d). (f) Simple
tensor average of the input images.
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(a) (b)

(c) (d)

Fig. 3. Divergence-based tensor field regularization (synthetic example). (a) Noise-free tensor
field. (b) Noisy tensor field. (c) Noisy tensor field after smoothing. (d) Noisy tensor field after
two-stage smoothing with distance percentile threshold. All four images show the same central
8×8 pixels from a three-dimensional 20×20×10 volume.

(6 gradient directions). The upper half of the field contains tensors oriented mostly
along the y direction, the lower half contains tensors oriented along the x direction. The
total size of the simulated tensor field was 20×20×10 pixels, which provided sufficient
field of view for the smoothing kernel, but only the central 8×8 pixels are shown here.
The noisy tensor data (Fig. 3(b)) was generated by tensor reconstruction from the same
images after adding Gaussian noise to each of them.

The visualization in Fig. 3(c) shows the noisy tensor field after regularization with
a Gaussian kernel (2 pixels full width at half maximum). The noise was substantially
reduced, but tensors along the boundary between the two homogeneous regions (upper
and lower half) are mixed and combined into less anisotropic tensors.

The visualization in Fig. 3(d) shows the noisy tensor field after regularization with
a two-stage algorithm for thresholded smoothing. In the first pass, the tensors in a
local neighborhood are combined using the same kernel used in Fig. 3(c). Then, for
each of the combined tensors, its distance to the combined tensor is computed accord-
ing to Eq. (2). The 50% of tensors that are closest to the first-pass combined tensor
are then combined again with their previous kernel weights, and the result is the final
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(a) (b) (c)

Fig. 4. Barycentric interpolation between anisotropic (bottom left), oblate (bottom right), and
isotropic tensors (top). (a) Divergence-based interpolation. (b) Arithmetic interpolation. (c) Dif-
ferences between the tensor contours in (a) and (b).

(a) (b) (c)

Fig. 5. Barycentric interpolation between anisotropic tensors oriented along the x (bottom left),
y (bottom right), and z direction (top). (a) Divergence-based interpolation. (b) Arithmetic inter-
polation. (c) Differences between the tensor contours in (a) and (b).

regularized output tensor. This procedure resembles a median filter in that both improve
the boundary preservation while performing effective regularization. The 50% distance
threshold can be adjusted to trade between better regularization (higher threshold) or
better boundary preservation (lower threshold). The optimum value may depend on the
relative size of filter kernel and image structures.

3.4 Tensor Interpolation

Interpolation between tensors is illustrated in two examples. In Fig. 4, we interpolate
between three anisotropic tensors, each of which is oriented along a different coordi-
nate axis (x, y, and z). In Fig. 5, we interpolate between an anisotropic (bottom left),
an oblate (bottom right), and a spherical tensor (top). Each interpolation example is
represented over an equilateral triangle. The three sides of each triangle represent lin-
ear interpolation between the two tensors on the adjacent corners. Tensors inside the
triangles are the barycentric combination of the tensors at all three corners.

In each example, we compare the interpolation using our framework with arithmetic
interpolation, i.e., the element-wise interpolation between the tensor matrices. Visual
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(a) (b)

Fig. 6. Reoriented tensor reconstruction illustrated using a numerical phantom. (a) Tracked fibers
along straight tracts originating from 16×16 region on the left, shown in red. Fiber count = 256.
(b) Tracked fibers along deformed tract originating from 16×16 region on the left, shown in red.
Fiber count = 254. Fibers were tracked using the DTI module of Slicer [17].

inspection of the difference images of the tensor outlines (Figs. 4(c) and 5(c)) indicates
that our framework is biased in favor of more anisotropic tensors. Because anisotropic
tensors are more direction specific than isotropic ones, the former can be considered to
carry more useful information.

4 Discussion

This paper has introduced a novel combination framework for diffusion tensors based
on a divergence distance measure between Gaussian distributions. We have demon-
strated its application to tensor averaging, interpolation, regularization, and clustering.
To the best of our knowledge, this paper is also the first to propose retrospective k-
means clustering of multiple diffusion tensor images and to demonstrate this technique
as an effective means of producing a compact, information-preserving representation of
tensor superpositions.

The basic tensor combination approach proposed herein competes with other meth-
ods, such as the geodesic approach [6], or the algebraic framework [7]. Compared with
these methods, ours has the advantage of providing closed-form solutions for the dis-
tance between any two tensors and for the weighted average of an arbitrary number of
diffusion tensors, at least to the extent that solving Eq. (3), which involves computing
the eigensystem of a non-symmetric 6×6 matrix, is considered a closed-form operation.

We note that our derivation a combination framework for diffusion tensors is based
entirely on selecting an appropriate distance measure between two tensors, in our case
the symmetric Kullback-Leibler divergence, Eq. (1). This is analogous to both Fletcher
& Joshi and to Batchelor et al., albeit with a different distance measure as the foundation
of our framework.

It is not clear, which published tensor combination method performs better, and the
answer probably depends on the application. However, our distribution-based model is
physically well motivated and possesses convenient computational properties. It is also
conceptionally more consistent than other methods with representing complex combi-
nations of tensors as probabilistic superpositions, e.g., by means of Gaussian mixtures.
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Such mixtures have used as inputs to a Monte-Carlo fiber tracking algorithm [13].
Herein, we have generated such a mixture in a synthetic example in Section 3.2.

Our next goal is to apply the k-means methodology used herein to obtain compact
probabilistic population representations of actual multi-subject DTI data. This could be
considered a generalization and extension of a method by Parker & Alexander [14],
who represented crossings of two fibers in a single subject. Compared with simply
averaging tensors across subjects, the k-means clustering almost entirely preserves their
directional specificity, thus minimizing degeneration of tensors in the combined tensor
images. As recently shown by Behrens et al. [15], probabilistic fiber tracking in such
Gaussian mixture fields has the potential of improving the detection of minor tracts in
areas of fiber crossings. Our next step will be to generate the Gaussian superpositions
from multiple subjects rather than a single one.

Acknowledgments

This work was supported by the National Institute on Alcohol Abuse and Alcoholism,
Grants AA05965 and AA12388, and the National Institute on Aging, Grant AG17919.

References

1. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Bio-
phys. J. 66(1), 259–267 (1994)

2. Shimony, J.S., McKinstry, R.C., Akbudak, E., et al.: Quantitative diffusion-tensor anisotropy
brain MR imaging: Normative human data and anatomic analysis. Radiology 212(3), 770–
784 (1999)

3. Mori, S., Crain, B.J., Chacko, V.P., et al.: Three-dimensional tracking of axonal projections
in the brain by magnetic resonance imaging. Ann.Neurol. 45(2), 265–269 (1999)

4. Xu, D., Mori, S., Shen, D., et al.: Spatial normalization of diffusion tensor fields. Magn.
Reson. Med. 50(1), 175–182 (2003)

5. Jones, D.K., Griffin, L.D., Alexander, D.C., et al.: Spatial normalization and averaging of
diffusion tensor MRI data sets. NeuroImage 17(2), 592–617 (2002)

6. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffu-
sion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) Computer Vision and Mathe-
matical Methods in Medical and Biomedical Image Analysis. LNCS, vol. 3117, pp. 87–98.
Springer, Heidelberg (2004)

7. Batchelor, P.G., Moakher, M., Atkinson, D., et al.: A rigorous framework for diffusion tensor
calculus. Magn. Reson. Med. 53(1), 221–225 (2005)

8. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:
Proceedings, Fifth Berkeley Symposium on Mathematical Statistics and Probability vol. 1.,
University of California Press, pp. 281–296 (1967)

9. Myrvoll, T.A.: Adaptation of Hidden Markov Models using Maximum a Posteriori Linear
Regression with Hierarchical Priors. PhD thesis, Norwegian University of Science and Tech-
nology, Trondheim (2002)

10. Myrvoll, T.A., Soong, F.K.: Optimal clustering of multivariate normal distributions using
divergence and its application to HMM adaptation. In: Proceedings (ICASSP ’03). 2003
IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, vol. I,
pp. 552–555. IEEE Press, New York (2003)



Divergence-Based Framework 517

11. Sullivan, E.V., Adalsteinsson, E., Pfefferbaum, A.: Selective age-related degradation of ante-
rior callosal fiber bundles quantified in vivo with fiber tracking. Cereb. Cortex 16(7), 1030–
1039 (2005)

12. Salat, D., Tuch, D., Greve, D., et al.: Age-related alterations in white matter microstructure
measured by diffusion tensor imaging. Neurobiol. Aging 26(8), 1215–1227 (2005)

13. Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., et al.: Characterization and propagation
of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077–1088
(2003)

14. Parker, G.J., Alexander, D.C.: Probabilistic Monte Carlo based mapping of cerebral con-
nections utilising whole-brain crossing fibre information. In: Taylor, C.J., Noble, J.A. (eds.)
IPMI 2003. LNCS, vol. 2732, pp. 684–695. Springer, Heidelberg (2003)

15. Behrens, T., Johansen Berg, H., Jbabdi, S., et al.: Probabilistic diffusion tractography with
multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)

16. Alexander, D.C., Pierpaoli, C., Basser, P.J., et al.: Spatial transformations of diffusion tensor
magnetic resonance images. IEEE Trans. Med. Imag. 20(11), 1131–1139 (2001)

17. 3D Slicer, available online: http://www.slicer.org.
18. Rueckert, D., Sonoda, L.I., Hayes, et al.: Nonrigid registration using free-form deformations:

Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)
19. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D

medical image alignment. Pattern Recognit. 32(1), 71–86 (1999)
20. Rohlfing, T., Maurer, J.C.R., Bluemke, D.A., et al.: Volume-preserving nonrigid registration

of MR breast images using free-form deformation with an incompressibility constraint. IEEE
Trans. Med. Imag. 22(6), 730–741 (2003)

A Appendix

A.1 Nonridigly Reoriented Tensor Reconstruction

Let T : R
3 → R

3 be the coordinate transformations from the reference subject image
to the image from one of the other subjects. If �g1 through �gK are the gradient directions
used for acquisition of the DWI for the other subject, then at each pixel �x in the refer-
ence image the diffusion tensor is of the reformatted image is reconstructed based on
the directions

J−1
T (�x)�g1, . . . ,J−1

T (�x)�gK , (7)

where J−1
T is the inverse of the Jacobian matrix of T at pixel �x. If T is a rigid transfor-

mation, this results in a rotation of the gradient directions according to the global rota-
tion between reference and subject anatomy. For nonrigid transformations, this rotation
is locally different for each pixel, and there may be shear. By enforcing a positive Ja-
cobian determinant throughout image space, it is guaranteed that the Jacobian matrix is
non-singular, which in turn guarantees that the gradient directions remain non-collinear.

This method does not require eliminating shear components of the transformation
[16]. Nonetheless, we found that penalizing shear during the registration and applying
only the orthogonal part of the Jacobian helped avoid numerical problems associated
with angular resolution of the directional sampling when using the minimal number
of six gradient directions. Unlike approaches that re-orient the tensors, our method is
directly applicable to non-Gaussian models of diffusion. It may also be better suited for
high-angular-resolution data, because it does not approximate shear by a rotation.

http://www.slicer.org
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The effectiveness of the tensor reconstruction method with locally reoriented gradi-
ents was tested using a numerical phantom (Fig. 6). DWIs were simulated as they would
result from imaging a horizontal fiber tract with a square 16×16 pixel cross-section us-
ing 6 simulated diffusion gradients. Tensors were reconstructed from these DWI and
fibers were tracked from one end of the tract. The DWI were then deformed using a B-
spline deformation [18], with the center of the tract displaced by approximately 8 pixels
(the control points in the plane cutting the tract in half were all move by 10 pixels). Ten-
sors were reconstructed using locally reoriented gradients, and fibers were tracked from
one end of the tract. As Fig. 6 clearly demonstrates, the tracked fibers follow the de-
formed tract perfectly and appear to remain parallel. Out of 256 original fibers in the
undeformed tract, only two were lost in the deformed tract due to interpolation effects
on the tract boundary.

A.2 Shear-Constrained Nonrigid Inter-subject Image Registration

To register images from different subjects, we applied the B-spline algorithm by Rueck-
ert et al. [18] to register the b = 0 images. The image similarity measure was normalized
mutual information, ENMI, as defined by Studholme et al. [19]. To prevent folding of
the deformation field, we added a folding prevention term. To minimize shear compo-
nents of the nonrigid transformations, which could impact the angular sampling of the
reoriented diffusion gradient directions (see next section), we also incorporated a local
shear penalty constraint. The total registration cost function thus is

Etotal = ENMI + wfoldingEfolding + wshearEshear (8)

The folding constraint Efolding is a weakly weighted version of the volume preservation
constraint introduced by Rohlfing et al. [20], which enforces a positive Jacobian deter-
minant at each pixel in the image. The local shear constraint Eshear is computed via a
QR decomposition of the local Jacobian J,

J =

⎛

⎝
qxx qxy qxz

qyx qyy qyz

qzx qzy qzz

⎞

⎠

⎛

⎝
rxx rxy rxz

0 ryy ryz

0 0 rzz

⎞

⎠ , (9)

where the first matrix of the decomposition is orthogonal, and the second contains scales
and shears. The shearing constraint term is then defined using the coefficients of the
second matrix as

Eshear =
∑

�x∈Ω

wshear(�x)(r2
xy + r2

xz + r2
yz), (10)

where w(�x) is a local rigidity constraint weight. We used here the FA map of the refer-
ence subject’s tensor image, multiplied by 10−2, i.e.,

wshear(�x) = 10−2 FAref(�x). (11)

Anisotropic areas (e.g., white matter) are thus warped with relatively little shear, while
the more lenient shear constraint in regions with isotropic diffusion keeps the warping
flexible enough to recover the complex inter-subject coordinate correspondences.



Localized Components Analysis

Dan Alcantara1,a, Owen Carmichael1,a,b, Eric Delson2,3,
Will Harcourt-Smith2,3, Kirsten Sterner3, Stephen Frost4, Rebecca Dutton5,
Paul Thompson5, Howard Aizenstein6,a, Oscar Lopez6,b, James Becker6,a,b,c,

and Nina Amenta1,a

1 aComputer Science and bNeurology Departments, University of California, Davis
2 Lehman College of the City University of New York

3 NYCEP, American Museum of Natural History
4 Anthropology Department, University of Oregon

5 Neurology Department and Laboratory of Neuro Imaging, University of California,
Los Angeles

6 aPsychiatry, bNeurology, and cPsychology Departments, University of Pittsburgh

Abstract. We introduce Localized Components Analysis (LoCA)
for describing surface shape variation in an ensemble of biomedical ob-
jects using a linear subspace of spatially localized shape components.
In contrast to earlier methods, LoCA optimizes explicitly for localized
components and allows a flexible trade-off between localized and concise
representations. Experiments comparing LoCA to a variety of competing
shape representation methods on 2D and 3D shape ensembles establish
the superior ability of LoCA to modulate the locality-conciseness trade-
off and generate shape components corresponding to intuitive modes of
shape variation. Our formulation of locality in terms of compatibility
between pairs of surface points is shown to be flexible enough to en-
able spatially-localized shape descriptions with attractive higher-order
properties such as spatial symmetry.

1 Introduction

The parameterization of an ensemble of biomedical shapes is a key step in a
broad array of scientific and medical applications that require quantification of
the shape properties of physical objects. In this paper, shape parameterization
refers to the problem of converting a representation of the delineating bound-
ary of an object in 2D or 3D into a concise vector of numbers that captures
its salient shape characteristics. Converting the potentially complex boundary
of a biological object such as an organ or bone into a small set of shape para-
meters facilitates a variety of statistical analyses, including the characterization
of shape variability across an ensemble; comparison of object shape between
groups; and the tracking of shape change over time. It is important to present
the results of these analyses in an intuitive way to encourage the connection of
the shape analysis to domain-specific physical or biological processes. For in-
stance, the interpretability of statistical tests of brain region shape differences
between healthy and diseased subjects would be enhanced if differences could
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PCA basis vector LoCA basis vector

Fig. 1. Shape characteristics of corpora callosa captured by basis vectors generated
with PCA and LoCA. Arrows start at points tracing the average corpus callosum;
their magnitudes indicate the degree that points move when the corresponding shape
parameter is varied.The PCA vector represents a complex, global pattern of shape
characteristics while the LoCA vector focuses on the genu.

be presented in terms of a small number of parameters, each of which represents
an easily-grasped aspect of region shape. This could promote interpretations of
the shape difference in terms of disease causes or effects.

Our goal is to encourage interpretability of results by generating shape para-
meterizations that are both concise– capturing salient shape characteristics in a
small number of parameters– and spatially localized– accounting for the shape of
a spatially restricted sub-region in each parameter. The hypothesis underlying
this paper is that spatially-localized and concise shape parameterizations are
more intuitive for end users because they allow them to conceptualize object
shape in terms a small number of object parts, which are often affected differen-
tially by physical phenomena. In the above example, shape change due to disease
processes is known to occur in spatially-localized brain sub-regions in a variety
of disorders [1]. In addition, concise parameterizations are attractive because the
statistical power of tests on those parameters is reduced as little as possible by
corrections for multiple comparisons [2].

We follow the linear subspace paradigm of expressing each shape as a linear
combination of prototypical, or basis shapes. That is, if each shape is represented
as a vector vj of the 2m or 3m coordinates of m points sampled from its boundary
(i.e., vj = [vj,1,vj,2, · · ·vj,m],vj,k = [xk, yk] for 2D shapes), vj is approximated
as a linear combination of k basis vectors {e1, e2, · · · ek} :

vk
j =

k∑

i=1

αj,i ∗ ei

The shape parameters are the coefficients αj,i. Linear subspace methods are
attractive because their linearity in ei allows them to be manipulated using
standard tools from linear algebra.

However, linear subspace methods do not inherently encourage locality. Fig-
ure 1 (left) depicts a typical ei generated by the classical linear subspace method,
principal components analysis (PCA), applied to tracings of the corpus callosum
(CC), a human brain region. The basis shape summarizes a complex pattern of
shape characteristics across the entirety of the CC. Therefore, if the correspond-
ing αi differs between groups, the explanation of the group difference in physical
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terms is complex. Figure 1 (right), by contrast, shows a typical ei generated by
the method presented below; differences in the corresponding αi between groups
gives rise to a simple physical explanation in terms of the genu, the CC subregion
whose shape is captured by the ei.

We present Localized Components Analysis (LoCA), a method that opti-
mizes the ei for spatial locality and conciseness simultaneously. It improves on
previous linear subspace methods by explicitly optimizing for localized shape
parameters and by allowing the user to modulate the tradeoff between local-
ity and conciseness with greater flexibility than previous methods. The result-
ing shape components could provide succinct summaries of spatially-localized
changes to biomedical structures due to a variety of physical phenomena; for
example, LoCA could provide a concise summary of the spatially-localized CC
shape changes that are thought to accompany diseases such as HIV / AIDS [3].
In primate evolution, LoCA could summarize the shape similarities between the
skulls of genetically related species using a few intuitive parameters.

We summarize related techniques in Section 2, and present LoCA in Section 3.
A thorough set of experiments in Section 4 shows the intuitiveness and flexibil-
ity gained by LoCA over established linear subspace methods when applied to
human CC, colobine monkey skulls, and primate humeri (upper arm) bones.

2 Related Work

PCA has been used to find concise bases for shape spaces in medical image
analysis [4], morphometrics [5], computer graphics [6], and many other contexts.
In PCA, ei is the ith eigenvector of the covariance matrix of the example vj vec-
tors; therefore, the ei are orthogonal and vk

j is the best k-th order approximation
of vj under the L2 norm. Two algorithms independently named Sparse PCA (S-
PCA) encourage as many entries in ei to be zero as possible, either by iteratively
adjusting the PCA basis [7] or by iteratively constructing sparse orthogonal
vectors [8] [9]1. Empirically the ei often represent shape in a small number of
spatially-localized subregions [9] [11]. Similarly, while independent components
analysis (ICA) and principal factor analysis (PFA) do not directly optimize a
locality-related objective function when estimating ei, they appear to generate
spatially-localized components anyway [12] [13]. Alternatively, pre-defined spa-
tially located regions of interest can be integrated into PCA [14]. Our approach
is inspired by S-PCA and follows a similar strategy of adjusting the ei provided
by PCA; but we explicitly optimize for spatially-localized, rather than sparse, ei.
Unlike [14] we allow the decomposition into local regions to emerge from the data.

Networks of localized medial geometric primitives have the potential to cap-
ture local shape in a concise set of parameters [15]. We feel that medial and
surface-based representations could capture complementary shape information.
We note, however, that networks of medial primitives can be challenging to con-
struct in an automated way and may therefore be more labor-intensive than the
approach we present.

1 A third, unrelated Sparse PCA sparsifies the vj before applying standard PCA [10].
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Fig. 2. Effect of λ on the first (top) and third (bottom) basis vectors, where vectors
are ordered by the amount of shape variation captured. As λ increases, the number of
vectors required to capture 90% of the variation (in parentheses) increases. For small
values of λ, vectors capturing substantial variation represent a global deformation of the
entire shape. As λ is increased, more of the LoCA vectors become local deformations,
until the entire basis consists of local vectors. S-PCA becomes sparse more slowly, so
that the first vector is still a global deformation on the right. The third vector is sparse,
but there is some perturbation across the entire shape. Each vector is accompanied by a
graph showing its locality, where every point in the graph represents a point on the out-
line. The center point is defined as the point minimizing Eloc, as described in Section 3.

An alternative approach for determining spatially-localized differences be-
tween shape ensembles is to perform statistical tests that compare corresponding
vj,k between groups; spatial maps then color-code each vj,k by the effect size
or p value of the test. Visual inspection of the renderings has revealed spatially-
localized shape differences in a variety of medical conditions (see, e.g., [1]); how-
ever, m is generally so large that the significance threshold of the statistical
tests must be reduced dramatically to guard against detection of spurious group
differences [2]. This reduces the sensitivity of spatial mapping techniques to de-
tect subtle shape differences. LoCA uses a linear subspace to reduce the number
of variables required for localized shape comparisons, and therefore boost the
power of statistical tests.

3 Methods

PCA produces the most concise basis possible under the L2 norm; that is, for each
k,

∑n
j=1 ||vj −vk

j ||L2 is minimized when e1 · · · ek are the first k eigenvectors of the
covariance matrix of the vj . We use a formulation of PCA as the minimization of
an energy function Evar, and modify it by minimizing Evar+λEloc, where Eloc is a
new energy term that summarizes the spatial locality of the ei. The λ balances the
tradeoff between the competing interests of conciseness and locality (Figure 2).
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Energy Function. Each successive PCA component accounts for as much of
the shape variation as possible; that is, the distribution of shape variation over
the PCA basis vectors is as concentrated as possible on the leading ei. More
formally, one can define the relative variance βi of each basis vector ei as

βi =

∑n
j=1〈(vj − μ), ei〉2∑n

j=1 ||vj − μ||2

where μ represents the mean of the data vectors vj . The entropy of the distribu-
tion −

∑k
i=1 βi log βi is minimized, over all orthogonal bases, by the PCA basis,

so we define this to be Evar , as in [7]. The S-PCA construction in that paper
balances Evar against another energy function that rewards sparse ei– that is,
as many entries as possible in each ei are encouraged to have zero magnitude.
We instead optimize for locality, defining Eloc as follows.

We encourage each ei to have simultaneous nonzero entries corresponding to
points pi and pj if and only if pi and pj are close to each other. To do so, we
introduce a pairwise compatibility matrix B whose entries B[i, j] tend toward 1
when pi and pj are near each other, and tend towards 0 when they are distant;
we define B below. The B matrix defines a cost function C:

C(ei, pc) =
m∑

j=1

(B[c, j] − ||ei,j ||L2)
κ

The ei have unit length, so both B[c, j] and ||ei,j || vary between 0 and 1.
Intuitively, points pc and pj contribute significantly to C if: 1. pc and pj are
incompatible, but ei,j has high magnitude; or 2. pc and pj are compatible, but
||ei,j || is close to 0. The exponent κ can take on any value between 1 and 2 to
deal with outlier effects. For our experiments, κ was 1.5.

For each basis vector ei, each pc yields a different C. We define the locality of
ei using the best possible pc, that is, the one that minimizes this cost function C.
Each pc differs in the distribution of its distances to all other pj– for example,
points at one end of a humerus bone in Figure 5 are extremely distant from
many points at the opposite end of the bone, while points in the middle are not.
So we normalize C as follows:

Eloc =
∑

i

min
pc

C(ei, pc)
maxebad

C(ebad, pc)

The denominator for a given pc is simply
∑

j max(|B[c, j] − 1|, |B[c, j] − 0|)κ. It
needs to be computed only once.

The compatibility B[i, j] can be computed in whatever way is appropriate
for the data set; here, B[i, j] is based on the distance D(pi, pj) between pi and
pj . For the CC data set considered below, D is the geodesic distance computed
from dense surface meshes. For the 3D humeri and skull data sets, D is computed
from an adjacency graph constructed between the landmarks. The compatibility
is B[i, j] = f(D(pi, pj)), where f is a function that modulates D to adjust
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its range to [0, 1]. We chose a sinusoidal f that is non-zero over a half-period:
f(x) = 0.5(cos(π x

ρ ) + 1). Larger ρ select for groups of points which co-vary over
larger spatial extents. It was set to 0.25 in all of the experiments below.

Optimization. Our optimization procedure is similar to that used in [7]. PCA
provides an initial orthonormal basis e, and every possible pair ei, ej are ro-
tated together in the two-dimensional plane they span. Because the rotating
pair is kept orthogonal to each other and stay in their 2D plane, the basis re-
mains orthonormal throughout optimization. Each pair is rotated by the angle θ
that minimizes Evar + λEloc. The optimal θ is found numerically using Brent’s
method [16]. Notice that since Evar and Eloc are both summations of terms
that each depend solely on an individual ei, only the terms corresponding to the
current ei, ej pair need to be updated during optimization.

The pairs are rotated in decreasing order of shape variation accounted for. The
set of all ei, ej pairs are adjusted repeatedly, and optimization ceases when ad-
justing them changes the objective function less than a fixed threshold. Between
50 and 150 iterations were required for each experiment below.

Data Preparation. We assume that we are given an ensemble of n objects,
each represented by m points on its boundary, and the compatibility matrix B.
Overall differences in object scale, rotation and translation over the ensemble
are removed through generalized Procrustes alignment [5]. The resulting scaled
and aligned data sets are used as input to the above optimization.

4 Results

Below, we compare LoCA to PCA, ICA, and S-PCA on three data sets: CCs,
colobine monkey skulls, and humeri from various primates2. For each basis, lo-
cality is evaluated visually using renderings of the entries in each basis vector,
and through locality graphs (see Figure 2). Conciseness of each basis is assessed
quantitatively by charting

∑n
j=1 ||vj − vk

j ||L2 over all k, and more specifically
by recording the number of ei required to capture 90% of shape variation, i.e.
reduce this reconstruction error to 10%.

LoCA behavior depends strongly on λ, the parameter that modulates the
tradeoff between conciseness and locality. For λ = 0, LoCA reduces to PCA. For
small λ, LoCA basis vectors accounting for the highest amounts of shape varia-
tion resemble PCA basis vectors, while the rest of the basis is clearly localized
(Figure 2). For larger λ, all LoCA basis vectors are local, and the bases require
more basis vectors to account for shape variation in the data. In Figures 3, 5,
and 6, LoCA and S-PCA basis vectors are depicted for the smallest value of λ for
which the bases lacked global basis vectors. S-PCA performs similarly to LoCA
for small values of λ, in agreement with earlier S-PCA results [7]. However, S-
PCA required a much larger basis– more basis vectors for 10% reconstruction
error– before the global basis vectors disappeared; this is likely due to the very

2 Movies and larger images are at: http://idav.ucdavis.edu/∼dfalcant/loca.html



Localized Components Analysis 525

PC
A

(7
/5

4)
IC

A
(3

8)
S-

PC
A

(3
3)

Lo
C

A
(2

6)

Fig. 3. Corpora callosa basis comparison. Out of 54 basis vectors, the first few are
shown. LoCA successfully captures the major shape deformations of the genu and
splenium in the first four vectors, while both ICA and S-PCA spread this variation
over several vectors.
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Fig. 4. Reconstruction error when using only the first k vectors of the basis. The num-
bers in parentheses denote the number of vectors required to capture 90% of variation
in the data set. LoCA bases are compared with S-PCA bases which have essentially
the same reconstruction error for 10, 15, or 26 vectors respectively. These choices corre-
spond to the different λ settings used in Figure 2. Using fewer vectors, S-PCA has lower
reconstruction error because the first few S-PCA vectors represent global deformations
(as seen in Figure 2).

high spatial locality of S-PCA basis vectors. Also, more of them were required
to describe the deformation of any extended surface region.

Corpora Callosa. 55 healthy subjects and HIV/AIDS patients received high-
resolution magnetic resonance brain scans as part of a previously-described
study [3]. The CC was manually traced on all scans using a reliable, repeatable
protocol, and sparse landmarks were placed on all traces using the Witelson
criteria [17]. 103 point correspondences were established between all CC traces
based on the Witelson landmarks using a sparse-to-dense correspondence
algorithm [18].

Figure 3 compares the basis vectors from each method that captured the most
shape variation. PCA required 7 basis vectors for 90% of shape variation, while
ICA required the most at 38. Note the global effects of PCA vectors, the extreme
locality of ICA and S-PCA, and the spatially broader effects of LoCA. Major
deformations of meaningful CC sub-regions, the genu and splenium, are repre-
sented by the first four LoCA vectors, while the next six represent deformations
of the corpus callosum’s long central body.

Reconstruction error for all methods is graphed in Figure 4. ICA requires a
large number of components for accurate shape reconstruction, and PCA requires
the fewest; S-PCA and LoCA require more basis vectors for bases that are more
local or sparse (i.e., higher λ). Note, however, that for comparable reconstruc-
tion error curves, S-PCA bases tend to contain global shape components while
LoCA does not; for example, compare LoCA(26) and S-PCA(26) in Figures 4
and 2.
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Fig. 5. Front and back views of displacements on primate humeri. Displacements of
the landmark points are computed using different methods, and then interpolated
onto the mesh using a thin-plate-spline. Darker locations indicate greater displacement
magnitudes. LoCA components describe the articular surfaces at the two extremities
as well as deformations of the shaft.
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Fig. 6. Cranial basis comparison, colored by displacement magnitude. Both S-PCA
and ICA produce vectors that move single teeth, while LoCA has vectors that move
the entire jaw at once. The side views of vectors A and B differentiate their effects:
A represents prognathism (snout elongation), while B represents facial kyphosis (teeth
straightening). Note that since the crania are shown from a single angle, vectors rep-
resenting motion on the bottom of the cranium appear completely white.
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Humeri. 3D surface models of human, gorilla, and chimpanzee humerus bones
were obtained by scanning the bones using a laser range scanner as part of
a long-term project on of primate evolutionary morphology. The 3D models
were annotated by a single human operator (D.A.) in a graphical interface by
placing curves at anatomical landmarks on the shaft and proximal and distal
extremities of the bone. A curve on the proximal extremity followed the length
of the articular neck. Three curves were traced longitudinally along ridges that
spanned the length of the shaft. On the distal extremity, curves followed the
ridge of the olecranon fossa, the ridge along the medial limit of the trochlea, the
ridge along the lateral limit of the capitulum, and the ridge between the trochlea
and capitulum. Surface points sampled from these curves were the input to the
shape parameterization methods.

The first few basis vectors of the results are shown in Figure 5. LoCA identified
basis vectors that intuitively describe deformations of the two joint surfaces at
the extremities, as well as deformations of sub-regions of the long body.

Colobine Monkey Crania. The shape space was built from a set of 235 cra-
nia from colobine monkeys (Subfamily Colobinae, Family Cercopithecidae), from
six Asian species. Each cranium was marked with 45 corresponding landmark
points. Various comparative primate morphologists manually marked each cra-
nium with 45 landmark points using a Microscribe 3D digitizer [19], as part of
data collection for a long-term project on Old World monkey cranial evolution.
Results are shown in figure 6. The landmarks are shown on a Colobus guereza
cranium, which is colored as in 5.

The usefulness of the compatibility matrix B for creating localized bases with
higher-order characteristics is also illustrated in Figure 6. To encourage spatially
symmetric components, landmark points were reflected across the midsagittal
plane; i.e. points were transformed across the symmetry plane from the right to
left side of the skull. Compatibility B[i, j] was computed between the reflected
points, so that two points at corresponding locations across the midsagittal plane
(e.g., right and left cheek) were highly compatible. The resulting “Symmetric
LoCA” basis intuitively captures shape variability in corresponding right and
left skull features in each component.

5 Discussion

LoCA provided a superior trade-off of conciseness and locality than ICA or S-
PCA for a broad range of data sets, at a cost of greater computation time. Future
work will focus on designing compatibility matrices for a wide range of shape
applications, using non-geodesic distance metrics and user-defined object regions
of interest. We will also generate localized bases whose vectors vary significantly
in their spatial suppport; currently, the range of possible spatial supports is
limited to a degree by the distance modulating function f .
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Abstract. Automated medical image segmentation is a challenging task
that benefits from the use of effective image appearance models. In this
paper, we compare appearance models at three regional scales for statis-
tically characterizing image intensity near object boundaries in the con-
text of segmentation via deformable models. The three models capture
appearance in the form of regional intensity quantile functions. These
distribution-based regional image descriptors are amenable to Euclidean
methods such as principal component analysis, which we use to build the
statistical appearance models.

The first model uses two regions, the interior and exterior of the or-
gan of interest. The second model accounts for exterior inhomogeneity by
clustering on object-relative local intensity quantile functions to deter-
mine tissue-consistent regions relative to the organ boundary. The third
model analyzes these image descriptors per geometrically defined local
region.

To evaluate the three models, we present segmentation results on blad-
ders and prostates in CT in the context of day-to-day adaptive radio-
therapy for the treatment of prostate cancer. Results show improved
segmentations with more local regions, probably because smaller regions
better represent local inhomogeneity in the intensity distribution near
the organ boundary.

1 Introduction

Automated segmentation of objects in medical images is a challenging task that
benefits from the use of effective image appearance models. Some models that have
shown success are those that analyze intensity patterns with respect to larger-
than-voxel-scale regions of the image in the vicinity of and including the organ of
interest. Such methods are compatible with the idea that the appearance of an or-
gan in an image is in part a function of the position and intensities of neighboring
organs and volumes and their tissue mixtures. In this paper we compare appear-
ance models at three regional scales that statistically characterize image intensity
near object boundaries for use in deformable model segmentation.

In Bayesian deformable model segmentation, a geometric model for an ob-
ject of interest is deformed via its shape parameters to fit the image data. The
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Fig. 1. Example sagittal CT slice of the male pelvis (left), with the bladder and prostate
highlighted (right). Note the lack of contrast around the organs of interest.

optimization proceeds according to an objective function that includes a term
measuring geometry-to-image match, or “image match” for short, which is the
result of the image appearance model. Some previous image matches depend on
a voxel-scale dense correspondence across training cases. Such image matches in-
clude those based on intensity profiles that are either associated with individual
image points [1] or averaged over similar image points [2], and those based on
tuples that are formed from intensity-derived features at an ordered collection
of these points [3]. These schemes are effective in situations where objects have
a consistent voxel-scale structural relationship with one another. However, in
segmenting organs in the male pelvis for example, one cannot expect the same
tissue-mixture at a voxel-scale correspondence (see Fig. 1).

Region-based methods address this concern by modeling intensity distribu-
tions in object-relative regions. These approaches typically sample image inten-
sities within the object interior or separately the interior and exterior. Some of
the resulting intensity models use foreground/background intensity ranges [4], or
use summary statistics such as mean and variance [5] [6]. Such simplifications of
regional intensity distributions limit the information captured by the appearance
model. Recently developed methods use an appropriate parameterization of the
full intensity distribution for a region and either compute an image match with
respect to a single reference distribution [7] [8], or directly model the variability
in the intensity distribution as seen in training [9].

In [9] the authors sample from the interior and exterior regions and con-
vert the resulting distributions to regional intensity quantile functions (RIQFs),
which are amenable to linear statistical methods such as principal component
analysis (PCA). Their appearance model is then based on probabilities of the
regional distributions. As with previous approaches, the method has a signifi-
cant drawback: the use of a single global exterior. Any such model oversimplifies
the appearance by failing to account for the inhomogeneity in the local inten-
sity distributions exterior to the object. While it may be reasonable to model
intensities in the interior of an organ as samples from a single distribution, the
exterior may consist of neighboring organs, bones, and fat and connective tissue,
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the intensities of which should not be considered samples from a single source.
While using a single exterior has the advantage of a more stable approximation
of appearance, this must be balanced against the lack of positional sensitivity
that more local regions provide.

In this paper we explore this balance by experimentally comparing the efficacy
in segmentation of image models at three scales. The three models use RIQFs
to capture intensity distribution variability. As a baseline for comparison, the
first model, “global”, uses two regions, the interior and exterior of the organ of
interest, as in [9]. The second model, “local-clustered”, attempts to reflect the
inhomogeneity in the intensity distribution around the exterior by determining
local distribution-consistent region types relative to the object boundary. The
region types are formed by clustering on local RIQFs. We then partition the
object boundary according to region type and apply PCA on the cluster popu-
lations. For the third model, “local-geometric”, we separately train the intensity
distribution and its variability at each object-relative local region.

Section 2 reviews the intensity quantile methodology and describes the three
image appearance models. Section 3 describes the segmentation framework and
presents results on bladders and prostates in CT in the context of adaptive
radiotherapy for prostate cancer. In section 4, we conclude and posit future
directions.

2 Quantile Functions and Image Match

We begin with a description of RIQFs, followed by details of the three appearance
models. For each regional scale we will construct the image match function.

2.1 Regional Intensity Quantile Functions

[9] describes an approach to image match that probabilistically represents the
appearance of an object in an image. The basic unit of appearance is the regional
intensity quantile function (RIQF), derived from the intensity histogram within
an object-relative region, such as the interior near the object boundary. Quan-
tile functions are a useful parameterization of one-dimensional distributions. For
example, RIQFs have the advantage that certain common changes in a distrib-
ution, such as mean shift and variance scaling, are represented as linear changes
in the RIQF feature space. Given the RIQFs from a region corresponding across
image cases, PCA can therefore be used to characterize the variability in that
region’s intensity distribution.

We briefly review the construction of the RIQF in the context of the distance
metric that provides linearity. Let q and r be the continuous, one-dimensional
intensity distributions in two regions between which we wish to measure the sim-
ilarity. The Mallows distance [10] between q and r, with cumulative distribution
functions Q and R, respectively, is defined as

Mp(q, r) =
(∫ 1

0
|Q−1(t) − R−1(t)|pdt

)1/p

. (1)
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An n-dimensional RIQF is then the discretized inverse cumulative distribution
function on intensities in a region, i.e., Q−1(t) or R−1(t) in the above equation.
Let these discretized quantile functions be denoted q or r. Coordinate j of q or r
stores the average of the [ j−1

n , j
n ] quantile of the intensity distribution for that re-

gion, i.e, qj =
∫ j/n

(j−1)/n
Q−1(t)dt. After discretization, the Mallows distance above

corresponds (up to a scale factor) to the Lp vector norm between q and r,

Mp(q, r) ≈

⎛

⎝ 1
n

n∑

j=1

||qj − rj ||p
⎞

⎠
(1/p)

. (2)

Through quantile functions, regional intensity distributions are understood as
points in an n-dimensional Euclidean space in which distance corresponds to the
M2 metric, and mean and variance changes in intensities are linear.

2.2 Global Regions

In the following sections we describe the construction of the RIQF training
populations and the image match used in segmentation, for each of the global,
local-clustered, and local-geometric appearance models. The image match itself
in each case is a sum over regions of log probabilities in the context of Bayesian
deformable model segmentation (sec. 3.1). Our data consist of CT images of
the male pelvic region and corresponding manual segmentations of bladders and
prostates used for training both the shape and appearance models (sec. 3). Each
object is trained separately.

With the global regions model we analyze the intensity patterns near the organ
boundary, interior and exterior to it. For each training image Ip, we construct the
RIQFs qin,p and qout,p through sampling relative to the manual segmentation.
The contribution of a voxel is Gaussian weighted by its distance to the surface.
The σ for this voxel weighting is a parameter of the training: ours is such that
the contribution is negligible farther than 1 cm. We then apply PCA separately
to the two RIQF sets,{qin,p, ∀p} and {qout,p, ∀p}, to obtain Gaussian models
of the intensity variation inside and outside the organ. For segmenting a target
case then, the image is similarly sampled relative to a prospective model. We
treat the two regions as though they were independent, so the match computed
is the sum of the log probabilities of the interior and exterior target RIQFs.

2.3 Local-Clustered Regions

The impetus for the local-clustered appearance model [11] is that more local
regions will better specify the exterior than the common single homogeneous
region approach. The question is what constitutes a region. For our purposes,
consider that an organ or other volume whose local intensity distributions are
distinguishable from those of neighboring volumes constitutes such a region.
Examples of such volumes are neighboring organs and fat deposits. These regions
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Fig. 2. Sagittal views of a male pelvis in CT, with bladder boundary colored by region
type. Left: a 3D view. Middle: the in-plane contour also colored by region type, with
the prostate shown for reference. Right: an off-sagittal 3D view of the same bladder,
now with the prostate also in 3D and in the foreground.

are a cause of intensity inhomogeneity in the organ exterior. We avoid modeling
the 3D shapes of these regions and for our appearance model consider them only
as they affect the local distributions near the boundary of the object of interest.
We determine region types, corresponding to these different organs and volumes,
through clustering on the RIQFs of smaller regions.

Over all training images Ip, we compute RIQFs qi,p for many local exterior
regions anchored to individual geometrically defined points on the object bound-
ary indexed by i. The interior of the object is treated as one region. As in the
global case, the contribution of a voxel to qi,p is weighted by its distance to the
surface but further is equal to zero if its closest point on the surface is not close
enough to point i–ensuring locality. Computing these weights involves minimal
additional computation through our sampling scheme (see sec. 3.1). Parameters
for this model are the density of points on the surface and the “close enough”
distance, in addition to the Gaussian distance weight of the global region model.

We then cluster the pooled set of RIQFs for all boundary points and images,
{qi,p, ∀i, p}, using Fuzzy C-means Clustering [12]. The Euclidean feature space
distances inherent in this method hold for RIQFs (see sec. 2.1). We specify
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Fig. 3. Clustering on local RIQFs for the bladder exterior. Left shows the pooled data
with cluster centers overlaid (two clusters). The middle and right images show the two
cluster populations with mean and ±2 standard deviations overlaid. The reasonable
separation into lighter and darker distributions is evidenced in Fig. 2.
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the number of clusters. The results are the set of RIQF cluster centers {μk}
and cluster membership scores {ui,p

k , ∀i, p} over all positions and images that
minimize the sum of score-weighted distance in the M2 metric used:

{μk} = min
{μ̃1,...,μ̃K∈�n}

∑

∀i,p

K∑

k=1

ui,p
k ∗ ||qi,p − μ̃k||2, (3)

with ui,p
k ∈ [0, 1] and

∑
k ui,p

k = 1 for given i and p.
The last two steps for training the local-clustered model are to partition the

object boundary according to representative region type and to separately char-
acterize the variability in the cluster populations. To partition the object model
boundary, we use the explicit correspondence across training cases required of
our shape model (see sec. 3.1). Each point i is assigned the region type/cluster
center k that maximizes

∑
p ui,p

k , the sum of cluster membership scores for that
point over all images. Finally, we perform PCA on the individual cluster pop-
ulations, resulting in Gaussian models of the RIQF variability per region type.
Each point i is then assigned the PCA model of its cluster.

During target segmentation, the image is sampled relative to a prospective
model to populate the set of RIQFs {qi, ∀i}. For each point i, we compute the
probability of qi with respect to the principal modes and variances of that point’s
region type. The image match is then the sum of the log probabilities over all
points, weighted by the points’ comparative importance (related to how many
voxels contributed to each local RIQF).

Confirming evidence for this approach is found in the spatial distribution
of region-type on the boundary that we observe in training. When we look for
two clusters on the bladder data (Fig. 3), the resultant boundary partition corre-
sponds to lighter and darker local distribution areas (Fig. 2). This is anatomically
justified because the bladder is surrounded mostly by lower intensity bowel and
fat, with much brighter tissue from the pubic bone area and prostate inferior to
it. There is similar evidence for the prostate, which has brighter tissue exterior
to it in the pubic bones areas and bladder, with darker tissue elsewhere.

2.4 Local-Geometric Regions

A problem with the global model is that through considering only a single ex-
terior region it sacrifices all positional sensitivity. The appearance model is not
specific enough, in that there could be many large-scale regions with the same
aggregate tissue mixture. The local-clustered model attempts to capture the ex-
terior inhomogeneity and replaces a single Gaussian model of intensity with a
number of local region-type Gaussian models, thus leading to a better speci-
fied appearance. However, when we analyze the RIQF data we see that these
region-types still over-generalize the local intensity distribution at many par-
ticular points on the object boundary. Figure 4 shows a point’s regional data
relative to the cluster populations. Neither cluster population is representative
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Fig. 4. Plots showing the over-generalization of the local-clustered scheme, for blad-
der data. Left shows the data projected onto the first two eigen directions of the
pooled PCA space, colored according to cluster type (two clusters). Right shows the
pooled curve plots, with cluster centers. The highlighted data are the local RIQFs for
a particular geometrically corresponding point across training. Note that either cluster
population poorly represents that point’s variability.

of that point’s variability; yet the RIQFs themselves are tightly grouped (at least
in that projection). So we must use an even more specific model.

The local-geometric appearance model addresses the weaknesses of both pre-
vious models. In training, the local RIQFs are sampled as in the local-clustered
model. However in this scheme, we analyze the variability at each point on its
own, applying PCA to the set {qi,p, ∀p}, for each point i, thereby constructing a
more specific Gaussian model for each local region. At target time then, we treat
the local regions as though they were independent. We compute a probability
for each point i with respect to the principal modes and variances of that point’s
PCA model. The image match is then the weighted sum of log probabilities, as
in the previous models.

3 Experimental Results

We compare the efficacy of the three appearance models in the context of de-
formable model segmentation of bladders and prostates. These organs present
a very challenging segmentation problem due to the lack of contrast between
the bladder and prostate and the large variability of the bladder across days
(Fig. 1). We run the same experiment three times, with the only difference be-
ing the image match model. Our data consists of five patient image sets, each
of approximately 16 daily CT scans of the male pelvic area taken during ra-
diotherapy courses. The images have an in-plane resolution of 512 × 512 with
voxel dimensions of 0.98 mm × 0.98 mm and an inter-slice distance of 3 mm.
We also are provided expert manual segmentations of the bladder and prostate
in every image. We consider the patients separately, segmenting the images from
one patient in a leave-one-day-out study, where training is based on all days for
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the patient except the target day. In section 3.1 we discuss our segmentation
framework. In section 3.2 we present segmentation results.

3.1 The Segmentation Framework

In this section we discuss our shape model, its use in segmentation, and the par-
ticular parameters of our experiment. We use discrete medial representations, or
“m-rep”, models to describe the shape of prostates and bladders [13]. An m-rep
is a discretely sampled grid of medial atoms, where each atom consists of a hub
and two equal-length spokes. The boundary of the object model passes orthogo-
nally through the spoke ends. Properties, such as spoke length and orientation,
are interpolated between atoms in the grid. The model defines a coordinate sys-
tem which provides an explicit correspondence between deformations of the same
m-rep model (e.g., those m-reps making up a training set) and the 3D volume in
the object boundary region. This leads to a constructive approach to sampling
an image relative to an object, stepping along profiles normal to the surface that
are provided by the m-rep.

To extract m-reps from images, we perform Bayesian deformable model seg-
mentation, with a semi-automatic initialization [13]. To start, a mean bladder or
prostate model is positioned in a target image using a similarity transform com-
puted from two prostate landmarks. After initialization, we optimize the poste-
rior p(m|I) of the geometric parameters given the image data. This is equivalent
to optimizing the sum of the log prior p(m) and the log likelihood p(I|m), which
measure geometric typicality and image match, respectively. Geometric typical-
ity and the initial mean models are based on the statistics of m-rep deformation
over the training set [14].

There are several parameters that specify the appearance models we use.
The choice of region depth has already been discussed. For the clustered and
geometric local models, we use a boundary point density that places 306 points
on the bladder model surface and 290 on the prostate at fixed object relative
coordinates. We set the number of clusters to be two for both object exteriors (see
sec. 2.3). Our experiments show that while small changes in these parameters
do affect specific results, they do not change the overall conclusions.

3.2 Segmentation Results

We consider the relative segmentation accuracy of the three appearance models
by comparing automatically generated results against the expert manual seg-
mentations. As our measures, we use average surface distance (ASD) and volume
overlap given by the Dice Similarity Coefficient (DSC) [15], which is intersection
over average. We will describe the results of the global model, then the local-
clustered model relative to the first, and finally the local-geometric appearance
model relative to the first two. Tables 1 and 2 show bladder and prostate results
for each patient and appearance model, while Fig. 5 contains trend graphs over
the pooled patient data.
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Table 1. Bladder median overlap and surface distance per patient. See sec. 3.2 for
meaning of the abbreviations.

Patient GlobDSC ClustDSC LocalDSC GlobASD ClustASD LocalASD

1 91.0% 92.0 93.1 1.43mm 1.50 1.16
2 93.5 93.6 94.0 1.23 1.15 1.09
3 90.9 91.3 92.8 1.58 1.48 1.21
4 93.7 93.9 95.1 1.16 1.14 0.92
5 89.7 89.9 90.9 2.13 1.98 1.80

Table 2. Prostate median overlap and surface distance per patient

Patient GlobDSC ClustDSC LocalDSC GlobASD ClustASD LocalASD

1 90.2% 91.8 90.7 0.98mm 0.82 0.93
2 92.0 92.3 94.2 1.34 1.26 0.97
3 92.3 92.0 93.0 0.95 0.94 0.83
4 93.9 94.2 94.2 0.97 0.93 0.90
5 91.3 90.0 91.9 1.59 1.78 1.44

The global interior/exterior appearance model results in a median volume
overlap of 91.2% for bladders and 92.1% for prostates, with an overlap greater
than 90% in about 50 of 80 total target bladders and 60 of 80 prostates. In terms
of average surface distance, global regions results in a median ASD of 1.40mm for
bladders and 1.03mm for prostates with 50 of 80 bladders and 65 of 80 prostates
having ASD less than 1.5mm. These results are good in the context of the male
pelvis in CT, exceeding the agreement we observe between experts.

Segmentations using the local-clustered regions appearance scheme improve
upon the global results in 57.5% (46 of 80) of bladders and 53.8% (43 of 80)
of prostates over all patients. Considered separately (as they are trained and
segmented), this appearance model improves bladder and prostate segmentations
in a majority of three of the five patient image sets. In the successful patients,
bladders are improved in 68.1% (30 of 44) of images while prostates are improved
in 67.3% (33 of 49). These results are encouraging considering that even in the
patient sets that are not improved in a majority of the images, the results are
not significantly worse (see Tables 1 and 2).

The local-geometric model notably improves results over the first two meth-
ods, as evidenced in Fig. 5. In every cumulative measure, this method provides
better fits overall. As well, the tables show that in terms of both volume overlap
and average surface distance measures, local-geometric is the best method in 4
of 5 patient prostate sets and all 5 patient bladder sets. The improvements are
more pronounced in the bladder because there is more room for improvement.
The prostate’s mostly rigid day-to-day change is well captured by the initial
transform in the segmentation algorithm (sec. 3.1).
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Fig. 5. Comparisons of the three appearance models by organ (prostate and bladder
by row), average surface distance (left column) and volume overlap (right column).
The comparisons are with respect to expert manual segmentations. The data for each
model is sorted independently over all patients to show trends, so the abscissa is image
number and does not correspond across models. The numbers in parentheses are median
values. While the local-clustered model just outperforms the global, the local-geometric
appearance model is clearly superior.

4 Conclusions

In this paper, we compared the efficacy of three statistical appearance models
based on RIQFs, where the difference in the models is in regional scale. The
first model, the common global interior/exterior regions approach, provides good
results and is computationally inexpensive. However, it is not a realistic model, in
that it assumes the exterior of an organ has no distinguishing features which can
be useful to segmentation. The second model, local-clustered, gives a boundary
partition consistent with anatomy and leads to somewhat improved results over
the global method. However, this model imposes an inaccurate appearance on
many particular local regions. The final appearance model, which analyzes the
RIQFs per local region, provides the most specific local appearance at every
point and results in the best segmentations overall.
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Our analysis asserts several directions for continuing research. One area of
future research is to control the kind of distribution variability we are attempting
to capture in the RIQF framework. PCA and Euclidean clustering on quantile
functions is appropriate only to the extent that the variability in the observed
distributions is captured by operations that are linear in the RIQF feature space.
Some variability, such as changes in the mixture of multiple sources, is non-
linear in this space, so it should be accounted for prior to PCA. At the moment
when we train with the local-geometric appearance model, we do not explicitly
ensure mixture-consistent regions. In the local-clustered model we may get some
mixture-consistency in the cluster in that there is distance between observed
distributions that differ in mixture.

A key to improving the performance of the local regional methods is corre-
spondence. The geometric correspondence the methods rely on is a baseline for
finding what local image intensity distributions to expect, but the image corre-
spondence comes from how the neighboring objects are configured with respect
to the object of interest. The image correspondence is in general too strongly
tied to the geometric correspondence. For example, the region representing the
bladder may change position relative to the prostate surface across days, while
the geometric correspondence of the prostates will not. The result is a false asso-
ciation of bladder type and non-bladder type distributions based upon geometric
correspondence that is a source of confusion in the appearance model. We will
address this problem through an extended local-clustered approach, where we
model the changes in the region type partition on the object surface.

Other ongoing research involves both the joint modeling of the local RIQFs,
which would obviate the assumption of independence in our image match, and a
multiscale segmentation scheme that takes advantage of the positional sensitivity
the local regions provide. Finally, we look to improve the local-clustered method
through better clustering in the space of local RIQFs, such as that proposed by
[16]. We would like a clustering that captures the disparate shapes and relative
counts of the ideal cluster populations–bone, bowel, fat, etc., rather than only
light versus dark RIQFs.
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Abstract. This paper presents a novel method for registration of car-
diac perfusion MRI. The presented method successfully corrects for
breathing motion without any manual interaction using Independent
Component Analysis to extract physiologically relevant features together
with their time-intensity behavior. A time-varying reference image mim-
icking intensity changes in the data of interest is computed based on
the results of ICA, and used to compute the displacement caused by
breathing for each frame. Qualitative and quantitative validation of the
method is carried out using 46 clinical quality, short-axis, perfusion MR
datasets comprising 100 images each. Validation experiments showed a
reduction of the average LV motion from 1.26±0.87 to 0.64±0.46 pixels.
Time-intensity curves are also improved after registration with an aver-
age error reduced from 2.65±7.89% to 0.87±3.88% between registered
data and manual gold standard. We conclude that this fully automatic
ICA-based method shows an excellent accuracy, robustness and compu-
tation speed, adequate for use in a clinical environment.

1 Introduction

The use of first-pass, gadolinium-enhanced, myocardial perfusion magnetic res-
onance imaging (MRI) for early ischemia detection has been proposed in the
early years of that imaging modality [1]. This acquisition technique has now
been clinically validated and offers a valid non-invasive alternative to SPECT
and PET for the assessment of myocardial perfusion [2, 3, 4]. However, require-
ment of perfusion MRI is to image every slice every heartbeat. As a result little
time is available for image acquisition, leading to poor image quality.

First-pass myocardial perfusion MR image sequences can be roughly decom-
posed in 4 main phases shown in Figure 1. Those phases present different contrast
according to the circulation of the contrast agent. The first frames, before contrast
agent reaches the heart ventricles, mainly show the surrounding organs and the
heart inner anatomy is barely visible. Then contrast agent enters the myocardium

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 544–555, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Example of four time points taken from a first-pass perfusion MRI acquisition.
From left to right: before the bolus reaches the heart, bolus in the right ventricle, bolus
in the left ventricle and diffusion in the myocardial wall.

via the right ventricle, highlighting its geometry. The bolus subsequently appears
in the left ventricle and finally diffuses in the left ventricular wall. Total acquisi-
tion time for a typical full dataset is between 45 seconds and one minute with 40
to 50 frames being typically acquired. This is too long to perform the whole ac-
quisition in one breath hold. Therefore, protocols combining breath hold followed
by a series of shallow breathing phases are commonly used. Such a succession of
breathing phases can lead to the acquisition of images with a varying diaphragm
position and thus a varying heart position within the image.

Post-processing usually consists of a registration step followed by manual seg-
mentation of the myocardium. A characteristic feature for perfusion MRI is the
dramatic contrast variation with time that has to be taken into account for a
proper registration. This contrast variation awareness can be implemented im-
plicitly, by choosing a similarity measure emphasizing non-linear intensity varia-
tion between reference and original image, or explicitly by using a time-varying
reference image. Typically a fixed reference image is obtained by selecting a
frame where contrast agent has reached both LV and RV cavities. A minimiza-
tion scheme is then used to register each image of the sequence with the reference
frame using rigid [5,6,7] or non-rigid [8,9,10] registration schemes. The two main
types of time-varying reference images are the “cascading” scheme [11,12], where
subsequent images are registered, and modeling of the intensity variations within
the different features of interest [13,14,15]. This variety of methods shows that,
as yet, there is no clear consensus on which technique is optimal for first-pass
perfusion MRI registration.

This paper presents a novel approach for registration of perfusion data. As
shown in Figure 1, the representation of the heart varies dramatically during the
whole acquired sequence. As a result, the sequence can be roughly considered
as the superimposition of different sources with distinct spatial location and dy-
namic behavior. Our approach aims at separating those different sources using
Independent Component Analysis (ICA) in order to enable automated image
interpretation and post-processing. In this paper, we demonstrate this concept
by focusing on the issue of registration of in-plane motion throughout time.
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The contributions of this work are twofold:

– We develop a novel method to automatically identify and locate perfusion
events in time and space.

– Based on this, we present a fully automatic algorithm for registration of
perfusion data using a spatially static reference image with dynamic con-
trast variation corresponding to the original, unregistered, data for each
time point.

2 Methods

2.1 Overview

Our method is composed of a semantic analysis step followed by a multi-resolution
registration step. The semantic analysis step, described in Section 2.2, aims at
fully automatically extracting the relevant information regarding perfusion, both
in time and space. The registration steps, described in Section 2.3, is actually build
around a common registration module that performs ICA computation, time-
varying reference computation and motion estimation. This gives a flexible frame-
work that can be quickly and efficiently adapted to other types of perfusion data.

2.2 Semantic Analysis of the Perfusion Sequence

Independent Component Analysis. ICA is a blind source separation method
that has already been successfully applied to various problems arising in signal
and image processing [16] including medical image analysis [17,18]. ICA decom-
poses measured mixed signals X into a set of statistically independent sources
S and their corresponding weights A.

Let xt = [It(x1, y1), It(x1, y2), . . . , It(xm, yn)] be the vectorized representation
of a m × n image It acquired at time t. Using that notation, a set of images
acquired at subsequent p time points can be written X = [xT

t1x
T
t2 . . .xT

tp]
T . The

ICA model is for such a dataset formulated as follows

X ≈ X̄ + AS (1)

The matrix S ∈ R
k×mn, where k is the number of retained components, defines

the independent components (ICs) and A ∈ R
p×k the weight coefficient matrix.

X̄ is defined by

X̄ = [x̄T
t1x̄

T
t2 . . . x̄T

tp]
T (2)

where x̄t is the average image intensity for image It.
From dimensional analysis, A is expected to represent the time-intensity evo-

lution of the k feature images contained in S. The result of applying ICA on a
slice level of a perfusion time sequence is shown in Figure 2.

ICA determines independent components up to a, possibly negative, scaling.
In our application, we use the computed components for pattern recognition
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Fig. 2. Example of feature images (top row) and weighting factors obtained using ICA.
The feature images depict events separated in time whereas the weighting curves show
a similar shape to the one expected for time-intensity curves for corresponding regions
of interest.

purpose. As a result, the absolute value of the scaling factor is not critical. How-
ever, in order to simplify the labeling step, we correct for the sign before semantic
labeling. This is performed by computing the mean values of the weighting coef-
ficients for each IC. A negative mean value indicates that the corresponding IC
needs to be inverted.

Automatic Semantic Labeling of the Independent Components. For
our purpose we chose to focus on the three first events of a perfusion sequence,
that is the baseline, before the contrast agent is visible, and the bolus passage
through the right and left ventricles. ICA initialization being random, pairs of
computed independent components and weighting coefficients are unsorted. For
further post-processing the proper semantic label is assigned to each component.
This is realized by integrating knowledge about the time-intensity behavior of
those features as the circulation of the contrast agent is governed by physiology
and thus is patient-independent.

Contrast in the baseline IC does not depend on bolus passage. As a result,
weights related to the baseline IC should be approximately constant through-
out the whole acquisition. Bolus passage in the RV and LV cavity present the
shape of a gamma-variate function [19] with RV cavity peaking before LV cavity.
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Table 1. Criteria used for automated labeling and corresponding IC ranking, 1 being
most probable and 3 least probable

Sorting Criterion Ordering 1 2 3

Mean weight value Descending Baseline RV LV

Maximum weight value Descending Baseline RV LV

Time point of maximum Ascending Baseline RV LV

Identifying the corresponding ICs thus consists in recognizing two weighting vec-
tors presenting a significant contributions, i.e. a high mean value, and a clear
maximum. Contrast agent systematically entering the RV cavity before the LV
cavity, position of their respective maximum provides relevant information for
labeling.

Automated labeling of ICs is performed by combining this knowledge into
a majority voting system. Each computed IC is ranked according to several
criteria, as described by Table 1. The obtained matrix is then processed to label
each component with its most likely meaning. Compared to manual labeling,
this automated step achieves 98% correct identification for the baseline feature
image and 88% for both LV and RV feature images.

LV mask generation. The ROI in which registration has to be performed can
be roughly described as the rectangle centered on the left ventricle that fully
comprises it. Based on the labeled components obtained from the previous two
steps, a coarse LV blood pool segmentation can be obtained by thresholding
the LV component image thanks to its high contrast w.r.t. the background, as
shown in Figure 2. Its center of gravity CLV = (xLV, yLV) gives a good estimate
of the location for the LV center. To fully comprise the left ventricle, we make
the assumption that the LV radial extent rLV is the same in every azimuth. The
distance dLV-RV between LV and RV blood pool centers of gravity then provide a
good over-estimation of the LV radial extent. The LV mask can then be defined
as ROI = (|x − xLV| < dLV-RV) ∩ (|y − yLV| < dLV-RV).

2.3 ICA-Based Registration

The registration module. For each frame, a reference image is computed
based on the computed ICA. This reference is a linear combination of the 3
feature images weighted by their respective weighting coefficients for that frame.
Its characteristic features present the same intensity values as the original image
to be matched against up to a multiplicative factor. It is computed over the ROI
obtained via the semantic analysis step, as described in Section 2.2. This ROI is
displaced over a displacement range in both x and y directions to obtain a cost
matrix M(δx, δy). The maximum value of this cost matrix provides the optimal
displacement (δxoptimal, δyoptimal), which is used to correct the input dataset.
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Multi-resolution scheme. Exploration of the data showed that 15 pixels,
corresponding to roughly a 2cm displacement, was a reasonable over-estimation
of the maximum displacement in one given dimension. Instead of exploring a
15×15 search space, we chose to use a coarse-to-fine multi-resolution scheme
where two successive 5×5 search spaces are explored, one after sub-sampling by
a factor 2 in each spatial dimensions and the other at full resolution. The gain
in our case is a reduction of the search space dimension by more than 75%.

Further reduction of the search space was achieved by using the semantic
labeling described previously, which allows for fully automatically selecting the
relevant time intervals based on the weighting coefficient values. In our case, we
chose to focus on the time interval between the peaking of the RV bolus and the
end of the acquisition. This allows to only consider frames where contrast agent
is present and to reduce the number of frames to process by 20% on average.

This multi-resolution scheme allows for processing a slice level composed of
50 frames in around 1 minute using Matlab on a standard laptop PC. This
computation time is suitable for use in clinical routine.

3 Experimental Set-Up

3.1 Perfusion CMR Data

The proposed algorithm was validated using 46 datasets obtained from 35 par-
ticipants of the Multi-Ethnic Study of Atherosclerosis (MESA) [20]. Images were
T1-weighted, acquired using a fast gradient echo pulse sequence (TR 225 ms,
TE 1 ms, flip angle 18o). Three slices in a short-axis orientation were obtained
(in-plane resolution: 1.37×1.37 mm2, slice thickness: 8 mm, slice gap: 8 mm).
Participants were asked to hold their breath for 12 to 18 seconds. A Gadolinium-
DTPA (Gd-DTPA) bolus (Magnevist, Berlex, Wayne, New Jersey) of 0.04 mmol
per kg of body weight was injected, starting at the third or fourth heartbeat,
followed by a saline flush of 10 ml. The first pass of the injected contrast agent
bolus through the right and left ventricles and its first recirculation were cap-
tured in 50 heartbeats. 46 datasets, composed of 2 slice levels and 50 images
per slice level, were selected randomly, allowing for testing for robustness with
regard to the acquisition protocol.

The datasets used for this validation were subsequently manually processed by
medical experts. Endocardial and epicardial contours were traced on a reference
frame and adjusted to each frame constituting the sequence. The myocardium
region of interest (ROI) was divided into sectors to the obtain time-intensity
curves used for independent studies [21].

3.2 Validation Procedure

LV center motion. Reference LV motion is assessed using the manual LV en-
docardial contour centroid position C(t) = (xC(t), yC(t)) variation in time. For
each dataset, the parameters Cbefore(t) and Cafter(t) are computed respectively
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before and after registration. They contain the position of LV endocardial con-
tour centroid for each time point C = {C(t), t = 1 . . .Nframes}. Variations of
Cbefore and Cafter around their respective average values C̄before and C̄after gives
a clear indication of the amplitude of the motion affecting a given dataset. Stan-
dard deviation, minimum and maximum values of the distance between C and
C̄ computed before and after registration are thus relevant parameters to eval-
uate the improvement, if any, provided by a registration algorithm. Moreover,
studying those parameters across the whole population of evaluation datasets
gives clear indications regarding the overall robustness of the method.

Global myocardial perfusion curve. The primary goal of perfusion CMR is
the extraction of perfusion-related parameters from time-intensity curves. Com-
putation of such curves is currently done by manually drawing endo- and epicar-
dial contours for each acquired frame, yielding our gold standard. To evaluate
the efficiency of our method, we assume that the obtained dataset is not affected
by motion anymore, allowing to only select one endocardial and one epicardial
manual contours for the whole slice level. We chose to select those contours from
the already existing set of contours mentioned in the previous section. To auto-
mate the selection of the optimal set of contours, we make the assumption that
myocardium presents a low standard deviation w.r.t. intensity levels on a MIP
image. As a result, the two optimal contours are obtained by selecting the pair of
endo- and epicardial contours that minimize standard deviation within the my-
ocardial ROI for a MIP image obtained from the registered slice. Improvement
is studied by using the same set of contours on the original data.

We investigated the accuracy of the time-intensity curves obtained after reg-
istration by computing the Normalized Mean Squared Error (NMSE) and the
squared Pearson correlation coefficient R2 between the normalized perfusion
curve obtained from manual contours and the normalized perfusion curve ob-
tained from unregistered or registered data using only one set of contours.

Finally, we studied the possible incursion of either the LV or RV blood pool
within the ROI by computing the standard deviation σx(t) = SD(I(x, t), x ∈
ROI) of intensity values inside the ROI for each frame. The standard deviation
over time σx,t = SD(σx(t), t ∈ [1 . . . nframes]) for such a parameter gives an in-
dication of possible misaligned ROI as the asymptotic lowest value is obtained
when no motion is corrupting the dataset. Standard deviation is then only af-
fected by perfusion defects and acquisition artefacts such as noise and intensity
non-uniformity. If one of the contrast agent-filled cavity enters the ROI, stan-
dard deviation for that particular frame will increase. As a result, the standard
deviation over time for the whole slice level will increase.

4 Results

4.1 LV Center Motion

Results for LV center motion are illustrated in Figures 3 and 4 and summarized
in Table 2. Figure 3 shows that myocardium is much more homogeneous after
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Table 2. Quantitative results obtained for LV center motion criterion, SD(C − C̄), in
pixels

Mean SD Median Min Max

Original 1.26 0.87 1.15 0 5.36
Registered 0.64 0.46 0.49 0 2.36

(a) (b)

(c) (d)

Fig. 3. Example of MIP images before registration (a) and after registration (b). The
myocardium in (b) appears darker than in (a), showing that motion of the LV cavity
is limited by the registration step. The scatter plots shown in (c) and (d) depict the
corresponding position of the LV center w.r.t. its average position throughout the whole
perfusion sequence. They clearly demonstrate the reduction in motion amplitude.

registration, as hyper-intensities due to post-LV bolus motion are compensated
for. This is confirmed by the curves displayed in Fig. 4. Those curves show
that there is a significant reduction in motion after using the proposed method.
The area under the curve is increased by 17% after registration and 88% of the
datasets show a standard deviation of the distance to the average position lower
or equal to 1 pixel. In the original dataset, such a limited range of motion is
obtained in only 31.5% of the cases.
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Fig. 4. Curves depicting motion range over the population before (dotted line) and
after (solid line) registration. For example, 88% of the registered datasets show an
overall motion inferior to 1 pixel, which was the case for only 31.5% of the original
datasets.

Average LV center motion, characteristic of intra-slice variability, is reduced
on average by almost 49.2% to 0.64 pixel after registration. Standard deviation
of LV center motion, depicting inter-data variability, is reduced by 47.1% and
is below 0.5 pixel. Median value is also reduced, by 57.4%. Minimum value
is left unchanged, that being a good sign as the original minimal LV center
displacement was 0. Finally, the averaged maximum LV center displacement is
also reduced, from 5.36 pixels to 2.36 pixels, hence a 56% decrease, showing that
the proposed method is robust even for large displacements.

4.2 Time-Intensity Curves

Registration increases the accuracy of computed perfusion parameters not only
by correcting for a punctual error in time-intensity curves due to a misaligned
frame, but also by making sure that the plotted dynamics are correct. Numerical
results can be found in table 3.

First, accuracy in terms of dynamics has been improved as shown by the
squared Pearson correlation coefficient (R2) values. The average value across
the datasets is increased, with a significantly reduced standard deviation. This
means that time-intensity curves after registration present a good matching with
the manual gold standard in terms of dynamics.

Second, NMSE is, on average, significantly reduced, average estimated error
being now below 1%. Standard deviation of NMSE is reduced by 50% across the
whole set of data, proving the robustness of our method in terms of perfusion
curves. However, a punctual error can be observed as the maximum value for
NMSE, which is lower after registration than before, is still high.
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Table 3. Quantitative results obtained for Time-intensity curves. Average NMSE is
in percent, average and standard deviation of σx,t within the myocardial ROI in A.U.

Mean SD Median Min Max

R2 Original 0.88 0.16 0.97 0.19 1
Registered 0.92 0.10 0.98 0.50 1

Average
NMSE

Original 2.65 7.89 0.05 0 48.58
Registered 0.87 3.88 0.03 0 34.05

σx,t
Original 2.33 2.30 1.52 0.28 12.42

Registered 1.31 1.14 1.04 0.30 7.80

Finally, values for σx,t show a significant decrease, meaning that there is far
less unwanted incursion of the ventricles within the ROI after registration.

5 Discussion

We presented a fully automated registration algorithm designed for first-pass my-
ocardial perfusion MR image sequence. Validation described in Section 4 shows
that this method compares favorably in terms of accuracy and robustness with
manual segmentation, which is the current gold-standard. A strong point for our
method is the fact that only a few parameters are used, namely the number of
independent components and the size of the registration window, thanks to the
higher level reasoning allowed by the use of ICA. Moreover, computation speed,
often a major drawback for registration method, is suitable for use in a clinical
environment. This trade-off between accuracy, robustness and speed has been
achieved via a careful choice of assumptions that are discussed here.

One point of debate is the ideal similarity measure to be used with perfu-
sion data. Sum of Squared Differences (SSD) is a classic similarity measure used
for intra-modality registration but sensitive to contrast variations. Our method
overcomes that problem as the reference image mimics the intensity variation
observable during the acquisition. Another popular choice for a similarity mea-
sure is the Mutual Information (MI) or its normalized version (NMI). Both are
derived from inter-modality registration techniques. They are optimal in the
sense that they can cope with varying contrast. However, such measures are
computationally more expensive than either SSD or cross-correlation, a crucial
point when the measure is included in an iterative scheme like registration. In
the current setting, computation time for a 50 frames slice level is lower than 1
minute, which is fast enough to be used for off-line analysis of perfusion data.

Finally, a comparison of sector-wise perfusion curves before and after registra-
tion with the manual gold standard may have been a possibility for time-intensity
curves-wise evaluation. However, sector definition is extremely sensitive to local
contour variation and reference point selection. Moreover, the number of sectors
and their positioning are still up to debate. Using global myocardial perfusion
curves allows to overcome those problems, not to forget the reduction in noise
due to taking into account a region with a larger extent. Computing standard
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deviation of intensities within the ROI allows for detecting any contrast agent-
filled cavity incursion. Its lower boundary is indeed set in the ideal case of a
perfectly centered ROI where only noise and natural intensity variations caused
by possible perfusion defect are possible causes for intensity variations.

6 Conclusion

We presented a fully automated method for registration of first-pass perfusion
MRI data. This method uses ICA to extract relevant features about the perfusion
sequence, which both describe the anatomy and the perfusion timeline. Anatom-
ically relevant features allow for the computation of a reference image optimized
for each acquired frame, subsequently reducing the computational burden by
using a faster and more robust similarity criterion. Timeline description is also
used to reduce the computational load as only the time interval where contrast
agent is present is taken into account. Obtained results, both in terms of ac-
curacy, robustness and computation speed, are very good compared to existing
methods and are good enough to envision use in a clinical environment. Future
work will be directed toward the use of obtained feature images to automati-
cally segment the myocardial wall, leading to a fully integrated and automated
pipeline for perfusion data processing.
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Abstract. Topology-preserving geometric deformable models (TGDMs)
are used to segment objects that have a known topology. Their accuracy
is inherently limited, however, by the resolution of the underlying com-
putational grid. Although this can be overcome by using fine-resolution
grids, both the computational cost and the size of the resulting surface in-
crease dramatically. In order to maintain computational efficiency and to
keep the surface mesh size manageable, we have developed a new frame-
work, termed OTGDMs, for topology-preserving geometric deformable
models on balanced octree grids (BOGs). In order to do this, definitions
and concepts from digital topology on regular grids were extended to
BOGs so that characterization of simple points could be made. Other
issues critical to the implementation of OTGDMs are also addressed.
We demonstrate the performance of the proposed method using both
mathematical phantoms and real medical images.

1 Introduction

Front propagation using level set methods [1] and their application in deformable
models – geometric deformable models (GDMs) [2,3,4]are well established and
extensively used in medical image segmentation. Topology preserving geometric
deformable models (TGDMs) [5,6,7] were recently introduced in order to pro-
vide the ability to maintain topology of segmented objects while preserving the
other benefits of GDMs. For example, in medical imaging many organs to be
segmented have boundary topologies equivalent to that of a sphere. While many
applications such as visualization and quantification may not require topologi-
cally correct segmentations, there are some applications — e.g., surface mapping
and flattening and shape atlas generation — that cannot be achieved without
correct topology of the segmented objects.

GDMs represent the evolving surface implicitly as a level set of a higher
dimensional function. The resolution of the implicit surface is therefore restricted
by the resolution of the sampling grid that defines the level set function, as
demonstrated in Figs. 1(a)–(c). Accurate solution and representation of shapes
with fine anatomical details (e.g., the folded sulci and gyri on the cortex) requires
the use of a fine resolution grid. This dramatically increases the computation time
of GDMs and produces surface meshes with prohibitive size, however, especially
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Fig. 1. Implicit surface resolution: the dotted contour is the truth contour; the solid
contour is the implicit contour embedded in each sampling grid. (a) A coarse resolution
grid cannot resolve contour details. (b) A refined grid represents the truth contour
better. (c) A more refined grid provides a more accurate representation. (d) An adaptive
grid with local refinement provides an accurate and efficient multiresolution shape
representation.

on highly resolved 3D medical images. Adaptive grid techniques [8,9,10,11,12,13]
address the resolution problem of GDMs by locally refining the sampling grid
in order to resolve details and concentrate computational efforts where more
accuracy is needed (as shown in Fig. 1(d)).

Although numerical schemes to implement level set methods on adaptive grids
are well developed, there is little literature on the issue of defining digital con-
nectivity rules for adaptive grids. Without such rules, it is difficult to guarantee
homeomorphisms between the implicit surfaces and the corresponding bound-
aries of segmented objects on an adaptive grid. Digital connectivity rules for
adaptive grids are also necessary in order to design a topology preserving level
set method on adaptive grids. The method introduced by Han et al. [5] for
regular grids maintains the topology of the implicit surface by controlling the
topology of the corresponding binary object segmentation. This is achieved by
applying the simple point criterion [14] from the theory of digital topology [15],
preventing the level set function from changing sign at non-simple points. Until
now, this topology preservation mechanism could not be used on adaptive grids
because there was no characterization of “simple points” on adaptive grids.

In this paper, we propose a new topology-preserving level set method based
on the balanced octree grids (BOGs) (i.e., octree grids for which the maximum
cell edge length ratio between adjacent grid cells is 2). We first briefly review the
digital topology framework for the adaptive grid that we recently proposed [16].
We then present a topology preserving geometric deformable model for adaptive
octree grids (OTGDM), which is based on our new characterization of simple
points on BOGs that extends the original characterization on the uniform grid
in [14]. Several experiments are used to demonstrate the performance of OTGDM
on both computational phantoms and real medical images.

2 Digital Topology Framework on BOGs

In [16], we extended basic digital topology concepts to BOGs, providing a unique
and topologically consistent digital embedding scheme for implicit surfaces de-
fined on BOGs. In the following, we summarize the concepts of “neighbor points”
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Fig. 2. 3D neighborhoods on balanced octree grids

and “invalid cases”, which will be used in the characterization of “simple points”
on BOGs presented later.

The concept of neighbor points is fundamental in classical digital topology
theory [15]. In [16], grid points on an octree grid are defined to be edge(E)-
neighbors, square(S)-neighbors, or cube(C)-neighbors if they share an edge, a
face, or a cube, respectively, of leaf cells of the octree. (Leaf cells are cells that
have no child cells.) Fig. 2 shows an example of neighborhoods on a BOG.
Fig. 2(a) shows a uniform neighborhood and Figs. 2(b)–(d) show examples of
non-uniform neighborhoods. The white circle in each figure indicates the root
point of the neighborhoods; black squares are the E-neighbors; white squares are
the points that are added to the E-neighbors to yield the S-neighbors; and gray
squares are the points that are added to S-neighbors to yield the C-neighbors.
Analogous definitions of neighborhood, adjacency, path, and connectivity can be
found in [16].

Fig. 3. Examples of invalid cases on interface of resolution transition

Using the above neighborhood and connectivity definitions, inconsistencies
can still occur at the interface(s) between grid cells of different resolution (re-
ferred as transition face) as illustrated in Fig. 3. Assume E-connectivity for the
black foreground points, and S-connectivity for the white background points. In
Fig. 3(a), the black point is shared only by the fine resolution grid cells and forms
a single connected component on the transition face. This foreground compo-
nent does not exist, however, if we look at the coarse side of the transition face.
Similarly, in Fig. 3(b), the two white background points are disconnected and
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form two connected components at the fine resolution side of the transition face,
whereas they are connected as one connected component by the coarse cell. As a
result, the embedded isosurface will have a discontinuity at the transition face.
To eliminate these inconsistencies and thus guarantee unique and valid surface
embedding on BOGs, we define such cases as invalid case [16] where the num-
bers of connected components (for both foreground and background) formed by
the grid points on two sides of a transition face are not equal. Invalid cases are
explicitly checked and prevented to happen in the OTGDM algorithm, as will
be described later.

3 A Topology-Preserving Level Set Method on BOGs

In this section, we present a new topology-preserving level set method on BOGs.
The overall algorithm is first summarized and the details about each step are
then discussed.

We adopt the narrowband framework [17] in the following implementation
and we assume a general GDM model as can be summarized by the following
equation:

∂Φ(x, t)
∂t

= [Fprop(x, t) + Fcurv(x, t)]|∇Φ(x, t)| + F adv(x, t) · ∇Φ(x, t) (1)

where Fprop, Fcurv, and F adv denote user-designed force (or speed) terms that
control the model deformation. In particular, Fcurv, the curvature force, controls
the regularity (smoothness) of the implicit surface. Fprop and F adv are two forms
of image forces (scalar and vector respectively) that drive the surface to the
desired object boundary.

Octree-based TGDM algorithm

1. Initialize the adaptive grid according to the initial surface topology and
adaptation metric (cf. Section 3.1). Initialize the level set function to be the
signed distance function of the initial surface.

2. Build the narrow band by finding all grid points within a distance threshold
of the implicit surface (zero level set of the current level set function).

3. Update the level set function at each point in the narrow band iteratively as
follows:
(a) Compute the new value of Φ(x, t) using Eq. (1).
(b) If there is no sign change, accept the new value and move on to the next

point. Otherwise, go to Step 3(c).
(c) Test whether the sign change at this point yields a valid configuration

(cf. Section 2). If yes, go to Step 3(d). Otherwise, move on to the next
point.

(d) Test whether the current point is a simple point by computing two topo-
logical numbers (cf. Section 3.2)). If the point is simple accept the new
value. Otherwise, set the level set function to be a small number with
the same sign as its original value.
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4. If the zero level set is near the boundary of the current narrow band, reini-
tialize the level set function to be a signed distance function and go to Step 2.

5. Test whether the zero level set has stopped moving (i.e., no sign change
happens at any point inside the narrow band in two or three consecutive
iterations). If yes, stop; otherwise, go to the next iteration.

6. Extract the zero-value isosurface using an adaptive connectivity-consistent
marching cells algorithm (cf. Section 3.3).

A few comments about OTGDM. First, the reinitialization step is a straight-
forward extension of the fast marching method to the non-uniform cartesian
grid. Different grid sizes are handled by the modified finite difference operator
[17]. Second, the simple point check can be omitted, and the algorithm becomes
a standard geometric deformable model on an adaptive octree grid (OSGDM).

3.1 Adaptive Grid Generation

We generate a BOG following two criteria: first, the BOG should embed the
initial implicit surface with correct topology; second, the BOG should adapt its
resolution according to the geometrical shape of the final surface. We discuss
these two considerations below.

Initial surface topology
To guarantee that the final surface has the correct topology, we must start with
an initial surface that has the correct topology. Assume that we are given an
initial implicit surface defined on the uniformly sampled grid; by definition, it
has the correct topology, which can be arbitrary and unknown. To initialize an
implicit surface on a BOG while preserving topology, we apply the bottom-up
cell merging algorithm that we presented in [16]. The algorithm starts from the
original uniform grid and treats it as an octree grid that is at its finest possible
resolution. The leaf cells of this octree grid are then traversed level-by-level from
bottom to up. At each level, the leaf cells are evaluated one-by-one to see if they
can be merged without changing the topology of the underlying isosurface and
without generating invalid cases. Details of this algorithm can be found in [16].
After applying the cell-merging algorithm and balancing the grid, we obtain a
BOG that embeds the initial surface with the correct topology.

Image-based adaptivity metric
We now refine the initial BOG so that it has finer cells where image details pre-
dict the need for a higher resolution surface representation. The concept of an
adaptivity metric, which is derived from the image volume, is used. This metric
estimates the local geometrical properties of the final surface boundary — if it
should come to rest at the given image location — and the BOG is adapted
accordingly. A classical adaptivity metric is the magnitude of the image gra-
dient (cf. [8]), wherein computational grid is refined at high gradient regions
and coarsened elsewhere. This metric cannot help to reduce the size of the fi-
nal surface mesh on the adaptive octree grid, however, since the grid will be
uniformly refined along the entire object boundary. In this work, we have used
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Fig. 4. Illustration of grid adaptation for a harmonic sphere phantom image

the max-curvature — i.e., the larger absolute value of the two principal curva-
tures — estimated from the volumetric gray-level image using the method in
[18]. To achieve more robust estimation (in noise, for example), we apply an
anisotropic smoothing to the image before using curvature estimation (cf. [19]).
Once curvature κ(x) is estimated, we define a refinement rule to be:

l(x) = i, if ti−1 <
κ(x)
κmax

≤ ti

where x denotes a octree grid node, and l(x) denotes the minimum level of
the leaf cells sharing node x. If the highest level of the octree is lmax, then i =
1, . . . , lmax. κmax is the maximum of κ(x). The ti’s are user-selectable thresholds
to flexibly tune the grid resolution for different images.

Fig. 4 shows one example of grid generation for a mathematical phantom that
has a modulated spherical shape as shown in Fig. 4(a). We estimated the max-
curvature from the image volume, and Fig. 4(b) shows that the larger values
(indicated by bright colors) occur on the ridges and valleys. We then generated
an adaptive grid using the above refinement rule. Fig. 4(c) shows all the leaf
cells on the adaptive grid that the final reconstructed surface cut through. The
color map shows the resolution scale of the grid cells. It is observed that the grid
resolution is finer in the high-curvature ridge and valley regions, and is coarser
in the flat regions.

3.2 Simple Point Characterization on BOGs

An efficient algorithm to determine a simple point on a uniform grid was pre-
sented in [14]. The method requires the definition of a geodesic neighborhood and
topological numbers. We follow the spirit of [14] to characterize a simple point
on BOGs, using the digital topology framework summarized in Section 2. Let us
denote the domain of digital images on a BOG to be Ω, and the n-neighborhood
of a point x on a BOG by Nn(x), and the set comprising the neighborhood of x
with x removed by N∗

n(x), where n ∈ {E, S, C}. We define geodesic neighborhood
and topological numbers on BOGs as follows:
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DEFINITION 3.1 (Geodesic Neighborhood). Let X ⊂ Ω and x ∈ Ω. The
geodesic neighborhood of x with respect to X of order k is the set Nk

n(x, X)
defined recursively by: N1

n(x, X) = N∗
n(x) ∩ X and Nk

n(x, X) = ∪{Nn(y) ∩
N∗

M (x) ∩ X, y ∈ Nk−1
n (x, X)}, where M = C in the balanced octree grid.

DEFINITION 3.2 (Topological Numbers). Let X ⊂ Ω and x ∈ Ω. The
topological numbers of the point x relative to the set X are: TE(x,X) = #CE

(N2
E(x,X)), TE+(x,X) = #CE(N3

E(x,X)), TS(x,X) = #CS(N2
S(x,X)), TC(x,X) =

#CC(N1
C(x, X)) in the balanced octree grid, where # denotes the cardinality of a

set.

Note that in defining topological numbers, the notation “E+” means the E-
connectivity whose dual connectivity is S-connectivity. Once the topological
numbers are known, the following proposition gives a characterization of simple
point on BOGs.

PROPOSITION 3.1 A point x on a balanced octree grid is simple if and only
if Tn(x, X) = 1 and Tn̄(x, X̄) = 1, where (n, n̄) is a pair of compatible connec-
tivities (cf. [16]) on the balanced octree grid.

Fig. 5. An example of constructing geodesic neighborhood on a BOG

Fig. 5 illustrates the computation of topological numbers for a particular ex-
ample. The root point is the gray point in the center of Fig. 5(a). All points in
its neighborhood are marked as either black or white circles representing fore-
ground and background respectively. Assume black circles have E-connectivity
and white circles have S-connectivity. The highlighted black and white points
in Fig. 5(b) are the first-order E-neighbors in the foreground (black) and the
first-order S-neighbors in the background (white), respectively. In Fig. 5(c), the
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points in squares are the second order neighbors added to the geodesic neighbor-
hood. In Fig. 5(d), the points in triangles are the third order neighbors added
to the geodesic neighborhood. All the points in Fig. 5(d) consist of the com-
plete geodesic neighborhood for the root point. A straightforward computation
of the topological numbers requires counting the number of connected compo-
nents within geodesic neighborhoods, which can be navigated by leaf cell edges
on the adaptive grid. For example, when computing the foreground topological
number in this case, we start from the root point and search in the E-connected
directions for the first-order neighbors in the foreground. When we search in the
left direction, we find the paired black points (as they are both one leaf cell edge
away from the root point). This pair of points is automatically counted as belong-
ing to the same connected component. Next, the neighbors of these two points in
the foreground inside the geodesic neighborhood are also counted into the same
connected component, and so on. All the paired points connected by solid lines
in Fig. 5(e) are counted in this manner. In this example, TE+(x, X) = 2 and
TS(x, X̄) = 1. Therefore the considered root point is not simple. Fig. 5(f) and
Fig. 5(g) show how the topology of the implicit surface changes if the root point
is changed from foreground to background.

It is important to note that the above characterization of simple points is
only valid on a BOG that has no invalid configurations. Therefore, if a level
set function is about to change sign at a given node, we must first check to see
whether the sign change would create an invalid configuration; if not, then it is
appropriate to check the simple point property.

3.3 Connectivity Consistent Isosurface Extraction on BOGs

The final surface mesh must be extracted using an adaptive connectivity-
consistent marching cells (ACCMC) algorithm (cf. [5,16]). The ACCMC algo-
rithm prevents “cracks” that can happen on the interface of resolution transition
by re-tessellating the coarse resolution cell so that it agrees with the fine resolu-
tion cells on the transition face. The triangulation scheme is carefully designed to
prevent self-intersection of surface patches inside a coarse cell that has transition
face(s).

4 Experiments

4.1 Harmonic Sphere Phantom

In the first experiment, we used the harmonic sphere image phantom shown in
Fig. 4(a) and performed a quantitative analysis of the efficiency and accuracy of
the proposed method. The original image has a size of 128 × 128 × 128, and the
true surface is known. Since topology is not an issue here, we applied a GDM on
uniform grids of different sizes and an OSGDM on a BOG (with finest resolution
equivalent to that of the finest uniform grid). We then measured the errors of
these results by computing the distance from each vertices of the truth surface to
the other surfaces. All the models were initialized with a small sphere inside the
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Table 1. Harmonic sphere experiment results

Grid Size Mean Error Max Error Triangle Time
(voxel) (voxel) Number (min)

64 × 64 × 64 SGDM 0.43 3.39 34000 2
128 × 128 × 128 SGDM 0.14 1.42 137660 16
256 × 256 × 256 SGDM 0.09 0.94 548992 130
OSGDM 0.12 1.23 108990 9

Fig. 6. Pelvic bone experiment (see text for details)

object. The results are summarized in Table 1. The 2563 uniform grid result has
the best accuracy but it takes the most computation time and has the largest
mesh size. Compared with the 1283 uniform grid result, the OSGDM result has
better accuracy with smaller mesh size and less computation time.

4.2 CT Pelvic Bone

In the second experiment, we tested OTGDM on a CT image of a pelvic bone
which has size 512 × 512 × 280. Fig. 6(a) shows a 2D slice of this 3D image. The
topology of a pelvic bone surface is assumed to be genus 3 (Euler Number = −4)
[20], i.e., the surface should only have 3 handles.

We started from an initial shape template that has the correct topology
(shown in Fig. 6(b)), and then applied an OTGDM with finest resolution equiva-
lent to that of the original image grid to reconstruct a topologically correct pelvic
bone surface (shown in Fig. 6(c)). The topology of the reconstructed surface is
verified to be correct (i.e., Euler number is computed to be −4). Due to noise
and other artifacts, applying OSGDM on this image yielded a segmentation with
incorrect topology (Euler number is −60). Fig. 6(d)–(e) show a close up view of
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Fig. 7. Cortical surfaces (cross-section views): (a) OTGDM results overlaid on MR
brain image (blue–inner surface, red–outer surface); (b)-(c) close-up views of inner and
outer surfaces reconstructed by three types of grid: red–coarse uniform grid TGDM
result, blue–fine uniform grid TGDM result, yellow–OTGDM result); (d)-(e) close-up
views of BOGs used by OTGDM (shown in blue)

the OSGDM result and the OTGDM result. We see that the OSGDM result has
undesirable small handles (indicated by arrows), whereas in the OTGDM result
those handles are all eliminated.

4.3 MR Human Brain

In the last experiment, we applied the proposed method to extract the inner
and the outer cortical surfaces for two MR brain images. The original images
both have a size of 256 × 256 × 198. The overall reconstruction methodology
that we used is called “CRUISE,” as described in [6]. We ran the CRUISE pro-
cedure on the original image until the deformable surface reconstruction step.
We then started from a topologically correct estimate of the GM/WM interface,
and applied TGDM on three different computational grids to extract the in-
ner and outer cortical surfaces. The first one used a fine uniform computational
grid (double size of the original image). The second one used a coarse uniform
computational grid (of the original image size). The third one applied the pro-
posed OTGDM, whose finest grid resolution is same as the fine uniform grid.
The image derived forces are computed initially on the coarse uniform grid, and
interpolated to the fine uniform grid for the first implementation. The topology
of the OTGDM results are all verified to be correct (i.e., the Euler number of all
extracted surface meshes is 2). The results and their close-up views are shown
in Fig. 7. The improvement of accuracy by using a fine resolution grid appears
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Fig. 8. triangle meshes: left – coarse uniform grid TGDM result; center – fine uniform
grid TGDM result; right – OTGDM result

subtle in most places; however, we can still observe that the fine grid TGDM
result and the OTGDM result capture anatomical details (such as the deeply
folded sulci and gyri indicated by circles) better than the coarse grid TGDM
result. Fig. 8 shows a close-up 3D view of the three inner surface meshes. As
we can see, the OTGDM surface mesh is a multi-resolution representation and
has large triangles in regions that are relatively flat and small triangles in re-
gions with high curvature. The average mesh sizes and computation time for all
the surface results are: fine uniform grid TGDM result – 2,771,000 triangles (40
mins); coarse uniform grid TGDM result – 659,000 triangles (5 mins); OTGDM
– 968,000 triangles (12 mins).

We also conducted a landmark-based study of accuracy for these surface re-
sults of the two subjects. The landmark picking procedure is described in [6]. A
total of 420 landmark points are used for each brain subject, corresponding to
14 fundi, 14 banks, and 14 gyri crowns near major sulci. The landmark errors
for the results on three computational grids are shown in Table 2. It can be
seen that a fine uniform grid provides the best accuracy, that is, the smallest
landmark error. The computation time and the surface mesh size is consider-

Table 2. Landmark Errors for Inner and Outer Cortical Surfaces (in mm)

Subject 1 Subject 2
Region Grid mean

SD
std
SD

mean
AD

std
AD

max
AD

mean
SD

std
SD

mean
AD

std
AD

max
AD

Overall OG -0.05 0.62 0.45 0.43 2.28 -0.16 0.61 0.49 0.39 2.15
Inner DG -0.08 0.53 0.39 0.36 1.73 -0.17 0.56 0.45 0.37 1.83

AG -0.08 0.53 0.39 0.36 1.67 -0.15 0.57 0.46 0.36 1.84
Overall OG -0.50 0.44 0.54 0.40 1.91 0.12 0.61 0.46 0.41 2.49
Outer DG -0.31 0.38 0.39 0.30 1.71 0.13 0.54 0.40 0.35 2.17

AG -0.35 0.39 0.40 0.32 1.74 0.12 0.55 0.40 0.36 2.10

SD: signed distance in mm, AD: absolute distance in mm
OG: original size grid, DG: double size grid, AG: adaptive octree grid.
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ably increased, however. The coarse uniform grid is the fastest and produces the
smallest triangle mesh, at the cost of having a larger error. OTGDM produces
comparable landmark error as the fine uniform grid TGDM and the resulting
surface mesh size and the computation cost are slightly larger than that of the
coarse uniform grid TGDM result.

5 Discussion and Conclusion

We have proposed a topology-preserving geometric deformable model for the
adaptive octree grid (OTGDM); it is based on new digital topology concepts
that we have developed for adaptive octree grids. Experiments show that the
proposed method correctly preserves the digital topology of the implicit sur-
face(s) embedded on the adaptive grid, saves computation time, and yields fewer
triangles in the final surface(s).

We have additional comments on two issues. The first issue is about the intro-
duction of “invalid cases”. It appears that the grid configurations defined to be
invalid can possibly be allowed by introducing several new types of connectivi-
ties on BOGs. Such a strategy will considerably increase the complexity of the
connectivity-consistent isosurface algorithm. A further concern is that having
these many connectivities makes the characterization of simple point an almost
intractable problem in 3D. The introduction of “invalid cases” greatly reduces
the extra complexity in the study of connectivity on BOGs. The second issue is
about the generation of BOGs. Currently we generate BOGs only once before
running OTGDM algorithm, which proves to be efficient for segmentation pur-
pose since only the final solution is of concern. Dynamic grid refinement may
be desirable for some applications and designing a topology-preserving dynamic
refinement scheme is part of our future work.
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Abstract. We address the problem of entropy estimation for high-
dimensional finite-accuracy data. Our main application is evaluating
high-order mutual information image similarity criteria for multimodal
image registration. The basis of our method is an estimator based on k-th
nearest neighbor (NN) distances, modified so that only distances greater
than some constant R are evaluated. This modification requires a correc-
tion which is found numerically in a preprocessing step using quadratic
programming. We compare experimentally our new method with k-NN
and histogram estimators on synthetic data as well as for evaluation of
mutual information for image similarity.

1 Introduction

Nonparametric entropy and mutual information estimation from finite number
of samples is an important tool in diverse domains such as statistics [1], com-
putational chemistry [2], or measuring information contents of signals such as
neural spike trains [3]. For multimodal image registration, mutual information
is the image similarity measure of choice [4,5,6]. Instead of measuring mutual
information of scalar image intensities, in some cases it is advantageous to use
more complex multidimensional features, such as color, output of spatial filters,
texture descriptors, or intensities of neighborhood pixels [7,8,9,10]. However, due
to the lack of good estimators, most approaches are limited to low dimensions
or have to use strong assumptions such as normality. Histogram and kernel es-
timators do not work well in high dimensions (d � 5) [11,12,13,3] when the bins
are simultaneously too large and almost empty. Nearest neighbor (NN) distance
estimators [14,15,3,16] look promising, if their two principal problems can be cir-
cumvented — the computational complexity of the nearest neighbor search [17]
and the artifacts and singularities when applied to finite accuracy (quantized)
data. Here we attempt to solve the second problem by using a new estimator
called R-NN, combining k-NN and kernel estimator approaches.

1.1 Entropy Estimation

Let us have N samples X = {x1, . . . ,xN}, from an unknown probability density
f(x) in a d-dimensional space, R

d. The task is to estimate the Shannon informa-
tion entropy Htrue(f) = −

∫
f(x) log x dx. We consider estimators of the form
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H(X) =
1
N

N∑

i=1

h(xi; X) with h(xi; X) ≈ − log f(xi) (1)

If h(xi; X) is an unbiased estimator of − log f(xi), then H(X) is an unbiased
estimator of Htrue(f) [15].

1.2 Kernel Estimator

For H(X) to be a non-parametric estimator, h(xi; X) must depend only on
the neighborhood of xi [13]. We describe the neighborhood compactly by the
dependency of the number of points q(r) on the neighborhood size1 r.

qi(r) =
∣∣{‖x − xi‖∞ ≤ r;x ∈ X}

∣∣ (2)

Fixing the neighborhood radius R, we obtain an estimator for − log f(xi)

hker(xi; X) = − log
qi(R)

Vd(R)N
(3)

where Vd(R) = (2R)d is the volume of the neighborhood. This is a plug-in kernel
estimator for a constant kernel, equivalent to an averaged shifted histogram
(ASH) [13].

1.3 Nearest-Neighbor Estimator

The distance to the k-th nearest neighbor is

�i(k) = min
r≥0

{
r; qi(r) > k

}
(4)

An estimator based on the distance �i(1) to the nearest-neighbor (NN) of xi is
due to [14] and was later extended to k-th nearest-neighbor (k-NN) [15,16]. Its
formulation for the �∞ norm [17] is

hNN(xi; X) = h0(r, k) = −ψ(k) + ψ(N) + d log 2r for r = �i(k) (5)

where ψ is the digamma function2. The estimator (5) is asymptotically unbi-
ased [14,3]. Its variance can be reduced by choosing higher k [16]. The k-NN
estimator works reasonably well even in high dimensions (we have tested it for
d = 25 ∼ 50) and for small sample sizes. The computational bottleneck is the
nearest neighbor search (all-NN search) but acceleration techniques exist, based
on space partitioning and approximative search [17,18,19,20,21,22]. Graph-based
estimators for Rényi entropy [23,24] behave similarly to the k-NN estimators.

1 We are using the �∞ (maximum) norm for better compatibility with rectangular
bins. The �2 (Euclidean) norm can also be used with minimal changes.

2 ψ(k) = −γ +
�k−1

i=1 1/i, where where γ ≈ 0.577 is the Euler constant.
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Real data is often quantized or known only with limited accuracy. Due to the
presence of the log r factor in (5), the results will fluctuate highly if small values
of �i(k) are inaccurate; if some �i(k) are zero, the estimator diverges. A possible
solution is to add low-amplitude perturbation to the data [15] or to switch to
a histogram-like estimator for r < R, for some fixed R [17]. Singh [16] advocates
the use of k > 1. However, the first approach increases variance, the second
performs poorly in the transition region, and the third does not guarantee to
eliminate the problem.

1.4 Proposed Approach

Consider the case of finite accuracy data where no distances smaller than a given
R can be reliably measured. The k-NN estimator hNN (5) works well for low
densities f , when the distance between neighboring points is much larger than
the measurement accuracy. Conversely, the kernel estimator hker (3) works best
for high densities f , when the distance between points is smaller than the kernel
size. Hence, we propose to construct a new estimator, called R-NN, combining
the advantages of the two approaches with a smooth transition between [25].
A numerically calculated correction is used to preserve unbiasedness.

2 Method

For a fixed R, we take the k-NN estimator hNN (5), varying the k for each xi so
that �i(k) > R. This gives us a naive R-NN estimator hnaive(xi; X) = h0(r, k)
where (from now on we will drop the subscript i for brevity)

h0(r, k) = −ψ(k) + ψ(N) + d log 2r with k = q(R), r = �(k) (6)

The expected value of h0(r, k) = hnaive(xi; X) for a fixed xi is

E
[
h0

]
X\{xi} =

N−1∑

k=1

∫

r>R

h0(k, r) p(k, r) dr (7)

where p(k, r) is the probability density of observing k points (including xi) in
the neighborhood R and the (k + 1)-th point (the k-th NN) at distance r > R.
It can be obtained using the trinomial formula [15]

p(k, r) =
(N − 1)!

(k − 1)!(N − k − 1)!
(2dRdf)k−1(1 − 2dRdf)N−k−12dd rd−1f (8)

where we assume that f = f(xi) is constant in a sufficiently large neighbor-
hood of xi. The restriction r > R makes the naive estimator (6) biased. The
expected value E

[
h0

]
can be calculated numerically (see Appendix A). A typical

dependency of the bias B0 on the density f

B0(f) = log f + E
[
h0

]
(9)

is shown in Figure 1. The bias goes to zero for f → 0 as the h0 estimator
approaches hNN, and also as f → ∞ as h0 approaches3 hker. The numerical
3 Using the fact that ψ(N) ≈ log N for large N .
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calculation of B0(f) becomes inaccurate for high f . A deeper problem is that
the assumption of a locally constant f in a neighborhood r is contradictory for
high f , since the probability Vd(r)f must not exceed 1. We therefore constrain
f < fmax for a suitable fmax.
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Fig. 1. Bias B0(f) of the naive estimator h0 for N = 1000, d = 2 and R = 1

2.1 Corrected R-NN Estimator

Let us add a correction h̃ to the naive estimator h0

h(r, k) = h0(r, k) + h̃(r, k) with k = q(R), r = �(k) (10)

so that the corrected estimator h is unbiased

E
[
h
]

= − log f for f < fmax (11)

Note that we can assume without loss of generality that R = 1. The correction
for general R′ is then obtained as h̃′(r, k) = h̃(r/R′, k) for f ′ < (R′)−d

fmax. To
see it, consider estimating entropy H(R′X) and f ′ = (R′)−d

f .
As finding h̃ analytically seems to be difficult, we attempt a numerical solu-

tion. We require (11) to hold for f1 = fmin, f2, . . . , fF = fmax for sufficiently
small fmin and distributing log fi uniformly. The correction h̃ is represented as
a linear combination

h̃(r, k) = [k ≤ K]
M∑

i=1

aikϕi(r) (12)

where the basis functions ϕi are piecewise linear on each interval [ri, ri+1] and
satisfying ϕi(rj) = δij . We choose r1 = R, sufficiently large rM and K, and
uniformly distributed log ri.

2.2 Quadratic Programming Formulation

The expected value of the estimator h (10) with correction h̃ (12) is

E
[
h
]

= E
[
h0

]
+ E

[
h̃
]

= E
[
h0

]
+

K∑

k=1

M∑

i=1

aikPik (13)

where Pik(f) =
∫

r>R

ϕi(r) p(k, r) dr (14)
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See Appendix B for details on calculating Pik. For numerical reasons, we
shall require the bias of h to be bounded by some small constant γ for all
f ∈ {f1, . . . , fF }. Using (9,10,13) leads to a system of 2F linear inequalities

−γ ≤ B0(f) +
K∑

k=1

M∑

i=1

aikPik(f) ≤ γ for f ∈ f1, . . . , fF (15)

In addition we shall require aMk = 0 for all k ≤ K to prevent the discontinuity
of h(r, k) at r = rM . Then (15) can be written in a matrix form as

Aa ≤ c (16)

where a = (a11, . . . , aM−1,K) is a linearized vector of unknowns.
To prevent indeterminacy of (16), we use a quadratic programming formula-

tion: minimize a quadratic criterion Q(a) under the conditions (16) with

Q(a) =
1
2
aT Ha + uT a (17)

A natural choice for Q would be the variance Var[h](f). Unfortunately, this
choice requires numerical integration and is both time-consuming and inaccurate,
leading to an ill-posed or infeasible minimization problem. We have therefore
decided to minimize the following simple finite-difference-based criterion instead,
taking advantage of the fact that Q serves primarily as a regularization, the final
solution is determined mainly by the constraints (16).

Q(a) =
K∑

k=1

M−1∑

i=1

(ai+1,k − ai,k)2 +
K−1∑

k=1

M−1∑

i=1

(ai,k+1 − ai,k)2 (18)

The criterion (18) expresses our preference for ‘smooth’ h̃, motivated by the
well-known formula Var[g(x)] ≈ g′

(
E[x]

)2Var[x]. The corresponding Hessian H is
very sparse, positive definite, and easy to calculate. The quadratic programming
problem (17),(16) is solved by the MINQ algorithm [26].

It remains to determine a good value of γ in (15). We proceed iteratively,
starting with γ = maxf |B0(f)| and halving γ in each step. We stop if the solution
cannot be found, or if the criterion increase is suspiciously large compared to
the previous one, which signals overfitting.

3 Experiments

A typical shape of the correction h̃(k, r) is shown in Figure 2 together with the
shape of the uncorrected and corrected estimators h0 and h. The width and
position of the peak in h̃ depends on N and d. The parameter M influences
the smoothness and F the accuracy. We found that M = 100 and F = 1000
give good results, with calculation of the estimator parameters taking several
minutes. Higher values of M and F require more time and the calculation is often
numerically unstable. The estimation itself is as fast as the k-NN estimator, with
typical image similarity criterion taking between several seconds and one minute
to evaluate, if acceleration techniques for the neighborhood search are used [17].
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Fig. 2. The correction h̃(r, k) for N = 1000, d = 1, shown as a function of r for
k = 1, 2, 3 (left). The naive and corrected estimators (h0 resp. h) for k = 1 (right).

Table 1. Estimating entropy of unit covariance normal data using k-NN, R-NN and
histogram estimators, d = 2, N = 1000. Best values in each column are set in bold.

estimator bias variance MSE

k-NN, k = 1 0.0099 0.0660 0.0045
k-NN, k = 2 0.0101 0.0519 0.0028
k-NN, k = 5 0.0197 0.0423 0.0022
k-NN, k = 10 0.0300 0.0405 0.0025
histogram 0.0349 0.0386 0.0027
R-NN, R = 10−4 0.0099 0.0660 0.0045
R-NN, R = 10−3 0.0100 0.0661 0.0045
R-NN, R = 10−2 0.0102 0.0628 0.0040
R-NN, R = 10−1 0.0080 0.0433 0.0019
R-NN, R = 1 0.0437 0.0358 0.0032

3.1 Entropy Estimation of Normal Data

Table 1 shows the bias, variance and mean squared error (MSE) for the k-NN,
R-NN and histogram estimators (with optimal bin-width [13]) for estimation
of entropy of normal data with unit covariance matrix in two dimensions (d =
2) from N = 1000 sample points. The experiment was repeated 100 times.
For very small R the R-NN estimator is equivalent to the k-NN estimator; for
higher R the variance decreases while bias remains essentially constant until R
becomes comparable to the standard deviation of the data. Histogram estimator
has a slightly lower variance but much higher bias.

3.2 Entropy Estimation for Quantized Normal Data

In Figure 3 we compare the k-NN, histogram (bin size 1), and R-NN estimators
on 2D isotropic normal data quantized with step 1 as a function of the standard
deviation σ. For σ comparable with the quantization step, histogram has the
lowest bias and the lowest MSE. For σ much larger than the quantization step,
the k-NN estimators perform best in terms of bias and MSE. It appears indeed
that k = 4 is a good choice [16]. The R-NN estimators are a good compromise
— they are almost as good as k-NN estimators for large σ (the difference is
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negligible for σ = 103 ∼ 104) while offering significant improvement for small σ.
In the high dimensional case (d = 10, MSE shown in Figure 3, bottom right),
R-NN estimators outperform k-NN for small σ. Note that high R values may
not be used in this case, since often no points fall outside the R neighborhood.
Conversely, the k-NN estimator performs badly due to high bias for k ≥ 3.
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Fig. 3. The bias (top left), variance (top right), and MSE (bottom left) for several
entropy estimators — k-NN with k = 1, k = 4, histogram estimator, and R-NN with
r = 1, r = 2 — as a function of the standard deviation. The input are N = 1000 samples
of a 2D (d = 2) Gaussian random variable with covariance matrix σ2I , rounded to the
nearest integer. Bottom right image is the MSE for d = 10, N = 1000 for k-NN
estimator with k = 1, 2, 3 and R-NN with r = 0.5, r = 1.0, r = 2.0.

3.3 Mutual Information as an Image Similarity Criterion

We have evaluated mutual information I(X, Y ) = H(X) + H(Y ) − H(X, Y )
between two scalar images (as it is done in image registration) as a function of
their horizontal shift. The difficulty of this particular case lies in suppressing
quantization artifacts (peaks) for integer shifts and obtaining a smooth depen-
dence on the shift for easy optimization. We use 100×100 pixel centered regions
from approximately registered T1 and T2 magnetic resonance images (Figure 4)
of the same brain slice [27]. For the histogram estimator (Figure 5, top left), bin
size is critical; bins too small lead to quantization artifacts, while bins too large
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Fig. 4. 2D MRI images used for testing, T1 (left) and T2 (right)
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Fig. 5. Scalar mutual information criterion as a function of the horizontal shift, evalu-
ated by histogram estimator (top left), k-NN estimator (top right), and R-NN estimator
(bottom left). All values were normalized to [0, 1] for easy visualization. The optimum
shift is around 0.5 pixels. The bottom right graph shows the color MI criterion as
a function of shift for two color colposcopy images for k-NN and R-NN estimators.
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distort the curve shape. k-NN estimator performs poorly in this case, for k ≤ 8
there are strong peaks on integers, for k > 8 the dependency is lost. The result
of the R-NN estimator, for R ≥ 10, is as good as the histogram.

Finally, we show also the color MI criterion as a function of shift for color
colposcopy images [28]. While the k-NN estimator has artifacts for all k tested,
the R-NN estimation is quite usable for R = 20, albeit noisy.

4 Conclusions

We have presented a new entropy estimator based on two quantities, the number
of points k in a neighborhood of size R and the distance to the closest point r
farther than R. The estimator behaves like an averaged histogram for high den-
sities and like an NN estimator for low densities, smoothly varying between the
two, combining their particular strengths. Finding the estimator is formulated as
a constrained optimization problem (quadratic programming). The limited accu-
racy of this numerical procedure especially for high values of N , d, and f is cur-
rently the biggest setback of the new method. Nevertheless, our experiments show
that the new method outperforms its ancestors in a number of situations, it deals
successfully with the limited accuracy effects and is usable in a practical setting.
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A Expected Value of the Naive Estimator

We rewrite expression (7) by taking terms independent of r out of the integral
and by substituting ξ = 2drdf :

E
[
h0

]
=

N−1∑

k=1

(N − 1)!
(k − 1)!(N − k − 1)!

(2dRdf)k−1I1(N, k, f, R)

with I1(N, k, f, R) =

1∫

α

(
log ξ − log f + ψ(N) − ψ(k)

)
(1 − ξ)N−k−1 dξ

where α = 2dRdf and the upper integration limit comes from the fact that ξ is
a probability. The integral I1 is broken into two:

I1 =
(
− log f + ψ(N) − ψ(k)

) ∫ 1

α

(1 − ξ)N−k−1 dξ +
∫ 1

α

log ξ(1 − ξ)N−k−1 dξ

︸ ︷︷ ︸
I2

The first integral is standard, the second one can be integrated by parts

I2 =
1

N − k
log α (1 − α)N−k +

1
N − k

∫ 1

α

(1 − ξ)N−k

ξ
dξ

︸ ︷︷ ︸
I3

After substitution z = 1 − ξ, we obtain:

I3 =

1−α∫

0

zN−k

1 − z
dz = −

1−α∫

0

N−k−1∑

i=0

zi dz +

1−α∫

0

1
1 − z

dz = −
N−k∑

i=1

(1 − α)i

i
− log α

The last expression is delicate to calculate, since
∑∞

i=1
(1−α)i

i = − logα.

B Calculating the Coefficients P

The integral (14) can be written as follows

Pik =
(N − 1)!

(k − 1)!(N − k − 1)!
(2dRdf)k−1(I− + I+)

with I− =
∫ ri

ri−1

(1 − 2drdf)N−k−1 r − ri−1

ri − ri−1
2drd−1d dr

I+ =
∫ ri+1

ri

(1 − 2drdf)N−k−1 ri+1 − r

ri+1 − ri
2drd−1d dr
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Substituting ξ = 2drdf and ξi = 2drdfi we get

I+ =
1

ri+1 − ri

(
ri+1

ξi+1∫

ξi

(1 − ξ)N−k−1dξ − 1
2f1/d

ξi+1∫

ξi

ξ1/d(1 − ξ)N−k−1 dξ

)

and similarly for I−. The first integral is standard, the second one is related to
the non-regularized incomplete beta function:

ξi∫

0

ξ1/d(1 − ξ)N−k−1 dξ = B(ξi;
1
d

+ 1, N − l)
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Abstract. Diffusion tensor imaging (DTI) is an important modality to
study white matter structure in brain images and voxel-based group-wise
statistical analysis of DTI is an integral component in most biomedical
applications of DTI. Voxel-based DTI analysis should ideally satisfy two
desiderata: (1) it should obtain a good characterization of the statistical
distribution of the tensors under consideration at a given voxel, which
typically lie on a non-linear submanifold of �6, and (2) it should find
an optimal way to identify statistical differences between two groups of
tensor measurements, e.g., as in comparative studies between normal
and diseased populations. In this paper, extending previous work on the
application of manifold learning techniques to DTI, we shall present a
kernel-based approach to voxel-wise statistical analysis of DTI data that
satisfies both these desiderata. Using both simulated and real data, we
shall show that kernel principal component analysis (kPCA) can effec-
tively learn the probability density of the tensors under consideration and
that kernel Fisher discriminant analysis (kFDA) can find good features
that can optimally discriminate between groups. We shall also present
results from an application of kFDA to a DTI dataset obtained as part
of a clinical study of schizophrenia.

1 Introduction

Diffusion tensor imaging (DTI) has become an important modality for studying
white matter structure in brain imaging and other biomedical applications [1].
Several such applications require a group-wise statistical analysis of DT images
which can identify regional differences between two groups of DT images. How-
ever, statistical analysis of DTI is complicated by the fact that we now have a
3×3 positive-definite symmetric matrix or diffusion tensor at each voxel instead
of a single value as in the case of scalar images.

In conventional methods of performing such an analysis, scalar or vector im-
ages are first computed from the DTI dataset and then spatially normalized
to a common template. A statistical p-value map is then computed from these
scalar or vector images with the application of standard tests for statistical in-
ference. Commonly used scalar images for such analyses include the fractional
anisotropy (FA) and the apparent diffusion coefficient (ADC) [1]. Non-scalar fea-
tures [2] such as the principal eigendirections of the tensors have also been used

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 581–593, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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in some analyses. However, a main disadvantage of these methods is that they
do not use the complete information available in the DTI dataset, but rather
make the a priori assumption that group differences will affect specific quantities
to be extracted from the diffusion tensor, such as FA. Moreover, differences in
these scalar maps may be mutually difficult to interpret.

A voxel-based statistical analysis should ideally try to learn the density and
the manifold structure pertinent to the specific tensors under consideration and
determine the degree of separation between two groups of tensors. Methods for
statistical analysis of tensors have been recently developed that utilize the full
tensor information by trying to learn the underlying structure of the data. These
methods fall into two categories: methods based upon Riemannian symmetric
spaces [3,4] and methods based upon manifold learning [5]. Methods based upon
Riemannian symmetric spaces [3,4] rely upon the assumption that the tensors
around a given voxel from various subjects belong to a principal geodesic (sub)-
manifold and that these tensors obey a normal distribution on that sub-manifold.
The basic principle of these methods is sound, namely that statistical analysis of
tensors must be restricted to the appropriate manifold of positive definite sym-
metric tensors, which is known to be a cone embedded in �6. However, there is
no guarantee that the representations of the tensors on this sub-manifold will
have normal distributions, and most importantly, restricting the analysis on the
manifold of positive definite symmetric tensors is of little help in hypothesis test-
ing studies, since the tensors measured at a given voxel or neighborhood from
a particular set of brains typically lie on a much more restricted submanifold.
Our main goal is to determine the statistical distribution of tensors on this sub-
manifold. In the approaches based upon manifold learning [5], the focus was
on learning embeddings (or features) parameterizing the underlying manifold
structure of the tensors. The learned features belonged to a low-dimensional lin-
ear manifold parameterizing the higher-dimensional tensor manifold and were
subsequently used for group-wise statistical analysis. The main problem with
manifold learning approaches [6] is that although they estimate the embedding
of the manifold that represents the tensor measurements fairly well, they fail to
estimate the probability distribution (non-Gaussian) on the (flattened) manifold
itself. From experiments with simulated data, we have found that such an ap-
proach does not completely parameterize the probability density of the tensors
under consideration and that the learned features do not always identify the
differences between the two groups.

We shall present an integrated kernel-based approach to voxel-based analysis
that accurately estimates the underlying distribution of the tensor data, obtains
a highly informative linear representation for the tensors and uses this represen-
tation to determine statistically optimal ways of separating the tensor data. We
shall build upon related approaches in [5]. We present our methods in Sec. 2 and
the results from various experiments on simulated and real data in Sec. 3.1 and
Sec. 3.2. We shall establish that higher-dimensional kernel principal component
analysis (kPCA) features are very effective in learning the required probability
density of the tensors from a voxel and that kernel Fisher discriminant analysis
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(kFDA) can optimally discriminate between groups of tensors. We shall also ap-
ply our methods to a clinical DTI dataset of healthy controls and schizophrenic
patients in Sec. 3.3. We conclude with Sec. 4.

2 Methods

2.1 Kernel-Based Approach to Group-Wise Voxel-Based DTI
Statistical Analysis

A DT image consists of a 3 × 3 positive-definite symmetric matrix or tensor T
at each voxel in the image. We may represent this tensor as T =

∑3
i=1 λivivT

i ,
where λi > 0 and vi represent the eigenvalues and eigenvectors of the tensor,
respectively. Pathology can bring about subtle changes in eigen values or angular
changes in the eigen vectors, that can be partially seen in measures of anisotropy
and diffusivity computed from the tensor, such as FA and ADC, although eigen
vector changes can only be seen in full tensor color maps. Group-wise voxel-
based statistical analysis of DTI data involves normalizing all DT images to
a common DTI template using a suitable technique [7,8,9] and then using an
appropriate statistical test to infer regional differences between groups based
upon the tensors at (or around) a voxel. We form a voxel-based dataset by
collecting tensors from each location as samples. Such samples should ideally
be formed using the tensors at a voxel from all subjects, in conjunction with
the deformation field used to normalize the tensors. In this paper, we focus on
the former term, however our approach readily extends to the latter, as well as
to neighborhood information from tensors around a voxel under consideration,
albeit at the cost of increasing the dimensionality of the measurements and the
embedding space. The samples in our voxel-based dataset will have unknown
statistical distributions on complex unknown non-linear manifolds. Therefore, it
is particularly important to analyze the underlying structure in our dataset and
to use this structure to estimate features that can identify group differences.

We have found that kernel-based techniques (kPCA and kFDA) are ideally
suited for performing such an analysis. The common idea behind kernel-based
techniques is to transform the samples into a higher-dimensional reproducible
kernel Hilbert space (RKHS). Using the “kernel trick”, any algorithm that can
be written in terms of inner products in the RKHS, can be readily formulated in
the original space in terms of the kernel. Moreover, hyperplanes in the RKHS,
such as the ones spanned by principal eigenvectors or the ones separating two
sets of samples, become nonlinear hyper-surfaces in the original space, thereby
allowing us to nonlinearly span or separate groups of samples for the purposes
of density estimation or classification, respectively. We can hence easily perform
various calculations such as computing projections onto directions in the RKHS,
although we cannot visualize this space itself. Figure 1 illustrates the idea behind
obtaining such projections.

From our voxel-based samples, we can obtain highly informative projections
using the kPCA technique, as described later in Sec. 2.2. Although we could
extract useful features from this higher-dimensional kPCA representation to aid
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stant projections onto a vector in the
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inal space. Such curved lines can give

us important insight into how the corre-

sponding RKHS projection parameter-

izes the original points.

Fig. 1. Kernel-based projections

us in inferring differences between groups, it would be better to perform this
inference step in an automated and optimal manner. For this purpose, we shall
use the kFDA technique described in Sec. 2.3, which finds scalar projections onto
a single RKHS direction that can optimally discriminate between groups. Having
obtained our kernel-based features, we can then apply standard statistical tests
such as the Hotelling T 2 test in the case of kPCA or the t-test in the case of the
kFDA to obtain a voxel-wise p-value map. We note that the projections found
by kPCA and kFDA lie along directions in the linear RKHS and hence linear
tests for statistical inference can be reliably applied to these projections in order
to identify separation between groups. Regions with low p-values indicate the
regions with significant differences between the two groups.

Before we present the kPCA and kFDA techniques in detail, here is a brief
note on our mathematical conventions: We denote vectors by bold-faced lower
case letters, e.g. x, and matrices by upper-case letters, e.g. A. We use e to denote
the vector of all 1’s and I to denote the identity matrix. We occasionally use em

to denote a vector of all 1’s in m-dimensional space. We use the superscripts T

and −1 to denote the matrix transpose and the matrix inverse respectively. We
denote the sample mean of a set of vectors {xi, i = 1, · · · , K} by x̄. We denote
the inner product of two vectors xi,xj by < xi,xj >. We shall assume that our
group-wise study involves a statistical analysis of the DT images of N subjects,
with N+ subjects in one class (the positive class) and the remaining N− subjects
in a second class (the negative class).

2.2 Kernel Principal Component Analysis (kPCA)

We now describe the kPCA technique [10] which can find a rich linear repre-
sentation of our voxel-based samples as well as provide an accurate estimate of
the probability density underlying these samples. In conventional PCA, we find
out principal directions in the vector space of the samples that maximize the
variance of the projections of the samples along those directions and which also
minimize the least-squares representation error for the samples. In kPCA, we
find similar principal eigendirections in the higher-dimensional RKHS. Let us
denote the nonlinear mapping of point x into the Hilbert space by Φ(x), and let
us denote the underlying kernel by k(., .), where < Φ(xi),Φ(xj) >= k(xi,xj).
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Since a principal eigenvector v in the higher-dimensional Hilbert space lies in the
span of the vectors Φ(xi) − Φ̄, i = 1, · · · , N , it can be conveniently represented
as v =

∑
i αi(Φ(xi) − Φ̄), where α is an N -dimensional vector. Projections of

any sample along the eigenvector v can now be conveniently computed using
this new representation in the kernel basis.

The entire kPCA procedure is summarized below [6]:

1. Form the kernel matrix K, where Kij = k(xi,xj), i = 1, · · · , N, j = 1, · · · , N.
2. Center the kernel matrix to obtain Kc = (I − 1

N eeT )K(I − 1
N eeT ).

3. Eigen-decompose Kc to obtain its eigenvectors α(i) and eigenvalues λi, i =
1, · · · , N .

4. Normalize the eigenvectors α(i) to have length 1√
λi

so that the eigenvectors

v(i) in the RKHS have unit length.
5. The ith kPCA component for training sample xk is given by:

< Φ(xk) − Φ̄,v(i) >= λiα
(i)
k

6. For a general test point x, the ith kPCA component is:
< Φ(x) − Φ̄,v(i) >=

∑
m α

(i)
m k(x,xm) − 1

N

∑
m,n α

(i)
m k(x,xn)

In addition to finding the orthogonal directions of maximal variance in the
higher-dimensional RKHS, kPCA also provides an estimate of the probability
density underlying the samples. It has been pointed out in [11] that kPCA with
a Gaussian radial basis function kernel amounts to orthogonal series density es-
timation using Hermite polynomials. In Sec. 3.1, we shall present a simulated
example (see Fig. 2) where kPCA obtained a very good parameterization of the
density underlying the dataset. We also note that the kPCA components consti-
tute a linear representation of the dataset in the RKHS, which considerably sim-
plifies any further analysis such as the application of tests for statistical inference.

2.3 Kernel Fisher Discriminant Analysis (kFDA)

As described earlier, often the goal is not only to nonlinearly approximate the
probability density from a number of samples, as in Sec. 2.2, but also to non-
linearly separate two groups of samples belonging to separate classes. We now
examine this problem using kernel-based discriminants. We describe the kFDA
technique [10,12], which focuses on finding nonlinear projections of the tensor-
ial data which can optimally discriminate between the two groups. Kernel FDA
finds a direction w in the higher-dimensional RKHS so that a projection along
this direction maximizes a separability measure known as the Rayleigh coeffi-
cient (or the Fisher discriminant ratio). Let Φ̄+ denote the Hilbert-space mean
for the samples in the positive class, corresponding to the N+ DT images from
the first group, and let Φ̄− denote the mean for the negative class, corresponding
to the N− DT images from the second group. Let Σ+ and Σ− denote the sam-
ple covariance matrices for the positive and negative classes respectively. The
Rayleigh coefficient is then given by:

J(w) =
(wT (Φ̄+ − Φ̄−))2

wT (Σ+ + Σ− + cI)w
,
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where the scalar c is used to introduce regularization. As in kPCA, the optimal
solution w∗ maximizing J(w) can again be conveniently represented using the
samples, i.e. w∗ =

∑
n α∗

nΦ(xn), and projections along this direction can be
easily obtained. A convenient analytical solution for α∗ is provided in [12]:

α∗ =
1
c

[
I − J(cI + JKJ)−1JK

]
a,

where a = a+ − a−, a+ =
[ 1

N+
eN+

0

]
, a− =

[
0

1
N−

eN−

]
, J =

[
J+ 0
0 J−

]
,

J+ =
1√
N+

(
I − 1

N+
eN+eT

N+

)
, J− =

1√
N−

(
I − 1

N−
eN−eT

N−

)
,

and where K represents the un-centered kernel matrix. An alternative quadratic
programming approach to obtaining the solution α∗ is provided in [10].

To summarize, we have presented the kPCA technique which can estimate
the probability density and yield a rich linear representation for any voxel-based
tensor dataset and the kFDA technique which uses this representation to extract
features that can identify group differences in a statistically optimal manner.

3 Results and Discussion

We have applied the kernelized framework to the group analysis of real and sim-
ulated DTI data with the aim of demonstrating that kPCA is able to capture the
statistical distribution underlying such datasets and that application of kFDA
facilitates optimal group-based separation.

3.1 Statistical Analysis of Simulated Tensors

We shall first apply our kernelized framework to group analysis of simulated
(non-imaging) tensor datasets where we know the ground-truth underlying struc-
ture in the dataset and can therefore easily validate our results. We consider
tensor datasets with changes in the principal eigenvalue as well as in one of
the angles describing the principal eigendirection. Such subtle changes emu-
late pathology-induced changes that affect the eigenvalue and eigenvector and
an analysis of subtle changes of this nature may be of particular importance in
studying complex brain disorders such as schizophrenia which result in non-focal
regional changes. We have found that kPCA is well-suited for parameterizing the
density for such datasets and that kFDA can effectively highlight the differences
that discriminate between groups. For ease of visualization, we present repre-
sentative results on a dataset with variation in the radial and angular directions
instead of on a tensorial dataset with changes in the principal eigenvalue and
eigendirection.

kPCA representation: Our dataset consisted of points forming a semi-circular
band (see Fig. 2(a)) and was generated using 36 angles (in the 0 − 144 degrees
range) and 6 radial values (in the range 1.3−1.8) resulting in a total of 216 points.
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Fig. 2. (a) Dataset, (b) Contour plot for kernel probability density estimate, (c) Con-
tour plot for 1st kPCA component, (d) Contour plot for 2nd kPCA component, (e)
Contour plot for 3rd kPCA component, (f) Contour plot for 4th kPCA component, (g)
Contour plot for 5th kPCA component, (h) Contour plot for 6th kPCA component,
and (i) Contour plot for 7th kPCA component (Please see text for explanation)

We applied kPCA to this dataset using a Gaussian radial basis function (RBF)
as our kernel with the kernel width σ2 set to 0.1. The kernel width parameter
was chosen to be a suitable function of the average distance between nearest
neighbors xi and xj , i.e. ||xi − xj || and the number of samples, and our choice
was motivated by the desire to obtain meaningful representations for the different
kPCA components as well as a reasonably good probably density estimate for
the entire dataset. The iso-contours for our kernel probability density estimate
(using all kPCA components), shown in Fig. 2(b), indicate that the estimated
density is roughly constant in the central regions where data points are uniformly
present and that the density estimate smoothly fades to zero as we approach
the data points lying along the borders. The iso-contour plots for 7 principal
kPCA components, shown in Fig. 2(c)-(i), represent the hyperplanes having
constant projections onto the corresponding 7 RKHS eigen-vectors, as explained
earlier in Fig. 1. It can be seen that the first 6 components (Fig. 2(c)-(h))
represent the angular changes in the data using varying scales, e.g., the third
kPCA component (Fig. 2(e)) divides the angular variation in the data into four
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Fig. 3. (a) Samples with angle-based labels. (b) Contour plot for kFDA projection
corresponding to (a). (c) Samples with radius-based labels. (d) Contour plot for kFDA
projection corresponding to (c). (e) Samples with labels determined by both angle and
radius. (f) Contour plot for kFDA projection corresponding to (e). (Blue labels marked
’o’ indicate one class and red labels marked ’+’ indicate the other class in (a), (c) and
(e). Colors refer to the online version of the paper.)

regions and alternately assumes positive and negative values as we move along
the angular direction across these four regions. We may also observe that the
seventh kPCA component (Fig. 2(i)) individually captures the radial change in
the data and that it smoothly increases from negative to positive values as we
step along the data in the radial direction.

kFDA projections: The previous synthesized dataset addressed the issue of
estimating the probability density of these samples. We now reformulate this
experiment as one requiring classification, i.e., as an experiment aiming to find
the optimal separator between two groups of samples, as depicted by red and
blue labels in Fig. 3(a), (c) and (e). We assigned labels in the angular direction
to this dataset as shown in Fig. 3(a) and applied kFDA, which successfully dis-
criminated between the two groups, as shown Fig. 3(b). (The kFDA projection
in Fig. 3(b) roughly corresponds to the 5th kPCA component in Fig. 2(g).) We
also assigned labels in the radial direction to this dataset as shown in Fig. 3(c)
and applied kFDA, which again discriminated very well between the two groups,
as seen in Fig. 3(d). (The kFDA projection in Fig. 3(d) roughly corresponds to
the 7th kPCA component in Fig. 2(i).) We also conducted experiments where
the labels were assigned to indicate changes in both the radial and angular direc-
tions and we have found that the kFDA projection (which did not correspond to
any kPCA component) still separated the groups in an optimal manner (please
see Fig. 3(e) and Fig. 3(f)).
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(a) (b)

Fig. 4. (a) ROI with changes (high-
lighted) overlaid on the template FA
map. (b) kFDA voxel-wise p-map (with
significant low p-values highlighted)
overlaid on the same FA map. Low p-
value regions in (b) match the true ROI
in (a).

(a) (b)

Fig. 5. (a) Schizophrenia kFDA p-map
thresholded at 0.02 and overlaid on
the template FA map. (b) Schizophre-
nia kFDA p-map thresholded using a
false discovery rate of 0.18 and overlaid
on the template FA map. Significant
p-values after thresholding are high-
lighted in (a), (b).

Comparison to manifold learning: Manifold learning techniques such as
ISOMAP (isometric mapping) [5] have also been proposed for DTI statistical
analysis. We performed such an analysis using two approaches, ISOMAP [6], on
the lines of [5], and MVU (maximum variance unfolding) [13], both of which
correctly identify the underlying manifold of dimension 2 when applied to the
dataset in Fig. 2(a), with MVU doing better than ISOMAP in separating the
angular and radial changes in the data into its two components. An application
of the Hotelling T 2 test on the MVU or ISOMAP embeddings, when group
labels were assigned as in Figs. 3(a) or 3(c), yielded higher p-values, indicating
less significant differences, than those found by applying a t-test on the kFDA
projections or on the appropriate kPCA components, indicating that both MVU
and ISOMAP were unable to identify the statistical distribution on the manifold
like kPCA or determine projections like kFDA that separate the groups.

Having successfully validated our methods on a simulated non-imaging dataset
with radial and angular variation, we shall now validate them on real DTI data
with simulated changes in both the tensor eigenvalues and eigenvectors that
emulate this joint radial and angular variation.

3.2 Statistical Analysis of DTI Datasets with Simulated Changes

Dataset Description: Our DTI dataset consisted of scans of 36 healthy vol-
unteers (17 male and 19 female), acquired at dimensions 128 × 128 × 40 and a
voxel size of 1.72×1.72×3.0 mm. These DT images were warped to a template,
which was chosen as the scan of an additional healthy subject. We then iden-
tified an ROI on the template in the corpus callosum, as shown in Fig. 4(a),
and introduced random changes in the principal eigenvalue and the azimuthal
angle for the principal eigenvector of each tensor into the appropriate ROI for
all unwarped subject DT images. The random changes were designed to slightly
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increase the principal eigenvalue and the principal azimuthal angle, on average,
but were subtle enough so that these changes could not be visibly easily dis-
cerned on an FA map or a colormap for the principal direction. The DT images
with the introduced random changes were then warped back to the template
resulting in 36 DT images belonging to the abnormal class.

The simplest approach to forming the voxel-based sample vector is to use the
6-independent components of the tensor at a voxel. However, we can potentially
obtain more significant regional differences by incorporating neighborhood infor-
mation around a voxel into our samples, in two different ways. In one approach,
which we call the “long-vector” approach, we form a local spherical neighbor-
hood around each voxel and combine the 6-independent components from each
tensor in the local neighborhood into a long vector, which we use as our sample.
In an alternative approach, we first smooth the DTI [14] data and then use the
6-independent tensor components at a voxel as our sample. We shall now present
results obtained by applying kPCA and kFDA to these different sample types.

Results Using kPCA, kFDA and Other Techniques: We have shown the
central axial slice of the 3-D p-value map found from an application of kFDA
and the t-test in Figure 4(b). We may observe that significant regions identified
in Figure 4(b) match the true ROI very well. In Table 1, we have presented
a detailed quantitative performance comparison of different approaches to dis-
covering the true ROI. Our performance measure was the percentage overlap of
voxels in the detected ROI (p-value map thresholded at a cut-off of 0.1) with the
voxels in the true ROI. We have applied the different approaches to the original
DTI dataset as well as to a smoothed version of the DT images, smoothed in
the Log-Euclidean domain [14] using an isotropic truncated Gaussian filter with
the filter σ set to 4 mm . This choice for smoothing yielded good results for the
technique in [5]. For the long-vector results, we used a spherical neighborhood
of 4 mm radius that contained 39 voxels. The Gaussian RBF kernel width para-
meter σ2 was set to 4e − 4 in all kernel-based results not using the long-vector
and this value was multiplied by the number of neighborhood voxels when the
long-vector approach was used.

Rows 1 and 2 in Table 1 present results from conventional ADC and FA analy-
ses and row 3 presents results using the ISOMAP technique from [5]. Since the
ADC and FA concentrate on eigenvalue differences, they are not particularly
sensitive in detecting the ROI. The ISOMAP technique (row 3) performs bet-
ter than these two approaches, but it is hampered by the fact it does not use
knowledge of the statistical distribution underlying the tensors. Knowledge of
this statistical distribution led to enhanced results using the kPCA technique,
as can be seen in rows 4-8. Rows 4 and 5 present results using the 6 independent
tensor components as the sample vector, whereas rows 6-8 use the long-vector
approach. We may observe that kPCA, when used appropriately, is very sensi-
tive in detecting the ROI. While the long-vector kPCA approach yielded poor
results on the original DT data, it yielded good results on the smoothed DTI.
From these kPCA results, we may also observe a general difficulty with using
this method and the ISOMAP-based method, which stems from the fact that
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Table 1. Percentage overlap of detected ROI (p-value map thresholded at a cut-off
of 0.1) with the true ROI (Please see text for explanation)

Analysis Method Original DTI Smooth DTI
1. ADC 14.92 21.71
2. FA 39.14 42.39

3. ISOMAP- 3 components 35.60 44.46

4. kPCA- 3 components 60.41 72.53
5. kPCA- 8 components 54.95 62.48
6. kPCA-long-vector 3 components 13.44 53.32
7. kPCA-long-vector 8 components 44.46 75.18
8. kPCA-long-vector 12 components 51.70 81.83

9. kFDA 57.90 71.64
10. kFDA-long-vector 79.17 83.31
11. kFDA-long-vector-cross-validated 56.72 51.55

we do not know the discriminatory component(s) in these representations, mak-
ing it hard to select the component(s) on which the subsequent statistical tests
must be applied. The kFDA approach (rows 9-11), on the other hand, does not
suffer from this problem. As seen from row 10, kFDA employing the long-
vector approach on smooth DT images yields the best performance
among all methods compared.

We note that kFDA is the only technique in Table 1 that uses the class
labels while computing its features and hence it requires a special form of cross-
validation. We divided our data equally into training and testing samples. We
then learned discriminatory directions on the training samples, used these direc-
tions to obtain projections for the testing samples and then applied the t-test
on these test sample projections. Such a naive cross-validation approach would
reduce performance considerably because the training is performed on half the
number of samples and also partly because the p-values are computed from a
fewer number of testing samples. However, row 11 in Table 1 indicates that the
kFDA performance remains significantly better than several other approaches.

3.3 Statistical Analysis of Schizophrenia DTI Dataset

In addition to the 36 healthy volunteers used in Sec. 3.2, our dataset now ad-
ditionally included scans of 34 schizophrenic patients (21 male and 13 female),
again warped to the template. We first smoothed this dataset and applied kFDA
with the 6 tensor components and the t-test voxel-wise (using the same smooth-
ing and kernel parameters as in Sec. 3.2) to obtain a p-value map showing
regional differences. The resulting significant regions, after thresholding the p-
value map at a cut-off of 0.02 and removing small spurious clusters, are shown
in Fig. 5(a). Kernel FDA has found a number of white matter regions such as
the corpus callosum and the internal capsule and gray matter regions such as
some regions in the fronto-temporal cortex that have been implicated in other
studies of schizophrenia. We plan to investigate the clinical significance of our
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findings in future work. (We note that we found similar significant regions when
the p-value maps were alternatively thresholded using a false discovery rate [15]
of 0.18, as shown in Fig. 5(b).)

4 Conclusion

Using both simulated and real data, we have established that kernel-based meth-
ods pave the way to resolving major issues in group-wise DTI statistical analysis,
namely, the density estimation of voxel-based tensors (in the presence of non-
linearity), the appropriate representation of these tensors on a manifold and the
subsequent use of this representation in the identification of features that can
optimally identify region-based group differences. In particular, we have shown
that kFDA can form the basis of a highly sensitive method for group-wise DTI
statistical analysis. Such a method can open up numerous avenues of research in
various DTI applications requiring large scale group analysis such as studies of
various brain disorders involving prognosis, diagnosis or progression of disease.
Future work will involve optimal kernel selection in kFDA [12] and more sophis-
ticated cross-validation of our kFDA results using permutation tests on the DTI
dataset with simulated changes as well as on the schizophrenia DTI dataset.

Acknowledgements

This work was supported by the National Institute of Health via grants
R01MH070365, R01MH079938 and R01MH060722.

References

1. LeBihan, D., Mangin, J.F., et al.: Diffusion tensor imaging: Concepts and applica-
tions. J. of Magnetic Resonance Imaging 13, 534–546 (2001)

2. Wu, Y.C., Field, A.S., et al.: Quantitative analysis of diffusion tensor orientation:
Theoretical framework. Magnetic Resonance in Medicine 52, 1146–1155 (2004)

3. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of
multivariate normal distributions: Theory and application to diffusion tensor MRI
processing. Journal of Math. Imaging and Vision 25(3), 423–444 (2006)

4. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics
of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) Computer
Vision and Mathematical Methods in Medical and Biomedical Image Analysis.
LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004)

5. Verma, R., Davatzikos, C.: Manifold based analysis of diffusion tensor images using
isomaps. In: IEEE Int. Symp. on Biomed, Imaging, pp. 790–793. IEEE, Washing-
ton, DC, USA (2006)

6. Burges, C.: Geometric Methods for Feature Extraction and Dimensional Reduction.
In: Data Mining and Knowledge Discovery Handbook, Kluwer Academic Publish-
ers, Dordrecht (2005)



Kernel-Based Manifold Learning for Statistical Analysis 593

7. Zhang, H., Yushkevich, P., et al.: Deformable registration of diffusion tensor MR
images with explicit orientation optimization. Medical Image Analysis 10(5), 764–
785 (2006)

8. Cao, Y., Miller, M., Mori, S., Winslow, R., Younes, L.: Diffeomorphic matching of
diffusion tensor images. In: CVPR-MMBIA, 67 (2006)

9. Xu, D., Mori, S., Shen, D., van Zijl, P., Davatzikos, C.: Spatial normalization of
diffusion tensor fields. Magnetic Resonance in Medicine 50(1), 175–182 (2003)

10. Scholkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge, MA
(2002)

11. Girolami, M.: Orthogonal series density estimation and the kernel eigenvalue prob-
lem. Neural Computation 14(3), 669–688 (2002)

12. Kim, S.J., Magnani, A., Boyd, S.: Optimal kernel selection in kernel Fisher dis-
criminant analysis. In: ACM Int. Conf. on Machine Learning 2006 (2006)

13. Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral methods for
dimensionality reduction. In: Semisupervised Learning, MIT Press, Cambridge,
MA (2006)

14. Arsigny, V., Fillard, P., et al.: Medical Image Computing and Computer-Assisted
Intervention. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749,
pp. 115–122. Springer, Heidelberg (2005)

15. Genovese, C., Lazar, N., Nichols, T.: Thresholding of statistical maps in functional
neuroimaging using the false discovery rate. NeuroImage 15, 870–878 (2002)



An Anatomical Equivalence Class Based Joint

Transformation-Residual Descriptor for
Morphological Analysis

Sajjad Baloch, Ragini Verma, and Christos Davatzikos

University of Pennsylvania, Philadelphia, PA

Abstract. Existing approaches to computational anatomy assume that
a perfectly conforming diffeomorphism applied to an anatomy of interest
captures its morphological characteristics relative to a template. How-
ever, biological variability renders this task extremely difficult, if pos-
sible at all in many cases. Consequently, the information not reflected
by the transformation, is lost permanently from subsequent analysis. We
establish that this residual information is highly significant for charac-
terizing subtle morphological variations and is complementary to the
transformation. The amount of residual, in turn, depends on transfor-
mation parameters, such as its degree of regularization as well as on the
template. We, therefore, present a methodology that measures morpho-
logical characteristics via a lossless morphological descriptor, based on
both the residual and the transformation. Since there are infinitely many
[transformation, residual] pairs that reconstruct a given anatomy, which
collectively form a nonlinear manifold embedded in a high-dimensional
space, we treat them as members of an Anatomical Equivalence Class
(AEC). A unique and optimal representation, according to a certain cri-
terion, of each individual anatomy is then selected from the correspond-
ing AEC, by solving an optimization problem. This process effectively
determines the optimal template and transformation parameters for each
individual anatomy, and removes respective confounding variation in the
data. Based on statistical tests on synthetic 2D images and real 3D brain
scans with simulated atrophy, we show that this approach provides sig-
nificant improvement over descriptors based solely on a transformation,
in addition to being nearly independent of the choice of the template.

1 Introduction

The problem of quantitatively characterizing normal and pathologic anatomy is
usually addressed in computational anatomy through high dimensional diffeo-
morphic shape transformations [1,2,3,4,5] that warp individuals to a common
template and vice-versa. Various descriptors are then derived from these trans-
formations for quantifying morphological characteristics, leading to a wide range
of approaches such as deformation based morphometry (DBM) [6,7,8], voxel based
morphometry (VBM) [9,10,11], and tensor based morphometry (TBM) [12,13].
Accuracy of these methods, however, depends on the ability to establish perfect
correspondences between subjects and a template, which may, in general, not be

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 594–606, 2007.
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possible due to anatomical variability across individuals. For instance, a biolog-
ically meaningful diffeomorphism that warps a single-folded sulcus to a bifolded
sulcus may not exist. As a result, a shape transformation would likely fail to
capture the shape of the sulcus, resulting in the loss of residual information. In
this paper, we establish that the residual may carry more important information
than the transformation itself, and, therefore, consider a complete morphological
descriptor1 (CMD) of the form [Transformation, Residual].

CMD requires additional consideration due to its dependence on transforma-
tion parameters such as the degree of conformity achieved by the transformation,
which is determined by some regularization parameter(s), as well as on the se-
lection of a template. Since the selection of these parameters is an open question
in computational anatomy, a complete representation does not lead to a unique
descriptor. By varying these parameters, one may, in fact, generate an entire
class of infinitely many anatomically equivalent descriptors, all representing the
same anatomy via different transformations and respective residuals. This class,
the Anatomical Equivalence Class (AEC), is generally a nonlinear manifold em-
bedded in a high dimensional space. In this paper, we address the problem of
non-uniqueness of this anatomical descriptor by representing each anatomy with
an “optimal” descriptor, referred to as Optimal Morphological Signature (OMS),
which is estimated by minimizing the variance of an ensemble, while allowing
each CMD to slide along its respective AEC. The hypothesis is that by minimiz-
ing the variance due to confounding factors, one may overcome arbitrariness in
selecting these parameters, thereby enhancing the ability to detect morpholog-
ical abnormalities. Our results indicate that this morphological representation
provides generally better and more robust detection of group morphological dif-
ferences than the transformation alone. Moreover, it is nearly invariant to tem-
plate selection, and the amount of flexibility in the transformation, thus avoiding
their arbitrary selection.

2 Morphological Descriptor Framework

2.1 Motivation

Computational anatomy typically involves characterizing anatomical differences
between a subject S and a template T by mapping the template space ΩT to
the subject space ΩS through a diffeomorphism h ∈ HS : ΩT → ΩS ,x �→ h(x),
where HS is the set of all diffeomorphic transformations that maximize some sim-
ilarity criterion between T and normalized subject ST . Resulting transformation
h then carries information about morphological differences between a subject and
a template [6,2,7,14,9,12,10,8,11,13]. This, however, requires a diffeomorphism
that perfectly warps a subject to the template, i.e., T (x)−S(h(x)) = 0, ∀x ∈ ΩT .
Moreover, h must define anatomical correspondences, instead of simply matching

1 The term “complete” is used, since this morphological descriptor does not discard
any image information.



596 S. Baloch, R. Verma, and C. Davatzikos

(a) (b) (c) (d) (e)

Fig. 1. (a) Template; (b) A representative subject; (c) Spatial normalization of (b); (d)
Corresponding residual; (e) Crispness of the mean of 31 spatially normalized subjects
indicates relatively good anatomical correspondence

images. Achieving both of these goals is usually not possible, thereby resulting
in a residual error:

Rh(x) := T (x) − S(h(x)),x ∈ ΩT (1)

This is shown with an illustrative example in Fig. 1, based on the spatial nor-
malization of 31 subjects using a deformable registration method [5]. While the
accuracy of the registration is demonstrated by the clarity of the average brain
given in Fig. 1(e), spatial normalization of a typical subject (Fig. 1(b)) to the
template (Fig. 1(a)) still produces significant residual shown in Fig. 1(d). A
study based solely on a warping transformation irreversibly loses this residual
information. Although one may argue that a more flexible and aggressive reg-
istration may further minimize the residual, this is often impossible to achieve
using biologically consistent transformations. Our approach herein is to use a
template warping algorithm that is flexible enough, yet respecting anatomical
correspondences and then capture the resulting residual in an Mh := (h, Rh)
descriptor, referred to as CMD.

2.2 Anatomical Equivalence Class Framework

CMD, Mh, defined in the previous section not only depends on the underlying
anatomy but also on transformation parameters, resulting in a non-unique rep-
resentation of the anatomy. An entire family of anatomically equivalent CMDs
may be generated by varying h ∈ HS . This unwanted variation usually confounds
subsequent analyses, and, therefore, must be eliminated. We approach this prob-
lem by first approximating the range of variation in Mh. Since it is not possible
to sample all possible transformations and to evaluate their respective residu-
als for all possible templates, we examine a restricted family of transformations
hλ,τ ∈ IS ⊂ HS , by perturbing hλ,τ through two parameters, namely λ ∈ R+
and τ ∈ T m, where T represents the set of all possible templates. The first para-
meter λ represents the level of regularity (smoothness) in hλ,τ , as determined by
viscosity in viscous fluid registration, for instance, or Young’s modulus in elastic
registration. For notational consistency, we reparameterize the regularization pa-
rameter such that small λs correspond to aggressive transformations, and, hence,



An AEC Based Joint Transformation-Residual Descriptor 597

Fig. 2. Constructing AECs: Each subjects is normalized to ΩT via intermediate tem-
plates at different smoothness levels of the warping transformations

small residuals. The second parameter, τ , denotes a sequence of m intermediate
templates, τ := τ1 → . . . → τm, between S and T . For a given smoothness, λ,
individual anatomies are first normalized to intermediate templates τ through
fλ,τ ∈ FS as shown in Fig. 2. Intermediate results are then warped to T through
gλ,τ ∈ GS , since we ultimately need to go to a single reference space, ΩT . FS and
GS respectively denote sets of all τ −S ◦ fλ,τ and T − (S ◦ fλ,τ )◦ gλ,τ minimizing
diffeomorphisms. As a result hλ,τ := fλ,τ ◦ gλ,τ takes S to the template T , with
τ perturbing the path taken by hλ,τ from an individual to the template by pro-
viding a sequence of milestones that may facilitate registration. A poor choice
of intermediate templates increases the amount of the residual, whereas appro-
priately selected intermediate templates may find paths for the transformation
hλ,τ that result in minimal residuals. In many instances, a different choice of T
may result in different registration results, as shown in Fig. 3(d) and (e). This
inconsistency will be eliminated in subsequent formulation by viewing how reg-
istration responds to different intermediate templates. In short, introduction of
τ and λ provides variability in (hλ,τ , Rhλ,τ

) necessary to account for template
and parameter bias, which allows us to consider the restriction of HS :

IS := {hλ,τ = fλ,τ ◦ gλ,τ ∈ HS : gλ,τ ∈ GS , fλ,τ ∈ FS, λ ∈ R+, τ ∈ T m},

for subsequent analysis. The anatomies, which are otherwise not well represented
by the template T , may be captured effectively through IS (Fig. 4). By introduc-
ing this variability in (hλ,τ , Rhλ,τ

) carefully restricted to λ and τ , we generate
a class of equivalent anatomical representations, A(S) = {{Mh(x) : S(h(x)) =
T (x)−Rh(x), ∀x ∈ ΩT }, ∀h ∈ IS}, referred to as AEC. For notational simplicity,
we combine the two parameters, τ and λ, in θ to represent AEC as:

A(S) = {{(Mhθ
(x)) : S(hθ(x)) = T (x) − Rhθ

(x), ∀x ∈ ΩT }, ∀θ ∈ Θ} , (2)

where Mhθ
(x) denotes CMD (hθ(x), Rhθ

(x)). An AEC maps each anatomy to a
(generally nonlinear) manifold in an n-dimensional space as shown schematically
in Fig. 5(a), where n is the dimensionality of CMD. Although the resulting AEC
is rich with an entire range of variability in Rhθ

, one may not arbitrarily select θ
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(a) (b) (c) (d) (e)

(f)

Fig. 3. (a) Template; (b) Subject; (c) Deformation field for direct warping – middle
of W is mapped to a limb of V; (d) Warped subject; (e) Sequence of transformations
obtained through intermediate templates of (f) may open up a W-fold to a V-fold by
guiding registration; (f) Intermediate templates for (e)

(a) (b) (c)

Fig. 4. Intermediate templates aid registration: (a) Template; (b) Direct warping of
Fig. 1(c); (c) Warping via an intermediate template

for analysis. It should be noted that a small residual does not necessarily corre-
spond to the best CMD. For instance, the residual may be reduced by selecting
small λs, but it may lead to an overly aggressive registration, which introduces
noise and erroneous correspondence as shown in Fig. 3(d), where viscous fluid
based registration was employed [1]. It is, therefore, important to find the op-
timal parameter selection, which requires a metric for carrying out intersubject
comparisons based on AEC manifolds. One may define distance between two
anatomies as infimum separation between their anatomical manifolds as shown in
Fig. 5(b), i.e., Dist(SA, SB) := inf({d(MA

hA
, MB

hB
) : ∀hA ∈ FSA , ∀hB ∈ FSB}),

where d represents Euclidean distance defined on the space of CMDs. While this
works for two subjects, comparing three or more anatomies becomes problematic
as illustrated in the figure, where Dist(SA, SC) � Dist(SA, SB) + Dist(SB , SC),
which is no longer a metric. We circumvent this problem by representing each
AEC through OMS, which allows directly employing a Euclidean metric for
groupwise comparisons.

Since we are mainly interested in volumetric variations among subjects rep-
resenting tissue growth or death, in subsequent discussion, we utilize Jaco-
bian determinant (JD), Jhθ

, of hθ to construct the proposed AEC through
Mhθ

= (Jhθ
, Rhθ

) descriptors. Moreover, we consider a single milestone (m = 1)
between S and T , with τ representing a single intermediate template in T .
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(a) (b) (c)

Fig. 5. (a) Nonlinear manifold structure of AEC; (b) Problem with Euclidean distance
based comparisons; (c) Approximation with hyperplanes

The idea of AEC was first proposed in [15], where tissue density maps [10]
were employed with λ as the sole confounding factor. Its major limitation was
the assumption that all AECs were collinear and could be approximated by a
single hyperplane. We extend this idea by providing a robust way to eliminate
non-uniqueness of CMDs and present a general framework that incorporates all
confounding factors in θ.

2.3 Optimal Morphological Signature

Optimal choice of θ for one subject may be different from that for the oth-
ers, which intuitively follows from the fact that different anatomies are affected
differently by it. For instance, a subject with bifolded sulci will prefer similar
structures in the template. It is, therefore, imperative to find an appropriate τ
and λ for each subject that is optimized for the underlying anatomy, leading to
optimal parameters Θ = (θ1, . . . , θL) for L subjects.

In order to define our criterion for optimality of Θ, we first consider two
anatomies. If we were to slide along the respective AECs, we would find two
representations that have minimum distance. We consider these two represen-
tations as the ones that best highlight differences between the two anatomies,
since together they eliminate confounding effects of λ and τ . More generally, for
L anatomies, we allow their representations to slide along respective AECs in
order to minimize the cumulative of pairwise distances of all individuals:

Θ∗ = arg min
Θ=(θ1,...,θL)

Mk(θk)∈A(Sk),k=1,...,L

L∑

i=1

L∑

j=1
j �=i

d2(Mi(θi), Mj(θj)), (3)

where d denotes the Euclidean distance, and Mi(θi) = (Jhθi
, Rhθi

) is the CMD
of subject i at the correspondence Θ = (θ1, . . . , θL). It can be shown that the
criterion of Eq. (3) minimizes the variance of morphological descriptors over
entire ensemble w.r.t. confounding factors, leading to:
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6. (a)-(d) Normalizing tem-
plates T1, . . . , T4; (e)-(f)
Subjects S1 and S2; (g)-(h)
Deformation fields for S1

and S2.

(a) (b)

Fig. 7. OMS versus CMD: (a) Randomly select-
ing CMDs (random parameter selection) from
AECs reduces the inter-group separation. Dots
marked with arrows represent group means; (b)
OMS results in optimal separation between the
two groups.

Θ∗ = arg min
Θ=(θ1,...,θL)

Mk(θk)∈A(Sk),k=1,...,L

L∑

i=1

d2 (
Mi(θi), M̄(Θ)

)
, (4)

where M̄(Θ) = 1
L

∑L
i=1 Mi(θi) represents the mean descriptor. The resulting

OMS, Mi(θ∗
i ), corresponding to optimal parameters, θ∗

i , for each individual,
effectively allows us to select optimal intermediate template and transformation
individually for each anatomy. This is a very important aspect of our approach,
which is better explained with a schematic example given in Fig. 6. Suppose
S1 and S2 are two anatomies under study, and T1, . . . , T4 are the normalizing
templates. Eq. (4) finds for each individual corresponding templates such that
the resulting (JD, residual) are as similar as possible. Resultantly, T3 and T1 will
be selected for S1 and S2 respectively, since they yield very similar transforma-
tions and residuals. Selecting a different template, on the other hand, results in
dissimilar transformations, and possibly dissimilar residuals (depending on the
smoothness level). When generalized to L subjects and T , Eq. (4) yields optimal
transformation parameters for each subject as shown Fig. 7. An analysis based
on random CMD selection results in poor inter-group separation (Fig. 7(a)).
Eq. (4), on the other hand, helps in removing this randomness of CMDs to pro-
vide an optimal separation between the two groups (Fig. 7(b)). Additionally,
by constraining each OMS to its respective AEC, it preserves inter-subject and
inter-group anatomical differences.

In order to solve the optimization problem of Eq. (4), we need to define the
structure of AEC manifolds shown in Fig. 5(a). For simplicity we approximate
the AECs with hyperplanes as shown in Fig. 5(c). If {V(i)

j , j = 1, . . . , n} are
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the principal directions of the AEC of ith subject, and M̂i is the correspond-
ing mean, then the linear hyperplane approximating the corresponding AEC
manifold is given by:

Mi(θ) = M̂i +
n∑

j=1

αijV
(i)
j , (5)

where αij , j = 1, . . . , n capture transformation dependent parameters, θi. The
objective function of Eq. (4), therefore, becomes:

A∗ = arg min
A:=(α1,...,αL)

L∑

i=1

d2

⎛

⎝M̂i +
n∑

j=1

αijV
(i)
j , M̄(A)

⎞

⎠ , (6)

where:

M̄(A) =
1
L

L∑

i=1

⎛

⎝M̂i +
n∑

j=1

αijV
(i)
j

⎞

⎠ , (7)

is the mean descriptor of all subjects, and αi = (αi1, . . . , αin). In order to stay
on individual manifolds, the optimization is constrained to αmin

i ≤ αi ≤ αmax
i ,

where αmin
i and αmax

i depend on the corresponding principal modes.
Solution to this constrained problem is an algorithm that allows moving along

individual hyperplanes, in order to minimize the objective function. At each
optimization iteration, an update of Mi(αi) (Fig. 5(c)) is computed, which yields
the current floating mean M̄(A) given by Eq. (7). The procedure is repeated
until the minimum of Eq. (6) is attained. Analytically it leads to the following
solution subject to constraints given above:

α∗
i = V(i)T

⎡

⎣ 1
L − 1

∑

k �=i

(
M̂k + V(k)αk

)
− M̂i

⎤

⎦ i = 1, . . . , L. (8)

When combined with Eq. (5), optimal correspondence of Eq. (8) yields OMS,
M∗

i , which is then used for subsequent analysis. The first term within braces
represents the mean across a smaller subset of subjects excluding ith subject.
α∗

i is, therefore, the projection to the principal axes of the difference between
the mean across other users and the subject mean. Eq. (8), hence, presents a
direct way of estimating the optimal signatures.

OMS, M∗
i , provides the optimal combination of JD and the correspond-

ing residual in addition to optimal selection of transformation parameters, λ
and τ , which, herein, makes subsequent analysis invariant to transformation
parameters.

3 Experiments

In this section, we provide experimental results to support our hypothesis that
residual carries significant amount of information for identifying group differ-
ences and that OMS yields superior performance by maintaining group separa-
tion between normal and pathologic anatomies. We considered two datasets:
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Fig. 8. Templates T1, . . . , T12 simulat-
ing gray matter folds

(a) (b)

Fig. 9. (a) A subject without atrophy;
(b) With 10% simulated atrophy

1. A 2D dataset of 60 subjects was generated by introducing random variability
in 12 manually created templates given in Fig. 8. This variability across subjects
is close to anatomical differences encountered in real gray matter folds. 5% at-
rophy was introduced in center one-third of the fold of 30 subjects to simulate
patient data. All subjects were spatially normalized to T12 via T1, . . . , T11, for
smoothness levels of λ = 0, . . . , 42 to construct individual AECs.
2. The second dataset consisted of real MRI scans of 31 subjects. To simulate
patient data, 10% atrophy was introduced in 15 randomly selected subjects in
a spherical region as shown in Fig. 9 using the simulator of [16]. Five interme-
diate templates were selected for spatial normalization to generate AECs for all
subjects with smoothing levels of λ = 0, . . . , 7.

3.1 Results and Discussion

For both datasets, we performed two types of tests on CMDs and OMSs: (1) t-
tests on individual log Jhλ,τ

and Rhλ,τ
components, and (2) T 2 test on (log Jhλ,τ

,
Rhλ,τ

) descriptor, for finding significance of differences between healthy and
pathologic anatomies. For CMDs, we randomly selected intermediate templates
for each subject before conducting tests for all smoothness levels λ. Note that
residual was smoothed with a Gaussian filter with various selections of smooth-
ness parameter σ prior to statistical tests mainly due to two reasons. First, it
ensures the Gaussianity of the smoothed residual. Second, since the residuals
appear only on tissue boundaries, even if tissue atrophy is in the interior of the
structure, smoothing produces a more spatially uniform residual. JD, on the
other hand, was not smoothed for the T 2 test due to its inherent smoothness.

Based on statistical tests, p-value maps were computed for all values of σ (and
λ for tests on CMDs). Since the minimum of a p-value map provides the best
performance for group differences, we computed minimum of each p-value map
for both datasets. Minimum log10 p plots as a function of σ are given in Figs. 10
and 11 for 2D and 3D datasets respectively. It may be observed from results based
on CMDs for both datasets that residual achieves considerably lower p values
as compared with JD, which indicates the significance of residual for capturing
group differences. The significance of both log JD and the residual increases with
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Fig. 10. Minimum p-value plots for synthetic dataset: (a) t-test on AEC based log JD;
(b) t-test on AEC based Residual; (c) T 2-test on AEC based (log Jhλ,τ

, Rhλ,τ
); (d)

Statistical tests on OMS
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Fig. 11. Minimum p-value plots for real 3D dataset: (a) t-test on AEC based log Jhλ,τ
;

(b) t-test on AEC based Rhλ,τ
; (c) T 2-test on AEC based (log Jhλ,τ

, Rhλ,τ
); (d) T 2-test

on OMS

σ and λ up to a point after which it starts degrading. Similarly, T 2 test also
shows best performance for intermediate values of λ (λ = 33 for 2D and λ = 7
for 3D), which means that an overly aggressive transformation is not required
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(a) (b)

Fig. 12. T 2-test based log10 p-value
maps for 2D simulated data at σ = 8
thresholded to p ≤ 10−2: (a) CMD
λ = 33; (b) OMS

(a) (b)

Fig. 13. T 2 test based p-value maps for
3D dataset corresponding to best re-
sults for each descriptor thresholded to
p ≤ 10−5: (a) CMD λ = 7, σ = 4; (b)
OMS with σ = 5; (c) OMS with σ = 5
thresholded to p ≤ 10−3

for capturing anatomical differences. These observations are in accordance with
our hypothesis that residual carries important anatomical information that is
complementary to the transformation. An analysis based solely on JD loses this
information, thereby degrading the performance of subsequent diagnostic tests.
The dependence of (Jhλ,τ

, Rhλ,τ
) on λ is eliminated through optimization as

indicated by OMSs for 2D, which shows an improved performance versus CMDs
(p = 10−9.5 at σ = 8 for OMS vs p = 10−8.5 at σ = 8, λ = 33 for CMDs). For
3D dataset, the optimal signatures provide a performance similar to the CMDs,
with the latter performing slightly better (p = 10−9.75 against p = 10−10.5).
On the other hand, OMS appears to be relatively insensitive to σ with a better
dynamic range. For instance, the variation in p-values for OMS in the range
σ = 2–6 is 10−0.75, whereas that for CMDs is 103.5, which makes CMDs much
more sensitive to σ. Small variations in σ, therefore, may considerably degrade
CMD-based analysis. OMS is, hence, not only more robust but also maintains
the separation between the two groups as indicated by very low p-values.

Another advantage of OMS may be observed from appropriately thresholded
p-value maps for 2D and 3D datasets given in Figs. 12 and 13 respectively.
Clearly, OMS helps in precisely localizing atrophy, which is in accordance with
the objective function of Eq. (6). On the other hand, CMDs fail to localize
atrophy, and occasionally result in false positives.

4 Conclusions

In this paper, we have presented a morphological descriptor for computational
anatomy with two major contributions. First, the transformation was combined
with the residual for a complete (lossless) description of the anatomy. Second,
each anatomy was represented with a rich class of descriptors, that incorporates
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smoothness of the transformation and the choice of intermediate templates. In-
dependence to these parameters was established through OMS, which was esti-
mated using a manifold sliding algorithm. Since each OMS was forced to stay
on the corresponding AEC manifold, it maintains inter-group differences, which
was validated through statistical tests on synthetic 2D as well as real 3D data.

Tests confirmed our hypothesis that residual provides remarkably better group
separation than the JD. Results clearly indicated that residual contains not only
important, but critical morphological information, and should, therefore, be an in-
tegral part of any morphological descriptor, if not the most important part. Mar-
ginal gain was achieved by using the OMS, when compared to the absolutely best
result that can be obtained from individual pairs of (transformation, residual). Al-
though this may indicate that the optimization along AEC manifolds could well
be omitted, it is argued that the robustness and independence of the results from
template and transformation parameters are important reasons to perform this
optimization, even if it does not significantly improve detection power at the ab-
solutely optimal set of parameter values. Moreover, future work on estimating the
nonlinear structure of these manifolds, instead of approximating them linearly,
may further increase the significance of the optimization procedure.
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Abstract. We present a method for the incorporation of regional image
information in a 3-D graph-theoretic approach for optimal multiple sur-
face segmentation. By transforming the multiple surface segmentation
task into finding a minimum-cost closed set in a vertex-weighted graph,
the optimal set of feasible surfaces with respect to an objective function
can be found. In the past, this family of graph search applications only
used objective functions which incorporated “on-surface” costs. Here,
novel “in-region” costs are incorporated. Our new approach is applied
to the segmentation of seven intraretinal layer surfaces of 24 3-D mac-
ular optical coherence tomography images from 12 subjects. Compared
to an expert-defined independent standard, unsigned border positioning
errors are comparable to the inter-observer variability (7.8 ± 5.0 μm and
8.1 ± 3.6 μm, respectively).

1 Introduction

Even though medical images commonly exist in three or more dimensions, the
ability to efficiently and accurately segment images in 3-D or 4-D remains a
challenging problem. For example, in order to make many 3-D segmentation
approaches practical, optimality of the resulting segmentation is often not guar-
anteed because of the computational demands in searching a large solution
space [1, 2].

Nevertheless, Li et al. [3] recently presented a low-polynomial time graph-
based approach for the optimal multi-surface segmentation of 3-D or higher
dimensional data. This was an extension of the approach for the optimal de-
tection of single surfaces presented by Wu and Chen [4] to the multiple surface
case. In these approaches [3,4], the surface segmentation problem is transformed
into that of finding a minimum-cost closed set in a constructed vertex-weighted
geometric graph. The edges of the graph are defined so that each closed set in
the graph corresponds to a feasible surface (or set of feasible surfaces). Further-
more, the vertex costs are assigned so that the cost of each closed set directly
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corresponds to the cost of the set of surfaces. The closed set with the minimum
cost (corresponding to the optimal set of surfaces) is then determined by finding
a minimum s-t cut in a closely-related graph. Note that even though the surfaces
are ultimately found by finding a minimum-cost s-t cut in a constructed graph,
these approaches [3,4] are fundamentally different than the “graph cut” methods
of Boykov et al. (e.g., [5]).

While the edges of the graph are important in determining what it means for a
surface to be feasible, it is the cost function that determines what set of surfaces
is optimal. As originally presented in [3, 4] and used by all of the applications
to date (e.g., [6, 7]), the cost of a set of surfaces is defined as a summation of
cost values associated with voxels on the surfaces (i.e., the cost of a voxel with
respect to a particular surface reflects the unlikeliness that the voxel would be
part of the surface). While such “on-surface” costs can incorporate both image
edge and regional information [7], the incorporation of regional information is
often limited to a region immediately surrounding the voxel for which the cost is
defined (especially in cases of multiple surface detection). In some applications,
better cost functions could likely be defined if “true” regional information could
be incorporated. This involves extending the definition of the cost of a set of
surfaces to also include the summation of in-region cost values in addition to
the on-surface cost values. The in-region cost value for a voxel associated with
a particular region would reflect the unlikeliness of that voxel belonging to the
region. Using the segmentation of the intraretinal layers of optical coherence
tomography (OCT) images as an example application, this paper presents how
true regional information can be incorporated into the 3-D graph search.

2 OCT Imaging Background

With its first introduction in 1991 [8], OCT is a relatively new imaging modality.
One of its most common uses is within the ophthalmology community, where the
high-resolution cross-sectional images resulting from OCT scanners are used for
the diagnosis and management of a variety of ocular diseases such as glaucoma,
diabetic macular edema, and optic neuropathy. The macula and region surround-
ing the optic nerve are two locations commonly scanned. For the images used in
this work, a macular scanning protocol was used that involved the acquisition
of six linear radial scans in a spoke pattern centered at the fovea (Fig. 1(a–c)).
An example image series using this protocol is shown in Fig. 1(d).

Even though intraretinal layers are visible on these macular scans, current
commercial systems (e.g., Stratus OCT-3, Carl Zeiss Meditec, Inc., Dublin, CA,
USA) only segment and provide thickness measurements for the total retina. As
each layer may be affected differently in the presence of ocular disease, an in-
traretinal layer segmentation approach is needed in order to correlate the individ-
ual layer properties with disease state. We have previously reported a method for
the division of the retina into five intralayers (corresponding to six surfaces) using
only on-surface costs in the graph search [7]. However, even though the graph
search theoretically allowed for the simultaneous detection of many surfaces,
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T N

(a) Macular OD

N T

(b) Macular OS (c)

(d)

Fig. 1. Macular scanning protocol. (a) OD = right eye. (b) OS = left eye. (c) Schematic
view of 3-D image in which each color reflects one 2-D scan. (d) Six example scans in
one macular series.

we found the three interior surfaces in a sequential fashion because of the limi-
tations of incorporating regional information into on-surface costs. The method
reported in this work for incorporating in-region costs allowed us to instead find
four interior surfaces simultaneously. The surfaces we desired to find are shown
in Fig. 2, with Fig. 2(c) providing an example 3-D view of three of the surfaces.

3 The Multiple Surface Segmentation Problem

In very general terms, the multiple surface segmentation problem can be thought
of as an optimization problem with the goal being to find the set of surfaces with
the minimum cost – such cost being edge and/or region based – so that the found
surface set is feasible. In this section, we define what is meant by a feasible surface
set and the cost of a set of surfaces.

3.1 Feasible Surface Set

Consider a volumetric image I(x, y, z) of size X × Y × Z. We focus on the case
in which each surface of interest can be defined with a function f(x, y) mapping
(x, y) pairs to z-values; however, note that the graph search can be extended
to work with closed surfaces as well [9]. Associated with each (x, y) pair is a
column of voxels in which only one of the voxels – the voxel at (x, y, f(x, y)) –
intersects the surface. Each column also has a set of neighbors. For example, a
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1
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4
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6
7

A:NFLB: GCL + IPL
C: INL
D: OPL
E: ONL + IS
F: OS

(b) (c)

Fig. 2. Intraretinal surfaces and layers of macular OCT images. (a) One 2-D image.
(b) Seven surfaces (labeled 1-7) and six corresponding intralayers (labeled A through
F). (c) Example 3-D visualization of surface 1, 3, and 5.

typical set of neighbors for the column associated with (x, y) are the columns
associated with (x+1, y), (x−1, y), (x, y+1), and (x, y−1). Other neighborhood
relationships are also possible. One common example is to add a “circularity”
neighbor relationship for images that were unwrapped from a cylindrical coordi-
nate system. An example of this would be if the column associated with (0, y0)
was considered to be a neighbor to the column associated with (X − 1, y0). A
single surface is considered feasible if it satisfies certain smoothness constraints.
In particular, if (x1, y1, z1) and (x2, y2, z2) are voxels on the surface from neigh-
boring columns in the x-direction, then |z1 − z2| ≤ Δx, where Δx is a specified
smoothness parameter. A similar constraint exists for neighboring columns in
the y-direction (|z1 − z2| ≤ Δy).

For a set of surfaces, additional constraints are added to model the desired
relationships between the surfaces. For example, it may be known that one sur-
face is always above another surface and that the distance between the surfaces
is at least δl voxels, but no more than δu voxels. More specifically, for each
pair of surfaces fi(x, y) and fj(x, y), a constraint may be added to require that
δl ≤ fi(x, y) − fj(x, y) ≤ δu for all (x, y), where δl and δu are specified surface
interaction parameters associated with the pair of surfaces. While in general a
pair of surfaces may be allowed to cross, having crossing surfaces does not make
sense when defining regional costs, and thus we will also assume that δl and δu

have the same sign.
In summary, a set of surfaces are considered feasible if each individual surface

in the set satisfies the given smoothness constraints for the surface and if each
pair of surfaces satisfies the surface interaction constraints.

3.2 Cost of a Feasible Surface Set

Given a set of n non-intersecting surfaces {f1(x, y), f2(x, y), . . . , fn(x, y)}, the
surfaces naturally divide the volume into n + 1 regions (Fig. 3). Assuming the
surfaces are labeled in “increasing” order, the regions can be labeled R0, . . . , Rn,
where Ri reflects the region that lies between surface i and surface i + 1 (with
region boundary cases R0 and Rn being defined as the region with lower z-values
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z

(a)

∑
(x,y,z)∈R0

creg0(x, y, z)

∑
(x,y,z)∈R1

creg1(x, y, z)

∑
(x,y,z)∈R2

creg2(x, y, z)

∑
{(x,y,z)|z=f1(x,y)} csurf1(x, y, z)

∑
{(x,y,z)|z=f2(x,y)} csurf2(x, y, z)

(b)

Fig. 3. Example schematic cost of two surfaces for the multiple surface segmentation
problem. The two surfaces divide the volume into three regions.

than surface 1 and the region with higher z-values than surface n, respectively).
Each voxel could thus have 2n + 1 real-valued costs associated with it: n on-
surface costs corresponding to the unlikeliness of belonging to each surface and
n+1 in-region costs associated with the unlikeliness of belonging to each region.
Let csurfi

(x, y, z) represent the on-surface cost function associated with surface
i and cregi

(x, y, z) represent the in-region cost function associated with region i.
Then, the cost C{f1(x,y),f2(x,y),...,fn(x,y)} associated with the set of surfaces can
be defined as

C{f1(x,y),f2(x,y),...,fn(x,y)} =
n∑

i=1

Cfi(x,y) +
n∑

i=0

CRi , (1)

where
Cfi(x,y) =

∑

{(x,y,z)|z=fi(x,y)}
csurfi

(x, y, z) , (2)

and
CRi =

∑

(x,y,z)∈Ri

cregi
(x, y, z) . (3)

Note that Cfi(x,y) reflects the cost associated with voxels on surface i and CRi

reflects the cost associated with voxels belonging to region i.
Thus, the multisurface segmentation problem becomes to find the surface

set {f1(x, y), f2(x, y), . . . , fn(x, y)} that minimizes Equation (1) such that each
surface individually satisfies the smoothness constraints and each pair of surfaces
satisfies the given surface interaction constraints.
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4 Transforming the Multiple Surface Segmentation
Problem into the Minimum-Cost Closed Set Problem

As was described in [3], a directed graph G = (V, E) can be defined such that
each feasible surface set corresponds to a closed set in the graph. A closed set
is subset VCS of the vertices V such that no edges leave the closed set. The
cost of a closed set is the summation of the costs of all the vertices. Because
of the direct correspondence between the vertices in the graph and voxels in
the image, it is easiest to visualize the graph vertices as being organized as n
volumes of vertices, one for each surface to be found. First, edges are added to
each volume of vertices such that each closed set within this volume corresponds
to a surface satisfying the given surface smoothness constraints. Essentially, the
corresponding closed set includes all the vertices corresponding to the surface
voxels plus all the “lower” vertices. This is done by adding two types of edges:
intracolumn edges and intercolumn edges. The intracolumn edges ensure that all
vertices below a given vertex (within one column) are also included in the closed
set. The intercolumn edges ensure that the smoothness constraints are satisfied.
Next, intersurface edges are added between the volumes of vertices to enforce
the surface interaction constraints. This makes each non-empty closed set in the
entire graph correspond to a feasible set of surfaces.

As an example, we will consider the added edges for one vertex associated
with a voxel towards the center of the image (i.e., a vertex not involved in
boundary conditions). It will be associated with two intracolumn directed edges:
one directed towards the vertex below it in the column and one from the vertex
above it. Two intercolumn edges will also exist for each neighboring column
in the x-direction (y-direction): one directed to the vertex in the neighboring
column that has a z-value that is Δx (Δy) smaller and one from the vertex in
the neighboring column that has a z-value that is Δx (Δy) greater. Finally, for
each corresponding column in the volume associated with a surface interaction
constraint, two intersurface edges are associated with the vertex: one to the
vertex in the corresponding column with a z-value that is δu smaller and one
from the vertex in the corresponding column with a z-value that is δl smaller.
Slightly different edges must be used in the “boundary cases” in which any of
those vertices do not exist [3].

The cost of each vertex in the graph is set such that the cost of each closed
set corresponds to the cost (within a constant) of the set of surfaces. The weight
wi(x, y, z) of each vertex (i = 1, 2, . . . , n) can be defined as the summation of
a term related to the on-surface costs (won−surfi

(x, y, z)) and a term related to
the in-region costs (win−regi

(x, y, z)):

wi(x, y, z) = won−surfi
(x, y, z) + win−regi

(x, y, z) . (4)

For on-surfaces costs, the basic idea is to assign the cost of each vertex the
on-surface cost of the corresponding voxel minus the on-surface cost of the voxel
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Fig. 4. Schematic showing how the assignment of in-region costs to vertices produces
the desired overall cost

below it [4, 3]:

won−surfi
(x, y, z) =

{
csurfi

(x, y, z) if z = 0
csurfi

(x, y, z) − csurfi
(x, y, z − 1) otherwise

. (5)

For in-region costs, the cost of each vertex is assigned the in-region cost of
the region below the surface associated with the vertex minus the in-region cost
of the region above the surface associated with the vertex:

win−regi
(x, y, z) = cregi−1

(x, y, z) − cregi
(x, y, z) . (6)

Because the use of in-region costs is new and perhaps less intuitive, Fig. 4 il-
lustrates why such a transformation works. The cost of the closed set C(VCSi)
associated with surface i using the in-region costs becomes

C(VCSi) =
∑

(x,y,z)∈R0
�···�Ri−1

cregi−1
(x, y, z) −

∑

(x,y,z)∈R0
�···�Ri−1

cregi
(x, y, z) . (7)

Recognizing that many of costs associated with each individual region cancel
when added together and the fact that

∑
(x,y,z)∈R0

�···�Rn
cregn

(x, y, z) is a
constant K, the cost for the closed set associated with the entire set of surfaces
C(VCS) reduces to

C(VCS) = −K +
n∑

i=0

∑

(x,y,z)∈Ri

cregi
(x, y, z) , (8)

which, within a constant, is equivalent to the desired in-region component of the
cost of the set of surfaces.

5 Application to OCT Intraretinal Layer Segmentation

5.1 Overall Segmentation Approach

To increase the signal to noise ratio on the macular OCT images, up to six
raw macular series were first aligned and registered together using the methods
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(a) (b)

Fig. 5. Base graph showing neighborhood relationship. The edges indicate neighbor-
hood connectivity of one column of z-values at a (r, θ) pair to another. For each edge
shown, smoothness constraints existed between the corresponding columns. (a) Base
graph using cylindrical coordinates. (b) Base graph using unwrapped coordinate system
(as was stored in the computer).

described in [7]. This left one composite 3-D image for each eye. As a pre-
processing step, a speckle-reducing anisotropic diffusion method was applied [10].
Boundaries 1, 6, and 7 were simultaneously found first using the graph search
with only on-surface costs. The remaining boundaries were then simultaneously
found using only in-region costs.

5.2 Surface Set Feasibility for Macular OCT Images

The acquisition setup of the macular scans (Fig. 1) made it natural to use a
discrete cylindrical coordinate system when working with each 3-D image (the
z-axis coincided with the intersection of the six 2-D composite scans). The co-
ordinates of each voxel could thus be described with the triple (r, θ, z), where r
reflected the distance of the voxel from the z-axis, θ reflected the angular location
of the voxel (12 values in 30 degree increments), and z reflected the row of the
voxel in the corresponding 2-D image. Note that with this coordinate system,
voxels in the left half of each 2-D image had a different θ value than those in the
right half (for example, for the vertical 2-D scan shown in red in Fig. 1, voxels
in the right half of the image had a θ value of 90 while those in the left half had
a θ value of 270). Each surface could be defined with a function f(r, θ), map-
ping (r, θ) pairs to z-values. The base graph in Fig. 5 schematically shows the
neighborhood relationship for the columns and the corresponding smoothness
constraints.

In addition, surface interaction constraints were added between each pair of
surfaces fi(r, θ) and fi+1(r, θ). Because of the different nature of the surfaces near
the fovea (layers often become much thinner), the surface interaction constraints
towards the center of the image (r values less than 15) were correspondingly
defined to allow for smaller distances between surfaces.



Incorporation of Regional Information in Optimal 3-D Graph Search 615

5.3 Surface Set Costs for Macular OCT Images

The on-surface cost functions for surfaces 1, 6, and 7 were the same as those
used in our prior work [7] (each involved the combination of an edge term and
a localized region-based term) and thus we will focus on the use of in-region
cost terms for the simultaneous detection of the remaining four interior surfaces
(surfaces 2, 3, 4, and 5).

Motivated by the observation that the intensity of each of the five interior
regions could be described as being dark, medium, or bright (region A was bright,
region B was medium, region C was dark, region D was medium, region E was
dark), the in-region cost values were set based on fuzzy membership functions.
Based on Gaussians, each membership function mapped a normalized image
intensity value to a value between 0 and 1, with higher values reflecting a greater
likelihood of belonging to the particular intensity group. The corresponding cost
value was then defined as 1 minus the membership value. Fig. 6 shows an example
plot of these membership functions and their corresponding cost values. More
specifically, the dark membership function, darkmem(x), was defined as

darkmem(x) =

{
1 for x ≤ Δd

e−(x−Δd)2/2σ2
for x > Δd

, (9)

the medium membership function, medmem(x), was defined as

medmem(x) =

⎧
⎪⎨

⎪⎩

e−(x−(cm−Δm))2/2σ2
for x < cm − Δm

1 for cm − Δm ≤ x ≤ cm + Δm

e−(x−(cm+Δm))2/2σ2
for x > cm + Δm

, (10)

and the bright membership function, brightmem(x), was defined as

brightmem(x) =

{
e−(x−(1−Δb))2/2σ2

for x < 1 − Δb

1 for x ≥ 1 − Δb
. (11)

Note that the precise membership functions used could be described by the
five parameters Δd, Δm, and Δb, cm, and σ. To allow for varying membership
functions for each image, Δd, cm, and Δb were estimated from the image data
by computing the mean intensity value of regions that were assumed to have a
dark, medium, or bright intensity. The assumed dark region was taken as 50–
70 μm above surface 7, the assumed medium region was taken as a 40–60 μm
below surface 1 (not including the middle voxels closest to the fovea), and the
assumed bright region was taken as 0–24 μm below surface 7. These estimates
could be taken because surfaces 1, 6, and 7 had already been determined.

6 Experimental Methods for OCT Intraretinal
Segmentation

The intraretinal layer segmentation algorithm was applied to fast macular scans
from 12 subjects with unilateral chronic anterior ischemic optic neuropathy. Note
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Fig. 6. Example dark, medium, and bright membership functions and corresponding
cost values

that the unilateral nature of the disease meant that we had data for 24 eyes, 12
of which were affected by optic neuropathy, 12 of which were not. In almost all
cases (21/24 eyes), six repeated series (6×6 = 36 raw scans) were used to create
the 3-D composite image for each eye. (Each of the remaining three eyes used
fewer than six repeated series to create the 3-D composite image.) The resulting
24 3-D composite images were each comprised of 6 composite 2-D scans (144
total composite 2-D scans) of size 128 × 1024 pixels. The physical width and
height of the 2-D raw scans (and thus also the composite scans) was 6 mm ×
2 mm, resulting in a pixel size of approximately 50 μm (horizontally) × 2 μm
(vertically).

One raw scan from each eye was independently traced by two human ex-
perts with the average of the two tracings being used as the reference standard.
The experts did not attempt to trace borders that were not considered visible.
The algorithmic result on the corresponding composite 2-D scan was converted
into the coordinate system of the raw scan (inversely transforming the align-
ment/registration) and the mean and the maximum unsigned border positioning
errors for each border were computed (the middle 30 pixels were not included to
exclude the fovea). The unsigned border positioning errors were also computed
using one observer as a reference standard for the other. For each border, a
paired t-test was used to test for significant differences in the computed mean
border positioning errors (p-values < 0.05 were considered significant).

7 OCT Intraretinal Segmentation Results

The computed unsigned and maximal border position errors are summarized
in Table 1. Except for the unsigned border positioning errors for surface 2 and
surface 4 (which both were significantly greater, p < 0.001 and p = 0.04, respec-
tively), the computed mean errors for all the surfaces were significantly lower or
not significantly different from that between the human observers (p < 0.001 for
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Table 1. Summary of unsigned border positioning errors† for 24 scans

Algorithm vs. Avg. Observer Observer 1 vs. Observer 2

Border Mean Maximum Mean Maximum

1 4.0 ± 1.2 16.9 ± 9.0 5.9 ± 1.3 16.4 ± 5.0

2* 11.2 ± 5.2 37.1 ± 11.9 5.8 ± 1.2 21.5 ± 8.6

3* 10.0 ± 4.7 29.0 ± 9.3 8.4 ± 3.3 26.0 ± 11.8

4* 10.4 ± 5.1 31.4 ± 14.3 7.7 ± 2.1 22.7 ± 6.6
5 9.1 ± 6.5 27.1 ± 13.2 9.4 ± 4.4 28.5 ± 12.5
6 3.5 ± 2.0 13.1 ± 7.5 7.8 ± 2.8 19.3 ± 5.6
7 7.8 ± 2.5 22.5 ± 7.2 11.5 ± 4.6 24.8 ± 5.8

† Mean ± SD in μm. For each boundary, differences were not computed
for the middle 30 pixels (out of 128) to exclude the fovea.

* Errors were not computed for those scans in which boundary was deter-
mined to not be visible by at least one expert.

(a) (b)

Fig. 7. Example result shown on a 2-D scan from one of the 3-D images

surface 1; p = 0.11 for surface 3; p = 0.80 for surface 5; p < 0.001 for surface 6;
p = 0.004 for surface 7). The overall mean (all borders combined) unsigned
border positioning error for the algorithm was 7.8 ± 5.0 μm with an overall
maximum unsigned border positioning error of 24.7 ± 12.9 μm. This was com-
parable to the overall mean and maximum border positioning errors computed
between the observers which were 8.1 ± 3.6 μm and 22.8 ± 9.2 μm, respectively,
and compared well with the true 9–10 μm resolution of the OCT imaging system
reported in the literature [11]. An example result is shown in Fig. 7.

8 Discussion and Conclusion

We have presented how in-region cost terms may be added to the optimal 3-D
graph search approach and demonstrated its applicability to the intraretinal
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layer segmentation of macular OCT images. In fact, we chose to only use in-
region cost terms for the interior surfaces to help to show how surfaces may be
found using only in-region cost terms. With the resulting segmentation errors
being similar to that found between two observers, our results were very good
overall. Nevertheless, we anticipate that incorporating both on-surface and in-
region cost terms will help to provide a better segmentation than that from using
either type of cost alone.
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Abstract. A core part of many medical image segmentation techniques
is the point distribution model, i.e., the landmark-based statistical shape
model which describes the type of shapes under consideration. To build
a proper model, that is flexible and generalizes well, one typically needs
a large amount of landmarked training data, which can be hard to ob-
tain. This problem becomes worse with increasing shape complexity and
dimensionality.

This work presents a novel methodology applicable to principal
component-based shape model building and similar techniques. The main
idea of the method is to make regular PCA shape modelling more flexible
by using merely covariances between neighboring landmarks. The remain-
ing unknown second order moments are determined using the maximum
entropy principle based on which the full covariance matrix—as employed
in the PCA—is determined using matrix completion.

The method presented can be applied in a variety of situations and in
conjunction with other technique facilitating model building. The exper-
iments on point distributions demonstrate that improved shape models
can be obtained using this localized maximum entropy modelling.

1 Introduction

In the past decade, the approach to segmentation, using statistical shape mod-
els and the like, has received a lot of attention and a considerable amount of
literature in the field has been devoted to this subject.

A core issue in statistical shape modelling is to build the prior shape model.
Typically, the model building is based on examples shapes, which are obtained
through the manual delineation by an expert of the shapes of interest in medical
images. A reoccurring difficulty in the process is to collect enough data in order to
be able to build a shape model that both has an adequate generalization ability
and a high specificity. On the one hand, the model should capture enough of the
variations in the class of shapes under consideration to ensure that everything
that has to be modelled can actually be modelled. On the other, the model
should avoid modelling more than necessary.

In this paper, we shall take the small amount of training instances as a given
fact and focus on the problem of building a shape model under such circum-
stances. More specifically, we considers statistical shape model building based
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on the principal components of the shape covariance matrix, which is the ap-
proach pursued in well-known active shape modelling [1]. We should, however,
stress that the general principle is more broadly applicable.

When there is not enough training data, a PCA model will be overly con-
strained and not generalize well to new shapes of the same class. In PCA, one
typically employs the full sample covariance matrix, which describes second order
covariations between all landmarks in the model. Arguably, this is too restrictive
in the small sample case, and we propose to relax this constraint by merely mod-
elling local covariations between landmark points which are all within a same
neighborhood. Still, to actually perform PCA, one does need a full covariance
matrix and we suggest to fill in the unspecified covariances by “assuming the
least” and cast the problem into a maximum entropy formulation [2,3]. As a re-
sults of the maximization of the entropy, typically a full rank covariance matrix
is obtained from which a larger number of sensible modes can be extracted than
from the original sample covariance matrix.

1.1 Related Work

Many of the other techniques employed to make statistical shape models more
flexible do this by adding a second (covariance) matrix to the sample covari-
ance [4,5,6,7]. The actual form of this second matrix is, for example, obtained
through finite element methods or based on regularization or smoothing princi-
ples, which can also be modelled through certain assumptions about the prior
probability. Similar to these methods is the adaptive focus method [8] and its
variations (see [9]), in which individual shapes are explicitly manipulated so to
increase their influence on the final PCA and partly overcome the small sample
problem. The shape manipulation can be seen as a different way of providing
prior information to the model. Another class is concerned with expanding the
representation basis to model the shapes with, typically in an hierarchical way,
e.g. using wavelets, [10,11,12,13]. Subsequently, explicitly or implicitly assuming
certain independencies between representations at different levels, these levels
can be modelled separately and a more flexible overall model is obtained.

Our approach is in some sense complementary to the previously mentioned.
The way we use prior knowledge in shape modelling here is by explicitly not
modelling those interactions between landmarks which seem too restrictive, too
uncertain, or simply improper. The unmodelled part is then taken care of by the
maximum entropy principle. Such an approach can be integrated into most, if not
all, of the methods previously mentioned, both where it involves determining a
covariance matrix and when the goal is the estimation of some other parameters.

2 Local Covariations and Maximum Entropy

The methodology is presented within the context of point distribution models [1]
in which shapes are represented by the coordinates of a set of n landmark points
placed alongside the object boundary. The landmarks are taken to correspond
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between different shape instances. Subsequently, employing Procrustes analysis,
the correspondence is used to align all shapes into a common coordinate frame,
removing translation, rotation, and scaling variations.

Following the alignment, all d-dimensional shapes are represented in an
Euclidean nd-dimensional space, in which the shape variability is analyzed us-
ing principal component analysis (PCA), i.e., an eigenvalue decomposition of
the covariance matrix is carried out which yields eigenvectors that can be inter-
preted as the primary shape variations w.r.t. the mean shape, i.e., the so-called
modes of shape variation, describing a joint displacement of landmarks. By a
linear combination of the mean shape and these modes of variation, it should
be possible to approximate each relevant shape. Usually only a small number of
modes is needed to capture most of the variation in the training set. One of the
main questions, however, is how this shape model behaves on unseen data.

Given N (N < dn) shapes, the standard method only allows for the extraction
of N −1 non-degenerate modes of variation, which, especially in the small sample
case, is most often too restrictive to describe the shape class properly. One
too restrictive assumptions the PCA model makes is that the interactions, or
covariations, between all landmark points are explicitly modelled. This means
that every single landmark influences every other landmark in the shape, no
matter how far they are located from each other. As few examples do not allow
for an accurate estimation of the full covariance matrix from the data, it would
be beneficial to reduce the number of covariances estimated directly from the
data.

2.1 Local Entries of the Covariance Matrix

Arguably, from the position of one landmark, another landmark’s position can
be more accurately predicted the closer both points are to each other. Being
well enough able to predict shape variations locally, the prediction of a global
shape would also be roughly possible. This leads us to avoiding the estimation
of covariances for the data of landmarks that are spatially remote: For every
landmark, the k nearest neighbors are determined and merely their (co)variances
are estimated.

As we need a full covariance matrix to perform PCA, all unspecified entries
have to be filled out such that the matrix becomes a proper covariance matrix.
This is a so-called matrix completion problem, which is generally nontrivial to
solve [14,15]. E.g., in order to make the model maximally flexible, one would like
to assume independence between landmarks not in the same local neighborhood,
which would imply the associated covariance to be zero. However, generally,
setting all non-neighborhood matrix entries to zero does not result in a positive
semidefinite matrix.

We can be certain that a positive semidefinite solution exists (e.g. take the
sample covariance matrix), however if there are more solutions—which should
be the case for our approach to work, we need a criterion that picks out a unique
one. We suggest to use a maximum entropy approach for this [2,3]. Assuming
that the covariance matrix specifies a Gaussian model, the (differential) entropy
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hC equals
hC = 1

2 ln((2π)nd detC)) , (1)

where C is the covariance matrix, and the maximum entropy solution can be
obtained by matrix completion under the constraint that the determinant of the
matrix is maximized [2], because

hC ∝ det(C) . (2)

This optimization problem can be readily solved through semidefinite program-
ming [16], however we used a more heuristic approach [17] which turns out to
work more efficient for our purpose. The latter approach finds the global max-
imum by cycling iteratively through all of the unspecified matrix entries and
solving, explicitly, the associated one-variable problem that maximizes the deter-
minant. For a description of the optimization strategy and related pseudo-code,
we refer to [17].

2.2 Rationale of Maximum Entropy

The rationale of maximum entropy is that one obtains the distribution which
assumes the least about the unknown parameters [3]. Or rather, in a way it
avoids modelling dependencies and interactions that are spurious. In the current
case, this means that it tries to fill in the unspecified entries in such a way that
the landmarks are taken as independent as possible. This behavior can also be
seen from the trace and the determinant of the covariance matrices. All positive
semidefinite solutions to the matrix completion problem, have the same trace,
as the diagonal is fully specified (because a landmark is always its own first
nearest neighbor). This means that the total variance that is being modelled is
the same for all solutions. However, the maximum entropy solution attains this
total variance and at the same time maximizes the determinant. This means
that it tries to distribute the eigenvalues of the matrix as evenly as possible; the
more uniformly distributed the eigenvalues are, the higher the determinant is1,
i.e., the more spherical the Gaussian distribution becomes.

Note, by the way, that a maximum entropy completed covariance matrix will
generally have a positive determinant, i.e., the matrix is full rank, implying that
all eigenvectors have a positive eigenvalue associated to them and there are no
degenerate, eigenvalue zero, shape modes in the model.

3 Illustrative Experiments

To illustrate the effect of using the localized maximum entropy covariance ma-
trix, the lung field segmentations in standard chest radiographs, as described
in [18], are used. This data set was chosen because of the amount of segmen-
tations available, which allows us to refrain from leave-one-out experiments or

1 All of this is rather reminiscent of the arithmetic-geometric inequality.



Localized Maximum Entropy Shape Modelling 623

other cross-validation techniques and simply use a separate train and test set.
In addition, the visualization of the effect is easier because it concerns 2D data.
Last, but not least, the data is already landmarked and all is made publicly
available2.

3.1 Data and Experimental Settings

Lung segmentations are provided for 247 images with a total of 94 landmarks
to represent both lung fields. 64 images were used for testing and the remaining
183 images were used in the test phase. Experiments were conducted using 4,
8, 16, and 32 shapes in the training set and the number of neighbors k, based
on which the local modelling was performed, was taken to be 3, 7, or 15. The
percentage of initially unspecified entries in the 188 × 188-covariance matrix for
these choices of k is considerable—about 97%, 92%, and 81%, respectively.

The performance is measured using often employed measures for generaliza-
tion and specificity (see e.g. [19] or [20]). Compactness could have been used
as well, however the models obtained by means of maximum entropy will, by
construction, have better compactness compared to the regular PCA model.
The eigenvalues become more and more similar to each other as the entropy
increases, while the trace remains fixed, implying that the leading eigenvalues
become smaller. For this reason, the focus is on model generalization ability and
model specificity.

3.2 Results

Figure 1 displays, for a training set containing four shapes, examples of the first
four and modes of variation obtained be regular PCA. The corresponding first
four modes for the approach proposed using local modelling based on 3 neighbors
are displayed in Figure 2. Mode variations are shown using the notorious ±3
standard deviations from the mean shape. Figure 3 shows four additional modes
obtainable using local maximum entropy modelling. Clearly, for regular PCA the
last modes (the light gray shapes in the bottom righthand corner of Figure 1)
provides no additional shape variability as its standard deviation equals zero. The
maximum entropy modes provides more than N − 1 plausible shape variations.
In addition, in Figure 3, note that higher order modes seem to have the tendency
to model more and more localized shape variability, e.g. all of them model either
something in the right or in the left, but not in both lungs.

Plots for the specificity and the generalization ability against the number of
modes are shown in Figure 4. The curves on the left give the generalization
ability of the four models (i.e., regular PCA and localized maximum entropy
with k = 3, 7, and 15 neighbors). Those on the right provide the specificity. Top
graph shows the results for 4 training instances, the second for 8, the third one
for 16, and bottom one for 32 training shapes. In general, the lower the curve is
situated, the better the model performs.
2 www.isi.uu.nl/Research/Databases/
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Fig. 1. Left to right, top to bottom: Modes of variation for N = 4 training samples
using regular PCA. The mean shape is in black, while the light and dark gray shapes
give the variations with ±3 standard deviations.

From the graphs, we see that the localized maximum entropy models tend to
provide better generalization ability than a regular PCA model. On the other
hand, the specificity often increases w.r.t. the PCA model. The gain in general-
ization ability is often considerably larger than the loss w.r.t. specificity when
using maximum entropy. The actual tradeoff between these two entities should
decide whether or not a maximum entropy model should be employed.

Note that in the top graph only the very unconstrained k = 3 model improves
upon regular PCA. The other choices of neighborhood size, are apparently still
too restricted to gain anything over normal PCA. As the number of training
examples increases the situation gradually changes. The improvement in gener-
alization ability for 8 (and partly also for 16) training instances is very convinc-
ing. In the bottom graph, where 32 training instances are used, the very flexible
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Fig. 2. Left to right, top to bottom: Modes of variation for N = 4 training samples
obtained by localized maximum entropy model, in which the neighborhood consists of
the k = 3 nearest neighbors. The mean shape is in black, while the light and dark gray
shapes give the variations with ±3 standard deviations.

model does not seem to be better than regular PCA anymore, however now the
two other shape models seem to provide some improvements.

4 Discussion and Conclusion

In this work, the original PCA-based point distribution model was made more
flexible by restricting the data-driven modelling of interactions merely to local
interactions between neighboring landmark points. This results in a covariance
matrix with a considerable amount of unspecified covariance entries, which we
proposed to specify based on a maximum entropy approach, i.e., the entries are
chosen such that the matrix becomes positive definite (a full rank covariance
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Fig. 3. Left to right, top to bottom: Four additional k = 3 local maximum entropy
modes for N = 4 training samples. (See also Figure 2.) The mean shape is in black
and the light and dark gray shape show the variations with ±3 standard deviations.

matrix) and at the same time maximizes the determinant of the resulting ma-
trix. In this way, a model is obtained that keeps the localized interactions as
independent as possible and as such increases the model’s ability to generalize
on previously unseen shapes.

In the experiments, when using our maximum entropy approach, it turned
out that an accurate enough shape model could be built using only 16 training
shapes. Even training on 8 instances would be acceptable, as in this an average
absolute landmark error of only 1 millimeter can be obtained. In addition, the
method also slightly improved the standard PCA approach when 32 training
samples were used, and seems therefore also beneficial to use when dealing with
moderate sample sizes.

Future research aims at applying the method to 3D data. In such situations
the ability of regular PCA to capture the essential shape variations becomes even
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Fig. 4. Left : plots of the reconstruction error, indicating the generalization ability
of the models. Right : the ‘nearest neighbor’ error [19,20], indicating the specificity
of the models. The performance of the sample covariance PCA model is given by the
black dashed graphs. Errors are measured on the test set. The mean absolute landmark
deviation in millimeters is reported.

less and the need for local modelling increases. The results presented indicate
that the method should work good in this situation as well.

As remarked in the introduction, the suggested modelling approach can be
considered complementary to many already existing methods to improve small
sample-based shape modelling. In addition, our method also makes it possible
to improve nonlinear shape models [21,22] in the same way as presented here.
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Nonlinear modelling calls for relatively more data, as the model becomes more
complex. Localized maximum entropy modelling can aid in dealing with such
models.

Finally, we are very interested in a possible link with work like presented in
[23]. It would be interesting to see in what way our explicit local modelling does
actually result in localized, and possible better interpretable, modes of variation.
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9. Lötjönen, J., Antila, K., Lamminmäki, E., Koikkalainen, J., Lilja, M., Cootes, T.:
Artificial enlargement of a training set for statistical shape models: Application to
cardiac images. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds.)
FIMH 2005. LNCS, vol. 3504, pp. 92–101. Springer, Heidelberg (2005)

10. Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models using the
wavelet transform. IEEE Transactions on Medical Imaging 22, 414–423 (2003)

11. Mohamed, A., Davatzikosh, C.: Shape representation via best orthogonal basis
selection. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS,
vol. 3216, pp. 225–233. Springer, Heidelberg (2004)

12. Nain, D., Haker, S., Bobick, A., Tannenbaum, A.R.: Multiscale 3D shape analysis
using spherical wavelets. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS,
vol. 3750, pp. 459–467. Springer, Heidelberg (2005)



Localized Maximum Entropy Shape Modelling 629

13. Zhao, Z., Aylward, S.R., Teoh, E.K.: A novel 3D partitioned active shape model
for segmentation of brain MR images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI
2005. LNCS, vol. 3749, pp. 221–228. Springer, Heidelberg (2005)

14. Johnson, C.R.: Matrix completion problems: A survey. In: Proceedings of Sym-
posia in Applied Mathematics. Providence, Rhode Island, American Mathematical
Society 1990, vol. 40, pp. 171–198 (1990)

15. Laurent, M.: In: Matrix completion problems. (Interior–M) of The Encyclopedia of
Optimization, vol.III, pp. 221–229. Kluwer Academic Publishers, Dordrecht (2001)

16. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

17. Glunt, W., Hayden, T.L., Johnson, C.R., Tarazaga, P.: Positive definite comple-
tions and determinant maximization. Linear Algebra and its Applications 288, 1–10
(1999)

18. van Ginneken, B., Stegmann, M., Loog, M.: Segmentation of anatomical structures
in chest radiographs using supervised methods: a comparative study on a public
database. Medical Image Analysis 10, 19–40 (2006)

19. Davies, R.H.: Learning Shape: Optimal Models for Analysing Natural Variability.
Ph.D. Thesis, Division of Imaging Science and Biomedical Engineering, University
of Manchester, UK (2002)

20. Styner, M.A., Rajamani, K.T., Nolte, L.P., Zsemlye, G., Székely, G., Taylor, C.J.,
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Abstract. Pulmonary embolism (PE) is a very serious condition causing sudden
death in about one-third of the cases. Treatment with anti-clotting medications is
highly effective but not without complications, while diagnosis has been missed
in about 70% of the cases. A major clinical challenge, particularly in an Emer-
gency Room, is to quickly and correctly diagnose patients with PE and then send
them on to therapy. Computed tomographic pulmonary angiography (CTPA) has
recently emerged as an accurate diagnostic tool for PE, but each CTPA study con-
tains hundreds of CT slices. The accuracy and efficiency of interpreting such a
large image data set is complicated by various PE look-alikes and also limited by
human factors, such as attention span and eye fatigue. In response to this chal-
lenge, in this paper, we present a fast yet effective approach for computer aided
detection of pulmonary embolism in CTPA. Our proposed approach is capable of
detecting both acute and chronic pulmonary emboli with a distinguished feature
of incrementally reporting any detection immediately once becoming available
during searching, offering real-time support and achieving 80% sensitivity at 4
false positives. This superior performance is contributed to our novel algorithms
(concentration oriented tobogganing and multiple instance classification) intro-
duced in this paper for candidate detection and false positive reduction.

1 Introduction

Pulmonary embolism (PE) is the third most common cause of death in the US with at
least 650,000 cases occurring annually. PE is a sudden blockage in a pulmonary artery,
and is caused by an embolus that is usually formed in the legs and travels in the blood-
stream through the heart before reaching the lungs. PE is a very serious condition that
can cause sudden death in about one-third of the cases. Most of those who die do so
within 30 to 60 minutes after symptoms start. Anti-clotting medications are highly ef-
fective in treating PEs, but sometimes can lead to subsequent hemorrhage and bleeding.
Therefore, they should be only given to those who really need. A major clinical chal-
lenge, particularly in an ER (Emergency Room) scenario, is to quickly and correctly
diagnose patients with PE and then send them on to treatment – a prompt and accurate
diagnosis is the key to survival.

However, PE is among the most difficult conditions to diagnose because its primary
symptoms are vague, non-specific, and may have a variety of other causes, making it
hard to separate out the critically ill patients suffering from PE. The diagnosis of PE
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(a) (b) (c)

(d) (e) (f)

Fig. 1. The emboli appears as dark regions residing in bright vessel lumen. Our toboggan-based
approach is capable to detect both acute (a, b) and chronic (c) pulmonary emboli, offering simulta-
neous detection and segmentation (d, e, f). The clot in (b) was actually missed by our radiologists,
but correctly detected by our system, and confirmed by the radiologists.

is missed more than 400,000 times in the US each year, and approximately 100,000
patients die who would have survived with the proper diagnosis and treatment.

Computed tomographic (CT) pulmonary angiography (CTPA) has become first-line
diagnosis technique for PE. Significant PEs are detectable given the high spatial res-
olution of modern CT scanners. A CT image is a large 3D volumetric image, which
consists of hundreds of images, each representing one slice of the lung. Clinically,
manual reading of these slices is laborious, time consuming and complicated by var-
ious PE look-alikes (false positives) including respiratory motion artifacts, flow-related
artifacts, streak artifacts, partial volume artifacts, stair step artifacts, lymph nodes, and
vascular bifurcation, among many others. The accuracy and efficiency of interpreting
such a large image data set is also limited by human factors, such as attention span
and eye fatigue. Consequently, it is highly desirable to have a computer aided detection
(CAD) system to assist radiologists in detecting and characterizing emboli in an accu-
rate, efficient and reproducible way. Such a CAD system has to achieve an extremely
high detection sensitivity with as few as false positives to acquire clinical acceptance.
It also needs to satisfy stringent real-time requirement due to the emergency nature of
PE cases.

A number of computer aided diagnosis methods have been developed [1–4]. These
existing methods are all based on sophisticated vessel segmentation, namely, first seg-
menting the pulmonary vessel structure and then searching for PEs within the seg-
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mented vessels, because PEs only exist in pulmonary arteries. However, vessel seg-
mentation is computationally time-consuming and has been problematic in small vas-
culature where subsegmental PEs often occur [1]. Furthermore, the normal regions of
pulmonary vessels are enhanced with contrast material. There is no need to search for
PE in the enhanced normal regions. Therefore, even if the pulmonary vascular struc-
ture is correctly segmented, large part of it would be excluded anyway. In this paper,
we present a fast yet effective toboggan-based approach for automated PE detection
in CTPA without vessel segmentation. Another distinguished feature of our approach
is its highly interactiveness and real-time response. For clinical use, all the detections
reported by a CAD systems must be reviewed and approved by radiologists. The exist-
ing PE CAD systems adopts a pipe-line architecture and only report the final detection
at the end of execution, implying that the radiologist has to wait until the end of the
system run in order to review and approve any detections. However, in an ER (Emer-
gency Room) scenario, radiologists only have a small time window (2-3 minutes) to
read a case and make the diagnosis. They cannot wait till the end of run to examine
all the CAD detection. To meet this requirement, our approach is capable to report
any PE detection once available in real time for radiologist to review and approve,
while it continues searching for additional PEs. These capabilities are founded on our
two novel algorithms introduced in this paper: concentration oriented tobogganing al-
gorithm for candidate detection and mutiple instance classification algorithm for false
positive reduction.

2 Basic Tobogganing

Pulmonary embolism may be acute or chronic. They are only existing in pulmonary
arteries and generally attached to the vessel wall (see Fig. 1). Due to the nature of
their formation, CTPA reveals emboli, whether acute or chronic, as dark regions with
Hounsfield Units (HU) between -50 HU and 100 HU, residing in contrast enhanced
bright vessel lumen. However, due to partial volume effects, the pixels around the vessel
boundaries are also in the same HU range. Therefore, a major challenge for automatic
PE detection is to effectively separate the emboli from the vessel wall and to quickly
remove partial volume effects around the vessel boundaries while correctly preserving
the PE pixels. In response to this challenge, we have come up with an idea: sliding
all the voxels with Hounsfield Units (HU) between -50 HU and 100 HU to its neigh-
bor with minimal HU value and collecting all voxels that don’t slide into regions with
Hounsfield Unit below -50 HU. This idea is illustrated in Fig. 2 and explained in the
following.

This algorithm is called tobogganing [5], which takes its name from the processing
analogy of sliding down a steep hill and will be referred as “basic tobogganing” in
this paper to be differentiated from a new tobogganing algorithm, called concentration
oriented tobogganing, to be presented in Section 3. A basic operation in tobogganing is
“sliding”. A pixel v with intensity P (v) and neighbors N(v) slides down to pixel g:

g = argmin
t ∈ N(v) ∪ {v}

P (t). (1)
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Fig. 2. An illustration of our idea for PE detection with basic tobogganing algorithm. In this small
PE image, CT values below -50 HU are printed in “white”, CT values above 100 HU in “gray”
and all others in “dark”. Naturally, all the CT values for PE pixels are in “dark”. However, due
to partial volume effects, the CT values for those pixels around the artery boundaries are also in
“dark”. Our idea can effectively detect the PE (circled) and remove the partial volume effects.

In cases where a pixel is surrounded by more than one pixel with the same minimal
intensity value, the first pixel found with this value can be chosen or other more so-
phisticated strategies may be used in selecting a neighbor. A pixel that cannot slide to
any of its neighbors is called a concentration. All the pixels that slide down to the same
concentration form a toboggan cluster with a unique label.

The basic tobogganing algorithm operates as follows: Each unlabeled pixel slides
till reaching a labeled pixel or a unlabeled new concentration. If it reaches a labeled
pixel, the label is propagated back to all the pixels along the sliding path, otherwise,
a new label is generated and then propagated back along the path. All the sliding di-
rections may be recorded during the process. Referring to the simple PE image in
Fig. 2, for detecting PE, we scan the image in row by row, but only selectively slide
those pixels with CT values between -50 HU and 100 HU. For illustration, we use 2D
four-connected neighborhood. The arrows indicate the sliding directions. During the
tobogganing, the first pixel with CT value between -50 HU and 100 HU is pixel (7,2),
which slides towards to pixel (7,1). Since the CT value of pixel (7,1) is -74 HU, and
is pre-labeled as “air”, label “air” is propagated back to pixel (7,2). During the to-
bogganing process, the first pixel collected as PE pixel is pixel (4,5), because it slides
down to pixel (4,6) and then concentrates at pixel (5,6) with CT value above -50 HU.
Consequently, a PE label is generated and assigned to pixel (5,6) and propagated back
to pixels (4,6) and (4,5). When it is done for all the pixels in the image, the “dark”
pixels around the arteries have all merged into darker regions with CT values below
-50 HU and all the PE pixels stand out (circled in red). In this example, two toboggan
clusters are formed for the detected PE pixels: The pixel (3,6) constitutes a single-pixel
toboggan cluster, while all other pixels forms one cluster with concentration at pixel
(5,6). To achieve the goal of PE detection, the adjacent toboggan clusters (with detected
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PE pixels) must be merged into a connected component, called a PE candidate, so
that a detection position (3D point) can be derived by ultimate erosion to represent the
candidate.

This basic tobogganing algorithm is intuitive and clearly useful in detecting PEs.
However, a problem is that it only labels the PE voxels, providing suspicious PE regions.
For PE detection, we must group the detected PE pixels into connected components,
forming PE candidates. This means that we have to scan the whole 3D volumetric
image data at least two times – one for tobogganing and one for connected component
analysis, before reporting any detected PEs. In other words, the user (radiologist) has to
wait the completion of two scans before reviewing and approving any PE detections. To
overcome this drawback, we introduce concentration oriented tobogganing in the next
section.

3 Concentration Oriented Tobogganing

3.1 The Algorithm

During the PE search process, our goal is, once a PE pixel is encountered, to extract a
whole PE candidate from the pixel immediately and send it to the user (radiologist) for
review and approval. A PE candidate consists of multiple toboggan clusters. Naturally,
in order to achieve the goal, we must first have an algorithm which can extract a tobog-
gan cluster from any given pixel and provide the external boundary pixels of the cluster.
The process of extracting a toboggan cluster from a given pixel is referred as concen-
tration oriented tobogganning and formulated as an algorithm in Appendix which is
iteratively invoked for detecting PEs. The idea is illustrated in Fig. 3 and detailed as
follows.

Basically, the concentration oriented tobogganing algorithm has two steps. It first
searches for concentration c from the given pixel s and then expands from the found
concentration c to extract the whole toboggan cluster C. The expansion includes a base
step and an iterative step. In the base step, it includes the concentration c as the first pixel
in the cluster and pushes all its neighbors with CT values between -50 HU and 100 HU
into an active list A. In the iterative step, it selects pixel q with the minimal CT value
from the active list A, if the selected pixel toboggans to an already clustered pixel,
then conditionally pushes its neighbors to the active list A to ensure the uniqueness
of the pixels in the active list, otherwise, the selected pixel belongs to the cluster’s
external boundary B. The iterative step is repeated till the active list A is empty. This
concentration oriented tobogganing algorithm is repeatedly applied on all those external
boundary pixels, until a whole PE candidate has been extracted.

Referring to Fig. 3, when our example image is scanned in row by row, the first PE
pixel encountered is (4,5), because it does not merge into regions with CT value below
-50 HU. Therefore, we wish to extract the whole PE from the pixel at (4,5). Fig. 3.(a)
illustrates Step A of the algorithm: finding the concentration. It regards the starting
location as the current location, slides it to its neighbor with minimal CT value, then
selects the neighbor as the current location and slides it until reaching a concentration.
Once the concentration is found, if its CT value is between -50 HU and 100 HU, Step
B is initiated to expand from the concentration to cover a whole toboggan cluster and
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Fig. 3. Using the concentration oriented toboggan algorithm for PE detection. (a) Step A of the
algorithm: Finding the concentration. (b) Step B: Expanding from the concentration to cover a
whole toboggan cluster and providing all the external boundary pixels (circled). (c) Repeatedly
apply the algorithm on all those external boundary pixels with CT value between -50 HU and 100
HU to form a PE candidate, leading to an identical result (d) as in Fig. 2.(b).

provide all the external boundary pixels (circled) as shown in Fig. 3.(b). In this example,
the concentration (5,6) is included into the cluster and then all its neighbors with CT
values in the PE HU range are pushed into an active list. A pixel with the minimal CT
value is selected from the active list. In this case, it is pixel (4,6). Since it slides towards
pixel (5,6), which has been included into the cluster, its neighbors are conditionally
pushed into the active list. The condition is that the neighbor must have CT value in
the PE HU range, is not included in the cluster and is not in the active list. A new pixel
with the minimal CT value is selected from the active list. For this time, it is pixel (3,6),
but it does not slides towards any pixels within the cluster, therefore, it is a pixel on
the external boundary of the cluster, and no processing is performed on its neighbors.
Repeatedly select a new pixel from the active lust and process it in the same way till
the active list is empty. Once done, we obtain all the pixels within the cluster, namely,
(4,5), (4,6), (5,5), (5,6) and (6,5), as well as the pixels along the external boundary of the
cluster (circled in Fig. 3.(b)). The concentration oriented tobogganing algorithm is then
iteratively applied on each of the external boundary pixels with CT value in the PE HU
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range. Any additional extracted toboggan cluster is merged into the previously extracted
toboggan clusters, and any additional external boundary pixels are also merged. Once
no external boundary pixel is left, all the toboggan clusters are extracted and merged,
automatically forming a connected component – a PE candidate.

Proposition 3.1. Concentration oriented tobogganing provides identical PE detections
as basic tobogganing, but it has an advantage of reporting any detection immediately
once becoming available during searching.

3.2 Detection Performance

We have collected 177 cases with 872 clots marked by expert chest radiologists at four
different institutions (two North American sites and two European sites). They are di-
vided into two sets: training (45 cases with 156 clots) and testing (132 cases with 716
clots). The training cases were used in the development process for algorithm develop-
ing, improving and testing, while the testing cases were only used for algorithm testing
and were never used for development.

All the 177 cases were processed with our concentration oriented algorithm, which
generated a total of 8806 candidates: 2431 candidates appear in the training set and
6375 candidates in the test set. Each candidate is a connected component – a cluster of
voxels, and represented by a representative point with a 3-D coordinate derived from
the cluster of voxels.

Each candidate was then labeled as a PE or not based on 3-D landmark ground truth
provided by the experts. In order to automatically label each candidate, each PE pointed
out by an expert landmark is semi-automatically extracted and segmented. Therefore,
the ground truth for each PE is also a cluster of voxels (i.e., the segmented PE). Any
candidate that was found to be intersected with any of the segmented PEs in the ground
truth was labeled as a PE. Multiple candidates may intersect with the same segmented
PE, that is, multiple candidates may correspond to a single PE. Each PE is assigned
with a unique identifier, therefore, multiple candidates may be labeled with the same
PE identifier.

Our algorithms successfully detected 90.38% (141/156) of the PE in the training
cases and 90.1%(645/716) of the PE in the testing cases. On average, the total compu-
tation time for each case is about 2 minutes on a 2.4GHz P4 PC and the first detection
if any in a case is reported within 27 seconds. However, the concentration oriented al-
gorithm also produces candidates that do not intersect with any PEs. These candidates
are regarded as false positives. On average, 47.5 and 40.3 false positives for each case
are generated for the training set and the test set, respectively. However, a system that
“cries wolf” too often will be rejected out of hand by radiologists. Thus, the goal is to
detect as many true PEs as possible, subject to a constraint on false positives, usually
within 4 false positives per case. Therefore, we design a novel classification framework
based on mathematical programming to reduce false positives in the next section.

4 False Positive Reduction

For clinical acceptability, it is critical to control false positive rates and detect as many
true PEs as possible. A PE can be large, or have an elongated shape along the vessel, or
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split at the vessel bifurcation. Multiple candidate clusters may exist to intersect with a
single PE. As long as one of the candidates is identified and visualized to physicians, the
entire PE can be easily traced out. Consequently, it is sufficient to detect one candidate
for each PE. Correct classification of every candidate instance is not as important as the
ability to detect at least one candidate that points to a specific PE. Based on this concept,
a novel multiple instance classification algorithm is devised to reduce false positives.

4.1 Feature Computation

A set of 116 descriptive properties, called features, are computed for each candidate.
These features were all image-based features and were normalized to a unit range. The
features can be categorized into several groups: those indicative of voxel intensity dis-
tributions within the candidate, those summarizing distributions in neighborhood of the
candidate, and those that describe the 3-D shape of the candidate and enclosing struc-
tures. These features, in conjunction with each other, capture candidate properties that
can disambiguate true emboli from typical false positives, such as dark areas that result
from poor mixing of bright contrast agents with blood in veins, and dark connective
tissues between vessels. These features are not necessarily independent, and may be
correlated with each other, especially within the same group.

4.2 Mutiple Instance Classification

Assume that totally � candidates are extracted, each represented by a feature vector xi

associated with a label yi. The label yi = 1 if the candidate overlays on a PE, or other-
wise yi = −1. Let I+ and I− be two index sets containing indices of candidates that
intersect with PEs and do not intersect with PEs, respectively. Let m be the total number
of PEs marked by expert radiologists for the n images. Denote Ij as the index set of the
candidates that intersect with the j-th PE, j = 1, · · · , m. Notice that ∪j=1,··· ,mIj = I+

but any two index sets Ij ’s are not necessarily disjoint since there may exist a candidate
cluster that intersects with more than one segmented PEs.

Support vector machine (SVM) [6–8] has been a successful methodology for classifi-
cation and regression. It constructs linear classification functions of the form wT x+b by
minimizing the hinge error defined as ξ = max{0, 1− y(wT x− b)} for all candidates.
We derive a more effective classification approach by exploring the key observation that
once a candidate in Ij is classified as a positive, then the j-th PE is considered being
identified. This consideration suggests the classifier to focus on different PEs instead
of multiple candidates within a single PE. Especially it facilitates the reduction of false
positives by possibly ignoring extremely noisy candidates that intersect with some PEs
where, for the same PE, other associated candidates can be easily classified correctly. A
geometric interpretation is illustrated in a 2-D feature space as in Fig.4 where standard
SVMs focus on separating all candidates to correct sides whereas our learning algo-
rithm classifies at least one true PE candidate into one side and others on the other side,
thus successfully removing all false detections.

Mathematically, distinguishing at least one candidate for each PE from the negative
class is equivalent to the statement that as long as the minimum of the errors (ξ) that
are occurred on the candidates associated with a PE is 0, then that PE is detected. For
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Fig. 4. Illustration of the classification. (Left) the linear separation boundary by standard SVM
where circles represent false detections, and the symbols (diamond, box and triangle) each rep-
resent one PE with multiple candidates. (Right) the linear separation boundary by our multiple
instance classification algorithm with more significant false positive reduction.

example, if a PE is associated with 3 candidates, and a classifier generates ξ1 = 0 for
the first candidate, ξ2 = 5, ξ3 = 100 for the other two candidates, the classifier detects
the PE. Correspondingly, this implies to construct the classifier by solving the following
optimization problem:

minw,ξ γ||w||1 +
∑m

j=1 min{ξi, i ∈ Ij} +
∑

i∈I− ξi

s.t. wT xi + b ≥ 1 − ξi, i ∈ I+,
wT xi + b ≤ −1 + ξi, i ∈ I−,
ξi ≥ 0, i = 1, · · · , �.

(2)

However, this optimization problem is computationally difficult to solve, because it
involves a minimization of the to-be-determined variables ξ in the evaluation of the
objective function, and it is neither differentiable nor convex. Hence, it is necessary
to devise a tractable optimization problem that is equivalent. To this end, we prove that
problem (2) is equivalent to the quadratic program (3), as characterized by the following
theorem:

minw,ξ,λ γ||w||1 +
∑m

j=1(
∑

i∈Ij
λiξi) +

∑
i∈I− ξi

s.t. wT xi + b ≥ 1 − ξi, i ∈ I+,
wT xi + b ≤ −1 + ξi, i ∈ I−,
ξi ≥ 0, i = 1, · · · , �,∑

i∈Ij
λi = 1, λi ≥ 0, i ∈ Ij , j = 1, · · · , m.

(3)

Theorem 4.1. An optimal solution ŵ of Problem (2) is also optimal to Problem (3)
with properly chosen λ, and vice versa.

Proof. First of all, we prove that an optimal solution of Problem (3) has nonzero λ’s
only on the candidates for which the classifier achieves min{ξi, i ∈ Ij}, ∀ j.

Let (ŵ, ξ̂, λ̂) be the optimal solution of Problem (3). For notational convenience,
denote the objective of Problem (3) as J (w, ξ, λ) = γ||w||1 +

∑m
j=1(

∑
i∈Ij

λiξi) +
∑

i∈I− ξi. Then let Ĵ be the objective value attained at the optimal solution. Notice
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Fig. 5. The ROC plot of the final system

that the hinge loss ξ̂ is uniquely determined by ŵ as ξ̂i = max{0, 1 − yi(wT xi + b)}
for each candidate xi.

If ∃ j ∈ {1, · · · , m}, and ∃i0 ∈ Ij , such that λi0 > 0 but ξ̂i0 �= min{ξi, i ∈ Ij}.
Then let ξIj = min{ξi, i ∈ Ij} < ξ̂i0 . Then J̃ = Ĵ − λi0ξi0 + λi0ξIj < Ĵ . This

contradicts to the optimality of (ŵ, ξ̂, λ̂).
By this contradiction, ∀i, j, such as λi > 0, the corresponding ξi has to be the mini-

mum loss that the classifier achieves on the j-th PE. This implies that at the optimality
of Problem (3), J = γ||w||1 +

∑m
j=1 min{ξi, i ∈ Ij} +

∑
i∈I− ξi which is the same

as the objective of Problem (2).

4.3 System Performance

Our classification algorithm has dramatically reduced the false positive rate down to 4
false positives per patient while maintaining the high detection sensitivity. Fig.5 depicts
the Receiver Operating Characteristics (ROC) plot of our final system that combines
the candidate detection, feature computation, and classification. As shown in Fig.5, the
final system detects 80% of the PEs, respectively, for the training study set and the test
set at 4 false positive per patient.

5 Discussions and Conclusions

We view our method as toboggan-based because the idea is originally inspired by the
work of Fairfield [5] and of Mortensen and Barrett [9]. The basic tobogganing algorithm
presented in Section 2 is a modified version of the algorithm in [5, 10]. Nevertheless,
each of the research groups has different aims in mind. Fairfield aimed to enhance
the contrast of images by tobogganing, while Mortensen and Barrett used tobogganing
with the aim to group the pixels to reduce the underlying graph in livewire for efficient
interactive image segmentation. Clearly, our aim is to separate objects (PEs in this case)
from adjacent (connected) objects (vessel walls in this case) and remove partial volume
effects. Given the general nature of the idea, the algorithm has been successfully applied
to other applications, for instance, detecting colonic polyps in CT images.
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We also would like to contrast our concentration oriented tobogganing algorithm
with a few of existing related algorithms in the literature including: watershed, hierar-
chical tobogganing, intelligent paint, and intelligent scissor” (i.e., “live-wire”). There is
a rich set of algorithms in the watershed literature. The most related ones are rainfalling
simulation [11] and the watershed technique based on hill climbing reported in [12]. The
basic toboggan algorithm first reported by Fairfield largely went unnoticed in the water-
shed community. Rainfalling simulation can be regarded as an extension of Fairfield’s
algorithm for handling “plateau”. The watershed technique based on hill climbing re-
ported in [12] requires that all the minima be found in advance and marked with distinct
labels followed by “hill climbing”. This implies that we would not be able to obtain a
watershed region till the whole image has been scanned and processed. “Hierarchical
tobogganing” is to repeatedly apply the basic toboggan algorithm, forming toboggan
hierarchy. “Intelligent paint” is built on top of hierarchical tobogganing to allow the
user to interactively “select” the pre-formed toboggan regions at a user pre-specified
toboggan hierarchical level, based on cost-ordered region collection. “Intelligent scis-
sor” or interactive “live-wire” aims to compute an optimal path from a selected seed
point to every other point in the image based on unrestricted graph search, so that the
user can move the mouse freely in the image plane and interactively “select” a desired
path among all the optimal paths based on the current cursor position. The underlying
algorithm is Dijkstra’s algorithm, which computed a shortest path from a given point to
every other point in the image. However, for large images, the underlying graph created
in live-wire for search become large, the interactiveness of livewire would be com-
prised due to the fundamental limitation of Dijkstra’s algorithm. Therefore, Mortensen
and Barrett [9] proposed toboggan-based livewire, in which the basic toboggan algo-
rithm is applied to reduce the underlying graph in livewire to achieve highly efficient
interaction in image segmentation. In short, all the discussed algorithms cannot meet
our requirement to extract a toboggan cluster from an initial site without processing any
pixels beyond its external boundary.

In conclusion, we have developed a novel approach for computer aided detection of
pulmonary embolism. Our approach has a set of distinguished features, requiring no
vessel segmentation, reporting any detection incrementally in real time, and detecting
both acute and chronic pulmonary emboli, achieving 80% sensitivity at 4 false positives.
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Appendix: A Concentration Oriented Tobogganing Algorithm
Input:

s {initial site}
p = P(v) {toboggan potential p of voxel v}
lt {the low threshold}
ht {the high threshold}

Output:
C {toboggan cluster containing initial site s; initially empty}
B {external boundary pixels of cluster C; initially empty}

Data Structures:
A {Active list of voxels; initially empty}

Functions:
E = N(v) {get neighbors E of voxel v}
g = tob(v) {g = arg mint ∈ N(v) ∪ {v} P(t) }
A = update(A,v) {∀ r ∈ N(v), A ← r, if (r /∈ A) and (r /∈ C) and (P(r) ∈ [lt, ht]) }
q = pop(A) {q = arg mina∈A P(a) }

Steps:
{Step A: Find concentration c of initial site s}

c = s;
repeat

q = c; c = tob(q);
until (q = c)

{Step B: Expand from concentration c}
if (P(c) ∈ [lt, ht]) begin

{Step B.1: Base step}
C ← c; A = update(A, c);

{Step B.2: Iterative step}
repeat

q = pop(A); r = tob(q);
if r ∈ C begin {include q into cluster C and update A}

C ← q; A = update(A,q);
end else begin {include q into external boundary B}

B ← q;
end

until A is empty
end
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Abstract. In this paper we discuss new measures for connectivity analy-
sis of brain white matter, using MR diffusion tensor imaging. Our ap-
proach is based on Riemannian geometry, the viability of which has
been demonstrated by various researchers in foregoing work. In the Rie-
mannian framework bundles of axons are represented by geodesics on the
manifold. Here we do not discuss methods to compute these geodesics,
nor do we rely on the availability of geodesics. Instead we propose local
measures which are directly computable from the local DTI data, and
which enable us to preselect viable or exclude uninteresting seed points
for the potentially time consuming extraction of geodesics. If geodesics
are available, our measures can be readily applied to these as well.

We consider two types of geodesic measures. One pertains to the con-
nectivity saliency of a geodesic, the second to its stability with respect
to local spatial perturbations. For the first type of measure we consider
both differential as well as integral measures for characterizing a geodesic’s
saliency either locally or globally. (In the latter case one needs to be in
possession of the geodesic curve, in the former case a single tangent vec-
tor suffices.) The second type of measure is intrinsically local, and turns
out to be related to a well known tensor in Riemannian geometry.

Keywords: DTI, geodesics, brain white matter connectivity, geodesic
deviation, Riemann tensor, Ricci tensor.

1 Introduction

The traditional MR-DTI data matrix gives a Gaussian probabilistic model for
the diffusion of water molecules in six different directions in each volume ele-
ment of a 3D image. If diffusivity is large in a certain direction, then the time
a water molecule travels a given distance in this direction is short. Thus the
positive definite data matrix can be interpreted as reciprocally proportional to a
Riemannian metric tensor as is pointed out by O’Donnell et al. [1] and Lenglet
et al. [2]. Having a metric tensor attached to each point (on a compact mani-
fold), we can solve for the shortest path, i.e. a minimal geodesic between a given
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pair of points. For this purpose, there are various numerical methods ranging
from techniques similar to Dijkstra’s algorithm [3,4,5], level set methods [2,6], to
solving the discretized Hamilton-Jacobi equation of propagating wavefronts [7].

Whatever the method for computing geodesics, one has to appreciate that
although a coherent bundle of axons with resolvable thickness is likely to produce
geodesics in (uncorrupted) DTI data, an arbitrarily chosen geodesic is unlikely to
correspond to a bundle of axons. (Geodesics “run all over the place”, so to speak.)
Therefore, we propose a set of measures for the connection strength of a geodesic,
both locally as well as globally (Section 2), and for its sensitivity to small spatial
perturbations of the initial seed point (Section 3). A large connection strength
implies that a candidate geodesic is more likely to correspond to an actual axon
bundle (or other physical water channel). The stability measure, on the other
hand, quantifies the amount of deviation from nearby geodesics, akin to the
relative acceleration of freely falling particles in an inhomogeneous gravitational
field (metric). One expects this deviation to be small in fibrous tissue in which
the fibres are well aligned, and large in chaotic regions.

In short, we answer the question whether and to which extent a geodesic
can be seen as a representative member of an articulated, coherent bundle of
neighbouring geodesics, and which points are (un)likely to be part of such a
structure.

2 Geodesics Versus DTI Fibres

In white matter microstructures inhibit the free Brownian motion of water mole-
cules. the myelinated neurons in brain white matter favor diffusion along and
impede diffusion across their tangent directions. Therefore, along a meaningful
bundle of axons, the diffusivity is relatively large.

In the following we use Einstein summation convention: aib
i ≡

∑n
i=1 aib

i. On
a compact simply connected manifold, every pair of points can be connected by
a geodesic, i.e. a curve of extremal energy (with affine parameter t)

E(γ) =
1
2

∫ T

0
gij(γ(t))γ̇i(t)γ̇j(t)dt, (1)

or equivalently, of the (parametrization independent) length functional

L(γ) =
∫ T

0

√
gij(γ(t))γ̇i(t)γ̇j(t)dt . (2)

Here we want to measure the quality of a geodesic as a carrier of diffusion, i.e.
how likely it is for the geodesic to actually be generated by a bundle of fibres
(or other physical water channel). As a measure of the relative diffusivity along
a geodesic we take the ratio of lengths or energies given by the Euclidean and
diffusion induced Riemannian metric tensors, respectively. Let g = D−1, where
D is the DTI matrix field, with components gij relative to a coordinate basis:
g(x) = gij(x)dxi ⊗ dxj , and let γ(t) be a parameterized geodesic for the metric
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g, starting at point p = γ(0), with tangent γ̇(t). The proposed measures are then
given by

mE(γ) =

� T

0 δij γ̇
i(t)γ̇j(t)dt

� T

0 gkl(γ(t))γ̇k(t)γ̇l(t)dt
resp. mL(γ) =

� T

0

�
δij γ̇i(t)γ̇j(t)dt

� T

0

�
gkl(γ(t))γ̇k(t)γ̇l(t)dt

.

(3)
It should be stressed that neither equals the so-called validity index, cf. [7].

In the neighbourhood of point p on γ, the limit of each ratio in Eq. (3) for
T → 0 gives us a local measure of the connection strength:

mE(V ) =
δijV

iV j

gkl(p)V kV l
resp. mL(V ) =

√
δijV iV j

√
gkl(p)V kV l

, (4)

where V = γ̇(0).
If we denote by V + ≡ argmax (m(V )) the principal eigenvector of D = g−1

with eigenvalue λ+, say, then

mE(V +) = λ+ resp. mL(V +) =
√

λ+ (5)

are indeed (up to monotonic transformations) the most reasonable a priori local
measures.

Thus locally, in anisotropic voxels, our measure gives maxima in the direction
of the eigenvector that corresponds to the largest eigenvalue of the DTI-tensor,
and coincides with traditional largest eigenvalue fibre tracking. However, by split-
ting up the integrals in (3) over a partitioning of the curve γ into subcurves γα,
we may apply the integral measures to any curve segment γα, and measure possi-
ble variations in diffusivity along the curve to any desired level of discretization.
In this way we obtain a set of integral connectivity measures for an arbitrary
partitioning of a given (not necessarily geodesic) curve. If γ = ∪N

α=1γα is a
partitioning of a curve γ : [0, T ] → IR3 into any number N of curve segments
γα : [tα−1, tα] → IR3 (with t0 = 0, tN = T ), then from Eq. (3) we obtain an
arbitrarily large set of submeasures,

m
(α)
E = mE(γα) resp. m

(α)
L = mL(γα) . (6)

If a curve (segment) γ corresponds to an actual fibre bundle, then both mE(γ)
and mL(γ) will be large, since the denominator will be small. Note also that
the magnitudes of mL,E(γ) are not biased w.r.t. the length of the curve (unlike
numerator and denominator separately, which do scale with curve length, cf. the
similar but non-invariant measure proposed by Prados [8]). This motivates our
choice for Eq. (3).

3 Geodesic Deviation

The concept of geodesic deviation pertains to the relative acceleration by which
two hypothetical test particles in “free fall” along two neighbouring geodesics
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Fig. 1. Left: J̈ = 0 (no geodesic deviation). Right: J̈ > 0 as a result of curvature.

separate. That is, if one moves along two geodesics that start out from the same
seed point at t = 0, say, with initial velocity vectors of equal magnitude, differing
only in relative directions, one naturally observes that their mutual distance
increases. This geodesic separation as such is trivial. In a flat space it is linear in
t, so that the relative acceleration between the two points vanishes identically.
However, in a curved space this is different (just think of the great circles of a
sphere, which are geodesics if one is confined to its curved surface, cf. Fig. 1). In
general there is a deviation from the lowest order linear behaviour, which will
(initially) cause either an acceleration or deceleration in the mutual separation of
the points. One can show that, if J(t) denotes the separation vector1 connecting
any point γ(t) on a fiducial geodesic at time t to a corresponding one on a
neighbouring geodesic indicated by the relative separation vector J(t), then

D2J(t)
dt2

+ R(γ′(t), J(t))γ′(t) = 0 . (7)

The symbol D denotes covariant derivative, and R is the so-called Riemann
curvature. One can show that the magnitude of the relative separation vector
J(t) initially evolves as

|J(t)| = t − 1
6
〈R(V, W )V, W 〉t3 + O(t4) , (8)

in which V = γ′(0) and W = J ′(0). Thus the interesting quantity is the co-
efficient of the O(t3) term, which contains all relevant curvature information
responsible for geodesic deviation.

In a local coordinate system Eq. (7) becomes

D2J i(t)
dt2

+ Ri
jkl(γ(t))

dγj(t)
dt

Jk(t)
dγl(t)

dt
= 0 . (9)

1 Formally J(t) is defined in terms of the exponential map, J(t) = (d expp)tV tW , in
which p is the base point of interest, V is a tangent to a fiducial geodesic, and W
a second tangent which “selects” a neighbouring geodesic. We refer to the literature
for details.
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Following do Carmo’s index convention [9], the Riemann curvature tensor—
second term in Eq. (7)—is defined as

R(X, Y )Z = Rl
ijkX iY jZk ∂

∂xl
, (10)

in terms of its components, which are given by the functions (spatial arguments
x ∈ IR3 are implicit)

Rm
ijk = Γ l

ikΓ m
jl − Γ l

jkΓ m
il +

∂

∂xj
Γ m

ik − ∂

∂xi
Γ m

jk , (11)

in which the Christoffel symbols are defined as

Γ k
ij =

1
2
gkl

{
∂gjl

∂xi
+

∂gli

∂xj
− ∂gij

∂xl

}
. (12)

(Recall that gij(x) are just the entries of the DTI matrix at point x, and gij(x)
the entries of its inverse.)

Although a detailed explanation of this geometric analysis is far beyond the
scope of this paper, it suffices to appreciate the heuristics of our approach. The
interested reader is referred to do Carmo [9] or any other suitable text book on
Riemannian geometry for further details and proofs.

In this section, our next goal is to obtain a measure for geodesic deviation
that (i) is a purely local entity, and (ii) involves only the geodesic direction (i.e.
V = γ′(0)) and does not prefer any extrinsically chosen plane through V , in other
words, does not contain the vector W = J ′(0). To this end we may average the
relevant coefficient of Eq. (8) over all independent vectors Wa, a = 1, . . . , n − 1,
perpendicular to V = γ′(0). In this way one obtains the so-called Ricci curvature:

Ricp(V ) =
1

n − 1

n−1∑

a=1

〈R(V, Wa)V, Wa〉 . (13)

In particular, in the 3-dimensional case at hand, we have two mutually ortho-
normal vectors W1, W2 ⊥ V , and we may obtain the average as:

Ricp(V ) =
1
2π

∫ 2π

0
〈R(V, cos θW1 + sin θW2)V, cos θW1 + sin θW2〉dθ (14)

=
1
2

2∑

a=1

〈R(V, Wa)V, Wa〉 , (15)

which indeed agrees with the general definition, Eq. (13). Although the r.h.s. still
contains the basis {Wa}n−1

a=1 that spans the plane orthogonal to V , the result
must be independent of its actual choice. To see that this is indeed the case,



Measures for Pathway Analysis in Brain White Matter 647

substitute the coordinate expressions of all geometric quantities involved into
Eq. (13), using V = V i ∂

∂xi
, Wa = W i

a
∂

∂xi
, and Eq. (10). We obtain

Ricp(V ) =
1

n − 1

n−1∑

a=1

〈Rl
ijkV iW j

aV k ∂

∂xl
, Wm

a

∂

∂xm
〉

=
1

n − 1

n−1∑

a=1

Rl
ijkV iV kWm

a W j
aglm

=
1

n − 1

n−1∑

a=1

RijkmV iV kWm
a W j

a , (16)

in which we have defined Rijkm = glmRl
ijk. In n dimensions {W1, W2, . . . ,

Wn−1, V } constitutes an orthonormal basis, as a result of which we have

n−1∑

a=1

W j
aWm

a = gjm − V jV m. (17)

Substitution into Eq. (16) yields, abbreviating Rik = gmjRijkm,

Ricp(V ) =
1

n − 1
RijkmV iV k(gjm − V jV m)

=
1

n − 1
RikV iV k − 1

n − 1

n−1∑

h=1

RijkmV iV kV jV m

By virtue of the symmetries of the Riemann tensor the last summand vanishes,
and so we end up with

Ricp(V ) =
1

n − 1
RijV

iV j . (18)

Eq. (18) is our main result with respect to geodesic deviation. (In our case, n=3,
but the proportionality factor is immaterial.) Note that it satisfies our previous
requirements, i.e. it depends only on differential DTI properties, and only in-
volves a directional argument. Thus one does not need to know the geodesics in
order to compute geodesic deviation. This greatly facilitates the computation.
In fact, given a unit tangent vector V , Eq. (18) can be obtained by a some-
what lengthy but completely straightforward algebraic combination of partial
derivatives of the DTI image of orders 0, 1, 2. The algorithm is as follows:

1. Compute the metric gij by pointwise inversion of the DTI matrix gij .
2. Compute the Christoffel symbols Γ k

ij , Eq. (12).
3. Compute the components of the Riemann tensor Rl

ijk , Eq. (11).
4. Obtain the Ricci tensor by contraction: Rij = Rk

ijk.
5. Specify the components of a unit tangent V i, and contract onto the Ricci

tensor so as to obtain the proposed measure for geodesic deviation: RijV
iV j .
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The second and third steps require the computation of derivatives up to second
order. This can e.g. be done in the usual way within the framework of scale space
theory, taking into account a scale parameter that admits a sufficiently accurate
extraction of second order derivatives (a Gaussian scale slightly larger than one
voxel may already yield acceptable results depending on noise level, cf. [10,11]).
The algorithm may be augmented with a scale selection procedure for optimal
performance, since the “right” scale for pathway analysis is not known a priori.
This highly interesting but nontrivial option is not further pursued here.

4 Conclusions

We have proposed two different types of differential geometric measures for DTI
pathway analysis, and operational schemes to compute them. The first one, the
connection strength, is a zeroth order differential property that gives information
about the relative diffusivity along a given curve. Curves with large connection
strengths are more likely to correspond to actual elongated structures of axons
or other physical water channels. Our connectivity measure can be applied to
any not necessarily geodesic curve, to an arbitrary segment and, in the limit,
even to any point of such a curve. For the preselection of viable seed points
for geodesics, it is, apart from quantifying their connectivity, likewise useful to
compute their geodesic deviation as a measure for local stability and coherence.
We have argued that the Ricci curvature in the direction of largest diffusion is
an appropriate measure for this. A positive Ricci curvature, which depends on
second order derivatives of the DTI image, indicates the presence of bundles of
geodesics that are well aligned. Combination of the two types of measures can
be used to single out suitable seed points for, and to judge the saliency of, a
fiducial geodesic.
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Abstract. Apart from chemoradiotherapy, surgery by total mesorectal resection
is currently the only curative therapy for colorectal cancer. However, this often
has a poor outcome, especially if there are affected lymph nodes too close to the
resection boundary. The circumferential resection margin (CRM) is defined as
the shortest distance from an affected region to the mesorectal fascia (MF), and
should be at least 1mm. However, this 3D distance is normally estimated in 2D
(from image slices) and takes no account of uncertainty of the position of the MF.
We describe a system able to estimate the location of the MF with a measure at
each point along it of the uncertainty in location, and which then estimates the
CRM in three dimensions. The MF localisation algorithm combines anatomical
knowledge with a level set method based on: a non-parametric representation
of the distribution of intensities, and the use of the monogenic signal to detect
portions of the boundary.

1 Introduction

Colorectal cancer is primarily a disease of the developed world. Approximately 500,000
new cases are reported annually. The survival rate at 5 years is just 50%, primarily
because of metastatic spread to the liver and pelvis. The primary imaging modality
used for the detection, diagnosis and for staging colorectal cancer is MRI. Specifically,
a widely used clinical protocol comprises axial small field of view T2 weighted MR
images (TE = 90ms, TR = 3500-5000ms, α = 90deg, slice thickness = 3mm) acquired
using a 1.5T MRI machine. Our datasets are 3-D, each comprising 512 x 512 x 25 voxels
of size 1mm x 1mm x 3mm. The datasets acquired at our site exhibited a substantial bias
field, with a particularly bright artefact near the coccyx and extending over several MR
slices. There is a diversity of tissue classes in colorectal MR images, and several of them
have substantial texture. Since it is relatively insensitive to the tissue class definitions,
and since the bias field varies substantially across the image, we applied the Parametric
Bias Field Correction (PABIC) method [1] which models the bias field explicitly using
Legendre polynomials. We have found that second order Legendre polynomials suffice
for a good approximation to the bias field. The bias field varies minimally between
slices, so is easily be approximated across the whole 3-D dataset.

Conventionally, a tumour is staged using the TNM method: T refers to whether or
not the tumour has invaded: the submucosa (T1); circular or longitudinal muscle lay-
ers (T2); or through the muscularis propria subserosa and/or into non-peritonealised
perirectal tissues (T3) or other structures (T4); N refers to whether there is no regional
lymph node metastasis (N0); there are metastases in up to three lymph nodes (N1); or
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more than 3 (N2); and whether there are not (M0) or are (M1) distant metastases. The
relevant sentinel lymph nodes are located in the mesorectum, the region of fat surround-
ing the rectum. Based on our previous work [2], [3], in the remainder of this paper, we
assume that: the lymph nodes have been detected, that they have been delimited accu-
rately, and that their status (affected or not) has been determined.

Currently, apart from chemoradiotherapy (used in 65% of cases), surgery is con-
sidered to be the only curative therapy. Since local excision surgery continues to gain
acceptance slowly, surgery is predominantly by “total” resection of the mesorectum
(TMR). This is often quite traumatic surgery, frequently necessitating use of a stoma
post-surgery. Clinicians consider very carefully the likely success of surgery before pro-
ceeding. One of the major reasons for poor outcome following a TRM is the presence of
affected lymph nodes too close to the resection margin, nominally the mesorectal fas-
cia. The circumferential resection margin (CRM) is “defined” as the shortest distance
from an affected lymph node to the mesorectal fascia. It has been proposed [4] that the
TRM be planned so that the CRM is at least 1mm, or, if this is not possible, that the
surgical option be dismissed. To this end, [4] proposed that “thin section” MRI should
be used to estimate the CRM.

This assumes that all affected lymph nodes have been detected and their often small
sizes estimated accurately (incorporating partial volume estimation); as noted above,
in this paper we assume that this has been done. It also requires the bounding surface
of the mesorectum (the MF) to be located completely and accurately; and the CRM
estimation to take due account of the MRI spatial sampling and the relative orientation
of MRI slices to the local axial direction of the colorectum/mesorectum. The first of
these two problems is surprisingly difficult, not least for clinicians planning surgery,
and is the main focus of this paper. In Section 2, we combine anatomical knowledge
with a level set method based on: a non-parametric representation of the distribution
of intensities inside the putative MF and an estimate of MF feature locations using
monogenic signal analysis. As a result of this process, a measure of the uncertainty in
the position of the MF is estimated at each boundary location. Finally, in Section 3 we
propose a method for estimating the CRM which incorporated the uncertainty in the
position of the MF.

2 Determining the Mesorectal Fascia

Accurate localisation of the MF is a difficult segmentation problem because: (a) there
is negligible contrast at several points along the MF, at least for the imaging protocol
used clinically; (b) there are substantially different kinds of contrast change (texture
step changes near the coccyx, thin line changes near the bladder wall, etc.) at different
points along the MF; (c) the intensities inside the MF show substantial variation be-
tween individuals, and this impacts on the detection of the lymph nodes, blood vessels,
the colorectum, and a variety of folds; and (d) there is a substantial range of tissue types,
with varying amounts of musculature and fat forming the band flanking the MF, so it
is difficult to constrain the intensity distribution in this band. Even the clinicians find it
hard to segment the MF, as is seen in two annotations of consecutive slices in Fig. 1,
where the location of the MF clearly changes far too much.
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Fig. 1. Two consecutive slices in a dataset, with annotations of the tumour and MF by an experi-
enced radiologist, showing the huge unpredictability in radiology labelling

To determine the MF, we proceed in two stages. First, we initialise the mesorectum
(hence its boundary) by mobilising contextual anatomical knowledge [2], [3]. This is
a completely automatic process which has given a satisfactory initialisation in every
case we have tried. The algorithm begins by locating the hip bones (straightforward),
and from these the centre of the colorectum and coccyx. We find that the colorectum
can be accurately delineated across the slices of the dataset using a Kalman snake. The
inscribed circle formed by the centres of the approximately spherical hip bones and the
coccyx forms the initial approximation to the MF. We experimented with further re-
fining this circular approximation using spherical harmonics [3]; but we found that, in
practice, the result is often not much changed from the initial circular approximation.
While this initialisation forms a satisfactory basis for staging (lymphs) and assessing the
effect of chemoradiotherapy [2], it is insufficiently accurate for CRM estimation and for
surgical planning. Nevertheless, the inscribed circle is a good initialisation for the fol-
lowing level set step. We have implemented many of the published level set schemes (in
ITK) and have found the Chan-Vese framework most suitable for our purpose. However,
the Chan-Vese framework relies crucially upon: (a) estimating the intensity (or other)
probability density function (pdf) inside the evolving level set; and (b) a model of fea-
tures to which the level set should be attracted. Regarding (a), we have applied a novel
PDF estimation scheme; regarding (b) we have applied monogenic signal analysis.

2.1 NPMM-ICLS Level Set Formulation

For simplicity, consider the case of 2-dimensional (2D) images. Let Y1 denotes intensity
variable (all variables will be denoted by upper case letters in this subsection and their
particular values will be denoted by lower case letters). Continuous random variables
X1 and X2 denote positional variables in 2D. We divide the image into several piece-
wise sections. The intensity variable Y1 is deterministically related with the positional
variables over these piecewise sections. Typically this relationship is polynomial. Our
objective is to determine the PDF of the intensity values, given the nature of random-
ness in the positional variables and the deterministic relationship. In this paper it is as-
sumed that Y1 is related with the positional variables through the bilinear interpolation
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over a piecewise section joining centres of four mutually neighbouring pixels. This
case was originally proposed in [5]. Next it is assumed that the positional variables are
uniformly distributed over this piecewise bilinear region i.e. fX1,X2(x1, x2) = 1 for
0 ≤ x1, x2 ≤ 1, where f(.) denotes a PDF. It is straightforward to derive the following
equations:

y1(x1, x2) = ax1x2 + bx1 + cx2 + d, y2(x1, x2) = x1 (1)

x2(y1, y2) =
y1 − by2 − d

ay2 + c
, x1(y1, y2) = y2 (2)

where Y2 is a dummy variable. The joint PDF fY1,Y2 can then be calculated using the
transformation formula for functions of random variables [6]. In the present case,

fY1,Y2(y1, y2) = fX1,X2(y2,
y1 − by2 − d

ay2 + c
)|J | (3)

where, |J | is the Jacobian and is equal to |1/(ay2 + c)| in this case. Therefore,

fY1,Y2(y1, y2) =
1

ay2 + c
(4)

subject to,

0 ≤ y2 ≤ 1 and 0 ≤ y1 − by2 − d

ay2 + c
≤ 1 (5)

The marginal PDF fY1 is obtained by integrating out the dummy variable Y2 over the
ranges given in Equation (5).

Note that the specific geometry of a configuration is determined by values of the
coefficients in Equation (1). In their original proposition [5], the authors point out that
there are 24 such configurations, corresponding to 4! ways of arranging the values of the
four corner pixels of the piecewise bilinear section. We have proved that we can reduce
the number of configurations, which makes our implementation both less complex and
considerably faster than the original one. However, for reasons of space we omit the
implementation details. The PDF obtained over each piecewise bilinear section is added
and normalised to get the PDF of the given image region.

We then move on to model the image histogram as a non-parametric mixture model
(NPMM) of the PDFs [7]. Note that we also take into account the partial volume effect
(PVE). The observed image is assumed to be obtained from an idealised high resolution
image through a downsampling process. We assume that each pixel in the high resolu-
tion image belongs only to a pure class. On the other hand, a pixel in the observed image
may either belong to a pure class or to a partial class. A partial class is identified with
the fraction of each pure class present in that pixel. We refer to the PDFs of pure and
partial tissue as basis PDFs. The basis PDFs are directly estimated from image regions
using the method described in the previous subsection. The weights associated with the
basis PDFs in the mixture model are the prior probabilities of the occurrence of the
tissue classes. We now note that,

P (Y ) =
∑

P (Y |X)P (X) (6)
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where, P (Y ) is the overall intensity distribution, P (Y |X) are the basis PDFs corre-
sponding to each pure and partial class, and P (X) is the prior PDF of all the classes.
P (Y ) and P (Y |X) are estimated using the NP-windows method described previously.
To estimate P (X), we arrange the system of linear equations given in eqn.(6) in vec-
tor form: py = Py,x px where, py and px are vectors, and Py,x is a matrix whose
columns represent the basis PDFs. In order to estimate px, we seek a least squares so-
lution to this equation. However, we note that since px represents a PDF; its elements
must follow the positivity and summability constraints of a PDF. Hence we formulate
the problem as follows:

p̂x = arg min
px

1
2
(Py,x px − py)T (Py,x px − py)

subject to, I px ≥ 0 and uT px = 1 (7)

where, I is the identity matrix, u is a vector with all its elements equal to 1, and p̂x is the
inequality constrained least squares (ICLS) estimate of prior PDF of tissue classes. The
basis PDFs and the mixture weights then can be used in a maximum a posteriori (MAP)
framework to find optimal labelling of the image pixels. Fig. 2 illustrates various PDFs
involved in the segmentation of MF.

In order to introduce spatial regularisation in the above segmentation solution, we
incorporate the NPMM method outlined above into a level set framework. Suppose we
have x1, x2, . . . , xn pure classes. We consider n separate level sets functions
φ1, φ2, . . . , φn, one per pure class. For small n, it makes sense to use separate level
sets functions for each class. We evolve each level set function separately. For each
evolution equation we consider the following region based force.

F1n = log
[ P (Y |xn)P (xn)∑

i,i�=n P (Y |xi)P (xi)

]
(8)

The likelihood probabilities P (Y |xi) are the basis functions of the NPMM, and are
estimated using the NP windows method. The mixture weights or the a priori prob-
abilities are calculated using the NPMM-ICLS algorithm described in previously. To
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Fig. 2. Various probability distributions for a single slice of a colorectal MR dataset
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address the PVE, we formulate a second regional force term which discourages the
level sets from entering into a region which NPMM deems as a partial volume region.
Let fx1 , fx2, . . . , fxn be the fractions of pure classes present in a pixel. The inhibition
force term is:

F2n =
∑

i,i�=n

fxi , (9)

and so the overall evolution equation of the nth level set function is:

∂φn

∂t
= [κ + αF1n − βF2n]|∇φn| + γA · ∇φn, (10)

where κ is the curvature term and A represents a vector field, referred to as the advec-
tion term in the level sets literature. The advection term takes into account the boundary
information. We have used magnitude of intensity gradients to represent the boundary
but also explore alternatively the use of monogenic signals.

2.2 Monogenic Signals

We noted earlier that the type of intensity change marking the boundary of the MF
changes substantially along its length. Typically, we find texture step changes near the
coccyx, thin line changes near the bladder wall, and step changes at other locations. The
exact types and placement of these intensity changes varies from person to person. This
implies that any feature detector that is specific to a particular kind of feature (eg step
edge) will tend to miss whole portions of the MF boundary, even where it is (at least
to a clinician) “obvious”. The net result is that the boundary of the MF, as detected by
the level set algorithm, is under-constrained at such segments. Fortunately, in the late
1980s, Owens and Morrone proposed an alternative approach, based on the observation
that the components a Fourier series expansion of “pure” examples of features (step,
roof, spike, ...) are all in phase, and that this is true only at such features. This leads
to an alternative definition of a feature as a signal/image location at which local phase
measurements are all in close agreement: they called this phase congruency. Note that
a high value of phase congruency corresponds to the detection of a feature point; the
associated (shared) phase value and the local energy further characterise the feature
point. As such, phase congruency detects all the features around the MF, not just the
clear step edges.

Note that the definition requires that the local phase be computed at each point in a
signal. The computation of local phase requires the application to the signal of quadra-
ture pairs of filters (a typical, though not optimal, example consists of even and odd Ga-
bor filters). Quadrature is most conveniently defined via the Hilbert Transform, which
produces for a given filter f(t) its quadrature partner fH(t). Kovesi [8] proposed an im-
plementation of phase congruency based on a specific set of quadrature filters, namely
log-Gabor filters and showed some very encouraging results on a wide range of signal
changes. Unfortunately, the Hilbert Transform is only defined for signals s(t), and so
Kovesi’s implementation of Phase Congruency for images I(x, y) interpolated a set of
1D signals si(t|x, y) centred on each image location (x, y). The resulting directional
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phase congruency measures were then combined to form a single measure in order to
detect and assign types to feature points. This is both inefficient and the rules for com-
bining directional phase congruency measures tend to be rather heuristic.

Fortunately, Felsberg and Sommer [9] have shown how to use the Riesz transform to
extend the Hilbert transform to 2D, 3D and arbitrarily higher dimensional images. The
transfer functions of the Riesz transform is

H1(ω1, ω2) = i
ω1√

ω2
1 + ω2

2

, H2(ω2, ω2) = i
ω1√

ω2
1 + ω2

2

. (11)

In the space domain, the Riesz transform is given by

h1(x1, x2) = − x1

2π(x2
1 + x2

2)
3
2
, h2(x1, x2) = − x2

2π(x2
1 + x2

2)
3
2

(12)

The monogenic signal is then defined as the 3D vector formed by the image and its
Riesz transform:

fM (x1, x2) = (f(x1, x2), (h1 ⊗ f)(x1, x2), (h2 ⊗ f)(x1, x2)), (13)

where ⊗ denotes the convolution. The image and the monogenic signal can be shown
to have the following properties:

Af (x1, x2) =
√

f2(x1, x2) + (h1 ⊗ f)2(x1, x2) + (h2 ⊗ f)2(x1, x2)
f(x1, x2) = Af (x1, x2) cos(φ)
(h1 ⊗ f) = Af sin(φ) cos(θ)
(h2 ⊗ f) = Af sin(φ) sin(θ),

(14)

where Af (x1, x2) is the local energy of the image f(x1, x2) at the location (x1, x2),
φ ∈ [0, π) is the local phase, and θ ∈ [−π, π) is the local orientation of the feature:

θ = arctan 2(
h2 ⊗ f

h1 ⊗ f
), φ = arccos(

f

Af
). (15)

In practice, the image f(x1, x2) is often made bandpass by filtering with a rota-
tionally symmetric filter, say g(x1, x2) ⊗ f(x1, x2) , for example with a difference of
Gaussians. This is by no means the only choice of bandpass filter; but we do not discuss
this issue further in this paper. In the case of band pass filtering, the monogenic signal
becomes:

fM (x1, x2) = ((g ⊗ f)(x1, x2), (h1 ⊗ g ⊗ f)(x1, x2), (h2 ⊗ g ⊗ f)(x1, x2)) (16)

The Riesz Tranform then generates two odd filters hi(x1, x2) ⊗ g(x1, x2) which
are oriented at 90 degrees to each other, one oriented in the ω1 direction in the Fourier
domain, the other in the ω2 direction. This enables a fast implementation. Let F (ω1, ω2)
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be the Fourier Transform of f(x1, x2), and F−1denote the inverse Fourier Transform,
each term of the monogenic signal can be obtained as following:

(g ⊗ f)(x1, x2) = real(F−1(G(ω1, ω2) · F (ω1, ω2)))

(g ⊗ h1 ⊗ f)(x1, x2) = F−1(G(ω1, ω2) · H1(ω1, ω2) · F (ω1, ω2))

(g ⊗ h2 ⊗ f)(x1, x2) = F−1(G(ω1, ω2) · H2(ω1, ω2) · F (ω1, ω2))

(17)

The monogenic signal has previously been applied to non-rigid registration [10].
Having had some encouraging results in these diverse cases, and having noted the vary-
ing type of boundary feature type, we have incorporated the monogenic signal (as phase
congruency) into the advection term of level set framework (Eqn. 10), in order to attract
the level set to a range of feature types, by using it instead of the gradient field used
previously.

3 Results

3.1 Segmentation of the MF

Our NPMM level set method was tested on 5 axial MRI datasets, taken using the stan-
dard clinical protocol at our site. These datasets cover a range of patients, with tumours
of varying sizes. A typical slice of the 3D segmentation using intensity information
only can be seen in Fig. 3, and the corresponding 3D representation is shown in Fig.
3. The results are compared to manual segmentations of the MF drawn on the datasets
by an expert clinician, Table 1. It can be seen that the automated segmentation is very
close to the manual segmentation, but the relatively large standard deviation is prob-
ably due to the inconsistency in the radiologist segmentations as shown previously in
Fig. 1.

To take into account boundary information we used magnitude of the evolution
forces. To appreciate the effectiveness of these, we colour coded force information at

Fig. 3. Left: Level sets segmentation of a colorectal MR image slice using NPMM-ICLS algo-
rithm, with colour code of green - colorectum, red - tumour, blue - mesorectum. Right: Segmen-
tation of the Mesorectal Fascia in 3D, showing also the colorectum and tumour, blood vessels
and lymph nodes within the mesorectum
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Table 1. Comparison of Automatic Segmentation using Level Sets with Manual Clinical
Segmentation

Patient Mean difference (mm) Standard deviation (mm)
1 3.4 2.4
2 2.6 1.9
3 2.2 1.8
4 2.0 1.6
5 2.3 2.0

each pixel lying in a narrow band around the boundary and overlaid them. A typical
example is shown in Figure 4. We observe that the evolving surface is stopped effec-
tively at the “yellow” bands where the gradient information dominates. As noted above,
discontinuities in the yellow bands are for two reasons. First, any individual patient’s
MF is not easily completely delineated in the T2 weighted MR image. Second, there is
a variety of signal changes around the MF. This is the problem that is addressed using
the monogenic signal.

Fig. 4. A colorectal MR image slice overlayed with the force information used for the evolution
of level set surface representing the mesorectal fascia. The surface expands in blue region and
contracts in yellow region. The black contour represents the current position of the surface.

Based on the level set method described in the previous section, we suppose that the
MF has been detected as a surface r(u, v) in some global coordinate frame. Suppose
that the surface normal at each coordinate (u, v) is n(u, v) and denote the allowed
uncertainty in the location of the MF as a measure ε(u, v).

The method outlined in the previous section can provide, for each location (u, v) a
possible measurement of ε(u, v). This is done using the force F (u, v) from the level
set which is visualised inside and outside the zero level set in Fig. 4. The differences
between the forces inside and outside the zero level set ΔF (u, v) = |Finside(u, v) −
Foutside(u, v)| are compared with the errors at each point on a test dataset. A function
was found empirically (using examples of clinical intra-observer variability) to model
the maximum and minimum errors and this is given by ε(u, v) = αe±βΔF (u,v), where
α = 3 and β = 85.
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Fig. 5. Segmentation of the Mesorectal Fascia, showing the minimum and maximum bounding
area

Table 2. Comparison of Minimum and Maximum Values of Automatic Segmentation using Level
Sets with Manual Clinical Segmentation

Pa-
tient

Mean difference between Min ± Standard
Deviation (mm)

Mean difference between Max ± Standard
Deviation (mm)

1 2.6 ± 2.1 4.2 ± 2.3
2 2.1 ± 1.6 3.8 ± 2.2
3 1.9 ± 1.4 3.9 ± 2.2
4 1.8 ± 1.4 2.7 ± 1.9
5 2.2 ± 1.4 3.5 ± 2.5

Using this method the maximum and minimum bounding areas of the mesorectal fas-
cia can be found and these are shown in Fig. 5. This was done in 3D for all our datasets
and the manual clinical segmentations all lied within this bounding region. The dis-
tances between the manual segmentation and the minimum and maximum boundaries
are shown in Table 2. Again the mean error is low but with a relatively high standard
deviation.

Finally we found a segmentation of the MF by incorporating the phase congruency
from the monogenic signal. It can be seen in Fig. 6 that the level set is stopped at finer
ridges that are the MF boundary, instead of being attracted to the stronger intensity
edges of different anatomies.

3.2 Estimating the CRM

Now consider a cancerous region at a position x, and suppose that r(u, v) is the nearest
point on the MF. Evidently, r(u, v) − x is parallel to n(u, v). If the maximum extent of
the lymph node in the direction n(u, v) towards the MF is estimated (subject to PVE)
as being at the location yn, then the clinical CRM criterion is based on ||yn −r(u, v)−
ε(u, v)|| < 1mm.

We calculated the CRM at each point on the MF using this minimum distance be-
tween the MF, and the tumour, using the intensity level set segmentations. We did this
for the initial estimated MF and also the worst case, minimum MF. This was repeated
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Fig. 6. A comparison of the MF segmentation using just intensity information on the left, incor-
porating edge information from the phase congruency map in the middle, and the segmentations
overlaid on the right

Fig. 7. An example segmentation of the Mesorectal Fascia, showing the magnitude of the CRM,
showing our normal estimate (left), a worst case estimate (centre), and a best case estimate
(right)

with the same 5 datasets used previously and results for Patient 1 are displayed in 3D in
Fig. 7. The regions where the CRM is low are coloured in red, and those regions with a
larger margin are coloured in blue. This was considered very useful by our collaborating
clinicians.

We also compare our values of the CRM with those of the clinician. We do not
expect these values to be the same since the clinician will always estimate the values
using the 2D axial MRI slices. The results in Petroudi 2006 [11] highlight how the
CRM, traditionally accurately accessible post-surgically from histopathology, cannot
be measured accurately in MRI, unless the whole 3D dataset is considered. This is
because there is usually an offset angle between the normal to the imaging plane, and
the principal axis of the anatomical volume, defined by the direction of the colorectum.

The results of comparing our estimates of the minimum CRM with that of the clin-
ician are shown in Table 3. The substantial differences highlight the potential errors in
the clinical CRM estimates using current manual techniques, and re-enforce the need
for accurate of evaluation of such measures, which have a great impact in the evaluation
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Table 3. Comparison of CRM from Automatic Segmentation using Level Sets with Manual Clin-
ical Estimation

Pa-
tient

Minimum
clinical CRM

(mm)

Automatic estimation of CRM at
clinical minimum (Normal/Worst

case) (mm)

Automatic estimation of overall
minimum CRM (Normal/Worst

Case) (mm)
1 1.0 5.4/0.8 3.8/0.0
2 11.8 7.7/7.2 6.9/0.0
3 5.6 4.9/3.3 2.8/0.0
4 12.8 12.8/11.4 6.6/3.3
5 12.6 12.2/12.0 5.8/3.7

of treatment. A further validation of our work could be carried out using the results
from post-surgery histopathology, and this is the subject of our future work.
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Abstract. We formalize the pair-wise registration problem in a maxi-
mum a posteriori (MAP) framework that employs a multinomial model
of joint intensities with parameters for which we only have a prior dis-
tribution. To obtain an MAP estimate of the aligning transformation
alone, we treat the multinomial parameters as nuisance parameters, and
marginalize them out. If the prior on those is uninformative, the mar-
ginalization leads to registration by minimization of joint entropy. With
an informative prior, the marginalization leads to minimization of the
entropy of the data pooled with pseudo observations from the prior. In
addition, we show that the marginalized objective function can be opti-
mized by the Expectation-Maximization (EM) algorithm, which yields a
simple and effective iteration for solving entropy-based registration prob-
lems. Experimentally, we demonstrate the effectiveness of the resulting
EM iteration for rapidly solving a challenging intra-operative registration
problem.

1 Introduction

The field of medical image registration has been very active in the past two
decades. Although numerous alignment methods have been introduced, only lim-
ited attention has been devoted to study the relationship among the available
methods and the justification for their preference, implicit and explicit hypothe-
sis and their performance[1,2]. Currently, a significant number of methods build
upon the maximum likelihood framework because of its intuitive nature and ease
of implementation. According to this approach, correct alignment is obtained if
we find the transformation that makes the the current observations most proba-
ble. Recently, with the abundance of available data sets, using prior information
to guide registration has received significant attention. Such techniques allow
for more robustness and a larger capture range in the implementation, and with
respect to the transformation domain, they facilitate the introduction of smooth-
ness constraints on the deformation models.
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When relying on prior models, however, it is challenging to find the appro-
priate balance between previous and current observations. For example, it is
not obvious how the level of confidence in the model can be automatically en-
coded and / or changed over time. Preliminary efforts using both model- and
data-related terms have introduced both sequential and unified algorithms with
arbitrary weighing terms [3,4]. In this work, we focus on the establishment of
a maximum a posteriori (MAP) framework that allows for making use of prior
information about both the transformation and the joint statistics of the ob-
served intensity distributions. By treating the former as nuisance parameters,
we can marginalize them out and define our registration goal as a posterior on
the transformation components. Depending on how informative the prior is on
the joint statistics, we demonstrate implicit relationships with currently used
methods. We also introduce an attractive optimization framework over our mar-
ginalized formulation – the Expectation-Maximization (EM) algorithm allows us
to compute the registration update in a simple and elegant way.

2 Problem Formulation

2.1 Marginalized MAP Formulation of Registration

Given multi-modal input data sets, u and v, our goal is to find transformation T
that that brings those into correct alignment. In addition to the unknown trans-
formation parameters, we introduce another set of parameters, Θ, that encode a
discrete joint probability distribution. This model is used in such a way that, if
the intensities in the two images are discretized to take values in {I1, I2, ..., IK}
then the probability of corresponding voxels (at location j) having discrete in-
tensity values of T (u)j = Ia and vj = Ib is p(u, v|T ) = p(T (u)j = Ia, vj = Ib) =
Θ(a, b). If we use a simplified, one-dimensional indexing for the parameters of the
discrete joint probability model, Θ = {θ1, ..., θg} encodes information about in-
tensity joint value occurrences as parameters of an unknown multinomial model,
where ∀i θi ≥ 0 and

∑g
i=1 θi = 1. This model can also incorporate any additive

noise.
The posterior parameter distribution of the transformation variable T and the

joint statistics model Θ with respect to the image observations is p(T, Θ|u, v).
In order to align the data sets, this quantity is to be maximized. For our reg-
istration purposes though, it is more attractive to compute the posterior on
just the transformation parameters. This is manageable given a prior model
on the joint statistics parameters that can be marginalized out. Assuming in-
dependence between the transformation and the joint distribution models, the
posterior distribution of the transformation variable T with respect to solely the
image observations is:

p(T |u, v) ∝
∫

P (u, v|T, Θ)P (T )P (Θ)dθ . (1)

In Eq.(1), the P (u, v|T, Θ) term indicates the likelihood function of the trans-
formation and the model parameters given the input observations, and the
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right-most two terms are prior distributions over the T and Θ parameters re-
spectively. Optimizing over such a quantity provides a convenient formulation
of the registration objective, if we assume that we have prior knowledge about
both the transformation and the joint statistics. The most optimal set of trans-
formation parameters T̂ are then the ones that optimize the following objective
function:

T̂ = argmax
T

log p(T |u, v) . (2)

2.2 The Likelihood Term

Using the multinomial model for ordered data, the likelihood of the image ob-
servations given the offsetting transformation and an unknown joint probability
model is

p(u, v|T, Θ) ∝
∏

j

θ
nj(T )
j , (3)

where nj(T ) is the number of voxel pairs that map to the intensity bin associated
with θj (i.e. T (u)j = Ia and vj = Ib) and

∑g
i=1 n(T )i = N is the total number

of observations. Note that the values of nj depend on the transformation T , and
this dependency is made explicit in this notation.

2.3 Prior on the Joint Statistics Model

For the registration problem, the multinomial distribution is a convenient choice
of representation as the θi parameters naturally correspond to the widely used
histogram encoding of the joint statistics of images given g number of compo-
nents. Additionally, prior information about such parameters can be expressed
by using the Dirichlet distribution, the conjugate prior to a multinomial distri-
bution. We choose the following encoding

Dirichlet(Θ; w) =
1

Z(w)

g∏

i=1

θ
(wi−1)
i = Γ (w0)

∏

j

θ
(wj−1)
j

Γ (wj)
, (4)

where ∀i, wi > 0 and
∑g

i=1 wi = w0. We may interpret w0 as the total number
of pseudo measurements observed to obtain information about the model and
wi as the individual frequency counts for the joint distribution parameters. The
higher the former number is, the greater our confidence becomes in the values
of the prior observations.

2.4 The Proposed Objective Function

Using Eq.(3) and Eq.(4), we write the posterior probability on T from Eq.(1) as

p(T |u, v, w) ∝ P (T )
∫ (

∏

i

θ
ni(T )
i

)
Γ (w0)

⎛

⎝
∏

j

θ
(wj−1)
j

Γ (wj)

⎞

⎠ dθ (5)
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∝ P (T )
Γ (w0)

Γ (N + w0)

⎛

⎝
∏

j

Γ (nj(T ) + wj)
Γ (wj)

⎞

⎠ , (6)

where we derived Eq.(6) by identifying a Dirichlet distribution with parameters
nj(T )+wj and using the fact that the integral of the distribution over its domain
is equal to one. Therefore, the objective function of our proposed marginalized
MAP registration method becomes

T̂ = argmax
T

log

⎡

⎣P (T )
Γ (w0)

Γ (N + w0)

⎛

⎝
g∏

j=1

Γ (nj(T ) + wj)
Γ (wj)

⎞

⎠

⎤

⎦ (7)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

log Γ (nj(T ) + wj) + C

⎤

⎦ . (8)

2.5 Special Cases: Strength of Priors

In the following, we demonstrate how our objective function changes with respect
to the nature of the prior, and we also examine the equivalence of our novel
objective function of Eq.(8) with some widely used methods. These relationships
help us better explain why these registration techniques are expected to converge
to the correct alignment configuration.

Uninformative Prior: First we choose an uninformative prior. This means
that the prior does not favor any solutions a priori and the current observa-
tions are going to be solely responsible for the solution to be computed. As an
uninformative prior (whose use achieves an equivalence with the maximum like-
lihood (ML) solution of the problem), we choose to use Jeffreys’ prior [5]. These
are not affected by any transformations applied to the variables. Accordingly,
we set, w0 = 1 and ∀i, wi = 1

g , or in words, we assume to have only one prior
observation, and it is distributed over all the existing bins (where g represents
the total number of bins used in the multinomial model). Consequently,

log p(T |u, v, w) → log P (T ) +
∑

j

log Γ

(
nj(T ) +

1
g

)
+ C . (9)

The information theoretic joint entropy [6], measuring uncertainty related to the
joint occurrence of the input random variables, is defined by :

H
( n

N

)
≡ −

∑

j

nj

N
log

nj

N
= − 1

N

∑

j

nj log nj + log N , (10)

where
∑

j nj = N . For the most part, the differences between expressions(∑
j nj log(nj)

)
and

(∑
j log Γ (nj)

)
are small (“first order” version of the Stir-
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ling approximation). Therefore, we may re-write the registration objective func-
tion using an uninformative prior as

T̂ = argmax
T

log p(T |u, v, w) ≈ arg min
T

[
cH

(
n(T) + 1

g

N + 1

)
− log P(T)

]
. (11)

This approximation, ignoring the transformation prior, is equivalent to the
widely used minimization of joint entropy method [7]. Although widely used,
the justification of using that metric in registration has long been debated. For-
mally, joint entropy is maximum likelihood method. While others have discussed
a similar equivalence between ML and joint entropy [8], the present marginal-
ization approach provides a rigorous demonstration of its validity.

Informative Prior: When the priors are informative, or in words, when we
have access to a sufficient number of pseudo observations (wj) from, for exam-
ple, training data sets, they allow for a more certain belief in their information
content. In such a case, the objective function can be approximated by

T̂ = arg max
T

log p(T |u, v, w) ≈ arg min
T

[
H

(
n(T) + w
N + w0

)
− log P(T)

]
. (12)

According to Eq.(12), prior information is introduced into the framework by
pooling together corresponding samples from the previously aligned (prior dis-
tribution model) and from the current, to-be-aligned cases. Throughout the opti-
mization, the model observations remain fixed and act as anchor points to bring
the other samples into a more likely configuration. Interestingly, this formula-
tion is closely related to another type of entropy-based registration algorithm.
Sabuncu et al. introduced a registration technique based on minimizing Renyi
entropy, where the entropy measure is computed via a non-plug-in entropy esti-
mator on pooled data [9]. This estimator is based upon constructing the EMST
(Euclidean Minimum Spanning Tree) and using the edge length in that tree to
approximate the entropy. The reason that such an arrangement would provide
a favorable solution has not been previously theoretically justified.

Strong Prior: Lastly, we briefly mention the scenario, where the prior infor-
mation is very strong.

log p(T |u, v, w) ≈ log P (T ) +
∑

j

(
log Γ (wj) + nj(T )

Γ ′(wj)
Γ (wj)

)
+ C (13)

≈ log P (T ) +
∑

j

(wj log(wj) + nj(T ) log(wj)) + C . (14)

In Eq.(13) a first order approximation of log Γ (nj(T )+wj) around wj was written
out, with Γ ′ indicating the derivative of the Gamma function. In Eq.(14), the
approximation for

∑
j log Γ (wj) from Eq.(11) and Γ ′(n)

Γ (n) ≈ log(n) are used, where
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the latter is valid for a large range of n. The only term that depends on nj(T )
is

∑
j nj(T ) log(wj), thus

T̂ = arg max
T

log p(T |u, v, w) ≈ argmax
T

⎡

⎣log P (T ) +
∑

j

(nj(T ) log(wj))

⎤

⎦ .

(15)
If we re-express the sum in Eq.(15) as a sum over data points, we can see that
this formulation is equivalent to an approximate maximum likelihood approach,
where the current samples are, indeed, evaluated under the previously con-
structed model distribution [10]. Chung et al. experimentally showed that the
performance of this similarity measure is not always sufficiently accurate[11].
That finding is now explained by the fact that this objective function considers
the model with such a high level of confidence that might not be justified by the
number of previous observations.

3 EM Optimization for the Marginalized MAP
Registration Problem

The above described objective functions could be optimized in several ways.
In general, we can differentiate between gradient- and non-gradient-based tech-
niques. Using gradient-based information in the optimization procedure often
results in significant computational advantages, however, they might also require
challenging approximation of some terms. For example, when using the multino-
mial model, update terms need to be estimated from a discrete distribution
and also it is required to calculate the partial derivative of changing (non-fixed)
joint statistics parameters with respect to the to-be-optimized transformation
components. Although close approximations exist, one might worry about their
accuracy. To escape such computational difficulties, we might optimize both
of the above marginalized formulations by using the Expectation-Maximization
(EM) algorithm [12]. This framework, from the statistical computing literature,
is known to have good properties as an optimizer and the resulting iteration
is attractive from a practical standpoint. If we consider the input images as
observations and the Θ parameters as hidden information, the EM algorithm
defines the solution to T̂ = argmaxT log p(T |u, v) as iteratively obtaining the
best current solution (T̂next) based upon:

T̂next = argmax
T

EΘ|u,v,T̂old
[log P (T, Θ|u, v)] (16)

= argmax
T

EΘ|u,v,T̂old
[log P (T |u, v, Θ) + log P (Θ)] (17)

= argmax
T

EΘ|u,v,T̂old

⎡

⎣log(P (u, v|T, Θ)P (T )) +
g∑

j=1

(wj − 1) log θj

⎤

⎦ ,(18)
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where Bayes rule was applied in order to express the conditional probability
term on the registering transformation. Continuing with the manipulation

T̂next = argmax
T

EΘ|u,v,T̂old

⎡

⎣log
∏

j

θ
nj(T )
j +logP (T ) +

g∑

j=1

(wj−1) log θj

⎤

⎦ (19)

= argmax
T

⎡

⎣log P (T ) + EΘ|u,v,T̂old

⎡

⎣
g∑

j=1

(n(T )j + wj − 1) log θj

⎤

⎦

⎤

⎦ (20)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

(n(T )j + wj − 1)EΘ|u,v,T̂old
[log θj ]

⎤

⎦ .(21)

If we define lj ≡ log θj , then we can define the two steps of the EM algorithm:
maximization (M) and expectation (E) as follows:

M − step : T̂next = arg max
T

⎡

⎣log P (T ) +
g∑

j=1

(n(T )j + wj − 1) ljold

⎤

⎦ (22)

E − step : ljnext = EΘ|u,v,T̂old
[lj ] , (23)

In words, the M-step searches for transformation T that optimizes the sum of
expectation over the log model parameters and a transformation prior; and the
E-step calculates the expectation of these log parameters given the current best
estimate of the transformation parameters. Note that in this framework, we need
to pay special attention to the scenario where the θj parameters tend to zero
and we also have to enforce the property that the parameters add to one. More
details on these special cases are discussed below.

3.1 Evaluating the E-Step

In order to evaluate the expression in the E-step, we may use the following form
for the posterior on Θ given the input images and the transform:

P (Θ|u, v, T ) =
P (u, v|Θ, T )P (Θ)∫

Θ
P (u, v|Θ, T )P (Θ)dθ

. (24)

Computing the expectation term thus becomes:

EΘ|u,v,T̂ [log θl] =
∫

Θ

log θlP (Θ|u, v, T̂ )dθ =
∫

Θ

log θl
P (u, v|Θ, T̂ )P (Θ)

∫
Θ

P (u, v|Θ, T̂ )P (Θ)dθ
dθ.

(25)

Using our multinomial model and the Dirichlet distribution as its prior, the nu-
merator in Eq.(25) has the form of another unnormalized Dirichlet distribution.
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Therefore, if we define a new Dirichlet distribution with parameters β, where
βi = (n(T̂ )i + wi), we may write

EΘ|u,v,T̂ [log θl] =
∫

Θ

log θl

∏g
j=1 θ

n(T̂ )j

j
1

Z(w0)

∏g
k=1 θ

(wk−1)
k

∫
Θ

∏g
j=1 θ

n(T̂ )j

j
1

Z(w0)

∏g
k=1 θ

(wk−1)
k dθ

dθ (26)

= EDir(Θ;β) [log θl] . (27)

The expression in Eq.(27) is the expected value of the (log θl) parameters given a
Dirichlet distribution parameterized by β. As the Dirichlet distribution belongs
to the family of exponential functions, the expectation over its sufficient statistics
can be computed as the derivative of the logarithm of the normalization factor
with respect to its natural parameters[13]. Writing the Dirichlet distribution in
its exponential form results in

Dir(Θ; w) = exp

(
g∑

i=1

(wi − 1) log θi + log Γ (w0) −
g∑

i=1

log Γ (wi)

)
. (28)

Given this form, we see that the sufficient statistics are indeed the (log θl) para-
meters. Therefore, the expectation term we are concerned with can be expressed
by using the Digamma (or Psi) function which is the first derivative of the log
Gamma functions [14].

EDir(Θ;β) [log θl] = Ψ(βl) − Ψ(β0) = Ψ(n(T̂ )l + wl) − Ψ(N + w0) . (29)

In the following, we approximate the Digamma expressions in Eq.(29) by using
Ψ(x) ≈ log(x − .5) [15]. This approximation is very accurate in the positive real
domain, except for values in the range of [0, 1]. A value in that particular range
would correspond to the extreme scenario of an “empty bucket”, where there
are neither current nor prior observations associated with a particular model
parameter. In order to make the approximation hold even in such a scenario,
we differentiate between two cases: uninformative and informative priors. In the
case of uninformative priors, we propose to use Laplace priors [5] instead of
zero counts for the Dirichlet parameters. Consequently, when no prior / pseudo
information is available for the model, we initialize all parameters uniformly
as one. The case of informative priors requires more attention. Although the
total sum of pseudo information in this case is significant, we cannot directly
assume that it holds for all individual Dirichlet parameters. Thus in that case we
explicitly require that each pseudo count should hold at least one count. With
such specifications we can ensure that our approximation holds regardless of the
nature of the prior information and that the argument of the log function, in the
case of the parameter update, does not approach zero (which could be a concern
as mentioned while defining the EM framework). Thus the E-step of the EM
algorithm is expressed as

(l̄l)next = Ψ
(
n(T̂old)l + wl

)
− Ψ(N + w0) (30)
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≈ log
(
n(T̂old)l + wl − .5

)
− log(N + w0 − .5) (31)

= log

(
n(T̂old)l + wl − .5

N + w0 − .5

)
. (32)

This rule assigns the logarithm of normalized sum of the pseudo and observed
counts minus a constant to the most current log(θ) parameters. This pooling
of current and pseudo counts for describing joint intensity statistics has been
already discussed in Sec.2.5. We point out that, in order to enforce the relation-
ship

∑g
i=1 θi = 1, we compute the E-step for all 1 ≤ j ≤ (g − 1) and we assign

the last remaining parameter as (l̄g)next = log
[
1 −

∑g−1
i=1 exp((l̄i)next)

]
.

3.2 Evaluating the M-Step

Using the results from the E-step, we may now express the M-step (the most
current estimate of the registration parameter), which indeed results in a simple
formulation of the problem:

T̂next = argmax
T

EΘ|u,v,T̂old
[log P (u, v, Θ|T )] (33)

= argmax
T

⎡

⎣logP (T ) +
g∑

j=1

(n(T )j + wj − 1)EΘ|u,v,T̂old
[lj]

⎤

⎦ (34)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

(n(T )j + wj − 1) log

(
n(T̂old)j + wj − .5

N + w0 − .5

)⎤

⎦

(35)

= argmax
T

⎡

⎣log P (T ) +
g∑

j=1

n(T )j log
(
n(T̂old)j + wj − .5

)
⎤

⎦ (36)

Therefore, ignoring the prior on transformation T , our objective function in the
M-step is the maximization of a log likelihood term. When solving the optimiza-
tion problem with a non-informative set of priors, the solution approaches an
iterated ML framework. This result underlies the fact that an MAP framework
with a non-informative prior produces results that are equivalent to the ML solu-
tion. The best transformation parameters therefore are calculated by using old,
currently the best, model estimates. In the scenario where we have significant
amount of prior information with respect to the model, again, the pseudo and
the current observations are pooled together.

We note that the expression in Eq.(36) can be further simplified to result
in an information theoretic framework that comprises of a data- and model-
related term. The former measures the KL-divergence between two categorical
distributions over the parameters describing the current joint statistics and that
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including pseudo observations from the prior model and the latter computes the
entropy of the estimated joint statistics of the observations.

T̂next ≈ arg max
T

[
log P (T ) − DKL

(
n(T ) ‖ n(T̂old) + wj − .5

)
− H(n(T))

]
(37)

≈ arg min
T

[
DKL

(
pT ‖ pT̂old,w

)
+ H(pT) − log P(T)

]
(38)

In summary, the utilization of the EM framework provides an iterative method
for the transformation parameter estimation where the model parameter updates
are computed in an efficient and principled manner.

4 Experimental Results

In this section, we present our experimental results from an iterated registration
algorithm that uses uninformative priors. The resulting EM solution to the ML
(in θ) formulation is demonstrated on a complex intra-operative non-rigid brain
registration problem. We introduced a prior on the deformation field that approx-
imates a fluid flow model. The algorithm also facilitates (on the EM iterations) a
quadratic approximation to the search problem that may be quickly solved. That
would not be justified if the multinomial model were not constant within the it-
erations. Preliminary experimental results for the scenario where we do have ac-
cess to informative prior information was presented in [16]. At each iteration, our
non-rigid registration algorithm defines the prior probability on configurations
phenomenologically, using linear elastic deformation energy and Boltzmann’s
Equation, as P (T ) ∝ exp(−E/τ). Configurations of the deforming anatomy are
parameterized by the coordinates of the vertices of an adaptive tetrahedral mesh.
Using standard methodology of the Finite Element Method (FEM) [17], the stress-
strain integral is linearized about the current configuration, yielding a quadratic
approximation for the energy in terms of displacements from the current config-
uration, E ≈ ΔT

T KΔT ,where K is a banded elasticity matrix. At each iteration,
the log likelihood, log P (n(T )old|ΔT ), is approximated by a second order Taylor
expansion. This is centered on a nearby local maximum of the likelihood func-
tion that we locate using a greedy method. The resulting quadratic expression is
combined with the quadratic prior term, and the resulting approximation to the
posterior probability is easily solved as a linear system. This iterative method re-
sets the elastic energy to zero at each iteration. Papademetris et al. [18] call this
“history free” approach the incremental approach, and point out that, in a limiting
case, it is equivalent to the fluid model [19].

Figures 1 (a) and (b) show two MRI images of the same brain taken during
brain surgery. The images contain 256x256x124 voxels with 0.9375x0.9375x1.5
mm spacing. According to visual comparison, deformation between the two im-
ages mostly occurs near the incision. The result of the non-rigid registration
algorithm is shown in Fig. 1 (c). The warped image is very similar to the tar-
get image. In particular, the small displacement of the left and right ventricles
was captured and the boundaries near the incision appear to be in appropriate
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(a) Intra-operative slice at t1 (b) Intra-operative slice at t2 (c) Deformed acquisition

Fig. 1. MRI acquisition of the brain: (a) taken during surgery with edges highlighted;
(b) taken later in the surgery, with the edges from (a) overlaid; (c) deformed the former
image onto the latter, with the edges of (a) overlaid

places as well. The final match used 8500 mesh nodes, and the entire matching
process was finished in less than 6 minutes on a 2 Ghz desktop computer. To
validate our registration results, we compared manually located landmarks in
the initial and the deformed images. The majority of the motion was captured
by our non-rigid registration algorithm, with disagreements typically not more
than the voxel size. More details on the experimental setup and the validation
results is described in dissertation work [20].

5 Conclusion

We introduced an MAP framework for the pair-wise registration problem that
allowed us to include prior information about not only the transformation para-
meter space but also the joint intensity statistics of the inputs. Treating the lat-
ter as nuisance parameters and marginalizing them out allowed us to establish a
close relationship between our method and certain entropy-based objective func-
tions. We also demonstrated that using an EM-based optimization framework
the aligning transformations can be computed in a principled and computation-
ally attractive manner.
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Abstract. In this paper, we propose a novel method for the registration
of volumetric images of the brain that attempts to maximize the overlap
of cortical folds. In order to achieve this, relevant geometrical information
is extracted from a surface-based morph and is diffused throughout the
volume using the Navier operator of elasticity. The result is a volumetric
warp that aligns the folding patterns.

1 Introduction

Pairwise brain registration is one of the active areas of research in the medical
imaging community. Different algorithms have tackled the generic problem of
registering information from two brain scans in various ways. Volumetric regis-
tration (see [1] for a survey) seeks a 3D deformation field which is driven by either
raw intensity information or features derived from image intensities. A different
approach is to extract geometric features from surface models of structures such
as the neocortex, and to reformulate the complex correspondence problem in a
surface matching framework.

Each of these approaches has advantages and weaknesses. Surface-based meth-
ods [2,3,4] have been shown to accurately align the highly complex folding pat-
tern of the human cerebral cortex, and to result in increased statistical power
presumably due to their alignment of functionally homologous regsions accross
subjects. This accuracy stems from the direct use of geometric information that
is generally unavailable to volumetric methods and the relatively close rela-
tionship between folding patterns and functional properties of the neocortex.
Conversely, volumetric methods [5,6,7,8], while frequently failing to align corre-
sponding cortical folds, provide a correspondence field in the whole brain, and
align subcortical and ventricular structures as well as the cortex (regions that
are outside of the domain of classical surface-based registrations).

In this paper, we propose a method which combines the two approaches. This
is done by integrating surface-based information into a volumetric registration
procedure. The result is a 3D deformation field which aligns the folding patterns
of the the two scans. While the idea of using surface registration to drive volu-
metric deformation fields is not new [9,10,11], this is the first paper to explicitly
concentrate on the accurate registration of the cortical sheet in 3D space.

The current work can be seen as growing out of the non-linear registration
literature that aims at integrating prescribed displacements into a volumetric

N. Karssemeijer and B. Lelieveldt (Eds.): IPMI 2007, LNCS 4584, pp. 675–686, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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morph: [9] proposes a linear and incremental method for performing volumetric
deformations, and [10,11,12] use various types of surfaces and matching algo-
rithms that are then interpolated in the rest of the image to yield a dense de-
formation field, while [13] uses explicitly extracted sulcal traces together with
feature vectors. Perhaps the closest related work to this article is by Liu et al.
[14], where the geometrical information carried by the brain surfaces is explicitely
used in the registration process. However, it should be mentioned that the surface
similarity is maximized after the volumetric warping, which we believe makes it
susceptible to local minima.

2 Methods

We present the process of registering two structural brain scans, fixed and mov-
ing. Each of the scans is independently processed to obtain an accurate topo-
logically correct reconstruction of the cortical surfaces (see [15,16,17,18,19] for
details). Then, we perform a surface-based registration, independently for each
of the surfaces (4/brain - left and right pial and gray/white respectively). This
registration takes place in spherical coordinates and aims at maximizing the
similarity of the folding patterns, while remaining topologically correct and con-
trolling the amount of allowed metric distortions.

The result of the surface registration algorithm provides the input to the volu-
metric registration we present in this paper. Using a regularizer from the theory
of elasticity, we build a displacement field which is driven by the surface regis-
tration. The resulting morph yields surfaces that are as close as possible to the
target surfaces, while being topologically correct and respecting the anatomical
variability between individuals.

2.1 Surface Registration

The surface-based registration of our choice is briefly described below [3]. The
first step is to transform the cortical surface into a spherical representation with
moderate metric distortions [20]. The algorithm aims at iteratively minimizing
the following energy in the spherical space:

J = Jp + λA JA + λdJd (1)

where Jp measures the alignment, based on the cortical depth and the curvature
information, while the other two terms act as regularizers. JA is a topology-
preservation term, while Jd controls the amount of metric distortion allowed:

JA =
1

2T

T∑

i=1

(
An

i − A0
i

)2
Jd =

1
4V

V∑

i=1

∑

n∈N(i)

(
dn

in − d0
in

)2
din = ‖xi −xn‖

Here, superscripts denote time with 0 being the starting point, T and V are
the number of triangles and vertices in the tesselation, xn

i is the position of
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vertex i at iteration n, N(i) is the set of neighbors of the ith vertex and Ai

denotes the oriented area of triangle i. The result of the surface registration is a
1-to-1 mapping that transports each surface of the fixed scan to its counterpart
surface in the moving image Freg : Sfixed → Smoving, where S can be any of the
left/right pial/white surfaces of the brain.

2.2 Volumetric Warping

When the surface registration is completed, we obtain a displacement vector field
which provides a 1-to-1 mapping between the hemisphere surfaces of the fixed
and moving brain scans in the Euclidean space. We now show how to diffuse this
vector field from the cortical surfaces to the rest of the volume.

Let Ω be the source image domain. We define an arbitrary transformation
φ : Ω → R

3 of the source image as: φ(x) = x+u(x) where u : Ω → R
3 denotes the

displacement field. The goal here is to find a function φ such that φ
(
xfixed

surf

)
=

Freg

(
xfixed

surf

)
, for any xfixed

surf ∈ S, where S is one of the surfaces of the fixed
brain scan. Since the surfaces represent a space of co-dimension 1, in order for
this problem to be well-posed, we impose an additional regularity constraint. We
require that the displacement field we are searching to be an elastic deformation,
i.e. a smooth, orientation-preserving deformation which satisfies the equations of
static equilibrium in elastic materials. This means that we (additionally) require
u to satisfy

L(u) = 0 (2)

where L is an operator we define below.
The choice of the operator L and the discretization method to numerically

extrapolate the displacement field has numerous solutions that have been pro-
posed in the registration litterature. Some of the better known are the thin plate
splines, proposed by Bookstein [21], or the free-form deformations proposed by
Rueckert et al [22]. We have chosen to use the Navier operator from the lin-
earized elasticity theory together with the finite element method. This choice
was motivated by the high level of flexibility needed in order to satisfy the con-
straints imposed by the displacement fields obtained on the 4 surfaces of the
brain image.

2.3 Elasticity Operator

In order to solve the problem stated above, we use the equilibrium equation for
elastic materials. This states that at equilibrium, the elastic energy equals the
external forces applied to the body L(u) = f [23].

L(u) = − div
[
(I + ∇u) Ŝ

]
(3)

where the second Piola-Kirchoff stress tensor Ŝ : Ω̄ → M3 is defined as

Ŝ = λ tr(Ê)I + 2μ Ê and Ê =
1
2

(
∇uT + ∇u + ∇uT ∇u

)
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is the Green-St. Venant strain tensor. Here λ and μ are the Lamé elastic con-
stants that characterize the elastic properties of an isotropic material. The linear
approximation to the above operator uses the Fréchet derivative of L

L(u) = L(0) + L′(0)u + o(u) ⇒ f = L(u) ≈ L′(0)u

since no deformation occurs in the absence of external forces. Finally, L′(0)u is
computed by dropping the non-linear terms in L(u), which results in
L′(0)u = − div S with S = λ tr(E)I + 2μE the linearized stress tensor and
E = 1

2

(
∇u + ∇uT

)
the linearized strain tensor. Hence, the linear approximation

of (2) can be written as
L′(u) = − div S = f (4)

The main drawback of (4) is that it is only valid for small-magnitude defor-
mations. To overcome this, we implement an extension of the linear model, as
presented in [9]. Namely, given external forces that describe large displacements,
one can iteratively solve for small linear increments using the linearized Navier
equation (4): L

(
un+1

)
= L′ (un)

(
un+1 − un

)
+ o

(
un+1 − un

)
or, by neglecting

the last term,

fn+1 − fn = L
(
un+1) − L (un) ≈ L′ (un)

(
un+1 − un

)
(5)

Using this iterative process, the solution of (5) converges to the solution of (2)
(see [23] for the proof).

The Lamé constants λ and μ are specified as functions of Young’s modulus of
elasticity E and the Poisson ratio ν: λ = Eν

(1+ν)(1−2ν) and μ = E
2(1+ν) . In all our

experiments we used E ≡ 1 and ν = 0.3.

2.4 Finite Element Method

Using the notation introduced in the previous subsection, equation (4) can be
re-written as a minimization problem by considering the potential energy of an
elastic body submitted to externally applied forces

E =
1
2

∫

Ω

⎡

⎣λ ‖∇ · u‖2 + 2μ

3∑

i,j=1

e2
ij(u)

⎤

⎦ d x +
∫

Ω

f · u d x (6)

with eij(u) = 1
2 (∂iuj + ∂jui).

One common way to tackle a minimization problem for (6) is to use the Finite
Element Method. This consists in dividing the domain Ω using an assemblage of
discrete finite elements interconnected at nodal points at the element boundaries
(tetrahedra in our case). The continuous field u within each element can be
approximated as a linear function of the displacements at the nodal points - the
computation is detailed in [24]. The first term in (6) results in a sparse symmetric
matrix K, also called the stiffness matrix, whereas the external forces result in a
vector F . By using the linear approximations mentioned, (6) can be re-written

Emesh = UT K U + UT F (7)
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hence by minimizing (6) wrt. the nodal displacements dEmesh(U)
dUi

= 0, equation
(4) can be written as

K U = F (8)

2.5 Specifying the External Forces

All that remains to be specified for equation (8) is the vector of external forces F .
As mentioned previously, the input to our problem is actually a set of prescribed
displacements.

One way of implementing prescribed displacements as external forces when
solving a FEM problem is described in [9]. It consists of modifying the matrix
K and the vector F so that the value of the variable Ui we want to prescribe is
forced. This is implemented by setting Kij = δij and Kji = δji ∀j and subtract-
ing the appropriate quantity on the right hand side. However, numerical exper-
iments showed that this way of constraining the stiffness matrix is too strong
and it can cause topology problems (i.e. noninvertible regions). Indeed, in the
current problem domain, where anatomical differences between the two brains
are to be expected (such as a split fold), such hard constraints are undesirable,
as they result in overfitting the warp field.

We have instead opted for an implementation of prescribed displacements
using penalty weighting. This means that we use the displacements given by
the surface registration Freg to modify equation (4). Indeed, without external
constraints, the elasticity problem simply reads KU = 0, with a trivial solution.

Suppose we want to impose a constraint u(x) = v. We start by determin-
ing the tetrahedron Ti such that x ∈ Ti and we know that we must have∑4

j=1 NTi

j (x)UTi

j = v, where Nj are the barycentric coordinates of x in Ti.
Then we impose the condition by modifying (7) so that the energy becomes

Emod
mesh = UT K U + αUT (AiU − Bi) (9)

where Ai are the barycentric coordinates of x ∈ Ti and Bi = v (which are
immersed in the global array U using the correspondence table of the nodes of
tetrahedron Ti). In (9), α is the weight placed on the constraints. In all of our
experiments we used a constant weight for all displacement vectors, although
this could change in the future. For instance, a surface similarity measure could
be used to better condition the morph.

2.6 Handling Topology Problems

After each iteration of the elastic solver, we check for potential topology prob-
lems, i.e. tetrahedra with negative Jacobian. Indeed, in spite of using the incre-
mental model and solving the elasticity equation in more iterations, topology
problems do appear. There are two general techniques used for performing mesh
untangling: smoothing or, more generally, solving an optimization problem aim-
ing at locally fixing tangles (see [25] for an algorithm that combines the two).
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In our case, the goal pursued was to solve the tangles from the deformed
mesh (i.e. inverted tetrahedra in the deformed configuration) while modifying
the displacement field as little as possible. This task is facilitated by the fact that
in the absence of displacements, the initial mesh is guaranteed to be topologically
correct. Thus, we opt for a local smoothing-based algorithm, which we formulate
as the solution of a local linear elastic problem.

We segment the regions with topological defects into local connected com-
ponents. We then solve a linear elastic equation within each local cluster, the
external forces being the displacements on the boundary of the cluster. Finally,
we discard the initial displacements inside the cluster and replace them with the
solution of the system.

We repeat the above clustering procedure until there are no more tetrahedra
with topology problems. Although there is no formal proof of it, the above
procedure has solved all the topological problems we were experiencing in the
tests we ran thus far.

2.7 Implementation

To resume, the execution of the pipeline described in this section results in the
following:

1. compute surfaces for each of the brain images (2 surfaces per hemisphere -
pial and gray/white);

2. perform surface registration for each of the surfaces independently in spher-
ical coordinates;

3. recover sparse displacement fields xfixed
i → ymoving

i ;
4. regress out affine transform from the displacement field A; this results in the

updated sparse displacement field xfixed
i → A−1

(
ymoving

i

)
= zi;

5. apply linear incremental model in n steps; i.e. loop j = 1 . . . n
(a) get current morphed positions φj ◦ φj−1 ◦ . . . φ1(xi) = xj

i and create
sparse displacement field vj

i = 1
n−j+1 (zi − xj

i )
(b) create tetrahedral mesh based on current surface positions and initialize

the stiffness matrix and the external forces;
(c) solve the linear system;
(d) handle potential topology problems.

We use TetGen [26,27] to build a Delaunay tetrahedral mesh which is adapted
to the input surfaces and PETSc [28,29] to solve the linear system at each step.
Generally, we place a constraint on the volume of the tetrahedra that are near
the surfaces (so that they have a lower volume), since it is expected that the
morph will require greater flexibility in those areas.

It should also be noticed that prior to the elastic registration we apply an affine
registration. This is motivated by the fact that the linearized version of the elastic
operator does not satisfy the axiom of material frame-indifference [23,30]. This
means that the linearized elastic energy increases when the object is rotated. This
occurs because the linearized operator drops the quadratic terms. Even though
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the linear incremental model approximates the Navier operator as the number
of steps n → ∞, applying the affine transform prior to performing the elastic
registration allows to decrease n, which results in a significant computational
time gain.

3 Results

We illustrate the utility of the method through two experiments. First, we show
how the elastic warping can succesfully recover the nonlinear deformation caused
in the brain due to autopsy and fixation. Subsequently, we present a more ambi-
tious experiment, where we use the pairwise surface correspondence to obtain a
warp between brain images of different subjects. As will be seen, this is a more
challenging problem, being inherently ill-posed.

3.1 Registration of ex-vivo Scans with the Corresponding in-vivo
Scan

In this case, the imaging protocol for the ex-vivo tissue is different due to the
reduced T1 contrast observed post-mortem, so a Multi Echo Flash protocol
is used. This makes the pre-processing required to obtain the surfaces for the
ex-vivo images a little more challenging, but does not affect the registration
algorithm proposed here.

We present in figure 1 the result of the volumetric warp applied to the ex-vivo
image so that it matches the in-vivo one. The resulting correspondence is almost
perfect, since the underlying anatomy is the same and the deformation is a truly
mechanical one. However, we remind the reader that the correspondence is not
perfect near the lateral ventricles, because none of the cortical surfaces we have
used crosses that area.

Also, it should be noted that in this case only the surfaces from one hemisphere
were used in the process, as we only had one hemisphere available for the ex-
vivo imaging. Nevertheless, the resulting match is excellent, and highlights the
insensitivity of the procedure to the underlying image contrast, as the geometric
features are of course invariant to the contrast properties.

3.2 Inter-subject Registration

In this section, we show results from a comparison of our morphing method with
the morph produced by the publicly available version of HAMMER [31]1 . We
selected eleven subjects for which we had labels that had been manually drawn
on the surface [33] and we morphed each of them on a randomly chosen subject

1 We would like to mention that the HAMMER version we have uses the gray/white
matter segmentation produced by FAST [32] exclusively to produce the attribute
vectors. As such, it is possible that results improve with different inputs to the
attribute vector.
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Fig. 1. Results of the surface-driven morph between an ex-vivo hemisphere and an
in-vivo scan of the same subject. Surfaces are from the in-vivo data (pial surface in red
and gray/white surface in yellow).
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Fig. 2. Average DICE measures with standard error for cortical and subcortical areas
over 10 brains. As expected, the measure for cortical areas shows the surface-based
morph out-performs HAMMER by 20%. Surprisingly, HAMMER is also out-performed
for sub-cortical areas, although our morph does not use any information from these
regions.

which played the role of template. We then performed a DICE measure sepa-
rately for the cortical and subcortical areas and compared the results produced
by FLIRT [34] (i.e. 12 DOFs) and HAMMER.
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Fig. 3. Visual Comparison of inter-subject registration. Surfaces are from the atlas
(pial surfaces in red and gray/white surfaces in yellow). Upper row - FLIRT. Middle
row - HAMMER. Bottom row - result of the surface-based morph. It is apparent
the HAMMER result is trapped in local minima in certain regions, which does not
happen for the surface-based morph. Gyri where large differences occur emphasized
with an arrow. It seems reasonable to believe local mis-registrations occur due to a
poor initialization.
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The validation measures we used were DICE measures on two sets of labels. Us-
ing [35], we created a label volume independently for each brain image with each
of the major subcortical structures. In addition, we filled the cortical ribbon with
manual surface-based labels from [33] for each of the subjects to generate volu-
metric labels for surface folding patterns. The DICE results were divided into two
sets to illustrate the differences in these structures: the sparse displacement fields
were explicitly generated to align cortical folds. The degree to which the volumet-
ric morph generated from the surface registration also aligns subcortical regions
thus reflects how well predicted the position and shape of subcortical structures
are from the folding patterns, with potential implications for neurodevelopment.

To be more specific, the measure we used to compare the degree of overlap be-
tween two volumes V1 and V2 for a set of labels S = {si, i = 1 . . . n} is given by

DICES (V1, V2) =
∑n

i=1 |[V1 = si] ∩ [V2 = si]|∑n
i=1 |[V1 = si] ∪ [V2 = si]|

(10)

The morph was executed with n = 13 iterations for the linear incremental
model and the results are summarized in figure 2. An example of the alignment
achieved is shown in figure 3. As was to be expected, the cortical measure is higher
by 20% for the surface driven morph than HAMMER (as can be seen in figure 3,
HAMMER can get caught in local minima, resulting in over-deformed gyri). Sur-
prisingly, the results also show we outperform HAMMER for subcortical regions,
despite the lack of any specific information from these regions in the morph.

4 Conclusion and Future Work

We presented a technique for computing a dense volumetric registration field that
was shown to align cortical folding patterns as well as deep brain structures. This
was achieved by using a surface-driven morph, together with a regularizer taken
from the theory of elasticity to compute a volumetric registration.

Another finding from the present study that has potentially interesting neu-
roscientific applications is that the alignment of cortical folds also appears to
align subcortical structures, indicating that the folds are good predictors of the
position/shape of deep brain regions.

In future work, we will use this volumetric field to initialize a volumetric regis-
tration algorithm to further align non-cortical structures. We anticipate that this
technique will resolve one of the main difficulties with volumetric registration:
they do not in general align cortical folding patterns.
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Abstract. Bridging the gap between clinical applications and mathe-
matical models is one of the new challenges of medical image analysis.
In this paper, we propose an efficient and accurate algorithm to solve
anisotropic Eikonal equations, in order to link biological models using
reaction-diffusion equations to clinical observations, such as medical im-
ages. The example application we use to demonstrate our methodology
is tumor growth modeling. We simulate the motion of the tumor front
visible in images and give preliminary results by solving the derived
anisotropic Eikonal equation with the recursive fast marching algorithm.

1 Introduction

One of the main gaps between mathematical models explaining biological phe-
nomena and medical applications is due to the inconsistency between the number
of observations available clinically and needed mathematically. While building
more realistic models is very important to improve our insight on the general
phenomena, creating reduced models is essential in using mathematical models
in specific clinical situations.

Reaction-diffusion equations like:

ut = ∇ · (D∇u) + f(u) (1)

arise in many different biological models, where one describes the change of a
density u in time with an anisotropic diffusion characterized by the tensor D and
a reaction term f(u). We can give examples to such situations like tumor growth,
electrophysiology and wound healing. However, available observations are often
sparse and incomplete and these models are often computationally costly. Thus,
making the adjustment of complete models to a specific case is difficult. This
is why reduced models are of great interest. In the case of Equation 1, one can
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approximate the motion of a single iso-contour of u in terms of its arrival times
T using the anisotropic Eikonal equation

F
√

∇T tD∇T = 1 (2)

based on the fact that reaction-diffusion equations admit traveling wave solutions
in certain cases [1,2]. This form is preferable because it does not require the whole
distribution of u to compute the motion of a single iso-contour, it can reduce
the number of unknown parameters based on the form of F and it can be solved
faster. Aiming at clinical applications, it is essential to solve this front tracking
approximation given in Equation 2 efficiently and accurately.

In this paper, we propose a new fast algorithm to solve the anisotropic Eikonal
equation and improve the current front tracking approximation by taking into ac-
count the convergence properties of the reaction-diffusion equations. For demon-
stration, we apply these methods to tumor growth modeling, more specifically,
to modeling glial based ones. These tumors account for approximately 40-45% of
all primary intracranial tumors, forming the largest class in this pathology, [3].
Characteristics of this type of tumors vary a lot within the group, and when
faced with one, understanding its aggressiveness and correct grading is very cru-
cial in therapy planning and might improve prognosis. Although medical imaging
is not the sole source of information used for this, it plays an important role in
understanding the pattern and speed of invasion of healthy tissue by cancerous
cells. One of the most important hints that can be obtained from images is the
progression of the visible tumor front. Therefore mathematically describing and
simulating the motion of this front would help the grading process and therapy
planning.

2 Recursive Anisotropic Fast Marching

Anisotropic Eikonal equations, given as Equation 2, poses extra difficulties for
fast numerical schemes compared to its isotropic counterpart, F |∇T | = 1. There
have been different ways proposed to solve such equations or in general con-
vex, static Hamilton-Jacobi equations using single-pass methods [4], or iterative
methods [5,6]. Single-pass methods start from points where time (T ) values are
already known and follow the characteristic direction of the PDE to compute
T at other points. This approach is based on the fact that in equations such as
Eqn. 2, the value of T at a point is only determined by a subset of its neighbor-
ing points, which lie along the characteristic direction [7]. In isotropic case these
methods are very efficient because they follow gradient direction, which coincides
the characteristic direction [8]. In other words, they only use immediate neigh-
bors of a point with lower values of T to compute the new arrival time at that
point using an upwind scheme. In the anisotropic case, characteristic direction
does not necessarily coincide with gradient direction and the same idea used for
isotropic case yields false results, see Fig. 1. In order to deal with this, Sethian
and Vladimirsky enlarged the neighborhood around a point used to compute
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Fig. 1. F
√

∇T tD∇T with a constant anisotropic D solved using isotropic Fast March-
ing Method (left) and the solution solved by anisotropic methods (right)

the new arrival time such that characteristic direction remains within the neigh-
borhood [4]. But size of the enlarged neighborhood increases with increasing
anisotropy of D. This would result in large number of points used to calculate
new values and a high computational load in case of high anisotropies. Iterative
methods start from an initial distribution of T , use an upwind, monotone and
consistent discretization of the equation and iterate over the domain until con-
vergence [5]. However, depending on the spatial variation of D these methods
might need high number of iterations to converge and they need an ordering of
the mesh to sweep the domain, which might not be trivial to obtain for general
meshes.

2.1 Algorithm

Recursive anisotropic fast marching, proposed here, is based on the single-pass
idea and it uses immediate neighborhood to compute arrival times. As a novel
step, it includes a recursive correction scheme taking into account the fact that
due to anisotropy the immediate neighborhood used for computation may not al-
ways contain the characteristic direction. This algorithm works efficiently under
general meshes, very high anisotropies and highly varying D fields. Moreover, it
can be applied to more general forms of static, convex Hamilton-Jacobi equa-
tions, which is beyond the scope of this article.

Algorithm 1. Anisotropic Fast Marching: Initialization
for all X ∈ KNOWN do

for all Yi ∈ N (X) and Yi ∈ FAR do
compute T (Yi) ← UPDATE(Yi, X)
remove Yi from FAR and add Yi to TRIAL

end for
end for

The overall algorithm is similar to the original fast marching method proposed
for the isotropic Eikonal equation. The main differences are the recursive cor-
rection scheme and the computation of T values. The initialization steps are the
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same: we go over points whose value are already known (kept in the KNOWN
list), compute their unknown neighbors’ values using only known points (kept in
the FAR list) trial T values and add these neighbors to the TRIAL list while
removing them from the FAR list, see Algorithm 1. By neighborhood N (X)
we mean all points directly connected to the point X in some preferred con-
nectivity sense (e.g. 4-8 in 2D and 6-18-26 in 3D cartesian grid). The isotropic
fast marching algorithm follows same operations throughout its main loop. The
TRIAL point with the minimum value of T , Y , is removed from the TRIAL
list, added to the KNOWN list, trial values of unknown neighbors of Y are
computed, if they are in the FAR list they are added to the TRIAL list and
removed from the FAR one, and if they are already in the TRIAL list their
values are updated.

In order to take into account the anisotropy, we insert the recursive correction
in the main loop. Before trial values of unknown neighbors of Y are computed, we
recompute its known neighbors’ values. The reason for this is that when values
of these points were computed Y was not used since it was not known. Hence,
in their computation the characteristic direction may not have been contained
in their known neighborhood, which was used to compute their T value. If we
obtain a lower value of T during the recomputation we update the value and
add the point to the CHANGED list, which holds known points whose values
have been changed. This correction is based on the fact that the lowest T value
for a point is obtained when the characteristic direction is contained in the
neighborhood used for the computation [6]. Every time the main loop restarts
it checks if the CHANGED list is empty, if this is not the case then instead of
taking a point from the TRIAL list it takes from the CHANGED list. In other
words the main loop tries to empty the CHANGED list first. The pseudo code
for the algorithm gives a clear summary in Algorithm 2.

2.2 Local Solver

Up to now we have not detailed the computation of T (X) value using N (X).
We have defined N (X) as the set of immediate neighbors of X and naturally
there exists a set of elements corresponding to this neighborhood, set of triangles
(�X) in 2D or set of tetrahedras (TETX) in 3D. T (X) is calculated inside every
element using linear interpolation between nodes and solving a minimization
problem, T (X) = f1D(X, Y ) for 1D, T (X) = f2D(X, Y, Z) for 2D and T (X) =
f3D(X, Y, Z, W ) for 3D, using nodes of the element neighboring X .

f1D(X, Y ) = T (Y ) +
[vt

1DD−1v1D]1/2

F
(3)

f2D(X, Y, Z) = min
p∈[0,1]

{T (Y )p + T (Z)(1 − p) +
[v2D(p)tD−1v2D(p)]1/2

F
} (4)

f3D(X, Y, Z, W ) = min
p,q∈[0,1]×[0,1]

{[T (Y )p + T (Z)(1 − p)]q + T (W )(1 − q) (5)

+
[v3D(p, q)tD−1v3D(p, q)]1/2

F
}
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Algorithm 2. Anisotropic Fast Marching: Main Loop with Recursive Correction
while TRIAL or CHANGED lists are not empty do

if CHANGED list is not empty then
X ← argminX∈CHANGED CHANGED
remove X from CHANGED

else
X ← argminX∈TRIAL TRIAL
remove X from TRIAL and add X to KNOWN

end if
for all Xi ∈ N (X) and Xi ∈ KNOWN do

compute T (Xi) ← UPDATE(Xi, X)
if T (Xi) < T (Xi) then

T (Xi) ← T (Xi)
add Xi to CHANGED list

end if
end for
for all Yi ∈ N (X) and Yi ∈ TRIAL ∪ FAR do

compute T (Yi) ← UPDATE(Yi, X)
if Yi ∈ TRIAL and T (Yi) < T (Yi) then

T (Yi) ← T (Yi)
else if Yi ∈ FAR then

T (Yi) ← T (Yi)
remove Yi from FAR and add Yi to TRIAL

end if
end for

end while

where v1D = −−→
Y X, v2D(p) = −−→

Y Xp+−−→
ZX(1−p) and v3D(p, q) = [−−→Y Xp+−−→

ZX(1−
p)]q+−−→

WX(1−q). The common term [vtD−1v]1/2/F visible in all these equations
is the time difference between a point connected to X with vector v and T (X)
under the effect of the diffusion tensor D. It is derived from the group velocity
idea for which the details can be found in [9].

As in the original fast marching algorithm we only use known points in N (X)
to compute the value at X . In other words when in the case of a tetrahedral
element we use Equation 5 when all nodes are known, Equation 4 when 2 nodes
are known and Equation 3 when only 1 node is known, see Algorithm 3. The
minimization of Equation 4 has an analytical solution however, the one in Equa-
tion 5 is not trivial. Instead of solving it with a minimization algorithm, which
would increase the computational load, we use the quadratic equation in T (X)
obtained by discretizing equation F

√
∇T tD∇T = 1 on the nodes of the tetra-

hedral element. We check if this computed value of T (X) satisfies the causality
condition, which is that the characteristic direction should lie inside the element
used. Practically this is just computing ∇T using the new computed T (X) on
the element and checking if D∇T vector resides within the tetrahedra. If this is
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Algorithm 3. Computation of T (Xi) = UPDATE(Xi, X)
IN 2D
T (Xi) ← ∞
for all �(XXiY ) ∈ �X

Xi
= {�(XXiY )|Y ∈ N (Xi)} do

if Y ∈ KNOWN then
T (Xi) ← min(T (Xi), f2D(X, Xi, Y ))

else
T (Xi) ← min(T (Xi), f1D(X, Xi))

end if
end for
IN 3D
T (Xi) ← ∞
for all TET (XXiY Z) ∈ TET X

Xi
= {TET (XXiY Z)|Y, Z ∈ N (Xi)} do

if Y, Z ∈ KNOWN then
T (Xi) ← min(T (Xi), f3D(X, Xi, Y, Z))

else if Y ∈ KNOWN then
T (Xi) ← min(T (Xi), f2D(X, Xi, Y ))

else if Z ∈ KNOWN then
T (Xi) ← min(T (Xi), f2D(X, Xi, Z))

else
T (Xi) ← min(T (Xi), f1D(X, Xi))

end if
end for

the case, the minimum lies inside the tetrahedra and it is approximated with the
computed T (X). If this is not the case we search the minimum on the triangular
sides of the tetrahedra using f2D. This method was proposed by Qian et al. [6]
and it speeds up the overall algorithm greatly.

We have tested the proposed algorithm by solving F
√

∇T tD∇T = 1 in 2D,
3D cartesian grid and on surfaces using triangulation. These results are shown
in Fig. 2. Computation times for these results can be found in Table 1, where
we also compare our algorithm with the sweeping algorithm proposed in [6], for
which we used our own implementation done in the best way possible. Compari-
son is only done for cases in 2D cartesian grid based on the examples provided in
the mentioned reference. The sweeping method has been iterated until conver-
gence, where the maximum number of iterations was 12 in the variable D case. In
the recursive anisotropic fast marching algorithm the size of the CHANGED
list did not exceed 3 for these cases. The following computational times were
obtained with Matlab7.1 for 2D cases and C++ for 3D cases on a 2.4GHz In-
tel Pentium machine with 1Gb of RAM. Cases given in Table 1 correspond to
images shown in Fig. 2. The proposed algorithm is fast and visually accurate
even in the case of very high and variable anisotropy. Moreover, applying the
explained method to general meshes bears no difficulty. In our experiments with
triangular meshes on 2D and on surfaces, the algorithm was appearently much
faster.
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Table 1. Computational times

Case (D is anisotropic in all cases) Sweeping Method [6] Fast Marching
(seconds) (seconds)

2D: constant D, 64 × 64 grid 24.43 16.15

2D: constant D, 128 × 128 grid: Fig. 2(a) 91.06 63.39

2D: spirally varying D, 64 × 64 grid: Fig. 2(c) 80.6076 13.56

2D: spirally varying D, 128 × 128 grid 319.34 49.48

3D: constant D, 64 × 64 × 18 grid: Fig. 2(g) 26

3D: helix D, 64 × 64 × 64 grid: Fig. 2(h) 65

3D: constant D, 13000 node mesh: Fig. 2(e) 2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. a) 2D cartesian grid, high anisotropy in 120◦ increasing distance from blue to
red, b) iso-contours of a, c) 2D cartesian grid, D is highly anisotropic inside a spiral
following it, isotropic in other regions, d) iso-contours of c, e) 2D triangular mesh with
13000 nodes anisotropy in x direction, colors represent iso-contours, f) 2D triangular
mesh on a surface D is anisotropic and principle eigenvector is shown in black lines,
colors represent iso-contours, g) 3D cartesian grid, anisotropic D h) 3D cartesian grid,
D is highly anisotropic inside a helix following it, isotropic in other regions.

3 Approximating the Front Motion: Time Varying Speed

Reaction-diffusion models explain the change of the distribution of densities by
combination of diffusion and reaction processes. Usually, one is interested in the
motion of an iso-contour (front) of such distributions, which can be attained by
an anisotropic Eikonal equation F

√
∇T tD∇T = 1. In this approximation, the

speed term F = F (x) is normally set to a function constant in time [10]. But
the convergence properties of the reaction-diffusion system is then neglected,
which can lead to important errors. Taking this into account, we propose to use
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Fig. 3. Left: Front evolution starting from a step function under Equation 6. Right:
Speed of the point u = 0.5 on the front is plotted along with the asymptotic speed and
the speed approximation including convergence term.

a time varying function F = F (x, T ) to have a better approximation of the front
motion.

In order to obtain the approximation for the motion of the front we start from
the reaction-diffusion equation in 1-D with constant coefficients:

ut = duxx + ρf(u) (6)
u(x, 0) = U

where f(u) has a homogeneous stable state at u = 1 and a homogeneous unstable
state at u = 0. Equation 6, which is also called the Fisher-Kolmogorov equa-
tion, admits traveling wave solutions in the form of u(x, t) = u(x − vt) = u(ξ),
where v is the asymptotic speed of the wavefront, [11,12]. In other words, initial
conditions evolve in time to uniformly translating front shapes, see Fig. 3. This
allows us to formulate the motion of a single point on the wavefront u = u0
by simply describing the arrival time of the point u = u0 as Tx = 1/v, where
T is the arrival time function. The value of the asymptotic speed depends on
the initial condition U . All initial conditions that are steep enough, meaning
limx→∞ u(x, 0) = 0, converge to the travelling wave moving with an asymptotic
speed: 2

√
df ′(0), where f ′(0) denotes the derivative at u = 0 [1]. This suggests

that for all practical modeling problems we can use this asymptotic value in the
arrival time formulation to approximate the motion of the front. However, it was
shown that convergence of the front speed to the asymptotic one is

v(t) = 2
√

df ′(0) − 3
2t

√
d

f ′(0)
(7)

independent of the initial condition and the u0 value being tracked, [13,2]. This
convergence rate is algebraic and rather slow. Thus, using a time varying v(t)
as given in Equation 7 is a better approximation of the actual speed than using
the asymptotic one, see Fig. 3. The convergence to a traveling wave behavior
of the Equation 6 applies to higher dimensions when coefficients are constant
and the initial condition has non-curved iso-contours. In this case the initial
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condition converges to a traveling plane having a cross section looking as a
1D wavefront with the time varying velocity given as v(t) = 2

√
f ′(0)ntDn −

3/(2t)
√

ntDn/f ′(0), where n is the normal of the moving plane.
Convergence properties of the reaction-diffusion equation is only valid when

the front is not curved and parameters of the equation are constants. Models
using Equation 1 does not necessarily have constant parameters and the front
they describe can be curved. In order to formulate the motion of the general front
using the construction explained above, we make the assumption that within
a voxel front is planar and parameters of the reaction-diffusion equation are
constants, which are taken as values at that voxel. Under these assumptions, we
derive the arrival time formulation for the front in 3D as:

|∇T | = 1/v(t) =

[
2
√

f ′(0)ntDn − 3
2T

√
ntDn
f ′(0)

]−1

(8)

where n can be replaced by ∇T/|∇T |. This simply leads to the anisotropic
Eikonal equation given as:

√
∇T tD∇T =

2
√

f ′(0)T
4f ′(0)T − 3

(9)

4 Application: Predicting the Motion of Tumor Front

There has been a large amount of mathematical models proposed to describe the
growth dynamics of glial tumors, e.g. [14,15]. Those trying to explain growth
and invasion dynamics based on observations from medical images, describe
these processes using cell densities and average behavior [15], consisting of fewer
equations and parameters. Such models are based on reaction-diffusion formalism
introduced in [11], which uses reaction-diffusion type equations. Although these
models are successful in explaining underlying dynamics of the tumor growth,
they encounter some problems in adapting to patient data. Given images, in
order to compute the growth they require tumor cell density values at every
point. What is available in conventional modalities like MR and CT is not cell
densities, but an enhanced homogeneous looking region and its boundary with
the brain tissue, the tumor front, as seen in Fig. 4(a). Moreover, numerical load
of such simulations, depending on the mesh size used, can be very heavy.

In this paper for demonstration, we use the front approximation given in Sec-
tion 3 to describe the motion of the tumor front and use the recursive anisotropic
fast marching algorithm to simulate its motion. The specific reaction-diffusion
model we base our approximation on is proposed by Clatz et al. [16]. Their model
for tumor growth can be given by the following reaction-diffusion equation:

∂u

∂t
= ∇ · (D(x)∇u) + ρu(1 − u) (10)

D(x)∇u · −→n Σ = 0 (11)
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where u is the tumor cell density, D(x) is the diffusion tensors, ρ is the prolifera-
tion rate of tumor cells and −→n Σ is the normal direction at the boundaries, which
in the case of the brain are skull and ventricles. The first term in Equation 10,
∇ · (D(x)∇u), defines invasion of brain tissue by tumor cells using a diffusion
process. The second term in the same equation, ρu(1−u) describes proliferation
of tumor cells using logistic growth. Based on the experiments done by Giese et
al. [17], which shows that tumor cells move faster on myelin sheath, D(x) is set
as a spatially varying tensor, becoming isotropic on grey matter and anisotropic
on white matter following fiber tracts as defined in Equation 12.

D(x) =
{

dgI if x is in grey matter
V(Diag(dwλ1, 0, 0) + dgI)Vt if x is in white matter (12)

where dg and dw are speed of diffusion in grey matter and white matter re-
spectively, I is the 3x3 identity matrix, λ1 is the principal eigenvalue and V is
the eigenvector matrix of the water diffusion tensor obtained from DT-MRI. By
construction dw/dg can have a large value resulting in a high anisotropy.

The front approximation for this model can be given as:

√
∇T tD∇T =

2
√

ρT

4ρT − 3
(13)

(a) (b) (c)

(d) (e)

Fig. 4. a) A low grade glioma (inside the white circle) showing a single contour around
a homogeneous prolongation of Flair MRI. b,c) Different axial slices of an artificially
grown tumor. Grey region shows the visible part of the tumor at day 90. Black contours
shows the location of u = 0.1 front of the artificial tumor at days 180 and 240. White
contours show same locations computed by the front approximation. d,e) Same contours
as shown in b,c. Black solid is the actual location and red dashed are approximated
locations. Discrepancies between contours is a result of curvature and boundary effects,
which were not taken into account in the current state of the front approximation.
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In order to have a realistic simulation and to compare the results of the front ap-
proximation and the reaction-diffusion model, we have grown an artificial tumor
using real boundary conditions, white-grey matter segmentation and diffusion
tensor images (DTI) taken from a healthy subject. We set the diffusion coeffi-
cients as dg = 0.001 and dw = 0.1 and the proliferation rate as an average rate of
ρ = 0.012 [15]. The artificial tumor is grown for 240 days using the formulation
given in Equation 10 and 11. We took the time of diagnosis as day 90, where
we obtain the first image as in Fig. 4(b) and observe the tumor front, taken
as γ = {x|u(x, 90) = 0.1}. We set this contour as the boundary condition of
Equation 13 (T (γ) = 90) and we solved it using the recursive anisotropic fast
marching algorithm. Fig. 4(c) and (d) compare the motion of the front com-
puted by the reaction-diffusion model (solid blue curves) and computed by the
front approximation (dashed red curves). Observe that the speed of invasion is
well captured by the front approximation formulation given in Equation 13. The
pattern of invasion on the other hand shows some differences visible in Fig. 4.
There are two reasons for these differences: (1) the front approximation is based
on un-curved tumor fronts, however, curvature plays a role in smoothing and
slowing down the front, (2) the Neumann boundary conditions are not captured
by the approximation which creates differences near the boundary. The com-
putation time for reaction-diffusion model to grow the tumor for 240 days was
4500 seconds while fast marching algorithm computed the motion of the γ front
throughout the whole brain in 250 seconds, which corresponds to a growth simu-
lation of 2500 days. This yields a speed up of nearly 180 folds. Implementations
were done in C++ using GMM library on a 2.4GHz Intel Pentium processor
with a 1Gb memory.

5 Discussions

In this paper, we proposed the recursive anisotropic fast marching algorithm
and to use the time varying speed term in front approximation formulation
for reaction-diffusion models in order to create the link between mathematical
models and clinical observations. The fast marching algorithm is successful in
handling high anisotropies, which are often encountered in biological modeling,
on general meshes. We demonstrated the usage of proposed tools by simulating
the motion of the tumor front, visible in medical images.

Formulating the motion of the tumor front sets a link between observations
in images and the mathematical models explaining the growth dynamics. Fast
and efficient algorithms like the recursive fast marching method explained here
gives us an easy tool to adapt growth models to specific patient cases and do
simulations. It can also help us quantify the speed of growth and invasion by
solving an inverse problem to estimate the parameters like diffusion coefficients.
We have seen that the formulation is successful in capturing the speed of invasion,
however, the patterns have differences. In the future, we would like to explore
new ways to integrate the effect of curvature and boundaries in the formulation
to get better approximation.
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Although we have concentrated on tumor growth modeling in this paper, front
approximations for reaction-diffusion equations and the proposed algorithm can
be useful in other modeling problems as well. Such an example is the electrophys-
iological model of the heart, where one is interested in computing the excitation
times throughout the organ. This problem is similar to tumor growth, in the
sense that it requires following the motion of a front. Moreover, this application
requires fast computations, which is possible with the method presented in this
work.

The recursive fast marching method explained here is a general tool and can
be used for lots of different applications than simulating the motion of a wave-
front, such as fiber tracking or geophysics. Moreover, the algorithm can also be
used for solving general static, convex Hamilton-Jacobi equations encountered in
computer vision and material science. The future work consists in characterizing
convergence properties of the recursive fast marching algorithm.
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Abstract. A crucial problem in statistical shape analysis is establishing
the correspondence of shape features across a population. While many
solutions are easy to express using boundary representations, this has
been a considerable challenge for medial representations. This paper uses
a new 3-D medial model that allows continuous interpolation of the me-
dial manifold and provides a map back and forth between it and the
boundary. A measure defined on the medial surface then allows one to
write integrals over the boundary and the object interior in medial co-
ordinates, enabling the expression of important object properties in an
object-relative coordinate system. We use these integrals to optimize cor-
respondence during model construction, reducing variability due to the
model parameterization that could potentially mask true shape change
effects. Discrimination and hypothesis testing of populations of shapes
are expected to benefit, potentially resulting in improved significance of
shape differences between populations even with a smaller sample size.

1 Introduction

In questions of statistical shape analysis, the foremost is how such shapes should
be represented. The number of parameters required for a given accuracy and the
types of deformation they can express directly influence the quality and type of
statistical inferences one can make. Most methods of establishing correspondence
in a population use features on the boundary [1,2,3,4], since in many imaging
modalities the interior of objects have a uniform appearance with poorly local-
ized features. However our research uses a medial model parametrization, which
represents a solid object using a skeleton of a lower dimension and naturally
expresses intuitive changes such as “bending”, “twisting”, and “thickening”, but
where establishing correspondence is more difficult. As a descriptor of shape,
the medial axis can be used to provide a detailed quantitative and qualitative
analysis that simpler object descriptors, such as volume, surface area, pose, etc.,
cannot. Pizer et al. give an overview and comparison of definitions and numer-
ous methods for computing of a medial axis [5]. Yet the reversal of the original
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Fig. 1. A dense sampling of a medial model of a left caudate defined continuously
using subdivision surfaces, with volume overlap VDice = 93.46%

relationship, from an object describing a medial axis to a medial axis describing
an object, is the critical idea that makes medial representations effective im-
age analysis tools. It replaces an inherently unstable and ill-defined problem—
computing the medial axis of an object from its boundary—with a well-defined
and stable one: computing the boundary of an object from its medial axis. An
object is then modeled by deforming a template medial axis until the associated
boundary matches that of the target object.

Näf et al. use the medial axis to measure local bone thickness and to describe
the sulco-gyral foldings of the human brain [6]. Zhang et al. use the medial axis
for articulated shape matching [7]. They use Siddiqi et al.’s shock detection algo-
rithm to construct the medial axis and classify the voxels according to Giblin and
Kimia’s taxonomy directly via [8]. Golland et al. use “fixed-topology skeletons”
for 2D shape classification [9,10]. Similar to Golland’s fixed-topology skeletons,
Pizer et al. introduce a sampled medial representation called (discrete) m-reps
used for segmentation [11,12]. Bouix et al. apply the medial axis to estimate the
local width of the hippocampus [13]. They propose two different approaches to
solving the problem of identifying corresponding points between different sub-
jects: projecting the axis onto a plane and rigidly aligning it or using nonlinear
deformations to warp the axis to a common template shape. Styner et al. [14] use
sampled medial descriptions for shape modeling and analysis in clinical studies
of hippocampi and lateral ventricles. They use boundary correspondence estab-
lished via spherical harmonics (SPHARMs) when initializing the medial model
fitting process, but do not enforce it during the individual optimization for each
subject, allowing features to wander independently.

Statistical analysis of populations requires appropriate solutions for robust pa-
rameterizations of shape models and establishing correspondence across a class
of objects that is meaningful given the specific task and application domain.
An inherent problem in any shape representation, one must ensure that the
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parameters of the representation in some sense control the “same” features of
the resulting shape. Otherwise, noise in the parameterization can overwhelm the
size of any shape change effect, reducing or eliminating the power of the tests.

The method presented here does not provide yet another means for deter-
mining the correspondence between shapes. Instead, it takes the stance that
correspondence is inherently specific to the problem domain. Without some in-
put governing the process whereby the representation is constructed results are
unpredictable. Our modeling scheme can use any existing correspondence on the
boundary, defined via prior or learned knowledge of the target population, to
establish correspondence on the medial representation. This in turn requires a
unique link between locations on the boundary and on the medial parametriza-
tion. In principle, the medial geometry provides an intrinsic link between the
boundary and the medial axis that allows one to use the appropriate represen-
tation for the desired analysis task. Every (non-singular) point on the medial
axis lies at the center of ball which is tangent to the boundary in two places,
and the field of vectors from the points on the axis to their associated points of
tangency, called spokes, provides this link. This relationship was explored in [15],
and [16,17] provide an analysis of the differential geometry in arbitrary dimen-
sion. However with the discrete version of m-rep models [11], the connection with
the boundary is given only at a coarse set of discrete points and the interpolation
given by [18] to recover a dense sampling does not respect the intrinsic medial
geometry. Correspondence is established only approximately using a regularizing
term in the model fit optimization, which requires determining an appropriate
weight and trades off homology for goodness of fit. More recent work on inter-
polation does respect the intrinsic medial geometry [19], but it sacrifices the
uniqueness of the representation, requires expensive numeric integration, and
only approximately interpolates the original model.

An alternative approach to discrete skeletons, cm-reps, considers the dual
problems of designing a discrete computer representation and computing a con-
tinuous mathematical representation from it as a coupled system [20,21,22,23]. A
continuous representation inherently provides the necessary connection between
the medial axis and the boundary and thus is chosen for this paper.

2 Group-Wise Model Fitting with Explicit
Correspondence Optimization

This paper addresses the problem of producing a collection of models that rep-
resent a set of shapes to be used in statistical tests. The basic approach is to
start with a template object, described medially with a fixed branching topol-
ogy, to align a copy of that template to each target shape, and then to deform
it to match. This work only considers fitting a model to an existing, segmented
shape, such as a binary image or a triangulated surface.

The following sections begin by describing a method for sampling a continu-
ous medial axis and then show how this sampling can be used to approximate
medial integrals. The complete process for fitting a single model to a single target
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Fig. 2. The entire population of objects is mapped to a common coordinate system
to optimize correspondence

shape follows. This involves aligning a template to the target shape and deform-
ing it using a multi-scale constrained optimization. Finally, the process for a
single shape is extended to a technique for producing a population of models
with a common correspondence. This is integrated directly into the deforma-
tion stage by constructing deformations approximately transverse to the fit-
ting process. The models are mapped to a common coordinate system and the
control points are adjusted to achieve a parameterization that matches an ex-
plicit correspondence given on the boundary, as illustrated in Figure 2. This
is done by taking advantage of the inherent link between the boundary and
the medial axis given by a continuous medial model, moving the problem of
formulating correspondence to the boundary, where most of the information
lies.

The specific discretized representation for the target shapes used here are
binary images, I(x) : R

3 → {0, 1}, defined to be 1 when x is in the shape’s
interior, and 0 elsewhere. Other representations like triangle meshes could be
used as well, as described in [24].

2.1 Approximating Medial Integrals

The main mathematical tool used in this paper is the medial integral, which we
approximate via numeric integration. This section describes the procedure.

Sampling the Medial Axis. The first step is to define a sampling of the medial
axis. We use the subdivision surface approach presented in [23] for our 3D contin-
uous medial axis representation, illustrated in Fig. 1. This divides the medial axis
into a fixed number of patches which can be evaluated analytically at arbitrary
points using B-splines or other fast evaluation methods [25]. Each patch gives
a continuous function m, the position of a point on the axis, and r, the radius
of the maximally inscribed sphere, defined over a square domain (u, v) ∈ [0, 1]2.
The exact expressions for m and r and their derivatives can be found in [24] and
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are omitted for space reasons. The unit spoke vectors U± pointing towards the
two points of tangency on the boundary and the two boundary points themselves
are computed directly from derivatives of m and r by

U± = −∇r ±
√

1 − ‖∇r‖2 · N , B± = m + rU± , (1)

where ∇r is the Riemannian gradient and N is the unit normal vector to the
medial surface. A single sample is then placed at the center of each patch with
extent (Δu, Δv) = (1, 1) and recursively subdivided until

‖B±
u Δu × B±

v Δv‖ < τ2 (2)

for some threshold τ , which ensures the sample area of the boundary is suffi-
ciently small on both sides of the medial axis. A sample set S is then constructed
from these samples, containing the tuple (m, r, U) and all its derivatives, where
U is one of the two spoke vectors U±. Each point on the medial axis contributes
two sample values, one for each spoke vector, in order to integrate over both
sides of the medial axis.

Numeric Integration in Medial Coordinates. Damon showed how to rewrite vol-
ume and surface integrals of a medially defined region in terms of medial inte-
grals [26]. We begin with a motivational example: some simple volume integrals
over the object interior Ω for moments up through second order, which we will
use to align a template to the target shape. Given a Borel measurable and
Lebesgue integrable function g : Ω → R,

g̃(m, r, U) �
∫ 1

0
g(m + t · rU) · det (I − t · rSrad) dt , (3)

∫

Ω

g dV =
∫

M̃

g̃ dM =
∫

M̃

g̃ · (U · N ) dA . (4)

Here M̃ is the double of the medial axis M , indicating that integration is
performed over both sides, with N chosen to point towards the same side as
U . The term dM � (U · N )dA is the medial measure defined by Damon [26],
which accounts for the failure of U to be orthogonal to M . I is the iden-
tity matrix and Srad is Damon’s radial shape operator, which measures the
rate of change of U along M . In three dimensions Srad can be expressed as
a 2 × 2 matrix computed from derivatives of m and r as described in [24].
Then for simple functions g we can write analytic expressions for g̃ using the
mean radial curvature, Hrad � 1

2 trace(Srad), and the Gaussian radial curva-
ture, Krad � det (Srad):
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For g(x) = 1, g̃ = r − r2Hrad +
1
3
r3Krad . (5)

For g(x) = x, g̃ = m ·
(

r − r2Hrad +
1
3
r3Krad

)

+ U ·
(

1
2
r2 − 2

3
r3Hrad +

1
4
r4Krad

)
.

(6)

For g(x) = xxT , g̃ = mmT · (r − r2Hrad +
1
3
r3Krad)

+ (mUT + UmT ) ·
(

1
2
r2 − 2

3
r3Hrad +

1
4
r4Krad

)

+ UUT ·
(

1
3
r3 − 1

2
r4Hrad +

1
5
r5Krad

)
.

(7)

The complete volume integrals may now be approximated for any choice of g̃ by
∫

Ω

g dV ≈
∑

(m,r,U)∈S

g̃ · ΔM , ΔM � |U · (mu × mv)|ΔuΔv . (8)

These integrals allow the computation of the volume, center of mass, and second
order moment tensor of a medially-defined object. Surface integrals over the
boundary are even easier. For a Borel measurable function h : B → R,

∫

B
h dB =

∫

M̃

h̃ · det (I − rSrad) dM , (9)

≈
∑

(m,r,U)∈S

h̃ · (1 − 2rHrad + r2Krad)ΔM , (10)

where h̃(m, r, U) � h(m + rU).

2.2 Single-Subject Model Fitting

Before describing the correspondence optimization, this section outlines the fit-
ting process for a single target shape. First, a similarity transform is applied to
the template to align it to the target using its center of mass, volume, and the
eigenvectors of the second order moment tensor to define the translation, scale,
and rotation, respectively. More robust alignment methods are possible, but this
was sufficient for the objects considered in this paper.

We then convert the binary image to a multiscale level-set representation Iσ

by convolving it with a Gaussian for various choices of σ and choosing a level
�0 for each scale that maximizes the volume overlap with the original image.
We deform the template to match the level set at the coarsest scale, and then
successively refine it to match each finer scale. Our objective function is given
by the squared error integrated over the surface using (10):

F σ
I =

∑

(m,r,U)∈S

(Iσ(m + rU) − �0)2 · wi , wi = |det (I − rSrad)ΔM | (11)
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We use nonlinear conjugate gradient (CG) optimization, with a quadratic penalty
function to ensure the model is valid—that is, to ensure that the square root
in (1) is real and that no spokes cross inside the object. At points outside the
feasible region, the weight wi is taken to be zero if (1) cannot be evaluated,
and the absolute value in wi handles the case of overfolding. The nonlinear CG
method periodically restarts when the next step fails certain orthogonality con-
straints. We call all the steps between two restarts a macro step and hold S and
wi fixed for its duration. This avoids the need to compute their derivatives and
avoids descent towards the trivial global minimum of a zero-volume Ω.

2.3 Correspondence Optimization

In order to optimize the correspondence of a group of medially-defined objects
M(j), we borrow an idea from recent work on computing unbiased, symmetric
atlases [27,28] and represent the known correspondence via a series of maps φj

that project each shape into a common coordinate system. In the absence of
any other prior information, this coordinate system is constructed by Procrustes
aligning the target shapes and mapping each point to the linear average of all
corresponding points. The map is extended to medially defined points (m, r, U)
by projecting m+rU onto the target shape along the U direction, which is normal
to the model boundary. This leads to an objective function for correspondence:

F j
C =

∑

(m,r,U)∈S

(φj(m, r, U) − μi)2 · wi . (12)

Here μi is the average of the medially corresponding points after projection by
φj , that is, those from the same patch, with the same (u, v) coordinates, in
multiple models. We use the same sampling S for each model to ensure this is
well-defined, continuing to subdivide in all the models so long as any one violates
the threshold in (2). Like wi, we fix μi for the duration of a CG macro step.

In order to avoid interfering with the model fitting process, the deformations
allowed in the correspondence optimization are constructed to be approximately
transverse to it. That is, we define a base model M(j)

0 —taken to be the latest re-
sult of the model fitting optimization—and restrict the motion of control points
so that their corresponding limit points “slide” along it. For small deformations,
within the approximation accuracy of the interpolation, this does not change the
shape of the model. The neighborhood of each limit point on M(j)

0 is parameter-
ized using the bilinear map Φ given in [29], which is G2 and has simple analytic
derivatives. Then the control point values that give the desired limit points are
recovered by solving a linear system. This system is fixed for a given subdivision
surface topology and admits a sparse LU decomposition, whose size is linear in
the number of control points [30], making this extremely efficient.

Optimization then proceeds by trading back and forth between model fitting
and correspondence optimization. This ensures the approximate transversality
holds as the the process nears convergence, since this approximation is not very
accurate for the initial, large step sizes. First a macro step optimizing F σ

I is taken
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for each model, then μi is updated and a macro step optimizing F j
C is taken for

each subject j. The two processes do not compete with each other, and so no
weight parameter is needed to trade off between the two. The problem is well
over-constrained for any modest level of subdivision, so an exact match with
the input boundary correspondence will not, in general, be obtained. However,
the result conforms to growth or deformation consistent with the medial model,
even if the input correspondence does not.

3 Results

We applied our method to a population of synthetic ellipsoids and to a collection
of 3D brain objects provided by an ongoing clinical neuroimaging study.

3.1 Ellipsoid Data

A simple test population was created from an ellipsoid deformed by a set of 20
diffeomorphisms of the form [31]

Ψα,β,γ(x, y, z) �

⎡

⎣
x

eγx(y cos(βx) − z sin(βx))
eγx(y sin(βx) + z cos(βx)) + αx2

⎤

⎦ , (13)

where the α, β, and γ parameters control bending, twisting, and tapering, respec-
tively. These parameters were drawn from normal distributions with standard
deviations 1.5, 1.05, and 2.12, respectively, and the resulting deformation was ap-
plied to a standard ellipsoid with axis lengths of (1/2, 1/3, 1/4) centered around
the origin. The result was converted to a 128 × 128 × 128 binary image.

For this data set, ground-truth correspondence is known. Therefore φj is set
to Ψ−1

αj ,βj,γj
. Although this map does describe the deformation applied to obtain

the target object, it may not be physically realistic, since one would not, for ex-
ample, expect two points on the top and bottom of an ellipsoid with the same x
coordinate to still have the same x coordinate after bending it. We constructed a
template by averaging models fit without correspondence optimization, and fit it
to the population using 10 scale levels for σ with an iteration limit of Kmax = 200
macro steps. At each level, the subdivision threshold τ was set to 1

2σ. Each itera-
tion comprised one macro step optimizing the binary image match, F σ

I , followed
by one macro step optimizing the correspondence match for each subject, F j

C .
The optimization only stopped when one of the stopping criteria for CG was
encountered for every model, which in this case meant it proceeded to the it-
eration limit at every scale. The average Dice coefficient of the volume overlap
(also computed with a medial integral) was VDice = 96.88%, which was actually
slightly higher than the 96.72% obtained without correspondence optimization.
The continuing evolution of the correspondence optimization even after the im-
age match optimization has converged for a particular subject likely gives it the
chance to escape a local minimum and accounts for this small improvement.
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(a) No correspondence optimization (b) With correspondence optimization

(c) No correspondence optimization (d) With correspondence optimization

Fig. 3. Clusters of corresponding points in the reference coordinate system, both with
and without correspondence optimization enabled. Deformed ellipsoids (top) and left
caudate structures (bottom) are shown. Points with the same color belong to the same
cluster. The wireframe model connects the cluster centers. Enabling correspondence
optimization gives much tighter clusters, especially near the center of the ellipsoid,
where the parameterization is most ambiguous. Significant improvement is also shown
in the tail region of the caudate.

In order to visually evaluate how well the surface correspondence was main-
tained by the medial model, the top row of Fig. 3 shows the endpoints of the
spokes associated with each control point mapped into the reference coordinate
system via φj for the models fit both with and without correspondence optimiza-
tion enabled. When correspondence optimization is enabled, these points form
much tighter clusters, especially towards the center of the ellipsoid, where the ra-
dius changes more slowly. This is precisely the place where the parameterization
is most ambiguous, allowing the correspondence match to produce tight clusters
without sacrificing fit quality. The clusters on the ends are not as tight, but for
the most part they are still well-separated, unlike their counterparts obtained
by fitting models individually.

3.2 Caudate Data

Models were also fit to real-world data from an ongoing clinical longitudinal pe-
diatric autism study [32]. Ten subjects each from the autistic and typical groups
were chosen and their segmented MRI scans from age four used to test the
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correspondence optimization. Volumetric segmentations of voxel objects were
transformed into surface mesh models and parametrized by SPHARMs [33],
with boundary correspondence given by aligning their first-order ellipsoids. This
could be replaced by any other correspondence established via analysis of sur-
face geometry or by additional measurements reflecting anatomical or functional
geometry. The SPHARM surface was then converted to a triangle mesh and φj

was chosen to map to their average after Procrustes alignment. Ray-triangle in-
tersections computed with the algorithm in [34] were used to project m+rU onto
the SPHARM surface, and OBB trees [35] were used to reduced the number of
triangles that needed to be tested. To speed up these tests even further, the most
recent triangle intersecting each ray was cached, and the OBB tree was searched
only if the intersection test against the cached triangle failed. The same scales,
iteration limits, and subdivision thresholds were used during optimization as for
the ellipse data. The results in the bottom row of Fig. 3 are even more striking
than for the ellipse data, especially in the tail region.

4 Conclusion

Sect. 2.1 developed medial integrals as a fundamental tool for taking advantage
of the link between the medial axis and the boundary. This allows properties
of the boundary to be expressed on the boundary but be evaluated in medial
coordinates. This gives continuous medial models advantages of both representa-
tions. Although Damon introduced the concept, this work is the first application
to demonstrate that they are easily computable and to apply them to com-
putational problems. These medial integrals are applied for computing volume
overlap to evaluate goodness-of-fit and for computing second-order moments to
align models to a common position, orientation and scale, demonstrating the way
medial integrals can be used to compute basic object properties. Most impor-
tant is the demonstration that these properties can be computed without first
converting to a boundary representation, avoiding the additional complexity and
approximation error such a conversion would involve.

This paper describes a new correspondence optimization method that works
in tandem with the model fitting process to produce a group of models with a
common parameterization. Key is a fitting process of a continuous medial model
to a population of objects. We show how specific knowledge of correspondence
can be incorporated into the model fitting process. This eliminates excess vari-
ability in the parameterization of the objects which could mask real statistical
effects of the shape change. The correspondence match optimization introduced
does not sacrifice the quality of the fit. Instead, it operates transversely to the
fitting process up to the tolerance of the model, requiring no tuning parameter
to trade off between the two.

The procedure described here serves as a good example of the reasons to use a
continuous medial representation over a discrete one and is a non-trivial example
of how the link between the medial axis and the boundary can be exploited to
give a medial model the advantages of the latter without sacrificing those of the
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former. The sliding process used to remove ambiguities in the parameterization
of the axis would not be possible with a discrete representation. Although the
amount of variability this process eliminates is visually remarkable, little has
been done to evaluate the quantitative effect this has on the power of statistical
tests, and more work needs to be done in this area.
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Abstract. This study evaluates a robust parametric modeling approach for 
computer-aided detection (CAD) of vertebrae column metastases in 
whole-body MRI. Our method involves constructing a model based on geo-
metric primitives from purely anatomical knowledge of organ shapes and rough 
variability limits. The basic intensity range of primary 'simple' objects in our 
models is derived from expert knowledge of image formation and appearance 
for certain tissue types. We formulated the classification problem as a multiple 
instance learning problem for which a novel algorithm is designed based on 
Fisher’s linear discriminant analysis. Evaluation of metastases detection algo-
rithm is done on a separate test set as well as on the training set via leave-one-
patient-out approach. 

Keywords: vertebrae metastases, computer aided diagnosis. 

1   Introduction 

Whole-body MRI has high sensitivity and specificity for detection of bone-marrow 
metastases [1],[2]. Spine metastases detection is one of the most important and time-
consuming tasks. In recent years, computer aided detection (CAD) has proven to be 
efficient help for radiologists if used as a second reader in various applications of com-
puted tomography (CT) and X-rays, such as colonic polyp, lung nodule, breast mass 
calcification detection, etc. Although lately MRI is becoming a popular screening mo-
dality, development of MRI CAD applications is more complicated than that of CT 
because of intensity in-homogeneity problem and higher noise level. This study evalu-
ates a robust parametric modeling approach based on image formation and anatomical 
knowledge for computer-aided detection (CAD) of vertebrae column metastases in 
whole-body MRI.  

Radiologists usually use T2 STIR pulse sequence for primary vertebrae metastases 
detection [1],[2]. Although a standard non-contrast protocol of the bone marrow usu-
ally implies T1-weighted SE-sequences to discriminate between benign (hemangio-
mas, osteochondrosis, etc.) and malignant lesions, it is not always acquired in all 
hospitals. Therefore our CAD scheme was developed for T2 STIR as primary pulse 
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sequence, while resulting CAD marks are shown on T2 STIR and, if available, on T1 
images for radiologist review and final diagnosis.  

Our goal was to develop an algorithm suited to work with alterations in scanning 
protocols and pulse sequences, such as changes in the level of fat suppression, image 
resolution, acquisition plane (sagittal or coronal) and tolerant to severe pathological 
changes in organ appearance. The few methods for vertebrae column segmentation in 
MR images available in recent literature, such as normalized cuts approach in [3], are 
not suitable in the case of severe metastases where dissimilarity between healthy and 
affected vertebrae could be much greater than between vertebrae and other tissue. Our 
approach involves constructing a model based on geometric primitives from purely 
anatomical knowledge of organ shape and rough variability limits. The basic intensity 
range of primary 'simple' objects is derived from expert knowledge of image forma-
tion for certain tissue types. Our assumptions include the following: 1) spinal cord, 
tumors and blood vessels are among the brightest structures in the image for number 
of MRI pulse sequences (par ex. T2, T2 STIR, HASTE) and, 2) bones are surrounded 
by cortical bone that does not generate signal in MR images, and therefore it is ap-
pears black (it looks like black contour around each bone). The spinal cord detection 
algorithm presented in section 2 relies only on these basic assumptions. The vertebrae 
segmentation algorithm described in section 3 also takes into account natural perio-
dicity within vertebral column and requires minimal amount of training data to con-
struct vertebrae column active shape model. The candidate lesion detection and fea-
ture extraction scheme are fairly simple and therefore only briefly outlined in section 
4, while the main focus is made on a novel classification scheme. The reason for de-
velopment of  specialized classification algorithm is the following: bone metastases 
detection problem is characterized by multiple manifestation of  multifocal or diffuse 
metastatic disease, while only one CAD detection per vertebrae column segment 
(cervical, thoracic and lumbar) is enough to bring the structure with multifocal or 
diffuse pathology into radiologist attention. In case of the focal metastatic disease, 
each focal lesion should be indicated to the radiologist by a separate mark. We de-
signed a novel classification algorithm for detecting at least one hit from multiple hits 
associating with a lesion based on Fisher’s linear discriminant (FLD) analysis. Ag-
gregation of multiple classifiers was conducted to reduce the variability of the detec-
tion system. Evaluation of metastases detection algorithm on a separate unseen test set 
is described in section 5. The conclusion is given in Section 6. 

2   Robust Algorithm for Spinal Cord Detection 

Spinal cord is one of the most reliable reference objects in the MR images and it  
appears consistently bright in common MRI pulse sequences (scanning protocols), for 
example, HASTE, T2, and T2 STIR. Other tissue intensities however vary signifi-
cantly with minor changes in the scanning protocols and levels of fat suppression. The 
number and shape of hyperintense objects in the image other than spinal cord is not 
known a priory, it varies from patient to patient depending on the primary tumor  
location, severity of the metastatic process, amount of body fat, condition of inter-
vertebrae disks, pathological changes in the organ appearance, etc. The method pre-
sented below allows robust fitting and segmentation of spinal cord without extraction 
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of full collection of other objects present in the image. The preprocessing steps in-
clude image intensity in-homogeneity correction, scaling and intensity thresholding. 

Naturally, the spinal cord follows three curves presented in human spine: cervical 
curve - convex forward, thoracic – concave forward and lumbar - convex forward.  It 
is convinient to model it with a curve having 3 extrema points. We modeled the spinal 
cord as a global 4 th-order 3D-polynomial: 
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where x(t) represents the variation in the spinal curve from patient side to side 
(coronal orientation), z(t) represents the variation in the  spinal curve from patient’s 
back to front (saggittal orientation). 

In this parametric representation, polynomial could be easily constrained to have 
sacrum (end of the vertebrae column) always pointing back:  

 

−∞→

⎪⎩

⎪
⎨
⎧

=
<

)(

)(4

0

tzthen

evenisn

a
if

zn

 (2) 

Polynomial extrema points in saggittal orientation correspond to cervical, thoracic 
and lumbar curves. If the patient’s spine also has a lateral curvature (pathology called 
scoliosis), it will be reflected in x(t) variations. Polynomial extrema points are 
computed from: 
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where ),( cjcj yx are extrema points in coronal orientation, ),( sjsj yz saggittal 

orientation, j=1,2,3.  
Next, we constrain the distances between polynomial extrema points in saggittal 

orientaion to be within natural limits of longitudinal ],[ max1,min1, ++ jjjj DD  and the 

poterior-anterior (lordotic and kyphotic) 1, +jjLK  distances between cervical, 

thoracic and lumbar curves: 
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The ],[ max1,min1, ++ jjjj DD and 
1, +jjLK limits were set by expert radiologist. 

We also constrain the lateral distances between coronal extrema points to be within 
the scoliosis pathology limit Sc, observed from our training set. 

;1 Scxx sjsj <− +                                                (5) 

Scanned patient section does not necessarily contain all three curves described 
above, but this modeling approach allows to extrapolate and guess their approximate 
location. The 4th short curve, pelvic, extends from sacrovertebral articulation to 
coccyx and, most often, is not visible in thoracic section of the whole body scan. It 
could be segmented together with pelvic bones using the spinal cord points as 
reference points. Pelvic bone segmentation is a subject of our future work and it is not 
addressed in this paper.  

The model parameters are estimated using random sample consensus (RANSAC) 
algorithm [4] with subsequent least squares based fitting refinement. The RANSAC 
method was adapted for parametric shape fitting with a priori knowledge of the ap-
proximate object scale in the presence of highly correlated outliers that often consti-
tute more than 50% of the image.  

n+1 sample points are needed to define nth order polynomial. To speed up fitting of 
a polynomial of an approximately known scale (defined by the limits on the distances 
between the extrema points, see eq. (4)), we split the image into M*(n+1) sampling 
bins. Bins are longitudinally evenly spaced throughout the image; each bin b contains 
all axial (horizontal) slices in the region ))]1(/()max(,[ ++ nMyyy bb .  Factor M 

constraints scaling/warping degree of freedom for polynomial. The model fitting is an 
iterative process: 

1. For each iteration (n+1) bins are randomly selected.  
2. Then one sample point is randomly selected from each bin.  
3. za  and xa coefficient vectors are computer by solving equations 1.  

4. If condition in equations 2 is satisfied, the polynomial extrema points are com-
puted from equations 3. 

5. If all extrema constraints are satisfied, then the fitting function is evaluated within 
the local vicinity of the parametric model as volume V of bright voxels within 
curved cylinder built around the polynomial. The size of the vicinity is the aver-
age human spinal cord radius R + delta. 

6. If V>minimal_cord_volume  the least-squares method is used to refine the fitting, 
taking into account  only the voxels within R + delta vicinity of the spinal cord 
model (this shifts model more towards the actual spinal cord center-line).  

7. The fitness function is estimated again and compared to the current best model 
fitness.  

8. The iterations 1-7 are repeated until V/V_total_bright_voxels>Threshold or num-
ber_of_iterations>k. 

The convergence speed of the algorithm depends on the percentage of outliers in the 
image: hyperintense points in the image not belonging to the spinal cord (which, in 
turn, depends on the exact pulse sequence, quality of fat suppression and degree of 
metastatic process). Maximum number of iterations k is estimated as: 
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where m=n+1, oP is the probability of seeing only bad samples (in our experiments it 

was up to 80% for some data sets), w – probability of good (inlier) samples. 
The detection results were visually evaluated in 77 T2 STIR and 5 HASTE images 

from different hospitals. Results appeared satisfactory in all images. Segmentation 
accuracy was numerically evaluated using manually segmented ground truth (GT) in 
35 T2 STIR images with average voxel size of 1.25x1.25x6mm. The average segmen-
tation accuracy, estimated as ratio of overlapping of automatically detected (AD) and 
GT spinal cord volumes to the GT volume, was 91% with standard deviation (STD) 
of 14%. The accuracy of centerline position evaluated as average distance from all 
GT spinal cord voxels to the AD centerline was 4.4mm with STD of 1.9mm. The 
presence of collapsed vertebrae and edema in 1 patient (see Fig. 1) and multiple ver-
tebrae metastasis in 12 patients did not affect the segmentation accuracy in all cases 
but one, where all vertebrae had severe metastatic changes of similar image intensity 
as spinal cord with no visible boundary. As a result spinal cord centerline was shifted 
toward the center of the vertebral body.  

  

                         
           a) b) 

Fig. 1. a). Spinal cord detection result shown in a maximum intensity projection image of a 
patient with collapsed vertebrae and edema.  b) Curved MPR view of vertebrae column of 
another patient with several metastatic lesions. Curved MPR view was computed based on 
detected spinal cord. 

3   Parametric Model Based Vertebrae Segmentation 

Our vertebrae model is aimed to fit only the vertebrae body, excluding the processes 
and pedicles. It can be represented by a section of a curved cylinder adjacent to the 
spinal cord. The main motivations for this model are as follows. First, metastases that 
are present only in the pedicles but not vertebrae body are very rare and, second, proc-
esses and pedicles are not distinctly visible at the resolutions with slice thickness of 
~6mm that are common for metastases screening protocols. On the other hand, when 
higher resolution screening images are available, vertebrae segmentation algorithm  
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described in this paper can be used for rough vertebrae location at reduced resolution 
(sub-sampled images) and then other methods can be applied for refined vertebrae 
segmentation.  

We assume that imaginary planes that separate vertebrae from each other and from 
inter-vertebrae disks are orthogonal to the spinal cord (see Fig. 2).  

Visible disks projected signal 
min rank filtered signal 
band-pass filtered signal 
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ed

ia
n 
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Fig. 2. Plot of projected median intensity along spinal cord and filtered signal 

Vertebrae separating planes are detected by analyzing the one-dimensional signal 
representing the spinal column. The signal is extracted by projecting the median in-
tensity values along the spinal cord inside the small sample circles adjacent to the 
front edge of the spinal cord within the planes orthogonal to it.  

Normal vertebra is composed of spongy bone, containing bone marrow, which is 
surrounded by compact (cortical) bone. The most interesting property of cortical bone 
from MRI point of view is that it does not generate signal in MRI and therefore ap-
pears consistently hypointense in any pulse sequence, while vertebra and disks may 
change their appearance depending on the presences of metastases or other diseases 
(sometimes inter-vertebrae disks are not visible in the whole vertebral column).  
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To extract reliable information from the projected signal and skip inconsistent high 
intensity peaks like disks and lesions, we apply minimum rank filter with the width 
between the largest inter-vertebra space and shortest vertebrae that we want to detect. 
Next, band-pass filtering with frequency band derived from the height range of nor-
mal vertebrae body is applied to determine vertical vertebrae boundaries.  

While different band of frequencies (or height thresholds) could be used in cervi-
cal, thoracic and lumbar areas for higher precision, in the current implementation we 
used the same band for the whole vertebrae column. Discrete Fourier transform (DFT) 
of the input signal is computed with a fast Fourier transform algorithm. Next, we set 
all the elements of the resulting vector Y to zero, which correspond to the frequencies 
outside of desired range. Finally, inverse Fourier transform f(y) is obtained from the 
vector Y. The advantage of the filtered signal is that it is smooth, therefore differenti-
able. It is easy to find local minimums and maximums in this signal; minimums corre-
spond to inter-vertebrae spaces and maximums to vertebrae body. Local maximums 
f(mi) and minimums f(ni)of filtered signal are computed from: 
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where y is the distance along spinal cord.  
Then the precise locations of lower and upper boundary of each vertebra are found 

from the original signal, as two local minima f(ui) and f(di) around the middle of each 
vertebra mi, which represent the upper and lower boundary of each vertebra. The local 
minima that are caused by noise are removed by setting the adaptive amplitude 
threshold ti for each vertebra: iiii tdftuf << )(;)( ;      

where ))(),...,(())(),...,(( 111111 +−+− −= iii nfnfstdnfnfmeant .  

Constraints are applied to maintain minimum height of the vertebrae vT  and inter-

vertebrae space sT :     ;vii Tdu >−     sii Tud >−+1 . 

The next step is aimed at creating a parametric model [5] for estimating the horizon-
tal extent of the vertebrae through fitting ellipse to the middle section of each vertebra 
(see Fig. 3). First, we align all training samples x based on the second extrema (thoracic 
curve) of the polynomial models of each spinal cord, that approximately corresponds to 
8th thorasic vertebrae. We manually acquire measurements of minor b and major axis a 
for each vertebra though out the training set. Then, PCA is applied for all aligned and 

completed samples xj.  [ ]Tjnjjnjj bbaax ,...,,,..., 11= ; 

where ai – major axes (mm), bi – minor axes (mm), i=1,…,n, n is number of verte-
brae, j is the sample number.  

Next, mean shape x  is computed: 
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where m is the number of training samples, kλ  is kth eigenvalue, kp  is kth eigenvec-

tor, k=1,..,2n and  t is the number of modes. 
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where confidence_level was set to 95%.  

Pdxx += .  P=(p1,…,pt) is a matrix of t eigenvectors, T
tddd ),...,( 1=  is the 

model parameter vector.  jjj wdw λλ ≤≤− , where  j=1,…,t. w was set to 

1. Generate new Pdxx +=  .  

Vertebrae 
with fitted 
ellipse

Spinal cord 

a) b)

c)

Major axis a 

Minor axis b 

+
+

+
+

 

Fig. 3. a). The picture of thoracic vertebra from Henry Gray’s Anatomy of the Human Body 
(1918).  b). Schematic representation of vertebra and spinal cord. c) Axial slice through a verte-
bra with fitted ellipse. Locations of manually acquired reference points at the ends of major and 
minor axis are shown as +. 

 
The vertebra body extent in axial planes is estimated through an ellipse-fitting algo-

rithm [6]. Resulting vector: [ ]Tnn bbaax ',...,',',...,'' 11= .                                      

Project x′ to model space: Pxxd /)(' −′=  . If x’ is reasonable, 'd  will satisfy 

the model constraints iii wdw λλ ≤≤− ' .(i=1,…,t). Otherwise bring d’ to the 

range iii wdw λλ ≤≤− ' . Next, compute 'Pdxx += .  

 ;;/)( kkknew bPxxb λλ ≤≤−−=  (10) 

The vertebrae segmentation algorithm was visually evaluated on 77 T2 STIR im-
ages with different levels of fat suppression and on 5 HASTE images (HASTE pulse 
sequence is mainly used for abdominal organs like liver). In all cases segmentation 
results appeared satisfactory (see Fig. 4). Although intensity distributions for majority 
of organs are very different for T2 STIR and HASTE images, it had no effect on the 
segmentation results. No changes were made to the algorithm developed originally for 
T2 STIR images to adapt it for the HASTE pulse sequence.  
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  a) b) c)  

Fig. 4. Vertebrae segmentation results for: a) Coronal T2 STIR image b). Original (left) and 
segmented (right) T2 STIR image with metastases. c) HASTE image.   

4   Computer-Aided Detection of Vertebrae Metastases  

The fully automatic metastases detection algorithm (research prototype) involved pri-
mary lesion detection and false positive reduction steps.  Osteoblastic metastases, 
unlike osteolytic, appear hypointense in STIR images, and require similar detection 
approach, but with inverse thresholds. Our data set does not contain enough samples of 
osteoblastic metastases (4 patients only) for reliable training and testing, therefore all 
the results and conclusions below are targeted towards osteolytic metastatic lesions. 

Primary lesion candidate detection inside segmented vertebrae was performed us-
ing adaptive intensity thresholds to search for any suspicious regions. Multiple fea-
tures characterizing intensity, texture (moments of intensity), volume, shape (euler 
number, eccentricity, orientation, solidity, diameter of a circle with the same area as 
the region in coronal slice, orientation  - the angle between the x-axis and the major 
axis of the ellipse that has the same second-moments as the region), and location of 
candidate lesions were extracted from 3D image data. Finally, a classifier constructed 
using the training set was applied to the candidate detections to reduce the number of 
false positives (FP). The classifier was constructed by taking into account the fact that 
a lesion may associate with several detections and if any of them is correctly classi-
fied, the lesion is considered  being identified. 

Let m be the number of total candidates that are identified in the lesion candidate 
detection step, d be the number of features that are evaluated for each of the candi-
dates. With a little abuse of notation, we use xi to denote a feature vector representa-
tion of the ith candidate.  We then label the detected candidates (hits) by consulting the 
markers provided by expert radiologists.  A candidate receives +1 label if it overlays 
with a lesion, or otherwise, it receives -1 label.  We use C+, C- to denote the index sets 
that contain all candidates that are labeled +1, and -1, respectively. 

In the classification task, a classifier needs to be constructed based on the training 
sample to predict the label for any candidate detected from unseen patient data.  Stan-
dard machine learning algorithms such as support vector machines (SVM), and 
Fisher’s linear discriminant (FLD), are often used for CAD, but our detection task 
has specific characteristics that cannot be employed in the standard algorithm. In 
particular, there can be many hits or candidate regions that refer to unique underlying 
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malignant structure, and even if one of the hits is correctly highlighted to the radiolo-
gist, the entire structure can be easily traced out by the radiologist.  Hence correct 
classification of every candidate instance is not as important as the ability to detect at 
least one candidate that points to a malignant region.  We thus formulate our problem 
as a problem of learning with multiple hits.  

We design a novel classification algorithm based on Fisher’s linear discriminant 
(FLD) analysis that aims to detect at least one hit for each lesion.   FLD [7] has been 
successfully applied to many medical applications, and it fits the separation boundary 

between true hits and negative detections with a linear function bxwT + . Recently, 
FLD has been recast into an equivalent optimization problem [8] as follows:   mini-
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complexity, and γ  plays the trade-off between the residual error and the complexity 

regularization. 
Assume in total in  hits, each represented as a feature vector ijx , are segmented for 

the ith lesion. Let iS  be the index set of all candidates pointing to the ith lesion.  For 

each lesion, we form a convex hull using these vectors ijx  in the feature space. Any 

point in the convex hull can be represented as a convex combination of ijx , that is, 
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λ  where ,0≥ijλ  1=∑ ijλ .  The goal of our learning algorithm is to 

determine a decision boundary that can separate, with high accuracy, any possible 
part of each of the convex hulls on one side and as many as possible negative detec-
tions on the other side. It implies that we do not require the entire convex hull to cor-
rectly classified, but only any possible part of it.   In other words, our algorithm solves 
the following optimization problem based on the FLD formulation:  
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The classifier obtained by solving the formulation (11) can dramatically reduce 
false detections in comparison with standard classification algorithms, such as FLD.  

Aggregation of multiple classifiers is used to get an average aggregated prediction 
for an unseen sample. It has been shown that the aggregation is effective on ``unsta-
ble'' learning algorithms where small changes in the training set result in large 
changes in predictions [9].  Particularly, in our case, even though FLD itself may not 
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be so unstable, reasonably small changes on the training sample set often cause unde-
sirable changes on the classifier constructed due to an extremely limited size of pa-
tient data available.  Hence, aggregation is necessary in order to reduce the variance 
of the learned classifier over various sample patient sets, thus enhancing accuracy. 

We carry out T trials, and in each trial, 70% of the training cases are randomly 

sampled, and used in the training. A linear function t
T

tt bxwxf +=)(  is then 

constructed in the trial t.  The final classifier is based on the averaged model 
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f(x) with an appropriate cut-off value a provides the final findings where a is tuned 
according to the desired false positive rate. If a candidate x gets axf ≥)( , then it 

is classified as a true hit, or otherwise it is removed from the final findings. 

5   Evaluation of Metastases Detection Algorithm 

The patient population included 42 patients with different histologically clarified 
primary tumors examined with MRI of the spine for staging and follow-up of known 
skeletal metastases. The gold standard was constituted by histology and/or clinical 
radiological follow up within at least 6 months. 

MRI was performed at 1.5 Tesla on a 32-channel scanner (Magnetom Avanto, 
Siemens). All patients underwent STIR-imaging of the complete spine in sagittal 
orientation. The data was split into training and test sets.  

a)  b) c)  d) 

A

B

 

Fig. 5. a) and b). Examples of metastases detection results on the images from the development 
set (coronal STIR images with less fat suppression). The left image is from the same patient 
with collapsed vertebrae and edema as in figure 1a. c). Test set image example: sagittal STIR 
image of the spine. Focal lesions detected by CAD are highlighted in red. d) ROC curves for 
training and test sets. A. Sensitivity at 1.5 FPs per patient: training – 66.32%, test - 61.61%. B. 
Sensitivity at 5.0 FPs per patient: training – 82.89%, test - 84.61%. 
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Training set included 21 patients, in which 12 had osteolytic spine metastases (13 
focal, 6 diffuse and 10 multifocal lesions). The test set included 21 patients, of which 
9 had osteolytic spine metastases (12 focal, 6 diffuse and 8 multifocal lesions). Each 
spine section (cervical, thoracic and lumbar) with diffuse or multifocal infiltration 
was counted as one lesion. Training and test set sensitivity was 82.76% and 84.61%, 
respectively, with 5 false positive detections per patient. The CAD algorithm missed 3 
focal lesions in the training set and 3 focal lesions in the test set. One diffuse lesion 
(spine section) was missed in one patient from the test set and one multifocal and one 
diffuse lesion were missed in two patients from the training set. However, other le-
sions or infiltrated spine sections were successfully detected in the same patients, so 
that ‘per patient’ sensitivity was 100%. 

6   Conclusion 

Spine metastases CAD showed high standalone sensitivity at a relatively low FP rate. 
The run time was ~2 min on average in MATLAB implementation. While this study 
confirmed CAD feasibility, the next step is to incorporate additional features from T1-
weighted SE-sequences to further reduce the number of false positives. Furthermore, 
the additive benefits of CAD as a second reader should be investigated. 
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Abstract. We propose conditional mutual information (cMI) as a new
similarity measure for nonrigid image registration. We start from a 3D
joint histogram incorporating, besides the reference and floating intensity
dimensions, also a spatial dimension expressing the location of the joint
intensity pair in the reference image. cMI is calculated as the expectation
value of the conditional mutual information between the reference and
floating intensities given the spatial distribution.

Validation experiments were performed comparing cMI and global MI
on artificial CT/MR registrations and registrations complicated with a
strong bias field; both a Parzen window and generalised partial volume
kernel were used for histogram construction. In both experiments, cMI
significantly outperforms global MI. Moreover, cMI is compared to global
MI for the registration of three patient CT/MR datasets, using overlap
and centroid distance as validation measure. The best results are ob-
tained using cMI.

1 Introduction

Since its introduction for medical image registration in 1995 [1,2], mutual in-
formation (MI) has gained wide interest in the field [3]. MI is a basic concept
from information theory that measures the amount of information one image
contains about the other. Starting from a reference image R and floating image
F with intensities respectively r and f , the mutual information I(R, F ) is cal-
culated from the joint and marginal probabilities p(r, f), p(r) =

∑
f p(r, f) and

p(f) =
∑

r p(r, f):

I(R, F ) = H(R) + H(F ) − H(R, F ) =
∑

r∈R

∑

f∈F

p(r, f) ln
(

p(r, f)
p(r)p(f)

)
, (1)

with H(A) = −
∑

a p(a) log(p(a)) the entropy of a random variable A.
The maximisation of mutual information (MMI) registration criterion assumes

that the images are correctly aligned when the MI between corresponding voxels
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is maximal. Because it assumes only a statistical relationship between both im-
ages, image registration using MMI is widely applicable, also when it cannot be
assumed that corresponding intensities are one-to-one related. MMI has been ap-
plied to a wide range of registration problems [4], covering as well monomodal as
multimodal applications and its accuracy and robustness has been demonstrated
for rigid body image registration of CT, MR and PET brain images [5].

Extending MMI to nonrigid image registration is an active field of research
both for mono and for multimodal applications. This extension is not trivial.
Calculation of MI is based upon a global joint histogram, expressing the joint
intensity probabilities over the whole image. During optimisation, the registra-
tion algorithm tends to minimise minor peaks in the histogram in favour of
major peaks. While this does not cause a problem in affine image registration,
a nonrigid transformation model, with a higher number of degrees of freedom,
might be tempted to reduce smaller image details. This can happen e.g. when
the intensity correspondence is inhomogeneous over the images, as in CT/MR
registration. Another example is the registration of images complicated by a
strong bias field. Registration guided by maximisation of global MI might be
tempted to align the bias field rather than the image features.

Both problems can be reduced using a local estimation of the joint histogram.
This can be obtained by progressively subdividing the image and performing a
set of local registrations [6,7,8]. However, when the image parts are too small,
the small number of samples limits the statistical power of the local joint his-
togram. Several adaptations have been proposed to overcome this problem. Likar
and Pernuš [7] combine the local and global intensity distribution. Andronache
et al. [8] present a local intensity re-mapping to allow for the use of cross corre-
lation as similarity measure in the smaller sub-images.

An alternative approach has been proposed by Studholme et al. [9]. They
present a nonrigid viscous fluid registration scheme, using a similarity measure
that is calculated over a set of overlapping subregions of the image. This is
achieved by extending the intensity joint histogram with a third channel repre-
senting a spatial label. Several extensions of calculation of mutual information
to multiple dimensions exist; Studholme et al. choose the total correlation

C(R, F, X) = H(R) + H(F ) + H(X) − H(R, F, X) (2)

=
∑

r∈R

∑

f∈F

∑

x∈X

p(r, f,x) ln
(

p(r, f,x)
p(r)p(f)p(x)

)
(3)

as similarity measure (see figure 1), with X expressing the spatial position in
the reference image. The image is subdivided in cubic regions of 10-50 voxels,
overlapping 50% in each dimension (i.e. every voxel belongs to 8 regions). The
joint intensity histogram within each region is constructed using B-spline Parzen
windows [10].

Within this article, we propose to use the conditional mutual information
(cMI) [11] as similarity measure. The cMI I(R, F |X) is calculated between the
reference and floating intensities distributions R and F , given a certain spatial
distribution X . While the two-variate MI I(R, F ) expresses the reduction in the
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H(R) H(F )

H(X)

H(R) + H(F ) + H(X) − H(R,F, X)

(a) total correlation

H(R) H(F )

H(X)

H(R|X) + H(F |X) − H(R,F |X)

(b) conditional MI

Fig. 1. Comparison of entropies included in the total correlation (a) and conditional
mutual information (b). The dark colour in (a) signifies that the area is counted twice.

uncertainty of R due to the knowledge of F (and vice-versa), cMI expresses the
reduction in the uncertainty of R due to knowledge of F (and vice-versa) when
the spatial location X is known:

I(R, F |X) = H(R|X) + H(F |X) − H(R, F |X) (4)

=
∑

x∈X

p(x)
∑

r∈R

∑

f∈F

p(r, f |x) ln
(

p(r, f |x)
p(r|x)p(f |x)

)
, (5)

We think cMI corresponds to the actual situation in medical image registration,
where the spatial location of each voxel is indeed known a priori.

Similar to [9], we calculate cMI by extending the joint histogram with a third
dimension representing the spatial distribution of the joint intensities. For the
construction of the joint histogram, we treat the intensity and spatial dimensions
equivalently, considering the spatial regions as spatial bins. We incorporate cMI
in a tensor-product B-spline registration algorithm [12], using the same kernel
to interpolate between the B-spline deformation coefficients and to construct the
joint histogram. In the next section, we provide a detailed explanation of our
method.

In section 3, we present a validation of our method on two artifical datasets,
representing multimodal CT/MR registration and registration in the presence
of a strong bias field. We also provide initial results of our method on the mul-
timodal registration of CT/MR datasets, as required for radiotherapy planning.

2 Methods

2.1 Similarity Measure

Mutual information. To calculate the global MI between a reference image
I with intensity IR(xR) and a floating image F with intensity IF (xF ) using
a transformation g(xR; µ) that maps every reference position xR to the corre-
sponding floating position xF = g(xR; µ) given a set of parameters µ, we start
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from the joint histogram H(r, f ; µ) using a set of reference bin centres r and
floating bin centres f . Two popular methods exist to obtain a derivable his-
togram (see also section 2.4), namely Parzen window (PW) interpolation [10]
and generalised partial volume (PV) estimation [13,14]. In the following, we
present the formulation for Parzen window interpolation only, although we have
implemented both approaches. The formulas for global PV are described in [15].

The Parzen window joint histogram is given by

H(r, f ; µ) =
∑

xR∈R

wr(IR(xR) − r)wf (IF (g(xR; µ)) − f), (6)

where wr and wf are the Parzen window kernels used to distribute an intensity
over the neighbouring bins. Because of their attractive mathematical properties,
we have chosen to use second-degree B-splines for the Parzen window kernels
wr(x) = wf (x) = β2

ε (x) with ε the (constant) spacing between neighbouring
bins and βn

ε (x) = βn(x
ε )

/
ε the expanded B-spline of degree n. Thus, each joint

intensity pair contributes to a 3×3 region in the joint histogram. When the
floating intensity IF (xF ) is sought at a non-integer position xF = g(xR; µ), it
is obtained using second degree B-spline intensity interpolation.

The joint probability distribution can now be calculated as

p(r, f ; µ) =
H(r, f ; µ)∑
r,f H(r, f ; µ)

, (7)

which immediately leads to the mutual information as described in (1).

Conditional mutual information. To extend the joint histogram with spatial
information, we overlay a regular lattice with knots xijk = (xx

i , xy
j , xz

k) over the
reference image. The joint histogram (6) is extended by a spatial kernel wx:

Hs(r, f,x; µ) =
∑

xR∈R

wr(IR(xR) − r)wf (IF (g(xR; µ)) − f)wx(xR − x), (8)

with x ∈ {xijk}. Using second degree B-spline kernels for the spatial kernel in
each dimension, and mesh spacing Δx, Δy and Δz, wx is given by

wx(xR − x) = β2
Δx

(xR,x − xx)β2
Δy

(xR,y − xy)β2
Δz

(xR,z − xz) (9)

with xR = (xR,x, xR,y, xR,z) and x = (xx, xy, xz).
Note that for the construction of the joint histogram, we put all spatial bins on

a single axis. This is similar to [9], considering the spatial bins as a set of labels
associated with each intensity pair. As the mutual information is independent
of the bin order (in the spatial as well as in the intensity dimensions), the or-
dering of the spatial bins can be chosen arbitrarily. The correspondence between
neighbouring spatial labels is encoded by the spatial kernel (9). This also holds
for the intensity domain, where the intensity bins can be ordered at random to
calculate the mutual information, while the correspondence is encoded in the
PW or PV kernel.
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Due to the limited span properties of B-splines, the extent of the image region
contributing to the joint histogram for a given spatial bin x is a cube of 3Δx by
3Δy by 3Δz, centred around x, with a higher contribution for the voxels closer
to x. The mesh spacing Δ regulates the locality of the cMI. To represent a more
global histogram, a large Δ is chosen, yielding a limited number of spatial bins
containing contributions from the whole image area. A fine mesh with small Δ
and many spatial bins is used to calculate a more local histogram.

Starting from (8), the conditional probability can be obtained similar to (7),
replacing p(r, f ; µ) with

p(r, f |x; µ) =
Hs(r, f,x; µ)

p(x; µ)
, using p(x; µ) =

∑
r,f Hs(r, f,x)

∑
r,f,χ Hs(r, f, χ)

. (10)

Finally, the above equations can be substituted in (5) to obtain the cMI.

2.2 Transformation Model

Several transformation models have been proposed for nonrigid image regis-
tration. We adopt a tensor-product B-spline model, as proposed by Rueckert
et al. [12]. The B-spline model is situated between a global rigid registration
model and a local nonrigid model at voxel-scale. Its locality or nonrigidity can
be adopted to a specific registration problem by varying the mesh spacing and
thus the number of degrees of freedom.

Using second degree B-splines, the 3D transformation field is given by

g(xR; µ) =
∑

ijk

μijkβ2
Δx

(x − kx
i )β2

Δy
(y − ky

j )β2
Δz

(z − kz
k), (11)

with Δx, Δy, Δz the mesh spacing. The transformation is governed by the
displacement vectors μijk located at the tensor-product knots kijk = (kx

i , ky
j , kz

k).
Note that the transformation parameters µ are 3D vectors, and thus (11) models
a different function for each dimension: gx(r; µx), gy(r; µy) and gz(r; µz).

2.3 Spatial Resolution

Equation (9) and (11) both stipulate the spatial resolution of the algorithm.
The latter governs the region of influence of a registration parameter and the
former the scale at which the cMI is calculated. Therefore, we choose to use the
same settings for the mesh knots and spacing in both formulas. Thus, the local
transformation around a certain displacement vector is guided by the local joint
histogram, both using the same concept and scale of locality.

2.4 Derivatives and Optimisation

A limited memory quasi Newton method [16] is adopted for the optimisation,
using analytical derivatives to avoid discretisation errors. Using

∂wf(IF (g(xR;µ))−f)

∂μξ
ijk

=
∂wf (i−f)

∂i

∣∣∣∣
i=IF (g(xR;µ))

∂IF (r)
∂r

∣∣∣∣
T

r=g(xR;µ)

∂g(xR;µ)

∂μξ
ijk

(12)
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and
∂g(x; µ)

∂μξ
ijk

= [δξx, δξy, δξz]
T · β2

Δx
(x − kx

i ) · β2
Δy

(y − ky
j ) · β2

Δz
(z − kz

k), (13)

the derivative of (8) with respect to a transformation parameter μξ
ijk is given by

∂H(r,f,x; µ)

∂μξ
ijk

=
∑

xR∈R

wr(Ir(xR)−r)
∂wf (IF (g(xR; µ))−f)

∂μξ
ijk

wx(xR−x). (14)

3 Experiments and Results

3.1 Multimodal Registration

For the first experiment, we created 200 artificial 2D image pairs simulating a
slice through a lower limb in CT and MR (see figure 2). Each image, measuring
256×256 pixels, consists of a dark background (I = 0) and two concentric poly-
gons. The larger polygon is a hexagon with a medium intensity (I = 200), rep-
resenting soft tissue. The smaller polygon is a pentagon, high intense (I = 400)
in the CT image and dark (I = 0) in the MR image. We have added uniform
Gaussian noise (σ = 50) to the images. A mesh spacing of Δx = Δy = 32 voxels
was used for the B-spline transformation and the conditional joint histogram
estimation; 32 bins were used in the joint histogram for the floating and the
reference intensity.

For each image pair, the transformation field was initialised choosing µ from a
uniform distribution with a maximum amplitude of 30 pixels. Starting from this
transformation, the MR images were registered to the original CT image. The
registration quality was measured as the average intensity difference between
the original (noise-free) CT image and the final transformation applied to this
image. We also calculated the warping index, which is the root mean square of
the local registration error in each voxel. However, even for a perfect registration
(according to MI or cMI), the final transformation might contain nonzero com-
ponents within homogeneous regions that have no influence on the final image,
leading to an increased warping index. Both validation measures were calculated
over a region of interest 10% larger than the outer polygon.

Figure 2 represents an example of the CT image, transformed MR image,
and the registration results obtained using the different methods to calculate
the similarity. The global methods typically reduce the size of the inner circle.
The validation measures evaluated over the 200 registrations are summarised
in figure 3, showing a clear improvement using conditional MI over global MI.
Moreover, conditional PV seems to outperform conditional PW.

3.2 Bias Field Registration

For the second experiment, we started from the Lena image (8 bit, 256 × 256
voxels). It was used unmodified for the reference image, for the floating images
it was distorted with a second-degree multiplicative bias field ax2 + bxy + cx +
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(a) CT (original) (b) global PV (c) global PW

(d) MR (warped) (e) conditional PV (f) conditional PW

Fig. 2. Example of the registration results obtained for CT/MR registration

initial

cond. PW

cond. PV

glob. PW

glob. PV

Average intensity difference
10 20 30 40 50 70 90

initial

cond. PW

cond. PV

glob. PW

glob. PV

Warping Distance [voxels]
1 2 3 4 5 6 7 89

Fig. 3. Boxplot of the registration results obtained for 200 artificial CT/MR pairs

dy2 + e, with a to e uniformly sampled from {[−0.75, −0.25], [0.25, 0.75]}. Next,
the floating image was deformed and registered and the results were validated
similar to the previous section. An example of a pair of reference and floating
images and the obtained registration results is presented in figure 4. Quantitative
results obtained over 200 image pairs are summarised in figure 5. Again, cMI
clearly outperforms global MI.
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(a) original (b) global PV (c) global PW

(d) warped + bias field (e) conditional PV (f) conditional PW

Fig. 4. Example of the registration results obtained after bias field contortion

initial

cond. PW

cond. PV

glob. PW

glob. PV

Average intensity difference
10 20 30 40 50 70 90

initial

cond. PW

cond. PV

glob. PW

glob. PV

Warping Distance [voxels]
0.5 1 2 3 5 7 10 30

Fig. 5. Boxplot of the registration results obtained for 200 bias field distortion pairs

3.3 Clinical CT/MR

In our last experiment, we have applied global and conditional MI to MR/CT
registration for colorectal cancer treatment [17]. The clinical goal of the regis-
tration is to transfer expert delineations of structures of interest from the MR
scan to the CT scan. Both structures (and the tumour) are better visible in the
MR scan, yet the CT scan is required to perform the actual planning and dose
distribution calculation.
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Table 1. Validation results for global and conditional MI registration of clinical MR
and CT datasets for the manual delineation of the rectum and mesorectum, showing
the Dice similarity overlap criterium (DSC) and centroid distance (cD, in mm) for
image pairs P1-P3. Better results have a higher DSC and lower cD.

(a) rectum

affine global MI cond. MI
DSC cD DSC cD DSC cD

P1 0.52 5.5 0.65 4.4 0.67 2.4
P2 0.69 3.1 0.75 2.8 0.77 2.3
P3 0.58 8.0 0.65 6.4 0.77 2.8

(b) mesorectum

affine global MI cond. MI
DSC cD DSC cD DSC cD

P1 0.78 4.0 0.83 2.9 0.83 3.7
P2 0.82 3.5 0.82 4.6 0.83 5.4
P3 0.70 7.5 0.73 7.4 0.84 3.8

For the experiment, we start from three pairs of patient MR and CT scans and
manual delineations of the rectum and mesorectum in both scans. A multiresolu-
tion registration scheme is adopted, using the CT image as reference image. The
mesh spacing, as well for the cMI calculation as for the tensor product B-spline
field, is gradually decreased, starting from 512 × 512 × 128 voxels (500 × 500 ×
384 mm) in the first stage to 32 × 32 × 32 voxels (62.5 × 62.5 × 48 mm) in the
fifth and last stage. Best results were obtained using 64 bins for the floating and
reference intensities in the joint histogram and conditional PW interpolation.

Those results were compared to the results using the same registration set-
tings but global PW interpolation. As validation measure, the Dice similarity
criterium (DSC) and centroid distance (cD) between corresponding segmenta-
tions were evaluated. The results are provided in table 1. An example comparing
segmentations obtained by global and conditional MI is shown in figure 6. Both
cMI and global MI improve the results obtained using affine registrations. For
the rectum segmentation, which is the most difficult part to register, cMI clearly
outperforms global MI. For the mesorectum, global and conditional MI show
similar results. Registration validation based on manual segmentations may suf-
fer from significant inaccuracies in the manual delineations. This can explain
the apparent inconsistencies, as e.g. the increase in both DSC and cD for the
mesorectum of P2.

4 Discussion

In the context of nonrigid registration, registration by maximisation of mutual
information may lead to undesired results. We have shown that global MI, an
established similarity measure for rigid registration, can be outperformed by
conditional MI for nonrigid applications.

In experiment 1, we have seen that global MI has a tendency to reduce the
size of the inner circle in the MR image. This can be explained by manually
constructing the joint and marginal entropies. We start from a square image
picturing two concentric circles, as shown in figure 7(a). The surface areas
A1 (light gray), A2 (medium gray) and A3 (dark gray) are chosen such that
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Fig. 6. Overview of the contours obtained using global and conditional MI registration.
The inner and outer set of contours represent respectively the rectum and mesorectum
segmentation. The black contour is the original (ground truth) contour as delineated
by the clinical expert in the CT image. The white contours are obtained by nonrigid
registration of the MR image using (1) global and (2) conditional MI.

A1 + A2 + A3 = 1. Using I1
R, I2

R and I3
R (I1

F , I2
F and I3

F = I1
F ) for the reference

(floating) intensities corresponding with the three regions, the joint histogram
and marginal histograms are given by

H1(r, f)=
[

0 A2 0
A1 0 A3

]
, H1(r)=[A1, A2, A3], and H1(f)=[A1+A3, A2]. (15)

When the conditional mutual information is calculated, a smaller region will
contribute to the joint histogram. For simplicity, we assume a zeroth degree B-
spline mesh overlaid over the reference image, as indicated by the dashed line
in figure 7(a). A perturbation of A3 will influence the central region only. Thus,
the conditional joint and marginal histograms are obtained by

H2(r, f) =
[
0 A′

2 0
0 0 A′

3

]
, H2(r) = [0, A′

2, A
′
3], and H2(f) = [A′

3, A
′
2]. (16)

Again, we assume A′
2 +A′

3 = 1. The influence of a perturbation ε on the floating
surface A3 on the global and conditional mutual information is shown in figure
7(c). Both I(H1) and I(H2) have a maximum for ε = 0. However, the maximum
of I(H1) is only a local maximum. Global MI reaches a local minimum for
ε = −A3A2/(A1 + A2), after which it rises again to reach its global maximum
at ε = −A3, thus when the central region has completely disappeared.

The effect of the bias field on the global and conditional MI can be explained
as follows. Global MI estimates the joint probability by combining contributions
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A1

A2

A3

(a)

 

 

global MI
cMI

0.1

0.2

0.3

0.4

0.5

−A3 ε = 0 A3

(b)

Fig. 7. (a) Schematic representation of the figures used for experiment 1. (b) Evolution
of the global and conditional MI for a perturbation on A3 in the floating image.

from different spatial locations in the images, thus implicitly assuming the joint
intensity distribution is spatially homogeneous. However, a non-uniform bias field
will provoke an artificial widening of the histogram causing an increased number
of spurious local optima. Therefore, nonrigid registration using global MI might
look for a transformation that narrows this histogram without aligning corre-
sponding structures. Using cMI, the extend of the assumed spatial homogeneity
of the joint intensity distribution is limited to a single spatial bin.

In a real-life case, when the course of the similarity measure is influenced
by a combination of noise, bias fields and intensity disagreements between the
reference and floating image, conditional MI might not only increase the capture
range of the registration, but also provide better registration results, as shown
in the CT/MR registration experiments.

When the number of spatial bins increases, the number of joint intensity pairs
contributing to a single bin in the joint histogram diminishes, thus imposing a
lower limit on the resolution of the mesh spacing. This reduction is curbed as
the spatially overlapping B-spline windows increase the number of joint intensity
pairs (partially) contributing to each spatial bin. These windows also impose a
certain relationship between neighbouring histograms.

Also, as the number of features present in a small spatial window decreases
with decreasing mesh spacing, the number of nonzero bins will decrease as well.
The available information is distributed over a smaller number of bins, increasing
the statistical power of the joint histogram. On the other hand, image artefacts
such as noise or a bias field, will widen the intensity range corresponding to
a single feature, thus increasing the number of bins and minimum number of
voxels required for a representative joint histogram.

The 2D registration experiments were performed using a 32 × 32 voxel mesh,
thus actually including only 32 × 32 × 3 × 3 = 9216 voxels in each spatial bin.
The same number of voxels is obtained in 3D using a mesh spacing as low as 10
voxels. Further research will show wether this extension can be made.



736 D. Loeckx et al.

In our current implementation, cMI is calculated independently for each spa-
tial bin, leading to an increase in registration time by a factor 10 for the 2D
images. However, we are currently working on an implementation sharing calcu-
lation of the transformation mesh and image interpolation in each voxel. Thus,
the extra steps required to calculate the cMI are limited to the weighing of the
hits according to the spatial bins and the increased number of histograms for
which the MI has to be calculated.

5 Conclusion

We have proposed conditional mutual information (cMI) as a new similarity
measure for nonrigid image registration. We have shown that cMI can overcome
several problems inherent to the use of global MI, using artificial and clinical
images, and provided a theoretical foundation to explain the results.
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Abstract. Determining groupwise correspondence across a set of unla-
belled examples of either shapes or images, by the use of an optimisation
procedure, is a well-established technique that has been shown to produce
quantitatively better models than other approaches. However, the com-
putational cost of the optimisation is high, leading to long convergence
times. In this paper, we show how topologically non-trivial shapes can
be mapped to regular grids (called shape images). This leads to an initial
reduction in computational complexity. By also considering the question
of regularisation, we show that a non-parametric fluid regulariser can
be applied in a principled manner, the fluid flowing on the shape sur-
face itself, whilst not loosing the computational gain made by the use of
shape images. We show that this non-parametric regularisation leads to
a further considerable gain, when compared to previous parametric reg-
ularisation methods. Quantitative evaluation is performed on biological
datasets, and shown to yield a substantial decrease in convergence time,
with no loss of model quality.

1 Introduction

Statistical models of shape and appearance have proven to be powerful tools for
image interpretation and morphological analysis. A key step in the construction
of such a model is establishing a dense correspondence across a training set of
examples of the object to be modelled. It is important that the correct corre-
spondence is chosen, otherwise the model built from this correspondence will not
truly represent the actual variation seen in the training set, for example, by not
being specific enough, or by having poor generalisation ability.

It has been shown previously that for either shapes or images, this funda-
mental problem of groupwise correspondence can be solved by treating it as an
integral part of the learning process (e.g, [3,4]). The key idea is that the quality
of the correspondence can be evaluated by measuring the quality of the model
build using that correspondence. This then casts model-building into the form
of an optimisation problem. The required framework consists of: an objective
function (which provides a quantitative measure of model quality), a method
of manipulating the groupwise correspondence (which enables movement in the
search space of our optimisation problem), and finally an optimisation algorithm.

It has been shown that an objective function based on the information the-
oretic concept of Minimum Description Length (MDL, [12]) produces models
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which are quantitatively better than those produced using other methods, in-
cluding manual annotation [3,4]. Such an MDL approach can be applied to the
groupwise correspondence problem for either shapes or images, but in this paper
we will focus on the case of MDL groupwise correspondence for shapes.

In previous approaches, each shape in the training set was first parameterised
by mapping it to a topological primitive (e.g., the unit sphere). The groupwise
correspondence was then manipulated by re-parameterising each shape in turn,
by means of re-parameterisations of the sphere. Although this allowed the topol-
ogy of the shape to be maintained, it entailed the computationally-costly step of
interpolating triangulated shape meshes on the surface of a sphere. In this paper,
we adapt ideas from the computer graphics literature, which show how trian-
gulated shape surfaces can be mapped onto regular grids, which we call shape
images. Interpolation and numerical differentiation are much simpler and faster
on regular grids, which leads to an order of magnitude decrease in convergence
times.

The final issue is the optimisation algorithm used. The groupwise correspon-
dence problem is in general ill-posed, and insoluble without some form of reg-
ularisation. Previous approaches to shape correspondence used parametric reg-
ularisation, confining the allowed re-parameterisation transformations to some
set of parametric transformations (e.g., Cauchy functions [3], B-splines [10], or
polynomials [9]). But the limited nature of the allowed transformations can also
make the optimum correspondence difficult to find and represent. By analogy
with techniques in image registration [2], we show that it is possible to use a
non-parametric, fluid regularisation method. We also show that it is possible to
introduce this regulariser in a principled way, so that the fluid regulariser acts
on the shape surface itself, whilst retaining all the computational advantages of
the shape image representation1. We perform a quantitative evaluation on bio-
logical datasets, and show that it converges several orders of magnitude faster
than previous approaches.

2 Building Statistical Shape Models

We start with a training set of shapes {Si : i = 1, . . . nS}, where Si represents
the entire surface of the ith shape in R

3. An initial chart/parameterisation X is
constructed for each shape, so that Si(x) ∈ R

3 is a single point on the ith shape,
with parameter value x ∈ X, and shape function Si(·). The dense pointwise
correspondence between any two shapes is then: Si(x) ∼ Sj(x) for all x ∈ X.
The statistical properties of the distribution of shapes are then captured by the
mean shape S, and by the shape covariance matrix D (with elements Dij):

S(x) .=
1

nS

nS∑

i=1

Si(x), Dij
.=

∫
dA(x)(Si(x) − S(x)) • (Sj(x) − S(x)), (1)

1 A preliminary version of this work was presented in [6], but did not include this
important step, of fluid regularisation on the shape itself.
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where • is the usual vector dot product in R
3, and dA(x) is the area measure

defined on the mean shape (see [4] for further details). For a linear model, PCA is
performed on the covariance matrix, which yields the eigenvectors (representing
the modes of shape variation), and the corresponding eigenvalues {λα}.

2.1 Manipulating Correspondence

The groupwise correspondence across the set of shapes is then manipulated by
re-parameterising each shape. For the ith shape, we have the re-parameterisation
function φi(x), where:

x
φi�−→ x′ .= φi(x) & Si

φi�−→ S′
i, where S′

i(x
′) .= Si(x). (2)

Hence both the shape-functions {Si(·)} and the groupwise correspondence
change under re-parameterisation. For re-parameterising just the ith shape:

Sj(x) ∼ Si(x)
φi�−→ Sj(x) ∼ S′

i(x) .= Si

(
φ−1

i (x)
)
. (3)

The re-parameterisation is hence valid provided that φi is a homeomorphic map-
ping. Manipulating the groupwise correspondence changes the mean shape and
the shape covariance matrix (1), hence leads to a different model.

Note that the re-parameterisation function φi acts on the space of the original
chart X, not on the shape surface itself. Hence the problem of constructing valid
re-parameterisation functions depends on the initial chart construction ( See §3).

2.2 The Objective Function

A general objective function for model-building will be denoted by LS({Si(·)}),
where the notation indicates that it depends explicitly on the set of shape func-
tions {Si(·)}, hence only implicitly on the set of re-parameterisation functions
{φi(·)}, as described above. In this paper, we will focus on objective functions
based on the MDL principle (e.g., [3,4]), where the explicit dependance is on the
set of eigenvalues {λα} of D (1), which we will denote by LS = LMDL({λα}).

3 Coordinate Charts for Surfaces: Shape Images

The training set of shapes is typically represented as a set of triangulated meshes.
In previous work [3], the initial chart X was constructed by mapping each mesh
to the surface of a unit sphere. Re-parameterising the shapes then involved
manipulating points on the surface of the sphere, and then interpolating between
the points of the triangulated mesh as mapped to the sphere to recover the shape
positions of these manipulated points. The problem with this approach is that
although it is relatively easy to maintain the topology of the shape, it entails a
computationally-intensive interpolation step, which forms a major bottleneck in
the optimisation algorithm.

The computational cost of the interpolation could be considerably decreased
if our chart was a region of the plane, with a regular grid of sample points, which
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Fig. 1. Left: The octahedron, Centre & Right: Two unfoldings. The labels show the
faces, the gray lines the boundary conditions, and the gray circles the singular points.

then allows much more straightforward methods of interpolation. It is a well-
known result that a sphere cannot be covered by a single chart, so that any such
single chart will have at least one point where derivatives cannot be defined. The
naive approach would be to take as our chart a square, with cartesian coordinates
on the chart being the usual polar angles on the sphere. However, this has the
problem that two edges of this chart are identified with single points on the
sphere.

A better chart can be constructed by using the work of Praun and Hoppe [11].
The sphere is not mapped directly to the plane, but first onto the inscribed reg-
ular octahedron, using a gnomic projection. The octahedron is then cut open
and flattened to construct the final chart (see Figure 1). There are points where
derivatives cannot be defined (the points where an edge of the chart folds back on
itself, marked by plus symbols in the Figure), but these are just a few points2. A
regular pixel grid is then constructed on this chart. Praun and Hoppe stored in-
formation about texture, colour and geometry at each pixel, and hence christened
them geometry images. We instead store the coordinates of the corresponding
point on the physical shape for each pixel, hence call these shape images.

4 Non-parametric Regularisation

As mentioned previously, the correspondence problem is ill-posed, and cannot be
solved unless some regularisation is introduced. There are two basic approaches
to regularisation, the parametric and the non-parametric.

The parametric approach reduces the dimensionality of the search space by
considering only a finite-dimensional subspace of parameterised transformations.
For shape correspondence, examples include transformations of the sphere based
on Cauchy kernels [3], B-splines [10], and polynomials [9]. This parametric ap-
proach can be thought of as hard regularisation, since the subspace of allowed
transformations is held fixed at a given level of resolution. Various optimisation
algorithms can then be used to solve the optimisation problem (e.g., genetic al-
gorithms [4], a generic local optimisation algorithm [3] or gradient descent [7]).
2 Some such points will always remain, since an everywhere differentiable atlas for the

sphere requires at least two coordinate charts.
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The alternative approach can be thought of as soft regularisation, where the
subspace of allowed transformations is not held fixed, but instead, more extreme
transformations are allowed provided the evidence from the data warrants it.
This is achieved by including an additional term Lφ({φi(·)}) in the objective
function, which weights transformations.

There are many possible choices for this weighting function Lφ, typically in-
volving the curvature or bending energy of the transformation, which keep the
transformation smooth. However, such forms have the disadvantage that they
tend to penalize large-amplitude transformations.

A mathematically equivalent formulation is to express the problem not in
terms of the objective function, but in terms of forces derived from it. We define
the displacement field u(y) where φ(y) .= y + u(φ(y)) (for clarity, we drop the
index i denoting the shape example). Note that φ(y) is defined so that the point
y maps to φ(y), whereas the displacement field represents the inverse mapping,
so that x = φ(y) = y + u(x) ⇒ y = x − u(x).

The driving force from the shape part of the objective function is then:

F S(u) ∝ δLS({Si})
δu(x)

, (4)

where the optimum value of the displacement field for just this part of the
objective function corresponds to a zero driving force. The sign of the driving
force is determined so that it tends to resist departures from this optimum.

The addition of the regulariser also provides a force. For a regulariser based
on the displacement field u(x):

Fφ =
δLφ({ui(·)})

δu(x)
. (5)

But again, this form tends to penalise large displacements. Also, the regularising
force is not zero for non-zero displacements, so that the position of the optimum
(zero net force) is now shifted with respect to that defined by the shape term
alone.

An alternative approach is to introduce an additional time coordinate t, so
that we now have a time-dependant displacement field u(x, t). And rather than
penalizing u directly, we instead consider the derivatives of u. This approach
now does not explicitly penalise large displacements, whilst retaining all the ad-
vantages of a soft regulariser, and is the fluid-registration approach as introduced
by Christensen et al. [2].

4.1 The Fluid Equations

Let us consider a fluid, where a particle of the fluid starts at y at t = 0, and is
at a point φ(y, t) after a time t. Rather than follow the dynamics of a tracked
particle (the Lagrangian approach), we instead consider a fixed position with
respect to some external coordinate frame, and consider the forces at this point
as fluid moves past it (the Eulerian approach).
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Consider a point x at time t. The fluid passing x originated at y at t = 0, where:

y = φ(y, 0), x = φ(y, t), y = x − u(x, t) = φ(y, t) − u(φ(y, t), t). (6)
Hence the Eulerian velocity at point x at time t (the velocity of the fluid particles
passing that point at that time) is:

v(x, t) .=
∂

∂t

∣∣∣∣
y

φ(y, t) =
∂

∂t

∣∣∣∣
y

u(φ(y, t), t) =
∂u(x, t)

∂t
+(v(x, t)•∇)u(x, t). (7)

The regulariser is based on the physical model of a compressible viscous fluid,
with viscous forces:

F visc(x, t) = μ∇2v(x, t) + (λ + μ)∇(∇ • v(x, t)), (8)

where μ is the shear viscosity, and λ is the second viscosity coefficient, which is
related to the bulk viscosity. Shear viscosity acts to resist non-uniform velocity
gradients, whereas the bulk viscosity term acts to resist non-uniform compres-
sion/rarefaction. For a physical fluid, we would also have pressure terms and
inertial terms, but for the purposes of regularisation, these terms are neglected.
The only forces acting are then the viscous forces and the driving force:

F visc + F S = 0. (9)

The required solution is found in the limit v(x, t) → 0 as t → ∞, hence the
point where the displacement field becomes static, and F S = 0, which is the
same optimum as in the unregularised case. See Christensen et al. [2] for a full
derivation and discussion.

The remaining question is the frame in which the viscous forces are calcu-
lated (8). If the shape image frame was used, it could be argued that the regu-
lariser was not applied evenly across the surface of the shape, but depends on the
particulars of the initial parameterisation X. The principled approach is hence
to calculate the viscous effects on the shape surface itself, and the mathematical
tools necessary for this are the subject of the next section.

4.2 The Shape Manifold

The mathematics of calculating derivatives on a shape, where we have a para-
meterisation of the shape (the shape image), is just the usual mathematics of
changing coordinate frames in Riemannian differential geometry. What is slightly
more complicated is deriving the form of the metric. We therefore present this
derivation in some detail, for the benefit of readers who may not be familiar with
such techniques.

Let S be a 2D shape manifold, with a definite fixed topology (e.g., a sphere,
a torus). A physical shape S ⊂ R

3 is then an embedding of the shape manifold
S into 3D Euclidean space. This induces a metric on the shape manifold, where
distances on the shape surface are defined using the Euclidean metric of R

3.
We construct a chart X on the shape manifold, with associated cartesian

coordinates (i, j). This is the basis for the shape image, where the value of the
shape image function S(i, j) at point (i, j) in the chart is just the inverse of the
chart mapping:
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Fig. 2. The mapping of the tangent plane axes (left) into the shape image axes, showing
the elements of the matrix JP

S(i, j) �−→
X

(i, j) ∈ X(S).

Consider a general point P on the shape S, with position SP . We denote
the tangent space/plane at P by TP , with tangent plane cartesian coordinates
(X, Y ). In the local neighbourhood of P , the shape is described by a shape
function S(X, Y ), with S(0, 0) .= SP . The induced metric means that within
some neighbourhood of P , we have the distance relation:

X2 + Y 2 ≈ (S(X, Y ) − S(0, 0)) • (S(X, Y ) − S(0, 0))

= (S(X, Y ) − SP ) • (S(X, Y ) − SP ) .= S̃(X, Y ) • S̃(X, Y ), (10)

where • is the usual vector dot product in R
3, and S̃(X, Y ) is the shape difference

function at P . This relation rests on the fact that the shape is locally euclidean,
and flat. We then also have the approximate linear relation between the tangent
plane coordinates (X, Y ), and the shape image coordinates (i, j):

i(X, Y ) = iP + X
∂i

∂X

∣∣∣∣
Y

+ Y
∂i

∂Y

∣∣∣∣
X

.= iP + XiX + Y iY ,

j(X, Y ) = jP + X
∂j

∂X

∣∣∣∣
Y

+ Y
∂j

∂Y

∣∣∣∣
X

.= jP + XjX + Y jY , (11)

which can be rewritten in the form:
(

i(X, Y ) − iP
j(X, Y ) − jP

)
=

(
iX iY
jX jY

) (
X
Y

)
.= JP

(
X
Y

)
. (12)

where JP is the Jacobian of the transformation (X, Y ) �−→ (i(X, Y ), j(X, Y ))
evaluated at P (see Figure 2). Hence a vector W̃ ∈ TP in the shape manifold3,
with tangent-plane components (W̃X , W̃Y ), maps to the corresponding vector in
the shape image with components (Wi, Wj), where:

(
Wi

Wj

)
= JP

(
W̃X

W̃Y .

)
, ⇒ W = JP W̃ . (13)

3 In what follows, we will use �· to denote vectors or operators in the tangent plane,
when the distinction is important.
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There is a corresponding transformation law for derivatives. Using the chain-rule:

∇̃X
.=

∂

∂X

∣∣∣∣
Y

=
∂i

∂X

∣∣∣∣
Y

∂

∂i

∣∣∣∣
j

+
∂j

∂X

∣∣∣∣
Y

∂

∂j

∣∣∣∣
i

.= iX∇i + jX∇j ,

∇̃Y
.=

∂

∂Y

∣∣∣∣
X

=
∂i

∂Y

∣∣∣∣
X

∂

∂i

∣∣∣∣
j

+
∂j

∂Y

∣∣∣∣
X

∂

∂j

∣∣∣∣
i

.= iY ∇i + jY ∇j ,

∴ ∇̃ .=

(
∇̃X

∇̃Y

)
=

(
iX jX

iY jY

) (
∇i

∇j

)
⇒ ∇̃ = JT

P ∇. (14)

All that remains is to calculate JP . Note however that the chart mapping X
does not totally determine JP ; there is a local gauge degree of freedom corre-
sponding to rotating the (X, Y ) coordinate axes in the tangent plane, JP �→ JP g
where g is a rotation matrix in 2D. We could fix the gauge, by setting, for ex-
ample, the direction of X to be that of i when mapped, and the (X, Y ) axes to
have the same orientation as (i, j). However, this is not necessary, as we will see.

Consider the distance relation (10):

X2 + Y 2 = S̃(X, Y ) • S̃(X, Y ). (15)

and the second-order differential operators ∇̃2
X , ∇̃2

Y & ∇̃X∇̃Y . Applying these
in turn to the above expression, and using the transformation law for derivatives
given above, we find:

1 = i2X(∇iS̃)2 + 2iXjX(∇iS̃) • (∇jS̃) + j2
X(∇jS̃)2 + 2nd derivatives

1 = i2Y (∇iS̃)2 + 2iY jY (∇iS̃) • (∇jS̃) + j2
Y (∇jS̃)2 + 2nd derivatives

0 = iXiY (∇iS̃)2 + (iXjY + iY jX)(∇iS̃) • (∇jS̃) + jXjY (∇jS̃)2 + 2nd derivatives,

where we can neglect the terms which contain second derivatives of the shape
(e.g., ∇i∇jS̃), since the distance relation (10) is only true to leading order.
These equations can be written in matrix form thus:

(
1 0
0 1

)
=

(
iX jX

iY jY

) (
(∇iS̃)2 (∇iS̃) • (∇jS̃)
(∇iS̃) • (∇jS̃) (∇jS̃)2

) (
iX iY
jX jY

)
(16)

MP
.=

(
(∇iS̃)2 (∇iS̃) • (∇jS̃)
(∇iS̃) • (∇jS̃) (∇jS̃)2

)
, ∴ JP JT

P = M−1
P . (17)

MP is just the Riemannian metric at the point P . Note that this result is gauge-
invariant, since for a 2 × 2 real matrix representation of 2D rotations:

gT ≡ g−1 ⇒ (JP g)(gT JT
P ) ≡ JP JT

P .

The important point to note about this result is that MP (and hence M−1
P ) is

obtained by calculating derivatives of the shape image with respect to the shape
image coordinates, hence working purely within the shape image itself.
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Consider the viscous forces calculated on the shape:

F̃
visc

= μ∇̃
2
ṽ(x, t) + (λ + μ)∇̃(∇̃ • ṽ(x, t)). (18)

Applying the above transformation rules4, we find that for components in the
shape image (denoted by va for vector components, and ∇a for the components
of derivatives):

(
F visc

)
c

= μ
[
(JP JT

P )ab∇a∇b

]
vc + (λ + μ)

[
JP JT

P

]
ca

∇a∇bvb

= μ
[
(M−1

P )ab∇a∇b

]
vc + (λ + μ)

[
(M−1

P )ca∇a∇b

]
vb. (19)

We hence see that the effect of calculating the viscous forces on the shape it-
self is that the effective viscous forces on the shape image become a bit more
complicated, where we have a position-dependant mixture of spatial derivatives.
Although this mixture depends on position, M−1

P has only to be calculated once
for each sample point in the shape image, since the shape image (and hence
M−1

P ), remains fixed as the displacement field evolves.

4.3 Implementation Details

The Objective Function: To calculate the driving force F S for the kth shape,
we need to differentiate the objective function wrt the displacement field for this
shape. As in approximate-MDL gradient descent methods [7,8,9], this can be
done by applying the chain-rule:

δLS({Si})
δuk

=
∂LMDL({λm})

∂λm
· ∂λm

∂Dij
· δDij

δSk
· δSk

δuk
. (20)

The first term just means differentiating the objective function written in terms
of the eigenvalues of the model. The second term was calculated for the form of
the covariance matrix given in (1) by Hlad̊uvka and Bühlerit, and is a simple
function of the eigenvectors [9]. The third term is obtained by differentiating the
covariance matrix (1). The last term is the motion of points on the kth shape
with respect to movement in the kth shape image, and hence can be calculated
numerically using a simple finite-difference scheme on the shape image.

The Chart: We consider shapes which are topologically equivalent to spheres.
Each shape is then mapped to the unit sphere using the method of Brechbühler
et al. [1]. Points on the unit sphere are then mapped to the inscribed regular oc-
tahedron by using a gnomonic projection [11]. The octahedron is then unfolded,
4 Note that we are making a further approximation here, that the shape is piecewise

linear, so that we can pass the matrices through the derivatives. If we had not
made this simplifying assumption, we would also have additional terms containing
derivatives of the matrices. These are in effect the Christoffel symbols that would
be obtained using standard differential geometry, where our expression F visc would
be calculated by just replacing the ordinary derivatives in eqn. (18) by covariant
derivatives.
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using either of the methods shown in Figure 1. A regular grid of sample points is
then constructed on this chart, the total pixel grid being denoted by X = {x}.
For each shape in the training set, the set of shape values is sampled on this
grid, and the collected values denoted by Si, the entire pixellated shape image,
with value Si(x) at pixel x ∈ X.

Fluid Equations: For each shape example, the set of values of the fluid velocity
field, the displacement field, and the viscous forces acting are collected into vari-
ables V(t) .= {v(x, t) : x ∈ X}, U(t) .= {u(x, t)}, and Fvisc(t) .= {F visc(x, t)}.
Similarly, ∇ will be taken to represent either the derivative at a point, or the
derivative operator acting across the entire grid. Approximating derivatives by
a finite-differencing scheme, the equation for the viscous force (19) can now be
written as a simple matrix operation:

Fvisc(t) = AV(t). (21)

It is important to note that A is a sparse matrix that depends only on the initial
chart X, remains fixed as the fluid evolves, hence can be pre-computed. The fluid
algorithm can then be written symbolically as follows:

Initialize with U = 0,V = 0.
Repeat
� Given U, find FS(U) % Eqns (4) &(20)
� Compute V using: Fvisc(V)

.
= −FS(U) & Fvisc = AV % Eqns (9) & (21)

� Update U: U ⇐ U + dt(V − (V · ∇)U) % Eqn (7)
� Check if re-gridding is required

Until convergence

In [2], equation (21) was solved for V using an iterative method. However, since
our shape images are only 2-dimensional we instead use the (pre-computed) LU
decomposition with permutation, which gives a quicker solution within the loop:

A = PLUQ, Permutation matrices: P,Q, Triangular matrices: L,U
To solve:Fvisc = AV =⇒ Solve:Fvisc = PLW forW, then: W = UQV for V.

The time-step dt is scaled at each iteration so that the maximum additional
displacement (as measured in shape image pixel units) is equal to a pre-defined
value. From equation (8), we see that scaling the viscosities μ & λ for fixed driving
force just gives a universal scaling of the velocity field. However, this scaling is
then removed in our implementation, by the scaling of the timestep above. Hence
the only free parameters are the ratio of the viscosities μ

λ (which was set to 1
in all our experiments), and the maximum permissible displacement. Note that
the maximum permissible displacement should not be set too large, since we are
using just a first-order finite difference approximation to the temporal derivative
of the displacement field. Also, if this is set too large, the displacement field
can cause the mapped grid to fold, entailing frequent re-gridding. Note that this
implementation also means that fluid registration on the shape can depend on
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Fig. 3. Values of the objective function plotted as a function of time.Left: Hippocam-
pus dataset, Centre & Right: Femur dataset with varying initial mappings to the
sphere.
Gray dashed line: Parametric regularisation on the sphere.
Black dashed line: Parametric regularisation on the shape image.
Black solid line: Fluid regularisation on the shape.

Table 1. A table showing the convergence rate of the methods for the various datasets,
compared to the parametric case on the sphere. Higher values indicate faster convergence.

Hippocampus Femur
Brechbuller CSP

Parametric on sphere 1 1 1
Parametric on shape image 24 4 9

Fluid on the shape 384 56 153

the initial chart. Imagine a section of the shape, with the same body forces, but
with two different mappings, one where the mapped pixels are smaller on the
shape itself, and the other where they are larger. The criteria we have chosen
depends on the suggested displacement in pixel units, hence the mapping with
smaller pixels will lead to a smaller rate of physical shape displacement in this
area wrt computational time.

5 Experiments

The aim of these experiments was to perform a direct comparison of the chart-
ing method of shape images as compared to other techniques, and to compare
parametric with fluid regularisation, using the same MDL objective function.
The datasets used were a set of 82 surfaces of the left hippocampus, and a set of
15 examples of the distal third of the human femur. Both were segmented from
3D MR images.

We used several methods to map shapes to the unit sphere, the method of
Brechbühler et al. [1], as well as the Consistent Spherical Parameterisation (CSP)
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method of Davies et al. [5]. For parametric regulariser, we used a set of parametric
transformations based on clamped-plate splines, applied either on the surface of
the sphere (which is very similar to the method used by Heimann et al. [8]) or
on the shape image, with gradient descent optimisation. The final comparison is
then with the non-parametric fluid regularisation on the shape.

In Figure 3, we show the values of the objective function plotted as a function
of time in seconds. Note that the algorithm was implemented in MATLAB and
run on a Pentium-3 PC, and a implementation in C++ on a modern PC would
be considerably faster!

In Table 1, we show the results for a quantitative comparison of the conver-
gence rates for the graphs shown in Figure 3, with higher values indicating faster
convergence.

Starting with the hippocampus dataset (Figure 3, Left), we can see that for
parametric regularisation (dashed lines), the chart mapping to the shape image
improves the convergence rate considerably when compared to using the sphere.
This result is repeated for the femur data, for both methods of mapping to the
sphere.

When we compare fluid with parametric regularisation (solid line compared
to dashed lines), we see that fluid regularisation gives an appreciable advantage.
If we compare the two methods for mapping the shape to the sphere (centre
& right Figure 3 & Table 1), it can be seen that for this particular dataset,
the exact result for fluid regularisation and rate of convergence does depend on
the choice of chart. Note that for fluids, we would expect a possible difference
in convergence rates for different parameterisations, since the scaling criterion
depends on pixel size. Hence a region of the shape where the mapped pixels
are small in terms of shape units will give a slower flow that a mapping where
the pixels are larger. But we also might expect an additional effect, given that
different initial sphere mappings lead to a different initial correspondence, hence
we have to follow a different path in the space of groupwise correspondence. We
also have to allow for the probability that the algorithm may get stuck in a local
minimum. Note however that the degradation in performance for the Brechbühler
et al. mapping as opposed to CSP is seen for both parametric regularisation on
the shape image, and non-parametric regularisation.

We cannot however make a direct comparison between the two methods of
mapping to the sphere, since the values of the objective function cannot be
directly compared, as the differing scales on the y-axes show.

6 Discussion and Conclusions

The results clearly show that for parametric regularisation, the use of shape
images improves the convergence rate by about an order of magnitude. It is
clear that using fluid regularisation can give a further improvement, leading to
an overall improvement by up to two orders of magnitude.

What is not clear from this data is the exact effect of choice of initial sphere
mapping. It should also be noted that the femur dataset contains only 15 exam-
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ples, whereas the hippocampus set contained 82. It could be that some of the
results we are seeing on the femur dataset are the result of this small sample
size, and not indicative of the behaviour for larger datasets.

The possibility of getting stuck in a local minimum should also be considered,
and we intend to investigate techniques for introducing a stochastic element, so
that the fluid can be moved out of such a minimum.

Finally, it would also be desirable to perform a full quantitative evaluation
of the final models obtained, and analyse the differences (if any) in groupwise
correspondence that these methods give, for a range of biological datasets.

Investigating the detailed behaviour of the fluid regularisation approach, and
further refinement of the algorithm forms the basis of our future research.

Acknowledgements. Our thanks to Tomos Williams and Chris Wolstenholme
for processing the femur dataset. Also, thanks to Anna Mills for suggesting the
use of the LU decomposition.
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Abstract. In deformable model segmentation, the geometric training process
plays a crucial role in providing shape statistical priors and appearance statistics
that are used as likelihoods. Also, the geometric training process plays a crucial
role in providing shape probability distributions in methods finding significant
differences between classes. The quality of the training seriously affects the fi-
nal results of segmentation or of significant difference finding between classes.
However, the lack of shape priors in the training stage itself makes it difficult
to enforce shape legality, i.e., making the model free of local self-intersection or
creases. Shape legality not only yields proper shape statistics but also increases
the consistency of parameterization of the object volume and thus proper appear-
ance statistics. In this paper we propose a method incorporating explicit legal-
ity constraints in training process. The method is mathematically sound and has
proved in practice to lead to shape probability distributions over only proper ob-
jects and most importantly to better segmentation results.

1 Introduction

Image segmentation, the main target problem of this paper, is an important task upon
which many other medical image processing applications are based. The goal is to
delineate image regions corresponding to certain anatomical structures from the back-
ground. Deformable model based methods tackle the segmentation problem by repre-
senting anatomical objects with geometric models and deform them into images via
object shape and object-relative image intensity information. Shape and intensity sta-
tistics have been used respectively as priors and likelihoods in segmentations and have
become a standard component in deformable model methods. In order to get trained sta-
tistics, we need to extract deformable models from a set of training images and calculate
shape statistics and related appearance statistics from the trained models. This process
of extracting models and calculating prior and likelihood statistics is called training.

Given a set of segmented images, a typical training step includes converting those
segmentations into deformable models in a specific representation. The conversion is
often realized by fitting a deformable template into a batch of binary characteristic im-
ages typically produced manually from the training greyscale images. Therefore the
training step is also a fitting process but without any shape prior statistics. The lack of
priors in training can cause illegal shapes, with local self-intersection or creases, which
will yield unrealistic shape statistics and then defected appearance statistics relative
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c© Springer-Verlag Berlin Heidelberg 2007
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to objects coordinates. Even in an iterative bootstrapping process [4] the results from
the first pass training affects the final ones after multiple passes. Existing solutions to
this challenge require humans to directly enforce smoothness on extracted deformable
models [3]. This approach is time consuming and defeats the purpose of having an au-
tomatic training step given the binary images. Furthermore, human interferences might
bring undesirable biases in the trained shapes and thus in the trained statistics.

In our framework, the deformable model is medial based. It has been argued that
medial based models have strong descriptive power because they capture not only lo-
cal positional information but also local orientational and size information [11]. Medial
methods represent and parameterize both object surfaces and interior volumes. A par-
ticular strength of this representation is that powerful mathematics exists on the relation
of the medial geometry and the geometry of the implied boundary and interior of ob-
jects [5]. In this paper we use this mathematics to provide a set of geometric constraints
that can be explicitly applied to our deformable models in order to maintain the legality
of the surfaces and interiors of the trained shapes.

The proposition this paper is designed to establish is that attention to model legal-
ity in fitting the models used in forming proper statistics on object geometry and on
object-relative image intensity patterns is decisive for the quality of applications of the
probability densities derived from the training process. Recall that achieving such le-
gality by automatic means in Point Distribution Models (PDMs) of object boundaries
required mathematics and serious computation [1]. The mathematics now available on
medial representations lowers the computation necessary to assure legality from that
required for PDMs.

The rest of the paper is organized as the follows. Sec. 2 covers background on the
deformable method using a medial representation and medial mathematics. Sec. 3 de-
tails the proposed method for achieving medial legality and proper statistics in training.
Sec. 4 shows how we generate synthetic test data and the results from application of our
method to both synthetic and real world data. Sec. 5 concludes the paper.

2 Background

We begin with a brief review on deformable model based methods and medial repre-
sentations. We then address some mathematical background necessary for the detailed
description of the proposed method.

2.1 Medially Represented Deformable Model

Deformable models are probabilistic shape descriptions. Under the Gaussian model,
the distribution of the training data is modeled by several modes of deformation about
a point in the shape space. This distribution describes all shapes in the training data
and moreover, for a sufficiently large training set, estimates the full ambient shape
space from which the training data are drawn. This statistical framework has been
shown [12] to provide a powerful basis for studies finding shape differences between
classes of shape or, together with probabilistic models on image appearance via object-
relative intensity patterns, to provide a powerful means of segmentation by posterior
optimization.
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The classical model representation is landmarks or its extension to surfaces, the
point distribution model (PDM) with shape variance described by principal component
analysis (PCA) of the feature space [3]. PDMs assume feature correspondence by fixed
sampling, or attempt to induce correspondence post hoc by minimizing variability in
the parameterization [7]. While it is possible to provide local legality constraints with
such boundary representations, the literature shows little attention to this issue, perhaps
because legality checks require extracting information about surface normals. Another
surface representation uses spherical harmonic (SPHARM) basis functions, which guar-
antees local shape legality at serious computational expense but handles surface locality
with difficulty. Legal PDMs can, however, be derived from the SPHARM fits to training
images [13].

Our segmentation and shape analysis methodology uses the multi-scale discrete m-
rep representation proposed in [11]. Medial representations provide a model-centric
volumetric coordinate system for the object interior and hence, a framework for volu-
metric correspondence. As described in Sec. 2.2, the mathematics of m-reps based on
[5] provides the means for legality guarantees over the whole object interior.

Fig. 1. From left to right: an internal atom of two spokes S+1 and S−1, with τ to parameterize the
object interior along the spokes; an end atom with an extra bisector spoke S0; a discrete m-rep as
a mesh of internal atoms (with white hubs) and end atoms (with red hubs); an interpolated spoke
field on a smooth medial sheet (in dark blue).

An m-rep figure is a mesh of samples of an object’s medial axis, as shown in Fig. 1.
Each internal medial sample, or medial atom m = (p, r, U+1, U−1) ∈ M = R

3×R
+×

S2 × S2 has eight parameters: 3 in hub position p, 4 in two medial spoke directions
U+1/−1, and 1 in scale r.

In order to have more stability in the representation, each end atom can be con-
sidered as the compound of an internal atom {p, r, U+1, U−1} plus the bisector spoke
corresponding to the crest line on the object boundary. The hub position and two regu-
lar spokes S+1/−1 of each end atom are treated as one internal atom. An interpolation
method can be applied to an m-rep to generate a continuous medial representation as a
smooth double-sided spoke field [10], and the interpolated hub positions forms its own
smooth surface called medial sheet, shown in dark blue in Fig. 1-rightmost.

Given that each atom lies on a Riemannian manifold [9], the distance between two
atoms, d(m, o), is derived by a local flattening Log-map defined to map points on the
manifold to the local tangent plane. This leads to a Riemannian distance d(m, o). The
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squared distance between two m-rep models M and O with samples mi and oi respec-
tively is defined as the sum of the squared distances between corresponding samples
d2(M, O) =

∑
i d2(mi, oi). These metrics allow for the extension of PCA into non-

Euclidean domains such as m-reps [9].
The medial atom is the basic building block in m-rep representation, and the deriv-

atives of the medial sheet and the two spoke directions in each medial atom contain
sufficient information to tell whether any illegal shape exists or is about to appear [5].
The next subsection reviews the mathematics that enable us to put legality constraints
on m-reps, detailed in Sec. 3.4.

2.2 Radial Shape Operator Srad and rSrad

Differential geometry reveals how a surface normal curves in its local surface tangent
plane. The derivatives of surface normals can be summarized by a 2 × 2 symmetric
matrix called the shape operator. Analogously, the radial shape operator [5] tells how
a medial spoke changes while walking on the medial sheet. Since each m-rep atom has
a spoke on both sides of the medial sheet, the spoke field on the medial sheet should be
considered as double valued. Thus there are two radial shape operators defined for each
atom: one for each side of the medial sheet.

Let us only consider one side of the medial sheet since the same method applies to
the other. Assume that there is a continuous spoke field S(u) with unit length spoke
direction U(u) and spoke length r(u) on the continuous medial sheet p(u), where u =

(v1, v2) parameterizes the 2D medial sheet and the spoke field. S(u) = r(u) · U(u). The
derivatives of the unit length spoke direction U(u) wrt (v1, v2) are calculated as follows,
with U and pv1/v2

being 1 × 3 row vectors.

∂U
∂vi

= a0,iU − ai,1pv1
− ai,2pv2

, where i = 1, 2, (1)

or rewriting in matrix form,

∂U
∂u

=
(

a0,1
a0,2

)
U −

(
a1,1 a1,2
a2,1 a2,2

) (
pv1

pv2

)
(2)

where ∂U
∂u is a 2×3 matrix with row i as the vector ∂U

∂vi
and pv1

and pv2
are the derivatives

of the medial sheet p wrt parameters v1 and v2. In these equations, the derivative of U
is decomposed by a generally non-orthogonal projection along the spoke direction U to
the tangent plane of the medial sheet spanned by pv1

and pv2
.

Let Au =

�
a0,1

a0,2

�
and Srad =

�
a1,1 a2,1

a1,2 a2,2

�
. Srad is called the radial shape operator.

The radial shape operator is a 2 × 2 matrix and in general not self-adjoint.
Then (2)⇒

∂U
∂u

= AuU − ST
rad

(
pv1

pv2

)
(3)

U(u) is of unit length, ∂U
∂u · UT =

�
0
0

�
and U · UT = 1, so by [5]-Sec.2
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Au = ST
rad

(
pv1

pv2

)
UT (4)

Substituting (4) into (3) yields the means of computing Srad given ∂U
∂u , U and

�
pv1

pv2

�
.

That is, Srad depends on the spoke direction U, and the derivatives of U and p.
Furthermore, the derivative of S = rU can be expressed using rSrad and elementary

linear algebra [12]-Ch.3. An explicit matrix expression for rSrad is obtained as follows.

∂S
∂u

=
∂(rU)

∂u
= r

∂U
∂u

+
(

rv1

rv2

)
U (5)

Substituting (3) and (4) into (5) yields

∂S
∂u

= rST
rad

(
pv1

pv2

)
(UT U − I) +

(
rv1

rv2

)
U (6)

The spokes being orthogonal to the boundary formed by their envelope requires [5]

that rv1/v2 = −pv1/v2
UT . Let Q =

�
pv1

pv2

�
(UT U − I) be a 2 × 3 matrix. Then

rSrad =
((

∂S
∂u +

(
pv1

UT

pv2
UT

)
U

)
QT (QQT )−1

)T

(7)

(7) shows how to compute rSrad given the derivatives of p, U and S wrt (v1, v2).
Analogously with calling the eigenvalues and eigenvectors of the shape operator at

a surface point the principal curvatures and principal directions, Damon named the
eigenvalues of the radial shape operator Srad the principal radial curvatures κri, i =

1, 2, and he named the eigenvectors the principal radial directions [5].
Considering a local radial flow from the medial sheet p along one of the two spokes

S to the implied boundary as ϕ(p, t) = p + tS, t ∈ [0, 1]. ϕ can be generalized to a
global radial flow via the doubled-sided spoke field on the medial sheet. The spoke field
is legal if and only if the Jacobian matrix of the global radial flow ϕ is never singular.
This implies that for a legal spoke field, i.e., one free of any intersections among the
spokes, it has to fulfill a legality condition [5]:

λri < 1, where λri = rκri, for all positive real eigenvalues λri,i=1,2 of rSrad. (8)

This relatively simple legality condition can be converted into a geometric constraint
in our training process, which allows direct control on the legality of the model interior
and implied boundary. We will talk about our training process in general and then come
back to how to use this legality condition explicitly in the training.

3 Method

3.1 Binary Training

As described in the introduction, the binary training starts with a fitting process. The
task for binary fitting is to find the best member of the shape space for each binary
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training image. Members of the shape space are parametric models, M, with implied
surfaces Ω. Training images, I, are expert binary segmentations of 3D patient data, each
with boundary voxels B. We want to find the best M for a given I: arg minM Fobj(M|I).
The objective function Fobj(M|I) is the sum of two parts: the data match measures the
fit of M to data including the image I and image landmarks, and the geometric penalty
measures the geometric appropriateness of M. The data match has two terms, the image
match term Fimg and the landmark match term Film.

3.2 Data Match

Image Match. Fimg enforces that the surface implied by model M is in accordance
with the boundary voxels B, in the binary image. We define the image match as an
integral over B of the minimum distance to the implied model surface Ω as the follows.

Fimg(M, I) ∝
∑

bi∈B(I)

min
Ω

(d2(bi, Ω(M))) (9)

In our current implementation, Ω is generated via a modified Catmull-Clark algo-
rithm with additional normal constraints [14]. Ideally, we want to measure the distance
of the label boundary surface from the model, d2(B, Ω). However, this is computation-
ally expensive given finely sampled subdivision surfaces required for accurate matches
and the large number of candidate surfaces generated during optimization.

Furthermore, we note that when B and Ω are very close, the distance function is
nearly symmetric, |d(B, Ω)−d(Ω, B)| < ε except when in a neighborhood the normals
of B and Ω strongly differ. So we simplify by approximating our ideal function with
the more tractable d(Ω, B).

In implementation, we generate a single space filling lookup table for distance from
the label boundary by Danielsson’s algorithm [6]. Trilinear interpolation gives a very
fast measure of the distance at any point in space to the closest boundary point on
B. Then we let d(ωi, B) be the lookup of the position of ωi in the distance map and
d(Ω, B) =

∑
ωi∈Ω d(ωi, B).

At a boundary location where the surface normal differs from the distance gradi-
ent, i.e. the normal to Ω, by more than a certain threshold, d(ωi, B) is replaced by the
distance along the surface normal to the nearest binary boundary location on B.

Thin object regions also pose a challenge for the image match term. An advantage of
the m-rep parameterization is that the medial skeleton can be thought of as the limiting
case of a morphological erosion. This allows us to segment very thin object, the image
of which is less than a voxel in thickness. We fit an initially dilated model to a dilation
of the initial binary labels in the training image, and then we contract the model surface
by the same amount via an inverse scaling of the spoke length (radius) parameter.

Landmark Match. Film allows for identified explicit feature correspondences. An
expert may identify a few anatomically important and easily identifiable landmarks in
the training image population, and we penalize the distance from a medially specified
point on the model to these landmarks images. Each image landmark LIi identified in
I has a real tolerance value φi that reciprocally weights the associated distance to the
specified model point.
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In detail, landmarks LM in an m-rep model M are identified as spoke ends of medial
atoms. Corresponding image landmarks in the image data I are identified as points in
image volumetric space. In our implementation, the Euclidean squared distance from
the corresponding spoke ends to the image points is computed and summed, weighted
by individual confidence factors 1/φ2

i :

Film(M, I) ∝
∑

LMi∈LM

1
φ2

i

d2(LMi, LIi) (10)

3.3 Geometry Penalty

Besides the measure of the dissimilarity between the model and the image data, we also
put geometric constraint on the shapes to measure the appropriateness of M.

The geometric penalty typically penalizes parameterizations that lead to irregular
coverage of the boundary implied by M, via the irregularity penalty Freg . We argue
that it should also include a term to penalize illegality of the interior and boundary
implied by M, which will be detailed in Sec. 3.4.

Irregularity Penalty. The irregularity penalty Freg of a discrete structure, such as a
discrete m-rep may reasonably measure the deviation of every atom from the average
of its symmetrically placed neighbors. This term penalizes non-uniform spacing and
changes in spoke length and direction of medial atoms. It contributes to proper object
geometry and to correspondence across the training cases. For each medial atom mi,
the regularity is calculated as the squared Riemannian distance between mi and the
Fréchet mean of its neighboring atoms N(mi), where the Fréchet mean is defined as
FMean({oi}) = arg minm

∑
i d2(m, oi) [9]. The penalties are then accumulated for

all the medial atoms of the object:

Freg(M) ∝
n∑

i=1

d2(mi, FMean(N(mi))) (11)

3.4 Incorporation of rSrad into Fobj as a Geometric Penalty

As described in Sec. 2.2, a fulfilled legality condition guarantees there is no local self-
intersection or creases in a medial spoke field. In order to use the condition as a geomet-
ric penalty on a discrete m-rep, we need to calculate the rSrad matrix and its eigenvalues
λri, i = 1, 2 first, and design a function Fleg(λri) as the illegality penalty.

Calculating rSrad. According to (7), rSrad can be calculated from the derivatives of
the medial sheet p and spoke S.

We calculate the derivatives of the medial sheet and spoke by the finite differences
between neighboring atoms. rSrad is then calculated by (7). Eigen-decomposition is
applied to the rSrad to get both the eigenvalues λri. Recall that the spoke field is double-
sided on the medial sheet, and thus there are two rSrad matrices and corresponding four
eigenvalues for each medial atom.



758 Q. Han et al.

Fig. 2. Left: gradual formation of a self-intersection on a surface portion, rendered by the maxi-
mal λr of corresponding spokes to surface points. Blue/red means legal(λr ≤ 0)/illegal(λr ≥ 1)
and any intermediate color shows the tendency for corresponding surface points to become ille-
gal; Right: a sample illegality function fleg as a cubic Hermite curve.

Fig. 2-Left shows a visualization of λr on the implied boundary of an m-rep. λr

serves as a distinct indicator of local shape illegalities. Next we show the design of a
penalty function on λr that will be used in the illegality penalty.

Illegality Penalty. Recall that in (8), legality holds iff λri < 1 for all real eigenval-
ues of rSrad. Theoretically it is a binary condition that the sign of λri − 1 determines
the legality of the implied boundary. However, in practice smaller λri desirably leads
to smoother surface and binary fit. In order to incorporate this into the objective func-
tion Fobj(M|I) as a penalty term, we define a smooth function fleg(λri) that has the
following properties.

1. Strictly monotonically increasing;
2. Does not penalize negative λri;
3. Increasingly penalizes when λri > 0 approaches or passes 1.

Ideally fleg should approach ∞ when λri approaches 1. In practice we choose fleg

to be smooth at λri ∈ [1, ∞] in order to simplify the gradient-based optimizations on
the objective function. We use a cubic Hermite curve to define fleg with the luxury
of freely picking the function slopes at desired control points, which in our case are
λri = 0, 1. A cubic Hermite curve is C2 continuous.

A sample fleg is shown in Fig. 2-Right. The penalties of all n atoms’ λri in an m-
rep M are then summed up and combined into the objective function Fobj(M|I) as an
explicit illegality penalty Fleg for training.

Fleg(M) ∝
∑

i∈[1,4];j∈[1,n]

fleg(λ(mj)ri) (12)

The objective function for binary training is then defined as

Fobj(M|I) = αFimg(M, I) + βFilm(M, I) + γFreg(M) + δFleg(M) (13)

where α, β, γ, δ are the parameters controlling the relative weights of the penalty terms.
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As a normalization, the binary image I is uniformly scaled into a unit cube before the
fitting process, and thus the calculated values of the four penalty terms are unitless. The
binary fitting starts with a gross alignment step typically via a similarity transformation
implied by the moments of the model and binary volumetric image, followed by an
optimization on the objective function over m-rep parameters.

After fitting the deformable template into all binary images, the shape statistics are
calculated by the Principal Geodesic Analysis (PGA) [9] on the fit models. The fit
models are mapped back to their corresponding grayscale images, which are divided
into regions using model coordinates provided by m-reps. Intensity histograms are then
collected and converted into Regional Intensity Quantile Functions (RIQFs) [2]. PCA
is applied to the RIQFs to form the appearance statistics. The PGA shape statistics and
the RIQFs appearance statistics form the trained statistics that are used in applications
such as segmentation or shape discrimination.

This paper focuses on image segmentation. We show some training and segmentation
results based on the methods we proposed, using both synthetic and real world data. The
synthetic binary images are generated by warping a standard ellipsoid by diffeomorphic
deformations, and the real world data are male pelvic CT images. The next section starts
by describing the generation of the synthetic data and ends with results of training on
both synthetic and real world data and segmentations on male pelvis CT images of
prostates and bladders.

4 Results

Adding an illegality penalty has led to better model fits hence to better statistics on
geometry and intensity patterns. Our experience is that this led to considerably better
segmentation results, indeed ones so good that on bladder and prostate segmentation
from CT images the computer results compared to the manual segmentations by the
human who did the training were closer than another human’s manual segmentations
were to the trainer’s.

4.1 Synthetic Data

We applied a diffeomorphic deformation to the ambient space R
3 in order to gener-

ate the synthetic ellipsoid models. Given the implicit form for the original ellipsoid
x2

a2 + y2

b2 + z2

c2 ≤ 1, the ambient diffeomorphic deformation is defined as: x′ = x;
y′ = (y cos(ρtwistx) − z sin(ρtwistx))eρtaperx; z′ = (y sin(ρtwistx) + z cos(ρtwistx))
eρtaperx + ρbendx

2, where ρbend, ρtwist, ρtaper are three independent normally-
distributed variables that control the three types of deformations: bending, twisting and
tapering, as shown in Fig. 3-Left. The standard ellipsoid gives an initial binary volumet-
ric image to start with. By sampling three normal distributions we get a set of the three
values. We then apply the deformation based on each set of {ρbend, ρtwist, ρtaper} to
the initial binary image and get a warped binary image. By this means we get a set of
150 sample binary images of warped ellipsoids.
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Fig. 3. Left: warped ellipsoids by three deformations of bending, twisting and tapering. Each
deformation is shown as -2λ/0/+2λ away from the mean; Right: fitting results of 150 sample
images shown as the average surface distances from model to binary boundary.

For each sampled binary image, landmarks are also picked automatically as the four
extreme points on the middle section of the ellipsoid boundary, plus two vertices at the
two warped tips. A template model was generated by sampling the medial axis of the
standard ellipsoid. The template was then fit into all the sample binary images using
our binary fitting with the geometric illegality penalty. In this study we only measure
the quality of the binary fit in term of the average surface distance between model and
binary boundaries. Since the synthetic binary images are generated independently from
our medial representation, this study serves as a consistency test on our fitting method.
The fit results in Fig. 3-Right show that the m-rep surface is on the average, over the
boundary, closer than one voxel from the binary boundaries as the truth, while the three
axes (a, b, c) of the original ellipsoid are approximately (50, 30, 23) voxels in the binary
image. Furthermore in some test cases, our proper training shows more robustness by
providing good fit shapes that we failed to get without the illegality penalty. Next on
real world data, we will show both training and segmentation results.

4.2 Real World Data

We used CT images (1 × 1 × 3mm) of prostates and bladders from 5 patients (80
images) as the real world test data. Each patient has from 13-18 images from multiple
days. For each patient, we successively left each day out, trained on all remaining days
using both our proper training method and the training without legality constraints, and
segmented the left-out day image using the trained shape and appearance statistics from
both training methods from all other days. The results show that the trained shapes not
only have smoother surfaces (Fig. 4-Left) but also fit better (Fig. 4-Right) into the binary
images. The robustness that our proper training process provides allows us to get good
fits even from the images that we failed to fit without the legality constraint.

Sorted statistics over all 80 images are given in Fig. 4-Right. For comparison, m-rep
fits to humans average 93%, and the average agreement between two humans’ segmen-
tations of 16 prostates is 81% volume overlap and 1.9mm average closest point surface
separation. For the majority of cases, the segmented results for both the bladder and
prostate were judged qualitatively good.
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Fig. 4. Left: sample trained shapes from training without/with legality constraints, shown in the
left/right column; Right: sorted measures (volume overlapping as Dice similarity coefficients [8]
and average surface distance in mm) comparing m-rep segmentations (circle) and trained m-reps
(triangle) to human segmentations, using training methods without (light color) and with (dark
color) illegality penalty.

5 Conclusion and Future Work

The results in Fig. 4 suggest that the segmentations results based on our proper training
process are improved from the results based on training without illegality penalty. Our
training process incorporated with the legality constraint helps us to get proper shape
and appearance statistics and lead to segmentation results that are as good as human
segmentations. This shows that our method is not only mathematically sound but also
proves in practice to improve segmentation results.

In the current implementation, we use adapted Catmull-Clark subdivision to generate
the implied boundary used in the training, and legality constraints are applied to sample
medial atom spokes. A medial spoke interpolation method [10] is also being adopted to
generate both a smooth spoke field and implied boundary, which can further improve
the legality of the interior and boundary of trained shapes. We are also working on
extending the same framework to train models for anatomical objects with multiple
parts, such as livers and hearts. Application of the properly trained shape statistics in
methods finding significant differences between classes is in progress.
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Abstract. The main function of the respiratory system is gas exchange.
Since many disease or injury conditions can cause biomechanical or mate-
rial property changes that can alter lung function, there is a great interest
in measuring regional lung ventilation. We describe a registration-based
technique for estimating local lung expansion from multiple respiratory-
gated CT images of the thorax. The degree of regional lung expansion is
measured using the Jacobian of the registration displacement field. We
compare lung expansion estimated across five pressure changes to a xenon
CT based measure of specific ventilation, and have shown good agreement
(linear regression, r2 = 0.89 during gas wash-in) in one animal.

1 Introduction

The main function of the respiratory system is gas exchange. Regional ventilation
depends on the mechanical relationships between the lungs, rib cage, diaphragm,
and abdomen, which work together to generate expansile forces. Since many dis-
ease or injury conditions can change lung material properties, lung mechanics,
and lung function, it is useful to understand the both the global and local func-
tional behavior of lungs.

Attempts have been made to measure regional ventilation directly and in-
directly with a variety of invasive techniques and with radioisotope imaging
[1,2,3,4,5], but these methods have been greatly limited by invasiveness, poor
spatial and temporal resolution, qualitative nature, and/or complexity.

Xenon-enhanced CT (Xe-CT) is a non-invasive method for the measurement
regional pulmonary ventilation. With Xe-CT, radiodense, non-radioactive gas
xenon gas is inhaled and exhaled during imaging, and local ventilation time
constants are calculated by observing the gas wash-in and wash-out rates on
serial CT images [6,7]. Xenon gas provides enhancement on the CT proportional
to the concentration of xenon in the region being imaged; enhancements as much
as 150 to 200 Hounsfield units (HU) are possible with high concentrations of
xenon [7]. Xe-CT is not without shortcomings, however. Xe-CT requires the use
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of expensive xenon gas and the associated hardware to control delivery of the gas
and harvest the gas from expired air for recycling. In addition, it is known that
xenon gas has a strong anesthetic effect that must be carefully monitored [6].
Finally, Xe-CT imaging protocols require high temporal resolution imaging, so
typically axial coverage is limited to just a few slices at a time. Nonetheless,
recent work with the Xe-CT technique has re-established the interest in these
methods for measuring regional ventilation. When combined with the unique
capability of CT to describe lung anatomic detail, Xe-CT can provide detailed
information on lung structure and respiratory function [6,7].

Imaging has long been used study lung mechanics, and some investigators
have studied the linkage between estimates of regional lung expansion and local
lung ventilation [8,9,10,11,12]. Gee et al. have applied serial magnetic resonance
imaging to the problem of studying lung mechanics. Using static breath-hold
imaging they acquired a single sagittal cross-section of the lung at different
inflations [10]. Using non-linear image registration, they estimated a dense dis-
placement field from one image to the other; from the displacement field they
computed regional lung strain. Guerrero et al. use two CT images, acquired at
different lung inflations, and optical flow image registration to estimate regional
ventilation to identify functioning vs. non-functioning lung tissue for radiother-
apy treatment planning [11,12]. While they were able to show a close correlation
with global measurements of lung ventilation, their experimental methods did
not allow them to compare local estimates of lung expansion with regional lung
ventilation.

We describe a technique that uses multiple respiratory-gated CT images of
the lung acquired at different levels of inflation, along with 3D image registra-
tion, to make local estimates of lung tissue expansion. We compare these lung
expansion estimates to Xe-CT derived measures of regional ventilation to vali-
date our measurements and establish their physiological significance. The ability
to estimate regional ventilation maps for the entire lung from quickly and easily
obtained respiratory-gated images is a significant contribution to functional lung
imaging because of the potential increase in resolution, and large reductions in
imaging time, radiation, and contrast agent exposure.

2 Methods

Figure 1 shows a block diagram of the entire process. Two or more respiratory-
gated data sets are gathered at different points in the respiratory cycle, reflecting
the state of the lung at two different pressures (and therefore, volumes). 3D image
registration is used to create a voxel-by-voxel displacement map that shows the
motion of the lung tissue as a function of respiratory state. The Jacobian of
the displacement field is calculated for each voxel in the lung and is used to
represent local tissue expansion. This index of tissue expansion is compared to
Xe-CT based measures of lung ventilation.
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Fig. 1. Multiple volumetric CT images (in this case images P0 and P5) are acquired at
two different points in the respiratory cycle and analyzed to compute a voxel-by-voxel
transformation from one image to another. The Jacobian of the transformation is used
to estimate regional lung expansion. Xenon-enhanced CT imaging is used to estimate
local time constants associated with ventilation. We compare the registration-derived
measure of lung expansion with the xenon-based estimate of regional ventilation.

2.1 Data Sets and Image Acquisition

Appropriate animal ethics approval was obtained for these protocols and the
study adhered to NIH guidelines for animal experimentation. One adult male
42 kg sheep was used for these experiments. All images were acquired with the
animal in the supine orientation on a Siemens Sensation 64 multi-detector CT
scanner (MDCT) (Siemens Medical Solutions; Malverne, PA). The animal was
anesthetized and mechanically ventilated during the experiments.

Respiratory-Gated Volumetric CT: Volumetric CT scans covering the tho-
rax were acquired at 0, 5, 10, 15, 20, and 25 cm H2O (herein denoted as the
P0, P5, P10, P15, P20, and P25 images) airway pressures with the animal held
apneic. The scanning protocol used a tube current of 100 mAs, a tube voltage
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120 kV, slice collimation of 1 mm, an effective slice thickness of 0.65 mm, a slice
separation of 0.5 mm, a pitch of 1, a 512 by 512 reconstruction matrix, and a field
of view selected to fit the lung field of interest. All of the images are acquired
without moving the animal between scans, so after acquisition the data sets are
almost in rigid alignment.

Xenon CT: Six axial locations for Xe-CT studies are selected from the whole
lung volumetric scan performed near end-expiration. Images are acquired with
the scanner set in ventilation triggering mode, typically using 80 keV energy (for
higher Xe signal enhancement), 120 mAs tube current, a 360◦ rotation, a 0.33
sec scan time, a 512 by 512 reconstruction matrix, and a field of view adjusted
to fit the lung field of interest. The Xe-CT slice collimation is approximately 3
mm thick, or about six times as thick as the volumetric CT data. The six xenon
slices give approximately 1.8 cm of coverage along the axial direction. Respira-
tory gating during image acquisition is achieved by replacing the standard ECG
gating signal with a trigger signal from a LabView program. The program was
set to trigger the scanner at end inspiratory and/or end expiratory points during
the respiratory cycle. A respiratory tidal volume of 8 cc/kg (336 ml for 42 kg)
was used for the Xe-CT acquisition.

The image acquisition sequence is as follows. Acquisition starts and images
are gathered as the animal breathes six to eight breaths of room air. Next, the
xenon delivery system is turned on and approximately 40 breaths of pure Xe
are delivered while imaging, and then the air source is switched back to room
air for another 40 breaths. Thus, axial images are acquired for approximately 90
breaths as the xenon gas washes in and out of the lungs.

2.2 Image Registration

The volumetric images are registered pairwise according to airway pressure, so
that we register P0 to P5, P5 to P10, etc., up to P20 to P25, resulting in 5
pairs of registered images. In this section we shall refer to the images under
consideration as I0 and I1, where I0 is the image from the image pair acquired
at the lower pressure (i.e., P0 from the pair P0–P5) and I1 refers to the image
acquired at the higher pressure (i.e., P5).

The I0 and I1 volumetric images are registered using an intensity-based in-
verse consistent image registration algorithm [13]. In this approach, the forward
and reverse transformations between the two images are jointly estimated sub-
ject to the constraints that minimize the inverse consistency error, the intensity
mismatch error, and the smoothness of the image transformation function. No
explicit lung region segmentation is required prior to registration, however, we
do perform a rigid image alignment based on the location of the branch point of
the trachea (the carina) and the locations of the endpoints of the left and right
mainstem bronchi.
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The inverse consistent intensity registration is accomplished by minimizing
this cost function:

C = CSIM (I0 ◦ h, I1) + CSIM (I1 ◦ g, I0) + (1)
CICC(u, w̃) + CICC(w, ũ) +
CREG(u) + CREG(w),

where CSIM , CICC , and CREG are cost functions defined below. The functions
u, w, ũ, w̃ are voxel displacement fields and are related to the forward and reverse
transformations by the equations: h(x) = x + u(x), g(x) = x + w(x), h−1(x) =
x + ũ(x), g−1(x) = x + w̃(x).

The forward transformation h is used to deform the image I0 into the shape
of the image I1, and the reverse transformation g is used to deform the shape
of I1 into that of I0. The deformed template and target images are denoted by
(I0 ◦ h) and (I1 ◦ g), respectively.

The CSIM term of the cost function in equation 1 defines the symmetric in-
tensity similarity. This term is designed to minimize the squared error intensity
differences between the images. The CICC term is the inverse consistency con-
straint or inverse consistency error cost and is minimized when the forward and
reverse transformations are inverses of each other. The CREG term is used to
regularize the forward and reverse displacement fields. This term is used to force
the displacement fields to be smooth and continuous.

When the registration process is complete, the displacement fields u and w
(and ũ and w̃) are voxel-by-voxel displacements between images I0 and image
I1 that can be used to track arbitrary regions of interest across the portion of
the respiratory cycle represented by the transition from I0 to I1.

2.3 Xenon CT Ventilation Analysis

Prior to Xe-CT data analysis, the lung region was semi-automatically defined
in the Xe-CT data by tracing the strong gradient around the lung boundary
(see Figure 3a for an example). After lung segmentation, 8 × 8 pixel regions of
interest (ROIs) were defined in the lung region on each 2D slice.

The Xe-CT times series data shows an exponential rise and fall in lung den-
sity during the wash-in and wash-out phases of image acquisition. To quantify
regional ventilation, a single-compartment exponential model is fit to the rise
and decay portions of the data using a least-squares fit. For each ROI to be an-
alyzed, the mean region density, D(t), is calculated versus time (or equivalently,
image number). For the wash-in phase, the compartment model gives [6]:

D(t) =
{

D0 0 ≤ t < t0

D0 + (Df − D0)(1 − e−
t−t0

τ ) t ≥ t0,
(2)

where D0 is the baseline density in the ROI prior to switching to xenon gas, Df is
the density that would be observed if xenon was inspired until equilibrium, t0 is
the start time of the switchover from room air to xenon, and τ is the model time
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Fig. 2. Wash-in and wash-out behaviors predicted by compartment model for t0 = 5
seconds, τ = 10 seconds, D0 = −620 HU, and Df = −540 HU

constant. Thus, using this model, the Df −D0 term represents the enhancement
due to the inspired xenon. The model gives a similar expression for the wash-out
phase:

D(t) =
{

Df 0 ≤ t < t0

D0 + (Df − D0)e−
t−t0

τ t ≥ t0,
(3)

where for the wash-out phase t0 denotes that time that of switchover from xenon
back to room air. Figure 2 shows the density–time variation predicted by the
model. The time constants of the rising and falling phases curves may be fit-
ted separately or may be forced to be equal. In our analysis, the wash-in and
wash-out phases of the cycle were analyzed separately, resulting in two different
estimates of τ . To reduce aberrations in the time series data due to the ROIs
overlapping with large blood vessels or regions of atelectasis (see for example, the
bottom left side of the lungs shown in Figure 3a), we eliminated from consider-
ation any ROI that had more than 40% of its pixels above -300 HU. Time series
data was measured and analyzed for the remaining ROIs. Specific ventilation
(sV, ventilation per unit lung air volume in min−1) for each ROI was calculated
as the inverse of the time constant τ .

Figures 3a–b shows screen shots from the software tool used to analyze the Xe-
CT data [14]. This tool facilitates lung segmentation, region of interest specifica-
tion, and allows control over the curve fitting parameters during the exponential
fits.

2.4 Assessment of Image Registration Accuracy

To assess the accuracy of the image registration, 13 manually-defined anatomic
landmarks were manually selected and matched between the all five pairs of
images for one animal. These landmarks were selected as recognizable branch-
points of the vascular and airway branches. None of the registration landmarks
were used for this accuracy assessment. Care was taken to obtain a sampling of
landmarks that covered the apex, base, ventral, and dorsal regions of the lung.
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(a) (b)

Fig. 3. Time series data from Xe-CT study. (a) shows the Xe-CT image of the lungs,
with the lung boundaries marked in blue and a rectangular region of interest in yellow.
(b) shows the raw time series data for this region of interest (wash-in phase) and the
associated exponential model fit.

For each image pair, the manually-defined landmarks in the higher pressure
image were mapped to the lower pressure image using the transformation de-
termined during the image registration step. The actual landmark position was
compared to the registration-predicted landmark position and the landmark po-
sitioning error was calculated.

2.5 Comparing Lung Expansion to Xe-CT Estimates of sV

Local lung volume change is calculated using the Jacobian of the transformation
that maps image I0 to image I1. Consider the vector displacement function
u(x, y, z) (with x, y, and z components) that transforms a voxel from image
I0 into its corresponding location in image I1, so that the voxel at location
(x, y, z) in image I0 is displaced by a vector function u(x, y, z) to map it to its
corresponding location in image I1. The Jacobian J(x, y, z) of the transformation
u(x, y, z) is

J(x, y, z) =

∣∣∣∣∣∣∣

∂ux(x,y,z)
∂x

∂ux(x,y,z)
∂y

∂ux(x,y,z)
∂z

∂uy(x,y,z)
∂x

∂uy(x,y,z)
∂y

∂uy(x,y,z)
∂z

∂uz(x,y,z)
∂x

∂uz(x,y,z)
∂y

∂uz(x,y,z)
∂z

∣∣∣∣∣∣∣
,

where ux(x, y, z) is the x component of u(x, y, z), uy(x, y, z) is the y component
of u(x, y, z), and uz(x, y, z) is the z component of u(x, y, z). The displacement
field is analyzed in the Eulerian framework. The Jacobian measures the differen-
tial expansion at position (x, y, z) in the image. If the Jacobian is unity, there is
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Table 1. Registration accuracy as assessed by using the image registration to predict
the motion of manually-defined landmarks across lung inflation. Registration pair 0–5
indicates that the registration was performed on the P0 and P5 pair of images.

Registration Mean landmark Maximum landmark
Pair (cm H2O) error (mm) error (mm)

0−5 0.98 ± 0.41 1.87
5−10 0.55 ± 0.23 1.15

10−15 0.42 ± 0.20 0.93
15−20 0.30 ± 0.19 0.85
20−25 0.40 ± 0.17 0.70

no expansion or contraction in the function u(x, y, z) at location (x, y, z) in I0.
If the Jacobian is greater than one, there is local tissue contraction; if the Jaco-
bian is less than one, there is local tissue expansion. Note that regional specific
volume change can be estimated from the Jacobian as J(x, y, z) − 1.

To compare the Xe-CT ventilation measurements to the Jacobian from the
image registration transformation, we compute the mean and standard deviation
of each parameter as a function of lung height (y coordinate) by averaging over
all x and z in the lung regions. The most dependent lung region (region closest
to the direction of gravity) is defined y = 0 cm. A scatter plot showing mean sV
and mean Jacobian is created and a linear regression line is fit to this data.

3 Results

3.1 Registration Accuracy

Table 1 shows the registration accuracy as assessed by predicting the motion of
the 13 manually-defined landmarks across the five pressure pairs. Overall the
registration accuracy is on the order of 0.5 to 1 mm, or about 1 to 2 voxels.

3.2 Lung Expansion and Xe-CT Estimates of sV

Figures 4a–b show color-coded maps of the sV and Jacobian of the registration
transformation at approximately the same anatomic axial location. Figure 6a
shows the average Jacobian vs. lung height for all pressure change pairs. Fig-
ure 6b shows the average sV vs. lung height calculated from the xenon study.
Figure 5 shows sV vs. average Jacobian the P10 to P15 and P5 to P10 pressure
transitions. The figure gives the slope of the regression line equations and r2

values for the linear fits between average sV and the average Jacobian.

4 Discussion

Table 1 shows the registration algorithm accuracy is on the order of 1 or 2 voxels
at the manually-selected validation landmarks. We expect that similar accuracy
would be obtained in between landmarks, but this has not been examined.
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(a) (b)

Fig. 4. Color-coded maps showing (a) wash-in time constant (seconds) and (b) the
Jacobian of the image registration transformation (unitless) for approximately the same
anatomic slice. Note that the color scales are different for (a) and (b). Dark blue regions
on the time constant image (a) are regions that have high ventilation while green and
yellow regions have lower ventilation; Bright red and orange regions on the Jacobian
image (b) have large lung deformation. while blue and purple regions are deforming
less.

The results show good agreement between the Xe-CT derived specific venti-
lation and the registration-based estimates of local lung expansion. Figure 5a
shows the sV-Jacobian scatter plot for the pressure change pair P10 to P15. For
this case, the r2 value for the linear regression is 0.89 for the wash-in phase and
0.82 for the wash-out phase. This pressure change pair gave highest correlation;
the P5 to P10 pressure change pair is shown in Figure 5b for comparison. r2

values as low as 0.5 were obtained for the highest pressure change pairs. Overall,
the regression analysis shows a relationship between the average sV and aver-
age Jacobian exists at the lowest pressure change pairs, but that relationship is
diminished as the lung volume increases.

Figure 6 shows that the sV measurements are have a large coefficient of varia-
tion (almost 50%) during the wash-in phase. The reasons for this are unclear; it
could be that the curve-fitting and ROI processing is noisy, or it could be an in-
dication that the underlying physiology is not homogeneous. In comparison, the
coefficient of variation for the Jacobian measurements is on the order of 5% to
10%, but this smoothness might be artificially induced by the model constraints
used during the registration process.

While the correlations are not perfect, these data are confirmatory of known
physiology in that we expect a greater degree of ventilation in the dependent
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Fig. 5. Scatter plot of average sV and average Jacobian for (a) P10 to P15 pressure
change pair and (b) P5 to P10 pressure change pair

region of the lung (i.e., the region that is closest to the direction of gravity).
Figures 4 and 6 demonstrate ventral-dorsal gradients in both the ventilation
time constants (inverse of sV) and in the Jacobian. Regions with high ventilation
are regions that are receiving more gas during respiration than regions with low
ventilation, and should have a correspondingly higher rate of expansion. This
increased deformation shows up as smaller value of the Jacobian (indicating
a bigger deformation to transition from a higher lung volume to a lower lung
volume). As expected, Figure 6a shows that the largest lung deformation happens
at the smallest lung volumes; i.e., the lung expands the most at low lung volumes
(pressure), so the P0 to P5 transformation shows the most expansion (smallest
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Fig. 6. (a) Average Jacobian values for all pressure pairs and (b) average sV vs. lung
height.

Jacobian values), while the P20 to P25 transformation shows the least expansion
(Jacobian values closest to unity).

It is not possible to generalize from these results using a single subject to a
population of subjects, but if this proof of concept were to be experimentally
confirmed in a larger population, it would be a very important result. Xe-CT
is a fairly expensive technique that requires special equipment, has fairly low
resolution, and has very limited axial coverage of the lung so that multiple scans
with increased radiation dose are required to cover the entire lung. A complete
Xe-CT of the human lung is probably impractical due to time, cost, and radiation
dose considerations. However, if a registration-based analysis using just two easy-
to-acquire volumetric images of the lung acquired at different lung volumes could
be registered, a high-resolution map of lung expansion may serve as a surrogate
for local specific ventilation.

5 Summary and Conclusions

We have described a registration-based technique for estimating local lung ex-
pansion from multiple respiratory-gated CT images of the thorax. The degree of
lung expansion is measured using the Jacobian of the registration displacement
field. We have compared lung expansion estimated across five pressure changes
to a xenon CT based measure of specific ventilation, and have shown good agree-
ment in one animal. Additional studies are needed to characterize the level of
agreement between the sV and Jacobian across a population, to estimate the
confidence intervals for the lung expansion index, and to determine the optimal
respiratory-gated scanning protocol for image acquisition.
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