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CHAPTER 1

Underlying storage engine - Description

The first use case that will be examined is from Omneo a division of Camstar a Sie‐
mens Company. Omneo is a big data analytics platform that assimilates data from
disparate sources to provide a 360-degree view of product quality data across the sup‐
ply chain. Manufacturers of all sizes are confronted with massive amounts of data,
and manufacturing data sets comprise the key attributes of Big Data. These data sets
are high volume, rapidly generated and come in many varieties. When tracking prod‐
ucts built through a complex, multi-tier supply chain, the challenges are exacerbated
by the lack of a centralized data store and no unified data format. Omneo ingests data
from all areas of the supply chain, such as manufacturing, test, assembly, repair, ser‐
vice, and field.

Omneo offers this system to their end customer as a Software as a Service(SaaS)
model. This platform must provide users the ability to investigate product quality
issues, analyze contributing factors and identify items for containment and control.
The ability to offer a rapid turn-around for early detection and correction of prob‐
lems can result in greatly reduced costs and significantly improved consumer brand
confidence. Omneo must start by building a unified data model that links the data
sources so users can explore the factors that impact product quality throughout the
product lifecycle. Furthermore, Omneo has to provide a centralized data store, and
applications that facilitate the analysis of all product quality data in a single, unified
environment.

Omneo evaluated numerous NoSQL systems and other data platforms. Omneo’s par‐
ent company Camstar has been in business for over 30 years, giving them a well
established IT operations system. When Omneo was created they were given carte
blanche to build their own system. Knowing the daunting task of handling all of the
data at hand, they decided against building a traditional EDW. They also looked at
other big data technologies such as Cassandra and MongoDB, but ended up selecting

5



Hadoop as the foundation for the Omneo platform. The primary reason for the deci‐
sion came down to ecosystem or lack thereof from the other technologies. The fully
integrated ecosystem that Hadoop offered with MapReduce, HBase, Solr, and Impala
allowed Omneo to handle the data in a single platform without the need to migrate
the data between disparate systems.

The solution must be able to handle numerous products and customer’s data being
ingested and processed on the same cluster. This can make handling data volumes
and sizing quite precarious as one customer could provide eighty to ninety percent of
the total records. As of writing this Omneo hosts multiple customers on the same
cluster for a rough record count of +6 billion records stored in ~50 nodes. The total
combined set of data in the HDFS filesystem is approximately 100TBs. This is impor‐
tant to note as we get into the overall architecture of the system we will note where
duplicating data is mandatory and where savings can be introduced by using a uni‐
fied data format.

Omneo has fully embraced the Hadoop ecosystem for their overall architecture. It
would only make sense for the architecture to also takes advantage of Hadoop’s Avro
data serialization system. Avro is a popular file format for storing data in the Hadoop
world. Avro allows for a schema to be stored with data, making it easier for different
processing systems such as MapReduce, HBase, and Impala/Hive to easily access the
data without serializing and deserializing the data over and over again.

The high level Omneo architecture is shown below:

• Ingest/pre-processing
• Processing/Serving
• User Experience
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Ingest/pre-processing

Figure 1-1. Batch ingest using HDFS API

The ingest/pre-processing phase includes acquiring the flat files, landing them in
HDFS, and converting the files into Avro. As noted in the above diagram, Omneo
currently receives all files in a batch manner. The files arrive in a CSV format or in a
XML file format. The files are loaded into HDFS through the HDFS API. Once the
files are loaded into Hadoop a series of transformations are performed to join the rel‐
evant data sets together. Most of these joins are done based on a primary key in the
data. In the case of electronic manufacturing this is normally a serial number to iden‐
tify the product throughout its lifecycle. These transformations are all handled
through the MapReduce framework. Omneo wanted to provide a graphical interface
for consultants to integrate the data rather than code custom mapReduce. To accom‐
plish this they partnered with Pentaho to expedite time to production. Once the data
has been transformed and joined together it is then serialized into the Avro format.
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Processing/Serving

Figure 1-2. Using Avro for a unified storage format

Once the data has been converted into Avro it is loaded into HBase. Since the data is
already being presented to Omneo in batch, we take advantage of this and use bulk
loads. The data is loaded into a temporary HBase table using the bulk loading tool.
The previously mentioned MapReduce jobs output HFiles that are ready to be
loaded into HBase. The HFiles are loaded through the completebulkload tool. The
completebulkload works by passing in a URL, which the tool uses to locate the files
in HDFS. Next, the bulk load tool will load each file into the relevant region being
served by each RegionServer. Occasionally a region has been split after the HFiles
were created, and the bulk load tool will automatically split the new HFile according
to the correct region boundaries.
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Figure 1-3. Data flowing into HBase

Once the data is loaded into the staging table it is then pushed out into two ofthe
main serving engines Solr and Impala. Omneo is using a staging table to limit the
amount of data read from HBase to feed the other processing engines. The reason
behind using a staging table lies in the HBase key design. One of the cool things
about this HBase use case is the simplicity of the schema design. Normally many
hours will be spent figuring out the best way to build a composite key that will allow
for the most efficient access patterns, and we will discuss composite keys in the later
chapters.

However, in this use case the row key is a simple MD5 hash of the product serial
number. Each column stores an Avro record. The column name contains the unique
ID of the Avro record it stores. The Avro record is a de-normalized data set contain‐
ing all attributes for the record.

After the data is loaded into the staging HBase table, it is then propagated into two
other serving engines. The first serving engine is Cloudera Search(Solr) and the sec‐
ond is Impala. Here is a diagram showcasing the overall load of data into Solr:
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Figure 1-4. Managing full and incremental Solr index updates

The data is loaded into Search through the use of a custom MapReduceIndexerTool.
The default nature of the MapReduceIndexerTool is to work on flat files being read
from HDFS. Given the batch aspect of the Omneo use case, they modified the indexer
tool to read from HBase and write directly into the Solr Collection through the use of
MapReduce. The above diagram illustrates the two flows of the data from HBase into
the Solr Collections. There are two collections in play for each customer, in this case
there is CollectionA(active), CollectionB(backup), and an alias that links to the
“active” Collection. During the incremental index only the current Collection is upda‐
ted from the staging HBase table through the use of the MapReduceIndexerTool. In
the above diagram the HBase staging table is loading into CollectionA and the alias is
pointing to the active Collection (CollectionA). The dual collections with an alias
approach offers the ability to drop all of the documents in a single collection and
reprocess the data without suffering an outage. This gives Omneo the ability to alter
the schema and push it out to production without taking more downtime.

Part two of the above diagram illustrates this action; the MapReduceIndexerTool is re-
indexing the main HBase table into CollectionB while the alias is still pointing to Col‐
lectionA. Once the indexing step complete, the alias will be swapped to point at
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CollectionB and incremental indexing will be pointed at CollectionB until the dataset
needs to be re-indexed again.

This is where the use case really gets interesting. HBase serves two main functions in
the overall architecture. The first one is to handle the MDM(master data manage‐
ment) since it allows updates. In this case, HBase is the system of record that Impala
and Solr use. If there is an issue with the Impala or Solr datasets, they will rebuild
them against the HBase dataset. In HBase attempting to redefine the row key typically
results in having to rebuild the entire dataset. Omneo first attempted to tackle faster
lookups for secondary and tertiary fields by leveraging composite keys. It turns out
the end user likes to change the primary lookups based on the metrics they are look‐
ing at. This is one of the reasons Omneo avoided leveraging composite keys, and used
Solr to add extra indexes to HBase. The second and most important piece is HBase
actually stores all of the records being served to the end user. Lets look at a couple
sample fields from Omneo’s Solr schema.xml:

<schema name="example" version="1.5">
<fields>
   <field name="id" type="string" indexed="true" stored="true" required="true"
                                                           multiValued="false" />
   <field name="rowkey"  type="binary" indexed="false" stored="true"
                                               omitNorms="true" required="true"/>
   <field name="eventid" type="string" indexed="true"  stored="false"
                                               omitNorms="true" required="true"/>
   <field name="docType" type="string" indexed="true" stored="false"
                                                               omitNorms="true"/>
   <field name="partName" type="lowercase" indexed="true" stored="false"
                                                               omitNorms="true"/>
   <field name="partNumber" type="lowercase" indexed="true" stored="false"
                                                               omitNorms="true"/>
…
   <field name="_version_" type="long" indexed="true" stored="true"/>
</fields>

Looking at some of the fields in the schema.xml shown above we can see that Omneo
is only flagging the HBase rowkey and the required Solr fields(id and version) as
stored which will directly write these results to HDFS. The other fields are flagged as
indexed; which will store the data in a special index directory. The index field makes a
field searchable, sortable, and facetable, it is also stored in memory. The stored fields
are fields retrievable through search and persisted to HDFS file system. The typical
records that Omneo ingests can have many columns presents in the data ranging
from 100s to 1000s of columns depending on the product being ingested. For the
purposes of faceting and natural language searching typically only a small subset of
those fields are necessary. The amount of fields indexed will vary per customer and
use cases. This is a very common pattern as the actual data results displayed to the
customer are being served from the application calling scans and multigets from
HBase based on the stored data. Just indexing the fields serves two purposes:
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• All of the data and facets are served out of memory offering tighter and more
predictable SLAs.

• The current state of Solr Cloud on HDFS writes the data to HDFS per shard and
replica. If HDFS replication is set to the default factor of 3, then a shard with two
replicas will have 9 copies of the data on HDFS. This will not normally affect a
Search deployment as memory or CPU is normally the bottleneck before storage,
but it will use more storage.

• Indexing the fields offers lighting fast counts to the overall counts for the indexed
fields. This feature can help to avoid costly SQL or pre-HBase MapReduce based
aggregations

The data is also loaded from HBase into Impala tables from the Avro schemas and
converted into the Parquet file format. Impala is used as Omneo’s data-warehouse for
the end users. The data is populated in the same manner as the Solr data with incre‐
mental updates being loaded from the HBase staging table and full rebuilds being
pulled from the main HBase table. As the data is pulled from the HBase tables it is
denormalized into a handful tables to allow for an access pattern conducive to
Impala. The model used is another portion of the secret sauce of Omneo’s business
model. The model is shown below:
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Figure 1-5. Nah, we can’t share that. Get your own!

User Experience
Normally we do not spend a ton of time looking at the end application as they tend to
be quite different per application, but in this case it is important to discuss how
everything comes together. Combining the different engines together in a stream‐
lined user experience is the big data dream. This is how companies move from play‐
ing around to truly delivering a monumental product.
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Figure 1-6. Overall data flow diagram including the user interaction

The application makes use of all three of the serving engines in a single interface. This
is important for a couple of key reasons. The first is, increased productivity from the
analyst. The analyst no longer has to switch between different UIs, or CLIs. Second,
the analyst is able to use the right tool for the right job. One of the major issues we see
in the field is customers attempting to use one tool to answer all of the questions. By
allowing Solr to serve facets and handle natural language searches, HBase to serve the
full fidelity records, and Impala to handle the aggregations and SQL questions
Omneo is able to offer the analyst a 360 degree view of the data.
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Figure 1-7. Check out this Solr Goodness

Let’s start by looking at the Solr/HBase side of the house. These are the two most
intertwined services of the Omneo application. As mentioned before, Solr stores the
actual HBase Row Key and indexes the vast majority of other fields that the users like
to search and facet against. In this case as the user drills down or adds new facets the
raw records are not served back from Solr, but rather pulled from HBase using a mul‐
tiget of the top 50 records. This allows the analyst to see the full fidelity record being
produced by the facets and searches. The same thing holds true if the analyst wishes
to export the records to a flat file, the application will call a scan of the HBase table
and write out the results for end user.
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Figure 1-8. Leveraging Impala for custom analytics

On the Impala side of the house, also known as Performance Analytics, models are
built and managed to handle SQL like workloads. These are workloads that would
normally be forced into HBase or Solr. Performance Analytics was designed to run a
set of pre-packed application queries that can be run against the data to calculate Key
Performance Indicators(KPIs). The solution does not allow for random free-form
SQL queries to be utilized as long running rogue queries can cause performance deg‐
radation in a multi-tenant application. In the end the users can select the KPIs they
want to look at, and add extra functions to the queries (sums, avg, max, etc).
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CHAPTER 2

Underlying storage engine -
Implementation

In the previous chapter, we described how Omneo uses the different Hadoop technol‐
ogies to implement their use-case. In this chapter we will look in detail at all the dif‐
ferent parts involving HBase. Implementation will not go into each and every detail
but will give you all the required tools and examples to understand what is important
in this phase.

As usual when implementing an HBase project, the first thing we consider is the table
schema which is the most important part of every HBase project. This can sometimes
be easy, like for the current use-case, but can also sometimes require a lot of time. It is
a good practice to always start with this task, keeping in mind how data is received
from your application (write path) and how you will need to retrieve it (read path).
Read and write access patterns will dictate most of the table design.

Table design
Table schema
Table design for the Omneo use-case is pretty easy, but let’s work through the steps so
you can apply a similar approach to your own table schema design. We want both
read and write paths to be efficient. In Omneo’s case, data is received from external
systems in bulk. Therefore, unlike other ingestion patterns where data is inserted one
single value at a time, here it can be processed directly in bulk format and doesn’t
require single random writes or updates based on the key. On the read side, the user
needs to be able to retrieve all the information for a specific sensor very quickly by
searching on any combination of sensor id, event id, date and event type. There is no
way we can design a key to allow all those retrieval criteria to be efficient. We will
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have to rely on an external index which, given all of our criteria, will give us back a
key we will use to query HBase. Given that the key will be retrieved from this external
index and that we don’t have to look-up or scan for it, we can simply use a hash of the
sensor ID, with the column qualifier being the event ID. You can refer to “Generate
Test Data” on page 22 to have a preview of the data format.

Sensors can have very similar IDs, such as 42, 43, 44. However, sensor IDs can also
have a wide range (e.g. 40000-49000). If we use the original sensor ID as the key, we
might encounter hot-spots on specific regions due to the keys’ sequential nature. You
can read more about hot-spotting in ???.

Hashing keys
One option to deal with hotspotting is to simply pre-split the table based on those
different known IDs to make sure they are correctly distributed accross the cluster.
However, what if in the future, distribution of those IDs changes? Then splits might
not be correct anymore, and we might end-up again by hot-spotting some regions. If
today all IDs are between 40xxxx and 49xxxx, regions will be split from the beginning
to 41, 41 to 42, 42 to 43, etc. But if tomorrow a new group of sensors is added with
IDs from 40xxx to 39xxx, they will end up in the first region. Since it is not possible
to forecast what the future IDs will be, we need to find a solution to ensure a good
distribution whatever the IDs will be. When hashing data, even 2 initially close keys
will produce a very different result. From our example above, 42 will produce
50a2fabfdd276f573ff97ace8b11c5f4 as its md5 hash, while 43 will produce
f0287f33eba7192e2a9c6a14f829aa1a. As you can see, unlike the original sensor IDs
42 and 43, sorting those two md5 hashes puts them far from one another. And even if
new IDs are coming, since they are now translated into a hexadecimal value, they will
always be distributed between 0 and F. Using such a hashing approach will ensure a
good distribution of the data across all the regions while given a specific sensor ID,
we still have direct access to its data.

The hash approach can not be used when you need to scan your
data keeping the initial order of the key, as the md5 version of the
key perturbs the original ordering, distributing the rows through‐
out the table.

Column qualifier
Regarding the column qualifier, the event ID will be used. The event ID is a hash
value received from the downstream system, unique for the given event for this spe‐
cific sensor. Each event has a specific type such as “alert”, “warning”, or “RMA”
(Return Merchandise Authorization). At first, we considered using the event type as a
column qualifier. However, a sensor can encounter a single event type multiple times.
Each “warning” a sensor encountered would overwrite the previous “warning”, unless
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we used HBase’s “versions” feature. Using the unique event ID as the column qualifier
allows us to have multiple events with the same type for the same sensor being stored
without having to code extra logic to use HBase’s “versions” feature to retrieve all of a
sensor’s events.

Table parameters
Most HBase table parameters should be considered to improve performance. How‐
ever, only the parameters that apply to this specific use-case are listed in this section.
The list of all the existing parameters for table creation are available in chapter ???.

Compression
The first parameter we examine is the compression algorithm used when writing
table data to disk. HBase writes the data into HFiles in a block format. Each block is
64 KB by default, and is not compressed. Blocks store the data belonging to one
region and column family. A table’s data contains related information and usually has
common pattern. Compressing those blocks can almost always give good results. As
an example, it will be good to compress column families containing logs and cus‐
tomer information. HBase supports multiple compression algorithms: LZO, GZ (for
GZip), SNAPPY and LZ4. Each compression algorithm will have its own pros and
cons. For each algorithm, consider the performance impact of compressing and
decompressing the data versus the compression ratio, i.e. was the data sufficiently
compressed to warrant running the compression algorithm.

Snappy will be very fast in all operations but will have a very low compression ratio,
while GZ will be more resource intensive but will compress better. The algorithm you
will choose depends on your use-case. It is recommended to test a few of them on a
sample dataset to validate compression rate and performance. As an example, a
1.6GB CSV file generates 2.2GB of uncompressed HFiles while from the exact same
dataset it uses only 1.5GB with LZ4. Snappy compressed HFiles for the same dataset
take 1.5GB too. Since read and write latency are important for us, we will use Snappy
for our table. Be aware of the availability of the various compression libraries on vari‐
ous Linux distributions. For example, Debian does not include Snapply libraries by
default. Due to licensing, LZO and LZ4 libraries are usually not bundled with com‐
mon Apache Hadoop distributions, and must be installed separately.
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Keep in mind that compression ratio might vary based on the data
type. Indeed, if you try to compress a text file, it will compress
much better than a PNG image. For example, a 143,976 byte PNG
file will only compress to 143,812 bytes (a 2.3% space saving)
whereas a 143,509 byte XML file can compress as small as 6,284
bytes (a 95.7% space saving!) It is recommended that you test the
different algorithms on your dataset before selecting one. If the
compression ratio is not significant, avoid using compression and
save processor overhead.

Data block encoding
Data block encoding is an HBase feature where keys are encoded and compressed
based on the previous key. One of the encoding options (FAST_DIFF) is to ask HBase
to store only the difference between the current key and the previous one. HBase
stores each cell individually, with its key and value. When a row has many cells, much
space can be consumed by writing the same key for each cell. Therefore activating the
data block encoding can allow important space saving. It is almost always helpful to
activate data block encoding, so if you are not sure, activate the FAST_DIFF encod‐
ing. Since for the current use-case, for a given row, we can have thousands of col‐
umns, we will benefit from this encoding. The current use-case will benefit from this
encoding since a given row can have thousands of columns.

You can refer to ??? for more information.

Bloom filter
Bloom filters are useful in reducing unnecessary IO by skipping input files from
HBase regions. A Bloom filter will tell HBase if a given key might be or is not in a
given file. But it doesn’t mean the key is definitively included in the file.

However, there are certain situations where Bloom filters are not required. For the
current use-case, files are loaded once a day then a major compaction is run on the
table. As a result, there will almost always be only a single file per region. Also, quer‐
ies to the HBase table will be based on results returned by SOLR. This means read
requests will always succeed and return a value. Because of that, the Bloom filter will
always return true and HBase will always open the file. As a result, for this specific
use-case, the Bloom filter will be an overhead and is not required.

Bloom filers will be covered with more details in ???.

Since Bloom filters are activated by default, in this case we will need to explicitly dis‐
able them.
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Pre splitting
Pre-splits are not really table parameters. Pre-splits information is not stored within
the table meta information and is used only at the table creation time. However, this
is so important that we want to talk about it here before you even move to the imple‐
mentation. Pre-splitting a table means asking HBase to split the table into multiple
regions when it is created. HBase comes with different pre-split algorithms described
in ???. The goal of pre-splitting a table is to make sure the initial load will be correctly
distributed across all the regions and will not hotspot a single region. Granted, data
would be distributed over time as region splits occur automatically, but pre-splitting
provides the distribution from the onset.

Implementation
Now that we have decided which parameters we want to set for our table, it’s time to
create it. We will keep all the default parameters except the ones we just talked about.
Run the following command in the HBase shell to create a table called “sensors” with
a single column family and the parameters we discussed above, pre-split into 15
regions. NUMREGIONS and SPLITALGO are the two parameters used to instruct
HBase to pre-split the table.

hbase(main):001:0> create 'sensors', {NUMREGIONS => 15,\
                                      SPLITALGO => 'HexStringSplit'}, \
                                     {NAME => 'v', COMPRESSION => 'SNAPPY',\
                                      BLOOMFILTER => 'NONE',\
                                      DATA_BLOCK_ENCODING => 'FAST_DIFF'}

Please refer to ??? for details of available parameters when creating a table using the
shell and the Java API.

When your table is created, you can see its details using the HBase WebUI interface
or the following shell command:

hbase(main):002:0> describe 'sensors'
Table sensors is ENABLED
sensors
COLUMN FAMILIES DESCRIPTION
{NAME => 'v', DATA_BLOCK_ENCODING => 'FAST_DIFF', BLOOMFILTER => 'NONE',
REPLICATION_SCOPE => '0', VERSIONS => '1', COMPRESSION => 'SNAPPY',
MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => 'FALSE',
BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
1 row(s) in 0.1410 seconds

NUMREGIONS and SPLIALGO parameters are used for the table
creation but are not stored within the meta data of the table. If is
not possible to retrieve this information after the table has been
created.
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As you can see, the parameters we specified are listed in the output, along with the
default table parameters. Default parameters might vary based on the HBase version
you are using. What is important here is to note that BLOOMFILTER,
DATA_BLOCK_ENCODING and COMPRESSION are configured as we asked.

Now that we have our table ready, we can move forward with the data preparation.

Data conversion
Generate Test Data
The next goal is to generate a set of representative test data to run through our pro‐
cess and verify the results. The first thing we will create is some data files with test
values. The goal is to have a dataset to allow you to run the different commands and
programs.

In the examples, you will find a class called CSVGenerator which creates data resem‐
bling the example below:

1b87,58f67b33-5264-456e-938a-9d2e9c5f4db8,ALERT,NE-565,0-0000-000,1,ECEGYFFLQIOV ...
3244,350cee9e-55fc-409d-b389-6780a8af9e76,RETURNED,NE-382,0-0000-000,1,OOQTYQSDT ...
727d,b97df483-f0bd-4f24-8ff3-6988d8eff88c,ALERT,NE-858,0-0000-000,1,MSWOCQXMHWPO ...
53d4,d8c39bf8-6f5f-4311-8ee5-9d3bce3e18d7,RETURNED,NE-881,0-0000-000,1,PMKMWSVPB ...
1fa8,4a0bf5b3-680d-4b87-8d9e-e55f06614ae4,ALERT,NE-523,0-0000-000,1,IYIZSHKAXNRY ...

Each line contains a random sensor id comprised of 4 characters (0 to 65535, repre‐
sented in hexadecimal), then a random event id, document type, part name, part
number, version and a payload formed of random letters (64 to 128 characters long).
To generate a different workload, you can re-run the CSVGenerator code anytime you
want. Subsequent parts of the example code will read this file from the ~/ahae/resour‐
ces/ch09 folder. This class will create files relative to where it’s run, therefore we need
to run the class from the ~/ahae folder. If you want to increase or reduce the size of
the data set, simply update the following line:

for (int index = 0; index < 1000000; index++) {

You can run this data generator directly from Eclipse without any parameter or from
the shell into the ahae folder using the following command:

hbase -classpath ~/ahae/target/ahae.jar com.architecting.ch09.CSVGenerator

This will create a file under called ~/ahae/resources/ch09/omneo.csv.

Create avro schema
Now that we have some data to start with, we need to define an Avro schema that will
reflect the format of the data generated. Based on the search schema provided in the
previous chapter, we will need the following Avro schema:
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{"namespace": "com.architecting.ch09",
 "type": "record",
 "name": "Event",
 "fields": [
     {"name": "id", "type": "string"},
     {"name": "eventid",  "type": "string"},
     {"name": "docType",  "type": "string"},
     {"name": "partName",  "type": "string"},
     {"name": "partNumber",  "type": "string"},
     {"name": "version",  "type": "long"},
     {"name": "payload",  "type": "string"}
 ]
}

You can find the schema in the resources/ch09 directory of the examples under the
name omneo.avsc. Since it has already been compiled and imported into the project,
it is not required to compile it. However, if you want to modify it, you can recompile
it using the following command:

java -jar ~/ahae/lib/avro-tools-1.7.7.jar compile schema omneo.avsc ~/ahae/src/

This creates the file ~/ahae/src/com/architecting/ch09/Event.java containing the
Event object that will be used to store the Event Avro object into HBase.

Implement MapReduce transformation
The first steps of the production process is to parse the received CSV file to generate
HBase HFiles, which will be the input to the next step. They will map the format of
the previously created table.

Our production data will be large files, so we will implement this transformation
using MapReduce to benefit from parallelism. Input of this MR job will be the text file
and the output will be the HFiles. This dictates the way you should configure your
MR job.

Example 2-1. Convert to HFiles example

      Table table = connection.getTable(tableName);

      Job job = Job.getInstance(conf, "ConvertToHFiles: Convert CSV to HFiles");

      HFileOutputFormat2.configureIncrementalLoad(job, table,

                                        connection.getRegionLocator(tableName)); 

      job.setInputFormatClass(TextInputFormat.class); 

      job.setJarByClass(ConvertToHFiles.class); 

      job.setJar("/home/cloudera/ahae/target/ahae.jar"); 

      job.setMapperClass(ConvertToHFilesMapper.class); 

      job.setMapOutputKeyClass(ImmutableBytesWritable.class); 
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      job.setMapOutputValueClass(KeyValue.class); 

      FileInputFormat.setInputPaths(job, inputPath);
      HFileOutputFormat2.setOutputPath(job, new Path(outputPath));

HBase provides a helper class which will do most of the configuration for you.
This is the first thing to call when you want to configure your MR job to provide
HFiles as the output.

Here we want to read a text file with CSV data, so we will use the TextInputFor‐
mat.

When running from the command line, all the required classes are bundled into
a client jar which is referenced by the setJarByClass method. However, when
running from Eclipse, it is necessary to manually provide the jar path because the
class that we are running is from the eclipse environment which MapReduce is
not aware of. Because of that, we need to give to MapReduce the path of an exter‐
nal file where the given class is also available.

Defines the mapper you want to use to parse your CSV content and create the
Avro output.

We need to define ImmutableBytesWritable as the mapper output key class. It is
the format we will use to write the key.

We need to define KeyValue as the mapper output value class. This will represent
the data we want to store into our HFiles.

The reducer used to create the HFiles needs to load into memory
the columns of a single row and then sort all before being able to
write them all. If you have many columns in your dataset, it might
not fit into memory. This should be fixed in a future release when
HBASE-13897 will be implemented.

The operations on the mapper side are simple. The goal is just to split the line into
different fields, assign them to an Avro object and provide this Avro object to the
HBase framework to be stored into HFiles ready to be loaded.

The first thing we do is to define a set of variables that we will re-use for each and
every iteration of the mapper. This is done to reduce the number of objects created.
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Example 2-2. Convert to HFiles mapper

  public static final EncoderFactory encoderFactory = EncoderFactory.get();
  public static final ByteArrayOutputStream out = new ByteArrayOutputStream();
  public static final DatumWriter<Event> writer = new SpecificDatumWriter<Event>
                                                             (Event.getClassSchema());
  public static final BinaryEncoder encoder = encoderFactory.binaryEncoder(out, null);
  public static final Event event = new Event();
  public static final ImmutableBytesWritable rowKey = new ImmutableBytesWritable();

Those objects are all re-used on the map method below.

Example 2-3. Convert to HFiles mapper

    // Extract the different fields from the received line.

    String[] line = value.toString().split(","); 

    event.setId(line[0]);
    event.setEventId(line[1]);
    event.setDocType(line[2]);
    event.setPartName(line[3]);
    event.setPartNumber(line[4]);
    event.setVersion(Long.parseLong(line[5]));

    event.setPayload(line[6]);  

    // Serialize the AVRO object into a ByteArray

    out.reset(); 

    writer.write(event, encoder); 
    encoder.flush();

    byte[] rowKeyBytes = DigestUtils.md5(line[0]);

    rowKey.set(rowKeyBytes); 
    context.getCounter("Convert", line[2]).increment(1);

    KeyValue kv = new KeyValue(rowKeyBytes, CF, Bytes.toBytes(line[1]), out.toByteArray()); 

    context.write (rowKey, kv); 

The first thing we do is to split the line into fields to have individual direct access
to each of them.

Instead of creating a new Avro object at each iteration, we re-use the same object
for all the map calls and simply assign it the new received values.

This is another example of object reuse. The less objects you create in your map‐
per code, the less garbage collection you will have to do and the faster your code
will execute. The map method is called for each and every line of your input file.
Creating a single ByteArrayOutputStream and re-using it and its internal buffer
for each map iteration saves millions of object creations.
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Serialize the Avro object into an array of bytes to store them into HBase re-using
existing objects as much as possible.

Construct our HBase key from the sensor ID.

Construct our HBase KeyValue object from our key, our column family, our
eventid as the column qualifier and our Avro object as the value.

Emit our KeyValue object so the reducers can regroup them and write the
required HFiles. The rowKey will only be used for partitioning the data. When
data will be written into the underlying files, only the KeyValue data will be used
for both the key and the value.

When implementing a MapReduce job, avoid creating objects
when not required. If you need to access a small subset of fields in a
String, it is not recommended to use the String split() method to
extract the fields. Using split() on 10 million Strings having 50
fields each will create 500 million objects that will be garbage col‐
lected. Instead, parse the String to find the few fields’ locations and
use the substring() method. Also consider using the com.goo‐
gle.common.base.Splitter object from Guava libraries.

Again, the example can be run directly from Eclipse or from the command line. In
both cases, you will need to specify the input file, the output folder and the table
name as the parameters. The table name is required for HBase to find the region’s
boundaries to create the required splits in the output data, but also to lookup the col‐
umn family parameters like the compression and the encoding. The MapReduce job
will produce HFiles in the output folder based on the table regions and the column
family parameters.

The following command line will create the HFiles on HDFS. If because you are run‐
ning on the standalone version you need the files to be generated on local disk, sim‐
ply update the destination folder.

hbase -classpath ~/ahae/target/ahae.jar:`hbase classpath` \

com.architecting.ch09.ConvertToHFiles \ 

file:///home/cloudera/ahae/resources/ch09/omneo.csv \ 

hdfs://localhost/user/cloudera/ch09/hfiles/ sensors 

the class called for the conversion.

our input file

output folder and table name.
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If you start the class from Eclipse, make sure to add the parameters in Run … Run
Configurations / Arguments.

Since this will start a MapReduce job, the output will be verbose and will give you lots
of information. Pay attention to the following lines:

 Map-Reduce Framework
  Map input records=1000000
  Map output records=1000000
  Reduce input groups=65536

The Map input records value represents the number of lines in your CSV file. Since
for each line we emit one and only one Avro object, it matches the value of the Map
output records counter. The Reduce input groups represents the number of
unique keys. So here we can see that there were one million lines for 65,536 different
rows, which gives us an average of 15 columns per row.

At the end of this process, your folder content should look like the following:

[cloudera@quickstart ~]$ hadoop fs -ls -R ch09/
drwxr-xr-x         0 2015-05-08 19:23 ch09/hfiles
-rw-r--r--         0 2015-05-08 19:23 ch09/hfiles/_SUCCESS
drwxr-xr-x         0 2015-05-08 19:23 ch09/hfiles/v
-rw-r--r-- 104861200 2015-05-18 19:57 ch09/hfiles/v/345c5c462c6e4ff6875c3185ec84c48e
-rw-r--r-- 104784750 2015-05-18 19:56 ch09/hfiles/v/46d20246053042bb86163cbd3f9cd5fe
-rw-r--r-- 104920812 2015-05-18 19:56 ch09/hfiles/v/6419434351d24624ae9a49c51860c80a
-rw-r--r-- 104753687 2015-05-18 19:57 ch09/hfiles/v/680f817240c94f9c83f6e9f720e503e1
-rw-r--r-- 104750096 2015-05-18 19:58 ch09/hfiles/v/69f6de3c5aa24872943a7907dcabba8f
-rw-r--r-- 105088024 2015-05-18 19:56 ch09/hfiles/v/75a255632b44420a8462773624c30f45
-rw-r--r-- 104557019 2015-05-18 19:56 ch09/hfiles/v/7c4125bfa37740ab911ce37069517a36
-rw-r--r-- 104982419 2015-05-18 19:57 ch09/hfiles/v/9accdf87a00d4fd68b30ebf9d7fa3827
-rw-r--r-- 105013848 2015-05-18 19:58 ch09/hfiles/v/9ee5c28cf8e1460c8872f9048577dace
-rw-r--r-- 104935349 2015-05-18 19:57 ch09/hfiles/v/c0adc6cfceef49f9b1401d5d03226c12
-rw-r--r-- 104899602 2015-05-18 19:57 ch09/hfiles/v/c0c9e4483988476ab23b991496d8c0d5
-rw-r--r-- 104828814 2015-05-18 19:58 ch09/hfiles/v/ccb61f16feb24b4c9502b9523f1b02fe
-rw-r--r-- 105049861 2015-05-18 19:56 ch09/hfiles/v/d39aeea4377c4d76a43369eb15a22bff
-rw-r--r-- 104805384 2015-05-18 19:57 ch09/hfiles/v/d3b4efbec7f140d1b2dc20a589f7a507
-rw-r--r-- 104794836 2015-05-18 19:56 ch09/hfiles/v/ed40f94ee09b434ea1c55538e0632837

Owner and group information were removed to fit the page. All the files belong to
the user who has started the MapReduce job.

As you can see in the file system, the MapReduce job created as many HFiles as we
have regions in the table.

When generating the input files, be careful to provide the correct
column family. Indeed, it a common mistake to not provide the
right column family name to the MapReduce job which will create
the directory structure based on its name. This will make the Bulk‐
Load phase to fail.
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The folder within which the files are stored is named based on the column family
name we have specified in our code, “v” in the given example.

HFile validation
Throughout the process all the information we get in the console is related to the
MapReduce framework and tasks. However, even if they succeed, the content they
have generated might not be good. Maybe we used the wrong column family, maybe
we forgot to configure the compression when we have created our table, etc.

HBase comes with a tool to read HFiles and extract the meta information. This tool is
called the HFilePrettyPrinter and can be called by using the following command
line:

hbase hfile -printmeta -f ch09/hfiles/v/345c5c462c6e4ff6875c3185ec84c48e

The only parameter this tool takes is the HFile location in HDFS.

Below is part of the output of the previous command. We removed sections or parts
of them which are not relevant for this chapter.

Block index size as per heapsize: 161264
reader=ch09/hfiles/v/345c5c462c6e4ff6875c3185ec84c48e,

    compression=snappy, 
    cacheConf=CacheConfig:disabled,

    firstKey=7778/v:03afef80-7918-4a46-a903-f6e35b629926/1432004229936/Put, 

    lastKey=8888/v:fc69a89f-4a78-4e2d-ae0a-b22dc93c962c/1432004229936/Put, 

    avgKeyLen=53, 

    avgValueLen=171, 

    entries=666591, 

    length=104861200 

Now here is what is important to look at in this output.

This shows you the compression format used for your file. It should reflect what
you have configured when you created the table. We initially chose to use snappy,
but if you have configured a different one, you should see it here.

Key of the first cell of this HFile, as well as column family name.

The last key contained in the HFile. Only keys between 7778 and 8888 are
present in the file. It is used by HBase to skip entire files when the key you are
looking for is not between the first and last key.

Average size of the keys.

Average size of the values.
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Number of cells present in the HFile.

Total size of the HFile.

Using the output of this command, you can validate there is data in the files you have
generated and the format of the data is according to your expectations (compression,
bloom filters, average key size, etc.)

Bulk loading
Bulk loading inserts multiple pre-generated HFiles into HBase instead of performing
puts one-by-one using the HBase API. Bulk loads are the most efficient way to insert
a large quantity of values into the system. To get more details about bulk loading,
please refer to later chapter ???. Here we will show you how to perform a bulk load.

Here is the HDFS content of your table.

   0 2015-05-18 19:46 .../s/.tabledesc
 287 2015-05-18 19:46 .../s/.tabledesc/.tableinfo.0000000001
   0 2015-05-18 19:46 .../s/.tmp
   0 2015-05-18 19:46 .../s/0cc853926c7c10d3d12959bbcacc55fd
  58 2015-05-18 19:46 .../s/0cc853926c7c10d3d12959bbcacc55fd/.regioninfo
   0 2015-05-18 19:46 .../s/0cc853926c7c10d3d12959bbcacc55fd/recovered.edits
   0 2015-05-18 19:46 .../s/0cc853926c7c10d3d12959bbcacc55fd/recovered.edits/2.seqid
   0 2015-05-18 19:46 .../s/0cc853926c7c10d3d12959bbcacc55fd/v

To fit the page width, file permissions, owner were removed, and /hbase/data/default/
sensors was abbreviated to …/s.

If your table is empty, you will still have all the region folders because we have pre-
split the table. HFiles might be present in the regions’ folders if data already existed
prior to loading. We show only one region’s directory in the above extract and you
can see that this region’s column family v is empty since it doesn’t contain any HFiles.

Our HFiles have been generated by the MapReduce job, and we now need to tell
HBase to place the HFiles into the given table. This is done using the following com‐
mand:

hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles ch09/hfiles sensors

In this command, we provide HBase the location of the HFiles we have generated
(ch09/hfiles) and the table into which we want to insert those files (sensors). If the
target table splits or merges some regions before the files are bulk loaded, splits and
merges of the input HFiles will be handled on the client side at that time by the appli‐
cation. Indeed, the application used to push the HFiles into the HBase table will vali‐
date that each and every HFile still belongs to a single region. If a region got split
before we pushed the file, the load tool will split the input files the same way before
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pushing them into the table. On the other side, if 2 regions are merged, the belonging
input HFiles are simply going to be pushed into the same region.

When it runs, it will produce this output in the console:

$ hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles ch09/hfiles sensors
2015-05-18 20:09:29,701 WARN  [main] mapreduce.LoadIncrementalHFiles: Skipping
    non-directory hdfs://quickstart.cloudera:8020/user/cloudera/ch09/hfiles/_SUCCESS
2015-05-18 20:09:29,768 INFO  [main] Configuration.deprecation: hadoop.native.lib is
    deprecated. Instead, use io.native.lib.available
2015-05-18 20:09:30,476 INFO  [LoadIncrementalHFiles-0] compress.CodecPool: Got
    brand-new decompressor [.snappy]

After completion of the bulk load, you should find your files in HDFS under the table
and the regions they belong too. Looking again at HDFS should show you something
like this:

        0 2015-05-18 19:46 .../s/0cc...
       58 2015-05-18 19:46 .../s/0cc.../.regioninfo
        0 2015-05-18 19:46 .../s/0cc.../recovered.edits
        0 2015-05-18 19:46 .../s/0cc.../recovered.edits/2.seqid
        0 2015-05-18 20:09 .../s/0cc.../v

104794836 2015-05-18 19:56 .../s/0cc.../v/c0ab6873aa184cbb89c6f9d02db69e4b_SeqId_4_ 

Again, to fit the page width, file permissions, owner were removed, and /hbase/data/
default/sensors was abbreviated to …/s. We have also truncated the region encoded
name.

You can see that we now have a file in our previously empty region. This is one of
the HFiles we have initially created. By looking at the size of this file and by com‐
paring it to the initial HFiles created by the MapReduce job, we can match it to
ch09/hfiles/v/ed40f94ee09b434ea1c55538e0632837. You can also look at the
other regions and map them to the other input HFiles.

Data validation
Now that data is in the table we need to verify that it is expected. The first thing we
will do is to make sure we have as many rows as expected. Then we will verify the
records contain what we expect.

Table size
Looking into an HFile using the HFilePrettyPrinter gives us the number of cells
within a single HFile, but how many unique rows does it really represent? Since an
HFile only represents a subset of rows, we need to count rows at the table level.
HBase provides two different mechanisms to count the rows.
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Counting from the shell
Counting the rows from the shell is pretty straightforward, simple, and efficient for
small examples. It will simply do a full table scan and count the rows one by one. It
works well for small tables, however it can take a lot of time for big tables, so we will
use this method only when we are sure our tables are small.

Here is the command to count our rows and we will look at the parameters after:

hbase(main):003:0> count 'sensors', INTERVAL => 40000, CACHE => 40000
Current count: 40000, row: 9c3f
65536 row(s) in 1.1870 seconds

The count command takes one to three parameters. The first parameter is manda‐
tory, it is the name of the table whose rows you want to count. The second parameter
is optional, it tells the shell to display a progress status only every 40,000 rows. The
final parameter is optional too, it is the size of the cache we want to use to do our full
table scan. This last value is used to setup the setCaching value of the underlying
scan object.

Counting from MapReduce
The second way to count the number of rows in an HBase table is to use the Row‐
Counter MapReduce tool. The big benefit of using MapReduce to count your rows is
HBase will create one mapper per region in your table. For a very big table this will
distribute the work on multiple nodes to perform the count operation in parallel
instead of scanning regions sequentially, which is what the shell’s count command
does.

This tool is called from the command line by passing the table name only:

hbase org.apache.hadoop.hbase.mapreduce.RowCounter sensors

Here is the most important part of the output and we will detail below the important
fields to look at. Some sections of the output have been removed in order to focus
attention on key information and to reduce the size of the extract.

2015-05-18 20:21:02,493 INFO  [main] mapreduce.Job: Counters: 31
 Map-Reduce Framework

  Map input records=65536 
  Map output records=0
  Input split bytes=1304
  Spilled Records=0
  Failed Shuffles=0
  Merged Map outputs=0
  GC time elapsed (ms)=2446
  CPU time spent (ms)=48640
  Physical memory (bytes) snapshot=3187818496
  Virtual memory (bytes) snapshot=24042749952
  Total committed heap usage (bytes)=3864526848
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 org.apache.hadoop.hbase.mapreduce.RowCounter$RowCounterMapper$Counters

  ROWS=65536 

Since the input records of this job are the HBase rows, we will have as many
input records as we have rows.

The number of rows we have in the table, which will match the number of input
records. Indeed, this MapReduce job simply increments a ROWS counter for
each input record.

HBase also provides a MapReduce tool called CellCounter to count
not just the number of rows in a table, but also the number of col‐
umns and the number of versions for each of them. However, this
tool needs to create a Hadoop counter for each and every unique
row key found in the table. Hadoop has a default limit of 120 coun‐
ters. It is possible to increase this limit, but increasing it to the
number of rows we have in the table might create some issues. If
you are working on a small dataset, this might be useful to test your
application and debug it. This tool generally cannot be run on a big
table.

File content
We have our table with the number of lines we expected and the format we asked. But
what does the data in the table really look like? Are we able to read what we wrote?
Let’s see two ways to have a look at our data.

Using the shell
The easiest and quickest way to read data from HBase is to use the HBase shell. Using
the shell, you can issue commands to retrieve the data you want. The first command
is get which will give you a single row. If you specify a column family, it will return
only the colums for this family. If you specify both a column family and a column
qualifier (separated with a colon), it will return only the specific value if it exists. The
second option is to use scan which will return a certain number of rows that we can
limit using the LIMIT parameter or the STARTROW and STOPROW parameters.
Both commands below will return all the columns for the row with rowkey value
000a:

get 'sensors', '000a', {COLUMN => 'v'}
scan 'sensors', {COLUMNS => ['v'], STARTROW => '000a', LIMIT => 1 }

Now as you will see in the output, there might be many columns for each row. If you
want to limit the output to a specific column qualifier, you need to specify it in both
commands the following way:
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get 'sensors', '000a', {COLUMN => 'v:f92acb5b-079a-42bc-913a-657f270a3dc1'}
scan 'sensors', { COLUMNS => ['v:f92acb5b-079a-42bc-913a-657f270a3dc1'], \
                  STARTROW => '000a', STOPROW => '000a' }

The output of the get should then look like this:

COLUMN       CELL
 v:f9acb...  timestamp=1432088038576, value=\x08000aHf92acb5b-079a-42bc-913a-657...
1 row(s) in 0.0180 seconds

Since the value is an Avro object, it contains some non-printable characters which are
displayed as \x08, but most of it should still be readable. This shows us that our table
containts some data, with a key which is what we have expected and data which looks
like what we are looking for.

Using Java
Using the shell we have been able to validate that our table contains some data, look‐
ing like Avro data, but to make sure it is exactly what we are expecting, we will need
to implement a piece of Java code to retrieve the value, convert it into an Avro object
and retrieve the fields from it.

Example 2-4. Read Avro object from HBase example

    try (Connection connection = ConnectionFactory.createConnection(config);

         Table sensorsTable = connection.getTable(sensorsTableName)) {  
      Scan scan = new Scan ();

      scan.setCaching(1); 

      ResultScanner scanner = sensorsTable.getScanner(scan);

      Result result = scanner.next(); 

      if (result != null && !result.isEmpty()) { 

        Event event = new Util().cellToEvent(result.listCells().get(0), null); 
        LOG.info("Retrived AVRO content: " + event.toString());
      } else {
        LOG.error("Impossible to find requested cell");
      }
    }

Retrieves the table from the HBase connection.

Make sure we return from the scan after we get the first row. Since we don’t want
to print more than that, there is no need to wait for HBase to send us back more
data.

Executes the scan against the table and get the result.

Validates if we have a result or if the response is empty.
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Transforms the cell we received as the value into an Avro object.

Once again, you can run this example from Eclipse or from the command line. The
output you will get will look like:

2015-05-20 18:30:24,214 INFO  [main] ch09.ReadFromHBase: Retrieved Avro object
    with ID 000a
2015-05-20 18:30:24,215 INFO  [main] ch09.ReadFromHBase: Avro content: {"id":
    "000a", "eventid": "f92acb5b-079a-42bc-913a-657f270a3dc1", "docType": "FAILURE",
    "partName": "NE-858", "partNumber": "0-0000-000", "version": 1, "payload":
    "SXOAXTPSIUFPPNUCIEVQGCIZHCEJBKGWINHKIHFRHWHNATAHAHQBFRAYLOAMQEGKLNZIFM 000a"}

With this very small piece of code we have been able to perform the last step of the
validation process and retrieved, de-serialized and printed an Avro object from the
table. To summarize, we have validated the size of the HFiles, their format, the num‐
bers of entries in the HFiles and in the table, and the table content itself. We can now
confirm that our data has been correctly and fully loaded into the table.

Data indexing
The next and last step of the implementation consists of indexing the table we have
just loaded, to be able to quickly search for any of the records using SOLR. Indexation
is an incremental process. Indeed, Omneo receive new files daily. As seen in the pre‐
vious chapter, data from those files is loaded into a main table which contains data
from the previous days, and an indexation table. The goal is to add the indexation
result into the SOLR index build from previous days indexations. At the end, the
index will reference all what has been uploaded in the main table. To implement this
last example you will need to have a SOLR instance running on your environment. If
you are comfortable with it, you can install it and run it locally, however HBase needs
to run in pseudo-distributed mode since the SOLR indexer can not work with the
local jobrunner. Alternatively, you can execute this example in a VM where SOLR is
already installed.

Most of the MapReduce indexing code has been built from the SOLR examples and
has been modified and simplified to index an HBase table.

Once you have confirmed you have a working local SOLR environment, running the
following command will create our SOLR collection with a single shard and the pro‐
vided schema. In a production environment, to scale your application, you might
want to consider using more shards.

The most important file to define your index is it’s schema.xml file. This file is avail‐
able in the book online resources and contains many tags. The most important sec‐
tion of the schema is the following:

   <field name="id" type="string" indexed="true" stored="true" required="true"
                                                              multiValued="false" />
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   <field name="rowkey" type="binary" indexed="false" stored="true" omitNorms="true"
                                                                   required="true"/>
   <field name="eventId" type="string" indexed="true" stored="false"
                                                  omitNorms="true" required="true"/>
   <field name="docType" type="string" indexed="true" stored="false"
                                                                  omitNorms="true"/>
   <field name="partName" type="lowercase" indexed="true" stored="false"
                                                                  omitNorms="true"/>
   <field name="partNumber" type="lowercase" indexed="true" stored="false"
                                                                  omitNorms="true"/>
   <field name="version" type="long" indexed="true" stored="false" required="true"
                                                              multiValued="false" />
   <field name="payload" type="string" indexed="true" stored="false" required="true"
                                                              multiValued="false" />
   <field name="_version_" type="long" indexed="true" stored="true"/>

Because the scope of this book is focused on HBase, we can not go into all the details
of this file and all its fields and the invite you to look at the SOLR online documenta‐
tion.1

The following commands will create the required index for the examples:

export PROJECT_HOME=~/ahae/resources/ch09/search
rm -rf $PROJECT_HOME
solrctl instancedir --generate $PROJECT_HOME
mv $PROJECT_HOME/conf/schema.xml $PROJECT_HOME/conf/schema.old
cp $PROJECT_HOME/../schema.xml $PROJECT_HOME/conf/
solrctl instancedir --create Ch09-Collection $PROJECT_HOME
solrctl collection --create Ch09-Collection -s 1

If for any reason you want to delete your collection, you can use the following com‐
mands:

solrctl collection --delete Ch09-Collection
solrctl instancedir --delete Ch09-Collection
solrctl instancedir --delete search

The steps to get the table indexed are pretty straight forward. The first thing we need
to do is to scan the entire HBase table using MapReduce to create SOLR index files.
The second step is to bulkload those files into SOLR similar to how we bulkloaded
our HFiles into HBase. The entire code will not be shown here due to size, however
there are few pieces we want to show you here.

First, here is how we need to configure our MapReduce job in the driver class.
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Example 2-5. Index HBase Avro table to SOLR using MapReduce driver

    scan.setCaching(500);        

    scan.setCacheBlocks(false);  

    TableMapReduceUtil.initTableMapperJob( 
      options.inputTable,              // Input HBase table name
      scan,                            // Scan instance to control what to index
      HBaseAvroToSOLRMapper.class,     // Mapper to parse cells content.
      Text.class,                      // Mapper output key
      SolrInputDocumentWritable.class, // Mapper output value
      job);

    FileOutputFormat.setOutputPath(job, outputReduceDir);

    job.setJobName(getClass().getName() + "/" + Utils.getShortClassName(HBaseAvroToSOLRMapper.class));

    job.setReducerClass(SolrReducer.class); 

    job.setPartitionerClass(SolrCloudPartitioner.class); 
    job.getConfiguration().set(SolrCloudPartitioner.ZKHOST, options.zkHost);
    job.getConfiguration().set(SolrCloudPartitioner.COLLECTION, options.collection);
    job.getConfiguration().setInt(SolrCloudPartitioner.SHARDS, options.shards);

    job.setOutputFormatClass(SolrOutputFormat.class);
    SolrOutputFormat.setupSolrHomeCache(options.solrHomeDir, job);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(SolrInputDocumentWritable.class);
    job.setSpeculativeExecution(false);

By default, scans cache only one row at a time. To reduce RPC calls and improve
throughput we want to increase the size of the cache.

Since we are going to scan the entire table once and only once, caching the blocks
is not required and will just put pressure on the RegionServers’ blockcache. It is
always recommended to disable the blockcache when running a MapReduce job
over a table.

Again we are using HBase utility classes to configure required MapReduce input
formats and output formats as well as the required mapper.

Use the default Apache SOLR reducer class.

Also use the default apache SOLR partitioner class.

Everything on the class should be pretty straight forward to understand.

Now let’s have a look at the mapper. Goal of the mapper is to read the content from
HBase and translate it for SOLR. We have already done a class to create an Avro
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object from an HBase cell. We are going to reuse the same code here as this is exactly
what we want to achieve. We want to read each and every cell, convert it back to an
Avro object and provide to SOLR the data we want to index. The code for that is the
following:

Example 2-6. Index HBase Avro table to SOLR using MapReduce mapper

        event = util.cellToEvent(cell, event); 

        inputDocument.clear(); 

        inputDocument.addField("id", UUID.randomUUID().toString()); 
        inputDocument.addField("rowkey", row.get());
        inputDocument.addField("eventId", event.getEventId().toString());
        inputDocument.addField("docType", event.getDocType().toString());
        inputDocument.addField("partName", event.getPartName().toString());
        inputDocument.addField("partNumber", event.getPartNumber().toString());
        inputDocument.addField("version", event.getVersion());
        inputDocument.addField("payload", event.getPayload().toString());

        context.write(new Text(cell.getRowArray()),

                          new SolrInputDocumentWritable(inputDocument)); 

Transform the received cell into an Avro object re-using the event instance to
avoid creation of new objects.

Here again we want to re-use existing objects as much as possible and therefore
will simply re-initialize and re-use the SOLR input document.

Assign to the SOLR input document all the fields we want to index or store from
the Avro event object.

Write the SOLR document to the context for indexing.

If you want to run the indexing from the command line, you will have to use the fol‐
lowing command:

hbase -classpath ~/ahae/target/ahae.jar:`hbase classpath` \
com.architecting.ch09.MapReduceIndexerTool

You can also execute it from Eclipse without any specific parameter.

Data retrieval
At this point, we have generated test data, transformed it into Avro format stored into
HFiles, loaded it into a table and indexed it into SOLR. The only remaining piece is to
make sure we can query SOLR to find what we are looking for and then retrieve the
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related information from HBase. The HBase retrieval part is the same as what we
have already seen above. For SOLR, you can query SOLR using the following code:

Example 2-7. Retrieve Avro data from HBase based on SOLR.

    CloudSolrServer solr = new CloudSolrServer("localhost:2181/solr"); 

    solr.setDefaultCollection("Ch09-Collection"); 
    solr.connect();

    ModifiableSolrParams params = new ModifiableSolrParams();
    params.set("qt", "/select");

    params.set("q", "docType:ALERT AND partName:NE-555"); 

    QueryResponse response = solr.query(params); 
    SolrDocumentList docs = response.getResults();

    LOG.info("Found " + docs.getNumFound() + " matching documents.");
    if (docs.getNumFound() == 0) return;
    byte[] firstRowKey = (byte[]) docs.get(0).getFieldValue("rowkey");
    LOG.info("First document rowkey is " + Bytes.toStringBinary(firstRowKey));

    // Retrieve and print the first 10 columns of the first returned document
    Configuration config = HBaseConfiguration.create();
    try (Connection connection = ConnectionFactory.createConnection(config);
        Admin admin = connection.getAdmin();
        Table sensorsTable = connection.getTable(sensorsTableName)) {

      Get get = new Get(firstRowKey); 

      Result result = sensorsTable.get(get);
      Event event = null;

      if (result != null && !result.isEmpty()) { 
        for (int index = 0; index < 10; index++) { // Print first 10 columns
          if (!result.advance())
            break; // The is no more column and we have not reached 10.
          event = new Util().cellToEvent(result.current(), event);
          LOG.info("Retrieved AVRO content: " + event.toString());
        }
      } else {
        LOG.error("Impossible to find requested cell");
      }
    }

Connect to your SOLR cluster. Adjust this if you are not running SOLR on the
same cluster as HBase.

Define the SOLR connection you want to use.

Configure the request you want SOLR to execute. Here we ask it all the ALERT
documents for the NE-555 part.
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Execute the SOLR request and retrieve the response from the server.

Call HBase given the row key of the first document sent back by SOLR.

Iterate over the columns for the given key and display the first ten Avro objects
retrieved from those columns.

Going further
If you want to go further on the examples from this chapter, here are some things you
can try based on what we have discussed in this chapter.

Bigger input file
To make sure examples run pretty fast, the dataset we worked with was pretty small.
What about trying with a bigger one? Depending on the available disk space you have
and the performance of your environment, try to create a significantly bigger input
file and verify it’s processed the exact same way.

One region table
Since it’s a good practice to avoid hotspotting, we have created a table with multiple
regions split based on the key we used. Therefore that the different MapReduce jobs
have generated multiple files, one per region. What if we create a table with a single
region instead? Try to modify the create table statement to have a single region and
load more than 10GB of data into it. You should see the region splitting after the data
is inserted, however, since we are using bulkload, you should still not see any hotspot‐
ting on this region. You can validate your tables splits and the content of each region
by looking in HDFS has seen in “Bulk loading” on page 29

Impact on table parameters
We have created our table using the parameters which are good for our current use-
case. We recommend modifying the various parameters and re-running the process
to measure the impact.

Compression
Try to use different types of compression and compare. If you used Snappy, which is
fast, try to configure LZ4, which is slower but compress better, and compare the over‐
all time it takes to process everything vs. the size of your files.
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Block encoding
Because of format of the key we store into this table, we configured it to use the
FAST_DIFF data block encoding. Refer to later chapter ??? and try to modify your
table to use different data block encodings. Here again, look at the performance and
the overall data size at the end.

Bloom Filter
When doing reads, bloom filters are useful to skip HBase store files where we can
affirm the key we are looking for is not present. However, here we knew that the data
we are looking for will always be present in the file, so we disabled the bloom filters.
Create a list of tens of keys and columns that you know are present in the table and
mesure how long it takes to read them all. Now activate the bloom filter on your
table, major compact it to get them written and test again. You should see that for this
specific use-case, Bloom filters are not improving the performances.

It is almost always good to have bloom filters activated. We dis‐
abled them here because this use case is very specific. If you are not
sure, just keep them on.
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