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Preface

Overview and Goals

Human behavior is complex, but not random. Computer analysis of human behavior
in its multiple scales and settings leads to a steady influx of new applications in
diverse domains like human-computer interaction, affective computing, social signal
processing, and ambient intelligence. We envision seamlessly integrated plug and
play devices that can be used to endow a given environment with an awareness of
the physical, functional, temporal and social organization of its internal domestic
dynamics, as well as the personalities and social relationships of its inhabitants,
providing a vast array of new services for ordinary people. We picture intuitive
tools for social scientists, psychologists and doctors to observe and quantify human
behavior. We desire realistic virtual agents and engaging robots that can analyze
and properly respond to social context. We seek intelligent algorithms to process
vast collections of multimedia information to retrieve relevant material in response
to semantic queries.

The realization of all these tools and systems requires a fundamental grasp of the
key issues, as well as knowledge and experience over the computational tools. The
goal of this book is to provide a solid foundation toward achieving this.

Most significantly, the focus of the book is in advanced pattern recognition tech-
niques to automatically interpret complex behavioral patterns generated when hu-
mans interact with machines or with others. This is a challenging problem where
many issues are still open, including the joint modeling of behavioral cues taking
place at different time scales, the inherent uncertainty of machine detectable evi-
dences of human behavior, the mutual influence of people involved in interactions,
the presence of long term dependencies in observations extracted from human be-
havior, and the important role of dynamics in human behavior understanding.

The contiguity of these problems with the field of pattern recognition is straight-
forward. The editors of the present volume (together with Alessandro Vinciarelli
from the Univ. of Glasgow and Nicu Sebe from the Univ. of Trento) organized the
First Workshop of Human Behavior Understanding as a satellite workshop to Int.
Conference on Pattern Recognition (ICPR) in 2010, with wide attendance. Similarly,
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the Human Communicative Behaviour Analysis Workshop is held as a satellite to
IEEE’s Computer Vision and Pattern Recognition (CVPR) Conference since 2008.
The topics presented in the book are actively researched in the pattern recognition
community.

Target Audience

The book is planned as a graduate textbook/guidebook on computer analysis of
human behavior. Starting from the preliminaries, it covers major aspects concisely,
introduces some of the most frequently used techniques and algorithms in detail,
and provides examples of real applications. Each chapter is a stand-alone treatment
of a relevant subject, discussing key issues, classic and recent approaches, as well
as open questions and future research directions. Since the subject matter is very
broad, we have restricted the number of chapters to ensure that the book can be
covered in one semester and focused on providing both a good background and a
comprehensive vision of the field. Each chapter is supplemented with educational
material, including chapter summary, glossary, questions, and online lecture slides
to help the instructor.

Organization of the Book

We have divided the book into four parts. The first part, called “The Tools of the
Trade”, is a selection of basic topics that the reader will repeatedly come across in
human behavior analysis. These chapters are all written in an intuitive and didactic
way, and pave the way for more advanced discussions.

The first of these four chapters introduces Bayesian methods for behavior analy-
sis, because there are numerous uncertainties in measuring and assessing behavior,
and one also needs to deal with idiosyncrasies and inconsistencies. In particular,
Gaussian processes and Dirichlet processes are covered in this chapter.

Almost all human behavior is temporal, but the time scale may range from mil-
liseconds (e.g. the movement of a facial muscle) to hours (e.g. sleep cycles) or
months (e.g. habits). The temporal dimension is the sine qua non of human be-
havior, and subsequently, the second chapter introduces basic methods for temporal
analysis, including Hidden Markov Models, Conditional Random Fields, and vari-
ants thereof. This chapter also gives a concise introduction to graphical models,
their factorization and how to perform inference in graphical models. Subsequently,
it complements the first chapter nicely.

The third chapter discusses how we can detect and track humans by computer
vision methods to understand their actions, and is a prerequisite for most material
presented in Parts II and III. The visual modality can provide a system with high-
dimensional and dynamic data, creating some of the most formidable challenges in
behavior analysis, and most analysis pipelines start with detection and tracking.
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The fourth chapter is an introduction to computational visual attention, and ex-
plains how humans make sense of the immensely rich perceptual input (the firehose
of experience, in the memorable expression of Ben Kuijpers), as well as how com-
puter systems can mimic the process of attention to reduce their computation load,
especially in terms of bottom-up (data driven) and top-down (semantically driven)
approaches. The VOCUS attention system is described in detail, and applications
are given from the field of mobile robotics.

Two major application areas of human behavior analysis are activity recognition,
and analysis of social signals, including those that pertain to affect. The second part
of the book is devoted to “Analysis of Activities”, whereas the third part deals with
social and affective behavior.

The first chapter in the second part (i.e. Chap. 5) is on gait and posture analysis,
which is a relevant problem for clinical applications, surveillance, and ergonomics.
In this chapter the reader will be introduced to a host of sensors (like gyroscopes and
accelerometers) that can be used to measure useful physiological and movement re-
lated signals. Most of these sensors are easily integrated into smart phones, creating
a huge potential for mobile phone applications (and games) that are based on human
behavior analysis.

The second part continues with Chap. 6 on hand gesture analysis. Hand gestures
can be used to define natural interfaces in human-computer interaction, but they are
also rich sources of social and contextual cues during conversations. This chapter
builds heavily on temporal analysis and tracking material of the first part.

Automatic analysis of complex human behavior is, as we mentioned earlier, one
of the grand challenges of multimedia retrieval. Some behaviors are simple (e.g.
walking) and can be detected by looking at simple cues. Some behaviors are com-
plex (e.g. flirting) and require extensive knowledge and processing of context. Chap-
ter 7 is on semantics of human behavior in image sequences, and discusses how
environment influences the perceived activities, and how bottom-up and top-down
approaches can be integrated for recognizing events.

With the third part of the book, “Social and Affective Behaviors”, we move to-
ward applications where pattern recognition and machine learning methods need
to be complemented with psychological background knowledge and models. So-
cial behaviors constitute a major research area, largely overlapping with the field of
affective computing. This part opens up with a psychological treatise on social sig-
nals, written in a very accessible way for an audience with mainly computer science
background. A wide range of signals like dominance, persuasion, shame, pride, and
enthusiasm are introduced and discussed in Chap. 8.

Poggi and D’Errico define a social signal as a communicative or informative
signal that, either directly or indirectly, conveys information about social actions,
social interactions, social emotions, social attitudes and social relationships (2010).
The audio modality is more frequently used for processing such signals compared
to the visual modality. Chapter 9 is an extensive and technical discussion of voice
and speech analysis for assessing human communicative behavior.

Chapter 10 is on analysis of affect from combined audiovisual cues. It discusses
how affective signals can be measured and evaluated in a continuous manner, as



viii Preface

well as how to perform multimodal fusion. While the discussions of data annotation
and experimental design in Chap. 10 pertain mainly to affective displays, identi-
fied issues and challenges are valid for almost the entire range of human behavior
analysis.

The last chapter of the third part of the book, Chap. 11, discusses social interac-
tions and group dynamics. Four case studies from a meeting scenario are presented,
where the authors combine audiovisual cues to estimate the most and least dom-
inant person, emerging leaders, and functional roles in the group, as well as the
group dynamics as a whole.

The fourth part of the book is devoted to “Selected Applications” from three
different research fields (ambient intelligence, biometrics, and gaming, respectively)
that reflect the diversity and scope of behavioral cues and their usage.

Chapter 12 describes a vision of ambient assisted living, where a smart environ-
ment monitors the activities of its inhabitants for health care purposes. The aging
population of developed countries call for technologies to allow elderly to remain
longer in their home environments, giving them a higher quality of life, as well as
reducing the costs of health care. Smart monitoring tools, provided that they deal
with acceptance and privacy issues properly, are of great value.

Behavioral biometrics is the identification of a person via behavioral cues. Chap-
ter 13 surveys this new field, and reveals that an astonishing number of behavioral
cues, measured directly or indirectly, can be used to verify the identity of a person.
This is a joint achievement of improvements in pattern recognition methods, as well
as sensor technologies.

Finally, Chap. 14 deals with games, which are major economic drivers behind
computer scientific research. Games do not only serve entertainment; there are
games to exercise the body and mind, and sometimes a game is the means to a com-
pletely different end. Take for instance the robotics community, which uses robot
soccer as a driver behind great advances in robot mechanics, coordination, plan-
ning, and a host of other challenges. This is an application area where both real and
virtual human behavior can be analyzed for improving engagement and interaction,
as well as for teaching computers and robots skills at human level.

Taken together, these chapters cover most of the field of human behavior analysis.
It is possible to include many more tools and applications, as the field is positioned
at a confluence of many different and mature research areas. Nonetheless, we hope
that this collection will be a useful teaching tool for initiating newcomers, as well
as a timely reference work that sums up recent research in this advancing area.

Albert Ali Salah
Theo Gevers

Amsterdam, The Netherlands
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Part I
Tools of the Trade



Chapter 1
Bayesian Methods for the Analysis of Human
Behaviour

Gwenn Englebienne

1.1 Bayesian Methods

Let us start by a brief recapitulation of the theory of Bayesian statistics, illustrating
what the strengths of these methods are, and how their weaknesses have been over-
come. At the core of Bayesian methods is the consistent application of the rules of
probability in general, and Bayes’ theorem in particular. Bayes’ theorem,

p(B|A) = p(A|B)p(A)

p(B)
, (1.1)

states that the posterior probability of a random event B given event A, p(B|A),
is directly proportional to the joint probability of events A and B , p(A,B) =
p(A|B)p(B) and inversely proportional to the marginal probability of B . The
marginal probability of a variable, in this case p(B), is obtained by summing the
joint probability p(A,B) over all possible values of the other variables, A in this
case, where a represents a particular value or instantiation of A:

p(B) =
∑

a∈A

p(B,a). (1.2)

If variables are continuous rather than discrete, the sum becomes an integral, but
the general idea remains the same. This process is called marginalisation, and we
describe what is happening in (1.2) as “marginalising out A”, or computing the
“marginal probability of B”.

The different variables in the above equation can be vectors containing multiple
variables, so that if we wanted to know the conditional probability of a subset B1 of

G. Englebienne (�)
University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
e-mail: G.Englebienne@uva.nl
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4 G. Englebienne

B = {B1,B2}, p(B1|B2), we would first marginalise out A from p(A,B1,B2) and
apply Bayes’ theorem to the remainder of the variables.

p(B1|B2) = p(B1,B2)

p(B2)
(1.3)

=
∑

a∈A p(A,B1,B2)∑
b∈B1

∑
a∈A p(A,B1,B2)

. (1.4)

The key insight of Bayesian statistics is that the parameters of functions describ-
ing probability distributions are themselves random variables, which are not ob-
served. They are, therefore, subject to the same rules of probability as any other
random variables and should be treated in the same manner. For example, suppose
that two variables B1 and B2 denote, respectively, what type of transport (car, bike,
bus, train, . . .) one uses and the current weather circumstances (precipitation, tem-
perature, wind velocity, . . .). Let us denote the set of parameters that parametrises
this joint probability distribution by θ . The joint distribution can then be denoted,
more explicitly, as p(B1,B2|θ),1 and Bayesian statistics then say that if we wanted
to predict the type of transport that a person will use given the current weather
p(B1|B2), we would first need to marginalise out the parameters to obtain

p(B1,B2) =
∫

p(B1,B2, θ)dθ (1.5)

which can be factorised as

p(B1,B2) =
∫

p(B1,B2|θ)p(θ)dθ , (1.6)

where p(θ) captures how probable we believe a particular set of parameter val-
ues to be. We would then apply Bayes’ theorem to the result, p(B1|B2) =
p(B1,B2)/p(B2). We do not know the precise distribution of our data (because
we never have infinite amounts of data to learn that distribution), and, by marginal-
ising out the parameters in (1.6), we compute the expectation of the distribution
instead.

If we have not observed any data, the distribution p(θ) is called the prior, as it
reflects our belief, a priori, of what the parameter values should be. If we do observe
a set of data points X, we can compute the probability of seeing those data points
for a particular value of θ , p(X|θ ). We can then use Bayes’ theorem to compute

p(θ |X) = p(X|θ)p(θ)

p(X)
, (1.7)

from which we can compute the predictive probability p(B1|B2). This is done by
applying Bayes theorem to the joint probability given in (1.6), where we replace

1For the remainder of this chapter, we handle the convention that vectors are denoted by lowercase
bold letters (a, θ , . . .), while matrices are denoted by uppercase bold letters (A,Σ, . . .).
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our prior belief about the parameters,2 p(θ), with the posterior probability of the
parameters after seeing the data p(θ |X):

p(B1,B2|X) =
∫

p(B1,B2|θ)p(θ |X)dθ (1.8)

=
∫

p(B1,B2|θ)
p(X|θ)p(θ)

p(X)
dθ (1.9)

In other words, the Bayesian approach forces us to think about our prior assump-
tions about the problem explicitly, and to encode these in our definition of a prior
distribution over possible values of our parameters p(θ). If we know nothing about
the problem, we can choose this prior to be uninformative. Whatever the prior we
choose, however, the importance of the prior becomes negligible as enough data
become available: as the number of data points in X increases, the importance of
the likelihood term p(X|θ) increases in (1.7) and the relative importance of the
prior decreases. This is a satisfying result; when few data are available our model
can be mostly directed by our prior assumptions (where our prior distribution itself
encodes how confident we are in our assumptions), and large amounts of data will
either confirm, correct or override our prior assumptions. Moreover, in any case, our
uncertainty about our parameters is correctly reflected in the uncertainty about the
prediction. In the limit for infinite amounts of training data, the posterior distribution
over the model parameters, p(θ |X), obtained by the Bayesian approach converges
to a single impulse, located at the same value as obtained by traditional maximum a
posteriori (MAP) methods and maximum likelihood (ML) methods.3 Whenever we
do not have infinite amounts of training data, however, Bayesian methods take into
account all possible parameter values which could have produced those data.

The power of Bayesian methods stems from this simple fact: instead of trying to
find the model that fits the training data best, possibly subject to prior regularising
constraints that we want to enforce (as is the case for ML and MAP methods), we
consider all possible models that could have produced our training data, and weigh
those by the probability that they would indeed have produced those data. The re-
sulting model is not prone to overfitting the training data, and even very complex
models will only use as much effective expressive power as warranted by the avail-
able training data.

The difficulty, of course, is in performing the integration. For most functions of
interest, there is no analytical solution to the integral. Numerical approximations
are then required. Maximum likelihood and maximum a posteriori methods can be
seen as one, very crude, approximation to the Bayesian paradigm, where the distri-
bution over the parameters of the model is approximated by a Dirac impulse at the

2That is, the prior probability distribution that we had defined over the parameter values. In
Bayesian statistics, probabilities are seen as a measure of our belief in the possible values of a
variable.
3With infinite amounts of training data, the prior vanishes and both ML and MAP converge to the
same solution.
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mode of the posterior. In the limit of infinite amounts of training data, the maximum
likelihood method converges to the same solution as fully Bayesian treatment of
the parameters. However, when the amounts of training data are limited, less crude
approximate integration will typically result in better models than maximisation of
the likelihood, sometimes vastly so. There is, therefore, a lot of interest in devel-
oping techniques to perform good approximate integration. Yet, since maximum
likelihood methods (whether with or without regularisation or priors over parame-
ters) are computationally much cheaper, they are used in the vast majority of models
used for behaviour modelling to date.

1.2 A Note on Bayesian Networks

Directed graphical models, also called Bayesian networks or belief networks are de-
scribed in detail in Chap. 2. These networks provide an intuitive representation of
the independence assumptions of a model between the different random variables
of interest. Bayesian networks are very important in machine learning because they
provide an easy and intuitive representation of some of the modelling assumptions
and because, once the conditional distributions (or densities) of each variable given
its parents has been specified, they provide us with automatic algorithms to perform
inference with optimal efficiency. It is important to realise that the models them-
selves do not specify anything but the factorisation of the joint likelihood, and in
particular the (conditional) probability distributions of the variables must be speci-
fied separately. These are almost always specified by parametric probability density
function (PDF) whose parameters are learnt by maximum likelihood methods, rather
than being marginalised out.

Despite their name, there is, therefore, nothing inherently Bayesian about
Bayesian networks. The parameters of the distributions specified in the Bayesian
networks could be considered nuisance variables, and be integrated out, but in prac-
tice they rarely are. Many applications of Bayesian networks simultaneously rely on
sufficient amounts of training data, so that ML methods provide acceptable results,
while the distributions they represent are sufficiently complex, so that the applica-
tion of exact Bayesian inference is intractable.

Nevertheless, although ML techniques are typically used to perform inference
in Bayesian networks, these rely on the structure of the network being fixed (or,
at most, adapted to the length of a sequence). Yet the structure of Bayesian net-
works must not necessarily be specified a priori: it can be learnt from data, just
as the parameters of the distributions can be learnt. Learning the structure of the
network cannot, however, be done by purely ML methods since, for any realistic
problem and finite amount of training data, the model that fits the data best must
be the fully connected model. Moreover, the number of possible distinct networks
is super-exponential in the number of variables, so that an exhaustive enumeration
of all possible networks is impossible for even moderately-sized problems. This is
a typical example of the overfitting inherent to ML methods, and Bayesian methods
can provide an elegant solution to this particular problem.
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In [3] for example, the network structure of Bayesian networks is learnt for the
modelling of conversational gestures from data. Iconic gestures are identified au-
tomatically using multiple (non-Bayesian) methods, which leads to the creation of
sparse networks to model the data. Sampling techniques are used to make the prob-
lem tractable, and it would be very interesting to compare the results of this work to
fully Bayesian inference.

1.3 Approximating the Marginal Distribution

Because the exact computation of the marginal distributions is often impossible,
there is a lot of interest in approximate integration methods. Various schemes exist
to compute integration approximately. In the following section, we briefly introduce
the most common schemes. These are general methods which are commonly ap-
plied; they are also of particular importance to the Dirichlet and Gaussian processes,
described in the next section.

1.3.1 Sampling

Sampling is probably the simplest form of approximation. The idea of sampling
is that the expectation of a function f (x) under a probability distribution p(x),
Ep(x)[f (x)] can be approximated by point-wise evaluation of the function at points
distributed according to p(x):

Ep(x)

[
f (x)

] =
∫

p(x)f (x)dx (1.10)

�
∑

x∼p(x)

f (x), (1.11)

where x are independent samples taken from the distribution p(x). Various schemes
exist to generate samples with the desired distribution p(x), each with performance
characteristics that make them more or less well suited for a particular distribution.

Markov Chain Monte Carlo (MCMC) is a very commonly used technique where
a simple proposal distribution (from which we can sample directly) is used repeat-
edly to generate a chain of samples with a more complex stationary distribution
(from which we cannot sample directly). In order to obtain the desired distribu-
tion, the distribution of the generated samples is modified by discarding some of the
samples, or by associating some variable weight to each sample, based on the differ-
ence between the target distribution and the stationary distribution of the proposal
chain. The resulting samples are not independent, however. A large number of sam-
ples must, therefore, be generated, in order to obtain a handful of samples with the
desired distribution that are suitably independent. Yet as the dimensionality of the
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samples increases, other sampling methods, such as rejection sampling or impor-
tance sampling which generate independent samples, become extremely inefficient
and the relative effectiveness of MCMC improves dramatically.

Sampling techniques are very useful for a number of reasons: they are compara-
tively simple to implement and the resulting approximation converges to the exact
solution as the number of samples goes to infinity. More precise approximations
are, therefore, simple to obtain by increasing the number of samples. Moreover,
with some care, quite efficient and computationally effective sampling schemes can
be devised.

The main problem of sampling methods is that it can be hard to evaluate whether
the sampling scheme has converged to the desired distribution, or not. More effort
can often be spent on ensuring the validity of the result than on the actual imple-
mentation itself. Sampling methods are nevertheless very mainstream and are used,
for example, in particle filters [2] and Bayesian clustering methods [6].

1.3.2 Variational Approximations

The variational framework provides us with a technique to perform approximations
analytically. The idea is that, when it is too hard to compute the function of interest,
we can instead define some other function, which we can compute, and make it
as close as possible to the function of interest. For probability distributions, we
measure the difference between the intractable distribution p and the approximating
distributions q in terms of the Kullback–Leibler divergence between the two:

KL(q ‖ p) = −
∫

q(x) ln
p(x)

q(x)
. (1.12)

For some functions and approximation functions of interest, this is possible with-
out evaluating the original distribution p. If q is unrestricted, the optimal distribu-
tion is found for q(x) = p(x), so that KL(q ‖ p) = 0, yet by restricting q to some
tractable distribution, we obtain a workable approximation. Examples of typical re-
strictions are to restrict q to be a Gaussian distribution, or to factorise complex
joint distributions into independent terms. In this scheme, the quality of the approx-
imation is fixed beforehand by the restrictions imposed on q(x), and care must be
taken that the approximation be suitably close. In contrast, approximations using
sampling methods can be made arbitrarily more accurate by sampling longer. The
advantage of variational approximations is in the computational complexity, which
can be made much lower than sampling.

1.4 Non-parametric Methods

One major development of the last decade in the area of probabilistic modelling, has
been the arrival of effective sampling techniques for non-parametric methods such
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as the Dirichlet process and the Gaussian process. These techniques are called non-
parametric, because they do not use a fixed, parametric function to describe the dis-
tribution of the data. Instead, they consider an infinitely large number of parametri-
sations, and define a distribution over each possible parametrisation. Gaussian pro-
cesses provide a distribution over continuous functions, while Dirichlet processes
provide a distribution over discrete functions.

1.4.1 The Dirichlet Process

Dirichlet processes (DP [12]) are an extension of the Dirichlet distribution. The
Dirichlet distribution is a continuous distribution over a set of non-negative numbers
that sum up to one, and is defined as

Dirichlet(xi . . . xD;α) = 1

B(α)

D∏

i=1

x
(αi−1)
i , (1.13)

where {x1 . . . xD} are the random variables and α = (α1 . . . αD) is the vector of pa-
rameters of the distribution. The Dirichlet distribution is therefore often used as a
distribution over probabilities, where we are certain that one of D mutually exclu-
sive values must be true. For example, the Dirichlet distribution is eminently suitable
to parametrise the distribution over the priors of a generative clustering model: in
this case, the prior probability that a data point belongs to a cluster sums up to one
over all clusters. When clustering data, we do not know the precise values of these
priors, however, and so we define a distribution over them. In this example, each
cluster occupies its own partition of the data space: for any cluster, a new data point
will have some probability of belonging to it, and the data point is certain to belong
to exactly one of the clusters.4

Informally, the DP is an extension of the above example to the limit of infinitely
many clusters. More formally, the DP is a distribution over functions, over a parti-
tioning of the input space. As such, Dirichlet processes are often used for Bayesian
non-parametric density estimation, as a prior over mixture components. Each mix-
ture component is active in a subspace of the original input space, and one mixture
component is active in every part of the space. The core result of the DP is that if
we define a DP prior probability distribution over the partitioning of the space, the
posterior distribution over the mixture components is also a DP.

Such DPs are defined by

xi |θ i ∼ F(θ i ), (1.14)

θ i |G ∼ G, (1.15)

4We may nevertheless not be certain which cluster a data point belongs to, so that neither the prior
nor the posterior probability that a given data point belongs to a given cluster need to be zero or
one.
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G ∼ DP(G0, α). (1.16)

The observations xi , which may be multivariate and continuous, are distributed ac-
cording to a mixture of distributions, where each of the mixture components is of
the (parametric) form F(θ), where θ denote the parameters of the distribution. We
introduce a prior distribution G over the parameters θ , and use the Dirichlet process
DP(G0, α) to specify a discrete prior over G. Here, G0 is the base distribution
and α is the concentration parameter. The DP is a stochastic process, producing an
infinite stream of discrete samples G, which in turn specify the distribution over the
parameters θ .

This model can be specified equivalently by introducing a nuisance variable ci

which indicates which mixture component (partition component of the space) the
data point belongs to. If we take the limit of infinitely many mixture components,
K → ∞, and marginalise out ci , we obtain an equivalent model. Such a clustering
model can be defined as

xi | ci, θ1, . . . , θK ∼ F(xi |θci
), (1.17)

θ i ∼ G0, (1.18)

ci ∼ Multinomial(π), (1.19)

π ∼ Dirichlet

(
α

K
, . . . ,

α

K

)
. (1.20)

This model is depicted graphically in Fig. 1.1. Since we have infinitely many
components, in practice we cannot represent the distribution of all the components.
Yet we can never have more active mixture component than we have data points, and
the number of data points is finite. We can therefore use approximation schemes to
the base distribution. A great resource describing different sampling schemes and
comparing their properties can be found in [14]. For variational approximations,
see [5]. The key advantage of Dirichlet processes is that, although G0 and each
individual F can be continuous distributions, the GP distribution is discrete. As a
consequence, there is a non-zero probability that two data points xi and xj belong
to the same mixture component (ci = cj ). This property of the DP allows us to
have fewer mixture components than data points, and we can compute a posterior
distribution over the number of mixture components. The strength of the Bayesian
framework is highlighted in this model: we allow an infinite number of mixture com-
ponents, hence making the model flexible and limiting the risks of underfitting. We
also provide a prior over the partitioning of the space and over each component’s
distribution. We then marginalise out the partitioning and each particular compo-
nent’s distribution, thus avoiding the problem of overfitting.

The DP provides us with a beautiful framework for clustering, which can be
extended very elegantly to hierarchies. That is, we can create clusters of subclusters
of data points, where clusters may share subclusters. This framework of hierarchical
DP [16], can also be extended to arbitrary tree structures [1]. In [13], hierarchical
Dirichlet processes are used to automatically learn the number of states in a hidden
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Fig. 1.1 Graphical model of
a Dirichlet Process Mixture
Model (DPMM)

Markov model (HMM, see Chap. 2 in this volume) and a linear-Gaussian state space
model, and these are used to model the unconstrained behaviour of vehicles.

1.4.2 The Gaussian Process

Where the Dirichlet process used a Dirichlet distribution to specify a discrete prob-
ability distribution over continuous functions, the Gaussian process (GP) provides
a continuous distribution over continuous functions. The concept is slightly arcane,
but is very elegant and worth understanding. The “bible” of Gaussian processes is
Rasmussen and William’s [15], which provides a brilliant overview of the history,
derivations, and practical considerations of Gaussian processes. Gaussian processes
have a long history, and have been well-known in areas such as meteorology and
geostatistics (where GP prediction is known as “kriging”) for 40 years. A good
overview of the use of Gaussian processes for spatial data can be found in [9].

Gaussian processes have recently been used successfully to extract human
pose [10], a problem that is known to be strongly multimodal and hence hard to
model [11], and to create complex models of human motion [17]. Even more re-
cently, Gaussian processes have been used successfully for activity recognition in
groups of people, where interactions between the participants add to the complex-
ity [7]. The flexibility of GPs comes from the wide range of kernel functions that
can be used, which makes it possible to model very complex signals, with multiple
levels of superposition. As early as 1969, GPs were used to model the firing patterns
of human muscle [8].

The idea of Gaussian processes is to consider a function f (x) as an infinite vec-
tor, f, of function values: one for every possible value of x. In this representation, we
can define a distribution over the function as a distribution over this vector, rather
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Fig. 1.2 Illustration of a single sample drawn from a Gaussian process. Here, we created a 49-di-
mensional Gaussian distribution, with a zero vector for the mean, and a 49 × 49 matrix Σ , where
the elements of the covariance matrix were computed using some function k(x, x′)—more on this
function later. Each dimension of the 49-dimensional Gaussian therefore corresponds to a value x,
through the function k. In this case, our inputs x are sampled to be uniformly spaced between −5
and 5. We drew a sample from this Gaussian distribution, and plotted the obtained values (i.e. 49
output points) as a function of the corresponding x

than as a distribution over the parameters of some parametrisation of the function.5

Now distributions over infinite-dimensional vectors may seem impossible to deal
with, but it turns out that, if we assume that this distribution is Gaussian, it is ac-
tually possible to manipulate such an object in practice. Moreover, the resulting
distribution is closely related to a distribution over parametric functions.

The Gaussian process defines the conditional joint distribution of all elements in
our infinite-dimensional vector f as being Gaussian, with some mean and covari-
ance.6 The question, then, is of course how we could represent such a distribution.
The answer relies on two key observations.

1. We only ever need to evaluate a function for a finite number of function values.
Fig. 1.2 illustrates this idea by showing a single sample from some Gaussian
process. In this case, a 49-dimensional sample of f (x) is drawn from the pro-
cess, for a given set of 49 one-dimensional inputs. We could have drawn a much

5For the purpose of this explanation, we will consider functions of a single, scalar variable, but the
concept easily extends to multiple dimensions.
6To be more formally exact, it is defines the distribution over any finite subset of the variables in
that vector to be Gaussian.
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higher-dimensional sample, or a sample that spans a much larger or smaller in-
put range: the point is that we never need to compute all the (infinitely many)
numeric values of the function.

2. One of the properties of the multivariate Gaussian distribution is that the marginal
distribution of a subset of its dimensions is again a Gaussian distribution, with
mean and covariance equal to the relevant elements of the original mean vector
and covariance matrix. Therefore, the distribution returned by the Gaussian pro-
cess over the points where we do evaluate the function, is the same whether or
not we take all other points (where we do not evaluate the function) into account.
All we need to know, is how our finite set of points covary.

We cannot define a mean vector and covariance matrix over all the points in our
function vector, as an unfortunate side effect of its infinite size, but we can provide
a functional description of its mean vector and covariance matrix conditionally on
the input values x at hand. These functions lie at the heart of the Gaussian process,
and define its properties. The capacity to ignore the points where the function is not
evaluated is what makes the Gaussian process tractable and, indeed, very efficient
for small data sets. The combination of computational tractability and a formally
consistent Bayesian treatment of the model makes Gaussian processes very appeal-
ing.

1.4.2.1 Gaussian Process as Bayesian Linear Regression

Consider standard linear regression with Gaussian noise:

y = f (x) + ε, ε ∼ N
(
0, σ 2), (1.21)

= φ(x)	w + ε. (1.22)

The target output y is a noisy version of a linear function of the parameters w and
the feature representation φ(x) of the input data point x. We assume that the output
noise is Gaussian, with zero mean and σ 2 variance.

We are given a set of training data points X, which we represent in a design
matrix, Φ , and a set of targets y. From this, we want to learn to predict the output
f (x∗) for a given input x∗. We specify the design matrix as

Φ =
⎡

⎢⎣
φ(x1)

	
...

φ(xN)	

⎤

⎥⎦ (1.23)

so that each row contains the features of one data point. In the Bayesian frame-
work, we need to introduce a prior distribution over the parameters w, and choose
a zero-mean Gaussian prior, with covariance matrix Σ : w ∼ N (0,Σ). Since both
the likelihood p(y|Φ,w) and the prior p(w) are Gaussian, the posterior p(w|y,Φ)
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is also Gaussian. Moreover, for a given input value x∗, the predictive distribution
over the function values f(x∗) is given by

p
(
f (x∗)|x∗,Φ,y

) =
∫

p
(
f (x∗)|x∗,w

)
p(w|Φ,y)dw. (1.24)

It is a standard result that the convolution of two Gaussians is again Gaussian, so
that this predictive distribution over function values is Gaussian. The resulting dis-
tribution is given by

p
(
f (x∗)|x∗,Φ,y

) = N

(
1

σ 2
φ(x∗)	A−1Φy,φ(x∗)	A−1φ(x∗)

)
, (1.25)

where A = 1
σ 2 Φ	Φ + Σ−1. Moreover, this can be rewritten as

p
(
f (x∗)|x∗,Φ,y

)

= N
(
φ	∗ Σφ

(
ΦΣΦ	 + σ 2I

)−1y,φ	∗ Σφ∗

− φ	∗ ΣΦ	(
ΦΣΦ	 + σ 2I

)−1
ΦΣφ∗

)
, (1.26)

where we used φ∗ as shorthand for φ(x∗). This last form may look daunting at first
sight, but it is advantageous when the number of features is larger than the number
of data points and, since Σ is positive-definite, we can rewrite the multiplications of
the form φ(x)	Σφ(x′) as ψ(x) · ψ(x′) for some vector of feature functions ψ(x).
Notice that φ(x) only occurs in multiplications of that form in (1.26), so that we
can use the kernel trick and fully specify our predictive distribution with a kernel
function k(x,x′) = ψ(x) · ψ(x′). For every set of feature functions, we can com-
pute the corresponding kernel function. Moreover, for every kernel function there
exists a (possibly infinite) expansion in feature functions. This infinite expansion is
not a problem in a Bayesian framework, because the (implicit) integration over the
parameter values prevent the model from overfitting on the training data.

The Gaussian process is fully specified by its mean function, μ(x), and its co-
variance or kernel function k(x,x′). The functions f (x) are distributed as

f (x) ∼ G P
(
μ(x), k(x,x′)

)
(1.27)

where, by definition, μ(x) = E[f (x)] and k(x,x′) = E[(f (x) − μ(x))(f (x′) −
μ(x′))]. In practice, the mean function is often taken to be zero, for simplicity as
much as for symmetry in the function space. This is not a restriction of the Gaussian
process itself, however, and sometimes a non-zero-mean function is indeed speci-
fied. Notice that a zero mean does not make the mean of a particular function equal
to zero; rather, for every point in the input space the expectation over the value of
all functions at that point, is zero. If we are given a set of inputs X, a set of targets
y and a set of test data points X∗, we can directly specify the covariance matrix of
our joint distribution over the function values for the training data points and the test
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data points as

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ 2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
, (1.28)

where each element (i, j) of the matrix K(X,X′) = k(xi ,x′
j ) for xi being data

point i in the set X. Using the standard result for the Gaussian conditional distri-
bution, we can compute

p(f∗|X,y,X∗) = N (μ,Σ), where (1.29)

μ = K(X∗,X)
(
K(X,X) + σ 2I

)−1y and (1.30)

Σ = K(X∗,X∗) − K(X∗,X)
(
K(X,X) + σ 2I

)−1K(X,X∗). (1.31)

Notice how the mean of the predictive distribution is non-zero, and depends on
the training data and targets. The covariance consists of a term representing the prior
covariance of the test data points, which is diminished by a term that depends on the
training and test data points, and on the noise of the targets; it does not depend on the
value of the training targets. Also notice how the matrix inversion, which dominates
the computational complexity of (1.30) and (1.31), does not depend on the test data:
it needs only be computed once. Training a Gaussian process, therefore, consists of:
(1) selecting the correct properties of the function of interest (by selecting the right
kernel function and optimising its parameters), and (2) computing the said matrix
inverse.

1.4.2.2 Kernel Functions

The kernel function fully specifies the (zero-mean) Gaussian process prior. It cap-
tures our prior beliefs about the type of function we are looking at; most importantly,
we need to specify beforehand how “smooth” we believe the underlying function to
be. Figure 1.3 illustrates how different kernel functions result in different styles of
functions: the plots on the left hand side show samples from the prior, while the
corresponding plots on the right hand side show samples from a GP with the same
covariance function, conditional on the three depicted training data points. The ker-
nel functions depicted here are stationary: they depend solely on the difference be-
tween the two input vectors. They are, therefore, invariant to translations. Many
other kernel functions are possible, including non-stationary ones: the only require-
ment of a function for it to be a valid kernel function is that it should be positive
semidefinite. Informally, this means that it must be a function that leads to a posi-
tive semidefinite covariance matrix. The easiest way to derive new kernel functions
is to modify known kernel functions using operations which are known to preserve
the positive-semidefiniteness of the function [4].

Kernel functions often have parameters. These parameters are not affected by
the Gaussian process, and are part of its specification. One recurrent parameter is
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Fig. 1.3 The kernel function specifies the properties of the modelled function. The plots on the
left hand side show three different samples from the Gaussian process prior (before we observe any
data). The corresponding plots on the right hand side show samples of the posterior distribution
(thin lines), given the training data (green crosses), as well as the mean function (thick black line)
and two standard deviations around the mean (shaded area). In all plots the length scale � was set
to one, and r is defined for notational convenience, as r = |x − x′|
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Fig. 1.4 Illustration of Gaussian process regression, with one-dimensional input and one-dimen-
sional output, and three training data points. Changing the length scale of the kernel function affects
the overall “smoothness” of the sampled functions, while the variance of the error on the training
data points affects how close the functions are to the training data

the length scale �, which basically sets how the distance between data points af-
fect the way the corresponding function outputs covary. The length scale, therefore,
affects how smoothly the function varies. Figure 1.4 shows samples from four differ-
ent Gaussian processes, all with squared exponential kernel functions and different
length scales, illustrating how this parameter affects the distribution over the func-
tions. A short length scale increases the variance in areas away from the training
data, and consequently also increases the effect of the prior in those areas.

The parameters of the kernel function, also called hyperparameters, are fixed for
a particular GP, but can, of course, themselves be learnt from data. In the Bayesian
framework, the way to do this is to place a prior distribution over the hyperparam-
eters, and to integrate out the hyperparameters. This integral typically cannot be
done analytically, and approximations are then required. When the posterior distri-
bution over the parameters is strongly peaked, one acceptable approximation to the
posterior is the Dirac impulse: the integral then becomes the maximum likelihood
function. Since the posterior distribution over the hyperparameters is more often
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strongly peaked than the posterior over the parameters, the values of the hyperpa-
rameters are often found by maximising the marginal likelihood of the training data
with respect to the hyperparameters. Such an optimisation is called type II Max-
imum Likelihood and, although this procedure re-introduces a risk of overfitting,
this risk is far lower than with maximum likelihood optimisation of the parameters.

1.4.2.3 Classification

Gaussian processes lend themselves very naturally for regression, but can also be
used very effectively for classification. Instead of having an unrestricted function
output as in the case of regression, the output of a two-class classifier is constrained
to lie in the range [0 . . .1], so that it can be interpreted as the probability of one of
the classes given the inputs. This is typically done using a “squashing function”,
such as the logistic sigmoidal:

σ(a) = 1

1 + e−a
(1.32)

For multi-class problems, this can be extended very naturally to the soft-max func-
tion.

Training a GP for classification is more involved than for regression, however.
Because the output is pushed through a non-linear function, the posterior distribu-
tion is not Gaussian, and cannot be derived in closed form anymore. Approximation
schemes are therefore required, and both variational approximation schemes, as well
as sampling methods, are routinely used for this.

1.5 Human Behaviour Modelling

Bayesian methods in general, and non-parametric models in particular, present a
very promising avenue of research in human activity modelling. As we attempt to
recognise and model ever more subtle behaviours, advanced and flexible models
become necessary. The systems with which our machines observe the world become
ever more sophisticated and ever cheaper, simultaneously leading to an explosion of
the amounts of collected data, and of the dimensionality of the data points. Yet
manually labelling training data remains just as tedious, expensive and error-prone.

Bayesian inference provides us with extremely powerful techniques with which
to address these problems: they do not force us to keep our models artificially sim-
ple, yet they can learn from little training data without overfitting. In recent years,
we have seen increasing use of Gaussian processes and Dirichlet processes in the
field, and it is to be expected that this trend will continue in the foreseeable future.
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1.6 Summary

In this chapter, we have introduced the general Bayesian modelling framework, and
have exposed its modelling strengths and computational weaknesses. We have ex-
posed the important development of non-parametric methods, and have described
two classes of Bayesian non-parametric models, which are commonly used in be-
havioural modelling: Dirichlet mixture models and Gaussian processes.

1.7 Questions

1. What are Bayesian methods?
2. When using Gaussian processes, the parameters of the kernel functions are

adapted to the training data. Why, then, are Gaussian processes called non-
parametric methods?

3. Naive Bayes is a probabilistic model that uses Bayes’ rule to classify data points.
Is it a Bayesian model, though?

1.8 Glossary

• Bayesian model: A probabilistic model in which Bayes’ rule is applied consis-
tently. Parameters of the model are considered as nuisance variables, and are
marginalised out.

• DP: Dirichlet Process. A stochastic process over functions in a partitioning of the
observation space. Such a process provides a distribution over (discrete) distribu-
tions in the space

• GP: Gaussian Process. A stochastic process over continuous variables. This pro-
vides a distribution over functions of the input space.

• HMM: Hidden Markov Model. A stochastic model of sequential data, where each
observation is assumed to depend on a corresponding discrete, latent state, and the
sequence of latent states forms a Markov chain.
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Chapter 2
Introduction to Sequence Analysis for Human
Behavior Understanding

Hugues Salamin and Alessandro Vinciarelli

2.1 Introduction

Human sciences recognize sequence analysis as a key aspect of any serious attempt
of understanding human behavior [1]. While recognizing that nonsequential analysis
can provide important insights, the literature still observes that taking into account
sequential aspects “provide[s] an additional level of information about whatever
behavior we are observing, a level that is not accessible to nonsequential anal-
yses.” [2]. The emphasis on sequential aspects is even higher when it comes to
domains related to social interactions like, e.g., Conversation Analysis: “[. . .] it is
through the knowledge of the place of an action in a sequence that one reaches an
understanding of what the action was (or turned out to be).” [4]. Furthermore, social
interactions are typically defined as “sequences of social actions” in the cognitive
psychology literature [21].

In parallel, and independently of human sciences, sequence analysis is an impor-
tant topic in machine learning and pattern recognition [5, 7]. Probabilistic sequential
models, i.e. probability distributions defined over sequences of discrete or continu-
ous stochastic variables, have been shown to be effective in a wide range of problems
involving sequential information like, e.g., speech and handwriting recognition [6],
bioinformatics [3] and, more recently, Social Signal Processing and social behavior
understanding [27].
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Given a sequence X = (x1, . . . , xN), where xt is generally a D-dimensional vec-
tor with continuous components, the sequence analysis problem (in machine learn-
ing) takes typically two forms: The first is called classification and it consists in
assigning X a class c belonging to a predefined set C = {c1, . . . , cK}. The second is
called labeling and it corresponds to mapping X into a sequence Z = (z1, . . . , zN )

of the same length as X, where each zt belongs to a discrete set S = {s1, . . . , sT }.
An example of classification in Human Behavior Understanding is the recognition
of gestures, where a sequence of hand positions is mapped into a particular gesture
(e.g., hand waving) [29]. An example of labeling is role recognition in conversa-
tions, where a sequence of turns is mapped into a sequence of roles assigned to the
speaker of each turn [24].

In both cases, the problem can be thought of as finding the value Y∗ satisfying
the equation

Y∗ = arg max
Y

P(X,Y), (2.1)

where Y∗ can be one of the classes belonging to C, or a sequence Z of the same
length as X. In this respect, the main problem is to find a model P(X,Y) suitable
for the problem at hand, i.e. an actual expression of the probability to be used in
the equation above. This chapter adopts the unifying framework of graphical mod-
els [14] to introduce two of the most common probabilistic sequential models used
to estimate P(X,Y), namely Bayesian Networks (in particular Markov Models and
Hidden Markov Models [10, 23]) and Conditional Random Fields [15, 26].

The chapter focuses in particular on two major aspects of the sequence analysis
problem: On one hand, the role that conditional independence assumptions have in
making the problem tractable, and, on the other hand, the relationship between in-
dependence assumptions and the particular factorization that the models mentioned
above show. The text provides some details of inference and training as well, in-
cluding pointers to the relevant literature.

The rest of the chapter is organized as follows: Sect. 2.2 describes the graphical
models framework, Sects. 2.3 and 2.4 introduce Bayesian Networks and Conditional
Random Fields, respectively, Sect. 2.5 proposes training and inference methods and
Sect. 2.6 draws some conclusions.

2.2 Graphical Models

The main problem in estimating P(X,Y) is that the state spaces of the random vari-
ables X and Y increase exponentially with the length of X. The resulting challenge
is to find a suitable trade-off between two conflicting needs: to use a compact and
tractable representation of P(X,Y) on one side and to take into account (possibly
long-term) time dependencies on the other side. Probability theory offers two main
means to tackle the above, the first is to factorize the probability distribution, i.e. to
express it as a product of factors that involve only part of the random variables in X
and Y (e.g., only a subsequence of X). In this way, the global problem is broken into
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small, possibly simpler, problems. The second is to make independence assumptions
about the random variables, i.e. to make hypotheses about which variables actually
influence one another in the problem.

As an example of how factorization and independence assumptions can be effec-
tive, consider the simple case where Y is a sequence of binary variables. By applying
the chain rule, it is possible to write the following:

P(Y1, . . . , YN) = P(Y1)

N∏

i=2

P(Yi |Y1, . . . , Yi−1). (2.2)

As the number of possible sequences is 2N , a probability distribution expressed
as a table of experimental frequencies (the percentage of times each sequence is
observed) requires 2N − 1 parameters.

In this respect, the factorization helps to concentrate on a subset of the variables
at a time and maybe to better understand the problem (if there is a good way of
selecting the order of the variables), but still it does not help in making the rep-
resentation more compact, the number of the parameters is the same as before the
factorization. In order to decrease the number of parameters, it is necessary to make
independence assumptions like, e.g., the following (known as Markov property):

P(Yi |Y1, . . . , Yi−1) = P(Yi |Yi−1). (2.3)

The above transforms (2.2) into

P(Y1, . . . , YN) = P(Y1)

N∏

i=2

P(Yi |Yi−1), (2.4)

where the number of parameters is only 2(N − 1) + 1, much less than the original
2N − 1. The number of parameters can be reduced to just three if we consider that
P(Yi |Yi−1) is independent of i, thus it does not change depending on the particular
point of the sequence. The combination of factorization and independence assump-
tions has thus made it possible to reduce the number of parameters and model long
sequences with a compact and tractable representation.

Probabilistic graphical models offer a theoretic framework where factorization
and independence assumptions are equivalent. Distributions P(X,Y) are represented
with graphs where the nodes correspond to the random variables and the missing
edges account for the independence assumptions. More in particular, the graph acts
as a filter that out of all possible P(X,Y) selects only the set DF of those that factor-
ize over the graph (see below what this means depending on the type of graph). In
parallel the graph acts as a filter that selects the set DI of those distributions P(X,Y)

that respect the independence assumptions encoded by the graph (see below how to
identify such independence assumptions). The main advantage of graphical mod-
els is that DF = DI, i.e. factorization and independence assumptions are equivalent
(see [5] for an extensive description of this point). Furthermore, inference and train-
ing techniques developed for a certain type of graph can be extended to all of the
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Fig. 2.1 Probabilistic
graphical models: each node
corresponds to a random
variable and the graph
represents the joint
probability distribution over
all of the variables. The edges
can be directed (left graph) or
undirected (right graph)

distributions encompassed by the same type of graph (see [13] for an extensive ac-
count of training techniques in graphical models).

The rest of this section introduces notions and terminology that will be used
throughout the rest of this chapter.

2.2.1 Graph Theory

The basic data structure used in the chapter is the graph.

Definition 2.1 A graph is a data structure composed of a set of nodes and a set of
edges. Two nodes can be connected by a directed or undirected edge.

We will denote by G = (N,E) a graph, where N is the set of nodes and E is the
set of the edges. We write ni → nj when two nodes are connected by a directed
edge and ni—nj when they are connected by an undirected one. If there is an edge
between ni and nj , we say that these are connected and we write that ni � nj . An
element of E is denoted with (i, j) meaning that nodes ni and nj are connected.

Definition 2.2 If n � m, then m is said to be a neighbor of n (and vice versa). The
set of all neighbors of n is called the neighborhood and it is denoted by Nb(n). The
set of the parents of a node n contains all nodes m such that m → n. This set is
denoted by Pa(n). Similarly, the set of the children of a node n contains all nodes m

such that n → m. This set is denoted by Ch(n).

Definition 2.3 A path is a list of nodes (p1, . . . , pn) such that pi → pi+1 or pi—
pi+1 holds for all i. A trail is a list of nodes (p1, . . . , pn) such that pi � pi+1 holds
for all i.

The difference between a trail and a path is that a trail can contain pi ← pi+1
edges. In other words, in a trail it is possible to follow a directed edge in the wrong
direction. In undirected graphs, there is no difference between paths and trails.

Definition 2.4 A cycle is a path (p1, . . . , pn) such that p1 = pn. A graph is acyclic
if there are no cycles in it.
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2.2.2 Conditional Independence

Consider two random variables X and Y that can take values in Val(X) and Val(Y ),
respectively.

Definition 2.5 Two random variables X and Y are independent, if and only if
P(Y |X) = P(X) ∀x ∈ Val(X),∀y ∈ Val(Y ). When X and Y are independent, we
write that P |= (X⊥Y).

The definition can be easily extended to sets of variables X and Y:

Definition 2.6 Two sets of random variables X and Y are independent, if and only
if P(Y |X) = P(X) ∀X ∈ Val(X),∀Y ∈ Val(Y). When X and Y are independent, we
write that P |= (X⊥Y).

Definition 2.7 Let X,Y, and Z be sets of random variables. We say that X is con-
ditionally independent of Y given Z if and only if:

P(X,Y|Z) = P(X|Z)P(Y|Z)

We write that P |= (X⊥Y|Z).

The rest of the chapter shows how the notion of conditional independence is
more useful, in practice, than the simple independence. For example, the Markov
property (see above) can be seen as a conditional independence assumption where
the future Xt+1 is conditionally independent of the past (X1, . . . ,Xt−1) given the
present Xt . Such an assumption might not be true in reality (Xt is likely to be
dependent on X1, . . . ,Xt−1), but it introduces a simplification that makes the simple
model of (2.4) tractable.

2.3 Bayesian Networks

Bayesian Networks [11, 12, 20] are probabilistic graphical models encompassed by
Directed Acyclic Graphs (DAGs), i.e. those graphs where the edges are directed
and no cycles are allowed. The rest of the section shows how a probability distri-
bution factorizes over a DAG and how the structure of the edges encodes condi-
tional independence assumptions. As factorization and independence assumptions
are equivalent for graphical models, it is possible to say that all of the distributions
that factorize over a DAG respect the conditional independence assumptions that
the DAG encodes. Inference and training approaches will not be presented for di-
rected models because each directed graph can be transformed into an equivalent
undirected one and related inference and training approaches can be applied. The
interested reader can refer to [9, 13] for extensive surveys of these aspects.
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Fig. 2.2 The picture shows
the three ways it is possible to
pass through a node (Z in this
case) along a trail going from
X to Y : head-to-tail,
tail-to-tail and head-to-head

2.3.1 Factorization

Definition 2.8 Let X = (Xi, . . . ,XN) be a set of random variables and G be a DAG
whose node set is X. The probability distribution P over X is said to factorize over
G if

P(X) =
n∏

i=1

P
(
Xi |Pa(Xi)

)
. (2.5)

A pair (G,P) where P factorizes over G is called Bayesian Network.

2.3.2 The d-Separation Criterion

A DAG allows one to read conditional independence assumptions through the con-
cept of d-separation for directed graphs.

Definition 2.9 Let (G,P) be a Bayesian Network and X1 � . . . � XN a path in G.
Let Z be a subset of variables. The path is blocked by Z if there is a node W such
that either:

• W has converging arrows along the path (→ W ←) and neither W nor its descen-
dants are in Z

• W does not have converging arrows (→ W → or ← W →), and W ∈ Z

Definition 2.10 The set Z d-separates X and Y if every undirected path between
any X ∈ X and any Y ∈ Y is blocked by Z

The definition is more clear if we consider the three structures depicted in
Fig. 2.2. In the case of Fig. 2.2(a), Z, d-separates X and Y and we can write the
following:

P(X,Y,Z) = P(X)P(Z|X)P(Y |Z) = P(Z)P(X|Z)P(Y |Z). (2.6)

As P(X,Y,Z) = P(X,Y |Z)P(Z), the above means that P |= (X⊥Y |Z). The case of
Fig. 2.2(b) leads to the same result (the demonstration is left to the reader), while
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the structure of Fig. 2.2(c) has a different outcome:

P(X,Y |Z) = P(X|Z)P(Y |Z)P(Z). (2.7)

In this case, Z does not d-separate X and Y and it is not true that P |= (X⊥Y |Z),
even if P |= (X⊥Y). This phenomenon is called explaining away and it is the rea-
son of the condition about the nodes with converging arrows in the definition of
d-separation. In more general terms, the equivalence between d-separation and con-
ditional independence is stated as follows:

Theorem 2.1 Let (G,P) be a Bayesian Network. Then if Z d-separates X and Y,
P |= (X⊥Y|Z) holds.

Thus, the conditional independence assumptions underlying a Bayesian Network
can be obtained by simply applying the d-separation criterion to the corresponding
directed graph.

2.3.3 Hidden Markov Models

The example presented in Sect. 2.2, known as Markov Model (see Fig. 2.3), can be
thought of as a Bayesian Network where Pa(Yt ) = {Yt−1}:

P(Y1, . . . , YN) = P(Y1)

N∏

i=2

P(Yi |Yi−1) =
N∏

i=1

P
(
Yi |Pa(Yi)

)
. (2.8)

The DAG corresponding to this distribution is a linear chain of random variables.
An important related model is the Hidden Markov Model (HMM) [10, 23], where

the variables can be split into two sets, the states Y and the observations X:

P(X,Y) = P(Y1)P(X1|Y1)

N∏

t=2

P(Yt |Yt−1)P(Xt |Yt ), (2.9)

where the terms P(Yt |Yt−1) are called transition probabilities, the terms P(Xt |Yt )

are called emission probability functions, and the term P(Y1) is called initial state
probability. The underlying assumptions are the Markov Property for the states and,
for what concerns the observations, the conditional independence of one observation
with respect to all of the others given the state at the same time.

HMMs have been used extensively for both classification and labeling problems.
In the first case, one class is assigned to the whole sequence X. For C classes,
different sequences of states Yi are used to estimate the probability P(X,Yi) and
the one leading to the highest value is retained as the winning one:
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Fig. 2.3 The figure depicts the Bayesian Networks representing a Markov Model (a) and a Hidden
Markov Model (b)

k = arg max
i∈[1,C]

= P
(
X,Yi), (2.10)

where k is assigned to X as class. In the labeling case, the sequence of states Ŷ that
satisfies

Ŷ = arg max
Y∈Y

= P(X,Y), (2.11)

is used to label the observations of X (Y is the set of the state sequences of the same
length as X). Each element Xt is labeled with the value yt of variable Ŷt in Ŷ.

HMM have been widely used for speaker diarization (i.e. the task of segmenting
an audio recording in speaker turn). In this scenario, the HMM is used as an unsu-
pervised clustering algorithm. The hidden states Y of the model correspond to the
speakers and the observations are features extracted from the audio spectrum (usu-
ally Mel-frequency cepstral coefficients [17]). For a description of a state of the art
system using this approach see [8].

HMM suffers from two main limitations. The first is that the observations are
assumed to be independent given the states. In the case of human behavior analysis,
this assumption does not generally hold. The model presented in the next section,
the Conditional Random Field, can address this problem.

The second limitation is that the Markov property makes it difficult to model
the duration of the hidden states, i.e. the number of consecutive observations la-
beled with the same state. The reason is that the probability of transition to a state
yt depends only on yt−1. The Hidden Semi-Markov Model [25] was developed to
address this limitation. A complete description of this model is beyond the scope of
this chapter, but the key idea is to have the transition probabilities to yt that depend
not only on yt−1, but also on the number of consecutive observations that have been
labeled with yt−1.
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2.4 Conditional Random Fields

Conditional Random Fields [14, 15, 26] differ from Bayesian Networks mainly in
two aspects: The first is that they are encompassed by undirected graphical models,
the second is that they are discriminative, i.e. they model P(Y|X) and not P(X,Y).
The former aspect influences the factorization, as well as the way the graph encodes
conditional independence assumptions. The latter aspect brings the important ad-
vantage that no assumptions about X need to be made (see below for more details).

2.4.1 Factorization and Conditional Independence

Definition 2.11 Let G = (N,E) be a graph such that the random variables in Y
correspond to the nodes of G and let P be a joint probability distribution defined
over Y. A pair (G,P) is a Markov Random Field if:

P
(
Y |Y \ {Y }) = P

(
Y |Nb(Y )

) ∀Y ∈ Y. (2.12)

The factorization of P is given by the following theorem:

Theorem 2.2 Let (G,P) be a Markov Random Field, then there exists a set of func-
tions {ϕc|c is a clique of G} such that

P(Y) = 1

Z

∏

c

ϕc(Y|c), (2.13)

where Y|c is the subset of Y that includes only variables associated to the nodes in
c, and Z is a normalization constant:

Z =
∑

y

∏

c

ϕc(y|c), (2.14)

where y iterates over all possible assignments on Y.

The functions ϕc are often called potentials. They need to be positive functions
but they do not necessarily need to be probabilities, i.e. they are not bound to range
between 0 and 1. The conditional independence assumptions underlying the factor-
ization above can be inferred by considering the definition of the Markov Network.
Each variable is conditionally independent of all of the others given those who cor-
respond to the nodes in its neighborhood: P |= (Y⊥Y \ {Y,Nb(Y )}|Nb(Y )).

Conditional Random Fields (see Fig. 2.4) are based on Markov Networks and are
defined as follows:

Definition 2.12 Let G = (N,E) be a graph such that the random variables in Y
correspond to the nodes of G. The pair (X,Y) is a Conditional Random Field (CRF)
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Fig. 2.4 Conditional
Random Fields. The
potentials are defined over
cliques and have as argument
the variables corresponding to
the nodes of the clique and an
arbitrary subset of the
observation sequence X

if the random variables in Y obey the Markov property with respect to the graph G

when conditioned on X:

P(Y |X,Y \ Y) = P
(
Y |X,Nb(Y )

)
(2.15)

the variables in X are called observations and those in Y labels.

The definition above does not require any assumption about X and this is an
important advantage. In both labeling and classification problems, X is a constant
and the value of P(X,Y) must be maximized with respect to Y:

Y∗ = arg max
Y

P(Y|X)P(X) = arg max
Y

P(Y|X). (2.16)

Thus, modeling X explicitly (like it happens, e.g., in Hidden Markov Models) is not
really necessary. The model does not require conditional independence assumptions
for the observations that might make the models too restrictive for the data and affect
the performance negatively. In this respect, modeling P(Y|X) makes the model more
fit to the actual needs of labeling and classification (see equation above) and limits
the need of conditional independence assumptions to the only Y.

The factorization of Conditional Random Fields is as follows:

Theorem 2.3 Let (G,P) be a Markov Network; then there exists a set of functions
{ϕc|c is a clique of G} such that

P(y|x) = 1

Z(x)

∏

c

ϕc(y|c,x). (2.17)

Z is a normalization constant called the partition function:

Z(x) =
∑

y

∏

c

ϕc(y|c,x), (2.18)

where y iterates over all possible assignments on Y.

The problem left open so far is the definition of the potentials. As this chapter
focuses on sequence analysis, the rest of this section will consider the particular case
of Linear Chain Conditional Random Fields, one of the models most commonly
applied for the sequence labeling problem.
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Fig. 2.5 Linear Chain
Conditional Random Fields.
The cliques in a chain are pair
of adjacent labels or
individual labels. The
potentials are functions of
(i) adjacent nodes or (ii) a
node and the corresponding
observation

2.4.2 Linear Chain Conditional Random Fields

In linear chain CRFs, the cliques are pairs of nodes corresponding to adjacent ele-
ments in the sequence of the labels or individual nodes (see Fig. 2.5):

Definition 2.13 A graph is a chain if and only if E = {(yi, yi+1),1 ≤ i < |Y |}.

Here E is the set of the edges and (yi, yi+1) represents the edge between the
nodes corresponding to elements Yi and Yi+1 in Y.

The following assumptions must be made about the potentials to make the model
tractable:

1. The potential over {yt , yt+1} depends only on yt and yt+1.
2. The potential over {yt } depends only on yt and xt .
3. The potentials are the same for all t .
4. The potentials are never zero.

These first three assumptions mean that the marginal distribution for yt is fully de-
termined by yt−1, yt+1 and xt . The fourth assumption means that every sequence
of labels Y has a probability strictly greater than zero. This last assumption is im-
portant in practice, because it allows the product of potentials to be replaced by the
exponential of a sum as [14]

P(Y |X) = exp(
∑N

t=1 f1(yt ,xt ) + ∑N−1
t=1 f2(yt , yt+1))

Z(X)
,

Z(X) =
∑

Y∈Y N

exp

(
N∑

t=1

f1(yt ,xt ) +
N−1∑

t=1

f2(yt , yt+1)

)
,

where f1 and f2 represent potentials having as argument only one label yt or a pair
of adjacent labels {yt , yt+1}. Thus, the potentials have been represented as a linear
combination of simpler terms called feature functions.

In general, the feature functions used for f1 are
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fy,t (yt ,x) =
{

xt if yt = y,

0 otherwise,
(2.19)

where xt is the observation at time t . This family of feature functions can capture
linear relations between a label and an observation xt . For f2, the feature functions
are typically

fy,y′(yt , yt+1) =
{

1 if yt = y and yt+1 = y′,
0 otherwise.

(2.20)

In summary, Linear Chain CRFs estimate p(Y|X) as

p(Y|X, α) = 1

Z(X)
exp

⎛

⎜⎜⎜⎜⎜⎝

N∑

t=1

∑

y∈Y

αyfy,t (yt , xt )

+
N−1∑

t=1

∑

(y,y′)∈Y 2

αy,y′fy,y′(yt , yt+1)

⎞

⎟⎟⎟⎟⎟⎠
. (2.21)

The weights αy of the feature functions of form fy,t (X,Y) account for how much
the value of a given observation is related to a particular label. The weights αy,y′ of
the feature functions of form fy,y′(X,Y) account for how frequent it is to find label
y followed by label y′.

Linear Chain CRF have been used with success in role recognition [24], where
the goal is to map each turn into a role. In this case, the labels correspond to a
sequence of roles. The observations are feature vectors accounting for prosody and
turn taking patterns associated to each turn.

CRFs have several extensions aimed at addressing the weaknesses of the basic
model, in particular the impossibility of labeling sequences as a whole and of mod-
eling latent dynamics. Two effective extensions are obtained by introducing latent
variables in the model. The first of these extensions is the hidden Conditional Ran-
dom Field (HCRF) [22] and it aims at labeling a sequence as a whole. The HCRFs
are based on linear chain CRFs, where the chain of labels Y is latent and a new
variable C is added (see Fig. 2.6). The new variable C represents the class of the
observations and is connected to every label. All of the potentials are modified to
depend on the class C (see Fig. 2.6).

The second extension aims at modeling latent dynamics like, for example, a sin-
gle gesture (e.g., hand waving) that can have several states (hand moving left and
hand moving right) associated with a single label. CRFs cannot model these states
and the dynamics associated with them. The Latent Discriminative Conditional Ran-
dom Fields (LDCRF) [18] were introduced to overcome this drawback. LDCRF in-
troduce a linear chain of latent variables between the observations and the labels
(see Fig. 2.7). The labels are disconnected and thus assumed to be conditionally in-
dependent given the hidden states. Also, the labels are not directly connected to the
observations.
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Fig. 2.6 Hidden Conditional Random Fields. The class is represented by the C. The variables
Yi are not observed. The potentials are functions of (i) adjacent nodes and the class (fYiYi+1C ) or
(ii) a node, the corresponding observation, and the class (fYiC ). The potentials fYiC are not drawn
connected to C to keep the figure readable

Fig. 2.7 Latent Dynamic Conditional Random Fields. The variables Hi are not observed and
capture the latent dynamic. The potentials are functions of (i) adjacent hidden states, (ii) a hidden
state and the corresponding label, or (iii) a hidden state and the corresponding observation

2.5 Training and Inference

The models presented so far cannot be used without appropriate training and infer-
ence techniques. The training consists in finding the parameters of a model (e.g., the
transition probabilities in a Hidden Markov Model or the α coefficients in a Con-
ditional Random Field) that better fit the data of a training set, i.e. a collection of
pairs T = {(Xi,Yi)} (i = 1, . . . , |T |) where each observation is accompanied by a
label supposed to be true. By “better fit” we mean the optimization of some criterion
like, e.g., the maximization of the likelihood or the maximization of the entropy (see
below for more details).

The inference consists in finding the value of Y that better fits an observation
sequence X, whether this means to find the individual value of each Yj that better
matches each X:

P(Yj = y|X) =
∑

Y∈{Y,Yj =y}
P(Y|X) (2.22)



34 H. Salamin and A. Vinciarelli

or finding the sequence Y∗ that globally better matches X:

Y∗ = arg max
Y

P(Y|X). (2.23)

The number of possible sequences increases exponentially with Y, thus training and
inference cannot be performed by simply estimating P(Y|X) for every possible Y.
The next two sections introduce some of the key techniques necessary to address
both tasks with a reasonable computational load.

2.5.1 Message Passing

One of the main issues in both training and inference is to estimate the probability
P(Yj = y) that a given label Yj takes the value y. The Message Passing algorithm
allows one to perform such a task in an efficient way by exploiting the local struc-
ture of the graph around the node corresponding to Yj (see [30] for an extensive
survey of the subject). In particular, the key idea is that the marginal distribution of
a node Yj can be determined if the value of the variables corresponding to its neigh-
boring nodes are known. In practice, those values are unknown, but it is possible
to estimate the belief that measures the relative probability of the different values.
For this reason, the message passing algorithm is sometimes referred to as belief
propagation.

This section will focus in particular on the message passing algorithm for Pair-
wise Markov Networks, namely Markov Networks where the cliques include no
more than two nodes. While being an important constraint, still it includes cases of
major practical importance such as chains, trees and grids (the Linear Chain Condi-
tional Random Fields fall in this class).

The beliefs are defined by

bj (yj ) = ϕj (yj )
∏

k∈Nb(Yj )

mkj (yj ), (2.24)

where ϕj (yj ) is the potential for node Yj , mkj is the message from node Yk to node
Yj (see below for the definition of the messages). Formally, a belief is a function
that maps each possible value of Yj into a real number.

A message is another function that maps the value of one node into a real number
and it represents the influence that the sending node has on the receiving one:

mkj (yj ) =
∑

yk

(
ϕk(yk)ϕjk(yj , yk)

∏

n∈Nb(Yk)\{Yj }
mnk(yk)

)
(2.25)

where ϕjk is the potential of the clique including Yj and Yk (this equation motivates
the name sum-product algorithm that it is used sometimes for this algorithm).

The belief propagation requires the variables to be ordered and this might create
problems when a graph contain cycles. When cycles are absent (which is the case
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for the models considered in this chapter), the following procedures allow one to
find a suitable ordering:

1. Choose a root node
2. Compute messages starting at the leaf, moving to the root
3. Compute messages starting at the root, going to the leafs

It is important to note that the value of the message is independent of the order in
which the messages are passed.

At the end of the procedure, each node is associated with a belief that can be used
to compute the marginal probabilities as shown by the following:

Theorem 2.4 Let G be a pairwise random field on Y and bj the beliefs computed
using the message passing algorithm, then the following holds:

P(Yj = yj ) = bj (yj )∑
yi

bj (yi)
. (2.26)

In the case of Conditional Random Fields, the observations in X have to be taken
into account. The message and the beliefs are now dependent on X:

bj (yj ,X) = ϕj (yj ,X)
∏

Yk∈Nb(Yj )

mkj (yj ,X), (2.27)

mkj (yj ,X) =
∑

yk,X

(
ϕk(yk,X)ϕjk(yj , yk,X)

∏

Yn∈Nb(Yk)\{Yj }
mnk(yk,X)

)
. (2.28)

As X is a constant and as it is known a priori, it is possible to apply exactly the
same equations as those used for the Markov Networks.

2.5.1.1 Inference

There are two possible inference scenarios (see beginning of this section): The first
consists in finding, for each label, the assignment that maximizes the marginal prob-
ability. The second consists in finding the assignment that maximizes the joint prob-
ability distribution over the entire label sequence Y.

The first case is a straightforward application of the message passing algorithm.
For a given label Yj , it is sufficient to use the beliefs to find the particular value y∗
that maximizes the following probability:

y∗ = arg max
y

P(Yj = y) = arg max
y

bj (y). (2.29)

It can be demonstrated that this particular way of assigning the values to the labels
minimizes the misclassification rate.
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In the second case, the expression of the messages in (2.25) must be modified as
follows:

mkj (yj ) = max
yk

(
ϕk(yk)ϕjk(yj , yk)

∏

n∈Nb(Yk)\{Yj }
mnk(yk)

)
, (2.30)

where the initial sum has been changed to a maximization. This ensures that the
message received by the node corresponding to label Yj brings information about
the sequence (Y1, . . . , Yj−1) with the highest possible probability rather than about
the sum of the probabilities over all possible sequences.

It is again possible to assign to each Yj , the value y∗
j that maximize the beliefs

obtained using the modified messages:

y∗
j = arg max

y
bj (y). (2.31)

It can be shown that the resulting assignment Y ∗ = {y∗
1 , . . . , y∗

n} is the sequence
with the maximum probability:

Y ∗ = arg max
Y

P(Y ). (2.32)

2.5.1.2 Training

The last important aspect of probabilistic sequential models is the training. The topic
is way too extensive to be covered in detail and the section will focus in particular on
Markov Networks as this can be a good starting point toward training Conditional
Random Fields. If the assumption is made that the potentials are strictly greater than
zero, then Markov Networks can be factorized as

P(Y|α) = 1

Z
exp

(
∑

c

nc∑

i=1

αi
cf

i
c (Y|c)

)
, (2.33)

Z =
∑

Y

exp

(
∑

c

nc∑

i=1

αi
cf

i
c (Y|c)

)
, (2.34)

where the f i
c (Y |c) are feature functions defined over a clique c. The same expres-

sion as the same as the one used for Conditional Random Fields, but without the
observations X.

Training such a model it means to find the values of the coefficients α that opti-
mize some criteria over a training set. This section considers in particular the maxi-
mization of the likelihood:

α∗ = arg max
α

∑

j

log P
(
Yj|α)

, (2.35)
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where the Yj are the sequences of the training set.
The main problem is that solving the above equation leads to an expression for

the α coefficients which is not in closed form, thus it is necessary to apply gradient
ascent techniques. On the other hand, these are effective because of the following:

Theorem 2.5 The log-likelihood function is concave with respect to the weights.

In practice, the limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
algorithm [16] works well and this has two main motivations: The first is that the
algorithm approximates the second derivative and thus converges faster, the second
is that it has a low memory usage and it works well on large scale problems. One of
the main steps of the LFBGS is the estimation of the derivative of the log-likelihood
with respect to α.

∂

∂αc
i

∑

j

log P
(
Yj) = ∂

∂αc
i

∑

j

log

(
1

Z
exp

(
∑

c

nc∑

i=1

αi
cf

i
c

(
Yj|c

)
))

(2.36)

= ∂

∂αc
i

∑

j

(
∑

c

nc∑

i=1

αi
cf

i
c

(
Yj|c

)
)

− ∂

∂αc
i

∑

j

logZ (2.37)

=
∑

j

(
f i

c

(
Yj|c

) − E
[
f i

c

])
. (2.38)

The equation above shows that the optimal solution is the one where the theoretical
expected value of the feature functions is equal to their empirical expected value.
This corresponds to the application of the Maximum Entropy Principle and it further
explains the close relationship between Conditional Random Fields and Maximum
Entropy Principle introduced in this section.

2.6 Summary

This chapter has introduced the problem of sequence analysis in machine learning.
The problem has been formulated in terms of two major issues, namely classification
(assigning a label to an entire sequence of observations) and labeling (assigning a
label to each observation in a sequence). The chapter has introduced some of the
most important statistical models for sequence analysis, Hidden Markov Models
and Conditional Random Fields. The unifying framework of Probabilistic Graphical
Models has been used in both cases and the emphasis has been on factorization
and conditional independence assumptions. Some details of training and inference
issues have been provided for Conditional Random Fields, and more generally, for
undirected graphical models.

The models introduced in this chapter are not aimed in particular at human be-
havior understanding, but they have been used successfully in the domain (see [27]
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for an extensive survey of the domain). Sequences arise naturally in many behavior
analysis problems, especially in the case of social interactions where two or more
individuals react to one another and produce sequences of social actions [21].

While trying to provide an extensive description of the sequence analysis prob-
lem in machine learning, this chapter cannot be considered exhaustive. However,
the chapter, and the references therein, can be considered a good starting point to-
ward a deeper understanding of the problem. In particular, graphical models have
been the subject of several tutorials (see, e.g., [19] and Chap. 8 of [5]) and dedicated
monographs [14]. The same applies to Hidden Markov Models (see, e.g., [23] for a
tutorial and [10] for a monograph) and Conditional Random Fields (see, e.g., [28]
for a tutorial and [14] for a monograph).

Last, but not least, so far Human Sciences and Computing Science (in particular
machine learning) have looked at the sequence analysis problem in an independent
way. As the cross-pollination between the two domains improves, it is likely that
models more explicitly aimed at the human behavior understanding problem will
emerge.

2.7 Questions

Question 2.1 What is the rationale behind (2.1)?

Question 2.2 Consider the graph represented in Fig. 2.2(c). Let X, Y and Z be
binary random variables. Let the probability of the Bayesian Network be defined by
the following conditional probabilities:

X P(X)

0 0.6
1 0.4

Y P(Y )

0 0.5
1 0.5

X Y P(Z = 0|X,Y ) P(Z = 1|X,Y )

0 0 0.8 0.2
0 1 0.6 0.4
1 0 0.5 0.5
1 1 0.6 0.4

Without using Theorem 2.1, prove the following:

1. P |= (X⊥Y).
2. P 
|= (X⊥Y |Z).

Question 2.3 Consider the Markov Model (MM) and the Hidden Markov Model
(HMM) presented in Fig. 2.3. Find a smallest possible set that:

1. d-separates Y1 from YN in the case of MM.
2. d-separates Y1 from YN in the case of HMM.

Prove that there is no subset of the observations X that d-separates Y1 from YN in
the case of HMMs.
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Question 2.4 What is the conditional independence assumption made by the Linear
Chain Conditional Random Fields?

Question 2.5 Let (G,P) be a Markov Random Field, where G is the undirected
graph in Fig. 2.1. By applying (2.25) and (2.24) give the expressions for:

1. m45(y5).
2. b5(y5).
3.

∑
y5

b5(y5).

Mark that the product in the third case can be rearranged to yield Z as this is a
special case of Theorem 2.4.

Question 2.6 Prove Theorem 2.5: The log-likelihood function is concave with re-
spect to the weights. This proof requires some background in analysis and should
use materials not presented in this chapter. A proof is given in [14, Chap. 20.3].

2.8 Glossary

• Probabilistic Sequential Model: Probability distribution defined over sequences
of continuous or discrete random variables.

• Sequence: Ordered set of continuous or discrete random variables, typically cor-
responding to measurements collected at regular steps in time or space.

• Probabilistic Graphical Model: Joint probability distribution defined over a set of
random variables corresponding to the nodes of a (directed or undirected) graph.

• Graph: Data structure composed of a set of nodes and a set of edges, where two
nodes can be connected by a directed or undirected edge.

• Conditional Independence: Let X,Y, and Z be sets of random variables. We say
that X is conditionally independent of Y given Z if and only if:

P(X,Y|Z) = P(X|Z)P(Y|Z).
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Chapter 3
Detecting and Tracking Action Content

Alper Yilmaz

3.1 Introduction

Object detection and tracking are very active areas of research in the field of com-
puter vision with significant number of papers being published in major conferences
and journals every year. The goal of this chapter is to introduce the reader to main
trends in the field rather than providing a list of approaches, to give an insight to un-
derlying ideas, as well as to show their limitations in the hopes of creating interest
for conducting research to overcome these shortcomings.

A video sequence containing activities performed by an actor also includes re-
gions that belong to the background. At a low feature level, the background does not
carry any information related to activities and is generally ignored during analysis,
by removing redundancy or by finding spatio-temporal regions containing signifi-
cant motion content. Either one of these approaches provides us with the ability to
extract useful information, which may be directly utilized for representing the activ-
ity content or may be tracked for gaining insight into underlying motion. The type
of features extracted and the tracking approach used to locate them depend on the
choice of appearance and shape representations.

In order to facilitate the discussion on finding and tracking the action content, we
will first introduce shape representations commonly employed in context of action
analysis. Following this discussion, we will first introduce the appearance descrip-
tors that model observed shape representations. These are followed by detection
and tracking of the introduced representations modeled by the descriptors. We will
conclude by discussing some open topics.
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Fig. 3.1 Taxonomy of representations used in action recognition and the list of descriptors tra-
ditionally used for each representation. The colored lines denote the representation type and each
line connecting to it provides the types of descriptors researcher have used for this representation.
Counting the connections in the form of a red bullet • shows the popularity of the descriptors.
For instance geometry based descriptors are adopted by five different representations including
contour, parts, skeletal, trajectory and volumetric, but they have not been used for point-based
representations

3.2 Representations

There is a strong relation between the activities performed by humans and the rep-
resentation chosen to define the activity content. Broadly speaking, the types of
representations for actions either represent the performers’ shape or the motion in
the video. As illustrated in Fig. 3.1, depending on the approach used to define the
action content, representations are classified into spatial only and spatio-temporal
categories. Either of these classes can be used to represent the action content using
a single image or multiples of images.

3.2.1 Spatial Representations

Methods that rely on using a single image, arguably, hypothesize existence of a
unique posture that characterizes the action content. The posture of the performer is
manifested in spatial shape models, representing the performer’s:

• Bounding contour or the silhouette.
• Arrangement of the body parts.
• Skeleton.
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Fig. 3.2 Spatial shape (posture) representations. From left to right: performer template, bounding
contour, silhouette, skeletal, parts representations

These representations are illustrated in Fig. 3.2.
Silhouette is usually in the form of a mask with value 1 denoting an object pixel

and 0 denoting a non-object pixel [33]. It is also used to define the object contour,
which is the bounding curve defining its outline. Contour representation requires a
special data structure that explicitly or implicitly defines its shape [61]. A traditional
explicit contour structure used since the late 1970s is composed of a set of points
(tuples), (xi, yi) on the contour along with a set of spline equations, which are real
functions fit to the control points generated from the tuples [24]. A well studied
choice (from among many others) is the natural cubic spline defined using n − 1
piecewise cubic polynomials, Si(x) between n tuples [46]:

y = S(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S0(x) x ∈ [x0, x1],
S1(x) x ∈ [x1, x2],
...

Sn−1(x) x ∈ [xn−1, xn],

where the functions are defined as

Si(x) = zi+1(x − xi)
3

6hi

+
(

yi+1

hi

− hi

6
zi+1

)
(x − xi)

+ zi(xi+1 − x)3

6hi

+
(

yi

hi

− hi

6
zi

)
(xi+1 − x). (3.1)

In (3.1), hi = xi+1 − xi and without loss of generality, zi can be estimated for six
tuples by solving the following system of equations:

⎡

⎢⎢⎢⎢⎣

2(h0 + h1) h1 0 0 0
h1 2(h1 + h2) h2 0 0
0 h2 2(h2 + h3) h3 0
0 0 h3 2(h3 + h4) h4
0 0 0 h4 2(h4 + h5)

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5

⎤

⎥⎥⎥⎥⎦
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= 6

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

y2−y1
h1

− y1−y0
h0

y3−y2
h2

− y2−y1
h1

y4−y3
h3

− y3−y2
h2

y5−y4
h4

− y4−y3
h3

y6−y5
h5

− y5−y4
h4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The piecewise analytical contour in this form provides the ability to estimate differ-
ential descriptors with ease.

The analytical form, however, does not allow for changes in the contour topol-
ogy (merging and splitting), which are necessary during contour evolution, as will
be discussed later in the chapter. Alternatively, contour in an image can be implic-
itly defined using the level set formalism [49]. In this formalism, the position of a
contour, Γ , is embedded as the zero level set in a two dimensional function φ[x]
satisfying:

Γ = {
x|φ[x, t] = 0

}
, (3.2)

inside Γ = {
x|φ[x, t] > 0

}
, (3.3)

outside Γ = {
x|φ[x, t] < 0

}
, (3.4)

where x = (x, y). In this equation, t denotes iteration number during evolution and
will be discussed in more detail later in the chapter. The value at a grid point (x, y)

is commonly set to its distance from the closest contour location and is computed
by applying a distance transform. For more detail on distance transform, we refer
the reader to a comparative survey by Fabbri et al. [13]. Alternatively, researchers
have replaced the distance transform with an indicator function to reduce the com-
putational complexity of the representation [34]. In recent years, the level set repre-
sentation has attracted much attention due to

1. Its ability to adapt to topology changes
2. Direct computation of differential contour features, and
3. Extendibility to higher dimensions with no change in formulation

For example, the contour curvature, which is a commonly used differential contour
feature, is computed by

κ[x, t] = ∇ ·
( ∇φ[x, t]

|∇φ[x, t]|
)

, (3.5)

where ∇ is derivative operator. Depending on the granularity of choice, parts of a
performer’s body can be grouped into head, torso, arms and legs, which can be de-
fined as geometric primitives, such as rectangles, cylinders and ellipses [3]. The join
of the body parts follow a special configuration—head is above torso, arms are con-
nected to shoulders, etc.—which reduces the degrees of freedom for types of motion
that can be performed using kinematic motion models. An important issue that needs
explicit handling is the occlusion problem that arises when one part is behind the
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Fig. 3.3 Space-time cube in
(x, y, t) domain and its (yt )
slices at two different y

values revealing different
motion content used for
analysis of walking action
(copyright [1994] IEEE, [39])

others making it invisible. Occluded parts constitute missing observations and can
be dealt with by applying heuristics or by enforcing learned part-arrangements. In
addition, the degree of articulation increases the complexity of the models.

Another common spatial representation is the set of skeletal models which are
commonly used to animate characters and humans in graphics. Skeleton, in our
context, is an articulated structure with a set of line/curve segments and joints con-
necting them [2]. Similar to the contour, object silhouette is required to find the
skeleton. A common algorithm used to estimate the skeleton representation is the
medial axis transform, which takes the object silhouette and iteratively computes
the set of points lying on its topological skeleton such that each point has more than
one closest points to the bounding contour. Alternatively, the medial axis is defined
as the loci of centers of bi-tangent circles that fit within the object silhouette.

3.2.2 Spatio-Temporal Representations

While the spatial representations are used in analysis of motion content, there are
specific representations that are defined in the (x, y, t) space and inherently pro-
vide the motion information [63]. These representations use a special data structure
called the space-time cube, which is generated by stacking video frames (see Fig. 3.3
for illustration). The space-time cube can be considered a 3D image, where cutting
it at any x value results in an image taking (y, t) as its parameters or at any y value
gives a (x, t) domain image. Specifically, the (x, t) domain image has been used as
early as three decades ago for analysis of cyclic motion. An important observation
about the space-time cube is that aside from providing temporal information, it also
carries a unique view geometric information when we have two cameras observing
a common scene. The geometry is out of the scope of this chapter and we suggest
the interested reader to look at additional sources [20].

The spatio-temporal representations can be extracted by local analysis or by look-
ing at the space-time cube globally. Local representations are composed of a set of
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Fig. 3.4 Spatio-temporal representations. Left to right: spatio-temporal points generated from high
frequency hand motion (copyright [26]), trajectory of hand during erasing board, volumetric rep-
resentation generated from running action (copyright [2005] IEEE, [7])

points N = {(xi, yi, ti)|0 ≤ i ≤ n} that present characteristic motion and appear-
ance content [26]. In the literature, while there have been a small number of excep-
tions, the point set N is commonly treated as a bag of features without temporal
order [29]. The bag of features representation, despite the temporal ambiguity, has
seen increased adoption over the last few years by many researchers.

Alternative to using temporally sparse point sets, one can consider progression
of the point set in time by extracting their trajectories [44]. This representation is
referred to as the trajectory representation and has been used in many domains
within computer vision research including, but not limited to, 3D recovery, video
segmentation and action recognition. Trajectory representation is constituted of a
temporally ordered point series Ti = {x0

i ,x1
i , . . . ,xm

i }, which represent the position
of the ith point starting from its initial observation at x0

i until it disappears from
the scene at mth frame [44]. Due to its redundancy, such that it represents the same
point multiple times, it can be considered as a superset of the point representation.
An intuitive example of a trajectory can be exemplified by the motion of wrist joint
during execution of an action. The resulting trajectory draws a curve in the (x, y, t)

space, providing instantaneous as well as holistic motion content (see middle image
in Fig. 3.4).

The last of the spatio-temporal representations is the volumetric representation.
In its simplest form, the space-time cube can be considered as a volume providing
a holistic representation of the scene. Aside from extracting other representations
from it, researchers have used the complete space-time volume to match action
under the constraint that the volume only contains motion that relates to the ac-
tion. This limitation triggered another volumetric representation which considered
the subvolume from the space-time cube containing the action content or in other
words the performer. The subvolume constitutes a generalized cylinder composed
of the performer’s posture, such as Γ in (3.2), for each frame from beginning until
the completion of the action [7, 54, 60]. The generalized cylinder can be represented
by the set of points defining the volume surface V = {[x, t]|x = Γ t(s)}, or the set of
points defining pixels inside it V = {[x, t]|x < Γ t(s)} where s denotes the contour
arc length (see rightmost image in Fig. 3.4).
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3.3 Descriptors

The selection of descriptors is closely related to the choice of representations dis-
cussed in the previous section, and it plays a critical role in detection, tracking and
action recognition. Generally speaking, a desirable property of a descriptor is its
uniqueness, so that they can be easily distinguished from others depending on the
task at hand. For instance, template as a descriptor is commonly exploited for the
tracking and detection problems, while they have not been extensively used for the
action recognition problem. Instead, researchers extract differential features or dis-
tributions from the template and use it to represent the action content.

In this section, we base our discussion on the relations between the descriptors
and the representations given in Fig. 3.1. As can be noticed from the figure, each
descriptor is used for different representations, and they are grouped into two classes
based on the use of appearance. This classification will motivate the organization of
the following discussion.

3.3.1 Non-appearance Based Descriptors

The descriptors falling under this category do not require additional processing.
They are generally readily available once the representation is extracted from the
image. The Euclidean vector (or vector in short) is a natural example of this cate-
gory. Euclidean vector is a geometric descriptor defined by a starting point, direction
and magnitude (or length). In computer vision, a prominent example for a vector is
the optical flow vector u = (u, v) that defines the spatial motion of a point xt

i :

u = xt+1
i − xt

i , v = yt+1
i − yt

i . (3.6)

This property makes it a unique descriptor for trajectory based representation, such
that Ti = {u0

i ,u1
i , . . . ,um

i }.
Geometric descriptors are used to provide information about the shape and size

of representations defined in the Euclidean or non-Euclidean coordinates. The latter
is generally referred to as the differential geometry.1 In addition to the Euclidean
vector representation of trajectories, another typical geometric descriptor is the rel-
ative angles and positions computed between line segments such as the ones in the
skeletal representation and representation by parts. The spatial geometric arrange-
ment defined by relative angles and positions can also be extended to the temporal
domain by computing the change in the relative angle from one frame to the next.
These changes provide insight to how the performer is moving during the course of
an action.

The differential geometry, on the other hand, studies the shape, size and distances
on curved surfaces. Let us consider a performer executing an action. The motion of

1In this chapter, differential geometric descriptors are treated different from differential descriptors,
as will be discussed under appearance based descriptors.
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the performer’s body or joints generally lie on a nonlinear manifold. For example,
the motion of a wrist joint during hand waving generates a curved trajectory on
a one-dimensional manifold defined by the arc-length parameter. Without loss of
generality, differential geometric descriptors can be generated in the tangent space
by computing the local curvatures. For the trajectory representation, the curvature is
computed by

κ = x′y′′ − y′x′′

(x′2 + y′2)3/2
, (3.7)

where x′ and y′ denote first order derivatives and x′′ and y′′ denote second order
derivatives. For the volumetric representations, however, since the degree of free-
dom is higher, first we define a shape operator S:

S = 1

EG − F 2

[
(GL − FM) (GM − FN)

(EM − FL) (EN − FM)

]
, (3.8)

for chosen orthogonal directions (sp, tp), unit surface normal n, and

E = xs · xs , (3.9)

F = xs · xt , (3.10)

G = xt · xt , (3.11)

L = xss · n, (3.12)

M = xst · n, (3.13)

N = xt t · n, (3.14)

where the single and double subscript, respectively, denote the first and second order
derivatives. The two algebraic invariants (determinant and trace) of the shape oper-
ator define the Gaussian curvature, K , and the mean curvature, H , of the surface:

K = det(S) = LN − M2

EG − F 2
, (3.15)

H = 1

2
trace(S) = EN + GL + 2FM

2(EG − F 2)
. (3.16)

Alternative to the geometric descriptors, graphs provide descriptors that define
connectedness of the features for a chosen representation. A graph G(V,E) is an
ordered pair composed of vertices V and edges E. The edges Ei = (Vj ,Vk) are two
element subsets of V and define connectedness between the two elements. The data
structure used to define the connectivity between the vertices is the affinity matrix
which is a symmetric matrix for undirected graphs. The affinity matrix contains 0
and 1 values denoting existence of an edge between vertex pairs. Graph descriptors
are explicitly used in the skeletal representations and the representation by parts,
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Fig. 3.5 Graph representations used in the order of popularity. From left to right: tree (most fre-
quently used graph type), cyclic graph, and star graph

where the vertices represent the joints (connections between the parts) or intersec-
tions between the curve segments (sub-skeletons). In the case when the represen-
tation considers the shoulder as a single joint, the graph representation simplifies
to a tree, which does not contain any cycles. Trees as descriptors have been com-
monly used in detection and tracking of human performers. Other graph types used
by researchers are illustrated in Fig. 3.5.

3.3.2 Appearance Based Descriptors

In recent years the field has seen a shift toward appearance based descriptors which
model the color observations spatially and/or temporally. These descriptors, broadly
speaking, can be deterministic or stochastic. The deterministic descriptors represent
the appearance by a feature vector, which is considered as a point in a high di-
mensional space. In contrast, stochastic descriptors model the appearance by taking
domain (x, y) and range (R,G,B) as random variables to generate probability dis-
tributions. While an argument on either one of these methods’ superiority may be
too far-fetched, it is not a mistake to say that deterministic descriptors are more ac-
cepted in action analysis. Despite that, stochastic descriptors are widely used for the
tracking problem and will be discussed later in the chapter.

Among the three descriptors shown in Fig. 3.1, the most intuitive and commonly
adopted descriptor is the template. Templates can be 2D (spatial) or 3D (spatio-
temporal) depending on their use, and commonly have a shape in the form of a
geometric primitive, such as a rectangle, square, ellipse, circle or their 3D versions.
A unique property of a template is that it is an ordered list of appearance observa-
tions inside the region bounded by the limits of the shape, for example a 7 × 7 color
template or 20 × 20 × 20 derivative template. This property naturally provides the
template descriptor with the capability to carry both spatial and appearance infor-
mation. The spatial order of appearance, however, comes at the cost of being sensi-
tive to changes in the camera viewpoint. Thus, they are more suitable for problems
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where the viewing angle of the camera and the performer’s action remain constant
or change very slowly.

Distribution based descriptors estimate the probability distribution from the ob-
servations within a spatial or spatio-temporal region defined by a template, silhou-
ette, or a volume. The observations considered can be raw color values, derivative
information, or texture measures. Color distributions are generally estimated non-
parametrically by a histogram, or parametrically by mixture models. The histogram,
which is a common choice, can be generated by first defining the number of bins
(quantization levels) and counting the number of observations that fall into respec-
tive bins. While a histogram can be generated using raw color or intensity values,
they may need to be processed, such as mean color adjustment, prior to estimating
the histogram to remove the illumination and shadowing effects [10]. This adjust-
ment can be achieved by subtracting the mean color computed in the neighborhood
of the region of interest: μ(R,G,B) = 1

C

∑
x

∑
y

∑
t I (x, y, t) where C is the vol-

ume of the region.
Alternative to using the raw color values, it is also customary to use the gradi-

ent for generating a distribution based descriptor. Two closely related approaches
adopted by many in the field are the scale-invariant feature transform (SIFT) de-
scriptors [31] and the histogram of oriented gradients (HOG) [10, 16]. Both of these
approaches compute the gradient of intensity and generate a histogram of gradi-
ent orientations weighted by the gradient magnitude. Shared steps between the two
approaches can be listed as follows:

Input: Image and regions of interest
Output: Histograms
foreach Region do1

foreach (x, y) ∈ region do2

compute the gradient: ∇I (x, y) = (Ix, Iy) =3

(I (x − 1, y) − I (x + 1, y), I (x, y − 1) − I (x, y + 1));
compute gradient direction: α(∇I (x, y) = arctan(Ix, Iy);4

compute gradient magnitude:5

|∇I (x, y)| = (Ix ∗ Ix + Iy ∗ Iy)
1/2;

if |∇I (x, y)| ≥ τ then6

Increment histogram bin for α(∇I (x, y));7

end8

end9

smooth histogram;10

end11

Aside from the common steps outlined above, SIFT approach computes the ma-
jor orientation from the resulting histogram and subtracts it from computed orien-
tations to achieve rotation invariance. HOG, on the other hand does not perform
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orientation normalization. The size of the region and the distance of the performer
from the camera play a significant role in achieving discriminative descriptors. Gen-
erally speaking, the closer the performer is to the camera, the more discriminative
the descriptor will be.

The descriptors above characterize the appearance content of the chosen repre-
sentation. Another possibility is to generate the histogram defining the shape of the
performer. Shape histograms model the spatial relation between the pixels lying on
the contour. The spatial relation between a reference point (xr , yr ) on the contour
with respect to other points (xi, yi) can be modeled by generating a histogram Sr .
A collection of such histograms generated by taking all contour points individu-
ally as a reference (or a randomly selected subset of points) provides a distribution
based descriptor, which can be used to match postures. The spatial relation between
two points can be measured by computing the angle and magnitude of the vector
joining them which can later be used to generate a 2D histogram taking angle and
magnitude as its parameters. Alternatively, shape context uses a concentric circu-
lar template centered on a reference contour point, which provide the bins of the
histogram in the polar coordinates [4].

3.4 Finding Action Content

The action content manifests itself in the performer’s posture and motion; hence
analysis of this content requires its extraction on a frame by frame basis or using
the space-time volume. This section is dedicated to the extraction of this content
and is closely coupled with the representations of the performer and action content
discussed in Sect. 3.2. Considering the vast amount of published articles in this
topic, the treatment provided here should by no means be considered a complete
survey; rather it is only a subset that relates to analysis of actions.

3.4.1 Point Detection

Point detection methods have long been used in computer vision research starting
as early as late 1970s [38]. They are, traditionally, used to find interest points in
images which have an expressive texture inside templates centered on them. By and
large, point detection is still an open area of research due to the problems related
to their extraction and association, especially, due to their sensitivity to changes
in the camera viewpoint. Here, we will introduce commonly employed spatial and
temporal point detection methods starting with the Harris corner detector [19].

The Harris detector is one of the earliest and most commonly used point detec-
tion methods due to its low computational complexity and ease of implementation.
The Harris corner detector, like many others, defines texturedness by conjecturing
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that the change in the color content of pixels in the locality of a candidate interest
point should be high:

E(x,y) =
∑

u

∑

v

(
I (x + u,y + v) − I (x, y)

)2
. (3.17)

The Taylor series approximation of this equation around (x, y) results in

E(u,v) = [uv]
[ ∑

I 2
x

∑
IxIy∑

IxIy

∑
I 2
y

]

︸ ︷︷ ︸
M

[
u

v

]
. (3.18)

This equation contains the commonly termed structure tensor M, which is a sec-
ond moment computed from the template around the candidate. This matrix defines
an ellipse with minor and major axes denoted by its eigenvectors and their extent
by respective eigenvalues. The eigenvalues, λi of M are computed from its charac-
teristic equation: λ2 + det(M) − λ · trace(M) = 0, which suggests that using deter-
minant and trace of M should suffice in marking interest points as stated in [19];
hence a traditional texturedness measure is R(x, y) = min(λ1, λ2) approximated by
R(x, y) ≈ det(M) − k · trace(M)2 for constant k. The texturedness measure is com-
puted for all pixels and it is subjected to nonmaximal suppression which removes
weak interest point candidates and eliminates multiple candidates in small neigh-
borhoods. Harris detector, when applied in scale space, such as by convolving the
image with a set of different scaled Gaussian filters, provides feature points at mul-
tiple scales. The interest points coexisting at different scales can be combined to
provide scale-invariant interest points. Considering that the shape tensor is invariant
to rotations, the Harris detector becomes invariant to similarity transform.

The spatial point detection scheme outlined for Harris detector is later extended
to spatio-temporal coordinates by introducing the time as an additional dimension
to the formulation [26]. This addition resulted in

E(u,v,w) = [uv w]
⎡

⎣

∑
I 2
x

∑
IxIy

∑
IxIt∑

IxIy

∑
I 2
y

∑
IyIt∑

IxIt

∑
IyIt

∑
I 2
t

⎤

⎦

︸ ︷︷ ︸
M̃

⎡

⎣
u

v

w

⎤

⎦ , (3.19)

where M̃ defines a sphere and its smallest eigenvalue defines the strength of textured-
ness as well as motionness within the space-time cube for each point: R̃(x, y, t) =
min(λ1, λ2, λ3). Application of the nonmaximal suppression in the spatio-temporal
coordinates results in space-time interest points (STIP). STIP features have recently
seen increased interest in representing the action content and have been successfully
applied to action recognition problem.

Limitations of the Harris detector include: its inability to locate interest points at
subpixel level,2 and the number of interest points it detects. Both of these limitations

2Subpixel refers to spatial locations that are not integer.
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can be eliminated at the cost of increased computation by using the scale-invariant
feature transform (SIFT) [31]. Scale invariant feature transform is composed of two
major steps for detecting interest points (or the so called keypoints):

1. Scale space peak selection.
2. Key point localization.

Similar to Harris detector applied to multiple scales, SIFT first generates a scale
space of minimum four different scales σi at different image resolutions, called “oc-
taves”. Consecutive scales in each octave are then used to generate difference-of-
Gaussian (DoG) images. The difference images provide the domain to select candi-
date interest points which correspond to the minima and maxima within a 3 × 3 × 3
cubic template in (x, y, σ ) coordinates. These candidates are at pixel coordinates
and their location can be updated by estimating the locally maximum fit of the DoG
in the vicinity of candidate points. The local maxima are computed by expanding
the DoG at candidate location x = (x, y, σ )	 into a Taylor series:

DoG(x) = DoG(x) +
(

∂DoG(x)

∂x

)	
x + 1

2
x	 ∂2DoG(x)

∂x2
x. (3.20)

The local maximum of the expansion, hence the new position of the candidate, x̃,
can be estimated as

x̃ = −
(

∂2DoG(x)

∂x2

)−1
∂DoG(x)

∂x
. (3.21)

The new extremum value at the new location DoG(x̃) is then thresholded to remove
insignificant candidates. As a final step interest point candidates along the edges
are pruned by fitting a quadratic surface to their localities and by computing the
principal curvatures, which are the eigenvalues of the Hessian matrix

H=
[

DoGxx DoGxy

DoGxy DoGyy

]
. (3.22)

The eigenvalues are then subjected to texturedness measure by evaluating R(x̃) =
λ1+λ2
λ1λ2

. The final two steps omitted in this discussion relate to generating descrip-
tors for detected interest points. SIFT detector generates more number of interest
points compared to other interest point detectors. This is due to the fact that the
interest points at different scales and different resolutions (pyramid) are accumu-
lated. Empirically, it has been shown in [37] that SIFT outperforms most point
detectors, and is more resilient to image deformations. Similar to STIP, SIFT has
also been extended to spatio-temporal coordinates to extract space-time interest
points [48]. More recently the color based SIFT method is introduced and is widely
adopted [56].
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3.4.2 Body Parts Detection

The parts representation can appear at configurations that may be very hard to detect
due to the nonrigidity of the human performer. The ambiguities result in the loss of
depth, and occlusions make this task only harder. Many methods in the literature
have been extended to detect these configurations under specific constraints. One of
the most commonly explored constraints is the detection of pedestrians, which can
only undergo certain visual deformations. These deformations can be learned by ma-
chine learning techniques, such as adaptive boosting and support vector machines.
Unlike pedestrians, other natural configurations may define a large state space that
makes training a classifier harder.

A crucial step in detection of body parts is selecting an appearance model and
a spatial arrangement model. Most common appearance feature is the edge infor-
mation in the form of gradient magnitudes or lines fitted to image edges, which
are conjectured to define the boundary of the body parts from the background. Re-
searchers have also used color information [52] or the combination of both features.
These features are used to model each body part separately [14]. Alternative to these
simple appearance models, researchers have also utilized the shape context descrip-
tor [3] and the HoG descriptor [15] to better define the part’s shape. It is also not
uncommon to train these appearance features using machine learning techniques to
obtain a discriminative parts classifier, such as labeling them as left arm, right feet,
head, etc.

Appearance models provide a means to validate the set of hypotheses corre-
sponding to different configurations of the body parts, such as their spatial arrange-
ments. Early work on parts configuration assumes an existing set of stick figures
referred to as the key frames, which are used to compare against a proposal config-
uration [1]. The articulation of parts and resulting occlusions, however, make this
comparison quite hard, which requires a priori knowledge about the camera con-
figuration or motion view, such as whether the movement is parallel to the camera
view or not. The prior knowledge in addition to the known configurations for certain
poses simplifies the detection and labeling of parts. Another treatment of the prob-
lem is achieved by multiple camera setup, where the action is viewed by a number of
cameras that have overlapping views and known camera parameters (interior and ex-
terior camera parameters). This setup specifically removes the occlusion problem—
given adequate number of views—and provides information to detect body parts in
3D. Both in 3D and 2D approaches, an important requirement is to define the state
variable for the body parts. A commonly used set of state variables in 2D includes
center, scale and orientation (x, y, s,α) [3, 45] of the part which is augmented to
3D by including additional state variables for orientation (x, y, z,α,β) [11]. More
details can be found in [17].

There are two schools of thought on estimating the configuration of the body
parts from the state variables: graph based and stochastic methods. Graph based
methods assign the state variables for each body part to vertices of a graph, G(V,E)

which represents n different body parts. In this configuration, the edges between
the vertices correspond to physical joints that provide the degrees of freedom
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for various configurations [14]. The cost, E , of a configuration can be attributed
to costs incurred from the image, Eimage, and the articulation between the parts
Earticulation:

E (L) = Eimage(L) + Earticulation(L), (3.23)

=
( ∑

1≤i≤n

mi(li)

)
+

( ∑

(vi ,vj )∈E

dij (li , lj )

)
, (3.24)

where mi(li) is the image based cost of placing part vi at location li , and dij is the
configuration cost of between parts vi and vj when they are, respectively, placed at
locations li and lj . Using this cost, the best configuration C∗, given the image, can
be computed by

C∗ = arg min
L

Eimage(L) + Earticulation(L), (3.25)

where L corresponds to the set of locations (xi, yi) for each body part vi . The ar-
ticulation cost can be defined using various constraints. An intuitive constraint is
their relative placement, such as the angle between parts, which requires connect-
edness between them [2]. More complicated costs can provide increased degrees of
freedom. A commonly adopted joint model is spring-like connections [3], whose
deformation D can be measured by

Dij (li , lj ) = (
Tij (li) − Tji(lj )

	)
M−1

ij

(
Tij (li ) − Tji(lj )

)
, (3.26)

where Mij is a diagonal weight matrix and Tij is the transformed location of vertex
i with respect to vertex j .

Given the costs associated by various configurations in the form of trees or cyclic
graphs [45], the correct configuration can be computed by the Viterbi algorithm or
belief propagation in polynomial time. The time for search can be further reduced
if the model articulation is reduced by removing joints. For instance, pedestrians
at small scales may not have clear views of both feet and hands, hence removing
the hands and one of the feet would provide acceptable results with much reduced
complexity.

Alternative to graph based models, stochastic approaches can assign uncertainty
to possible configurations and pick the one that maps to image properties, e.g. edges
or silhouette boundary, the best. Similar to the graph based methods, stochastic
methods minimize (maximize) a cost (gain) function. This function is in the form
of a likelihood term which measures the probability of observing a certain con-
figuration given the image properties and the distribution of shapes for the action
being tested. Some researchers assume that the body-part configuration distribution
is uniform, hence can be removed from the maximum likelihood estimation (MLE).
Others, on the other hand, model the distribution of body-part configurations using
general kernel density estimates from the state variables of all body parts. The dis-
tribution provides an expected configuration or the most likely configuration, i.e. the
mode of the distribution.
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In a stochastic approach, researchers usually reduce the search space by assum-
ing that the silhouette of the person is provided. We refer the reader to next section
for possible approaches. The silhouette and the image provide both the shape infor-
mation and the appearance model, which can be used to evaluate the configurations
likelihood. Further simplification on possible configurations is usually achieved by
detecting head [18] and/or hands [58]. Given configurations, the cost function takes
both the shape and the appearance into consideration to measure goodness of map-
ping between the parts configuration and the image. For defining this measure, Lee
et al. use the points on the boundary bi : i = 1, . . . ,C and their distances to each of
the 14 body parts sj : j = 1, . . . ,14 by p(bi |sj ) = exp[−d2(bi , sj )/σ

2], where σ

defines the uncertainty of mapping [27]. In this formulation, for the parts residing
inside the silhouette, no matter how small they are, the equation provides a perfect
fit, hence an additional penalty term is required to overcome this problem. In their
approach, the authors use the number of pixels that are inside the body configuration
but outside the silhouette to penalize wrong configurations. The final likelihood of
a parts configuration is then computed as the joint probability of all points on the
silhouette boundary.

3.4.3 Detection of Silhouette

Alternative to detecting the body parts and their articulations is the holistic detection
of the body. This can be achieved either from a single image or by using a sequence
of frames, which will be referred to as video in the remainder of the text. In this
section, we will discuss video based approaches due to their common adoption by
researchers, as well as the industry. In a video acquired by a stationary camera,
most regions in images contain almost identical observations due to the constancy
of the scene content, except for regions where there is an activity. This observation
creates redundancy which can be removed using different techniques, all of which
are referred to as background subtraction.

An intuitive approach is to detect changes from an image that represents the
static scene, empty of moving objects. In the case when the illumination remains
constant, the pixels, which are projections of the static scene, will contain the same
color. Hence, subtracting the image of the static scene will reveal the moving ob-
jects [21]. This simple “background model” can be improved by modeling the vari-
ation for each pixel (I (x, y) with a single Gaussian: I (x, y) ∼ N(μ(x, y),Σ(x, y))

[57]. Given the model for each pixel, the incoming image pixels are labeled as back-
ground or object based on their deviation from the model, computed using Maha-
lanobis distance:

d(x, y) = (
I (x, y) − μ(x, y)

)	
Σ(x,y)−1(I (x, y) − μ(x, y)

)2
. (3.27)

The background model can be further enhanced by introducing more involved sta-
tistical modeling, including, but not limited to, mixture of Gaussians per pixel [53],
non-parametric kernel density estimates also per pixel [12], or a single domain/range
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(x, y,R,G,B) kernel density estimate for the entire image [51]. The order of com-
plexity, while increasing the accuracy, inhibits application for real-time processing.
In addition to increasing the complexity of statistical background models, one can
include multiple appearance features in the model to achieve invariance to changes
in scene illumination. Instances of such features are the texture measures which can
be in the form of image gradient [22] or filter responses [30].

The redundant scene information in a video, which corresponds to the static
scene, can be conjectured to lie in a subspace that can be estimated using dimension-
ality reduction techniques. A simple yet straightforward approach is to compute the
principal components from the images by cascading their rows into a single vector,
representing the point in a multi-dimensional space. This process can be realized
by decomposing the covariance matrix Σ = B	B formed from a series of consecu-
tive k images from a video, into its eigenspace, and selecting the most descriptive
(maximum eigenvalued) eigenvectors, U = [u1u2 . . .uk] [40]. This decomposition
process and selection of most descriptive principal components provide insensitiv-
ity to changes in the illumination. Given the new image, I, represented as a column
vector, the moving objects are detected by first projecting the image into the sub-
space: Ĩ = U	I, and computing its difference from the back-projected image:

D = I − UĨ.

The background subtraction process results in silhouettes, which can be used to
reduce the search space in detection of the parts. They also provide a means to detect
the skeleton of the moving object using medial axis transform. Background subtrac-
tion, however, requires an image sequence for learning the background models, and
is not suitable when multiples of performers simultaneously execute actions while
partially occluding each other. The partial occlusions generate a single connected
silhouette, which requires additional processing to extract individuals. While not
widely adopted, detection of the performer from a single image is an alternative
and is based on first extracting discriminative features of performers, followed by
learning different instances of the features to test hypotheses generated at the im-
age scale. The features are generally in the form of filter responses, such as Gabor
filters, which detects oriented gradient information that lies in a vector space. This
observation provides a means to apply traditional machine learning techniques for
a two-class classification problem which can be stated as labeling templates as “hu-
man” or “non-human”. The vector space limitations have been recently waived by
computing covariance matrices from the observations which lie on a nonlinear Rie-
mannian manifold [55]. Despite these attempts, the articulation of the human body
necessitates a comprehensive dataset of postures, which in turn results in overfitting,
hence poor detection performance. This limitation has resulted in the requirement to
reduce the search space by limiting the detection to only upright walking pedestrians
with limited articulation.

Another line of work to detect the object silhouette is by evolving a closed con-
tour to the performers boundary. This evolution is achieved by minimizing a cost
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function with the following form:

E(Γ ) =
∮ 1

0
Einternal(v) + Eimage(v) + Eexternal(v) ds, (3.28)

where s is the arc-length parameter, vector v is function of s, Einternal includes
regularization terms, Eimage matches the contour to the image, and Eexternal fa-
cilitates additional constraints depending on the application. Particularly, internal
cost includes first order and second order continuity terms, such as the local contour
curvature κ , to guarantee smoothness of the resulting contour. The image based cost
takes many different forms that can be locally or globally computed. Local image
features traditionally use image gradient, ∇I (x), justified based upon the conjecture
that object boundaries exhibit high gradient magnitude [8, 24]. For performers on
cluttered backgrounds image gradient becomes sensitive to noise and results in poor
detection. In contrast, global image features are computed inside and outside the
contour, using color and texture [64]. Considering the scale difference between the
object and the image size, global images features become biased and inhibit good
contour localization. Alternative to using only the gradient or the global features, an
image cost that combines the two using λ as the mixing parameter,

Eimage = λEboundary + (1 − λ)Eregion, (3.29)

provides a good balance between the two [42]. The region term in this equation may
be a parametric or a non-parametric distribution of the appearance features [61],
such that estimated distributions for inside (Rinside) and outside (Routside) the
contour may be used to compute the likelihood ratio:

L(x) = p(x|Rinside)

p(x|Routside)
.

This ratio provides a measure of association for pixel x in the vicinity of the contour
to object’s silhouette or the background.

Contour based approaches evolve an initial contour to its final position. Consider-
ing the cost is minimized using gradient descent methods, initialization becomes an
important step for convergence. In traditional methods, initial contour is typically
placed immediately outside the object. Methods computing the cost using region
based terms relax this requirement, such that a single contour is initialized either
inside or outside the object or can contain both inside and outside. Alternatively, an
image sequence can be used to initialize the contour based on observed changes in
the image content [41]. For instance, dense optical flow (see Sect. 3.5.2 for more de-
tails) computed for each pixel will contain zero motion for static scene components,
which can be used to coarsely locate the moving objects. These coarse regions,
when used to initialize the contour, will result in a fine silhouette after contour evo-
lutions.

For contour based methods, one can choose any gradient descent based min-
imization technique from among many alternatives. This choice is significant,
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since it directly relates to the topology of the contour. Following the discussion in
Sect. 3.2.1, the contour evolution, hence the minimization process, can be based on
changing the positions of tuples (xi, yi) in an explicit representation, or on modify-
ing the implicit level set function φ[x, t] to define new zero crossings. The changes
at iteration t in the level set grid are computed by

φ[x, t] = ∣∣∇φ[x, t − 1]∣∣n(x, t − 1)Γ ′(s, t − 1), (3.30)

where Γ ′ refers to the speed of the evolution, which is based on the cost given
in (3.28), and n is the contour normal that can be computed directly from the level
set:

n(x, t − 1) = ∇φ[x, t − 1]
|∇φ[x, t − 1]| . (3.31)

The level set evolution equation, which is shown to evolve iteratively using a nu-
merical scheme, is a partial differential equation and requires high order finite dif-
ferences for conserving the shape during iterations. Additionally, each evolution
requires reinitializing the level set, such that the normal directions and curvature
estimations are accurate. These facts suggest long iterations with small evolution at
each step, which discourages their application in real-time settings. This shortcom-
ing has heuristically been waived [28] at the cost of satisfying conservation laws,
but this method has shown acceptable performance in practice.

3.5 Tracking

In context of action analysis, the goal of tracking is to locate the performer or the
region containing the action in every frame of the video. There are two main strate-
gies to tracking. The first strategy requires that the objects are detected such that
their associations to object instances in the previous frame provides tracking. The
alternative strategy is to define a cost function and iteratively estimate the motion
parameters to estimate the object’s location in the current frame. In the latter strat-
egy, the motion model may limit the articulations an action may contain. Based on
the representations introduced in Sect. 3.2, the following discussion starts with as-
sociation based trackers, which is followed by different instances of minimization
based approaches including:

• Flow estimation based object tracking
• Kernel tracking, and
• Articulated object tracking

For more discussion on tracking, the reader is referred to the comprehensive survey
given in [62].
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3.5.1 Tracking by Association

In a realistic setting where the camera continuously captures images, it is impor-
tant to detect the start of an action, hence the performer or the action content at
that instant. Since the start of an action is unknown, it is required to perform de-
tection at every frame in the video. This suggests that the detected representations
in the current frame can be associated with those detected in the previous frame.
This association process generates trajectories, hence highlights the motion content.
The association problem, however, is not always trivial due to occlusions, misdetec-
tions, entry and exit of performers in the scene. These issues can be addressed by us-
ing qualitative motion characteristics or by taking model uncertainties into account.
These two different treatments, respectively, result in deterministic and stochastic
handling of the association problem.

Deterministic methods define quantitative motion measures to associate the cost
of assigning detected objects in consecutive frames. The motion measures are gen-
erally based on heuristics, such as

• Bounded speed, |v| = (v2
x + v2

y)
1/2.

• Small velocity change, α(v) = arctan vy/vx .
• Close objects have same velocity, vi = vj for d(li , lj ) < τ where d , l and τ ,

respectively, denote distance, location and threshold.

Detected objects at two different frames provide a bipartite graph, where the vertices
are the objects divided into two partitions and the edges can only exist between two
vertices on two different partitions. Given this graph, the cost of such assignments
is then formulated as a combinatorial optimization problem with a solution that pro-
vides one-to-one associations from among all possible correspondences. The opti-
mal association to this combinatorial problem can be achieved using the Hungarian
search [25]. Alternatively, greedy methods have also been commonly used [43]. The
bipartite graph is constructed under a Markovian assumption, where the position of
an object depends only on the observation in the previous frame. Missing and reap-
pearing observations, however, pose a limitation to this assumption. At the cost of
increasing assignment complexity, multiple frames can be introduced in the assign-
ment process, such that an object at t − 1 can be directly associated to an object at
frame t . This setup generates a connected and directed graph, which is converted to
a bipartite graph in [50] by converting each node into two (+ and −) nodes, where
a directed edge is converted to an edge from + node to a − node. The resulting
assignment problem can be solved using greedy methods or by Hungarian search.

Stochastic methods, in contrast to deterministic methods, take the uncertainty as-
sociated with measurements and motion model into account during estimation of the
object’s new state. The state of an object may be composed of its location, velocity,
acceleration and the parameters of the motion model. For instance, translation-only
motion contains two (tx, ty) parameters:

xt+1 = xt + tx, (3.32)

yt+1 = yt + ty, (3.33)
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while affine motion contains six parameters (a, b, c, d, tx, ty):

xt+1 = axt + byt + tx, (3.34)

yt+1 = cxt + dyt + ty . (3.35)

The measurements can include the appearance descriptors and the position of de-
tected objects. For simplicity, let us assume we only consider the position as mea-
surement, where the change in the object’s position is defined by a sequence of states
xt : t = 1, . . . , T computed using:

xt = f t
(
xt−1) + wt , (3.36)

where wt is noise. The detected objects in the new frames are attributed to the ob-
ject’s state by a measurement equation zt = ht (xt ,nt ) where n is noise independent
of w. Given all the observations until t − 1, the stochastic method estimates the pos-
terior probability in the form of p(xt |z1, . . . , zt ). The optimal solution to this prob-
lem is given by a recursive Bayesian filter, which first predicts the prior probability
density function p(xt |z1, . . . , zt−1), then corrects the observation using likelihood
function p(zt |xt ) and estimates the posterior p(xt |z1, . . . , zt ).

In the case when h and f are linear functions, and object state along with the
noise w and n are Gaussian distributed, the state estimate can be computed by the
Kalman filter or its different flavors, such as the extended Kalman filter. This linear
model suits most pedestrian tracking settings, however, it is not suitable for track-
ing the body parts, where the state is not Gaussian distributed. For such cases, the
estimation can be performed using Monte Carlo sampling, such as the Particle fil-
ters. For detailed the discussion on Bayesian filtering, we refer the reader to [36]
and [35].

3.5.2 Flow Estimation

Flow based methods assume constancy of brightness, I (x, y, t) = I (x + dx, y +
dy, t + dt) in consecutive frames. This equation can be extended to Taylor series
and shown to result in the optical flow equation:

uIx + vIy + It = 0, (3.37)

where u = dx/dt , v = dy/dt and subscripts denote first order derivatives. This sin-
gle equation contains two unknowns and requires additional constraints and/or equa-
tions to construct an equation system. Let us assume a point-based representation
with a template around it to provide a descriptor. Conjecturing that the pixels in the
template move with the same optical flow, we can estimate the unknown optical flow
geometrically [47] or algebraically [32]. Geometric estimation considers (3.37) as a
line equation v = au + b with a = −Ix/Iy and b = −It /Iy . The common motion
of pixels within the template results in such lines intersecting at a single position,
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which is the solution to (u, v). In practice, instead of all lines intersecting at a sin-
gle solution, we can expect a cluster of intersections, and the cluster center can be
chosen as the solution.

Geometric approach can only be used to estimate the translational motion model.
The algebraic approach, on the other hand, directly uses the equations formed
from (3.37), hence the optical flow can be assumed to follow a parametric motion
model other than translation. In the case of affine motion:

u = ax + by + tx, (3.38)

v = cx + dy + ty . (3.39)

Substituting these into (3.37) and assuming common motion for (xi, yi) : i ≤ n

within the template will result in

⎡

⎢⎣
x1Ix y1Ix Ix x1Iy y1Iy Iy

...
...

...
...

...
...

xnIx ynIx Ix xnIy ynIy Iy

⎤

⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

a

b

tx
c

d

ty

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎣
I t (x1) − I t−1(x1)

...

I t (xn) − I t−1(xn)

⎤

⎥⎦ , (3.40)

which can be solved using least squares adjustment. In the case of translation-only
motion model, this equation simplifies to

[ ∑
I 2
x

∑
IxIy∑

IxIy

∑
I 2
y

][
tx
ty

]
=

[∑
Ix(I

t (x1) − I t−1(x1))∑
Iy(I

t (xn) − I t−1(xn))

]
. (3.41)

The left side of this equation follows the same format with the structure tensor in
Harris corner detector and suggests that motion can only be computed at locations
where there is significant texture, such that eigenvalues λi of M are significantly
large.

The common treatment stated above takes a different form when the represen-
tations are more complicated. Particularly, for contour representation, all the pixels
on the contour may follow considerably different motions compared to their neigh-
borhoods, especially when the shape changes in consecutive frames. As discussed
in Sect. 3.4.3, aside from the smoothness terms, the cost contains terms related to
the image, as well as external constraints. Introducing (3.37) into the cost results in
an evolving contour by estimating the optical flow of tuples or the level set grid [5].
The optical flow computed for contour evolution, however, is approached different
from the above discussion, due to the constraint that the contour is evolved in its nor-
mal direction. This evolution constraint requires that the temporal derivative either
introduces an additional cost function [5]:

∂I (x)

∂t
= It (x)

∣∣∇I (x)
∣∣, (3.42)
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or is computed by brute force searching for a minimizer in the neighborhood N of
the contour point [34]:

∂I (x)

∂t
= min

It

It (xi ) : xi ∈ N. (3.43)

The former of these equations can be treated as an external cost and it can be intro-
duced to the contour tracking equation by

φ[x, t] = It (x)
∣∣∇I (x)

∣∣∣∣∇φ[x, t − 1]∣∣n(x, t − 1)Γ ′(s, t − 1), (3.44)

which in turn minimizes both costs. The evolution function given here is compara-
ble to the cost function in (3.28) used for contour based detection and contains an
additional term related to the optical flow constraint. This final cost, however, takes
a much simpler form compared to the brute force search based cost due to the fact
that it is only evaluated at the contour points as opposed to all the locations on the
level set grid.

The most important advantage of a tracking object contour is its flexibility to
handle a large variety of articulations, which is important for analyzing the action
content. Due to this observation, they have been predominantly used in holistic anal-
ysis schemes such as generation of volumetric action representations.

3.5.3 Kernel Tracking

Object descriptors in the form of geometric primitive regions centered around a
point define weighted spatial kernels K(x) that may have a uniform weight or vary-
ing weight at different pixels within the kernel. The kernel function represents a
convolution of the geometric primitive with the template around point x. The mo-
tion of the kernel from one frame to the next follows a parametric model including
translation, conformal transformation and affine transformation. This formulation
very much resembles the flow estimation for a template discussed in the previous
section, with a significant difference that the minimized cost is not based on the
optical flow constraint, hence does not require brightness constancy.

A typical and commonly used approach is to represent the object’s appearance
by a model histogram q computed inside the kernel. Given the previous location
of the object the new location is computed by minimizing a distance, such as the
Bhattacharya distance d(p) = − log(

∑B
u=1(p(u)q(u))1/2), between the model his-

togram and the candidate histogram p for B bins. The candidate histogram is esti-
mated by initializing the kernel state mt at object’s previous state mt−1. Minimiz-
ing Bhattacharya distance or alternatively maximizing the Bhattacharya coefficient
ρ(p) = ∑B

u=1(p(u)q(u))1/2 and expanding it to Taylor series suggests that the new
location can be iteratively computed by estimating the likelihood ratio between the
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model and candidate histograms [9]:

mk = mk−1 +
n∑

i=1

K ′(xi − mk−1)
q(I t (xi )

p(I t (xi )
, (3.45)

where k is the iteration variable and K ′ is the derivative of the kernel function,
which can be a 2D Gaussian kernel. The kernel state is traditionally defined by the
centroid of the object in spatial coordinates, such that the estimation process results
in the new object position. Alternatively, the state can be defined by the scale s,
orientation α and position x of the object [59].

Kernel tracking, which contains a stable appearance model defined by q , can
handle small changes in the object appearance, but does not explicitly handle oc-
clusions or continuous changes in appearance. These changes can be included in
the model by introducing noise and transient models noise process and can be esti-
mated using an online Expectation-Maximization algorithm [23]. These additions,
while increasing the complexity of the model, provide the ability to handle small
occlusions and continuous appearance changes.

Despite explicit modeling of noise and transient features, kernel trackers perform
poorly, or even lose tracking, in cases when the performer suddenly turns around
during an action and reveals a completely different appearance, which has not been
learned (such as estimation of q) before. A potential approach to overcome this
limitation is to learn different views of the object offline and later use them during
tracking. A particular example is to learn principal components of different object
views using principal component analysis and perform tracking in the subspace by
estimating the motion parameters between image at time t and its reprojected image
generated from the subspace [6]. The estimation is achieved by first estimating the
subspace projection parameters and using them to compute the motion parameters
iteratively.

3.6 Summary

This chapter introduces techniques to detect and track important regions that define
an action content. We first start the discussion with possible object representation
and descriptors that defines the objects performing the actions. Later, we provide ex-
tended discussion on detection of these representations and descriptors using video.
Finally, possible approaches to track the action content is presented to give neces-
sary tools to the reader of the chapter to perform higher level action analysis intro-
duced in the following chapters.

The approach we have taken to introduce these topics is chosen to relate to the
current state of the art and is by no means an attempt to provide a detailed compar-
ative survey.
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3.7 Questions

1. Discuss problems related to skeletal representations.
2. What is the effect of camera motion on spatio-temporal representations?
3. The selection of template size plays a significant effect on their detection. Dis-

cuss the effect of increasing the template size on extraction process.
4. Show that the Harris corner detector is invariant under rotation.
5. Perform the steps to derive (3.37) using brightness constancy constraint.
6. Perform the steps to derive (3.45).
7. What is the difference between SIFT and HoG descriptors?

3.8 Glossary

• Object representations provide ways to present the shape and motion of the per-
former.

• Interest points have an expressive texture inside templates centered on them.
• Silhouette extraction provides a mask indicating the object and non-object pixels.
• Background subtraction is used to find moving regions in a static scene.
• Tracking by association provides one-to-one mapping of detected objects in the

current and previous frames.
• Contour tracking finds the enclosing object boundary by evolving an initial con-

tour until the cost of fitting is minimized.
• Kernel tracking is achieved by iteratively updating position of the region defined

using a primitive geometric shape.
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Chapter 4
Computational Visual Attention

Simone Frintrop

4.1 What Is Attention? And Do We Need Attentive Machines?

Attention is one of the key mechanisms of human perception that enables us to act
efficiently in a complex world. Imagine you visit Cologne for the first time, you
stroll through the streets and look around curiously. You look at the large Cologne
Cathedral and at some street performers. After a while, you remember that you have
to catch your train back home soon and you start actively to look for signs to the
station. You have no eye for the street performers any more. But when you enter
the station, you hear a fire alarm and see that people are running out of the station.
Immediately you forget your waiting train and join them on their way out.

This scenario shows the complexity of human perception. Plenty of information
is perceived at each instant, much more than can be processed in detail by the hu-
man brain. The ability to extract the relevant pieces of the sensory input at an early
processing stage is crucial for efficient acting. Thereby, it depends on the context
which part of the sensory input is relevant. When having a goal like catching a train,
the signs are relevant, without an explicit goal, salient things like the street perform-
ers attract the attention. Some things or events are so salient that they even override
your goals, such as the fire alarm. The mechanism to direct the processing resources
to the potentially most relevant part of the sensory input is called selective attention.
One of the most famous definitions of selective attention is from William James, a
pioneering psychologist, who stated in 1890: “Everyone knows what attention is. It
is the taking possession by the mind, in clear and vivid form, of one out of what
seem several simultaneously possible objects or trains of thought” [12]. While the
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concept of attention exists for all senses, here we will concentrate on visual attention
and thus on the processing of images and videos.

While it is obvious that attention is a useful concept for humans, why is it of in-
terest for machines and which kinds of machines profit most from such a concept?
To answer these questions, let us tackle two goals of attention separately. The first
goal is to handle the complexity of the perceptual input. Since many visual process-
ing tasks concerned with the recognition of arbitrary objects are NP-hard [23], an
efficient solution is often not achievable. Problems arise for example if arbitrary ob-
jects of arbitrary sizes and extents shall be recognized, i.e. everything from the fly
on the wall to the building in the background. The typical approach to detect objects
in images is the sliding-window paradigm in which a classifier is trained to detect an
object in a subregion of the image and is repeatedly applied to differently sized test
windows. A mechanism to prioritize the image regions for further processing is of
large interest, especially if large image databases shall be investigated or if real-time
processing is desired, e.g. on autonomous mobile robots.

The second goal of attention is to support action decisions. This task is especially
important for autonomous robots that act in a complex, possibly unknown environ-
ment. Even if equipped with unlimited computational power, robots still underlie
similar physical constraints as humans: at one point in time, they can only navigate
to one location, zoom in on one or a few regions, and grasp one or a few objects.
Thus, a mechanism that selects the relevant parts of the sensory input and decides
what to do next is essential. Since robots usually operate in the same environments
as humans, it is reasonable to imitate the human attention system to fulfill these
tasks. Furthermore, in domains as human–robot interaction, it is helpful to generate
a joint focus of attention between man and machine to make sure that both com-
municate about the same object.1 Having similar mechanisms for both human and
robot facilitates this task.

As a conclusion, we can state that the more general a system shall be and the
more complex and undefined the input data are, the more urgent the need for a
prioritizing attention system that preselects the data of most potential interest.

This chapter aims to provide you with everything you must know to build a
computational attention system.2 It starts with an introduction to human percep-
tion (Sect. 4.2). This section will give you an insight to the important mechanisms
in the brain that are involved in visual attention and thus provides the background
knowledge that is required when working in the field of computational attention. If
you are mainly interested in how to build a computational system, you might skip
this section and directly jump to Sect. 4.3. This section explains how to build a
bottom-up system of visual attention and how to extend such a system to perform
visual search for objects. After that, we discuss different ways to evaluate atten-
tion systems (Sect. 4.4) and mention two applications of such systems in robotic
contexts (Sect. 4.5). At the end of the chapter you find some useful links to Open
Source code, freely accessible databases, and further readings on the topic.

1The social aspect of human attention is described in Chap. 8, Sect. 8.6.4.1
2Parts of this chapter have been published before in [5].
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Fig. 4.1 Left: The human visual system (Fig. adapted from http://www.brain-maps.com/
visual-fields.html). Right: The receptive field of a ganglion cell with center and surround and its
simulation with Difference-of-Gaussian filters (Fig. adapted from [3])

4.2 Human Visual Attention

In this section, we will introduce some of the cognitive foundations of human vi-
sual attention. We start with the involved brain mechanisms, continue with several
psychological concepts and evaluation methods, and finally present two influential
psychological models.

4.2.1 The Human Visual System

Let us first regard some of the basic concepts of the human visual system. While
being far from an exhaustive explanation, we focus on describing parts that are
necessary to understand the visual processing involved in selective attention. The
most important visual areas are illustrated in Fig. 4.1, left.

4.2.1.1 Eye, Retina, and Ganglion Cells

The light that enters the eye through the pupil passes through the lens, and reaches
the retina at the back of the eye. The retina is a light-sensitive surface and is densely
covered with over 100 million photoreceptor cells, rods and cones. The rods are
more numerous and more sensitive to light than the cones but they are not sensitive
to color. The cones provide the eye’s color sensitivity: among the cones, there are
three different types of color reception: long-wavelength cones (L-cones) which are
sensitive primarily to the red portion of the visible spectrum, middle-wavelength
cones (M-cones) sensitive to green, and short-wavelength cones (S-cones) sensitive
to blue. In the center of the retina is the fovea, a rod-free area with very thin, densely
packed cones. It is the center of the eye’s sharpest vision. Because of this arrange-
ment of cells, we perceive the small region currently fixated in a high resolution
and the whole surrounding only as diffuse and coarse. This mechanism makes eye
movements an essential part of perception, since they enable high resolution vision
subsequently for different regions of a scene.

http://www.brain-maps.com/visual-fields.html
http://www.brain-maps.com/visual-fields.html
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The photoreceptors transmit information to the so called ganglion cells, which
combine the trichromatic (i.e. three-colored) input by subtraction and addition to
determine color and luminance opponency. The receptive field of a ganglion cell,
i.e. the region the cell obtains input from, is circular and separated into two areas:
a center and a surround (cf. Fig. 4.1, right). There are two types of cells: on-center
cells which are stimulated by light at the center and inhibited by light at the sur-
round, and off-center cells with the opposite characteristic. Thus, on-center cells are
well suited to detect bright regions on a dark background and off-center cells vice
versa. Additional to the luminance contrast, there are also cells that are sensitive to
red-green and to blue-yellow contrasts. The center-surround concept of visual cells
can be modeled computationally with Difference-of-Gaussian filters (cf. Fig. 4.1,
right) and is the basic mechanism for contrast detection in computational attention
systems.

4.2.1.2 From the Optic Chiasm to V1

The visual information leaves the eye via the optic nerve and runs to the optic chi-
asm. From here, two pathways go to each brain hemisphere: the smaller one goes
to the superior colliculus (SC), which is e.g. involved in the control of eye move-
ments. The more important pathway goes to the Lateral Geniculate Nucleus (LGN)
and from there to higher brain areas. The LGN consists of six main layers composed
of cells that have center-surround receptive fields similar to those of retinal ganglion
cells but larger and with a stronger surround. From the LGN, the visual information
is transmitted to the primary visual cortex (V1) at the back of the brain.

V1 is the largest and among the best-investigated cortical areas in primates. It has
the same spatial layout as the retina itself. But although spatial relationships are pre-
served, the densest part of the retina, the fovea, takes up a much smaller percentage
of the visual field (1%) than its representation in the primary visual cortex (25%).
The cells in V1 can be classified into three types: simple cells, complex cells, and
hypercomplex cells. As the ganglion cells, the simple cells have an excitatory and an
inhibitory region. Most of the simple cells have an elongated structure and, there-
fore, are orientation sensitive. Complex cells take input from many simple cells.
They have larger receptive fields than the simple cells and some are sensitive to
moving lines or edges. Hypercomplex cells, in turn, receive the signals from com-
plex cells as input. These neurons are capable of detecting lines of a certain length
or lines that end in a particular area.

4.2.1.3 Beyond V1: the Extrastriate Cortex and the Visual Pathways

From the primary visual cortex, a large collection of neurons sends information to
higher brain areas. These areas are collectively called extrastriate cortex, in opposite
to the striped architecture of V1. The areas belonging to the extrastriate cortex are
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V2, V3, V4, the infero-temporal cortex (IT), the middle temporal area (MT or V5)
and the posterior-parietal cortex (PP).3

Of the extrastriate areas, much less is known than of V1. One of the most impor-
tant findings of the last decades was that the processing of the visual information
is not serial but highly parallel. While not completely segregated, each area has a
prevalence of processing certain features such as color, form (shape), or motion.
Several pathways lead to different areas in the extrastriate cortex. The statements
on the number of existing pathways differ: the most common belief is that there
are three main pathways; one for color, one for form, and one for motion pathway,
which is also responsible for depth processing [13].

The color and form pathways go through V1, V2, and V4 and end finally in IT,
the area where the recognition of objects takes place. In other words, IT is concerned
with the question of “what” is in a scene. Therefore, the color and form pathway
together are called the what pathway. It is also called ventral stream because of its
location on the ventral part of the body. The motion-depth pathway goes through V1,
V2, V3, MT, and the parieto occipital area (PO) and ends finally in PP, responsible
for the processing of motion and depth. Since this area is mainly concerned with the
question of “where” something is in a scene, this pathway is also called the where
pathway. Another name is dorsal stream because it is considered to lie dorsally.

Finally, it is worth to mention that although the processing of the visual informa-
tion was described above in a feed-forward manner, it is usually bi-directional. Top-
down connections from higher brain areas influence the processing and go down as
far as LGN. Also lateral connections combine the different areas, for example, there
are connections between V4 and MT, showing that the “what” and “where” pathway
are not completely separated.

4.2.1.4 Neurobiological Correlates of Visual Attention

The mechanisms of selective attention in the human brain still belong to the open
problems in the field of research on perception. Perhaps the most prominent out-
come of neuro-physiological findings on visual attention is that there is no single
brain area guiding the attention, but neural correlates of visual selection appear to
be reflected in nearly all brain areas associated with visual processing. Attentional
mechanisms are carried out by a network of anatomical areas. Important areas of
this network are the posterior parietal cortex (PP), the superior colliculus (SC), the
Lateral IntraParietal area (LIP), the Frontal Eye Field (FEF) and the pulvinar.

Brain areas involved in guiding eye movements are the FEF and the SC. There is
also evidence that a kind of saliency map (i.e. a topographical representation of what
is interesting—or salient—in the visual field) exists in the brain, but the opinions
where it is located diverge. Some researchers locate it in the FEF, others at the LIP,
the SC, at V1 or V4 (see [5] for references). Further research will be necessary to
determine the tasks and interplay of the brain areas involved in the process of visual
attention.

3The notation V1 to V5 comes from the former belief that the visual processing would be serial.
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4.2.2 Psychological Concepts of Attention

Certain concepts and expressions are frequently used when investigating human
visual attention and shall be introduced here.

Usually, directing the focus of attention to a region of interest is associated with
eye movements (overt attention). However, it is also possible to attend to peripheral
locations of interest without moving the eyes, a phenomenon which is called covert
attention. The allocation of attention is guided by two principles: bottom-up and
top-down factors. Bottom-up attention (or saliency) is derived solely from the per-
ceptual data. Main indicators for visual bottom-up saliency are a strong contrast of a
region to its surround and the uniqueness of this region. Thus, a clown in the parlia-
ment is salient, whereas it is not particularly salient among other clowns (however,
a whole group of clowns in the parliament is certainly salient!). The bottom-up in-
fluence is not voluntary suppressible: a highly salient region captures your attention
regardless of the task, an effect called attentional capture. This effect might save
your life, e.g. if an emergency bell or a fire captures your attention.

On the other hand, top-down attention is driven by cognitive factors such as pre-
knowledge, context, expectations, and current goals. In human viewing behaviour,
top-down cues always play a major role. Not only looking for the train station signs
in the introductory example is an example of top-down attention, also more sub-
tle influences like looking at food when being hungry. In psychophysics, top-down
influences are often investigated by so called cueing experiments, in which a cue di-
rects the attention to a target. A cue might be an arrow that points into the direction
of the target, a picture of the target, or a sentence (“search for the red circle”).

One of the best investigated aspects of top-down attention is visual search. The
task is exactly what the name implies: given a target and an image, find an instance
of the target in the image. Visual search is omnipresent in every-day life: finding a
friend in a crowd or your keys in the living room are examples.

In psychophysical experiments, the efficiency of visual search is measured by the
reaction time (RT) that a subject needs to detect a target among a certain number
of distractors (the elements that differ from the target) or by the search accuracy.
To measure the RT, a subject has to report a detail of the target or has to press one
button if the target was detected and another if it is not present in the scene. The
RT is represented as a function of set size (the number of elements in the display).
The search efficiency is determined by the slopes and the intercepts of these RT ×
set size functions (cf. Fig. 4.2(c)). The searches vary in their efficiency: the smaller
the slope of the function and the lower the value on the y-axis, the more efficient
the search. Two extremes are serial and parallel search. In serial search, the reaction
time increases with the number of distractors, whereas in parallel search, the slope
is near zero. But note that the space of search slope functions is a continuum.

Feature searches take place in settings in which the target is distinguished from
the distractors by a single basic feature (such as color or orientation) (cf. Fig. 4.2(a)).
In conjunction searches on the other hand, the target differs by more than one feature
(see Fig. 4.2(b)). While feature searches are usually fast and conjunction searches
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Fig. 4.2 (a) Feature search: the target (horizontal line) differs from the distractors (vertical lines)
by a unique visual feature (pop-out effect). (b) Conjunction search: the target (red, horizontal line)
differs from the distractors (red, vertical and black, horizontal lines) by a conjunction of features.
(c) The reaction time (RT) of a visual search task is a function of set size. The efficiency is measured
by the intercept and slopes of the functions (Fig. redrawn from [28])

slower, this is not always the case. Also a feature search might be slow if the differ-
ence between target and distractors is small (e.g. a small deviation in orientation).
Generally, it can be said that search becomes harder as the target-distractor similarity
increases and easier as distractor-distractor similarity increases. The most efficient
search takes place for so called “pop-out” experiments that denote settings in which
a single element immediately captures the attention of the observer. You understand
easily what this means by looking at Fig. 4.2(a). Other methods to investigate visual
search is by measuring accuracy or eye movements. References for further readings
on this topic can be found in [7].

One purpose of such experiments is to study the basic features of human per-
ception, that means the features that are early and pre-attentively processed in the
human brain and guide visual search. Undoubted basic features are color, motion,
orientation and size (including length and spatial frequency) [29]. Some other fea-
tures are guessed to be basic, but there are limited data or dissenting opinions.

An interesting effect in visual search tasks are search asymmetries, that means
the effect that a search for stimulus ‘A’ among distractors ‘B’ produces different re-
sults than a search for ‘B’ among ‘A’s. An example is that finding a tilted line among
vertical distractors is easier than vice versa. An explanation is proposed by [22]: the
authors claim that it is easier to find deviations among canonical (i.e. more fre-
quently encountered in everyday life) stimuli than vice versa. Given that vertical is
a canonical stimulus, the tilted line is a deviation and may be detected quickly.

4.2.3 Important Psychological Attention Models

In the field of psychology, there exists a wide variety of theories and models on vi-
sual attention. Their objective is to explain and better understand human perception.
Here, we introduce two approaches which have been most influential for computa-
tional attention systems.

The Feature Integration Theory (FIT) of Treisman claims that “different fea-
tures are registered early, automatically and in parallel across the visual field, while
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Fig. 4.3 (a) Model of the Feature Integration Theory (FIT) (Fig. redrawn from [20]). (b) The
Guided Search model of Wolfe (Fig. adapted from [27] ©1994 Psychonomic Society)

objects are identified separately and only at a later stage, which requires focused
attention” [21]. Information from the resulting feature maps—topographical maps
that highlight conspicuities according to the respective feature—is collected in a
master map of location. Scanning serially through this map focuses the attention
on the selected scene regions and provides these data for higher perception tasks
(cf. Fig. 4.3(a)). The theory was first introduced in 1980, but it was steadily modi-
fied and adapted to current research findings.

Beside FIT, the Guided Search Model of Wolfe is among the most influential
work for computational visual attention systems [27]. The basic goal of the model
is to explain and predict the results of visual search experiments. Mimicking the
convention of numbered software upgrades, Wolfe has denoted successive versions
of his model as Guided Search 1.0 to Guided Search 4.0. The best elaborated de-
scription of the model is available for Guided Search 2.0 [27]. The architecture of
the model is depicted in Fig. 4.3(b). It shares many concepts with the FIT, but is
more detailed in several aspects, which are necessary for computer implementa-
tions. An interesting point is that in addition to bottom-up saliency, the model also
considers the influence of top-down information by selecting the feature type which
distinguishes the target best from its distractors.

4.3 Computational Attention Systems

Computational attention systems model the principles of human selective attention
and aim to select the part of the sensory input data that is most promising for further
investigation. Here, we concentrate on visual attention systems that are inspired by
concepts of the human visual system but are designed with an engineering objective,
that means their purpose is to improve vision systems in technical applications.4

4In this chapter, we assume that the reader has basic knowledge on image processing, otherwise
you find a short explanation of the basic concepts in the appendix of [5].
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Fig. 4.4 General structure of
most visual attention systems.
Several features are computed
in parallel and fused to a
single saliency map. The
maxima in the saliency map
are the foci of attention
(FOAs). Output is a trajectory
of FOAs, ordered by
decreasing saliency.
Top-down cues may influence
the processing on different
levels

4.3.1 General Structure

Most computational attention systems have a similar structure, which is depicted
in Fig. 4.4. This structure is originally adapted from psychological theories like
the Feature Integration Theory and the Guided Search model (cf. Sect. 4.2.3). The
main idea is to compute several features in parallel and to fuse their conspicuities
in a saliency map. If top-down information is available, this can be used to in-
fluence the processing at various levels of the models. A saliency map is usu-
ally a gray-level image in which the brightness of a pixel is proportional to its
saliency. The maxima in the saliency map denote the regions that are investi-
gated by the focus of attention (FOA) in the order of decreasing saliency. This
trajectory of FOAs shall resemble human eye movements. Output of a computa-
tional attention system is either the saliency map or a trajectory of focused re-
gions.

While most attention systems share this general structure, there are differ-
ent ways to implement the details. One of the best known computational atten-
tion systems is the iNVT from Itti and colleagues [11]. The VOCUS model [5]
has adopted and extended several of their ideas. It is real-time capable and has
a top-down mode to search for objects (visual search). Itti and Baldi presented
an approach that is able to detect temporally salient regions, called surprise the-
ory [9]. Bruce and Tsotsos compute saliency by determining the self-information
of image regions with respect to their surround [1]. The types of top-down in-
formation that can influence an attention model are numerous and only a few
have been realized in computational system. For example, the VOCUS model
uses pre-knowledge about a target to weight the feature maps and perform visual
search. Torralba et al. use context information about the scene to guide the gaze,
e.g., to search for people on the street level of an image rather than on the sky
area [19]. More abstract types of top-down cues, such as emotions and motivations,
have to our knowledge not yet been integrated into computational attention sys-
tems.
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In this chapter, we follow the description of the VOCUS model as representative
of one of the classic approaches to compute saliency.5 We start with introducing
the bottom-up part (Sect. 4.3.2), followed by a description of the top-down visual
search part (Sect. 4.3.3).

4.3.2 Bottom-up Saliency

Bottom-up saliency is usually a combination from different feature channels. The
most frequently used features in visual attention systems are intensity, color, and
orientation. When image sequences are processed, also motion and flicker are im-
portant. The main concept to compute saliency are contrast computations that deter-
mine the difference between a center region and a surrounding region with respect
to a certain feature. These contrasts are usually computed by center-surround filters.
Such filters are inspired by cells in the human visual system, as the ganglion cells
and the simple and complex cells introduced in Sect. 4.2.1. Cells with circular re-
ceptive fields are best modeled by Difference-of-Gaussian filters (cf. Fig. 4.1, right)
while cells with elongated receptive fields are best modeled by Gabor functions. In
practice, the circular regions are usually approximated by rectangles.

To enable the detection of regions of different extents, the center as well as the
surround vary in size. Instead of directly adapting the filter sizes, the computations
are usually performed on the layers of an image pyramid.

The structure of the bottom-up part of the VOCUS attention system is shown in
Fig. 4.5. Let us regard the computation of the intensity feature in more detail now
to understand the concept and then extend the ideas to the other feature channels.

4.3.2.1 Intensity Channel

Given a color input image I, this image is first converted to an image ILab in the Lab
(or CIELAB) color space. This space has the dimension ‘L’ for lightness and ‘a’ and
‘b’ for the color-opponent dimensions (cf. Fig. 4.5, bottom right); it is perceptually
uniform, which means that a change of a certain amount in a color value is perceived
as a change of about the same amount in human visual perception.

From ILab, a Gaussian pyramid is determined by successively smoothing the
image with a Gaussian filter and subsampling it with a factor of two along each
coordinate direction (see Fig. 4.6). In VOCUS, we use a 5 × 5 Gaussian kernel.
The level of the pyramid determines the area that the center-surround filter covers:
on high levels of the pyramid (fine resolution), small salient regions are detected
while on low levels (coarse resolution), large regions obtain the highest response. In
VOCUS, 5 pyramid levels (scales) are computed: I s

Lab, s ∈ {0, . . . ,4}. Level I 1
Lab is

5While the description here is essentially the same as in [5], some improvements have been made
in the meantime that are included here. Differences of VOCUS from the iNVT can be found in [5].
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Fig. 4.5 The bottom-up saliency computation of the VOCUS attention system

only an intermediate step used for noise reduction, all computations take place on
levels 2–4.6

6The number of levels that is reasonable depends on the image size, as well as on the size of the
objects you want to detect. Larger images and a wide variety of possible object sizes require deeper
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Fig. 4.6 (a) The image
which serves as
demonstration example
throughout this chapter and
(b) the derived Gaussian
image pyramid

The intensity computations can be performed directly on the images I s
L that

originate from the ‘L’ channel of the LAB image. According to the human sys-
tem, we determine two feature types for intensity: the on-center difference re-
sponding strongly to bright regions on a dark background, and the off-center dif-
ference vice versa. Note that it is important to treat both types separately and to
not fuse them in a single map since otherwise it is not possible to detect bright-
dark pop-outs, such as in Fig. 4.12. This yields 12 intensity scale maps I ′′

i,s,σ with
i ∈ {(on), (off)}, s ∈ {2,3,4}, σ ∈ {3,7}. A pixel (x, y) in one of the on-center scale
maps is thus computed as

I ′′
on,s,σ (x, y) = center(I s

L, x, y) − surroundσ

(
I s
L, x, y

)

= I s
L(x, y) − 1

(2σ + 1)2 − 1

×
(

σ∑

i=−σ

σ∑

j=−σ

I s
L(x + i, y + j) − I s

L(x, y)

)
. (4.1)

The off-center maps I ′′
off,s,σ (x, y) are computed equivalently by surround − center.

The straightforward computation of the surround value is quite costly, especially for
large surrounds. To compute the surround value efficiently, it is convenient to use
integral images [25].

The advantage of an integral image (or summed area table) is that when it is once
created, the sum and mean of the pixel values of a rectangle of arbitrary size can be
computed in constant time. An integral image II is an intermediate representation
for the image and contains for a pixel position (x, y) the sum of all gray scale pixel
values of image I above and left of (x, y), inclusive:

II(x, y) =
x∑

x′=0

y∑

y′=0

I (x′, y′). (4.2)

The process is visualized in Fig. 4.7, left. The integral image can be computed re-
cursively in one pass over the image with the help of the cumulative sum s:

s(x, y) = s(x, y − 1) + I (x, y), (4.3)

pyramids. The presented approach usually works well for images of up to 400 pixels in width and
height in which the objects are comparatively small as in the example images of this chapter.
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Fig. 4.7 Left: The integral image contains at II(x, y) the sum of the pixel values in the shaded
region. Right: the computation of the average value in the shaded region is based on four operations
on the four depicted rectangles according to (4.5)

Fig. 4.8 Left: the 12 intensity scale maps I ′′
i,s,σ . First row: the on-maps. Second row: the off-maps.

Right: the two intensity feature maps I ′
(on) and I ′

(off) resulting from the sum of the corresponding
six scale maps on the left

II(x, y) = II(x − 1, y) + s(x, y) (4.4)

with s(x,−1) = 0 and II(−1, y) = 0. This intermediate representation allows to
compute the sum of the pixel values in a rectangle F using four references (see
Fig. 4.7 (right)):

F(x, y,h,w) = II(x + w − 1, y + h − 1) − II(x − 1, y + h − 1)

− II(x + w − 1, y − 1) + II(x − 1, y − 1). (4.5)

The ‘−1’ elements in the equation are required to obtain a rectangle that includes
(x, y). By replacing the computation of the surround in (4.1) with the integral com-
putation in (4.5) we obtain

I ′′
on,s,σ (x, y) = I s

L(x, y) − F(x − σ,y − σ,2σ + 1,2σ + 1) − I s
L(x, y)

(2σ + 1)2 − 1
. (4.6)

To enable this computation, one integral image has to be computed for each of the
three pyramid levels I s

L, s ∈ {2,3,4}. This pays off since then each surround can be
determined by three simple operations. The intensity scale maps I ′′ are depicted in
Fig. 4.8, left.

The six maps for each center-surround variation are summed up by across-scale
addition: first, all maps are resized to scale 2 whereby resizing scale i to scale i − 1
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is done by bilinear interpolation. After resizing, the maps are added up pixel by
pixel. This yields the intensity feature maps I ′:

I ′
i =

⊕

s,σ

I ′′
i,s,σ , (4.7)

with i ∈ {(on), (off)}, s ∈ {2,3,4}, σ ∈ {3,7}, and
⊕

denoting the across-scale addi-
tion. The two intensity feature maps are shown in Fig. 4.8, right.

4.3.2.2 Color Channel

The color computations are performed on the two-dimensional color layer Iab of
the Lab image that is spanned by the axes ‘a’ and ‘b’. Besides its resemblance to
human visual perception, the Lab color space fits particularly well as a basis for an
attentional color channel since the four main colors red, green, blue and yellow are
at the end of the axes ‘a’ and ‘b’. Each of the 6 ends of the axes that confine the
color space serves as one prototype color, resulting in two intensity prototypes for
white and black and four color prototypes for red, green, blue, and yellow.

For each color prototype, a color prototype image is computed on each of the
pyramid levels 2–4. In these maps, each pixel represents the Euclidean distance to
the prototype:

Cs
γ (x, y) = Vmax − ∥∥I s

ab(x, y) − Pγ

∥∥, γ ∈ {R,G,B,Y}, (4.8)

where Vmax is the maximal pixel value and the prototypes Pγ are the ends of the
‘a’ and ‘b’ axes (thus, in an 8-bit image, we have Vmax = 255 and PR = (255,127),
PG = (0,127), PB = (127,0), PY = (127,255)). The color prototype maps show to
which degree a color is represented in an image, i.e., the maps in the pyramid PR

show the “redness” of the image regions: the brightest values are at red regions and
the darkest values at green regions (since green has the largest distance to red in
the color space). Analogously to the intensity channel, it is also important here to
separate red-green and blue-yellow in different maps to enable red-green and blue-
yellow pop-outs. The four color prototype images I 2

γ are displayed in Fig. 4.9 (first
row).

On these pyramids, the color contrast is computed by on-center differences,
yielding 4 ∗ 3 ∗ 2 = 24 color scale maps:

C′′
γ,s,σ = center

(
Cs

γ , x, y
) − surroundσ

(
Cs

γ , x, y
)
, (4.9)

with γ ∈ {R,G,B,Y}, s ∈ {2,3,4}, and σ ∈ {3,7}. According to the intensity chan-
nel, the center is a pixel in the corresponding color prototype map, and the sur-
round is computed according to (4.6). The off-center-on-surround difference is not
needed, because these values are represented in the opponent color pyramid. The
maps of each color are rescaled to the scale 2 and summed up into four color feature
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Fig. 4.9 Top: the color prototype images of scale s2 for red, green, blue, yellow. Bottom: the
corresponding color feature C′

γ maps which result after applying center-surround filters

maps C′
γ :

C′
γ =

⊕

s,σ

C′′
γ,s,σ . (4.10)

Figure 4.9, bottom, shows the color feature maps for the example image.

4.3.2.3 Orientation Channel

The orientation maps are computed from oriented pyramids. An oriented pyramid
contains one pyramid for each represented orientation (cf. Fig. 4.10, left). Each of
these pyramids highlights edges with this specific orientation. To obtain the ori-
ented pyramid, first a Laplacian Pyramid is obtained from the Gaussian pyramid
I s
L by subtracting adjacent levels of the pyramid. The orientations are computed

by Gabor filters which respond most to bar-like features according to a specified
orientation. Gabor filters, which are the product of a symmetric Gaussian with an
oriented sinusoid, simulate the receptive field structure of orientation-selective cells
in the primary visual cortex (cf. Sect. 4.2.1). Thus, Gabor filters replace the center-
surround filters of the other channels.

Four different orientations are computed yielding 4 × 3 = 12 orientation scale
maps O ′′

θ,s , with the orientations θ ∈ {0◦,45◦,90◦,135◦} and scales s ∈ {2,3,4}.
The orientation scale maps O ′′

θ,s are summed up by across-scale addition for each
orientation, yielding four orientation feature maps O ′

θ , one for each orientation:

O ′
θ =

⊕

s

O ′′
θ,s , (4.11)

The orientation feature maps for the example image are depicted in Fig. 4.10, right.

4.3.2.4 Motion Channel

If image sequences are used as input for the attention system, motion is an important
additional feature. It can be computed easily by determining the optical flow field.
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Fig. 4.10 Left: to obtain an oriented pyramid, a Gaussian pyramid is computed from the input
image; then a Laplacian pyramid is obtained from the Gaussian pyramid by subtracting two adja-
cent levels and, finally, Gabor filters of four orientations are applied to each level of the Laplacian
pyramid. Right: The four orientation feature maps O ′

0◦ ,O ′
45◦ ,O ′

90◦ ,O ′
135◦ for the example image

Fig. 4.11 The motion feature maps M ′ for a scene in which a ball rolls from right to left through
the image. From left to right: example frame, motion maps M ′

right,M
′
left,M

′
up,M

′
down

Here, we use a method based on total variation regularization that determines a
dense optical flow field and is capable to operate in real-time [30]. If the horizontal
u and the vertical v component of the optical flow are visualized as images, the
center-surround filters can be applied to these images directly. By applying on- as
well as off-center filters to both images, we achieve four motion maps for each scale
s which we call M ′′

ϑ,s , with ϑ = {right, left,up,down}. After across-scale addition
we obtain four motion feature maps,

M ′
ϑ =

⊕

s

M ′′
ϑ,s . (4.12)

An example for a sequence in which a ball rolls from right to left through the image
is displayed in Fig. 4.11. In videos, motion itself is not necessarily salient, but the
contrast of the motion in the current frame to the motion (or absence of motion) in
previous frames is. Itti and Baldi describe in their surprise theory how such temporal
saliency can be integrated into a computational attention system [9].
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Fig. 4.12 The effect of the uniqueness weight function W (4.13). The off-center intensity feature
map I ′

(off) has a higher weight than the on-center intensity feature map I ′
(on), because it contains

only one strong peak. So this map has a higher influence and the region of the black dot pops out
in the conspicuity map I

4.3.2.5 The Uniqueness Weight

Up to now, we have computed local contrasts for each of the feature channels. While
contrast is an important aspect of salient regions, they additionally have an impor-
tant property: they are rare in the image, in the best case unique. A red ball on grass
is very salient, while it is much less salient among other red balls. That means, we
need a measure for the uniqueness of a feature in the image. Then, we can strengthen
maps with rare features and diminish the influence of maps with omnipresent fea-
tures.

A simple method to determine the uniqueness of a feature is to count the number
of local maxima m in a feature map X. Then, X is divided by the square root of m:

W(X) = X/
√

m, (4.13)

In practice, it is useful to only consider maxima in a pre-specified range from the
global maximum (in VOCUS, the threshold is 50% of the global maximum of the
map). Figure 4.12 shows how the uniqueness weight enables the detection of pop-
outs. Other solutions to determine the uniqueness are described in [10, 11].

4.3.2.6 Normalization

Before the feature maps can be fused, they have to be normalized. This is necessary
since some channels have more maps than others. Let us first understand why this
step is not trivial. The easiest solution would be to normalize all maps to a fixed
range. This method comes with a problem: normalizing maps to a fixed range re-
moves important information about the magnitude of the maps. Assume that one
intensity and one orientation map belonging to an image with high intensity but low
orientation contrasts are to be fused into one saliency map. The intensity map will
contain very bright regions, but the orientation map will show only some moder-
ately bright regions. Normalizing both maps to a fixed range forces the values of the
orientation maps to the same range as the intensity values, ignoring that orientation
is not an important feature in this case.
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A similar problem occurs when dividing each map by the number of maps in this
channel: imagine an image with equally strong intensity and color blobs. A color
map would be divided by four, an intensity map only by two. Thus, although all
blobs have the same strength, the intensity blobs would obtain a higher saliency
value.

Instead, we propose the following normalization technique: To fuse the maps
X = {X1, . . . ,Xk}, determine the maximum value M of all Xi ∈ X and normalize
each map to the range [0 . . .M]. Normalization of map Xi to the range [0 . . .M]
will be denoted as N[0..M](Xi) in the following.

4.3.2.7 The Conspicuity Maps

The next step in the saliency computation is the generation of the conspicuity maps.
The term conspicuity is usually used to denote feature-specific saliency. To obtain
the maps, all feature maps of one feature dimension are weighted by the uniqueness
weight W , normalized, and combined into one conspicuity map, yielding map I for
intensity, and C for color, O for orientation, and M for motion:

I =
∑

i

N[0..Mi ]
(
W(I ′

i )
)
, Mi = maxvaluei (I

′
i ),

i ∈ {on,off},

C =
∑

γ

N[0..Mγ ]
(
W(C′

γ )
)
, Mγ = maxvalueγ (C′

γ ),

γ ∈ {R,G,B,Y},

O =
∑

θ

N[0..Mθ ]
(
W(O ′

θ )
)
, Mθ = maxvalueθ (O

′
θ ),

θ ∈ {0◦,45◦,90◦,135◦},

M =
∑

ϑ

N[0..Mϑ ]
(
W(M ′

ϑ)
)
, Mϑ = maxvalueϑ(C′

ϑ),

ϑ ∈ {right, left,up,down},

(4.14)

where W is the uniqueness weight, N the normalization and maxvalue the function
that determines the maximal value from several feature maps. The conspicuity maps
I , C, and O are illustrated in Fig. 4.13(a)–(c).7

7Since the input is a static image, the motion channel is empty and omitted here.
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Fig. 4.13 The three conspicuity maps for intensity, color, and orientation, and the saliency map

4.3.2.8 The Saliency Map and Focus Selection

Finally, the conspicuity maps are weighted and normalized again, and summed up
to the bottom-up saliency map S:

Sbu =
∑

Xi

N[0..MC ]
(
W(Xi)

)
, MC = maxvalue(I,C,O,M), Xi ∈ {I,C,O,M}.

(4.15)
The saliency map for our (static) example is illustrated in Fig. 4.13(d). While it
is sometimes sufficient to compute the saliency map and provide it as output, it
is often required to determine a trajectory of image locations which resembles eye
movements. To obtain such a trajectory from the saliency map, it is common practice
to determine the local maxima in the saliency map, ordered by decreasing saliency.
These maxima are usually called Focus of Attention (FOA). Here, we first discuss
the standard, biologically motivated approach to find FOAs, then we introduce a
simple, computationally convenient solution.

The standard approach to detect FOAs in the saliency map is via a Winner-Take-
All Network (WTA) (cf. Fig. 4.14) [14]. A WTA is a neural network that localizes
the most salient point xi in the saliency map. Thus, it represents a neural maximum
finder. Each pixel in the saliency map gives input to a node in the input layer. Local
competitions take place between neighboring units and the more active unit trans-
mits the activity to the next layer. Thus, the activity of the maximum will reach the
top of the network after k = logm(n) time steps if there are n input units and local
comparisons take place between m units. However, since it is not the value of the
maximum that is of interest but the location of the maximum, a second pyramid of
auxiliary units is attached to the network. It has a reversed flow of information and
“marks” the path of the most active unit. An auxiliary unit is activated if it receives
excitation from its main unit, as well as from the auxiliary unit at the next higher
layer. The auxiliary unit yi , corresponding to the most salient point xi , will be ac-
tivated after at most 2 logm(n) time steps. On a parallel architecture with locally
connected units, such as the brain, this is a fast method to determine the maximum.
It is also a useful approach on a parallel computer architecture, such as a graphics
processing unit (GPU). However, if implemented on a serial machine, it is more
convenient to simply scan the saliency map sequentially and determine the most
salient value. This is the solution chosen for VOCUS.

When the most salient point has been found, the surrounding salient region is
determined by seeded region growing. This method starts with a seed, here the most
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Fig. 4.14 A Winner-Take-
All network (WTA) is a
neural maximum finder that
detects the most salient point
xi in the saliency map.
Fig. redrawn from [14]

salient point, and recursively finds all neighbors with similar values within a certain
range. In VOCUS, we accept all values that differ at most 25% from the value of
the seed. We call the selected region most salient region (MSR). Some MSRs are
shown in Fig. 4.18. For visualization, the MSR is often approximated by an ellipse
(cf. Fig. 4.22).

To allow the FOA to switch to the next salient region with a WTA, a mechanism
called inhibition of return (IOR) is used. It inhibits all units corresponding to the
MSR by setting their value to 0. Then, the WTA activates the next salient region. If
it is desired that the FOA may return to a location after a while, as it is the case in
human perception, the inhibition is only active for a pre-defined time and diminishes
after that. If no WTA is used, it is more convenient to directly determine all local
maxima in the saliency map that exceed a certain threshold (in VOCUS, 50% of the
global maximum), sort them by saliency value, and then switch the focus from one
to the next. This also prevents border effects that result from inhibition when the
focus returns to the borders of an inhibited region.

4.3.3 Visual Search with Top-down Cues

While bottom-up saliency is an important part of visual attention, top-down cues are
even more important in many applications. Bottom-up saliency is useful if no pre-
knowledge is available, but the exploitation of available pre-knowledge naturally
increases the performance of every system, both biological and technical. One of the
best investigated aspects of top-down knowledge is visual search. In visual search,
a target shall be located in the image, e.g. a cup, a key-fob, or a book. Here, we
describe the visual search mode of the VOCUS model. Learning the appearance of
the target from a training image and searching for the target in a test image are both
directly integrated into the previously described model. Top-down and bottom-up
cues interact to achieve a joint focus of attention.

An overview of the complete algorithm for visual search is shown in Fig. 4.15.
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Learning mode (input: training image and region of interest (ROI)):
compute bottom-up saliency map Sbu
determine most salient region (MSR) in ROI of Sbu
for each feature and conspicuity map Xi

compute target descriptor value vi

Search mode (input: test image and target descriptor v):
compute bottom-up saliency map Sbu
compute top-down saliency map Std:

compute excitation map E = ∑
i (vi ∗ Xi) ∀i : vi > 1

compute inhibition map I = ∑
i ((1/vi) ∗ Xi) ∀i : vi < 1

compute top-down saliency map Std = E − I

compute saliency map S = t ∗ Std + (1 − t) ∗ Sbu with t ∈ [0..1]
determine most salient region(s) in S

Fig. 4.15 The algorithm for visual search

Fig. 4.16 In learning mode, VOCUS determines the most salient region (MSR) within the region
of interest (ROI) (yellow rectangle). A target descriptor v is determined by the ratio of MSR vs.
background for each feature and conspicuity map. Values vi > 1 (green) are target relevant and
used in search mode for excitation, values vi < 1 (red) are used for inhibition

4.3.3.1 Learning Mode

“Learning” in our application means to determine the object properties of a specified
target from one or several training images. In learning mode, the system is provided
with a region of interest (ROI) containing the target object and learns which features
distinguish the target best from the remainder of the image. For each feature, a value
is determined that specifies to what amount the feature distinguishes the target from
its background. This yields a target descriptor v which is used in search mode to
weight the feature maps according to the search task (cf. Fig. 4.16).
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The input to the system in learning mode is a training image and a ROI. The ROI
is a rectangle which is usually determined manually by the user, but might also be
the output of a classifier that specifies the target. Inside the ROI, the most salient
region (MSR) is determined by first computing the bottom-up saliency map and,
second, determining the most salient region within the ROI. This method enables
the system to determine automatically what is important in a specified region and
to ignore the background. Additionally, it makes the system stable since usually the
same MSR is computed, regardless of the exact coordinates of the rectangle. So the
system is independent of user variations in determining the rectangle manually and
it is not necessary to mark the target exactly.

Next, a target descriptor v is computed. It has one entry for each feature and each
conspicuity map Xi . The values vi indicate how important a map is for detecting
the target and are computed as the ratio of the mean target saliency and the mean
background saliency:

vi = mi,(MSR)/mi,(Xi−MSR), i ∈ {1, . . . ,13}, (4.16)

where mi,(MSR) denotes the mean intensity value of the pixels in the MSR in map
Xi , showing how strong this map contributes to the saliency of the region of interest,
and mi,(Xi−MSR) is the mean of the remainder of the image in map Xi , showing how
strong the feature is present in the surroundings.

Figure 4.16 shows the target descriptor for a simple example. Values larger than 1
(green) are features that are relevant for the target while features smaller than 1 (red)
are more present in the background and are used for inhibition.

Learning features of the target is important for visual search, but if these features
also occur in the environment they might be of not much use. For example, if a
red target is placed among red distractors it is not reasonable to consider color for
visual search, although red might be the strongest feature of the target. In VOCUS,
not only the target’s features but also the features of the background are considered
and used for inhibition. This method is supported by psychophysical experiments,
showing that both excitation and inhibition of features are important in visual search.
Figure 4.17 shows the effect of background information on the target descriptor.

Note that it is important that target objects are learned in their typical environ-
ment since otherwise their appearance with respect to the background cannot be
represented adequately. Figure 4.18 shows some typical training images and the re-
gions that the system determined to represent the target.

4.3.3.2 Several Training Images

Learning weights from one single training image yields good results if the target
object occurs in all test images in a similar way, i.e., the background color is similar
and the object always occurs in a similar orientation. These conditions often occur
if the objects are fixed elements of the environment. For example, name plates or
fire extinguishers within the same building are usually placed on the same kind of
wall, so the background has always a similar color and intensity. Furthermore, since
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Fig. 4.17 Effect of background information on the target vector. Left: the same target (red hor-
izontal bar, 2nd in 2nd row) in different environments: most vertical bars are black (top) resp.
red (bottom). Right: the target vectors (most important values printed in bold face). In the upper
image, red is the most important feature. In the lower image, surrounded by red distractors, red is
no longer the prime feature to detect the bar but orientation is (image from [5])

Fig. 4.18 Top: some training
images with targets (name
plate, fire extinguisher, key
fob). Bottom: The part of the
image that was marked for
learning (region of interest
(ROI)) and the contour of the
region that was extracted for
learning (most salient region
(MSR)) (images from [5])

the object is fixed, its orientation does not vary and thus it makes sense to learn that
fire extinguishers usually have a vertical orientation.

To automatically determine which object properties are general and to make the
system robust against illumination and viewpoint changes, the target descriptor v
can be computed from several training images by computing the average descriptor
from n training images with the geometric mean:

vi = n

√√√√
n∏

j=1

vij , i ∈ {1, . . . ,13}, (4.17)

where vij is the ith feature in the j th training image. If one feature is present in the
target region of some training images but absent in others, the average values will be
close to 1 leading to only a low activation in the top-down map. Figure 4.19 shows



92 S. Frintrop

Fig. 4.19 Influence of averaging the target descriptor from several training images. Left: four train-
ing examples to learn red bars of horizontal and vertical orientation and on different backgrounds.
The target is marked by the yellow rectangle. Right: The learned target descriptors. Column 2–5:
the weights for a single training image (v = vertical, h = horizontal, b = bright background,
d = dark background). The highest values are highlighted in bold face. Column 6: average vec-
tor. Color is the only stable feature (example from [5])

the effect of averaging target descriptors on the example of searching for red bars in
different environments.

In practice, good results can be obtained by only two training images. In compli-
cated image sets, up to four training images can be useful (see experiments in [5]).
Since not each training image is equally useful, it can be preferable to select the
training images automatically from a set of training images. An algorithm for this
issue is described in [5].

4.3.3.3 Search Mode

In search mode, we search for a target by means of the previously learned target
descriptor. The values are used to excite or inhibit the feature and conspicuity maps
according to the search task. The weighted maps contribute to a top-down saliency
map highlighting regions that are salient with respect to the target and inhibiting
others. Figure 4.20 illustrates this procedure.

The excitation map E is the weighted sum of all feature and conspicuity maps
Xi that are important for the target, namely the maps with weights greater than 1:

E =
∑

i:vi>1

(vi ∗ Xi). (4.18)

The inhibition map I collects the maps in which the corresponding feature is less
present in the target region than in the remainder of the image, namely the maps
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Fig. 4.20 Computation of the top-down saliency map Std that results from an excitation map E

and an inhibition map I . These maps result from the weighted sum of the feature and conspicuity
maps, using the learned target descriptor

with weights smaller than 1:8

I =
∑

i:vi<1

(
(1/vi) ∗ Xi

)
. (4.19)

The excitation and inhibition map are not normalized to the same range since we
want to preserve the differences among the maps.

The top-down map is obtained by subtracting the inhibition map from the exci-
tation map:

Std = E − I. (4.20)

After subtraction, negative values are clipped to 0. Figure 4.20 shows that both,
excitation and inhibition are important to find a target: when searching for the cyan
vertical bar, the excitation map shows bright values for the cyan bar but the brightest
region for the green bar. However, green contains also yellow which is inhibited for
a cyan target. Thus in the resulting top-down map, only the cyan bar is salient.

8Entries with value 1 are ignored since they indicate that the mean saliency of the target region is
exactly the same as the mean saliency of the surrounding; such a feature is completely useless for
detecting the target. However, in practice this usually does not occur unless a feature is not present
at all, e.g., color is not present in a gray-scale image and the color weights are set to 1.
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If the task is pure visual search for a target, the top-down saliency map can
be directly used to determine the focus of attention.9 This is done as described in
Sect. 4.3.2.8. However, if bottom-up cues shall be regarded additionally, the bottom-
up and the top-down saliency maps have to be fused. This will be discussed in the
next section.

4.3.3.4 Bottom-up and Top-down Cues Compete for Attention

In human perception, bottom-up and top-down cues compete for attention all the
time. Depending on how engrossed in a task you are, the influences of bottom-up
and top-down vary. The introductory city-visiting example illustrates this: without a
clear task, the salient street performers attract your gaze. When you start to actively
look for the train station, your top-down attention is focusing on street signs. Finally,
the fire alarm is salient enough to override the task and captures your attention.

Consequently, it is important for a technical system to know what the overall
tasks are, which one the most important task is at the moment, and how important
it is. Depending on such pre-knowledge, the influence of bottom-up and top-down
factors might be determined. After obtaining such a factor, the bottom-up and top-
down saliency map are weighted accordingly and finally fused to a global saliency
map S. To make the maps comparable, Std is normalized in advance to the same
range as Sbu:

S = (1 − t) ∗ Sbu + t ∗ N[0..MS ]Std, MS = maxvalue(Sbu). (4.21)

Here, t ∈ [0 . . .1] is the top-down factor that determines the amount of top-down
influence. Determining t is not trivial. Probably the best solution is to learn it while
performing some tasks on a real system, but this is beyond the scope of this arti-
cle. Note that a simple solution for a technical system is not to fuse bottom-up and
top-down saliency, but to process them independently. Bottom-up salient regions
might be fed to an object recognition module that recognizes the objects, building a
semantic map of the environment with object annotations, and successively improv-
ing the background knowledge of the system, while top-down cues can be used to
solve the current task by searching for desired objects.

4.4 Evaluation of Computational Attention Systems

The evaluation of computational attention systems can be done from a psychophys-
ical perspective, e.g. by comparing their results with human perception, or from a
technical perspective, e.g. by measuring the success in an application.

9Note that in human perception, bottom-up cues always play a role and thus should be considered
if similarity to human perception is desired.
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Fig. 4.21 Typical pop-out images. Attention systems should be able to detect the outliers

When considering bottom-up systems of attention, the first step is to determine
whether the system is able to detect pop-outs in the dimension of the implemented
features. These tests are important to ensure the basic capabilities of the system and
are suitable to reveal its strengths and limitations. Thus, a system with the standard
features intensity, color, and orientation should be able to detect popouts as the
ones in Fig. 4.21. Hereby, the saliency of the target depends on the similarity to
the distractors, the more it differs, the higher the saliency. Thus, a target that differs
only slightly from the distractors might not be detected with the first fixation. This
is in accordance with the psychophysical findings that the more similar target and
distractors are, the slower the visual search (cf. Sect. 4.2.2)

The evaluation on artificial patterns is only the first step, testing on natural im-
ages is important too. Here, it is usually less clear which region shall be salient, top-
down influences play a larger role and saliency depends stronger on the context and
of preknowledge of the observer. A possibility for evaluation is to compare the out-
put of the system with human eye movement data (see also Sect. 4.6 and Chap. 11,
Sect. 11.3.2.2). Note that a computational attention system can only roughly ap-
proximate such eye movement trajectories since the top-down cues that influence
human perception are hardly possible to model in such a general scenario and thus
the systems usually operate in bottom-up mode. It is, however, possible to compare
different attention systems based on such data.

An alternative that is recently introduced in the computer vision community is
the evaluation on image databases with salient objects, manually labeled by different
users [15]. Note, however, that the database in [15] contains many close-up views of
objects that cover a large portion of the image, a case for which the human attention
system is not designed. In contrast, the task of human attention is to direct the gaze
to a small region in a complex scene which is afterwards investigated in detail.
Thus, a system as the one described here is designed to operate on scene images
rather than on close-up views of objects and might have to be adapted accordingly to
work on the above database. A similar approach for evaluation was used by Elazary
and Itti, who used 24 836 pictures of natural scenes from the LabelMe database, in
which objects were manually marked and labeled by a large population of users.
They found that the hot spots in the saliency map predict the locations of objects
significantly above chance [4].

From a technical point-of-view it is not necessarily important that a computa-
tional attention system operates similar to human perception, as long as the outcome
is useful for an application. Two applications in which attention system are applied
are mentioned in Sect. 4.5. But even in these cases, a system should be able to detect
outliers as in Fig. 4.21, since this belongs to the basic capabilities of visual attention
systems.
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Fig. 4.22 Top: Average hit
number of VOCUS for two
targets on a set of test images.
The target descriptors were
computed from two training
images each (examples of
training images cf. Fig. 4.18).
Bottom: Two example test
images with foci of attention
(red ellipses) (example
from [5])

The evaluation of top-down systems is easier. Here, the task is clearly specified
and it can be determined easily whether a target was detected, or not. Note that a top-
down attention system is no object recognizer, that means it cannot decide whether
an object is present in an image or not. It can simply determine locations that are
likely to contain the target, usually in form of a trajectory of locations. Thus, instead
of determining a detection rate, it is more reasonable to determine the hit number,
i.e. the rank of the first FOA that is on the target. A hit number of 1 is best and means
that the first focus of attention was on the target. An example of the evaluation of
visual search with VOCUS is displayed in Fig. 4.22.

4.5 Applications in Computer Vision and Robotics

In the introduction, we have pointed out to the importance of attentional selection
for tasks that deal with large amounts of image data. Especially in the field of au-
tonomous mobile robots, the concept of visual attention has increasingly gained
interest during the last decade. A large number of EU projects on cognitive robotics
has been launched, e.g. the projects MACS, CogVis, POP, and SEARISE. In many
of these projects, visual attention has been used as perception module.

We will concentrate here on two applications of visual attention systems.
A broader overview can be found in [7]. The first application that we will intro-
duce is visual robot localization. Here, a robot has to determine its position in the
world by interpreting its sensor data. When a camera is used as sensor, this is usually
done by detecting visual landmarks in the environment and computing the robot po-
sition based on the position estimation of the landmarks. An important property of
landmarks is the re-detectability in frames that are taken from different viewpoints.
Using salient regions as landmarks is a natural way of exploiting the fact that salient
regions are “special” in an environment and thus, easy to re-detect. An example of
a typical salient landmark is a fire extinguisher. As part of the EU project NEU-
ROBOTICS, we have used salient visual landmarks for simultaneous localization
and mapping (SLAM) [6]. This task is more difficult than pure localization since
the robot initially does not know anything about its environment and has to build a
map and localize itself inside the map at the same time. We have detected salient
regions with VOCUS, tracked them over several frames to determine the most stable
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Fig. 4.23 Two application scenarios for visual attention systems: (a) attentional landmarks
for visual SLAM (simultaneous localization and mapping) at the Royal Institute of Tech-
nology (KTH) in Stockholm: robot Dumbo corrects its position estimate by re-detecting a
salient landmark based on the attention system VOCUS. The yellow rectangle shows the cur-
rently seen frame with a landmark (top) and the corresponding saliency map (bottom) [6]
(Fig. from http://www.iai.uni-bonn.de/~frintrop/research.html). (b) PlayBot: a visually guided
robotic wheelchair for disabled children. The selective tuning model of visual attention supports
the detection of objects of interest (Fig. from http://www.cse.yorku.ca/~playbot)

ones and to determine their 3D position, and stored them as landmarks in a database.
At every time step, currently seen salient regions are compared with landmarks from
the database to enable the robot to detect that it has returned to a previously visited
location (loop closing). This is an especially important step in SLAM to correct
accumulated position errors. A picture of the process is displayed in Fig. 4.23(a).

Another application is the PlayBot project, lead by Prof. John K. Tsotsos from
York University, Canada [18].10 The goal of the project is to develop a smart
wheelchair to support disabled children. The wheelchair has an easily accessible
user interface display, which shows pictures of places and toys. Once a task like
“go to table, point to toy” is selected, the system drives to the selected location
and searches for the specified toy, using mechanisms based on visual attention (see
Fig. 4.23(b)).

4.6 Open Source Code, Databases, and Further Reading

This section lists some tools and references for the interested reader.

4.6.1 Open Source Code

• The iLab Neuromorphic Vision C++ Toolkit (iNVT, pronounced “invent”) from
the group of Laurent Itti is probably the best known and most distributed Open

10More on http://web.me.com/john.tsotsos/Applications/Playbot.html.

http://www.iai.uni-bonn.de/~frintrop/research.html
http://www.cse.yorku.ca/~playbot
http://web.me.com/john.tsotsos/Applications/Playbot.html
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Source code for computational attention systems [11]. It includes the surprise
model for temporal saliency [9] and is available at http://ilab.usc.edu/toolkit/.

• The SaliencyToolbox from Dirk B. Walther [26] is a more compact re-implemen-
tation of iNVT in MATLAB: http://www.saliencytoolbox.net/.

• The original VOCUS source code is not freely available, but a re-implementation
of the bottom-up part (in C++) can be found http://sourceforge.net/projects/
openvolksbot/.

• The AIM model (Attention based on Information Maximation) is an attention
system based on information theory. It determines the self-information of a cen-
ter region with respect to a global surround [1]. MATLAB code is available at:
http://www-sop.inria.fr/members/Neil.Bruce.

• For implementing your own attention system, it is convenient to use the Open
Source Computer Vision Library OpenCV that contains many basic techniques,
from displaying images over computing pyramids to converting images to other
color spaces: http://sourceforge.net/projects/opencvlibrary.

4.6.2 Databases

Several databases are available for testing and evaluating visual attention systems:

• Image databases of popout search arrays and natural images can be found on the
websites of the iLab: http://ilab.usc.edu/imgdbs/.

• Eye tracking data from 20 test persons on 120 still images can be found on:
http://www-sop.inria.fr/members/Neil.Bruce/.

• Eye-tracking data from human volunteers watching complex video stimuli are
available from the CRCNS (Collaborative Research in Computational Neuro-
science) data sharing website: http://crcns.org/data-sets/eye.

• The MSRA Salient Object Database contains 25.000 images with manually
labeled salient objects: http://research.microsoft.com/en-us/um/people/jiansun/
SalientObject/salient_object.htm. For a subset of 1.000 images, binary maps of
the salient objects are available as ground truth: http://ivrg.epfl.ch/supplementary_
material/RK_CVPR09.

4.6.3 Further Reading

More about the human visual system can be found in the books of Palmer [16] or
Kandel et al. [13]. The psychology of attention and details on many psycholog-
ical attention models are described in a book by Pashler [17] and in the chapter
“Attention” by Bundesen & Habekost in the Handbook of Cognition [2]. A descrip-
tion of the social aspects of attention can be found later in this book in Chap. 8,
Sect. 8.6.4.1. Wolfe has written a comprehensive article that contains everything you
ever wanted to know about visual search [28]. One of the first computational models

http://ilab.usc.edu/toolkit/
http://www.saliencytoolbox.net/
http://sourceforge.net/projects/openvolksbot/
http://sourceforge.net/projects/openvolksbot/
http://www-sop.inria.fr/members/Neil.Bruce
http://sourceforge.net/projects/opencvlibrary
http://ilab.usc.edu/imgdbs/
http://www-sop.inria.fr/members/Neil.Bruce/
http://crcns.org/data-sets/eye
http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm
http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm
http://ivrg.epfl.ch/supplementary_material/RK_CVPR09
http://ivrg.epfl.ch/supplementary_material/RK_CVPR09
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of visual attention was introduced by Koch and Ullman in 1985 with a detailed de-
scription of the Winner-Take-All approach [14]. The basic paper that describes the
widely used computational attention model by the group of Laurent Itti in a com-
prehensive manner is [11]. Recently, several groups have used information-theoretic
approaches to determine visual saliency [1, 8, 9]. The latter also tackle the aspect
of top-down saliency for object recognition by determining salient features that best
distinguish a visual class from other classes [8]. Top-down information in the form
of knowledge about the scene and its visual layout was used by Torralba et al. to
guide visual attention to relevant parts of an image [19]. Tsotsos has recently pub-
lished a book that gives an overview of attention theories and models and offers a
full description of his attention model, called selective tuning model [24]. A survey
on computational attention systems that aims to bridge the gap between the research
on human and computational visual attention can be found in [7].

Research papers on computational attention appear on conferences and in jour-
nals of many different areas, e.g. cognitive perception, computer vision, and cog-
nitive robotics. Important journals for cognitive aspects of attention are “Attention,
Perception, and Psychophysics” and the “Journal of Vision”. In the technical fields,
much work can be found on workshops on cognitive systems that usually take place
as satellites of big conferences, such as the “International Symposium on Attention
in Cognitive Systems” at IJCAI 2011. Journal articles appear e.g. in “Computer Vi-
sion and Image Understanding” and in the “IEEE Transactions on Pattern Analysis
and Machine Intelligence”, or, if related to robotics, in the “IEEE Transactions on
Robotics” and the “Robotics and Autonomous Systems”.

4.7 Summary

Computational attention systems are inspired by human perception and aim to de-
tect the most promising regions in images. While computational attention systems
already do a good job in bottom-up saliency computation, many open questions re-
main in the field of top-down attention. All kinds of background knowledge about
the context, the current situation, the layout of the scene, and the specification of the
current task influence the visual processing in humans and should therefore also be
integrated into a technical system. The more technical systems advance, the more
urgent the need for preprocessing modules such as attention systems that prioritize
the data and enable efficient processing with limited resources. Especially in the
field of autonomous robots such a mechanism is important to facilitate the decision
which actions to perform next.

4.8 Questions

1. Which objects of the following list are likely to be detected with a bottom-up
attention system and which are not: a traffic sign, a glass, a large object among
small ones, an apple on the table, an apple in a box full of apples?
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2. You notice that the attention system detects very small salient regions on your
test images. How could you adapt the attention system to detect larger objects as
well? What could you do if you do not have access to the source code and you
can only adapt the input image itself?

3. Why is the arithmetic mean not an adequate alternative for (4.17)? Tip: consider
two training images with vi = 0.5 and vi = 2, respectively, for feature map i.
Which value would you expect and what do you get by arithmetic/geometric
mean?

4. What happens if you search for a target object with the top-down attention system
in an image where the target is not present?

5. How does an attention system differ from a standard interest point detector such
as the Difference of Gaussian detector or the Harris corner detector?

6. How does a top-down attention system differ from an object recognition module?

4.9 Glossary

• Bottom-up attention: One of the factors that guide human attention (the other
is top-down attention). Bottom-up attention is purely data-driven and guides the
gaze to salient regions in a scene. Indicators that attract bottom-up attention are
strong contrasts and the uniqueness of a region.

• Center-surround filters: The main concept in visual attention systems to detect
contrasts. They are inspired by on-center and off-center cells of the human visual
system.

• Saliency: The quality of a region to stand out relative to its surround.
• Top-down attention: One of the factors that guide human attention (the other is

bottom-up attention). Top-down attention is driven by cognitive factors such as
pre-knowledge, context, expectations, motivations, and current goals. One of the
best investigated areas of top-down attention is visual search.

• Visual search: The task to find an item in a scene. It is one of the best investi-
gated parts of top-down attention. Visual search experiments are used frequently
in cognitive sciences to investigate the human visual system.
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Chapter 5
Methods and Technologies for Gait Analysis

Elif Surer and Alper Kose

5.1 Introduction

Human gait is a biometric that can be used for identification of a person or for
diagnostic and clinical purposes. Subsequently, gait analysis is an important assess-
ment tool that uses physical measurements and models, including the movement of
the person’s centre of mass, joint kinematics, ground-reaction forces, the resultant
loads, body segment energy variation and muscular work [1]. This chapter will in-
troduce gait analysis in a clinical context. Depending on the application, the body is
represented with 2-D or 3-D models. These can be pose matrices, point sets, lines
or more complex models.

Low-level feature extraction, segmentation, and joint detection, and construct-
ing 3-D structure from 2-D are generally parts of human movement analysis [2].
In this chapter, we will distinguish between marker-based and markerless tech-
niques. In model-based markerless analysis, a model is fit to the appearance and
the body is tracked through its motions. In marker-based gait analysis, the charac-
teristic steps are placing of markers, sensing, and constructing three-dimensional
trajectories from the markers, which are subsequently labelled. In order to compute
joint angles from the relative marker positions of the labelled trajectories, a com-
puter model is used [3].

This chapter gives general information on gait analysis, with the overall theory
and frequently used applications. Section 5.2 summarizes how motion is measured,
via marker-based or markerless motion capture methods, and inertial measurements.
In Sect. 5.3 we briefly discuss force platforms and electromyography.
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5.2 Motion Measurements

The main goal of the human movement analysis is the acquisition of quantitative
information about the mechanics of the musculoskeletal system while executing a
motor task [1]. In order to pursue this goal, motion capture and inertial measure-
ments are frequently used.

Motion capture acquires the data of a moving human via sensors and processes
the acquired data by using a mathematical model. In motion capture, either conven-
tional photography or optoelectronic systems are used for the acquisition of quan-
titative information, whereas in inertial measurements, accelerometers, gyroscopes
and magnetometers are utilized in order to measure acceleration, angular velocity
and magnetic field, respectively.

Brief explanations and applications of motion capture and inertial measurements
are presented in the following subsections.

5.2.1 Marker-Based Motion Capture

In general, motion capture (also known as ‘mocap’) is classified into two:
(1) marker-based techniques, (2) markerless techniques. In marker-based tech-
niques, video-based optoelectronic systems are used and retro-reflective markers
are attached on the human body. Mocap suits are also considered to be examples of
the first approach. These are worn on the body and are fully equipped with sensors.
In this section we will describe optoelectronic systems for marker-based mocap.

Marker-based analysis is generally performed by mounting retro-reflective mark-
ers on the subjects’ bodies and reconstructing their 3-D position via video-based
optoelectronic systems (Fig. 5.1). Retro-reflective markers are used together with
infrared stroboscopic illumination produced by an array of light-emitting diodes
(LEDs) mounted around the lens of each camera. The thresholds of the cameras can
be adjusted so that only bright reflective markers are sampled and the markers are
recognized via image-based methods.

If the marker is visible from at least two calibrated cameras at the same time, the
3-D position of a marker in a reference frame fixed to the laboratory (global frame—
GF) can be reconstructed. Additional reference frames, linked to body segments
(technical frame—TF), can be defined from the position of a GF-relative cluster of
markers attached to the same body segments. Then, the pose of the TFs in the GF
can be calculated. Bones are the main anchors of TFs. Even though TFs are assumed
to be fixed to the underlying bone, they do not depict the anatomical properties of
the body segment they are attached to. Hence, for each body segment under analysis,
an additional frame—i.e. the anatomical frame (AF)—is defined.

In order to define AFs, selected anatomical landmarks (ALs) with respect to the
relevant TF [4] are determined. Orientation and position in space of a body segment
is the pose of an AF. By using the pose of the AFs of two adjacent body segments,
the kinematics of the joint between the two body segments can be calculated.
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Fig. 5.1 Markers are
mounted on the shank and
foot complex of the subject
for the analysis

5.2.1.1 Calibration of Anatomical Landmarks

Anatomical landmarks are either bony prominences or bone points of geometrical
relevance, which are normally identified by examining with the hand (palpation),
but they can also be identified by imaging, regression equations, or functional move-
ments [1]. Once the ALs are identified, their location with respect to the relevant TF
has to be calculated. Once calculated, reconstructing their position in the GF by
simple coordinate transformations is possible. The Calibrated Anatomical System
Technique (CAST) is an experimental method that uses the concept of AL calibra-
tion and allows various calibration methods to be implemented.

The calibration of AL can be performed (a) by using a marker positioned on the
AL during a static acquisition, (b) by using a pointer, where a minimum of two
markers are mounted with a known distance from tip, and the pointer pointing at the
AL during a static acquisition, (c) by determining the centre of rotation of recorded
functional movements (for joint centres, such as the hip centre), (d) by imaging of
the bone and the relevant TF [5, 6].

The CAST method was recently updated by adding information on the subject-
specific bone geometry. After the position of unlabelled points (UPs) located over
the bone surface are determined, an initial estimation is performed. The estimation
step is followed by matching a digital template-bone to the initial estimate. The
updated technique is called UP-CAST and it is evaluated in terms of repeatability
and accuracy [7].

5.2.1.2 Protocols

Human movement analysis makes use of the theory of multi-rigid body systems,
where a number of rigid segments and adjacent segments connected by joints are
used to model the human body. Certain protocols—data collection and reduction
practices—have been designed in gait analysis, offering various ways of modelling
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the system of rigid bodies of interest. Adopting a protocol helps in obtaining re-
producible results and guides the researcher or clinician in practice. In clinical gait
analysis, all model joints are rotational (either cylindrical or spherical) and AFs are
defined based on this assumption.

Proposed protocols use different marker-sets to identify AFs and joint centre
locations. Data acquired with different protocols can usually not be compared.

“Newington model” is the pioneering and the most commonly used protocol
for gait data acquisition and reduction. Commercial applications like Plug-in Gait
(PiG—Vicon Motion Systems, Oxford, UK) also use this protocol. “Servizio di
Analisi della Funzione Locomotoria” developed a protocol named “SAFLo”—
which differs from the Newington model in terms of segmental anatomical refer-
ences and anatomical marker configurations. After that, “Calibration Anatomical
System Technique” (CAST) was introduced to standardize and define references,
internal anatomical landmarks and external technical markers. Later, protocols of
“Laboratorio per l’Analisi del Movimento nel Bambino” (LAMB) and “Istituti Or-
topedici Rizzoli Gait” were developed, of which the latter was used as the basis of
the software “Total 3-D Gait” (T3Dg-Aurion s.r.l., Milan, Italy) [8, 9].

Even though there are known significant differences among these techniques,
reasonable correlations are observed for most of the gait variables. Ferrari et al.
compared these commonly used protocols and found out that there was good intra-
protocol repeatability within the same gait cycles [8]. It is depicted that model con-
ventions and definitions seem to be more important than the design of the rele-
vant marker-sets. Sharing the model conventions and definitions can be adequate
for worldwide data comparison in clinical gait analysis.

5.2.1.3 Errors

The estimation of 3-D points of objects from two or more images is called
‘stereophotogrammetry’. There are three major sources of errors in human move-
ment analysis performed with stereophotogrammetry.

– Instrumental errors: these errors stem from the results of both instrumental noise
and volume calibration inaccuracies. They have been widely studied in the 80s
and 90s [10, 11], tests for estimating them have been proposed [12]. The instru-
mental noise can be reduced by low pass filtering, while the volume calibration
inaccuracies depend on the inadequate number of cameras and the volume cali-
bration algorithm chosen for the application.

Direct linear transformation (DLT) algorithm [13] is mostly used to register mul-
tiple images by solving for a set of similarity relations under projective geometry,
using commonly identified landmark points on each image. When the volume of
interest is large, performing DLT becomes restrictive. Simultaneous multi-frame
analytical calibration (SMAC) [14]—a technique based on a planar calibration ob-
ject with a grid of known control points—requires the recording of the calibration
object by at least two convergent cameras. SMAC allows covering larger volumes
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but still for very large volumes, analytical self-calibration is more appropriate [15].
Thus, volume calibration inaccuracies can be lowered with the number of cameras
and the chosen volume calibration algorithms.

The contribution of instrumental errors to the total error is considered to be very
small, almost negligible.

– Soft tissue artefacts: the markers captured by the cameras can be directly attached
to the skin or arranged in clusters and positioned with fixtures over a body seg-
ment and their movements cause errors. Since this error has the same frequency
content as the bone movement, there is no way of distinguishing the artefact from
the actual bone movement by using a filter. However, it is possible to reduce
its effect on the end results in the following ways. First of all, marker locations
(marker points) must be chosen so that the relative displacement is minimized.
Secondly, mathematical operators can be used to estimate position and orienta-
tion of the bone from skin marker positions [16, 17]. Knowledge regarding the
characteristics of the artefact movement in different body segments is necessary
to manage the mentioned countermeasures against experimental artefacts.

– Anatomical landmark misplacement: The incorrect location of subcutaneous
bony ALs through palpation can stem from three main factors: (1) the palpa-
ble ALs are not points but surfaces, large and irregular; (2) a soft tissue layer
of variable thickness and composition covers the ALs; (3) the identification of
the location of the ALs depends on which palpation procedure was used. Studies
show that AL position uncertainty and the erroneous determination of AF axes
may result in wrong clinical interpretations of the estimation [18].

Besides the above mentioned sources of errors, marker-based movement analysis
is influenced by the markers attached to the body while the subject was moving and
the need for an extended setup time for marker placement [19].

5.2.2 Markerless Motion Capture

In biomechanics, the main focus of gait analysis has been to build body models
which explain the functioning of the body and to provide solutions to improve the
body’s movement efficiency. Obtaining joint data, analyzing the kinematics and ki-
netics of the movement of interest have been the common procedure [20]. As men-
tioned in the previous section, the most popular technique for acquiring joint data is
to use markers placed on the skin, despite some drawbacks such as interference with
walking and skin movement artefacts. Especially the latter problem is an important
challenge for biomechanical and clinical applications, since it makes the evaluation
of the underlying bone very difficult and error-prone. Also, the use of markers is
intrusive, requires special hardware and cannot be used in most settings.

To overcome these limitations, markerless systems of human capture are pro-
posed where conventional cameras can be utilized without the necessity of using
special apparel or hardware [21]. Markerless motion capture ensures an important
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reduction of the amount of time for setup preparation in comparison to marker-based
techniques. Besides, inter-operator variability is eliminated since no specialized op-
erator is needed to place markers on the skin [19].

Markerless techniques can be classified into model-based and model-free tech-
niques. Model-based approaches utilize an a priori human body model and are com-
posed of two stages: modelling and estimation.

Modelling is the building stage of a likelihood function by taking all factors into
account. The likelihood function is used to determine the most plausible body model
parameterization, given a set of image descriptors, in the context of the camera
model and with respect to a certain matching function. The estimation stage is fitting
the optimum pose in the likelihood domain designed in the modelling stage. Model-
free approaches do not use an a priori human body model, but implicitly model
variations in pose configuration, body shape, camera viewpoint and appearance [22].

Much of the work on motion analysis uses 3-D kinematic models and detailed
estimation of 3-D motion. These techniques require multiple camera viewpoints or
3-D sensors, but motion analysis can also be operated using a single-camera input
without recourse to 3-D motion [23].

Motion capture from a single camera is a difficult task; data acquisition is very
simple, but derivation of a motion is a computer vision challenge that focusses on
interference as much as movement [24].

5.2.2.1 Cardboard Models

A significant example of 2-D model-based markerless techniques is the work of
Howe et al. [24], in which 3-D motion from single camera is reconstructed using a
learning-based approach based on the information learned from a labelled training
set. In a Cardboard model, body parts are modelled as rectangular patches—with a
total of 34 parameters—connected to each other. First, these parameters are initial-
ized in the first frame by hand, by overlaying a model onto the 2-D image of the first
frame, and then the joints and body parts are tracked in 2-D video. This tracking
process returns the coordinates of each limb for each frame which are combined
with a prior model of the human motion to estimate the body’s motion in 3-D. In
each frame, the algorithm infers the correct depth of each point by using the 2-D
positions of the tracked body points. To do so, a training set of 3-D human motion
examples is used and a Bayesian framework is adapted to compute prior probabil-
ities of different 3-D motions. The results show that it is possible to obtain good
results (as measured by the distance to ground truth) with this method.

Ju et al. [25] use a cardboard model to define the human body as a set of con-
nected planar patches and to approximate the limbs as planar regions (Fig. 5.2). The
main assumption behind this model is that the motions of the limb planes are the
same at the points of articulation.

The image motion of a rigid planar patch of the scene is described by the follow-
ing eight-parameter model:

u(x, y) = a0 + a1x + a2y + a6x
2 + a7xy, (5.1)
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Fig. 5.2 A “chain” structure
of limbs, similar to the chain
structure used in [25]

v(x, y) = a3 + a4x + a5y + a6xy + a7y
2, (5.2)

where a = [a0, a1, a2, a3, a4, a5, a6, a7] is the vector of parameters to be estimated,
and u(x,a) = [u(x, y), v(x, y)]T are the components of the optical flow at image
point x = (x, y). The coordinates (x, y) are defined in reference to a particular point,
which can be the center of a patch or a point of articulation.

To simplify the optical flow equation, brightness is assumed to be constant for a
given patch. By solving the optical flow equation and minimizing the total energy,
the motions of all the patches (as ) are estimated, where s denotes patch index.

After the estimation of the absolute motions, articulated motions need to be es-
timated. To do so, the motions of limbs relative to their preceding (parent) patches
are recovered with the following formula:

u(x + u(x,as−1),ar
s ) = u(x,as) − u(x,as−1), (5.3)

where ar
s is the relative motion of patch s, u(x,as) − u(x,as−1) is the relative dis-

placement at point x, and x + u(x,as−1) is the new location of point x under mo-
tion as−1. A planar motion has eight parameters, so four different points of patch
s are enough in order to solve for ar

s given in (5.3). Then, two corners of each
patch—which are the articulated points with the next patch—are tracked by using
the estimation of articulated motions. For each frame, using the articulation mo-
tion estimation, the location of each patch is found and updated within a “chain”
approach [25].

5.2.2.2 Tracking

The main principle of a probabilistic framework for tracking is maintaining a time-
evolving probability distribution of the tracker state. Cham and Rehg applied a prob-
abilistic multiple-hypothesis framework to figure tracking, which is the first appli-
cation of this formulation in movement analysis [23]. To generate a mode-based
representation for the probability distribution of the tracker state, the algorithm has
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to recover these modes in each time-frame. The proposed algorithm here may be
modularized in a way compatible with Bayes’ Rule:

p(xt |Zt) = kp(zt |xt )p(xt |Zt−1),

where xt is the tracker state at time t , zt is the observed data point, Zt is the col-
lection of past image observations (i.e. zτ for τ = 0, . . . , t), and k is a normaliza-
tion constant. Furthermore, zt is assumed to be conditionally independent of Zt−1

given xt .
The stages of the algorithm at each time-frame are “

1. Generating the new prior density p(xt |Zt−1) by passing the modes of
p(xt−1|Zt−1) through a Kalman filter prediction step.

2. Computing the likelihood by:
(a) Creating initial hypothesis seeds by sampling the distribution of p(xt |Zt−1).
(b) Refining the hypotheses through differential state-space search to obtain the

modes of the likelihood p(zt |xt ).
(c) Measuring the local statistics associated with each likelihood mode using

perturbation analysis.
3. Computing the posterior density p(xt |Zt) via Bayes’ Rule (1), then updating and

selecting the set of modes.”

Then, Scaled Prismatic Models (SPM)—a class of 2-D kinematic models—are
used to model the human body. These models impose 2-D constraints on the fig-
ure motion with an underlying 3-D kinematic model. Each link in the model cor-
responds to the image form of a rigid segment with a 3-D kinematic chain. This
correspondence is very flexible, so that the changes of a joint in the underlying 3-D
model can easily be represented by translations and rotations. The tracking problem
starts with an initial state and consists of estimating a vector of SPM parameters for
the figure in each frame of a video sequence [23].

SPM is an example of an explicit human body model. When no such model
is available, a direct correspondence between image observation and pose must
be established. Also, when the tracker loses the tracked person, it needs to be
re-initialized. Model-free algorithms do not suffer from (re)initialization prob-
lems and can be used for initialization of model-based pose estimation ap-
proaches [22].

Mori and Malik estimate body pose and configuration in 3-D space by locating
the joint points in a single 2-D image containing a human figure [26]. First, a number
of exemplar views of the human body in different configurations and viewpoints
with respect to the camera, are stored. Each of the stored views are manually marked
at the body joints and labelled for future use. Then, the input figure is matched to
each stored view using a shape context matching method with a kinematic chain-
based deformation model. By extracting external and internal contours of an object,
shape contexts are employed to encode the edges.



5 Methods and Technologies for Gait Analysis 113

5.2.2.3 Matching

The problem of estimating the keypoints in the test image, while an exemplar (with
labelled keypoints) is given, is cast as one of deformable matching. The exemplar is
deformed into the shape of the test image and during the deformation, a matching
score is computed in order to measure similarity between the exemplar and the test
image.

In the study [26], a shape is represented by a discrete set of n points P =
{p1, . . . , pn}, pi ∈ �2 from the internal and external contours on the shape.

The deformable matching process contains three steps. Given sample points on
the exemplar and test image:

1. Find correspondences between sample points of exemplar and test image.
2. Calculate the deformation of exemplar.
3. Apply deformation to exemplar sample points.

In order to estimate a deformation, the source of the sample point—i.e. which
kinematic chain segment each sample point belongs—should be determined. For
this purpose, hand-labelled keypoints, which automatically assign hundreds of sam-
ple points to segments, are used. This is done by finding minimum distance of each
sample point to bone-line, which is the line segment connecting the keypoints at the
segment ends, for arm and leg segments. After the correspondence step is over, the
locations of the body joints are transferred to the test shape. Given the 2-D joint
locations, the 3-D body configuration and pose are estimated using an algorithm
proposed by Taylor [27] which uses point correspondences in a single image. In
the estimation step, the stored exemplars are deformed in order to match the image
observation. The most likely 2-D joint estimate is found by enforcing 2-D image
distance consistency between body parts. This technique can be applied to each
frame of a video sequence so that tracking recognition becomes repeatable for ev-
ery frame [26].

In another 2-D model-free markerless application, Elgammal and Lee derive 3-D
poses directly from human silhouettes extracted from a single camera [28]. The ob-
jective is to recover the intrinsic body configuration, viewpoint and reconstruct the
silhouette and detect and discard outliers from the visual input. To recover intrinsic
body configurations from the silhouette, manifolds are learned from the visual in-
put and subsequently mappings are learned from manifolds to visual input and 3-D
poses. The experiments demonstrate that the model can be learned from the data of
one person and can easily be generalized for recovering the body configurations of
other people. Thus, the interpolation of 3-D poses is possible even if they are not
part of the training data [28].

5.2.2.4 3-D Model-Based Approaches

The 3-D motion of humans is not determined thoroughly when the observation is
limited to a single camera. To overcome this limitation, 3-D markerless techniques
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Fig. 5.3 A body model
similar to the model used
in [29]

are developed. An important study exemplifying 3-D model-based markerless tech-
nique is the study by Bottino and Laurentini [29]. They present a technique in order
to reconstruct unconstrained motion from 3-D reconstruction of multiple-view im-
ages. First, views of the human body are recorded with different cameras and 2-D
silhouette of the human body is extracted from each of the images. Then, a volumet-
ric description is recovered by intersecting the cones derived from the corresponding
silhouette. This step is called the volume intersection and gives the final voxel (vol-
umetric pixel) representation. Finally, a model of the human body is fitted to the
extracted volume (Fig. 5.3). Model fitting is done by minimizing a distance func-
tion between the volume and the model with a search through the 32 dimensional
space of pose parameters.

Deutscher and Reid propose a generic tracking technique which does not neces-
sitate special preparations of subjects or restrictive assumptions [21]. It is possible
to search high dimensional configurations by using a modified particle filter with-
out any assumptions. The idea of annealing is adapted to perform a particle based
stochastic search. The adapted algorithm is called annealed particle filtering and is
capable of recovering full articulated body motion. The articulated model of the
human body is built around a kinematic chain, where each limb is fleshed out us-
ing conic sections with elliptical cross-sections. This model presents computational
simplicity and compact representation. The results show that this new technique
leads to robust tracking even in complex and difficult sequences of movements [21].

Corazza et al. also use the idea of annealing to employ a markerless technique,
which uses visual hull reconstruction and an a priori model of the subject [19]. Vi-
sual hull of an object is the convex approximation of the volume occupied by the
subject, and can be approximated by volume intersection. After the visual hull re-
construction by projection of the subject’s silhouettes from each of the cameras,
model matching to the visual hull is performed with adapted fast simulated anneal-
ing approach. Tracking capability of this approach is evaluated in a virtual envi-
ronment and the results captured in a gait laboratory are compared to validate this
approach in a clinical environment. This technique offers great potential, since it
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is based on the entire shape, instead of a small number of points, which makes it
perform well, even when the camera resolutions are low [19].

Bregler and Malik [30] demonstrate a motion estimation technique that is able to
extract high degree-of-freedom articulated human body configurations from com-
plex video sequences using exponential maps and twist motions. The product of
exponential maps and twist motions and their integration into differential motion
estimation is a significant parameterization. By this way, the pose of each body seg-
ment is defined with respect to its “parent” segment which is attached through a
revolute joint.

Chu et al. [31] propose an approach in which underlying nonlinear axes (or skele-
ton curve) from a volume of a human subject are used. Human volumes are captured
with multiple cameras and the kinematic posture is estimated by using skeleton
curves. These curves are used to automatically produce kinematic motion. To do so,
nonlinear spherical shells (NSS) are used for extracting the skeleton point features
that are linked to the underlying axis of the human. The procedure for NSS consists
of three steps: (1) volume is transformed into an intrinsic space using the Isomap al-
gorithm, (2) pose-independent volume is divided so that principal curves are found
in intrinsic space, (3) a skeleton curve for the point volume is produced, and the
kinematic posture of the human subject is determined. This technique is fast and
accurate enough to be applied to all frames in a motion and accomplishes posture
definition without an a priori model. Also, it can be used as the initialization step of
the marker-based techniques.

In another application, Grauman et al. present an image-based approach to infer
3-D structure parameters [32]. Probabilistic shape and structure models are cre-
ated by using a probability density of multi-view silhouette images with known 3-D
structure parameters. This model is merged with a model of the observation uncer-
tainty of the silhouettes seen in each camera in order to compute Bayesian estimate
of structure parameters. Hence, this is a study where an image-based statistical shape
model is used in order to infer the 3-D structure. Also, by using a computer graphics
model of articulated bodies, a database of views augmented with the known 3-D fea-
ture locations are formed in order to learn the image-based models from known 3-D
shape models. This synthetic training set removes the necessity of labelled real data.
The main strength of the approach lies within the use of a probabilistic multi-view
shape model to restrict the object shape and its possible configurations.

A summary of the above mentioned markerless applications are given in Ta-
ble 5.1.

Markerless techniques have great potential in terms of proposing an alternative,
easy and low-cost solution. Nevertheless, the use of markerless techniques to capture
human movement for biomechanical or clinical applications has been restricted by
the complexity of acquiring accurate 3-D kinematics. The problem of estimating the
free motion of the human body is under-constrained when compared with marker-
based systems. Although many computer vision approaches offer a great potential
for markerless motion capture, they have not been validated for biomechanical ap-
plications. Existing approaches should be assessed thoroughly in order to address
biomechanical applications. Besides, simple or general models of a human body
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Table 5.1 Summary of the markerless applications described in this section

Reference Main Body Representation Application

Howe et al. [24] Cardboard model—14 body parts 2-D model-based

Ju et al. [25] Connected planar patches 2-D model-based

Cham and Rehg [23] Scaled Prismatic Model 2-D model-based

Mori and Malik [26] – 2-D model-free

Elgammal and Lee [28] – 2-D model-free

Bottino and Laurentini [29] Silhouette and volumetric description 3-D model-based

Deutscher and Reid [21] Articulated body model 3-D model-based

Corazza et al. [19] Visual hull 3-D model-based

Bregler and Malik [30] Articulated body model 3-D model-based

Chu et al. [31] – 3-D model-free

Grauman et al. [32] – 3-D model-free

are often used for enhancing computational performance, but biomechanical and
clinical applications require detailed and accurate representation of 3-D joint me-
chanics [33]. To sum up, different methodologies should be combined in order to
provide a solution to use prior knowledge in a more effective way [22, 34].

5.2.3 Inertial Measurements

Using inertial and magnetic sensors for body tracking is a relatively new technology.
They are independent of an artificially generated source (i.e. sourceless), so they are
free from range limitations seen in cameras (e.g. the recently introduced Kinect
sensor has a ranging limit of 1.2–3.5 m, similarly, most 3-D sensors operate in well-
calibrated distances) and interference problems (e.g. illumination effects).

Low-cost, small size microelectro-mechanical systems (MEMS) sensors are used
in the production of wrist-watch-sized inertial/magnetic sensor modules, which
make it possible to track orientation in real time. Also, placing these sensor modules
to each of the major limb segments of human body makes it possible to indepen-
dently estimate the orientation of each segment relative to an earth-fixed reference
frame. It is also possible to compile the human model from these independent limb
segments without knowing their relative orientation [35].

Inertial measurement units generally consist of three different sensors: ac-
celerometers, gyroscopes and magnetometers. Their descriptions and application
areas are briefly explained in the following sections.

5.2.3.1 Accelerometers

Accelerometers are devices which measure the applied acceleration along an axis.
Although there exist different transducers for this purpose (piezoelectric crystals,
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piezoresistive sensors, servo force balance transducers, electronic piezoelectronic
sensors, etc.), the main theory behind the accelerometers is a spring mass system.
The response of the small mass within the system (a force to the spring) is used in
order to calculate the applied acceleration.

Using accelerometers provides a practical and low-cost method for monitoring
human movements. They are used to measure physical activity levels, for movement
identification and classification, and to monitor movements such as gait, sit-to-stand,
postural sways and falls (see Chap. 12).

A uni-axial accelerometer records accelerations in a single direction, while a
triaxial accelerometer operates on three orthogonal axes and provides the measure-
ments on each axis. To measure body parts, accelerometers are placed on the body
part whose movement is being studied. To measure whole body movements, multi-
ple instruments are used [36].

Activity recognition from accelerometer data is a very active topic in research.
In the study of Bao and Intille [37], subjects wear 5 bi-axial accelerometers on
different body parts while performing activities such as walking, sitting, standing
still, bicycling etc. Data extracted from accelerometers are used in order to train a
set of classifiers to discriminate between types of activities [38]. The fact that most
modern mobile phones are equipped with accelerometers creates new application
drives.

5.2.3.2 Gyroscopes

Gyroscope is a device consisting of a vibrating element merged with a sensing el-
ement, functioning as a Coriolis sensor. The Coriolis effect is an evident force that
manifests itself in a rotating reference frame and it is proportional to the angular
rate of rotation.

The gyroscope provides angular velocity measurements. Joint angles are derived
by the integration of angular velocity, but data obtained can be distorted by offsets
and drifts. Alternatively, gyroscopes are used to measure angular velocity without
being affected by gravity and linear acceleration.

Their low current consumption makes gyroscopes appropriate for ambulatory
monitoring. Aminian et al. propose such a system for the estimation of spatio-
temporal parameters during long periods of walking [39]. The values of gait pa-
rameters are computed from the angular velocity of lower limbs by using wavelet
transform. The validation of measurements was assessed using foot pressure sensors
as a baseline and data were gathered from young and elderly subjects to calculate
the accuracy of the proposed system in a broad range for each gait parameter. The
proposed method seems to be a significant monitoring tool for several reasons. It en-
ables measurements of gait features during a long period of walking. The portability
of the system makes it possible to be used in other settings than a gait laboratory,
and to obtain information regarding the real performance of the subjects [39].

Tong and Granat investigate the usage of uni-axial gyroscopes to develop a basic
portable gait analysis system [40]. Gyroscopes are attached on the shank and thigh
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segments’ skin surface and the angular velocity for each segment is recorded. Using
the segment angular velocities, segment inclinations and knee angle are derived.

5.2.3.3 Magnetometers

Magnetometer is a device which measures the strength and direction of the magnetic
field in its locality. In general, magnetometers are combined with accelerometers
and gyroscopes in biomechanics applications to increase the reliability of the system
and to make the definition in the global reference frame possible. To do so, they are
integrated into Magnetic, Angular Rate and Gravity (MARG) sensor modules.

Bachmann et al. design a MARG sensor module in order to measure the three de-
grees of freedom orientations in real time without singularities1 [41]. Each MARG
sensor module contains orthogonally mounted micro-machined rate sensors, ac-
celerometers and magnetometers for a total of nine sensor components. The MARG
sensor requirements are derived from the necessities of human body motion track-
ing. The design goal behind the MARG sensor is being able to measure three degrees
of freedom rotational motions without singularities, to be sourceless (not depending
on a generated signal source) and to have a suitable form factor, i.e., it should not
encumber a human subject when the sensor units are attached.

Design and implementation of MARG sensors demonstrate that all sensor com-
ponents are linear within the intended operating conditions. Besides being used in
human body tracking, these sensor units have important applications in teleopera-
tion, virtual reality and entertainment as well [41].

Marins et al. present an extended Kalman filter for real-time estimation of rigid
body orientation using MARG sensors [42]. The filter represents rotations using
quaternions rather than Euler angles, in order to eliminate the singularities. The
linearity of the Kalman filter reduces the computational time, and the orientation
estimation is assessed in real-time [42].

Yun and Bachmann also design a quaternion-based Kalman filter by preprocess-
ing the accelerometer and magnetometer data using the single-frame QUaternion
ESTimator (QUEST) algorithm [43]. QUEST represents the positioning of a rigid
body relative to a fixed coordinate system. The quaternion produced by the QUEST
algorithm is provided as input to the Kalman filter along with angular rate data.
When compared with previous approaches, this preprocessing step significantly re-
duces the complexity of the filter design. Filter performance is validated in experi-
ments and the results are very promising. Even when there are delays, the algorithm
manages to handle the dynamic errors [35].

1If the external earth magnetic field is in alignment with any of the sensor axes, the rotation rate
about that axis cannot be determined. This is called a singularity.
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5.3 Force Platforms and Electromyography

A force platform (or a force plate), an equipment with either strain-gauge or piezo-
electric transducers, is broadly used in gait analysis. Force platforms are fixed in
the ground and they record the force between the ground and the plantar surface
of the foot—i.e. ground reaction forces. In general, force plates provide a three-
dimensional description of the ground reaction force. The output signals show three
components of the force (vertical, lateral and fore-aft), two coordinates of the center
of pressure, and the moments about the vertical axis.

By using the ground reaction force data, the resultant forces and moments act-
ing at the joints of the subject’s lower extremities—ankles, knees, and hips—are
calculated [44]. Force plates are practical in determining the toe-off and heel-strike
phases of the gait cycle by observing the ground reaction forces.

The disadvantages of using force plates while interpreting forces are: (1) they
should be built on the walkway; (2) the number of different contact surfaces to be
measured is limited, (3) during one measurement cycle, only one foot is measured.

Electromyography (EMG) is a significant technique used in biomechanics in or-
der to study muscle function and dysfunction by recording motor unit activities of
muscles with surface electrodes.

Monitoring primary form of EMG data (raw data) is essential for detecting sig-
nal artefacts, typically caused by cable and wire movements which affect the input
impedance and friction at the electrode-skin interface. Oscilloscopes are used in
order to monitor the raw EMG signals.

EMG is used for analyzing the muscle functions, muscle tensions and biofeed-
back [45]. Three important applications of surface EMG signals are: (1) initiation
of muscle activation, (2) force generation by a muscle, and (3) measurement of the
fatigue within a muscle. Measuring the force contribution of muscles is important
in modelling the segments of the musculoskeletal system. Also, measurement of
fatigue has the potential to predict the beginning of contractile fatigue, which is as-
sociated with exercise intolerance in patients with chronic obstructive pulmonary
disease (COPD) [46, 47].

Crosstalk—the signal recorded over one muscle that is actually generated by a
nearby muscle—is an important problem with the EMG. Crosstalk is affected by
the electrode system used, layer thickness and conductivity of the skin. Mesin et
al. provide a mathematical description of the muscle fibre anatomy to simulate and
reduce crosstalk [48].

5.4 Summary

This chapter gives a brief introduction on the background theory and current appli-
cations of the gait analysis in a clinical context. Motion measurements are handled
under the sections of motion capture and inertial measurements. Motion capture sec-
tion focuses on the marker-based and markerless techniques, brief background infor-
mation, algorithms and applications. The inertial measurements section summarizes
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accelerometers, gyroscopes and magnetometers with their technical properties and
application areas. Finally, force measurements and muscle activity measurements
are briefly introduced.

5.5 Questions

(1) Explain what CAST stands for and how it works.
(2) What are the limitations of marker-based techniques?
(3) What are the contributions of markerless techniques?
(4) What is a model-based markerless technique?
(5) What are the limitations of markerless techniques?
(6) What are the inertial sensors?
(7) What are the possible applications of force plates?
(8) What are the possible applications of EMG in biomechanics?

5.6 Glossary

• Direct Linear Transform: It is an algorithm which solves a set of variables by
using similarities. In this text, it is used to describe a calibration algorithm where
a calibration object with control points is used.

• Simultaneous Multi-frame Analytical Calibration: This is a self-calibration
technique based on a planar calibration object with a grid of known control points.
It requires the recording of the calibration object by at least two convergent cam-
eras.

• Calibrated Anatomical System Technique: It is a methodology that describes
anatomical landmark calibration.

• Scaled Prismatic Models: They are a class of 2D kinematic models which enforce
2D constraints consistent with the core 3D model.

• Magnetic Angular Rate and Gravity: They are hybrid instrumental measurement
units which are composed of accelerometer, gyroscope and magnetometer.

• QUaternion ESTimator: It is an algorithm that is used to estimate single-frame
quaternion which is a representative of the movement of a rigid body in a fixed
coordinate system.
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Chapter 6
Hand Gesture Analysis

Cem Keskin, Oya Aran, and Lale Akarun

6.1 Hand Gestures in Human Communication

Webster’s dictionary defines a gesture as: (1) “a movement usually of the body
or limbs that expresses or emphasizes an idea, sentiment, or attitude”; (2) “the
use of motions of the limbs or body as a means of expression” [25]. Most ges-
tures are performed with the hand, but the face and the body also play an im-
portant role during gesturing. Specifically, hand gestures are formed by the shape
and movement of the hand, as well as its position with respect to other body
parts.

Gestures are used in many aspects of human communication. They can be used
to consciously or unconsciously accompany speech, or to communicate in environ-
ments where speaking is hard or impossible. In a more structured way, they are
used to form the sign languages of the hearing-impaired people. With the progress
on Human–Computer Interaction (HCI), gestures have found a new area of usage.
Systems that enable the use of computer programs with hand gestures, such as op-
erating system control, games, and virtual reality applications, have been devel-
oped.
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Computer Engineering Department, Boğaziçi University, Istanbul, Turkey
e-mail: keskinc@cmpe.boun.edu.tr

L. Akarun
e-mail: akarun@boun.edu.tr

O. Aran
Idiap Research Institute, Martigny, Switzerland
e-mail: oya.aran@idiap.ch

A.A. Salah, T. Gevers (eds.), Computer Analysis of Human Behavior,
DOI 10.1007/978-0-85729-994-9_6, © Springer-Verlag London Limited 2011

125

mailto:keskinc@cmpe.boun.edu.tr
mailto:akarun@boun.edu.tr
mailto:oya.aran@idiap.ch
http://dx.doi.org/10.1007/978-0-85729-994-9_6


126 C. Keskin et al.

Fig. 6.1 A taxonomy of hand gestures for HCI

6.1.1 Taxonomy of Hand Gestures

Although hand gesture recognition for HCI is a relatively recent research area,
the research on hand gestures used in human–human communication is well de-
veloped. Several taxonomies are presented in the literature by considering dif-
ferent aspects of gestures. For instance, hand gestures can be classified with re-
spect to their independence, such as autonomous gestures, and gesticulation, which
are gestures used together with another means of communication [18]. In [24],
gestures are classified into three groups: Iconic gestures, which are used to dis-
play objects, spatial relations, and actions; metaphoric gestures, which explain a
concept; beats, which are rhythmic beating of fingers, hands or arms. Another
set of gesture categories consists of symbolic gestures, which are conventional,
context-independent expressions; deictic gestures, which point to entities; iconic
gestures; and pantomimic gestures, which imitate using an object. In [36], ges-
tures are classified into four groups: conversational, controlling (pointing to an
object), manipulative (moving and handling a virtual object) and communicative
(sign language gestures, HCI commands). A similar categorization is given in [30],
which views the gestures in terms of the relation between the intended inter-
pretation and the abstraction of the movement. In [29], this taxonomy of ges-
tures is accepted as the most appropriate one for HCI purposes. An extended ver-
sion of this taxonomy is given in Fig. 6.1, and explained in the following sec-
tions.
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6.1.2 Hand Gestures Accompanying Speech

Hand gestures are frequently used in human to human communication, either alone
or together with speech. There is considerable evidence that hand gestures are pro-
duced unconsciously along with speech in many situations and enhance the content
of accompanying speech. It is also known that even when the listener cannot see the
hands of the speaker or there is no listener at all, hand gestures are produced.

The hand/ arm movements during conversation can be classified into two groups:
intended or unintended. Although unintended hand movements must also be taken
into account in order to realize human–computer interaction as natural as human-
human interaction, current research on gesture recognition focuses on intended ges-
tures, which are used for either communication or manipulation purposes. Manip-
ulative gestures are used to act on objects, such as rotation and grasping, whereas
communicative gestures have an inherent communicational purpose. In a natural
environment, they are usually accompanied by speech.

Communicative gestures can be acts or symbols. Symbol gestures are generally
used in a linguistic role with a short motion as in sign language. In most cases,
the symbol itself is not directly related to the meaning and these gestures have a
predetermined convention. Symbols consist of two types of gestures, namely refer-
ential and modalizing gestures. Referential gestures are used to refer to an object or
a concept independently. For example, rubbing the index finger and the thumb in a
circular fashion independently refers to money. Modalizing gestures are used with
some other means of communication, such as speech. For example, the sentence
“I saw a fish, it was this big.” is only meaningful with the gesture of the speaker.

Unlike symbol gestures, act gestures are directly related to the intended interpre-
tation. Such movements are classified as either mimetic or deictic. Mimetic gestures
usually mimic a concept or object. For example, a smoker going through the motion
of “lighting up” with a cigarette in his mouth indicates that he needs a light. Deictic
gestures, or pointing gestures, are used for pointing to objects.

Another type of gesture that has significantly different characteristics than the
rest is the beat gesture [24]. Beat gestures consist of short and quick movements of
the hand or fingers along with the rhythm of speech. A typical beat gesture is the
quick and rhythmic motion of the hand up and down, or back and forth. Beats are
mainly used to create emphasis and grab attention.

With the exception of beat gestures, each gesture starts, continues for some in-
terval and ends. This is not only valid for dynamic gestures that include both spatial
and temporal components, but also for static gestures that only contain spatial com-
ponents. A gesture is constituted in three phases: preparation, stroke, and retraction
or recovery [24]. In the preparation phase, the hand is oriented for the gesture. The
stroke phase is the phase of the actual gesture. Finally, in the retraction phase, the
hand returns to the rest position. The preparation and the stroke phases constitute
a gesture phrase and together with the recovery phase, they constitute a gesture
unit [19].
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Fig. 6.2 Examples from
(a) Turkish sign language,
(b) Turkish finger spelling,
and (c) French cued speech

6.1.3 Hand Gestures in Hearing Impaired Communication

Sign languages are the natural communication media of hearing-impaired people.
Like the spoken languages, they emerge spontaneously and evolve naturally among
hearing-impaired communities.

The signs are perceived visually and produced alone or simultaneously, by use of
hand shapes, hand motion, and hand location (manual signs), as well as facial ex-
pressions, head motion, and body posture (non-manual signs). Sign languages have
both sequential and parallel nature, since signs come one after the other, showing a
sequential behavior. However, each sign may contain parallel actions of hands, face,
head or body. Apart from differences in production and perception, sign languages
contain phonology, morphology, semantics, and syntax like spoken languages [32].
Figure 6.2(a) shows an example sign from Turkish sign language (Türk İşaret Dili—
TID).

Apart from sign languages, there are other means of hearing-impaired commu-
nication: finger spelling and cued speech. Finger spelling is a method of visually
spelling words by using certain hand gestures for each letter. It is an important part
of sign languages, and it can be used to represent words which have no sign equiva-
lent, to emphasize or clarify concepts, or when teaching or learning a sign language.
Figure 6.2(b) shows some examples from the finger-spelling alphabet of TID.

Cued speech is a mode of communication based on the phonemes and properties
of spoken languages [8]. It uses both lip shapes and hand gestures to represent the
phonemes. The aim of cued speech is to overcome the problems of lip-reading and
to enable a full understanding of spoken languages. Cued speech replaces invisible
articulators that participate in the production of the sound (vocal cords, tongue, and
jaw) by hand gestures, while keeping visible articulators (lips). Basically, it com-
plements the lip-reading by various hand gestures, so that phonemes which have
similar lip shapes can be differentiated. Figure 6.2(c) shows an example word from
French cued speech.
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6.1.4 Hand Gestures in Human–Computer Interaction

HCI using hand gestures is a new area, enabled by advances in computer technolo-
gies and popularized by science fiction movies. Especially, with the recent intro-
duction of cheap depth sensors, natural interaction based interfaces are expected
to be used increasingly in daily life. Hand gestures are expected to replace remote
controls, mice and keyboards at least for simpler tasks.

Both manipulative and communicative gestures are crucial for hand gesture
based HCI. Communicative gestures are used to give high level commands to the
system (e.g. change the channel on TV, choose a tool in a modeling application,
start the car), and manipulative gestures are used to tune the system (e.g. set the
volume level, brightness, application parameters). The selection of actual gestures
depends on the application or system. Currently, gestures used for HCI systems are
heavily influenced by the gestures used for multi-touch screens. However, these are
not necessarily the most natural gestures, especially because hand gestures in the air
are more tiring to perform.

Hand gestures characteristically possess more degrees of freedom than conven-
tional input devices. Each joint angle, and any configuration of those angles, as well
as the absolute or relative location of the hand can be used to communicate intents.
This suggests that an HCI system will benefit more from hand gestures, if the system
or application is specifically designed to make use of this higher degree of freedom.
For instance, the effectiveness of a regular mouse is limited for a 3D modeling tool,
whereas the 3D nature of hand gestures is naturally suitable to view and manipulate
information in 3D. However, hand gesture based systems are not as precise as other
input devices they aim to replace at the moment.

Required level of accuracy for hand gestures is different for each system. For
some gestures, the joint angles for all the fingers may be needed with high accuracy,
whereas for some other gestures, only the motion of the hand is important. The
exact direction of the hand motion may not be important for some gestures, but it
should be analyzed for many of the manipulative gestures. For deictic gestures, the
hand posture is always the same; there is generally no hand motion, and what is
important is the direction of the pointing finger.

The rest of this chapter covers common approaches and state-of-the-art tech-
niques for hand gesture recognition. First, a general framework for recognizing and
acting on hand gestures is given in Sect. 6.2. Hand pose estimation techniques are
briefly introduced in Sect. 6.3. Common graphical models used for recognition are
explained and analyzed in Sect. 6.4, along with techniques to tackle the gesture
spotting problem. Finally, several application examples are given in Sect. 6.5.

6.2 Hand Gesture Recognition Framework

A general framework for vision based hand gesture recognition is given in Fig. 6.3.
It starts with a camera system retrieving images, which are then preprocessed to
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Fig. 6.3 A general framework for recognizing manipulative and communicative hand gestures

simplify the hand detection and segmentation tasks. The preprocessing step may
involve methods like noise reduction, edge detection, color space conversion and
color segmentation.

Although object detection and segmentation problems have attracted consider-
able interest in the field, and sophisticated algorithms have been developed [13],
detection, tracking, and segmentation of the hand can be a very complicated prob-
lem depending on the environment. For instance, skin color can be used to detect a
hand in front of a cluttered background, but not in front of a face or another body
part. Distinguishing the hand from the face involves complex algorithms that are
presently not suitable for real-time applications. Therefore, a common solution is to
make use of colored markers (see Fig. 6.4(a)). Certain assumptions about the back-
ground can be made, such as assuming that there is a single skin colored blob, or
that the hands are always the fastest objects in the scene.

In natural settings, a marker cannot be used and there are several challenges such
as unconstrained clothing, changing speakers, changing backgrounds, frequent con-
tacts and occlusions between the hands and the face, low resolution, and motion blur
(see Figs. 6.4(b) and 6.4(c)). These challenges make the hand detection and tracking
a difficult problem during unconstrained, natural communication, and sophisticated
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Fig. 6.4 Hand segmentation examples (a) with colored markers in each hand, (b) without markers,
and (c) examples of hand–hand, hand–face occlusion

algorithms, such as probabilistic tracking algorithms [10], are required to solve this
task.

Probabilistic tracking algorithms make multiple hypotheses for the object at a
given time and estimate the object position by a combination of these hypothe-
ses [10]. Particle Filter (PF) is a well-known example and is well suited to applica-
tions where the dynamics of the tracked object are not well-defined. Particle filters
estimate the probability of the object state, given the initial state and the obser-
vations, using the sequential Bayes method. Conditional density propagation algo-
rithm is a simple implementation of the PF and is proposed for the object tracking
problem [14].

In the feature extraction phase, the segmented hand image and its difference from
the previous image are used to form a feature vector that describes the shape, motion,
and location of the hand. There are several approaches to hand shape modeling,
which are briefly explained in Sect. 6.3.

Although some gesture recognition systems restrict themselves to a 2D plane
and a small 2D gesture vocabulary, 3D information is necessary to handle a larger
gesture vocabulary or sign language. Stereo or other special 3D cameras can be used
to retrieve 3D information about the scene directly. Otherwise, a 3D description of
the hand can be reconstructed using a multiple camera system, which need to be
calibrated. There are numerous methods for camera calibration [7]. Once the camera
matrices are known, the task of estimating the 3D location of the hand reduces to
solving a simple linear system [7]. Figure 6.5 shows an example 3D reconstruction
from two cameras placed in front of the gesturer.

A filtering step is necessary, as the retrieved images are characteristically noisy,
and the extracted feature vectors are also subject to noise. The sensor quality, light-
ing conditions and algorithm robustness, as well as the variability of the gesturer’s
performance contribute to this noise, and most systems need to filter the produced
feature vectors.

Kalman filter offers a solution for filtering noise. Figure 6.6 shows an example of
hand trajectory filtering with a Kalman filter. It is common for vision systems with a
high sampling rate to assume linear motion between frames. Under this assumption,
the hand motion dynamics can be described by a partially observable stochastic
process with linear dynamics and linear observations, which is a suitable framework
for a Kalman filter [16]. A simple application of the Kalman filter can be found
in [28].

Gesture recognition methods used for manipulative and communicative gestures
differ significantly. Manipulative gestures are frequently chosen such that the ges-
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Fig. 6.5 3D reconstruction
from two front-facing
cameras

Fig. 6.6 Example of hand trajectory filtering with Kalman filter. The blue straight line and dotted
red line show the extracted and filtered hand trajectory, respectively

turers keep their hands in a certain shape indicating a mode, and move in a certain
manner, indicating a parameter change related to that mode. Hence, manipulative
gesture type can be recognized using a single frame, and manipulation parameters
are extracted from the change in location or shape of the hand.

Having a reject class is important for manipulative gestures. Without a reject
class, the system is forced to make a recognition at each step, choosing the most
likely gesture each time instant and interpreting the motion of the hand as a param-
eter change.

Communicative gestures usually involve both motion and shape, and more im-
portantly, they require a much longer memory. This requirement not only stems from
the longer duration of these gestures, but also from the fact that the system might
need to remember the previous gestures to be able to resolve ambiguities. This is es-
pecially true for sign language recognition systems, where the meaning associated
with a gesture depends on the context, i.e. on previous gestures.

Applications like sign language interpreters cannot restrict the gesturer to signify
start and end points of each sign. Likewise, it is unnatural for gesturers using a HCI
application to have to prove their intent each time a gesture is performed. Hence,
systems that support continuous gestures have to spot and segment gestures first
(see Fig. 6.7). These methods will be explained in more detail in Sect. 6.4.3.

6.3 Hand Pose Estimation

In vision based systems, all the information regarding the actual 3D hand shape is
contained in the 2D projected image of the hand. For some applications, the exact
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Fig. 6.7 Gesture spotting
example

Fig. 6.8 Hand shape feature examples. (a) High level shape modeling with 3D hand models,
(b) low level shape modeling with appearance-based models, and (c) low level modeling with
motion history images

configuration of fingers is important, which consists of all the joint angles of the
hand skeleton. Other applications such as finger spelling, make use of predetermined
hand shapes and try to determine the class label of the hand shape, instead of every
single angle. Finally, many applications view the hand as a simple blob and try to
estimate its certain properties, such as orientation, size and location. In order to infer
high level information about the hand, vision based systems must rely on features
extracted from the hand image at each frame.

6.3.1 Modeling Hand Shape

The hand can be described either by a high level 3D hand model, or by a low level
appearance based model. 3D hand models make use of a priori knowledge about
the hand. In the case of a skeletal hand model, the system attempts to estimate joint
angles and global orientation directly by minimizing the difference between the
2D projection of the flexible 3D model and the 2D hand image with respect to the
model parameters [31]. Alternatively, a voxel model can be reconstructed, which
can be reconstructed from multiple silhouette images in order to estimate the joint
angles indirectly [34]. Figure 6.8(a) shows several high level feature examples.
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Variational segmentation methods can also estimate high-level parameters via an
energy minimization technique. These methods regard the general problem of region
segmentation, object tracking and 3D interpretation as an optimization problem,
where some energy measure that is usually a combination of region and boundary
functionals is minimized [3, 17, 26].

Appearance based models are used to relate the image of the hand to its actual
posture. The centroid of the hand and location of finger tips are among simple low-
level features describing such models (see Fig. 6.8(b)).

The most common low level features are the image moments. Hu moments are
invariant under translation, changes in scale, and rotation [12], but they are neither
complete, nor independent [11]. Zernike moments, on the other hand, can be used
to reconstruct the original image up to the required level of accuracy, and are also
rotation, scale and translation invariant [21]. A similar approach is based on prin-
cipal component analysis (PCA) of the extracted hand images, which provides an
efficient representation of the hand using a small number of features that can be
used to reconstruct the original image approximately. This is called the eigenhand
representation of the hand [5, 9], inspired by the analogous eigenface method used
for face recognition.

Motion energy images and motion history images are accumulated images that
are calculated over a limited history [6]. Motion energy images are union of all the
connected regions that show significant change over the given time interval, whereas
motion history images decrease the effect of older frames gradually (see Fig. 6.8(c)).
Unlike other features, these features describe the hand motion as well, and are used
to classify gestures directly. More sophisticated methods for gesture classification
will be explained in more detail in Sect. 6.4.

6.3.2 Hand Shape Classification

Hand shape classification is the task of determining the class label, based on an
analysis of the projected hand image. A segmented hand image contains very high
dimensional and redundant data, which are not directly suitable for classification.
Instead, the features mentioned in Sect. 6.3.1 are used to classify hand shapes. Neu-
ral networks, support vector machines, Gaussian mixture models, decision trees and
RBF classifiers are some of the standard methods that can be used. Using most dis-
criminating features (MDF) is also a good choice, since it is a supervised method
that aims to maximize the distance of hand shape classes in the projected sub-
space [9]. Another method is elastic graph matching, which represents hands with
labeled graphs that have Gabor filters attached to the nodes [33]. The graph is su-
perposed on the hand image; the node locations code for pose, and filter responses
code for appearance.
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Fig. 6.9 Distribution of class
labels over parameter space.
Note that the class label
corresponding to
non-gestures is not bounded

6.4 Hand Gesture Recognition

Gesture signals are of the form X = (x1, . . . , xN), where each xt is a D dimensional
vector corresponding to extracted features at frame t . Hand gesture classification
is the task of automatically assigning X a class label c from a predefined set C =
(c1, . . . , cK).

It is simpler to classify a sequence Xk belonging to class ck , if it is isolated from
other gestures, i.e. if its start and end points in time are known. This type of classi-
fication is called isolated gesture recognition. However, in most cases, the gesture
sequence X is a continuous stream of unknown length, starting at a certain time t0.
Sequences corresponding to gestures are embedded in this stream, starting at frame
ts and ending at frame te. In between such gestures, X may contain feature vector
sequences that correspond to unknown gestures, unintentional hand movements or
co-articulation artifacts. Such a stream has the following form:

X = (xt0 , . . . , xts , . . . , xte , . . . , xT ), (6.1)

where the index T corresponds to the current time frame. In this case, the sequence
Xk must be spotted first. Thus, the system not only needs to distinguish between
different gesture classes, but also between gestures and non-gestures. This type of
classification is called continuous gesture recognition, and is considerably harder
than isolated gesture recognition, since it requires modeling of non-gestures, and
the determination of the start and end points of each gesture. Distribution of class
labels over a 2D parameter space is depicted in Fig. 6.9. Unlike other gesture classes,
the distribution of the non-gesture class over the parameter space is unbounded and
directly depends on other gesture classes. An analogy can be drawn between non-
gesture and non-speech in this manner, which also must be distinguished from actual
speech for continuous speech recognition. While garbage, or filler models are used
for non-speech, threshold models will be used for non-gesture modeling.

Continuous gesture recognition is especially important for sign language recog-
nition and human–computer interaction applications, as it allows the user to perform
each gesture in a seamless manner.

In isolated gesture recognition, the system is provided with a sequence Xk each
time a gesture is performed. Similarly, in the continuous case, the system extracts
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Fig. 6.10 Graphical model
of HMM

candidate sequences Xk , which may belong to a predefined gesture class. In either
case, the classification problem can be thought of as estimating the class label c∗
that satisfies the following equation:

c∗ = arg max
c

P
(
c|Xk

)
. (6.2)

Using Bayes’ rule, we know that

P
(
c|Xk

) = P(Xk|c)P(c)

P(Xk)
∝ P

(
c,Xk

)
. (6.3)

Here, P(Xk) is constant. Therefore, both P(c|Xk) and P(c,Xk) can be used for clas-
sification. In this respect, modeling a gesture means estimating these probabilities.
Since X is sequential and can be arbitrarily long, it is more convenient to use graph-
ical models for classification.

6.4.1 Modeling Hand Gestures with Graphical Models

Graphical models introduce a network of hidden variables Y and their relations in
the form of a graph, which can be used to explain an observation sequence X. The
values P(c|X) and P(c,X) are determined by estimating P(c,Y|X) and P(c,Y,X),
and then by marginalizing over Y. See Chap. 2 for a detailed explanation of graphi-
cal models in general. In the rest of this chapter, it is assumed that the reader has a
basic understanding of graphical models.

Bayesian networks model P(X,Y, c), i.e. the joint probability of the observa-
tion sequence, the hidden variables and the class label. Since P(X,Y, c) is equal
to P(X,Y|c)P(c), there can either be a large network that models the joint density
of all the random variables involved, or separate networks for each gesture, each
modeling the joint density of the observations and hidden states conditioned on the
class label. These networks can also generate sample observation sequences, since
P(X|c) is implicitly modeled. Hence, they are called generative models. The sim-
plest type of Bayesian network is the hidden Markov model (HMM). The graphical
model of HMM is depicted in Fig. 6.10.

The ability of generative models to generate samples is not required for classifi-
cation. Instead, Markov random fields can be used to attack the problem by directly
modeling the conditional probability P(c|X). Such models are called discriminative
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Fig. 6.11 Graphical model
of CRF

models, which learn to distinguish between class labels in the parameter space, in-
stead of learning their distribution densities. The simplest type of Markov random
field is the conditional random field (CRF), which is the discriminative counterpart
of HMM. The graphical model of CRF is given in Fig. 6.11.

CRFs do not model P(c,Y|X) as expected. Instead, CRFs model P(Y|X), where
each class label is represented by a single node in the network. CRFs model the high
level relation of gestures, or inter-class dynamics, conditioned on the observations.
Hence, CRFs label sequences instead of classifying them, forming a sequence of
class labels the same size as X. For isolated gesture recognition, the most frequently
occurring label can be assigned to the sequence. HMMs, on the other hand, can
represent each gesture with several hidden variables, effectively modeling the intra-
class dynamics.

Intra-class dynamics of gestures are especially important, when the spatio-
temporal variability of gestures is high (e.g. when multiple performers are involved),
or when the observation features are similar for some gestures. In these cases, dura-
tion modeling may be essential to distinguish between gestures. Here, duration is the
time spent in a hidden state, which directly affects the final trajectory of the gesture.
If the variance of the duration distribution is too large, the trajectory is easily de-
formed, whereas if it is too low, the model cannot represent the temporal variability
of the gesture well enough.

In the case of HMMs, durations of regimes are implicitly modeled with geometric
distribution (see Exercise 5). On the other hand, CRFs do not model durations, as
they do not model intra-dynamics.

6.4.2 HMM and CRF Variants Used in Gesture Recognition

HMM and CRF are the simplest of all graphical networks. They have several weak-
nesses, which limit their usage for certain applications. Therefore, several variants
have been proposed, which remedy these weaknesses.

6.4.2.1 Hidden Conditional Random Fields

The most severe weakness of CRFs is their inability to model intra-class dynamics.
On the other hand, HMMs can effectively learn substructures, but unlike CRFs, they
cannot be trained discriminatively. A solution is to augment the CRFs with a number
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Fig. 6.12 Graphical model
of HCRF

of hidden states for the class labels. The resulting Markov random field is called the
hidden CRF (HCRF), which incorporates a single class label and several hidden
states [35]. The graphical model of HCRF is given in Fig. 6.12. In the figure, xt are
the features, yt are the hidden states, and C is the class label.

Since HCRFs are discriminative models, either one-vs.-all models are used,
where different HCRF models learn to distinguish a single gesture from other ges-
tures, or a single multi-class model can be used, which can learn to map the obser-
vations (or their features) to the class labels. Multi-class HCRF models are shown to
outperform CRFs, HMMs, and one-vs.-all HCRFs, which can be attributed to their
ability of jointly learning the best discriminative structure [35].

6.4.2.2 Latent Dynamic Conditional Random Fields

While HCRF provides a solution to the weakness of CRF, it also introduces a new
weakness. HCRFs employ only a single class variable and therefore, they cannot
model high level relationship between gestures, i.e. inter-class dynamics, which is
crucial for tasks such as sign language recognition. Latent dynamic CRFs (LDCRF)
attempt to combine the strong points of CRFs and HCRFs, i.e. to capture both intra-
and inter-class dynamics of gestures [27]. This is achieved by extending the HCRF
to incorporate a stream of class labels, which are associated with a disjoint set of
hidden states. Moreover, since LDCRF models include a class label per observation,
they can be used for recognition on sequences that are not segmented. Thus, they
can naturally be used for continuous gesture recognition. The graphical model of
LDCRF is given in Fig. 6.13.

6.4.2.3 Input Output Hidden Markov Models

LDCRF does not suffer from the same weaknesses as HMM, CRF, and HCRF, and
it is shown to outperform these models [27]. Still, some applications may require the
model to be generative (for instance, when the gesture modeled needs to be visual-
ized), or the durations of substructures to be modeled with a certain distribution. The
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Fig. 6.13 Graphical model
of LDCRF

Fig. 6.14 Graphical model
of IOHMM

input–output HMM (IOHMM) is a Bayesian network similar to HMM, which con-
ditions the state transition probability P(yt+1|yt ) and emission probability P(xt |yt )

on an external input sequence S = (s1, . . . , sT) [4]:

P(yt+1 = j |yt = i, st) = ϕij,t , (6.4)

P(xt = m|yt = i, st) = ηi,t (m). (6.5)

Here, ϕij,t and ηi,t (m) are called local models, and can be any function such
as radial basis functions and neural networks. As in the case of CRF variants, the
feature vectors forming S are not assumed to be independent. The corresponding
graphical model is given in Fig. 6.14.

Model selection for IOHMMs is not simple. The input sequence S, the output
sequence X and the local models need to be chosen carefully. IOHMMs will use
S discriminatively to determine next states and emissions, while the system retains
the ability to generate samples from X, if a sample of S is provided. Also, local
models can be as simple as binary switches or counters (for instance for explicit
duration modeling), or as complex as multi-layered perceptrons with several hidden
nodes. X can even be chosen to be the class labels. In this case IOHMMs behave like
LDCRFs, mapping the input sequence to a class label sequence, while capturing the
intrinsic dynamics with hidden nodes. To see some different approaches, see [15,
20, 23].
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Table 6.1 Certain properties of several common graphical models

Model Intra-class
dynamics

Inter-class
dynamics

Duration
modeling

Generative Discriminative

HMM � geometric �
CRF � �
HCRF � �
LDCRF � � �
IOHMM � � any � �

6.4.2.4 Comparison of Graphical Models

Table 6.1 lists the important properties of HMMs, CRFs, HCRFs, LDCRFs and
IOHMMs. The second and third columns list whether the model is capable of mod-
eling intra-class and inter-class dynamics. The fourth column lists the type of distri-
bution used for duration modeling, if any. The fifth and sixth columns show whether
the model is generative or discriminative.

Table 6.1 helps to assess a model’s suitability for a given application. Classifi-
cation speed is also an important measure for real-time applications. As HMMs are
simpler, they are also faster than the rest of the models and therefore, they are still
widely used. The speed of the other models directly depends on their complexity.
The window size w affects CRFs, HCRFs and LDCRFs, whereas the number of
hidden nodes affect HMMs, HCRFs, LDCRFs and IOHMMs. Moreover, the speed
of IOHMMs depends on the complexity of their local models. Naturally, there is a
trade-off between speed and accuracy, and the target hardware should be considered
while choosing a model.

The suitability of the models for continuous gesture recognition may also be
important. Each model has a different approach to gesture spotting and non-gesture
modeling.

6.4.3 Continuous Gesture Recognition

As mentioned at the start of Sect. 6.4, spotting gestures in a continuous stream usu-
ally requires distinguishing between gestures and non-gestures, and modeling non-
gestures is not as straightforward as modeling gestures. In the rest of this section,
common approaches to the continuous gesture recognition task will be explained
with some examples.

6.4.3.1 HMM Based Methods

HMM based gesture recognition systems usually model each gesture with a single
HMM and use these to evaluate candidate sequences. Then, the posterior likeli-
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Fig. 6.15 Construction of an
adaptive threshold model for
HMM based frameworks

hoods of class labels are compared to determine the gesture type. Therefore, the
non-gesture model should act like a threshold, which the likelihood of other models
must exceed.

Lee and Kim proposed an adaptive threshold model for HMM-based frameworks,
which can be constructed from the trained models in the system [22]. Construction
of a threshold model for a system of two gestures is given in Fig. 6.15. Here, the
threshold model GT consists of a copy of each state in other HMMs. Each copy
retains its self-transition probability pi , and divides the rest of the probability mass
1 −pi evenly among transitions to every other state. Emission probabilities are also
retained. Finally, each state in the model is equally likely to be the initial state. If
this model is the most likely to produce the candidate sequence, it is labeled as a
non-gesture.

The idea behind this model is that the threshold model is similar to every gesture
in the system, but ignores their intrinsic dynamics, allowing the actual gesture model
to attain higher likelihoods, when evaluating a sample from its own class.

6.4.3.2 CRF Based Methods

The same idea can be adapted to CRFs to construct a CRF based threshold
model [37]. Like every other gesture in a CRF based framework, the threshold model
is represented with a single class label. First, the CRF is trained with the gestures
without considering the threshold model. Then, the new class label corresponding to
the threshold model is constructed, and every other state is linked to this state in the
network. Rejection occurs if after applying the Viterbi algorithm the state variable
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is assigned this new label. For a detailed explanation of the construction process,
see [37].

6.4.3.3 IOHMM Based Methods

As IOHMMs are quite similar to HMMs, an adaptive threshold can be constructed
from the states of IOHMM in the same manner. The only difference is that the self-
transition probability pt of a state is not fixed and has to be calculated at each time
step.

In another approach, a threshold model with only a few hidden states, but with
very complex local models is trained with all the positive samples, instead of being
constructed. The rest of the IOHMMs are trained starting with a single hidden state
until their parameters converge. Then their complexity is gradually increased until
they are more likely to produce their dataset than the threshold model. This also
solves the model selection problem [20].

6.5 Applications

In this section we will give two hand gesture recognition application examples. The
first application is SignTutor, which teaches sign language, evaluates performances
and gives feedback for improvements. The second application is Sign Tracking and
Recognition System (STARS), which enables the user to control third party appli-
cations with 2D or 3D hand gestures.

6.5.1 SignTutor: An Interactive System for Sign Language
Tutoring

SignTutor is an interactive system, which automatically evaluates users’ signing and
gives multimodal feedbacks to guide them to improve their signing [1]. SignTutor
allows users to practice instructed signs and to receive feedback on their perfor-
mance. The system automatically evaluates sign instances by multimodal analysis
of the hand and head gestures, being one of the first systems that combines manual
and non-manual information together for sign recognition.

6.5.1.1 System and Modules

SignTutor aims to teach the basics of the sign language interactively. The advantage
of SignTutor is that it automatically evaluates the student’s signing and enables auto-
evaluation via visual feedback and information about the goodness of the performed
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Fig. 6.16 SignTutor GUI:
training, practice,
information, synthesis panels

sign, through various feedback modalities: a text message, the recorded video of the
user, the video of the segmented hands and/or an animation on an avatar.

One of the key factors of SignTutor is that it integrates hand motion and shape
analysis together with head motion analysis to recognize signs that include both
hand gestures and head movements.

Figure 6.16 shows the graphical user interface of Sign Tutor. The system fol-
lows three steps for teaching a new sign: training, practice and feedback. In the
training phase, the users select a sign from the list of possible signs and watch the
corresponding video until they are ready to practice. In the practice phase, users are
asked to perform the selected sign and their performance is recorded by a single
webcam. SignTutor analyzes the hand motion, hand shape and head motion in the
recorded video and compares it with the selected sign, to give feedback to the user.

The SignTutor system consists of a face and hand detector stage, followed by the
analysis stage, and the final sign classification stage. The critical part of SignTutor
is the analysis and recognition sub-system which receives the camera input, detects
and tracks the hand, extracts features and classifies the sign.

For each hand, four hand motion features (position and velocity in vertical and
horizontal coordinates), and 19 hand shape features are extracted. On top of these,
the relative position of the hands with respect to the face center of mass for each
hand, normalized by the face height and width, are also extracted. The classification
module receives all features to train the HMM models. Each HMM is a continuous
four-state left-to-right model and is trained for each sign, using the Baum–Welch
algorithm.

At the classification phase, a sequential likelihood fusion method for combining
manual and non-manual parts of the sign is used [1]. The strategy uses the fact that
there may be similar signs which differ slightly and cannot be classified accurately
in an “all signs” classifier. The sequential fusion method is based on two successive
classification steps: In the first step, an inter-cluster classification is carried out, and
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Table 6.2 System accuracy. Signer-independent test results

Sbj1 Sbj2 Sbj3 Sbj4 Sbj5 Sbj6 Sbj7 Sbj8 Average

HMMM 66.32 77.9 60.00 71.58 57.9 81.05 52.63 70.53 67.24

HMMM&N 73.68 91.58 71.58 81.05 62.11 81.05 65.26 77.89 75.53

HMMM&N ⇒ HMMN 85.26 76.84 77.89 89.47 63.16 80.00 88.42 75.79 79.61

in the second step intra-cluster classifications are performed. Potential sign clusters
which are similar in manual gestures, but differ in non-manual signals, are automat-
ically discovered. The sequential likelihood fusion idea is further extended in [2]
via a belief formalism to detect the level of uncertainty in the decisions of the first
stage classifier and to determine the sign clusters for the second stage.

6.5.1.2 Evaluation

Three different methods are compared to evaluate the classification accuracy of the
system: (1) Classification by using only manual information (HMMM ), (2) Feature
fusion on manual and non-manual information (HMMM&N ), and (3) Sequential fu-
sion, the two-tier cluster-based sequential fusion strategy (HMMM&N ⇒ HMMN).

The accuracy is reported on a signer-independent protocol, with leave-one-
subject-out cross validation. The results are given in Table 6.2.

The need for the usage of the head features can be deduced from the high
increase of the overall accuracy with the contributions of non-manual features.
With HMMM&N , the accuracy increases to 75.5% as compared to the accuracy
of HMMM , 67.2%. Sequential fusion methodology increases the accuracy by an
additional 4% in comparison to the feature level fusion.

6.5.2 STARS: Sign Tracking and Recognition System Using
IOHMMs

STARS is an IOHMM-based framework aimed to enable a system to seamlessly
replace mice and keyboard actions with hand gestures to control generic PC ap-
plications. Users can manipulate target applications by replacing the mouse with
manipulative hand gestures, and by giving high level commands to the target appli-
cation with communicative gestures. In this section, we give a brief overview of the
system. More details can be found in [20].

6.5.2.1 System and Modules

STARS allows training of 2D and 3D communicative gestures and automatically
distinguishes these from manipulative gestures and unintentional hand motions in
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Fig. 6.17 Block diagram of
STARS

continuous streams in real time. The system does not rely on special hardware and
requires a single webcam for 2D gestures, and two webcams for 3D gestures. The
system expects the user to wear smoothly colored gloves. Gestures are modeled
using both hand motion and hand shape, without using predefined shape templates,
allowing users to define gestures with no restrictions on the complexity. Upon recog-
nition of a gesture, STARS triggers a sequence of operating system events associated
with the gesture, thus controlling the target application.

STARS does not assume specific signals to indicate the start or end of gestures.
The user can freely perform communicative gestures among a stream of manipu-
lative gestures or unintentional movements, which are continuously tracked to spot
communicative gestures. The rest of the stream is interpreted as manipulative ges-
tures according to the context.

The flowchart of STARS is given in Fig. 6.17. The system estimates the color
of the marker in the HSV color space via motion detection methods in the marker
registration phase. The cameras continuously retrieve stereo images of the scene and
a color based region growing method is used to detect and localize the marker.

As motion features, the centroids of the hand images are extracted from each
frame. These are smoothed via a Kalman filter to form a 2D trajectory for the hand.
The 3D trajectory is then reconstructed from the filtered 2D trajectories and the
camera calibration matrices using a least squares approach. The camera calibration
matrices are automatically estimated via a calibration tool. The resulting 3D trajec-
tory is then smoothed via a 3D Kalman filter to eliminate reconstruction noise.

The shape descriptors extracted in the feature extraction phase are used to form
the input sequence to train and evaluate the IOHMMs. The system continuously tries
to spot communicative gestures among the observation sequence using the input
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Table 6.3 Comparison of recognition success rates with different methods

Method MoG-HMM G-HMM IOHMM HCRF-3S HCRF-7S HCRF-12S

Dataset 1 84.6% 75.0% 97.6% 92.8% 95.1% 96.9%

Dataset 2 – – 94.1% 89.8% 93.6% 94.1%

sequence using an adaptive threshold model. If it recognizes a gesture, it fires the
corresponding event listed in the configuration file and retrieves the next frames
from the cameras.

IOHMMs used in STARS have left–right architecture. The input sequence is cho-
sen to be the hand shape, as it consists of high dimensional continuous data. The
hand shape information consists of seven Hu moments and orientations extracted
from each hand image. Orientation is the angle of the major axis of the hand, which
can be calculated using image moments. A variable indicating normalized time is
also included in the input sequence.

Hand motion information consists of the spherical angles of the 3D velocity vec-
tor of the hand in each frame, which is quantized into 15 symbols. Since both obser-
vations and the states are discrete, a classifier is chosen as the local model that takes
a real valued vector as input and produces the likelihood for discrete states. STARS
employs MLP classifiers as local models, which are suitable for this scenario.

The outputs of the MLPs correspond to the transition or emission probabilities
of a single state and therefore should be normalized, which can be ensured via a
softmax function at the output layer.

6.5.2.2 Evaluation

To test the recognition efficiency of IOHMMs, two pre-segmented communicative
gesture datasets are used. A total of 1735 samples were performed by three users.
The first dataset consists of ten isolated gestures that differ both in motion and in
appearance. The second dataset consists of the same gestures, and also includes ten
new gestures that are analogous to the first ten gestures in motion, but are different
in appearance. 5 × 2 cross validation method is used to estimate optimal system pa-
rameters, as well as recognition and spotting efficiencies. For each cross validation
test, half of the samples are used for training and the rest is used for testing.

The recognition rate of the IOHMM-based framework is compared to purely
generative HMMs and purely discriminative HCRFs. MoG-HMM models observa-
tions with mixture of Gaussians and G-HMM models them with a single Gaussian.
HCRF-xS uses x states for the HCRF, where x can be 3, 7 or 12. The comparison
of recognition rates is given in Table 6.3. Since Mog-HMM and G-HMM perform
considerably worse than IOHMMs and HCRFs even on the simpler Dataset 1, they
are not tested on Dataset 2.
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6.6 Summary

Hand gestures are important components of body language and are widely used both
consciously and unconsciously in human communication. With the ongoing devel-
opment of gesture recognition techniques, gestures are now also a part of human–
computer communication. In this chapter, following a detailed description of ges-
tures and how they are used in human communication, we present a general frame-
work that covers main aspects of gesture recognition, applicable to many different
gesture types. The framework covers each step necessary for performing gesture
recognition: initial preprocessing steps, tracking, feature extraction, and recognition.
We give an overview of state-of-the-art gesture recognition and spotting techniques
for both isolated and continuous gesture recognition, with a focus on graphical mod-
els.

With the advancement of camera and sensor technology, human movements are
captured in a more precise and robust way, making some of the steps that are de-
scribed in the framework straightforward. The future challenges of gesture recogni-
tion mainly exist in two dimensions. First, there is still a lot of room for improve-
ment on gesture modeling techniques to increase the accuracy and robustness of
recognition systems. Second, to be able to use these systems in people’s daily lives,
a more intelligent analysis is required to differentiate between a person’s gesturing
to address the system and gesturing during a conversation.

6.7 Questions

1. What is a static gesture? What is a dynamic gesture?
2. In what kind of settings can the 3D coordinates of a hand trajectory be extracted?
3. Can the basic particle filter tracking approach be used to track multiple identi-

cal objects? Discuss several extensions to the particle filter for tracking the two
hands and the face in natural settings.

4. Discuss advantages and disadvantages of using high level or low level shape
features for pose estimation.

5. Prove that HMMs implicitly model durations with geometric distribution.
6. What is a real-time system? For the presented gesture recognition models

(HMM, CRF, their variants, etc.), discuss their applicability to a real-time sys-
tem.

7. Suppose you have a robust and accurate gesture recognition system that works
with a single camera. Think about a potential application that can use this system.

6.8 Glossary

• Communicative gestures: Gestures that have an inherent communicational pur-
pose, usually accompanied by speech.
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• Continuous gesture recognition: The system attempts to recognize a continuous
stream of gestures. The gestures are performed continuously, one after the other,
with possible pauses or out-of-vocabulary gestures in between.

• Discriminative model: Models that learn to condition their parameters on features
of observations. These models learn to separate different classes, and cannot be
used to synthesize new samples.

• Generative model: Models that can be used to synthesize new samples from the
class. These models learn the probability density of observations conditioned on
the class label.

• Gesture spotting: The segmentation of gestures from a continuous stream of
samples. The system finds the start and end point of each known gesture (in-
vocabulary gesture) performed in the stream.

• Isolated gesture recognition: The system knows when a gesture starts and ends,
and attempts to recognize the gesture performed in this interval.

• Manipulative gestures: Gestures that are used to act on objects, such as rotation,
grasping, etc.
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Chapter 7
Semantics of Human Behavior in Image
Sequences

Nataliya Shapovalova, Carles Fernández, F. Xavier Roca, and Jordi Gonzàlez

7.1 Introduction

Images, video, or multimedia are words that currently sound familiar to the majority
of people. An enormous amount of video is daily produced by surveillance systems
or broadcast companies, but also by travelers who want to keep the memories of
new places visited. Considering such an amount of multimedia data, its analysis,
processing, indexing and retrieval is a truly challenging task.

From this point of view, automatic image and video scene understanding is of im-
portance. The main task of scene understanding is to give a semantic interpretation
to observed images and video. In other words, scene understanding tries to bridge
the semantic gap between the low-level representation of images and videos and the
high-level, natural language description that a human would give about them [49].
In our work, only those scenes including humans will be considered, as they are
by far the most common ones in the studied domains. Nevertheless, emphasis will
be on the interaction of these humans with their environment, since such a global
approach will be proven to provide more information than separate analysis.
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Human Event Understanding (HEU) is important in a number of domains includ-
ing video surveillance, image and video search, and human–computer interaction,
among others [35]. The importance of these fields is briefly discussed here.

Video surveillance is a growing research area that has recently gained exceptional
importance due to increased security demands in public locations. CCTV cameras
populate airports, railway stations, shopping malls, and subways. Understanding and
interpreting video scenes obtained from these cameras would greatly assist in the
detection of dangerous situations in real time and, in consequence, increase security.
However, automated surveillance still has a long way to go, and in most of the cases
the analysis is conducted by human operators. Fully automatic surveillance systems
would facilitate the understanding of dangerous occurrences, in order to prevent
undesired consequences [46].

Image and video search have grown in importance during the last years. The
enormous amount of multimedia data owned by broadcast companies and produced
on the Internet demand advanced techniques of image and video retrieval. Auto-
matic indexing and annotation of video and image data would significantly ease the
search of multimedia contents according to the needs of the user.

As computers and smart devices are being progressively involved in our every-
day life, the field of human–computer interaction is facing new challenges day
by day. Human–computer interaction has evolved from the use of rigid peripher-
als like keyboard or mouse toward a new form of smart interaction through the
recognition of basic actions and gestures, e.g. via Wii and Kinect sensors. New
types of human-like interaction intend to be more transparent and natural to the
users.

This chapter proposes a novel framework for the understanding of human events
in their context, which benefits many applications in the aforementioned domains.
The chapter is organized as follows: in Sect. 7.2 we analyze the current state-of-the-
art on scene understanding, while focusing on the main techniques and taxonomies
for HEU. Section 7.3 shows an application for activity recognition from multiple
cues and provides automatic behavior interpretation by means of Situation Graph
Tree (SGTs). Finally, the main ideas of this work are summarized and some final
conclusions are drawn.

7.2 State of the Art

HEU has become an active and growing research area due to its inherent complexity
and increasing number of potential applications. Different aspects of HEU have
already been covered, among them human motion analysis, activity recognition, and
behavior modeling. In this section we analyze two main paradigms of HEU, which
follow bottom-up and top-down approaches, respectively. In addition, a taxonomy
of human events will be discussed.
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7.2.1 Bottom-up Approaches in Behavior Understanding

Bottom-up approaches analyze and interpret human behavior based on low-level
features of the video or image scene. While many works take into consideration
uniquely human motion and appearance, recent work in behavior understanding go
toward the analysis of humans in their context. In appearance-based approaches,
the appearance and the shape or pose of a person are the most common cues for
human behavior understanding. Appearance is usually presented using the Bag of
Words (BoW) technique, which has been proved to be successful for object and
scene recognition. Pose information is usually extracted from the shape of human
bodies, and template matching techniques are used to compare human poses. De-
laitre et al. [9] analyze local and global approaches for the application of BoW to
action recognition from still images. They show that action recognition performance
can be improved by combining human and context appearance representations. The
BoW technique was extended to histogram of oriented rectangles [19] in order to
capture spatial distributions of visual words, and to extract these features only from
the silhouette of a person. For describing the shape of a human body, Dalal and
Triggs introduced the Histogram of Oriented Gradients (HOG) technique [8], which
produced excellent results in human detection and was therefore extended to action
recognition. Ikizler-Cinbis et al. [21] apply template matching based on the HOG
descriptor to learn human actions from Internet images. Wang et al. [52] apply a de-
formable template matching scheme to cluster human actions based on the shape of
their poses. Appearance-based approaches are particularly important when motion
features are not available, e.g. in still images, or not significant, e.g. in actions like
reading.

The analysis of human motion is also important for the understanding of human
behavior. Direct motion recognition techniques attempt to infer the behavior only
from the motion cues, and disregarding the information of the body about appear-
ance and pose. Optical flow and trajectories are the main features extracted from
motion. Optical flow is a low-level feature calculated from the motion of individual
pixels, while trajectories are usually computed for the whole human body. Polana
and Nelson [43] use repetitive motion as a strong cue to discriminate between dif-
ferent activities. Noceti et al. [40] accomplish behavior understanding by analyzing
trajectories over long-time observations, to discover behavior patterns in a particular
scenario.

The mixed analysis of static and motion cues is also employed in many works.
The temporal template matching algorithm introduced by Bobick et al. [5] com-
bines shape and motion cues to capture different movements in aerobics exer-
cises. The desire to combine motion and appearance features led to an extension
of detectors and descriptors of spatial salient points for the spatiotemporal do-
main [32].

While human motion and appearance provide important clues for behavior un-
derstanding, very often they are not sufficient for analyzing and modeling complex
human behavior, like riding a horse, phoning or even going shopping. In these cases,
contextual knowledge such as the type of scene (indoor, outdoor, supermarket) and
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the objects in that scene (horse, phone, goods) should be exploited. Scene classes
and their correlation with human activities have been studied in [32]. It is illustrated
that incorporating scene information increases the recognition rate of human activ-
ities. Kjellström et al. [23] and Gupta et al. [17] combine activity recognition and
object recognition into one framework, which significantly improves the final out-
put. Alternatively, Li and Fei-Fei [27] try to answer the 3 W’s: what? (event label),
where? (scene label) and who? (list of objects). They build a generic model that
incorporates different levels of information such as event/activity, scene, and object
knowledge.

7.2.2 Top-down Modeling of Behavior Understanding

Algorithms for detection and tracking have been greatly improved during the last
years, and although there are still many issues to cope with—e.g., appearance vari-
ability, long-term occlusions, high-dimensional motion, crowded scenes—, robust
solutions have been already provided that capture the motion properties of the ob-
jects in dynamic and complex environments [44, 45]. But to understand scenes in-
volving humans and showing semantic developments, we need to consider the no-
tion of event. An event is regarded as a conceptual description summarizing the con-
tents of a development, that description being closely related to real world knowl-
edge.

The recognition of events in video sequences has been extensively tackled by
the research community, ranging from simple actions like walking or running [39]
to complex, long-term, multi-agent events [25]. The recognition of complex events
and behaviors is becoming more and more a hot topic of the literature in this field.
Three main approaches are generally followed toward the recognition of non-basic
events: pattern recognition methods, state models, and semantic models.

First of all, the modeling formalisms used include many diverse techniques for
pattern recognition and classification, such as neural networks and self-organizing
maps [55], K-nearest neighbors (kNN) [33], boosting [50], support vector machines
(SVM) [39], or probabilistic or stochastic context-free grammars (CFG) [22, 36]. In
addition, the statistical modeling of Markov processes is tackled using state models,
such as hidden Markov Models (HMM) [41, 53], Bayesian networks (BN) [18], or
dynamic Bayesian networks (DBN) [1]. These have been often used when pursuing
the recognition of actions and activities.

Nevertheless, the high complexity found in the domain of video sequences
stresses the need to employ more explicit semantic models. The interpretation of
activities depends strongly on the locations where the events occur, e.g., traffic
scenes, airports, banks, or border controls in the case of surveillance, which can
be efficiently exploited by means of conceptual models. Therefore, it is reasonable
to make use of domain knowledge in order to deal with uncertainty and evaluate
context-specific behaviors. Thus, a series of tools based on symbolic approaches
have been proposed to define the domain of events appearing in selected environ-
ments, e.g., those based on conceptual graphs or conditional networks.
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Starting from the early use of Finite State Automata [18, 20] and similar im-
proved symbolic graphs [31], researchers have increased the expressivity of the
models, so that they can manifest precise spatial, temporal, and logical constraints.
Such constraints have ended up complementing each other in multivariate analy-
sis, e.g., by means of temporal constraint satisfaction solvers applied over symbolic
networks [51]. More recently, Nagel and Gerber [38] proposed a framework that
combines SGTs with Fuzzy Metric Temporal Horn Logic (FMTL) reasoning, in or-
der to generate descriptions of observed occurrences in traffic scenarios. Extensions
of Petri Nets have also been a common approach to model multi-agent interactions,
and used as well for human activity detection [2]. Petri Nets are graphical mod-
els represented by a directed bipartite graph that contains nodes drawn as circles
(places) and bars or boxes (transitions), in which the state of the net gets to be de-
fined by the number of tokens found in each place. Petri Nets enforce temporal and
spatial distance relations as transition enabling rules, and can be also used to model
concurrency and partial ordering among sub-events. Some other recent approaches
have employed symbolic networks combined with rule-based temporal constraints,
e.g. for activity monitoring applications [15].

7.2.3 Taxonomy of Human Events

The automatic understanding of human behavior has been addressed by many
authors [4, 14, 16, 18, 37], who have typically decomposed this problem into
different levels of knowledge. Typically, taxonomies of human events are con-
structed in order to capture and organize these levels and facilitate procedural solu-
tions.

Nagel in his work on machine perception of motion presented a taxonomy in-
cluding five stages: change, event, verb, episode, and history, where a change refers
to a discernible difference in a sequence; an event is a change that is considered as a
primitive of a more complex description; a verb defines some activity; an episode is
a complex motion which may involve several actions; and a history is an extended
sequence of related activities [37]. This taxonomy is oriented to provide a high-level
description in natural language.

Alternatively, [4] approached the same problem from the point of view of
motion, using another taxonomy: movement, activity, and action. This taxon-
omy reflects the analysis of human motion from the levels of semantics required
for interpretation: movement is the most atomic primitive, requiring no seman-
tic knowledge to be incorporated; a movement is often addressed using geo-
metric techniques. An activity refers to the sequence of movements or states,
where the only real knowledge required is the statistics of the sequence. Actions
are larger scale events, which typically include interaction with the environment
and causal relationships. Bobick’s taxonomy is useful from a low-level perspec-
tive, although more complex analysis is required to bridge perception and cogni-
tion.
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Another approach is presented in [18]. Their terminology distinguishes between
single and complex events. A single event refers to anything that can be captured
from a single frame, e.g. static postures, actions, or gestures. A complex event corre-
sponds to a linearly ordered time sequence of simple events or other complex events.
In addition, single/multiple thread events are distinguished according to the number
of actors they involve. This approach is suitable for generic solutions, although it
does not help to develop explicit implementations.

In [16], the concept of human event is decomposed into movement, action, ac-
tivity, and behavior. The emphasis of this taxonomy is on temporal information of
human motion. A movement represents a change of human posture between con-
secutive frames. An action is a temporal series of human movements which can
be denoted with a verb label such as running, jumping, turning left, laughing. An
activity is a sequence of two or more human actions, plus the transition between
them, e.g. the path followed by a human in the scene. A behavior refers to one or
more activities which acquire their meaning in a specific context, like crossing the
road or giving a concert. The main advantage of the presented terminology is that it
fills the gap between high-level semantic description of [37] and low-level motion
description of [4]. However, this taxonomy does not provide a scene description
terminology; therefore it is impossible to capture interactions between humans and
environment.

The work presented by [14] solves this problem by defining an ontological
organization of concepts that includes entities—comprising agents, objects, and
locations—and events. The taxonomy of events has three semantic levels: status,
i.e., actions or gestures that can be independently analyzed for agents in isolation,
e.g. running or turning; contextualized events, which considers interactions among
agents, objects, and locations, e.g. picking up an object, meeting someone; and be-
havior interpretations, which use prior domain assumptions to interpret complex
interactions over time, like abandoning objects, stealing, giving way, or waiting to
cross.

In our work we extend the taxonomy of [16] with the concept of entity from [13],
reusing this concept as a low-level unit in our taxonomy of events. The resulting
taxonomy is then entity, movement, action, activity, and behavior, where we have
the following.

• Entity is defined as something that has its own distinct existence (physical or
abstract); it can be perceived, known, or inferred. Moreover, we can discriminate
between several types of entities:
– Active entities (agents, actors): entities that can move by themselves; among

them are humans, cars, animals.
– Passive entities (objects): entities which can only be moved by active entities;

among them chair, guitar, bicycle.
– Background entities (context): global environment, location where the agent is

observed; among them indoor, outdoor, road, sky, sea.
• Movement is a change of agent pose and/or location between consecutive frames;

no semantic knowledge is required.
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• Action is a semantically defined set of movements of the agent, e.g. running,
jumping. Low-level semantics is used; interpretation is restricted to the agent
itself.

• Activity is defined as an action of the agent in a particular context, where all the
entities of the scene are taken into account. Here we consider not running, but
playing football or kicking the ball, and not waving hands, but catching a ball. In
other words, this level of semantics can be defined as all the semantics that can
be extracted from the current context.

• Behavior is a reaction of an agent to the particular situations, i.e., longer observa-
tions in context. We want to understand why the agent is doing something, so we
should acknowledge past situations (the cause of the action) or the final objective
of the agent. For example, for an agent hitting a vending machine we may im-
ply that s/he wants to retrieve something that got stuck in the machine (knowing
the past), or that s/he wants to damage the machine to steal something (objec-
tive). The key point of interpretations at this level is not only context, but also
temporal and causal relationships. This level of understanding goes from image
understanding to video understanding.

7.2.4 Human Event Datasets and Benchmarks

There are many public datasets for human event recognition and detection. The main
idea of these datasets is to provide images or image sequences (video) and ground
truth (e.g. event labels for every image frame) in order to evaluate performance of
human event recognition algorithm. The seven popular datasets, which are currently
used by most of the approaches are: KTH [47], Weizmann [3], Hollywood 2 [24],
UCF50 [29], TRECVID [48], Sports [17], and PASCAL [11] (see Table 7.1). They
can be categorized according to different criteria. First, whether the dataset contains
temporal information (KTH, Weizmann, Hollywood 2, UCF50, TRECVID, PAS-
CAL) or not (Sports, PASCAL). In other words, human event recognition can be
done from still images or from videos. Second, there are simplistic (KTH, Weiz-
mann) and realistic datasets (Hollywood 2, UCF50, TRECVID, Sports, PASCAL).
In simplistic datasets the human event is staged by actors in a controlled environ-
ment. In realistic datasets, the event is captured from the real world. It is evident
that it is quite easy to detect and recognize human event in the simplistic datasets,
while dealing with realistic datasets is quite challenging. Finally, it is important that
the dataset not only has images/videos and ground truth (KTH, Weizmann, Holly-
wood 2, UCF50, Sports), but also evaluation metrics (TRECVID, PASCAL). The
advantage of datasets with evaluation metrics is that they allow one not only to eval-
uate the performance of a particular algorithm, but also to do it in such a manner that
it can easily be compared with other algorithms. Examples of human events from
these datasets are illustrated in Fig. 7.1.
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Table 7.1 Comparison of main datasets in Human Event Recognition

Temporal
information

Evaluation
metrics

Number of
events

Examples of events Source of
data

KTH [47] � ✗ 6 walking, jogging,
running, boxing, hand
waving, hand clapping

Staged by
actors

Weizmann [3] � ✗ 10 run, walk, skip,
jumping-jack, jump-
forward-on-two-legs,
jump-in-place-on-two-
legs, gallopsideways,
wave-two-hands,
wave-one-hand, bend

Staged by
actors

Hollywood 2 [24] � ✗ 12 AnswerPhone, DriveCar,
Eat, FightPerson,
GetOutCar, HandShake,
HugPerson, Kiss, Run,
SitDown, SitUp,
StandUp.

Hollywood
movies

UCF50 [29] � ✗ 50 Biking, Diving, Fencing,
Playing Guitar, Horse
Race, Military Parade,
TaiChi, Walking with a
dog, etc.

YouTube
videos

TRECVID [48] � � 7 PersonRuns, CellToEar,
ObjectPut, PeopleMeet,
PeopleSplitUp,
Embrace, Pointing

Surveillance
video

Sports [17] ✗ ✗ 6 batting (cricket),
bowling (cricket), serve
(tennis), forehand
(tennis), serve
(volleyball), shot
(croquet)

Internet

PASCAL [11] ✗ � 9 phoning, playing a
musical instrument,
reading, riding a bicycle
or motorcycle, riding a
horse, running, taking a
photograph, using a
computer, walking

Flickr

7.3 Methodology

7.3.1 Architecture

The problem of HEU is not trivial, since it requires analyzing both the humans
and the context where these humans are observed. The interaction of entities in the
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Fig. 7.1 Examples of human events from different datasets: (a) KTH [47], (b) Weizmann [3],
(c) Hollywood [24], (d) UCF50 [29], (e) TRECVID [48], (f) Sports [17], and (g) PASCAL [11]

scene plays a crucial role in many cases, so a proper analysis and fusion of different
sources of knowledge may be required:

• Motion cue: achieved by tracking and optical flow analysis
• Pose cue: achieved with pose estimation and reconstruction
• Interaction cue: achieved by analysis of human interaction with entities in the

scene (interaction with objects and holistic scene analysis)

As we can observe in Fig. 7.2, general HEU demands analysis at different lev-
els of semantics. Initially, given a video scene, salient features are extracted. At
the same time, basic motion information is captured using frame differences. Then,
entity detection, holistic scene analysis and motion tracking are performed. At this
stage, basic scene knowledge like passive and background entities needs to be found.
Next, given detection and tracking, complete information about active entities is ex-
tracted such as motion patterns and pose, which usually define an action model. At
the following level, the interactions between scene entities are analyzed and human
activity patterns are inferred.

A final, higher-level interpretation is accomplished in a top-down fashion us-
ing SGTs. These predefined models organize the possible world states as a tree
of situations ranging from the most generic root (e.g., an agent is active) to the
most particularized leaves (e.g., theft detected). At each level of the tree, a directed
graph connects a starting situation to temporally subsequent ones, e.g., walk-to-
object→pick-up-object→carry-object. Each situation evaluates specific conditions
based on current visual observations such as positions, velocities and actions, and
asserted situations define a traversal within the tree as we navigate to the most con-
crete interpretation for each time step. In the next section we illustrate this frame-
work on an example that uses parts of the framework.
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Fig. 7.2 Human event understanding

7.3.2 Activity Recognition

Activity recognition is an intermediate process in HEU that requires analysis of
pose, scene, interactions, and motion. In this example we concentrate on activity
recognition only from still images, discarding temporal information.

The framework of activity recognition is illustrated in Fig. 7.3(a) and is an im-
portant part of the global architecture. The proposed method has been applied to
the Pascal VOC Action Classification dataset, which provides images with different
human events and bounding boxes of humans performing an activity. We used the
bounding box information for pose estimation, instead of using results from human
detection. The typical input to the framework is shown in Fig. 7.3(b).
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Fig. 7.3 (a) Framework for the activity recognition and (b) input to the framework

7.3.2.1 Entity Level

Feature Extraction and Image Representation

The low-level image analysis includes extraction of two kind of features: (i) ap-
pearance, and (ii) shape. The global scene appearance is represented by the Bag of
Words (BoW) approach [6] based on Scale Invariant Feature Transform (SIFT) [30].
In order to capture shape information we apply a Histogram of Oriented Gradients
(HOG) descriptor [8]. In the following, we will give more details about these three
techniques.

Bag of Words

The main idea of BoW approach is to represent the image as a set of unordered
elementary visual features (so-called words).

Constructing the BoW image representation involves the following steps [6]:
(i) automatically detecting keypoints (salient regions in the image), (ii) comput-
ing local descriptors over these keypoints, (iii) quantizing the descriptors into words
to form the visual vocabulary, (iv) and finding the occurrences in the image of each
specific word in the vocabulary to build the histogram of words. Figure 7.4 schemat-
ically describes the four steps involved in the definition of the BoW model.

In our work we use a combination of sparse (corner detector, blob detector) and
dense (regular grid based) detectors. Sparse detectors allow us to capture the most
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Fig. 7.4 The four steps to compute a BoW: (i–iii) obtaining the visual vocabulary by clustering
feature vectors, and (iv) representing the image as a histogram of words

prominent salient points of the image; for example, the Harris–Laplacian detector
(for corners) [34] and Laplacian-of-Gaussian detector (for blobs) [28] are commonly
applied. On the other hand, the advantage of using a grid based detector is that it
captures information in areas where sparse detectors are not able to extract enough
keypoints. It is usually implemented by projecting a regular grid on the image and
therefore segmenting the image into cells which are considered as image keypoints.
Moreover, grids of different scales are used to enhance keypoint detection.

The next step is to represent all the keypoints using a local descriptor; for exam-
ple, using SIFT as a local descriptor gives us the advantage of having local feature
vectors which are invariant to image translation, scaling, and rotation. Therefore,
given an image I , a collection of local feature vectors XI = [x1, x2, . . . , xM ] is ex-
tracted, where M is the number of detected keypoints.

The process of building the vocabulary includes two main stages. From a set of
images a pool of local feature vectors is first extracted, and then clustered into K

number of words W = [w1,w2, . . . ,wK ]. For clustering, standard K-means tech-
nique is widely used, where each feature vector belongs to the cluster with the near-
est mean:

W = argmin
W

K∑

k=1

∑

xj ∈Swk

‖xj − wk‖2, (7.1)
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and wk is the mean of all the feature points that belong to the cluster Swk
. The cluster

centers are randomly initialized, and iteratively refined.
Lastly, local feature vectors XI are assigned to the nearest word wk from the

vocabulary W with cluster membership indicators U = [u1, . . . , uM ] [54]:

U = argmin
U

M∑

m=1

‖xm − umW‖2, (7.2)

where ui is such that only one element of ui is nonzero, and |ui | = 1. The index of
the nonzero element in um indicates which cluster the vector xm belongs to. Finally,
a representation of the image I is computed as a histogram of words HI :

HI = 1

M

M∑

m=1

um. (7.3)

Scale Invariant Feature Transform

SIFT is a widely used algorithm for describing keypoints of the image in such a man-
ner that the output keypoint descriptor is highly distinctive and invariant to rotation,
scale, illumination and 3D viewpoint variations [30]. SIFT properly describes the
distribution of the gradient over an image patch centered in the detected keypoint.

First of all, it is important to determine the scale and the orientation of the key-
point. The scale s of the keypoint is defined at the keypoint detection stage. In order
to find orientation, the following steps should be done in the Gaussian smoothed im-
age Is(x, y) at a scale s, so that all computations are performed in a scale-invariant
manner. Given the image sample Is(x, y), the gradient is computed using a 1D cen-
tered mask [−1 0 1]:

gx(x, y) = Is(x + 1, y) − Is(x − 1, y) ∀x, y,

gy(x, y) = Is(x, y + 1) − Is(x, y − 1) ∀x, y,
(7.4)

where gx(x, y) and gy(x, y) denotes the x and y components of the image gradient.
Then the magnitude m(x,y) and the orientation θ(x, y) of the gradient are com-

puted as

m(x,y) =
√

gx(x, y)2 + gy(x, y)2,

θ(x, y) = tan−1 gy(x, y)

gx(x, y)
.

(7.5)

Next, the region around the keypoint is weighted with a Gaussian window and
a corresponding magnitude, and a histogram of the region with 36 orientation bins
is created. As a result, the peaks in the orientation histogram indicate the keypoint
orientation.

Once the scale and orientation have been selected, the feature descriptor of the
keypoint is built. First the image gradient magnitudes and orientations are sampled
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Fig. 7.5 Building a SIFT descriptor: (a) keypoint scale and rotation, (b) image gradient and final
keypoint descriptor

around the location of keypoint in the given scale. In order to achieve orientation in-
variance, the coordinates of the descriptor and the gradient orientations are rotated
relative to the keypoint orientation (see Fig. 7.5(a)). Just like before, the region
around the keypoint is weighted by the gradient magnitude and by a Gaussian win-
dow. Then, the region is separated into four sub-regions, and for every sub-region
the histogram with 8 bins for orientation is created (see Fig. 7.5(b)). Subsequently,
in order to form a descriptor, these histograms are concatenated. This leads to a
4 × 4 × 8 = 128 dimensional descriptor vector. Finally, the descriptor vector is nor-
malized to unit length in order to make it invariant to affine illumination changes. To
reduce the impact of non linear illumination changes, high values in the descriptor
vector are thresholded, and the vector is again normalized.

Histograms of Oriented Gradients

The HOG feature is revealed to be very effective for object class detection tasks [8].
While BoW represents the image without considering spatial information, HOG is
used when it is important to take into account spatial relationships between image
regions. Since HOG allows to capture shape and structure, representing a region
of interest (e.g. person, object) with HOG is more informative when compared to
representing the whole image.

The computation of HOG is as follows. First, for each sub-sampled image
I (x, y), we compute the image gradient and then the magnitude m(x,y) and ori-
entation θ(x, y) of the gradient according to (7.4) and (7.5).

After that, a weighted histogram of orientations is computed for a certain square
region that is called a cell. The histogram is computed by summing up the orienta-
tion of each pixel of the cell weighted by its gradient magnitude. The histogram
of each cell is usually smoothed using trilinear interpolation, both in space and
orientation. In order to account for changes in illumination and contrast, gradient
strengths are locally normalized, which requires grouping the cells together into
larger, spatially-connected blocks. The HOG descriptor is then found as the vector
of the components of the normalized cell histograms given all of the block regions.
These blocks typically overlap, meaning that each cell contributes more than once
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Fig. 7.6 Sliding windows
components

to the final descriptor. Normalization of the block can be done using L1 or L2 norm:

L1-norm: v = v
‖v‖1+ε

,

L2-norm: v = v√
‖v‖2

2+ε2
,

(7.6)

where ε is a very small constant to prevent division by zero.
The use of orientation histograms over image gradients allows us to capture local

contour information, which is the most characteristic information of a local shape.
Translations and rotations do not influence HOG as long as they are smaller than
the local spatial and orientation bin size, respectively. Finally, local contrast normal-
ization makes the descriptor invariant to affine illumination changes which greatly
improves detections in challenging lighting conditions.

Detections

In our work we consider the scene to be a configuration of objects that can be per-
ceived in the scene. Therefore, the observation module is presented with an object
detector. The applied object detector is based on the Recursive Coarse-to-Fine Lo-
calization (RFCL) [12, 42]. RCFL is an approach to speed up a sliding windows
method. In sliding windows (see Fig. 7.6) an object model is scanned over a pyra-
mid of features representing an image. The pyramid of feature is a set of matrices
Fs(x, y), where each element is an f -dimensional feature vector. Each matrix Fs is
built from a smoothed and sub-sampled version Is(x, y) of the original image at a
certain scale s. The object model for a linear classifier is an h × w matrix M(x,y),
where each elements is an f -dimensional weight vector. The response Ds , or score,
of the object model centered at position (x, y) and scale s is defined as

Ds(x, y) =
∑

x̂,ŷ

M(x̂, ŷ) · Fs(x̂ + x − w/2, ŷ + y − h/2), (7.7)
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Fig. 7.7 HOG pyramid
model M for the class
‘person’. The low-resolution
features (d = 0) give a
general coarse representation
of the human silhouette,
while the high resolution
(d = 2) focuses more on
details

where x̂ ∈ 0,1, . . . ,w − 1, ŷ ∈ 0,1, . . . , h − 1. In this way Ds is a pyramid of ma-
trices of the same size as Fs , but where each element is a scalar that represents the
response of the object model for the corresponding position and scale.

RCFL extends the sliding windows approach, and the object is searched not only
in different scales, but also at different resolutions, from coarse to fine. The final
score of the detector is now the sum of partial scores, one for each resolution. For
this reason, the object model is a dyadic pyramid composed of l levels, where each
level d is a matrix Md of weight vectors. Initially, SVM is used for learning an
object model M . An example of a 3-level pyramid model for the class ‘person’ in
shown in Fig. 7.7, while an example of recursive localization refinement is shown
in Fig. 7.8.

The computation of the partial score Rd
s for a resolution level d of the object

model pyramid at a position (x, y) and scale s of the pyramid of features is then

Rd
s (x, y) =

∑

x̂d ,ŷd

Md(x̂d , ŷd ) · Fd
s

(
x̂d + (x − w/2)sd , ŷ + (y − h/2)2d

)
, (7.8)

where x̂d ∈ 0,1, . . . ,w2d − 1, ŷd ∈ 0,1, . . . , h2d − 1. When d = 0 this is ex-
actly (7.7).

For each F s
d , the search space is split into adjacent neighborhoods �(x,y). The

neighborhood represents all the locations where an object can be found; therefore
in RCFL the number of hypotheses corresponds to the number of neighborhoods.
While locating the object, firstly, the position of the object Π for each (x, y) and
scale s is defined as the location that maximizes the partial score R0

s over the neigh-
borhood on the coarse level (resolution level d = 0):

Π0
s (x, y) = argmax

(x̂,ŷ)∈�(x,y)

R0
s (x̂, ŷ). (7.9)

Secondly, the optimal position at levels d > 0 is recursively defined as a refine-
ment of the position at d − 1:

Πd
s (x, y) = argmax

(x̂,ŷ)∈�(2Πd−1
s (x,y))

Rd
s (x̂, ŷ). (7.10)
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Fig. 7.8 Example of RCFL for detection. In (a), at a certain position (x, y) and scale s (red box) of
the pyramid of features F , the best location Π0

s (x, y) (green box) for the low-resolution model of
the object M0 is searched in the local neighborhood �(x,y). In (b), the same procedure is repeated
for the next resolution level, using as center of the neighborhood the best location computed at low
resolution Π0

s (x, y). The process is recursively repeated for all feature resolution levels. In (c), the
location obtained at the finest resolution Π2

s (x, y) is the location of the final detection

Finally, the total detection score Ds of the object at position (x, y) and scale s

can be calculated as:

Ds(x, y) =
∑

d

Rd
s

(
Πd

s (x, y)
)
. (7.11)

The coordinates of the bounding box of the object are obtained from the finest
level of object refinement. The final output of the detection is a set of detected
objects OD , defined by their class, location and probability. For more details on the
detection algorithm see [42].

Scene Analysis

Scene analysis is accomplished using a low-level appearance-based image represen-
tation and a BoW approach. However, the main disadvantage of the standard BoW
approach is that the information about spatial distribution of local feature vectors
is lost in the final representation of the image. To overcome this problem, a spatial
pyramid technique is usually applied [26].

The spatial pyramid that is used in our work is illustrated in Fig. 7.9. It has two
levels: the zero-level includes the entire background region except the bounding
box, and the first-level consists of three horizontal bars, which are defined by the
foreground (bounding box). We used horizontal bars rather than a coarser grid, so
that the image representation contains a histogram describing the center of the im-
age, which usually contains a great deal of discriminative information. Histograms
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Fig. 7.9 Scene model HBG. The final representation of the scene is a concatenation of the his-
tograms from zero-level and first-level of pyramid

are computed from the keypoints found in each cell of these two levels, normalized,
and then concatenated. Therefore, the background of the image I can be represented
with a concatenation of histograms of all the pyramid levels:

HBG = 1

2
[HBGL0 HBGL1], (7.12)

where HBGL0 and HBGL1 are the histograms of zero and first levels of the background
pyramid, respectively.

In our implementation, we use 1000 words in the vocabulary, obtaining a total of
1000 + 1000 × 3 = 4000 bins in the background histogram HBG.

7.3.2.2 Action Level: Pose Estimation

The information about the location of a human agent is obtained from a bounding
box, provided in the dataset as ground truth. Pose estimation is achieved by fusing
knowledge about the local appearance and the local shape of the human (Fig. 7.10).

The appearance of a human pose, HPA, is computed straightforwardly in the area
within the bounding box, using the BoW technique. A local shape representation
of the human pose, HPS, is obtained using Pyramid of HOG features (PHOG) [7],
an extension of HOG [8]. In this approach, an image is divided into multiple grids
at different levels of resolution; a HOG histogram is computed for each level and a
final PHOG vector is the concatenation of all HOG histograms (see Fig. 7.10).

A final human pose model results from the concatenation of the appearance
(HPA) and shape (HPS) representations:

HP = 1

2
[HPA HPS]. (7.13)

In our implementation, the dimensionality of HPA is 500, since it is equal to the
number of words in the vocabulary. For the HPS, the HOG descriptor is discretized
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Fig. 7.10 Pose model Hp . The appearance model is computed using a BoW approach, and the
shape model is represented with a PHOG feature vector

into 8 orientation bins and a 3-level pyramid is applied. The resulting PHOG de-
scriptor is a 8× (20)2 +8× (21)2 +8× (22)2 +8× (23)2 = 680 dimensional vector.
Therefore, the final histogram HP has 500 + 680 = 1180 bins in total.

7.3.2.3 Activity Level: Spatial Interaction

To handle spatial interactions at the activity level we combine two interaction mod-
els, see Fig. 7.11: (i) a local interaction model, and (ii) a global interaction model
(adapted from [10]).

Local Interaction Model

The local interaction model helps to analyze the interactions between a human and
the objects that are being manipulated by the human. The computation of the local
interaction model is done by applying the BoW approach over the neighborhood
of the human. The neighborhood is defined by the Mahalanobis distance from the
center of the bounding box. This way, the local interaction of the image I can be
represented with a histogram HLI using a BoW approach that takes into account
those feature vectors XI that belong to a neighborhood ξ of the bounding box:

1 − ξ <

√
(XI − μ)′S−1(XI − μ) < 1 + ξ, (7.14)

S =
[
(w

2 )2 0

0 (h
2 )2

]
, (7.15)

where μ, h, and w are the center point, height, and width of the bounding box,
respectively, and the neighborhood ξ is set to 0.5.

In our implementation of the local interaction model, the dimensionality of the
HLI is 1500, since it is the number of visual words in used vocabulary.
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Fig. 7.11 Interaction model HINT , as a combination of a local interaction and a global interaction
model

Global Interaction Model

A basic description of actions in a scene can be done using information about the
types of objects that are found in the scene by the object detector (see Sect. 7.3.2.1).
Given NO the number of object detections O = [O1,O2, . . . ,ONO

] in the image I ,
object occurrence can be represented as a histogram HO :

HO =
NO∑

i=1

Piui, (7.16)

where ui is such that only one element of ui is nonzero, and |ui | = 1. The index of
the only nonzero element in ui indicates the class of the object Oi with probabil-
ity Pi .

This kind of information is necessary to quickly estimate the activity in the scene;
for example, by observing a human, a racket, a ball, and a net in the image, we could
propose a hypothesis about playing tennis. Moreover, if there is no necessary object
in the scene (human, racket, ball, net), we can almost be sure that the playing tennis
activity is not being performed. Therefore, using co-occurrence of objects, we could
reject the most evident negative examples of not performing a particular activity. To
prove or reject other hypotheses we need a more advanced model, which takes into
account spatial distribution of objects in the scene.

The latter model can be obtained by analyzing the interactions across all the
objects in the scene. The interaction between two objects i and j can be represented
by a spatial interaction feature dij , which bins the relative location of the detection
windows of i and j into one of the canonical semantic relations including ontop,
above, below, overlapping, next-to, near, and far (see Fig. 7.12). Hence dij is a
sparse binary vector of length D = 7 with a 1 for the kth element when the kth
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Fig. 7.12 A visualization of
the spatial histogram feature
dij from [10]. Seven spatial
relationships are considered:
ontop, above, below,
overlapping (not shown),
next-to, near, and far

relation is satisfied between the current pair of windows. Subsequently, every image
I can be represented with an interaction matrix HI . Every element hIkl

of the matrix
HI represents the spatial interaction between classes k and l:

hIkl
=

N
Ok∑

i=1

N
Ol∑

j=1

d
(
Ok

i ,Ol
j

)
min

(
P k

i ,P l
j

)
, (7.17)

where Ok and Ol are the detections of objects of classes k and l, correspondingly.
Therefore, the global interactions model HGI is represented as the concatenation

of the histograms HO and HI ; the dimensionality of HGI is 20 + 20 × 20 × 7 =
2820, since we have 20 classes and seven possible spatial relationships. The final
spatial interaction model HINT is defined as the concatenation of the local and global
interaction models, HLI and HGI :

HINT = 1

2
[HLIHGI]. (7.18)

Correspondingly, the dimensionality of the HINT is 1500 + 2820 = 4320, since
it is a concatenation of HLI and HGI .

7.3.2.4 Classification

In this stage, the image histograms are classified using a Support Vector Machine
(SVM) classifier, which was trained and tested using the respective image sets, as
shown in Fig. 7.13. Moreover, a histogram intersection kernel is used to introduce
non-linearity to the decision functions [26].

In order to fuse the multiple available representations of the image, namely HP ,
HBG, and HINT , a concatenation of histograms and further L1-normalization have
been applied.
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Fig. 7.13 Classification process

7.3.2.5 Experiments and Results

Dataset

We tested the presented approach on the dataset provided by the Pascal VOC Chal-
lenge 2010 [11]. The main feature of this dataset is that a person is indicated by
a bounding box, and each person has been annotated with the activities they are
performing from the following set: phoning, playing a musical instrument, reading,
riding a bicycle or motorcycle, riding a horse, running, taking a photograph, using a
computer, or walking. In addition, the images are not fully annotated—only ‘person’
objects forming part of the training and test sets are annotated. Moreover, actions
are not mutually exclusive, e.g. a person may simultaneously be walking and phon-
ing. The dataset contains 454 images and 608 bounding boxes in the training set and
454 images and 613 bounding boxes in the test set. Some images from the dataset
are shown in Fig. 7.14.

To train the spatial interaction model based on object detections we used 20 ob-
ject classes: aeroplane, bicycle, bird, boat, bus, car, cat, chair, cow, dog, dining
table, horse, motorbike, person, potted plant, sheep, sofa, train, and tv/monitor. The
object models were trained over the Pascal 2010 dataset images, using the included
toolbox for object detection.

Evaluation of the Results and Discussion

To evaluate the importance of context and interactions in Human Event Understand-
ing (HEU), three main experiments were conducted: action recognition (i) using
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Fig. 7.14 Images belonging to different activity classes in the Pascal VOC Challenge 2010

Table 7.2 Average precision
results on the Pascal Action
Dataset using multiple cues

HP HP & HBG HP & HBG & HINT

Walking 67.0 64.0 62.0

Running 75.3 75.4 76.9

Phoning 45.8 42.0 45.5

Playing instrument 45.6 55.6 54.5

Taking photo 22.4 28.6 32.9

Reading 27.0 25.8 31.7

Riding bike 64.5 65.4 75.2

Riding horse 72.8 87.6 88.1

Using PC 48.9 62.6 64.1

Average 52.1 56.3 59.0

only pose models, (ii) using pose models and scene analysis, and (iii) using pose
model, scene analysis, and spatial interaction models (see Table 7.2). A selection of
correctly classified and misclassified examples are illustrated in Figs. 7.15 and 7.16.
The complexity of the dataset is that there are simple actions (e.g. walking, run-
ning), actions with unknown objects (e.g. phoning, playing an instrument, taking a
photo, reading), and actions with known objects (e.g. riding a bike, riding a horse,
using a PC). The evaluation of results is accomplished computing precision-recall
curves and average precision measures.

As we can see from Table 7.2, for simple actions like walking or running, pose
information is the most important cue. The minor improvements for the running
class can be explained by the fact that running is usually observed outdoor in groups
of people, while walking does not have such a pattern and can be performed both
indoor and outdoor. Thus, when adding both context and interaction information,
the recognition rate decreases.
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Fig. 7.15 Correctly classified examples of (a) walking, (b) running, (c) phoning, (d) playing an
instrument, (e) taking a photo, (f) reading, (g) riding a bike, (h) riding a horse, (f) using a PC

Fig. 7.16 Examples misclassified as (a) walking, (b) running, (c) phoning, (d) playing an instru-
ment, (e) taking a photo, (f) reading, (g) riding a bike, (h) riding a horse, (i) using a PC

Next, for those actions including interactions with unknown objects there is no
single solution. The results for phoning are better when the pose model is used
alone. This has two explanations: (i) the typical pose is discriminative enough for
this action, and (ii) the bounding box containing the human usually occupies almost
the whole image, so there is not much room for the context and objects in the scene.
An action like playing an instrument improves significantly with a scene model,
since that activity often means “playing in a concert” with quite particular and dis-
tinguishable context, e.g. cluttered dark indoor scenes. Even though we can observe
the increase of performance for taking a photo, its recognition rate is still very low
due to the significant variations in appearance, as well as the compact sizes of cur-
rent cameras, which do not have discriminative features. The recognition results for
the reading class significantly increase when object interaction models are added,
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as reading is usually observed in an indoor environment, where many objects like
sofas, chairs, or tables can be detected.

Finally, actions like riding a bike, riding a horse, using a PC improve signifi-
cantly (13.5% in average per class) when we use a complete model consisting of
pose, scene, and interaction, compared to the results based on a pose model only.
This shows the particular importance of using context and spatial object interactions
for activity recognition.

7.3.3 Behavior Modeling

As stated in the introduction, we distinguish among different objects of interest
within a scene, namely active entities, like pedestrians and vehicles; passive enti-
ties, for movable objects like bags or chairs; and background entities for relevant
static objects that define a context, like benches, and also interesting locations of the
scenario, such as sidewalks, crosswalks, or waiting regions. The activities detected
in the scene relate the interactions between active entities (agents) and passive enti-
ties, in the context defined by a series of background objects.

Nevertheless, a further step is required in order to incorporate a temporal di-
mension for a better understanding of behaviors. For that reason, information about
temporal events provided by tracking systems has to be also incorporated to the anal-
ysis. This section proposes a methodology for extracting patterns of behavior using
a deterministic rule-based approach that integrates appearance and motion cues. The
motion-based detection and capture of interesting objects within image sequences
are accomplished by segmentation and tracking procedures that capture the motion
information of the scene from a single static camera (see [44, 45] for further infor-
mation). As a result, a series of quantitative measurements over time is provided for
each relevant moving object, such as positions, velocities, and orientations.

Although we could express the observed facts in a strictly quantitative way, e.g.
treating the speed of a given target as 23 km/h, the use of fuzzy prototypical con-
cepts allows us to evaluate facts in more generic and vague terms that can be better
described by semantic models. Then, it would be recommendable to consider that
this target may have low, medium, or high speed depending on the context of this
observation, also to deal with the inherent uncertainty of the assertions, and to better
relate and categorize the situations we observe. Thus, a common approach for con-
ceptual modeling requires managing the conversion from quantitative to qualitative
information.

First, spatiotemporal data are represented by means of logical predicates, created
for each frame of the video sequence, in which numerical information is represented
by its membership to predefined fuzzy functions. For example, a zero, low, medium
or high tag can be assigned, depending on the instantaneous velocity value (V) for
an agent (see Fig. 7.17). Apart from categorizing instantaneous facts, a conceptual
scenario model also enables us to situate agents and objects in meaningful regions of
the recorded location, e.g. crosswalk, sidewalk, or waiting zones. Finally, we have
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Fig. 7.17 Conversion from quantitative to qualitative values. The numerical value of velocity for
an agent (last field of has_status) at a time step is linked to the most probable membership of the
has_speed fuzzy function

selected a Fuzzy Metric Temporal Horn Logic (FMTL) framework to integrate the
asserted facts and interpret the situations according to general motion-based models.
This reasoning engine is similar to Prolog, but extended to take into account both
geometric and temporal considerations.

A large collection of basic geometric facts results from this conceptualization,
including information relative to positions and velocities, which needs to be subse-
quently filtered. Our particular aim is to detect admissible sequences of occurrences
that contextualize geometric and temporal information about the scene, and will al-
low us to interpret the situation of a given person. For instance, a sequence in which
a person walks by a sidewalk and stops in front of a crosswalk probably means that
this person is waiting to cross.

Situation Graph Tree (SGTs) are the specific tool used to build these models [14,
38]. An SGT is a hierarchical classification tool used to describe behavior of agents
in terms of situations they can be in. These trees contain a priori knowledge about
the admissible sequences of occurrences in a defined domain, connecting each pos-
sible state (i.e. situation) by means of prediction and specialization edges. When a
set of conditions is asserted for one of the situations, a new high-level reaction pred-
icate is generated. SGTs have been successfully deployed to cover a large range of
applications including HEU [14], road traffic analysis [37], video partitioning and
annotation [13], visual scene detection and augmented reality.

The semantic knowledge related to any agent at a given point in time is contained
in a situation scheme, the basic component of a SGT (see Fig. 7.18). A situation
scheme can be seen as a semantic function that evaluates an input containing a
series of conditions—the so-called state predicates—, and generates logic outputs at
a higher level—the reaction predicates—once all the conditions are asserted. Here,
the reaction predicate is a note method that generates an interpretation for the
current situation in a language-oriented form, with fields related to thematic roles
such as locations, agents and rigid objects.
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Fig. 7.18 Naive example of a SGT, depicting its components. Specialization edges particularize a
general situation scheme with one of the situations within its child situation graph, if more infor-
mation is available. Prediction edges indicate the situations available from the current state for the
following time step; in particular, self-prediction edges hold a persistent state

The temporal dimension is also tackled by the SGTs. As seen in Fig. 7.18, the
situation schemes are distributed along the tree-like structure by means of three
possible directional connections: particularization, prediction, and self-prediction
edges, with a number on each edge indicating the order of evaluation. Particular-
ization (or specialization) edges refine a general situation with more particularized
ones, once its conditions have been asserted. On the other hand, prediction edges
inform about the following admissible states within a situation graph from a given
state, including the maintenance of the current state by means of self-prediction
edges. Thus, the conjunction of these edges allow for defining a map of admissible
paths through the set of considered situations. Figure 7.19 shows a part of an SGT
that aims at identifying situations such as an abandoned object or a theft.

7.4 Summary

HEU is still an open problem today. Its particular solutions are used in numerous ap-
plications such as video surveillance, video and image search, or human–computer
interaction, among others. In these domains, our main hypothesis has been that to
correctly conduct HEU, it is required to model the relationships between the hu-
mans and the environments where the events are happening. Specifically, human
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Fig. 7.19 SGTs are used to model situations and behaviors as predefined sequences of basic
events. The example of Situation Graph shown, part of a SGT, allows for complex inferences
such as abandoned objects, chasing or thefts, by means of high-level note predicates

events can be understood by combining the knowledge of the global scene and ob-
jects nearby together with the detected human poses and their analyzed motion.
In this chapter, we (i) inferred from the related work a proper general framework
for the analysis of human events, (ii) analyzed the importance of interactions and
context in activity recognition, and (iii) proposed a top-down modeling scheme to
incorporate appearance, context, and motion information toward the assessment of
complex human behavior patterns.

Our general methodology for HEU has been developed based on a novel tax-
onomy comprised by the terms entity, movement, action, activity, and behavior.
This proposal covers the whole process of scene understanding, ranging from scene
observation (i.e., perception) to scene interpretation (i.e., cognition). For this pur-
pose, different levels of semantic interpretation have been established to bridge the
gap between pixels and video hermeneutics. The final scheme has been designed
as a combination of bottom-up inference of context and a top-down integration of
appearance, motion, and scene interactions using a logical reasoner (FMTL) over
temporal-contextual models (SGT). New trends on HEU suggest that a plausible
path to follow involves to understand scene context by means of an integrative com-
bination of multiple cues like the one proposed.

The following sentences summarize some of the important ideas about HEU that
can be extracted from this chapter.

• Context. While traditional approaches in HEU use only information about the
human itself, recent trends show that it is much more beneficial to analyze a
human behavior in context.

• Multilevel. Different semantic levels of HEU require considerations of context at
different levels to carry out a proper analysis.

• Taxonomies. In complex problems involving sequential stages, each one having
characteristic properties, such as HEU, taxonomies are useful for capturing and
organizing the knowledge and facilitating further procedural analyzes.
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• Semantic models. Prior models, be they deterministic or probabilistic, ease in
great measure the formalization of complex properties and contexts, although
they require human experts to model such constraints.

7.5 Questions

• What is human behavior and which subclasses of it are there? Why do we need
to differentiate among them?

• Is it necessary to include appearance categories in a taxonomy of human events?
If so, why? If not, why not? Think about examples of appearance detections which
might be fundamental for the recognition of human events in context.

• Why do some particular types of human behavior require mainly pose informa-
tion? Which types of behavior require motion and interaction models for their
proper understanding?

• Why do we need to combine bottom-up inference and top-down modeling to
accomplish HEU?

• Propose a minimal conceptual model consisting of a set of FMTL rules and
a SGT, which is capable of, for example, detecting people falling down from
a horse in image sequences.

7.6 Glossary

• Bag of Words is a simplifying assumption used in many domains including com-
puter vision. In this model, a image (or a region of interest) is represented as an
unordered collection of visual features (“words”), disregarding their spatial loca-
tion [6].

• Histogram of Oriented Gradients is a descriptor that encodes information about
distribution of local intensity gradients of the region of interest (object, image,
human, etc.) [8].

• Pyramid of HOG is a concatenation of HOG calculated on different resolution
levels over the region of interest [7].

• Fuzzy Metric Temporal Horn Logic is a form of logic in which conventional for-
malisms are extended by a temporal and a fuzzy component. The first one permits
to represent, and reason about, propositions qualified in terms of time; the last one
deals with uncertain or partial information, by allowing degrees of truth or false-
hood [38].

• Situation Graph Tree is a deterministic model that explicitly represents and com-
bines the specialization, temporal, and semantic relationships of its constituent
conceptual predicates. SGTs are used to describe the behavior of an agent in
terms of situations he can be in [14, 38].

• Human Event Understanding is a framework to guide the assessment and eval-
uation of human behavior in image sequences, which takes into account spatial,
temporal, and contextual properties of the observed scene.
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Chapter 8
Social Signals: A Psychological Perspective

Isabella Poggi and Francesca D’Errico

8.1 Introduction

Along the whole twentieth century, a large part of psychology was devoted to ex-
plicate and measure intelligence, meant as the set of cognitive skills (memory, in-
ference, insight, reasoning) that allow humans to solve problems and adapt to envi-
ronment. Only at the end of the century, after the growth of the cognitive over the
behaviorist approach and the rejoining of emotion and cognition, studies by Salovey
and Mayer [152], Damasio [53] and Goleman [81] showed that cognitive processes
like decision making cannot do without the contribution of emotional processes and
introduced the notion of “emotional intelligence”, the capacity of expressing one’s
emotions, understanding others’ emotions and being empathic with them, as a great
part of a human’s capacity for adaptation. At the beginning of the third millen-
nium the notion of “social intelligence” was finally proposed: a set of skills that
include understanding of other people’s feelings, seeing things from their point of
view (Goleman [82]) and giving them effective responses (Gardner [79]), but also
Machiavellian intelligence, the capacity to understand what others want to better
manipulate them. A notion taken up as particularly relevant in managerial psychol-
ogy, and viewed as a weapon for leadership, so much as to be seen as “the science
of success” (Albrecht [2]). An important part of Social Intelligence is the delivery
and comprehension of Social Signals, the signals that inform about an ongoing in-
teraction, or a social relationship, an attitude taken or an emotion felt toward another
person.
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8.2 The Dawn of Social Signals. From Computer Science to
Social Psychology and Back

In 2007 Alex Pentland, working at MIT in the areas of computational social science
and organization engineering, first introduced the notion of “social signal process-
ing” and applied signal processing techniques to what he called “social signals”,
the nonverbal aspects of communication including interactive and conversational
dynamics, to predict the outcomes of a negotiation or of a speed date within its
very first minutes (Pentland [120]; Curhan and Pentland [52]). Later, he contended
that prosodic emphasis, mirroring, conversational turn-taking, and activity level, are
“honest signals” that allow to predict the outcomes of speed dates, negotiations,
and other types of social interaction (Pentland [121]). These works were primarily
based on findings of social psychology concerning the role of nonverbal behavior
on conversation and social interaction. A first input was an intriguing study by Am-
bady and Rosenthal [5], “Half a minute: Predicting teacher evaluations from thin
slices of nonverbal behavior and physical attractiveness”, which demonstrated that
judgments of personality are based on very “thin slices” of nonverbal behavior, thus
reinforcing Asch’s hypothesis about the strong human capacity to form an accurate
impression of people as a precondition to social life [10]. A silent video of 30 sec-
onds was a strong predictor of teacher’s evaluations at the end of semester; but even
when replicated with a shorter video of six seconds, results confirmed the “thin
slice” hypothesis.

The idea of “social signals” was also inspired by studies on the role of nonverbal
behavior in impression formation. For example, smile and rapid body movement
were judged as extraversion cues (Kenny et al. [103]), while physical attractiveness
predicted sociability and social competence (Eagly et al. [66]). Similarly, within
research on self-presentation (DePaulo [57]) nonverbal behavior was seen as a cue to
impression management often intentionally driven. As pointed out by Goffman [80],
“tie-signs” are used by people in personal relationships to make clear or to reinforce
the nature of a relationship: a man gazes or orients his body toward his interlocutor
more frequently if the interlocutor is a female than a male, and in the former case
he does so more often during an intimate than an impersonal conversation.

Other contributions come from studies on facial expression (Ekman and Friesen
[69]; Ekman et al. [70]) and on gestures and other modalities (Rosenthal et
al. [150]). Ekman [71] distinguished facial movements into emotional signals and
conversational signals; the former, not totally under voluntary control, leave room
for the detection of deception through leakage cues and deception cues: in leakage,
due to cultural or social norms an unfelt facial expression is only superimposed to
the expression of the really felt emotion, thus revealing the information concealed;
while deception cues are micro displays so brief that they are very difficult to detect
(DePaulo et al. [58]).

Much of the research above highlighted the relevance of automatic processes that
are not under conscious control (Bargh [13, 14]) but nonetheless heavily determine
social perception and social cognition.
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Based on these works, since 2009, the European Network of Excellence SSPNet
has put the bases for a new research field in “Social Signal Processing”, concerning
the cognitive modeling, analysis and synthesis of social signals.

Although much empirical research has been done in social psychology, apart
from some first work in the SSPNet (Cowie et al. [33]; Vinciarelli et al. [173]; Poggi
and D’Errico [133, 137]), no clear definition of “social signals” has been given yet.
But to set a new research field, a clear definition is needed of what is inside and
what is outside the field. In this chapter we provide a definition of social signals and
present some recent studies in this area, taking the perspective of a model of mind
and social action in terms of goals and beliefs.

8.3 Social Cognition. How Others Are Represented in Our Mind
and Our Brain

A central area of research to understand the processes that allow the perception,
memorization and representation of social signals in the human mind is “Social
Cognition” a psychological approach that studies how people interpret and attribute
meaning to one’s own and others’ behaviors. The pioneering work of Bartlett [18]
on schemes pointed out a central axiom in the social cognition approach: the rep-
resentational nature of our knowledge. He demonstrated that memory reconstructs
its stored events, since it is oriented to making memories coherent with reference
schemes. But also categories like status, role, human groups, at least in their de-
fault working process, are uncontrollable and unintentional, because they respond
to laws of cognitive economy [75]. Perception, memorization, judgment follow an
automatic path, in absence of “motivation” and “opportunity” of time and resources;
categories and schemes influence information on the basis of accessibility in terms
of past experience or primacy effect (i.e., what is seen/heard first: Higgings and
Rholes [92]); and, as demonstrated by Asch [10], to have a coherent description
of a person we organize impressions as a whole, starting from few first elements.
Finally, categorization—the clustering of different elements on the basis of one
shared condition—simplifies social perception and social judgment by making ex-
ternal stimuli more accessible and triggering sets of information focused on partic-
ular objects, interrelated and organized in schemes (Fiske and Taylor [76]). Even
the discriminative behavior toward outgroup members is generally triggered on the
basis of automatic activation of belongingness categories (Bargh [15]).

Research in neuroscience has investigated the neural underpinning of social cog-
nition by demonstrating that processes involved in social perception and behavior,
like perception of conspecifics, memory and behavior concerning others, activate
different neural systems from the perception of objects (Adolphs [1]). And the dis-
covery of mirror neurons—the neurons activated not only by one’s motor action,
but also by the perception of action in a conspecific (Rizzolatti and Arbib [149])—
demonstrated how humans are programmed for empathy (Gallese [78]), the rep-
resentation of self and others (Uddin et al. [169]), learning from others through
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imitation (Meltzoff and Decety [112]; Iacoboni [94]), and joint action (Vesper et
al. [171]). A further demonstration of their importance comes from studies that sus-
pect impairment of these structures in autism (Williams et al. [178]; Oberman et
al. [118]), where the capacity for a Theory of mind (a representation of the other’s
mental states, like emotions, goals and beliefs) is disrupted (Baron-Cohen [17];
Gallese [78]).

In this work we adopt the view of social cognition put forward by a model of
mind and social action in terms of goals and beliefs.

8.4 A Goal and Belief Model of Mind and Social Action

In the model of mind, social action and communication designed by Castelfranchi
and Parisi [42], Conte and Castelfranchi [50], Castelfranchi and Poggi [43] and
Poggi [128, 129], the life of any natural or artificial, individual or collective system
consists of pursuing goals, i.e., regulating states that, as long as they are perceived
by the system as not being realized in the world, trigger its action. To realize a goal
a system performs plans, i.e. hierarchical structures where all actions are means
for goals and possibly superordinate goals (supergoals). This requires internal re-
sources (beliefs and action capacities) and external resources (material resources,
world conditions). When a system lacks the power to achieve goals on its own due
to lack of necessary resources, it may depend on another system endowed with
those resources, and need the other to adopt its goals, i.e., help to achieve them.
The social device of adoption—the fact that a system pursues another’s goal as its
own—multiplies the power to achieve goals for all systems. Further, a system may
need to influence another (induce it to pursue some goals), for its own sake (e.g., a
master giving orders to his slave) or for the sake of the influenced system (a father
giving advice to his child), or both (two colleagues trying to persuade each other to
find a common solution).

Beliefs are an essential resource to achieve goals. A belief is information about
some state of the external world or of the system (like “it is sunny now” or “I am
hungry”), represented in a sensorimotor or conceptual format, not necessarily in a
conscious way. Beliefs are necessary to choose the goals to pursue, assess precon-
ditions and adequate plans; hence the necessity to acquire, process, store and use
beliefs, for all systems, including animals and machines, but more so for humans.
Humans and higher animals acquire beliefs through perception, signification and
communication, and process and store them in long-term memory, connecting them
in belief networks through links that denote time, space, part-of relations, class-
example relations, cause, goal, condition, and thus generating inferences, i.e., new
beliefs drawn on the basis of others that have been acquired through perception or
retrieved from memory. The difference between perception and the other sources
of beliefs is that while in the former the information drawn is, so to speak, not dis-
tinct from the perceptual information (from seeing clouds I come to know there are
clouds), in inference, signification and communication there is a splitting between
the information drawn and its source: from mother saying Stay home, I understand
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mama wants me home (communication), from seeing clouds I understand rain soon
(signification, meaning), from rain I predict mama won’t let me out (inference).

In signification and communication, from a perceivable stimulus, a “signal”, we
draw a “meaning”. A meaning can be seen as a privileged and pre-determined in-
ference: when a perceivable stimulus has generally given rise to the same inference,
this has become linked in memory to that perceivable stimulus and is systematically
drawn from it, thanks to a stable connection shared by a group through biological
coding or cultural learning.

8.5 Social Signals. A Definition

We define a signal as any perceivable stimulus from which a system can draw some
meaning, and we distinguish informative from communicative signals: a commu-
nicative signal is a perceivable stimulus produced by an animate system (a self-
regulated Sender) having the goal to provide information to another system (Ad-
dressee); an informative signal is one from which some system (Receiver) draws
some meaning without necessarily the intention, or even the existence, of a Sender
intending to convey it.

We define signals as “social signals” on the basis of their meaning, i.e., their
concerning “social facts”. A social signal is “a communicative or informative signal
which, either directly or indirectly, provides information about “social facts”, that
is, about social interactions, social attitudes, social relations and social emotions
(Poggi and D’Errico [133, 136]).

8.5.1 Social and Non-social, Informative and Communicative
Signals

Suppose in the mountains you see on the ground some splinters from the horns of
a Big Horn; if you understand there has been a contest between two big horns, this
is for you a social informative signal: social because it concerns a social interaction
between Big Horns, and informative because the Big Horn did not have the goal
to inform you of the contest. But if you simply see the footprints of one Big Horn,
and hence you can tell he crossed the wood, this is an informative non-social signal.
Again, if during a class break I see that some children are close to each other form-
ing a circle, but one is slightly outside the circle, I might predict that this child is
somewhat isolated from the group, possibly at risk of being bullied, though no one
in the group wants to communicate to each other or to that child that he is somewhat
isolated. The children’s spatial location is a signal informing, not communicating
on purpose, about some social relation.

Now suppose you observe mimicry between two teenagers talking together: each
inadvertently imitates the other’s movements and posture; a signal of syntonization.
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For you, as an external observer, this is an informative social signal, since they are
not communicating this to you. Between them, instead, this counts as a commu-
nicative social signal, because through mimicry they communicate their reciprocal
affinity to each other.

8.5.2 Communicative Signals and Their Communicative Goals

In communicative signals (both social and non-social ones), the goal of convey-
ing information is not necessarily a conscious intention, i.e., a deliberate and aware
communicative goal of an individual, as is generally the case, in humans, for verbal
language or some codified gestures. Animals’ signals are governed by biological
goals of communicating, but also in humans the goal to convey information may be
an unconscious goal, or even a social end or a biological function. Some examples:
if I have a bad opinion of you because you offended me, I can insult you delib-
erately; in this case my goal of communicating my negative evaluation of you is
conscious: I not only want to offend, but I also know I want to offend. An intention
is a conscious goal, i.e., one not only represented, but also meta-represented in my
mind, while an unconscious goal is one I have but I do not know (I somehow con-
ceal from myself) I have it. Take this case by Ekman and Friesen [69]: a student is
being treated in an offensive way by her professor, to whom she cannot obviously
show anger; so she is forced to answer him in a polite way. But at the same time
on her knee she is extending her middle finger in an obscene insulting gesture that
contradicts her hypocritical politeness. Here, if at a conscious level she does not
want to offend, at the same time she does have the goal to express her anger and to
insult in turn; but if due to her family education she is a very polite girl, she might
not even be aware of this latter goal. If this is the case, her extended middle finger
is a communicative social signal, but one triggered by an unconscious goal. Like
mimicry, the imitation of one’s interlocutor’s movements generally occurs without
awareness.

Some communicative social signals are governed by social ends, that is, goals not
primarily of an individual, but of the society: for instance those that convey infor-
mation about social roles and social identities, such as uniforms or status symbols.
A cop’s uniform tells us, on behalf of the whole society, that the one who wears it
plays a particular social role; a Ferrari tells us its driver belongs to a group of very
rich people. Other communicative social signals governed by biological goals are
those of sexual identity (a man’s beard), sexual readiness (a stickleback’s reddened
abdomen, a woman’s pupil dilation), and some emotional signals like blushing (see
Sect. 8.7.4.1).

In general, many entities and events can work as social informative and commu-
nicative signals: individual and collective actions (a letter of complaint, a strike);
morphological features, either transitory (blushing that expresses shame) or per-
manent (a woman’s breast as a signal of sexual identity); objects (a Ferrari or a
uniform), but also combinations of actions: simultaneous (many people applauding
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at the same time) or sequential (mimicry). Of course, while individual actions are
generally driven by individual conscious goals of communicating, morphological
features are ruled by biological ones, and objects often by social ends. For actions
of more people, those that are pre- and co-ordinated, like a strike, may still have a
conscious goal, thus being communicative social signals; but if thousands of people
click on the same video on Youtube, this is an informative social signal.

This has important consequences as to their reliability. With deliberate commu-
nicative signals we come to know something from someone else, who potentially
might want to mislead; on the other hand, involuntary signals, that is, informative
signals and communicative signals are not under conscious control; they may be
subject to misunderstanding, but in principle not to cheating. (Unless, of course,
they are only apparently involuntary, that is, produced by someone deliberately but
pretending not to be deliberate.)

8.5.3 Direct and Indirect Social Signals

Sometimes information about social facts is not conveyed explicitly but in an indi-
rect way. Here we contrast the literal to the indirect meaning of signals. According
to Poggi [128], in communicative signals of whatever modality (gesture, facial ex-
pression, gaze, posture, physical contact), the relation between signal and meaning
may be either “codified” or “creative”. The former case implies a stable connection
in long-term memory between a specific perceivable stimulus and the correspond-
ing belief, with a list of these signal-meaning pairs making a “lexicon” (for example
a lexicon of gestures, head movements, gaze items) possibly similar to the mental
lexicon of words for a verbal language. In the latter case, the signal—meaning link
is not represented once and for all, but can be deduced on the basis of systematic
rules: for instance, an iconic gesture is constructed (and a meaning is drawn from
it) on the basis of the similarity between shape and movements of hands and the
content referred to by the gesture. This meaning, whether codified or creative, is the
“literal meaning” of a signal. But when the signal is produced (and understood) in
context, information coming from context may combine with that literal meaning
and, through inferential processes, give rise to further, “indirect” meanings, which
differ across contexts.

Some examples of indirect meanings. A is presently depressed, and her state of
sadness and depression is clearly signaled by her facial expression (Cohn [48]). This
is a communicative signal, but not a “social” one, because sadness is not a “social
emotion” in itself (whereas, for instance, being “sorry-for” someone might be one).
Yet, from her depression, B might infer that A does not want to talk with B. In this
case the signal of depression is an indirect social signal of interaction. Again: take
a teacher, who, in total good faith, overhelps her pupil, i.e., helps him to complete a
task he could well complete by himself (D’Errico et al. [61, 132]); the pupil might
finally infer a negative evaluation of his own skills. This is then an indirect informa-
tive social signal. But take (another real example) an amateur orchestra conductor
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during a concert rehearsal; the concert sponsor, who is the habitual conductor of that
orchestra and does not trust the amateur conductor’s skills, fearing a potential fail-
ure, wants to convey the orchestra players that they should not follow him because
he is not a good conductor, and staying behind the amateur conductor he makes con-
ducting gestures too. While the teacher’s case was an informative social signal, not
sent on purpose, this is an indirect communicative social signal, since the inferences
drawn by the Addressees (the players) are intended by the Sender (the sponsor).

8.6 Modalities of Social Signals

Humans produce Social Signals in all modalities, words, prosody and intonation,
gestures (McNeill [110]; Kendon [102]), posture (Condon and Ogston [49]), head
movements (Cerrato [44]), facial expression; gaze (Argyle and Cook [7]; Poggi
[128, 129]) physical contact and spatial behavior (Montagu [115]; Hall [87]), and
by their sequential and simultaneous combination make multimodal “discourses”
(Poggi [128]). Let us overview studies in these modalities.

8.6.1 Verbal and Vocal Features

An obvious case of social signals are words and sentences, mainly those expressing
social acts, feelings and evaluations. Research in the detection of linguistic social
signals includes “sentiment analysis” (see for example Wilson et al. [180]; de Ro-
sis and Novielli [55]) and the analysis of “subjectivity” (Wilson and Hofer [179])
which, after distinguishing objective from subjective utterances, those expressing
positive and negative “private states” (opinions, beliefs, sentiments, emotions, eval-
uations, uncertainties, speculations), describe them in terms of the state of an expe-
riencer holding an attitude toward a target (Wiebe [176, 177]). “Sentiment analysis”
aims at recognizing the viewpoint that underlies a text, by classifying the polarity
(positive/negative) of its words and sentences, possibly by means of thesauri or se-
mantic dictionaries such as WordNet,1 and by measuring their frequency. A first
relevant issue here is to take into account the valence shifters: modifiers that change
the intensity of a term (intensifiers and diminishers) or its orientation (negations).
It is different, of course, to say “Jane is nice” or “Jane is very nice” or “Jane is not
nice”. Another issue is the attribution of the mental states mentioned to its source: if
I say “I like Jane”, the subjective state is felt by me, while if I say “I know you like
Jane” the state of liking is attributed not to me but to you, which can be detected
thanks to verbs of saying or subordinate clauses. But purely syntactic or lexical cues
are not sufficient to capture more subtle ways to express opinions or evaluations: the
analysis of context, for example of previous sentences in a debate or an interview,
is necessary to draw the right inferences (de Rosis and Novielli [55]).

1http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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The analysis of linguistic subjectivity has been used in marketing to detect cus-
tomers’ orientations, in persuasive natural language processing (Guerini et al. [85])
but also in dialogues to detect role distribution (Wilson and Hofer [179]).

Another important domain of Social signal processing are the prosodic aspects of
speech, which include temporal features, like pauses, vowel length, speech rhythm,
articulation rate, but also acoustic features such as pitch, vocal intensity and voice
quality.

The first important exploitation of signal processing techniques in this domain
were Pentland’s studies, which from correlations between participants’ acoustic fea-
tures detected activity level, influence and mirroring, which signal particular role re-
lations and interaction outcomes. Pioneering studies in psychology (Scherer [154];
Scherer and Scherer [155]) on the acoustic cues to personality features recently gave
rise to signal processing studies in which prosodic features like pitch, formants, en-
ergy and speaking rate were used to predict personality (Mohammadi et al. [114]).
Following the seminal work of Sacks et al. [151] and Duncan and Fiske [65] in con-
versation analysis, which showed how turn-taking behavior is a cue to the kind of
social interaction, in a discussion, automatic analysis of conversations has recently
shown how the relations between turns of different speakers (their smooth alterna-
tion vs. their overlapping) can tell us something about the recognition of roles in the
discussion—who is the protagonist, the attacker, the supporter—(Vinciarelli [172]),
the identification of dominant individuals (Jayagopi et al. [96]), and of fragments of
conflictual interactions.

For example, when speakers start to talk faster, the general loudness of conver-
sation increases, and when the turns of two participants overlap, especially if the
turn overlapping lasts longer than expected, all this will tell you the conversation
is becoming conflictual. Recent work in automatic conflict detection, beside taking
into account turn-taking flow, identifies steady conversation periods, built on the du-
ration of continuous slots of speech or silence, thus capturing the attitude of some
participant to take the turn even when the interlocutor has not finished speaking (Pe-
sarin et al. [123]). Results show that speech overlapping, especially if it lasts longer,
clearly discriminates between conflictual and non-conflictual discussions.

8.6.2 Gestures

A “communicative gesture”, or simply “gesture”, is any movement of hands, arms
or shoulder produced by a Sender to convey some meaning (Poggi [126]). On the
signal side, any gesture can be analyzed in terms of a set of parameters: its hand-
shape, location (the place over or around the Sender’s body where the gesture is pro-
duced), orientation of palm and metacarp, and movement, including direction and
trajectory, but also velocity, tension, repetition, fluidity (the so-called “expressivity
parameters” of Hartmann et al. [89]), which generally impress emotional nuances to
the gesture. Gestures are a very powerful means of expression and communication;
they not only convey many types of meaning, but also contribute in the elaboration
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and phrasing of thought (McNeill [110]). Types of gestures differ in terms of various
criteria.

For instance, they can be “creative” (created on the spot) versus “codified”
(steadily stored in memory, like words in a lexicon). We make a creative gesture
when, depicting the shape or imitating the movements of an object, we produce an
“iconic” gesture that represents meanings by reproducing their connected images.
Typical codified gestures are “symbolic gestures” that convey the meaning of spe-
cific words and sentences, and have a shared verbal translation in a given culture.
Gestures can also be either “motivated” (iconic or natural) or “arbitrary”. A ges-
ture is “iconic” when there is relation of similarity between form and meaning (e.g.,
beating hands like wings to mean “bird”, or mimicking a cat climbing on a drain-
pipe), and “natural” when the relation is one of mechanic determinism (the gesture
of elation of shaking up arms, determined by the physiological arousal of this emo-
tion). A gesture is “arbitrary” if you cannot guess its meaning from its form. Most
“symbolic gestures” are arbitrary, since, being codified in memory, they can afford
not being iconic.

Another criterion to distinguish gestures is a semantic one. Like all signals, ges-
tures may convey three types of meaning (Poggi [128]): information about the World
(concrete and abstract entities and events, and their properties and relations), the
Sender’s Identity (sex, age, cultural roots, ethnicity, personality), and the Sender’s
Mind (his/her beliefs, goals and emotions concerning ongoing discourse). For ex-
ample, among symbolic Italian gestures about the World, the gesture of extended
index fingers, with palms down, getting closer to each other, paraphrased as “se
l’intendono” (they have an understanding with each other) or “c’e’ del tenero” (they
are lovers) may be viewed as a “social signal”, since it concerns a social relation-
ship, while extended little finger up, “thin”, denoting a physical feature of a person,
is not a social signal. Right fist beating on left palm, which means “stubborn”, a
personality trait of not being easy to persuade, is “social”. Gestures informing on
the Sender’s identity, like fist raised up (= I am a communist), to claim one’s be-
longing to a political or ideological group; or hand on heart, a self-presentation
of one’s positive moral identity, may be viewed as “social gestures”. Within infor-
mation on the Sender’s mind, pulling back flat hands with palms forward, which
means “I apologize”, and then greeting gestures, handing something, or showing a
seat, communicate the performative part of a social act. Raising a hand to ask for
the turn, or pointing with open hand to solicit someone to speak fulfill turn-taking
functions. Among “creative” gestures, those invented on the spot and used during
discourse, good candidates to be “social” gestures are those pointed out by Bavelas
and Gerwing [19]: “interactive gestures” (for instance, pointing at the Interlocutor to
acknowledge his suggestion), and “collaborative gestures” (like indicating the fold
of a virtual origami depicted by your interlocutor in the air): they are “a dialogic
event, created by the joint actions of the participants” (Bavelas and Gerwing [19],
p. 292). But the “social” information contained in a gesture need not necessarily
lie in its overall meaning, but also simply in some of its parameters. Suppose I am
giving directions to my husband about where to find a tobacco shop, but I am an-
gry at him for his smoking too much: the direction of my gesture tells him where
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the tobacconist is, but its jerky movement might tell him my anger; the handshape
and direction of movement inform about the world, but the expressive parameter of
velocity and non-fluidity is a “social signal” of a social emotion.

One more case of a “social gesture”. When a speaker makes gestures to illustrate
his narrative, the interlocutor sometimes produces the same gestures of the narrator
or different ones that anticipate ongoing narration, to show he is following and even
predicting subsequent development. These are simply iconic gestures, concerning
shapes or movements, but their use is “social”, since by them the interlocutor gives
a backchannel, thus helping social interaction.

8.6.3 Head movements

Head movements have been studied in a marginal way compared to facial expres-
sion and gestures (Heylen [91]), although they have lots of semantic, narrative and
discursive functions in the process of communication. McClave [109] analyzed head
movements in relation to their lateral movement and their orientation, by attribut-
ing to the former meanings of intensification, inclusion and representation of un-
certainty, and to the latter the function of locating referents in an abstract space.
According to Kendon [101], the head shake is anticipated or postponed to nega-
tion, for rhetorical purposes. Dittmann and Llewellyn [62], Hadar et al. [86] and
Cerrato [44] focused on the interpersonal function represented by the synchrony
voice-nod, which corresponds to the wish of the listener to speak or the wish of the
speaker for feedback (Dittmann and Llewellyn [62]; Cerrato [44]), and measured
the duration of the nod in relation to speech rate, while Boholm and Allwood [27]
considered the functions of head nod and head shake repetition. Heylen [91] and
Cerrato [44, 45] consider the nod as a backchannel signal that indicates acceptance,
agreement and submission; maybe for this reason, in the context of power and gen-
der communication, it is more frequent for women than men and for low than high
status people (Hegen-Larsen et al. [90]). Cerrato [44] pointed out the most frequent
head nod functions (giving continuation, giving agreement, requesting feedback and
focus) and showed that a nod of “giving continuation” (0.40 msec) is briefer than
one “giving acceptance” (0.60 msec), while Hadar et al. [86] classified the “syn-
chrony” movements as having low amplitude and short duration compared to “an-
ticipation” movements, of low frequency and large amplitude. Beside analyzing the
head nod from the point of view of the signal, recent research emphasizes the effects
of nodding in increasing agreement (Wells and Petty [175]) and changing attitude.
Briñol and Petty [31] demonstrated that if one nods, as opposed to shaking his head,
while another speaker is delivering a persuasive message, the headnod brings about
a more persuasive effect than a headshake, since it increases confidence in oneself,
becoming an internal cue to the validity of the message heard (self-validation hy-
pothesis).

Poggi, D’Errico, Vincze [144] define a nod as a vertical head movement in which
the head, after a slight tilt up, bends downward and then goes back to its starting
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point. It is a holophrastic signal, since it conveys the meaning not of a single word
but of a whole communicative act, including performative and propositional content
(Poggi [128, 130]), which can be paraphrased, depending on the context, as “I con-
firm”, “I agree”, “I thank you” or other. This means that it is a polysemic signal, i.e.,
one corresponding to two or more meanings that are not completely unrelated but
share some common semantic element.

Based on the analysis of 150 nods from the “Canal 9”, a corpus of political de-
bates available on the portal of the European Network of Excellence SSPNet,2 a ty-
pology of nods was outlined, with each type characterized by subtle cues in other
modalities (like parallel smile or blink behaviors) and by the context of production.

Some nods are produced by the present Speaker, some by the Addressee and
some by a Third Listener, a simple bystander whom the present speaker is not ad-
dressing. For the Interlocutor’s nods, those produced while the present Speaker is
talking are nods of backchannel, while for those after the Speaker has finished talk-
ing the meaning depends on the speech act performed by the Speaker in the previous
turn. So, like for yes, a nod following a yes/no question counts as a confirmation of
the Speaker’s hypothesis, one following an assessment or a proposal conveys agree-
ment or approval; it is a permission after a permission request, submission after
an order, acknowledgement or thanks after a prosocial act like an offer, and finally
conveys a back-agreement (when the Listener agrees with what he had previously
thought) or a processing nod (something like scanning the steps of one’s reason-
ing). Also the Third Listener’s nods convey a confirmation after an information, and
agreement after an evaluative opinion.

The Speaker’s nods, performed while holding the turn, include two broad fam-
ilies, with two semantic cores, respectively, of importance and of confirmation.
Within the former, we may nod to emphasize what we are saying (emphasis), mean-
ing “this part of my sentence or discourse is particularly important”: the head goes
up and down but also slightly forward, in correspondence with a stressed syllable
and gaze toward the Interlocutor. Particular cases of emphasis are when we nod in
correspondence of all the stressed syllables of our sentence (baton), and while listing
(list), to convey we are mentioning items of the same list. Other nods of the Speaker
are linked to confirmation. A nod while looking at the Interlocutor and frowning,
or with oblique head, slightly tilted sidewise (interrogative nod) is a request for
confirmation, just as a “yes?” with interrogative intonation, and can be used also
as a rhetorical question (Rhetorical interrogative nod). Finally, a nod with an inter-
rogative expression may ask confirmation that the other is following (backchannel
request).

8.6.4 Gaze

Beside studies concerning vision (Yarbus [181]) gaze has been investigated, in
psychology and communication research, as to its role in face-to-face interaction

2http://sspnet.eu/

http://sspnet.eu/
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(Kendon [99]; Argyle and Cook [7]; Goodwin [83]; Bavelas and Gerwing [19]; All-
wood et al. [4]), in narration and persuasion (Poggi et al. [141]; Heylen [91]; Poggi
and Vincze [139]) and as to evolutionary differences in gaze between humans and
apes (Tomasello et al. [163]).

8.6.4.1 Gaze and Social Attention

Most studies on gaze focus on the genuinely social and interactive functions of gaze
direction. Gazing at a person signals attention to the other, but also solicits shared
attention (Argyle and Cook [7]; Trevarthen [168]). When a child wants to attract
his mother’s attention to something, he alternatively gazes at her and at his object
of interest. That autistic children tend not to gaze to their interlocutor has led to
think that mutual gaze is linked to the construction of the Theory of Mind (Baron-
Cohen [16]) the capacity to imagine the other’s mental states.

If gazing at another is the core of social attention, specific uses of gaze direction
regulate face-to-face interaction, working as an important set of signals for turn-
taking and backchannel: by looking at the interlocutor we ask him to follow or to
provide feedback; by averting gaze we tell we are retrieving words, and by doing
so we keep the floor; while if we are the interlocutor, by gazing at the speaker we
assure him of our interest and attention.

These findings gave rise to gaze tracking studies to detect mutual attention, in-
teraction regulation, and early symptoms of autism (Boraston and Blakemore [28]).

In the field of Embodied Agents, the role of gaze direction, especially if com-
pared to face and body direction, has been stressed as a sign of interest (Peters et
al. [124]), and its use in face-to-face interaction and backchannel has been simulated
in Virtual Agents (Cassell [39]; Bevacqua et al. [25]).

8.6.4.2 Lexicon and Parameters of Gaze

Beside establishing shared attention and the setting for interaction, gaze conveys
specific meanings. Eibl-Eibesfeldt [67] and Ekman [71] analyzed some conversa-
tional, emotional and syntactic functions of the eyebrows; Sign Language scholars
(Baker-Schenk [12]) studied the syntactic and semantic role of gaze in ASL (Amer-
ican Sign Language) and LIS (Italian Sign Language). For the Hearing (non-deaf)
people, the repertoire of gaze meanings was investigated by Kreidlin’s “Oculesics”
[105], and Poggi [128] proposed to write a lexicon of gaze, arguing it is a commu-
nicative system as complex and sophisticated as facial expression or gesture can be.
In gaze, the signals—the perceivable stimuli an interlocutor can see and interpret
by attributing them some meaning—are morphological features and muscular ac-
tions exhibited in the eye region, which includes eyebrows, eyelids, eyelashes, eyes
and eye-sockets. The meanings are imagistic or conceptual representations linked to
those signals.

The parameters proposed by Poggi [128] to analyze the signals of gaze are:
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1. movements of the eyebrows (e.g., eyebrow frowning means worry or concentra-
tion, eyebrow raising, perplexity or surprise)

2. position, tension and movement of the eyelids (in hate one lowers upper eyelids
and raises lower eyelids with tension; in boredom upper eyelids are lowered but
relaxed)

3. various aspects of the eyes: humidity (bright eyes in joy or enthusiasm), red-
dening (bloodshot eyes in rage), pupil dilation (a cue to sexual arousal); focus-
ing (staring out into space while thinking), direction of the iris with respect to
Speaker’s head direction and to Interlocutor (which allows us to point at things
or persons by using eyes, like we do with gestures)

4. size of eye sockets (expressing tiredness)
5. duration of movements (a defying gaze focuses longer over the other’s eyes).

On the meaning side (Poggi [128]), fragments of a lexicon of gaze were de-
scribed, within which several uses of gaze convey “social” meanings. Ethnicity for
instance is conveyed by eyelid shape; bright eyes reveal aspects of personality. Some
gaze items communicate the performative part of our sentence (you stare at the In-
terlocutor to request for attention), others, turn-taking moves (you gaze at present
Speaker to take the floor) and feedback (frowning expresses incomprehension or
disagreement, raising eyebrows with half-open eyes, perplexity). The meanings of
specific gaze signals have been investigated by empirical and observational studies.
In a study on the degrees of aperture of upper eyelids (wide-open, half-open, half-
closed) and lower eyelids (lowered, default, raised) it was found that the half-open
upper eyelids convey de-activation, referred to a physical (sleepy, exhausted), cog-
nitive (how boring) or emotional state (sad, I am sorry, I couldn’t care less), but the
combination with raised lower eyelids adds a component of effort (I am trying to
remember, I am about to cry) (Poggi, D’Errico, Spagnolo [142]).

Within eye-closing behaviors, the blink, a rapid closing of the eyes that in general
has a bare physiological function of keeping standard eye humidity, may convey
agreement, and accompanying or substituting a nod (Vincze and Poggi [174]). Yet,
blink rate has also been found to be a cue to deception: people while deceiving
are concentrated and do not blink, but when the deception is over they blink more
frequently to compensate (Leal and Vrij [106]).

On the other hand, the wink, a rapid asymmetrical closing of a single eye, con-
veys allusion and complicity. It addresses only one specific Addressee, with whom
the Sender feels syntonization and complicity, while excluding others: it then ap-
pears furtive and allusive, implying inclusion of Sender and Addressee in the same
group, and exclusion of a third party (Vincze and Poggi [174]). Sometimes, mainly
if accompanied by a smile, it conveys playful complicity and can be exhibited also
(or mainly) to the third party, thus making it clear that the Sender is just kidding. The
warning wink, instead, which warns a confederate (the Addressee) about something
concerning an “enemy”, must exclude the enemy and hence be concealed from him,
to be perceived only by the confederate.



8 Social Signals: A Psychological Perspective 199

8.6.5 Posture

Postures are complex and multifaceted social signals expressing interpersonal atti-
tude, relations and emotions. In their description various parameters must be taken
into account: arms (open, closed, on hips), trunk (backward, forward, and lateral),
head (downward, upward and lateral), and legs (open, crossed, extended).

Concerning their meaning, postures have been studied by Mehrabian [111] and
Argyle [6] mainly in relation to two main dimensions: status and affiliation. High
status is expressed through space, by enlarging the body (rising up to full height,
wide legs) and through a relaxed body (leaning, sitting and asymmetric postures).
In this sense, according to Argyle, posture corresponds to a reflection of established
hierarchy: lower status people tend to be more tense, nervous and aggressive because
they have to achieve material and symbolic resources.

From a relational point of view Scheflen [153] and Kendon [100] analyzed the
similarity and orientation of postures: when two interactants share the same centre
of attention, posture similarity seems to be a reliable signal of quality of relation,
and it even induces more positive relations.

Mehrabian [111] identified postures of attraction and intimacy describing prox-
imity and forward inclination, gaze and orientation toward the interlocutor. He ob-
served that women tend to be more intimate than men; this tendency seems to be
correlated to the patterns of low status persons, confirming that gender behaviors
and signals are akin to status signals (D’Errico [59]).

Posture, when dynamically considered, has a relevant function in the man-
agement of turn taking: posture shift is correlated with topic shift (Condon and
Ogston [49]) and with a “situational” change, for example in a temporary change of
rights and obligations between the interactants (Blom and Gumperz [26]), and they
are more frequent at the start of turns (48%) independent of the discourse structure
(Cassell et al. [38]).

Finally, emotions are expressed by postures. Lowered shoulders, for example,
signal depression (Tomkins [164]; Badler et al. [11]): “cognitive” emotions like in-
terest and boredom are clearly identified by Bull [34] who described the bored pos-
ture as head downward or left-rightward (leaning on one hand) and extended legs. In
shame one lowers head, while in pride head is raised and bust erected (see below).

According to Kleinsmith and Bianchi-Berthouze [104], posture is a very reliable
cue to affect: considering nine categories of particular emotions (angry, confused,
fearful, happy, interested, relaxed, sad, startled and surprised) they found that, in par-
ticular, extension of the body (lateral, frontal and vertical), body torsion, inclination
of the head and shoulders in 70% of cases allow to assess the classical dimensions
of emotions of valence, arousal, potency and avoidance.

8.6.6 Proxemics and Touch

Other important social signals can be found in proxemics (Hall [87]), physical con-
tact, and posture. In his seminal work, Hall [87] introduced the notion of Proxemics,
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the set of rules that regulate the use of space and distance between people. He found
that people keep different distances with their interlocutors in their face-to-face in-
teraction, depending on the kind of social relationship they entertain with them. He
distinguished intimate distance (0–45 cm) from personal (45–120 cm), social (120–
360 cm), and public distance (360–750 cm), but he also found out that the distance
considered acceptable for these different face-to-face interactions is highly deter-
mined by culture. People from Mediterranean and African cultures, for example,
compared to English or Scandinavian people, tend to speak so close to each other as
to sense each other’s smell, and often tend to touch each other while talking. Since
people tend to conform to these rules, their spatial behavior can be taken both as a
communicative social signal of the social relationship they want to entertain with
the interlocutor, and as an informative signal of their cultural roots.

Strictly connected with spatial behavior is physical contact between interactants.
“Haptic” communication concerns the signals perceived through the sense of touch.
One of the first to develop in humans, this sense provides an important route of
communication between mother and child and the basis for a strong attachment
bond (Bowlby [30]), and later in adult life being touched by other accepted people
or by oneself gives a person a sense of reassurance (Montagu [115]). In this, touch
may be seen as a “social signal” par excellence.

Within the acts of touch performed by a person on another, some are not aimed to
communicate but to grasp (e.g., grabbing the arm of a thief that has just stolen your
videocamera), to sense (a blind touching a person to sense who he is), or to feel (like
in erotic intercourse). But in other cases, touch is communicative (Kreidlin [105]),
and it is possible to find out a lexicon—a set of correspondence rules between spe-
cific acts of touch and their meanings—and a “phonology” (“haptology”)—a set of
parameters of the act of touch (Poggi [128, 129]). In fact, depending on the way
one touches the other and the touching and touched body part, different acts of
touch convey different meanings (a slap tells you something very different from a
caress), and various communicative acts (request and offer of help and of affect,
proposal, sharing), hence establishing various kinds of social relationships with the
Addressee: affiliative, friendly, protective, aggressive and so forth. Moreover, touch
signals are subject to specific norms of use, varying across cultures, as to who may
touch whom, and where, based on their social relations. Also in this case, then,
whose and which part of the body is touching and touched may work as commu-
nicative and/or as informative signals.

8.7 Social Facts and Their Signals

We have defined as “social” the signals concerning “social facts”, namely social
interactions, social attitudes, social relations and social emotions. Let us explore
these contents and the social signals that inform or communicate about them.



8 Social Signals: A Psychological Perspective 201

8.7.1 Social Interaction

A social interaction is an event in which two or more agents perform reciprocal
social actions, that is, actions in which the goal of one participant is directed to
the other by considering him as an autonomous agent, one regulated by one’s own
goals. A football game, a surgery operation, a string quartet, a fight, a sexual inter-
course, a school class are social interactions. But since, as demonstrated by Nass
and Steuer [116], also computers are seen as “social actors”, a dialogue between
an Embodied Agent and a User, or one between two robots, also fits the definition.
Generally social interactions are or require communication; all require synchroniza-
tion, i.e. mutual reactions between interaction participants, and negotiation of the
participants’ roles.

Some typical social signals exchanged during a communicative interaction are
those for turn-taking and backchannel. The turn taking system is a set of rules to
state who is to speak, and compliance to it is conveyed by nonverbal signals: you
may ask for turn by handraising, mouth opening, gaze direction, variation of vo-
cal intensity (Duncan and Fiske [65]; Goodwin [83]; Thòrisson [162]; Allwood et
al. [4]). But the exploitation or even the violation of turn-taking rules is by itself a
social signal: turn interruption may be an informative or communicative signal of
aggressiveness, turn overlapping an informative signal of a competitive interaction.
Yet, as all signals, also these must be interpreted while taking other elements into
account: if you know the one who interrupts is a very close friend of the interrupted,
he might be simply completing the other’s sentence, thus giving a signal of high
syntonization.

Another set of behaviors enabling smooth interaction are backchannel signals,
through which the interlocutor communicates to the present speaker if he is lis-
tening, following, understanding (Yngve [182]; Allwood et al. [3]), possibly be-
lieving, finding interesting, and agreeing (Poggi [131]; Bevacqua [24]), by making
use of hesitations, interjections, fillers, affect bursts (Jucker [97]; Bazzanella [21];
James [95]; Poggi [130]; Schröder [156]; Schröder et al. [157]) head movements
(Heylen [91]) and smiles (Goodwin [83]; Bavelas et al. [20]; Chovil [46]). But also
in this case, giving backchannel is not only telling the other if you are following: it
may be in itself an indirect signal that you accept the other, you are empathic with
him or her: you care.

In group interaction, the interactants come to assume spontaneous or institution-
alized roles that are instrumental in group functioning and to pursuing the group’s
goals. These roles can be reflected by the verbal messages exchanged during in-
teraction. According to Benne and Sheats [22], based on the particular statements
they tend to use, participants can be attributed the functional roles of harmonizer,
encouraging, compromiser, correlated to the so-called group task roles of elabora-
tor, coordinator and orienter. In this interactional framework, even if these authors
do not indicate any normative duties for the achievement of the group goals, they
identify also negative functional roles such as dominator, aggressor and recogni-
tion seeker. As mentioned above, work is presently being done in automatic role
detection.
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8.7.2 Social Attitudes

A social attitude has been defined in classical Social Psychology as the tendency of a
person to behave in a certain way toward another person or a group. Social attitudes
include cognitive elements like beliefs, evaluations, opinions, but also emotions,
which all determine and are determined by preferences and intentions (Fishbein and
Ajzen [74]). Here we overview some studies on the signals used to persuade and
those to convey agreement.

8.7.2.1 Persuasion

Persuasion is a communicative action aimed at changing people’s attitudes, that is,
at influencing their tendency to action by changing their opinions: we persuade as
we influence another to do or not to do something by inducing him to conclude that
what we propose is good for him. Since classical rhetoric (Aristotle 360 B.C. [9]; Ci-
cero 40 B.C. [47]; Quintilian [146]), the study of persuasion has been a major topic,
in social psychology and media studies (Petty and Cacioppo [125]; Fishbein and
Ajzen [74]), linguistics, argumentation (Perelman and Olbrechts-Tyteca [122]; Toul-
min [165]; van Eemeren and Grootendorst [170]), and cognitive science (Castel-
franchi and Guerini [41]; de Rosis et al. [56], Miceli et al. [113]).

In the last decade Fogg [77], investigating the role of computers as persuasive
social actors, opened the field of Captology (acronym of Computer As Persuasive
Technology), based on the assertion that also technologies persuade by giving a
variety of social cues that elicit social responses from their human users. Fogg ap-
plied powerful persuasive strategies to human–computer interaction by using psy-
chological cues based on attractiveness, similarity and reciprocation principles, and
he found many communalities between persuasive technologies and human-human
persuasion.

Persuasion as Influence Over the Other’s Goals

In the model we adopt (Poggi [127]), a persuader A aims at influencing a per-
suadee B, i.e., at increasing or decreasing the likeliness for B to pursue some goal
GA proposed by A. To pursue GA, B must believe it is a valuable goal, because it is
a means for some other goal GB that B already has, and/or because it makes B feel
some positive emotion or prevents some negative one. Emotions have a high moti-
vating power because they trigger goals (Miceli et al. [113]). Among other forms of
influence—from education to threat and promise, from manipulation to the use of
force—persuasion is characterized by three features: 1. communication: in trying to
induce B to pursue GA, A makes clear to B he wants to do so; 2. freedom: A leaves
B free of pursuing GA or not (thus differing from threat); 3. disinterest: A tries to
convince B that GA is in the interest of B since it is a means for some goal GB that
B has.
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To persuade B, A can use the strategies highlighted by Aristotle (360 B.C.): logos
(the logical arguments that support the desirability of GA and the means-end link
between GA and GB); pathos (the positive emotions B might feel, or the negative
he might avoid by achieving GA); and ethos: in Aristotle’s terms, the character of
the Persuader; in our terms, “ethos-competence”, A’s intellectual credibility, his
having the skills necessary for goal choice and planning, and “ethos-benevolence”,
his moral reliability: the fact that A does not want to hurt or cheat B, or to act in his
own concern.

We persuade by producing multimodal persuasive discourses, i.e. sequential
and/or simultaneous combinations of communicative acts in various modalities.
For example, in a pre-election discourse, all the sentences, gestures, face and body
movements of a politician, at various levels of awareness, through their direct and
indirect meanings pursue logos, ethos or pathos strategies, trying to convey “I ask
you to vote for me”. But in this case, is only the combination of all signals “persua-
sive”, or can we say that some words, or some gestures, intonations, gaze items, are
in themselves persuasive?

Persuasive Gestures, Persuasive Gaze

Recent work (Poggi and Pelachaud [138]; Poggi and Vincze [140]), analyzing multi-
modal communication in political persuasive discourses by Italian and French politi-
cians, found out that only rarely are some words, gestures or gaze items “persuasive”
by their very meaning—for example, a gesture of incitation, or a word of encour-
agement; rather, we may call “persuasive” some uses of gaze, some gestures or
sometimes simply some parameters of their expressivity, which convey “persuasive
information”, i.e., information that is salient in persuasive discourse. First, informa-
tion relevant to pursue a logos strategy:

1. Importance of the goal proposed by the persuader, borne by gestures or gaze
items conveying performatives of incitation or request for attention, like beats or
eyebrow raisings that convey emphasis, but also by the irregularity or disconti-
nuity of gesture movements that capture attention.

2. Evaluation. Persuading implies inducing positive evaluations of objects, persons,
events, so all words, gestures, and other signals mentioning evaluations have a
potentially persuasive import.

3. Certainty. Persuading implies convincing, i.e. making someone believe, with a
high degree of certainty, what goals are worth to pursue (their value, importance)
and how to pursue them (means-end relationships). Gestures with a meaning of
high certainty, like the ring (thumb and index making a circular shape going
down and up; Kendon [102]) that conveys precision and commitment to what
one is saying, or a small frown, which means “I am serious, not kidding”, may be
persuasive. Yet, one may also indirectly convey certainty by pursuing an ethos
strategy, e.g. showing self-confidence about what one is saying by exhibiting an
easy posture or a fluid speech rhythm.

Other meanings that bear on an ethos strategy are:
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4. Sender’s benevolence and competence. To be persuaded we do not only evaluate
the goals proposed or the means to achieve them, but the persuader: the Sender’s
ethos, which encompasses his benevolence—his taking care of our goals—and
competence—his having the skills to do so. A gesture driven by an ethos benevo-
lence strategy, namely, showing one’s moral reliability, quite frequent in political
communication, is hand on heart (Serenari [158]), generally meaning “I am no-
ble, fair, reliable”. A gesture evoking ethos competence strategy is one by the
Italian politician Silvio Berlusconi who, in talking of quite technical things con-
cerning taxes, rotates his right hand curve open, palm to left, rightward twice,
meaning that he is passing over such technicalities, possibly difficult for the au-
dience; his relaxed curve movement indirectly communicates how smart he is,
talking of such difficult things easily and unconstrained. This projects an image
of competence.

When exploiting a pathos strategy, the persuader mentions or evokes emotions:

5. Emotions: expressing an emotion may induce it by emotional contagion and
hence trigger the desired goal. The Italian politician Romano Prodi, while talk-
ing about his country, moves his forearm with short and jerky movements of high
power and velocity to convey his pride of being Italian and transmit it to the
audience, to induce the goal of voting for him.

Based on these principles, the persuasive use of gesture and gaze was investigated
in some fragments of pre-electoral interviews in Italy in 1994 and 2006 (Achille Oc-
chetto and Romano Prodi) and in France in 2007 (Ségolène Royal). In the annotation
scheme used for the analysis, beside a transcription of the verbal context, each ges-
ture or gaze item was described in terms of its parameters and a verbal paraphrase
of its literal and possibly indirect meaning was classified in terms of a semantic
taxonomy (Information on the World, the Sender’s Identity and the Sender’s Mind,
Poggi [128]), and in terms of the persuasive strategy pursued: logos, pathos, ethos
benevolence, or ethos competence.

For example, Ségolène Royal, while talking of the top managers who spoil the
enterprises like Mr. Forgeat, looks at the Interviewer Arlette Chabot, with a fixed
gaze which means “I am severe, I do not let you avert gaze”: this conveys informa-
tion about Royal’s personality, her being serious and determined, aimed at a strategy
of ethos competence, possibly indirectly implying she is one who struggles against
injustice: one more information on her ethos, but on the moral side, benevolence.
Then Royal, while leaning her head on the left, looks at the Interviewer obliquely
and with half-closed eyelids, an expression of anger and indignation: information
about her emotion, which she possibly wants to induce in the audience, thus pursu-
ing a pathos strategy.

By computing gesture and gaze items in the fragments analyzed, you can single
out patterns of persuasive strategies in the subject observed. From the studies above
it resulted that the Italian politician Achille Occhetto has a higher percentage of
persuasive gestures than Prodi out of the total of communicative gestures (Occhetto
20 out of 24, 83%, Prodi 34 out of 49, 69%), also because Prodi sometimes uses
iconic gestures that convey Information on the World and have no persuasive import
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except for some in the expressivity parameters. Further, Occhetto relies much more
on pathos than on logos gestures (30% vs. 5%) while Prodi uses the two strategies
in a more balanced way, but with a preference for logos (23% vs. 12%). In both
most gestures (65%) pursue an ethos strategy, and both tend to project an image of
competence more than one of benevolence, but more so for Prodi (50% vs. 15%)
than for Occhetto (45% vs. 20%).

The differences in the patterns of persuasive gesture and gaze of the politicians
under analysis are coherent not only with the argumentative structure of the frag-
ments analysed, but also with the politicians’ general persuasive style, as well as
with their political history. For example, since in the fragment analyzed, Occhetto is
attacking his opponent Berlusconi from an ethical point of view, he aims to project
an ethically valuable image of himself; Prodi instead is describing his program and
thus wants to project the image of one able to carry it on in an effective way. In terms
of political strategies, compared to Prodi, a centre-left politician coming from a for-
mer catholic party, the communist Occhetto has a higher need to show his image of
benevolence.

8.7.2.2 Signals of Agreement

When persuasion, our attempt to change the other’s opinion and tendency to action,
succeeds, the other finally agrees with us. But what is agreement, and what are its
signals? How can one catch not only clear-cut but also subtle cases of agreement
and disagreement, expressed, directly or indirectly, in words, gesture, intonation
(Ogden [119]), face, gaze, head movements, posture?

From a cognitive and social point of view, agreement occurs when there is a
relation of identity, similarity or congruence between the mental states of two or
more persons. Yet, different from an act of confirmation, a communicative act of
agreement—and its underlying cognitive state—may not occur about “factual” be-
liefs, i.e. about simply informative speech acts (I cannot agree after a question like
“Did Napoleon die in 1821?” nor after a statement like “Napoleon died in 1821”,
unless someone challenges this as not a factual belief but a questionable statement),
but only about speech acts like a proposal, an assessment (i.e., the expression of
some evaluation) or the expression of an opinion (for instance, after a sentence like
“I think that Napoleon was a great man” or “I propose that all teachers give a home
assignment about Napoleon”).

An opinion is a “subjective” belief, that is, one we know is not necessarily shared,
and have no empirical evidence for, firstly because it is not about something that
can be perceived by senses. It is a belief we draw concerning some entity or event
by considering it from our particular “point of view”, somehow determined by our
beliefs and goals (Poggi et al. [143]). And since this opinion may be our point of
view not only about facts, but also about goals or evaluation, we can also agree about
another’s proposal, assessment, or an opinion thereof.

An evaluation is a subjective belief concerning how much some entity or event
has or gives the power to achieve some goal, and it may typically be the object of an
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opinion. A proposal is a requestive speech act (one asking to pursue some goal), in
which 1. the goal “proposed” is in the interest also of the Addressee, 2. the Sender
does not intend to make use of power over the Addressee, who is thus free to pursue
the proposed goal or not; 3. acceptance implies that the Addressee approves the
proposal, i.e. s/he also believes it is functional to her/his goals too.

In conclusion, agreement is an internal mental state of some agent B: B’s as-
sumption about his having the same opinion as another agent A. This assumption
may be communicated by B to A or to others through an “expression of agreement”,
i.e. a simple or complex social communicative act, composed by verbal and/or body
signals.

An observational study on the political debates in the “Canal 9” corpus (Poggi et
al. [143]) found out that during a debate a participant may express agreement in at
least three ways:

1. by discourse: one or more sentences that express an opinion similar or congruent
with one previously expressed by another participant;

2. by verbal expressions containing specific words, verbal agreement markers, like
“ok”, “I agree”, “oui” or others:

3. by body agreement markers like nods, smiles, gestures or gaze signals.

Agreement is expressed by discourse when one or more sentences of a participant
either literally repeat or rephrase an opinion expressed earlier by another participant.
But it can also be expressed only by agreement markers: words or constructions with
a semantic content of agreement, like (in French) d’accord (ok), oui (yes), vous avez
absolument raison (you are absolutely right), nous sommes d’accord (we agree), je
vous rejoins (I join you [in believing x]), effectivement (in fact), (bien) évidemment
(obviously), tout-à-fait (absolutely).

A frequent agreement marker is “d’accord” (= ok; I agree), which though,
to mean agreement, must be used in a performative way, that is, as meant by the
same person who is speaking, not as another’s reported agreement (e.g., “(Je suis)
d’accord” as opposed to “Il est d’accord”). In other cases, d’accord counts more
as an acknowledgement of what another Speaker has just said: a backchannel signal
rather than real agreement.

Typical signals of agreement are smiles, eyebrow raisings and nods (see Bous-
malis et al. [29] for a survey), but also some gestures: for instance, moving right
hand forward, as if presenting and showing what the other is saying as a good ex-
ample of what you also think; or, again, raising hands with open palms up, which
means “this is evident”, while another is speaking, to underline one totally agrees
with what he is saying. Eye and mouth behaviors may convey agreement too. Within
gaze signals, the closing of the eyelids is relevant: when agreeing with the present
Speaker, the Interlocutor’s nods are often accompanied by rapid blinks, or by wide
open eyes, usually with raised eyebrows, which emphasize the extent to which one
agrees with the other: eyelid behavior as a nod intensifier. Yet, blinks as cues of
agreement can appear also by themselves, without being accompanied by a nod. As
to mouth behavior, agreement is often conveyed by smiling, but sometimes also by
lip pressing which, if accompanying a nod, emphasizes agreement.
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From a semantic point of view, these signals may convey True, Indirect or Ap-
parent agreement. Sometimes, in fact, a bodily or verbal expression of agreement
can be taken at face value (true agreement), in either stronger or weaker forms (en-
hanced and unwilling agreement). We talk of enhanced agreement when people do
not simply communicate that they share the other’s opinion, but provide additional
arguments or emphasize their verbal agreement by smile or eyebrow raising. One
may express unwilling agreement, instead, by admitting the other is right, but only
by nonverbal signals (e.g. by stepping back or lowering head) to keep a low level of
commitment and minimize the self-humiliation implied in acknowledging one was
wrong. On the other hand, sometimes agreement is expressed indirectly: no apparent
agreement marker is produced, but substantive agreement can be inferred from the
global meaning of what is literally communicated by words or body signals. Other
times, finally, agreement is only local, partial or hypocritical, while it actually masks
indirect disagreement (apparent agreement): this is the “Yes, but. . .” strategy, which
makes use of various stratagems, like uttering an agreement marker (e.g., the French
effectivement = in fact) with a suspensive intonation that announces reversing the
polarity from agreement to disagreement, or using expressions (like je dois dire =
I must say) that limit the scope of one’s agreement.

8.7.3 Social Relationships

A social relationship is a relation of interdependency of goals between two or more
persons: one in which the pursuit, achievement or thwarting of a goal of one de-
termines or is determined by the pursuit, achievement or thwarting of a goal of the
other (Lewin [107]; Festinger et al. [73]; Byrne [36]).

Types of social relationship have been distinguished in terms of criteria like pub-
lic vs. private, cooperation vs. competition, presence vs. absence of sexual rela-
tions, social-emotional support oriented vs. task oriented (Berscheid and Reiss [23]).
Within group relationships, some studies concern the definition and description of
mechanisms of power, dominance, and leverage (Castelfranchi [40]; Lewis [108]),
their change and enhancement through alliance, influence and reputation (Conte and
Paolucci [51]), their interaction with gender relations, and the nature of leadership.

Typical signals revealing social relationships include the manner of greeting (say-
ing hello signals the wish for a positive social relation, saluting signals belonging
to a specific group like the army, etc.), the manner of conversing (e.g., formal al-
locutives like addressing someone as professor to signal submission), mimicry and
the display of typical group behavior (signaling the existence or wish of a positive
social relation), spatial positioning and gaze direction (e.g., making a circle around
a certain person, or gazing at her more frequently, indicates her as the group leader:
Argyle and Cook [7]), physical contact (that one touches another, and the way one
does, may indicate affective or power relations: Hall [87]; Poggi [128]).

For group relationships, both deliberate and unaware signals, like dress or hair-
cut, vs. regional accent and mimicry, reveal felt or wished group belonging. Em-
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blems on clothes, elaborate hair, or objects like a crown or a huge desk in the office
reveal status or role in the group (Hinde [93]; Halliday [88]).

To provide a blow-up on the complexity of social signals in this domain, let us
focus on the relation of dominance.

8.7.3.1 Dominance and Its Signals

The notion of dominance reflects different research approaches and is sometimes
confused with notions like status or power. In the sociological perspective, status is
a hierarchical position in a group or organization, determined by native (e.g., gen-
der or ethnicity) or gained characteristics (e.g., skill in work). In social psychology,
according to the expectation states theory (Ridgeway [148]) at the interpersonal
level people form expectations of status, evaluative beliefs about positive or nega-
tive competences associated to this nominal feature, and at the personal level they
have expectations of performance, which anticipate the contribution needed for a
specific task. In the social identity theory (Tajfel [160]), the awareness of belonging
to a social group is a central part of the concept of self, with associated emotional,
motivational, behavioral responses; so people tend to evaluate the stability and legit-
imacy of status differences to decide what cognitive strategy is useful in their condi-
tion: re-categorization, social creativity, individual or collective mobility across the
hierarchy (Tajfel and Turner [161]).

Power is defined as “the ability to influence or to control other persons or groups”
(Ellyson and Dovidio [72]). Status may well be a condition for power in this sense,
but does not necessarily imply attitude change and control, and it is focused not on
personal competence, but on a nominal or structural position in a social group or
institution.

Dominance might be seen as a combination of status and power since it is defined
as “ability to influence or control others”, but it also involves groupness, since it con-
cerns power relationships within a relatively enduring social organization (Ellyson
and Dovidio [72]). As to its roots, some authors view dominance as a personality
trait (Pratto et al. [145]), stressing its being a steady feature of an individual, others
propose a situational view: dominance as gained from time to time depending on
the context (Aries et al. [8]; Burgoon and Dunbar [35]; Pratto et al. [145]).

In recent literature, for the social dominance theory (Pratto et al. [145]) one pos-
sible explanation of discrimination phenomena is the psychological construct of
social dominance orientation (SDO), i.e. the personal preference for hierarchical
relationships between social groups. The degree of social dominance is determined
by group membership because members of more powerful groups are more domi-
nant than less powerful ones (e.g., men more dominant than women); further, SDO
is a way to maintain social hierarchies, since people with high levels of social dom-
inance tend to legitimate racism, nationalism and conservatism.

The dyadic power theory (Dunbar et al. [64]) proposes the notion of interper-
sonal dominance as “a relationally-based communication strategy dependent on the
context and motives of the individuals involved” (Burgoon and Dunbar [35]), view-
ing dominance as a dynamic combination of personal and contextual characteristics,
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based on a relational model, according to which the influence or control of powerful
individuals depends on the submission or acquiescence of others. From this perspec-
tive much research has focused on the verbal and nonverbal indicators of dominance
(for ample reviews see Ridgeway [147]; Argyle [6]; Dunbar and Burgoon [63]; Dun-
bar et al. [64]).

Signals of dominance in various modalities have been explored. Within studies
on gaze, Keating and Bai [98] demonstrated that in Western cultures lowered eye-
brows are perceived as a strong signal of dominance. Argyle [6] pointed out that
the dominant person gazes less and during interaction reduces the amount of gaze
and breaks mutual gaze first. Yet, in close relationships the dominant person has
a more expressive face, he looks more than the less dominant and shows higher
visual dominance, i.e. higher looking while speaking than while listening (Ellyson
and Dovidio, [72]; Dunbar and Burgoon [63]). As to hand movements, the dominant
person uses more gestures, and within them, more illustrators than adaptors (Dun-
bar and Burgoon [63]). Since illustrators are the gestures that accompany speech by
adding information of an imagistic kind, while adaptors (Ekman and Friesen [68])
are hand movements onto one’s own body or objects performed by the speaker to
feel more at ease or to reassure oneself, a lower use of adaptors gives an impression
of relaxation and confidence. Posture and spatial behavior are salient in the expres-
sion of pride (Tracy and Robins [167]), where expanded postures are typical espe-
cially in males (Cashdan [37]). In vocal behavior, dominance passes through speech
intensity, tempo and pitch (Ridgeway [147]; Gregory and Webster [84]), but also
through turn taking management (Jayagopi et al. [96]): perception of dominance is
strictly connected to amount of speaking (Stein and Heller [159]), topic introduction
(Brooke and Ng [32]), frequency and maintenance of turns, and interruptions (Ng
and Bradac [117]).

8.7.3.2 Blatant and Subtle Dominance Strategies

Starting from a definition of dominance as “the fact that an Agent has more power
than another” (not necessarily as a stable trait, but also in a specific context), Poggi
and D’Errico [137] analyzed signals of dominance in political debates. They sin-
gled out various “dominance strategies”, sets of behaviors that all bear a message
of dominance, “I have more power than you”, but each conveying, in one or more
modalities, directly or indirectly, a specific message, attitude or image. They dis-
tinguish blatant from subtle strategies. Among the former, one is aggressiveness,
which includes:

a. imperiousness, expressed by requestive communicative acts and deontic words
like must, ought to, necessarily, hence conveying the message “I give you com-
mands, → I can afford to do so → I have power over you”

b. judgment, expressed by insults and evaluative words like praiseworthy of filthy,
frowning and facial expressions of severity, which tells “I can judge you, so I
have power over you”
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c. invasion of the other’s space and time territory, performed by loud voice, ample
gestures, turn interruption and overlapping

d. norm violation, like to go on speaking when the moderator gives the turn to
another participant: violation of generally accepted rules implicitly conveys the
idea that one is so strong as to be above rules.

Another blatant dominance strategy, mainly used from a down-to-up position,
is defiance, conveyed by expressions of pride like fixed stare and erected posture,
which communicates: “you are not stronger than I, I will finally gain power over
you”.

Among “subtle” dominance strategies, one is touchiness, i.e., to show one feels
offended even for slightly negative evaluative words. Being touchy means to have
a low threshold for feeling offended, and you feel offended when you think that
some communicative or non-communicative action caused a blow to your image.
Since there is a somehow a direct correlation between severity of an offense and
power of the offended one, to show you are powerful and worth respect you simply
need to show that you feel offended for things that would not be so serious for other
people.

Another subtle strategy is victimhood. Playing the victim implies that others un-
duly did wrong to you, so you are entitled to retaliate and to claim your rights. On
the other hand, in haughtiness, the Sender wants to convey his superiority, but not
through boasting, rather through a prig and didactic attitude, as if others were all
children or stupid; by explaining things clearly, using gestures like the “ring” (a
circular shape made by thumb and index fingertips touching each other) that evoke
precision and seriousness; sitting down with trunk backward, as if withdrawing from
the other to avoid contact; half-closed eyelids, which by conveying relaxation mean
“I need not worry about you”; in sum, conveying the other is so inferior that you do
not bother about him at all.

Also ridiculization and irony are dominance strategies. Laughter is an emotional
expression triggered by surprise and then relief, caused by an incongruous event that
leaves you in a suspension but then turns out to be not dangerous, so the previous
worry results in relief and in a sense of superiority over the event or its cause. Thus,
one who laughs at another feels (and shows himself to be) superior to him, while the
other feels impotent—he does not even have the power to scare or worry anyone!—
and abased. Also irony, to the extent to which it is a way of teasing, of making fun of
another, is a dominance strategy in which aggressiveness is masked by the elegance
of a rhetorical figure.

Finally, easiness (expressed by a loose and relaxed posture) conveys “I am
satisfied, I do not depend on you, you have no power over me”; careless-
ness typically entails not gazing at the opponent, as if he did not exist—the
worst of insults! In assertiveness and calm strength, low voice, relaxed and
fluid gestures convey self-confidence and no fear of the other, hence superior-
ity.
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8.7.4 Social Emotions

Emotions are an adaptive device that monitors the state of our most important goals:
they are multifaceted subjective states, encompassing internal feelings and cogni-
tive, physiological, expressive, motivational aspects, which are triggered any time
an important adaptive goal is, or is likely to be, achieved or thwarted.

Within human emotions we may distinguish “individual” ones and three types of
“social” emotions (Poggi [128]). First, those that are felt toward someone else; in
this sense, while happiness and sadness are individual emotions, admiration, envy,
contempt, compassion are social ones: I cannot admire without admiring someone,
I cannot envy or contemn but someone, while I can be happy or sad myself. Second,
some emotions are “social” in that they are very easily transmitted from one person
to another: like enthusiasm, panic, or anxiety. A third set are the so-called “self-
conscious emotions” (Lewis [108]), like shame, pride, embarrassment, which we
feel when our own image or self-image, an important part of our social identity, is
at stake, and thus concern and heavily determine our relations with others.

We define as image (Castelfranchi and Poggi [43]) the set of evaluative and non-
evaluative beliefs others conceive of about us, and as self-image the evaluative and
non-evaluative beliefs that we have about ourselves. Functional to our interaction
with other people, we form a “goal of image”, the set of standards against which we
want to be evaluated positively by others, and a “goal of self-image”, those against
which we want to evaluate ourselves positively. These are very important goals for
our individual and social life: we have a high self-esteem when we evaluate our-
selves as positively as we wish to, and a good level of esteem by others when others
evaluate us positively. Being esteemed by others is important to have good relation-
ships with them, to be accepted in the community and obtain their help and cooper-
ation. On the other hand, a high self-esteem is functional to be so self-confident as
to confront challenging goals, and to be autonomous, not too dependent on others’
help.

Given their importance, any time the goals of image or self-image are at stake, the
“self-conscious” emotions are triggered. Two such emotions are shame and pride.
We feel shame when our goals of image and/or self-image are (or are likely to be)
thwarted, and pride when they are achieved.

8.7.4.1 Shame and the Multimodal Discourse of Blush

Shame is a negative emotion we feel when our goal of image or of self-image—our
desire of eliciting positive evaluation from others or ourselves—is certainly or prob-
ably thwarted. According to Castelfranchi and Poggi [43], we are ashamed when we
feel we have fallen short of a norm or value that we share with our group, or anyway
one with respect to which we want to live up. So we can feel shame both before
others and before ourselves. Suppose I pretend to be a good pianist, and while play-
ing in front of my friends I make a mistake; I may be ashamed before them if I
think they realized my fault, but I may also feel shame only before myself because,
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even if they are not so skilled as to realize my subtle fault, I did; and I want to be
perfect for and before myself. When a standard becomes part of our self-image, we
are sincerely sorry any time we fall short of it; but if we share it with our group, our
fault might lead the group to reject us and close social relations with us, so we feel
shame also before others. In this case, feeling and showing our shame is a way to
apologize, to tell others: “Yes, I transgressed this norm or value, but I did not do so
on purpose, I still share this norm with you; so refrain from aggressing and reject-
ing me, accept me again in the group”. Based on these assumptions, Castelfranchi
and Poggi [43], different from Darwin [54], who viewed blushing as a mere side-
issue of self-oriented attention, argue that the feeling of shame is a sort of internal
self-punishment, while its external expression is a communicative signal, namely
an apology, a request for forgiveness by one’s group. In fact, the communicative
display of shame includes three communicative signals:

1. a person S blushes, i.e., his/her face reddens
2. S lowers his/her eyes
3. S lowers his/her head

Signals 2. and 3. are actions, resulting in the typical posture of shame, but sig-
nal 1. is a morphological transitory feature. So while the latter two are to some extent
under voluntary control, the former is an involuntary, even, counter-voluntary sig-
nal (as already pointed out by Darwin [54]): so much so that if you blush and you
realize it, you would like not to blush (if only because blushing unmasks you have
something to be ashamed of), and this makes you blush even more! But also the
actions of avoiding gaze and lowering head function serve to acknowledge one’s
faults or shortcomings and to apologize for them, to block the group’s aggression
and prevent rejection.

According to Castelfranchi and Poggi [43], the three signals make up a multi-
modal discourse, where each conveys its specific meaning and all converge toward
a global meaning. The blush (signal 1.), making face reddened as one of a baby,
might be seen as communicating “I am like a baby”, which carries the inference
“I am inadequate”, “I was/did the wrong way, like a baby”, thus publicly acknowl-
edging one’s inadequacy and inferiority. Signal 2., lowering eyes, conveys “I give
up looking at you”, and since looking is a way to get power over things or people,
it means “I give up my power of control over you”, which again means “I am in-
ferior”. Signal 3., lowering head, shows one is smaller, again acknowledging one’s
inferiority, and giving up any defiant attitude. But acknowledging one’s inferiority
and giving up defiance, conveyed by lowering face and eyes, and acknowledging
one’s inadequacy, conveyed by the blush, communicate that one shares the missed
value, that one cares about the other’s judgment. All of this communicates “I am
one of you”, therefore “Do not attack me”.

8.7.4.2 Pride

You feel pride when, due to an action (e.g. you run faster than others), a property
(you are stubborn, you have long dark hair), or simply an event (your party has won
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the elections), your goal of image and/or of self-image is fulfilled, that is, when
you evaluate yourself, or believe to be evaluated by others, very positively with
respect to some goals that make up part of your goal of image or self-image. The
action, property or event must be due to yourself, or anyway be an important part
of your identity. You can be proud of your son because you see what he is or does
as something stemming from you, or be proud of the good climate of your country
just because you feel it as your country.

Sometimes one feels “proud of” something not only before oneself but also be-
cause the positive event, property or action enhances one’s own image before others.
Before your colleagues in a foreign college, you can be proud of your country win-
ning the football championship, since this gives you the image of one belonging to
a champion country.

But if the goal of image is sometimes a condition to feel proud of something,
is it always a necessary condition? In this, pride and shame are symmetrical. You
are sincerely ashamed before others only if you also feel shame before yourself
(Castelfranchi and Poggi [43]), that is, only if the value you are evaluated against
makes part not only of your goal of image before others but also of the image you
want to have of yourself. If you do not share some value (say, to be a very macho
man) but this is not a relevant value for your own self-image even if others evaluate
you against it, you do not feel shame if you do not look very macho to others. And
if you happen to look so, you will not feel proud of it.

Beside being an emotion—a short transitory state—, pride can also be viewed as
a more enduring state; a personality trait. A “proud” person is one who attributes
a high value to his goal of self-image, mainly to his self-image as an autonomous
person, one not dependent on anyone else. In fact, there are two sides of autonomy:
self-sufficiency and self-regulation. You are self-sufficient when you possess all the
(material and mental) resources you need to achieve your goals by yourself, that is,
when you do not depend on others’ help. And you are self-regulated when you can
decide which goals to pursue, when and how, by yourself: in a word, when you are
free. These two sides of autonomy are strictly connected: if you are self-sufficient
(you have all the resources you need), you can afford self-regulation (you have the
right to be free).

Three types of pride can be distinguished: superiority, arrogance, and dignity
pride. In superiority pride the proud person pretends he is superior to the other, for
instance because he has won over him. In dignity pride, he only claims to being
at the same level as the other, not inferior to him: he wants to be acknowledged
for his dignity as a human, and credited for his right to freedom, autonomy and
self-regulation. In arrogance pride, finally, the proud person is, at the start, on the
“down” side of the power comparison: he has less power than the other, but wants
to challenge, to defy his power, and communicates he does have more power than
the other.

The emotion of pride is expressed by a multimodal pattern of body signals: a
small smile, expanded posture, head tilted backward, and arms extended out from
the body, possibly with hands on hips (Tracy and Robins [166]). Smile, which is in
general a signal of happiness, in this case conveys a positive feeling due to one’s
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goal of image or self-image being achieved; the expanded posture, enlarging the
person’s body, conveys dominance, superiority, but also makes one more visible;
in fact, one who is proud of something may want to exhibit his merits. Expanding
chest might be seen as making reference to oneself, to one’s own identity. Head
tilted back is a way to look taller, to symbolically communicate one is superior, but
it also induces to look down on the other, thus, symmetrically, communicating the
other’s inferiority.

But if these are the expressive signals of pride in general, do different combina-
tions of signals distinguish the three types of pride? Two studies have been carried
on to test this hypothesis (Poggi and D’Errico [134]).

In an observational study a qualitative analysis was conducted on pride expres-
sions in political debates. Results indicate that dignity pride is characterized by head
tilted upward, but also by signals of worry and anger like a frown or vertical wrin-
kles on the forehead (AU4), rapid and nervous gestures, high intensity of voice, eyes
fixed to interlocutor and no smile; all signaling seriousness of the proud person’s re-
quest to have one’s dignity acknowledged.

Superiority pride is characterized by low rhythm and intensity of voice that signal
the absence of worry (if you are superior you have nothing to fear or worry about
from the other), and sometimes by gazing away from the Interlocutor (he is so in-
ferior that he does not even deserve your gaze or your attention). Arrogance pride
is characterized by a large smile, quite close to a scornful laughter; expanded chest,
head tilted back, and gaze fixed to the Interlocutor, which convey challenge and
defiance, and provocative, possibly insulting words. The whole pattern conveys that
the proud person does not fear the Interlocutor, even if he is presently superior to
him.

Based on this and previous studies an experimental study on the expression of the
three types of pride tested the following hypotheses (D’Errico and Poggi [60]; Poggi
and D’Errico [135]): it was expected that a frown and absence of smile character-
ize Dignity pride, asymmetrical eyebrows and no smile, Superiority pride, and ab-
sence of frown and presence of smile, Arrogance pride. A bifactorial 3 × 2 between
subjects study was designed with two independent variables (eyebrow position—
frown, no frown, asymmetrical eyebrows, and smile—present or absent), and three
dependent variables (detection of dignity, superiority or arrogance pride). A multi-
ple choice questionnaire was submitted to 58 subjects (females, range 18–32 years
old, mean age 22) where each of 6 facial expressions, constructed by crossing the
eyebrow and smile variables, were attributed meanings pointing to dignity, superi-
ority, or arrogance pride. Results show that asymmetrical eyebrows without smile
were interpreted as either superiority pride or dignity pride, while frown with smile
was mainly attributed a meaning of dignity beside other positive meanings as I am
resolute, I want to humiliate you and I won.

In general the frown is primarily interpreted as dignity pride, while the asym-
metrical eyebrows orient subjects to an interpretation of superiority, and no frown
to arrogance. The smile, probably interpreted as ironic, mainly points to the choice
I will win over you, confirming its characterizing arrogance. The absence of smile
instead is associated to dignity (I don’t submit to you) and to superiority pride.
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8.7.4.3 Enthusiasm

Enthusiasm is a “social emotion”, not in that it is “felt toward” someone else, but in
that it typically tends to be “socialized”, that is, transmitted to others through conta-
gion. It belongs to the family of happiness, being an intensely positive emotion, felt
for the achievement of a very important goal, but it differs from happiness, exultance
or elation, both for the goal at stake and for the time it is felt (Poggi [128, 129]).
On the one hand, enthusiasm is only felt about goals that are in some way great, im-
portant, worth to pursue: for example, in activities that entail novelty and creativity
(like creating a new musical group, or founding a newspaper), or for goals of equity
and altruism (like fighting for your ideas or defending noble causes). On the other
hand, enthusiasm tends to be felt not so much after the achievement, but during the
very pursuit of a goal. The football players feel exultance when the game is over
and they have won, but enthusiasm at the moment of a goal. This first achievement
triggers a set of proprioceptive sensations typical of high activation: heart beat ac-
celeration, a sense of energy, well-being, good mood, heat, excitation; as you feel
enthusiasm you cannot stand still, you want to talk, to hop up and down, to make
uncontrolled movements, speak loud, sometimes shout (Poggi [128, 129]).

That such internal energy is felt not when the final objective, but an intermediate
goal of the plan is achieved, is functional to sustain the goal pursuit: this tough
partial success makes you believe that “you can”, you have the internal capacities to
achieve your goal; achieving the intermediate step makes you feel confident that you
will attain the final objective. This enhances your sense of self-efficacy; whereas in
trust and hope you rely, respectively, upon other people or world conditions, with
enthusiasm you have a feeling of omnipotence: coherent with its etymology “en
theòn”, which means: “(to have) a God inside”!

This self-attribution of power has two effects. First, you believe that achieving
the final goal does not depend on world conditions but on your own action: you feel
more responsible. Second, since for decision making rules choosing which goals
to pursue in part depends on how likely it is that you can achieve them, if you
believe you can, you will strive with particular persistency. Thus the high arousal of
enthusiasm can trigger the physiological resources necessary for goal pursuit.

The function of this emotion is then to work as the “gasoline of motivation”. The
great physiological activation sustained by it fosters physical and mental resources
and gives higher persistency, induces self-confidence and renews motivation, pro-
viding new energy for action.

8.8 Summary

Social signals are physical stimuli, either produced by a Sender or simply perceived
by a Receiver, which provide information about social interactions and social rela-
tionships, social attitude and social emotions. Studies in cognitive and social psy-
chology and neuroscience, along with research in computer science, signal process-
ing and computer graphics may contribute to the sensing and interpretation of social
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signals and to their simulation in Embodied Agents, in view of building systems for
Human–Computer Interaction, Ambient Intelligence, Persuasive Technology and
Affective Computing.

8.9 Questions

1. Provide examples of the following signals: one informative social signal, one
informative non-social signal, one communicative social signal and one commu-
nicative non-social signal.

2. Provide two examples of indirect social signals.
3. Find out two real examples social signals (either direct or indirect, either commu-

nicative or informative) for each of the following modalities: head movements,
gaze, facial expression, gestures.

4. Choose a fragment of 2–3 minutes from a political debate in which one or more
participants express dominance strategies, and describe all the verbal and vocal
features, gaze items, head movements, facial expression, gestures, posture, use of
space and possible physical contact, through which these dominance strategies
are expressed (see Sect. 8.7.3).

8.10 Glossary

• Agreement: Relation of identity, similarity or congruence between the mental
states of two or more persons. It concerns informative speech acts (proposal, an
assessment), not “factual” beliefs. Agreement may be communicated through ver-
bal discourse and by verbal and nonverbal markers.

• Attitude: Tendency of a person to behave in a certain way toward another person
or a group. Social attitudes include cognitive elements like beliefs, evaluations,
opinions, but also emotions that all determine and are determined by preferences
and intentions.

• Emotion: Adaptive device that monitors the state of our most important goals:
they are multifaceted subjective states, encompassing internal feelings and cogni-
tive, physiological, expressive, motivational states, which are triggered any time
an important adaptive goal is, or is likely to be, achieved or thwarted.

• Interaction: Event in which two or more biological or artificial agents perform
reciprocal social actions, that is, actions in which the goal of one participant is
directed to the other by considering him as an autonomous agent, one regulated
by one’s own goals.

• Opinion: A subjective belief, that is, one we know is not necessarily shared, and
have no empirical evidence for, which stems from considering some entity or
event from a particular point of view, somehow determined by our beliefs and
goals.
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• Persuasion: A communicative action aimed at changing people’s attitudes, that is,
at influencing their tendency to action by changing their opinions: we persuade as
we influence another to do or not to do something by inducing him to conclude
that what we propose is good for him.

• Social relationship: Interdependency of goals between two or more persons: the
pursuit, achievement or thwarting of a goal of one determines or is determined by
the pursuit, achievement or thwarting of a goal of the other.

• Social signal: A communicative or informative signal which, either directly or
indirectly, provides information about “social facts”, that is, about social interac-
tions, social attitudes, social relations and social emotions.

• Signal: A perceivable stimulus from which a privileged inference can be drawn,
which thus becomes its meaning: a new belief different from the perceivable stim-
ulus but linked to it in the mind of one or more agents.

• Informative signal: Signal that a receiver can interpret, that is, from which he can
draw some meaning, even if no sender had the goal to have someone believe this
meaning.

• Communicative signal: Signal emitted by a sender with the goal (conscious, un-
conscious, tacit, social or biological) of having a receiver come to believe some
meaning.

• Direct signal: Signal that holds a systematic relation with a meaning. The relation
may be creative (invented on the spot) or codified (stably represented in memory,
like in a lexicon). The meaning linked to the signal in a shared way is its literal,
or direct, meaning.

• Indirect signal: Signal for which a further meaning can be drawn from the “literal
meaning”, through inferences based on contextual or previously shared informa-
tion, which thus may differ across contexts.
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Chapter 9
Voice and Speech Analysis in Search of States
and Traits

Björn Schuller

9.1 Vocal Behaviour Analysis—an Introduction

It is the aim of this chapter to introduce the analysis of vocal behaviour and more
general paralinguistics in speech and language. By ‘voice’ we refer to the acoustic
properties of a speakers’ voice—this will be dealt with in Sect. 9.2. By ‘speech’
we refer more generally to spoken language in the sense of added linguistics—dealt
with in Sect. 9.3. Obviously, the introduced methods of linguistic analysis can also
be applied to written text, albeit with slightly different pre-processing. Also, models
trained on written text may differ insofar as spoken language is often grammatically
different and possesses more fragments of words, etc.

9.1.1 A Short Motivation

Paralinguistic speech and language analysis, i.e., the analysis of consciously or un-
consciously expressed non-verbal elements of communication, is constantly devel-
oping into a major field of speech analysis, as new human–machine interaction and
media retrieval systems advance over sheer speech recognition.

The additional information over ‘what’ is being said bears high potential for im-
proved interaction or retrieval of speech files. By such information, social com-
petence is provided to systems that can react more human-like or provide more
human-like information. In addition, this information can also help to better recog-
nise ‘what’ is being said, as acoustic and linguistic models can be adapted to differ-
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ent speaker states and traits and non-verbal outbursts are not confused with linguistic
entities [52]. A number of such paralinguistic phenomena are next given.

9.1.2 From Affection to Zest

One can broadly divide the multifaceted field of paralinguistics into speaker states
and speaker traits and vocal behaviour. Speaker states thereby deal with states
changing over time, such as affection and intimacy [5], deception [14], emotion [7],
interest [41], intoxication [35], sleepiness [24], health state [19], and stress [21] or
zest, while the speaker traits identify permanent speaker characteristics such as age
and gender [46], height [32], likeability [57], or personality [31]. Vocal behaviour
additionally comprises non-linguistic vocal outbursts like sighs and yawns [34],
laughs [10], cries [33], hesitations and consent [41], and coughs [30]. We next deal
with the principle of how to computationally analyse any of these automatically.

9.1.3 Principle

Here we share a unified perspective on the computationally ‘intelligent’ analysis of
speech as a general pattern recognition paradigm.

Figure 9.1 gives an overview of the typical steps in such a system. The dotted
lines indicate the training or learning phase that is usually carried out once before
using such a system in practice. It can, however, re-occur during application in the
case of online or unsupervised and semi-supervised adaptation. Interestingly, the
information is partly well suited for online learning based on user feedback, as user
(dis-)satisfaction or similar states and affirmative vocalisations can be used to adapt
models accordingly.

The building blocks of a voice and speech analysis system are:

Pre-processing usually deals with enhancement of signal properties of interest from
input speech. Such speech may be coming from a capture device like an A/D con-
verter in a live setting, or from offline databases of stored audio files for training
and evaluation purposes. Such enhancement includes de-reverberation and noise
suppression, e.g., by exploitation of multiple microphones, or separation of multi-
ple speakers by blind source separation.

Feature Extraction deals with the reduction of information to the relevant charac-
teristics of the problem to be investigated in the sense of a canonical representation
and will be dealt with in more detail—separately for acoustic and linguistic fea-
tures.

Classification/Regression assigns the actual label to an unknown test instance. In
the case of classification, discrete labels such as Ekman’s ‘big six’ emotion classes
(anger, disgust, fear, happiness, sadness, and surprise) or, e.g., binary low/high
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Fig. 9.1 Analysis of voice and speech—an overview. Dotted lines indicate the training phase

labels per each of the ‘big five’ personality dimensions (openness, conscientious-
ness, extraversion, agreeableness, and neuroticism—“OCEAN”) are decided for.
In the case of regression, the output is a continuous value like a speaker’s height
in centimetre or age in years, or—in the case of emotion—dimensions like po-
tency, arousal, and valence, typically ranging from −1 to +1. We will discuss the
frequently encountered machine learning algorithms in the field later on.

Speech Databases comprise the stored audio of exemplary speech for model learn-
ing and testing. In addition, a transcription of the spoken content may be given
and the labelling of the problem at hand, such as speaker emotion, age, or per-
sonality. Usually, one wishes for adequate data in the sense of natural data rather
than elicited or acted in ideal conditions, excluding disruptive influence or well-
described and targeted noise or reverberation, a high total amount—which is rarely
given. Further, data should ideally include a large number of speakers, a meaning-
ful categorisation, which is usually non-trivial in this field (cf. the emotion cat-
egories vs. dimensions), a reliable annotation either by the speaker herself or a
higher number of annotators to avoid skewness, additional perception tests by in-
dependent labellers to provide a comparison of human performance on the task,
balanced distribution of instances among classes or the dimensional continuum,
knowledge of the prior distribution, high diversity of speakers’ ages, gender, eth-
nicity, language, etc., and high spoken content variation. Finally, one wishes for
well defined test, development, and training partitions without prototypical selec-
tion of ‘friendly cases’ for classification [49], free availability of the data, and
well-documented meta-data.

Model Learning is the actual training phase in which the classifier or regressor
model is built, based on labelled data. There are classifiers or regressors that do
not need this phase—so called lazy learners—as they only decide at run-time by
training instances’ properties which class to choose, e.g., by the training instance
with shortest distance in the feature space to test instances [20]. However, these
are seldom used, as they typically do not lead to sufficient accuracy in the rather
complex task of speech analysis.

Feature Selection decides which features actually to keep in the feature space. This
may be of interest if a new task, e.g., estimation of a speaker’s weight from acoustic
properties, is not well known. In such a case, a multiplicity of features can be
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‘brute-forced’, as will be shown. From these, the ones well suited for the task at
hand can be kept.

Parameter Selection fine ‘tunes’ the learning algorithm. Indeed, the performance
of a machine learning algorithm can be significantly influenced by optimal or sub-
optimal parametrisation. As for the feature selection, it is crucial not to ‘tune’ on
speech instances used for evaluation as obviously this would lead to overestimation
of performance.

Acoustic Models consist of the learnt dependencies between acoustic observations
and classes, or continuous values in the case of regression, stored as binary or text
files.

Language Models resemble acoustic models—yet, they store the learnt dependen-
cies of linguistic observations and according assignments.

9.2 ‘Voice’—the Acoustic Analysis

In this section we will be dealing with the acoustic properties of the voice ignoring
‘what’ is being said and entirely focusing on ‘how’ it is said (cf. also Chap. 10).
For this analysis, we will first need to chunk the audio stream (for an example see
Fig. 9.2a) before extracting features for these chunks and then proceed with the
selection of relevant features before the classification/regression, and ‘fine tuning’.

9.2.1 Chunking

Already for the annotation of human behaviour that changes over time, one mostly
needs to ‘chunk’ the speech, which is often stored as a single file ranging over sev-
eral seconds up to hours, into ‘units of analysis’. These chunks may be based on the
‘quasi-stationarity’ of the signal, as given by single frames obtained by applying a
window function to the signal—typically having a length of some 10–30 ms and ap-
plied every 10 ms as the window often has a softening character at its ends, or larger
units of constant duration. Most frequently, though, ‘turns’ are analysed that are
based on speech onset until offset of one speaker in conversations. Onset and offset
of speech are thereby often determined by a simple signal energy-based hysteresis,
i.e., for a given minimum time, the speech pause energy level has to be exceeded to
determine a speech onset and vice versa. While being an objective measure which
is somewhat easy to obtain automatically, such turns may highly vary in length.

Alternatives are either pragmatic units like time slices, or proportions of longer
units obtained by subdivision into parts of relative or absolute equal length, or
‘meaningful’ units with varying lengths, such as syllables, words, phrases. In [6],
the word as the smallest possible, meaningful unit, is favoured for the analysis of
emotion in speech, and in [50] it is shown that stressed syllables alone can be on a
par with words as far as classification performance is concerned.
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One may assume that units that are more connected to the task of analysis will
become important in future research. In addition, incremental processing will be
of increasing interest. Such incremental processing means providing an online es-
timate after the onset, updated continuously until the offset—this is often referred
to as ‘gating’. Additionally, one may want to decide for the optimal unit in a mul-
timodal context if for example also video or physiological information is analysed
that typically investigates different units, but shall be fused in a synergistic man-
ner. In fact, this problem can already arise to a certain extent when we want to
fuse acoustic and linguistic information. Even for processing exclusively acoustic
information, consideration of several temporal units at the same time may be in-
teresting, to benefit from shorter frames in the case of spectral characteristics, but
larger ‘supra-segmental’ units in the case of prosodic features, i.e., features dealing
with intonation, stress, and rhythm, such as speaker’s pitch.

9.2.2 Acoustic Feature Extraction

Arguably the most important step in the automated recognition of speaker states,
traits and vocal behaviour is the extraction of features that are relevant for the task
at hand and providing a compact representation of the problem.

Let us divide features into groups in the following to provide a comprehensive
overview. While there is no unique classification into such groups, the most basic
distinction is technology driven: The main groups are at first acoustic and linguistic
features.

Depending on the type of affective state of vocal behaviour one aims to anal-
yse, different weights will be given to these. To give an obvious example, linguistic
features are of limited interest when assessing non-verbal vocal outbursts such as
laughter, sighs, etc. However, investigating a speaker’s emotion or personality, they
bear high potential.

In the past, the common focus was put on prosodic features, more specifically
on pitch, duration and intensity, and less frequently on voice quality features as
harmonics-to-noise ratio (HNR), jitter, or shimmer. Segmental, spectral features
modelling formants, or cepstral features (MFCC) are also often found in the lit-
erature. More details of these features will be given later.

Until recently, a comparably small feature set (around 20 to 30 features) has usu-
ally been employed. The recent success of systematically generated static feature
vectors is probably justified by the supra-segmental nature of most paralinguistic
phenomena. These features are derived by projection of the low-level descriptors
(LLD, for examples see Fig. 9.2b–f) on single scalar values by descriptive statistical
functionals, such as lower order moments or extrema. As an alternative, LLD fea-
tures can be modelled directly. In general, these LLD calculate a value per speech
‘frame’ with a typical frame rate of 100 frames per second (fps, cf. Sect. 9.2).

The large number of LLD and functionals has recently promoted the extraction of
very large feature vectors (brute-force extraction), up to many thousands of features
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Fig. 9.2 Exemplary speech wave form over time in ms: laughter (0.0–150 ms) followed by “I take
my mind off” taken from the SAL database (male speaker) and selected low-level descriptors

obtained either by analytical feature generation or, in a few studies, by evolutionary
generation (note that a similar development can be found in vision analysis, where
large amounts of features are produced and then reduced). Such brute-forcing also
often includes hierarchical functional application (e.g., mean of maxima) to better
cope with statistical outliers.

However, also expert-based hand-crafted features still play their role, as these are
lately often crafted with more emphasis put on details hard to find by sheer brute-
forcing such as perceptually more adequate ones, or more complex features such
as articulatory ones, for instance, (de-)centralisation of vowels (i.e., how exact and
constant are vowels articulated). This can thus also be expected as a trend in future
acoustic feature computation.

Let us now introduce the groups of features.



9 Voice and Speech Analysis in Search of States and Traits 233

Intensity features usually model the loudness of a sound as perceived by the
human ear, based on the amplitude, whereby different types of normalisation are
applied. Often, however, simply the frame energy is calculated for simplification, as
human loudness perception requires a complex model respecting effects of duration
and pitch of sound. As the intensity of a stimulus increases, the hearing sensation
grows logarithmically (decibel scale). It is further well-known that sound perception
also depends on the spectral distribution. The loudness contour is thus the sequence
of short-term loudness values extracted on a frame-by-frame basis.

The basics of pitch extraction have largely remained the same over the years;
nearly all Pitch Detection Algorithms (PDA) are built using frame-based analysis:
The speech signal is broken into overlapping frames and a pitch value is inferred
from each segment mostly by the maximum in the autocorrelation function (ACF)
in its manifold variants and derivatives such as Average Magnitude Difference Func-
tion (AMDF). AMDF substitutes the search of a maximum by a minimum search,
as instead of multiplication of the signal with itself, a subtraction is considered for
improved efficiency. Often, the Linear Predictive Coding (LPC) residual or a band-
pass filtered version is used over the original signal to exclude other influences from
the vocal tract position. Pitch can also be determined in the time signal which allows
for analysis of micro-perturbations, but is usually more error-prone. Pitch features
are often made perceptually more adequate by logarithmic/semitone transformation,
or normalisation with respect to some (speaker-specific) baseline. Pitch extraction is
error-prone itself, which may influence recognition performance of the actual target
problem [4]. However, the influence is rather small, at least for the current state-of-
the-art in modelling pitch features.

Voice quality is a complicated issue in itself, since there are many different
measures of voice quality [28], mostly clinical in origin and mostly evaluated for
constant vowels only. Other, less well-known voice quality features were intended
towards normal speech from the outset, e.g., those modelling ‘irregular phona-
tion’, cf. [3]. Noise-to-Harmonic Ratio, jitter (micro-perturbation of pitch), shimmer
(micro-perturbation of energy), and further micro-prosodic events are measures of
the quality of the speech signal. Although they depend in part on other LLDs such
as pitch and energy, they reflect peculiar voice quality properties such as breathiness
or harshness.

The spectrum is characterised by formants (spectral maxima depending on the
vocal tract position) modelling spoken content, especially the lower ones. Higher
formants also represent speaker characteristics. Each one is fully represented by po-
sition, amplitude and bandwidth. The estimation of formant frequencies and band-
widths can be based on LPC or on cepstral analysis. A number of further spectral
features can be computed either directly from a spectral transform such as by Fast
Fourier Transform or the LPC spectrum, such as centroid, flux, and roll-off. Further-
more, the long term average spectrum over a unit can be employed: this averages
out formant information, giving general spectral trends.

The cepstrum, i.e., the inverse spectral transform of the logarithm of the spec-
trum, emphasises changes or periodicity in the spectrum, while being relatively
robust against noise. Its basic unit is frequency. Mel-Frequency Cepstral Coeffi-
cients (MFCCs)—as homomorphic transform with equidistant band-pass filters on
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the Mel-scale—tend to strongly depend on the spoken content. Yet, they have been
proven beneficial in practically any speech processing task. MFCC are calculated
based on the Fourier transform of a speech frame. Next, overlapping windows—
usually of triangular shape and equidistant on the Mel scale—are used for map-
ping the powers of the obtained spectrogram onto the Mel scale to model human
frequency resolution. Next, the logarithms of the powers are taken per such Mel
frequency filter band—the idea at this point is to decouple the vocal tract transfer
function from the excitation signal of human sound production. Then, the Discrete
Cosine Transform (DCT) of the list of mel log powers is taken for decorrelation
(other transforms are often used as well) to finally obtain the MFCCs as the ampli-
tudes of the resulting DCT spectrum.

Perceptual Linear Predictive (PLP) coefficients and MFCCs are extremely simi-
lar, as they both correspond to a short-term spectrum smoothing—the former by an
autoregressive model, the latter by the cepstrum—and to an approximation of the
auditory system by filter-bank-based methods. At the same time, PLP coefficients
are also an improvement of LPC by using the perceptually based Bark filter bank.
Variants such as Mel Frequency Bands (MFB) that do not decorrelate features as a
final step are also found in this particular field.

Wavelets give a short-term multi-resolution analysis of time, energy and frequen-
cies in a speech signal. Compared to similar parametric representations they are able
to minimise the time-frequency uncertainty.

Duration features model temporal aspects. Relative positions on the time axis of
base contours like energy and pitch such as maxima or on/offset positions do not
strictly represent energy and pitch, but duration—because they are measured in sec-
onds, and because they are often highly correlated with duration features. By that,
they can be distinguished according to the way they are extracted: Those that repre-
sent temporal aspects of other acoustic base contours, and those that exclusively rep-
resent the ‘duration’ of higher phonological units, like phonemes, syllables, words,
pauses, or utterances. Duration values are usually correlated with linguistic features:
For instance, function words are shorter on average, content words are longer: This
information can be used for classification, no matter whether the signal is encoded
in linguistic, or acoustic (i.e., duration) features.

Subsequent to the LLD extraction, a number of operators and functionals can be
applied to obtain feature vectors of equal size from each LLD. Functionals provide
a sort of normalisation over time: LLD associated with words (and other units) have
different lengths, depending on the duration of each word and on the dimension
of the window step; with the usage of functionals, we obtain one feature vector per
chunk, with a constant number of elements that can be modelled by a static classifier
or regressor. This cascade procedure, namely LLD extraction followed by functional
application, has two major advantages: Features derived from longer time intervals
can be used to normalise local ones, and the overall number of features might be
opportunely shrunk or expanded with respect to the number of initial LLDs [48].

More intelligent brute-forcing can be obtained by search masks and by a broader
selection of functionals and parameters. In this way, an expert’s experience can be
combined with the freedom of exploration taken by an automatic generation.
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Before functionals are applied, LLDs can be filtered or (perceptually) trans-
formed, and first or second derivatives are often calculated and end up as additional
LLDs. Functionals can range from statistical ones to curve fitting methods. The
most popular statistical functionals cover the first four moments (mean, standard
deviation, skewness and kurtosis), higher order statistics (extreme values and their
temporal information), quartiles, amplitude ranges, zero-crossing rates, roll-on/-off,
on/offsets and higher level analysis. Curve fitting methods (mainly linear) produce
regression coefficients, such as the slope of linear regression, and regression errors
(such as the mean square errors between the regression curve and the original LLD).
A comprehensive list of functionals adopted so far in this field can be found in [7].

Figure 9.3 provides an overview of the commonly used features and the principle
of their brute-forcing in several layers.

As a typical example, we can have a look at the ‘large’ feature set of the public
open source toolkit openSMILE [16] that is frequently used in the field: Acoustic
feature vectors of 6.552 dimensions are extracted as 39 functionals of 56 acoustic
LLDs, including first and second order delta regression coefficients: Table 9.1 shows
the LLDs to which the statistical functionals are applied that are summarised in
Table 9.2 to map a time series of variable length onto a static feature vector as
described above.

9.2.3 Feature Selection

To improve reliability and performance, but also to obtain more efficient models
in terms of processing speed and memory requirements, one usually has to select
a subset of features that best describe the audio analysis task. A multiplicity of
feature selection strategies have been employed, e.g., for recognition of emotion or
personality, but even for non-linguistic vocalisations, different types of features are
often considered and selected.

Ideally, feature selection methods should not only reveal single (or groups of)
most relevant attributes, but also decorrelate the feature space. Wrapper-based
selection—that is employing a target classifier’s accuracy or regressor’s cross-
correlation as optimisation criterion in ‘closed loop’—is widely used to tailor the
feature set in match with the machine learning algorithm. However, even for rela-
tively small data sets, exhaustive selection considering any permutation of features
is still not affordable. Therefore, the search in the feature space must employ some
more restrictive, and thus less optimal, strategies. Probably the most common pro-
cedure chosen is the sequential forward search—a hill climbing selection starting
with an empty set and sequentially adding best features; as this search function is
prone to nesting, an additional floating option should be added: At each step one or
more features are deleted and it is checked if others are more suited.

Apart from wrappers, less computationally expensive ‘filter’ or ‘open loop’ meth-
ods are frequently used if repeated selection is necessary, such as information theo-
retic filters and correlation-based analysis.
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Table 9.1 33 exemplary typical Low-Level Descriptors (LLD)

Feature Group Features in Group

Raw Signal Zero-crossing-rate

Signal energy Logarithmic

Pitch Fundamental frequency F0 in Hz via Cepstrum and Autocorrelation (ACF).
Exponentially smoothed F0 envelope.

Voice Quality Probability of voicing ( ACF(T0)
ACF(0)

)

Spectral Energy in bands 0–250 Hz, 0–650 Hz, 250–650 Hz, 1–4 kHz
25%, 50%, 75%, 90% roll-off point, centroid, flux, and rel. pos. max./min.

Mel-spectrum Band 1–26

Cepstral MFCC 0–12

Table 9.2 39 exemplary functionals as typically applied to LLD contours

Functionals #

Respective rel. position of max./min. value 2

Range (max.-min.) 1

Max. and min. value—arithmetic mean 2

Arithmetic mean, Quadratic mean, Centroid 3

Number of non-zero values 1

Geometric, and quadratic mean of non-zero values 2

Mean of absolute values, Mean of non-zero abs. values 2

Quartiles and inter-quartile ranges 6

95% and 98% percentile 2

Std. deviation, variance, kurtosis, skewness 4

Zero-crossing rate 1

# of peaks, mean dist. btwn. peaks, arth. mean of peaks, arth. mean of peaks—overall
arth. mean

4

Linear regression coefficients and error 4

Quadratic regression coefficients and error 5

There are, however, also classifiers and regressors with ‘embedded’ selection,
such as Decision Trees or Ridge Regression.

As a refinement, hierarchical approaches to feature selection try to optimise the
feature set not globally for all target classes, but for groups of them, mainly couples.

Apart from genuine selection of features, the reduction (i.e. feature extraction)
of the feature space is often considered to reduce the complexity and number of free
parameters to be learnt for the machine learning algorithms while benefiting from
all original feature information. This is achieved by mapping of the input space onto
a less dimensional target space, while keeping as much information as possible.
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Principal Component Analysis (PCA) and Linear or Heteroscedastic Discriminant
Analysis (LDA) are the most common techniques.

While PCA is an unsupervised feature reduction method and thus is often sub-
optimal for more complex problems, LDA is a supervised feature reduction method
which searches for the linear transformation that maximises the ratio of the determi-
nants of the between-class covariance matrix and the within-class covariance matrix,
i.e., it is a discriminative method as the name indicates.

In fact, none of these methods is optimal: There is no straight forward way of
knowing the optimal target space size—typically the variance covered is a decisive
measure. Further, a certain degree of normal distribution is expected, and LDA ad-
ditionally demands linear separability of the input space. PCA and LDA are also not
very appropriate for feature mining, as the original features are not retained after the
transformation.

Finally, Independent Component Analysis (ICA) and Non-negative Matrix Fac-
torization (NMF) [25] can be named. ICA maps the feature space onto an orthogonal
space and the target features have the attractive property of being statistically inde-
pendent. NMF is a recent alternative to PCA in which the data and components have
to be non-negative. NMF is at present mainly employed for large linguistic feature
sets.

Also, it seems important to mention that there is a high danger of over-adaptation
to the data that features are selected upon. As a counter-measure, it seems wise to
address feature importance across databases [15].

9.2.4 Classification and Regression

A number of factors motivate consideration of diverse machine learning algorithms,
the most important being tolerance to high dimensionality, capability of exploiting
sparse data, and handling of skewed classes. In addition, more general considera-
tions such as the ability to solve non-linear problems, discriminative learning, self-
learning of relevant features, high generalisation, on-line adaptation, handling of
missing data, efficiency with respect to computational and memory costs in training
and recognition, etc. can play a decisive role. Further, one may wish for human-
readable learnt models, provision of meaningful confidence measures and handling
of input uncertainties (features like pitch are not determined flawlessly—here an
algorithm may also consider a certainty measure in addition to the predicted pitch
value) for optimal integration in a system context.

As previously mentioned, we can basically differentiate between classifiers that
decide for discrete classes and regressors that estimate a continuous value in the
sense of a function learner. However, practically any classifier can be turned into a
regressor and vice versa, although the result would not necessarily be as efficient
for this task as for its ‘native’ task. Classification using regression methods can for
example be obtained by having each class binarised and one regression model built
for each class value. The other way round, a regression scheme can be realised by
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using any classifier on a copy of the data where the continuous ‘class’ is discretised.
The predicted value is the expected value of the mean class value for each discre-
tised interval, based on the predicted probabilities for each interval [58] (also see
‘squashing’ in Chap. 1).

The problem of a high dimensional feature set is usually better addressed by
feature selection and elimination before actual classification takes place. Popular
classifiers such as Linear Discriminant Classifiers (LDCs) and k-Nearest Neighbor
(kNN) classifiers have been used since the very first studies. However, they suffer
from the increasing number of features that leads to regions of the feature space
where data are very sparse (‘curse of dimensionality’). Classifiers such as kNN that
divide the feature space into cells are affected by the curse of dimensionality and
are sensitive to outliers. A natural extension of LDCs are Support Vector Machines
(SVM): they combine discriminative learning and solving of non-linear problems
by a Kernel-based transformation of the feature space. While they may not always
lead to the best result, they provide good generalisation properties, and can be seen
as a sort of state-of-the-art classifier (or regressor, as the related Support Vector
Regression allows for handling of continuous problem descriptions).

Small data sets are, in general, best handled by discriminative classifiers. The
most used non-linear discriminative classifiers apart from SVM are likely to be Arti-
ficial Neural Networks (ANNs) and decision trees. Decision hyperplanes learnt with
ANN might become very complex and depend on the topology of the network (num-
ber of neurons), on the learning algorithm (usually a derivation of the well-known
Backpropagation algorithm) and on the activity rules. For this reason, ANNs are
less robust to over-fitting, and require greater amounts of data to be trained on. The
recent incorporation of a long–short-term memory function seems to be a promising
future direction [60] that may raise their popularity. Also, multi-task learning is well
established, which may be of particular interest in this field to, e.g., assess emotion
and personality in one pass, benefiting from mutual dependencies.

Decision trees are also characterised by the property of handling non-linearly
separable data; moreover, they are less of a ‘black box’ compared to SVM or neural
networks, since they are based on simple recursive splits (i.e., questions) of the data.
These binary questions are very readable, especially if the tree has been adequately
pruned. As accuracy degrades in case of irrelevant features or noisy patterns, Ran-
dom Forests (RF) can be employed: They consist of an ensemble of trees, each one
accounting for random, small subsets of the input features obtained by sampling
with replacement. They are practically insensitive to the curse of dimensionality,
while, at the same time, still providing all the benefits of classification trees.

As many paralinguistic tasks (such as emotion) are not evenly distributed among
classes in databases, balancing of the training instances with respect to instances per
class is often a necessary step before classification [43]. The balancing of the output
space can be addressed either by considering proper class weights (e.g., priors),
or by resampling, i.e., (random) up- or down-sampling. Class priors are implicitly
taken into account by discriminative classifiers.

As explained above, applying functionals to LLD is done for obtaining the
same number of features for different lengths of units such as turns or words. Dy-



240 B. Schuller

namic classifiers like Hidden Markov Models, Dynamic Bayesian Networks or sim-
ple Dynamic Time Warp allow to skip this step in the computation by implicitly
warping observed feature sequences over time. Among dynamic classifiers, Hid-
den Markov Models (HMM) have been used widely. The performance of static
modelling through functionals is often reported as superior [43], as paralinguistic
tasks are apparently better modelled on a time-scale above frame level; note that
a combination of static features such as minimum, maximum, onset, offset, dura-
tion, regression, etc. implicitly shape contour dynamics as well. A possibility to use
static classifiers for frame-level feature processing is further given by multi-instance
learning techniques, where a time series of unknown length is handled by SVM or
similar techniques. Also, a combination of static and dynamic processing may help
improve overall accuracy [55].

Ensembles of classifiers combine their individual strengths, and might improve
training stability. There exists a number of different approaches to combine clas-
sifiers. Popular are methods based on majority voting such as Bagging, Boosting
and other variants (e.g., MultiBoosting). More powerful, however, is the combina-
tion of diverse classifiers by the introduction of a meta-classifier that learns ‘which
classifier to trust when’ and is trained only on the output of ‘base-level’ classifiers,
known as Stacking. If confidences are provided on lower level, they can be exploited
as well. Still, the gain over single strong classifiers such as SVM may not justify the
extra computational costs [37].

In line with the different models to describe the named problems, e.g., by
classes or continuous dimensions, also different approaches towards classification
are needed: As real-life application is not limited to prototypical cases, also detec-
tion as opposed to classification can be expected as an alternative paradigm: ‘Out-of-
vocabulary’ classes need to be handled as well (as an example, imagine the emotions
anger and neutral having been trained, but in the recognition phase joy appears), and
apart from the easiest solution of introducing a garbage class [43], detection allows
for more flexibility. Detection is thereby defined by inheriting a rejection threshold.
In this respect, confidence measurements should be mentioned, which are, however,
not sufficiently explored, yet.

9.2.5 Parameter Tuning

Apart from the selection of features, a crucial factor in optimisation of performance
is the ‘fine tuning’ of classifiers’ parameters on a development partition of the train-
ing data. Typically such parameters comprise the exponent of polynomial Kernels
for Support Vector Machines or the number of nearest neighbors in k nearest neigh-
bor classification, etc. While these can be optimised by equidistant scanning of the
parameter space, more efficient methods exist, of which grid search is the most fre-
quently encountered in the field (e.g., [23]). Grid search is a greedy algorithm that
first performs a rough search over the values and then narrows down on promising
areas in terms of best accuracy for a classifier or cross-correlation for a regressor
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in a recursive manner. Obviously, just as for the selection of features, such searches
do not necessarily lead to the global optimum, if the search is not exhaustive. In
addition, they also may differ drastically for different databases, depending on their
size and complexity. Thus, again cross-corpus parameter tuning may help find more
generally valid sets than considering just intra-database variation.

9.3 ‘Speech’—the (Non-)linguistic Analysis

As said, in this chapter speech stands for spoken text, i.e., the analysis of textual
cues. Apart from the analysis of linguistic content, non-linguistic vocal outbursts as
laughter are dealt with.

9.3.1 Analysis of Linguistic Content

Spoken or written text provides cues on emotion, personality or further states and
traits. This is usually reflected in the usage of certain words or grammatical alter-
ations, which means in turn, in the usage of specific higher semantic and prag-
matic entities. A number of approaches exists for this analysis: keyword spot-
ting [12], rule-based modelling [26], Semantic Trees [61], Latent Semantic Anal-
ysis [17], World-knowledge-Modelling, Key-Phrase-Spotting, String Kernels [40],
and Bayesian Networks [8]. Contextual and pragmatic information has been mod-
elled as well, e.g., dialogue acts [26], or system and user performance [1]. Two
methods seem to be predominant, presumably because they are shallow represen-
tations of linguistic knowledge and have already been frequently employed in au-
tomatic speech processing: (class-based) N-Grams and Bag of Words (vector space
modelling), cf. [38].

N-Grams and Class-based N-Grams are commonly used for general language
modelling. Thereby the posterior probability of a (class of a) word is given by its
predecessors from left to right within a sequence of N words. For recognition of a
target problem such as emotion or personality, the probability of each target class
is determined per N-gram of an utterance. In addition, word-class-based N-grams
can be used as well, to better cope with data sparseness. For the example of emotion
recognition, due to data sparseness mostly uni-grams (N = 1) have been applied
so far, besides bi-grams (N = 2) and trigrams (N = 3) [2]. The actual target class
is calculated by the posterior probability of the class given the actual word(s) by
maximum likelihood or a-posteriori estimation. An extension of N-Grams which
copes with data sparseness even better is Character N-Grams; in this case larger
histories can be used.

Bag of Words is a well-known numerical representation form of texts in auto-
matic document categorisation [22]. It has been successfully ported to recognise
sentiments or emotion [38] and can equivalently be used for other target problems.
In this approach each word in the vocabulary adds a dimension to a linguistic vector
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representing the term frequency within the actual utterance. Note that easily very
large feature spaces may occur, which usually require intelligent reduction. The
logarithm of frequency is often used; this value is further better normalised by the
length of the utterance and by the overall (log)frequency within the training corpus.

In addition, exploitation of on-line knowledge sources without domain specific
model training has recently become an interesting alternative or addition [42]—e.g.,
to cope with out-of-vocabulary events. The largely related fields of opinion mining
and sentiment analysis in text bear interesting alternatives and variants of methods.

Although we are considering the analysis from spoken text, only few results for
paralinguistic speaker state and trait recognition rely on automatic speech recogni-
tion (ASR) output [45] rather than on manual annotation of the data. As ASR of
affective speech itself is a challenge [52], this step is likely to introduce errors. To
some extent errors deriving from ASR and human transcription can be eliminated
by soft-string-matching such as tolerating a number of deletions, insertions, or sub-
stitutions of characters.

To reduce the complexity for the analysis, stopping is usually used. This resem-
bles elimination of irrelevant words. The traditional approach towards stopping is
an expert-based list of words, e.g., of function words. Yet, even for an expert it
seems hard to judge which words can be of importance in view of the target prob-
lem. Data-driven approaches like salience or information gain based reduction are
popular. Another often highly effective way is stopping words that do not exceed a
general minimum frequency of occurrence in the training corpus.

Tokenisation, i.e., chunking of the continuous text string similar to chunking of
the acoustic stream above, can be obtained by mapping the text onto word classes:
Stemming is the clustering of morphological variants of a word (such as “fight”,
“fights”, “fought”, “fighting”, etc.) by its stem into a lexeme. This reduces the num-
ber of entries in the vocabulary, while at the same time providing more training
instances per class. Thereby also words that were not seen in the training can be
mapped upon their representative morphological variant, for instance by (Iterated)
Lovins or Porter stemmers that are based on suffix lists and rules. Part-of-Speech
(POS) tagging is a very compact approach where classes such as nouns, verbs, ad-
jectives, particles, or more detailed sub-classes are modelled [51]. POS tagging and
stemming have been studied thoroughly [40].

Also sememes, i.e., semantic units represented by lexemes, can be clustered into
higher semantic concepts such as generally positive or negative terms [7]. In addi-
tion, non-linguistic vocalisations can easily be integrated into the vocabulary [41].

9.3.2 Analysis of Non-linguistic Content

While non-linguistic events such as laughter can be modelled as an extra type of
feature stream or information, a very simple way is to include them in the string
of linguistic events. On the positive side, this can put events like laughter in direct
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relation with the words. This may, however, disrupt linguistically meaningful se-
quences of words. Alternatively, frequencies of occurrences normalised to time or
even functionals applied to occurrences are alternative solutions.

9.3.3 (Non-)linguistic Feature Extraction

While non-linguistic events can be recognised directly in-line with speech as by an
Automatic Speech Recogniser, it seems noteworthy to mention that one can also
use brute-forced features as described above. Interestingly, little to no difference is
reported for these two types of representation [41]. The incorporation into a speech
recogniser has the advantage that speech is recognised with integration of higher-
level knowledge as coming from the language model. However, if non-linguistic
vocalisations are modelled on their own, a richer feature representation can be used
that may unnecessarily increase space complexity for speech recognition. Further-
more, in case of non-linguistic vocalisations such as laughter, these may also appear
‘blended’ with speech, as in the case of ‘speech-laughter’, i.e., laughter while actu-
ally speaking words. This cannot easily be handled in-line with ASR, as the ASR
engine typically would have to decide for phonetically meaningful units or laughter.

9.3.4 Classification and Regression

In principle, any of the formerly discussed learning algorithms can be used for lin-
guistic analysis, as well. However, different ones may be typically preferred owing
to the slightly different characteristics of linguistic features. In particular, statisti-
cal algorithms and Kernel machines such as Support Vector Machines are popular.
Noteworthy, there are also specific algorithms that may operate directly on string
input such as the String Kernels [27] for Support Vector Machines.

9.4 Data, Benchmarks, and Application Examples

In this section, let us first have a look at some typical databases focusing on affec-
tive speaker states. Next, two examples of systems that analyse vocal behaviour on
different levels will shortly be described.

9.4.1 Frequently Encountered Data-Sets and Their Benchmarks

As benchmark databases, nine most frequently encountered databases that span a
range from acted over induced to spontaneous affect portrayals are presented, fo-
cusing in particular on affective speaker states. For better comparability of obtained
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performances among corpora, the diverse affect groups are additionally mapped
onto the two most popular axes in the dimensional emotion model as in [47]:
arousal (i.e., passive (“−”) vs. active (“+”)) and valence (i.e., negative (“−”) vs.
positive (“+”)). Note that these mappings are not straight forward—here we will
favour better balance among target classes. Let us further discretise into the four
quadrants (q) 1–4 of the arousal-valence plane for continuous labelled corpora.
In the following, each set is shortly introduced, including the mapping to binary
arousal/valence by “+” and “−” per emotion and its number of instances in paren-
theses. Note that the emotions are referred to as in the original database descrip-
tions.

The Danish Emotional Speech (DES) database [13] is professionally acted and
contains nine sentences, two isolated words, and chunks that are located between
two silent segments of two passages of fluent text. Affective states contain angry
(+/−, 85), happy (+/+, 86), neutral (−/+, 85), sadness (−/−, 84), and surprise
(+/+, 79).

The Berlin Emotional Speech Database (EMOD) [9] features professional actors
speaking ten emotionally undefined sentences. 494 phrases are commonly used:
angry (+/−, 127), boredom (−/−, 79), disgust (−/−, 38), fear (+/−, 55), happy
(+/+, 64), neutral (−/+, 78), and sadness (−/−, 53).

The eNTERFACE (eNTER) [29] corpus consists of recordings of subjects from
14 nations speaking pre-defined spoken content in English. The subjects listened to
six successive short stories eliciting a particular emotion out of angry (+/−, 215),
disgust (−/−, 215), fear (+/−, 215), happy (+/+, 207), sadness (−/−, 210), and
surprise (+/+, 215).

The Airplane Behavior Corpus (ABC) [39] is based on induced mood by pre-
recorded announcements of a vacation (return) flight, consisting of 13 and 10 scenes.
It contains aggressive (+/−, 95), cheerful (+/+, 105), intoxicated (+/−, 33), ner-
vous (+/−, 93), neutral (−/+, 79), and tired (−/−, 25) speech.

The Speech Under Simulated and Actual Stress (SUSAS) database [21] serves as
a first reference for spontaneous recordings. Speech is additionally partly masked
by field noise in the chosen speech samples of actual stress. SUSAS content is re-
stricted to 35 English air-commands in the speaker states of high stress (+/−, 1202),
medium stress (+/−, 1276), neutral (−/+, 701), and scream (+/−, 414).

The Audiovisual Interest Corpus (AVIC) [41] consists of spontaneous speech and
natural emotion. In its scenario setup, a product presenter leads subjects through a
commercial presentation. AVIC is labelled in “levels of interest” (loi) 1–3 having
loi1 (−/−, 553), loi2 (+/+, 2279), and loi3 (+/+, 170).

The Belfast Sensitive Artificial Listener (SAL) data are part of the HUMAINE
database. The subset used—as in [59]—has an average length of 20 minutes per
speaker of natural human-SAL conversations. The data have been labelled contin-
uously in real time with respect to valence and activation, using a system based on
FEELtrace [11]. The annotations were normalised to zero-mean globally and scaled
so that 98% of all values are in the range from −1 to +1. The 25 recordings have
been split into turns using energy based Voice Activity Detection. Labels for each
obtained turn are computed by averaging over the complete turn. Per quadrant the
samples are: q1 (+/+, 459), q2 (−/+, 320), q3 (−/−, 564), and q4 (+/−, 349).
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Table 9.3 Overview on the selected corpora (E/D/G: English/German/Danish, act/ind/nat:
acted/induced/natural, Lab: labellers, Rec: recording environment, f/m: (fe-)male subjects).
Speaker-independent recognition performance benchmarks are provided by weighted (WA) and
unweighted (UA) average accuracy. * indicates results obtained by Support Vector Machines if
these had outperformed Deep Neural Networks as taken in all other cases

Corpus Speech # All h:mm # m # f # Lab Rec kHz # All # Arousal # Valence

UA WA UA WA UA WA

ABC G fixed act 430 1:15 4 4 3 studio 16 56.1 61.5 69.3 80.6 79.6 79.0

AVIC E free nat 3002 1:47 11 10 4 studio 44 59.9 79.1 75.6 85.3 75.2 85.5

DES D fixed act 419 0:28 2 2 – studio 20 59.9* 60.1* 90.0 90.3 71.7 73.7

EMOD G fixed act 494 0:22 5 5 – studio 16 84.6* 85.6* 97.6 97.4 82.2 87.5

eNTER E fixed ind 1277 1:00 34 8 2 studio 16 72.5* 72.4* 78.1 79.3* 78.6* 80.2*

SAL E free nat 1692 1:41 2 2 4 studio 16 35.9 34.3 65.1 66.4 57.7 53.0

Smart G free nat 3823 7:08 32 47 3 noisy 16 25.0 59.5 55.2 79.2 52.2 89.4

SUSAS E fixed nat 3593 1:01 4 3 – noisy 8 61.4* 56.5* 68.2 83.3 74.4 75.0

VAM G free nat 946 0:47 15 32 6/17 noisy 16 39.3 68.0 78.4 77.1 52.4 92.3

The SmartKom (Smart) [53] corpus consists of Wizard-Of-Oz dialogues. For
evaluations, the dialogues recorded during a public environment technical scenario
are used. It is structured into sessions which contain one recording of approximately
4.5 min length with one person, and labelled as anger/irritation (+/−, 220), help-
lessness (+/−, 161), joy/gratification (+/+, 284), neutral (−/+, 2179), ponder-
ing/reflection (−/+, 643), surprise (+/+, 70), and unidentifiable episodes (−/+,
266).

Finally, the Vera-Am-Mittag (VAM) corpus [18] consists of recordings taken
from a German TV talk show. The audio recordings were manually segmented to the
utterance level, whereas each utterance contains at least one phrase. The labelling
is based on a discrete five point scale for each of the valence, activation, and dom-
inance dimensions. Samples among quadrants are q1 (+/+, 21), q2 (−/+, 50), q3
(−/−, 451), and q4 (+/−, 424).

Further details on the corpora are summarised in Table 9.3 and found in [44].
Looking at the table, some striking facts become evident: most notably, the high
sparseness of data with these sets typically providing only one hour of speech from
only around 10 subjects. In related fields as ASR, several hundreds of hours of
speech and subjects are typically contained. This is one of the major problems in
this field at the moment. In addition, one sees that often such data are rather acted
as opposed to natural and that the linguistic content is often restricted to pre-defined
phrases or words. Obviously, this is rather an annotation challenge, as emotional
speech data per se would be available.

To provide an impression on typical performances in the field, the last columns
of Table 9.3 provide weighted (WA) and unweighted (UA) accuracy of speaker-
independent recognition by feature reduction with Deep Neural Networks and sub-
sequent distance classification (DNN) or Support Vector Machines on the original
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space (SVM), with the ‘large’ standard feature set of openSMILE introduced in
Sect. 9.2. Such speaker independence is obtained by partitioning the data in a ‘leave-
one-speaker-out’, or—for databases with many speakers, here starting at more than
10—‘leave-one-speaker-group-out’ cross-validation manner. This cross-validation
is very popular in this field, as it allows to test on all instances of the very limited
resources. The accuracy of the classifier that produced the higher result on develop-
ment data is presented, each, in the table. Balancing of the training partition is used
to cope with the imbalance of instances in the training set among affective states.
More details are found in [54]. If we now look at these numbers, it seems clear that
acted data are considerably easier to recognise automatically owing to their often
exaggerated display. Naturally, this is more true in the case where the verbal content
is limited. Another interesting but typical fact is that arousal is usually recognised
more reliably. To better handle valence, one would best integrate linguistic feature
information.

To conclude this chapter, let us now have a look at two examples of voice and
speech analysis systems that are currently used in practice and that investigate a
number of different issues in contrast to the above named problems.

9.4.2 Human-to-Human Conversation Analysis

The AVIC corpus as introduced above and as used in the INTERSPEECH Paralin-
guistic Challenge [46] provides a good example of vocal behaviour analysis in nat-
ural human conversational speech. In [41] an analysis of non-linguistic vocalisa-
tions and speaker’s interest is shown, based on these non-linguistic vocalisations
and further acoustic and linguistic features as introduced above. The acoustic fea-
ture space consists of a brute-force large space with subsequent feature selection
with the classifier in the loop and SVM for classification. Linguistic features are the
described Bag of Words, integrated directly into the feature vector. Non-linguistics
are recognised in a separate recognition pass by the same basis of acoustic features
but optimised for this task. The occurrence of non-linguistics is simply added to the
linguistic feature string.

To demonstrate efficiency over weighted and unweighted accuracies like we pre-
sented in Table 9.3, 40 participants interacted with a virtual product and company
tour that took participants’ interest into account to change topic in case of their bore-
dom. Three variants were used: topic change after a fixed time, with fully automatic
interest recognition with this system or by a human Wizard-of-Oz. The question
“Did you think the system was taking into account your interest?” was positively
answered by 35% in the first case (no interest recognition), by 63% in the second
case (fully automatic interest recognition) and by 84% in the last case (human in-
terest recognition) nicely demonstrating that the technology seems to be generally
working, but that there is also still headroom for improvement to reach human-like
performance.

In our next example, let us switch to human–computer conversation.
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9.4.3 Human-to-Agent Conversation Analysis

In the European SEMAINE project, a Sensitive Artificial Listener (SAL)—a mul-
timodal dialogue system with the social interaction skills needed for a sustained
conversation with a human user—was built [36]. Such a system demands for on-line
incremental emotion recognition, in order to select responses as early as possible. In
SEMAINE, the user’s affective state and non-verbal behaviour are the major factors
for deciding upon agent actions. Therefore it is essential to obtain a fast estimate of
the user’s affective state as soon as the user starts speaking, and refine the estimate
as more data are available (for example, in [56] 350 ms are suggested for human-
like back-channelling in certain situations). Moreover, the system needs to know
how reliable the affect dimension predictions are, in order to identify salient parts of
highly affective speech reliably, in order to choose appropriate actions. The verbal
dialogue capabilities of the system are very limited on purpose. They are basically
limited to agreement/disagreement, emotionally relevant keywords, and changing
characters (see below for more information on the four different SEMAINE charac-
ters/personalities).

In the SEMAINE system, which is freely available as release for research and
tutoring,1 Feature extractors analyse low-level audio and video signals, and pro-
vide feature vectors periodically (10 ms) to the analysers, which process the low-
level features and produce a representation of the current user state, in terms of
epistemic-affective states (emotion, interest, etc.). Since, automatic speech recogni-
tion or emotion recognition might benefit from the dialogue context or user profiles
at a higher level, interpreter components are contained in the system to address this
issue. A typical and obvious example is the ‘turn-taking interpreter’, which decides
when it is time for the agent to take the turn. These are examples—the SEMAINE
API goes beyond these capabilities [36].

The next group of components is a set of action proposers which produce agent
action candidates independently from one another. The action proposers take their
input mainly from the user, dialog, and agent state. As for the voice and speech
analysis, the free open source openSMILE2 [16] module extracts state of the art
features stemming from the large feature set described in Sect. 9.2 for voice activity
detection, prosody analysis, keyword spotting, non-linguistic vocalisation detection,
and an acoustic emotion recognition module. Prosodic features, which are used by
other SEMAINE components (e.g., for turn-taking decisions), include pitch contour,
energy/loudness, and per pseudo-syllable pitch direction estimates. Classification
and regression are based on on-line Long Short-Term Memory (LSTM) Recurrent
Neural Networks.

The SEMAINE keyword spotter detects a set of 176 keywords (including the
non-linguistic vocalisations ‘breathing’, ‘laughing’, and ‘sighing’ handled in-line)
which are relevant for the dialogue management and for linguistic emotion recogni-
tion. As system responses have to be prepared already before the user has finished

1http://semaine.sourceforge.net/
2http://www.openaudio.eu

http://semaine.sourceforge.net/
http://www.openaudio.eu
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speaking, the keyword spotter operates incrementally. The acoustic feature extrac-
tor extracts large sets of acoustic features used for recognition of the user’s affective
state (5 continuous dimensions: arousal, expectation, intensity, power, and valence,
and 3 ‘levels of interest’: bored, neutral, interested) incrementally in real time with
regression models trained on the SEMAINE database. High dimensional acoustic
feature vectors are concatenated with linguistic Bag of Words vectors, which are
computed from the keyword spotter output. An incremental segmentation scheme is
applied to the continuous audio input: analysis is conducted over windows of up to
five seconds length, which are shifted forward in time with a step of two seconds,
thus producing an estimate of the user’s affective state every two seconds. The same
acoustic feature set as for the 5 dimensional affect recognition is used in models
trained on the AVIC corpus, as described in Sect. 9.4.

9.5 Summary

This chapter introduces the principles of analysis of acoustic and linguistic proper-
ties of the voice and speech for the assessment of speaker states, traits, and vocal
behaviour such as laughter. While voice and speech analysis follows the general
pattern recognition paradigm, one of its major peculiarities might be the choice of
features. In particular, brute-forcing of rather large feature spaces and subsequent
selection are common procedure. Further, the type of features—either low-level de-
scriptors that provide a value per short frames of speech (usually around 100 per
second), or functionals per larger units of time—decide on the type of classifier or
regressor. Owing to the diversity of tasks reaching from emotion to personality or
laughter, different machine learning algorithms are preferred and used. Features and
parameters of these learning algorithms can be fine tuned to the problem and data at
hand, yet this comes at the risk of over-adaptation.

Another main peculiarity is the ambiguity of ground truth due to the often very
subjective nature of labelling and to the fact that models for the description of tasks
like emotion or personality prediction are usually non-trivial. Finally, one of the
most decisive limiting factors is typically the ever-present lack of data—in particu-
lar of natural data of a multiplicity of speakers and languages and cultures. However,
reasonably functioning accuracies independent of speakers can already be provided,
allowing for first systems to be operated ‘in the wild’. At the same time, further re-
search will usually be needed to achieve human-like performance for cross-database
and task operation potentially in the presence of noise and reverberation.

9.6 Questions

1. Discuss the difference between speaker states and traits and list at least three
examples for each of these two.

2. Name at least five ideal conditions for a collection of speech and voice data.
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3. Describe the chain of processing for the analysis of speech and voice including
each block and its function.

4. Explain the difference between Low-Level Descriptors and functionals and name
at least five examples for each of these two.

5. Which units for chunking exist and why is chunking needed?
6. Name at least five ideal conditions for a classification or regression algorithm.
7. How can linguistic information be incorporated in the analysis process? Name at

least two alternative strategies and describe their principle.

9.7 Glossary

• Chunking: Segmentation of the audio stream into units of analysis.
• Low-Level Descriptor: Time series of extracted feature values—typically on

frame level.
• Functional: Projection of a function onto a scalar value by statistical or other

functions.
• Regression: Mapping of a feature input vector onto a real-valued output instead

of discrete classes as in classification.
• Prosody: Rhythm, stress, and intonation of speech.
• N-Gram: Subsequence (e.g., words or characters) from a given sequence (e.g.,

turns or words) with n consecutive items.
• Bag of Words: Representation of text (e.g., of a speaker turn) as numerical feature

representation (e.g., per word or N-Gram of words) without modelling of order
of units.

• Wizard-of-Oz (experiment): The Wizard-of-Oz simulates an autonomous system
by a human response during an experiment, for example to test new technology
and its acceptance before it actually exists or to allow for data collection.

• Arousal: Physiological/psychological state of being (re-)active.
• Valence: Here used to categorise emotion as ‘positive’ (e.g., joy) or ‘negative’

(e.g., anger).
• Non-Linguistic (event): Describes vocal outbursts of non-linguistic character

such as laughter or sigh.
• Pitch: Perceived frequency of sound (here speech) as opposed to the fundamen-

tal frequency—perception can vary according to the intensity, duration, and fre-
quency of the stimuli.

• Keyword Spotter: Automatic Speech Recogniser that focuses on the highly ro-
bust detection of selected words within a speech or general audio stream.

• Lexeme: In linguistics, this roughly subsumes a number of forms (such as flex-
ions) of a single word (such as speak, speaks, spoken as forms of the lexeme
SPEAK).
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Chapter 10
Continuous Analysis of Affect from Voice
and Face

Hatice Gunes, Mihalis A. Nicolaou, and Maja Pantic

10.1 Introduction

Human affective behavior is multimodal, continuous and complex. Despite major
advances within the affective computing research field, modeling, analyzing, inter-
preting and responding to human affective behavior still remains a challenge for au-
tomated systems as affect and emotions are complex constructs, with fuzzy bound-
aries and with substantial individual differences in expression and experience [7].
Therefore, affective and behavioral computing researchers have recently invested
increased effort in exploring how to best model, analyze and interpret the subtlety,
complexity and continuity (represented along a continuum e.g., from −1 to +1) of
affective behavior in terms of latent dimensions (e.g., arousal, power and valence)
and appraisals, rather than in terms of a small number of discrete emotion categories
(e.g., happiness and sadness). This chapter aims to (i) give a brief overview of the
existing efforts and the major accomplishments in modeling and analysis of emo-
tional expressions in dimensional and continuous space while focusing on open is-
sues and new challenges in the field, and (ii) introduce a representative approach for
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multimodal continuous analysis of affect from voice and face, and provide exper-
imental results using the audiovisual Sensitive Artificial Listener (SAL) Database
of natural interactions. The chapter concludes by posing a number of questions that
highlight the significant issues in the field, and by extracting potential answers to
these questions from the relevant literature.

The chapter is organized as follows. Section 10.2 describes theories of emotion,
Sect. 10.3 provides details on the affect dimensions employed in the literature as
well as how emotions are perceived from visual, audio and physiological modali-
ties. Section 10.4 summarizes how current technology has been developed, in terms
of data acquisition and annotation, and automatic analysis of affect in continuous
space by bringing forth a number of issues that need to be taken into account when
applying a dimensional approach to emotion recognition, namely, determining the
duration of emotions for automatic analysis, modeling the intensity of emotions, de-
termining the baseline, dealing with high inter-subject expression variation, defining
optimal strategies for fusion of multiple cues and modalities, and identifying appro-
priate machine learning techniques and evaluation measures. Section 10.5 presents
our representative system that fuses vocal and facial expression cues for dimensional
and continuous prediction of emotions in valence and arousal space by employing
the bidirectional Long Short-Term Memory neural networks (BLSTM-NN), and in-
troduces an output-associative fusion framework that incorporates correlations be-
tween the emotion dimensions to further improve continuous affect prediction. Sec-
tion 10.6 concludes the chapter.

10.2 Affect in Dimensional Space

Emotions and affect are researched in various scientific disciplines such as neuro-
science, psychology, and cognitive sciences. Development of automatic affect ana-
lyzers depends significantly on the progress in the aforementioned sciences. Hence,
we start our analysis by exploring the background in emotion theory, perception and
recognition.

According to research in psychology, three major approaches to affect modeling
can be distinguished [31]: categorical, dimensional, and appraisal-based approach.
The categorical approach claims that there exist a small number of emotions that
are basic, hard-wired in our brain, and recognized universally (e.g. [18]). This the-
ory on universality and interpretation of affective nonverbal expressions in terms of
basic emotion categories has been the most commonly adopted approach in research
on automatic measurement of human affect. However, a number of researchers have
shown that in everyday interactions people exhibit non-basic, subtle and rather com-
plex affective states like thinking, embarrassment or depression. Such subtle and
complex affective states can be expressed via dozens of anatomically possible fa-
cial and bodily expressions, audio or physiological signals. Therefore, a single label
(or any small number of discrete classes) may not reflect the complexity of the af-
fective state conveyed by such rich sources of information [82]. Hence, a number
of researchers advocate the use of dimensional description of human affect, where
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Fig. 10.1 Russell’s
valence-arousal space. The
figure is by courtesy of [77]

affective states are not independent from one another; rather, they are related to one
another in a systematic manner (see, e.g., [31, 82, 86]). It is not surprising, therefore,
that automatic affect sensing and recognition researchers have recently started ex-
ploring how to model, analyze and interpret the subtlety, complexity and continuity
(represented along a continuum from −1 to +1, without discretization) of affective
behavior in terms of latent dimensions, rather than in terms of a small number of
discrete emotion categories.

The most widely used dimensional model is a circular configuration called Cir-
cumplex of Affect (see Fig. 10.1) introduced by Russell [82]. This model is based on
the hypothesis that each basic emotion represents a bipolar entity being a part of the
same emotional continuum. The proposed poles are arousal (relaxed vs. aroused)
and valence (pleasant vs. unpleasant), as illustrated in Fig. 10.1. Another well-
accepted and commonly used dimensional description is the 3D emotional space of
pleasure—displeasure, arousal—nonarousal and dominance—submissiveness [63],
at times referred to as the PAD emotion space [48] or as emotional primitives [19].

Scherer and colleagues introduced another set of psychological models, referred
to as componential models of emotion, which are based on the appraisal theory
[25, 31, 86]. In the appraisal-based approach emotions are generated through con-
tinuous, recursive subjective evaluation of both our own internal state and the state
of the outside world (relevant concerns/needs) [25, 27, 31, 86]. Despite pioneering
efforts of Scherer and colleagues (e.g., [84]), how to use the appraisal-based ap-
proach for automatic measurement of affect is an open research question as this
approach requires complex, multicomponential and sophisticated measurements of
change. One possibility is to reduce the appraisal models to dimensional models
(e.g., 2D space of arousal-valence).

Ortony and colleagues proposed a computationally tractable model of the cog-
nitive basis of emotion elicitation, known as OCC [71]. OCC is now established as
a standard (cognitive appraisal) model for emotions, and has mostly been used in
affect synthesis (in embodied conversational agent design, e.g. [4]).
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Each approach, categorical or dimensional, has its advantages and disadvantages.
In the categorical approach, where each affective display is classified into a single
category, complex mental states, affective state or blended emotions may be too dif-
ficult to handle [108]. Instead, in dimensional approach, observers can indicate their
impression of each stimulus on several continuous scales. Despite exhibiting such
advantages, dimensional approach has received a number of criticisms. Firstly, the
usefulness of these approaches has been challenged by discrete emotions theorists,
such as Silvan Tomkins, Paul Ekman, and Carroll Izard, who argued that the reduc-
tion of emotion space to two or three dimensions is extreme and resulting in loss
of information. Secondly, while some basic emotions proposed by Ekman, such as
happiness or sadness, seem to fit well in the dimensional space, some basic emo-
tions become indistinguishable (e.g., fear and anger), and some emotions may lie
outside the space (e.g., surprise). It also remains unclear how to determine the posi-
tion of other affect-related states such as confusion. Note, however, that arousal and
valence are not claimed to be the only dimensions or to be sufficient to differentiate
equally between all emotions. Nonetheless, they have already proven to be useful in
several domains (e.g., affective content analysis [107]).

10.3 Affect Dimensions and Signals

An individual’s inner emotional state may become apparent by subjective experi-
ences (how the person feels), internal/inward expressions (bio signals), and exter-
nal/outward expressions (audio/visual signals). However, these may be incongruent,
depending on the context (e.g., feeling angry and not expressing it outwardly).

The contemporary theories of emotion and affect consider appraisal as the most
significant component when defining and studying emotional experiences [81], and
at the same time acknowledge that emotion is not just appraisal but a complex mul-
tifaceted experience that consists of the following stages (in order of occurrence):

1. Cognitive Appraisal. Only events that have significance for our goals, concerns,
values, needs, or well-being elicit emotion.

2. Subjective feelings. The appraisal is accompanied by feelings that are good or
bad, pleasant or unpleasant, calm or aroused.

3. Physiological arousal. Emotions are accompanied by autonomic nervous system
activity.

4. Expressive behaviors. Emotions are communicated through facial and bodily ex-
pressions, postural and voice changes.

5. Action tendencies. Emotions carry behavioral intentions, and the readiness to act
in certain ways.

This multifaceted aspect of affect poses a true challenge to automatic sensing
and analysis. Therefore, to be able to deal with these challenges, affect research
scientists have ended up making a number of assumptions and simplifications while
studying emotions [7, 72]. These assumptions can be listed as follows.
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1. Emotions are on or off at any particular point in time. This assumption has im-
plications on most data annotation procedures where raters label a user’s ex-
pressed emotion as one of the basic emotion categories or a specific point in a
dimensional space. The main issue with this assumption is that the boundaries
for defining the expressed emotion as on or off are usually not clear.

2. Emotion is a state that the subject does not try to actively change or alleviate.
This is a common assumption during the data acquisition process where the sub-
jects are assumed to have a simple response to the provided stimulus (e.g., while
watching a clip or interacting with an interface). However, such simple passive
responses do not usually hold during daily human–computer interactions. Peo-
ple generally regulate their affective states caused by various interactions (e.g.,
an office user logging into Facebook to alleviate his boredom).

3. Emotion is not affected by situation or context. This assumption pertains to most
of the past research work on automatic affect recognition where emotions have
been mostly investigated in laboratory settings, outside of a social context. How-
ever, some emotional expressions are displayed only during certain context (e.g.,
pain).

Affect research scientists have made the following simplifications while studying
emotions [7, 72]:

1. Emotions do occur in asynchronous communication (e.g., via a prerecorded
video/sound from a sender to a receiver). This simplification does not hold in re-
ality as human nonverbal expressive communication occurs mostly face-to-face.

2. Interpersonal emotions do arise from communications with strangers (e.g., lab-
oratory studies where people end up communicating with people they do not
know). This simplification is unrealistic as people tend to be less expressive with
people they do not know on an interpersonal level. Therefore, an automatic sys-
tem designed using such communicative settings is expected to be much less
sensitive to its user’s realistic expressions.

Overall, these assumptions and simplifications are far from reality. However, they
have paved the initial but crucial way for automatic affect recognizers that attempt to
analyze both the felt (e.g., [9, 10, 59]) and the internally or the externally expressed
(e.g., [50, 54]) emotions.

10.3.1 Affect Dimensions

Despite the existence of various emotion models described in Sect. 10.2, in auto-
matic measurement of dimensional and continuous affect, valence (how positive or
negative the affect is), activation (how excited or apathetic the affect is), power (the
sense of control over the affect), and expectation (the degree of anticipating or being
taken unaware) appear to make up the four most important affect dimensions [25].
Although ideally the intensity dimension could be derived from the other dimen-
sions, to guarantee a complete description of affective coloring, some researchers
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include intensity (how far a person is away from a state of pure, cool rationality)
as the fifth dimension (e.g., [62]). Solidarity, antagonism and agreement have also
been in the list of dimensions investigated [13]. Overall, search for optimal low-
dimensional representation of affect remains open [25].

10.3.2 Visual Signals

Facial actions (e.g., pulling eyebrows up) and facial expressions (e.g., producing
a smile), and to a much lesser extent bodily postures (e.g., head bent backwards
and arms raised forwards and upwards) and expressions (e.g., head nod), form the
widely known and used visual signals for automatic affect measurement. Dimen-
sional models are considered important in this task as a single label may not reflect
the complexity of the affective state conveyed by a facial expression, body posture or
gesture. Ekman and Friesen [17] considered expressing discrete emotion categories
via face, and communicating dimensions of affect via body as more plausible.

A number of researchers have investigated how to map various visual signals
onto emotion dimensions. For instance, Russell [82] mapped the facial expressions
to various positions on the two-dimensional plane of arousal-valence, while Cowie
et al. [13] investigated the emotional and communicative significance of head nods
and shakes in terms of arousal and valence dimensions, together with dimensional
representation of solidarity, antagonism and agreement.

Although in a stricter sense not seen as part of the visual modality, motion capture
systems have also been utilized for recording the relationship between body posture
and affect dimensions (e.g., [57, 58]). For instance, Kleinsmith et al. [58] identified
that scaling, arousal, valence, and action tendency were the affective dimensions
used by human observers when discriminating between postures. They also reported
that low-level posture features such as orientation (e.g., orientation of shoulder axis)
and distance (e.g., distance between left elbow and right shoulder) appear to help in
effectively discriminating between the affective dimensions [57, 58].

10.3.3 Audio Signals

Audio signals convey affective information through explicit (linguistic) messages,
and implicit (acoustic and prosodic) messages that reflect the way the words are
spoken. There exist a number of works focusing on how to map audio expression to
dimensional models. Cowie et al. used valence-activation space (similar to valence-
arousal) to model and assess affect from speech [11, 12]. Scherer and colleagues
have also proposed how to judge emotional effects on vocal expression, using the
appraisal-based theory [31].

In terms of affect recognition from audio signals the most reliable finding is
that pitch appears to be an index into arousal [7]. Another well-accepted finding is



10 Continuous Analysis of Affect from Voice and Face 261

that mean of the fundamental frequency (F0), mean intensity, speech rate, as well as
pitch range [46], “blaring” timbre [14] and high-frequency energy [85] are positively
correlated with the arousal dimension. Shorter pauses and inter-breath stretches are
indicative of higher activation [99].

There is relatively less evidence on the relationship between certain acoustic pa-
rameters and other affect dimensions such as valence and power. Vowel duration
and power dimension in general, and lower F0 and high power in particular, appear
to have correlations. Positive valence seems to correspond to a faster speaking rate,
less high-frequency energy, low pitch and large pitch range [85] and longer vowel
durations. A detailed literature summary on these can be found in [87] and [88].

10.3.4 Bio Signals

The bio signals used for automatic measurement of affect are galvanic skin response
that increases linearly with a person’s level of arousal [9], electromyography (fre-
quency of muscle tension) that is correlated with negatively valenced emotions [41],
heart rate that increases with negatively valenced emotions such as fear, heart rate
variability that indicates a state of relaxation or mental stress, and respiration rate
(how deep and fast the breath is) that becomes irregular with more aroused emotions
like anger or fear [9, 41].

Measurements recorded over various parts of the brain including the amygdala
also enable observation of the emotions felt [79]. For instance, approach or with-
drawal response to a stimulus is known to be linked to the activation of the left or
right frontal cortex, respectively.

A number of studies also suggest that there exists a correlation between in-
creased blood perfusion in the orbital muscles and stress levels for human beings.
This periorbital perfusion can be quantified through the processing of thermal video
(e.g., [102]).

10.4 Overview of the Current Technology

This section provides a brief summary of the current technology by describing how
affective data are acquired and annotated, and how affect analysis in continuous
space is achieved.

10.4.1 Data Acquisition and Annotation

Cameras are used for acquisition of face and bodily expressions, microphones are
used for recording audio signals, and thermal (infrared) cameras are used for record-
ing blood flow and changes in skin temperature. 3D affective body postures or
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gestures can alternatively be recorded by utilizing motion capture systems (e.g.,
[57, 58]). In such scenarios, the actor is dressed in a suit with a number of markers
on the joints and body segments, while each gesture is captured by a number of cam-
eras and represented by consecutive frames describing the position of the markers
in the 3D space. This is illustrated in Fig. 10.2 (second and third rows).

In the bio signal research context, the subject being recorded usually wears a
headband or a cap on which electrodes are mounted, a clip sensor, or touch type
electrodes (see Fig. 10.2, last row). The subject is then stimulated with emotionally-
evocative images or sounds. Acquiring affect data without subjects’ knowledge is
strongly discouraged and the current trend is to record spontaneous data in more
constrained conditions such as an interview (e.g., [10]) or interaction (e.g., [62])
setting, where subjects are still aware of placement of the sensors and their locations.

Annotation of the affect data is usually done separately for each modality, as-
suming independency between the modalities. A major challenge is the fact that
there is no coding scheme that is agreed upon and used by all researchers in the field
that can accommodate all possible communicative cues and modalities. In general,
the Feeltrace annotation tool is used for annotating the external expressions (audio
and visual signals) with continuous traces (impressions) in the dimensional space.
Feeltrace allows coders to watch the audiovisual recordings and move their cursor,
within the 2-dimensional emotion space (valence and arousal) confined to [−1,+1],
to rate their impression about the emotional state of the subject [11] (see the illustra-
tion in Fig. 10.3(a)). For annotating the internal expressions (bio signals), the level
of valence and arousal is usually extracted from subjective experiences (subjects’
own responses) (e.g., [59, 79]) due to the fact that feelings, induced by an image
or sound, can be very different from subject to subject. The Self Assessment Man-
nequin (SAM) [60], illustrated in Fig. 10.3(b), is the most widely used means for
self assessment.

When discretized dimensional annotation is adopted (as opposed to continuous
one), researchers seem to use different intensity levels: either a ten-point Likert
scale (e.g., 0-low arousal, 9-high arousal) or a range between −1.0 and 1.0 (di-
vided into a number of levels) [37]. The final annotation is usually calculated as the
mean of the observers’ ratings. However, whether this is the best way of obtaining
ground-truth labels of emotional data is still being discussed. Overall, individual
coders may vary in their appraisal of what is happening in the scene, in their judg-
ment of the emotional behavior of the target individual, in their understanding of
the terms ‘positive emotion’ and ‘negative emotion’ and in their movement of the
computer mouse to translate their rating into a point on the onscreen scale. Fur-
thermore, recent findings in dynamic emotional behavior coding indicate that the
temporal pattern of ratings appears similar across cultures but that there exist signif-
icant differences in the intensity levels at which participants from different cultural
backgrounds rate the emotional behaviors [96]. Therefore, how to obtain and use
rich emotional data annotations, from multiple and multi-cultural raters, needs seri-
ous consideration.
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Fig. 10.2 Examples of sensors used in multimodal affective data acquisition: (1st row) camera
for visible imagery (face and body), (2nd & 3rd rows) facial and body motion capture, and audio
signals (used for animation and rendering), (4th row) infrared camera for thermal imagery, and (5th
row) various means for recording bio signals (brain signals, heart and respiration rate, etc.)

10.4.2 Automatic Dimensional Affect Prediction and Recognition

After affect data have been acquired and annotated, representative and relevant fea-
tures need to be extracted prior to the automatic measurement of affect in dimen-
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Fig. 10.3 Illustration of (a) the Feeltrace annotation tool [11], and (b) the Self Assessment Man-
nequin (SAM) [60]

sional and continuous space. The feature extraction techniques used for each com-
municative source are similar to the previous works (reviewed in [40]) adopting a
categorical approach to affect recognition.

In dimensional affect analysis emotions are represented along a continuum. Con-
sidering this, systems that target automatic dimensional affect measurement should
be able to predict the emotions continuously. However, most of the automatic recog-
nition systems tend to simplify the problem by quantizing the continuous labels into
a finite number of discrete levels. Hence, the most commonly employed strategy in
automatic dimensional affect prediction is to reduce the continuous prediction prob-
lem to a two-class recognition problem (positive vs. negative or active vs. passive
classification; e.g., [66, 92]) or a four-class recognition problem (classification into
the quadrants of 2D V-A space; e.g., [8, 26, 29, 47, 106]).

For example, Kleinsmith and Bianchi-Berthouze discriminate between high–low,
high–neutral and low–neutral affective dimensions [57], while Wöllmer et al. quan-
tize the V-A dimensions of the SAL database into either 4 or 7 levels, and then
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use Conditional Random Fields (CRFs) to predict the quantized labels [105]. At-
tempts for discriminating between more coarse categories, such as positive vs. neg-
ative [66], and active vs. passive [8] have also been attempted. Of these, Caridakis et
al. [8] uses the SAL database, combining auditive and visual modalities. Nicolaou et
al. focus on audiovisual classification of spontaneous affect into negative or positive
emotion categories using facial expression, shoulder and audio cues, and utilizing 2-
and 3-chain coupled Hidden Markov Models and likelihood space classification to
fuse multiple cues and modalities [66]. Kanluan et al. combine audio and visual cues
for affect recognition in V-A space by fusing facial expression and audio cues, using
Support Vector Machines for Regression (SVR) and late fusion with a weighted lin-
ear combination [50]. The labels used have been discretized on a 5-point scale in the
range of [−1,+1] for each emotion dimension. The work presented in [106] utilizes
a hierarchical dynamic Bayesian network combined with BLSTM-NN performing
regression and quantizing the results into four quadrants (after training).

As far as actual continuous dimensional affect prediction (without quantization)
is concerned, there exist a number of methods that deal exclusively with speech
(i.e., [33, 105, 106]). The work by Wöllmer et al. uses the SAL Database and Long
Short-Term Memory neural networks and Support Vector Machines for Regression
(SVR) [105]. Grimm and Kroschel use the Vera am Mittag database [35] and SVRs,
and compare their performance to that of the distance-based fuzzy k-Nearest Neigh-
bor and rule-based fuzzy-logic estimators [33]. The work by Espinosa et al. also use
the Vera am Mittag database [35] and examine the importance of different groups
of speech acoustic features in the estimation of continuous PAD dimensions [19].

Currently, there are also a number of works focusing on dimensional and con-
tinuous prediction of emotions from the visual modality [39, 56, 69]. The work by
Gunes and Pantic focuses on dimensional prediction of emotions from spontaneous
conversational head gestures by mapping the amount and direction of head motion,
and occurrences of head nods and shakes into arousal, expectation, intensity, power
and valence level of the observed subject using SVRs [39]. Kipp and Martin in [56]
investigated (without performing automatic prediction) how basic gestural form fea-
tures (e.g., preference for using left/right hand, hand shape, palm orientation, etc.)
are related to the single PAD dimensions of emotion. The work by Nicolaou et al.
focuses on dimensional and continuous prediction of emotions from naturalistic fa-
cial expressions within an Output-Associative Relevance Vector Machine (RVM)
regression framework by learning non-linear input and output dependencies inher-
ent in the affective data [69].

More recent works focus on dimensional and continuous prediction of emotions
from multiple modalities. For instance, Eyben et al. [21] propose a string-based ap-
proach for fusing the behavioral events from visual and auditive modalities (i.e.,
facial action units, head nods and shakes, and verbal and nonverbal audio cues) to
predict human affect in a continuous dimensional space (in terms of arousal, ex-
pectation, intensity, power and valence dimensions). Although automatic affect an-
alyzers based on physiology end up using multiple signal sources, explicit fusion
of multimodal data for continuous modeling of affect utilizing dimensional models
of emotion is still relatively unexplored. For instance, Khalili and Moradi propose
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multimodal fusion of brain and peripheral signals for automatic recognition of three
emotion categories (positively excited, negatively excited and calm) [52]. Their re-
sults show that, for the task at hand, EEG signals seem to perform better than other
physiological signals, and nonlinear features lead to better understanding of the felt
emotions. Another representative approach is that of Gilroy et al. [28] that propose
a dimensional multimodal fusion scheme based on the power-arousal-PAD space
to support detection and integration of spontaneous affective behavior of users (in
terms of audio, video and attention events) experiencing arts and entertainment. Un-
like many other multimodal approaches (e.g., [8, 50, 66]), the ground truth in this
work is obtained by measuring Galvanic Skin Response (GSR) as an independent
measure of arousal.

For further details on the aforementioned systems, as well as on systems that
deal with dimensional affect recognition from a single modality or cue, the reader
is referred to [37, 38, 109].

10.4.3 Challenges and Prospects

The summary provided in the previous section reflects that automatic dimensional
affect recognition is still in its pioneering stage [34, 37, 38, 91, 105]. There are a
number of challenges which need to be taken into account when applying a dimen-
sional approach to affect prediction and advancing the current state of the art.

The interpretation accuracy of expressions and physiological responses in terms
of continuous emotions is very challenging. While visual signals appear to be bet-
ter for interpreting valence, audio signals seem to be better for interpreting arousal
[33, 68, 100, 105]. A thorough comparison between all modalities would indeed
provide a better understanding of which emotion dimensions are better predicted
from which modalities (or cues).

Achieving inter-observer agreement is one of the most challenging issues in
dimension-based affect modeling and analysis. To date, researchers have mostly
chosen to use self-assessments (subjective experiences, e.g. [41]) or the mean
(within a predefined range of values) of the observers’ ratings (e.g. [57]). Although
it is difficult to self-assess arousal, it has been reported that using classes gener-
ated from self-assessment of emotions facilitate greater accuracy in recognition
(e.g., [9]). This finding results from a study on automatic analysis of physiologi-
cal signals in terms of A-V emotion space. It remains unclear whether the same
holds independently of the utilized modalities and cues. Modeling inter-observer
agreement levels within automatic affect analyzers and finding which signals bet-
ter correlate with self assessment and which ones better correlate with independent
observer assessment remain unexplored.

The window size to be used to achieve optimal affect prediction is another is-
sue that the existing literature does not provide a unique answer to. Current affect
analyzers employ various window sizes depending on the modality, e.g., 2–6 sec-
onds for speech, 3–15 seconds for bio signals [54]. For instance, when measuring
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affect from heart rate signals, analysis should not be done on epochs of less than
a minute [6]. A time window of 50 s appears to be also necessary to accurately
monitor mental stress in realistic settings [83]. There is no consensus on how the
efficiency of such a choice should be evaluated. On one hand achieving real-time
affect prediction requires a small window size to be used for analysis (i.e., a few
seconds, e.g. [10]), while on the other hand obtaining a reliable prediction accuracy
requires long(er)-term monitoring [6, 83]. For instance, Chanel et al. [10] conducted
short-term analysis of emotions (i.e., time segments of 8 s) in valence and arousal
space using EEG and peripheral signals in a self-induction paradigm. They reported
large differences in accuracy between the EEG and peripheral features which may
be due to the fact that the 8 s length of trials may be too short for a complete activa-
tion of peripheral signals while it may be sufficient for EEG signals.

Measuring the intensity of expressed emotion appears to be modality dependent.
The way the intensity of an emotion is apparent from physiological data may be
different from the way it is apparent from visual data. Moreover, little attention has
been paid so far to whether there are definite boundaries along the affect continuum
to distinguish between various levels or intensities. Currently intensity is measured
by quantizing the affect dimensions into arbitrary number of levels such as neutral,
low and high (e.g., [57, 59, 105]). Separate models are then built to discriminate
between pairs of affective dimension levels, for instance, low vs. high, low vs. neu-
tral, etc. Generalizing intensity analysis across different subjects is a challenge yet
to be researched as different subjects express different levels of emotions in the
same situation. Moreover, recent research findings indicate that there also exist sig-
nificant differences in the intensity levels at which coders from different cultural
backgrounds rate emotional behaviors [96].

The Baseline problem is another major challenge in the field. For physiologi-
cal signals (bio signals) this refers to the problem of finding a condition against
which changes in measured physiological signals can be compared (a state of calm-
ness) [65]. For the audio modality this is usually achieved by segmenting the record-
ings into turns using energy based voice activity detection and processing each turn
separately (e.g., [105]). For visual modality the aim is to find a frame in which the
subject is expressionless and against which changes in subject’s motion, pose, and
appearance can be compared. This is achieved by manually segmenting the record-
ings, or by constraining the recordings to have the first frame containing a neutral
expression (see, e.g., [66, 67, 75]). Yet, as pointed out by Levenson in [61], emo-
tion is rarely superimposed upon a prior state of rest; instead, emotion occurs most
typically when the organism is in some prior activation. Hence, enforcing existence
of expressionless state in each recording or manually segmenting recordings so that
each segment contains a baseline expression are strong, unrealistic constrains. This
remains a great challenge in automatic analysis, which typically relies on existence
of a baseline for analysis and processing of affective information.

Generalization capability of automatic affect analyzers across subjects is still a
challenge in the field. Kulic and Croft [59] reported that for bio signal based af-
fect measurement, subjects seem to vary not only in terms of response amplitude
and duration, but for some modalities, a number of subjects show no response at all.
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This makes generalization over unseen subjects a very difficult problem. A common
way of measuring affect from bio signals is doing it for each participant separately
(without computing baseline), e.g. [10]. When it comes to other modalities, most of
the works in the field report mainly on subject-dependent dimensional affect mea-
surement and recognition due to limited number of subjects and limited amount of
data (e.g., [39, 68, 69, 105]).

Modality fusion refers to combining and integrating all incoming unimodal
events into a single representation of the affect expressed by the user. When it
comes to integrating multiple modalities, the major issues are: (i) when to integrate
the modalities (at what abstraction level to do the fusion), (ii) how to integrate the
modalities (which criteria to use), (iii) how to deal with the increased number of
features due to fusion, (iv) how to deal with the asynchrony between the modali-
ties (e.g., if video is recorded at 25 Hz, audio is recorded at 48 kHz while EEG is
recorded at 256–512 Hz), and (v) how to proceed with fusion when there is con-
flicting information conveyed by the modalities. Typically, multimodal data fusion
is either done at the feature level (in a maximum likelihood estimation manner) or
at the decision level (when most of the joint statistical properties may have been
lost). Feature-level fusion is obtained by concatenating all the features from mul-
tiple cues into one feature vector which is then fed into a machine learning tech-
nique. In the decision-level data fusion, the input coming from each modality/cue is
modeled independently, and these single-cue and single-modality based recognition
results are combined in the end. Since humans display multi-cue and multimodal
expressions in a complementary and redundant manner, the assumption of condi-
tional independence between modalities and cues in decision-level fusion can result
in loss of information (i.e. mutual correlation between the modalities). Therefore,
model-level fusion has been proposed as an alternative approach for fusing multi-
modal affect data (e.g., [75]). Despite such efforts in the discrete affect recognition
field (reviewed in [40, 109]), these issues remain yet to be explored for dimensional
and continuous affect prediction.

Machine learning techniques used for dimensional and continuous affect mea-
surement should be able to produce continuous values for the target dimensions.
Overall, there is no agreement on how to model dimensional affect space (con-
tinuous vs. quantized) and which machine learning technique is better suited for
automatic, multimodal, continuous affect analysis using a dimensional represen-
tation. Recognition of quantized dimensional labels is obtained via classification
while continuous prediction is achieved by regression. Conditional Random Fields
(CRF) and Support Vector Machines (SVM) have mostly been used for quantized
dimensional affect recognition tasks (e.g., [105]). Some of the schemes that have
been explored for the task of prediction are Support Vector Machines for Regres-
sion (SVR) (e.g., [39]) and Long Short-Term Memory Recurrent Networks (LSTM-
RNN). The design of emotion-specific classification schemes that can handle mul-
timodal and spontaneous data is one of the most important issues in the field. In
accordance with this, Kim and Andre propose a novel scheme of emotion-specific
multilevel dichotomous classification (EMDC) using the property of the dichoto-
mous categorization in the 2D emotion model and the fact that arousal classification
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yields a higher correct classification ratio than valence classification (or direct mul-
ticlass classification) [55]. They apply this scheme on classification of four emotions
(positive/high arousal, negative/high arousal, negative/low arousal and positive/low
arousal) from physiological signals recorded while subjects were listening to music.
How to create such emotion-specific schemes for dimensional and continuous pre-
diction of emotions from other modalities and cues should be investigated further.

Evaluation measures applicable to categorical affect recognition are not directly
applicable to dimensional approaches. Using the Mean Squared Error (MSE) be-
tween the predicted and the actual values of arousal and valence, instead of the
recognition rate (i.e., percentage of correctly classified instances) is the most com-
monly used measure by related work in the literature (e.g., [50, 105]). However,
using MSE might not be the best way to evaluate the performance of dimensional
approaches to automatic affect measurement and prediction. Therefore, the corre-
lation coefficient that evaluates whether the model has managed to capture patterns
inhibited in the data at hand is also employed by several studies (e.g., [50, 67])
together with MSE. Overall, however, how to obtain optimal evaluation metrics for
continuous and dimensional emotion prediction remains an open research issue [37].
Generally speaking, the performance of an automatic analyzer can be modeled and
evaluated in an intrinsic and an extrinsic manner (as proposed for face recognition
in [103]). The intrinsic performance and its evaluation depend on the intrinsic com-
ponents such as the dataset chosen for the experiments and the machine learning
algorithms (and their parameters) utilized for prediction. The extrinsic performance
and evaluation instead depend on the extrinsic factors such as (temporal/spatial)
resolution of the multimodal data and recording conditions (e.g., illumination, oc-
clusions, noise, etc.). Future research in continuous affect prediction should analyze
the relevance and prospects of the aforementioned performance components, and
how they could be applied to continuous prediction of affect.

10.4.4 Applications

Various applications have been using the dimensional (both quantized and contin-
uous) representation and prediction of emotions, ranging from human–computer
(e.g., Sensitive Talking Heads [45], Sensitive Artificial Listeners [89, 90], spatial
attention analysis [95], arts installations [104]) and human–robot interaction (e.g.,
humanoid robotics [5, 51]), clinical and biomedical studies (e.g., stress/pain moni-
toring [36, 64, 101], autism-related assistive technology), learning and driving en-
vironments (e.g., episodic learning [22], affect analysis in the car [20]), multimedia
(e.g, video content representation and retrieval [53, 98] and personalized affective
video retrieval [97]), and entertainment technology (e.g., gaming [80]). These indi-
cate that affective computing has matured enough to have a presence and measurable
impact in our lives. There are also spin off companies emerging out of collaborative
research at well-known universities (e.g., Affectiva [1] established by R. Picard and
colleagues of MIT Media Lab).
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10.5 A Representative System: Continuous Analysis of Affect
from Voice and Face

The review provided in the previous sections indicates that currently there is a shift
toward subtle, continuous, and context-specific interpretations of affective displays
recorded in naturalistic settings, and toward multimodal analysis and recognition of
human affect. Converging with this shift, in this section we present a representative
approach that: (i) fuses facial expression and audio cues for dimensional and contin-
uous prediction of emotions in valence and arousal space, (ii) employs the bidirec-
tional Long Short-Term Memory neural networks (BLSTM-NNs) for the prediction
task, and (iii) introduces an output-associative fusion framework that incorporates
correlations between the emotion dimensions to further improve continuous predic-
tion of affect.

The section starts with the description of the naturalistic database used in the
experimental studies. Next, data pre-processing, audio and facial feature extraction
and tracking procedures, as well as the affect prediction process are explained.

10.5.1 Dataset

We use the Sensitive Artificial Listener Database (SAL-DB) [16] that contains spon-
taneous data collected with the aim of capturing the audiovisual interaction between
a human and an operator undertaking the role of a SAL character (e.g., an avatar).
The SAL characters intend to engage the user in a conversation by paying atten-
tion to the user’s emotions and nonverbal expressions. Each character has its own
emotionally defined personality: Poppy is happy, Obadiah is gloomy, Spike is angry,
and Prudence is pragmatic. During an interaction, the characters attempt to create an
emotional workout for the user by drawing her/him toward their dominant emotion,
through a combination of verbal and nonverbal expressions.

The SAL database contains audiovisual sequences recorded at a video rate of
25 fps (352 × 288 pixels) and at an audio rate of 16 kHz. The recordings were
made in a lab setting, using one camera, a uniform background and constant light-
ing conditions. The SAL data have been annotated manually. Although there are
approximately 10 hours of footage available in the SAL database, V-A annotations
have only been obtained for two female and two male subjects. We used this portion
for our experiments.

10.5.2 Data Pre-processing and Segmentation

The data pre-processing and segmentation stage consists of (i) determining ground
truth by maximizing inter-coder agreement, (ii) detecting frames that capture the
transition to and from an emotional state, and (iii) automatic segmentation of spon-
taneous audiovisual data. We provide a brief summary of these in the following
sections. For a detailed description of these procedures the reader is referred to [67].
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10.5.2.1 Annotation Pre-processing

The SAL data have been annotated by a set of coders who provided continuous
annotations with respect to valence and arousal dimensions using the Feeltrace an-
notation tool [11], as explained in Sect. 10.4.1. Feeltrace allows coders to watch
the audiovisual recordings and move their cursor, within the 2-dimensional emotion
space (valence and arousal) confined to [−1,+1], to rate their impression about the
emotional state of the subject.

Annotation pre-processing involves dealing with the issue of missing values
(interpolation), grouping the annotations that correspond to one video frame to-
gether (binning), determining normalization procedures (normalization) and extract-
ing statistics from the data in order to obtain segments with a baseline and high
inter-coder agreement (statistics and metrics).

Interpolation In order to deal with the issue of missing values, similar to other
works reporting on data annotated in continuous dimensional spaces (e.g., [105]),
we interpolated the actual annotations at hand. We used piecewise cubic interpola-
tion as it preserves the monotonicity and the shape of the data.

Binning Binning refers to grouping and storing the annotations together. As a
first step the measurements of each coder c are binned separately. Since we aim at
segmenting video files, we generate bins which are equivalent to one video frame f .
This is equivalent to a bin of 0.04 seconds (SAL-DB was recorded at a rate of
25 frames/s). The fields with no annotation are assigned a ‘not a number’ (NaN)
identifier.

Normalization The A-V measurements for each coder are not in total agreement,
mostly due to the variance in human coders’ perception and interpretation of emo-
tional expressions. Thus, in order to deem the annotations comparable, we need to
normalize the data. We experimented with various normalization techniques. After
extracting the videos and inspecting the superimposed ground-truth plots, we opted
for local normalization (normalizing each coder file for each session). This helps us
avoid propagating noise in cases where one of the coders is in large disagreement
with the rest (where a coder has a very low correlation with respect to the rest of
the coders). Locally normalizing to zero mean produces the smallest mean squared
error (MSE) both for valence (0.046) and arousal (0.0551) dimensions.

Statistics and Metrics We extract two useful statistics from the annotations: cor-
relation and agreement. We start the analysis by constructing vectors of pairs of
coders that correspond to each video session, e.g., when we have a video session
where four coders have provided annotations, this gives rise to six pairs. For each
of these pairs we extract the correlation coefficient between the valence (val) values
of each pair, as well as the level of agreement in emotion classification in terms of
positive or negative. We define the agreement metric by

AGR =
∑n

f =0 e(ci(f ).val, cj (f ).val)

|frames| , (10.1)
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where ci(f ).val stands for the valence value annotated by coder ci at frame f .
Function e is defined as

e(i, j) =
{

1 if (sign(i) = sign(j)),

0 else.

In these calculations we do not consider the NaN values to avoid negatively af-
fecting the results. After these metrics are calculated for each pair, each coder is
assigned the average of the results of all pairs that the coder has participated in. We
choose the Pearson’s Correlation (COR) as the metric to be used in the automatic
segmentation process as it appears to be stricter than agreement (AGR) providing
better comparison amongst the coders.

10.5.2.2 Automatic Segmentation

The segmentation stage consists of producing negative and positive audiovisual seg-
ments with a temporal window that contains an offset before and after (i.e., the base-
line) the displayed expression. For instance, for capturing negative emotional states,
if we assume that the transition from non-negative to negative emotional state oc-
curs at time t (in seconds), we would have a window of [t − 1, t, t ′, t ′ + 1] where t ′
seconds is when the emotional state of the subject turns to non-negative again. The
procedure is completely analogous for positive emotional states.

Detecting and Matching Crossovers For an input coder c, the crossing over
from one emotional state to the other is detected by examining the valence values
and identifying the points where the sign changes. Here a modified version of the
sign function is used, it returns 1 for values that are higher than 0 (a value of 0
valence is never encountered in the annotations), −1 for values that are less than
zero, and 0 for NaN values. We accumulate all crossover points for each coder, and
return the set of crossovers to-a-positive and to-a-negative emotional state. The set
of crossovers is then used for matching crossovers across coders. For instance, if a
session has annotations from four coders, the frame (f ) where each coder detects the
crossover is not the same for all coders (for the session in question). Thus, we have
to allow an offset for the matching process. This procedure searches the crossovers
detected by the coders and then accepts the matches where there is less than the
predefined offset (time) difference between the detections. When a match is found,
we remove the matched crossovers and continue with the rest. The existence of
different combinations of crossovers which may match using the predefined offset
poses an issue. By examining the available datasets, we decided to maximize the
number of coders participating in a matched crossover set rather than minimizing
the temporal distances between the participating coders. The motivations for this
decision are as follows: (i) if more coders agree on the crossover, the reliability of
the ground truth produced will be higher, and (ii) the offset amongst the resulting
matches is on average quite small (<0.5 s) when considering only the number of
participating coders. We disregard cases where only one coder detects a crossover
due to lack of agreement between coders.
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Segmentation Driven by Matched Crossovers In order to illustrate how the
crossover frame decision (for each member of the set) is made, let us assume that
for to-a-negative transition a coder detects a crossover at frame 2, while the other
coder detects a crossover at frame 4. If the frames are averaged to the nearest inte-
ger, then we can assume that the crossover happens at frame 3. In this case we have
only 2 coders agreeing, we use the correlation metric in order to weight their deci-
sion and determine the crossover point. This provides a measurement of the relative
importance of the annotations for each coder and propagates information from the
other two coders not participating in the match. In order to capture 0.5 s before the
transition window, the number of frames corresponding to the predefined offset are
subtracted from the start frame. The ground-truth values for valence are retrieved
by incrementing the initial frame number where each crossover was detected by the
coders. Again, following the previous example, this means that we consider frame 2
of coder 1 and frame 4 of coder 2 to provide ground-truth values for frame 3 (the av-
erage of 2 and 4). This gives us an averaged valence value. Then, the frame 4 valence
value (ground truth) would be the combination of frame 3 of coder 1 and frame 5
of coder 2. The procedure of determining combined average values continues until
the valence value crosses again to a non-negative valence value. The endpoint of
the audiovisual segment is then set to the frame including the offset after crossing
back to a non-negative valence value. The ground truth of the audiovisual segment
consists of the arousal and valence (A-V) values calculated.

Typically, an automatically produced segment or clip consists of a single inter-
action of the subject with the avatar (operator), starting with the final seconds of
the avatar speaking, continuing with the subject responding (and thus reacting and
expressing an emotional state audiovisually) and concluding where the avatar starts
responding.

10.5.3 Feature Extraction

Our audio features include Mel-frequency Cepstrum Coefficients (MFCC) [49] and
prosody features (the energy of the signal, the Root Mean Squared Energy and
the pitch obtained by using a Praat pitch estimator [74]). Mel-frequency Cepstrum
(MFC) is a representation of the spectrum of an audio sample which is mapped onto
the nonlinear mel-scale of frequency to better approximate the human auditory sys-
tem’s response. The MFCC coefficients collectively make up the MFC for the spe-
cific audio segment. We used six cepstrum coefficients, thus obtaining six MFCC
and six MFCC-Delta features for each audio frame. We have essentially used the
typical set of features used for automatic affect recognition (e.g., [75]). Along with
pitch, energy and RMS energy, we obtained a set of features with dimensionality
d = 15 per audio frame. Note that we used a 0.04 second window with a 50% over-
lap (i.e. first frame 0–0.04, second from 0.02–0.06 and so on) in order to obtain
a double frame rate for audio (50 Hz) compared to that of video (25 fps). This is
an effective and straightforward way to synchronise the audio and video streams
(similarly to [75]).
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Fig. 10.4 Examples of the data at hand from the SAL database along with the extracted 20 points,
used as features for the facial expression cues

To capture the facial motion displayed during a spontaneous expression we track
20 facial feature points (FFP), as illustrated in Fig. 10.4. These points are the corners
of the eyebrows (4 points), eyes (8 points), nose (3 points), the mouth (4 points) and
the chin (1 point). To track these facial points we used the Patras–Pantic particle
filtering tracking scheme [73]. For each video segment containing n frames, we
obtain a set of n vectors containing 2D coordinates of the 20 points tracked in n

frames (Trf = {Trf 1 . . .Trf 20} with dimensions n ∗ 20 ∗ 2).

10.5.4 Dimensional Affect Prediction

This section describes how dimensional affect prediction from voice and face
is achieved using the Bidirectional Long Short-Term Memory Neural Networks
(BLSTM-NN). It first focuses on single-cue prediction from voice or face, and then
introduces the model-level and output-associative fusion using the BLSTM-NNs.

10.5.4.1 Bidirectional Long Short-Term Memory Neural Networks

The traditional Recurrent Neural Networks (RNN) are unable to learn temporal
dependencies longer than a few time steps due to the vanishing gradient problem
[42, 43]. LSTM Neural Networks (LSTM-NNs) were introduced by Graves and
Schmidhuber [32] in order to overcome this issue. The LSTM structure introduces
recurrently connected memory blocks instead of traditional neural network nodes
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Fig. 10.5 Illustration of (a) the simplest LSTM network, with a single input, a single output, and
a single memory block in place of the hidden unit, and (b) a typical implementation of an LSTM
block, with multiplication units (�), an addition unit (�) maintaining the cell state and typically
non-linear squashing function units

(Fig. 10.5(a)). Each memory block contains memory cells and a set of multiplica-
tive gates. In its simplest form, a memory block contains one memory cell.

As can be seen from Fig. 10.5(b), there are three types of gates: the input, output
and forget gates. These gates are estimated during the training phase of an LSTM-
NN.

The input, output and forget gates can be thought of as providing write, read and
reset access to what is called a cell state (σ ), which represents temporal network
information. This can be seen from examining the state updates at time t :

σ(t) = yφ(t)σ (t − 1) + yig(t)gin(t).

The next state σ(t) is defined as the sum of the forget gate at time t (yφ(t)) multi-
plied by the previous state, σ(t − 1) and the squashed input to the cell gin(t) multi-
plied by the input gate yig(t). Thus, the forget gate can reset the state of the network,
i.e. when yφ ≈ 0 then the next state does not depend on the previous one:

σ(t) ≈ yig(t)gin(t).

This is similar when the input gate is near zero. Then, the next state depends only on
the previous state and the forget gate value. The output of the cell is the cell state, as
regulated by the value of the output gate (Fig. 10.5(b)). This configuration enforces
constant error flow and overcomes the vanishing gradient problem.

In addition, traditional RNNs process input in a temporal order, thus learning in-
put patterns by relating only to past context. Bidirectional RNNs (BRNNs) [3, 94]
instead modify the learning procedure to overcome the latter issue of the past and
future context: they present each of the training sequences in a forward and a back-
ward order (to two different recurrent networks, respectively, which are connected
to a common output layer). In this way, the BRNN is aware of both future and
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past events in relation to the current timestep. The concept is directly expanded
for LSTMs, referred to as Bidirectional Long Short-Term Memory neural networks
(BLSTM-NN). BLSTM-NN have been shown to outperform unidirectional LSTM-
NN for speech processing (e.g., [32]) and have been used for many learning tasks.
They have been successfully applied to continuous emotion prediction from speech
(e.g., [105, 106]) proving that modeling the sequential inputs and long range tem-
poral dependencies appear to be beneficial for the task of automatic emotion predic-
tion.

10.5.4.2 Single-Cue Prediction

The first step in continuous affect prediction task consists of prediction based on
single cues. Let D = {V,A} represent the set of emotion dimensions, C the set of
cues consisting of the facial expressions, shoulder movement and audio cues. Given
a set of input features xc = [x1c , . . . ,xnc] where n is the training sequence length
and c ∈ C , we train a machine learning technique fd , in order to predict the relevant
dimension output, yd = [y1, . . . , yn], d ∈ D .

fd : x �→ yd . (10.2)

This step provides us with a set of predictions for each machine learning technique,
and each relevant dimension employed.

10.5.4.3 Model-Level Fusion

As already explained in Sect. 10.4.2, since humans display multi-cue and multi-
modal expressions in a complementary and redundant manner, the assumption of
conditional independence between modalities and cues in decision-level fusion can
result in loss of information (i.e. mutual correlation between the modalities). There-
fore, we opt for model-level fusion of the continuous predictions as this has the
potential of capturing correlations and structures embedded in the continuous out-
put of the predictors/regressors (from different sets of cues). This is illustrated in
Fig. 10.6(a).

More specifically, during model-level fusion, a function learns to map predictions
to a dimension d from the set of cues as follows:

fmlf : fd(x1) × · · · × fd(xm) �→ yd, (10.3)

where m is the total number of fused cues.

10.5.4.4 Output-Associative Fusion

In the previous section, we have treated the prediction of valence or arousal as a
1D regression problem. However, psychological evidence shows that valence and
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Fig. 10.6 Illustration of (a) model-level fusion and (b) output-associative fusion using facial ex-
pression and audio cues. Model-level fusion combines valence predictions from facial expression
and audio cues by using a third network for the final valence prediction. Output-associative fusion
combines both valence and arousal values predicted from facial expression and audio cues, again
by using a third network, which outputs the final prediction.

arousal dimensions are correlated [2, 70, 107]. In order to exploit these correlations
and patterns, we propose a framework capable of learning the dependencies that
exist amongst the predicted dimensional values.

Given the setting described in Sect. 10.5.4.2, this framework learns to map the
outputs of the intermediate predictors (each BLSTM-NN as defined in (10.2)) onto
a higher (and final) level of prediction by incorporating cross-dimensional (output)
dependencies (see Fig. 10.6(b)). This method, which we call output-associative fu-
sion, can be represented by a function foaf :

foaf : fAr(x1) × fVal(x1) × · · · × fAr(xm) × fVal(xm) �→ yd . (10.4)

As a result, the final output, taking advantage of the temporal and bidirectional
characteristics of the regressors (BLSTM-NNs), depends not only on the entire se-
quence of input features xi but also on the entire sequence of intermediate output
predictions fd of both dimensions (see Fig. 10.6(b)).
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Table 10.1 Single-cue prediction results for valence and arousal dimensions

Dimension Modality RMSE COR SAGR

Arousal Voice 0.240 0.586 0.764

Face 0.250 0.493 0.681

Valence Voice 0.220 0.444 0.648

Face 0.170 0.712 0.841

10.5.5 Experiments and Analysis

10.5.5.1 Experimental Setup

Prior to experimentation, all features have been normalized to the range of [−1,+1],
except for the audio features which have been found to perform better with z-
normalization (i.e., normalizing to mean = 0 and standard deviation = 1).

As the main evaluation metrics we choose to use the root mean squared error
(RMSE) that evaluates the root of the prediction by taking into account the squared
error of the prediction from the ground truth, the correlation (COR) that provides
an evaluation of the linear relationship between the prediction and the ground truth,
and subsequently, an evaluation of whether the model has managed to capture lin-
ear structural patterns inhibited in the data at hand, and the sign agreement metric
(SAGR) that measures the agreement level of the prediction with the ground truth
by assessing the valence dimension as being positive (+) or negative (−), and the
arousal dimension as being active (+) or passive (−).

For validation purposes we use a subset of the SAL-DB that consists of 134
audiovisual segments (a total of 30,042 video frames) obtained by the automatic
segmentation procedure (proposed in [67]). As V-A annotations have only been
provided for two female and two male subjects, for our experiments we employ
subject-dependent leave-one-sequence-out cross-validation. More specifically, the
evaluation consists of 134 folds where at each fold one sequence is left out for test-
ing and the other 133 sequences are used for training. The prediction results are then
averaged over 134 folds.

The parameter optimization for BLSTM-NNs refers to mainly determining the
topology of the network along with the number of epochs, momentum and learning
rate.

10.5.5.2 Results and Analysis

Single-cue results are presented in Table 10.1, while results obtained from fusion
are presented in Table 10.2.

We initiate our analysis with the single-cue results (Table 10.1) and the valence
dimension. Various automatic dimensional emotion prediction and recognition stud-
ies have shown that arousal can be much better predicted than valence using audio
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Table 10.2 Results for output-associative fusion (AOF) and model-level fusion (MLF). The best
results are obtained by employing output-associative fusion (shown in bold)

Dimension OAF MLF

RMSE COR SAGR RMSE COR SAGR

Arousal 0.220 0.628 0.800 0.230 0.605 0.800

Coders 0.145 0.870 0.840 0.145 0.870 0.840

Valence 0.160 0.760 0.892 0.170 0.748 0.856

Coders 0.141 0.850 0.860 0.141 0.850 0.860

cues (e.g., [33, 68, 100, 105]). Our experimental results also support these findings
indicating that the visual cues appear more informative for predicting the valence
dimension. The facial expression cues provide a higher correlation with the ground
truth (COR = 0.71) compared to the audio cues (COR = 0.44). This fact is also
confirmed by the RMSE and SAGR metrics. The facial expression cues also pro-
vide higher SAGR (0.84), indicating that the predictor was accurate in predicting
an emotional state as positive or negative for 84% of the frames. For prediction of
the arousal dimension the audio cues appear to be superior to the visual cues. More
specifically, audio cues provide COR = 0.59, whereas the facial expression cues
provide COR = 0.49.

Fusing facial and audio cues using model-level fusion outperforms the single-cue
prediction results. Model-level fusion appears to be much better for predicting the
valence dimension rather than the arousal dimension. This is mainly due to the fact
that the single-cue predictors for valence dimension perform better, thus containing
more correct temporal dependencies and structural characteristics (while the weaker
arousal predictors contain fewer of these dependencies). Model-level fusion also re-
confirms that visual cues are more informative for valence dimension than the audio
cues. Finally, the newly proposed output-associative fusion provides the best results,
outperforming both single-cue analysis and model-level fusion results. We denote
that the performance increase of output-associative fusion is higher for the arousal
dimension (compared to the valence dimension). This could be justified by the fact
that the single-cue predictors for valence perform better than for arousal (Table 10.1)
and thus, more correct valence patterns are passed onto the output-associative fusion
framework. An example of the output-associative valence and arousal prediction
from face and audio is shown in Fig. 10.7.

Based on the experimental results provided in Tables 10.1–10.2, we conclude the
following.

• Facial expression cues are better suited to the task of continuous valence pre-
diction compared to audio cues. For arousal dimension, instead, the audio cues
appear to perform better. This is in accordance with the previous findings in the
literature.

• The inherent temporal and structured nature of continuous affective data appears
to be highly suitable for predictors that can model temporal dependencies and re-
late temporally distant events. To evaluate the performance of such frameworks,
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the use of not only the RMSE but also the correlation coefficient appears to be
very important. Furthermore, the use of other emotion-specific metrics, such as
the SAGR (used in this work), is also desirable as they contain valuable informa-
tion regarding emotion-specific aspects of the predictions.

• As confirmed by the psychological theory, valence and arousal are correlated.
Such correlations appear to exist in our data where fusing predictions from both
valence and arousal dimensions (output-associative fusion) improves the results
compared to using predictions from either valence or arousal dimension alone (as
in the model-level fusion case).

• In general, audiovisual data appear to be more useful for predicting valence than
for predicting arousal. While arousal is better predicted by using audio features
alone, valence is better predicted by using audiovisual data.

Overall, our output-associative fusion framework (i) achieves RMSE = 0.160,
COR ≈ 0.760 and SAGR ≈ 0.900 for the valence dimension, compared to the hu-
man coder (inter-coder) RMSE ≈ 0.141, COR ≈ 0.850, and SAGR ≈ 0.860, and
(ii) provides RMSE = 0.220, COR ≈ 0.628 and SAGR ≈ 0.800 for the arousal di-
mension, compared to the human coder (inter-coder) RMSE ≈ 0.145, COR ≈ 0.870
and SAGR ≈ 0.840.

In our experiments we employed a subject-dependent leave-one-sequence-out
cross-validation procedure due to the small number of annotated data available. As
spontaneous expressions appear to have somewhat person-dependent characteris-
tics, subject-independent experimentation is likely to be more challenging and affect
our prediction results.

10.6 Concluding Remarks

The review provided in this chapter suggests that the automatic affect sensing field
has slowly started shifting from categorical (and discrete) affect recognition to di-
mensional (and continuous) affect prediction to be able to capture the complexity of
affect expressed in naturalistic settings. There is a growing research interest driven
by various advances and demands (e.g., real-time representation and analysis of
naturalistic and continuous human affective behavior for emotion-related disorders
like autism), and funded by various research projects (e.g., European Union FP 7,
SEMAINE1). To date, despite the existence of a number of dimensional emotion
models, the two-dimensional model of arousal and valence appears to be the most
widely used model in automatic measurement of affect from audio, visual and bio
signals.

The current automatic measurement technology has already started dealing with
spontaneous data obtained in less-controlled environments using various sensing
devices, and exploring a number of machine learning techniques and evaluation
measures. However, naturalistic settings pose many challenges to continuous affect

1http://www.semaine-project.eu

http://www.semaine-project.eu


10 Continuous Analysis of Affect from Voice and Face 281

Fig. 10.7 Valence and arousal ground truth (gTruth) compared to predictions (pred) from out-
put-associative fusion of facial expressions and audio cues

sensing and prediction (e.g., when subjects are not restricted in terms of mobility, the
level of noise in all recorded signals tends to increase), as well as affect synthesis and
generation. As a consequence, a number of issues that should be addressed in order
to advance the field remain unclear. These have been summarized and discussed in
this chapter.

As summarized in Sect. 10.4.2 and reviewed in [37], to date, only a few sys-
tems have actually achieved dimensional affect prediction from multiple modali-
ties. Overall, existing systems use different training/testing datasets (which differ in
the way affect is elicited and annotated), they differ in the underlying affect model
(i.e., target affect categories), as well as in the employed modality or combination of
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modalities, and the applied evaluation method. As a consequence, it remains unclear
which recognition and prediction method is suitable for dimensional affect predic-
tion from which modalities and cues. These challenges should be addressed in order
to advance the field while identifying the importance, as well as the feasibility, of
the following issues:

1. Among the available remotely observable and remotely unobservable modalities,
which ones should be used for automatic dimensional affect prediction? Should
we investigate the innate priority among the modalities to be preferred for each
affect dimension? Does this depend on the context (who the subject is, where she
is, what her current task is, and when the observed behavior has been shown)?

Continuous long-term monitoring of bio signals (e.g., autonomic nervous sys-
tem) appears to be particularly useful and usable for health care applications
(e.g., stress and pain monitoring, autism-related assistive technology). Using bio
signals for automatic measurement is especially important for applications where
people do not easily express themselves outwardly with facial and bodily expres-
sions (e.g., people with autism spectrum disorders) [24]. As stated before, various
automatic dimensional emotion prediction and recognition studies have shown
that arousal can be much better predicted than valence using audio cues (e.g., [33,
68, 100, 105]). For the valence dimension instead, visual cues (e.g., facial ex-
pressions and shoulder movements) appear to perform better [68]. Whether such
conclusions hold for different contexts and different data remains to be evalu-
ated. Another significant research finding is that when multiple modalities are
available during data annotation, both speed and accuracy of judgments increase
when the modalities are expressing the same emotion [15]. How such findings
should be incorporated into automatic dimensional affect predictors remains to
be researched further.

2. When labeling emotions, which signals better correlate with self assessment and
which ones correlate with independent observer assessment?

When acquiring and annotating emotional data, there exist individual differ-
ences in emotional response, as well as individual differences in the use of rating
scales. We have mentioned some of these differences before, in Sect. 10.4.1. Re-
search also shows that affective state labeling is significantly affected by factors
such as familiarity of the person and context of the interaction [44]. Even if the
emotive patterns to be labeled are fairly similar, human perception is biased by
context and prior experience. Moreover, Feldman presented evidence that when
individuals are shown emotional stimulus, they differ in their attention to valence
and arousal dimensions [23]. We have also mentioned cross-cultural intensity dif-
ferences in labeling emotional behaviors [96]. If such issues are ignored and the
ratings provided by the human annotators are simply averaged, the measure ob-
tained may be useful in certain experimental contexts but it will be insensitive to
individual variations in subjective experience. More specifically, this will imply
having a scale that assumes that individual differences are unimportant or nonex-
istent. An implication of this view is that for an ideal representation of a subject’s
affective state, labeling schemes and rating scales should be clearly defined (e.g.,
by making the subjective distances between adjacent numbers on every portion
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of the scale equal) and contextualized (e.g., holding the environmental cues con-
stant), both self assessment and external observer assessment (preferably from
observers who are familiar with the user to be assessed) should be obtained and
used, and culture-related issues should be taken into consideration.

3. How does the baseline problem affect prediction? Is an objective basis (e.g.,
a frame with an expressionless display) strictly needed prior to computing the
dimensional affect values? If so, how can this be obtained in a fully automatic
manner from naturalistic data?

Determining the baseline in naturalistic affective displays is challenging even
for human observers. This is particularly the case for the visual modality which
constitutes of varying head pose and head gestures (like nods and shakes),
speech-related facial actions, and blended facial expressions. The implications
for automatic analysis can initially be addressed by training predictors that pre-
dict baseline (or neutrality) for each cue and modality separately.

4. How should intensity be modeled for dimensional and continuous affect pre-
diction? Should the aim be personalizing systems for each subject, or creating
systems that are expected to generalize across subjects?

Modeling the intensity of emotions should be based on the task-dependent
environment and target user group. A common way of measuring affect from bio
signals is doing it for each participant separately (without computing baseline),
e.g., [10]. Similarly to the recent works on automatic affect prediction from the
audio or the visual cues (e.g., [69]), better insight may be obtained by comparing
subject-dependent vs. subject-independent prediction results. Customizing the
automatic predictors to specific user needs is usually desired and advantageous.

5. In a continuous affect space, how should duration of affect be defined? How can
this be incorporated in automated systems? Will focusing on shorter or longer
observations affect the accuracy of the measurement process?

Similarly to modeling the emotional intensity level, determining the affect du-
ration should be done based on the task-dependent environment and target user
group. Focusing on shorter or longer durations appears to have an effect on the
prediction accuracy. Achieving real-time affect prediction requires a small win-
dow size to be used for analysis (i.e., a few seconds, e.g., [10]), while on the other
hand obtaining a reliable prediction accuracy requires long(er)-term monitoring
[6, 83]. Therefore, analysis duration should be determined as a trade-off between
reliable prediction accuracy and real-time requirements of the automatic system.

Finding comprehensive and thorough answers to the questions posed above, and
fully exploring the terrain of the dimensional and continuous affect prediction, de-
pends on all relevant research fields (engineering, computer science, psychology,
neuroscience, and cognitive sciences) stepping out of their labs, working side-by-
side together on real-life applications, and sharing the experience and the insight
acquired on the way, to make affect research tangible for realistic settings and lay
people [76]. Pioneering projects representing such inter-disciplinary efforts have
already started emerging, ranging, for instance, from publishing compiled books
of related work (e.g., [30]) and organizing emotion recognition challenges (e.g.,
INTERSPEECH 2010 Paralinguistic Challenge featuring the affect sub-challenge



284 H. Gunes et al.

with a focus on dimensional affect [93]) to projects as varied as affective human-
embodied conversational agent interaction (e.g., European Union FP 7 SEMAINE
[89, 90]), and affect sensing for autism (e.g., [76, 78]).

10.7 Summary

Human affective behavior is multimodal, continuous and complex. Despite major
advances within the affective computing research field, modeling, analyzing, inter-
preting and responding to human affective behavior still remains a challenge for au-
tomated systems as affect and emotions are complex constructs, with fuzzy bound-
aries and with substantial individual differences in expression and experience [7].
Therefore, affective and behavioral computing researchers have recently invested
increased effort in exploring how to best model, analyze and interpret the subtlety,
complexity and continuity (represented along a continuum e.g., from −1 to +1) of
affective behavior in terms of latent dimensions (e.g., arousal, power and valence)
and appraisals, rather than in terms of a small number of discrete emotion categories
(e.g., happiness and sadness). This chapter aimed to (i) give a brief overview of the
existing efforts and the major accomplishments in modeling and analysis of emo-
tional expressions in dimensional and continuous space while focusing on open is-
sues and new challenges in the field, and (ii) introduce a representative approach for
multimodal continuous analysis of affect from voice and face, and provide exper-
imental results using the audiovisual Sensitive Artificial Listener (SAL) Database
of natural interactions. The chapter concluded by posing a number of questions that
highlight the significant issues in the field, and by extracting potential answers to
these questions from the relevant literature.

10.8 Questions

1. What are the major approaches used for affect modeling and representation?
How do they differ from each other?

2. Why has the dimensional affect representation gained interest?
3. What are the dimensions used for representing emotions?
4. Affect research scientists usually make a number of assumptions and simplifica-

tions while studying emotions. What are these assumptions and simplifications?
What implications do they have?

5. How is human affect sensed and measured? What are the signals measured for
analyzing human affect?

6. How are affective data acquired and annotated?
7. What is the current state of the art in automatic affect prediction and recogni-

tion?
8. What are the challenges faced in automatic dimensional affect recognition?
9. List a number of applications that use the dimensional representation of emo-

tions.
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10. What features are extracted to represent an audio-visual affective sequence?
How are the audio and video streams synchronized?

11. What is a Bidirectional Long Short-Term Memory Neural Network? How does
it differ from a traditional Recurrent Neural Network?

12. What is meant by the statement ‘valence and arousal dimensions are corre-
lated’? What implications does this have on automatic affect prediction?

13. What is output-associative fusion? How does it compare to model-level fusion?
14. How are the root mean squared error, correlation, and sign agreement used for

evaluating the automatic prediction of emotions?

10.9 Glossary

• Categorical description of affect: Hypothesizes that there exist a small number of
emotion categories (i.e., anger, disgust, fear, happiness, sadness and surprise) that
are basic, hard-wired in our brain, and recognized universally (e.g. [18]).

• Dimensional description of affect: Hypothesizes that affective states are not inde-
pendent from one another; rather, they are related to one another in a systematic
manner.

• Circumplex Model of Affect: A circular configuration introduced by Russell [82],
based on the hypothesis that each basic emotion represents a bipolar entity being
a part of the same emotional continuum.

• PAD emotion space: The three dimensional description of emotion in terms of
pleasure–displeasure, arousal–nonarousal and dominance–submissiveness [63].

• Dimensional and continuous affect prediction: Analyzing and inferring the sub-
tlety, complexity and continuity of affective behavior in terms of latent dimen-
sions (e.g., valence and arousal) by representing it along a continuum (e.g., from
−1 to +1) without discretization.

• Long Short-Term Memory neural network: A Bidirectional Recurrent Neural Net-
work that consists of recurrently connected memory blocks, and uses input, out-
put and forget gates to represent and learn the temporal information and depen-
dencies.

• Output-associative fusion: A fusion approach that uses multi-layered prediction,
i.e. the initial features extracted from each modality are used for intermediate
(output) prediction, and these are further used for a higher (and final) level of
prediction (by incorporating cross-dimensional dependencies).
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Chapter 11
Analysis of Group Conversations: Modeling
Social Verticality

Oya Aran and Daniel Gatica-Perez

11.1 Introduction

Social interaction is a fundamental aspect of human life and is also a key research
area in psychology and cognitive science. Social psychologists have been research-
ing the dimensions of social interaction for decades and found out that a variety
of social communicative cues strongly determine social behavior and interaction
outcomes. Many of these cues are consciously produced, in the form of spoken lan-
guage. However, besides the spoken words, human interaction also involves nonver-
bal elements, which are extensively and often unconsciously used in human commu-
nication. The nonverbal information is conveyed as wordless messages, in parallel to
the spoken words, through aural cues (voice quality, speaking style, intonation) and
also through visual cues (gestures, body posture, facial expression, and gaze) [31].
These cues can be used to predict human behavior, personality, and social relations.
It has been shown that, in many social situations, humans can correctly interpret
the nonverbal cues and can predict behavioral outcomes with high accuracy, when
exposed to short segments or “thin slices” of expressive behavior [1]. The length of
these thin slices can change from a few seconds to several minutes depending on
different situations.

Computational analysis of social interaction, in particular of face-to-face group
conversations is an emerging field of research in several communities such as
human–computer interaction, machine learning, speech and language processing,
and computer vision [20, 38]. Close connection with other disciplines including
psychology and linguistics also exist in order to understand what kind of verbal
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and nonverbal signals are used in diverse social situations to infer human behavior.
The ultimate aim is to develop computational systems that can automatically infer
human behavior by observing a group conversation via sensing devices such as cam-
eras and microphones. Besides the value for several social sciences, the motivation
behind the research on automatic sensing, analysis, and interpretation of social be-
havior has several dimensions. These systems could open doors to a number of rel-
evant applications that support interaction and communication. These include tools
that improve collective decision making and that support self-assessment, training,
and education, with possible example applications such as automatic meeting eval-
uators, trainers, and automatic personal coaches for self learning. Moreover, not
only supporting human interaction, these systems can also support a natural human–
robot or human–computer interaction, by designing socially aware systems [38], i.e.
by enabling a robot to understand the social context around it and to act accord-
ingly.

In this chapter we focus on one aspect of social relations and interactions: so-
cial verticality. Social verticality is one of the many dimensions of human relations
and refers to the structure of interpersonal relations positioned in a low-to-high con-
tinuum, stating a kind of social hierarchy among people [22]. It relates to power,
status, dominance, leadership, and other related concepts. The vertical dimension is
in contrast to the horizontal dimension, which is the affective and socio-emotional
dimension that describes the emotional closeness of human relations. Instead, verti-
cal dimension describes how each person is positioned in the group, e.g. as higher
status/lower status. We present computational models for the analysis of social ver-
ticality through nonverbal cues in small groups.

The next section gives definitions and a brief summary of the psychological and
cognitive aspects of the display and perception social verticality during human inter-
actions. Section 11.3 describes computational methods and Sect. 11.4 presents four
case studies. A summary of the chapter, acknowledgments, end-of-chapter questions
and a small glossary can be found in the remaining sections.

11.2 Social Verticality in Human Interaction and Nonverbal
Behavior

Social verticality constructs, such as power, status, and dominance, are related to
each other with important differences in their definitions. For example, power in-
dicates “the capacity to produce intended effects, and in particular, the ability to
influence the behavior of another person” [17] (p. 208), without implying any re-
spect or prestige. As power is defined as an ability, it is not always exercised. On the
other hand, dominance can be defined as “a personality trait involving the motive to
control others, the self perception of oneself as controlling others, and/or as a be-
havioral outcome with a success on controlling others” [22] (p. 898), and as a result,
it is “necessarily manifest” [17] (p. 208). Dominance can be seen as a “behavioral
manifestation of the relational construct of power” [17] (p. 208).
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Status relates to both power and dominance and is defined as an “ascribed
or achieved quality implying respect and privilege, does not necessarily include
the ability to control others” [22] (p. 898). Leadership is another related con-
struct, which can be defined as the ability of motivating a group of people to
pursue a common goal. Thus, leadership is related to the end result, not just
a manifested act. Among various types of leadership types, “emergent leader-
ship”, for example, is where the leader arises from a group of equal status peo-
ple [46].

Dominance is one of the fundamental dimensions of social interaction. It is
signaled via both verbal and nonverbal cues. The nonverbal cues include vocalic
ones such as speaking time [45], loudness, pitch, vocal control, turns, and inter-
ruptions [17] and kinesic ones such as gesturing, posture, facial expressions, and
gaze [16]. Dominant people are in general more active both vocally and kinesi-
cally, with an impression of relaxation and confidence [22]. It has been shown that
they also have a higher visual dominance ratio (looking-while speaking to looking-
while-listening ratio), i.e. they look at others more while speaking and less while
listening [16].

In a study that investigated the relationship between the leadership style and so-
ciable and aggressive dominance, it is found out that there is a higher correlation
between leadership and sociable dominance [28]. Sociably dominant people look
at others more while speaking and use more gestures, receiving more frequent and
longer-lasting glances from the group; whereas aggressively dominant people inter-
rupt more, and they look at others less while listening.

Social verticality in a group can also be defined by roles that constitute a
hierarchy-like structure, such as physician/patient, manager/employee, teacher/
learner, interviewer/interviewee, where one part has more expertise than the other,
in terms of knowledge or rank. In [45], it is shown that the association between
speaking time and dominance is higher for both dominant and high status people.
It is important to note that not all the role distributions of a group present a vertical
relationship, i.e. a hierarchical relation. In this chapter, we mainly refer to the roles
that have a vertical dimension. We also consider the roles that are defined based on
the psychological behavior (i.e. functional roles) of the participants in a group that
partly shows a hierarchical structure.

The relationship between the vertical constructs and personality traits is also of
interest to social psychologists. Personality is defined as a collection of consistent
behavioral and emotional traits that characterize a person [18]. While personality ad-
dresses stable and consistent behavior of a person, the social verticality constructs
address the behavior of a person in a group which may not be consistent across time,
relations and situations [22]. Nevertheless, verticality constructs are closely related
with the personality traits of the individuals, as personality strongly influences verti-
cality in a social relationship of peers. For example, it is shown that cognitive ability
and the personality traits of extroversion and openness to experience are predictive
of emergent leadership behavior [29].



296 O. Aran and D. Gatica-Perez

Fig. 11.1 The functional blocks of social interaction analysis

11.3 Automatic Analysis of Social Verticality from Nonverbal
Features

The aim of the automatic analysis of group interaction is to infer and possibly predict
aspects of the underlying social context, including both individual attributes and
interactions with other people in the group. As a specific case, the concept of social
verticality imposes a social hierarchy on the group and requires a special interest.

In this chapter we concentrate on three social constructs of social verticality,
dominance, roles, and leadership, and explain the functional blocks, as shown in
Fig. 11.1, that are required for analysis. Table 11.1 presents an overview of recent
works selected from the literature and Table 11.2 summarizes several datasets used
for social verticality analysis.

In the next sections, we mainly focus on audio and visual sensors as the two
primary sources of information. A brief discussion on other sensors to capture social
behavior is given in Sect. 11.3.2.3.

11.3.1 Processing

Although it is known that nonverbal communication involves both the aural and
visual modalities, most initial works in the literature on computational analysis of
group interactions have largely focused on audio features. This is partly related to
the data capture technology. Reasonable quality audio capture systems were avail-
able earlier than video capture systems. Overall, video capture is more problematic
than audio capture; video is quite sensitive to environmental conditions, and requires
adequate resolution and frame rates. A second dimension is related to the challenges
of video processing in natural conversations. One last dimension is related to pri-
vacy. People are in general less willing to have their video recorded compared to
audio.

It is also important to note that social interaction capture systems should not use
sensors that affect the interaction. The subjects should be able to act naturally with-
out any distraction caused by the sensors that are used. For instance, to record audio,
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Table 11.1 Related works on the analysis of social verticality

Task Audio features Video features Fusion Inference

Dominance

[24] most/least dominant
person

speaking turn NA NA rule-based

[2] most/least dominant
person

speaking turn visual activity,
audio-visual
activity

score
level

rule-based

[12] correlations with
dominance

prosodic NA NA correlations

[27] most/least dominant
person

speaking turn,
prosodic

visual activity feature
level

rule-based
supervised
-SVM

[26] most dominant/
high status person

speaking turn visual activity,
visual attention

NA rule based

[42] dominance level (as
high, normal, low)

speaking turn
(manual)

NA NA supervised
-SVM

Roles

[41] role patterns speaking turn NA NA rule-based
supervised
-Influence Model

[43] role recognition speaking turn NA feature
level

supervised
-MAP, ML est.
-Simulated ann.

[19] role recognition speaking turn,
verbal

NA score
level

supervised
-ML estimate
-Boosting

[15] role recognition speaking turn visual activity feature
level

supervised
-SVM
-HMM
-Influence Model

[50] role recognition speaking turn visual activity feature
level

supervised
-SVM

[6] role identification speaking turn,
verbal

NA NA supervised
-Boosting

Leadership

[44] emergent leadership speaking turn NA feature
level

rule-based

[48] leadership prosodic visual activity,
gestures

feature
level

rule-based

[25] group conversational
patterns

speaking turn NA feature
level

unsupervised
-topic models
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Table 11.2 Selected databases used for social verticality analysis

Dataset Name Task Details Length References

DOME (part 1,2) Dominance Meetings, a subset of the
AMI corpus, publicly
available

∼10 hours [2, 3]

DOME (part 1) Dominance Meetings, a subset of the
AMI corpus, publicly
available

∼5 hours [12, 24, 26, 27]

– Dominance,
Roles

Meetings from “The
Apprentice” TV show

90 minutes [41]

– Roles News, talk shows from
Swiss radio

∼46 hours [43]

AMI Roles Meetings, publicly available ∼46 hours [19, 43]

Survival Roles Meetings on the mission
survival task

∼5 hours [15, 40, 50]

ELEA Leadership Meetings of newly formed
groups

∼10 hours [44]

a distant microphone array device should be preferred to head-set microphones that
are attached to the people. Regarding the cameras, while it is true that people might
be distracted or feel self-conscious at the beginning of an interaction, when they
are in a natural environment and focused on an engaging task, they rapidly tend to
forget about the presence of cameras and act naturally.

11.3.1.1 Audio Processing

The key audio processing step is to segment each speaker’s data in the conversation
such that it allows robust further processing to extract features for each of the partici-
pants separately. This process is called speaker diarization, a combination of speaker
segmentation (finding speaker change points) and speaker clustering (grouping seg-
ments for each speaker). Speaker diarization is an active topic, not only in social
interaction analysis, but in speech processing in general. Here we refer to its appli-
cations in social interaction analysis very briefly.

As the audio capture methodology, one can use different setups ranging from
one single microphone [24], to microphone arrays [44] and head-set microphones
[2, 27]. Each of these setups have different noise levels and require different levels
of processing for speaker diarization. Head-set microphones provide lower levels
of noise, however, there is still a need for speaker diarization, since voices of other
participants also exist in the recordings. In [24], the authors used a single audio
source and investigated the performance of speaker diarization and dominance esti-
mation under different conditions. Their results show that dominance estimation is
robust to diarization noise in the single audio source case. For recording three-four
people meetings, Sanchez-Cortes et al. [44] used a commercial microphone array,
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which provides the speaker diarization output along with the audio recordings. The
speaker diarization output is used for estimating the emergent leader in the group.

11.3.1.2 Video Processing

Once the camera input is received, the visual activity of each participant in the meet-
ing needs to be processed. The level of processing depends on the features that will
be extracted and ranges from face detection to motion detection, from face tracking
to skin blob tracking and body parts tracking (see Chap. 3 for more details).

Face detection algorithms in general are designed to detect either frontal or pro-
file faces. Their performance is affected especially if there are out-of-plane rotations.
During group conversations, even if the participants are sitting around a table and
are stationary, as a part of the interaction, they may frequently move their heads,
and gaze at each other. Thus, a face detection algorithm alone is not sufficient to
extract the positions of the faces during an interaction. Face tracking algorithms
(using Kalman filter, particle filter, etc.) could be applied for better results. On top
of face tracking, if the body movements, such as hand gestures and body postures,
are also of interest, advanced techniques to track body parts or just the skin-colored
parts can be applied. A lower level of processing, such as motion detection, can
be applied if the interest is on the general visual activity of the participant and not
on the individual body parts’ activity. More detail on these techniques is given in
Sect. 11.3.2.2.

11.3.2 Feature Extraction

The descriptors of a social interaction and social behavior can be categorized with
respect to the sensor used, but also with respect to whether the feature is ex-
tracted from a single participant’s activity or from an interaction that involves more
than one person. We will call the former type of features as “independent fea-
tures” and the latter as “relational features”. Moreover, one can extract features
that represent the overall interaction of the whole meeting, instead of the partic-
ipants one by one, which we refer as “meeting features”. The following sections
present a sensor based categorization of both independent, relational, and meeting
features.

The features presented below are generally extracted from thin slices of meet-
ings, summarizing independent and group behavior for that meeting segment. Re-
search in social psychology has shown that by examining only brief observations
of expressive behavior, humans are able to predict behavioral outcomes [1]. The
current research in computational social behavior analysis uses these conclusions
and investigates whether computational methods are also able to predict similar
outcomes by applying thin slice based processing. The length of the slices and
how these slices are to be processed should be determined with respect to the
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task and are open questions. The whole meeting duration can be used as one sin-
gle segment, or the entire segment can be described as an accumulation of shorter
slices.

11.3.2.1 Audio Nonverbal Features

In this section, we present the audio nonverbal features in two groups: speaking turn
features and prosodic features. The term “speaking turn features” refers to audio
nonverbal features that are extracted based on the speaking status of the participants
and their turn taking behavior. The prosodic features on the other hand, represent
the rhythm, stress, and intonation of speech.

Speaking Turn Features

Speaking turn features are frequently used in social interaction analysis for two main
reasons. First, given the speaker diarization output, they are easy to calculate, with
very low computational complexity. Second, despite their simplicity, they are very
successful in many social tasks, supported by both social psychology and social
computing research [20, 45].

Speaking turn features can be categorized as independent and relational. Inde-
pendent features describe the speaking activity for one participant. These include
speaking length, number of speaking turns, turn duration statistics (average, min,
max, etc.). A turn is defined as one continuous segment where a participant starts
and ends her/his speech. The relational features describe the interaction of one par-
ticipant with other participants in the group. These include interruptions, overlapped
speech, turn taking order (i.e. who speaks after whom) and also centrality features.
Centrality features are relational features that represent the relative position of each
participant in the group. We can represent the interaction of a group as a graph,
by taking the nodes as the participants and the edges as the indication of how one
person relates to others. The edges can be connected to several other relational fea-
tures, such as “who interrupts whom”, “who speaks after whom”, etc. One can as-
sign weights to the edges, representing the strength of the relation. Based on the
definition of the relational features, the edges can be directed, in which case they
are called arcs. Once the graph is formed, centrality measures can be calculated in
various ways, such as indegree and outdegree of each node, closeness to other nodes
(with weights defined as distances), etc.

The interaction patterns between participants can also be defined via Social
Affiliation Networks (SAN) and used to represent the relationships between the
roles [43]. A SAN is a graph that encodes “who interacts with whom and when”.
The two kinds of nodes in a SAN refer to the actors and the events, respectively.
In [43], the events are defined as the segments from the recordings, and the partic-
ipants are linked to the events if they talk during the corresponding segment. The
assumption in this representation is that if the roles influence the structure of the
interaction, similar interaction patterns should correspond to the same roles.
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Fig. 11.2 Speaking turn
audio nonverbal features

Speaking turn features that describe the whole meeting include the amounts of
silence, overlapped speech and non-overlapped speech, among others. Accumulated
statistics of all participants can also be used as meeting features (total number of
turns, interruptions, etc.).

Figure 11.2 shows the illustration of a conversation between three participants.
Each line represents the timeline for one participant and black segments indicate that
the participant is speaking. Each black segment is a turn. The overlapped speech and
silence segments are indicated. The interruptions and backchannels are also repre-
sented. The automatic detection of successful interruptions can be done in several
ways if the verbal information is to be omitted. One definition can be made with
respect to the interruptee’s point of view (indicated with 1 in Fig. 11.2): “P1 started
speaking when P2 was already speaking and P2’s turn ended before P1’s”. Another
definition uses the interrupter’s point of view (indicated with 2 in Fig. 11.2): “P1
started speaking when P2 was already speaking and when P1’s turn ended P2 was
not speaking anymore”. If we follow the first definition, P1 successfully interrupts
P3 as well, however, with the second definition, it is an unsuccessful interruption.
By definition, an interruption occurs between two participants. In that case, to cal-
culate the number of interruptions for one person, all possible pairings with that
person should be considered. As an alternative, interruptions that affect the whole
group can be extracted [2].

All of these features need to be normalized with respect to the meeting duration
(and with respect to the number of participants) before they are used in inference.

Prosodic Features

Other than speaking turn features, prosodic nonverbal features are also indicators
of social behavior and used recently in several tasks such as dominance estimation.
Features like pitch, energy, rhythm, or spectral features like formants, bandwidths,
spectrum intensity can be extracted as independent features for each participant. Re-
cently Charfuelan et al. [12] investigated the correlations between various prosodic
features and dominance. Their results show that the most dominant person tends
to speak louder and the least dominant person tends to speak softer than average.
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In [48], prosodic features from audio such as loudness and spectral features are fused
with visual features to estimate leadership in musical performances. In [26, 27], the
speaking energy is used as a prosodic feature, together with other speaking turn fea-
tures, for dominance estimation tasks. However, the results show that the speaking
turn audio features, such as total speaking length and number of turns, can outper-
form speaking energy in predictive power.

11.3.2.2 Visual Nonverbal Features

Visual Activity

Most of the works in the nonverbal communication literature extract low-level vi-
sual features based on global image motion or geometric image primitives. In part,
this approach can be feasible as there are no clearly defined hand shapes and hand
trajectories for the visual nonverbal features of social verticality. Image and motion
based approaches either assume that the background is stationary and any detected
motion will indicate participant’s visual activity, or find the skin-colored regions or
faces and calculate the motion for these parts only.

In [27], two types of visual information, extracted from the compressed do-
main [49], are used for modeling dominance: the motion vector magnitude and the
residual coding bit rate. While the motion vector magnitude reflects the global mo-
tion, the residual coding bit rate provides the local motion, such as lip movement on
the face or finger movement on the hands. These two types of information can be
used as indicators of the visual activity of the participant, either alone, or as a com-
bination. In [2, 27], by thresholding the motion information, the authors extracted
a binary vector in which zeros indicate no-motion segments and ones indicate the
segments with motion. A number of higher level visual features are extracted from
this binary vector, including the length, turns and interruptions of visual activity,
similar to the audio speaking turn features explained in Sect. 11.3.2.1. Moreover,
audio-visual versions of these features can also be extracted, by looking at the joint
speaking and visual activity behavior. For example, in [2], the authors extracted vi-
sual attention features while speaking to estimate the most/least dominant persons
in a group.

Another method is to use the motion history templates [9] for the detection and
understanding of visual activity. In [13], motion history images are calculated for
skin-colored regions and the amount of fidgeting, defined as “a condition of rest-
lessness as manifested by nervous moments”, is measured, by applying empirically
determined thresholds. These features are used for the recognition of functional
roles [15, 40, 50].

Visual Attention and Gaze

When and how much people look at each other during a conversation is a clear
indicator of many social constructs. For example, dominant people often look at
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others more while speaking and less while listening. And the ratio between these
two measures, defined as the “Visual Dominance Ratio (VDR)”, is considered as
one of the classic measures of dominance [16]. Moreover, receiving more visual
attention from other participants is an indicator of dominance.

For the automatic estimation of gaze and visual Focus of Attention (FOA), one
can either use eye gaze or head pose. Although eye gaze is a more reliable source,
with the current technology, this can be only implemented via eye trackers or high
resolution cameras focused on each participants face area. Alternatively, the head
pose can be estimated as an approximation to the actual eye gaze [5, 21, 36]. In a
natural conversation environment, the focus target needs to be defined. Other than
the participants in the conversation, there can be other targets such as the table, lap-
tops, presentation screen, board, etc. In [5], an input–output hidden Markov model is
used to detect the FOA of the group participants. In their work, the authors propose
to recognize the FOA of all participants jointly and introduce a context dependent
interaction model. Their model achieves around 10% performance increase when
compared to using independent models for each participant. More details on FOA
estimation can be found in Chap. 4.

Once the FOA of participants for each time frame is extracted, several measures
can be defined as indicators of dominance. These include received visual atten-
tion, given visual attention (looking at others), and the VDR [23, 26]. These fea-
tures, which are initially defined for dyadic conversations, can be generalized to the
multi-party case by accumulating all possible pairwise participant combinations.
It is important to note that VDR is by definition a multimodal cue, as it consid-
ers the FOA of a participant with respect to speaking status. For VDR, one needs
to calculate “looking-while-speaking” and “looking-while-listening” measures. The
“looking-while-speaking” case is trivial, however, “looking-while-listening” can
be defined as “looking-while-not-speaking” or “looking-while-someone-else-is-
speaking”. In [26], the authors define two variants of VDR following these two
definitions, and use them for dominance and status estimation.

Gestures and Facial Expressions

Despite the progress in computer vision to analyze structured gestures (e.g. hand
gesture recognition, sign language recognition, gait recognition, etc.), the use of
more accurate models of visual nonverbal communication has been largely unex-
plored. The main challenge is the lack of clearly defined gestures for visual nonver-
bal features. Another challenge is the uncontrolled experimental setup. Contrary to
the natural conversational environment that is required for social interaction anal-
ysis, most of the developed gesture recognition algorithms require controlled envi-
ronments and restrict people to perform gestures in a certain way.

To the authors’ knowledge, the use of specific hand gestures, other than extract-
ing general hand activity, has not been applied to the automatic analysis of social
verticality. In one study [48], expressive gestures for musical performance, such as
motion fluency, impulsiveness, directness, are used as features for leadership esti-
mation. Head and body gestures have been used in related tasks in social interaction
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analysis. While most of the works focus on the face area and head gestures, there
are a few studies that also use the body motion. In [10], for estimating the partici-
pant status, the authors extract features from the face area and estimate yes-no head
movements and also the global body movement. In [37], for an addressing task, to
respond to questions such as “who responds to whom, when and how?”, the authors
extract features from the head area using a discrete wavelet transform to estimate
head gestures such as nodding, shaking and tilt. A magnetic sensor is used in this
study to capture the head motion.

Facial expressions are also strong indicators of social behavior. Despite progress
on the automatic analysis of facial expressions, a widely studied topic in recent
years, they are not as widely used in social interaction analysis. The main reason
behind this is that facial expression analysis requires high resolution recordings of
the facial region. However, most of the databases used for social interaction analysis
use upper body or full body recordings of the participants and the captured facial
region in these recordings are not good enough to perform high-level automatic
expression analysis. Among the few works, in [32], the participants’ smiling status
is extracted during an interaction.

11.3.2.3 Other Sensors

The increasing use of mobile devices in people’s daily lives introduced the oppor-
tunity to researchers to use these devices as capture devices. Mobile devices can
record vast amounts of data from people’s daily interaction via built-in audio and
video sensors, but also via other sensors such as accelerometers to measure body
movement, bluetooth or radio signals to measure proximity between two devices,
and several others [34, 39].

The main challenge of using mobile devices for social behavior capture is limited
computational resources. To overcome this difficulty, special equipment to collect
social behavioral data can be developed. The sociometric badge is an example of
such devices: it collects and analyzes social behavioral data. It allows voice capture,
infrared (IR) transmission and reception and is capable of extracting features that
can further be used for social behavior analysis [30], in real-time.

11.3.3 Inference

This section presents four groups of methods that have been used to infer social
verticality:

1. Rule-based approaches
2. Unsupervised approaches
3. Supervised approaches
4. Temporal approaches
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In the first approach, a decision with regards to the social verticality concept, for
instance dominance, is made via rules defined using expert knowledge, without the
need of training data. In the second and third approaches, unsupervised or super-
vised machine learning techniques are used, respectively. Their main difference is
in the availability of labeled training data. Finally, in the fourth approach, the entire
temporal dynamics of interaction is taken into account.

11.3.3.1 Rule-Based Approaches

For some social behavioral concepts, it is shown that people use several nonverbal
cues more frequently or less frequently, with respect to other people in the group.
For example, according to social psychology, dominant people often speak more,
move more, or grab the floor more often [17, 22], so if someone speaks the most or
moves the most, he/she is more likely to be perceived as dominant over the other
people in the meeting. Following this information, one can assume that the non-
verbal cues defined above are positively correlated with dominance and define a
rule-based estimator on each related nonverbal feature [2, 27]. Similarly, other rule-
based estimators can be defined for other social tasks, based on sociological and
psychological aspects. Here we give an example of a rule-based estimator for dom-
inance.

To estimate the most dominant person in meeting i, using feature f , the rule is
defined as:

MDi = arg max
p

(
f i

p

)
, p ∈ {1,2, . . . ,P }, (11.1)

where p is the participant number, f i
p is the value of the feature for that participant

in meeting i, and P is the number of participants. The least dominant person can be
estimated similarly using the following rule:

LDi = arg min
p

(
f i

p

)
, p ∈ {1,2, . . . ,P }. (11.2)

The main advantage of these rule based estimators is that they do not require any
training data and they are very fast to compute. On the other hand, the major disad-
vantage is that they only allow the use of a single feature and cannot directly utilize
the power of combining multiple features. By definition, the rule-based estimator
is limited to a single feature. In the next section, we explain several approaches to
perform fusion using the rule-based estimator.

Multimodal Fusion via Rule-Based Estimator

Although speaking length alone is a good estimator of dominance, there are other
displays of dominance as well, such as the visual activity, which provides com-
plementary information. Thus, different features representing different aspects of
dominance could be fused together to obtain a better estimator. We can define a
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Fig. 11.3 Dominance estimation with rule based classifier and rank and score level fusion. The
rank and score information is calculated from the extracted nonverbal features for each participant

rule-based estimator on each feature as an independent classifier and apply fixed
combination rules on the decisions of these classifiers. Two different fusion archi-
tectures are presented in this section: score level and rank level fusion [33]. An
overview of the fusion architectures is shown in Fig. 11.3.

For Score Level Fusion, each classifier should provide scores, representing the
support of the classifier for each class. The scores of each classifier are then com-
bined by simple arithmetic combination rules such as sum, product, etc. The scores
to be combined should be in the same range, so a score normalization should be
performed prior to fusion.

As the actual feature values are positively correlated with dominance, they can be
used as the scores of the rule-based classifier, defined on that nonverbal feature, fol-
lowing a normalization step. z-normalization can be used to normalize the features
for each meeting:

f̂ i
p = (

f i
p − μf i

)
/(σf i ), ∀p ∈ 1, . . . ,P , (11.3)

where f̂ i
p and f i

p are the values of the feature f for participant p in meeting i,
z-normalized and prior to normalization, respectively. μf i and σf i are the mean
and the standard deviation over all participants. The score level fusion can then be
performed by using an arithmetic combination rule. For meeting i, this would mean



11 Analysis of Group Conversations 307

using feature combination C, combining the scores for each participant (e.g. with
sum rule) and selecting the participant with the highest total score:

SC
i = arg max

p

(∑

f ∈C
f̂ i

p

)
, C ⊆ F , (11.4)

where F is the set of all features.
Rank Level Fusion is a direct extension of the rule-based estimator. Instead of se-

lecting the participant with the maximum feature value, the participants are ranked
and the rank information is used to fuse different estimators based on different fea-
tures. The ranks for each participant are summed up and the one with the highest
total rank is selected as the most dominant. For meeting i, using feature combination
C, the most dominant participant is selected by

RC
i = arg max

p

(∑

f ∈C
ri
fp

)
, C ⊆ F , (11.5)

where ri
fp

is the rank of participant p using feature f in meeting i. In case of ties,
the selection can be performed based on the z-normalized scores.

11.3.3.2 Unsupervised Approaches

Unsupervised approaches can be applied to analyze social behavior data to discover
and to differentiate patterns of certain behavior types. The motivation behind using
unsupervised approaches is that they decrease the dependency to labeled training
data. Given the difficulty of collecting data annotations for social interactions, this
is a huge opportunity. Moreover, for problems with none or vague class descrip-
tions, unsupervised approaches provide better models. Although there is always a
trade-off between the performance and the amount of labeled training data, efficient
unsupervised (or semi-supervised) techniques can be developed that would result in
low performance degradation by using none or a very small amount of training data,
when compared to using huge amounts of data.

Among the many diverse methods, we present here topic models, in particular
Latent Dirichlet Allocation (LDA) [8], as an example model to discover social pat-
terns. Topic models are probabilistic generative models that are proposed to analyze
the content of documents. Although topic models were originally used in text mod-
eling, they are capable of modeling any collection of discrete data. The patterns are
discovered based on word co-occurrence. In topic models, each document is viewed
as a mixture of topics, where topics are distributions over words. A word is defined
as a basic unit of the discrete data. The probability of a word w in a document, as-
suming the document is generated from a convex combination of T topics, is given
as

p(wi) =
T∑

t=1

p(wi |zi = t)p(zi = t), (11.6)



308 O. Aran and D. Gatica-Perez

Fig. 11.4 Latent Dirichlet allocation model.

where zi is a latent variable indicating the topics from which the word wi may be
drawn.

Assume that a document d is a bag of Nd words, and a corpus is a collection of
D documents, with a total of N words (i.e. N = ∑

Nd ), and a vocabulary size of V .
Let φ(t) = p(w|z = t) refer to the multinomial word distribution for each topic t ,
and θ(d) = p(z) refer to the topic distribution for each document. φ indicates which
words are important for each topic, and θ indicates which topics are important for
each document.

LDA [8] model assumes a Dirichlet prior both on the topic and word distributions
(p(θ) and p(φ) are Dirichlet with hyperparameters α and β , respectively) to pro-
vide a complete generative model for documents. As the Dirichlet distribution is a
conjugate prior to the multinomial, its usage simplifies the statistical inference prob-
lem and allows variational inference methods to be used. Then, the joint distribution
of the set of all words in a given document is given by

p(z,w, θ,φ|α,β) =
N∏

i=1

p(wi |zi, φ)p(zi |θ)p(θ |α)p(φ|β), (11.7)

where zi is the topic assignment of the ith word wi .
The graphical model for LDA is shown in Fig. 11.4. The shaded variables

indicate the observed variables, whereas the unshaded ones indicate the unob-
served/latent variables. In the case of LDA, words are the only observed variables.

The objective of LDA inference is to estimate the word distribution for each topic
φ(t) = p(w|z = t), and the topic distribution for each document θ(d) = p(z), given
a training corpus and the parameters α, β , and T . The posterior distribution over z

for a given document can be calculated by marginalizing over θ and φ, using Gibbs
sampling. More details of Gibbs sampling for LDA inference can be found in [47].

As an example of the application of topic models to social verticality problems,
we present a case study in Sect. 11.4.4 [25]. In this work, analogous to the bag-of-
words approach in a text collection, bag-of-nonverbal patterns are defined to repre-
sent the group nonverbal behavior, for modeling group conversational patterns. In
this context, the documents are the meetings, the topics are the conversational pat-
terns, and the words are low-level nonverbal features, calculated from thin slices of
small group meetings.



11 Analysis of Group Conversations 309

11.3.3.3 Supervised Approaches

Supervised approaches, including support vector machines, boosting methods, and
naive Bayes, are frequently used in tasks like role recognition [6, 15, 19, 50] and
dominance estimation [27, 42]. The details of these models are not given in this
chapter, as they are well known models. Interested readers may refer to above
mentioned references. In this section, we focus on two issues of using super-
vised models for social verticality problems. The first is on how to formulate the
given problem as a supervised learning task, and the second is on how to ob-
tain reliable labels for using during training from noisy and subjective annota-
tions.

Depending on the task, the supervised learning problem can be formulated as a
regression problem (e.g. if the leadership score of a participant is in question), as
a binary classification problem (e.g. whether the person is dominant or not), or as
a multiclass classification problem (e.g. assigning a role to each participant, among
multiple role definitions). From the supervised learning point of view, one interest-
ing problem is the estimation of the most dominant (or similarly the least dominant)
person in a meeting. The trained supervised model needs to select exactly one partic-
ipant from among the all participants in the meeting. In [27], the authors employed
a binary classification approach to discriminate between the ‘most’ dominant par-
ticipants and the rest, in each meeting. They trained a two-class SVM, and for each
test participant in a meeting, the SVM scores were calculated with respect to the
distance to the class boundary. With this formulation, the participant that has the
highest score receives the ‘most dominant’ label, generating exactly one most dom-
inant person per meeting. An alternative approach would be to define the problem
as a regression problem and assign a dominance score to each participant. Then,
the participant receiving the highest score could be selected as the most dominant
person.

One of the challenges of using supervised models in social verticality problems
is the need for a labeled training dataset, as obtaining these labels is not trivial for
most of the social behavior estimation tasks, for which there is no “true label”. As
a result, the labels need to be collected from human annotators. However, when the
question at hand is the existence of a social construct, even human judgments can
differ, given the fact that a single correct answer does not necessarily exist. To cope
with this variability, multiple annotators are used to annotate social behavior data.
A common approach is to use majority agreement of annotators as the ground-truth
labels. However, majority agreement has its disadvantages. It discards data points
for which the annotators do not have an agreement. Furthermore, it weighs each
annotator equally, without considering their different levels of expertise. Other than
using majority voting, several other approaches in diverse domains are proposed to
model multiple human judgments to estimate the underlying true label. In the field
of social computing, as the only example so far, Chittaranjan et al. proposed an
Expectation-Maximization (EM) based approach that uses annotations, and also the
annotator confidences to model the ground truth [14].
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11.3.3.4 Temporal Modeling

Instead of modeling a meeting as a whole, modeling the temporal evolution of the
interaction in the meeting could reveal further properties of the interaction, enabling
a better analysis. Dynamic Bayesian networks, in particular Hidden Markov Models
(HMM) and its variants, are the most popular temporal models used in interaction
analysis (see Chap. 2).

A straightforward idea is to model each participant in a meeting with one HMM
and then to compute all the combinations of interacting states between these chains.
However, this approach results in a high number of states, exponential with the num-
ber of chains. An alternative approach would be to use coupled HMMs or N-chain
coupled HMMs. However both approaches require large number of parameters,

As an alternative to these models, in [4, 7], the influence model is presented and
used for analyzing the interaction in groups and various social constructs such as
roles [15, 41], and dominance [7].

The influence model is proposed as a generative model for describing the con-
nections between many Markov chains. The parametrization of the model allows
the representation of the influence of each chain on the others. The advantage of the
influence model with respect to HMMs or coupled HMMs is that it models interact-
ing chains while still keeping the model tractable. Figure 11.5 shows the graphical
models of coupled HMM and the influence model.

The graphical model for the influence model and for the generalized N-chain
coupled HMM are identical, with one very important simplification [7]. In the in-
fluence model, the probability of being at state i at time t is approximated by the
pairwise conditional probabilities instead of modeling them jointly:

P
(
Si

t |S1
t−1, . . . , S

N
t−1

) =
∑

j

αijP
(
Si

t |Sj

t−1

)
, (11.8)

where αij indicates the influence of chain i on chain j . Although this pairwise
modeling limits the capability of the model, it allows tractability and scalability. The
details of the model and the EM algorithm for learning influence model parameters
can be found in [7].

11.4 Case Studies

This section presents example studies on automatic analysis of social verticality, for
four different social constructs: dominance, emergent leadership, roles, and leader-
ship styles.

11.4.1 Dominance Estimation

In this section we report a study that explores ways to combine audio and visual
information to estimate the most and least dominant person in small group interac-
tions. More details of this work can be found in [2].
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Fig. 11.5 Graphical models for (a) coupled HMM, and (b) influence model with hidden states

11.4.1.1 Task Definition and Data

Given a meeting, a small group conversation, this study focuses on finding the Most
Dominant (MD) and Least Dominant (LD) participants in the group.

The data used in this study are publicly available as the DOME corpus [3].
The DOME corpus contains 125 five-minute meeting segments selected from the
Augmented Multi-party Interaction (AMI) corpus [11]. Each meeting has four
participants, and is recorded with multiple cameras and microphones. The to-
tal length of the DOME corpus corresponds to more than 10 hours of record-
ings. Each meeting segment in the DOME corpus is annotated by three annota-
tors. The annotators ranked the participants according to their level of perceived
dominance. Then the agreement (full and majority agreement on most and least
dominant person) between the annotators for each meeting is assessed. Following
this procedure, two annotated meeting datasets for each task are obtained (see Ta-
ble 11.3).
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Table 11.3 Number of meetings with full and majority agreement in DOME corpus

Full Maj

Most dominant 67 121

Full Maj

Least dominant 71 117

11.4.1.2 Features and Model

Social psychology research states that dominance is displayed via audio nonverbal
cues such as the speaking time, number of turns and interruptions, pitch, as well as
visual cues such as visual activity, expressions and gaze [22, 31]. Based on these
studies, several audio and visual features can be extracted as descriptors of some of
the above cues.

For audio nonverbal features, speaking turn features such as speaking time, num-
ber of turns and interruptions are considered. The audio recordings from the close-
talk microphones are processed for each participant and their speech activity, in the
form of binary speaking status, is extracted. The following speaking turn features
are used in this study: Total Speaking Length (TSL), Total Speaking Turns (TST),
TST without Short Utterances (TSTwoSU), Total Successful Interruptions (TSI),
and Average Speaker Turn Duration (AST).

Visual activity based nonverbal features are extracted from the close-up camera
that captures the face and the upper body of each participant. The amount of motion
in the skin-colored regions are calculated using compressed domain processing (see
Sect. 11.3.2.2), in the form of binary visual activity information for each participant.
Visual activity (-V-) equivalents of the above given audio features are extracted as
visual nonverbal features.

Furthermore, in addition to the above audio-only and video-only features, a
set of multimodal features is defined, which represent the audio-visual (-AV-) ac-
tivity jointly. The visual activity of the person is measured only while speaking,
and audio visual equivalents of the audio-only and video-only features are ex-
tracted.

Dominance estimation is performed by a rule-based estimator. The fusion of au-
dio and visual nonverbal features is done via rank and score level multimodal fu-
sion, using the rule-based estimator. The details of these techniques are presented in
Sect. 11.3.3.1.

11.4.1.3 Experiments and Results

The experiments are performed on Full and Maj datasets for MD and LD tasks
on the DOME corpus (see Table 11.3). The accuracy is calculated as follows: it is
assumed that the estimation is correct with weight one, if it matches the agreement.
If there is a tie, and one of the tied results is correct, a weight is assigned, which is
the reciprocal of the number of ties.
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Fig. 11.6 Single feature accuracy for selected audio and visual nonverbal features for (a) MD task
and (b) LD task

Fig. 11.7 (a) Multimodal fusion accuracy for MD and LD tasks. (b) Pairwise feature frequencies
in best combinations for MD task. Lighter colors indicate higher frequency

The classification accuracies for selected single nonverbal features are shown in
Fig. 11.6. For the MD task, the best results are obtained with TSL (85.07% and
74.38%) and for the LD task, with Total Audio-Visual Length (TAVL) (85.92%)
and TSTwoSU (70.94%), on Full and Maj datasets, respectively.

To find the best combination of nonverbal features in multimodal fusion, an ex-
haustive search is performed: all feature combinations are evaluated and the best
one that combines fewest number of features is reported. The classification accu-
racies for the best combinations are shown in Fig. 11.7(a). The results show that
one can achieve ~3% increase on MD task and ~7% on LD task using rank or score
level fusion. It is important to note that there is more than one combination that
gives the highest result. Figure 11.7(b) shows the pairwise feature frequencies in
best combinations for MD task.

As dominance is displayed multimodally, via audio and visual features, auto-
matic methods should utilize multimodal fusion techniques for estimation of dom-
inance. The results above show that the visual information is complementary to
audio, and multimodal fusion is needed to achieve better performance.
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11.4.2 Identifying Emergent Leaders

The second study focuses on automatically identifying the emergent leader in small
groups. More details of this work can be found in [44].

11.4.2.1 Task Definition and Data

Two main questions are asked in the context of predicting emergent leadership in
small groups based on automatic sensing. The first question deals with the existence
of a correlation between how the emergent leader is perceived and her/his nonverbal
behavior. The second question is whether one can predict emergent leadership using
automatically extracted acoustic nonverbal features.

To study emergence of leadership, an audio-visual corpus is collected: The Emer-
gent LEAder data corpus (ELEA) includes audio-visual recordings of groups per-
forming a ‘winter survival task’ [29], and also questionnaires filled by each group
member before and after the interaction. The winter survival task focuses on rank-
ing a list of items in order to survive an airplane crash in winter [29]. The groups
are composed of previously unacquainted people. The questionnaires ask partici-
pants about themselves and also about the other group members, to evaluate their
leadership skills and personality. Several variables are computed from the question-
naires, indicating the perceived leadership, perceived dominance, dominance rank,
and perceived competence.

11.4.2.2 Features and Model

The audio recordings of ELEA corpus are collected with a microphone array, which
creates automatic speaker segmentations along with the audio recording. This results
in a binary segmentation for each participant, indicating the binary speaking status.
From this binary segmentation, speaking turn audio features are extracted as audio
nonverbal features. The features include the speaking length (TSL), turns (TST and
TSTf), average turn duration (TSTD) and interruptions (TSI and TSIf). For turns and
interruptions, the filtered versions (TSTf, TSIf) consider only the turns longer than
two seconds. Two different definitions of interruptions are used (TSI1 and TSI2)
(see Sect. 11.3.2.1 and Fig. 11.2) for both the filtered and non-filtered versions. The
rule-based estimator, presented in Sect. 11.3.3.1, is used for automatic identification
of the emergent leader. The variables from questionnaires were used as a ground
truth for evaluation purposes.

11.4.2.3 Experiments and Results

Correlation Between the Questionnaires and the Nonverbal Features Ta-
ble 11.4 shows Pearson correlation values between questionnaire outputs and non-
verbal features. There is a correlation between several nonverbal features and per-
ceived leadership, suggesting that emergent leadership perception has a connection
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Table 11.4 Correlation values between variables from questionnaires and nonverbal acoustic fea-
tures

Perc. leadership Perc. dominance Ranked dominance Perc. competence

TSL 0.51 0.46 0.49 0.28

TSTD 0.44 0.39 0.40 0.19

TSTf 0.60 0.60 0.53 0.27

TSIf 0.62 0.60 0.54 0.26

Table 11.5 Accuracy (%) of individual features on predicting emergent leadership

TSL TSTD TST TSTf TSI1 TSIf1 TSI2 TSIf2

Plead 60 70 35 65 50 65 55 70

to the person who talks the most, has more turns, and interrupts the most. Fur-
thermore, several nonverbal features also have correlation with perceived or ranked
dominance. The correlations with perceived competence is relatively low.

Automatic Inference Table 11.5 shows the accuracy using single features, where
the best accuracy for perceived leadership is achieved using TSIf2 and TSTD with
70%, followed by TSTf and TSIf1 with 65%. The accuracy is calculated as in the
previous case study: it is assumed that the estimation is correct with weight one, if
it matches the agreement. If there is a tie, and one of the tied results is correct, a
weight is assigned, which is the reciprocal of the number of ties.

Score level fusion (see Sect. 11.3.3.1) is applied to combine different acoustic
nonverbal features. For the estimation of perceived leadership, a 10% increase in
the accuracy is observed, achieving an accuracy of 80%, via the combination of
TSTD and TSI features.

This study, summarized from [44], is a first attempt to automatically identify the
emergent leader in small groups. Although the collected corpus is currently quite
limited, several observations can be made. First there are correlations between the
perceived leadership and automatically extracted acoustic nonverbal features. The
emergent leader was perceived by his/her peers as a dominant person, who talks the
most, and has more turns and interruptions. An accuracy up to 80% is obtained to
identify the emergent leader using a combination of nonverbal features.

11.4.3 Recognizing Functional Roles

The third case study attempts to recognize functional roles in meetings using the
influence model. More details can be found in [15, 40, 50].
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11.4.3.1 Task Definition and Data

Given a small group meeting, the task in this study is to identify the role of each
participant. The roles are defined based on the Functional Role Coding Scheme
(FRCS), in two complementary areas. The task area includes the roles related to
the tasks and the expertise of the meeting participants. These include ‘orienter’,
‘giver’, ‘seeker’, and ‘follower’ roles. The socio-emotional area roles, i.e. ‘attacker’,
‘protagonist’, ‘supporter’, and ‘neutral’, are related to the relationships of the group
members.

The Mission Survival Corpus is used as the meeting corpus [40], which includes
eight four-people meetings, recorded with microphones and cameras. The annota-
tions for the roles are done by one annotator, by considering the participant’s behav-
ior every five seconds. As a result, instead of assigning one role for each participant
for the entire meeting, a thin slice based approach is used. This coding scheme as-
sumes that the participants can have different roles throughout the meeting.

11.4.3.2 Features and Model

As features, the authors use automatically extracted speech and visual activity fea-
tures. The speech recorded from close-talk microphones is automatically segmented
for each participant and speaking/non-speaking status is used as speech activity fea-
tures. The number of simultaneous speakers is also used as a feature. As visual
activity features, the amount of fidgeting (i.e. the amount of energy) for hands and
body is used [13].

The influence model is proposed as a suitable approach to model the group inter-
action (see Sect. 11.3.3.4), as it can model complex and highly structured interacting
processes. To model a meeting with the influence model, two processes per partici-
pant are used: one for the task roles, and another for the socio-emotional roles. The
latent states of the models are the role classes.

11.4.3.3 Experiments and Results

The performance of the influence model is compared with two other models: SVM
and HMM. For each of the models, the training is performed with half of the avail-
able meeting data, using two fold cross-validation. The feature vector for each par-
ticipant is composed of all extracted audio-visual features. For SVM, the feature
vectors of each participant is concatenated and a single feature vector is composed.

The role recognition accuracies for each model is presented in Table 11.6, as re-
ported in [15]. The SVM suffers from the curse of dimensionality and overfitting.
The influence model achieves the highest accuracy, as it handles the curse of dimen-
sionality by modeling each participant with different processes. Although the HMM
handles the curse of dimensionality using the same approach, as there is no interac-
tion between the processes, the recognition accuracy is lower. Another advantage of
using the influence model is its flexibility: it is adaptable to different-sized groups.
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Table 11.6 Role recognition
accuracies (% ) of the
Influence model, HMM, and
SVM

Task roles Social roles Overall

Influence model 75 75 75

HMM 60 70 65

SVM – – 70

11.4.4 Discovering Leadership Styles in Group Conversations

As the last example, we present a study that differs from the previously presented
ones, in the sense that it aims to model the group as a whole, instead of modeling
individuals. More details of this study can be found in [25].

11.4.4.1 Task Definition and Data

The addressed problem in this study is to automatically discover group conversa-
tional patterns from nonverbal features, extracted from brief observations of inter-
action. Specifically, following the definition in [35], the group conversations can be
grouped in three categories: autocratic groups, in which the decisions are determined
by the leader; participative groups, in which the leader encourages group discussion
and decision making; and free-rein groups, in which the group has complete free-
dom to decide without leader participation. The study uses a subset of the AMI
corpus [11], corresponding to 17 hours of meetings. Part of this subset is annotated
by human annotators and used for assessment of the group conversation type.

11.4.4.2 Features and Model

In this study, a novel descriptor of interaction slices—a bag of group nonverbal
patterns is described, which captures the behavior of the group as a whole, and its
leader’s position in the group. The discovery of group interaction patterns is done in
an unsupervised way, using principled probabilistic topic modeling.

Analogous to how topics are inferred from a text collection, by representing
documents in a corpus as histograms of words, group dynamics can be charac-
terized via bag-of group nonverbal patterns (bag-of-NVPs). The bag-of-NVPs are
produced from low-level speaking turn audio nonverbal features, calculated from
thin slices of small group meetings. The low-level features include individual and
group speaking features such as speaking length, turns, interruptions, backchannels,
overlapped/non-overlapped speech, and silence. These low-level features are quan-
tized to generate the bag-of-NVPs. There are two types of bag-of-NVPs: generic
group patterns and leadership patterns. Generic group patterns describe the group
as a whole without using the identity information. The leadership patterns describe
the leader in the group. A diagram showing the features is given in Fig. 11.8(a).
Once the bag-of-NVPs are produced, the mining of group patterns is done using
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Fig. 11.8 (a) Extracted features to characterize individual and group behavior. (b) Leadership
styles by Lewin et al. [35]

latent Dirichlet allocation topic model (see Sect. 11.3.3.2), to discover topics by
considering the co-occurrence of word patterns.

11.4.4.3 Experiments and Results

The experiments are performed on a subset of meetings selected from the AMI cor-
pus [11]. Effect of different time scales and different combinations of bag features
are analyzed. The evaluation is done via comparison with human annotations.

On different time scales, the authors observed that the group interactions look
more like a monologue at finer time scales (e.g., 1 minute) and like a discussion
at coarser time scales (e.g., 5 minute). Also, successful interruptions are not very
common at fine time scales.

The LDA based discovery approach is applied to discover three topics. The re-
sults on 5-minute scale show that the three discovered topics resemble three classic
leadership styles of Lewin et al. [35], as illustrated in Fig. 11.8(b). In comparison
to the human annotators, the accuracy of the model for autocratic, participative and
free-rein classes are 62.5%, 100%, and 75%, respectively. This suggests that the
discovered topics are indeed meaningful. The LDA experiments are repeated for a
2-minute scale as well. The distribution of the topics found with the 2-minute scale
is more balanced than the topics at 5-minute scale, indicating that at longer time
intervals, the interaction styles are captured more strongly.

11.5 Summary

This chapter focuses on the computational analysis of social verticality. Social ver-
ticality refers to the vertical dimension of social interactions, in which the partici-
pants of the group position themselves in a hierarchical-like structure. We presented
a brief summary of main nonverbal features that humans display and perceive dur-
ing social interactions that represent social verticality constructs such as dominance,
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power, status, and leadership. As the main sources of these nonverbal features are
audio and video, we described processing and feature extraction techniques for these
modalities. Different inference approaches, such as rule-based, unsupervised, su-
pervised, and temporal are also discussed with examples from the literature. We
also present a non-exhaustive survey on the computational approaches for modeling
social verticality. In the last section of this chapter we presented four case stud-
ies on dominance estimation, identifying emergent leadership, role recognition, and
discovering leadership styles in group conversations as examples to the techniques
discussed in the chapter.

The future dimensions of this field lie in all the functional blocks that are pre-
sented in the chapter, with the inference block being the core challenge. Develop-
ments on new sensor technologies will result in better capture of social behavior of
humans. On top of this, the current research on tracking human movements should
be further extended to cover human behavior in natural settings. Features that bet-
ter represent nonverbal social behavior should be investigated in close contact with
social psychology research. The inference models lie at the core of social behavior
analysis. Flexible models that can handle dynamic groups with varying numbers of
participants are needed, applicable to different settings to estimate and model social
constructs that relate to individuals, as well as to their group behavior.

11.6 Questions

1. What is the difference between verbal and nonverbal communication?
2. What are the differences between power, status, and dominance?
3. What kind of audio nonverbal features can be extracted for social verticality anal-

ysis?
4. What kind of visual nonverbal features can be extracted for social verticality

analysis?
5. What are the techniques that can be used to fuse different modalities for social

verticality analysis?
6. What is thin slice based modeling?
7. Discuss what kind of models can be used in a meeting scenario or how the stan-

dard models can be modified when the number of participants in a group vary,
i.e. the dataset contains meetings with different number of participants.

8. Explain the differences between the influence model and coupled HMM.

11.7 Glossary

• Emergent leadership: The leader who arises from an interacting group and has a
base of power arising from followers rather than from a higher authority.

• Influence model: A representation to model the dynamics between interacting
processes.
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• Thin slice: The smallest segment from which, when exposed, humans can cor-
rectly predict behavioral outcomes with high accuracy by interpreting nonverbal
cues.

• Topic models: A statistical model for discovering the hidden topics that occur in
a collection of documents.

• Visual dominance ratio: Looking-while-speaking to looking-while-listening ra-
tio.
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Chapter 12
Activity Monitoring Systems in Health Care

Ben Kröse, Tim van Oosterhout, and Tim van Kasteren

12.1 Introduction

The current quality of medicine and living conditions, combined with the decreasing
number of births makes the average age of the world population increase at a rapid
pace. Asia and Europe are the two regions where a significant number of countries
face severe population aging in the near future. As a consequence of this, the cost of
health care is expected to grow enormously in the coming years. To keep these costs
limited, we need better possibilities for self management and independent aging.
One of these solutions is to use technologies that assist people to be independent.
The assistive technology can offer physical help, cognitive help or social help.

Assistive health systems need accurate assessments of the health and wellbeing
of a patient. For this, sensing systems are needed that monitor the patient. A first
class of monitoring systems monitor vital signs directly using special sensors (for
example heart rate sensors or blood sugar sensors). A second class of systems mon-
itor the health state indirectly, by measuring the activities performed by the patient,
using sensors either mounted on the patient or mounted in the environment. In this
chapter we focus on the second class, monitoring the activity behavior of the patient.
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Fig. 12.1 In activity
behavior often a distinction
between actions and activities
is made. Also, in healthcare
monitoring, simple actions, as
well as complicated activities
are worth monitoring

Human activities may have complex forms. In this chapter we make a distinction
between ‘action’ and ‘activity’, as is used in surveys on behavior analysis from
video [80]. An action is a simple human motion pattern usually in the order of
a couple of seconds. An activity is a more complex motion pattern, typically of
longer duration. For example, picking up a glass is considered an action, but having
lunch is an activity. In behavior monitoring systems for health care, both actions and
activities are indicative of the health of the patients. Figure 12.1 gives an overview
of the different types of activities relevant for health care and their complexity.

Action monitoring is usually related to the safety of the patient and often causes
an intervention in the form of an alarm. Currently, many systems are designed that
focus on fall detection, either in hospital environments [13] or home environments.
Also unattended wandering is a serious problem, particularly for cognitively im-
paired older adults. Elopement from locked dementia units is a major safety con-
cern in long-term care facilities. An automatic system for detecting such wandering
actions in a home setting is a valuable tool to assist informal caregivers.

More elaborate actions and activities are monitored in systems for automatic re-
habilitation or therapy. With the introduction of minimally invasive surgery (MIS),
the recovery time of patients has been shortened significantly. This has led to a
shift of post-operative care from hospital to home environment, where the latter can
be enhanced with monitoring systems. In games and computer driven physical ex-
ercises, more complicated gestures and activities need to be measured. Similarly,
cognitive training requires monitoring of more complex activities. An example is
The Kitchen Task Assessment (KTA), which is a functional measure that records
the level of cognitive support required by a person with Senile Dementia of the
Alzheimer’s Type (SDAT) to complete a cooking task successfully.

A large group of monitoring systems focus on recognizing activities of daily liv-
ing (ADL); a more complex set of activities performed on a daily basis, such as
sleeping, toileting and cooking. The list of ADL was set up by Katz [48], and reg-
istering how well ADL are performed over time is a commonly used method in
healthcare for monitoring the wellbeing of a person, in particular of elderly. Health-
care professionals measure ADL manually by visiting the home of an elderly per-
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son and observing them in performing activities. Measuring of ADL is proposed
by Garrod et al. [30] for the assessments of chronic obstructive pulmonary disease
(COPD). ADL were also studied by Kurz et al. [52] to make a categorization of de-
mentia patients. Irregular sleep patterns, changes in the frequency of toilet use and
an increase in the duration of time it takes to complete an ADL are all important
indicators of physical and cognitive health disorders [35, 76]. When applied on a
large scale, it is expected that the wealth of information will be extremely useful to
evidence based nursing, a form of nursing relying on scientific data. It is expected
that such an approach makes it possible to treat certain diseases proactively, before
any real damage is done [23].

Virone et al. [88] measure activities of a longer duration than ADL. In their study
they monitor residents’ cyclic physical activity inside a home environment using
wireless passive sensors. The so-called “circadian activity rhythms” (or CARs) de-
scribe the measurement of this in-home rhythmic behavioral activity that the resi-
dent engages in the habitat. CARs are influenced by social rhythms, but also interact
with the biological rhythm of the person. Deviations indicating anomalies were de-
tected, and seemed to be correlated with observations by professional caregivers
about the monitored residents.

This chapter focuses on systems for the automatic monitoring, classification and
detection of the activities relevant for healthcare. In Sect. 12.2 we describe the
sensors that are currently used, both in commercial systems and in research. In
Sect. 12.3 we focus on the recognition of simple actions, for applications like alarm
and therapy. In Sect. 12.4 we describe the recognition of more complex activities.
Finally we give some insights in the acceptance and privacy issues of such systems.

12.2 Sensing Systems

The current state of sensor, processing and communication technologies, combined
with relatively low priced hardware make it possible to equip a living environment
with systems of communicating sensor devices. In Fig. 12.2 a setup is sketched of a
home equipped with many types of sensing and communication devices, connected
to the outside world with a broadband Internet connection.

The nature of the sensors is an important aspect for the acceptance and for the
performance of an activity recognition system. Because sensing takes place inside
someone’s private house, it is important to evaluate how intrusive the user experi-
ences the sensors. For example, a camera is considered as an intrusive device by
many users. Also, some sensors need to be worn on the body, which might be con-
sidered inconvenient by the user. Therefore often monitoring systems are proposed
that consist of networks of simple (less-intrusive) sensors mounted in the home. In
the following we present some of the sensing systems used in health care activity
monitoring. Figure 12.3 gives an overview of the different types of sensing systems.
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Fig. 12.2 Many sensors can be used for health monitoring and communication

Fig. 12.3 Overview of the types of sensors for activity monitoring

12.2.1 Body Worn Sensors

Sensors that are worn by the user can be used for activity recognition very well.
Commonly used sensors are radio frequency identification (RFID) tags, but also
accelerometers, tilt meters, gyroscopes, microphones and cameras are used.

RFID is a technology for reading information from a distance, from the so-called
RFID-tags. Passive tags extract energy from the radio frequency signal emitted by an
RFID reader and use that energy to send a stream of information back. The amount
and contents of information can vary, but usually it contains at least a unique iden-
tification string. Active tags are equipped with a battery used as a source of power
for the tag’s circuitry and antenna, which makes it possible to read the tags from a
much larger distance than passive tags [22]. Traditionally, RFID tags in healthcare
are mainly found in hospitals and nursing homes for tracking equipment and pa-
tients [70]. For these systems, the patients have to wear a bracelet with the RFID tag
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Fig. 12.4 Three commercial wearable devices. From left to right: Fall detector (detecting rela-
tive angle), elopement detector (based on radio frequency), elopement detector (based on infrared
sensing)

and can be identified when they are in the vicinity of a reader. When an RFID tag
is given sensing capabilities, the line between RFID and sensor networks becomes
blurred. Many active and semi-active tags have incorporated sensors into their de-
sign, allowing them to take sensor readings and transmit them to a reader at a later
time. They are not quite sensor network nodes, because they lack the capacity to
communicate with one another through a cooperatively formed ad hoc network,
but they are beyond simple RFID storage tags [39]. In this way, RFID is converg-
ing with sensor networking technology. Intel used RFID technology to develop a
sensing method used specifically for activity recognition. Their product, named the
iBracelet is a RFID reader in the form of a bracelet which the user wears on a sin-
gle hand or on both hands. By tagging a large number of objects in the house with
passive RFID tags, the iBracelet is able to observe which objects the users are hold-
ing in their hands. Objects are very indicative of the action a user is performing,
therefore making activity recognition possible [27].

For activity recognition, accelerometers that are worn by the human are used
frequently. Sometimes they are combined with RFID readers, to measure both the
objects used and the person’s movement. This way, both sensors can compensate
for each other’s shortcomings, resulting in better activity recognition performance
[42, 75]. A combination with wearable cameras has also been reported [20]. Cur-
rently, mobile phones are used for processing the sensor data [34].

Wearable accelerometers are also used for fall detection [18]. Most of the com-
mercial wearable fall detectors use accelerometers or inclinometers. Some examples
are shown in Fig. 12.4.

12.2.2 Wireless Sensor Networks

Although body worn sensors are powerful devices for activity measurement, the
disadvantage is that the user has to carry them around, or wear the clothes they are
inserted in, all the time. There are quite a number of situations where this is not the
case, for example people with dementia forgetting them, or users that for example
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do not carry the device when they go to the toilet at night. Environment mounted
sensors come in two flavors: (wireless) networks of simple sensors or cameras.

A wireless sensor network consists of a collection of small network nodes. Each
node is capable of performing some processing, gathering sensor measurements and
communicating wirelessly with other nodes in the network [73]. Nodes are designed
to be as small as possible and therefore usually have a working memory of only
several kilobytes. Specifically engineered operating systems have been developed
for dealing with such conditions, such as TinyOS [38]. Although the term ‘wireless
sensor network’ is broadly applicable, here we use the term to describe a network
of simple sensors that give binary output and which are installed in fixed locations.

The nodes generally run on batteries and therefore a lot of research is devoted to
energy efficiency. The communication between these nodes typically requires little
bandwidth and is relatively insensitive to latency, so that energy efficient commu-
nication protocols are possible [82]. It is also possible to save power by shutting
down parts of the node when these are not in use [71]. The use of ad hoc routing
protocols allows the nodes to dynamically form a temporary network without any
pre-existing network infrastructure or centralized administration [16]. Such routing
protocols also allow further power saving schemes, by shutting down nodes strate-
gically and avoiding them in the network route [100].

A large variety of simple sensors can be incorporated in the network nodes. Since
these nodes are installed in fixed locations they are typically used in a house setting
or in offices. Sensors used include: contact switches for open-close states of doors
and cupboards; pressure mats to measure sitting on a couch or lying in bed; mercury
contacts for the movement of objects such as drawers; passive infrared sensors to
detect motion in a specific area; float sensors to measure the toilet being flushed;
temperature sensors to measure when the stove is used; humidity sensors to measure
when the shower is used [84, 97] and accelerometers to detect when a large object
is used [58, 77]. Basically any kind of sensor can be combined with a network node
and its output is often converted to a binary format. For example, in work by Fogarty
et al. microphones were attached to water pipes in the basement to record whether
water was flowing. Such an approach allows easy installation by avoiding the need
for plumbing [28].

Wireless sensor networks can be used to determine whether an object is used.
However, in contrast to RFID tags, it is difficult to equip small objects, such as a
tooth brush or a dinner plate, with a sensing node. This limits the observation abili-
ties of these networks and results in more ambiguous sensor readings. For example,
in a house setting, the network can be used to observe that a cupboard is opened, but
not to observe which item is taken from the cupboard.

Nonetheless, the use of wireless sensor networks in a home setting offers many
advantages compared to other sensing modalities. First, the majority of the sensors
can be installed out of sight of users, therefore limiting the intrusiveness of the
sensors. Second, the data recorded are anonymous and contain very limited privacy-
sensitive information. Third, installation of the sensors can be done quickly without
any need for the installation of power and network cables.
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12.2.3 Visual Sensors

Video cameras in health care are currently mainly applied for remote visual moni-
toring or communication with a physician or care giver. Cameras provide rich data
that are very informative of the activities. However, automatic activity recognition
from video data is hard. There are many surveys available discussing action and
activity recognition from image data [1, 31, 62, 80]. Depending on the application,
cameras may need to give the full pose information, only the location of the pa-
tient, or just a general motion picture. For coverage of the entire living space, mul-
tiple cameras and fish eye lens cameras are needed. In work by Duong et al. [26]
multiple cameras installed in the corners of the room observe a person performing
activities. The authors only use the position of the person as an indicator of its activ-
ities. A similar approach uses a camera with a top down viewpoint, making it easier
to divide the image into squared regions of interest and to detect the location of a
person.

Instead of using location, the object a person is using is also a good indicator of
the action a person performs. Typically a single camera is focused on a particular
area of interest where activities are performed, such as the sink in a bathroom or
the kitchen cooking area. In the work by Wu et al. [98] image data are processed
to detect which objects a person uses. The detected objects are used to recognize
activities such as making tea or taking medicine. Messing et al. [60] use various
salient visual features extracted from the image and calculate the velocity of these
features to track the movement and position of the hands. These data allow them to
distinguish between actions such as drinking from a cup and pealing a banana.

Some approaches for activity recognition are based on 2.5D or 3D data. This
can be derived from multiple cameras, stereo cameras or time-of-flight (TOF) cam-
eras [33]. The first can generate full 3D data providing a 360° view of the scene,
the accuracy and density of which depends on the number of cameras used and their
relative placement, while the latter two can only generate a range image (sometimes
called 2.5D). When TOF cameras are used, no color information is available. In all
three cases however, shape information is obtained which requires different process-
ing from the standard 2D color images, but enables some features to be more easily
detected. For example, foreground detection may be made more robust if apart from
the color information also range information is used [33]. Additional methods can
be applied to identify the foreground object as a human being, for instance by skin-
tone recognition [53], head detection [69, 101] or pose estimation [24]. In Fig. 12.5
an example is shown from a fall, detected with a stereo system in our lab. Since
stereo and TOF cameras only have one viewpoint, occlusions are as problematic in
these methods as they are in 2D methods [33, 37]. These difficulties can be over-
come by using any of the well known remedies from the 2D domain. Voxel methods
based on multiple cameras are less sensitive to occlusions, especially as the number
of cameras increases and if the cameras are positioned correctly, as one or more of
the other views can make up for the occlusion in another viewpoint [9].
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Fig. 12.5 Results from fall detection in our lab, using a stereo camera

12.3 Monitoring of Simple Actions

In this section we describe work on the monitoring of simple actions. These are
motion patterns that typically last a couple of seconds and can be of repetitive nature.
In health care applications the recognition of such simple motion patterns is often
associated with alarm situations. One of the most relevant examples is fall detection:
falls and their consequences are amongst the most common health problems for
people of advanced age [67]. Another example that is highly relevant is wandering
behavior, in particular elopement of older adults with dementia. An alarm has to be
given if people move into regions where they are not allowed. Another category of
systems that monitor simple actions is that of therapy and rehabilitation. In this field
there is an increasing interest to combine action recognition with game elements for
therapy.

12.3.1 Fall Detection

Much research on fall detection has been carried out on systems using wearable
accelerometers [18, 47]. The classification of the (noisy) data is essential in order
to prevent false alarms. Karantonis et al. [47] use a rule based system in which
the average signal magnitude is thresholded to classify a fall. A similar method
was used by Bourke et al. [15], which employed wearable gyroscopes instead of
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accelerometers. Commercial fall detection systems are mostly based on these prin-
ciples.

The problem with wearable systems is that users forget to put them on, or place
them incorrectly on the body, which causes false alarms. Therefore, environment
sensors are a popular topic of research. Some systems use audio obtained by micro-
phones as input, but most of the research is carried out using cameras. A number
of methods are based on the assumption that a fall results in inactivity, while others
determine the dynamics of the observed person to classify a fall.

With the inactivity measure, not the fall itself, but the result of the fall is be-
ing looked at. Inactivity in itself is relatively easy to determine. The problem then
does not lie in determining inactivity, but in determining ‘irregular’ inactivity. Ap-
proaches have been presented to learn the difference between ‘regular’ (reading a
book for example) or ‘irregular’ (the result of a fall) inactivity [66, 94], or these can
be manually inserted into the system in form of rules [78]. This way, the system can
distinguish areas where inactivity is normal, like lying on a sofa or bed, and where it
is not normal, like lying on the floor. Yet these methods are sensitive to light fluctu-
ations. Recently, work is being done for fall detection on the 3D modeling of people
in a room [7], the use of dynamics [29, 72] and fusion of visual input with audio
data [78].

Without estimating the pose, an observed person can be judged to be standing up-
right or lying down by considering the distance of their centroid to the ground plane.
A fall can be concluded if the centroid goes below a certain threshold [17, 33, 46].
More advanced methods use the vertical volume distribution [8], or the principal
component of the point or voxel distribution and determine its angle with the ground
plane [37]. The principal component can be combined with centroid height to create
absolute and in-between states [7]. Instead of analysing the full pose, the focus can
be directed at certain body parts. For instance the velocity and direction of the head
movement can indicate a fall [69, 101]. Furthermore, instead of the principal axis of
the entire silhouette, the estimation of pose enables the judgment of the more salient
angle of the torso [45].

The certainty of classifying a potential fall can be increased by looking for a
period of inactivity following the event [7, 33, 45]. To prevent false alarms for loca-
tions where inactivity is normal, such as a couch or a bed, such a method should be
equipped with a notion of where these inactivity regions are and refrain from detect-
ing falls there [66]. Location-based activity histograms can provide further context
to evaluate whether or not a certain duration of inactivity in a particular location
is normal [45]. Table 12.1 gives an overview on the different methods and sensing
systems used for fall detection.

Systems for fall detection are essential in ambient assisted living facilities, and
such systems are most desired by elderly who live on their own. However, pre-
vention of a fall is even a larger challenge. Therefore it is important to assess the
stability of the user, and coach him or her to keep the stability intact. In Sect. 12.3.3
we will briefly discuss technologies for this.
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Table 12.1 Comparison of fall detection methods

Reference Sensors Recognition method

Zhang et al. [99] Single far-field microphone SVM based on GMM supervectors

Karantonis et al. [47] Triaxial accelerometer Thresholding on energy

Bourke et al. [15] Bi-axial gyroscope sensor Threshold on acceleration

Alemdar et al. [3] Accelerometers and camera Thresholding of features

Nait-Charif et al. [66] Overhead wide angle camera Spatial context and tracking

Jansen et al. [46] TOF camera Centroid trajectory

Diraco et al. [24] TOF camera Pose classification

Yu et al. [101] Stereo cameras Head motion

Hazelhoff et al. [37] Stereo cameras Principal component orientation

Auvinet et al. [8] Multiple cameras Vertical volume distribution ratio

Anderson et al. [7] Multiple cameras Fuzzy logic on centroid and axis

Sixsmith and Johnson [72] Infrared heat camera Downward motion

Fu et al. [29] Temporal contrast camera Motion event rate and height

12.3.2 Wandering and Elopement

Wandering is a commonly observed behavior among older adults with Alzheimer’s
disease (AD) and other types of dementia. When wandering around becomes wan-
dering away, older adults with dementia are at a high risk of injury. Commercial sys-
tems for indoor are available based on radio frequency (RF) or infrared based wear-
able devices. For outdoor, GPS based systems are available. However, the problem
is that people with dementia often forget to take these devices with them. Ambient
sensors and cameras have been proposed to track people and warn the caregivers
if they move into non-allowed areas. For example, ultrasonic sensors and pressure
mats have been used by Biswas et al. [13]. Tracking on the basis of a distributed
camera system is described by Chen et al. [19]. Tagless tracking may be a problem
if many users are in the building, and tagging may be better solution.

12.3.3 Prevention and Therapy

The human motion pattern can also be used as a diagnostic tool. For example, gait
characteristics are reported to be correlated with the physical condition of elderly,
and a change in the gait profile over time may also indicate that a person is more at
risk of falling. In [91] the gait is quantified by measuring step time and step length
using a voxel representation derived from two cameras.

The ‘sit to stand’ behavior (measuring how people get out of a chair) is used
by Allin et al. [5] as an indication of balance. The user is observed with a number
of cameras and 3D features are derived from silhouettes. The same behavior was
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Table 12.2 Different approaches for pose and gait monitoring

Reference Sensors Recognition method

Wang et al. [91] Cameras Voxel reconstruction and step
time estimation

Allin et al. [5] Cameras Blob detection and 3D features

Ali et al. [4] Accelerometer Spectral clustering in subspace
of motion features

Wilson et al. [96] Accelerometer and gyro Visualization of 3D arm pose

Hamel et al. [36] Oximeter, accelerometers, instrumented
soles, respiratory belt

Visualization of body angles,
weight-bearing, respiration

studied by Kerr et al. [51], which used accelerometers mounted on the trunk and the
knee. A more general study on transition of activities was studied by Ali et al. [4].
The authors use the ‘e-AR’ (Ear worm activity recognition) sensor that generates a
feature vector derived from accelerometer data, and study the transitions between
the classes that are found with a Bayesian classifier. The transitions are found by
projection of the sensor data on a low-dimensional manifold using the Isomap algo-
rithm and applying a graph clustering method.

Another important area for activity monitoring is post-operational care and re-
habilitation. A body sensor network in the form of an ear-mounted device has been
applied by Aziz et al. [10] to monitor the activities of patients recovering from ab-
dominal surgery. Features derived from accelerometers and heart rate were used for
this. Body area networks were also used in stroke rehabilitation systems [96] and for
tele-rehabilitation for geriatric patients [36]. In Table 12.2 an overview on different
methods is given.

12.4 Recognition of More Complex Activities

Activities consist of a complex combination of actions and systems that recognize
activities from sensor data are now an active topic of research. Some systems are
dedicated to recognizing a limited number of activities such as toileting and sleeping
behavior [43]. But the majority of work focuses on the recognition of a large variety
of ADL such as preparing breakfast, washing dishes and other kitchen activities [25,
59, 84] or ironing, vacuuming and other housekeeping activities [75].

The recognition methods may be divided into two major streams: logically based
theories [14, 50] and probabilistic methods [26, 83, 95]. Also the sensing modalities
vary. For the analysis of a task in the kitchen, sometimes cameras are used [61] or
tags on objects combined with cupboard sensors and pressure mats are employed
[14, 41].

In our group we performed activity recognition in three different houses [87].
We mounted wireless sensor networks with simple sensors like reed switches to
measure open/close states of doors and cupboards; pressure mats to measure sitting
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Fig. 12.6 A typical pattern of the sensors from one of our test sites

on a couch or lying in bed; mercury contacts for movement of objects (e.g., draw-
ers); passive infrared (PIR) sensors to detect motion in a specific area; float sensors
to measure the toilet being flushed; temperature sensors to measure the use of the
stove or shower. This gives a sequence of binary sensor data x = {x1, x2, . . . , xT } as
depicted in Fig. 12.6. In our activity recognition problem, we wish to infer the corre-
sponding sequence of class labels y = {y1, y2, . . . , yT }, where a class label indicates
the activity (sleeping, toileting, etc.).

In a series of experiments we compared generative models (HMM) with a dis-
criminative model (CRF). Generative models, like hidden Markov models and dy-
namic Bayesian networks, deal with this problem by explicitly modeling the rela-
tions between the observations and the class labels. More specifically, in generative
models we express the dependencies among variables (x and y). For example, the
Markov assumption states that the current state yt depends only on the previous
state yt−1. As a result we can express our belief in yt based only on yt−1 and ignore
all the other variables (i.e. xt , yt−2, etc.) These dependencies, or rather the indepen-
dence assumptions with respect to the other variables, therefore, greatly reduce the
number of parameters that specify the model [11]. However, a violation of depen-
dencies, in the case there do exist dependencies in the actual data that we do not
model, can strongly affect the performance of the model [81].

Discriminative models, on the other hand, are more robust in dealing with vio-
lations of dependency assumptions. The idea is that since observations are always
given during an inference, there is no need to model them explicitly. Instead, dis-
criminative approaches directly model the discriminative boundary between the dif-
ferent class labels [11]. The advantage of these approaches is that we can incorpo-
rate all sorts of rich overlapping features and the model will find a set of parameters
for discriminating the classes even if any there exist violations of independence as-
sumptions.

Conditional random fields (CRF) are temporal discriminative probabilistic mod-
els that have this property. They were first applied in text recognition problems
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where features such as capitalization of a word and the presence of particular suf-
fixes significantly improved performance. Since then they have been applied to a
variety of domains such as gesture recognition [63] and the activity recognition of
robots in a game setting [81]. They have also been applied to human activity recog-
nition from video, in which primitive actions such as ‘go from fridge to stove’ are
recognized in a lab-like kitchen setup [79]. In an outdoor setting, CRFs have been
applied to activity recognition from GPS data, where activities such as ‘going to
work’ and ‘visiting a friend’ were distinguished [54].

In our experiment, the performance measure was computed on the basis of the
classification of ten different activities. Our experiments show three things. First,
that CRFs are more sensitive to overfitting on a dominant class than HMMs. Second,
that the use of raw sensor data gives bad results and that a preprocessing is needed;
in our case using the change points in the sensor values give the best results. And
third, that differences in the layout of houses and the way a dataset was annotated
can greatly affect the performance in activity recognition. Recently we have focused
on semi-hidden Markov models [86] and ‘transfer-learning’ [85].

Several commercial systems exist that focus on long-term monitoring using
ADL. Such systems generally use motion sensors to track inhabitants inside their
own homes [55]. The use of motion sensors does not allow for much diversity in
observing an inhabitant, and therefore, the location of the sensor that is triggered
is generally an important indicator of the activity that is performed. Other commer-
cial health monitoring systems rely on the recording of physiological measurements
such as heart rhythm and blood pressure. Examples are Intel’s Health Guide [93]
or Bosch’s Health Buddy [92]. These systems prompt users to take measurements
and provide a user friendly interface for doing so. The measurements can be made
available to physicians for analysis and can be important indicators when something
is wrong. Including automatically recognized ADL can play an important role for
such systems, since the ADL information will provide additional contextual clues
that a physician can use for interpreting the physiological data.

12.5 Visualization, Coaching and Communication

The previous chapters described systems for the observation and monitoring of hu-
man activities. What can we do with this information? Visualization of activity re-
lated information can further help caregivers in analyzing the behavior of individ-
uals. In the work by Wang and Skubic, data obtained from motion sensors were
visualized using a density map [90]. The density map shows the amount of mo-
tion registered by the sensors over time using a color coding. By presenting the
sensor data of several days in a single density map, certain lifestyle trends become
clearly visible. The authors discuss several case studies which show how the den-
sity maps can be used to highlight changes in the behavior of an individual over
time. Aipperspach et al. showcased the potential of a more detailed visualization
representation by studying the use of portable electronic devices in the home [2].
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They used radio based location tracking technology to track the location of inhabi-
tants and their laptops. The sensor data were visualized using a map of the house in
which frequently visited areas were highlighted using colored regions. This allowed
them to study where and when users typically use their laptops in the home.

Information about activity behavior can also be used for coaching of the users.
One type of coaching is cognitive coaching. Activity recognition systems are used
to assist people suffering from dementia, who tend to forget certain steps while
performing an activity. For example, when making coffee they might install a coffee
filter, but forget to add coffee powder. An activity recognition system can assist
these people by recognizing the activity they are performing and reminding them
which action to perform to complete the activity. Audio cues can be used to guide
the person in performing any missing steps [40, 61] or a display can be used to show
images of the actions that need to be performed [57, 64].

Also physical coaching can make use of the information. Persuasive technology
motivates people to change their behavior, such as leading a healthier life style.
One way is to provide users with well-timed information when they have to make
decisions concerning their health. For example, to reduce the chances of obesity, a
system can provide diet suggestions when it detects the user is preparing dinner. The
appropriate timing of such a message is crucial to the success of such a system [44].
Another approach is to use a reward when the user is living a healthy life style. For
example, in a study by Consolvo et al. [21], users were given an exercise program
and a mobile phone showing the image of a virtual garden. If they spent enough
time performing exercises from the exercise program, they received a visual reward
in the form of flowers appearing in the virtual garden. The amount of time spent on
exercises by users of the persuasive system was compared to participants that did
not use the system. Participants using the system were shown to spend significantly
more time on exercises than participants that did not use the system.

Features of activities can also be communicated to informal care givers. Work
by Mynatt et al. used a digital photo frame to communicate activity data to family
members [65]. Their setup involves two houses. One house is equipped with sensors,
from which activity information is automatically recognized, and the other house is
supplied with a photo frame. The photo frame consists of a picture of the individual
whose activities are recorded, and uses several icons to display information about
the activities. Field trials found that participants used the photo frame as a form of
reassurance that everything is all right at the other person’s home. Participants also
reported that they used the photo frame to initiate phone conversations, because the
photo frame displayed something of interest such as an increase in activity. An-
other example of such a communication device is the ‘SnowGlobe’ [89], depicted
in Fig. 12.7.

12.6 Acceptance and Impact

Much of what has been published on barriers to the use of health technologies has
focused on the technology or infrastructure, relationships within the health delivery
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Fig. 12.7 Activity based communication: the SnowGlobe changes its appearance as a function of
the activities in the elders home

system, or costs and reimbursements [32, 74]. Little has been published about the
perceived needs or preferences, barriers and beliefs about health technology from
the senior’s perspective, especially minority seniors who have lower education, less
computer literacy and more disabilities compared to the general population. Bert-
era et al. [12] report a study on acceptance of possible health technology. Ambient
sensors and audio-visual communication with a doctor or a nurse, especially when
a medical emergency occurred, scored high in acceptance, whereas the use of cam-
eras raised concerns. Also the study carried out by Alwan et al. [6] showed that
monitoring systems are generally accepted. There was a positive change in the per-
ceived quality of life for some, but not all, of the participants after three months of
monitoring. Also using ambient sensors, Virone et al. [88] showed that there was
a correlation between the (deviations in the) behavior patterns of the users and the
notes of the professional caregivers.

Acceptance was also studied for wearable systems. In [49] a study is reported
that provides a nationally representative sample of consumer attitudes in United
States on the topic of RFID medical informatics. It appears that public opposition
to RFID technology is not widespread, and in fact there is enthusiasm for some
applications. Evidence also suggests that attachment of RFID devices to the body
is not viewed as objectionable by much of the public. Specifically, placement of
RFID-based medical informatics devices on the arm by tape vs. as part of one’s
mobile phone does not seem to affect acceptability judgments except in a small per-
centage of the sample. On the other hand, wearable systems have the disadvantage
that elderly do not wear them all the time or place them incorrectly on the body, as
mentioned before.

The use of cameras is still an issue of debate. Bertera et al. [12] report that elderly
do not accept cameras “. . . that allowed a nurse to check on them with a camera
when they were unwell”. In our own study on cameras for tele-health [68] we found
a more detailed view: if an alarm system detects a fall, the elders do not mind that a
camera is used. Also in a study by Londei et al. [56] it was shown that 96% of the
elderly in the study were favorable or partially favorable to intelligent video systems
for fall detection.
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Automatic behavior analysis has great potential in health care applications, but
the developed systems should take into account usability issues like acceptance and
privacy.

12.7 Summary

With the aging population and the foreseen shortage of care personnel, there is an in-
creasing interest in health technology. It has been shown that the health condition is
strongly related to personal and environmental factors such as participation, activity
and body functions. This chapter focuses on activity monitoring in a home setting
for health care purposes. First the most current sensing systems are described. We
make a distinction between wearable sensors like accelerometers or RFID tags, and
ambient, environment mounted sensors, like cameras, motion detectors or pressure
mats. An overview is given of the type of sensor and the application area.

In the second part of the chapter we focus on the activity behavior. We distin-
guish between simple actions, of limited time duration, and more complex activities,
which may take longer. Several approaches for the recognition of simple actions are
discussed, focusing on fall detection, wandering detection and therapies. After that,
the recognition of more complex activities is discussed. A number of applications
for the care givers are presented. The chapter concludes with a section on acceptance
and privacy.

12.8 Questions

1. Give some more examples of actions and activities that you may think are rele-
vant for health care.

2. What are the disadvantages of body worn sensors and what are the advantages?
3. Can we send a videostream from a surveillance camera over a Zigbee network?
4. How can multiple cameras looking at the same scene be calibrated?

12.9 Glossary

• ADL: Activities of daily living is a term used in health care to refer to daily self-
care activities. Two types of ADL are distinguished: Basic ADL, necessary for
fundamental functioning (bathing, clothing, etc.) and Instrumental ADL, such as
shopping, managing money. There are several evaluation tools, such as the Katz
ADL scale and the Lawton IADL scale.

• RFID: Radio frequency identification is a technology that uses communication
via radio waves to exchange data between a reader and an electronic tag attached
to an object, for the purpose of identification and tracking.
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• TOF camera: A Time of Flight camera is a camera system that creates distance
data with help of the time-of-flight (TOF) principle. Usually they work on a
pulsed laser and a custom imaging integrated circuit with a fast counter behind
every pixel, or by modulating the outgoing beam with an RF carrier, then mea-
suring the phase shift of that carrier on the receive side.
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Chapter 13
Behavioral, Cognitive and Virtual Biometrics

Roman V. Yampolskiy

13.1 Introduction to Behavioral Biometrics1

With the proliferation of computers in our everyday lives need for reliable com-
puter security steadily increases. Biometric technologies provide user friendly and
reliable control methodology for access to computer systems, networks and work-
places [1–3]. Biometric methods uniquely identify persons based on intrinsic physi-
cal or behavioral characteristics. Most research is aimed at studying well established
physical biometrics such as fingerprint [4] or iris scans [5]. Behavioral biometrics
systems are usually less established, and only those which are in large part based
on muscle control such as keystrokes, gait or signature are well analyzed [6–11].
We define behavioral biometrics as any quantifiable actions of a person. Such ac-
tions may not be unique to the person and may take a different amount of time to be
exhibited by different individuals. Biometric systems begin by enrolling individu-
als in the system, essentially introducing them to the security system and collecting
personal data necessary for future authentication.

Behavioral biometrics provide a number of advantages over traditional biometric
technologies. They can be collected non-obtrusively or even without the knowledge
of the user. Collection of behavioral data often does not require any special hardware
and is thus very cost effective. While most behavioral biometrics are not unique

1This chapter is based on numerous previous surveys and in particular expands on work in “Be-
havioral Biometrics: a Survey and Classification.” by R. Yampolskiy and V. Govindaraju, which
appeared in the International Journal of Biometrics, 1(1), 81–113 and Taxonomy of Behavioral
Biometrics by same authors, a chapter in Liang Wang and Xin Geng (Eds.), Behavioral Biometrics
for Human Identification: Intelligent Applications, pp. 1–43, 2009. Republished with permission
of copyright holders IGI global and Inderscience.
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enough to provide reliable human identification (recognition) they have been shown
to provide sufficiently high accuracy identity verification.

In accomplishing their everyday tasks, human beings employ different strategies,
use different styles and apply unique skills and knowledge. One of the defining
characteristics of a behavioral biometric is the incorporation of time dimension as
a part of the behavioral signature. The measured behavior has a beginning, dura-
tion, and an end [12]. Behavioral biometrics researchers attempt to quantify behav-
ioral traits exhibited by users and use resulting feature profiles to successfully verify
identity [13]. In this section we present an overview of most established behavioral
biometrics.

Behavioral biometrics can be classified into five categories based on the type
of information being collected about the user. The first category is made up of
authorship-based biometrics, which are based on examining a piece of text or a
drawing produced by a person. Verification is accomplished by observing style pe-
culiarities typical to the author of the work being examined, such as the used vocab-
ulary, punctuation or brush strokes.

The second category consists of Human-Computer Interaction (HCI)-based bio-
metrics [14]. In their everyday interaction with computers, humans employ differ-
ent strategies, use different styles and apply unique abilities and knowledge. Re-
searchers attempt to quantify such traits and use resulting feature profiles to suc-
cessfully verify identity. HCI-based biometrics can be further subdivided into addi-
tional categories, first one consisting of human interaction with input devices such
as keyboards, computer mice, and haptics, which is about registering inherent, dis-
tinctive and consistent muscle actions [15]. The second group consists of HCI-based
behavioral biometrics, which measure advanced human behavior such as strategy,
knowledge or skill exhibited by the user during interaction with different software.

The third group is closely related to the second one and is the set of the indi-
rect HCI-based biometrics which are the events that can be obtained by monitoring
user’s HCI behaviors indirectly via observable low-level actions of computer soft-
ware [16]. Those include system call traces [17], audit logs [18], program execution
traces [19], registry access [20], storage activity [21], call-stack data analysis [22]
and system calls [23, 24]. Such low-level events are produced unintentionally by the
user during interaction with different software items. The same HCI-based biomet-
rics are sometimes known to different researchers under different names. Intrusion
Detection Systems (IDS) based on system calls or audit logs are often classified as
utilizing program execution traces and those based on call-stack data as based on
system calls. The confusion is probably related to the fact that a lot of interdepen-
dency exists between different indirect behavioral biometrics and they are frequently
used in combinations to improve accuracy of the system being developed. For exam-
ple system calls and program counter data may be combined in the same behavioral
signature, or audit logs may contain information about system calls. Because they
are indirect measures of behavior, they are outside of the scope of the current dis-
cussion and will not be evaluated in any detail in this chapter. The interested reader
is encouraged to read the survey of indirect behavioral biometrics [16] for additional
information.
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The fourth and probably the best researched category of behavioral biometrics
relies on motor-skills of the users to accomplish verification [25]. Motor skill is an
ability of a human being to utilize muscles. Muscle movements rely upon the proper
functioning of the brain, skeleton, joints, and nervous system and so motor skills
indirectly reflect the quality of functioning of such systems, making person verifica-
tion possible. Most motor skills are learned, not inherited, with disabilities having
potential to affect the development of motor skills. We adopt here a definition for
motor-skill-based behavioral biometrics, a.k.a. kinetics, as those biometrics which
are based on innate, unique and stable muscle actions of the user while performing
a particular task [26].

The fifth and final category consists of purely behavioral biometrics. Purely be-
havioral biometrics are those which measure human behavior directly (not concen-
trating on measurements of body parts) or intrinsic, inimitable and lasting muscle
actions, such as the way an individual walks, types or even grips a tool [26]. Hu-
mans utilize different strategies, skills and knowledge during performance of men-
tally demanding tasks. Purely behavioral biometrics quantify such behavioral traits
and make successful identity verification a possibility.

The present chapter additionally looks at Behavioral Passwords, Biosignals and
Virtual Biometrics, such as avatar representations of the user. All of the authenti-
cation approaches reviewed in this chapter share a number of characteristics and
so can be analyzed as a group using the seven properties of good biometrics pre-
sented by Jain et al. [5, 27]. It is a good idea to check them before declaring some
characteristics suitable for the automated recognition of individuals.

• Universality Behavioral biometrics are dependent on specific abilities possessed
by different people to a different degree (or not at all) and so in a general popu-
lation, the universality of behavioral biometrics is very low. But since behavioral
biometrics are only applied in a specific domain, the actual universality of behav-
ioral biometrics is a 100%.

• Uniqueness Since only a small set of different approaches to performing any
task exists, uniqueness of behavioral biometrics is relatively low. Number of ex-
isting writing styles, different game strategies and varying preferences are only
sufficient for user verification, and not identification, unless the set of users is
extremely small [28].

• Permanence Behavioral biometrics exhibit a low degree of permanence, as they
measure behavior which changes with time as the person learns advanced tech-
niques and faster ways of accomplishing tasks. However, this problem of concept
drift is addressed in behavior-based intrusion detection research, and systems are
developed capable of adjusting to the changing behavior of the users [29, 30].

• Collectability Collecting behavioral biometrics is relatively easy and unobtrusive
to the user. In some instances the user may not even be aware that data collection
is taking place. The process of data collection is fully automated and is of very
low cost.

• Performance The identification accuracy of most behavioral biometrics is low,
particularly as the number of users in the database becomes large. However veri-
fication accuracy is very good for some behavioral biometrics.



350 R.V. Yampolskiy

• Acceptability Since behavioral biometric characteristics can be collected without
user participation, they enjoy a high degree of acceptability, but might be objected
to for ethical or privacy reasons.

• Circumvention It is relatively difficult to get around behavioral biometric sys-
tems as they require intimate knowledge of someone else’s behavior, but once
such knowledge is available, fabrication might be very straightforward [31]. This
is why it is extremely important to keep the collected behavioral profiles securely
encrypted.

13.2 Description of Behavioral Biometrics

Table 13.1 shows majority of behavioral biometrics covered in this chapter, classi-
fied according to the five categories outlined in the previous section [32]. Many of
the reviewed biometrics are cross-listed in multiple categories due to their depen-
dence on multiple behavioral attributes. In addition, enrolment time and verification
time (D = days, H = hours, M = Minutes, S = Seconds) of the listed biometrics
are provided, as well as any hardware required for the collection of the biometric
characteristic data. Out of all the listed behavioral biometrics only two are believed
to be useful not just for person verification, but also for reliable large scale person
identification. Those are: signature/handwriting and speech. Other behavioral bio-
metrics may be used for identification purposes but are not reliable enough to be
employed in that capacity in real-world applications.

Presented next are short overviews of the most researched behavioral biometrics
listed in alphabetical order [32]. Figure 13.1 provides a visual overview of some of
the presented behavioral biometrics.

13.2.1 Avatar Representation

With the advent of virtual communities such as Second Life, a lot of modern social
interactions take place in cyber-worlds. In such interactions users are represented
by virtual characters known as Avatars, which they design based on personal pref-
erences. Recent work by Yampolskiy et al. [33–37] has shown that visual and be-
havioral aspects of avatars could be profiled for the purpose of user verification or
identification. It is interesting to note that some biometric methods came very close
to avatar development and intelligent robots/software authentication on a number of
different instances. For example, in 1998, M.J. Lyons and his colleagues published
a report: “Avatar Creation using Automatic Face Recognition”, where authors dis-
cussed specific steps and processing techniques that need to be taken in order for an
avatar to be created almost automatically from the human face [38]. In fact, the pro-
cess described in the above article is essentially the process of biometric synthesis,
conceptualized and generalized in the book devoted specifically to this subject [39].



13 Behavioral, Cognitive and Virtual Biometrics 351

Ta
bl

e
13

.1
C

la
ss

ifi
ca

tio
n

an
d

pr
op

er
tie

s
of

be
ha

vi
or

al
bi

om
et

ri
cs

[3
2]

C
la

ss
ifi

ca
tio

n
of

th
e

V
ar

io
us

Ty
pe

s
of

B
eh

av
io

ra
lB

io
m

et
ri

cs

A
ut

ho
rs

hi
p

D
ir

ec
tH

um
an

C
om

pu
te

r
In

te
ra

ct
io

n
M

ot
or

Sk
ill

Pu
re

ly
B

eh
av

io
ra

l
Pr

op
er

tie
s

of
B

eh
av

io
ra

lB
io

m
et

ri
cs

In
pu

t
D

ev
ic

e
In

te
ra

ct
io

n
B

as
ed

So
ft

w
ar

e
In

te
ra

ct
io

n
B

as
ed

E
nr

ol
m

en
t

tim
e

V
er

ifi
ca

tio
n

tim
e

Id
en

tifi
ca

tio
n

R
eq

ui
re

d
H

ar
dw

ar
e

A
va

ta
r

R
ep

re
se

nt
at

io
n

"
M

M
N

C
om

pu
te

r

B
io

m
et

ri
c

Sk
et

ch
"

"
M

S
N

M
ou

se

B
lin

ki
ng

"
M

S
N

C
am

er
a

C
al

lin
g

B
eh

av
io

r
"

D
D

N
Ph

on
e

C
ar

D
ri

vi
ng

St
yl

e
"

H
M

N
C

ar
Se

ns
or

s

C
en

te
r

of
G

ra
vi

ty
"

M
S

N
Sh

oe
Se

ns
or

s

C
om

m
an

d
L

in
e

L
ex

ic
on

"
"

H
H

N
C

om
pu

te
r

C
re

di
tC

ar
d

U
se

"
D

D
N

C
re

di
tC

ar
d

D
yn

am
ic

Fa
ci

al
Fe

at
ur

es
"

M
S

N
C

am
er

a

E
m

ai
lB

eh
av

io
r

"
"

"
D

M
N

C
om

pu
te

r

Fi
ng

er
Pr

es
su

re
"

M
S

N
Pr

es
su

re
Se

ns
or

Fl
oo

r
Pr

es
su

re
"

M
S

N
Fl

oo
r

Se
ns

or

G
ai

t/S
tr

id
e

"
M

S
N

C
am

er
a

G
am

e
St

ra
te

gy
"

"
H

H
N

C
om

pu
te

r

G
az

e/
E

ye
T

ra
ck

in
g

"
M

S
Y

E
ye

T
ra

ck
er

H
an

dg
ri

p
"

M
S

N
G

un
Se

ns
or

s

H
ap

tic
"

"
M

M
N

H
ap

tic



352 R.V. Yampolskiy

Ta
bl

e
13

.1
(C

on
tin

ue
d)

C
la

ss
ifi

ca
tio

n
of

th
e

V
ar

io
us

Ty
pe

s
of

B
eh

av
io

ra
lB

io
m

et
ri

cs

A
ut

ho
rs

hi
p

D
ir

ec
tH

um
an

C
om

pu
te

r
In

te
ra

ct
io

n
M

ot
or

Sk
ill

Pu
re

ly
B

eh
av

io
ra

l
Pr

op
er

tie
s

of
B

eh
av

io
ra

lB
io

m
et

ri
cs

In
pu

t
D

ev
ic

e
In

te
ra

ct
io

n
B

as
ed

So
ft

w
ar

e
In

te
ra

ct
io

n
B

as
ed

E
nr

ol
m

en
t

tim
e

V
er

ifi
ca

tio
n

tim
e

Id
en

tifi
ca

tio
n

R
eq

ui
re

d
H

ar
dw

ar
e

H
um

an
Sh

ad
ow

s
"

M
S

N
C

am
er

a

K
ey

st
ro

ke
D

yn
am

ic
s

"
"

M
S

N
K

ey
bo

ar
d

L
ip

M
ov

em
en

t
"

M
S

N
C

am
er

a

M
ou

se
D

yn
am

ic
s

"
"

M
S

N
M

ou
se

M
ot

io
n

of
Fi

ng
er

s
"

M
S

N
C

am
er

a

Pa
in

tin
g

St
yl

e
"

"
D

D
N

Sc
an

ne
r

Pr
og

ra
m

m
in

g
St

yl
e

"
"

"
H

H
N

C
om

pu
te

r

Si
gn

at
ur

e/
H

an
dw

ri
tin

g
"

M
S

Y
St

yl
us

Sh
ir

tT
er

m
M

em
or

y
"

M
M

Y
M

ou
se

Ta
pp

in
g

"
M

S
N

Se
ns

or

Te
xt

A
ut

ho
rs

hi
p

"
"

H
M

N
C

om
pu

te
r

V
is

ua
lS

ca
n

"
M

M
Y

M
ou

se

V
oi

ce
/S

pe
ec

h/
Si

ng
in

g
"

M
S

Y
M

ic
ro

ph
on

e



13 Behavioral, Cognitive and Virtual Biometrics 353

Users of virtual words have also noted that avatars often take on the characteris-
tics of their creators, and not only their facial characteristics, but also body shape,
accessories and clothes.

But what about other, less obvious resemblances, such as manner of commu-
nication, responses to various situations, nature of work, style of house, leisure/
recreational activities, time of appearing in virtual world, etc.? All of the above
encompasses behavioral characteristics that can be exploited by the fusion of
biometric-based techniques, with methodology tailored to specifics of the virtual
world. Such behavioral characteristics, as the author of this chapter would postu-
late, are even less likely to change than the avatar’s facial appearance and clothes
during virtual world sessions, as users typically invest a lot of time and money in the
creation of a consistent virtual image, but would not so easily change their patterns
of behavior.

13.2.2 Biometric Sketch

Bromme et al. [40, 41] proposed a biometric sketch authentication method based
on sketch recognition and a user’s personal knowledge about the drawing’s content.
The system directs a user to create a simple sketch, for example of three circles, and
each user is free to do so in any way he pleases. Because a large number of different
combinations exist for combining multiple simple structural shapes, sketches of dif-
ferent users are sufficiently unique to provide accurate authentication. The approach
measures a user’s knowledge about the sketch, which is only available to the previ-
ously authenticated user. Such features as the sketch’s location and relative position
of different primitives are taken as the profile of the sketch. Finally a V-go Password
requests a user to perform the simulation of simple actions, such as mixing a cock-
tail using a graphical interface, with the assumption that all users have a personal
approach to bartending [42].

13.2.3 Blinking

Westeyn et al. [43], Westeyn and Starner [44] have developed a system for identi-
fying users by analyzing voluntary song-based blink patterns. During the enrolment
phase the user looks at the system’s camera and blinks to the beat of a song he
has previously chosen, producing a so-called “blinkprint”. During the verification
phase, the user’s blinking is compared to the database of the stored blinked pat-
terns to determine which song is being blinked and as a result user identification
is possible. In addition to the blink pattern itself, supplementary features can also
be extracted, such as: time between blinks, how long the eye is held closed at each
blink, and other physical characteristics the eye undergoes while blinking. Based on
those additional features, it was shown to be feasible to distinguish users blinking
the same exact pattern and not just a secretly selected song.
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13.2.4 Calling Behavior

With the proliferation of the mobile cellular phone networks, communication com-
panies are faced with increasing amount of fraudulent calling activity. In order to
automatically detect theft of service, many companies are turning to behavioral user
profiling with the hopes of detecting unusual calling patterns to be able to stop fraud
at an earliest possible time. Typical systems work by generating a user calling pro-
file, which consists of usage indicators such as: date and time of the call, duration,
called ID, called number, cost of call, number of calls to a local destination, number
of calls to mobile destinations, number of calls to international destinations and the
total statistics about the calls for the day [45]. Grosser et al. [46] have shown that
neural networks can be successfully applied to such a feature vector for the purpose
of fraud detection. Fawcett et al. [47] developed a rule-learning program to uncover
indicators of fraudulent behavior from a large database of customer transactions.

13.2.5 Car Driving Style

People tend to operate vehicles in very different ways; some drivers are safe and
slow, others are much more aggressive and often speed and tailgate. As a result,
driving behavior can be successfully treated as a behavioral biometric. Erdogan et
al. [48] have shown that by analyzing pressure readings from the accelerator and
brake pedals in kilogram force per square centimeter, the vehicle speed in revolu-
tions per minute, and steering angle within the range of −720 to +720 degrees, it
is possible to achieve genuine versus impostor driver authentication. Gaussian mix-
ture modeling was used to process the resulting feature vectors, after some initial
smoothing and subsampling of the driving signal. Liu et al. [49] in their work on
prediction of driver behavior have demonstrated that inclusion of the driver’s vi-
sual scanning behavior can further enhance accuracy of the driver behavior model.
Once fully developed, driver recognition can be used for car personalization, theft
prevention, as well as for detection of drunk or sleepy drivers. With so many poten-
tial benefits from this technology, research in driver behavior modeling is not solely
limited to the biometrics community [50, 51].

13.2.6 Center of Gravity

Porwik et al. [52] have proposed a system based on analysis of the motion of the
human body’s gravity center. By utilizing specially designed shoe soles with sensors
and asking 15 volunteers to engage in some stationary movement (without lifting
their feet) they were able to collect time series data about the subjects’ center of
gravity.
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13.2.7 Command Line Lexicon

A popular approach to the construction of behavior-based intrusion detection sys-
tems is based on profiling the set of commands utilized by the user in the process
of interaction with the operating system. A frequent target of such research is the
UNIX operating system, probably due to it having mostly command line nature.
Users differ greatly in their level of familiarity with the command set and all the
possible arguments which can be applied to individual commands. Regardless of
how well a user knows the set of available commands, most are fairly consistent in
their choice of commands used to accomplish a particular task.

A user profile typically consists of a list of used commands together with corre-
sponding frequency counts, and lists of arguments to the commands. Data collec-
tion process is often time consuming, since as many as 15,000 individual commands
need to be collected for the system to achieve a high degree of accuracy [53, 54].
Additional information about the session may also be included in the profile, such
as the login host and login time, which help to improve accuracy of the user profile,
as it is likely that users perform different actions on different hosts [55]. Overall,
this line of research is extremely popular, but recently a shift has been made toward
user profiling in a graphical environment such as Windows, as most users prefer the
convenience of a Graphical User Interface (GUI).

13.2.8 Credit Card Use

Data mining techniques are frequently used in detection of credit card fraud. Look-
ing out for statistical outliers such as unusual transactions, payments to far away
geographical locations or simultaneous use of a card at multiple locations can all be
signs of a stolen account. Outliers are considerably different from the remainder of
the data points and can be detected by using discordancy tests. Approaches for fraud
related outlier detection are based on distance, density, projection, and distribution
analysis methods. A generalized approach to finding outliers is to assume a known
statistical distribution for the data and to evaluate the deviation of samples from the
distribution. Brause et al. [56] have used symbolic and analog number data to detect
credit card fraud. Such transaction information as account number, transaction type,
credit card type, merchant ID, merchant address, etc. were used in their rule-based
model. They have also shown that analog data alone cannot serve as a satisfying
source for detection of fraudulent transactions.

13.2.9 Dynamic Facial Features

Pamudurthy et al. [57] proposed a dynamic approach to face recognition based on
dynamic instead of static facial features. They track the motion of skin pores on
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the face during a facial expression and obtain a vector field that characterizes the
deformation of the face. In the training process, two high-resolution images of an
individual, one with a neutral expression and the other with a facial expression, like
a subtle smile, are taken to obtain the deformation field [58].

Smile recognition research in particular is a subfield of dynamic facial feature
recognition currently gaining in prominence [59]. The existing systems rely on
probing the characteristic pattern of muscles beneath the skin of the user’s face.
Two images of a person in quick progression are taken, with subjects smiling for the
camera in the second sample. An analysis is later performed of how the skin around
the subject’s mouth moves between the two images. This movement is controlled by
the pattern of muscles under the skin, and is not affected by the presence of make-up
or the degree to which the subject smiles [58]. Other researchers have done research
in this area under such names as: Facial Behavior [60] and Facial Actions [61].

13.2.10 Email Behavior

Email sending behavior is not the same for all individuals. Some people work at
night and send dozens of emails to many different addresses; others only check mail
in the morning and only correspond with one or two people. All these peculiarities
can be used to create a behavioral profile which can serve as a behavioral biometric
characteristic for an individual. Length of the emails, time of the day the mail is sent,
how frequently inbox is emptied and of course the recipients’ addresses among other
variables can all be combined to create a baseline feature vector for the person’s
email behavior. Some work in using email behavior modeling was done by Stolfo
et al. [62, 63]. They have investigated the possibility of detecting virus propagation
via email by observing abnormalities in the email sending behavior, such as unusual
clique of recipients for the same email. For example sending the same email to your
girlfriend and your boss is not an everyday occurrence.

De Vel et al. [64] have applied authorship identification techniques to determine
the likely author of an email message. Alongside the typical features used in text
authorship identification, authors also used some email specific structural features
such as: use of a greeting, farewell acknowledgment, signature, number of attach-
ments, position of re-quoted text within the message body, HTML tag frequency
distribution and total number of HTML tags. Overall, almost 200 features are used
in the experiment, but some frequently cited features used in text authorship deter-
mination are not appropriate in the domain of email messages due to the shorter
average size of such communications.

13.2.11 Finger Pressure

Many modern mobile devices are equipped with touchpad devices capable of de-
tecting pressure. Saevanee et al. [65] have proposed utilizing finger pressure as a
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Table 13.2 Floor pressure biometric—accuracy rates comparison

Features Recognition
Rate

False Accept
Rate

Researchers Year

Pressure profile over footsteps 50% – Addlesee et al. [67] 1997

Trajectories of center of pressure 64% 5.8% Jung et al. [68] 2003

Pressure over the entire floor area 76.9% 11.6% Pirttikangas et al. [69] 2003

Stride length, stride cadence,
heel-to-toe ratio

80% – Middleton et al. [70] 2005

Compensated foot centers 92.8 – Yun et al. [71] 2003

Points from pressure profile 93% Orr et al. [72] 2000

Patterns of footsteps 92% – Yoon et al. [73] 2005

Pressure and time features 81.9% – Suutala et al. [74] 2008

Mean pressure and stride length 92.3% 6.79% Qian et al. [66] 2010

behavioral biometric and have achieved an impressive 99% accuracy rate. In their
experiments they combine finger pressure defined as the force applied over the finger
position with keystroke dynamics. Specifically Saevanee et al. consider the pressing
area not as a single point, but a group of multiple points on the pad. They utilize the
average value over these multiple pressing points to produce a representative feature
vector: FPi = [Pi,1,pi,2, . . . ,Pi,10] where Pi,j denotes the average value of finger
pressure values at the round i of digit j [65]. They were able to achieve an Equal
Error Rate value of 1% for a group of 10 test subjects and an accuracy rate of 99%.

13.2.12 Floor Pressure

While walking, people exert pressure on the floor surface, which could be analyzed
and used for personal authentication. Different types of floor sensors could be used
to collect floor pressure data; for example load cells, pressure mats, force sensitive
resistor mats and switch sensors have been experimented with. Qian et al. [66] used
a large high-resolution pressure sensing floor to capture a 1D pressure profile and
2D position trajectories for both feet. They later separate data from the two feet
and from those trajectories corresponding to the centers of pressure, extract fea-
tures such as the mean pressure and stride length. Extracted features were classified
with a Fisher’s linear discriminant classifier. Table 13.2 summarizes accuracy rates
obtained by different researchers of the floor pressure biometric [66].

13.2.13 Gaze/Eye Tracking

While viewing an image, a person goes through a sequence of eye fixation-saccade
events necessary to build up a perception of a scene. The spatial and temporal pat-
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terns associated with eye tracking are widely varied between different people and
could be used to produce a visual attention map of each individual. The position of
gaze locations could be produced deliberately or subconsciously during viewing be-
havior and a simple webcam or a sophisticated eye-tracker device could be utilized
in the data collection process. For a given image, Maeder and Fookes [75] analyze
gaze data sampled at 15 fps using a spatial clustering algorithm to extract any fixa-
tions with an approximate viewing time of 1.0 secs and a tolerance of 0.3 secs. The
approach could be combined with a standard PIN-like authentication mechanism by
mapping locations on pre-labeled regions of the image [76].

13.2.14 Gait/Stride

Gait is one of the best researched muscle control-based biometrics [77–79]; it is
a complex spatio-temporal motor-control behavior which allows biometric recog-
nition of individuals at a distance, usually from captured video. Gait is subject to
significant variations based on the changes in a person’s body weight, waddling
during pregnancy, injuries of extremities or of the brain, or due to intoxication [27].
Typical features include: amount of arm swing, rhythm of the walker, bounce, length
of steps, vertical distance between head and foot, distance between head and pelvis,
maximum distance between the left and right foot [80].

13.2.15 Game Strategy

Yampolskiy et al. [81–83] proposed a system for verification of online poker play-
ers based on a behavioral profile, which represents a statistical model of player’s
strategy. The profile consists of frequency measures indicating range of cards con-
sidered by the player at all stages of the game. It also measures how aggressive the
player is via such variables as percentages of re-raised hands. The profile is actually
human readable, meaning that a poker expert can analyze and understand the strat-
egy employed by the player from observing his or her behavioral profile [84]. For
example just by knowing the percentage of hands a particular player chooses to play
pre-flop, it is possible to determine which cards are being played with high degree
of accuracy.

Ramon et al. [85] have demonstrated the possibility of identifying Go players
based on their style of game play. They analyzed a number of Go specific features
such as type of opening moves, how early such moves are made and total number of
liberties in the formed groups. They also speculated that the decision tree approach
they have developed can be applied to other games such as Chess or Checkers.

In [86], Jansen et al. report about their research in chess strategy inference from
game records. In particular, they were able to surmise good estimates of the weights
used in the evaluation function of computer chess players, and later applied same
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techniques to human grandmasters. Their approach is aimed at predicting future
moves made by the players, but the opponent model created with some additional
processing can be utilized for opponent identification or at least verification. This
can be achieved by comparing new moves made by the player with predicted ones
from models for different players and using the achieved accuracy scores as an in-
dication of which profile models which player.

13.2.16 Handgrip

Developed mostly for gun control applications, grip-pattern recognition approach
assumes that users hold the gun in a sufficiently unique way to permit user verifica-
tion to take place. By incorporating a hardware sensor array in the gun’s butt, Kauff-
man et al. [87, 88] were able to get resistance measurements in as many as 44 × 44
points which are used in the creation of a feature vector. Obtained pressure points
are taken as pixels in the pressure pattern image used as input for verification algo-
rithm based on a likelihood-ratio classifier for Gaussian probability densities [87].
Experiments showed that more experienced gun users tended to be more accurately
verified as compared to first time subjects.

13.2.17 Haptic

Haptic systems are computer input/output devices, which can provide us with infor-
mation about direction, pressure, force, angle, speed, and position of user’s interac-
tions [89, 90]. Because so much information is available on the user’s performance,
a high degree of accuracy can be expected from a haptic-based biometrics system.
Orozco et al. [89, 90] have created a simple haptic application built on an elastic
membrane surface, in which the user is required to navigate a stylus through the
maze. The maze has gummy walls and a stretchy floor. The application collects data
about the ability of the user to navigate the maze, such as reaction time to release
from sticky wall, the route, the velocity, and the pressure applied to the floor. The
individual user profiles are made up of such information as 3D world location of
the pen, average speed, mean velocity, mean standard deviation, navigation style,
angular turns and rounded turns. In a separate experiment Orozco et al. [91] imple-
ment a virtual mobile phone application where the user interacts through a haptic
pen to simulate making a phone call via a touch pad. The keystroke duration, pen’s
position, and exerted force are used as the raw features collected for user profiling.

13.2.18 Human Shadows

Shadow biometrics rely on the use of shadows and shadow dynamics for behavior-
based recognition of persons. In the above-the-head imagery taken from a large
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distance, direct recognition of humans is not always possible due to limited view
of the observation angle. Shadows provide additional information, which may be
sufficient for person identification. Shadows have a larger observable area and re-
flect well the underlining gait dynamics, making biometric authentication possible.
Potential features of shadow biometrics include: shadow area, parameters for a trian-
gular model formed by extremities of head and the feet, parameters for a pentagonal
model formed by the head, two hands and two feet, correction for the position of the
light source (usually the sun), and dynamic features such as amplitude and period-
icity of movement and deviation from regularity [92]. Iwashita et al. [93] extracted
gait features from manually selected shadows and obtained a Correct Classifica-
tion Rate of over 95%. With automatic shadow area selection, accuracy dropped
to 90%.

13.2.19 Keystroke Dynamics

Typing patterns are characteristic to each person, some people are experienced typ-
ists utilizing the touch-typing method, and others utilize the hunt-and-peck approach
which uses only two fingers. Those differences make verification of people based
on their typing patterns a proven possibility, and some reports suggest identification
is also possible [94]. For verification a small typing sample such as the input of
user’s password is sufficient, but for recognition a large amount of keystroke data
are needed and identification is based on comparisons with the profiles of all other
existing users already in the system.

Keystroke features are based on time durations between the keystrokes, inter-
key strokes and dwell time, which is the time a key is pressed down, overall typing
speed, frequency of errors (use of backspace), use of numpad, the order in which the
user presses shift key to get capital letters and possibly the force with which keys are
hit for specially equipped keyboards [27, 94]. Keystroke dynamics are probably the
most researched type of HCI-based biometric characteristics, with novel research
taking place in different languages, for long text samples, and for email authorship
identification.

In a similar fashion, Bella et al. [95] have studied finger movements of skilled
piano players. They have recorded finger motion from skilled pianists while playing
a musical keyboard. Pianists’ finger motion and speed with which keys are struck
were analyzed using functional data analysis methods. Movement velocity and ac-
celeration were consistent for the participants and in multiple musical contexts. Ac-
curate pianist classification was achieved by training a neural network classifier us-
ing velocity/acceleration trajectories preceding key presses. Gamboa et al. [96] have
used keystroke dynamics in a system they called Webbiometrics, which used web
interaction for user verification.
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13.2.20 Lip Movement

This approach, originally based on the visual speech reading technology, attempts to
generate a model representing the lip dynamics produced by a person during speech.
User verification is based on how close the generated model fits observed lip move-
ment. Such models are typically constructed around spatio-temporal lip features.
First the lip region needs to be isolated from the video feed, and then significant
features of lip contours are extracted, typically from edges and gradients. Lip fea-
tures include: the mouth opening or closing, skin around the lips, mouth width, up-
per/lower lip width, lip opening height/width, distance between horizontal lip line
and upper lip [97, 98]. Typically, lip dynamics is utilized as a part of a multimodal
biometric system, usually combined with speaker recognition-based authentication
[99–102], but stand-alone usage is also possible [103].

13.2.21 Mouse Dynamics

By monitoring all mouse actions produced by the user during an interaction with
the Graphical User Interface (GUI), a unique profile can be generated which can
be used for user re-authentication [23]. Mouse actions of interest include general
movement, drag and drop, point and click, and stillness. From those, a set of fea-
tures can be extracted, for example average speed against the distance traveled, and
average speed against the movement direction [104, 105]. Pusara et al. [23] describe
a feature extraction approach in which they split the mouse event data into mouse
wheel movements, clicks, menu and toolbar clicks. Click data are further subdivided
into single- and double-click data.

Gamboa et al. [106, 107] have tried to improve the accuracy of mouse-dynamics-
based biometrics by restricting the domain of data collection to an online game
instead of a more general GUI environment. As a result, the applicability of their
results is somewhat restricted, and the methodology is more intrusive to the user.
The system requires around 10–15 minutes of devoted game play instead of seam-
less data collection during normal user-computer interaction. As far as the extracted
features go, x and y coordinates of the mouse, horizontal velocity, vertical velocity,
tangential velocity, tangential acceleration, tangential jerk and angular velocity are
utilized with respect to the mouse strokes to create a unique user profile.

13.2.22 Motion of Fingers

Nishiuchi et al. [108] have proposed a method of identifying individuals using the
bending motion of fingers. The person being authenticated moves a finger over a
solid color background. This allows for easy finger detection and post-processing,
which involves calculation of the curvature defined as a value indicating the level
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of bending at each point on a curve, or a curved surface. By extracting edge pixels
from a binary image of the forefinger they were able to calculate curvature involved
in the motion of the finger. The correlation coefficient is used for the evaluation of
the curvature profiles. In their experimental setup, Nishuchi et al. use seven angles
of the forefinger (15° to 45° in 5° increments) and utilize six test subjects. With the
decision threshold set at 0.970, the False Reject Rate is 0%.

13.2.23 Painting Style

Just like authorship of literary works can be attributed based on the writer’s style,
so can works of art be accredited based on the style of the drawing. In particular the
subtle pen and brush strokes characteristic of a particular painter can be profiled. Lyu
et al. [109] developed a technique for performing a multi-scale, multi-orientation
painting scan decomposition. This decomposition changes the basis from functions
maximally localized in space to one in which the basis functions are also localized
in orientation and scale. By constructing a compact model of the statistics from such
a function, it is possible to detect consistencies or inconsistencies between paintings
and drawings supposedly produced by the same painter.

13.2.24 Programming Style

With the increasing number of viruses, worms, and Trojan horses, it is often useful
in a forensic investigation to be able to identify an author of such malware programs
based on the analysis of the source code. It is also valuable for the purposes of soft-
ware debugging and maintenance to know who the original author of a certain code
fragment was. Spafford et al. [110] have analyzed a number of features potentially
useful for the identification of software authorship. In case only the executable code
is available for analysis, data structures and applied algorithms can be profiled, as
well as any remaining compiler and system information, observed programming
skill level, knowledge of the operating system and choice of the system calls. Ad-
ditionally, use of predefined functions and provisions for error handling are not the
same for different programmers.

In case the original source files are available, a large number of additional iden-
tifying features become accessible such as: chosen programming language, code
formatting style, type of code editor, special macros, style of comments, variable
names, spelling and grammar, use of language features such as choice of loop struc-
tures, the ratio of global to local variables, temporary coding structures, and finally
types of mistakes observable in the code. Software metrics such as the number of
lines of code per function, comment-to-code ratio and function complexity may also
be introduced [110].



13 Behavioral, Cognitive and Virtual Biometrics 363

13.2.25 Signature/Handwriting

Signature verification is a widely accepted methodology for confirming identity
[111–114]. Two distinct approaches to signature verification are traditionally recog-
nized based on the data collection approach, they are: on-line and off-line signature
verification, also known as static and dynamic approaches [115]. In the off-line sig-
nature verification, the image of the signature is obtained using a scanning device,
possibly some time after the signing took place. With on-line signature verification,
special hardware is used to capture dynamics of the signature; typically pressure
sensitive pens in combination with digitizing tablets are utilized. Because on-line
data acquisition methodology obtains features not available in the off-line mode,
dynamic signature verification is more reliable [116].

With on-line signature verification, in addition to the trajectory coordinates of the
signature, other features like pressure at pen tip, acceleration and pen-tilt can be col-
lected. In general, signature related features can be classified into two groups: global
and local. Global features include: signing speed, signature bounding box, Fourier
descriptors of the signature’s trajectory, number of strokes, and signing flow. Local
features describe specific sample points in the signature and relationship between
such points. For example, the distance and curvature changes between two succes-
sive points may be analyzed, as well as x and y offsets relative to the first point on
the signature trajectory, and critical points of the signature trajectory [116, 117].

Signature-based user verification is a particular type of general handwriting-
based biometric authentication. Unlike with signatures, handwriting-based user ver-
ification/recognition is content independent, which makes the process somewhat
more complicated [118–120]. Each person’s handwriting is seen as having a spe-
cific texture. The spatial frequency and orientation contents represent the features
of each texture [121]. Since handwriting provides a much more substantial biometric
characteristic sample in comparison to a signature, respective verification accuracy
can be much greater.

13.2.26 Short Term Memory

Human sensory input storage receives visual snapshots from the eyes and stores
them briefly in visual cortex to allow for the analysis of the perceived data. Such
analysis involves retrieval of important information from points of interest and fil-
tering out of inapplicable information. Short Term Memory (STM) could be char-
acterized in terms of size and decay, which for visual information is estimated to be
17 letters and an average time of 200 ms. It has been shown in multiple experiments
that the information retrieval capability from STM is different from one subject to
the other [122, 123]. Hamdy et al. [123] proposed an approach for measuring STM
time indirectly via analysis of mouse movements under stressful conditions while
performing a cognitive task. Extracted features included traveled distance decrease
rate as the one-key occurrence increased and fly time improvement rate as the one-
key occurrence increased.
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13.2.27 Soft Behavioral Biometrics

Jain et al. [124, 125] define soft biometrics as: “. . . traits as characteristics that pro-
vide some information about the individual, but lack the distinctiveness and perma-
nence to sufficiently differentiate any two individuals”. They further state that soft
biometric traits can either be continuous, such as height or weight, or discrete, such
as gender or ethnicity. Authors propose expanding the definition to include soft be-
havioral biometrics, which also can be grouped into continuous and discrete types.
For instance, continuous soft behavioral biometric traits can include measurements
produced by various standardized tests (some of the most popular such tests are IQ
test for intelligence, and verbal sections of SAT, GRE, GMAT for language abili-
ties). Discrete soft behavioral biometrics are skills which a particular person either
has or does not have. Examples of such include the ability to speak a particular
foreign language, knowledge of how to fly a plane, or to ride a motorcycle, etc.

While such soft behavioral biometrics are not sufficient for identification or ver-
ification of individuals, they can be combined with other biometric approaches to
increase system accuracy. They can also be used in certain situations to reject an
individual’s verification claim. For example in a case of academic cheating, a sig-
nificantly fluctuating score on a repeatedly taken standardized test can be used to
suspect that not the same person answered all the questions on a given test [126].

13.2.28 Tapping

Henderson et al. [127, 128] have studied the idea of tapping recognition, based on
the idea that you are able to recognize who is knocking on your door. They concen-
trated on the waveform properties of the pulses which result from tapping a polymer
thick-film sensor on a smart card. Produced pressure pulses are further processed to
extract useful features such as: pulse height, pulse duration, and the duration of
the first inter-pulse interval. The recognition algorithm utilized in this research has
been initially developed for processing of keyboard dynamics, which is a somewhat
similar technology of recognizing tapping with respect to keyboard keys.

13.2.29 Text Authorship

Email and source code authorship identification represent application and improve-
ment of techniques developed in a broader field of text authorship determination.
Written text and spoken word (once transcribed) can be analyzed in terms of vocab-
ulary and style to determine authorship. In order to do so, a linguistic profile needs
to be established. Many linguistic features can be profiled, such as: lexical patterns,
syntax, semantics, pragmatics, information content or item distribution through a
text [129]. Stematatos et al. [130], in their analysis of modern Greek texts, proposed
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using such text descriptors as: sentence count, word count, punctuation mark count,
noun phrase count, word included in noun phrase count prepositional phrase count,
word included in prepositional phrase count and keyword count. The overall area of
authorship attribution is very promising, with a lot of ongoing research [131–133].

13.2.30 Visual Scan/Search and Detection

This novel biometric is based on the human visual system. In our daily life, as we
examine signs, advertisements or websites for a specific piece of information, we
discriminate a target of interest from surrounding distracters. The idea is to properly
measure the average inspection time of an individual and use that information in
a behavioral signature [122]. The investigators demonstrated an approach for mea-
suring Visual Scan time indirectly via examining mouse movements under stress-
ful conditions. Obtained features included: speed, fly time and distance traveled. In
combination with Short Term Memory cognitive factor this biometrics has been able
to achieve Equal Error Rate of 3.88% on a dataset of 275 test subjects [123].

13.2.31 Voice/Speech/Singing

Speaker identification is one of the best researched biometric technologies [134–
136]. Verification is based on information about the speaker’s anatomical structure
conveyed in amplitude spectrum, with the location and size of spectral peaks related
to the vocal tract shape and the pitch striations related to the glottal source of the
user [80]. Speaker identification systems can be classified based on the freedom of
what is spoken [137]:

• Fixed text: The speaker says a particular word selected at enrolment.
• Text dependent: The speaker is prompted by the system to say a particular

phrase.
• Text independent: The speaker is free to say anything he wants, verification

accuracy typically improves with larger amount of spoken text.

Feature extraction is applied to the normalized amplitude of the input signal,
which is further decomposed into several band-pass frequency channels. A fre-
quently extracted feature is the logarithm of the Fourier Transform of the voice
signal in each band, along with features of pitch, tone, cadence, and shape of
the larynx [27]. Accuracy of voice-based biometrics systems can be increased by
inclusion of visual speech (lip dynamics) [99–102] and incorporation of soft be-
havioral biometrics such as accent [138, 139]. Recently some research has been
aimed at expanding the developed technology to singer recognition for the pur-
poses of music database management [140] and to laughter recognition. Cur-
rently, laughter-recognition software is rather crude and cannot accurately dis-
tinguish between different people [58, 59].
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Some of the presented approaches are not sufficiently unique, permanent, easily
collectable or difficult to circumvent, but they can be seen as behavioral counterparts
of “soft” physical biometrics well recognized in the field. Soft biometrics are also
not strong enough to be a backbone of a standalone biometric security system, but
are nonetheless valuable in improving accuracy of multimodal systems. Likewise,
we believe that multimodal behavior-based biometric systems will be able to take
advantage of many of the technologies presented in our survey and therefore it is
important to include them to make our survey as comprehensive and as useful as
possible to the largest number of researchers and developers. For example, game
strategy alone may not be sufficient for person identification, but combined with
keyboard dynamics and mouse movements, it might be sufficiently discriminative.
Also, as breakthroughs are made in the field of behavioral biometrics, it is likely
that some of the described technologies will become easier to collect and harder to
circumvent.

Practically none of the behavioral biometrics are strong enough for person iden-
tification, and they are only useful for verification purposes. So, the assumption is
always made that we are dealing with a cooperating subject who wishes to positively
verify his identity. For all behaviors, even for low level ones, an un-cooperating sub-
ject can completely change his behavior in order to avoid being successfully profiled
by the security system. This is an inherent limitation of most behavioral biometric
systems.

13.3 Biological Signals as a Behavioral Biometrics

Because behavioral biometrics is a new and still developing field, even a basic con-
cept as what qualifies as a behavioral biometric is still not universally accepted. In
our detailed survey we have chosen to only cover approaches in which the behavior
in question is under full or at least partial control of the individual exhibiting it. In
this section, we present a number of approaches which have been classified as be-
havioral biometrics by other researchers in the field [141] and which as a rule are
not under the full control of the subject.

A number of biological signals have been classified as behavioral biometrics
in recent literature [141–143]. Numerous examples include the electrocardiogram
(ECG), the electroencephalogram (EEG), and the electrooculogram (EOG) as well
as some emerging technologies, like Brain-Computer Interface (BCI), and Elec-
troencephalogram Interface (EEGI), NHCI (Neural Human-Computer Interface)
and NI (Neural Interface) [144]. In addition to electrical activity, neural activity also
generates other types of signals, for example magnetic and metabolic signals, that
could be utilized in a BCI. Magnetic activity is recordable with magnetoencephalog-
raphy (MEG), brain metabolic activity as mirrored by changes in blood flow can be
measured with positron emission tomography (PET), and functional magnetic reso-
nance imaging (fMRI) [142]. There are also invasive BCI signal recording methods
such as implanted electrodes [143]. Table 13.3 provides known results for biosignal-
based security systems. The following explanations are meant to increase the under-
standing of non-professionals regarding biosignals.
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Fig. 13.1 Examples of Behavioral Biometrics: (a) Biometric Sketch, (b) Blinking, (c) Calling,
(d) Car Driving, (e) Command Line Lexicon, (f) Credit Card Use, (g) Dynamic Facial Fea-
tures, (h) Email, (i) Gait, (j) Game Strategy, (k) GUI Interaction, (l) Handgrip, (m) Haptic,
(n) Keystrokes, (o) Lip Movement, (p) Mouse Dynamics, (q) Painting Style, (r) Programming
Style, (s) Signature, (t) Tapping, (u) Text Authorship, (v) Voice [32]. Image used with permission
from Interscience Publishers Ltd. © 2008

• EEG [Electro Encephalo Gram]: a graph of the brain’s electrical activity ver-
sus time. The electrical activity is a result of electrical impulses traversing the
neurons in the brain. Numerous studies demonstrate that the brainwave pattern of
every individual is unique and that the EEG can be used for biometric identifica-
tion [142]. The EEG signal changes with variation in types of cognitive activities.
The signal itself can be isolated from the background noise through a series of
filters. The idea behind this approach is to associate a particular EEG signature
with a particular set of thoughts, such as recorded during human–computer inter-
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Table 13.3 Accuracy rates for utilized biosignal-based biometrics

Biosignal Publication Accuracy Rate

PhonoCardioGram (PCG) [150] 96%

ElectroCardioGram (ECG) [141] 100%

ElectroEncephaloGram (EEG) [145] 80–100%

PassThoughts [143] 90%

action [141]. Correct classification of individual in the accuracy range of 80% to
100% has been achieved in recent experiments [145].

• ECG/EKG [Electro Cardio/Kardio Gram]: a graph of the heart’s electrical ac-
tivity versus time. The electrical activity is a result of the electric current flowing
in both heart muscles and the neuronal network within the heart. Both EEG and
ECG/EKG are extrapolations of the actual electric signals. A series of sensors are
positioned over the heart and pick up the electrical signals produced by various
regions of the heart during the pumping cycle. The recording of the heartbeat
generates a unique and reliable profile for any particular individual. Recent ex-
periments provide sufficient evidence to suggest that it is a highly discriminative
biometric modality in some cases near 100% accurate [141, 146].

• GSR [Galvanic Skin Response]: a measure of the skin’s resistance/conductance.
This is affected by how moist the skin is (varying with the amount of sweat) and
since the sweat glands are controlled by the nervous system this is an indirect
measure of neuronal activity [147].

• fTCD [functional Trans-Cranial Doppler]: any Doppler scan uses ultrasound
waves to visualize underlying organs or tissue. In the case of fTCD, it is used to
visualize the brain. However, since it is functional, it visualizes the brain over time
and shows variations with varying levels of activity (this type is called dynamic
imaging).

• Odor: animals, for example dogs, are perfectly capable of recognizing people
based on odor. Idea behind this type of authentication is to create an Electronic
Nose (ENose) capable of sniffing out a person’s identity. The ENose consists
of a collection of sensors, each one serving as a receptor for a particular odor.
Once a significant number of odors can be profiled by the system, it becomes an
interesting pattern recognition problem to match odor-prints to people. This is a
promising line of research and is still in the early stages of development, with no
functional systems available on the market [148].

• EP [Evoked Potential]: measures brain’s electrical activity generated from ac-
tively stimulating the patient. The stimulus in this case is mostly artificial.

• ERP [Event Related Potential]: also measures brain’s electrical activity result-
ing from a stimulus. However, the stimulus in this case is some actual event rather
than just an artificial factor.

• PCG [PhonoCardioGram]: essentially a recording of a cardiac sound, this
biosignal has been successfully utilized in biometric identification systems after
undergoing frequency analysis. Berittelli et al. [149] have demonstrated biomet-
ric applicability of PCG on a database of 20 subjects and obtained a FRR of 5.0%
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and a FAR of 2.2%. The main advantage of using heart sound as a biometric is
that it cannot be easily spoofed as compared to other, particularly non-physical
biometric modalities. Preliminary results show that with optimally selected pa-
rameters, an identification rate of up to 96% is achievable for a small database of
seven persons [150]. The heart beat is known as the Inherent Liveness Biometric
because “The way the human heart beats” characteristic is only valid for a living
person [151].

• BVP [Blood Volume Pulse]: uses photoplethysmography to detect the blood
pressure in the extremities by applying a light source and measuring the light
reflected by the skin. As blood is forced through the peripheral vessels by the
heart, it produces engorgement of the vessels, thereby modifying the amount of
light to the photosensor, which could be recorded as a waveform [152].

• PassThoughts: Thorpe et al. proposed using Brain Computer Interface (BCI)
technology to have a user directly transmit his thoughts to a computer. The system
extracts entropy from a user’s brain signal upon reading a thought. The brain
signals are processed in an accurate and repeatable way, providing a changeable
authentication method. The potential size of the space of a PassThoughts system
is not clear at this point, but likely to be very large, due to the lack of bounds on
what composes a thought [143].

13.3.1 Behavioral Passwords

While behavioral passwords are not the same as biometrics, they are authentication
methods based on preferences and psychological predispositions of people, and so
clearly fall under computer analysis of human behavior. Therefore we include a
short overview of the state of the art in this chapter, due to Yampolskiy [153].

13.3.1.1 Text-Based Behavioral Passwords

Text-Based passwords can be subdivided into syntactic, semantic and one-time
methods. The classical passwords and passphrases are examples of syntactic meth-
ods, in which a user is expected to memorize a sequence of characters or words. The
sequence can either be generated for the user, or user selected [42]. The problem is
that a user’s ability to memorize complicated or multiple passwords is limited, and
so authentication may present problems for the user. Alternatively, easy to remem-
ber passwords are also easy to guess and so provide a low level of security. Some
researchers present methods which might be easier for users to remember. For exam-
ple, the Check-Off Password System (COPS) [154] allows users to enter characters
in any order and therefore the users can choose to remember their password in many
different ways. Each user is assigned eight different characters selected from the six-
teen most commonly used letters. The user may use any character more than once
to form words which are easy to remember and so it is claimed that COPS provides
an advantage over regular passwords.
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Semantic or cognitive passwords typically work by asking the user some ques-
tions and treating the user’s answer as the key to the authentication mechanism. One
approach described by Renaud [42] relies on asking the user clarifying questions
until the answer matches the one expected by the system. An alternative technique
provided a set of questionnaires, asking users to answer some fact-based or opinion-
based questions [155]. These approaches are not very user-friendly, as it might take
a long time for the user to arrive at the desired answer, and since users are very
sensitive to the time component of an authentication protocol, the cognitive-based
methods are not expected to become widely popular.

13.3.1.2 Graphics-Based Behavioral Passwords

Graphical passwords are designed to take advantage of human visual memory ca-
pabilities, which are far superior to our ability to remember textual information.
Two main types of graphical passwords are currently in use: recognition-based and
position-based, respectively. In recognition-based systems, users must identify im-
ages they have previously seen among new graphics.

Probably, the most well known recognition-based graphical authentication sys-
tem is called Passfaces [156, 157]. It relies on the ease with which people recognize
familiar faces. During enrollment, a user is presented with a set of faces from which
a subset is selected, which the user is asked to memorize. During authentication, a
screen with nine faces is presented to the user, with one of the faces being from his
Passface set. User has to select a face, which is familiar from the enrollment step.
This process is repeated five times, resulting in a relatively small space of 59,050
possible face combinations. Obviously, this is not sufficient if the system is open to
an exhaustive search.

Another authentication system, Déjà Vu, is based on random art images. User is
asked to choose five images as his pass set and during authentication needs to select
his pass set from a challenge set of 25 pictures. Since the pictures used are com-
pletely random and are generated by a computer program, it is next to impossible to
share a Déjà Vu password with others. Preliminary research shows that users prefer
real photographs to random art images and that the enrollment phase is more time
consuming than that of alphanumeric passwords [158].

The two systems mentioned above are probably representative of many other
similar recognition-based graphical authentication systems currently in existence.
Visual Identification Protocol [42, 159], Picture Password [160], and Picture-
Pins [161] are all reliant on exploiting the users’ good visual memory and power of
recall to easily authenticate users by making them pick familiar images from a large
set of graphics. A non-visual but also a sensory recall-based authentication approach
utilizing music is presented in the work of Gibson et al. [162] on the Musipass.

The remaining authentication approaches presented in this review are graphi-
cal position-based systems. A typical position-based approach is presented in Pass-
Points, a system based on having the user select points of interest within a single
image. The number of points is not limited and so a relatively large search space pro-
tects against any attempt to guess a PassPoints authentication sequence [163, 164].
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This is similar to the methodology used in the original patent for graphical pass-
words obtained by Blonder in 1996 [165].

An alternative to having a user select a portion of an image is to have a user input
a simple drawing into a predefined grid space. This approach is attempted in [166]
with a system called Passdoodles and also in [167, 168] with a system called Draw-
a-Secret. Finally, a V-go Password requests a user to perform simulation of simple
actions such as mixing a cocktail using a graphical interface [42].

There is also a separate area of research targeting development of password re-
minder cues based on different psychological and behavioral prompts. Primary ex-
amples of such cue eliciting systems are Inkblot cues [169–172] and Handwriting
reminders [173]. Inkblot-based systems attempt to assist users in better recalling
their passwords by providing implicit information, which users associate with their
password. The idea is based on the concept of a Rorschach test, in which subject’s
perception of inkblots is recorded and analyzed in terms of everyday concepts.

13.3.2 Comparison and Analysis

Behavioral biometrics measure human actions, which can result from human skills,
style, preference, knowledge, motor-skills or strategy. Table 13.4 summarizes what
precisely is being measured by different behavioral biometrics, as well as lists some
of the most frequently used features for each type of behavior. Indirect HCI-based
biometrics are not included as they have no meaning independent of the direct
human–computer interaction which causes them.

Motor-skill-based biometrics measure innate, unique and stable muscle actions
of users performing a particular task. Table 13.5 outlines which muscle groups are
responsible for a particular motor-skill, as well as lists some of the most frequently
used features for each muscle control-based biometric approach.

While many behavioral biometrics are still in their infancy, some very promising
research has already been done. The results obtained justify feasibility of using be-
havior for verification of individuals and further research in this direction is likely
to improve accuracy of such systems. Table 13.6 summarizes obtained accuracy
ranges for the set of direct behavioral biometrics for which such data are available.
Table 13.7 presents accuracy rates for biometric methodologies not reviewed in our
previous surveys.

13.4 Privacy Concerns

An unintended property of behavioral profiles is that they might contain information
which may be of interest to third parties, who have potential to discriminate against
individuals based on such information. As a consequence, intentionally revealing or
obtaining somebody else’s behavioral profile for the purposes other than verification
is highly unethical. Examples of private information which might be revealed by
some behavioral profiles follow.
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Table 13.4 Behavioral biometrics with traits and features [32]

Behavioral
Biometric

Measures Features

Biometric Sketch Knowledge Location and relative position of different
primitives

Calling Behavior Preferences Date and time of the call, duration, called ID,
called number, cost of call, number of calls to a
local destination, number of calls to mobile
destinations, number of calls to international
destinations

Car driving style Skill Pressure from accelerator pedal and brake pedal,
vehicle speed, steering angle

Command Line
Lexicon

Technical
Vocabulary

Used commands together with corresponding
frequency counts, and lists of arguments to the
commands

Credit Card Use Preferences Account number, transaction type, credit card
type, merchant ID, merchant address

Email Behavior Style Length of the emails, time of the day the mail is
sent, how frequently inbox is emptied, the
recipients’ addresses

Game Strategy Strategy/Skill Count of hands folded, checked, called, raised,
check-raised, re-raised, and times player went
all-in

Haptic Style 3D world location of the pen, average speed,
mean velocity, mean standard deviation,
navigation style, angular turns and rounded turns

Keystroke Dynamics Skill Time durations between the keystrokes, inter-key
strokes and dwell times, which is the time a key is
pressed down, overall typing speed, frequency of
errors (use of backspace), use of numpad, order in
which user presses shift key to get capital letters

Mouse Dynamics Style x and y coordinates of the mouse, horizontal
velocity, vertical velocity, tangential velocity,
tangential acceleration, tangential jerk and
angular velocity

Painting Style Style Subtle pen and brush strokes characteristic

Programming Style Skill, Style,
Preferences

Chosen programming language, code formatting
style, type of code editor, special macros,
comment style, variable names, spelling and
grammar, language features, the ratio of global to
local variables, temporary coding structures,
errors

Soft Behavioral
Biometrics

Intelligence,
Vocabulary, Skills

Word knowledge, generalization ability,
mathematical skill

Text Authorship Vocabulary Sentence count, word count, punctuation mark
count, noun phrase count, word included in noun
phrase count, prepositional phrase count, word
included in prepositional phrase count, and
keyword count
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Table 13.5 Motor-skill biometrics with respective muscles and features [174]

Motor
Skill-based
Biometric

Muscles Involved Extracted Features

Blinking orbicularis oculi, corrugator supercilii,
depressor supercilii

time between blinks, how long the eye
is held closed at each blink, physical
characteristics the eye undergoes while
blinking

Dynamic
Facial
Features

levator labii superioris, levator anguli
oris zygomaticus major, zygomaticus
minor, depressor labii inferioris,
depressor anguli oris, buccinator,
orbicularis oris

motion of skin pores on the face, skin
folds, wrinkles

Gait/Stride tibialis anterior, extensor hallucis
longus, extensor digitorum longus,
peroneus tertius, extensor digitorum
brevis, extensor hallucis brevis,
gastrocnemius, soleus, plantaris,
popliteus, flexor hallucis longus flexor
digitorum longus

amount of arm swing, rhythm of the
walker, bounce, length of steps,
vertical distance between head and
foot, distance between head and pelvis,
maximum distance between the left
and right foot

Handgrip abductor pollicis brevis, opponens
pollicis, flexor pollicis brevis, adductor
pollicis, palmaris brevis, abductor
minimi digiti, flexor brevis minimi
digiti

resistance measurements in multiple
points

Haptic abductor pollicis brevis, opponens
pollicis, flexor pollicis brevis, adductor
pollicis, palmaris brevis, abductor
minimi digiti, flexor brevis minimi
digiti, opponens digiti minimi,
lumbrical, dorsal interossei, palmar
interossei

3D world location of the pen, average
speed, mean velocity, mean standard
deviation, navigation style, angular
turns and rounded turns

Keystroke
Dynamics

abductor pollicis brevis, opponens
pollicis, flexor pollicis brevis, adductor
pollicis, palmaris brevis, abductor
minimi digiti, flexor brevis minimi
digiti, opponens digiti minimi,
lumbrical, dorsal interossei, palmar
interossei

time durations between the keystrokes,
inter-key strokes and dwell times,
which is the time a key is pressed
down, overall typing speed, frequency
of errors (use of backspace), use of
numpad, order in which user presses
shift key to get capital letters

Lip
Movement

levator palpebrae superioris, levator
anguli oris, mentalis, depressor labii
inferioris, depressor anguli oris,
buccinator, orbicularis oris, risorius

Mouth width, upper/lower lip width,
lip opening height/width, distance
between horizontal lip line and upper
lip

Mouse
Dynamics

abductor pollicis brevis, opponens
pollicis, flexor pollicis brevis, adductor
pollicis, palmaris brevis, abductor
minimi digiti, flexor brevis minimi
digiti, opponens digiti minimi,
lumbrical, dorsal interossei

x and y coordinates of the mouse,
horizontal velocity, vertical velocity,
tangential velocity, tangential
acceleration, tangential jerk and
angular velocity
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Table 13.5 (Continued)

Motor
Skill-based
Biometric

Muscles Involved Extracted Features

Signature/
Handwriting

abductor pollicis brevis, opponens
pollicis, flexor pollicis brevis, adductor
pollicis, palmaris brevis, abductor
minimi digiti, flexor brevis minimi
digiti, opponens digiti minimi,
lumbrical, dorsal interossei, palmar
interossei

coordinates of the signature, pressure
at pen tip, acceleration and pen-tilt,
signing speed, signature bounding box,
Fourier descriptors of the signature’s
trajectory, number of strokes, and
signing flow

Tapping abductor pollicis brevis, opponens
pollicis, flexor pollicis brevis, adductor
pollicis, palmaris brevis, abductor
minimi digiti, flexor brevis minimi
digiti

Pulse height, pulse duration, and the
duration of the first inter-pulse interval

Voice/Speech cricothyroid, posterior ricoarytenoid,
lateral cricoarytenoid, arytenoid,
thyroarytenoid

logarithm of the Fourier transform of
the voice signal in each band along
with pitch and tone

• Calling behavior: Calling data are a particularly sensitive subject since they
might contain highly personal information.

• Car driving style: Car insurance companies may be interested to know if a driver
frequently speeds or whether he or she is an overall aggressive driver, in order to
charge an increased coverage rate or to deny coverage all together.

• Command line lexicon: Information about proficiency with the commands might
be used by an employer to decide if you are sufficiently qualified for a job involv-
ing computer interaction.

• Credit card usage: Credit card data reveal information about what items you
frequently purchase and in what locations you can be found, violating your ex-
pectation of privacy. For example an employer might be interested to know if an
employee buys a case of beer every day, indicating a problem of alcoholism.

• Email behavior: An employer would be interested to know if employees send
out personal emails during office hours.

• Game strategy: If information about game strategy is obtained by the player’s
opponents, they might be analyzed to find weaknesses in player’s game and as a
result give an unfair advantage to the opponents.

• Programming style: Software metrics obtained from analysis of code may indi-
cate a poorly performing coder and as a result jeopardize the person’s employ-
ment.

Additionally, any of the motor-skill-based biometrics may reveal a physical hand-
icap of a person and so result in potential discrimination. Such biometrics as voice
can reveal emotions, and the face images may reveal information about emotions
and health [181]. Because behavioral biometric indirectly measures our thoughts
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Table 13.6 Recognition and error rates of behavioral biometrics [32]

Behavioral Biometric Publication Detection Rate FAR FRR EER

Biometric Sketch Bromme 2003 [40] 7.2%

Blinking Westeyn 2004 [44] 82.02%

Calling Behavior Fawcett 1997 [47] 92.5%

Car driving style Erdogan 2005 [175] 88.25% 4.0%

Command Line Lexicon Marin 2001 [176] 74.4% 33.5%

Credit Card Use Brause 1999 [56] 99.995% 20%

Email Behavior de Vel 2001 [64] 90.5%

Gait/Stride Kale 2004 [77] 90%

Game Strategy Yampolskiy 2007 [83] 7.0%

Handgrip Veldhuis 2004 [88] 1.8%

Haptic Orozco 2006 [90] 25% 22.3%

Keystroke Dynamics Bergadano 2002 [177] 0.01% 4%

Lip Movement Mok 2004 [103] 2.17%

Mouse Dynamics Pusara 2004 [23] 0.43% 1.75%

Programming Style Frantzeskou 2004 [178] 73%

Signature Jain 2002 [111] 1.6% 2.8%

Handwriting Zhu 2000 [121] 95.7%

Tapping Henderson 2001 [127] 2.3%

Text Authorship Halteren 2004 [129] 0.2% 0.0%

Voice/Speech Colombi 1996 [179] 0.28%

Singing Tsai 2006 [180] 29.6%

Table 13.7 Accuracy rates for new biometric modalities previously not reviewed

Behavioral Biometric Publication Detection Rate FAR FRR EER

Center of Gravity [52] 50% 18%

Finger Pressure [65] 99% 1%

Floor Pressure [66] 92.3% 6.79%

Gaze/Eye Tracking [75, 76] 100%

Human Shadows [92, 93] 90%

Motion of Fingers [108] 97%

Short Term Memory [122, 123] 90% 0.52% 26.14%

Visual Scan/Search [122, 123] 3.88%

and personal traits any data collected in the process of generation of a behavioral
profile need to be safely stored in an encrypted form.
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13.5 Summary

This chapter presented an overview and classification of security approaches based
on computer analysis of human behavior. In particular the following broad cate-
gories of behavior-based authentication mechanisms were examined: Behavioral
Biometrics (Authorship based, Human Computer Interaction Based, Motor Skill,
and Purely Behavioral), Behavioral Passwords (syntactic, semantic, one-time meth-
ods and visual memory based), Biosignals (Cognitive and semi-controllable biomet-
rics) and Virtual Biometrics (representations of users in virtual worlds).

We have presented only the most popular behavioral biometrics, but any human
behavior can be used as a basis for personal profiling and for subsequent verifica-
tion. Some behavioral biometrics, which are quickly gaining ground, but are not a
part of this chapter include profiling of shopping behavior based on market basked
analysis [182], web browsing and click-stream profiling [183–185], and even TV
preferences [186]. To make it easier to recognize newly proposed approaches as be-
havioral biometrics, we propose a definition of what properties constitute a behav-
ioral biometric characteristic. We define a behavioral biometric as any quantifiable
actions of a person. Such actions may not be unique to the person and may take a
different amount of time to be exhibited by different individuals.

Behavioral biometrics are particularly well suited for verification of users, who
interact with computers, cell phones, smart cars, or points of sale terminals. As
the number of electronic appliances used in homes and offices increases, so does
the potential for utilization of this novel and promising technology. Future research
should be directed at increasing overall accuracy of such systems, for example by
looking into possibility of developing multimodal behavioral biometrics, as people
often engage in multiple behaviors at the same time, for example, talking on a cell
phone while driving, or using keyboard and mouse at the same time [187–189].

Fields as diverse as marketing, game theory, security and law enforcement all
can greatly benefit from accurate modeling of human behavior. One of the aims of
this chapter was to show that the problem at hand is not unique to any given field
and that a solution found once might benefit many industries without a need for
re-discovering it for each subfield.

Because many of the presented technologies represent behavioral biometrics
which are not strong enough to serve as a backbone of a complete security sys-
tem on their own, we suggest that a lot of research in behavioral biometrics be
geared toward multimodal behavioral biometrics. Successful research in this area
would allow for development of systems with accuracy levels sufficient not just for
identity verification, but also for person identification obtained as a result of com-
bining different behaviors. Breakthroughs in purely behavioral biometrics research
will also undoubtedly lead to improvements in associated applications such as prod-
uct customization, development of tailored opponents in games as well as multitude
of competency assessment tools.

Future of behavioral research looks very bright. The next decade will bring us
technologies providing unprecedented level of security, product customization, so-
cial compatibility and work efficiency. Ideas presented in the section on novel be-
havioral biometrics provide a wealth of opportunities for interesting research and
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development. A great side effect of such research would be general greater under-
standing of human behavior, personality and perhaps human mind itself.

13.6 Questions

(1) Describe different authentication mechanism categories presented in the chap-
ter.

(2) Which behaviors tend to have the highest degree of uniqueness leading to better
authentication accuracies?

(3) List behavioral biometrics classified in multiple categories and explain under-
lining reasons for that.

(4) What are the issues of concern with use of biometrics based on analysis of
human behavior?

(5) If you were designing a behavioral biometric-based security system, which be-
havior would you select and why?

13.7 Glossary

• Acceptability: Willingness of people to utilize a biometric modality.
• Authentication: The act of confirming identity.
• Biometric: Intrinsic physical or behavioral characteristic.
• Behavioral Biometric: Biometric based on the behavior of a person.
• Circumvention: A way to bypass biometric authentication.
• Collectability: Easy acquisition of biometric data.
• FAR: False Accept Rate, the likelihood that the biometric system will incorrectly

match an individual to the wrong template in the database
• FRR: False Reject Rate, the likelihood that the biometric system will fail to detect

a match between a person and the correct template in the database.
• Feature: A distinguishing characteristic of a pattern.
• Performance: Accuracy, speed, and robustness of the biometric algorithm.
• Permanence: Invariance of a biometric trait with respect to time.
• Recognition: Identification of an individual from a list of known users.
• Uniqueness: Discriminative ability of a biometric modality.
• Verification: Confirmation used to verify that the individual is who he claims to

be.
• Universality: The need for universal availability of a biometric characteristic in

all individuals.
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Chapter 14
Human Behavior Analysis in Ambient Gaming
and Playful Interaction

Ben A.M. Schouten, Rob Tieben, Antoine van de Ven, and David W. Schouten

14.1 Introduction

Game developers are not primarily driven by technology. The main driver for game
developments is the gameplay itself. Gameplay refers to the overall game experi-
ence or the essence of the game itself. There is some confusion as to the difference
between game mechanics and gameplay. Game mechanics is a construct of rules
(not necessarily computable rules), introduced to produce an enjoyable game. For
some, gameplay is nothing more than the set of game mechanics. For others, game-
play determines the overall characteristics of the game itself, which is partly in the
perception of the game player.

Before we begin our survey, it is important to also underline the importance of
game design, an issue which is beyond the scope of this chapter. To illustrate, take
a simple puzzle game, where one does not need advanced input possibilities, or
realistic feedback. In a realistic and natural golf simulator, however, one cannot
truly experience a swing without advanced multi-modal input to measure the result,
or the feedback of force and wind during the swing.
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Fig. 14.1 From Pac-Man (1980) to Call-of-Duty (Black ops, 2010); from limited gameplay and
2D visualization to realistic gameplay and output

If we compare the historic game Pac-Man [44] with a modern game like Call-of-
Duty [12] (for PC, see Fig. 14.1), we can see obvious changes in visuals, gameplay,
level design, and so on. However, the interaction (input and output) is basically still
delivered in the same way, through a (physical) controller and a (video)screen.

Call of Duty was introduced on the PC, and later expanded to other consoles in
order to enhance the game experience and allow for a better and more natural in-
teraction to game action. These consoles allow advanced input (and limited output)
by controllers like gamepads, joysticks, steering wheels, trackballs, motion sensing
etc. Sometimes these controllers are equipped with LED lights or haptic or auditory
feedback or a rumble pak (to enable force feedback).

In the last decades, game developers have focused on creating more natural and
realistic gameplay, enabled by fast technological progress. This chapter focuses on
the technology; the design and development of games as enabled by this technol-
ogy is a different topic. In Sect. 14.2, we will present a brief history of games in
relation to computer analysis of human behavior. Section 14.3 will cover the input
modalities, the different ways in which players interact with the gaming systems.
In specific, we focus on the role of technology and computer analysis of behavior.
In Sect. 14.4, we cover the game experience (sensory output as well as perception)
of modern games, and the way in which human behavior analysis and technology
influence this experience. In addition, we show a trend toward games that include
principles from ambient technology, defined as ambient gaming.

We conclude this chapter with challenges and opportunities for human behavior
analysis in the near future, in relation to game development (Sect. 14.5).

14.2 History of Games

The predecessor of all console game genres is considered to be the ball-and-paddle
game, called Pong [50]. In 1973, after the success of the original PONG coin-op, an
Atari engineer by the name of Harold Lee came up with the idea of a home PONG
unit. Pong could be played on your home television set. Many of the concepts from
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arcade video games were ported by Atari to different consoles, creating a mass
market. The Atari 2600 [7], released in 1977, is the first successful video game
console to use plug-in cartridges instead of having one or more games built in.

Almost all the earliest video games were action games. Space Invaders [58] from
1978, Asteroids [6] from 1979, and Pac-Man [44] from 1980 are some of the earliest
video games, and have since become iconic examples from the action genre.

Donkey Kong [16], an arcade game created by Nintendo, released in July 1981,
was the first game that allowed players to jump over obstacles and across gaps,
making it the first true platformer.1 This game also introduced Mario [37], an icon
of the genre. Donkey Kong was ported to many consoles and computers at the time,
and the title helped to cement Nintendo’s position as an important name in the video
game industry internationally.

Mario also paved the way to more advanced forms of interaction and ludic
activity. Role-playing video games (RPG) draw their gameplay from traditional
role-playing games like Dungeons & Dragons [18]. Most of these games cast the
player in the role of one or more ‘adventurers’ who specialize in specific skill
sets (such as melee combat or casting magic spells) while progressing through
a pre-determined storyline. Massively multiplayer online role-playing games, or
MMORPGs, emerged in the mid to late 1990s as a commercial, graphical vari-
ant of text-based MUDs (multiplayer real-time virtual world described primarily
in text) which had existed since 1978. By and large, MMORPGs feature the usual
RPG objectives of completing quests and strengthening one’s player character, but
involve up to hundreds of players interacting with each other on the same persis-
tent world in real-time. The massively multiplayer concept was quickly combined
with other genres. Fantasy MMORPGs like The Lord of the Rings Online: Shad-
ows of Angmar [35], remain the most popular type, with the most popular ‘pay-to-
play’ game being World of Warcraft [63] (by Blizzard) which holds over 60% of
the MMORPG market, and the most popular free game, RuneScape [52], by JaGex
Studios, yet other types of MMORPG are appearing. Other massively multiplayer
online games which do not have a conventional RPG setting such as Second Life [55]
may still sometimes be classed as RPGs.

To support these trends in contemporary gaming, recently we see a shift from ad-
vanced computer graphics to better interaction based on sensory input, the integra-
tion of different modalities, tangible computing and the analysis of human behavior.

Tangible computing [17] is an area of Human–Computer Interaction (HCI) re-
search in which people are exploring how we can move the interface ‘off the screen’
and into the real world. The objective is to interact with physical objects, which have
become augmented with computational abilities. This lets designers offer new sorts
of interactions, or take advantage of our physical skills (like being able to use two
hands, or to rearrange space to suit our needs), or even to directly observe and re-
spond to our physical activities in the world (perhaps by knowing where we are and

1The platform game (or platformer) is a video game genre characterized by requiring the player to
jump to and from suspended platforms or over obstacles (jumping puzzles).
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who we are with, and responding appropriately). In the next section we will see
some examples.

Despite all these (conceptual) trends, it is important to say that human behavior
analysis for gaming, as a technology, is still in its early years. Most of the applica-
tions limit themselves to simple (biometrical) recognition, enabling the user to shift
away from the traditional input devices and allowing to be tracked and traced. More
advanced features as emotion or activity recognition are still in the research domain.
We will discuss some of these challenges at the end of this chapter.

14.3 The Gamer Put into Action

A game controller is a device used in games or entertainment systems to control a
playable character or object, or otherwise interact in a computer game. A controller
is typically connected to a game console or computer by means of a wire, cord or
nowadays, by means of wireless connection [59].

Controllers vary from keyboards and joysticks to light guns and physical objects.
The input to a game console can vary from simply (pushing) a button, to rich multi-
modal interaction from distributed intelligent environments equipped with sensors.
We like to distinguish between several categories of input:

1. Direct Input. Controllers to activate commands and other in-game actions.
2. Audio-visual based input. Cameras and microphones to detect & recognize ac-

tions.
3. Input provided by other (physiological) sensors and wearables.

In most of the games we play, input is provided to a device (controller) that is con-
nected directly to a game console; the player activates a signal through a controller
or other instrument (e.g. mouse & keyboard), and this is metaphorically mapped
on a specific input for game action. The most well known solution to this problem
(metaphor) is of course the left–right (or a–d) buttons or up–down (or w–s) buttons,
which are used for in-game navigation. Adjacent buttons (like q and e) are used for
special actions such as to jump or crouch. Moreover, consoles can have joysticks to
navigate, d-pads and other (action) buttons for shooting etc.

To enable natural interaction, it is important to create a natural mapping from
input device into action. As an example a steering wheel (Fig. 14.2) is better used
to replace a button input in a racing game, or a real bike in order to achieve the need
for speed to climb a virtual mountain hill.

14.3.1 More Advanced Interaction: Audiovisual Based Input

To allow some freedom in interaction, not limited to display and keyboard, artists
and designers in the mid-1990s created interactive play environments, based on the
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Fig. 14.2 Different Input Devices: SNES controller [56] with d-pad and buttons; GT Steering
Wheel [28] with pedals and wheel; Exerbike [20] with cycling on a bike

Fig. 14.3 Three types of visual based input: Daisies (2005) [15], an interactive installation where
daisies are projected and die if occluded; EyeToy Play 3 (2005) [21], where player movements
result in game character actions; and Xbox Kinect (2010) [39] where full motion recognition is
used in a variety of games

projections of video images and interactive sounds. The human–computer interac-
tion was based on simple computer vision algorithms, like in Daisies, by Theodore
Watson [15], see Fig. 14.3. In this interactive installation, daisies are projected on a
floor; cheerful music can be heard. If the projection on the floor is blocked by human
appearance, for instance by somebody dancing on the music, daisies will disappear
(as if they die) around the body of the user and new daisies will grow, when the
projection is restored. A good and simple example of experience design; children
loved it and were excited as if they were dancing through a ‘real’ flowerbed.

In modern game design, due to the progress in scientific research (computer vi-
sion) as well as the lowering prices of capturing devices and sensors, direct input
can be enriched with audiovisual modalities. These mainly audiovisual signals are
captured and analyzed to detect humans and recognize activities and objects. Com-
mon technologies vary from relatively simple edge detection and color tracking in
Sony’s EyeToy [21], to gesture recognition, facial recognition, head tracking, voice
and speech recognition in the Xbox Kinect [39], see Fig. 14.3. In more recent con-
soles, advanced technologies are used such as fingerprint recognition in the Mi-
crosoft Surface Tabletop System [38], which allow multi-user tangible interaction.

In the new Kinect [39] for Xbox 360 games, see Fig. 14.3, objects can be scanned
and put into virtual action. Microsoft’s Kinect (earlier named as project Natal) is
based on software technology developed internally by Rare, a subsidiary of Mi-
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crosoft Game Studios and range camera technology by Israeli developer Prime-
Sense, which interprets 3D scene information from a continuously projected infrared
structured light. The Kinect sensor is a horizontal bar connected to a small base with
a motorized pivot and is designed to be positioned lengthwise above or below the
video display. The device features a ‘RGB camera, depth sensor and multi-array
microphone running proprietary software’ [61] which provide full-body 3D motion
capture, facial recognition and voice recognition capabilities. The depth sensor has
a fixture that emits structured infrared light and by analyzing the distortions on the
sensed patterns, a 3D image of the user and his environment is constructed (depth
map). According to information supplied to retailers, the Kinect is capable of simul-
taneously tracking up to six people, including two active players for motion analy-
sis with a feature extraction of 20 joints per player. The sensing range of the depth
sensor is limited but adjustable, with the Kinect software capable of automatically
calibrating the sensor based on gameplay and the player’s physical environment,
such as the presence of furniture.

The software technology enables advanced 3D view independent gesture recog-
nition based on a patented algorithm from a company called Canesta [26], which is
acquired by Microsoft. Three-dimensional position information is used to identify
the gesture created by a body part of interest. At one or more instances of an inter-
val, the posture of a body part is recognized, based on the shape of the body part
and its position and orientation. The posture of the body part over each of the one
or more instances in the interval are recognized as a combined gesture. The gesture
is then classified for determining an input into a related electronic device.

Face tracking and facial expression recognition are based on 3D deformable face
models and a support vector machine classifier [26]. Voice recognition is supported
only in a few countries like the US, UK, Mexico and Japan. The Kinect sensor’s
microphone array enables the Xbox 360 to conduct acoustic source localization
and ambient noise suppression, allowing for things such as headset-free party chat
over Xbox Live. The first official games that are supported by the Kinect are Fa-
ble III [23] and Ghost Recon: Future Soldier [25].

More novel are the developments in entertainment robots. NAO [27] is an au-
tonomous and interactive humanoid robot developed by Aldebaran Robotics that is
completely programmable. NAO replaced the robot dog Aibo by Sony as the robot
used in the Robocup (‘Robot Soccer World Cup’) Standard Platform League (SPL),
an international robotics competition. It is currently the most-sold humanoid re-
search and educational robot in the world.

NAO’s vision is provided by two CMOS 640 × 480 cameras, which can capture
up to 30 images per second. Algorithms in its on-board computer can detect and
track faces and shapes to be able to recognize and follow the person talking to it, to
find a ball or more complex objects. NAO’s SDK makes it possible to program and
apply many different possible behaviors and computer vision algorithms which can
run on a remote computer, by interfacing with OpenCV (the Open Source Computer
Vision library initially developed by Intel) for computer vision.

NAO uses the Haar Feature-based Cascade Classifier for Object Detection [34],
eigenfaces for face recognition [62], and the Continuously Adaptive Mean-Shift
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Fig. 14.4 Different types of audio based input: Rockband 3 (2010) [51] measures changes in pitch
and length of silences; Nintendogs (2005) [43] can be trained to recognize certain words; and Aibo
(1999) [2] responds to voice commands and can learn to recognize it’s own name as well as its
owner’s name

(Camshift) algorithm [9] for face tracking, as well as other methods [9]. Through
different software platforms, one is able to implement navigation algorithms like Vi-
sual SLAM (Visual Simultaneous Localization and Mapping) [33] and to use speech
recognition based on Hidden Markov Models (HMM) [32]. The robot can be pro-
grammed to retrieve and express emotions in social games [36]. It has 25 degrees of
freedom, including functional hands that can pick up and grasp objects, an inertial
sensor, two speakers, four microphones, sonars to detect obstacles and touch-sensors
to detect touch. It can express itself by movements, gestures and multicolor LEDs
in its eyes and on its body. Other platforms with audio input are exemplified in
Fig. 14.4.

14.3.2 Other (Physiological) Sensors and Wearables

Games in this category measure physiological behavior and other characteristics
of the human body. Several gaming applications analyze brain activity, heart rate
(ECG, EEG, EMG, HEG), respiration (GSR), temperature, iris activity, or glucose
blood levels (see Fig. 14.5).

For example, The Journey to Wild Divine [31] measures skin conductance level
and heart rate variability, translating this to stress and pathologic conditions used in
an adventure game. Its controller is a USB-based biofeedback device, which can be
used with other biofeedback programs. Brainball [10] uses EEG sensors to measure
brain activity, and translates this into a competition between two players: the higher
the brain activity, the further the ball is pushed away.

Emotiv [19] provides a head set with a series of sensors and integrated algorithms,
resulting in an API with three types of measurements. First of all, there is facial
expression recognition, by mapping muscle EEG measurements to a human face
model. Second, emotional state is detected by recognizing active EEG brain activity
clusters. Last but not least, EEG is used to train and recognize thought patterns,
which can be mapped to game actions.

In addition to physiological input, wearable sensors are often equipped to the
player: either attached to the user’s body or clothing, or carried in a device such as a
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Fig. 14.5 Different physiological input devices: the Wild Divine (2001) [31] USB biofeedback
hardware; the Brainball (2000) [10] EEG installation; and the Emotiv (2010) [19] wireless headset
with advanced EEG measurements

mobile telephone. Sensors commonly used for this sort of measurements are inertia
sensors (accelerometers, gyroscopes, magnetometers), location sensors (GPS, prox-
imity sensors), mini-cameras and muscle tension detectors. The Wii Remote [42] al-
lows the user to interact with and manipulate items on screen via gesture recognition
and pointing through the use of accelerometer and optical sensor technology. The
movements of the controller result in similar movements in the game; e.g. swinging
the controller results in a swing of a golf club.

The Pokéwalker [49] is a device that connects to the Pokémon [48] games, a
pedometer (stepping counter) that measures the player’s physical activity. For every
step, the Pokémon in the game gains experience points and the player earns ‘watts’,
which can be exchanged for in-game items.

The widespread availability of accelerometer sensors and gyroscopes in mobile
phones has also introduced new categories of gaming. The iPhone and iPad for
instance are equipped with proximity, motion and acceleration sensors, as well as
ambient light sensors which automatically adjust the brightness of the screen in
order to conserve battery life [4]. The iPhone 4 adds another sensor: a three-axis
gyroscope. When combining the gyroscope with the accelerometer, this gives the
iPhone 4 six axes on which it can operate. This is designed to make the iPhone 4
more sensitive and responsive [5]. Brothers In Arms 2: Global Front [11], is a first
person shooter game which is situated in a Second World War setting and allows
gyroscopic 3D control. One of the most eye catching games is IThrown [30]. It uses
the iPhone’s built in accelerometer to measure your virtual throw and how far the
phone would have flown if you actually have let it go (see Fig. 14.6).

At the end of this section, based on the analysis described above, we would like to
provide the reader with an overview of games used in this chapter including the type
of sensors used as input, as well as the enabled game-actions and the corresponding
measured human behavior in Fig. 14.7.

14.4 Game Experience and Human Behavior Analysis

In the previous sections we mainly focused on how a game can be put into action
through the input of the user. In this section we want to elaborate on the game expe-
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Fig. 14.6 Different types of wearables: Wii Remote (2006) [42], which measures movements
using acceleration sensors; Pokéwalker (2010) [49], which measures physical steps using a pe-
dometer; and IThrown (2008) [30], which uses the iPhone’s accelerometer to measure your virtual
throwing distance

rience, which relies in modern games mainly on high definition graphics and other
audio-visual output. Sound (-tracks) are often used to enhance the gameplay, some-
times supported by force-feedback (vibrating controller to imitate tactile feedback
when e.g. shooting a gun).

However, in recent years, new forms of gaming (experience) and playful inter-
action have emerged. The interaction can be in the real world (e.g. through play-
objects) but also in hybrid environments. With the availability of cheap sensors
and system architectures, like Arduino, which allows for human interaction with
physical objects, games tend to shift away from the computer. The movie Minority
Report [41] is an example for the vision of how human–computer interaction will
eventually be more natural (using less devices, interaction through natural objects
and actions).

As an example, we like to mention the ColourFlare [8], which is an object that
can be carried in one hand, which changes color when rolled, and which starts blink-
ing when shaken (see Fig. 14.8). When it blinks, it can send its color to other objects
in the neighborhood using infra-red technology. The ColourFlare allows children to
use their creativity to make their own games (open-ended play) in which they allo-
cate meaning to the behavior of the object when shaken and rolled. Children will
have to discuss ideas for game goals and rules, and thus also practice their social
interaction and negotiating skills.

Mark Eyles [22] mentions the class of games labeled pervasive/ambient games
allowing the player to act freely in everyday locations while playing. In addition and
according to the properties of Ambient Intelligence [1], some new qualities for an
enriched game experience can be derived:

1. context-aware: (game) devices can recognize you and your situational context
2. personalized: the functionality is tailored to your needs and preferences (short

timescale, e.g. installing personal settings)
3. adaptive: the system can change/adapt in response to you and your environment

(adjustments resulting from longer monitoring)
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Fig. 14.8 ColourFlares [8], interactive objects that elicit open-ended playful interaction by chang-
ing colors when they are rolled and shaken

Fig. 14.9 High-definition output: AmBX (2005) [3] enriches games with visual effects and tactile
feedback; Pandadroom (2002) [45] allows visitors to experience a 4D experience with 3D glasses,
vibrating chairs, and water spraying

As an example, in the AmBX [3] system from Philips (see Fig. 14.9), visual ef-
fects and tactile feedback (vibration and wind effects) are added to the gaming expe-
rience, by responding to certain game events. AmBX code acts as a conversion mid-
dleware (sitting between source and output device) that takes generic or specifically
scripted (via AmBX SDK) input signals from video, audio, PC or media content,
then outputs it to suitable hardware such as LED lights, rumble boxes or similar
devices via cable or wireless, subject to hardware. In the theme-park 4D theatre
Pandadroom [45], 3D effects, force-feedback chairs, and water spraying make the
experience multi-modal and more intense.

One example in which the console is partly context-aware and adaptive, is the
CAVE Automatic Virtual Environment [13] (see Fig. 14.10). In this application, the
environment is projected on all walls and the ceiling of a room, creating a three-
dimensional effect—for example from the Unreal Tournament world. Using the
headset, the position and the direction of the user’s head are detected, and the output
is adapted to the user’s perspective. The output is thus, among others, dependent on
the height of the user.

A more recent example of context-awareness and personalization is the Kinect
Avatar [40]: the Kinect system recognizes a player, loads a profile with settings, and
creates a matching avatar. Technologies such as face recognition, expression anal-
ysis, speech recognition and other motion recognition translate the player’s move-
ment into a personal Avatar (see Fig. 14.10). In addition, the Kinect uses a com-
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Fig. 14.10 CAVE (1992) [13] adapts its output to the perspective of the player; Kinect Avatar
(2011) [40] recognizes the player, and personalizes the gaming experience

Fig. 14.11 Pervasive and locative games: Geocaching (2000) [24], finding hidden caches through-
out the world using GPS; Parallel Kingdoms (2010) [46], conquering areas depending on your
physical location; and Head Up Games (2010) [57], playing games depending on your proximity
to other players and game objects

bination of context-awareness and adaptation to setup the sound output: a special
learning algorithm adapts the sound output to the physical characteristics of the
room, including the position of the players and objects.

Pervasive and locative games are another example of games that use aspects from
ambient intelligence. These games blend the virtual and real world and are interacted
through multiple ubiquitous devices. A location-based game (or location-enabled
game) is one in which the gameplay evolves and progresses through a player’s lo-
cation. Thus, location-based games almost always support some kind of localiza-
tion technology, for example by using satellite positioning (GPS). Current research
trends use other embedded mobile protocols like Near Field Communication and
Ultra Wide Band Wireless (UWB).

Urban gaming or Street Games are typically multi-player, location-based games.
The playground is the city itself. An example of such a pervasive game is Geo-
caching [24], treasure hunting with the help of GPS, a popular activity in which
players search hidden caches around the world (see Fig. 14.11). The caches and puz-
zles have been created by other players. In Parallel Kingdom [46], players use their
location-aware telephone to conquer different areas of the map. The playground is
the current real-world location of the players, moreover its location is constantly
changing by players that travel around in the real world. In a recent publication,
Soute and Markopoulos used the notion of Head Up Games [57], because children
can play these games without having to focus on a screen or other device, using
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wearable sensors and actuators. The technology is used to support the playful inter-
action. Gameplay is more open-ended, rules originate from the players themselves.

14.5 Summary

In this chapter we showed some new developments in game design and technology.
Inspired by ambient intelligence [53, 60], ambient gaming will become context-
aware, adaptive, personalized and anticipatory. Games will be developed that allow
us to interact freely, not depending on a central computer but supported by sensors
embedded in play objects and toys. Also gaming will be more playful, open ended
such that rules can easily be altered and be supportive to other activities. Hybrid
graphical environments and other actuators will enrich the game experience.

In serious game design, another aspect can be added to the notion of ambient
gaming. Schouten [54] envisions gaming in a context in which they are a part of
everyday activities; a playful approach in which games are not always ‘present’, but
can be called upon when necessary as part of existing applications in learning, social
networks, health care etc. Besides real-time analysis of behaviors, this requires a
social intelligence in game design and will lead to games that are embedded in
systems of social meaning; fluid and negotiated between us and the other people
around us (an early example is Cityville [14] in Facebook). In this way game design
focuses on interactive products as creators, facilitators and mediators of experiences.
Experience comprises of perception, action, motivation and cognition [29].

In general we can say that computer enabled human behavior analysis can play
an important role in two main areas.

1. Physiological behavior, activities and human events. Human behavior analysis
can play an important role in gaming experiences on a physiological level. For
instance, games can be used for rehabilitation of injured medical patients or the
disabled. But also in learning or training activities for sport and similar other
activities, feedback through games could improve results. For the elderly, an ac-
tivity program based on their personal capabilities could improve the quality of
life.

2. Psychological and social behavior. If computers can measure the emotions and
expressions of the player(s), then games can adapt to playing styles and maxi-
mize the gaming experience. Imagine a gaming character interacting in a specific
way to a calm couch-hanging player, or to a group of excited friends. On a per-
sonal level, if the gaming experience can adapt itself to the emotional state of the
player, e.g. to the arousal level, then the immersion and in-the-flow level can be
optimized. Furthermore, one can imagine focus recognition, as is suggested by
Peters and Itti [47], to respond to the point of the player’s attention; for instance
creating an enemy at the spot where the user is not paying attention to. If the
player always acts in a certain way, the game can predict or alter this.

In short game design and playful interaction are among the first application areas
which will benefit from new developments in computer analysis of human behavior.
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Other application areas will follow like health care or education, where results are
more critical. Such technologies will play an important role to make games even
more exciting.

14.6 Glossary

• Adaptive systems: Systems that can change/adapt in response to the user and
his/her environment (adjustments resulting from longer monitoring)

• Ambient gaming: Games that are context-aware, adaptive, personalized and an-
ticipatory

• Ambient intelligence: Vision on technological development, in which systems are
distributed, context-aware, adaptive, personalized and anticipatory

• Arduino: Easy-to-use open-source microcontroller system
• Context-aware: Characteristic of a system that can recognize you and your situa-

tional context
• Depth map: An image of the user and his/her environment that contains informa-

tion related to the distance of the surfaces from a viewpoint
• Distributed intelligent environment: Environment with embedded sensors and ac-

tuators, that responds to user actions in an adaptive, anticipatory and personalised
way

• Game controller: A device used in games or entertainment systems to control a
playable character or object, or otherwise interact in a computer game

• Game mechanics: A construct of rules (not necessarily computable rules), intro-
duced to produce an enjoyable game

• Gameplay: The overall game experience or essence of the game itself
• Humanoid robot: Robot with human-like attributes or characteristics
• Locative games: Games that take place between physical locations, or that can be

played in any location
• Multi-player location-based game: Game in which groups of users play through

physically moving to different locations
• Open-ended play: Play that is not fully determined by rules, but allows the adap-

tion of existing, and creation of new rules
• Personalized systems: Systems that tailor the functionality to your needs and pref-

erences (short timescale, e.g. installing personal settings)
• Pervasive games: Games that are integrated in the physical space
• Platformer: A video game genre characterized by requiring the player to jump to

and from suspended platforms or over obstacles
• Role-playing video games: Video games in which the player plays the role of a

certain character, and develops this character by making game decisions
• Social games: Games that are based on social interaction, and utilize social char-

acteristics, often found on profile sites such as Facebook
• Tactile: Designed to be perceived by touch; feedback that one can feel
• Tangible computing: An area of Human–Computer Interaction research in which

people are exploring how we can move the interface ‘off the screen’ and into the
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real world. The objective is to interact with physical objects which have become
augmented with computational abilities

• Urban gaming: Gaming that takes place in an urban environment, e.g. throughout
a city
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