

Page iii

Cognitive Carpentry:
A Blueprint for How to Build a Person

John L. Pollock

A Bradford Book
The MIT Press

Cambridge, Massachusetts
London, England

© 1995 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including
photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Pollock, John L.
Cognitive carpentry: a blueprint for how to build a person / John L. Pollock.
p. cm.
"A Bradford book."
Includes bibliographical references and index.
ISBN 0-262-161524 (alk. paper)
1. Reasoning. 2. Cognition. 3. OSCAR (Computer file) 4. Pollock, John L. How to
build a person. 5. Artificial intelligence—Philosophy. 6. Machine learning. I. Title.
BC177.P599 1995
006.3'3—dc20 9448106

CIP

For Cynthia—
the mother of OSCAR

Contents

Preface xi

1 Rational Agents

1. Two Concepts of Rationality 1

2. The Goal of Rationality 6

3. Precursors of Rationality 8

4. Mechanisms of Cognition 9

5. The Logical Structure of Practical Rationality 12

6. An Overview of Practical Rationality 32

7. Interfacing Epistemic and Practical Cognition 36

8. Reasons, Arguments, and Defeasibility 38

9. Reflexive Cognition 43

10. Interest-Driven Reasoning 46

11. The Project 49

2 Epistemology from the Design Stance

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_xi.html#JUMPDEST_Page_xi
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_6.html#JUMPDEST_Page_6
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_12.html#JUMPDEST_Page_12
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_49.html#JUMPDEST_Page_49

1. Epistemology and Cognition 51

2. Perception 52

3. Justification and Warrant 58

4. The Statistical Syllogism 59

5. Generalizations of the Statistical Syllogism 67

6. Direct Inference and Definite Probabilities 72

7. Induction 77

8. Other Topics 83

3 The Structure of Defeasible Reasoning

1. Reasons and Defeaters 85

2. Arguments and Inference Graphs 86

3. Defeat among Inferences—Uniform Reasons 91

Page viii

4. Taking Strength Seriously 93

5. Other Nonmonotonic Formalisms 104

6. Computing Defeat Status 109

7. Self-defeating Arguments 115

8. A New Approach 120

9. The Paradox of the Preface 125

10. Justification and Warrant 132

11. Logical Properties of Ideal Warrant 138

12. Conclusions 140

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_51.html#JUMPDEST_Page_51
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_59.html#JUMPDEST_Page_59
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_72.html#JUMPDEST_Page_72
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_83.html#JUMPDEST_Page_83
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_86.html#JUMPDEST_Page_86
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_104.html#JUMPDEST_Page_104
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_115.html#JUMPDEST_Page_115
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_120.html#JUMPDEST_Page_120
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_132.html#JUMPDEST_Page_132
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_138.html#JUMPDEST_Page_138
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_140.html#JUMPDEST_Page_140

4 An Architecture for Epistemic Cognition

1. Criteria of Adequacy for a Defeasible Reasoner 141

2. Building a Defeasible Reasoner 147

3. The Possibility of a D.E.-Adequate Reasoner 149

4. An Interest-Driven Monotonic Reasoner 151

5. An Interest-Driven Defeasible Reasoner 162

6. An Architecture for Epistemic Cognition 166

7. Conclusions 170

5 Plan-Based Practical Reasoning

1. Practical Cognition 175

2. The Inadequacy of the Decision-Theoretic Model 179

3. Integrating Plans into the Decision-Theoretic Model 184

4. Warrant versus Reasoning 199

5. Resurrecting Classical Decision Theory 203

6. Simplifying the Decision Problem 205

7. Conclusions 212

6 The Logical Structure of Plans

1. Plans, Desires, and Operations 213

2. Plans as Programs 217

3. Plans as Graphs 221

4. The Expected-Value of a Plan 229

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_147.html#JUMPDEST_Page_147
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_149.html#JUMPDEST_Page_149
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_170.html#JUMPDEST_Page_170
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_184.html#JUMPDEST_Page_184
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_212.html#JUMPDEST_Page_212
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_229.html#JUMPDEST_Page_229

Page ix

7 An Architecture for Planning

1. Practical Reasoning 235

2. Planning 237

3. Scheduling 241

4. The PLANNING-INITIATOR 244

5. Complex Desires 251

6. The PLAN-SYNTHESIZER 259

7. The PLAN-UPDATER 265

8. An Architecture for Planning 275

9. The Doxastification of Planning 277

8 Acting

1. Reactive Agents and Planning Agents 289

2. The PLAN-EXECUTOR 290

3. The ACTION-INITIATOR 296

9 OSCAR

1. Constructing an Artilect 299

2. The General Architecture 305

3. Examples 327

4. The Status of the OSCAR Project 358

References 363

Index 373

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_244.html#JUMPDEST_Page_244
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_259.html#JUMPDEST_Page_259
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_275.html#JUMPDEST_Page_275
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_277.html#JUMPDEST_Page_277
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_296.html#JUMPDEST_Page_296
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_299.html#JUMPDEST_Page_299
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_327.html#JUMPDEST_Page_327
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_358.html#JUMPDEST_Page_358
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_363.html#JUMPDEST_Page_363
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_373.html#JUMPDEST_Page_373

Page xi

Preface

OSCAR is an architecture for an autonomous rational agent; it is the first such architecture capable of sophisticated rational
thought. This book presents the theory underlying OSCAR and gives a brief description of the actual construction of OSCAR. That
construction is presented in full detail in The OSCAR Manual, available, with the LISP code for OSCAR, by anonymous FTP from
aruba.ccit.arizona.edu, in the directory /pub/oscar. Help in obtaining the files or running OSCAR can be secured by sending an
email message to oscar-help@arizona.edu. The readers of this book are encouraged to retrieve a copy of this material and
experiment with OSCAR. (For this purpose, access to a computer running Common LISP is required.)

It has long been my contention that work in artificial intelligence has made less progress than expected because it has been based
upon inadequate foundations. AI systems are supposed to behave rationally, but their creators have not generally come to the
problem equipped with an account of what it is to behave rationally. Progress in AI has been made by relying upon unformulated
intuitions about rationality, and they can carry us only so far. As the tasks required of a rational agent become more difficult, our
untutored intuitions become less clear and eventually fail us altogether. The foundation required for further progress is a
philosophical theory of rationality.

Philosophy has seen many theories of rationality. Perhaps most such theories are criticizable on grounds of computational
infeasability. If they constituted correct theories of rationality, then rationality would be impossible. But, I insist, rationality is not
impossible, because human beings are for the most part rational. I have defended this claim to some extent in How to Build a
Person, and a more extensive defense could be mounted by appealing to the account of rationality propounded in this book.

There are, of course, psychologists who claim to have shown that human beings are not rational. Although that claim still finds
favor in psychology, it has largely been repudiated in philosophy on the grounds that it is based upon an inadequate understanding
of what it is to be rational. For instance, some psychologists seem to think that the mere fact that a person has false beliefs (about,
for example, probability) and reasons in accordance with them shows him to be irrational. Once stated clearly, such a view
requires little refutation.

The implementability of a theory of rationality is a necessary condition for its correctness. This amounts to saying that philosophy
needs

Page xii

AI just as much as AI needs philosophy. A partial test of the correctness of a theory of rationality is that it can form the basis for an
autonomous rational agent, and to establish that conclusively, one must actually build an AI system implementing the theory. It
behooves philosophers to keep this in mind in when constructing their theories, because it takes little reflection to see that many
kinds of otherwise popular theories are not implementable.

OSCAR is based upon my own work in epistemology and practical reasoning. That work has evolved over the years, partly in
response to pressures from the desire to construct an implementable theory. The work has come to fruition in OSCAR, the first AI
system capable of performing reasoning that philosophers would regard as epistemologically sophisticated. It is to be emphasized
that OSCAR is an architecture for a rational agent, and not by itself a complete rational agent. OSCAR provides the framework for
cognition and the reasoning engine for a rational agent. To get this architecture to perform sophisticated cognitive tasks, it must be
given additional resources in the form of reason-schemas, Q&I modules (see chapter 1), and so forth.

The task of providing reason-schemas sufficient to allow OSCAR to perform various kinds of reasoning—for instance, perceptual
reasoning, inductive reasoning, probabilistic reasoning, or inference to the best explanation—is essentially the same task as the
traditional one of giving an epistemological analysis of such reasoning. One of the exciting features of OSCAR is that a user can
experiment with accounts of such reasoning without being a programmer. OSCAR is designed with a simple user interface that
allows a would-be cognitive carpenter to type in proposed reason-schemas in a simple format and then investigate how OSCAR
treats problems using those reasonschemas. Thus, if one accepts the general picture of rationality underlying OSCAR, one can use
OSCAR as an aid in investigating more specific aspects of rationality. In a somewhat different vein, there is also interdisciplinary
work underway at the University of Arizona to use OSCAR as the basis for a system of language processing. This work is being
performed jointly by cognitive psychologists, computational linguists, and philosophers.

OSCAR is based upon simple and familiar philosophical principles. Cognition is divided loosely into practical cognition and
epistemic cognition. Practical cognition aims at choosing plans for acting, and plans are compared in terms of their expected
values. Practical cognition presupposes epistemic cognition, which supplies the beliefs used by practical cognition in its search for
good plans. Epistemic cognition begins with perception (broadly construed) and forms further beliefs

Page xiii

through various forms of defeasible reasoning. The details of both the theory of defeasible reasoning and the theory of plan search
and plan selection are novel, but the general outline of the theory will be familiar to all philosophers.

OSCAR is not incompatible with most of the work that has been done in AI on problems like planning, automated theorem
proving, and probabilistic reasoning via Bayesian networks. Most of that work can be incorporated into OSCAR in the form of
Q&I modules or reason-schemas. OSCAR supplies a framework for integrating such work into a single architecture.

Much of the material presented in this book has been published, in preliminary form, in a other places, and I thank the publishers
of that material for allowing it to be reprinted here in modified form. Chapter 1 is based upon material originally published in
Cognitive Science ("The phylogeny of rationality") and The Journal of Experimental and Theoretical Al ("OSCAR: a general
theory of rationality"). Chapter 2 summarizes material from a number of my books on epistemology, the most noteworthy being
Contemporary Theories of Knowledge (Princeton) and Nomic Probability and the Foundations of Induction (Oxford). Chapter 3
presents the theory of defeasible reasoning developed in a series of earlier articles ("Defeasible reasoning'' in Cognitive Science,
"A theory of defeasible reasoning" in The International Journal of Intelligent Systems, "Self-defeating arguments" in Minds and
Machines, "How to reason defeasibly" in Artificial Intelligence, and "Justification and defeat" in Artificial Intelligence). Chapter 4
contains material from "How to reason defeasibly" and "Interest-driven suppositional reasoning" (The Journal of Automated
Reasoning). Chapter 5 is based upon "New foundations for practical reasoning" (Minds and Machines). Some of the material in
chapters 7 and 8 was published in "Practical Reasoning in OSCAR" (Philosophical Perspectives). Some of chapter 9 is taken from
"OSCAR—a general purpose defeasible reasoner" (Journal of Applied Non-Classical Logics). The rest of the material is seeing the
light of day for the first time in this book.

I also thank the University of Arizona for its steadfast support of my research, and Merrill Garrett in particular for his continued
enthusiasm for my work and the help he has provided in his role as Director of Cognitive Science at the University of Arizona. I
am indebted to numerous graduate students for their unstinting constructive criticism, and to my colleagues for their interactions
over the years. In the latter connection, I have profited more than I can say from years of discussion with Keith Lehrer.

Page 1

Chapter 1 Rational Agents

1. Two Concepts of Rationality

There are two ways of approaching the topic of rationality. The philosophical tradition has focused on human rationality. As
human beings, we assess our own thought and that of our compatriots as rational to varying degrees. In doing this, we apply
"standards of rationality", and our judgments appear to be normative. We compare how people think with how they should think.
Many philosophers have thus concluded that epistemology and the theory of practical rationality are normative disciplines-—they
concern how people should reason rather than how they do reason. But the source of such normativity becomes problematic. What
could make it the case that we should reason in a certain way?

I have proposed a naturalistic theory of epistemic norms [1986] that I now want to apply more generally to all of rationality. This
account begins with the observation that rules are often formulated in normative language, even when the rules are purely
descriptive. For example, in describing a physical system that has been built according to a certain design, we may observe that
whenever one state of the system occurs, another state "should" follow it. Thus, I might observe that when I turn the steering wheel
of my truck, it should change direction. The use of normative language reflects the fact that we are formulating rules governing the
operation of the system (functional descriptions, in the sense of my [1990]), but such functional descriptions do not formulate
invariant generalizations. These rules describe how the system "normally" functions, but it is also possible for the system to behave
abnormally. For instance, my truck may skid on an icy road, in which case it may fail to change direction despite my turning the
steering wheel. In a sense made precise in my [1990], functional descriptions are descriptions of how a system will function under
certain conditions, where these conditions are both common and stable.

Applying these observations to rationality, my proposal was that we know how to reason. In other words, we have procedural
knowledge for how to do this. As with any other procedural knowledge, we must make a competence/performance distinction.
Although we know

Page 2

how to do something, we may fail to do it in a way conforming to the rules describing our procedural knowledge. The most
familiar example in cognitive science is linguistic knowledge, but the same point applies to knowledge of how to reason. So my
proposal is that rules for rationality are descriptive of our procedural knowledge for how to reason (or perhaps more generally, for
how to think). The use of normative language in the formulation of these rules reflects no more than the fact that we do not always
act in accordance with our procedural knowledge.

An important fact about procedural knowledge is that although we are rarely in a position to articulate it precisely, we do have the
ability to judge whether, in a particular case, we are conforming to the rules describing that knowledge. Thus, in language
processing, although I cannot articulate the rules of my grammar, I can tell whether a particular utterance is grammatical.
Similarly, in swinging a golf club, although I may be unable to describe how to do it properly ("properly" meaning "in accordance
with the rules comprising my procedural knowledge"), I can nevertheless judge in particular cases that I am or am not doing it
properly. It just "feels right" or "feels wrong". And similarly, in reasoning, although we may be unable to articulate the rules for
reasoning with any precision, we can still recognize cases of good or bad reasoning. These "intuitive'' or "introspective" judgments
provide the data for constructing a theory about the content of the rules governing our reasoning. In this respect, the construction
of philosophical theories of reasoning is precisely parallel to the construction of linguistic theories of grammar. In each case, our
data are "intuitive", but the process of theory construction and confirmation is inductive, differing in no way from theory
construction and confirmation in any other science.

This account has the consequence that when we describe human rationality, we are describing contingent features of human beings
and so are really doing psychology by non-traditional means. The fact that we are employing non-traditional means rather than
conventional experimental methods does not seem to be particularly problematic. Again, compare linguistics. In principle,
standard psychological experimental methods are applicable in either case, but at this stage of investigation it is difficult to see
how to apply them. The only reasonably direct access we have to our norms is through our introspection of conformity or non-
conformity to the rules. We cannot simply investigate what people do when they reason, because people do not always reason
correctly. The current methodology of cognitive psychology is

Page 3

too blunt an instrument to be applied to this problem with much success. No doubt, this will eventually change, and when it does,
philosophers must be prepared to have one more field of inquiry pulled out from under their feet, but in the meantime standard
philosophical methodology is the best methodology we have for addressing these problems. 1

I have been urging that the task of eliciting the human norms for rationality is essentially a psychological one. However, this leads
to a perplexing observation. Some features of human rationality may be strongly motivated by general constraints imposed by the
design problem rationality is intended to solve, but other features may be quite idiosyncratic, reflecting rather arbitrary design
choices. This leads to an anthropocentric view of rationality. These idiosyncratic design features may prove to be of considerable
psychological interest, but they may be of less interest in understanding rationality per se.

These considerations suggest a second way of approaching the topic of rationality, which may ultimately prove more illuminating.
This is to approach it from the "design stance", to use Dennett's [1987] felicitous term. We can think of rationality as the solution
to certain design problems. I will argue that quite general features of these problems suffice to generate much of the structure of
rationality. General logical and feasibility constraints have the consequence that there is often only one obvious way of solving
certain design problems, and this is the course taken by human rationality.

Approaching rationality from the design stance is more common in artificial intelligence than it is in philosophy. This
methodology will suffice to generate much of the general architecture of rational thought, but as the account becomes increasingly
detailed, we will find ourselves making arbitrary design decisions or decisions based upon marginal comparisons of efficiency. At
that stage it becomes

1 Some psychological investigations of reasoning provide convincing evidence for conclusions about the rules governing human reasoning
competence. For example, I find the evidence that humans do not employ modus tollens as a primitive rule quite convincing [see Wason 1966
and Cheng and Holyoak 1985]). But most psychological work that aims to elicit the content of these rules is less convincing. For example,
most uses of protocol analysis assume that humans have access to what rules govern their reasoning, an assumption that seems obviously
wrong in the light of the difficulties philosophers have had in articulating those rules. See the discussion in Smith, Langston, and Nisbett
[1992]. Furthermore the results of protocol analysis often seem crude when compared to familiar philosophical theories about the structure of
particular kinds of reasoning.

Page 4

somewhat problematic just what our topic is. We can either take the traditional philosophical/psychological course and try to give
an accurate description of human cognition, or we can take the engineering approach of trying to describe some system or other
that will solve the design problem, without requiring that it be an exact model of human cognition. I find both approaches
interesting. My overarching goal in this book is to give a general description of rational thought applicable to all rational agents.
But a constraint on this enterprise must be that it is possible for a rational agent to function in the way described. The only way to
be certain that this constraint is satisfied is to provide a sufficiently precise and detailed account that it becomes possible to build
an agent implementing it. This book will attempt to provide large parts of such an account, although by no means all of it. No
claim will be made that the rational agent described is in every respect an accurate model of human rationality. On the other hand,
I will be guided in my theory construction by the general desire not to stray too far from the human exemplar, partly because I
want this theory to throw some light on why human cognition works in the way it does and partly because this is a good
engineering strategy. In trying to solve a design problem, it can be very useful to look at a functioning system that already solves
the problem, and in the case of rationality the only such system to which we currently have access is human beings.

To ensure that a rational agent could actually function in the way described, I will impose the general requirement on my theory
that it be implementable. The result of such implementation will be part of an artificial rational agent. In this connection, it is to be
emphasized that a rational agent consists of more than an intellect. It must also have a perceptual system, a system of extensors for
manipulating its environment, and, for many purposes, linguistic abilities. It is possible that linguistic abilities will come free given
the rest of the system, but the received view in contemporary linguistics is that language requires special subsystems dedicated to
language processing. All of these topics must be addressed before a complete artificial rational agent can be produced. However,
this investigation will focus exclusively on the intellect. The objective is to construct a theory of rationality of sufficient precision
to produce an artificial intellect—an artilect for short.2

Not all of artificial intelligence has so grand an objective as that of

2 The term "artilect" was coined by de Garis [1989].

Page 5

building an artilect. Most work in AI is directed at more mundane problems of data processing and decision making. But even such
projects have an intimate connection with the theory of rationality. A general constraint on any such system is that the conclusions
drawn and decisions made be "reasonable" ones. To a certain extent, we can judge the reasonableness of conclusions just by using
our intuitions. But as the systems get more complex and the questions harder, we outstrip our ability to make such judgments
without the backing of a general theory of rationality. Ultimately, all work in AI is going to have to presuppose a theory of
rationality.

My aim is to construct a sufficiently precise theory of rationality that it can be used to provide the basis for constructing an artilect.
That is the objective of the OSCAR project, and OSCAR is the computer system that results. Implementing a theory of cognition
on a computer can be regarded as either an exercise in computer modeling or an attempt to build a machine that thinks. This is the
difference between weak and strong AI. I favor the latter construal of the enterprise and have defended it at length in my book
How to Build a Person. The present book is the sequel to that book. In How to Build a Person, I defended what might be called the
"metaphysical foundations" of the project. These consist of three theses: agent materialism, according to which persons are
physical objects; token physicalism, according to which mental states are physical states; and strong AI, in the particular form
claiming that a system that adequately models human rationality will be a person and have the same claim to thoughts and feelings
as a human being. This book takes its title from the last chapter of How to Build a Person, entitled "Cognitive Carpentry" and
comprising an initial sketch of the theory of rationality envisioned by the OSCAR project. This book aims to redeem the
promissory notes proffered in the earlier book.

Although this book does not complete the OSCAR project, I believe that it does establish that it can be completed. This has
important implications throughout philosophy and cognitive science. First, it should lay to rest the numerous claims that "symbol-
processing AI" is impossible. It must be possible, because this book does it. Second, the theory underlying OSCAR is based upon
my own somewhat old-fashioned epistemological theories. Although I prefer not to call them "foundations theories", they are the
foundations-like theories defended in my [1974] and [1986] under the label "direct realism". This book establishes that these
theories can provide the epistemological basis for a rational agent. Providing such a basis becomes a severe challenge

Page 6

to competing theories. I do not believe that any of them can provide a similarly satisfactory basis, in which case they cannot be
correct descriptions of human rationality. This book throws down the gauntlet to competing epistemological theories to show that
they too can spawn functioning artilects. Finally, although for the reasons discussed in the final chapter, this book does not yet
produce a fully functional artilect, it makes it reasonably clear that such an artilect can be produced, and this has implications for
the philosophical arguments against strong AI. I sought to answer those arguments in How to Build a Person, but the most
powerful answer will be OSCAR itself. Once OSCAR is fully functional, the argument from analogy will lead us inexorably to
attribute thoughts and feelings to OSCAR with precisely the same credentials with which we attribute them to human beings.
Philosophical arguments to the contrary will be passe.

2. The Goal of Rationality

My general strategy is to begin with a description of the design problem for which I take rationality to provide a solution and then
argue that a considerable amount of the structure of rationality can be elicited as providing the only apparent solutions to various
logical and feasibility problems that arise in the course of trying to design a rational agent that satisfies this design specification.
What then is the design problem for which rationality is a solution?

The world contains many relatively stable structures. These can be roughly categorized as of two kinds. Some are stable by virtue
of being hard to destroy. A rock is a good example of such passive stability. Others achieve stability by interacting with their
immediate surroundings to make them more congenial to their continued survival. Plants and animals are the obvious examples of
such active stability. Rationality (in a very general sense) represents one solution to the problem of active stability. A rational
agent has beliefs reflecting the state of its environment, and it likes or dislikes its situation. When it finds the world not entirely to
its liking, it tries to change that. Its cognitive architecture is the mechanism whereby it chooses courses of action aimed at making
the world more to its liking.3

3 Stating the problem as one of survival is a bit simplistic for biological agents designed by evolution. For such agents, rationality might be
better viewed as a partial solution to survival of the species, or some even more sophisticated biological objective. However, this will not
affect the theory adumbrated in this book.

Page 7

This is the general conception of rationality that I am concerned to investigate, and should be understood as a partial stipulation
regarding what I mean here by "rationality". As I have described it, a rational agent has beliefs and likes or dislikes. At the
moment, I am using these terms loosely. A rational agent must have some internal "doxastic" states that are at least fairly well
correlated with some states of its environment, and some conative dispositions to "like or dislike" its situation. The agent must in
addition have cognitive mechanisms whereby all of this leads it to engage in activity that has a tendency to change its immediate
environment so that it acquires new doxastic states that interact with its conative dispositions in such a way that the agent likes its
situation better. This doxastic-conative loop is diagrammed in figure 1. This is the mechanism of stability characteristic of rational
agents.

Cognition can be roughly divided into epistemic cognition, which concerns what to believe, and practical cognition, which
concerns what to do. Practical cognition presupposes beliefs about one's situation, and these are provided by epistemic cognition.
In an important sense, epistemic cognition is subservient to practical cognition. The principal

Page 8

function of cognition is to direct activity (practical cognition), and the role of epistemic cognition in rationality is to provide the
factual background required for practical cognition.

The objective of this book is to investigate the way in which a rational agent implements the doxastic-conative loop-—to
investigate the structure of rational thought. The best way to begin is by examining simpler agents that do not quite have the
credentials to be considered rational.

3. Precursors of Rationality

As I will use the term, an agent is any system capable of acting on its environment to render it more congenial to its continued
survival. This is a very broad notion of an agent that includes both plants and animals and even viruses. The simplest kind of agent
is a non-cognitive agent. Rather than directing activity by anything approximating thought and reasoning, a non-cognitive agent
simply reacts. The simplest kind of non-cognitive agent has built-in reflexes that respond directly to perceptual input. The behavior
of such an agent is entirely hardwired. It is incapable of learning.

A more complex kind of non-cognitive agent is capable of acquiring new reflexes through something like operant conditioning.
This represents a significant step upward. For operant conditioning to be possible, there must be states of the agent-cum-
environment that act as positive or negative reinforcers when they follow actions taken by the agent. Speaking loosely, these are
situation types that are "liked" or "disliked" by the agent. Such conative responses to situation types are not required in a simpler
non-cognitive agent that is incapable of learning. They represent the first step along the road to rationality.

Non-cognitive agents respond directly to perceptual input. The next step toward rationality results from adding more sophisticated
mental representations of the world. Cognitive agents have both mental representations of the world and likes and dislikes. When
their representations indicate that the world is not entirely to their liking, they engage in activity aimed at changing that. Epistemic
cognition is the mechanism responsible for the formation of these mental representations. Once they become sufficiently
sophisticated, we regard the mental representations as beliefs.

There are different solutions to the problem of generating activity in response to beliefs coupled with likes or dislikes. The
simplest

Page 9

mechanism would consist of built-in reflexes, as in a simple noncognitive agent. A more sophisticated cognitive agent will also
exhibit conditioned reflexes. The difference between conditioning in a cognitive agent and conditioning in a non-cognitive agent is
that in the former responses can be conditioned to arbitrary mental representations of the world and not just to perceptual input. It
is worth noticing that in order for conditioning to be possible, some initial dispositions to act have to be built-in. Otherwise, the
agent would engage in no activity prior to conditioning, and hence no conditioning could occur.

In principle, there could be cognitive agents capable of sophisticated epistemic cognition but capable only of directing their
activity through built-in or conditioned reflexes. I will refer to such an agent as a reactive agent. More sophisticated cognitive
agents add practical cognition to epistemic cognition. Practical cognition directs activity on the basis of the agent's beliefs about its
environment and does so in more sophisticated ways than by built-in or conditioned reflexes. Practical cognition enables the agent
to direct its activity by thinking about how best to act given its beliefs about its situation and its likes and dislikes. Practical
cognition can vary in complexity. A "short-sighted" agent may direct its activity one act at a time, on the basis of the observation
that one act is more likely to produce a situation the agent likes than is some alternative act. A more sophisticated agent can engage
in complex planning. A simple plan may require performing several acts in a fixed order. The execution of a more complicated
plan might span a lifetime.

4. Mechanisms of Cognition

Among the mechanisms of epistemic and practical cognition are some we recognize as reasoning. The reasoning involved in
epistemic cognition has generally been called " theoretical reasoning", but that label is somewhat misleading, so I will call it
epistemic reasoning. The reasoning involved in practical cognition is practical reasoning. I will refer to epistemic and practical
reasoning jointly as ratiocination.4 Without yet trying to characterize reasoning, we can nonetheless recognize that there are other
cognitive mechanisms that also produce beliefs and direct activity. This is required because reasoning is slow. Many

4 In Pollock [1986 and 1989], I used the term "intellection" instead of "ratiocination".

Page 10

aspects of reasoning are essentially serial. Whenever possible, human cognition is accelerated by employing our inherently slow
hardware in parallel processing. Unfortunately, much of reasoning cannot be done in parallel, so human cognition includes many
nonratiocinative processes that also issue in beliefs and actions. For instance, a human being does not have to pull out a pocket
calculator and compute trajectories in order to catch a baseball or get out of the way of a bus. We have a built-in mechanism that
allows us to estimate such trajectories very quickly.

Such nonratiocinative processes have sometimes been called "quick and dirty", but that is a misnomer because they need not be at
all dirty. For example, our built-in procedures for computing trajectories are incredibly accurate. Their shortcoming is not
inaccuracy but inflexibility. They achieve their speed by building in assumptions about the environment, and when those
assumptions fail, the processes may yield wildly inaccurate answers. For instance, if we see that a baseball is going to bounce off a
telephone pole, we had best wait until it ricochets before predicting its trajectory. Our built-in "trajectory module" cannot handle
this situation accurately, so we use ratiocination to override it temporarily, until the situation becomes one that can be handled
accurately by the trajectory module. I will refer to modules like the trajectory module as Q&I modules ("quick and inflexible").

It must not be supposed that human Q&I modules are concerned exclusively with motor skills. Psychological evidence strongly
suggests that most everyday inductive and probabilistic inference is carried out by Q&I modules.5 In this case, the modules really
are rather dirty. Accurate probabilistic reasoning is in many cases computationally infeasible, and so humans appear to rely upon
processes like Tversky's "representativeness heuristic", which often yield results incompatible with the probability calculus.6 This
is not to say, however, that it is unreasonable to rely upon such approximation methods. The alternative of explicit reasoning is too
slow for many practical purposes, and rough approximations often suffice for the purposes for which we need the probabilities.

Much ordinary inductive inference is also the result of Q&I modules. Inductive inference can be carried out ratiocinatively—by
explicit reasoning from explicitly stated data—and scientists try to do that. But

5 Tversky and Kahneman [1974].

6 Tversky [1977].

Page 11

this requires the storage and processing of huge databases, which is exhaustive of system resources and computationally
expensive. Only in science do we tend to accumulate a large body of data, peruse it, and then engage in explicit inductive
reasoning about it. In ordinary life, we tend to employ procedures that allow us to use the data as we acquire them and then forget
the data, forming provisional generalizations that we modify as we go along. This is much more efficient, but it is subject to
pitfalls having to do with the possibility of non-independent data that cannot be judged non-independent because they are no
longer recalled.7

Thus far I have talked about Q&I modules only for belief formation, but Q&I modules are equally important in practical cognition.
In addition to the practical Q&I modules that will be discussed below, I suspect that in at least some cases, emotions constitute
Q&I modules for practical reasoning. For instance, being afraid of tigers initiates quick avoidance responses without our having to
think about it—a very useful reaction for anyone who is likely to encounter tigers unexpectedly. Embarrassment, indignation, and
so forth, may similarly be practical Q&I modules whose purpose is to supplement explicit practical reasoning in social situations.
This provides a computational role for these emotions and throws light on why human beings are subject to them. This account is
not applicable to all emotions. For instance, it seems unlikely that depression can be viewed as a practical Q&I module. But
perhaps what this shows is that what have been called "emotional states" constitute a grab bag of different kinds of states playing
different roles in human beings.

The advantage of Q&I modules is speed. The advantage of ratiocination, on the other hand, is extreme flexibility. It seems that
ratiocination can in principle deal with any kind of situation, but it is slow. In complicated situations we may have no applicable
Q&I modules, in which case we have no choice but to undertake explicit reasoning about the situation. In other cases, human
beings accept the output of the Q&I modules unless they have some explicit reason for not doing so. Ratiocination is used to
monitor the output and override it when necessary. In sum, the role of ratiocination should be (1) to deal with cases to which Q&I
modules do not apply and (2) to monitor and override the output of Q&I modules as necessary. A rational agent can be viewed as a
bundle of Q&I modules with ratiocination sitting on top and tweaking the output as necessary.

7 This will be discussed further in chapter 2.

Page 12

A cognitive agent could be devoid of ratiocination. Its cognition could consist entirely of Q&I modules. It is quite possible that
many moderately sophisticated animals work in this way. I will take the defining characteristic of rationality to be the supremacy
of ratiocination over Q&I modules. A fully rational agent is one in which ratiocination has total overall control. This is not to
denigrate the importance of Q&I modules. It is doubtful that any agent could survive in a hostile world relying upon ratiocination
as its exclusive means of cognition, but what sets rational agents apart from others is that ratiocination provides the court of last
appeal. Given time to make the appeal, the agent will direct its activity in accordance with the pronouncements of ratiocination
insofar as these differ from the pronouncements of its Q&I modules. We can divide rationality into epistemic rationality and
practical rationality. In a fully epistemically rational agent, epistemic reasoning takes ultimate precedence over Q&I modules in
belief formation, and in a fully practically rational agent, practical reasoning takes ultimate precedence over Q&I modules in
directing activity. It will become apparent that human beings are closer to being fully epistemically rational than they are to being
fully practically rational.

5. The Logical Structure of Practical Rationality

Situation-Likings

The design objective of rational cognition is to facilitate the agent's survival by implementing the doxastic-conative loop, that is,
by directing the agent's activity so as to make the world more to the agent's liking. What the agent likes, in this sense, is its total
(token) situation-at-a-time. It likes ''the way things are". I will refer to these as situation-likings. We can, accordingly, evaluate a
system of cognition in terms of its probable success in bringing about situations that are to the agent's liking. In doing this we are
taking an "external" or "instrumental" perspective on cognition. We are viewing cognition from the design stance. I will argue that
a considerable amount of the structure of rationality can be elicited as providing the only apparent solutions to various logical and
feasibility problems that arise in the course of trying to design a rational agent that satisfies this design specification. Situation-
likings provide the ultimate starting point for rational deliberation. These are not representational states—the agent need not be
thinking about the way things are. Situation-liking is a feeling rather than a propositional attitude. Instead of saying that a rational

Page 13

agent seeks to make its situation more to its liking, the same point could probably be made by saying that the agent seeks to make
itself happier, or seeks pleasure. I have avoided these more traditional formulations because the terms "happiness" and "pleasure"
have connotations not intended by the theory. Situation-liking is perhaps best described as a "pro-attitude" toward one's current
situation. This is explanatory only insofar as it is understood as pointing toward a fuller functional explanation of situation-likings,
and that is the way they ultimately should be understood. The claim is simply that there is a mental state, here called "situation-
liking'', that plays a certain functional role in practical cognition, and the rest of the theory of practical cognition fills out the
description of that functional role. It will emerge below that, as human beings, we have introspective access to situation-likings.
This access gives us a grasp of them that is largely independent of their functional role and makes them more familiar to us than if
we simply had to postulate them as "unobserved states that play a certain role in cognition".

An agent's liking or disliking for its current situation is affected by its beliefs about that situation. In trying to improve its situation,
it is trying to render more likable the way the situation actually is—not just the way the situation is believed to be. This introduces
a complication in the doxastic-conative loop. The agent seeks to render its situation more likable, not just better liked. The
objective is to change the situation so that it would be better liked if the agent had true beliefs about all the relevant aspects of it. I
will express this by saying that the agent seeks to improve the "objective likability" of its situation.

I have avoided formulating the objective of rationality as one of "maximizing" the likability of its situation, because I do not want
to assume that there is a maximally likable alteration of every situation. Rather, a rational agent considers various ways of altering
its situation and chooses between them on the basis of their comparative likabilities. There may always be other, more likable
alternatives, but rationality cannot require an agent to think of all of them. Resource constraints make that impossible. Rationality
just requires an agent to engage in a "rationally satisfactory search". I will say much more about this later, but it should be obvious
even at this early stage of the investigation that such a search need not (indeed, cannot) be exhaustive.

Plans

As I shall use the term, to live the good life is to live so that, insofar as possible, the situation one is in is likable. Practical
cognition seeks to

Page 14

direct the agent in its pursuit of the good life. It does this by selecting and executing courses of action that are likely to contribute
to this objective. Such a course of action is a plan.

Planning aims at the construction or discovery of plans whose execution is likely to put the agent in a situation more likable than
the one it would otherwise be in. An agent may be faced with a choice between several plans, each likely to improve the agent's
situation. In choosing among them, the agent must balance their likelihood of improving its situation against the degree of
improvement they make likely. More generally, in evaluating a plan, an agent should ideally consider each possible outcome and
how likable it would be, and weight the outcome proportional to the agent's estimate of the probability of that being the actual
outcome. To use standard mathematical terminology, plans should be evaluated in terms of the mathematical expectation of the
likability of the situation resulting from adopting the plan. In thus evaluating a plan, an agent is never in a position to predict what
(infinitely specific) situation token will result from its execution. All that can be predicted is that, with various probabilities,
certain types of situations will result, the types being defined in terms of their features. The plan is evaluated by evaluating those
different situation types and forming a weighted average, weighting each according to the agent's estimate of the probability that it
will be the situation type resulting from executing the plan. It should be emphasized, however, that this is the ideal of plan
evaluation. Resource constraints often force a real agent to compromise on this ideal.

Expected Likabilities

To evaluate plans in this way, an agent must first be able to evaluate situation types. This leads to a kind of type/token problem.
The likes and dislikes that define the goal of practical reasoning pertain to situation tokens, but the reasoning itself can proceed
only in terms of situation types. Such reasoning is made possible by the fact that our liking or disliking a situation token is caused
by general features of the situation. For example, after a strenuous hike into a beautiful mountain valley, being hungry and tired
disposes me toward disliking the current situation, but being in a spectacular place disposes me toward liking it. The only way a
rational agent can pursue likable situation tokens is by identifying features causally relevant to their being liked or disliked and
then pursuing or avoiding those features. The objective of practical reasoning is to render the actual situation token likable (or as
likable as possible), but the only way to do this is

Page 15

to try to ensure that it has features that tend to render situation tokens likable.8 Accordingly, a situation type must be evaluated in
terms of its "expected likability", i.e., the mathematical expectation of the degree of liking of situation tokens of that type.9 Only by
employing such evaluations can practical reasoning aim at rendering the actual situation token likable.

The general goal of rationality is to improve the likability of the agent's situation. For this to be well-defined, all we need is a
comparative relation of liking one situation token more than another. But now we find that the only way a rational agent can
attempt to improve the likability of its situation is by reasoning about situation types in terms of their expected likabilities. This
introduces a serious complication. In order for the expected likability of a situation type to be well defined, it is no longer
sufficient to have a comparative relation of situation-liking; it must be possible to assign numerical values to the degree of liking
an agent has for its current situation. That there are such numbers does not seem particularly problematic because the degree of
liking is a physical parameter of some sort that plays a certain role in the agent's cognitive architecture. However, there remains a
problem of "scale". Mathematical expectations require not just numerical measures but cardinal measures. The result of adding or
averaging such measures must make sense. This is not guaranteed by the mere existence of a measure. For example, given one
measure of the degree of situation-

8 Philip Pettit [1991] makes similar observations, although he identifies likes with desires.

9 The expected likability of a situation type is a weighted average of the likabilities of situation tokens of that type, whereby the weighting is
determined by the probability of tokens of the type being liked to any particular degree. If we make the simplifying assumption that there are just
finitely many possible values r1,...,rn for the likability of tokens of type F, then the expected liking of tokens of type F is the sum

r1· prob(the likability of x is ri / x is a situation token of type F).

In the general case the expected-liking is

r· dprob(the likability of x is ≤ r / x is a situation token of type F).

Page 16

liking, the logarithm of that measure is also a measure, but adding one of the measures is equivalent to multiplying the other. The
consequence is that these two measures can yield different comparisons of expected likability, so that on the first measure, a
situation type S1 may have a higher expected likability than a second situation type S2, while on the second measure S2 will have
a higher expected likability than S1. In the standard theory of measurement, the problem of choosing a scale is solved by
supposing there is a physical composition process that corresponds to applying addition to the measurements, but no such process
presents itself in the case of situation-likings. How then are we to choose a particular measurement scale for situation-likings?

The key to this first problem is to realize that there is a second problem that must also be solved. If a rational agent is to employ
expected situation-likings in its rational deliberations, it must be able to form beliefs about their values. This means that it is not
enough for there merely to exist a numerical measure of situation-likings. The agent must also be able to form beliefs about the
values of this measure. The only obvious way to do this is through introspection. An ideally designed rational agent would be able
to introspect its situation-likings, and the introspection would yield a number that could then be employed in computing expected
situation-likings. Such introspection would simultaneously solve the scale problem and the problem of forming beliefs about
situation-likings. In effect, the proper scale becomes defined functionally as the scale used by introspection, and the results of
introspection are then employed in various ways in cognition.

It must be emphasized, however, that the preceding remarks are about introspection in an "ideally designed" rational agent. Two
observations are in order about introspection. First, introspection tends to be in disfavor these days, partly as a legacy of logical
positivism, and partly as a result of psychological experiments that show introspection to be unreliable as a guide to certain aspects
of cognition.10 In the latter connection, it should be emphasized that the psychological investigations focus primarily on our ability
to introspect causes. It is hardly surprising that we are unable to introspect causes, because causes are not the sort of thing that can
ever be perceived-—they must be inferred from simpler facts that can be perceived.11 I have argued

10 See Lackner and Garrett [1972].

11 The investigations actually presupposed that the subjects could tell introspectively what they were thinking, because in order to determine what
their subjects were thinking, the investigators simply asked them.

Page 17

[1989] that introspection plays an essential functional role in epistemic cognition, and now I am arguing that it plays an equally
essential functional role in practical cognition. As much as one's philosophical prejudices might incline one to eschew
introspection, it cannot be done. Introspection is an essential part of cognition.

From a computational point of view, there is nothing mysterious about introspection. For instance, in designing a system of
automated reasoning that runs on a digital computer, if a certain numerical parameter is used to guide some bit of reasoning and it
is also desirable for the reasoner to have a belief about the value of the parameter, it is computationally trivial to have the
reasoning program determine the value of the parameter and insert a belief about it into the reasoner's set of beliefs. That is all that
introspection need amount to. There is, accordingly, no obstacle (at this point) to constructing a rational agent capable of the kind
of introspection of situation-likings that was described above. But at the same time it must be acknowledged that such
introspection is problematic for human beings. We are certainly capable of telling introspectively whether we like our situation,
but introspection does not provide us with a number. I suspect that this reflects, in part, the fact that computation in human beings
works quite differently from computation in digital computers, and so the introspection of numerical values more difficult.
However, a numerical measure of situation-liking must somehow be forthcoming if we are to be able to compute expected
situation-likings.12

I will now suggest a solution to this problem. It lies in the fact that although introspection does not provide us with a number
directly, it does provide us with more than a preference ordering. In a rough sense introspection also apprises us of how much we
like or dislike our situation. We might more accurately (but somewhat obscurely) say that introspection provides us with a
"quantitative feel". It is quantitative in the sense that it not only generates comparisons—we like one situation better than
another—but it also makes sense to ascribe

12 One of the impressive accomplishments of "rational choice theory" is that the methods of Ramsey [1926] and von Neumann and
Morgenstern [1944] provide a way of obtaining numerical measures of preference from nonnumerical preference and indifference orderings,
and it might be supposed that this provides the solution to the problem of obtaining a cardinal measure of situation-liking. However, this work
is not applicable to the present problem. It requires preferences between situation types (specifically, situation types consisting of gambles),
but the preferences generated by situation-likings are between situation tokens.

Page 18

rough magnitudes to the comparisons. We may like situation A a lot better than situation B, while liking situation C only a little
better than situation D. If these quantitative feels are to be used to make sense of expected situation-likings, they must somehow be
transformed into numbers. It appears that there is, in fact, a way of doing this, as I will now explain.

We can define a quaternary preference relation p (A,B,C,D) as holding iff the agent would prefer having B to having A more than it
would prefer having D to having C. The observation that introspection provides us with a quantitative feel can now be expressed
less obscurely as the observation that it informs us of this quaternary relation on situation tokens. A binary preference relation can
be defined in terms of p by saying that B is preferred to A iff p(A,B,A,A) holds. An ordinal measure of situation-liking is simply a
function u(x) such that for any x and y, x is preferred to y iff u(x) > u(y). If we make reasonable assumptions about binary
preference, this ensures that infinitely many ordinal measures of situation-liking exist. The scale problem is then the problem of
choosing a "privileged" ordinal measure to use in computing expected likabilities. This can be done by requiring an appropriate
measure u(x) also to represent the quaternary preference relation, in the sense that for any x,y,z,w, p(x,y,z,w) holds iff u(y)-u(x) >
u(w)-u(z). Nonlinear transformations of measures will have the effect of reversing quaternary preference relations provided there
are "enough" items in the domain of the preference relation, so if we make some reasonable assumptions about the set of possible
situation tokens, the result will be that u(x) is uniquely determined up to linear transformation. That is sufficient to yield unique
comparisons of expected likabilities.

This is not yet a complete solution to the problem. A complete solution must exhibit the constraints on p that guarantee the
existence of a cardinal measure, and I am unsure what the precise set of constraints should be. I am going to assume, however, that
there is some such set of constraints, and hence expected likability is well-defined.13

13 One triple of assumptions that, when added to the ordering assumption, appears to be sufficient is as follows, where '<' symbolizes binary
preference between situation tokens:

If Γ and Λ are sets of situation tokens such that for every x∈Γ and y∈Λ, x ≤ y, then there is a z such that for every x∈Γ and y∈Λ x < z < y.

Page 19

The Identification Problem and Feature-Likings

Given a solution to the logical problem of assigning numerical values to situation-likings and thereby rendering expected
likabilities well-defined, a rational agent who wants to use these numbers in practical reasoning still faces the problem of
identifying features or combinations of features that are causally relevant to situations' being liked or disliked and determining
their degree of causal relevance, that is, evaluating their expected likabilities. I will refer to this as the identification problem. Let
us call these causally relevant features "value-laden features". As I have described it, the identification problem is, in principle, an
empirical problem to be solved by epistemic reasoning aimed at discovering how such features and their combinations affect our
likings for situation tokens. An ideal rational agent, unconstrained by time or resource limitations, and able to survive in the real
world for an extended period of time without engaging in any practical reasoning, could solve this problem in this way and use the
resulting solution to drive its subsequent practical reasoning.14 However, human beings are not ideally situated in the world and do
not have the luxury of waiting until they have solved such complex empirical problems before they can begin engaging in practical
reasoning for the first time. Nor, most likely, will any rational agent have that luxury. For this reason, human beings do not work in
the way described, and it is probably impossible for any real agent to work in this way. This is a feasibility problem. Even if an
ideally rational agent could solve this problem by empirical investigation of the causal structure of the world, real agents must take
shortcuts vitiating the need to acquire all this theoretical knowledge prior to engaging in practical reasoning. By definition, any
such shortcut procedure constitutes a Q&I module.

Exactly how human beings solve this problem is an empirical question requiring psychological investigation. Armchair philosophy
cannot

For any situation tokens x,y,z such that x < y and x < z, there are situation tokens w,v such that z < w < v and ~p(x,y,w,v) and ~p(x,y,v,w).

For any situation tokens x,y,z such that x < y and z < y, there are situation tokens w,v such that w < v < z and ~p(x,y,w,v) and ~p(x,y,v,w).

However, there may be other sets of assumptions that would be preferable for various reasons.

14 This may be overly optimistic. Empirical investigation is typically driven by practical reasoning regarding how to find the answers to certain
questions. Accordingly, it might be impossible for even an ideal rational agent to acquire the requisite knowledge of expected likabilities before
engaging in practical cognition.

Page 20

provide a definitive answer, but introspection suggests a mechanism. Human beings have the ability to imagine a situation and
then exhibit conative responses to the imagined situation. For example, imagining a situation in which I am being torn apart on a
torture rack, I exhibit an introspectible dislike for the imagined situation. It is a brute fact about human beings that they have such
conative reactions to imagined situations. Their ability to react conatively to imagined situations is essential to their enjoyment of
literature, and I have even suggested elsewhere that moral judgments may be based in part on this ability.15 It is important to
recognize that imagined situations are always inherently general. Imagined situations can never incorporate more than finitely
many features. As such, our reaction to these imagined situations constitutes a conative response to situation types rather than
situation tokens. We might call these feature-likings, in contrast to situation-likings, to emphasize that they are conative responses
to types rather than tokens, although it is not clear that these two kinds of likings should be regarded as genuinely different kinds
of mental states. One can conjecture that the way feature-likings work neurologically is by marshaling the ordinary mechanisms
that give rise to situation-likings and applying them to imagined situations, the result being an introspectible liking for an imagined
situation type rather than a situation token. Human beings employ these introspectible feature-likings to make an intuitive
assessment of how much they would like being in situations of the type imagined, that is, to assess expected situation-likings of
situation types. There is, however, no logical connection between such introspectible likings for imagined situations and the
expected likabilities of the type of situation imagined, so the former cannot provide a logically good reason for the latter.
Accordingly, this kind of assessment must be regarded as constituting a Q&I module.

It is a consequence of my stipulative definition of rationality that situation-likings are the basic evaluative states in terms of which
plans are to be assessed. However, we could explore an alternative conception of rationality that begins with feature-likings. On
this conception a rational agent pursues liked features and seeks to avoid disliked features. This is the conception of rationality
underlying contemporary rational choice theory. This approach must provide a solution to several problems. First, we need a
mechanism for combining the likings of

15 Pollock [1986a].

Page 21

individual features to compute a liking for combinations of features. We cannot just sum the individual feature-likings, because
features may interact. For instance, I like dill pickles and I like vanilla ice cream, but I do not care much for the combination.
Second, a distinction must be made between the "primitive" liking for a combination of features and the "all-things-considered"
liking. The former just measures how much the agent likes those features by themselves and independent of their tendencies to be
accompanied by or to cause other features. The all-things-considered liking takes such tendencies into account. Notice that plans
must be evaluated in terms of the all-things-considered liking for adopting the plan. Typically, the agent's primitive liking for
adopting a plan is neutral, and value attaches to the plan only indirectly by way of tendencies that it has to bring about other
features the agent likes or dislikes. It looks as if these all-things-considered likings must be computed in terms of expected values,
which in turn requires a cardinal measure for primitive feature-likings. The logical, mathematical, and epistemological problems
faced by this approach are no less onerous than those that arise from taking situation-likings to be basic.

I see no reason in principle why an agent could not be made to conform to either conception of rationality. The overall structure of
the agent would be the same on either conception, but somewhat different mechanisms would be used for evaluating plans. Which
sort of agent is a human being? There is reason to believe that the norms of rationality incorporated into the functional description
of human cognition give precedence to situation-likings over feature-likings. A feature might seem desirable to a person in the
abstract, despite the fact that getting it invariably makes the person unhappy (and not because of concomitant features that the
person dislikes). For instance, a person might imagine in the abstract that she would greatly enjoy foreign travel, but observe that
whenever she engages in it she is thoroughly bored. Under these circumstances, we would regard it as irrational for her to continue
pursuing that feature. This suggests that human beings conform to the first conception of rationality, according to which situation-
likings provide the court of last appeal. This is the model of rationality that will be embodied in OSCAR, but the fact that human
beings work in this way is not, as far as I can see, a reason for thinking this is a "better" conception of rationality.

Regardless of whether an agent begins with feature-likings or situation-likings, it is still faced with the problem of using those to
compute the expected values of plans. This is, in principle, a complex

Page 22

Figure 2. Intuitive integration

integration problem. The necessity of being able to solve such a problem seems particularly puzzling in the light of the fact that
human beings do not generally engage in any such complicated mathematics in the course of making practical decisions. What this
indicates is the presence of another, quite important, Q&I module. Human beings are often able to solve integration problems
without doing mathematics. Suppose, for instance, that I present you with the array of circles depicted on the left side of figure 2,
and ask you to draw a single circle whose size is approximately the average of the given circles. You would have no difficulty
drawing a circle approximately the size of that on the right side of figure 2. But how did you do it? You certainly did not measure
the circles, compute the areas, average them, and then compute the diameter for the new circle. Furthermore, you can do this
exercise just as readily with irregular figures. Human beings have a built-in ability to compare areas without performing precise
measurements. Furthermore, the comparisons generate more than an ordinal ranking, because we are able to do things like
averaging the areas. This seems to involve a Q&I module that takes non-numerical "analogue" inputs and approximates the results
of computations which, in explicit form, involve integration. It is this same ability that is involved in estimating the expected value
of a plan. What I referred to earlier as the "quantitative feel" produced by introspection of situation-likings is another instance of
"non-numerical analogue outputs" produced by human cognitive mechanisms. It seems likely that the Q&I modules we employ for
estimating probabilities produce similar non-numerical outputs, and all of these together are manipulated

Page 23

by Q&I modules that, in effect, solve integration problems. This feature of human cognition turns in part on the fact that
introspection of what are in fact real-valued parameters does not provide human cognizers with numbers. This suggests that
artificial agents that are not so constrained might be able to solve these integration problems explicitly without relying upon Q&I
modules, but this is a matter to be resolved by experimentation.

Plans and Goals

Recall that ''to live the good life" is to live so that, insofar as possible, the situation one is in is likable. Rationality is a tool for
living the good life. A rational agent directs its activity on the basis of its beliefs about the expected values of combinations of
features, trying always to better its situation, that is, render it more likable. It does this by choosing goals whose achievement will
have that effect and then selecting and executing courses of action that aim at the achievement of those goals. For the sake of
logical uniformity, we can identify goals with combinations of features of situations. Note that these goals need not be feature
combinations that the agent values highly. A rational agent may pursue things that it actively dislikes, provided it likes them better
than what it already has. Similarly, a rational agent may decline to pursue things it likes, because it likes what it already has better.

An agent tries to achieve goals by designing and executing courses of action aimed at realizing them. Designing such a course of
action is planning. The simplest planning may involve selecting a single act to perform in order to achieve some readily attainable
goal. More complex plans may involve multiple steps, each prescribing an act subject to conditions that may depend upon both the
current situation and the outcome of the previous steps of the plan. For example, a plan for driving across town might involve
taking one route if the traffic is light and another route if it is heavy. Chapter 6 investigates the logical structure of plans. It is
argued there that in their most general form, plans can have all the logical structure of parallel computer programs.

This commonsensical description of planning involves two distinct elements: goals and plans. The relationship between goals and
plans is more complicated than might initially be supposed. Goals are chosen on the basis of their expected likabilities, but the
mere fact that a plan successfully achieves such a goal is not sufficient to make it a good plan. The situation token that results from
executing the plan must invariably exemplify more features than those included in the combi-

Page 24

nation of features constituting the goal, and some of these may reverse the likability of the situation. For example, it may be that,
in the abstract, I would like being rich. But it may also be that the only way I could become rich is by doing things I would despise
doing, and I would not like a situation that includes my being rich as a result of my doing those things.

Goals are chosen before plans are adopted for achieving them, so goals can be selected only on the basis of expected likabilities in
the abstract. Accordingly, the expected value of a plan may not be a function of the abstract values of the goals it aims at
achieving. So what use are goals? Why not dispense with them altogether? Perhaps a rational agent should just survey possible
plans and select those having high expected values. Goals would play no role in this process.

This suggestion, however, runs afoul of feasibility considerations. The construction and evaluation of plans is a difficult and
timeconsuming process. An ideal rational agent, unconstrained by time or resource limitations, could systematically generate all
possible plans and select for execution those having high expected values. However, agents subject to realistic limitations must
focus their attention more efficiently on plans that are likely to be relevant to their current situation. They do not have the luxury of
being able to pick systematically through an infinite list of plans, most of which are irrelevant and of no value anyway.

It is useful to compare planning with automated theorem proving. It has often been observed that it would be possible to build an
automated theorem prover that systematically generates all possible proofs in the predicate calculus. Then if we want to know
whether some particular formula is a theorem of the predicate calculus, we just wait and see whether a proof of it is generated. This
is the so-called British Museum algorithm. Such a theorem prover would be hopelessly inefficient for any practical purposes. By
contrast, human reasoning is interest-driven in the sense that the course of our reasoning is determined in part by what questions
we are trying to answer. If we want to know what time it is in Moscow, we reason quite differently than if we want to know the
sum of 14 and 87. In other words, our reasoning involves a control structure that makes it more directly germane to the questions
we want to answer.

A similar control structure is required for practical reasoning. A scattergun approach to planning is as impractical as the British
Museum algorithm. Goals focus planning in two ways. First, if a plan is able to attain a goal having an expected likability higher
than the expected

Page 25

likability of the situation that would otherwise result, that creates a presumption in favor of the plan having a positive expected
value, because the outcome of the plan will be a situation of a general type that tends to be better liked than situations of the type
that would otherwise result. Thus by directing planning at such goals, the rational agent is guaranteed to focus its attention on
plans that tend to be good. Second, whether a particular plan is likely to achieve a specific goal is a factual question of the sort that
falls within the purview of epistemic cognition. Accordingly, the construction of plans aimed at specific goals is an exercise of
epistemic cognition. As such, it can be directed by the general control structures governing interest-driven epistemic reasoning,
and need not proceed at random. This would not be possible unless planning aimed at specific goals.

To summarize, feasibility constraints require the use of goals to direct the course of planning. Goals can be evaluated only in terms
of expected likabilities and without reference to any way of achieving the goals. This guarantees that the plans that achieve goals
having high expected values will tend to be good ones, in the sense of producing situation tokens the rational agent likes. However,
once produced, plans must be evaluated not just in terms of the values of their goals but in terms of all predictable features of their
outcomes16 In other words, the expected values of plans must be computed in terms of the difference between the expected
likability of the situation type that consists of adopting the plan and the expected likability of the situation type that consists of not
adopting the plan. (This will be discussed further in chapter 6.)

Goals and Desires

Adopting a goal initiates planning for its achievement. It does this by passing interest in discovering such plans to the system of
epistemic cognition. When an agent selects a goal, it comes to want or desire it. Desires constitute a functionally (and, in humans,
introspectibly) different state from likings or valuings. Their purpose is to encode goals. Their functional role is to move the agent
to act or plan, or more generally to initiate practical cognition.

Goals are adopted as a result of being judged suitable. The suitability of a goal is a function of the agent's current situation,
because goals

16 In chapter 6, this is handled by expanding the set of goals for a plan to include all value-laden features whose probabilites are known to be
affected by the plan.

Page 26

are chosen in an attempt to better that situation, rendering it more to the agent's liking. It is to be emphasized that goals are not the
same thing as feature combinations believed to have high expected likabilities. As indicated above, an agent's goal may be to
achieve something it dislikes as long as it likes it better than what would happen otherwise. Suitability is a matter of relative
expected value rather than absolute expected value.

A rational agent should adopt a goal whenever it is judged suitable in the preceding sense,17 but this does not guarantee that
anything will actually happen as a result of adopting the goal because the agent may not have any information at its disposal that
will enable it to make progress in planning for the achievement of the goal. Typically, progress in planning results only when the
agent recognizes an opportunity to improve its lot. For example, I like eating ice cream, but I do not spend all my days plotting
how to find and eat some ice cream. As a general rule, I engage in planning for the eating of ice cream only when I encounter a
concrete opportunity for doing so. For instance, finding ice cream available as dessert at a dinner party may cause me to fabricate
the plan to say "yes" when my hostess asks whether I would like some. Of course, sometimes we create our own opportunities. If
there is no ice cream readily available and I want some badly, I might make my own, but under ordinary circumstances a plan to
achieve the eating of ice cream in this way would not be a good plan because the effort involved would outweigh the benefits
achieved.

On the preceding account, goals are adopted (desires are formed) as a result of beliefs about their expected values, and these
beliefs are produced by epistemic cognition. There is a problem here, however. How does the agent know which combinations of
features to evaluate as potential goals? If features are selected randomly for evaluation, few will turn out to be suitable goals. An
agent must have a more efficient mechanism for proposing potential goals. The agent can then go on to evaluate these potential
goals and decide which to adopt. This amounts to a control structure for that part of an agent's reasoning devoted to the evaluation
of potential goals.

17 This oversimplifies a bit. Sometimes a goal that would be suitable in this sense is nevertheless rejected on the grounds that it is not
achievable. For example, a person might like being ruler of the world or having a love affair with a movie star, but a rational agent will not
usually form an active desire for these things because it recognizes that they are unattainable. I attribute this filtering of desires to the action of
reflexive reasoners, in the sense of section 8, and not to the basic planar structure of a rational agent.

Page 27

A second problem, analogous to some already discussed, is that a real agent cannot wait until it has acquired a lot of knowledge
about the causal structure of the world before it begins to adopt goals and engage in practical cognition. Accordingly, a real agent
must incorporate a Q&I module for desire formation, which gets practical cognition started without the need for large amounts of
theoretical knowledge.

These two problems can be solved simultaneously by (1) having a Q&I module that proposes potential goals and leads to their
default adoption, and (2) giving ratiocination the power to evaluate these goals explicitly and override their adoption if they are
judged unsuitable. This amounts to having overridable dispositions to form desires. I will refer to these as optative dispositions. In
order to enable desire formation in situations of minimal knowledge, some of these optative dispositions must be built-in. Others
can then be acquired through conditioning. For example, we have built-in optative dispositions to try to alleviate our hunger, to try
to avoid pain, and to pursue pleasure. We have a number of such "hedonistic" dispositions that give rise to desires automatically,
without our having to engage in any reasoning about their expected values. Conditioning can then lead to the establishment of new
optative dispositions. When a combination of features tends to be followed by the satisfaction of desires, a conditioning
mechanism can use that to create a new disposition. Thus we may come to desire money, or we may acquire the disposition to
desire to read an interesting book when we hear about it, or the disposition to desire to see certain kinds of new films.

The general mechanism of built-in and conditioned optative dispositions constitutes a Q&I module for desire formation. In a
rational agent, there must also be a purely ratiocinative basis for desire formation. The sole ratiocinative basis for desiring
something should be the belief that it is a suitable goal. In a fully rational agent, ratiocination must have the power to override any
Q&I modules. Accordingly, if an optative disposition produces a desire in me but I have the belief that I would not like having the
desire satisfied (i.e., its relative expected value is negative), this should dispel the desire. In human beings, this does not always
happen, as is illustrated by compulsions. For example, a compulsive smoker may believe that the expected value of smoking is
negative but desire to smoke nonetheless. In a fully rational agent, that belief would cancel the desire to smoke. Obviously, human
beings are less than fully rational in this respect. Such beliefs may serve to depress the strength of the desire, but they do not dispel
the desire entirely.

Page 28

Conversely, if a fully rational agent believes that some combination of features has a high relative expected situation-liking, that
should automatically produce a desire. Failure to form the requisite desire is a mark of irrationality, but people are sometimes
irrational in precisely this way. For example, I enjoy skiing, but for some reason I can rarely get myself to go skiing. I know that if
I went, I would enjoy it, and I am often in a position where I can take a day off and go skiing if I so choose, but I cannot get myself
motivated to do it. In other words, despite having all of the requisite beliefs, I lack the desire. This is irrational but perhaps not
terribly unusual. Once again, human beings are not fully rational agents.

Intentions, Plans, and Instrumental Desires

Desires provide the trigger for planning. Constructing a plan is a matter of epistemic cognition. Whether a plan will, with a certain
probability, achieve some goal is a factual question of the sort that falls within the purview of epistemic cognition. So is the
evaluation of the plan in terms of expected situation-likings. However, once all that has been done, the agent still has to decide
what plan to adopt. A satisfactory plan must be at least minimally good, in the sense that the expected situation-liking of the
situation type consisting of adopting the plan is at least as great as the expected situation-liking of the situation type consisting of
not adopting the plan. Equivalently, the plan must have a non-negative expected value. However, this is not automatically
sufficient to make it rational for an agent to adopt the plan, because sometimes the agent will have to choose between several
competing plans, and one of the competitors may be better than the others. In that case, the optimal competitor should be adopted.
The logic of such choices is more complicated than it may seem at first. (This constitutes the subject matter of chapter 5.) When, as
a result of such deliberation, a plan is adopted, this must be encoded in the agent somehow. The states that do this are intentions.
The functional role of intentions is to encode plan adoption.18

A plan is typically a "partial" solution to the problem of achieving a goal.19 For instance, given the goal of being in Los Angeles on
Friday, I may plan to fly on Friday morning. However, in order to

18 This observation was perhaps first made by Bratman [1987].

19 This is a familiar observation in AI planning theory. It is due originally to Sacerdotti [1975].

Page 29

execute this plan, I may have to engage in further practical reasoning. I will have to make plans about when and where to buy a
ticket, what airline to use, what flight to take, and so forth. When an agent adopts a partial plan some of whose steps require further
planning, something must initiate that further planning. The state having this functional role is what we call an instrumental desire.
It is a desire because its role is to initiate further planning, but it is not a desire produced by any of the mechanisms so far
discussed. That is, it is the result of neither optative dispositions nor beliefs about the relative values of potential goals. Let us call
desires produced in either of those ways primitive desires. Primitive desires provide the starting points for planning. In contrast to
primitive desires, instrumental desires are produced by practical reasoning itself. Whenever a plan is adopted, rationality dictates
that the agent form the desire to execute the plan steps at the appropriate time, and these desires in turn act either as triggers for
action if the plan step is one that can be executed directly or as triggers for further practical reasoning. (The details of this will be
investigated in chapter 7.)

Action Initiation

Once some plans are adopted there must still be something further that gets an agent to act. There is a temptation to think of the
adoption of a plan as beginning a process that grinds inexorably to the execution of the plan unless the plan is subsequently
retracted (i.e., unless we change our minds). But things don't really work that way. Adopting a plan is not like setting a train
moving on rigid rails. Although I plan to do something and never explicitly change my mind, the plan may never be executed just
because I never feel like executing it. There may always be other things I want to do more, including doing nothing. For example, I
might adopt the plan to go to the grocery store this afternoon. As the afternoon progresses, it occurs to me at various times that I
planned to go to the grocery store, but each time my reaction is, "Oh, I don't feel like going just now. I will do it later." Finally the
afternoon is over, and I have not gone, but there was never a point at which I explicitly retracted my plan to go. I just didn't do it.
Furthermore, not only lethargy can keep plans from being executed. I may have planned to go to the grocery store, but I got
engrossed in writing this chapter, and every time I thought about going to the grocery store I decided that I would rather keep
writing and go later. Eventually the afternoon was over, and I had not gone.

The possibility of such procrastination arises from the fact that planning typically leaves the scheduling of plan steps rather
indefinite.

Page 30

The advantage of this is that it minimizes conflicts between adopted plans and unforeseen opportunities that arise later. But the
disadvantage is that some further mechanism is required for deciding when to execute a plan step.

The basis for such a mechanism lies in a distinction between two kinds of primitive desires—desires for the future and desires for
the present. Only the former can be the subject of planning. You cannot plan for the present. Planning takes time, and you cannot
plan ahead for a situation that is already here. In order to play any role in directing action, desires for the present must be desires to
do something. I will refer to such desires as present-tense action desires.

Recall that a reactive agent guides its actions solely on the basis of built-in and conditioned reflexes generating immediate action.
However, there is a problem regarding reactive agents that I have so far ignored: more than one reflex can be triggered
simultaneously, and it may be impossible to perform the actions dictated by them all. A reactive agent must have some mechanism
for adjudicating disputes in such cases. The only obvious mechanism is to assign strengths to reflexes, and when two reflexes
compete, the stronger wins. We can, at least metaphorically, think of such reflexes as generating present-tense action desires, and
in deciding what to do when there is a conflict, all the reactive agent can do is act on the desire that is strongest, that is, do what it
most wants to do.

An agent capable of planning can do better. It can, in many cases, adjust its plans so as to avoid such conflicts. However, planning
can never entirely replace reacting to present-tense action desires. Planning is applicable only insofar as we can predict what is
likely to befall us. If the unexpected happens, it may be too late to plan for it, and all we can do is react. Basic reflexes like
withdrawing from pain are going to be essential ingredients in any rational agent. Ratiocination can only supplement such pre-
rational mechanisms.

Just as a reactive agent can experience conflicting reflexes, a rational agent can encounter conflicts between plans and reflexes.
The plan to retrieve a valuable object that fell into a fire may conflict with the reflex of withdrawing one's hand from the fire.
Sometimes the plan wins out. This requires that there be an adjudication mechanism in a rational agent that can choose not only
between actions prescribed by present-tense action desires but also actions prescribed by plans. This must be done in terms of the
value of some parameter of the actions between which the agent is choosing. In the case of actions prescribed by present-tense
action desires, the relevant parameter is how much

Page 31

the agent wants to perform the action-—in other words, the strength of the desire. Accordingly, we can use the same language in
talking about the parameter attaching to actions prescribed by plans. The agent wants, more or less strongly, to perform such an
action, and it can decide which action to perform by selecting the one it wants most strongly to perform.20 How much an agent
wants to perform such an action can be regarded as the strength of the agent's desire to perform it, where this desire is the
instrumental desire produced by adopting the plan.

The degree to which an agent wants to perform an action prescribed by a primitive present-tense action desire is determined by the
optative disposition producing that desire. There must also be a mechanism determining the degree to which an agent wants to
perform an action prescribed by a plan. Ideally, this should result in choices being made so that the plans having higher expected
values are the ones that get executed. The way to do this is to have the strength of an instrumental desire correspond to the
expected value of the plan. More accurately, when a plan prescribes a sequence of acts and A is one of those acts, let the tail of the
plan relative to A be the remainder of the plan after the steps preceding A have been executed. The tail of a plan is itself a plan, and
we can talk about its expected value in the same way we talk about the expected value of any plan. Once the first part of a plan has
been executed, the degree to which an agent wants to execute the next step should correspond to the expected value of the tail of
the plan relative to that next step.

Given this understanding of degrees of wanting to perform actions, my proposal is that a rational agent should, at any given time,
perform the action it most wants to perform. This amounts to marshaling the pre-rational machinery of the reactive agent and
extending it to the results of planning. However, there are what appear initially to be counterexamples to this account. Sometimes
it is rational to postpone doing what I most want if I know that I can do it later and something else I want to do cannot be
postponed. Suppose I am out of the house, and I plan to telephone a friend when I get back and before she leaves for work. There
will be only a short interval in which I can do that. As I am driving home, I become increasingly hungry and want to have lunch. If
I had to choose between (1) eating lunch and not calling my friend and (2) calling my friend and not eating lunch, I

20 Jean Hampton has pointed out to me that this is essentially a Hobbesian view of deliberation. See The Leviathan, chapter 6, paragraph 29.

Page 32

would unhesitatingly choose lunch. So it seems that I want to eat lunch more than I want to call my friend. But what I may actually
do is postpone lunch just long enough to call my friend, because I know that I will not be able to call her later. This appears to be a
counterexample to the account just proposed for the rational initiation of action.

However, this putative counterexample confuses the strength of the instrumental desire to eat lunch (my present-tense action
desire) with the strength of my primitive desire to eat lunch. It is quite true that my primitive desire to eat lunch is stronger than my
primitive desire to telephone my friend. That is what is shown by the observation that if I had to choose between them, I would
choose lunch. However, in the technical sense defined above, the strength of my wanting to eat lunch and the strength of my
wanting to telephone my friend are determined not by the strengths of the primitive desires but rather by the expected values of the
plans in which they are embedded. What actually happens is that I begin by adopting the plan to telephone my friend when I get
home. Then I get hungry. I consider two plans. The first is to eat lunch immediately upon returning home. The second is to
telephone my friend immediately upon returning home and then eat lunch. The second plan is preferable to the first, so it is
adopted. As the execution of that plan unfolds, telephoning my friend is the first action mandated. It thus becomes a candidate for
performance. At that point, eating lunch has not even been prescribed by an adopted plan. That step will not be prescribed until
after I have telephoned my friend. Eating lunch is prescribed only by a primitive desire to alleviate my hunger forthwith, but that
desire (we can suppose) is weaker than my instrumental desire to call my friend, because the latter derives from a plan for both
eating lunch and calling my friend. Accordingly, I will choose to telephone my friend first, and then to have lunch.

6. An Overview of Practical Rationality

Approaching rationality from the design stance suffices to generate a great deal of the structure governing how a rational agent
must function. The account has been rather complex, so let me provide a brief recapitulation:

• The objective of rationality is to live so that, insofar as possible, one likes the situations one is in—in other words, seek to max-

Page 33

imize the likability of one's situation, where this is the degree to which one would like one's situation if one had true beliefs about
all the relevant aspects of it. Thus situation-likings become the fundamental states in terms of which rationality is to be
understood.

• A rational agent tries to accomplish this objective by discovering courses of action (plans) whose execution will result in its
liking its situation better. Adopted plans are stored as intentions.

• In discovering such plans, the agent must reason about situations in terms of general features of them. The prediction that the
execution of a plan will result in a situation the agent likes must be based on general beliefs about the expected likability of general
types of situations. In particular, the agent must assess plans in terms of beliefs about the expected likability of the situation type
consisting of adopting the plan.

• Evaluating the expected likabilities of situation types is an extremely difficult problem. Any agent subject to realistic constraints
must use Q&I modules to help it solve this problem. At least in human beings, these generate feature-likings, which are used non-
ratiocinatively to produce estimates of expected likabilities.

• In searching for plans having high expected values, some mechanism is required to focus the search on plans that are
antecedently likely to have high expected values. This is done by selecting as goals highly valued situation types and then
searching for plans to achieve these goals. The search can then be constrained by using familiar techniques like goal reduction.
Adopted goals are encoded as desires.

• Rational action is not just a matter of mechanically executing adopted plans. The agent must decide when to execute a plan and
must choose among competing actions available at any given time. A rational agent does this by forming present-tense action
desires, which are desires to perform currently available actions. Some of these desires are produced by optative dispositions, and
others are derivative from adopted plans. Rationality then dictates performing the action prescribed by the strongest such desire.

Philosophical theories of rationality have been based primarily upon the belief/desire psychology inherited from Hume. One of the
simple consequences of the preceding account is that such a psychology is

Page 34

inadequate for the construction of a rational agent. A rational agent must have beliefs, situation-likings, feature-likings, intentions,
primitive desires, instrumental desires, and present-tense action desires. Each of these states plays an importantly different
functional role in rationality. It is particularly important to distinguish likings from desires, because most theories of rationality fail
to make this distinction. The role of desires is to encode the goals whose adoption initiates acting and planning; the role of likings
is to provide both the comparisons used in selecting the goals that supply the focus for planning and the basis for evaluating plans.

One of the most important consequences of this account is that only an ideally situated agent, unconstrained by limited
computational resources and able to engage in large amounts of epistemic reasoning without doing any practical reasoning, could
rely upon ratiocination for all of its practical cognition. Any real agent must make heavy use of Q&I modules in order to produce
practical conclusions within a reasonable amount of time. In other words, ratiocination is not a general solution to cognition.
Rationality must be built on top of pre-rational mechanisms. In a fully rational agent, the output of these Q&I modules is in
principle correctable by ratiocination, although it is doubtful that human beings are always capable of making full corrections.

Practical cognition begins with various kinds of evaluative attitudes. Philosophers have disagreed about whether these evaluative
attitudes are themselves subject to rational assessment.21 It is a consequence of the present theory of rationality that primitive
desires, instrumental desires, feature-likings, and present-tense action desires are all subject to rational evaluation. Feature-likings
are produced by a special mechanism, but their purpose is to serve as a Q&I module for finding situation types having high
expected situation-likings. If it is ascertained that the expected likability of a situation type is not high, then a fully rational agent
will either give up the feature-liking or ignore it in practical reasoning. Obviously, instrumental desires can be criticized by
criticizing the plan from which they are derived. Perhaps more surprising, primitive desires are also criticizable. Primitive desires
can be produced either by optative dispositions or by ratiocination on the basis of the belief that a situation type has a high relative
expected value. In the latter case, the desire is criticizable if the grounds for the

21 Nagel [1970] and Gauthier [1986] both argue that desires can be criticized rationally. Parfit [1984] maintains that they cannot.

Page 35

belief are criticizable. If instead the desire is produced by an optative disposition, then (as we have already seen) it can be
criticized if it is ascertained that the object of the desire does not have a high relative expected value (you wouldn't like it if you
had it). Some present-tense action desires are derived from plans, and these can obviously be criticized by criticizing the planning.
But others are produced nonratiocinatively by optative dispositions, and it may seem that they are immune from criticism.
However, recall that the objective of practical cognition is to help the agent live a good life, where that consists of living in such a
way that the situation tokens one is in are likable. The pre-rational optative dispositions that produce present-tense action desires
can still be evaluated by asking whether they contribute to this goal. The present-tense action desires produced by these
dispositions do not themselves have any automatic claim to fulfillment. It is particularly obvious that optative dispositions
produced by conditioning can be harmful when judged by this standard. If it is determined that a particular desire of this sort does
not contribute to leading the good life, that should serve to dispel it. If an agent retains that desire despite having this belief, the
desire is irrational. (Of course, this is one respect in which human beings are not fully rational. Acquiring such beliefs does not
automatically dispel the irrational desires.)

On the theory of rationality constructed here, reasoning includes not just epistemic reasoning but also practical reasoning wherein
desires are adopted on the basis of beliefs about the expected situation-likings of potential goals, intentions are adopted on the
basis of beliefs about the relative values of plans, and actions are produced by choosing the strongest present-tense action desires.
In contrast, the traditional Humean picture of reasoning recognizes only epistemic reasoning. Such a restriction seems to me to be
unduly narrow. All of these state transitions between beliefs, desires, and intentions are dictated by the functional architecture of a
rational agent. They are part of the makeup of a rational agent, so why not call them ''reasoning"? They are certainly part of
rationality, and insofar as an agent fails to perform these state transitions, the agent is subject to the criticism that it is being
irrational in the sense of not behaving as a fully rational agent would behave. We can decline to call these state transitions
"reasoning" if we like, but that can be no more than a linguistic convention and does not indicate any deep difference between
these state transitions and those involved in epistemic reasoning. As far as I can see, they are all on a par as being part of the
functional description of a fully rational agent.

Page 36

7. Interfacing Epistemic and Practical Cognition

Epistemic cognition produces the beliefs used by the rational agent in the course of practical cognition. This includes beliefs about
the nature of the agent's current situation and about the general structure of the world. These beliefs are used in choosing goals,
evaluating and adopting plans, and directing activity on the basis of those plans and present-tense action desires.

The distinction between epistemic and practical cognition is a useful one, but I doubt that it can be made absolutely precise. The
difficulty is that epistemic and practical cognition are highly interdependent. Within philosophy, it has tended to be the case that
either epistemic cognition is discussed in isolation from practical cognition, or the attempt is made to reduce epistemic cognition to
practical cognition by identifying it with practical cognition about what to believe.22 But neither strategy can be completely
successful. First, practical cognition must be based upon beliefs about the agent's current situation. For instance, it may require a
prior estimate of the probability of actions having different outcomes. Such beliefs are the result of epistemic cognition. Thus any
practical cognition must presuppose prior epistemic cognition. This has the immediate consequence that epistemic cognition
cannot be viewed as just a special kind of practical cognition, because that would lead to an infinite regress.

By and large, epistemologists have tried to ignore practical cognition in their investigations of epistemic cognition, but that cannot
be entirely satisfactory either. The whole point of epistemic cognition is to help the agent solve practical problems. Epistemic
cognition comes into play only in response to questions posed by practical cognition. It does not proceed at random; it is interest-
driven in the sense that it tries to answer specific questions. It begins with questions posed by practical cognition. In trying to
answer these questions, epistemic cognition may be led to pose other questions for itself that are only indirectly connected with
practical cognition, but ultimately it must be practical cognition that directs the interests of epistemic cognition. I will take the
questions posed by practical cognition to comprise the set of ultimate-epistemic-interests.

The connections between epistemic cognition and practical cognition do not stop there. It has often been insufficiently appreciated
by

22 An example of the latter is Levi [1980]. This has also been urged in AI by Jon Doyle [1988 and 1988a].

Page 37

_66CCC57CF172819

Figure 3. Flow of data in ratiocination

Page 38

epistemologists that epistemic cognition will be unable to answer many of the questions posed by practical cognition just by
thinking. If I want to know what time it is, I cannot just think about it-—I have to look at a clock. Generally, answering practically
motivated questions requires investigating the world empirically. This requires taking action. The actions can range from focusing
my eyes, to examining the contents of my immediate surroundings, to asking someone else a question, to engaging in a multi-year
research project involving high-energy linear accelerators. These are activities of the sort directed by practical cognition. So we get
a loop from practical cognition through epistemic cognition and back to practical cognition. The mechanism for this involves
epistemic cognition's producing new goals for practical cognition to try to achieve-—goals of acquiring certain kinds of
knowledge. Goals are encoded in desires, and I will refer to these epistemically driven desires as epistemic desires. Given an
epistemic desire, practical cognition can produce reasoning about how to acquire the desired knowledge. That practical cognition
may pose further questions for epistemic cognition, which may produce further epistemic desires, and so on.

The preceding observations can be combined into the general architecture of rationality that is diagrammed in figure 3. Circles
represent databases, and rectangles represent data-processing modules. Solid arrows indicate the flow of new data that drives the
operation of the modules, and dashed arrows indicate the retrieval of previously stored data. Expanded versions of the diagram will
be constructed as the book progresses. Epistemic and practical cognition include both ratiocination and the operation of Q&I
modules. These are of equal importance in the construction of a rational agent. However, I have more to say about ratiocination, so
that will be the main topic of discussion as this investigation progresses.

8. Reasons, Arguments, and Defeasibility

In epistemic reasoning, we adopt new beliefs as a result of either perceptual input or inference from previously held beliefs. In the
latter case, the previously held beliefs constitute "good reasons" for believing the conclusions. If we string together the reasoning
by which we arrive at a belief via earlier beliefs, the result is an argument, so we can regard reasoning as the construction of
arguments. This does not mean that the argument is itself an object represented in the agent's

Page 39

thought. Perhaps it would be better to say that the agent instantiates an argument. The argument is a record of the state transitions
involved in the agent's reasoning.

Epistemic reasoning starts with premises that are input to the reasoner. In human beings, these are provided by perception. For
now I will assume that the input premises are propositions, but I will propose a somewhat different view in the next chapter. The
input premises comprise the set input. The system then makes inferences from those premises. Reasons provide the atomic links in
arguments. Reasons always comes in schemas. For example, for any propositions P and Q, (P&Q) is a reason for P, and for
any term x, x looks red to me is a reason for me to believe x is red . Reasons are combined in various patterns to form
arguments. The simplest arguments are linear arguments. These can be viewed as finite sequences of propositions, each of which
is either a member of input or inferable from previous members of the sequence in accordance with some reason schema.
Arguments can also have more complex nonlinear forms. (This will be discussed at greater length in chapter 3.)

Although it seems obvious that in epistemic reasoning we instantiate defeasible arguments, this is a substantive claim, and it is
illuminating to ask why reasoning takes this form. A rudimentary answer can be gleaned from thinking about the role of mental
representations in a rational agent. Thoughts constructed out of mental representations are supposed to provide the triggers for
action. In a rational agent whose environment is unpredictable, it will be desirable to have great diversity in mental representations
so that fine discriminations can be made and used in guiding action. However, this desideratum must be balanced by one of
computational feasibility. Updating the agent's beliefs must be something that can be done in real time. Maximum discriminability
would be achieved by having the agent's beliefs produced by a one-one function from the entire set of perceptual inputs the agent
has experienced throughout its existence. However, updating beliefs on that basis is much too difficult a computational task. A
feasible alternative would be to have each of an agent's beliefs reflect some small subset of its perceptual history. This would be to
treat the beliefs as deduced from the sets of perceptual beliefs reflecting the perceptual history. This, however, does not allow
sufficiently fine discriminations. It amounts to a particularly simple form of phenomenalism, whereby all beliefs are deduced from
perceptual beliefs.23 It

23 For a discussion of phenomenalism and its failings, see Pollock [1986, 39ff].

Page 40

would not allow any non-deductive inferences, like induction or abduction. The categorizations of its environment that an agent
could make in this way are not sufficiently rich to enable it to direct its actions in very useful ways.

To get sufficiently fine discriminations, it must be possible for an agent's mental representations to take account of unlimited
amounts of perceptual input, but it cannot be required that the agent survey huge arrays of perceptual inputs before forming beliefs.
The only obvious way to achieve these two desiderata simultaneously is to enable the agent to adopt beliefs on the basis of small
sets of perceptual inputs but then retract them in the face of additional perceptual inputs if those additional inputs conflict in
various ways with the original bases for the beliefs. This is a description of defeasible reasoning. Beliefs are adopted on the basis
of arguments that appeal to small sets of previously held beliefs, but the beliefs can later be retracted in the face of new
information.

It is now a commonplace of both philosophical epistemology and artificial intelligence that epistemic reasoning can lead not only
to the adoption of new beliefs but also to the retraction of old beliefs. Similarly, practical reasoning can lead to the formation of
intentions but also to the retraction of intentions. In philosophy, reasoning is said to be "defeasible" in the sense that correct
reasoning can lead first to the adoption of a conclusion and subsequently to its retraction. Both practical reasoning and epistemic
reasoning are defeasible. This aspect of reasoning has been called "nonmonotonic" in AI work. 24

Reasoning proceeds in terms of reasons. Within epistemic reasoning, some reasons are conclusive reasons, in the sense that they
logically entail their conclusions. The defeasibility of epistemic reasoning results from the fact that there are non-conclusive
reasons that support their conclusions only defeasibly. These are primafacie reasons. Considerations that defeat prima facie
reasons are defeaters. There are two importantly different kinds of defeaters. Where P is a prima facie reason for Q, R is a
rebutting defeater iff R is a reason for denying Q.

24 The work on defeasible reasoning in philosophy stems mainly from the publications of Roderick Chisholm and myself. See Chisholm
[1957], [1966], [1977], and Pollock [1965, 1967, 1970, 1974, 1986, 1987, 1990]. See also Kyburg [1974, 1983]. For a sampling of the work in
AI, see Delgrande [1988], Etherington [19871, Etherington and Reiter [1983], Loui [1987], McCarthy [1980 and 1984], McDermott and Doyle
[1980], Moore [1985], Nute [1988], Pearl [1988], Pollock [1987, 1990c, 1991, 1992a], Poole [1985, 1988], Reiter [1980], and Reiter and
Criscuolo [1981].

Page 41

All work on nonmonotonic logic and defeasible reasoning has recognized the existence of rebutting defeaters, but there was a time
when it was often overlooked that there are other defeaters too. 25 For instance, suppose x looks red to me, but I know that x is
illuminated by red lights and red lights can make objects look red when they are not. Knowing this defeats the prima facie reason,
but it is not a reason for thinking that x is not red. After all, red objects look red in red light too. This is an undercutting defeater.
Undercutting defeaters attack the connection between the reason and the conclusion rather than attacking the conclusion directly.
My claim, discussed in chapter 2, is that rebutting defeaters and undercutting defeaters are the only kinds of defeaters necessary for
describing the full logical complexity of defeasible reasoning.

In philosophy the concept of a prima facie reason has served primarily as a tool for the analysis of different kinds of
epistemological problems, and that is the origin of my own work on defeasible reasoning. Prima facie reasons and defeaters have
served as the main logical tools for my work in epistemology since 1965. Within philosophy, defeasible reasoning has not, until
quite recently, been the subject of much logical investigation in its own right. In sharp contrast, nonmonotonic reasoning has been
the subject of intensive logical investigation in AI. It will be my contention, however, that the AI work has been done without
sufficient attention to actual epistemological examples of defeasible reasoning, with the consequence that the resulting theories are
inadequate for the description of complex defeasible reasoning. (This claim will be defended in chapter 3.)

A common impression in AI is that defeasible reasoning consists of jumping to conclusions or making "tentative guesses".26 It is
supposed that defeasible reasoning is less secure than normal reasoning, and should be countenanced only for the sake of
computational efficiency. What is overlooked is that defeasible reasoning is normal reasoning. Its use is not just a matter of
computational efficiency. It is logically impossible to reason successfully about the world around us using only deductive
reasoning. All interesting reasoning outside mathematics involves defeasible steps. For instance, our basic information about the
world comes from sense perception. Things appear certain

25 I first pointed out the existence of defeaters other than rebutting defeaters in my [1970].

26 Doyle [1979].

Page 42

ways to us, and we take that to be a reason for believing that they are that way. Clearly this reasoning is defeasible, but our
reasoning in this way is no mere matter of convenience. As years of work in epistemology has made clear, there is in principle no
way to logically deduce the state of the world from the way it appears.27 Moving up the epistemic ladder, we use induction to form
general beliefs summarizing observed regularities. If a regularity has been observed to hold in every case, that gives us a reason for
thinking that it holds in general. If it has only been observed to hold in most cases, that gives us a reason for thinking it will
continue to hold in most cases. Such inductive reasoning is defeasible, and it cannot be replaced by deductive reasoning. There is
no way to deduce general conclusions from finitely many observations. Given that a generalization holds most of the time, we can
use that to infer that it will hold in further unobserved cases. This inference is also defeasible. It takes "Most A's are B's, and this is
an A" to be a defeasible reason for "This is a B". The upshot is that defeasible reasoning is not just common; it is thoroughly
pervasive and absolutely essential. Almost everything we believe is believed at least indirectly on the basis of defeasible reasoning,
and things could not have been any other way.

The next three chapters will be devoted to a study of defeasible reasoning. In studying reasoning, we can divide the subject into
three parts: semantics, the study of correct arguments, and procedural theories of reasoning. Semantics is concerned with what
conclusions are "ultimately reasonable" given any initial set of premises. The study of correct arguments concerns the structure of
arguments aimed at establishing those ultimately reasonable conclusions, without any concern for how the arguments might be
found or constructed. Procedural theories of reasoning deal with the control structure of a reasoner (the "architecture" of the
reasoner) that governs its actual reasoning behavior. The study of correct arguments is often called "proof theory", but that is not a
very good label for reasoning that includes non-deductive inferences like induction or abduction. Perhaps the main difference
between theories of reasoning in AI and theories of reasoning in philosophy is that the latter have not traditionally attended to the
architecture of the reasoner. I cannot, however, see any principled reason why that should be the case. I suspect that philosophers
just did not think of this problem or else thought that it could not be profitably investigated.

27 For further discussion of this point, see my [1986, 39ff].

Page 43

9. Reflexive Cognition

Although epistemic cognition is initiated by practical cognition, it need not be directed by practical cognition about how to answer
questions. That would lead to an infinite regress, because practical cognition always requires beliefs about the world. If we could
not acquire some such beliefs without first engaging in practical cognition, we could never get started. This indicates that there
must be a default control structure governing epistemic cognition, and in particular, governing the way in which it tries to answer
questions. However, in human beings it is also possible to override the default control structure. For example, suppose I know a lot
of calculus, and I am faced with an integration problem. Purely a priori reasoning, directed by my default reasoning strategies, may
suffice to solve the problem. But if it is a complicated problem, a better way of solving it may be to look it up in an integration
table. Solving the problem in this way involves practical cognition intervening in the course of epistemic cognition, providing an
alternative strategy for answering the question and using that to override the default reasoning strategies.

Clearly it is a good idea for a sophisticated rational agent to be able to modify the course of its own epistemic endeavors by
engaging in practical cognition about how best to pursue them. This allows practical cognition to affect the strategies employed in
attempting to answer questions. An agent can learn that certain natural (default) strategies are unlikely to be effective in specific
circumstances, and new strategies may be discovered that are more effective. The latter are often obtained by analogy from
previous problem solving. It must be possible for the rational agent to use practical cognition in this manner to direct the course of
epistemic cognition (and also to direct the course of practical cognition itself). I will refer to this as reflexive cognition. But it
cannot be emphasized too strongly that reflexive cognition is not an essential part of all epistemic cognition. Because practical
cognition presupposes epistemic cognition, some epistemic cognition must be possible without practical cognition. A rational
agent must have built-in default control strategies for both epistemic cognition and practical cognition, and the agent must be able
to employ these default strategies without engaging in reflexive cognition about how to reason.

In order to perform reflexive cognition, an agent must be able to think about its own reasoning. An agent with such capabilities is a
reflexive cognizer. The construction of a reflexive cognizer is a tricky process. It involves the ability to reason and then "move up a
level"

Page 44

to form beliefs about what reasoning has occurred. We want the cognizer to direct future reasoning by relying upon generalizations
it has formed about the efficacy of certain kinds of reasoning in the past. This requires the ability to monitor ongoing reasoning
introspectively and make judgments about it. A number of different kinds of judgments will be involved in reflexive cognition.
Reasoning strategies are affected by judging that one way of attacking a problem is more likely to produce an answer than another
way of attacking the problem. Another kind of reflexive cognition is involved in overriding Q&I modules. There, the cognizer
discovers inductively that relying upon Q&I modules is unreliable under certain circumstances. To discover this, the cognizer must
judge introspectively that it was relying upon Q&I modules on particular occasions, it must be able to tell introspectively what
conclusion was produced, and it must be able to judge that the conclusion was false. This knowledge enables the cognizer to form
a generalization about the reliability of Q&I modules. Then to apply this generalization, the cognizer must be able to judge in a
particular case that it is relying upon Q&I modules. A similar kind of reflexive cognition is important in defeasible reasoning.
There, the cognizer may discover inductively that reasoning in accordance with a certain prima facie reason is unreliable under
specifiable circumstances, and that constitutes a defeater for the reasoning. Discovering and applying this defeater involves
essentially the same mechanisms of reflexive cognition as that used in overriding Q&I modules.

Reasoning requires a system of mental representation—what in the philosophical literature is called a language of thought.28
Reasoning consists of manipulating sentences in the language of thought. A reflexive cognizer must be able to think about the
sentences in its own language of thought and observe their manipulation. For this to be possible, the cognizer's system of mental
representation must incorporate something analogous to quotation names of those sentences. If p is a sentence in the language of
thought, let «p» be its quotation name.

The construction of a reflexive cognizer will begin with a planar reasoner that lacks the ability to move up a level and observe
itself. A planar reasoner can still reason about reasoning, in the same way it reasons about anything else, but it will have no special
mechanisms for use in reasoning specifically about reasoning. To this planar reasoner we must then add an introspective module
and a truth-evaluation module. The default epistemic reasoning module can be viewed as consisting

28 The term is from Fodor [1975].

Page 45

Figure 4. Reflexive epistemic cognition

of a planar reasoning module, the introspective monitoring module, and the truth-evaluation module, combined as in figure 4. Note
that this is all part of default epistemic reasoning, because the system must perform this much reasoning before it can apply
practical reasoning to the question of how to reason. A full-fledged reflexive cognizer then results from giving practical cognition
the ability to alter the course of epistemic cognition in various ways and using the results of reflexive epistemic cognition in
choosing how to do that. The introspective module enables the cognizer to acquire beliefs about its own reasoning. It will
accomplish this by adding procedures to the cognizer that, under appropriate circumstances, lead the cognizer to adopt beliefs of
the form

I believe «p»;

I believe «p» on the basis of «ql»,...,«qn»;

when it does in fact hold that belief on that basis.29

From a computational point of view, the addition of such an introspective module to a planar reasoner creates no obvious
difficulties, but there are grave difficulties associated with the addition of a truth-

29 These procedures must be interest driven, in the sense of section 10. The reasoner should adopt these beliefs only if it is previously
interested in them.

Page 46

evaluation module. The obvious proposal is to adopt an analogue of Tarski's T-schema :30

From p, infer «p» is true .

From «p» is true , infer p.31

The problem is that incorporating these rules into a reasoner will lead immediately to the liar paradox. The resulting inconsistency
will be catastrophic in any reasoner that is compelled to draw all possible deductive consequences from its beliefs. There is a
massive literature in philosophical logic regarding how to avoid the liar paradox, and that all becomes relevant here.32 Thus the liar
paradox, which initially appears to be a purely logical puzzle, becomes resurrected as an obstacle to AI. I think that this will not be
unusual. A great many familiar philosophical problems arise in a new guise when we start modeling reasoning.

10. Interest-Driven Reasoning

In searching for arguments, a reflexive cognizer can bring to bear the full power of its practical reasoning, as informed by all of its
prior experience. However, a reflexive cognizer must be built on top of a planar reasoner, and the searches of the latter are guided
exclusively by the built-in procedures that constitute the default strategies for the reflexive cognizer. Let us focus on the native
reasoning strategies of the default non-reflexive cognizer. I have noted that we could build a reasoning system that systematically
generates all possible arguments, and it would be complete for, say, the predicate calculus. Using this system, if we want to
establish a certain conclusion we must just wait until the system gets to it. This is the so-called British Museum algorithm.

30 Tarski [1956].

31 These must also be interest-driven. In the sense of section ten, the first would be a backward reason and the second a forward reason.

32 For a sampling of the literature on the liar paradox, see Martin [1970, 1984]. For an extremely interesting proposal from AI, see Perlis [1985].
For my own suggestion regarding how to manage the reasoning involved in the liar paradox, see Pollock [1990b].

Page 47

But such a system would be hopelessly inefficient. The behavior of any satisfactory reasoner must be guided by the conclusions it
is trying to establish rather than just reasoning randomly until it happens upon its desired conclusion. All actual reasoners, human
or artificial, are guided in some way or other. There is a rather obvious general account of how this works in default human
reasoning. The basic idea is that reasoning proceeds both forward and backward (it uses forward chaining and backward chaining).
We reason forward from our existing beliefs, and backward from what we are interested in establishing, and try to bring the two
chains of reasoning together. Reasoning backward can be regarded as deriving interests from interests. A reasoning system that
combines such forward and backward reasoning will be said to be interest-driven. (The logical structure of interest-driven
reasoning will be investigated further in chapter 4.)

The bidirectional structure of interest-driven reasoning is extremely important for understanding the way in which epistemic and
practical cognition interact. I have argued that epistemic cognition gets its point from practical reasoning. Practical cognition
passes questions to epistemic cognition, which the latter tries to answer. The mechanism for this is the set of ultimate-epistemic-
interests. These are questions posed by practical cognition for the sake of deciding what to do. In turn, these provide the initial
interests for epistemic cognition. Epistemic cognition reasons backward from these interests, deriving interest in other questions
whose answers would facilitate answering those in ultimate-epistemic-interests. This is just goal reduction applied to reasoning.
Perception provides the premises in input from which epistemic cognition reasons forward, and the aim of epistemic reasoning is
to bring these two chains of reasoning together so that questions of interest can be answered.

Interests come in degrees, reflecting the practical importance of the questions of interest. For instance, I may simultaneously want
to see a certain movie tonight and avoid getting hit by a car while crossing the street. Both require practical reasoning, but I place
greater importance on avoiding being hit than on seeing the movie. Accordingly, I have a higher degree of interest in questions
pertaining to how to avoid being hit than I do in questions pertaining to how to see the movie. One of the main functions of such
degrees of interest is to prioritize reasoning. Human beings and other rational agents have limited computational

Page 48

powers. There is typically more reasoning for them to do than they can do at any one time. They need some mechanism for
deciding which reasoning to do first, and degrees of interest provide part of the mechanism for such prioritization.

Just as degrees of interests vary, so do the strengths of reasons. Some reasons are better than others. For example, knowing that all
A's are B's and this is an A gives me a better reason for believing that this is a B than does knowing that most A's are B's and this is
an A. Similarly, something's looking clearly red to me in good light gives me a better reason for thinking it is red than does its
looking vaguely red to me in dim light. The strengths of the reasons employed in an argument affect the degree of justification of
the conclusion of the argument. The better the reasons, the higher the degree of justification. (The precise way in which the
strengths of reasons affect the degree of justification of the conclusion will be investigated in chapter 3.)

Degrees of justification have a role to play in adjudicating disputes in epistemic reasoning. For example, if I have a reason for
believing P but also have a significantly better reason for believing ~P, then it is ~P that I should believe. But if I have equally
good reasons for believing P and ~P, then I should withhold belief in both. This is a purely ''internal" function for degrees of
justification in epistemic reasoning. Degrees of justification are also important in connecting epistemic reasoning and practical
reasoning. The practical importance of a question (i.e., our degree of interest in it) determines how justified we must be in an
answer before we can rest content with that answer. For example, consider a ship's captain on a busman's holiday. He is taking his
wife on a Caribbean cruise on a ship where he has no official status other than being a passenger. The ship seems well equipped,
and he idly wonders how many lifeboats are on board. To answer this question, he might simply consult the descriptive brochure
that was passed out to all the passengers. But now suppose things change catastrophically. An accident occurs, disabling all of the
ship's officers and putting the ship in jeopardy. The visiting captain is pressed into duty to run the ship. The ship is in danger of
sinking. At this point it becomes very important for him to know whether there are enough lifeboats aboard for all the passengers.
To answer this question, it is no longer sufficient to consult the descriptive brochure. That is not a good enough reason. He must
either count them himself or have them counted by someone

Page 49

he regards as reliable. The importance of the question makes it incumbent upon him to have a very good reason for his believed
answer. Thus the degree of interest in a question determines the degree of justification a rational agent must have for an answer.

11. The Project

This investigation began with a very general conception of a rational agent as an agent that likes or dislikes its situation to varying
degrees and when it finds the world not entirely to its liking it tries to change that. General logical considerations and
considerations of computational feasibility suffice to dictate a great deal of the structure of a rational agent. We were led to the
picture of a rational agent as a planning agent whose planning is directed by defeasible epistemic cognition and initiated and
evaluated by a complicated structure of evaluative attitudes. This structure was not elicited by reflecting on human cognition but
was the only obvious solution to a number of logical problems and problems of computational feasibility. Although the enterprise
has been to describe rationality in general, and not just human rationality, I take it that this throws considerable light on the nature
of human rationality and explains why human cognition has much of the structure that it does.

The rest of the book will be concerned with working out the details of the theory of rationality that has been sketched in this
chapter. The book divides roughly into two parts. The first part is concerned with epistemic reasoning and the second with
practical reasoning. Chapter 2 gives a general description of human epistemology, formulated in terms of prima facie reasons and
defeaters. Chapter 3 investigates the logical structure of defeasible reasoning. Chapter 4 formulates a procedural theory of interest-
driven defeasible reasoning—an account of how to perform the reasoning rather than just an account of the results we would like
the reasoning to produce. This account forms the basis for an implemented general-purpose defeasible reasoner intended to provide
the inference engine for the artilect that is the goal of the OSCAR project.

Chapter 5 turns to the theory of practical reasoning and provides a general defense of a "plan-based theory of practical reasoning".
Chapter 6 investigates the logical structure of plans, and chapter 7 addresses the computational architecture of a rational agent
capable of plan-based practical reasoning. Chapter 8 investigates the way in which actions

Page 50

are directed on the basis of the plans the agent has adopted. Chapter 9 summarizes the theory produced in the earlier chapters and
describes the detailed architecture that results from it. This architecture has been implemented and provides the basis for an assault
on the problems that remain for the production of a fully functional artilect. Chapter 9 closes with a survey of those problems.

Page 51

Chapter 2 Epistemology from the Design Stance

1. Epistemology and Cognition

Chapter 1 sketched some general features of the cognitive architecture of a rational agent. Those features concern both epistemic
and practical cognition and are motivated by quite general aspects of rationality. The rest of the book will be concerned with filling
in details, beginning with an account of epistemic cognition. Epistemic cognition proceeds via both epistemic reasoning and some
important Q&I modules that accelerate those aspects of epistemic cognition that can be performed only very slowly by
ratiocination. This account will focus primarily on reasoning rather than the Q&I modules, although I will point out where Q&I
modules are of particular importance and what some of them might look like.

A description of epistemic reasoning must give a general account of those aspects of epistemic reasoning that are common to all
subject matters, and supplement that account with specific details governing particular kinds of epistemic reasoning. We can make
a distinction between theoretical epistemology and applied epistemology. Theoretical epistemology describes the inference engine
for epistemic reasoning. The inference engine will be an interest-driven deductive and defeasible reasoner, and it will be described
in detail in the next two chapters. A constraint on the design of the inference engine is that it must be capable of handling all of the
complex reasoning required by a realistic applied epistemology. Accordingly, this chapter will provide a sketch of some of the
central elements of the applied epistemology that will be presupposed by the OSCAR project. The applied epistemological theories
presented in this chapter have all been developed and defended elsewhere. For the most part, the purpose of this chapter is not to
do new work in epistemology but rather to present previously constructed theories in capsule form so that they can be used
throughout the rest of the book. For the purposes of building an artilect, these applied epistemological theories will have to
undergo further development in various ways, filling in details that are required for implementing the reasoning they describe. That
will be the next stage of the OSCAR project. The current stage concentrates on getting the general architecture right.

Page 52

In philosophy, the term "epistemology" includes much that is not of interest in the current context. My concern here is with
"epistemology from the design stance". A rough distinction can be made between epistemological questions that bear on the design
of a rational agent and those that bear on the description of the rational agent once it is running. Many traditional epistemological
problems fall into the latter category. For example, the analysis of S knows P is of no interest in this investigation. What is of
interest is how a rational agent should reason in acquiring perceptual knowledge, performing inductive generalizations, and so
forth. Epistemology from the design stance is concerned exclusively with the structure of epistemic reasoning.

Leaving aside Q&I modules for the moment, the beliefs of a rational agent are produced by a combination of perception and
reasoning. Perception produces beliefs about the agent's immediate surroundings. Inductive reasoning from those beliefs produces
general beliefs. There are several different kinds of inductive reasoning. Enumerative induction produces conclusions of the form

All F's are G's as a result of observing a sample of F's all of which are G's. Statistical induction produces probabilistic
generalizations of the form The probability of an A being a B is approximately r as a result of observing a sample of F's in
which the proportion of G's is r. Reasoning from these generalizations produces further singular beliefs, beliefs in causal
connections, subjunctive conditionals, and so forth. Reasoning from exceptionless generalizations of the form All Fs are G's is
just a matter of deduction, but reasoning from probabilistic generalizations of the form The probability of an A being a B is
approximately r is more complicated. The inference is defeasible and proceeds in terms of the statistical syllogism, which says
roughly that if the probability of an A's being a B is high then it is defeasibly reasonable to expect a particular A to be a B. I turn
now to a more detailed account of some of this.

2. Perception

The starting point for belief formation is perception. Perception is a causal process that produces beliefs about an agent's
surroundings. The construction of a rational agent requires a complete account of this causal process, and that is a formidable task.
Very schematically, we can think of perception as beginning with the activation of sensors, whose signals are processed in
complex ways to produce a sensory image, and then beliefs are produced in response to that image. I

Page 53

suspect that the most difficult part of constructing a complete theory of perception lies in describing the computations leading from
sensory input to the production of an image, and that is where most of the work is being done in the psychology of vision and in
machine vision. Fortunately, the epistemologist can largely ignore all of that, because we can think of epistemology as beginning
with the image and concerning itself with how beliefs are produced from that.

Perception apprises us of some of the properties of our surroundings, including the existence and position of objects of varying
colors, shapes, and textures. I will refer to these as perceptible properties. Most properties are not perceptible. I cannot tell simply
by looking at something how much it weighs, its age, or its marital status. I can, of course, perceive other properties that may
constitute contingent clues regarding these non-perceptible properties.

Where ϕ is an appropriate perceptible property, we can talk about an agent's "having a ϕ image". For instance, an agent may have
an image of a red object positioned in the left side of the visual field. This gives the agent a reason to think that there is a red
object so positioned. In general, for perceptible ϕ, having a ϕ image gives an agent a reason to think that its circumstances
exemplify ϕ. Clearly the agent's justification for holding this belief is defeasible. For example, the agent may have very good
reason to believe that there is no pink elephant before him, and that may make it unreasonable to believe that there is a pink
elephant before him despite the fact that he has a visual image of one. It is tempting to describe this by saying that, in perception,
we employ the following prima facie reason scheme:

(2.1) Where ϕ is a perceptible property, I have a ϕ image is a prima facie reason for an agent to believe My circumstances
exemplify ϕ .1

An interesting twist arises in understanding this principle, however. It is most natural to think of reasons for beliefs as being other
beliefs and accordingly to understand (2.1) as telling us that when an agent has a belief of the form I have a ϕ image , that gives
the agent a defeasible reason for believing My circumstances exemplify ϕ . However, in two ways, this is an inadequate
account of the way in which

1 For further discussion and defense of this principle, see my [1986, 39ff]. Variants of this principle also formed the basis of my account of
perceptual knowledge in my [1965, 1967,1971, and 1974].

Page 54

perceptual images give us reasons for beliefs about our surroundings. First, it would leave a gap in the account. A computational
theory of perception ends with the production of an image, but the epistemological theory would begin with a belief about an
image. How do we get from the existence of the image to the belief about the image? It might be supposed that this gap is filled by
a mechanism ensuring that whenever we have a j image, we automatically form the belief that we do. On this account, the
justification of my beliefs about my surroundings "passes through" beliefs about my visual images. However, that is simply false.
Human beings rarely have any beliefs at all about their images. The first beliefs they form on the basis of perception are typically
about physical objects. When I walk around campus, I form beliefs to the effect that there are trees and buildings around me, there
are people hurrying by, and so forth. I rarely form any beliefs about my visual images. I can form beliefs about my visual images,
but that normally involves a deliberate change of attention—not something that I do ordinarily. In the normal course of events,
perceptual images give rise directly to beliefs about our surroundings, without this being mediated by any beliefs about the images.

Throughout much of the history of epistemology, there was an assumption that went unquestioned. This is the doxastic
assumption, according to which the only thing that can be relevant to whether an agent ought to hold a belief is what other beliefs
the agent holds. But the doxastic assumption must be rejected, because it makes it impossible to explain how human beings can
have perceptual knowledge when they lack beliefs about their perceptual images.2 A correct account of perceptual knowledge must
acknowledge that the mere existence of a perceptual image, independent of any beliefs about it, can lead the agent to form beliefs
about its surroundings, and when such beliefs are formed on that basis, they are reasonable beliefs, that is, they are epistemically
justified. I propose to describe this by saying that having the image constitutes a prima facie reason for holding the belief. This
amounts, in part, to a convention regarding how I am going to use the term "reason". In particular, I am going to use it rather
broadly so that cognitive states other than beliefs can be reasons for beliefs. In principle, any cognitive states to which the reasoner
has "direct access"

2 See my [1986, 58-64 and 87-91] for further discussion of this claim.

Page 55

can be reasons.3 Of course, the most common kinds of reasons will be beliefs, but these are not the only possible kinds of reasons. I
propose then to reformulate (2.1) as follows:

(2.2) Where ϕ is a perceptible property, an agent's having a ϕ image constitutes a prima facie reason for the agent to believe My
circumstances exemplify ϕ .

It is customary to talk about reasons as if they are propositions. For example, we may say that a conjunction is a reason for each
conjunct. However, endorsing (2.2) requires us to take the reason-relation to relate mental states rather than their propositional
contents. For instance, rather than saying that (P&Q) is a reason for P, we must say that believing (P&Q) is a reason for
believing P. Usually, however, the mental states that are reasons will be beliefs, and in that case I will usually write as if it is the
contents of the beliefs rather than the beliefs themselves that are reasons for each other. Bear in mind, however, that this is just a
convenient shorthand.

A further complication must be addressed. Although we rarely have beliefs about our perceptual images, we sometimes do.
Furthermore, when we have such beliefs, it is possible for them to be mistaken.4 For example, a common mistake is to suppose that
shadows in snow look grey. In fact, as every artist knows, they have a distinct bluish cast. But most people are unaware of this, and
if you ask a person standing before a snow-covered landscape what color the shadows look to him, he may answer by appealing to
his general belief that such shadows look grey rather than by attending introspectively to his image. If he does, he will form the
false belief that the shadows look grey to him.

Now consider a person who has a false belief about his perceptual image. Think, for instance, of the person with the false belief
about the shadow in the snow. On the basis of his belief that the shadow looks grey, the might conclude that it is grey. What should
we say about the reasonableness of this conclusion? He does not have a reason of the form of (2.2) for his belief, but nevertheless,
given his false belief about how the shadow looks, it seems defeasibly reasonable

3 This amounts to an endorsement of what is called "internalism" in epistemology.

4 For further discussion of this point, see my [1986, 58-64].

Page 56

for him to believe that the shadow is grey. This suggests that (2.2) should be supplemented with:

(2.3) Where ϕ is a perceptible property, an agent's believing he has a ϕ image constitutes a prima facie reason for him to believe
My circumstances exemplify ϕ U231D.gif.

Furthermore, the preceding example indicates that reasons of the form of (2.3) take precedence over conflicting reasons of the
form of (2.2). This can be captured by saying that reasons of the form of (2.3) constitute undercutting defeaters for conflicting
reasons of the form of (2.2). Precisely:

(2.4) Where θ is a perceptible property, an agent's believing he has a θ image and believing that if his circumstances exemplify θ
then they do not exemplify ϕ constitutes an undercutting defeater for (2.2).

It should be observed that an agent's believing he has a θ image and believing that if his circumstances exemplify θ then they do
not exemplify ϕ also constitutes a rebutting defeater for (2.2). This is automatic, because by (2.2) this gives the agent a reason to
believe that his circumstances exemplify θ and hence that they do not exemplify ϕ. However, this observation is not sufficient to
accommodate our reasoning in this case, because the agent's having a ϕ image and believing that if his circumstances exemplify θ
then they do not exemplify ϕ also constitutes a rebutting defeater for the inference, in accordance with (2.3), to the conclusion that
his circumstances exemplify θ. In other words, the rebutting relationship between θ and ϕ is symmetrical. In order to give the
inference in accordance with (2.3) precedence over the inference in accordance with (2.2), we must break the symmetry by
acknowledging the undercutting defeater formulated in (2.4).

There is another kind of defeater for (2.2) that is of considerable importance. Suppose that I see an object and it looks red to me.
By (2.2), that gives me a prima facie reason for thinking that it is red. But suppose I also know that the object is illuminated by red
lights, and such illumination can make objects look red when they are not. Surely this makes it unreasonable for me to conclude
that the object is red. On the other hand, the inference is not defeated by a rebutting defeater, because I have no reason for thinking
that the object is not red. Although non-red objects can look red in red light, red objects also look red in

Page 57

red light. Accordingly, this example must be taken to illustrate the presence of an undercutting defeater. The undercutting defeater
consists of observing that under the present circumstances, an object's looking red is not a reliable indicator of its being red. More
generally:

(2.5) The belief: the present circumstances are of a general type C such that the probability is not high of being in circumstances
exemplifying ϕ given that one has a ϕ image under circumstances of type C is an undercutting defeater for both (2.2) and (2.3).

I will refer to defeaters of this form as reliability defeaters for (2.2) and (2.3).5

Reliability defeaters represent a general phenomenon in defeasible reasoning. Whenever belief in P is a prima facie reason for
belief in Q, discovering that under the present circumstances, P's being true is not a reliable indicator of Q's being true, constitutes
an undercutting defeater for the prima facie reason. More precisely:

(2.6) If belief in P is a prima facie reason for belief in Q, the belief: the present circumstances are of a general type C such that the
probability is not high of Q's being true given that P is true under circumstances of type C is an undercutting defeater for this prima
facie reason.

The application of (2.5) to (2.3) is assimilated by (2.6). Note, however, that the application of (2.5) to (2.2) is not assimilated by
(2.6), because (2.6) talks only about prima facie reasons that are beliefs. Furthermore, (2.6) cannot be reformulated so as to include
the application of (2.5) to (2.2), because there is an important disanalogy. The prima facie reason formulated by (2.2) consists of
having a ϕ image, and the defeater formulated by (2.5) consists of discovering that having a ϕ image is not a reliable indicator of
being in circumstances exemplifying ϕ. By contrast, the prima facie reason to which (2.6) applies consists of believing P, but the
defeater formulated in (2.6) does not consist of discovering that believing P is not a reliable indicator of Q's being true.

5 This characterization of reliability defeaters is simplistic in one respect. I have argued [1990, pg. 198], that a "projectibility constraint" must
be imposed on C.

Page 58

3. Justification and Warrant

The rules governing epistemic reasoning are rules for updating the cognizer's set of beliefs, in response to both further perceptual
input and further reasoning. Given a set of beliefs, the rules for epistemic reasoning describe how it should be altered, either by
adopting new beliefs or retracting beliefs currently held. Accordingly, we can think of the epistemic reasoner as being described by
a function update, which is applied repeatedly to the agent's set of beliefs and current perceptual states to generate the new set of
beliefs that become reasonable as a result of a single step of reasoning. Philosophers talk about epistemic justification. This term
has been used in several importantly different ways, but in one sense of the term, the beliefs that are epistemically justified at any
given time are just those that it is reasonable to hold. In other words, if an agent's beliefs comprise a set B, and P is the set of all the
agent's current perceptual states, a belief is currently justified iff it is in update(B,P). A belief can be justified at one time and
become unjustified at a later time as a result either of additional reasoning or new perceptual input. Justification has to do with
what beliefs the agent ought to hold at any given time.

A complication arises from the fact that we can be justified to varying degrees in holding different beliefs. In chapter 3, it will be
argued that to fully implement rationality, beliefs must be stored with their associated degrees of justification. These degrees are
used in computing degrees of justification for new conclusions produced by update. A specification of update must include a
description of how this works. Formally, however, the set B on which update operates can be taken to be a set of pairs (P,∝) of
propositions and their associated degrees of justification. The value of update(B,P) must also have this form. Then an agent is
justified to degree ∝ in believing a proposition P iff (P,∝)∈ update(B,P).

The beliefs that an agent is justified in holding change as a function of both reasoning and perceptual input. Sometimes we are
interested in holding the perceptual input fixed and asking whether a belief is justified after a certain amount of reasoning. This can
be described by supposing the agent begins with a set B0 of beliefs, and then applying update repeatedly without any new
perceptual input. Define:

Page 59

Then Jn is the set of beliefs justified after n steps of reasoning.6 Because reasoning is defeasible, a belief may be justified at one
stage, unjustified at a later stage, justified again still later, and so on.

For some purposes we are interested in a less transitory notion of justification. Let us say that a proposition is warranted iff it is
''justified in the limit". More precisely, a warranted proposition is one that eventually becomes justified and stays justified:

P is warranted to degree ∝ iff there is an n such that for every m > n, (P,∝)∈ Jm.

Warrant and justification are closely connected concepts, but they are also importantly different. A proposition can be warranted
without being justifiably believed, because it may become justified only later as a result of constructing an argument that has not
yet been constructed. Similarly, a currently justified belief may fail to be warranted because further reasoning may reveal a
defeater for some defeasible inference used in its justification.

4. The Statistical Syllogism

We believe very few exceptionless generalizations. Most of the generalizations we believe and in terms of which we guide our
behavior are statistical, of the form Most F's are G's . In order to function in a world like ours, a rational agent must be equipped
with rules (1) enabling it to form beliefs in statistical generalizations, and (2) enabling it to make inferences from those statistical
generalizations to beliefs about individual matters of fact. The latter rules are called acceptance rules. I will begin the discussion of
probabilistic reasoning by focusing on acceptance rules. I have argued [1990] that the most fundamental acceptance rule is the
statistical syllogism. The non-numerical version of the statistical syllogism is very familiar in AI, comprising the most common
example of defeasible reasoning. It can be formulated roughly as follows:

6 It is argued in chapter 4 that this picture must be made more complicated. Update must operate on "conclusions" rather than beliefs, where
conclusions can be either defeated or undefeated. Then the set of beliefs justified after n stages of reasoning is the set of undefeated
conclusions after n stages of reasoning.

Page 60

Most F's are G's.
This is an F.
This is a G.

We often reason in roughly this way. For instance, on what basis do I believe what I read in the newspaper? Certainly not that
everything printed in the newspaper is true. No one believes that. But I do believe that most of what is printed in the newspaper is
true, and that justifies me in believing individual newspaper reports. I take it that what Most F's are G's U231D.gif requires is that the
probability is high of an arbitrary G's being an F. Accordingly, this can be rewritten as:

prob(G/F) ≥ r.
This is an F.
This is a G.

The choice of r will vary from one situation to another, depending upon the degree of certainty that is demanded. It was argued in
chapter one that when questions are passed to the epistemic reasoner, the associated degrees of interest reflect their importance in
practical reasoning, and these degrees of interest determine the degree of justification the cognizer must have in order to accept an
answer. In the case of the statistical syllogism, this degree of justification determines the value of r. I will say more about this in
the next chapter.

The probabilities to which the statistical syllogism appeals are indefinite (general) probabilities; that is, the probabilities relate
properties. They are to be distinguished from definite (single case) probabilities, which attach to propositions. There is, however,
more than one kind of indefinite probability, and correspondingly we can formulate different versions of the statistical syllogism. I
have argued [1990] that the most fundamental version of the statistical syllogism proceeds in terms of nomic probabilities. These
are the probabilities involved in statistical laws of nature. At least heuristically, one can think of prob(G/F) as a measure of the
proportion of all physically possible F's that would be G's. Nomic probability is discussed at length in Pollock [1990], and the
reader is referred to that book for more details. It is shown there that other versions of the statistical syllogism, formulated in terms
of different kinds of indefinite probabilities, can be derived from the fundamental version that appeals to nomic probabilities. In
particular, where freq[A/B] is the relative frequency with which G's are F's, that is, the proportion of actual G's that are F's, a
frequency-based version

Page 61

of the statistical syllogism can be derived from the version that appeals to nomic probabilities:

freq[G/F] ≥ r.
This is an F.
This is a G.

Obviously, the inference described by the statistical syllogism is a defeasible one. This suggests that the statistical syllogism could
be formulated more precisely as follows:

(4.1) If r > 0.5 then Fc and prob(G/F) ≥ r U231D.gif is a prima facie reason for Gc U231D.gif, the strength of the reason depending upon the
value of r.

It is illuminating to consider how this rule handles the lottery paradox.7 Suppose you hold one ticket in a fair lottery consisting of 1
million tickets, and suppose it is known that one and only one ticket will win. Observing that the probability is only .000001 of a
ticket's being drawn given that it is a ticket in the lottery, it seems reasonable to accept the conclusion that your ticket will not win.
But by the same reasoning, it will be reasonable to believe, for each ticket, that it will not win. However, these conclusions conflict
jointly with something else we are warranted in believing, namely, that some ticket will win. Assuming that we cannot be
warranted in believing each member of an explicitly contradictory set of propositions, it follows that we are not warranted in
believing of each ticket that it will not win.

Not everyone agrees with this diagnosis of the lottery paradox. Kyburg [1970] and Etherington, Kraus, and Perlis [1991] urge that
it is reasonable to conclude of any individual ticket that it will not be drawn. However, there is a simple argument that seems to
show that this is wrong. If I am justified in believing, not just that it is improbable that ticket n will be drawn, but that ticket n will
definitely not be drawn, and I am presented with the opportunity of purchasing ticket n, then it is unequivocally true that I should
not purchase it. However, it would be unreasonable to draw this conclusion. No matter how improbable it is that ticket n will be
drawn, if the payoff is sufficiently great, then I should buy the ticket. For instance, if the probability of ticket n's being drawn is
one in a million, but the ticket costs one

7 The lottery paradox is due to Kyburg [1961].

Page 62

dollar and the payoff is one billion dollars, then rationality clearly dictates that I should buy the ticket. On the other hand, if I am
justified in believing that the ticket will not be drawn, and not just that it is improbable that it will be drawn, then I am precluded
from reasoning in this way. It would be irrational for me to buy the ticket, no matter what the payoff, if I am justified in believing
that it will not be drawn. Accordingly, that cannot be a justified belief in the case of a fair lottery.

This is no problem for the statistical syllogism as long as it provides only a prima facie reason for concluding that a ticket will not
be drawn. What is happening in the lottery paradox is that the prima facie reason is defeated. The lottery paradox is a case in which
we have prima facie reasons for a number of conclusions, but they collectively defeat one another. This illustrates the principle of
collective defeat. This principle will turn out to be of considerable importance, so I will say a bit more about it. Suppose we are
warranted in believing some proposition R and we have equally good prima facie reasons for each of P1,...,Pn, where {P1,...,Pn} is a
minimal set of propositions deductively inconsistent with R (i.e., it is a set deductively inconsistent with R and has no proper
subset that is deductively inconsistent with R). Then for each i, the conjunction R & P1 & ... & Pi-1 & Pi+1 & ... & Pn entails ~Pi.
Thus by combining this entailment with the arguments for R and P1,...,Pi-1, Pi+1,...,Pn we obtain an argument for ~Pi that is as good
as the argument for Pi. It follows that we have equally strong support for both Pi and ~P, and hence we could not reasonably
believe either on this basis; neither is warranted. This holds for each i, so none of the Pi is warranted. They collectively defeat one
another. Thus, the simplest version of the principle of collective defeat can be formulated as follows:

(4.2) If we are warranted in believing R and we have equally good independent prima facie reasons for each member of a minimal
set of propositions deductively inconsistent with R, and none of these prima facie reasons is defeated in any other way, then none
of the propositions in the set is warranted on the basis of these prima facie reasons.

Collective defeat will be discussed at greater length in chapter 3.

Collective defeat is familiar in AI from the discussion of skeptical and credulous reasoners [Touretzky, Horty, and Thomason
1987]. Roughly, skeptical reasoners withhold belief when they have equally

Page 63

good reasons for and against a conclusion, and credulous reasoners choose a conclusion at random. It has sometimes been urged
that the choice between skeptical and credulous reasoners is more a matter of taste than a matter of logic, but my own view is that
credulous reasoners are just wrong. Suppose you have two friends, Smith and Jones, whom you regard as equally reliable. Smith
approaches you in the hall and says, "It is raining outside." Jones then announces, "Don't believe him. It is a fine sunny day." If
you have no other evidence regarding the weather, what should you believe? It seems obvious that you should withhold belief,
believing neither that it is raining nor that it is not. If you were to announce, ''I realize that I have no better reason for thinking that
it is raining than for thinking that it is not, but I choose to believe that it is raining", no one would regard you as rational.

I have heard credulous reasoners defended on the grounds that if an agent is making practical decisions, it is better to do something
rather than nothing.8 Sometimes this seems right. For instance, if the agent is deciding where to have a picnic and the
considerations favoring two sites are tied, it seems reasonable to choose at random.9 But there are other situations in which such a
policy could be disastrous. If the agent is performing medical diagnosis and the evidence favoring two diseases is tied, we do not
want the agent to decide randomly to treat the patient for one disease rather than the other. It could happen that the diseases are not
serious if left untreated, but if the patient is treated for the wrong disease, that treatment will gravely exacerbate his condition. In
such a case we want the agent to reserve judgment on the matter and not proceed blindly.

The difference between these two examples is that in the case of the picnic, the agent's epistemic ignorance makes the expected
values of both plans for where to hold the picnic equal, and either plan is preferable to not holding the picnic at all. But in the
medical diagnosis case, the agent's ignorance makes the expected value of doing nothing higher than the expected value of either
plan for treatment. If the agent resolved its ignorance by resolving epistemic ties at random and then acting on the basis of the
conclusions thus drawn, it could not distinguish between these two kinds of cases. Instead, a rational agent

8 Both Jon Doyle and Richmond Thomason have argued this way in recent conversations.

9 This example is due to Jon Doyle (in conversation).

Page 64

should acknowledge its ignorance and take that into account in computing the expected values of plans.

The preceding considerations suggest that the controversy over skeptical and credulous reasoning stems from a confusion of
epistemic reasoning with practical reasoning. In practical reasoning, if one has no basis for choosing between two alternative
plans, one should choose at random. The classical illustration is the medieval tale of Buridan's ass who starved to death standing
midway between two equally succulent bales of hay because he could not decide from which to eat. This marks an important
difference between practical reasoning and epistemic reasoning. An agent making practical decisions must first decide what to
believe and then use those beliefs in deciding what to do, but these are two different matters. If the evidence favoring two
alternative hypotheses is equally good, the agent should record that fact and withhold belief. Subsequent practical reasoning can
then decide what to do given that epistemic conclusion. In some cases it may be reasonable to choose one of the hypotheses at
random and act as if it is known to be true, and in other cases more caution will be prescribed. But what must be recognized is that
the design of the system of practical reasoning is a separate matter from the design of the system of epistemic reasoning that feeds
information to the practical reasoner. Epistemic reasoning should acknowledge ignorance when it is encountered rather than
drawing conclusions at random. This is what the principle of collective defeat mandates.

Although the principle of collective defeat allows the principle (4.1) of statistical syllogism to escape the lottery paradox, it turns
out that the very fact that (4.1) can handle the lottery paradox in this way shows that it cannot be correct. The difficulty is that
every case of high probability can be recast in a form that makes it similar to the lottery paradox. We need only assume that
prob(G/F) < 1. Pick the smallest integer n such that prob(G/F) < 1 - 1/2". Now consider n fair coins, unrelated to each other and
unrelated to c's being F or G. Let Ti be is a toss of coin i and let H be is a toss that lands heads . There are 2n Boolean
conjunctions of the form (~)Hx1 & ... & (~)Hxn where each tilde in parentheses can be either present or absent. For each
Boolean conjunction ßjx1...xn,

prob(ßjx1...xn/T1x1 & ... & Tnxn) = 2-n.

Consequently, because the coins were chosen to be unrelated to F and G,

Page 65

prob(~ßjxl...xn/Fx & T1x1 & ... & Tnxn) = 1 - 2-n.

By the probability calculus, a disjunction is at least as probable as its disjuncts, so

prob(~Gx v~ßjx1...xn/Fx & T1x1 &... & Tnxn)≥1-2-n>prob(Gx/Fx)

Let t1,...,tn be a sequence consisting of one toss of each coin. As we know Fc & T1t1 & ... & Tntn , (4.1) gives us a prima facie
reason for believing each disjunction of the form

~Gc v~ßjt1...tn.

By the propositional calculus, the set of all these disjunctions is equivalent to, and hence entails, ~Gc. Thus we can construct an
argument for ~Gc in which the only defeasible steps involve the use of (4.1) in connection with probabilities at least as great as
that used in defending Gc. Hence, we have a situation formally identical to the lottery paradox. Therefore, the principle of
collective defeat has the consequence that if prob(G/F) has any probability less than 1, we cannot use (4.1) to draw any warranted
conclusion from this high probability.

The difficulty can be traced to the assumption that F and G in (4.1) can be arbitrary formulas. Basically, we need a constraint that,
when applied to the above argument, precludes applying (4.1) to the disjunctions ~Gc v ~ßjtl...tn . It turns out that disjunctions
create repeated difficulties throughout the theory of probabilistic reasoning. This is easily illustrated in the case of (4.1). For
instance, it is a theorem of the probability calculus that prob(F/GvH)≥ prob(F/G)prob(G/GvH). Consequently, if prob(F/G) and
prob(G/GvH) are sufficiently large, it follows that prob(F/GvH) ≥ r. For example, because the vast majority of birds can fly and
because there are many more birds than giant sea tortoises, it follows that most things that are either birds or giant sea tortoises can
fly. If Herman is a giant sea tortoise, (4.1) would give us a reason for thinking that Herman can fly, but notice that this is based
simply on the fact that most birds can fly, which should be irrelevant to whether Herman can fly. This example indicates that
arbitrary disjunctions cannot be substituted for G in (4.1).

Nor can arbitrary disjunctions be substituted for F in (4.1). By the probability calculus, prob(FvG/H) ≥ prob(F/H). Therefore, if
prob(F/H) is high, so is prob(FvG/H). Thus, because most birds can fly, it is also true that most birds can either fly or swim the
English Channel. By

Page 66

(4.1), this should be a reason for thinking that a starling with a broken wing can swim the English Channel, but obviously it is not.

There must be restrictions on the properties F and G in (4.1). To have a convenient label, let us say that G is projectible with
respect to F iff (4.1) holds. What we have seen is that projectibility is not closed under disjunction; neither of the following holds:

If C is projectible with respect to both A and B, then C is projectible with respect to (AvB).

If A and B are both projectible with respect to C, then (AvB) is projectible with respect to C.

On the other hand, it seems fairly clear that projectibility is closed under conjunction.

In formulating the principle of statistical syllogism, we must build in an explicit projectibility constraint:

(A1) If G is projectible with respect to F and r > 0.5, then Fc & prob(G/F) ≥ r is a prima facie reason for believing Gc , the
strength of the reason depending upon the value of r.

Of course, if we define projectibility in terms of (4.1), (A1) becomes a tautology, but the intended interpretation of (A1) is that
there is a relation of projectibility between properties, holding in important cases, such that Fc & prob(G/F) ≥ r is a prima facie
reason for Gc when G is projectible with respect to F. To have a fully adequate theory we must augment (A1) with an account
of projectibility, but that proves very difficult. (See my [1990] for further discussion of this.)

The term "projectible" comes from the literature on induction. Goodman [1955] was the first to observe that principles of induction
require a projectibility constraint. I have deliberately chosen the term "projectible" in formulating the constraint on (A1), because
in the theory of nomic probability, principles of induction become theorems rather than primitive postulates. The statistical
syllogism provides the epistemological machinery that make the theory run, and the projectibility constraint on induction turns out
to derive from the projectibility constraint on (A1). It is the same property of projectibility that is involved in both cases.

Page 67

The reason provided by (A1) is only a prima facie reason, and as such it is defeasible. Like any other prima facie reason, it can be
defeated by having a reason for denying the conclusion. The reason for denying the conclusion constitutes a rebutting defeater. But
there are also important undercutting defeaters for (A1). In (A1), we infer the truth of Gc on the basis of probabilities
conditional on a limited set of facts about c (the facts expressed by Fc). But if we know additional facts about c that alter the
probability, that defeats the prima facie reason:

(D1) If G is projectible with respect to H then Hc & prob(G/F&H)≠prob(G/F) is an undercutting defeater for (A1).

I will refer to these as subproperty defeaters. (D1) amounts to a kind of "total evidence requirement". It requires us to make our
inference on the basis of the most comprehensive facts regarding which we know the requisite probabilities.10

5. Generalizations of the Statistical Syllogism

Most probabilistic reasoning proceeds in terms of (A1), which I claim is the rule underlying most work on default logic and
defeasible inheritance hierarchies. However, (A1) is not the only defensible acceptance rule. There is another acceptance rule that
is related to (Al), rather like modus tollens is related to modus ponens:

(5.1) If G is projectible with respect to F and r > 0.5, then ~Gc & prob(G/F) ≥ r is a prima facie reason for ~Fc , the
strength of the reason depending upon the value of r.

For example, carbon 14 dating relies upon (5.1). The exponential law of radioactive decay enables us to compute the probability,
given that something is a specified age, of the ratio of carbon 14 to carbon 13 lying in a certain envelope. When an anthropologist
finds that the ratio of carbon 14 to carbon 13 in some artifact does not fall in the envelope, she concludes that it is not of the
appropriate age. In this

10 I first pointed out the need for subproperty defeaters in my [1983a]. Touretzky [1984] subsequently introduced similar defeaters for use in
defeasible inheritance hierarchies.

Page 68

way she rules out all but a certain range of ages and concludes that the age of the artifact falls within the remaining ages. This
reasoning cannot be reconstructed in terms of (A1) because the exponential law of radioactive decay does not provide any way of
computing the probability of the age of an artifact lying in a certain envelope given that it exhibits a specified ratio of carbon 14 to
carbon 13.

It seems clear that (A1) and (5.1) are closely related. I suggest that they are consequences of a single stronger principle:

(5.2) If G is projectible with respect to F and r > 0.5, then prob(G/F) ≥ r is a prima facie reason for the conditional Fc ⊃
Gc , the strength of the reason depending upon the value of r.

(A1) can then be replaced by an instance of (5.2) and modus ponens, and (5.1) by an instance of (5.2) and modus tollens.

Principle (5.2) itself can be illustrated by examples in which we do not know whether either Fc or ~Gc holds and hence
cannot use either (A1) or (5.1). For example, knowing something about the wiring in the next room, but not knowing whether the
lights are on, I can know that the probability is high of the lights being on given that the light switch is closed, and on that basis I
can conclude in accordance with (5.2) that if the switch is closed then the lights are on.

Although (5.1) and (5.2) appear to be correct as stated, there is a somewhat more convenient way of formulating these acceptance
rules. In applying (5.2), Fc typically has two parts. It is equivalent to a conjunction Kc & Uc , where Kc (the known
part) formulates things we already know about the situation, and Uc (the unknown part) formulates additional "hypotheses"
that are not known to be true. Then the conditional we really want to infer is (Uc ⊃ Fc) . We could get this by inferring ((Kc &
Uc) ⊃ Fc)¬ complicated. We actually seem to make the inference directly, without going through all of this. To capture this
observation, I suggest reformulating (5.2) as follows:

(A3) If G is projectible with respect to both K and U and r > 0.5, then Kc & prob(G/K&U) ≥ r is a prima facie reason for (Uc
⊃ Gc) .

I propose to understand (A3) in such a way that (A1) is the limiting case in which U is vacuous (i.e., tautologous). (5.1) can then
be reformulated as follows:

Page 69

(A2) If G is projectible with respect to both K and U and r > 0.5, then ~Gc & Kc & prob(B/K&U) ≥ r is a prima facie reason
for ~Uc .

I will refer to (A2) as the inverse statistical syllogism and (A3) as the generalized statistical syllogism. I will regard (A3) as the
fundamental probabilistic acceptance rule. I take it that (A3) is actually quite an intuitive acceptance rule. It amounts to a rule
saying that when F is projectible with respect to G, if we know that most G's are F, that gives us a reason for thinking of any
particular object that it is an F if it is a G. The only surprising feature of this rule is the projectibility constraint. I have defended
(A3) at book-length [1990], arguing that it forms the basis for all reasoning with probabilities (including inductive reasoning,
which appears initially to go the other way, from nonprobabilistic beliefs to probabilistic beliefs).

In describing a prima facie reason, it is as important to give an account of the defeaters as it is to give a formulation of the reason
itself. Just as in the case of (A1), when we use (A3) we are making an inference on the basis of a limited set of facts about c. That
inference should be defeated if the probability can be changed by taking more facts into account. This suggests that subproperty
defeat for (A2) and (A3) should work in the same way as for (A1):

(5.3) If G is projectible with respect to (K&U&H) then Hc & prob(G/K&U&H) ≠ prob(G/K&U) is an undercutting defeater for
(A1), (A2), and (A3).

It turns out, however, that this account is inadequate.11 There are simple counterexamples to (5.3). For instance, in an application
of (A2), if Hc is our reason for believing ~Gc , it will typically be the case that prob(G/K&U&H) < prob(G/K&U). To
illustrate, in the example of the light switch and the light, observing that the light in the next

11 At this point I am correcting a deficiency in the account given in my [1990]. In that work I observed that there are apparent
counterexamples to (5.3) as it applies to (A2) and (A3), and I made a proposal for handling them. However, I have since come to
realize that my proposal does not work, so without discussing it further here, I will try again to solve the problem. For the
interested reader, I note that the simplest counterexample to my earlier proposal is to observe that, according to that proposal, "The
wire is broken" would be defeated as a defeater for (5.3) in the example of the light and the switch, because it is a reason for
thinking that the light is not on.

Page 70

room is off gives me a reason, in accordance with (A2), for believing that the switch is open. But if I subsequently learn that the
wiring is broken, that lowers the probability of the light's being on given that the switch is closed, and hence defeats the inference,
in accordance with (5.3). This is a correct instance of (5.3). Suppose, however, that my reason for believing that the light is off is
that it looks that way to me. The probability of the light's being on given that the switch is closed and the light looks as if it is off is
lower than the probability of the light's being on given that the switch is closed, so according to (5.3), observing that the light looks
like it is off should also defeat the inference to the conclusion that the switch is open, but clearly it does not. This is a
counterexample to (5.3).

There are similar counterexamples to the application of (5.3) to (A3). Suppose we know that the wiring from the switch to the light
goes through a certain pipe, along with a lot of other wires, and we know that some of the wires in the pipe are broken. This lowers
the probability that the light will be on if the switch is closed, and is intuitively a defeater. Principle (5.3) gets this one right. But
now suppose instead that we know the light in question to be in the seminar room, along with lots of other lights, and we are told
that some of the lights in the seminar room are not on. This also lowers the probability that the light is on if the switch is closed,
and so it is an instance of (5.3), but it is not intuitively a defeater. This is equally a problem for (5.3) as applied to (A3). On the
other hand, there do not appear to be any similar counterexamples to the application of (5.3) to (A1); there are no similar
counterexamples to (D1).

What is the difference between the correct and incorrect instances of (5.3)? It seems that there are two ways H can lower the
probability of G on K&U: by interfering with the connection between G and K&U, or by making G independently less probable
without interfering with the connection. The former H's generate defeaters, and the latter do not. For example, knowing that the
wire is broken interferes with the connection between the switch and the light, and so defeats an inference based on that
connection. Being told by someone reliable that the light is off, on the other hand, does not interfere with the connection. It is an
independent reason for thinking that the light is off, and leaves the connection intact, thus setting us up for a use of (A2) (which
assumes the connection).

The cases in which H makes G independently less probable without interfering with the connection between (K&U) and G are
cases where (1) prob(G/K&U&H) < prob(G/K&U), and (2) because the connection

Page 71

remains intact, by making G less probable, it also makes (K&U) less probable. The sense in which it makes (K&U) less probable is
that it makes the unknown part U less probable relative to the known part K. More precisely, what disqualifies an instance of (5.3)
from being a defeater is that we know the following:

(DD) prob(U/K&H) <prob(U/K).

For example, in the application of (A2) to the switch and the light, the known part of F is a description of how they are supposed to
be wired together, and the unknown part is that the switch is closed. Noting that the light is off gives us a reason for thinking that
the switch is not closed. Learning that the wiring is broken constitutes a defeater for this inference, in accordance with (5.3). In this
case, (DD) fails. That is, the probability of the switch's being closed given that the switch and light are supposed to be wired
together but the wiring is now broken is no less than the probability of the switch's being closed given merely that the switch and
light are supposed to be wired together. Knowing that the wiring is now broken is not negatively relevant to whether the switch is
closed. On the other hand, according to (5.3), being told that the light is off should also be a defeater, but intuitively it is not. This
is explained by noting that in this case (DD) holds. That is, the probability of the switch's being closed given that the switch and
light are supposed to be wired together and I am told that the light is now off is less than the probability of the switch's being
closed given merely that the switch and light are supposed to be wired together.

My suggestion is that the correct form of subproperty defeat for (A2) and (A3) results from adding the denial of (DD) as a
qualification to (5.3):

(D) If H is projectible with respect to both K and U, Hc & prob(G/K&U&H) ≠ prob(G/K&U) & prob(U/K&H) ≥ prob(U/K)
is an undercutting defeater for (A1), (A2) and (A3).

The observation that the difficulties that arise for (5.3) when it is applied to (A2) and (A3) are not also difficulties for (D1) is now
reflected in the fact that the condition (DD) can never hold in applications of (D1). (A1) corresponds to the case in which U is a
tautology, but in that case it is impossible to have prob(U/K&H) < prob(U/K). Thus (D1) follows unchanged from (D).

Page 72

This does not yet comprise a complete account of the defeaters for the statistical syllogism. I have argued [1990] that still more
defeaters are required to characterize correctly our commonsense probabilistic reasoning. However, I will not pursue that here. The
interested reader can consult the earlier work.

The statistical syllogism provides the most common example of defeasible reasoning in AI, but it is important to realize that not all
defeasible reasoning can be subsumed under it. This is clearest in the case of perceptual knowledge, which proceeds in accordance
with the prima facie reasons (2.2) and (2.3). It is certainly true that things are usually the way they appear. That is, perception is
generally reliable. However, this is a contingent statistical truth that cannot be taken for granted in reasoning from images to
judgments about physical objects, because we must be able to make such perceptual judgments before we can discover that
perception is reliable. The reliability of perception can be ascertained only by comparing actual perceptual judgments with the
state of the world, but our only ultimate access to the state of the world is via perception. Furthermore, although I have not
discussed them here, there are numerous other examples of non-statistical prima facie reasons. 12

6. Direct Inference and Definite Probabilities

Within probability theory, there is a distinction between two different kinds of probabilities, and this generates a distinction
between two different kinds of expected situation-likings. Indefinite probabilities are general probabilities relating properties or
concepts. They are about situation types rather than situation tokens. For example, we can talk about the probability of rain given
that certain general meteorological conditions apply. This probability is not about its raining on any particular occasion, but about
the general conditions under which rain is likely. By contrast, definite probabilities are what are often called "single-case
probabilities" and are about situation tokens rather than situation types. For example, we can talk about the probability that it will
rain tomorrow. In practical reasoning, plans are evaluated by appeal to definite probabilities rather than indefinite probabilities. For
example, in deciding whether to carry an umbrella today, what interests me most is not the indefinite probability of its raining
under some very general meteorological conditions but rather the definite proba-

12 A number of these are discussed in Pollock [1974, chapters 5-7].

Page 73

bility that it is going to rain today. On the other hand, it seems clear that the latter is somehow inferred from the former. The
inference of definite probabilities from indefinite probabilities is called classical direct inference.13

It is useful to have a notational distinction between definite and indefinite probabilities. Accordingly, I will continue to symbolize
indefinite probabilities using ''prob", but will write definite probabilities using the uppercase "PROB". The basic idea behind
classical direct inference was first articulated by Hans Reichenbach [1949]: in determining the probability that an individual c has
a property F, we find the narrowest reference class X for which we have reliable statistics and then infer that PROB(Fc)=
prob(Fx/ξ∈ X). For example, insurance rates are calculated in this way. There is almost universal agreement that direct inference is
based upon some such principle as this, although there is little agreement about the precise form the theory should take. I have
argued [1983, 1984], that classical direct inference should be regarded as proceeding in accordance with the following two
epistemic rules (where Wϕ abbreviates ϕ is warranted):

(6.1) If F is projectible with respect to G then prob(F/G) = r & W(Gc) & W(P ≡ Fc) is a prima facie reason for
PROB(P)=r .

(6.2) If F is projectible with respect to H then prob(F/H) ≠ prob(F/ G) & W(Hc) &?(∀x)(Hx ⊃ Gx) is an undercutting defeater
for (6.1).

Principle (6.2) is called "the principle of subset defeat", because it says that probabilities based upon more specific information
take precedence over those based upon less specific information. Note the projectibility constraint in these rules. That constraint is
required to avoid various paradoxes of direct inference that turn in an essential way on disjunctions.

To illustrate this account of direct inference, suppose we know that Herman is a 40-year-old resident of the United States who
smokes. Suppose we also know that the probability of a 40-year-old resident of the United States having lung cancer is 0.1, but the
probability of a 40-year-old smoker who resides in the United States having lung cancer

13 See chapter 2 and Pollock [1990] for a general account of this probabilistic reasoning. Other relevant work is by Kyburg [1974], Bacchus
[1990], and Halpern [1990].

Page 74

is 0.3. If we know nothing else that is relevant we will infer that the probability of Herman's having lung cancer is 0.3. Principle
(6.1) provides us with one prima facie reason for inferring that the probability is 0.1 and a second prima facie reason for inferring
that the probability is 0.3. However, the latter prima facie reason is based upon more specific information, and so by (6.2) it takes
precedence, defeating the first prima facie reason and leaving us justified in inferring that the probability is 0.3.

I believe that (6.1) and (6.2) are correct rules of classical direct inference, but I also believe that the nature of direct inference has
been fundamentally misunderstood. Direct inference is taken to govern inferences from indefinite probabilities to definite
probabilities, but it is my contention that such "classical" direct inference rests upon parallel inferences from indefinite
probabilities to indefinite probabilities. The basic rule of classical direct inference is that if F is projectible with respect to G and
we know prob(F/G) = r & W(Gc) but do not know anything else about c that is relevant, this gives us a reason to believe that
PROB(Fc) =r. Typically, we will know c to have other projectible properties Hbut not know anything about the value of
prob(F/G&H) and so be unable to use the latter in direct inference. But if the direct inference from prob(F/G) =r to

PROB(Fc) =r is to be reasonable, there must be a presumption to the effect that prob(F/G&H) =r. If there were no such
presumption then we would have to regard it as virtually certain that prob(F/G&H) ≠ r (after all, there are infinitely many possible
values that prob(F/G&H) could have), and so virtually certain that there is a true subset defeater for the direct inference. This
would make the direct inference to PROB(Fc) = r unreasonable. Thus classical direct inference presupposes the following
principle regarding indefinite probabilities:

(6.3) If F is projectible with respect to G then ?(∀x)(Hx ⊃ Gx) & prob(F/G) =r is a prima facie reason for prob(F/H) =r .

Inferences in accord with (6.3) comprise non-classical direct inference. Principle (6.3) amounts to a kind of principle of
insufficient reason, telling us that if we have no reason to think otherwise, it is reasonable for us to anticipate that conjoining H to
G will not affect the probability of F.

A common reaction to (6.3) is that it is absurd—perhaps trivially inconsistent. This reaction arises from the observation that in a
large number of cases, (6.3) will provide prima facie reasons for conflicting

Page 75

inferences or even to logically impossible conclusions. For example, since in a standard deck of cards a spade is black and the
probability of a black card's being a club is one half, (6.3) gives us a prima facie reason to conclude that the probability of a spade's
being a club is one half, which is absurd. But this betrays an insensitivity to the functioning of prima facie reasons. A prima facie
reason for an absurd conclusion is automatically defeated by the considerations that lead us to regard the conclusion as absurd.
Similarly, prima facie reasons for conflicting conclusions defeat one another. If P is a prima facie reason for Q and R is a prima
facie reason for ~Q, then P and R rebut one another and both prima facie inferences are defeated. No inconsistency results. That
this sort of case occurs with some frequency in non-classical direct inference should not be surprising, because it also occurs with
some frequency in classical direct inference. In classical direct inference we often find ourselves in the position of knowing that c
has two logically independent properties G and H, where prob(F/G) ≠ prob(F/H). When that happens, classical direct inferences
from these two probabilities conflict with one another, and so each prima facie reason is a defeater for the other, with the result
that we are left without an undefeated direct inference to make.

Although (6.3) is not trivially absurd, it is not self-evidently true either. The only defense I have given for it so far is that it is
required for the legitimacy of inferences we commonly make. That is a reason for thinking that it is true, but we would like to
know why it is true. Somewhat surprisingly, I was able to show [1990] that principle (6.3) can actually be derived from the
acceptance rule (A3) and the calculus of nomic probabilities. Similar reasoning enables us to derive the following defeater for
(6.3):

(6.4) If F is projectible with respect to J then ?(∀x)(Hx ⊃ Jx) &?(∀x)(Jx ⊃ Gx) & prob(F/J) ≠ prob(F/G) is an undercutting
defeater for (6.3).

I will refer to these as subset defeaters for nonclassical direct inference. Thus the theory of nonclassical direct inference can be
derived from simpler principles, the most important of which is (A3).

We now have two kinds of direct inference—classical and nonclassical. Direct inference has traditionally been identified with
classical direct inference, but I believe that it is most fundamentally non-classical direct inference. The details of classical direct
inference are all reflected in non-classical direct inference. If we could identify definite probabil-

Page 76

ities with certain indefinite probabilities, we could derive the theory of classical direct inference from the theory of non-classical
direct inference. This can be done by noting that the following is a theorem of the calculus of nomic probabilities:

(6.5) If ?(Q≡Sa1...an) and ?(Q ⊃ Bb1..bm) and ? Q ⊃ (P≡R1...an) and ? Q ⊃ (P ≡Αb1...bm) , then prob(Rx1...xn / Sx1...xn & x1=a1
& ... & xn=an) = prob(Ay1...ym / By1...ym & y1 = b1 & ... & ym = bm).

This allows us to define a kind of definite probability as follows:

(6.6) prob(P/ Q) =r iff for some n, there are n-place properties R and S and objects a1,...,an such that ?(Q ≡ Sa1...an) and ? Q ⊃ (P ≡
Ra1...an) and prob(Rx1...xn / Sx1...xn & x1 = a1 & ... & xn = an) = r.

prob(P/ Q) is an objective definite probability. It reflects the state of the world, not the state of our knowledge. The definite
probabilities at which we arrive by classical direct inference are not those defined by (6.6). We want classical direct inference to
apprise us of probabilities that take account of everything we are warranted in believing about the current situation. This can be
accomplished by taking K∝ to be the conjunction of all propositions warranted to degree α, and then defining a "mixed
physical/epistemic" probability as follows:

(6.7) PROB∝(P) = prob(P/K∝)

(6.8) PROB∝(P/Q) = prob(P/ Q&K∝).

Given this reduction of definite probabilities to indefinite probabilities, it becomes possible to derive principles (6.1) and (6.2) of
classical direct inference from the principles of non-classical direct inference, and hence indirectly from (A3) and the calculus of
nomic probabilities. The upshot of all this is that the theory of direct inference, both classical and nonclassical, consists of a
sequence of theorems in the theory of nomic probability. We require no new assumptions in order to get direct inference. At the
same time, we have made clear sense of the mixed physical/epistemic probabilities that are needed for practical reasoning.

The mixed physical/epistemic probabilities obtained in this way are relative to the index ¬ that measures the degree of justification.

Page 77

This relativization has a natural application in practical reasoning. We want to use these probabilities to compute expected values
for plans. As we saw in chapter 1, we want these expected values to take account of everything we are justified in believing about
the current situation. But what we are justified in believing is relative to the degree of justification. The degree of justification
required in a particular context depends upon the importance of the reasoning, which is in turn determined by the strengths of the
desires for the goals whose pursuit inspires the reasoning. Thus the values of the goals that a plan aims at satisfying will determine
the value of ¬ relative to which the definite probabilities are to be computed. This will be discussed further in subsequent chapters.

7. Induction

The simplest kind of induction is enumerative induction, which proceeds from the observation that all members of a sample X of
A's are B's, and makes a defeasible inference to the conclusion that all A's are B's. This is what is known as the Nicod Principle.
Goodman [1955] observed that the principle requires a projectibility constraint. With this constraint, it can be formulated as
follows:

(7.1) If B is projectible with respect to A, then X is a sample of A's all of which are B's is a prima facie reason for All A's are
B's .

However, formulating the principle in this way merely scratches the surface of the logical complexities associated with
enumerative induction. First, it is difficult to give a satisfactory account of the defeaters for this prima facie reason. Of course,
counterexamples to the generalization are automatically rebutting defeaters, but the more interesting question is to ask what the
undercutting defeaters look like. An important variety of undercutting defeater charges that X is not a "fair sample". This is easy to
illustrate but hard to characterize in a general fashion. For example, suppose there is a random telephone poll of Tucson voters, and
we discover to our amazement that everyone polled intends to vote for the Democratic candidate for mayor. By (7.1), this poll
gives us a reason for believing that all Tucson voters will vote for the Democratic candidate. Now suppose it is subsequently
ascertained that, purely by chance, everyone who was called in the survey was a

Page 78

registered Democrat, whereas only about half of the Tucson voters are Democrats. On this basis, we would reject the inductive
inference, charging that the sample was not a fair one. There is no inclination to protest that the process of sampling was done
incorrectly. It was, after all, a random telephone poll, and we would expect a random poll to choose an approximately equal
number of Democrats and Republicans. However, upon discovering that this did not happen, it is no longer reasonable to accept
the conclusion of the inductive inference. In other words, the discovery has given us a defeater for the inference. On the other
hand, the discovery has not given us any reason (that we did not already have) for thinking that the conclusion is false. After all, it
could happen that all of the Republicans are going to vote for the Democratic candidate. The defeater must be an undercutting
defeater rather than a rebutting defeater. This much is clear, but how exactly to formulate the defeater is not at all clear.14

Another source of complexity concerns the strength of an inductive reason. As a general rule, the larger the sample, the stronger
the reason. A separate factor concerns the diversity of the sample. For instance, if we are attempting to confirm a generalization
about all mammals, our confirmation will be stronger if we sample wild animals in addition to domesticated animals.15 It is not at
all clear how to combine all of this into a precise principle telling us how strong the inductive reason is.

Enumerative induction has been a favorite topic of philosophers, but statistical induction is much more important for the
construction of a rational agent. It is rare that we are in a position to confirm exceptionless universal generalizations. Induction
usually leads us to statistical generalizations that either estimate the probability of an A being a B, or the proportion of actual A's
that are B's, or more simply, may lead us to the conclusion that most A's are B's. Such statistical generalizations are still very
useful, because the statistical syllogism enables a cognizer to make defeasible inferences from them to nonprobabilistic
conclusions.

A very rough formulation of a principle of statistical induction would proceed as follows:

14 Fair sample defeaters are discussed at greater length in Pollock [1990], but no general account is given.

15 Further discussion of this can be found in Pollock [1990, 315ff].

Page 79

(7.2) If B is projectible with respect to A, then X is a sample of n A's r of which are B's is a prima facie reason for prob(B/A)
is approximately equal to r/n .

All of the problems that arise for a precise theory of enumerative induction arise again for statistical induction. In addition, there is
a further problem connected with the fact that the conclusion of (7.2) is only that the probability is approximately equal to r/n.
How good should we expect the approximation to be? There are obvious things to say, such as that the degree of approximation
should improve as the size of the sample improves. I have argued [1990] that this can be made precise as follows. Abbreviating r/n
as f, define:

(7.3) L(n,r,p) = (p/f)nf·((1-p)/(1-f))n(1-f)

L(n,r,p) is the likelihood ratio of prob(A/B) = p to prob(A/B) =f I argued that each degree of justification corresponds to a
minimal likelihood ratio, so we can take the likelihood ratio to be a measure of the degree of justification. For each likelihood ratio
α we obtain the α-rejection class R∝ and the α-acceptance class A∝:

(7.4) R∝ = {p|L(n,r,p) ≤ ∝}

(7.5) A∝ = {p|L(n,r,p)> ∝}

We are justified to degree α in concluding that prob(A/B) is not a member of R∝, and hence we are justified to degree α in
believing that prob(A/B) is a member of A∝. If we plot the likelihood ratios, we get a bell curve centered around r/n, with the result
that A∝ is an interval around r/n and R∝ consists of the tails of the bell curve (figure 1). In interpreting this curve, remember that
low likelihood ratios correspond to a high degree of justification for rejecting that value for prob(A/B), and so the region around r/
n consists of those values we cannot reject, that is, it consists of those values that might be the actual value. This provides us with
justification for believing that prob(A/B) lies in a precisely defined interval around the observed relative frequency, the width of
the interval being a function of the degree of justification. For illustration, some typical values of the acceptance interval are listed
in table 1. Reference to the acceptance level reflects the fact that attributions of warrant are relative to an index measuring the
requisite degree of justification. Sometimes an acceptance level of .1 may be reasonable, at other times an acceptance level of .01
may be required, and so forth.

Page 80

Figure 1. Acceptance Intervals

Page 81

Table 1. Values of Aα(f,n).

Aα(.5, n)
n

α 10 102 103 104 105 106

.1 [.196,.804] [.393,.607] [.466,.534] [.489,.511] [.496,.504] [.498,.502]

.01 [.112,.888] [.351,.649] [.452,.548] [.484,.516] [.495,.505] [.498,.502]

.001 [.068,.932] [.320,.680] [.441,.559] [.481,.519] [.494,.506] [.498,.502]

Aα(.9, n)
n

α 10 102 103 104 105 106

.1 [.596,.996] [.823,.953] [.878,.919] [.893,.907] [.897,.903] [.899,.901]

.01 [.446,1.00] [.785,.967] [.868,.927] [.890,.909] [.897,.903] [.899,.901]

.001 [.338,1.00] [.754,.976] [.861,.932] [.888,.911] [.897,.903] [.899,.901]

The "justification" of principles of induction is one of the traditional problems of philosophy, but in an important sense, induction
needs no justification. It represents an obviously rational way of reasoning. No one could reasonably doubt that an agent reasoning
inductively is being rational. In another sense, however, there are important questions about induction. These concern not the
general idea of inductive reasoning but the detailed specification of inductive principles, a formidable task. There is reason to hope
that the task can be carried out, however. I have shown [1990] that principles of induction can be derived as theorems from the
acceptance rule (A3) and the calculus of nomic probabilities.16 This means that principles of induction like (7.1) and (7.2) should
not be regarded as primitive epistemic principles. In fact, they are not even literally correct epistemic principles, because the
"reasons" involved are not primitive reasons. The inferences leading

16 Similar claims have been made in the past by those who believe in Bayesian inference. However, what they justify are not genuine
principles of induction, but just forms of Bayes' theorem. The difference is important, because genuine principles of induction like the Nicod
principle cannot be derived from Bayes' theorem.

Page 82

to inductive conclusions turn out to be logically complex inferences. If (7.1) and (7.2) really described prima facie reasons, then a
cognizer could make those inferences in a single step, without having to go through the complex reasoning described in their
reconstruction [1990].

There is something initially puzzling about all of this. The theorems proved in my earlier work [1990] show that inductive
reasoning is correct reasoning by showing that it can be justified by some complex arguments involving (A3) and the probability
calculus. However, no one ever actually reasons that way. In fact, human beings make inductive inferences in a single bound. I
suggest that human inductive reasoning is typically performed by Q&I modules rather than by ratiocination.

That we rely upon Q&I modules for much of our inductive reasoning is clear on grounds independent of the above. Even if (7.1)
and (7.2) correctly described prima facie reasons, their application would require reasoners to do things they typically do not do.
For instance, to use (7.2) to estimate a probability, a reasoner would have to collect a sample, compute the relative frequency in the
sample, and then estimate the probability on that basis. When we are being careful, we do proceed in that way. But in ordinary
everyday reasoning, there is no such thing as collecting a sample. To illustrate, I believe that there are more mountain bikes than
road bikes on the streets of Tucson. If I believed this on the basis of (7.2), there would have to have been a time when I had
compiled an explicit list of bicycles observed on the streets of Tucson, together with the information regarding which of them were
mountain bikes and which were road bikes, and then only after compiling that list did I form the belief that there are more
mountain bikes than road bikes on the streets of Tucson. But obviously I do not and never have had such a list. Instead, I rely upon
my memory to keep rough track of proportions without remembering the individual instances that enter into the proportions. I
remember that I have seen more mountain bikes than road bikes without remembering the individual sightings. As I make new
sightings, my memory takes them into account in updating my estimate of the proportion of sightings that were mountain bikes
and the proportion that were road bikes. Note that although we call this "memory", what we remember is not something we
previously knew. Instead, our memory is summing up past observations.

Page 83

It is a simple matter to describe an algorithm that will maintain a continually updated summary of our observations in this way. We
need only keep track of the total number n of observations of A's and the current proportion p of them that have been B's. Then
when we observe another A, we increment n by 1; and if the new A is a B, we set the new proportion to be (np + l)/(n+l), otherwise
we set the new proportion to be np/(n+l). Our memory need only record these two numbers, without keeping track of the
individual observations.

Although this algorithm is efficient, it is not totally reliable because there is no way to check that we are not observing the same A
over and over again and counting it repeatedly each time we observe it. If we do not recall the observations, there is no way to
guarantee that this is not happening. Accordingly, there is no guarantee that the estimated proportion produced by the algorithm,
and the corresponding estimate of the probability, is the same as what we would get if we kept track of the individual observations
and made explicit use of (7.2).

In building an artilect, we must include the ability to perform both quick (but possibly inaccurate) inductive estimates of
probabilities, and slower but more careful estimates. In each case, we must be able to measure the strength of the reason obtained,
and we must have an account of the defeaters. I have already worked out some of this is worked [1990], but much remains to be
done.

8. Other Topics

A complete epistemology includes much more than just perceptual knowledge and inductive reasoning. Some of the reasoning that
will be of most direct relevance to AI concerns causal relations, temporal reasoning, spatial reasoning, reasoning about change and
persistence, and reasoning about other rational agents. In addition, there are some general kinds of reasoning, such as abduction
(inference to the best explanation) and reasoning by analogy, that must be incorporated into an artilect. No attempt will be made to
address these topics here. The plan of the OSCAR project is to first produce a general architecture for rationality, and an inference
engine for interest-driven defeasible reasoning, and then return to the analysis of more concrete epistemo-

Page 84

logical problems once we have these tools in hand. Nevertheless, the brief epistemological sketch given in this chapter will
provide some useful constraints on the structure of a reasoner, because a necessary condition for the adequacy of the design of a
reasoner is that it be capable of performing the reasoning described.

Page 85

Chapter 3 The Structure of Defeasible Reasoning

1. Reasons and Defeaters

It was illustrated in chapter two that most rational thought involves reasoning that is defeasible, in the sense that the reasoning can
lead not only to the adoption of new beliefs but also to the retraction of previously held beliefs. This chapter investigates the
logical structure of defeasible epistemic reasoning. Defeasible practical reasoning will be investigated in chapter 7. The concern of
this chapter is the semantics of defeasible reasoning (construed broadly, as in chapter one). Chapter 4 will turn to the procedural
issue of how a rational agent can perform defeasible reasoning.

Reasoning proceeds by constructing arguments, where reasons provide the atomic links in arguments. Conclusive reasons are
reasons that are not defeasible. Conclusive reasons logically entail their conclusions. Those that are not conclusive are primafacie
reasons. Prima facie reasons create a presumption in favor of their conclusion, but it can be defeated. A reason will be encoded as
an ordered pair <Γ,p>, where Γ is the set of premises of the reason and p is the conclusion. Considerations that defeat prima facie
reasons are defeaters. The simplest kind of defeater for a prima facie reason <Γ,p> is a reason for denying the conclusion. Let us
define '¬' as follows: if for some θ, ϕ = ~θ , let ¬ϕ = θ, and let ¬ϕ = ~ϕ otherwise. Then we define:

If <Γ,p) is a prima facie reason, <Λ,q> is a rebutting defeater for <Γ,p> iff <Λ,q> is a reason and q = ¬,p .

Prima facie reasons for which the only defeaters are rebutting defeaters would be analogous to normal defaults in default logic
[Reiter 1980]. Experience in using prima facie reasons in epistemology indicates that there are no such prima facie reasons. Every
prima facie reason has associated undercutting defeaters, and these are the most important kinds of defeaters for understanding any
complicated reasoning. This is illustrated in chapter 2, and more fully in Pollock [1974, 1986, and 1990]. Undercutting defeaters
attack a prima facie reason without attacking its conclusion. They accomplish this by attacking the connec-

Page 86

tion between the premises and the conclusion. For instance, x looks red to me is a prima facie reason for an agent to believe
x is red . But if I know not only that x looks red but also that x is illuminated by red lights and red lights can make things look

red when they are not, then it is unreasonable for me to infer that x is red. Consequently, x is illuminated by red lights and red
lights can make things look red when they are not is a defeater, but it is not a reason for thinking that x is not red, so it is not a
rebutting defeater. Instead, it attacks the connection between x looks red to me and x is red , giving us a reason for doubting
that x wouldn't look red unless it were red. P wouldn't be true unless Q were true is some kind of conditional, and I will
symbolize it as P » Q . If <Γ,p> is a prima facie reason, then where ΠΓ is the conjunction of the members of Γ, any reason for
denying ΠΓ » p is a defeater. Thus I propose to characterize undercutting defeaters as follows:

If <Γ,p> is a prima facie reason, <Λ,q> is an undercutting defeater for <Γ,p> iff <Λ,q> is a reason and q = ~(ΠΓ » p) .

It will be convenient to abbreviate ~(P » Q) as (P ⊗ Q) . I will henceforth represent undercutting defeaters as reasons for
(ΠΓ ⊗ p) .

2. Arguments and Inference Graphs

Reasoning starts with premises that are input to the reasoner. (In human beings, they are provided by perception.) The input
premises comprise the set input. The reasoner then makes inferences (some conclusive, some defeasible) from those premises
using reason schemas. Arguments are structures recording the reasoning that is performed. It was urged in chapter two that
reasoning begins with perceptual states rather than beliefs about perceptual states. Accordingly, the arguments that summarize our
reasoning must be viewed as structures consisting of mental states, some of which are perceptual states but most of which are
beliefs. This is a somewhat unusual construal of arguments, which are usually taken to be structures of propositions rather than
structures of mental states, but this construal is forced upon us by the facts about perception. It is occasionally awkward to view
arguments in this way, however. When the constituents of arguments are belief states, we can just as well represent the beliefs in
terms of the propositions believed, and doing so makes the arguments look more familiar.

Page 87

The simplest arguments are linear. These can be viewed as finite sequences of mental states or propositions, each of which is
either a member of input or inferable from previous members of the sequence in accordance with some reason schema. The order
in the sequence represents the order in which the inferences are made. Some aspects of that ordering may be inessential to the
logical structure of the reasoning. Consider, for example, the following two arguments:

1. (P&Q) 1 (P&Q)

2. P from l 2. Q from

3. Q from l 3. P from l

4. (Q&P) from 2 and 3. 4. (Q&P) from 2 and 3.

These represent different orders in which the inferences occur, but the dependency relations in the arguments are the same and
could be represented more perspicuously as a graph:

Which of these structures we regard as the argument depends upon what we take the argument to be encoding. If we interpret the
argument as encoding an actual sequence of inferences, then it will have the first (sequential) form. If instead we take it as
encoding the dependency relations, it will have the second (graphical) form. Both structures are useful for different purposes, so I
propose to refer to the sequential structures as arguments and the graphical structures as inference graphs. We can think of
reasoning as a process that builds inference graphs, and the process of construction is recorded (or displayed) in arguments. For
many purposes, arguments and inference graphs are interchangeable.

When a reasoner reasons, it is natural to regard it as producing a number of different arguments aimed at supporting different
conclusions. However, we can combine all of the reasoning into a single inference graph that records the overall state of the
reasoner's inferences, showing precisely what inferences have been made and how inferences

Page 88

are based upon one another. This comprehensive inference graph will provide the central data structure used in evaluating a
reasoner's beliefs. Accordingly, we can think of the function of reasoning to be that of building the inference graph. I will return to
this point later.

Linear reasoning is a particularly simple form of reasoning in which each conclusion drawn is either given as a member of input or
inferred from previous conclusions. Not all reasoning is linear. To see this, note that linear reasoning can only lead to conclusions
that depend upon the members of input, but actual reasoning can lead to a priori conclusions like (p v ~p) or ((p & q) ⊃ q) that do
not depend upon anything. What makes this possible is suppositional reasoning. In suppositional reasoning we ''suppose"
something that we have not inferred from input, draw conclusions from the supposition, and then "discharge" the supposition to
obtain a related conclusion that no longer depends upon the supposition. The simplest example of such suppositional reasoning is
conditionalization. When using conditionalization to obtain a conditional (p ⊃ q), we suppose the antecedent p, somehow infer the
consequent q from it, and then discharge the supposition to infer (p ⊃ q) independently of the supposition. Similarly, in reductio ad
absurdum reasoning, to obtain ¬p we may suppose p, somehow infer ¬p on the basis of the supposition, and then discharge the
supposition and conclude ¬p independently of the supposition. Another variety of suppositional reasoning is dilemma (reasoning
by cases).

If we are to encode suppositional reasoning in the inference graph, then the nodes of the inference graph must correspond to
conclusions drawn relative to particular suppositions. To accomplish this, I will take the nodes of the inference graph to encode
inferences to sequents, where a sequent is an ordered pair (X,p) consisting of a supposition (a set of propositions X) and a
conclusion (a single proposition) p. If a node records the inference of a conclusion p relative to a supposition X, I will say that the
node supports p relative to the supposition X or, alternatively, supports the sequent (X,p). If X = ∅, I will say simply that the node
supports p. The inference relations between nodes are recorded in inference links. Where v and η are nodes, <v,η> is an inference
link iff v was inferred from a set of nodes one of which was η. The immediate inference ancestors of a node are the nodes to which
it is connected (from which it was inferred) by inference links. One complication calls for explicit mention. A reasoner might
construct more than one argument supporting the same sequent. The nodes of the inference graph encode inferences, so there must
be a separate node, each with its own inference links, for each argument supporting the sequent. This will

Page 89

allow us to associate unique strengths with nodes, regard different nodes as defeated by different defeaters, and so on. An inference
branch is a finite sequence of nodes each of which is an immediate inference ancestor for the next. Let us say that η is an inference
ancestor of v iff there is an inference branch connecting v to η. A node is a pf-node iff it represents a defeasible inference, in
accordance with some prima facie reason. Let us say that µ is a deductive ancestor of v iff µ is an inference ancestor of v and the
branch connecting them contains no pf-nodes. µ is a nearest defeasible ancestor of v iff either (1) v is a pf-node and µ = v or (2) µ
is a deductive ancestor of v and µ is a pf-node.

We normally talk about propositions being believed or disbelieved, but we need some similar terminology for talking about
sequents in general, so I will apply the term "belief" to sequents. Belief in propositions corresponds to belief in sequents having
empty suppositions. Belief in a sequent with a nonempty supposition might be called "conditional belief". An agent's beliefs
constitute only a subset of the conclusions represented in the agent's inference graph, because when a conclusion is defeated by
another conclusion, it is still represented in the inference graph, but it may not be believed. A rational agent's beliefs are its
undefeated conclusions.

Rules of inference can be viewed as rules for adding nodes to the agent's inference graph. One way of conceptualizing this is to
think of rules of inference as clauses in the recursive definition of "inference graph". On this conception, an inference graph is any
set of inference nodes that can be constructed by starting from the set input and accumulating nodes in accordance with the rules of
inference. Viewing rules of inference in this way, the following are some obvious inference rules:

Input

If p∈ input and is an inference graph, then for any supposition X, a new inference graph can be constructed by adding to a
node supporting (X,p) and letting the set of immediate inference ancestors of the new node be empty.

Supposition

If is an inference graph and X is any finite set of propositions, then if p∈ X, a new inference graph can be constructed by

adding to a node supporting (X,p), and letting the set of immediate inference ancestors of the new node be empty.

Page 90

Reason

If is an inference graph containing nodes α1,...,αn supporting each of <X,pl>,...,<X,pn>, and <{p1,...,pn},q} is a reason (either

conclusive or prima facie), then a new inference graph can be constructed by adding to a node supporting <X,q>, and letting
the set of immediate inference ancestors of the new node be {α1,...,αn}.

Conditionalization

If is an inference graph containing a node α supporting <X∪{p),q> then a new inference graph can be constructed by adding to

a node supporting <X,(p ⊃ q)>, and letting the set of immediate inference ancestors of the new node be {α}.

Dilemma

If is an inference graph containing a node a supporting <X,(p ∨ q)>, a node ß supporting <X∪ {p},r>, and a node y supporting

<X∪ {q},r>, then a new inference graph can be constructed by adding to a node supporting <X,r>, and letting the set of
immediate inference ancestors of the new node be {α,ß,y}.

Other rules of inference graph formation could be included as well, but these will suffice for illustrative purposes.

A distinction must be made between two different kinds of suppositions and suppositional reasoning. Infactual suppositional
reasoning, we suppose that something is the case and then reason about what else is the case. In counterfactual suppositional
reasoning, we make a supposition of the form, "Suppose it were true that P", and then reason about what would be the case. Both
kinds of reasoning appear to support forms of conditionalization, but the inferred conditionals are different. Conditionalization
from counterfactual suppositions yields counterfactual conditionals, whereas conditionalization from factual suppositions yields
only material conditionals. These two kinds of suppositional reasoning work in importantly different ways. In factual suppositional
reasoning, because we are supposing that something is the case, we should be able to combine the supposition with anything we
have already concluded to be the case. Counterfactual suppositions, on the other hand, override earlier conclusions and may
require their retraction within the supposition. Counterfactual suppositional reasoning is extremely interesting, but throughout this
book, I will appeal only to factual suppositional reasoning. For such reasoning, the following inference rule is reasonable:

Page 91

Foreign Adoptions

If is an inference graph containing a node α supporting <X,p>, and X ⊆ Y, then a new inference graph can be constructed by

adding to a node supporting <Y,p> and letting the immediate inference ancestors of the new node be the same as the immediate
inference ancestors of α.

This rule is reasonable because in supposing that something is true, we should be able to combine it with anything else we are
already justified in believing to be true. This rule would not be reasonable for counterfactual suppositional reasoning.

3. Defeat among Inferences—Uniform Reasons

The concept of epistemic justification that is of relevance to this investigation concerns belief updating. Justified beliefs are those
mandated by the rules for belief updating. What an agent is justified in believing is a function of both what input premises have
been supplied by the perceptual systems and how far the agent has gotten in its reasoning. A necessary condition for a belief to be
jusitified is that the agent has engaged in reasoning that produced an argument supporting the belief, but that is not a sufficient
condition because the agent may also have produced an argument that defeats the first argument.

The agent's reasoning is encoded in the inference graph, the nodes of which correspond to inferences. Defeat is both a relation
between nodes of the inference graph and a monadic property of nodes. A node is defeated (has the monadic property) just in case
it stands in appropriate defeat relations to other nodes. A justified belief is one supported by an undefeated node of the inference
graph.

To complete this characterization of epistemic justification, we need an account of the defeat relations and a characterization of
when those defeat relations render a node defeated. A general treatment of defeat relations requires us to take account of the fact
that reasons differ in strength; some are better than others. If we have a reason for p and a reason for ¬p, but the latter is stronger
than the former, then it wins the competition and we should believe ¬p . A general theory of reasoning requires us to talk about
the strengths of reasons and how those strengths affect interactions between reasons. However, before addressing this complicated
issue, consider how defeat between nodes could be analyzed if all reasons were of the same strength. This is The Assumption of
Uniform Reasons.

Page 92

One node of the inference graph defeats another by supporting a defeater for it. Recall, however, that in suppositional reasoning,
different steps of reasoning may depend upon different suppositions. If a node η of the inference graph results from applying a
prima facie reason <Γ,p>, and a node supports a defeater for this prima facie reason, this does not automatically guarantee that
σdefeats η because they may support their conclusions relative to different suppositions. Consider, for instance, the following pair
of arguments, where P is a prima facie reason for Q, and D is a defeater for this prima facie reason:

These could be represented by the inference graph diagrammed in figure 1. The defeater D is introduced as a mere supposition, and
that supposition is not included in the suppositions made in η Clearly we should not be able to defeat an inference just by
supposing a defeater that has no independent justification. It seems that the support of a defeater by a node whose supposition is X
should defeat only a defeasible

Page 93

inference that is made relative to a supposition that includes X. Accordingly, on the assumption of uniform reasons we can define:

A node σ rebuts a node η iff:
(1) η is a pf-node supporting some proposition q relative to a
supposition Y; and
(2) σ supports ¬q relative to a supposition X, where X ⊆ Y.

A node σ undercuts a node η iff:
(1) η is a pf-node supporting some proposition q relative to a
supposition Y; where p1,...,pk are the propositions supported
by its immediate ancestors; and
(2) σ supports ((p1 & ... & pk) ⊗ q) relative to a supposition X
where X ⊆ Y.

A node σ defeats a node η iff a either rebuts or undercuts η.

Now let us consider how this account of defeat relations must be modified to accommodate reasons of varying strength.

4. Taking Strength Seriously

At this point, I will relax the simplifying assumption that all reasons are of the same strength.

Measuring Strength

If we are to take strength seriously, we must have some way of measuring it. One way is to compare reasons with a set of standard
equally good reasons that have numerical values associated with them in some determinant way. I propose to do that by taking the
set of standard reasons to consist of instances of the statistical syllogism. Recall from chapter two that this principle is formulated
as follows:

The Statistical Syllogism:

If r > 0.5 then prob(F/G) ≥ r & Gc is a prima facie reason for Fc , the strength of the reason being a monotonic increasing
function of r.

Consequently, for any proposition p, we can construct a standardized argument for ¬p on the basis of the pair of suppositions
prob(F/G) ≥ r & Gc and (p ≡ ~Fc) :

Page 94

1. Suppose prob(F/G) ≥ r & Gc.
2. Suppose (p ≡~Fc).
3. Fc from 1.
4. ¬p from 2,3.

where the strength of the argument is a function of r. If X is a prima facie reason for p, we can measure the strength of this prima
facie reason in terms of that value of r such that the conflicting argument from the suppositions prob(F/G) ≥ r & Gc and (p
≡~Fc≡ exactly counteracts it. We could take r itself to be the measure of the strength of the reason, but a somewhat more
convenient measure is 2·(r - 0.5). This has the convenient consequence that the strength of an instance of statistical syllogism in
which r = 0.5 is 0, and strengths are normalized to 1.0. So my proposal is:

If X is a prima facie reason for p, the strength of this reason is 2·(r - 0.5) where r is that real number such that an argument for
¬p based upon the suppositions prob(F/G) ≥ r & Gc and (p ≡~Fc) and employing the statistical syllogism exactly
counteracts the argument for p based upon the supposition X.

For instance, in a context in which a prima facie reason of minimal acceptable strength corresponds to an instance of the statistical
syllogism in which r = 0.95, it follows that prima facie reasons must have a strength ≥ 0.9.

Conclusive reasons logically guarantee the truth of their conclusions given the truth of the premises, so there can be no
accompanying attenuation in strength of justification. We can capture this by taking them to have strength 1.0.

I take it that this way of measuring the strengths of reasons is very natural. However, it has an important consequence that deserves
emphasis. Instances of the statistical syllogism can be linearly ordered by strength, because that is a function of the real number r.
Other reasons can be compared to instances of the statistical syllogism having the same strength, so it follows that all reasons can
be linearly ordered by strength. Although this consequence is unsurprising, it does conflict with some recent proposals regarding
nonmonotonic reasoning that assume the ordering of reasons by strength to be only a partial ordering.

Page 95

Generic Bayesianism

Given a measure of the strengths of reasons, what are we to do with it? Strengths are important in deciding whether a reason is
strong enough to justify a belief. It was indicated in chapter 1 that the strength of reason required to justify a conclusion is a
function of our degree of interest in the conclusion. (This will be addressed further in chapter four.) However, there is a residual
problem. Although individual reasons may be sufficiently strong to justify their conclusions in a one-step argument, how do we
determine the degree of justification of the conclusion of a complex argument that combines inferences using a number of such
reasons?

It is useful to distinguish between the degree of support of a conclusion and its degree of justification. Whether a conclusion is
justified depends not just on how strong the arguments are that support it but also on whether those arguments are defeated. My
present concern is with the strengths of arguments that combine inferences employing a number of reasons that are of less than
unit strength. It is often supposed that, in such an argument, each inference attenuates the strength of the conclusion, and so,
although each reason by itself is sufficiently strong, the degree of support of the ultimate conclusion may be too weak to justify
believing it.

This supposition is usually coupled with a probabilistic model of reasoning according to which reasons make their conclusions
probable to varying degrees, and the ultimate conclusion is justified only if it is made sufficiently probable by the cumulative
reasoning. I will refer to this theory as generic Bayesianism.

According to generic Bayesianism, our epistemic attitude towards a proposition should be determined by its probability. It will
generally be necessary to compute such probabilities in order to determine the degree of justification of a belief. Some kinds of
deductive inference can be applied "blindly" without going through such calculations, but only when the inferences are guaranteed
to preserve probability. Let us say that an inference rule

P1,...,Pn

Q

is probabilistically valid just in case it follows from the probability calculus

Page 96

that prob(Q) ≥ the minimum of the prob(Pi)'s. For the generic Bayesian, inference rules can be applied blindly, obviating the need
for probability calculations, only if they are probabilistically valid.

If P logically entails Q, then it follows from the probability calculus that prob(Q) ≥ prob(P), and hence the generic Bayesian is able
to conclude that the degree of justification for Q is as great as that for P. Thus deductive inferences from single premises can
proceed blindly. However, this is not equally true for entailments requiring multiple premises. Specifically, it is not true in general
that if {P,Q} entails R, then prob(R) ≥ the minimum of prob(P) and prob(Q). For instance, P,Q} entails (P&Q), but prob(P&Q)
may be less than either prob(P) or prob(Q). Many of our most cherished inference rules, including modus ponens, modus tollens,
and adjunction, turn out to be probabilistically invalid. No inference rule that proceeds from mutliple premises and uses them all
essentially can be probabilistically valid. This is extremely counterintuitive. It means that a reasoner engaging in Bayesian
updating is precluded from drawing deductive conclusions from its reasonably held beliefs. For instance, consider an engineer who
is designing a bridge. She will combine a vast amount of information about material strength, weather conditions, maximum load,
costs of various construction techniques, and so forth, to compute the size a particular girder must be. These various bits of
information are, presumably, independent of one another, so if the engineer combines 100 pieces of information, each with a
probability of 0.99, the conjunction of that information has a probability of only .99100, which is approximately 0.366. According
to generic Bayesianism, she would be precluded from using all of this information simultaneously in an inference—but then it
would be impossible to build bridges.

As a description of human reasoning, this seems clearly wrong. Once one has arrived at a set of conclusions, one does not hesitate
to make further deductive inferences from them. But an even more serious difficulty for generic Bayesianism is that the theory
turns out to be self-defeating; if the theory were correct, it would be impossible to perform the very calculations required by the
theory for determining whether a belief ought to be held. This arises from the fact that Bayesian updating requires a reasoner to
decide what to believe by computing probabilities. The difficulty is that the probability calculations themselves cannot be
performed by a Bayesian reasoner. To illustrate the difficulty, suppose the reasoner has the following beliefs:

Page 97

(4.1) prob(PvQ) = prob(P)+prob(Q)-prob(P&Q)
prob(P) = 0.5
prob(Q) = 0.49
prob(P&Q) = 0.

From this we would like the reasoner to compute that prob(PvQ) = 0.99, and perhaps go on to adopt (PvQ) as one of its beliefs.
However, generic Bayesianism cannot accommodate this. The difficulty is that the use of (4.1) in a computation is an example of a
"blind use" of a deductive inference, and as such it is legitimate only if the inference is probabilistically valid. To determine the
probabilistic validity of this inference, it must be treated on a par with all the other inferences performed by the reasoner. Although
the premises are about probabilities, they must also be assigned probabilities ("higher-order probabilities") to be used in their
manipulation. Viewing (4.1) in this way, we find that although the four premises do logically entail the conclusion, the inference is
not probabilistically valid for the same reason that modus ponens, modus tollens, and adjunction fail to be probabilistically valid. It
is an inference from a mutliple premise set, and despite the entailment, the conclusion can be less probable than any of the
premises.

How serious this difficulty is depends upon the probabilities of the four probabilistic premises. The first premise is a necessary
truth, so it must have probability 1. If the other premises also have probability 1, then it follows that the conclusion has probability
1 and so the inference is probabilistically valid after all. (Similarly, modus ponens is probabilistically valid for the special case in
which the premises have probability 1.) Can we assume, however, that a belief like prob(P) = 0.5 automatically has probability
either 1 or 0? Unless we are talking about Carnapian logical probability [Carnap 1950, 1952], that would seem totally
unreasonable, and as such logical probabilities are insensitive to empirical facts, they are not appropriate for use in belief updating.
The inescapable conclusion is that a Bayesian reasoner cannot perform the very calculations that are required for Bayesian
reasoning.

It seems initially that there remains one possible avenue of escape for the generic Bayesian. If the set {P1,...,Pn} entails Q, the
inference from P1,...,Pn to Q will not usually be probabilistically valid, but the inference from the conjunction (P1&...&Pn) to Q will
be probabilistically valid. If in addition to believing each of the premises in (4.1), the reasoner also believes their conjunction, then
it can validly infer that prob(PvQ) = 0.99. The reasoner cannot validly infer the conjunction of the premises from the individual
premises, because adjunction is prob-

Page 98

abilistically invalid, but if in addition to knowing that the premises in (4.1) are highly probable, the reasoner also knows the
conditional probabilities of each on conjunctions of the others, it can use those conditional probabilities to compute the probability
of the conjunction of the premises by using the following principle:

(4.2) prob(P&Q) = prob(P/Q)·prob(Q).

This is ''the conditional probability strategy". Unfortunately, this strategy is subject to an overwhelming difficulty: even if the
reasoner had the requisite conditional probabilities, it would be unable to use them to perform the computation in (4.2). That
computation would involve reasoning as follows:

prob(P&Q) = prob(P/Q)·prob(Q).

prob(P/Q) = α

prob(Q) = β

prob(P&Q)= α·β

The difficulty we encounter is precisely the same as the one we set out to solve in the first place: this is an inference from multiple
premises, and as such is probabilistically invalid. To turn it into a valid inference, the reasoner would have to know the probability
of the conjunction of the premises and make the inference from that cGeneric Bayesianism is based upon the intuition that a
proposition should be believed only if it is highly probable. If generic Bayesianism is logically incoherent, why is this intuition so
compelling? The answer seems to be that the English word "probable" is ambiguous. We must distinguish between statistical
probability and epistemic probability. Statistical probability is concerned with chance. We are using statistical probability when
we talk about how likely it is to rain tomorrow, oronjunction instead. It was for this purpose that the conditional probability
strategy was proposed initially. Thus rather than solving the problem, the strategy leads to an infinite regress.

The only conclusion that can be drawn from all of this is that generic Bayesianism is incoherent as a theory of belief updating. The
probability calculations required of the reasoner proceed via deductive inferences that are not probabilistically valid, and hence the
Bayesian reasoner is precluded from making the very calculations it needs to determine degrees of justification.

Page 99

about the probability of being dealt a royal flush in poker. Epistemic probability is concerned with the degree of justification of a
belief. We are referring to epistemic probability when we conclude that the butler probably did it. All that means is that there is
good reason to think the butler did it. It is certainly true that a belief is justified iff its epistemic probability is high; that is just what
we mean by high epistemic probability. The lesson to be learned from the previous discussion is that rules like modus ponens and
adjunction preserve high epistemic probability, and hence epistemic probability cannot be quantified in a way that conforms to the
probability calculus. This should not be particularly surprising. There was never really any reason to expect epistemic probability
to conform to the probability calculus. That is a calculus of statistical probabilities, and the only apparent connection between
statistical and epistemic probability is that they share the same ambiguous name. It should have been obvious from the start that
high epistemic probability is preserved by ordinary inference rules, and hence epistemic probability does not conform to the
probability calculus.

The Weakest Link Principle

I have argued that generic Bayesianism must be rejected-—belief updating cannot be performed by exclusively probabilistic
methods. My proposal is that the degree of support for a conclusion should instead be computed in terms of the Weakest Link
Principle, according to which a deductive argument is as good as its weakest link. More precisely:

The degree of support of the conclusion of a deductive argument is the minimum of the degrees of support of its premises.

The simplest reason for favoring this principle is that it seems to be the only alternative to generic Bayesianism that is not
completely ad hoc. Any other theory owes us an account of how the strength of an argument decreases as we add inferences from
new premises. The only obvious account of that is the Bayesian account, but we have seen that it must be rejected.

There is also a strong argument in favor of the weakest link principle. This turns upon the fact that the objections to the Bayesian
account can be applied more generally to any account that allows the strength of an argument to be less than its weakest link. On
any such account, multi-premise inference rules like modus ponens and adjunction will turn out to be invalid, but then it seems
unavoidable that the theory

Page 100

will be self-defeating in the same way as the Bayesian theory—by making it impossible for the reasoner to compute the degrees of
support of its conclusions.

My defense of the weakest link principle has consisted of an attack on the alternatives, but there is also a very natural objection to
the weakest link principle itself: faced with a long argument proceeding from multiple premises, we likely apt to view it with more
suspicion than a simpler argument on the grounds that there is more that could go wrong with it. This sounds like a very Bayesian
observation. However, its significance becomes less clear when we reflect that we are also inclined to regard complex, purely
deductive arguments (proceeding from a priori premises) with suspicion, also on the grounds that there is more that could go
wrong with them than with simple arguments. This certainly cannot be taken to show that the degree of support attaching to the
conclusion of a deductive argument diminishes with the complexity of the argument (and correlatively that rules like modus
ponens are invalid in purely deductive arguments), so it is doubtful that the analogous observation should have that consequence
for arguments with contingent premises. I am inclined to think that what these observations really illustrate is the supervision of
the reflexive reasoner rather than the built-in structure of the planar reasoner.

The above formulation of the weakest link principle applies only to deductive arguments, but we can use it to obtain an analogous
principle for defeasible arguments. If P is a prima facie reason for Q, then we can use conditionalization to construct a simple
defeasible argument for the conclusion (P ⊃ Q), and this argument turns upon no premises:

Suppose P

 Then (defeasibly) Q.

Therefore, (P ⊃ Q).

Because this argument has no premises, the degree of support of its conclusion should be a function of nothing but the strength of
the prima facie reason. Next, notice that any defeasible argument can be reformulated so that prima facie reasons are used only in
subarguments of this form, and then all subsequent steps of reasoning are deductive. The conclusion of the defeasible argument is
thus a deductive consequence of members of input together with a number of conditionals justified in this way. By the weakest
link principle for deductive

Page 101

arguments, the degree of support of the conclusion should then be the minimum of (1) the degrees of justification of the members
of input used in the argument and (2) the strengths of the prima facie reasons.

Input consists of states like "That looks red to me", from which one can infer defeasibly, "That is red". Because something can
look more or less clearly red, and that can affect the justification of the conclusion, we must assign differing "strengths" to the
input states, depending upon how clearly the object looks red. These strengths must be factored into the computation of the degree
of support for the conclusion of a defeasible argument. This yields The Weakest Link Principle for Defeasible

Arguments:

The degree of support of the conclusion of a defeasible argument is the minimum of the strengths of the prima facie
reasons employed in it and the strengths of the input states to which it appeals.

The problem of computing degrees of support is thus computationally simple. Sometimes it will be convenient to talk about the
strength of the argument as being the degree of support of its conclusion. Each node of the inference graph will be assigned a
unique strength—the strength of the argument supporting it, computed in accordance with the weakest link principle.

The Accrual of Reasons

If we have two independent reasons for a conclusion, does that make the conclusion more justified than if we had just one? It is
natural to suppose that it does, but upon closer inspection that becomes unclear. Cases that seem initially to illustrate such accrual
of justification appear upon reflection to be better construed as cases of having a single reason that subsumes the two separate
reasons. For instance, if Jones tells me that the president of Slobovia has been assassinated, that gives me a reason for believing it;
and if Smith tells me that the president of Slobovia has been assassinated, that also gives me a reason for believing it. Surely, if
they both tell me the same thing, that gives me a better reason for believing it. However, there are considerations indicating that
my reason in the latter case is not simply the conjunction of the two reasons I have in the former cases. Reasoning based upon
testimony is a straightforward instance of the statistical syllogism. We know that people tend to tell the truth, and so when
someone tells us some-

Page 102

thing, that gives us a prima facie reason for believing it. This turns upon the following probability being reasonably high:

(1) prob(p is true / S asserts p).

When we have the concurring testimony of two people, our degree of justification is not somehow computed by applying a
predetermined function to the latter probability. Instead, it is based upon the quite distinct probability

(2) prob(p is true / S1 asserts p and S2 asserts p and S1 ≠ S2).

The relationship between (1) and (2) depends upon contingent facts about the linguistic community. We might have one
community in which speakers tend to make assertions completely independently of one another, in which case (2) > (1); and we
might have another community in which speakers tend to confirm each other's statements only when they are fabrications, in
which case (2) < (1). Clearly our degree of justification for believing p will be different in the two linguistic communities. It will
depend upon the value of (2), rather than being some function of (1).

All examples I have considered that seem initially to illustrate the accrual of reasons turn out in the end to have this same form.
They are all cases in which we can estimate probabilities analogous to (2) and make our inferences on the basis of the statistical
syllogism rather than on the basis of the original reasons. Accordingly, I doubt that reasons do accrue. If we have two separate
undefeated arguments for a conclusion, the degree of justification for the conclusion is simply the maximum of the strengths of the
two arguments. This will be my assumption.

Defeat among Inferences

One of the most important roles of the strengths of reasons lies in deciding what to believe when one has conflicting arguments for
q and ¬q. It is clear that if the argument for q is much stronger than the argument for ¬q, then p should be believed, but what if the
argument for q is just slightly stronger than the argument for ¬q? It is tempting to suppose that the argument for ¬q should at least
attenuate our degree of confidence in q, in effect lowering its degree of justification. But upon further reflection, I am inclined to
think that this is false.

Page 103

Otherwise, if we acquired a second argument for ¬q, it would face off against a weaker argument for q and so be better able to
defeat it. But that is tantamount to taking the two arguments for ¬q to result in greater justification for that conclusion, and that is
just the principle of accrual. So it seems that if we are to reject the latter principle, then we should also conclude that arguments
that face weaker conflicting arguments are not thereby diminished in strength. There are cases that initially appear to be
counterexamples to this. For instance, if Jones, whom I regard as highly reliable, tells me that the president of Slobovia has been
assassinated, this may justify me in believing that the president of Slobovia has been assassinated. If Smith, whom I regard as
significantly less reliable, denies this, his denial may be insufficient to defeat my belief in the assassination, but surely Smith's
denial should render me less confident of my belief. However, this example is analogous to those that appeared at first to illustrate
the accrual of justification. What is happening is that contingent information is leading me to believe that the probability of an
assertion's being true is lowered by its being denied by another at least somewhat reliable source, and this constitutes a subproperty
defeater for the application of the statistical syllogism that is involved in my reasoning in this case. Accordingly, the original
argument (based simply on Jones' assertion) is defeated outright, and I must instead base my belief in the assassination on the
lower probability of its having happened given that Jones reported it and Smith denied it.

In the light of the preceding considerations, I think it should be concluded that an argument for ¬q defeats an argument for q only
if it is at least as strong as the argument for q. Accordingly, we can characterize rebutting defeat as follows:

A node α rebuts a node β iff:
(1) β is a pf-node of some strength ξ supporting some prop-
osition q relative to a supposition Y;
(2) α is a node of strength η and supports ¬q relative to a
supposition X, where X ⊆ Y; and
(3) η≥ξ.

How does strength affect undercutting defeat? In previous publications, I have assumed that it does not—that all that is required
for undercutting defeat is that the undercutting defeater be justified. But

Page 104

this view becomes incoherent when we take account of the fact that justification must always be relativized to a degree of
justification.1 It seems apparent that any adequate account of justification must have the consequence that if a belief is unjustified
relative to a particular degree of justification, then it is unjustified relative to any higher degree of justification. However, this
obvious constraint is violated by the principle that all that is required for undercutting defeat is that the undercutting defeater be
justified. Suppose we have a strong reason P for some conclusion Q and a weaker reason for (P ⊗ Q). Relative to a low degree of
justification, the undercutting defeater (P ⊗ Q) would be justified, and so Q would be unjustified. But relative to a higher degree of
justification, (P ⊗ Q) would be unjustified, and so Q would turn out to be justified. This is perverse. It seems undeniable that
degrees of justification must enter into undercutting defeat in the same way as for rebutting defeat:

A node α undercuts a node β iff:
(1) β is a pf-node of some strength ξ supporting some prop-
osition q relative to a supposition Y; where p1,...,pk are the
propositions supported by its immediate ancestors; and
(2) α is a node of strength η and supports ((p1 & ... & pk) ⊗ q)
relative to a supposition X where X ⊆ Y; and
(3) η≥ξ

It will be convenient to encode defeat relations between nodes of the inference graph in a new set of links, called defeat links.
Where ¬ and v are nodes of the inference graph, <µ,v> is a defeat link iff µ is a pf-node and v defeats it relative to some degree of
justification.

5. Other Nonmonotonic Formalisms

Although in general outline the theory of defeasible reasoning presented predates the most familiar theories of nonmonotonic
reasoning in AI, it will seem unfamiliar to many researchers in AI because of the past isolation of philosophy and AI from one
other. Accordingly, it will be useful to compare this theory to those more familiar in AI. The comparison will be scattered through
the next several sections. Because

1 I was led to see this as a result of discussions with Stewart Cohen.

Page 105

the AI theories will be unfamiliar to most philosophers, I will give a brief account of each.

Argument-Based Approaches

The theory of defeasible reasoning adumbrated in this book is an "argument-based" theory, in the sense that it characterizes
defeasible consequence in terms of the interactions between the inference steps of all possible arguments that can be constructed
from the given set input using a fixed set of prima facie reasons and defeaters. Other argument-based approaches to defeasibility
can be found in the work of Loui [1987], Simari and Loui [1992], and Lin and Shoham [1990]. The work of Horty, Thomason, and
Touretzky [1990] and Horty and Thomason [1990] can also be viewed as an argument-based theory of defeasible reasoning, where
the arguments have a rather restricted form. However, these theories are all based upon rather simple conceptions of argument,
confining their attention to linear arguments. None of the AI theories of nonmonotonic reasoning appears to be sensitive to the
importance of suppositional reasoning, but suppositional reasoning is essential in any reasoner that is capable of performing
deductive and defeasible reasoning simultaneously. In addition, the systems of Horty, Thomason, and Touretzky [1990], Horty and
Thomason [1990], and Simari and Loui [1992] accommodate only rebutting defeaters.

Much of the work that lies within the argument-based approach adds a form of "specificity defeat" that is not part of the theory
adumbrated in this book. The details of specificity defeat have been worked out differently by different authors, but the basic idea
is that when two arguments have conflicting conclusions, if one of the arguments is based upon a "more specific" set of premises,
it should take precedence and the other argument should be regarded as defeated. Specificity defeat originated with Poole [1985,
1988], and represents a generalization of the subproperty defeaters that play so prominent a role in connection with the statistical
syllogism. My own view is that the correctness of specificity defeat turns heavily upon the context in which it is being used. Horty,
Thomason, and Touretzky [1990] apply it to defeasible inheritance hierarchies in which all nodes are logically simple. Such
hierarchies can be viewed as networks of concepts related in the manner required for the application of the statistical syllogism,
and the conclusions of such defeasible inheritance proceed in accordance with the statistical syllogism. So construed, specificity
defeat amounts to subproperty defeat, and if it is formulated properly I have no objec-

Page 106

tions to it. But in Horty and Thomason [1990] the defeasible inheritance hierarchies are extended so that the nodes can represent
Boolean combinations of concepts (concepts constructed out of simple concepts using negation, conjunction, and disjunction).
Here, there is a problem. As we saw in chapter 2, the principle of subproperty defeat must incorporate a projectibility constraint,
and that has the effect of ruling out many disjunctions and negations. The result is that specificity defeat cannot be applied in
general within such logically complex defeasible inheritance hierarchies. This difficulty has been completely overlooked in the
literature.

Loui [1987] and Simari and Loui [1992] treat specificity defeat more generally, applying it to all defeasible reasoning, and not just
defeasible reasoning in accordance with the statistical syllogism. This strikes me as entirely wrong. First, in cases in which the
reasoning can be regarded as proceeding in accordance with the statistical syllogism, they will encounter the same projectibility
problems as Horty and Thomason. Second, it was observed in chapter 2 that much defeasible reasoning cannot be regarded as
proceeding in accordance with the statistical syllogism. For such reasoning, there is no reason to think that specificity defeat is a
correct principle of reasoning. The only intuitive examples that have ever been given in support of it concern the statistical
syllogism. The literature contains absolutely no examples illustrating its applicability elsewhere, and a conscientious effort on my
part to construct such examples has ended in complete failure. It is for this reason that I reject specificity defeat as a general
principle of defeasible reasoning.

Default Logic

In spirit, my own theory of defeasible reasoning seems close to Reiter's default logic [1980], with prima facie reasons and defeaters
corresponding to Reiter's defaults. Defaults can be regarded as defeasible inference rules. Reiter writes defaults in the form

P:Q1,...,Qn,/R , the interpretation being that P provides the premise for a default inference to the conclusion R, and any of
~Q1,...,~Qn will defeat the inference. Given a set D of defaults and a set W of premises, Reiter defines an extension of (D,W) to be a
set E such that (1) W ⊆ E; (2) E is closed under deductive consequence; (3) for each default P:Q1,...,Qn/R in D, if P∈E but
none of the ~Qi is in E, then R is in E; and (4) no proper subset E* of E satisfies (1), (2), and the condition (3*) that for each default

P:Q1,...,Qn/R in D, if P∈E* but none of the ~Qi is in E, then R is in E* .The extensions of pairs of defaults and premises are
supposed

Page 107

to represent the sets of rational belief sets one could have if one were given those defaults and premises as one's starting point. This
is rationality in the sense of "rationality in the limit", that is, what one could reasonably believe if one had performed all relevant
reasoning.

Although default logic is, in some ways, very similar to the theory of defeasible reasoning, there are also profound differences
between the two theories. First, prima facie reasons are supposed to be logical relationships between concepts. It is a necessary
feature of the concept red that something's looking red to me gives me a prima facie reason for thinking it is red. (To suppose we
have to discover such connections inductively leads to an infinite regress, because we must rely upon perceptual judgments to
collect the data for an inductive generalization.) By contrast, Reiter's defaults often represent contingent generalizations. If we
know that most birds can fly, then the inference from being a bird to flying may be adopted as a default. In the theory of defeasible
reasoning propounded in this book, the latter inference is instead handled in terms of the statistical syllogism, as discussed in
chapter 2. A second contrast between the present theory of defeasible reasoning and Reiter's approach is that the latter is
semantical (proceeding in terms of an unspecified deductive-consequence relation), whereas the former is argument-theoretic.

It is easily proven that if we identify prima facie reasons with defaults, confine our attention to linear arguments, consider only
cases in which there is no collective defeat,2 and identify the deductive-consequence relation with deductive provability in
OSCAR, then the set of warranted conclusions generated by the present theory will be the same as the unique extension generated
by Reiter's default logic. In situations in which collective defeat occurs, the two theories yield completely different results, because
default logic is credulous and the present theory is skeptical. Recall that in cases of collective defeat, a skeptical theory dictates
withholding belief, whereas a credulous theory dictates choosing one of the defeated conclusions at random and believing that. It
was argued in chapter 2 that the standard defenses of credulous systems confuse epistemic and practical reasoning, and that
credulous systems of epistemic reasoning are simply wrong. However, a skeptical version of default logic can be generated by
requiring that default consequences be members of the intersection of all extensions, and this brings the two theories back into
agreement on "simple"

2 Collective defeat was introduced in chapter 2, and will be made precise in section 6 of this chapter.

Page 108

cases,3 provided we consider only linear arguments. Once we allow suppositional reasoning, the two theories diverge again. For
instance, if we consider a default theory with the default P:Q/Q and the corresponding defeasible theory in which P is a prima
facie reason for Q and there are no undercutting defeaters, then from the empty set of premises the present theory of defeasible
reasoning will generate the warranted conclusion (P ⊃ Q), but skeptical default logic will not.

Circumscription

Circumscription was developed by McCarthy [1980, 1984]. The basic idea is that if we know that most A's are B's, then in
reasoning about A's, we should assume that the set of exceptional A's that are not B's is minimal. In other words, we assume that
the only exceptions are those forced upon us by other things we know. McCarthy captures this by adding second-order axioms to
the theory. He begins by symbolizing most A's are B's as

(∋∋x){ A(x) & ~ab(x) ⊃ B(x)}

where ab(x) symbolizes x is abnormal (exceptional) . Letting T(ab) be our initial theory about A's, B's, and abormality, the
circumscription of T is the second-order principle:

T(ab) & (∀X){ T(X) & (∀x)(X(x) ⊃ ab(x)) ⊃ (∀x)(ab(x) ⊃ X(x))}

This says that the theory holds for ab, and if the theory holds for any property X whose extension is a subset of the extension of ab,
then the extension of ab is the same as the extension of X. In other words, the extension of ab is a minimal set sufficient to satisfy
the theory T.

To illustrate, suppose our theory T is that most birds fly, and Tweety is a bird. We can express this as:

bird (Tweety)
(∀x){ bird(x) & ~ab(x) ⊃fly(x)}

We want to infer, defeasibly, that Tweety flies. The circumscription of this theory tells us that the set of nonflying birds is a
minimal set satisfying this theory. The minimal set satisfying this theory is the empty set, so from the circumscription we can infer
that Tweety flies.

3 "Simple" cases are those that do not exhibit self-defeat, ancestor-defeat, or any of the other complexities discussed in sections 6-8.

Page 109

Although circumscription captures some of the same inferences as my theory of defeasible reasoning, it also has some peculiar
consequences, which, to my mind, show that it is not an adequate theory. To adapt an example from Etherington, Kraus, and Perlis
[1991], consider a lottery that is held once a week. Each week, one ticket is drawn. Most tickets are not drawn so the ticket drawn
is abnormal, in the technical sense employed in circumscription. Circumscribing abnormality, there will be one minimal extension
of ab for each ticket, corresponding to that ticket's being drawn. A conclusion follows from the circumscription only if it is true in
each minimal extension, so no conclusion follows to the effect that any particular ticket will not be drawn. So far, circumscription
yields the right answer.4 But now modify the example. Each week, instead of drawing just one ticket, from one to five tickets are
drawn, the number being determined randomly. The minimal extensions of ab are still those in which just one ticket is drawn, so it
is true in each minimal extension that only one ticket is drawn. Thus, each week, circumscription allows us to conclude that only
one ticket will be drawn. But this conclusion is unreasonable. Neither default logic nor the theory of defeasible reasoning
adumbrated in this book has this consequence. The undesirable conclusion is directly traceable to circumscription's minimization
of abnormality, so it seems to show that this is not, after all, a satisfactory way of capturing the structure of defeasible reasoning.

In the following sections, circumscription and (skeptical) default logic will be compared with the theory of defeasible reasoning in
their application to a number of problem cases. I will argue that, in at least some cases, the former theories give unsatisfactory
results.

6. Computing Defeat Status

Justified beliefs are those supported by undefeated nodes of the inference graph. More precisely:

A belief is justified to degree & iff it is supported by some undefeated node of the inference graph whose strength is > δ.

4 Etherington, Krause, and Perlis [1991] maintain that this is the wrong answer, and that it is reasonable to conclude of any given ticket that it
will not be drawn. I disagree with them. See the discussion of the lottery paradox in chapter 2.

Page 110

To complete this analysis, let us address the question of how the defeat status of a node of the inference graph is determined by its
defeat relations to other nodes. It is initially plausible that there are just two ways a node can come to be defeated: (1) by its being
defeated by some other node that is itself undefeated or (2) by its being inferred from a node that is defeated. Let us say that a node
is d-initial iff neither it nor any of its inference ancestors are defeated by any nodes (that is, they are not the termini of any defeat
links). D-initial nodes are guaranteed to be undefeated. Then we might try the following recursive definition:

(6.1) 1.D-initial nodes are undefeated.
2. If the immediate ancestors of a node η are undefeated and
all nodes defeating η are defeated, then η is undefeated.
3. If η has a defeated immediate ancestor, or there is an unde-
feated node that defeats η, then η is defeated.

To illustrate, suppose we have the inference graph diagrammed in figure 2, where defeasible inferences are indicated by dashed
arrows, deductive inferences by solid arrows, and defeat links by arrows of the form "⇒". α,ß,ξ,v,µ,k, and λ are d-initial nodes, so
they are undefeated. By (6.1.3), ζ,ξ, and X are then defeated. By (6.1.2), because β is undefeated and ξ, is defeated, y and δ are
then undefeated.

In simple cases, all standard theories of defeasible reasoning and nonmonotonic logic will yield results that are in agreement with
principle (6.1), but as we will see, the different theories diverge on some complicated cases.

I take it that principle (6.1) is an initially plausible proposal for computing defeat status. However, the operation of this recursive
definition is not as simple as it might at first appear. In figure 2, principle (6.1) assigns "defeated" or "undefeated" to each node of
the inference graph, but that will not always be the case. In particular, this will fail in cases of collective defeat, where we have a
set of nodes, each of which is defeated by other members of the set and none of which is defeated by undefeated nodes outside the
set. Consider the simple inference graph diagrammed in figure 3. In this case, α and ξ are again d-initial nodes and hence
undefeated. But neither ß nor ζ will be assigned any status at all by principle (6.1), and then it follows that no status is assigned to
any of y,δ,ξ, or X either.

Page 111

Figure 2. Inference graph (top)
Figure 3. Collective defeat (bottom)

Page 112

Collective defeat was illustrated in chapter 2 by the lottery paradox. Suppose you hold one ticket in a fair lottery consisting of 1
million tickets, and suppose it is known that one and only one ticket will win. Observing that the probability is only .000001 of a
ticket's being drawn given that it is a ticket in the lottery, it seems reasonable to accept the conclusion that your ticket will not win.
The prima facie reason involved in this reasoning is the statistical syllogism. But by the same reasoning, it will be reasonable to
believe, for each ticket, that it will not win. However, these conclusions conflict jointly with something else we are justified in
believing: that some ticket will win. We cannot be justified in believing each member of an explicitly contradictory set of
propositions, and we have no way to choose between them, so it follows intuitively that we are not justified in believing of any
ticket that it will not win.5 This is captured formally by the principle of collective defeat, which tells us that our prima facie
reasons collectively defeat one another:

The Principle of Collective Defeat

If X is a set of nodes of the inference graph, each member of X is defeated by another member of X, and no member of X is
defeated by an undefeated node that is not a member of X, then every node in X is defeated.

Collectively defeated inferences are defeated, in the sense that it is unreasonable to accept their conclusions.6 But principle (6.1)
does not rule them defeated. This may be less of a problem for principle (6.1) than it seems. We can regard the assignment of
defeat statuses in figure 3 as correct, provided we go on to say that ß and ζ should be assigned a third status distinct from both
"defeated" and "undefeated". The need for a third defeat status is best illustrated by contrasting figure 2 with figure 4. In figure 2, ζ
and hence ξ are defeated, and ξ thereby loses the ability to render y defeated. In figure 4, both ζ and µ are defeated (it would not be
reasonable to accept their conclusions), but ζ retains the ability to render ß defeated, because it would not be

5 Kyburg [1970] draws a different conclusion: we can be justified in holding inconsistent sets of beliefs, and it is not automatically reasonable
to adopt the conjunction of beliefs one justifiably holds (i.e., adjunction fails). This was discussed in section 2.

6 Not everyone accepts this diagnosis. For a defense of it, see my discussion of the lottery paradox in chapter 2.

Page 113

_21601C57CF172819

Figure 4. The propagation of provisional defeat (top)
Figure 5. The extended propagation of provisional defeat (bottom)

Page 114

reasonable to accept the conclusion of ß either. This is an unavoidable consequence of the symmetry of the inference graph. The
relationship between ß and ζ is precisely the same as that between ζ and µ. We must regard both as cases of collective defeat. The
order in which the arguments are produced, or the nodes considered by the recursion, cannot affect their defeat status.

We can handle this by distinguishing between two kinds of defeat: outright defeat and provisional defeat. If a node undergoes
outright defeat, it loses the ability to affect other nodes, but if a node undergoes provisional defeat, it can still render other nodes
provisionally defeated. Provisionally defeated nodes are still "infectious". Provisional defeat can propagate, in two ways. First, as
illustrated by figure 4, if a provisionally defeated node defeats a node that would not otherwise be defeated, this can render the
latter node provisionally defeated. Second, if a node is inferred from a provisionally defeated node and its other immediate
ancestors are undefeated, then that node may be provisionally defeated as well. That is, a node inferred from a provisionally
defeated node is defeated but may still be infectious. This is illustrated by making structures like figure 4 more complicated so that
the collective defeat of ζ and µ involves extended reasoning, as in figure 5. Here, v and p are inferred from ζ so they are defeated,
but they must remain infectious in order to defeat µ and thus generate the provisional defeat of ζ and µ. If v and p were defeated
outright rather than provisionally, then µ would be undefeated, which would render ζ defeated outright, but that is intuitively
wrong.

Outright defeat and provisional defeat are both defeat, in the sense that it is not reasonable to accept the conclusion of a node with
either status. But the two defeat statuses are importantly different in that a node is rendered impotent if it is defeated outright, but if
it is only provisionally defeated, it retains the ability to defeat other nodes.

The examples considered thus far can be handled by adding a fourth clause to principle (6.1):

(6.2) 1.D-initial nodes are undefeated.
2. If the immediate ancestors of a node η are undefeated and
all nodes defeating η are defeated outright, then η is unde-
feated.
3. If η has an immediate ancestor that is defeated outright, or
there is an undefeated node that defeats η, then η is defeated
outright.
4. Otherwise, η is provisionally defeated.

Page 115

The automatic consequence is that otherwise undefeated nodes inferred from provisionally defeated nodes are provisionally
defeated, and otherwise undefeated nodes defeated by provisionally defeated nodes are provisionally defeated. Principle (6.2) is
equivalent to the analysis of defeat I have given elsewhere [1979, 1986, 1987]. However, I now believe that this account is
inadequate, for the reasons that will be explored next.

7. Self-defeating Arguments

The inadequacy of principle (6.2) can be illustrated by a wide variety of examples. The simplest is the following. Suppose P is a
prima facie reason for R, Q is a prima facie reason for ~R, S is a prima facie reason for T, and we are given P,Q, and S. Then we

can do the reasoning encoded in the inference graph diagrammed in figure 6. The nodes and collectively defeat one
another, but should be independent of either and undefeated. The difficulty is that we can extend the inference graph as in figure 7.
Here I have used a standard strategy for deriving an arbitrary conclusion from a contradiction. Now the problem is that rebuts

Bitmap
8

. According to principle (6.2), , and hence , are provisionally defeated, but then it follows that ¬ is also provisionally
defeated. The latter must be wrong. There are no constraints on T, so it would have the consequence that all conclusions are
defeated. This example shows that nodes inferred from provisionally defeated nodes are not always provisionally defeated. In
figure 7, must be defeated outright. There is no way to get this result from principle (6.2). My diagnosis of the difficulty is that
the argument supporting is "internally defective". It is self-defeating in the sense that some of its steps are defeaters for others.
By principle (6.2), this means that those inferences enter into collective defeat with one another, and hence Bitmap

6
 is provisionally

defeated, but my suggestion is that this should be regarded as a more serious defect—one that leaves defeated outright and
hence unable to defeat other inferences. Taking the inclusive inference ancestors of a node to be its inference ancestors together
with itself, let us define:

A node η is self-defeating iff some of its inclusive inference ancestors defeat others.

Principle (6.2) should be modified so that self-defeating nodes are defeated outright rather than just provisionally.

Page 116

Figure 6. A simple inference graph (top)
Figure 7. Self-defeat (bottom)

Page 117

Figure 8. Lottery Paradox Paradox

It is noteworthy that neither (skeptical) default logic nor circumscription has any difficulty with the inference graph of figure 7. In
default logic, there is one minimal extension containing R and another containing ~R but no minimal extension containing both
and so none containing ~T. Similarly, in circumscribing abnormality, either the inference to R or the inference to ~R will be
blocked by abnormality, and in either case the inference to ~T will be blocked.

Circumscription does not fare so well when we turn to a second example of self-defeat that has a somewhat different structure.
This concerns what appears to be a paradox of defeasible reasoning and involves the lottery paradox again. The lottery paradox is
generated by supposing that a proposition R describing the lottery (it is a fair lottery, has 1 million tickets, and so on) is justified.
Given that R is justified, we get collective defeat for the proposition that any given ticket will not be drawn. But principle (6.2)
makes it problematic how R can be justified. Normally we will have only a defeasible reason for believing R. For instance, we may
be told that it is true or read it in a newspaper. Let Ti be the proposition that ticket i will be drawn. In accordance with the standard
reasoning involved in the lottery paradox, we can generate an argument supporting ~R by noting that the ~T1 jointly entail ~R,
because if none of the tickets is drawn, the lottery is

Page 118

not fair. This is diagrammed in figure 8. The difficulty is now that rebuts Thus by principle (6.2), these nodes
defeat one another, with the result that neither is defeated outright. In other words, the inference to R is provisionally defeated.
Again, this result is intuitively wrong. Oviously, if we consider examples of real lotteries (e.g., this week's New York State
Lottery), it is possible to become justified in believing R on the basis described. I propose once more that the solution to this
problem lies in noting that the node is self-defeating.

Default logic gets the example of figure 8 right, but circumscription gets it wrong. In circumscribing abnormality, all we can
conclude is that one of the defeasible inferences is blocked by abnormality, but it could be the inference to R, so circumscription
does not allow us to infer R.

On the argument-based approach, the difficulties diagrammed in figures 7 and 8 can be avoided by ruling that self-defeating nodes
are defeated outright—not just provisionally. Because they are defeated outright, they cannot enter into collective defeat with other

nodes, and so the nodes in the preceding two examples are defeated outright, as they should be. This can be
accomplished by revising principle (6.2) as follows:

(7.1) 1.D-initial nodes are undefeated.
2. Self-defeating nodes are defeated outright.
3. If η is not self-defeating, its immediate ancestors are unde-
feated, and all nodes defeating η are defeated outright,
then η is undefeated.
4. If η has an immediate ancestor that is defeated outright, or
there is an undefeated node that defeats η, then η is defeated
outright.
5. Otherwise, η is provisionally defeated.

This is equivalent to one of the preliminary proposals made in my [1990]. However, it is still inadequate.

An interesting problem arises when the last step of an argument constitutes an undercutting defeater for an earlier step. Consider

the inference graph diagrammed in figure 9. The node is self-defeating, because it defeats one of its own ancestors.
Thus by principle (7.1), it is defeated outright. It then follows from principle (7.1) that the remaining nodes are undefeated. But

this is most peculiar, because is a deductive consequence of If a node is undefeated, its deductive
consequences should also be undefeated. Conversely, if

Page 119

Figure 9. No nearest defeasible ancestor is defeated

a node is inferred deductively from a set of nodes (its nearest defeasible ancestors), then if the node is defeated, at least one of its

nearest defeasible ancestors should also be defeated. It follows that at least should be defeated. What about Intuitions
are unclear in such an abstract example, so let us turn to a concrete example.

Suppose we know (i) that people generally tell the truth, (ii) that Robert says that the elephant beside him looks pink, and (iii) that
Robert becomes unreliable in the presence of pink elephants. x looks pink is a prima facie reason for x is pink . Then
Robert's statement gives us a prima facie reason for thinking that the elephant does look pink, which gives us a reason for thinking
that it is pink, which, when combined with Robert's unreliability in the presence of pink elephants, gives us a defeater for our
reason for thinking that the elephant looks pink. These relations can be diagrammed as in figure 10. Node 7 is self-defeating, so
one of its nearest defeasible ancestors ought to be defeated. These are nodes 5 and 6. Of these, it seems clear that node 6 should be
defeated by having node 4 defeated. That is, in this example, it would not be reasonable to accept the conclusion that the elephant

beside Robert looks pink. This strongly suggests that we should similarly regard) as defeated in figure 9. Neither of these
conclusions is forthcoming from principle (7.1). In earlier publications I tried to resolve these problems by generalizing the notion
of self-defeat, but I no longer believe that those attempts were successful.

Page 120

Figure 10. Argument with self-defeating conclusion

It turns out that circumscription gives the right result in figures 9 and 10. In figure 9, circumscribing abnormality has the
consequence that either the inference to Q or the inference to R is blocked, and hence Q does not follow from the circumscription.
On the other hand, default logic gives an outlandish result in figure 9. It turns out that there are no extensions in this case, and
hence either nothing is justified (including the given premise P) or everything is justified, depending upon how we handle this
case. This seems to be a fairly clear counterexample to default logic.

8. A New Approach

Default logic and circumscription handle some of the problem cases correctly and some incorrectly. The cases in which they fail
tend to be

Page 121

ones in which they are not sufficiently sensitive to the structure of the arguments. For example, in figure 8, circumscription gets
self-defeat wrong, and in figure 9, default logic gets self-defeat wrong. This suggests that the argument-based approach should be
superior, but as we have seen, the formulations of the argument-based approach that are contained in principles (6.2) and (7.1) fail
to deal adequately with at least one of the examples that default logic and circumscription get right. The attempts to salvage the
argument-based approach by building in restrictions become increasingly ad hoc as the examples become more complex. I think it
is time to abandon the search for such restrictions and look for another way of handling the problems. Here, I think that the
argument-based approach has a lesson to learn from default logic and circumscription. Consider the first example of collective
defeat—figure 7. Default logic and circumscription get this example right, but principle (6.2) gets it wrong, necessitating the
explicit appeal to self-defeat in principle (7.1). It is illuminating to consider why default logic and circumscription have no
difficulty with this example. This is because they take account of the relationship between the provisionally defeated conclusions R
and ~R instead of just throwing them all into an unstructured pot of provisionally defeated conclusions. This allows us to observe
that when R is ''acceptable", ~R is not, and hence there are no circumstances under which ~T is "acceptable". Principle (6.2), on the
other hand, washes these relationships out, assigning a blanket status of "provisionally defeated" to all provisionally defeated

propositions.

The conclusion I want to draw is that the argument-based approach gets things partly right, and default logic and circumscription
get things partly right. What is needed is a single theory that combines the insights of both. In order to take account of the structure
of arguments, this will have to be an argument-based theory, but in assessing defeat statuses, it must take account of the
interconnections between nodes and not just look at the defeat statuses of the nodes that are inference ancestors or defeaters of a
given node. There is a way of taking account of such interconnections while remaining within the spirit of principles (6.1) and
(6.2). Let us define a status assignment to be an assignment of defeat status that is consistent with the rules of principle (6.1).
When nodes are either undefeated or defeated outright, then every status assignment will accord them that status, but when nodes
are provisionally defeated, some status assignments will assign the status "defeated" and others the status "undefeated". Links
between nodes will be reflected in the fact that, for example, every status as-

Page 122

signment making one undefeated may make another defeated. This is made precise as follows:

An assignment σ of "defeated" and "undefeated" to the nodes
of an inference graph is a status assignment iff:
1.σ assigns "undefeated" to all d-initial nodes;
2.σ assigns "undefeated'' to a node α iff σ assigns "undefeat-
ed" to all the immediate ancestors of α and all nodes de-
feating α are assigned "defeated"; and
3. σ assigns "defeated" to α iff either α has a immediate
ancestor that is assigned "defeated", or there is a node ß
that defeats α and is assigned "undefeated".

The proposal is then:

(8.1) A node is undefeated iff every status assignment assigns "undefeated" to it; otherwise it is defeated. Of the defeated nodes, a
node is defeated outright iff no status assignment assigns "undefeated" to it; otherwise, it is provisionally defeated.

This simple proposal deals adequately with all but one of the examples we have considered. In figure 7, there is one statue

assignment assigning "defeated" to and "undefeated" , and another status assignment assigning the opposite statuses. On

both assignments, is assigned "defeated", so by principle (8.1), is defeated outright. Figure 8 is analogous. In figure 8,

for each i there is a status assignment assigning "defeated" to but assigning "undefeated" to and all the other 's.

Every such status assignment assigns "defeated" to . Thus by principle (8.1), is undefeated and is defeated

outright, while all of the 's are provisionally defeated.

Of the above examples, principle (8.1) is able to handle all but that of figure 9. In figure 9, something unexpected happens. Any

status assignment assigning "undefeated" to will also assign "undefeated" to and to , but then it must instead

assign "defeated" to . Thus no status assignment can assign "undefeated" to . However, no status assignment can assign

"defeated" to either, because then it would have to assign "defeated" to and as well, from which it follows

that it must assign "undefeated" to . This shows no status assignments are possible for the inference graph of figure 9. We
can construct other examples of this same

Page 123

Figure 11. A three-membered defeat cycle.

phenomenon. The simplest involve odd-length defeat cycles. Consider the inference graph diagrammed in figure 11. For example,
we might let P be "Jones says that Smith is unreliable", Q be "Smith is unreliable", R be "Smith says that Robertson is unreliable'',
S be "Robertson is unreliable", T be "Robertson says that Jones is unreliable", U be "Jones is unreliable", and A be "Smith says

that it is raining" and B be "It is raining". Intuitively, ought to defeat one another collectively, and then

because is provisionally defeated, should be provisionally defeated. That is precisely the result we get if we expand the
defeat cycle to four nodes. However, in the inference graph containing the three-membered defeat cycle, there is no way to assign

defeat statuses consistent with principle (6.1). For example, if is assigned "undefeated", must be assigned "defeated",

and then must be assigned "undefeated", with the result that must be assigned "defeated"—a contradiction. Every other
way of trying to assign defeat statuses yields a similar contradiction. Consequently, there is no status assignment for the inference
graph in figure 11. But surely, it should make no difference that the defeat cycle is of odd length rather than even length. We
should get the same result in either case.

This difficulty can be rectified by allowing status assignments to be partial assignments. They can leave gaps, but only when there
is no consistent way to avoid that. Accordingly, let us revise the earlier definition as follows:

An assignment σ of "defeated" and "undefeated" to a subset of the nodes of an inference graph is a partial status assignment iff: 1.
σ assigns "undefeated" to all d-initial nodes;

Page 124

2. σ assigns "undefeated" to a node α iff σ assigns "undefeat-
ed" to all the immediate ancestors of α and all nodes de-
feating α are assigned "defeated"; and
3. σ a assigns ''defeated" to a node α iff either α has a immediate
ancestor that is assigned "defeated", or there is a node ß
that defeats α and is assigned "undefeated".

Status assignments are then maximal partial status assignments:

σ is a status assignment iff σ is a partial status assignment and σ is not properly contained in any other partial status assignment.

With this modification, principle (8.1) handles the examples of figures 9 and 11 properly. In figure 9, nodes
_431D9C57CF172819 out to be (provisionally) defeated, and in figure 11, nodes _43BE7C57CF172819 _440E8C57CF172819 are
(provisionally) defeated. This is my final proposal for the analysis of defeat for nodes of the inference graph.7

This analysis entails that defeat statuses satisfy a number of intuitively desirable conditions:

(8.2) A node α is undefeated iff all immediate ancestors of α are undefeated and all nodes defeating α are defeated.

(8.3) If some immediate ancestor of α is defeated outright then α is defeated outright.

(8.4) If some immediate ancestor of α is provisionally defeated, then α is either provisionally defeated or defeated outright.

(8.5) If some node defeating α is undefeated, then α is defeated outright.

(8.6) If α is self-defeating then α is defeated outright.

7 In a number of earlier publications [1979, 1986, 1987, 1990, 1990c, 1991, and 1992], I proposed that defeat could analyzed as defeat among
arguments rather than inference nodes, and I proposed an analysis of that relation in terms of "levels of arguments". I now believe that
obscured the proper treatment of self-defeat and ancestor defeat. I see no way to recast the present analysis in terms of a defeat relation
between arguments (as opposed to nodes, which are argument steps rather than complete arguments).

Page 125

9. The Paradox of the Preface

Much of my work on the analysis of defeat has been driven by an attempt to deal adequately with the lottery paradox and the
paradox of the preface. The difficulty is that these two paradoxes seem superficially to have the same form, and yet they require
different resolutions. I discussed the lottery paradox above, maintaining that it can be regarded as a straightforward case of
collective defeat. Contrast that with the paradox of the preface [Makinson 1965], which can be presented as follows:

There once was a man who wrote a book. He was very careful in his reasoning, and was confident of each claim that he made.
With some display of pride, he showed the book to a friend (who happened to be a probability theorist). He was dismayed when
the friend observed that any book that long and that interesting was almost certain to contain at least one falsehood. Thus it was not
reasonable to believe that all of the claims made in the book were true. If it were reasonable to believe each claim then it would be
reasonable to believe that the book contained no falsehoods, so it could not be reasonable to believe each claim. Furthermore,
because there was no way to pick out some of the claims as being more problematic than others, there could be no reasonable way
of withholding assent to some but not others. "Therefore," concluded his friend, "you are not justified in believing anything you
asserted in the book." [Pollock 1991]

This is the paradox of the preface (so named because in the original version the author confesses in the preface that his book
probably contains a falsehood). This paradox is made particularly difficult by its similarity to the lottery paradox. In both
paradoxes, we have a set Γ of propositions, each of which is supported by a defeasible argument, and a reason for thinking that not
all of the members of Γ are true. But in the lottery paradox we want to conclude that the members of Γ undergo collective defeat,
and hence we are not justified in believing them, whereas in the paradox of the preface we want to insist that we are justified in
believing the members of Γ. How can the difference be explained?

There is, perhaps, some temptation to acquiesce in the reasoning involved in the paradox of the preface and conclude that we are
not justified in believing any of the claims in the book after all. That would surely be paradoxical, because a great deal of what we
believe about the world is based upon books and other sources subject to the

Page 126

same argument. For instance, why do I believe that Alaska exists? I have never been there. I believe it only because I have read
about it. If the reasoning behind the paradox of the preface were correct, I would not be justified in believing that Alaska exists.
That cannot be right.

The paradox of the preface may seem like an esoteric paradox of little more than theoretical interest. However, the form of the
paradox of the preface is of fundamental importance to defeasible reasoning. That form recurs throughout defeasible reasoning,
with the result that if that form of argument were not defeated, virtually all beliefs based upon defeasible reasoning would be
unjustified. This arises from the fact that we are typically able to set at least rough upper bounds on the reliability of our prima
facie reasons. For example, color vision gives us prima facie reasons for judging the colors of objects around us. Color vision is
pretty reliable, but surely it is not more than 99.9% reliable. Given that assumption, it follows that the probability that out of
10,000 randomly selected color judgments, at least one is incorrect, is 99.99%. By the statistical syllogism, that gives us a prima
facie reason for thinking that at least one of them is false. By reasoning analogous to the paradox of the preface, it seems that none
of those 10,000 judgments can be justified. And because every color judgment is a member of some such set of 10,000, it follows
that all color judgments are unjustified. The same reasoning would serve to defeat any defeasible reasoning based upon a prima
facie reason for which we can set at least a rough upper bound of reliability. Thus it becomes imperative to resolve the paradox of
the preface.

The paradox of the preface can be resolved by appealing to the analysis of defeat proposed above.8 The paradox has the following
form. We begin with a set Γ = {p1,...,pN} of propositions, where Γ has some property B (being the propositions asserted in a book of
a certain sort, or being a set propositions supported by arguments employing a certain prima facie reason). We suppose we know
that the probability of a member of such a set being true is high, but we also know that it is at least as probable that such a set of
propositions contains at least one false member. Letting T be the property of being true, we can express these probabilities as:

prob(Tz / z∈ X & B(X)) = r
prob((∃z) (Ζ∈X &~Tz) / B(X)) ≥ r.

The latter high probability, combined with the premise B(Γ), gives us

8 This corrects my earlier discussion [1990, 1991].

Page 127

Figure 12. Paradox of the Preface

a defeasible reason for (∃z)(z∈Γ & ~Tz). This, in turn, generates collective defeat for all the arguments supporting the members of
Γ. The collective defeat is generated by constructing the argument scheme diagrammed in figure 12 for each ~Tpi.

A resolution of the paradox of the preface must consist of a demonstration that node 6 is defeated outright. A subproperty defeater
for the reasoning from node 1 to node 2 arises from establishing anything of the following form (for any property C):

C(Γ) & prob((∃z)(z∈ X & ~Tz) / B(X) & C(X)) < r.9

I have shown [1990, 251] that

prob((∃z)(z∈X & ~Tz) / B(X) & X = {x1,...,xN} & x1,...,xN are distinct10 & Tx1 & ... & Tx-1 & Tx+1 & ... & TxN)

= prob(~Txi / B(X) & X= {x1,...,xN} & xi,...,xN are distinct & Tx1 & ... & Txi-1 & Txi+1 &... & TxN).

9 See section 6 of chapter 2 for more details on subproperty defeaters.

10 "x1,...,xn are distinct" means "x1,...,xn are n different objects".

Page 128

Now we come to the point at which the paradox of the preface differs from the lottery paradox. In the lottery paradox, knowing
that none of the other tickets has been drawn makes it likely that the remaining ticket is drawn. By contrast, knowing that none of
the other members of ¬ is false does not make it likely that the remaining member of ¬ is false. In other words,

prob(~Txi / B(X) & X = {x1,...,xN} & x1,...,xN are distinct & Tx1 & ... & Txi-1 & Txi+1 & ... & TxN)

≤ prob(~Txi / B(X) & X = {xl,...,xN} & xl,...,xN are distinct).

Equivalently, the different claims in ¬ are not negatively relevant to one another. For example, the 10,000 color judgments were
assumed to be independent of one another, so these two probabilities are equal in that case. In the case of the book, the various
claims would normally be taken to support one another, if anything, and so be positively relevant rather than negatively relevant.
There is no reason to believe that the condition X = {x1,...,xN} & x1,...,xN are distinct alters the probability, so it is reasonable to
believe that the last-mentioned probability is just 1-r, which, of course, is much smaller than r.11 Thus we have

prob((∃z)(z∈X & ~Tz) / B(X) & X = {x1, ...,xN) & x1,...,xN are distinct &Tx1 & ... & Txi-1 & Txi+1 & ... & TxN) < r.

Accordingly, the conjunction

prob((∃z)(z∈X & ~Tz) / B(X) & X = {x1,...,xN} & x1,...,xN are distinct & Tx1 & ... & Txi-1 & Txi+1 & ... & TxN) < r & P1,...,pN are
distinct

is warranted. Combining this with nodes 3 and 4 generates a subproperty defeater for the defeasible inference from node 1 to node
2, as diagrammed in figure 13. Consequently, node 8 defeats node 2.

11 This inference proceeds by non-classical direct inference. See section 6 of chapter 2.

Page 129

Figure 13. Resolution of the paradox of the preface

Page 130

In computing defeat statuses, it is difficult to see the structure of this problem because there isn't room on a page to draw the entire
inference graph. Figure 13 is only a partial diagram, because it does not take account of how the different Tpi's are related to one
another. The structure can be made clearer by considering a simpler problem having the same structure but with only three
propositions playing the role of Tpi's rather than a large number of them. Consider the inference graph diagrammed in figure 14.
The pie-shaped regions are drawn in to emphasize the symmetry. The nodes supporting P1, P2, P3, S, T and R are d-initial and
hence undefeated. In evaluating the other nodes, note first that there is a status assignment assigning "undefeated" to the nodes
supporting Q1, Q, and Q3. This assigns "undefeated" to the nodes supporting S1, S2, and S3, and "defeated'' to the nodes supporting
~Q1, ~Q2, ~Q3, and ~(Q1 & Q2 & Q3). On the other hand, there can be no status assignment assigning "defeated" to the nodes
supporting two different Qi's, say Q1 and Q2, because if the latter were defeated, all nodes defeating the former would be defeated,
and vice versa. (Note that this would still be true if there were more than three Qi's.) Suppose instead that a status assignment
assigns "defeated" to just one Qi, and "undefeated" to the others. Then the node supporting Si must be assigned "undefeated", and
so the node supporting ~(Q1 & Q2 & Q3) must be assigned "defeated". The result is that the node supporting ~ Qi must be assigned
"defeated". That is the only node defeating that supporting Qi so the latter must be assigned "undefeated" after all. Hence there can
be no node assigning "defeated" to a single Qi. The result is that there is only one status assignment, and it assigns "undefeated" to
the nodes supporting Q1, Q2, Q3, S1, S2, and S3, and "defeated" to the nodes supporting ~Q1, ~Q2, ~Q3, and ~(Q1 & Q2 & Q3).
Consequently, the former nodes are undefeated, and the latter are defeated outright.

This computation of defeat status can be applied to the paradox of the preface by taking the Qi's to correspond to the nodes
supporting each Tp1 The nodes supporting the Si's correspond to node 8 in figure 13. The nodes supporting the ~Qi's correspond to
note 6, the node supporting ~(Q1 & Q2 & Q3) corresponds to nodes 2 and 5, and node supporting T corresponds to node 1, the node
supporting R corresponds to node 7, and the nodes supporting the conjunctions of the form (Qi & Qi) correspond to node 4. Then a
diagnosis analogous to that given for figure 14 yields the result that node 2, and hence node 6, are both defeated outright, while the
nodes supporting the Tpi's are undefeated. It follows that the conjunction (Tp1 & ... & TpN) is justified. In

Page 131

Figure 14. Structure of the paradox of the preface

Page 132

other words, in the paradox of the preface, we are justified in believing that all the propositions asserted in that particular book are
true, despite the fact that this is a book of a general type which usually contains some falsehoods.

If this still seems paradoxical, it is probably because one is overlooking the fact that "Books of this general sort usually contain
falsehoods" formulates an indefinite probability, but "This book probably contains a falsehood" expresses a definite (single case)
probability. The relationship between indefinite probabilities and definite probabilities is one of direct inference, which is a
defeasible relation. In this case it is defeated by the fact that every proposition in the book is warranted, and hence the probability
of this book's containing a falsehood is zero. (Warranted propositions automatically have probability one.) For more on direct
inference, see section 6 of chapter 2.

This rather complex analysis shows that the difference between the paradox of the preface and the lottery paradox lies in the fact
that the truth of the other propositions asserted in the book is not negatively relevant to the truth of the remaining proposition, but
the other tickets in the lottery not being drawn is negatively relevant to the remaining ticket's not being drawn. This difference
makes it reasonable to believe all the propositions asserted in the book but unreasonable to believe that none of the tickets will be
drawn. This is also what makes it reasonable for us to believe our eyes when we make judgments about our surroundings. It is the
analysis of defeat embodied in principle (8.1) that enables us to draw these congenial conclusions.

10. Justification and Warrant

A conclusion is justified if it is supported by an undefeated node of the inference graph. Reasoning starts with the set input and
then produces new nodes to be added to the inference graph. Given a fixed input, let α1,,...,α ι,... be the nodes that would be
constructed by the reasoner (if it had unlimited resources and could continue reasoning forever), in the order in which they would

be produced, and let , be the set of the first i nodes, {α1,...,αi}. Conclusions justified at the ith stage of reasoning are just those

supported by nodes in , that are undefeated relative to . Recall that the strength of a node is the minimum of the reason
strengths of the reasons used in its inference ancestors and the strengths of the members of input that are inference ancestors of it.
Epistemic justification is then made precise as follows:

Page 133

A sequent S is justified to degree δ at stage i iff there is a node a of strength greater than or equal to α such that (1) aα∈ , (2) α

is undefeated relative to , and (3) α supports S.

Epistemic justification has to do with the current status of a proposition. As reasoning progresses, a sequent can fluctuate
repeatedly between being justified and being unjustified. For the purpose of evaluating a system of defeasible reasoning, it is
useful to be able to talk about its behavior "in the limit". The notion of a sequent's being justified in the limit is what was called
"warrant" in chapter 2. The definition of ''warrant" given there can now be stated more precisely:

A sequent S is warranted to degree δ iff there is an i such that for every j ≥ i, S is justified to degree δ at stage j.

Warrant, in this sense, characterizes the limit to which epistemic justification tends as reasoning proceeds.

Warrant is one way of understanding "justification in the limit". However, there is another obvious way of understanding this

expression. Let be the set of all nodes produced or producible by the reasoner, that is, . We can define a sequent to be

ideally warranted iff it is justified relative to the whole set . More precisely:

A sequent S is ideally warranted to degree δ (relative to input) iff there is a node α (relative to input) of strength greater than or

equal to δ such that (1) α∈ , (2) α is undefeated relative to , and (3) α supports S.

Ideal warrant has to do with what a reasoner should believe if it could produce all possible relevant arguments and then survey
them. What is the relationship between warrant and ideal warrant? Interestingly, they need not be the same:

(10.1) Warrant does not entail ideal warrant.

Proof: Suppose there is an infinite sequence α1,..., αi,... of nodes such that for each i, α i+1 defeats α i and for each odd i, α i+1, is

produced by the reasoner before α i. Then α 1 is undefeated relative to every i containing α 1, so its conclusion is warranted.

But relative to , α 1, is provisionally defeated, and hence its conclusion is not ideally warranted. To illustrate the possibility of
such an infinite sequence of nodes, we can postulate an infinite sequence of propositions Qi all either in input or supported

Page 134

by reasoning, and such that if we define Di recursively by stipulating that D1 = (Q0 ⊗ P) and for i > 1, Di+1 = (Qi ⊗ Di), then (1) Q0
is a prima facie reason for P, and (2) for each i ≥ 1, Qi is a prima facie reason for Di.

(10.2) Ideal warrant does not entail warrant.

Proof: Suppose there is a node α and an infinite set of pairs of nodes <ßi,yi> such that for each i, ßi defeats α and yi, defeats ßi.
Suppose further that each ßi and yi is undefeated at the stage of reasoning at which it is first produced. Then α will cycle between

being defeated outright relative to , and undefeated relative to for progressively larger i, but α is defeated relative to .
Thus the conclusion of α is ideally warranted but not warranted.

Warrant represents the "actual" behavior of the reasoner in the limit. We can think of ideal warrant as representing the set of
conclusions we would "like" the reasoner to draw in the limit. Ideal warrant is a kind of ideal target. One kind of ideal adequacy
condition for a defeasible reasoner is that these concepts should pick out the same conclusions. Let us define:

The sequence of nodes is ideal iff for every sequent S, S is warranted iff it is ideally warranted.

A defeasible reasoner is ideal iff the sequence of nodes it produces at progressively later stages of reasoning is ideal.

The preceding two theorems show that there can be argument sequences that are not ideal. Under what circumstances will a
defeasible reasoner be ideal? In investigating this question, it is useful to think about defeat graphically, in terms of the defeat links
that are represented in the inference graph. I will construe the directionality so that it is the parents of a node that defeat it. In
diagraming defeat, I will write when ß is a parent of (defeats) .α

A defeat branch is any finite or infinite sequence {ξk} such that for each i, <ξi,ξi+l>is a link. A circular branch is an infinite defeat-
branch that repeats, i.e., there is a k such that for every i ≥ k, there is a j < k such that ξι, = ξj;. Collective defeat gives rise to
circular branches. For example, the following collective defeat

Page 135

gives rise to the circular branch <αß,γ,ß,γ,ß,γ, ...). Unless they are defeated by other nodes not on the branch, the nodes of a

circular branch are all provisionally defeated relative to .

For {αi}ι∈w to be ideal, it is sufficient that for each node ß, the status of ß eventually stabilizes. Define:

The argument sequence {αi}ι∈w is stable in the limit iff for every argument ß in , ß is undefeated (or defeated) relative to iff

there is a stage n such that for every m ≥ n, ß is undefeated (or defeated, respectively) relative to m.

Clearly, if {αi}ι∈w is stable in the limit then it is ideal. The only way stability in the limit can fail is for the status of some node ß to
cycle indefinitely at progressively later stages of reasoning. This can happen only if there is an infinite subsequence {ξκ}κ∈ω of
{αi}ι∈w all of whose members are relevant to the defeat-status of β. Obviously there are only two ways to get infinitely many

nodes connected to β: (1) either β or some node that is a defeat ancestor of β could be an infinite defeat-branch-point in ; or (2)

 could contain an infinite defeat-branch having β as its initial node. Let us consider these two possibilities separately.

Infinite defeat-branch-points (nodes defeated by infinitely many nodes) can lead to infinite cycling. This is illustrated by an
example having the structure used in the proof of theorem (10.2). Suppose input = {P,R,S), where P is a prima facie reason for Q,
R is a prima facie reason for each of an infinite list of propositions Di, each Di is a prima facie reason for (P ⊗ Q), and S is a prima
facie reason for each proposition (Di ⊗ (P ⊗ Q)). With this set of prima facie reasons, if the ordering of the nodes is such that
those supporting Di and inferring (P ⊗ Q) from it alternate with those supporting (Di ⊗ (P ⊗ Q)), then Q will alternate indefinitely
between being justified and being unjustified at the different stages.

That the mere existence of infinite defeat-branch-points is insufficient to guarantee infinite cycling is obvious when we realize
that, for many argument systems, it will be possible to construct infinitely many variants for any given argument. For example, we
may be able to construct

Page 135

gives rise to the circular branch <αß,γ,ß,γ,ß,γ, ...). Unless they are defeated by other nodes not on the branch, the nodes of a

circular branch are all provisionally defeated relative to .

For {αi}ι∈w to be ideal, it is sufficient that for each node ß, the status of ß eventually stabilizes. Define:

The argument sequence {αi}ι∈w is stable in the limit iff for every argument ß in , ß is undefeated (or defeated) relative to iff

there is a stage n such that for every m ≥ n, ß is undefeated (or defeated, respectively) relative to m.

Clearly, if {αi}ι∈w is stable in the limit then it is ideal. The only way stability in the limit can fail is for the status of some node ß to
cycle indefinitely at progressively later stages of reasoning. This can happen only if there is an infinite subsequence {ξκ}κ∈ω of
{αi}ι∈w all of whose members are relevant to the defeat-status of β. Obviously there are only two ways to get infinitely many

nodes connected to β: (1) either β or some node that is a defeat ancestor of β could be an infinite defeat-branch-point in ; or (2)

 could contain an infinite defeat-branch having β as its initial node. Let us consider these two possibilities separately.

Infinite defeat-branch-points (nodes defeated by infinitely many nodes) can lead to infinite cycling. This is illustrated by an
example having the structure used in the proof of theorem (10.2). Suppose input = {P,R,S), where P is a prima facie reason for Q,
R is a prima facie reason for each of an infinite list of propositions Di, each Di is a prima facie reason for (P ⊗ Q), and S is a prima
facie reason for each proposition (Di ⊗ (P ⊗ Q)). With this set of prima facie reasons, if the ordering of the nodes is such that
those supporting Di and inferring (P ⊗ Q) from it alternate with those supporting (Di ⊗ (P ⊗ Q)), then Q will alternate indefinitely
between being justified and being unjustified at the different stages.

That the mere existence of infinite defeat-branch-points is insufficient to guarantee infinite cycling is obvious when we realize
that, for many argument systems, it will be possible to construct infinitely many variants for any given argument. For example, we
may be able to construct

Page 137

Figure 15. Interacting circular branches

Summarizing, we have the following simple lemma:

Lemma: If contains no noncircular infinite defeat-branches and no non-redundantly infinite defeat-branch-points, then {αi}ι∈w
is stable in the limit, and hence ideal.

Although arrays of prima facie reasons and defeaters that will generate noncircular infinite defeat-branches and non-redundantly
infinite defeat-branch-points are a formal possibility, I doubt that they are a real possibility. That is, we cannot find real examples
of prima facie reasons having these structures. (My only reason for saying this is that I have tried and failed.) Accordingly, my
strategy will be to adopt some realistic assumptions about the structure of the set of prima facie reasons that preclude these
possibilities, and impose them as constraints on the design of a defeasible reasoner. It will then follow that the sequence of nodes
produced by the reasoner is ideal.

Unless they are defeated by side branches, noncircular infinite defeat-branches lead to the provisional defeat of all of their nodes,
but this defeat is peculiar because it does not arise from collective defeat. The only cases of provisional defeat that seem to arise in
realistic systems of prima facie reasons and defeaters involve collective defeat. Accordingly, my first assumption will be that
noncircular infinite defeatbranches are impossible:

Assumption 1: contains no noncircular infinite defeat-branches.

The second assumption to be adopted is:

Page 138

Assumption 2: For every proposition P and finite set X of propositions, there is a finite (possibly empty) set nodes of nodes in

supporting P relative to X such that any other node in that supports P relative to X is subsumed by some member of nodes.

Both of these assumptions are finiteness assumptions. They tell us that for any finite input and finite supposition X, there is a limit
to how much non-deductive reasoning we can do. Again, the only reason for making these assumptions is that I can think of no
plausible counterexamples. Both assumptions ought to be provable for particular classes of arguments. Note, however, that their
truth will depend essentially on what arrays of prima facie reasons and defeaters are supplied for the use of the defeasible reasoner.

Assumption 1 precludes infinite cycling resulting from infinite defeat-branches. The role of assumption 2 is to rule out non-

redundantly infinite defeat-branch-points. To see that it does this, consider any node αin . α has only finitely many inference
ancestors, and a node ß can render α defeated only by defeating one of those ancestors. If a defeasible step infers P from Γ relative
to a supposition X, then a node defeating this step must support either ~P or (ΠΓ⊗ P) relative to a subset of X. Accordingly, there
are only finitely many conclusions that a defeating node can have, and hence by assumption 2, there is a finite set nodes of nodes

in supporting those conclusions and such that any other node in that supports one of those conclusions is subsumed by
some member of nodes. In other words, non-redundantly infinite defeat-branch-points are impossible.

We now have the following theorem:

(10.3) A defeasible reasoner is ideal if assumptions 1 and 2 hold.

This follows from the fact that if assumptions 1 and 2 hold then contains no non-circular infinite defeat-branches and no non-
redundantly infinite defeat-branch-points, and hence by the lemma, {αi}ι∈ω is ideal. Theorem (10.3) will be the fundamental
theorem making possible the construction of the defeasible reasoner in chapter four.

11. Logical Properties of Ideal Warrant

It follows from the analysis of ideal warrant that it exhibits a number of simple formal properties. Let us introduce the following
symbolization:

Page 139

P iff P is ideally warranted to degree ¬ (relative to input). For some purposes, it is useful to be able to talk about the
defeasible consequences of a set of assumptions. These are the propositions that can be inferred from those assumptions (relative
to a fixed set input) Precisely:

Ideal warrant and defeasible implication have a number of obvious logical properties. Define:

Γ—P (P is a deductive consequence of Γ, and Γ deductively implies P) iff there is a node α such that (1) α∈ , (2) neither α nor
any of its inference ancestors is a pf-node, (3) no member of input is an inference ancestor of α, and (4) α supports P relative to Γ.

P and Q are deductively equivalent iff {P}|—Q and {Q} |—P.

Then we have:

Page 140

12. Conclusions

This completes the semantical theory of defeasible epistemic reasoning. This chapter has developed the accounts of justification
and warrant based upon the argument-based approach to defeasible reasoning in terms of prima facie reasons, rebutting defeaters,
and undercutting defeaters. The next task will be to construct a procedural theory of defeasible reasoning based upon this
semantical theory. The result will be the automated defeasible reasoner described in chapter 4.

12 This is the principle Gabbay [1985] calls "restricted monotonicity".

13 For further discussion of such logical principles, see [Gabbay 1985, 1991], Kraus, Lehmann, and Magidor [1990], and Makinson [1988].

Page 141

Chapter 4 An Architecture for Epistemic Cognition

Chapter 3 described the logical structure of defeasible epistemic reasoning. This chapter will propose an architecture for epistemic
cognition capable of performing such defeasible reasoning. Such an architecture must integrate defeasible reasoning with Q&I
modules and provide an interface with practical cognition. It turns out that the only difficult part of this task is describing the
defeasible reasoner, and the bulk of this chapter will be devoted to that task.

1. Criteria of Adequacy for a Defeasible Reasoner

In designing a defeasible reasoner, one is faced with the problem of how to evaluate the reasoning that the reasoner performs. We
want the reasoning to be "correct", but what is the criterion for correctness? The desideratum is not necessarily to build a reasoner
that replicates human reasoning in all respects, because there may be more efficient ways of doing it. However, before we can
decide whether a particular procedure is a more efficient way of doing it, we have to determine what the "it" is that we want the
reasoner to do. I suggested in chapter 3 that ideal warrant is what a reasoner is ultimately striving for. A proposition is ideally
warranted in a particular epistemic situation iff it is supported by an inference that is undefeated relative to the set of inferences
comprising the set of all possible arguments that could be constructed starting from that epistemic situation.

Ideal warrant constitutes a kind of "ideal target" for a reasoner. But what exactly is the connection between ideal warrant and what
we want a reasoner to accomplish? The simplest proposal would be that we want the reasoner to "compute ideal warrant". But if
this is understood as requiring that the reasoner implement an effective procedure for deciding ideal warrant, then it is an
impossible desideratum. All theorems of logic are automatically ideally warranted because the arguments supporting them are non-
defeasible. This includes all theorems of the predicate calculus. If we give the system no non-logical reasons and no input
premises, these are the only ideally warranted

Page 142

propositions. Thus a decision procedure for ideal warrant would give us a decision procedure for the predicate calculus. However,
by Church's theorem, the set of theorems of the predicate calculus is not decidable. Thus no reasoner can compute ideal warrant in
this sense.

A weaker proposal would be that we want the reasoner to systematically generate all ideally warranted propositions in some
effective way, analogous to the manner in which a complete theorem prover generates all theorems of the predicate calculus. But
this desideratum is also provably unsatisfiable, because the set of ideally warranted propositions can fail to be recursively
enumerable (r.e.). This is because, as has been observed by numerous authors,1 on any theory of defeasible reasoning, the ultimate
correctness of a piece of defeasible reasoning (i.e., whether the conclusion of the reasoning will survive an indefinite amount of
further reasoning and hence be ideally warranted) will always turn upon something else's being unprovable. Making this more
precise, we have the following theorem:

There are finite sets of input premises and finite sets of non-logical reasons such that the set of conclusions ideally warranted with
respect to them is not r.e.

To prove this, suppose otherwise. Then for any finite set input and finite set of non-logical reasons, there is a way of mechanically
generating the list of formulas ideally warranted relative to them. Given any first-order formula P, choose a sentence letter Q not
occurring in P, let input = {Q}, and let the only non-logical reason be the prima facie reason <{Q},P>. We have a prima facie
reason for P, so P is ideally warranted iff there is no undefeated or provisionally defeated argument defeating this inference.
Because Q is logically unrelated to P and there are no other prima facie reasons, the only possible defeating argument would be a
deductive argument for ~P. Thus in this situation, P is ideally warranted iff ~P is not a theorem of the predicate calculus.
Consequently, the mechanical procedure for listing ideally warranted conclusions will list P iff ~P is not a theorem. This would
generate a recursive enumeration of the non-theorems of the predicate calculus, but that is impossible by Church's theorem. It
follows that the set of defeasible consequences of a set of premises may not be r.e., and there can be no effective procedure for
generating the set of ideally warranted

1 I think that the first were David Israel [1980] and Raymond Reiter [1980].

Page 143

consequences of an arbitrary set of input premises and non-logical reasons.

If the desideratum for a defeasible reasoner is neither that of computing ideal warrant nor that of recursively enumerating the set of
ideally warranted conclusions, what is it? We should take seriously the idea that defeasible reasoning is defeasible. That is, a
defeasible reasoner may have to adopt a belief, retract it in the face of defeaters, and then reinstate the belief because the defeaters
are themselves retracted. This cycle may be repeated an indefinite number of times. The most we can require of the reasoner is that
its rules for reasoning guarantee that it will systematically modify its belief set so that it comes to approximate the set of ideally
warranted propositions more and more closely. We want the set of beliefs to ''approach the set of ideally warranted propositions in
the limit". Ihave proposed [1989, 1991] that we understand this in the following sense:

The rules for reasoning should be such that:
(1) if a proposition p is ideally warranted then the reasoner
will eventually reach a stage where p is justified and stays
justified;
(2) if p is ideally unwarranted then the reasoner will eventually
reach a stage where p is unjustified and stays unjustified.

Thus the task of a reasoner is not to compute ideal warrant but to generate successive sets of beliefs that approximate ideal warrant
more and more closely, in the above sense. We can make this mathematically precise as follows. Define:

A set Α is defeasibly enumerable iff there is an effectively comput-
able function f such that for each n, f(n) is a recursive set, and
(1) (∀x) if x∈ A then (∃n)(∀m > n) ξ∈f(m); and
(2) (∀x) if ξ∉Α then (∃n)(∀m > n) ξ∉f(m).

I will say that the sequence of recursive setsf(n) is a defeasible enumeration of A. Defeasibly enumerable sets are the same as those
Gold [1965] calls "limiting recursive" and Putnam [1965] calls "trial and error". Both authors establish that a set is of this type iff
it is ∆2 in the arithmetic hierarchy.

The intuitive difference between recursively enumerable sets and defeasibly enumerable sets is that recursively enumerable sets
can be "systematically approximated from below", while defeasibly enumera-

Page 144

ble sets that are not recursively enumerable can only be systematically approximated from above and below simultaneously. More
precisely, if A is r.e., then there is an effectively computable sequence of sets Ai such that

(1) (∀x) if x∈ A then (∃n)(∀m>n)ξ∈Αm;
(2) (∀x)if x ∉ A then (∀m)ξ∉Αm.

The sets Ai approximate A from below in the sense that they are all subsets of A and they grow monotonically, approaching A in the
limit. If A is only defeasibly enumerable, however, the sets Ai, need not be subsets of A. They may only approach A from above
and below simultaneously, in the sense that they may contain elements not contained in A. Every such element must eventually be
taken out of the Ai's, but there need not be any point at which they have all been removed. The process of defeasible enumeration
can be pictured by thinking of A as a spherical region of space and the Ai's as representing successive stages of a reverberating
elastic ball whose center coincides with the center of A. As the reverberations dampen out, the outer surface of the ball will come
to approximate that of the spherical surface more and more closely, but there will never be a point at which the ball is contained
entirely within the spherical surface.

The reverberating sphere metaphor can be used to give a precise mathematical characterization of the difference between A being
r.e. (approximation from below) and d.e. (approximation from above and below simultaneously). If A is r.e. then

A=∪An.
 n∈w

On the other hand, if A is d.e. then what we have is:

A=∩ ∪Am=∪ ∩Am.
 n∈w m≥n n∈ω m≥n

My initial proposal regarding reasoning and ideal warrant is that the set of ideally warranted propositions is defeasibly enumerable,
and the rules for reasoning are rules for successively approximating ideal warrant in this way, that is, they are rules for
constructing a defeasible enumeration. More accurately:

Page 145

If (i) is the set of propositions justified to degree α after i applications of update to input, the reasoner is d.e.-adequate iff is a
defeasible enumeration of the set of propositions ideally warranted to degree α.

At this point, I propose d.e.-adequacy as the primary criterion of adequacy for a reasoner. The objective of this chapter is to
investigate how to construct a reasoner that is d.e.-adequate. The principal result of this chapter will be that if certain conditions
are satisfied, then the set of ideally warranted conclusions is defeasibly enumerable and hence d.e.-adequate reasoners are possible.
It will then be shown how to produce such a reasoner.

In actual practice, an automated reasoner does not strive to do all possible reasoning. Instead, it is constrained to construct
arguments built using only limited resources for argument formation. For instance, it might construct only arguments that can be
formulated within a certain system of first-order logic. These arguments will comprise a class Α. The inference graph relative to
which we assess ideal warrant will consist only of inference nodes encoding inferences made within this class of arguments. The
objective will then be to construct a reasoner that is d.e.-adequate relative to the class Α of arguments.

The requirement that a reasoner provide a defeasible enumeration of ideal warrant is a minimal criterion of adequacy. Other
criteria must also be involved in the choice of a reasoner. At the very least we must consider efficiency. But there is a different
kind of adequacy condition that must also be met. If a reasoner is d.e.-adequate, there will be cases in which it will never stop
reasoning. Any given proposition may be concluded, retracted, and reinstated many times. Every ideally warranted proposition
will eventually reach a point where it is believed and is never subsequently retracted, and every ideally unwarranted proposition
will eventually reach a point where it is not believed and never subsequently becomes believed, but the reasoner may never know
that a given proposition has reached this stable state. It can inform us that "so far" a certain conclusion is justified, but it may have
to continue forever in a possibly fruitless search for defeating arguments. This, of course, is just the way human beings work. This
highlights a distinction between two concepts of defeasibility. The sense in which correct human reasoning is defeasible is that we
regard such reasoning as "innocent until proven guilty". Once a conclusion becomes justified, it is reasonable to accept it
provisionally and act upon it. By contrast, AI theories of nonmonotonic reasoning have

Page 146

usually focused on a stronger notion of defeasibility according to which a defeasible conclusion is acceptable only if it has been
established that it is objectively devoid of faults. The latter amounts to proving that the conclusion is ideally warranted. This has
made it seem mysterious how nonmonotonic reasoning can possibly function in a finite agent. The solution is to instead adopt the
"innocent until proven guilty" construal of defeasibility, and allow a rational agent to act on its defeasible conclusions even though
it has not conclusively established that there are no defeaters and even though, in the absence of more pressing tasks, it will
continue to search for defeaters. The reasoning employed by such a rational agent must be interruptible,2 in the sense that if at
some point the agent must stop reasoning and act, it is reasonable to act on the conclusions drawn to that point. This is not ensured
by d.e.-adequacy. For example, let R1 be a reasoner that is both interruptible and d.e.-adequate. Let R2 be just like R1 except that
for the first million steps it draws conclusions purely at random, and then after 1 million steps it withdraws all those randomly
drawn conclusions and begins reasoning as in R1. Clearly it would be unreasonable to make use of any of the conclusions drawn
by R2 during its first 1 million inference steps, so it is not interruptible. On the other hand, R2 is still d.e.-adequate, because that
concerns only its behavior in the limit, and its behavior in the limit is the same as that of R1.

It is not clear how to construct a formal criterion of adequacy that will ensure interruptibility. It is tempting to require that the
conditional probability that a conclusion is ideally warranted given that it is drawn at a certain stage of the reasoning is (1) high
and (2) a monotonic increasing function of the number of the stage. But this is still insufficient to ensure interruptibility. For
example, a reasoner satisfying this condition will continue to satisfy it if we modify it to initially draw conclusions at random when
it is dealing with a certain isolated subject matter.

Because of the difficulty in formulating a mathematically precise characterization of interruptibility, I am going to ignore that
condition here, but it is a topic that must eventually be addressed with care. My present objective will be merely to design a
reasoner that is d.e.adequate. I will return to interruptibility briefly in section six.3

2 This point and the terminology are due to George Smith.

3 Although I lack a formal characterization of interruptibility, the reasoning system implemented in OSCAR would seem, intuitively, to be
interruptible.

Page 147

2. Building a Defeasible Reasoner

The Monotonic Reasoner

In constructing a defeasible reasoner, we need rules governing the adoption of beliefs, the retraction of beliefs in response to the
adoption of defeaters, and the reinstatement of beliefs in response to the retraction of defeaters. I propose to begin with the
construction of a reasoner that ignores defeaters. This monotonic reasoner will be analogous to a deductive reasoner in that it
constructs arguments and adopts as beliefs any conclusions supported by any of the arguments it constructs, but it will differ from
a deductive reasoner in that it will use prima facie reasons as well as conclusive reasons as links in arguments. For the most part, it
need not distinguish between prima facie and conclusive reasons. The monotonic reasoner will be investigated more fully in
section 4.

Defeasible Reasoning without Collective Defeat or Self-Defeat

If we did not have to contend with collective defeat, self-defeat, and related phenomena, it would be quite easy to build a
defeasible reasoner by modifying the monotonic reasoner. A defeasible reasoner must perform three kinds of operations: belief
adoption, retraction, and reinstatement. These proceed as follows:

(1) The reasoner must adopt beliefs in response to constructing arguments, provided no defeaters have already been adopted for
any step of the argument. This can be handled just as in the monotonic reasoner, except that when a defeasible inference occurs,
there must be a check to ascertain whether a defeater for it has already been adopted as a belief.

(2) The reasoner must keep track of the bases upon which its beliefs are held. When a new belief is adopted that is a defeater for a
previous inference step, then the reasoner must retract that inference step and all beliefs inferred from it.

(3) The reasoner must keep track of defeated inferences, and when a defeater is itself retracted (in accordance with (2)), this should
reinstate the defeated inference. The reasoner can then either repeat the reasoning that followed from that defeated inference, or the
reasoner can be constructed in such a way that it keeps track of that reasoning and reinstates it en bloc.

Page 148

Flag-Based Reasoners

It is simple to build a reasoner that performs the functions just described. The first version of OSCAR was such a reasoner
[Pollock, 1987]. One of the important characteristics of that reasoner is that once a defeasible inference step is defeated, the
reasoner ceases exploring its consequences. The reasoner expends its resources investigating the consequences of a defeated
inference only if the inference is reinstated. This seems like the only sensible way to proceed in defeasible reasoning. Why put
effort into developing the consequences of an inference you already know to be defeated? However, this seemingly obvious design
feature leads to apparently insuperable difficulties when we begin to worry about collective defeat.

Suppose ¬ and ß are long arguments each of which undercuts an early defeasible inference in the other:

If the reasoner first discovers the defeat of ß by ¬, it will stop reasoning from propositions supported by ß and never discover the
defeat of ¬ by ß. It appears that the only way to handle this correctly is to flag defeated beliefs as defeated, and have the reasoner
continue to reason from them instead of simply discarding.

The preceding considerations seem to indicate that the production of arguments by the monotonic reasoner must be relatively
insensitive to their defeat status, because the reasoner must continue reasoning from conclusions even when they are defeated. This
suggests building a defeasible reasoner out of two largely autonomous modules. The first is the monotonic reasoner, which
systematically makes inferences (generates arguments) and builds the inference graph without concern for the defeat status of the
nodes of the graph. The second is a module that computes the defeat status of all the nodes that have been produced at each stage
of reasoning relative to the set of all nodes so far produced. The reasoner will then be a simple loop:

(loop
(MAKE-AN-INFERENCE)
(RECOMPUTE-DEFEAT-STATUSES))

Page 149

Each time the reasoner makes an inference, it thereby produces a new node. Let be the set of nodes produced after i inferences.
Each i represents a stage of the monotonic reasoner. The function RECOMPUTE-DEFEAT-STATUSES determines which of the

nodes in are defeated outright, which are undefeated, and which are provisionally defeated, at stage i, and hence determines

which conclusions are justified at stage i. Let be the set of all propositions justified to degree α at stage i of the monotonic
reasoner. These will be taken to be the interim conclusions (the current beliefs) of the reasoner. I will call a reasoner of this sort a
flag-based reasoner. The principal result of section 3 will be that if certain conditions are satisfied, then the sequence of

justification-sets will constitute a defeasible enumeration of the set of conclusions ideally warranted to degree α.

Flag-based reasoners mark a serious divergence from stage II reasoners. Flagging beliefs as provisionally defeated or defeated
outright, and then continuing to reason with them, seems outrageously expensive. But there appears to be no alternative. It is worth
at least noting that human reasoners are not totally insensitive to the consequences of defeated beliefs, even if they do not usually
expend a large amount of effort in developing those consequences. In section 5, I will mention possibilities for minimizing this
cost. But first, in section 3, I will address theoretical issues concerning the possibility of constructing a d.e.-adequate flag-based
reasoner.

3. The Possibility of a D.E.-Adequate Reasoner

The results of chapter 3 make it quite easy to establish that, given certain reasonable assumptions, it is possible to construct a d.e.-
adequate flag-based reasoner. Such a reasoner consists of a monotonic reasoner and an algorithm for computing defeat status. The
only assumption that will be made about the monotonic reasoner is that it systematically generates every argument in Α. The
definition given in chapter 3 of defeat-status relative to an inference graph provides an algorithm for computing defeat-status

relative to .4

The objective is to show that the sequence of justification-sets produced by the flag-based reasoner just described constitutes
a defeasible enumeration of ideal warrant. This cannot be proven without

4 This algorithm will be refined in chapter 9.

Page 150

imposing further restrictions on the monotonic reasoner. What is automatic, however, is that the justification-sets constitute a
defeasible enumeration of warrant. That is just the way warrant was defined. Thus if warrant and ideal warrant coincide, then the
sequence of justification-sets also constitutes a defeasible enumeration of ideal warrant. The circumstances under which warrant
and ideal warrant coincide were investigated in chapter 3, with the following result:

If

(1) contains no noncircular infinite defeat-branches, and
(2) for every proposition P and finite set X of propositions,

there is a finite (possibly empty) set nodes of nodes in

supporting P relative to X such that any other node in
that supports P relative to X is subsumed by some member
of nodes,
then is a defeasible enumeration of ideal warrant.

As remarked in chapter 3, assumptions (1) and (2) are about the array of reasons available to the reasoner. Assumption (1) amounts
to the assumption that all cases of provisional defeat arise out of collective defeat. Assumption (2) is a finiteness assumption. It
tells us that for any finite input and finite supposition X, there is a limit to how much non-deductive reasoning can be done. Both
assumptions ought to be provable for particular classes of arguments. Note, however, that we cannot expect to prove them as
general theorems about the monotonic reasoner. Their truth will depend essentially on what arrays of prima facie reasons and
defeaters are supplied for the use of the monotonic reasoner, and that will vary from application to application.

The flag-based defeasible reasoner should now work as follows. The monotonic reasoner builds the inference graph one node at a
time. As each node is constructed, defeat links between it and preexisting nodes are computed. Self-defeating nodes are detected
and removed from the inference graph, because they can never be reinstated and hence there is no point in continuing to reason
from them. Once these adjustments have been made to the inference graph, the defeat-statuses of the nodes are recomputed using
the algorithm described in chapter 3. Rather than recomputing defeat-status from scratch each time a new node is added to the
inference graph, it is sometimes possible to update the defeat-statuses by examining only those nodes whose status might be
changed by the addition. This is at least true if the new node does not defeat any pre-existing node. In that case:

Page 151

(1) if every node defeating the new node η is defeated and all of
η's immediate ancestors are undefeated, then η is undefeated;
(2) if some node defeating η is undefeated or at least one of η 's
immediate ancestors is defeated, then η is defeated;
(3) otherwise, η is provisionally defeated.

If the new node defeats some pre-existing node, then it can happen that all the node statuses must be recomputed from scratch
because there may be defeat cycles that can be detected only by starting from d-initial nodes.5 This will be discussed further in
chapter 9.

4. An Interest-Driven Monotonic Reasoner

The flag-based reasoner described in section 3 could actually be constructed, but it is impractical in one important respect: it
operates by having the monotonic reasoner systematically generate all possible arguments in the class Α. This is the so-called
British museum algorithm. Any automated reasoner that is practical employs a more efficient control structure enabling it to focus
its attention on arguments that are more intimately connected with the conclusions it is trying to establish. Earlier in the book, I
expressed this point by saying that reasoning is interest-driven. In this section, I will look more closely at the structure of interest-
driven monotonic reasoning, and then in the next section I will apply the observations of this section to interest-driven defeasible
reasoning.

In an interest-driven reasoner, the reasoning done reflects in part the conclusions the agent is trying to establish or the questions we
are trying to answer. Applying this observation to human beings, if we are interested in knowing the value of 23 + 57, we reason
differently than if we are interested in knowing what time it is in Moscow. We do not just reason randomly until we happen upon
the answers to our questions. This is related to a feature of rationality that has been emphasized by Gilbert Harman [1986]:
rationality does not mandate the adoption of every belief for which we have good reasons. For

5 More precisely, let us say that a node α influences a node ß iff either (1) α defeats ß or a node influenced by ß, or (2) α is an immediate
inference ancestor of ß or a node influenced by ß. Then when a node is added to the inference-graph, the defeat statuses of all nodes influenced
by it must be recomputed.

Page 152

example, each belief P gives us a conclusive reason for any disjunction (PvQ) containing P as a disjunct, but we do not arbitrarily
infer such disjunctions. Our epistemic rules must honor the fact that we are information processors with a limited capacity for
processing and storage. They do this in part by mandating inferences that are related, in specific ways, to our interests.

Let us consider more carefully how this is accomplished. Recall first that inferences are mediated by reasons—some conclusive
and some defeasible. Of the conclusive reasons, some are part of logic itself, while the others can be regarded as "substantive", in
the sense that they pertain to particular concepts. For instance, x is a bachelor] is a conclusive reason for x is unmarried but
this is not part of logic. This is a substantive reason pertaining specifically to the attributes of being a bachelor and being
unmarried. By way of contrast, {P,Q} is a conclusive reason for (P&Q) . This is the rule of adjunction, and it is generally
regarded as part of logic. There may be no precise distinction to be made here, but I will follow the standard convention of
referring to logical reasons as "logical inference rules". Thinking of these as rules for inferring sequents from sequents, some
familiar inference rules can be formulated as follows:

Page 153

It is a familiar point in AI that we can think of reasoning as a search for appropriate paths through an ''inference space", where the
latter consists of sequents standing in inferrability relations to one another. Each sequent is related by inference links to sets of
sequents from which it can be inferred. Reasoning from a set of premises to a conclusion consists of finding a path through the
inference space from the premises to the conclusion. Searching for such a path can be done in either direction. We can work
forwards from the premises ("forward chaining") or backwards from the conclusion ("backward chaining"). It seems clear that
human beings do both. In trying to prove a theorem in mathematics or trying to construct a derivation in logic, we sometimes cast
about more or less at random, drawing whatever conclusions we can until we eventually see some way to put them together to get
to our desired conclusion. At other times we proceed in a much more deliberate fashion, in effect reasoning backwards from our
desired conclusion. We can think of such backwards reasoning as deriving interests from interests. We begin by being interested in
one sequent (our desired conclusion), and that leads us to become interested in other sequents from which the first could be
inferred.

Backwards reasoning is sensitive to the desired conclusion but insensitive to the premises. Forwards reasoning is sensitive to the
given premises but insensitive to the desired conclusion. Human reasoning combines both. In a finitely branching search space,
combining search in both directions has the effect of narrowing the search space, as is indicated in figure 1.

It is natural to suppose that this is the entire explanation for the fact that humans engage in reasoning in both directions—it is just a
matter of efficiency, aimed at narrowing the search space. On this view, backwards reasoning is just forwards reasoning done in
reverse, and in any given instance we could (apart from efficiency) reason in just one direction or the other without combining the
two. But it turns out that this view of reasoning is fundamentally mistaken. The problem is that, given natural selections of
inference rules like those listed above, the inference space is infinitely branching in both directions. For instance, consider
addition. Suppose we could use addition in forwards reasoning. Then if we inferred p, we would be led to infer

Page 154

Figure 1. Narrowing the inference space

every disjunction containing p as a disjunct. But there are infinitely many such disjunctions, and most are useless in any given
problem. In point of fact, we use addition only when we have some reason to be interested in the resulting disjunction. A related
observation can be made about simplification. The use of simplification in backwards reasoning is also infinitely branching, and
that would be even more catastrophic. Suppose we are interested in q. Backwards reasoning with simplification would lead us to
adopt interest in (p & q), for every p, and then backwards reasoning with adjunction (which is presumably permissible) would lead
us to adopt interest in p. Thus interest in anything would automatically lead to interest in everything, which would completely
vitiate the interest restrictions in interest-driven reasoning.

Even rules that do not lead to infinite branching can create difficulties. For example, although adjunction does not lead to infinite
branching, its use in forwards reasoning would be combinatorially explosive. Suppose we could use adjunction in forwards
reasoning, and we inferred p and q. Then we would be led to infer (p & q). That does not seem so

Page 155

bad, but it would not stop there. We would go on to infer (p & q) & p , (q & p), (q & P) & (p & q) , (q & p) & (p & q) &
p , (p & (q & p) & (p & q) & p), and so on without limit. Obviously, we do not do that, and a reasoning system that
performed in this way would be crippled. This largely useless reasoning would continually get in its way, taking up its resources
and preventing it from making more useful inferences.

The somewhat surprising conclusion to be drawn from this is that some reasons are of use in backwards reasoning, and others are
of use in forwards reasoning, and individual reasons are often precluded from playing both roles.6 Accordingly, reasons can be
classified as forwards reasons and backwards reasons. The following is a plausible classification of the inference rules (i.e.,
conclusive reasons) listed above:

Forwards reasons Backwards reasons

simplification adjunction

negation elimination negation introduction

disjunctive syllogism addition

modus ponens conditionalization

modus tollens reductiol

Note that reductio2 does not fit into either category. Used for forwards reasoning, it would have us derive infinitely many
conclusions from a contradiction, and used for backwards reasoning it would have us adopt interest in infinitely many
contradictions. I will return to this observation.

If a rule from either category is used for reasoning in the other direction, it is combinatorially explosive. It follows that there are
profound differences in the structure of forwards reasoning and backwards reasoning, and neither is replaceable by the other. Both
are indispensable for reasoning, and there is a definite logic governing when to use one and when to use the other. The choice is
not just a matter of convenience. We literally could not arrive at our conclusions in any but the simplest cases without using both
kinds of reasoning.

We can think of interest-driven reasoning as consisting of three operations: (1) we reason forwards from previously drawn
conclusions to new conclusions; (2) we reason backwards from interests to interests; (3) when we have reasoned backwards to a
set of sequents as interests and forwards to the same set of sequents as conclusions, then we

6 A similar conclusion is advanced in Rips [1983,1994].

Page 156

discharge interest and conclude the sequent that led to those interests. For example, suppose we are given the premises {P, (P ⊃
Q)} and are interested in the conclusion (Q v R). From the latter, we could reason backwards to interest in Q and in R (using
addition as our rule of inference). From the premises we could reason forwards to Q (using modus ponens). We then have Q as
both a conclusion and an interest, so we can discharge interest. Our interest in Q derived from our interest in (Q v R), so when we
discharge interest, we conclude (Q v R), and we are through.

This reasoning proceeds in accordance with three procedures:

REASON- FORWARDS

If a set of sequents X is a forwards reason for a sequent S, some member of X is newly concluded, and the other members of X
have already been concluded, then conclude S.

REASON-BACKWARDS

If interest is adopted in a sequent S, and a set X of sequents is a backwards reason for S, then adopt interest in any members of X
that have not already been concluded. If every member of X has been concluded, conclude S.

DISCHARGE-INTEREST

If interest was adopted in the members of X as a way of getting the sequent S, and some member of X is concluded and the other
members of X have already been concluded, then conclude S.

However, as formulated, these procedures are inadequate for some interest-driven reasoning. To see why, first note that as a
theoretical matter, there can be not only the forwards reasons and the "simple" backwards reasons discussed above, but also
generalized backwards reasons. In a generalized backwards reason, the premises are segregated into two sets:

where the premises in the first set (the forwards premises) function in a

Page 157

forwards direction and the premises in the second set (the backwards premises) function in a backwards direction. In other words,
given interest in <Γ,r>, the reasoner reasons backwards to interest in <Γn+1,q1>...,<Γn+m,qm>, but only if the reasoner has already
established <Γ1,p1>,...,<Γn,pn>

A simple example of a generalized backwards reason would be the following:

The effect of this reason will be that whenever the reasoner adopts interest in Ga, it will look at all universal generalizations
(∀x)(Fx ⊃ Gx) that it has already concluded and adopt interest in their antecedents as a way of establishing Ga.

We can regard generalized backwards reasons as the most general form of backwards reasons, henceforth calling them simply
"backwards reasons". The simple backwards reasons discussed earlier represent the special case in which the set of forwards
premises is empty. To accommodate reasoning with these generalized backwards reasons, we can revise REASON-
BACKWARDS and DISCHARGE- INTEREST as follows:

REASON- BACKWARDS

If interest is adopted in a sequent S, and a pair (X,Y) of sets of sequents is a backwards reason for S, where X is the set of forwards
premises and Y is the set of backwards premises, then if every member of X has been concluded, adopt interest in any members of
Y that have not already been concluded. If all members of both X and Y have been concluded, conclude S. If some members of X
have not been concluded, then simply record (X,Y) as a potential reason for S, for use by DISCHARGE-INTEREST.

DISCHARGE -INTEREST

If interest was adopted in the members of Y as a way of getting the sequent S, and some member of Y is concluded and the other
members of Y have already been concluded, then conclude S. If the pair (X,Y) has been recorded as a potential backwards reason
for S, and some member of X is newly concluded and the other members of X have already been concluded, then

Page 158

adopt interest in any members of Y that have not already been concluded. If all members of both X and Y have been concluded,
conclude S.

To illustrate the importance of this generalization of interest-driven reasoning, let us return to the observation that reductio2 cannot
be regarded as a simple backwards reason. This is of considerable significance, because there is reason to believe that the use of
some form of this rule for backwards reasoning is essential in a deductive reasoner that is complete for first-order logic.7 This
problem can be solved by adopting the following variant of reductio2 as a generalized backwards reason:

The effect of this is that, in trying to derive a contradiction from the supposition Γ∪{~p}, the reasoner looks only for
contradictions one of whose conjuncts have already been concluded. This avoids infinite branching, and when combined with
reductiol, turns out to be sufficient to enable the construction of a complete deductive reasoner for first-order logic.

An interest-driven reasoner will work backwards from its existing interests, generating new interests, and forwards from its
conclusions, generating new conclusions. The reasoner will then repeat the process recursively, working backwards from these
new interests and forwards from the new conclusions. The strength of a new interest will be the strength of the interest from which
it was derived, and the degree of justification of a conclusion will be the maximum of the degrees of justification of the
conclusions from which it was inferred. At any given time, the reasoner may have drawn several new conclusions and acquired
several new interests without yet having reasoned from them. It must choose one of them and reason from it, returning to the
others later. Accordingly, new conclusions and new interests must be stored on a queue—the inference-queue-—whose members
are retrieved and processed one at a time. The inference-queue will be ordered in

7 See my earlier discussion of this [1990a].

Page 159

some fashion so that an attempt can be made to perform the most important or most useful inferences first. Strengths of interest
and degrees of justification will play an important role in this ordering. When new conclusions are drawn, they will be added to the
inference-graph. Similarly, the interests employed by backwards reasoning will be stored in a data-structure called the interest-
graph, which records the interests and the purposes for which the interests arise. The general structure of the monotonic reasoner is
diagrammed in figure 2.

An early stage in the construction of OSCAR consisted of the construction of an interest-driven deductive reason for the predicate
calculus [Pollock 1990a], and the results were surprising. Consider, for example, the "Schubert steamroller problem":

(∀x)(Wx ⊃ Ax) (∀x)(∀y)[(Cx & By) ⊃ Mxy]

(∀x)(Fx ⊃ Ax) (∀x)(∀y)[(Sx & By) ⊃ Mxy]

(∀x)(Bx ⊃ Ax) (∀x)(∀y)[(Bx & Fy) ⊃ Mxy]

(∀x)(Cx ⊃ Ax) (∀x)(∀y)[(Fx & Wy) ⊃ Mxy]

(∀x)(Sx ⊃ Ax) (∀x)(∀y)[(Wx & Fy) ⊃ ~Exy]

(∃w)Ww (∀x)(∀y)[(Wx & Gy) ⊃ ~Exy]

(∃f)Ff (∀x)(∀y)[(Bx & Cy) ⊃ Exy]

(∃b)Bb (∀x)(∀y)[(Bx & Sy) ⊃ ~Exy]

(∃c)Cc (∀x)[Cx ⊃ (∃y)(Py & Exy)]

(∃s)Ss (∀x)[Sx ⊃ (∃y)(Py & Exy)]

(∃g)Gg (∀x)(Gx ⊃ Px)

(∀x)[Ax ⊃ [(∀w)(Pw ⊃ Exw) ⊃

(∀y)((Ay & (Myx & (∃z)(Pz & Eyz))) ⊃ Exy)]]

(∃x)(∃y)[(Ax & Ay) & (∃z)[Exy & (Gz & Eyz)]]

This is a slightly whimsical symbolization of the following:

Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of each of them. Also, there are some grains, and grains are
plants. Every animal either likes to eat all plants or all animals much smaller than itself that like to eat some plants. Caterpillars and snails are
much smaller than birds, which are much smaller than foxes, which in turn are much smaller than wolves. Wolves do not like to eat foxes or
grains, while birds like to eat caterpillars but not snails. Caterpillars and snails like to eat some plants. Therefore, there is an animal that likes
to eat a grain-eating animal. [Pelletier 1986, 203]

Page 160

Figure 2. The monotonic reasoner

This problem has been attempted by a wide variety of theorem provers, and the fastest time reported is 6 seconds. That time is
reported by Stickel [1985], running a connection-graph resolution theorem proving program on a Symbolics 3600 and applying it
to the result of already transforming the problem into clausal form. In comparison, OSCAR did this problem in 13 seconds on a
Symbolics 3600. It is also of interest to compare OSCAR with respected resolution theorem provers that are considered fast but do
not do the Schubert steamroller problem as fast as Stickel's current system. An earlier theorem prover of Stickel was reported to do
the problem in 2 hours 53 minutes, and the well-known ITP theorem prover was at one time reported to do it in 11 minutes [Cohn
1985].

Most theorem provers are designed to be used somewhat interactively, allowing the human operator to choose different proof
strategies for different problems. That is desirable if they are to be used as tools, but it detracts from the theoretical significance of
speed results. After all, given any valid formula P, we could introduce a rule saying "Infer P". Of course, no one would actually
incorporate a rule like this into a theorem prover, but this just represents the extreme end of a continuum.

Page 161

Fast times using strategies chosen especially for a particular problem may show little unless some theoretical rationale can be
provided for the choice of strategy and the rationale built into the theorem prover itself so that it can choose its own strategies. In
this connection it should be noted that OSCAR is a purely automatic theorem prover, using the same strategies on all problems. In
contrast, Stickel's fast times are extremely impressive, but as he himself observes, they are very sensitive to how the set of support
is chosen in his theorem prover. He first tried putting only the goal clause in the set of support, but that resulted in his theorem
prover's taking 5,694 seconds. The 6 seconds time was achieved by eliminating the set of support restriction.

Even more interesting than the speed of the reasoner is its efficiency. Even on Stickel's fastest time, his theorem prover performed
479 inferences, and when his theorem prover was used non-interactively, it performed 245,820 inferences. Stickel also provides
data on some other theorem provers doing the Schubert steamroller problem, according to which they performed between 1,106
and 26,190 inference steps. This means that between 91% and 99.98% of the inferences performed by these theorem provers were
unnecessary. By contrast, OSCAR constructed a proof that was 42 lines long, and performed only 11 unnecessary steps. Of those
11 steps, 6 of them were among the given premises and were unnecessary for doing the problem. Omitting those, OSCAR
performed only 5 unnecessary inferences, for a measure of 11%.

To take another example, a problem of moderate difficulty that has been run on a number of theorem provers is that of showing
that a group is commutative if the square of every element is the identity element. This problem is from Chang and Lee [1973].
Letting Pxyz symbolize x·y = z , this problem can be formulated as follows:

(∀x)Pxex
(∀x)Pexx
(∀x)(∀y)(∀z)(∀u)(∋∋v)(∀w)[(Pxyu & (Pyzv & Puzw)) ⊃ Pxvw

(∀x)(∀y)(∀z)(∀u)(∀v)(∀w)[(Pxyu & (Pyzv & Pxvw)) ⊃ Puzw
(∀x)Pxxe
Pabc

Pbac

OSCAR performed 19 inferences, 15 of which were used in the final proof. Thus 21% of OSCAR's inferences were unnecessary.
By contrast,

Page 162

Wilson and Minker [1976] give performance data for this problem on four theorem provers (this is the problem they call
"Group2"). Where 21% of OSCAR's inferences were unnecessary, those theorem provers performed 79%, 87%, 96%, and 96%
unnecessary inferences. Furthermore, these were presumably the results after tailoring the theorem provers to the problem to get
the best performance. Stickel's PTTP (Prolog technology theorem prover) solves this problem in a startling .284 seconds (OSCAR
required 8 seconds), but performs 1,136 inferences in the process. In terms of sheer speed, nothing can hold a candle to Stickel's
PTTP on this problem, and I do not mean for these remarks to detract from its significance, but the percentage of unnecessary
inferences is perhaps indicative of what can be expected from a resolution theorem prover that does not use strategies carefully
tailored to the individual problem.

These redundancy figures hold up across a wide variety of problems. OSCAR was tested on Pelletier's problems for first-order
logic [1986]. In solving Pelletier's propositional calculus problems (numbers 1-17), OSCAR's average percentage of unnecessary
inferences was only 8%, and on the pure predicate calculus problems (numbers 18-47), the redundancy figure only went up to
26%. It appears that OSCAR's interest constraints are extremely effective in eliminating unnecessary inferences.

5. An Interest-Driven Defeasible Reasoner

A flag-based defeasible reasoner is built on top of a monotonic reasoner. If we start with an interest-driven monotonic reasoner, we
can use that to generate an interest-driven defeasible reasoner. The desideratum for an interest-driven defeasible reasoner should
no longer be d.e.adequacy, because we only want to require the reasoner to discover the ideally warranted propositions we assign
as interests. The obvious proposal is to relativize d.e.-adequacy to interests:

A reasoner is i.d.e.-adequate relative to Α iff, for any input and any proposition P in which the reasoner is interested: (1) if
P is ideally warranted to degree α relative to Α, then there is some number n and node η of strength at least α that
supports P and after n cycles of reasoning, η is undefeated and that defeat-status never subsequently changes; and (2) if P
is not ideally warranted to degree α relative to Α, then there is some number n such

Page 163

that after n cycles of reasoning, every node of strength at least α that supports P is defeated (either provisionally or
outright) and that defeat-status never subsequently changes.

An interest-driven defeasible reasoner makes no attempt to build the entire inference graph. It begins with the list of ultimate-
epistemic-interests, supplied by practical cognition, and then it attempts to perform just those inferences that are relevant to those
interests and build just that part of the inference graph that records the relationships between those inferences. The relevant
inferences are those involved in constructing arguments supporting the propositions in ultimate-epistemic-interests, and all those
arguments supporting defeaters for steps of those arguments, and defeaters for steps of the defeating arguments, and so on. This
will automatically be achieved if (1) the monotonic reasoner is guaranteed to find all relevant arguments for anything in which it is
interested, and (2) the reasoner automatically adopts interest in defeaters for each defeasible inference it performs. By virtue of
these two conditions, if there is an argument supporting a desired conclusion, the reasoner will find it. If there is a directly
defeating argument it will find that. Then it follows recursively that if there is a reinstating argument, the reasoner will find that,
and so on.

However, condition (1) is not quite the condition that should be imposed on the monotonic reasoner. The difficulty is that every
argument has infinitely many variants that result from adding redundant steps or from varying the way in which deductive
inferences are made. It is not necessary for the monotonic reasoner to produce more than one of these variants. It will suffice to
produce just one that "subsumes" all the others, where we define:

An argument ß subsumes an argument α iff (1) any defeasible inference occurring in ß also occurs in α and does so
relative to the same or a more inclusive supposition and (2) the strength of β is greater than or equal to the strength of α.

This has the result that ß is "at least as resistant to defeat" as α, in the sense that any argument defeating ß will also defeat α. Let us
also define:

A monotonic reasoner is argument-complete relative to Α iff, for any input and any P and any argument α in Α inferring
P from input relative to a supposition X, if the reasoner is given input as

Page 164

premises and adopts interest in P relative to X, then the reasoner will construct an argument β that subsumes α and infers
P from input relative to X.

Then we have the following theorem, which is the justifying theorem for defeasible reasoning:

Fundamental Theorem for Defeasible Reasoning

If is the inference-graph generated by the set of arguments
Α, and

(1) contains no noncircular infinite defeat-branches, and
(2) for every proposition P and finite set X of propositions,

there is a finite (possibly empty) set nodes of nodes in

supporting P relative to X such that any other node in
that supports P relative to X is subsumed by some member
of nodes,
and a flag-based defeasible reasoner
(3) is based upon an interest-driven monotonic reasoner that
is argument-complete relative to Α,
(4) adopts interest in defeaters for every defeasible inference
it performs, and
(5) computes defeat-status as in chapter 3,
then it is i.d.e.-adequate relative to Α.

It was observed above that flagging beliefs as defeated and then continuing to reason with them seems unreasonably expensive.
However, there is a way of alleviating this cost. The monotonic reasoner uses a scheme for prioritizing potential inferences and
stores them on the inference-queue. Whatever prioritizing scheme is used, if it is modified in such a way that once beliefs are
defeated, inferences involving them are given low priority, then the reasoner will pursue the consequences of defeated reasoning
"only when it has time". This looks much like what human beings do. As long as the prioritizing is done in such a way that even
low-priority inferences are eventually performed, the reasoner will remain i.d.e.-adequate.

The general structure of the flag-based defeasible reasoner involves only a slight modification to the monotonic reasoner.
Specifically, a module for computing defeat statuses must be added, and a new database consisting of beliefs (justified
conclusions) is constructed. This is diagrammed in figure 3.

Page 165

Figure 3. The defeasible reasoner

Page 166

An interest-driven defeasible reasoner of the sort just described has been implemented. It is considered the latest version of
OSCAR and is intended to provide the inference-engine for the OSCAR artilect.8.It is described in more detail in chapter 9.

6. An Architecture for Epistemic Cognition

The defeasible reasoner just described represents the bulk of epistemic cognition, but not the whole of it. To obtain a general
architecture for epistemic cognition, we must add two things: Q&I modules and an interface with practical cognition.
Schematically, this is easy to do, and is diagramed in figure 4. Q&I modules represent an additional inference mechanism. We can
regard them as driven by changes of belief (while drawing upon the set of beliefs), and like the other inference-mechanisms, their
output goes into both the inference-queue and the inference-graph. It must be possible for explicit reasoning to override the
conclusions drawn by Q&I modules. This can be done in two ways. First, conclusions drawn by Q&I modules can be assigned
strengths (degrees of justification) when they are inserted into the inference-graph, and then if explicit reasoning provides a
stronger reason for the negation of the conclusion, it will be rejected by rebutting defeat. It must also be possible to overturn a
conclusion drawn by a Q&I module on the grounds that the module is unreliable under the present circumstances. Formally, this is
analogous to having a reliability defeater for a prima facie reason.9 This indicates that from a formal point of view, Q&I modules
can be accommodated by treating them just like prima facie reasons for which the only undercutting defeaters are reliability
defeaters.

Interfacing epistemic cognition with practical cognition involves four kinds of connections. First, practical cognition supplies the
contents of ultimate-epistemic-interests by posing questions that arise in the course of practical reasoning. When practical
cognition queries epistemic cognition by inserting an interest (encoded as a formula) into ultimateepistemic-interests, the formula
must be assigned a degree of interest,

8 The first version of OSCAR was described in Pollock [1987]. That was followed by the interest-driven deductive reasoner described in
Pollock [1990a], and then the interest-driven flag-based defeasible reasoner of Pollock [1992a].

9 Reliability defeaters were discussed in section 2 of chapter 2.

Page 167

Figure 4. Epistemic cognition

Page 168

and there must be some instruction for what to do with an answer once one is found. The latter will typically involve passing
information back to practical cognition. (This will be illustrated in more detail in chapters 7 and 8.) These instructions constitute
the second connection between epistemic cognition and practical cognition. Third, although most of the goals that drive practical
cognition are produced by optative dispositions, we saw in chapter one that in a completely rational agent, beliefs about the
expected likabilities of situation types must also have the power to produce goals. Fourth, as was observed in chapter 1, many
questions posed for epistemic cognition cannot be answered purely by reasoning. Instead, they will require empirical investigation.
Empirical investigation involves action, and that is driven by practical cognition. The mechanism for this is the formation of
epistemic desires, which are desires to know the answers to questions that arise in the course of epistemic cognition. These
epistemic desires are passed to practical cognition, which can then seek courses of action aimed at answering these questions.

The formation of epistemic desires is straightforward except for one problem that must be addressed. When are epistemic desires
formed? Are they formed whenever interest is adopted in a new question, or is there some more restrictive mechanism that results
in their being formed only with regard to selected interests? Introspection suggests that, at least in human beings, epistemic desires
are formed in connection with every interest. After all, for any question at all, one way of answering it empirically may be to ask
someone else, or to look it up in a book, or to consult your notes. This seems to create a problem, however. Each new desire leads,
by way of practical cognition, to new ultimate-epistemic-interests. If these lead immediately to new epistemic desires, we have a
loop, and it seems that epistemic cognition will be caught in an infinite regress. It appears to me that there is just one way to solve
this problem, and that involves adjusting the degrees of interest. If the strength of an epistemic desire is always less than the
strength of the interest from which it is obtained, then the reasoner will give priority to answering the question by reasoning rather
than by empirical investigation. This will be an automatic consequence of using degrees of interest to prioritize reasoning, because
the new epistemic interests that arise from practical cognition aimed at answering the question empirically will be placed later on
the inference-queue than the interests derived from backwards reasoning. Consequently, the empirically driven interests will be
retrieved from the inference-queue only after some attempt has been made to solve the problem by reasoning.

It should be observed that this general architecture accommodates reflexive cognition. Introspection is part of perception, and the
judg-

Page 169

ments the reflexive cognizer makes about cognition are the product of either introspection itself or reasoning about information
provided by introspection. The latter reasoning can proceed within the framework of reasoning described by this architecture. The
reflexive cognizer can then alter the course of cognition by giving practical cognition the power to alter the contents of various
data structures in various ways. For example, deciding to try one strategy for solving a problem before trying another amounts to
reordering the inference-queue. Similarly, refraining from accepting a conclusion even when one has an apparently good reason for
it amounts to deleting that conclusion from the inference-queue. The details of reflexive cognition may turn out to be very
complicated, but however they go, it should be possible to fit them into the present architecture.

Several further observations about this architecture are in order. Etherington [1987] observed that for most nonmonotonic logics,
little attention has been paid to the problem of updating beliefs (or extensions) in response to adding new premises (as opposed to
simply starting over in the construction of the belief-set or the computation of the extension). If a defeasible reasoner is to be used
as the inference engine in a rational agent, this is a serious problem. Such an agent is embedded in an environment that is
continually feeding it more information, and it must repeatedly update its beliefs in response to such inputs. It is totally impractical
to require such an agent to restart its reasoning from scratch every time it is given a new premise.

In OSCAR, there is no updating problem. If OSCAR is supplied a new premise after reasoning has already begun, OSCAR will
quickly reach a point in its reasoning where its beliefs and arguments are the same as if that premise had been supplied at the
beginning. This means that OSCAR can provide the inference engine for an interrupt-driven reasoner. Such a reasoner will receive
additional premises from time to time after it has already begun reasoning. This will cause the reasoning to be interrupted at the
end of a cycle, the new premises inserted into input, and then reasoning resumed.

There is another way in which an interrupt-driven reasoner is important. Most problems with which a reasoner is actually
presented will be simple, and the reasoner will be able to perform all relevant reasoning and stop. It has been observed, however,
that on problems of sufficient complexity, reasoning may never terminate. Note that this is equally true for human reasoners.
Nevertheless, such a reasoner may have to take action at specific times, even though reasoning has not terminated. This is just the
point made in section 1 that the reasoning

Page 170

must be interruptible. When the time comes to act, the reasoning will be interrupted and action taken based upon whatever the
current set of beliefs is. It is always possible that if the reasoner had more time to reason, its beliefs would change in some crucial
way, but the presumption behind defeasible reasoning is that at any stage of reasoning, if action must be taken, then it is reasonable
to act on the basis of the current set of beliefs.

The upshot is that a real-time defeasible reasoner must be interrupt-driven in two respects: it must be continually receptive to new
inputs, and it must be prepared to interrupt its reasoning and act on its current set of beliefs whenever action is required. The
intention is that OSCAR will supply the inference engine for such a real-time reasoner.

7. Conclusions

The preliminary proposal made at the beginning of this chapter was that the appropriate criterion to apply in evaluating defeasible
reasoners is that of d.e.-adequacy. This makes it possible for reasoners to be adequate despite the fact that the set of ideally
warranted conclusions is not r.e. The chapter then investigated how to construct a d.e.-adequate reasoner. It was argued that such a
reasoner cannot stop reasoning from a conclusion just because the arguments supporting it are defeated. Instead, it must flag
conclusions as defeated but continue to reason from them. This suggests building the defeasible reasoner out of two largely
autonomous modules: a monotonic reasoner that systematically produces arguments without worrying about their defeat status,
and a module that computes defeat status relative to the arguments that have been produced at any given stage of reasoning. The
main result of the chapter is that the sequence consisting of the sets of undefeated conclusions produced at each stage of operation
of the monotonic reasoner constitutes a defeasible enumeration of ideal warrant provided the monotonic reasoner satisfies certain
plausible constraints. This is not yet sufficient to produce a truly practical defeasible reasoner, however. The d.e.-adequacy of the
reasoner constructed in this way requires the totally impractical assumption that the monotonic reasoner will systematically
produce all possible arguments (the British Museum algorithm). This assumption can be replaced by the more reasonable
assumption that the monotonic reasoner is interest-driven. This requires a change to the adequacy condition, replacing d.e.-
adequacy by its interest-relative analogue, i.d.e.-adequacy. It was then shown that,

Page 171

subject to reasonable assumptions about the interest-driven monotonic reasoner, it can be used to generate an i.d.e.-adequate
defeasible reasoner. This has been implemented in OSCAR.

There have been several earlier attempts to construct procedural theories of defeasible reasoning (misleadingly called ''proof
theories"), and there have been a few attempts to implement such theories in automated defeasible reasoners. The most noteworthy
are those of Nute and Lewis [1986], Nute [1992], Levesque [1990], Ginsberg [1989], Baker and Ginsberg [1989], Geffner [1990],
and Simari and Loui [1992]. There have also been some (generally unimplemented) special-purpose reasoners like that described
by Horty, Thomason, and Touretzky [1990] and Horty and Thomason [1990] for reasoning within defeasible inheritance
hierarchies. These reasoners are based upon a wide variety of approaches to defeasible reasoning. For example, the Ginsberg
system is based upon circumscription, the Levesque theory on autoepistemic logic, and the Horty, Thomason, and Touretzky
theory on defeasible inheritance. Despite their variety, it is very simple to compare all of these theories simultaneously to the
present theory, because all of them attempt to build a reasoner that is analogous to a traditional theorem prover. Such reasoners
produce r.e. sets of conclusions. Because that is possible only if the underlying logic is decidable, such defeasible reasoners have
typically been restricted to the propositional calculus or some other very weak logic. By contrast, because OSCAR seeks to
provide an i.d.e.-approximation to ideal warrant rather than a recursive enumeration of ideally warranted conclusions, it is
applicable to the full predicate calculus, and indeed, OSCAR is deductively complete for the predicate calculus as well as being
i.d.e.-adequate for defeasible reasoning. 10

10 OSCAR also stands in an interesting relationship to RMS's (reason maintenance systems). McDermott [1991] constructs a general
framework for RMS's,and emphasizes the distinction between the application program and the RMS itself. That is parallel to the distinction in
OSCAR between the monotonic reasoner and the module computing defeat status on the basis of the inference graph. The latter module by
itself is quite similar to a "justification-based" RMS (of which the original example was Doyle's TMS [1979]). There are also some important
differences, however. Standard justification-based RMS's have only one kind of link, corresponding to the inference links in the inference
graph. They have no links corresponding to the defeat links, and correspondingly they are incapable of detecting undercutting defeat. They can
only respond to inconsistencies, which is to say that they detect rebutting defeat. McDermott, however, constructs a more general kind of
"nonmonotonic RMS" by adding dependencies between nodes that are formulated using a modal operator L, meaning "it is definitely true
that". The idea comes from McDermott

Page 172

In theory, OSCAR should provide a framework for the performance of all possible epistemic reasoning. In implementing any
particular reasoning, three things must be done. First, we must specify a system of representation within which the inferences can
be encoded. Second, we must supply a list of reasons, segregated into backwards and forwards reasons, and conclusive and
defeasible reasons. This list of reasons will include the list of defeaters for the defeasible reasons. Third, we must specify the
prioritizing scheme used in ordering potential inferences in the inference-queue. The last provides a fairly powerful tool for
modifying the control structure of the reasoner. The theory is that any kind of epistemic reasoning can be implemented in OSCAR
in this way. This may prove simplistic, but the only way to find out is to try to implement various important kinds of reasoning,
and that will occur in the next stage of the OSCAR project.

The claim that all possible epistemic reasoning can be implemented in the framework provided by OSCAR may seem less
pretentious if it is borne in mind that epistemic cognition consists of more than just reasoning. In any agent capable of quick
responses to environmental inputs, reasoning must be augmented by a rich array of Q&I modules. Epistemic reasoning and
epistemic Q&I modules jointly comprise epistemic cognition. Reasoning, by itself, is inherently slow. Human beings may well
outperform OSCAR on many epistemic tasks, but

and Doyle [1980]. The result is not an RMS that computes defeat status in the same way OSCAR does, because McDermott explicitly opts for
a credulous nonmonotonic logic. But it may be possible to use the same ideas to build a skeptical RMS that really does compute defeat statuses
equivalently with OSCAR. In doing this, it should be noted that the literals upon which McDermott's RMS operates must be interpreted as
expressing inferences (nodes of the inference graph) rather than propositions, but that seems to make no difference to the functionality. It can
also be observed that the assumption-based aspect of McDermott's RMS is unnecessary for this application. In addition, the introduction of the
modal operator L introduces more expressive power than is required for formulating prima facie reasons. All prima facie reasons can be
expressed in a single form:

¬ P v ¬ L¬Q v ¬L(P ⊗ Q)vQ (P is a prima facie reason for Q).

Accordingly, forms like (LP v P) that give McDermott trouble ("odd loops") do not even arise in the formulation of prima facie reasons.

Although RMS's are quite close, at least in spirit, to OSCAR's defeat-status computation based on the inference graph, it is important to realize that
the defeat-status computation is only part of OSCAR. RMS's are not themselves reasoners. The idea of building an i.d.e.-adequate reasoner by
cycling between the monotonic reasoner and the defeat-status computation on the inference graph, and the proof that this will work, takes us far
beyond an RMS.

Page 173

that does not show that OSCAR is an inadequate epistemic reasoner. It may only reflect the fact that humans employ some
powerful Q&I modules not available to OSCAR.

The framework provided by OSCAR does not commit us to much regarding the content of reasoning. In particular, we could
augment OSCAR with a list of reasons that faithfully mimic the structure of human reasoning, but we could also supply lists of
reasons that are quite foreign to human reasoning but are nevertheless sound schemas for reasoning. For instance, there is
considerable psychological evidence to the effect that modus tollens is not a primitive inference rule in human beings,11 but that
does not make it unreasonable to incorporate modus tollens into an artilect. Similarly, most systems of automated deduction
employ some form of unification, but it seems clear that this is not a primitive operation in human reasoning. In implementing
special kinds of reasoning in OSCAR, we have a choice whether to attempt to mimic human reasoning or to try out ways of
accomplishing the same ends more efficiently.

" See Smith, Langston, and Nisbett [1992] for a survey of some of the relevant literature.

The requested page could not be found.

Return to previous page

Page 175

Chapter 5 Plan-Based Practical Reasoning

1. Practical Cognition

A general account of the structure of rational cognition was proposed in chapter 1. According to that account, practical cognition is
initiated by the formation of primitive desires, which are themselves either the product of optative dispositions or the result of
epistemic cognition producing beliefs about the relative expected situation-likings of the desired states of affairs. Desires, in turn,
encode goals, and the function of practical cognition is to design and execute courses of action aimed at the achievement of these
goals. Epistemic cognition plays an essentially subservient role in this process. The function of epistemic cognition is to answer
factual questions posed in the course of practical cognition. Chapters 2 through 4 investigated the structure of epistemic cognition,
and paved the way for an investigation of practical cognition. Practical cognition tries to find courses of action that will achieve
goals. This kind of cognition has been a topic of interest in both philosophy and artificial intelligence. However, these two
disciplines have tended to approach the topic in terms of very different models of practical cognition. The purpose of this chapter
is to examine each model in light of the other and produce a unified model superior to both. Subsequent chapters will be devoted to
working out the details of the model produced in this chapter.

The Philosophical Model

The philosophical model might equally be called the "economics model" or the "cognitive psychology model", because it is shared
by all three fields. It is more commonly called simply the ''decision-theoretic model".1 On this model, a decision problem arises
when we have a finite set Α of alternative acts between which we must decide, a finite set Ο of exhaustive and exclusive possible
outcomes, a function u assigning numerical utilities to the possible outcomes, and reasonable beliefs about (or assignments of) the
values of the probabilities

javascript:parent.goToPage('Page_173')

1 For examples of this literature, see DiFinetti [1975], Jeffrey [1983], Savage [1972], and Skyrms [1980].

Page 176

prob(O/A) of each possible outcome on each act.2 The expected utility of an act is defined:

On the decision-theoretic model, rationality dictates choosing the act with the highest expected utility, if there is one. If there is a
tie, then any of the acts of maximal utility is rationally permissible. An act is rationally prescribed iff it is rationally permissible
and no alternative act is rationally permissible.

One of the main virtues of the decision-theoretic model is that it explicitly accommodates the possibility that the connection
between acts and outcomes is only probabilistic. At the same time, it includes the deterministic case as the special case in which
the connections are deterministic and hence the probabilities prob(O/A) are all 1 or 0. In this case, there will be a unique outcome
resulting from each act, and comparing acts in terms of their expected utilities is equivalent to comparing them more simply in
terms of the utilities of their outcomes.

Acts typically have performance costs, reflecting the amount of disutility incurred in their performance. The decision-theoretic
model can, in principle, accommodate this by building performance costs into outcomes, but it can do that only by building into
the outcomes a specification of the act performed. This has the effect of multiplying the number of possible outcomes. For some
purposes, it is better to handle performance costs explicitly, subtracting them from the expected utility gains, thus redefining the
expected utility of an act as follows:

We subtract the expected performance cost rather than an actual performance cost because, at the time of decision, we may not
know exactly what the performance cost will be.

It is typically assumed that we can infallibly perform the acts in the set Α, that is, the probability of our performing them if we try
is 1.

2 The decision-theoretic model is generally formulated using subjective probabilities, but that is an inessential feature of it. One could
incorporate any kind of probability into this account. Because I have objections to subjective probability [Pollock 1986], I prefer to use some
kind of partly objective probability. See Pollock [1990] for my preferred account of objective probability.

Page 177

If that were not the case, then in deciding what act to try to perform, we would have to take account of the probability of being able
to perform the act successfully. If an act had a high expected utility but it was unlikely we would be able to perform it, that would
make it a correspondingly less desirable choice. An obvious ploy for avoiding this difficulty is to replace a fallibly performable act
A by the (presumably) infallibly performable act trying-to-A. Then the probability of successfully performing A will automatically
get factored into the probability of the various outcomes conditional on trying to A.

The AI Model

The standard model in AI is the planning-theory model.3 On this model, the rational agent begins with certain goals it is trying to
achieve, and then practical reasoning consists of designing a plan for achieving those goals. In the interest of making the problem
more tractable it is generally pretended that the relationship between acts and outcomes is deterministic (although it is recognized
that this is unrealistic).4 In the simplest case, a plan for achieving a certain goal is just a sequence of acts that, when performed in
that order, will result in that goal's being achieved. More generally, plans can involve conditional forks ("If the traffic is not too
heavy, take Speedway; otherwise take Broadway."), loops ("Ring the bell repeatedly until someone answers the door."), and all of
the other constructs of computer programs. A plan is much like a program that aims at achieving one or more goals. (The logical
structure of plans will be discussed at length in chapter 6.) The current state of the art in AI focuses on finding even a single plan
for achieving a goal. That turns out to be such a difficult computational problem that little attention has yet been paid to finding
optimal plans, although it is generally recognized that must be the ultimate objective of a planning-theory.5

Plans have not gone totally unnoticed in philosophy. Bratman [1987] emphasizes the importance of plans in practical reasoning,
and Harman [1986] makes some related observations. Bratman, Israel, and

3 See Georgeff [1987] for a good summary of the current state of AI planning theory.

4 One exception is Dean, Firby, and Miller [1988].

5 Some work has been addressed at special cases of this problem. See particularly the work on NONLIN+ [Daniel 1983], Tate and Whiter [1984],
and ISIS-II [Fox, Allen, and Strohm 1981].

Page 178

Pollack [1991] attempt to build some bridges between philosophy and AI. But these are relatively rare exceptions. In philosophy,
the decision-theoretic model has carried the day.

The Relationship between the Models

The function of practical cognition is to design and execute courses of action aimed at achieving the goals that are encoded in an
agent's desires. The decision-theoretic model and the planning-theory model differ most significantly in their interpretation of
"course of action". On the planning-theory model, a course of action is a plan of arbitrary complexity. On the decision-theoretic
model, practical reasoning selects acts one at a time, and insofar as more complex courses of action result, this has to be the effect
of selecting their component acts one at a time rather than selecting an entire sequence of acts as a single decision.

There are other less important differences between the two models. To many philosophers, the planning-theory model is likely to
seem naive, particularly in its typical supposition that the act/outcome relation is deterministic (an assumption that will not be
made in this book), and in its giving no explicit attention to the rational requirement that plans be, if not optimal, at least minimally
good. But these shortcomings reflect the state of the art in planning theory more than the content of the theory. Furthermore, the
planning-theory model seems to be talking about something important that the decision-theoretic model ignores: planning. It is
undeniably true that a great deal of the practical reasoning in which human beings engage is concerned with the construction of
plans. This plays no role at all in the decision-theoretic model. This suggests that the decision-theoretic model is overlooking some
important aspects of practical reasoning and is accordingly incomplete, just as the planning-theory model is incomplete by
(typically) ignoring probabilistic connections and comparisons of competing plans. What is puzzling is that, on the one hand, the
decision-theoretic model is likely to seem intuitively right, but on the other hand it seems to leave no room for planning (or
anything else) as a fundamental constituent of practical reasoning. On the decision-theoretic model, once we have talked about the
expected utilities of acts, we have discussed everything of relevance to practical reasoning.

I will urge below that, contrary to initial appearances, the decision-theoretic model is inadequate. It gains its appearance of obvious
correctness by focusing on what is actually just a special case of practical reasoning, and when put in a general context, the
decision-theoretic

Page 179

Figure 1. First counterexample

model can produce intuitively incorrect prescriptions for action. This is a result of its ignoring the role of plans in practical
reasoning. With its focus on plans, the planning-theory model is onto something important. It is, however, incomplete because it
does not address the question of how plans are to be compared for purposes of choosing among them. What is needed is a theory
of practical reasoning that takes plans seriously and generalizes the concepts of the decision-theoretic model to apply them to plans
rather than acts.

2. The Inadequacy of the Decision-Theoretic Model

My claim is that in complex decision problems of the sort that require planning, the decision-theoretic model often prescribes what
is intuitively the wrong action. This is most easily seen in an idealized problem of the sort addressed by standard planning-theory
in which the act/outcome relation is deterministic. Take the simple case diagrammed in figure 1, in which I am presented with a
panel on which there is a row of four buttons and below that a single button. Pushing the top four buttons in order from left to right
will produce 10 utiles of utility, while pushing the bottom button (button B) will produce only 5 utiles. Obviously one ought to
push the top four buttons. What does the decision-theoretic model tell us to do in this case? The decision-theoretic model applies to
acts rather than plans, so in order to prescribe executing the plan of pushing button A and then each button following it in that row,
the model would have to begin by

Page 180

prescribing pushing button A, then once that button has been pushed it would have to prescribe pushing the next button in the row,
and so on. Does it do this? No. In evaluating pushing button A, we must compare the expected utility of that act with the expected
utility of pushing button B. Because this is a deterministic case, the expected utility of pushing button B is simply 5 utiles. But the
expected utility of pushing button A is not so easily calculated. Pushing button A does not by itself get us 10 utiles. It does that
only when combined with the rest of the acts comprising the plan of pushing all the buttons in the top row in order. In computing
the expected utility of the act of pushing button A, we must consider the probability that we will actually push the rest of the
buttons in that row. Suppose the probability of pushing the remaining buttons given that we push button A is r. Then the expected
utility of pushing button A is 10·r. The expected utility is 10 utiles only if r = 1. It might be urged that we are considering the
actions of a rational agent, and a rational agent will push the remaining buttons, and hence r = 1. But this begs the question. The
object of the exercise is to determine what a rational agent should do, so we are surely not entitled to assume an answer to this
question in the course of computing the expected utilities that we will use in answering the question. However, without this
assumption, we are not justified in supposing the probability is high that the rest of the buttons in the row will be pushed if button
A is pushed. In fact, without begging the question and assuming the answer to the decision problem, it is hard to see how we could
have any basis for supposing that the probability is higher than chance, and the probability of the buttons being pushed by chance
is going to be very low-—almost negligibly low. Accordingly, the decision-theoretic model prescribes pushing button B rather than
button A, because that has a higher expected utility.6

In evaluating this counterexample, it is important to emphasize that the values of the probabilities employed in a decision problem
must be the rational agent's best estimates of the probabilities, not the possibly unknown true values of the probabilities.7 Because
the correct

6 This is a refinement of an argument given in Pollock [1983].

7 This assumes that objective probabilities are being employed. If the decisions are being made in terms of subjective probabilities, it makes no
apparent sense to talk about the "true values" of the probabilities, and hence this kind of problem cannot arise. I assume that even in the case of
subjective probability, the values used must be in some sense "reasonable". Personalists sometimes talk as if the probabilities can just be pulled out
of the air, and hence could be taken to be 1 in this

Page 181

Figure 2. Second counterexample

solution to the decision problem is to push the buttons in the top row in order, it may well be that the true value of the probability
of the rest of the buttons in the row being pushed if button A is pushed is close to 1. But that is not something that the rational
agent can use in solving the decision problem. He can only appeal to information available to him prior to solving the problem.
And as we have seen, that yields an incorrect solution to the problem.

The temptation to suppose that the expected utility of pushing button A is 10 utiles derives from the fact that, in this example, it is
obvious from the start what plan should be adopted, and it is the only plan whose first step consists of pushing button A. Consider a
more complicated decision problem, diagrammed in figure 2, in which there is more than one candidate plan whose first step
consists of performing the act being evaluated. Suppose we are faced with a simple maze.

case. But as a theory of practical rationality, I take that to be absurd. Rationality requires that the probabilities be assigned in some reasonable
and non-arbitrary way.

Page 182

There are two doors into the maze, and four paths through the maze. The top two paths begin at door A and lead to payoffs of 20
utiles and 0 utiles, respectively. The bottom two paths begin at door B, and lead to payoffs of 12 utiles and 10 utiles, respectively.
Which door should we enter? Clearly, we should enter door A and traverse the upper path. Now let us apply the decision-theoretic
model. We must compare the expected utility of entering door A with the expected utility of entering door B. But what are these
expected utilities? The payoff resulting from entering door A depends upon which plan we adopt for traversing the maze after
entering door A. If we take the upper path we will receive 20 utiles, and if we take the second path we will receive 0 utiles. So our
choice of a plan determines the payoff. In computing the expected utility of entering door A, we can either assume that we will
take the upper path or assume ignorance of which path we will take. If we assume ignorance, then it seems we should assign a
probability of .5 to taking either path, and hence the expected utility of entering door A is 10 utiles and the expected utility of
entering door B is 11 utiles. On this calculation, the decision-theoretic model prescribes entering door B, but that is the wrong
answer! If we instead assume that if we enter door A we will take the upper path, and similarly if we enter door B, then we can
compute the expected utilities to be 20 utiles and 12 utiles, respectively, and we get the correct prescription that we should enter
door A. However, this assumes that we have some way of knowing that we will choose the upper path if we enter door A. This is
typically something we do know about ourselves, but we are not entitled to use it here in computing the expected utility of entering
door A because that would be circular. We believe that we will traverse the upper path only because we believe that is the rational
thing to do. If we did not believe the latter then we would not normally believe that we will traverse the upper path. But the object
of the exercise is to determine the rational thing to do, so we cannot just assume the solution to the decision problem in the course
of computing the probabilities and utilities used in solving the problem.

The upshot of this is that the decision-theoretic calculation yields the right answer only if we have some way of choosing among
different plans for traversing the maze prior to computing the expected utilities. If we have a way of choosing among different
maze-traversal plans, then we can simply choose the best plan overall (not just the best plan that has us entering door A and the
best plan that has us entering door B) and enter the door that plan prescribes. That is the solution to the decision problem. So to
recapitulate, if we compute the expected

Page 183

utilities of entering the doors without first choosing which maze-traversal plan to adopt if we enter a given door, then the decision-
theoretic model gives the wrong answer. But if we have a way of choosing among maze-traversal plans then there is no need to
compute the expected utilities, because we should simply choose the best plan and execute it, and that will determine which door
we enter.

The general difficulty is the following. On the decision-theoretic model, we choose among acts by computing their expected
utilities. For acts that lead to a payoff only by being part of a multi-step plan, the decision-theoretic model would have to prescribe
performing each step of the plan in sequence. However, if an act is the first step of more than one alternative plan (and in the real
world, that will always be the case), there is no way to compute a meaningful expected utility for the act until we have decided
which of the plans prescribing it we are going to execute if we perform the act. This requires us to have a way of choosing the best
of several plans. But if we have a way of choosing the best plan from a set of alternative plans, then we should apply that to the set
of all the alternative plans, choosing the best plan overall, and do what that plan prescribes. Once we have chosen the best plan, we
have solved the decision problem. What we should do is whatever the best plan prescribes. In the above example, we choose to
enter door A not because that has a higher expected utility than entering door B but because that is prescribed by the plan of
traversing the top path, and that is the best of the four plans available to us.

This objection to the decision-theoretic model amounts to saying that it is either incorrect or redundant. It leads to incorrect
prescriptions if we try to choose plans by applying the decision-theoretic model, one act at a time, to the acts comprising them,
without making any assumptions about what plans will be adopted. On the other hand, if we have some other way of choosing
among plans, so that in evaluating the expected utilities of acts we can assume what plans will be adopted, then the decision-
theoretic model is redundant. If we have a way of choosing among plans, that in itself solves the decision problem and there is no
need to decide among acts independently of deciding among the plans prescribing them.

None of this should be taken as implying that appeal to utilities and expected values plays no role in practical reasoning. It seems
clear that the basis on which we choose among plans has to do with expected values. But I will postpone addressing this question
until the next section. It proves to be more complicated than might be initially suspected. My point is simply that insofar as
expected values

Page 184

are employed in decision theory, it cannot be the expected values of individual acts that are at issue. It should be plans that are
compared in terms of their expected values, and then acts should be chosen because they are prescribed by the plans we have
adopted.

At this point, a common response is that I am not really disagreeing with the classical decision-theorist, because what he means by
"acts" is what I am calling "plans". Accordingly, evaluating plans in terms of their expected values is just what classical decision
theory tells us to do. I think it is a bit perverse to call complicated plans replete with conditional forks, loops, etc., ''acts", but if that
is the way the decision-theorist wants his theory understood, we should evaluate it accordingly. I am, in fact, sympathetic to this
kind of theory, and it will be discussed at length in the next section. It will turn out that this attempt to salvage the decision-
theoretic model does not quite work. Because plans, unlike acts, are logically complex and can embed other plans, a more complex
theory is required, but applying standard decision-theory to plans is a good first attempt at taking plans seriously.

3. Integrating Plans into the Decision-Theoretic Model

The examples employed in the last section are contrived ones. Let us run the argument again using a realistic example. Suppose I
want to be in Los Angeles on Friday. To do this I may plan to fly on Thursday evening; to do that I may plan to buy a ticket from
my travel agent today; to do that I may have to drive to the travel agent's office immediately (before it closes); and to do that I may
have to get into my car now. Suppose I construct this plan as a way of getting to LA, and now I want to decide whether to execute
the plan. On the decision-theoretic model, I have to decide what to do one act at a time. The first step consists of getting into my
car now, so I have to decide whether to do that. The decision-theoretic model would have me decide whether to get into my car by
evaluating the expected utility of this act and comparing that with the expected utilities of other acts I might perform instead.
Suppose the alternative is sitting in the sun on my patio and listening to Mozart. Computing the expected utility of the latter act is,
at least in principle, unproblematic. But it is senseless to ask about the expected utility of getting into my car as a way of
evaluating that act in the context of my potential plan to go to LA. That would have me determine the probability of my being in
LA on Friday conditional on my getting into my car now. Presumably there

Page 185

is such a probability, but what is at issue in a decision problem is not its (possibly unknown) true value but rather our best estimate
of its value. We have to be careful about the context in which we evaluate the probability. We can evaluate it either (1) on the
assumption that I have adopted the plan to get to LA in this way, or (2) without that assumption. What is at issue is whether to
adopt the plan. If I have already adopted the plan, there is no decision problem left and nothing for the decision-theoretic model to
do. However, if it is not assumed that I have adopted the plan, then the decision-theoretic model gives the wrong answer. Without
the assumption that I have adopted the plan, it seems that the probability of my being in LA on Friday conditional on my getting
into my car now is quite low, and so very little expected utility attaches to the latter, and the decision-theoretic model dictates that
I should instead sit in the sun and listen to Mozart. Decision theory favors the grasshopper rather than the ant.

The decision-theoretic model must be deemed wrong as a general theory of practical rationality. Still, it seems that it is making an
initially credible attempt to capture an important insight regarding how probabilities and utilities interact in practical reasoning.
Where the model fails is in overlooking the role of plans in practical reasoning. Let us see if we can salvage the insights of the
decision-theoretic model without giving plans short shrift.

A Two-Tiered Approach

The simplest proposal for integrating plans into the decision-theoretic model is to apply the model directly to plans rather than
acts. In other words, (1) compute the expected values of plans rather than acts, (2) choose among alternative plans in terms of their
expected values, and (3) choose acts on the basis of their being prescribed by plans chosen in terms of their expected values. This
amounts to a two-tiered theory of decision making. It is ultimately acts we want to choose. For example, in trying to get to LA, I
want to decide whether to get into my car now. But according to this theory, we decide in favor of getting into the car because it is
part of a plan we have adopted, not because of its own expected utility. Acts must be chosen indirectly by applying decision-
theoretic calculations to plans.

The Expected Value of a Plan

I think that this two-tiered model is on the right track, although difficulties arise when we try to articulate it precisely. The first
difficulty lies in extending the concept of expected utility to plans. The simple

Page 186

definition of expected utility for acts is inadequate when applied to plans for a number of reasons, including the following:

• The definition given for acts is applicable only to acts that can be performed infallibly, that is, to acts for which we can
reasonably take the probability to be 1 that if we try to perform the act then we will succeed. This is certainly not true of plans. My
plan to get to LA can go awry in many ways. My car may fail to start after I get into it with the intent of driving to my travel
agent's office, I may have an auto accident en route, the flight may be sold out, I may get to the airport ticket-in-hand only to be
bumped from the flight, the flight might be cancelled because of bad weather, and so forth. Clearly, in computing the expected
value of a plan in a way that enables us to use that in deciding whether to adopt the plan, we must take account of how likely it is
that we will be able to execute the plan successfully if we try.

• The simplest plans are sequences of acts arranged in temporal order, but plans can have very complicated logical structures. For
example, plans can involve conditional forks. In making a plan, we may not know exactly what situation we will be in when it
comes time to execute later stages of the plan, and so we may plan to do one thing if it is true that P and something else otherwise.
For example, in planning how to get to my travel agent's office, I may plan to drive down Speedway if the traffic is not too heavy
and otherwise to drive down Broadway. In evaluating the expected utility of a plan, we must take account of the probabilities of its
being executed in different ways at conditional forks and the differing expected utilities of the different ways the plan may unfold.
Plans can have logical structures that are complicated in other ways as well, so it is not just conditional forks that we must worry
about. In general, plans can have all the logical structure exhibited by parallel computer programs (including iteration).8

8 In AI planning theory, the use of conditionals in plans was first studied by Warren [1976] in WARPLAN-C. Iteration was investigated by
Drummond [1985]. That the programs in question are parallel programs corresponds to the construction of non-linear plans, as in NOAH
(Sacerdotti [1975, 1977]) and NONLIN [Tate 1977]. This will be discussed further in chapter 7.

Page 187

• Just as the traditional model requires us to take account of the expected performance costs of an act, we must take account of the
expected execution cost of a plan. This cost is not a fixed feature of the plan but may vary depending upon (1) the circumstances in
which we are performing the acts prescribed by the plan and (2) exactly how we execute the plan (e.g., how it unfolds at
conditional forks).

All of these difficulties can be finessed by following the suggestion of chapter 1 and defining the expected value EV(σ) of a plan σ
to be the difference between the definite expected situation-liking of the situation type consisting of adopting σ and the definite
expected situation-liking of the situation type consisting of not adopting a, where adopting σ consists of forming the intention to
execute σ.9 The functional role of the mental state of adopting a plan will be discussed further in chapter 7. This definition of the
expected value of a plan is, I believe, adequate for making sense of the notion, but it leaves unaddressed the quite difficult problem
of computing or estimating such values. I will examine this problem more carefully in chapter 6.

Choosing Acts in Terms of Plans

It is ultimately acts that we must decide upon. Evaluating plans is of interest only as a way of choosing among the acts they
prescribe. Choosing acts in terms of plans turns out to be a complicated matter. First, note that in decision problems we may have
to compare individual acts with plans. For example, in deciding whether to sit in the sun or get into my car, I have to compare the
act of sitting in the sun with the plan of which getting into my car is the first step. We can simplify the account by regarding
individual acts as the limiting case of plans, so it

9 Expected values are defined in terms of probabilities, but these probabilities could be either definite or indefinite. This gives rise to a
distinction between definite and indefinite expected situation-likings. The indefinite probability of the agent's liking a situation given that it
has certain features may be high, and yet because of the complexities of direct inference, the definite probability of the agent's liking the actual
situation if it has those features could be low. This is because the actual situation will also have other features, and they can reverse the
probabilities. Applying this distinction to the evaluation of plans, the expected value of a plan should be the difference between the definite
expected situation-liking of the situation type consisting of adopting the plan and the definite expected situation-liking of the situation type
consisting of not adopting the plan. In other words, in the language of chapter 1, the plan should be evaluated, not in the abstract, but in the
present context.

Page 188

is only plans that must be compared in decision problems. Traditional decision theory has focused exclusively on the degenerate
case of one-step plans, and that is why it is inadequate.

An obvious difficulty for choosing among acts in terms of plans is that one and the same act may be prescribed by lots of different
plans. Some of those plans may be good ones and others bad ones. In choosing an act, we have to worry about all the plans
prescribing it. For instance, getting into my car may seem preferable to sitting in the sun if I just view the latter in terms of its
pleasure value. But suppose it will also make me tan, and my boss likes tan employees and is likely to send me to LA on Friday if I
get tan today and then go and show him my tan. Thus sitting in the sun is prescribed by an alternate plan for getting to LA on
Friday. I will have to take this into account in deciding whether to sit in the sun or get into my car.

If an act is prescribed by two separate plans, it may contribute to achieving more than one goal and thereby become more valuable.
Note, however, that in evaluating an act that is prescribed by two separate plans, we cannot just add the expected values of the two
plans. We have to worry about how the two plans interact. There are different possibilities, among which are the following:

• The two plans may be independent of one another, in the sense that they share the same first step but then diverge in such a way
that executing one does not interfere with executing the other, and they are plans for achieving unrelated goals so that successfully
executing one does not affect the desirability of executing the other.

• The two plans may be independent in the sense that executing one does not interfere with executing the other, but they are plans
for achieving the same goal, and hence if one plan is successful, the other loses its value.

• The plans may interfere with each other, in the sense that trying to execute one will make it more difficult to execute the other.

The only obvious way to evaluate an act that is prescribed by two or more plans is to combine them into a single plan and evaluate
the composite plan in terms of the (yet to be determined) algorithm for computing the expected values of plans. We can then
compare the individual plans with the composite plan and thereby decide either that we should adopt the composite plan or just
one of the individual plans. This way of proceeding has the consequence that in evaluating an act, we can evaluate it in terms of
individual plans prescribing it

Page 189

rather than in terms of collections of plans. This suggests that of the various plans prescribing an act, we consider the plan having
the highest expected value and then evaluate the act in terms of that plan. That plan may or may not be a composite of several
other simpler plans each prescribing the act.

Composites of plans will play an important role in the theory developed in this chapter, so it will be helpful to have a clear
understanding of them. We can think of a plan as a set of plan-steps, where each plan-step encodes the operation to be performed,
the conditions under which it is to be performed, and the dependency relations between this step and other steps (that is, which
plan-steps are to be performed first). Plans must be "self-contained" in the sense that a necessary condition for a set σ of plan-steps
to be a plan is that no plan-step in σ be explicitly dependent on any plan-steps not in σ. Accordingly, arbitrary subsets of plans will
not usually be plans. We can turn them into plans, however, by removing the dependency relations to plan-steps not in the subset.
Where η is a plan and σ * is a subset of η, let us say that a is the purification of σ * iff σ results from deleting any dependency of
plan-steps in σ * on plan-steps not included in σ *. Then we can define:

σ is a subplan of η, and η contains σ, iff η is a plan and σ is the purification of a subset of η.

σ +η is a composite of σ and η iff σ +η is a plan and there are sets σ * and η* such that σ +η = σ *∪η* and σ is the
purification of σ * and η is the purification of η*.

In other words, a composite of two plans σ and η combines the plan-steps of both and orders them with respect to each other, thus
producing σ * and η*, which differ from σ and η only in that they encode the additional ordering. Note that every plan is a subplan
of itself. For technical reasons, it will be convenient to talk about the null plan, which is the empty set of plan-steps. The null plan
is a subplan of every plan. A composite of a plan and the null plan is equal to the original plan.

In the interest of precision, let us define:

A plan prescribes an act α iff executing the plan under the present circumstances entails that α will be done.

Then the proposal under consideration is the following:

Page 190

(1) An act α is rationally permissible iff there is a rationally acceptable plan prescribing α.

There may be ties between plans so that more than one competing plan is rationally permissible. If all of the tied plans prescribe
the same act, then it is rationally prescribed:

(2) An act α is rationally prescribed iff there is a rationally acceptable plan σ prescribing α and every rationally acceptable plan
competing with σ prescribes α as well.

This formulation takes account of the fact that there may be competing plans between which we cannot rationally choose and
hence each of which is rationally acceptable. These are what Bratman [1987] calls Buridan cases. In Buridan cases we are free to
adopt any of the rationally acceptable plans and hence it is rationally permissible to perform the acts prescribed by any of the
rationally acceptable plans.

Choosing Plans

The two-tiered theory has us choose acts in terms of plans, in accordance with (1) and (2). In order to do this, we must know how
to choose plans. Let us say that a plan σ is superior to a plan η iff EV(σ)>EV(η). The simplest proposal for how to choose plans in
terms of their expected values is the following, which is what we get by applying standard decision-theory to plans directly:

(3) A plan σ is rationally preferable to a plan η iff σ and η are competitors and σ is superior to η.

(4) A plan is strongly acceptable iff no other plan is rationally preferable.

(5) A plan is strongly prescribed iff it is strongly acceptable and no competing plan is strongly acceptable.

It might then be proposed that it is rationally acceptable to adopt a plan (that is, the plan is rationally acceptable) iff it is strongly
acceptable. Although strong acceptability would seem to be a sufficient condition for rational acceptability, it also seems plausible
to propose that any subplan of a rationally acceptable plan is rationally acceptable. For example, because the plan of getting into
my car now, driving to my travel agent's office, purchasing tickets to LA, and so forth, is rationally

Page 191

acceptable, so is the plan to get into my car now. This can be captured by the following analysis:

(6) A plan is rationally acceptable iff it is a subplan of a strongly acceptable plan.

Rational preferability is defined in terms of competition between plans. It is initially tempting to define:

Two plans compete iff the actual circumstances are such that it is impossible for both plans to be successfully executed.

However, this imposes too stringent a requirement for competition. For example, two plans σ and η could be so related that the
probability of being able to execute either successfully is high, but if either is executed, then the probability of being able to
execute the other successfully is low (but not zero). This is relevant to a decision regarding what plans to adopt. For instance, if the
expected value of σ is significantly greater than that of η, it would be unreasonable to adopt η and then discover that you have
thereby made it unlikely that you will be able to execute the more valuable plan σ successfully. This suggests that two plans should
be regarded as competitors just in case it is less reasonable to adopt both than to adopt the better of the two by itself. It is
reasonable (in the sense of rationally acceptable) to adopt both plans (individually) only if the two plans can be combined into a
composite plan σ+η that has at least as high an expected value as either plan by itself. If this is not the case, then the plans should
be regarded as in competition, and we should adopt only the superior one (the one having the higher expected value). Let us
define:

Two plans σ and η compete strictly iff for every composite σ+η of σ and η, EV(σ+η) < max{EV(σ),EV(η)}.10

For rather subtle reasons, this concept of competition is a bit too strict for any but one-step plans. If σ and η are multi-step plans,
then there can be a plan ξ "in between" σ or η and σ+η, that is, either σ or η is a subplan of ξ and ξ is a subplan of σ+η. If such a
plan were more valuable than any of σ, η, and σ+η, then it should be executed in preference to any of σ, η, or σ+η. This means
that σ and η should not

10 Where X is a finite set of real numbers, max(X) is the largest member of X.

Page 192

both be executed, because that is the same thing as executing σ+η. Thus σ and η should be regarded as being in competition:

σ and η compete iff there is a composite σ +η of σ and η and a subplan ξ of σ +η such that (1) either σ or η is a subplan
of ξ, (2) EV(ξ) ≥ max{EV(σ),EV(η)}, and (3) for every composite (σ♦η) of σ and η, EV(σ♦η) < EV(ξ).

There are two interestingly different cases of competition. In the more straightforward case, the plans "conflict" in the sense that
executing one will make it more difficult to execute the other or will interfere with the other's accomplishing its goals. In the other
case, the two plans aim at achieving the same goals, but the new plan is a better one for that purpose. In this case, adopting the new
plan will make the old plan pointless. This is also a case of plan competition, because the composite of the two plans will have a
lower expected value than the better of the two plans by itself.

The theory of practical reasoning now being considered consists of principles (1)-(6). Consider how this theory works in a
particular decision problem. Suppose it is sunny today, but rain is predicted for the rest of the week. I would like to sit on my patio
this afternoon and enjoy the sun, but I also have two errands to run. I must go to the bike shop and the bookstore. The bike shop is
open today and tomorrow but closed the next day, and the bookstore is open today and the day after tomorrow, but closed
tomorrow. One efficient plan for running the errands would be to go now and do them in a single trip. The alternative would be to
have a separate plan for each errand, running one tomorrow and one the next day. Should I sit in the sun, or get into my car and run
both errands in a single trip? Suppose that sitting in the sun is highly desirable but less desirable than achieving the ends of both
errands. Suppose further, however, that it is not terribly onerous to make two separate trips. Adjust these values in such a way that
the intuitively rational choice is to sit in the sun today and run the errands separately tomorrow and the next day. Can we get this
result out of the above principle? It may seem that we cannot, on the grounds that getting into my car is prescribed by a plan that
achieves the ends of both errands, and sitting in the sun has an expected utility less than the combined values of those ends. But
this overlooks the fact that sitting in the sun is also prescribed by a more complicated composite plan that involves sitting in the
sun today, going to the bike shop tomorrow, and going to the bookstore the next day. The expected

Page 193

value of this composite plan is higher than the expected value of the plan to run the errands today and forgo sitting in the sun, so it
seems that sitting in the sun is to be preferred to running the errands today. That is the intuitively correct result.

This example illustrates the importance of being able to form composites of unrelated plans. Sitting in the sun becomes the
preferred act only by being incorporated into a composite plan that combines it with separate plans for going to the bike shop
tomorrow and the bookstore the day after tomorrow.

Coextendability

I believe that the account of plan acceptability embodied in principles (3) and (4) is on the right track. But as it stands, it is subject
to a general logical difficulty having the consequence that under most circumstances, no plan will be rationally acceptable. We saw
in the preceding example that we must sometimes construct composites of unrelated plans and compare them with other plans. The
construction of such composites can be essential to getting the theory to prescribe the right acts. But the ability to construct such
arbitrary composites also leads to the general difficulty. Given any plan, we can typically create another plan of higher value by
combining the first plan with a plan that aims at realizing other unrelated goals. Suppose a plan σ is superior to a competing plan
η. Let v be a plan for achieving some other goals entirely unrelated to the goals at which σ and η aim. We can form a composite
η+v of η and v, and η +v may be superior to σ because of the spurious new sources of value acquired from the addition of v. For
example, in deciding whether to sit in the sun or run my errands today, I begin by comparing a plan σ prescribing sitting in the sun
today and running the errands over the next two days with a plan η prescribing running both errands today. σ is superior to η. But
now form a composite plan η+v consisting of η together with the plan v to have a sumptuous dinner at a good restaurant next
week. According to (3), η+v is preferable to σ, so sitting in the sun is not prescribed after all, or at least not on the basis of σ. Of
course, we can also form a composite plan σ +v by adding to σ the same plan to have a sumptuous dinner at a good restaurant next
week. Then σ +v will be preferable to η+v. But the process can be repeated by adding some other plan to η+v to form η +v+µ, and
then adding it to σ +v to form σ +v+µ, and so on. The result is that every plan prescribing sitting in the sun is beaten by some plan
prescribing running the errands today, and also every plan prescribing running the errands today is beaten by some

Page 194

plan prescribing sitting in the sun. The upshot is that the account of plan preference contained in (3) leads to no plan's being
acceptable.

An obvious suggestion is that although any finite composite containing one of σ and η can be beaten by a longer composite
containing the other, we should take this process to the limit and consider the infinite composites that result from putting all of
these plans together into a single plan. Then the infinite composite containing σ will have a higher expected value than the infinite
composite containing η, and so it will be rationally acceptable.11 There is, however, an overwhelming difficulty for this proposal.
By their very nature, plans must be finite. Plans are schemes that we, as human beings, and other finite rational agents, design and
execute. Thus there can be no infinite composites.

A resolution of this problem is suggested by the observation that beyond a certain point, constructing a composite plan of higher
value is typically done by adding spurious additional elements that are unrelated to the original plan. Then, just as in the above
example, we can add those same spurious elements to the competing plan, thus reversing the comparison again. This suggests that
a plan σ is rationally preferable to a plan η if it is coextendable with η, in the sense that when more valuable competitors are
constructed by adding unrelated sources of expected value to η, those same sources of expected value can be added to σ with the
result that it stays ahead of its competition. This suggests defining:

A plan σ is rationally preferable to a plan η iff σ and η compete and there is a (possibly null) subplan µ of η and a
composite σ +µ of σ and µ such that σ +µ is superior to η.

Thus, for example, the plan σ of staying home today and running my errands over the next two days is preferable to the plan η of
running both errands today and having a sumptuous dinner at a good restaurant next week, because the subplan of having the
dinner can be added to σ in such a way that the composite is superior to η.12

11 These infinite composites are what I called ''maximal strategies" in Pollock [1983].

12 Philip Pettit has pointed out (in conversation) that there is an intuitive connection between the coextendability criterion and the Sure Thing
Principle [Savage 1972]. According to the latter, one outcome is preferable to another if it is preferable given that some supposition P is true and
also given that P is false. However, there does not appear to be any formal connection between the two principles.

Page 195

Figure 3. Coextendability

However, this definition is not yet quite adequate. It could make two plans each rationally preferable to the other. The difficulty is
that σ may also contain unrelated elements that could be added to η and might then reverse the comparison. This possibility can be
factored in by revising the definition to read as follows:

A plan σ is rationally preferable to a plan η iff σ and η compete and there is a (possibly null) subplan µ of η and a
composite σ +µ of σ and µ such that for every subplan v of σ and a composite η+v of η and v, σ +µ is superior to η+v.

It turns out that this definition can be simplified, because the second conjunct entails that σ and η compete:

Theorem 1: If there is a (possibly null) subplan µ of η and a composite σ +µ of σ and µ such that for every subplan v of σ and
composite η+v of η and v, σ +µ is superior to η+v, then σ and η compete.

Proof: Assume the hypothesis. If EV(σ) > EV(σ +µ), redefine µ to be the null plan. Then we can assume that EV(σ +µ) ≥ EV(σ),
and it is still true that for every subplan v of σ and a composite η+v of η and v, EV(σ +µ) > EV(η+v). It follows that EV(σ +µ) >
EV(σ +η), and also that EV(σ +µ) > EV(η). Thus EV(σ +η) < EV(σ +µ) ≥ max{EV(σ),EV(η)}.

Accordingly, we can define:

Page 196

(3*) A plan σ is rationally preferable to a plan η iff there is a (possibly null) subplan µ of η and a composite σ +µ of σ and µ such
that for every subplan v of σ and a composite η+v of η and v, σ +µ is superior to η+v.

This definition is illustrated by figure 3. It is important to coextendability that the same thing is being added to both plans. Suppose
we relaxed that requirement by defining either:

A plan σ is preferable* to a plan η iff there is a (possibly null) plan µ and a composite σ +µ of σ and µ such that σ +µ is
superior to η.

or

A plan σ is preferable** to a plan η iff there is a (possibly null) plan µ and a composite σ +µ of σ and µ such that for
every plan v and a composite η +v of η and v, σ +µ is superior to η+v.

These definitions would not work at all because under normal circumstances, they will have the consequence that any non-crazy
plan σ is preferable* to every competing plan (we can always add something to σ to increase its expected value), and for the same
reason no plan is preferable** to any non-crazy competing plan.

The very fact that coextendability requires adding the same thing to both plans, however, opens the way to some examples that
appear at first to be potential counterexamples to (3*). Consider James, who is trying to decide between two career choices:
physics and philosophy. There are two lectures on campus tonight at the same time, one in physics and the other in philosophy.
James would find the physics lecture slightly more interesting than the philosophy lecture, which suggests that should be his
choice. But he is teetering on the edge of deciding between careers in these two fields, and he knows that if he goes to the physics
lecture that will decide him in favor of physics, and if he goes to the philosophy lecture that will decide him in favor of philosophy.
Although the plan to attend the physics lecture has a higher expected value than the plan to attend the philosophy lecture, a
composite of attending the philosophy lecture and later reading Keith Lehrer's book Knowledge has a higher expected value than
attending the physics lecture. This is not a matter of coextendability, because if James goes to the physics lecture and becomes a
physicist, he will get no particular value out of reading Lehrer's book. However,

Page 197

there is something else that can be added to the plan to attend the physics lecture-—studying recent work on quantum
electrodynamics—and this composite plan has a higher expected value than the plan to attend the philosophy lecture and later read
Lehrer's book. Unfortunately, the comparison can again be reversed by adding something else of philosophical interest to the
"philosophy plan", and then reversed again by adding something of interest to physicists to the "physics plan", and so on. This
example differs from the preceding example in that what must be added to the physics plan and the philosophy plan to reverse the
order of expected values are always different elements rather than the same element. The elements added to one plan would have
no particular value when added to the other plan, because the first step of each plan affects a "change in life-style'' that alters the
subsequent value of related items.13

Because the simple plan of attending the physics lecture has a higher expected value than the simple plan of attending the
philosophy lecture, there is some temptation to say that James should do that and go on to become a physicist. But upon further
reflection, I find that unconvincing. Because those initial steps result in changed life-styles, they cannot be evaluated by
themselves. Each creates opportunities for acquiring new sources of value not available on the other life-style. Furthermore, the
opportunities resulting from the one choice do not outweigh those resulting from the other. Any finite set of opportunities available
on the one life-style is matched by a finite set of opportunities available on the other. It seems to me that, under these
circumstances, we should regard either life-style as rationally acceptable and hence should regard it as rationally permissible to
attend either lecture. This is what (3*) tells us.

The Intransitivity of Plan-Preference

At this point I want to call attention to a peculiar feature of (3*). This definition of rational preference for plans does not make the
relation transitive. Here is a simple example of the intransitivity. Suppose A at t,, B at t2, C at t2, D at t3, E at t2 and F at t2 are acts
to be performed at the stated times. Two of these acts having the same time reference cannot both be performed, and suppose also
that E at t1 and B at t2 interfere with each other so that they cannot both be performed successfully. Suppose that the acts are
otherwise independent of one another, and the expected value of performing any sequence of them

13 I am indebted to Patrick Fitzgerald for calling these examples to my attention.

Page 198

is the sum of the expected values of the individual acts in the sequence. Suppose that the expected values of A at t,, B at t2, C at t2,
D at t3, E at t1, and F at t2 are 1, 3, 2, 1, 4, and 1 utile, respectively. Now consider the following three plans:

σ A at t1 + B at t2
η C at t2 + D at t3
µ E at t1 + F at t2

In order to compare these plans using coextendability, construct the following composites:

σ* A at t1 + B at t2 + D at t3
η* A at t1 + C at t2 + D at t3
η** E at t1 +C at t2 + D at t3
µ* E at t1 +F at t2 +D at t3

Our independence assumptions imply that EV(σ) = 4, EV(µ) = 5, EV(η) = 3, EV(σ*) = 5, EV(η*) = 4, EV(η**) = 7, and EV(µ*)
= 6. It follows that σ is rationally preferable to η, and η is rationally preferable to µ, but a is not rationally preferable to µ. On the
contrary, µ is rationally preferable to a. This results from the fact that the part of µ that is added to η to yield a plan of higher value
than µ (namely, E at t1) cannot be added to σ with the same result because of a conflict with A at t1. It follows that each of σ, η,
and µ has a competitor that is preferable to it, and hence none is strongly acceptable.

It may seem that this result is a difficulty for (3*), because faced with these three plans, there has to be something that it is
rationally acceptable to do. However, the fact that each of σ, η, and µ has a competitor that is preferable to it does not imply that
there is nothing that it is rational to do—only that it is not rational to adopt any of these three plans. Using the same elements that
were used in constructing these plans, we also constructed the plan η** (E at t1 + C at t2 + D at t3) and it has a higher expected
value (7 utiles) than any of the other plans that can be constructed out of these elements. η** is a competitor of every plan that can
be built out of these elements and is not a subplan of η**, and η** is rationally preferable to all such plans. So there is a plan that
is rationally acceptable, namely η**. The failure of transitivity for plan preference does not create a difficulty in this case.

It takes little reflection to see that this same conclusion holds in general. Suppose we have any intransitive cycle of plans α1,...,α1
where

Page 199

for each i, αi is rationally preferable to αi+1, and αn is rationally preferable to α1. I assume that each plan has only finitely many
subplans. Consider all composites of the subplans of αl,..., αn. Of these, one or more will be optimal, having higher expected values
than any of the non-optimal ones. η** is optimal in the preceding example. It then follows that the optimal composites are
rationally preferable to any of the non-optimal composites with which they compete, and so the optimal composites are all strongly
acceptable (unless beaten by some other plans built out of other elements).

I take it then that the intransitivity of plan preference is not a problem for the theory. It is, however, an interesting result. I
conjecture that because of the way plans are embedded in one another, there is no way to define plan preference so that it satisfies
the axioms ordinarily assumed to hold for preference relations.

4. Warrant versus Reasoning

The preceding is still not plausible as a theory of practical reasoning. It would make practical reasoning too hard, because we
would have to be able to survey all the infinitely many possible plans prescribing an act. At this point it is useful to recall the
distinction between a theory of reasoning and a theory of warrant. A theory of reasoning describes how a rational agent should
proceed in drawing conclusions at any given point. Reasoning is defeasible in the sense that it can lead to the adoption of a
conclusion at one time and then mandate its retraction later, as a result of either additional reasoning or the acquisition of new
information. If a rational agent has reasoned correctly up to the present time, then in one sense of "justified" its conclusions are
justified. As a result of further reasoning, and without any new input, some of those conclusions may become unjustified and may
subsequently become justified again, and so on. Warranted conclusions are conclusions that would be justified "in the long run".
More precisely, a potential conclusion is warranted iff, if reasoning could proceed without limit, a point would be reached where
the conclusion would become justified and would never subsequently become unjustified just as a result of further reasoning.14

14 I am not distinguishing between warrant and ideal warrant here. In accordance with the results of section 10 of chapter 3, I assume that they
coincide.

Page 200

Warrant is an ideal notion. It is, in a certain sense, the target at which a reasoner aims. Just as we distinguish between epistemic
and practical reasoning, we can distinguish between epistemic and practical warrant. My proposal is that although the preceding is
not plausible as a theory of practical reasoning, it is plausible as a theory of practical warrant. That is:

(7) The decision to adopt a plan σ is practically warranted iff σ is strongly acceptable.15

(8) The decision to perform an act α is practically warranted iff there is a rationally acceptable plan prescribing α.

Together, (7) and (8) constitute a theory of practical warrant. That is, they describe what acts it would be rational to perform and
what plans it would be rational to adopt if we could do all possible relevant reasoning.

My real interest is in a theory of practical reasoning, not a theory of practical warrant. I want to know how a rational agent should
actually decide what to do, not what it would decide to do if, per impossible, it could do all relevant reasoning. Although a theory
of practical warrant does not answer this question, it can be suggestive of the kinds of reasoning that are or ought to be involved in
practical deliberation. It seems that practical deliberation ought to concern the construction and evaluation of plans. It seems clear
that the kinds of reasoning involved in constructing plans and reasoning about their expected values concern factual questions and
as such will fall within the purview of epistemic reasoning. A theory of epistemic reasoning will tell us when that reasoning is
justified. In practical deliberation, the kind of reasoning that is uniquely practical rather than epistemic has to do with the adoption
of plans. The reason the account of section 3 is not plausible as a theory of practical reasoning is that in order to use it to decide
what plans to adopt, we would have to survey all logically possible plans. In practical deliberation, epistemic reasoning will
produce candidate plans to be considered for adoption, and then a theory of practical reasoning should tell us what conclusions to
draw on the basis of the consideration of a limited (usually very small) set of candidate plans. Given that we have tried to construct

15 Although subplans of strongly acceptable plans are rationally acceptable, I take it that what we adopt are the strongly acceptable plans, and
not the subplans.

Page 201

relevant plans in a reasonable way and have reached justified conclusions about their expected values, how can we make a justified
decision about what acts to perform? My suggestion is that a decision is justified at any given stage of reasoning iff it proceeds by
applying (7) and (8) to the limited set of plans we have actually constructed and evaluated at that stage. As a first approximation
we might try the following:

The decision to adopt a plan σ is practically justified iff a rationally satisfactory search for plans has been conducted and it
led to the discovery of no plan that we are justified in believing to be rationally preferable to σ.16

The main problem with this initial formulation turns upon the fact that we can have two competing plans neither of which is
preferable to the other. In such a case, let us say that the two plans are tied. Following Bratman, I am calling such cases "Buridan
cases". The preceding principle implies that in a Buridan case, we are justified in adopting both of the tied plans. This is clearly
wrong. At best, we are justified in adopting either but not both. If there is no basis for choosing between the two plans, one should
be chosen at random. A rational agent must have a way of making such random choices. My interim proposal is that the correct
forms of the rules for justified plan adoption and justified action are as follows:

(9) The decision to adopt a plan σ is practically justified iff a rationally satisfactory search for plans has been conducted and either:

(i) for every plan µ discovered by the plan search, if we are justified in believing that µ competes with σ, then we are justified in
believing that σ is preferable to µ; or

(ii) (a) the plan search has led to the discovery of no plan that we are justified in believing to be rationally preferable to σ, and (b)
σ has been chosen randomly from the set of all competing plans discovered by the search which are justifiably believed to be tied
with σ.

16 Note that this is formulated as a theory about when the practical decision to adopt a plan is justified rather than when the epistemic
conclusion that a plan is rationally permissible is justified. Taking rational permissibility to be defined by (1*), I see no plausibility in the view
that this principle formulates a necessary and sufficient condition for the justification of the epistemic inference.

Page 202

(10) The decision to perform an act is practically justified iff there is a plan whose adoption is practically justified and we are
justified in believing that the act is prescribed by that plan.

This proposal will be further refined in chapters 7 and 8, but the present account will suffice for now.

Principles (9) and (10) appear to conflict with claims made by Bratman [1992]. Bratman urges that previously adopted plans
constitute a "filter of admissibility" on what new plans can be reasonably considered:

Consider my intention to fly back to SF on Sunday evening. As part of a partial plan it poses a problem for further deliberation: how am I to
get to the airport from the hotel? One solution to this problem might be to take the afternoon limo to the airport. But this solution is
inadmissible, given that I am also planning to meet an old friend in the afternoon. Other solutions include taking a cab and taking the bus, in
either case after I meet my friend. Both are relevant and admissible options. But which is superior? Here I weigh relevant desire-belief reasons
for and against these competing solutions; I weigh, for example, speed and convenience against cost, in order to reach a decision. This
deliberation is framed by my prior, partial plan. My prior plan provides a background framework within which such weighing of desire-belief
reasons is to be done.

I find this example unconvincing (and I know of no other examples that are more convincing). Suppose at the time I am making
my plans, I know that there is no bus after noon, and a cab to the airport costs $150. Surely a rational person is going to at least
consider forgoing the meeting with his friend and instead taking the (free) limo to the airport. What precludes that option under
more normal circumstances is not that it conflicts with a plan already adopted but rather that it has a cost (not meeting one's friend)
that is higher than the costs of other options, such as taking a bus or a cab. This reasoning can be handled straightforwardly by
rules (9) and (10).

There is, however, a consideration that partially supports Bratman's claim. Adopting a new plan and retracting a previously
adopted plan have computational costs for the agent. Because reasoning takes time and cognitive resources, it follows that even if
the new plan is substantially better than a previously adopted plan with which it competes, it may not replace it. When a new plan
is produced, its evaluation will

Page 203

be placed on a queue of cognitive tasks to be performed. But although the new plan is queued for evaluation, it may never actually
be evaluated because more pressing matters may prevent its ever being retrieved from the queue. To take an extreme example,
suppose you are a soldier who must run from one point to another under enemy fire. You carefully plot your course to take
advantage of the available cover, and then you start running. Midway in your run you note some cover you previously overlooked,
and it occurs to you that an alternative route might have been preferable. You are not, however, going to stop running at that point
in order to evaluate the new plan. The plan may be queued for evaluation, but it will not actually be evaluated until you have
completed your run, and at that point it is no longer of interest because the goal it aimed at achieving has already been achieved.
The effect is that once a plan has been adopted, even if a better plan is subsequently discovered, the better plan will not
immediately replace the original one. A rational agent will make the replacement only when she has time to do so. This is a sense
in which adopted plans tend to be stable, but it does not reflect anything specifically about practical reasoning. Precisely analogous
phenomena will occur in epistemic reasoning.17

I am reasonably confident that the preceding principles are on the right track. They do not, however, constitute a complete theory
of practical reasoning. It will turn out that there are many additional complexities in practical reasoning that will become apparent
only once we have a more detailed account of the nature of plans. Chapter 6 will be devoted to providing that account.

5. Resurrecting Classical Decision Theory

Neil Tennant (in conversation) has suggested a way of revising classical decision theory to avoid the objections formulated in
section 2. It was observed that in both examples, classical decision theory yields the correct solution to the decision problem if our
calculation of probabilities can be based on the assumption that we will continue to do what we (in fact) recognize as the rational
thing. However, this is circular, because the objective of the theory is to determine the rational thing to do. Tennant observes that
an alternative that also yields the correct

17 This same point has been made by George Smith [1992] in his response to Bratman [1992].

Page 204

solution is to compute the probabilities conditional on the assumption that we will continue to maximize expected utility
(computed conditional on this same assumption). This amounts to a recursive definition of expected utility. We first compute the
expected utilities of the final acts in the execution of a plan conditional on our having executed the first part of the plan, and
determine what act maximizes expected utility on that assumption. Then we move back one step and determine what act
maximizes expected utility conditional on the assumption that we will go on to perform the final act selected at the last step. And
so on. In effect, expected utility is being defined by a kind of backwards induction on the plan-steps. When applied to the steps in a
plan, this calculation should yield the expected value of the plan as the expected utility of the first step of a plan. Accordingly,
selecting acts in this way appears to be equivalent to selecting plans in terms of their expected values and letting the plans selected
determine what acts are to be performed.

There is, however, a problem with this proposal. Acts are sui generis. They are not inherently parts of plans. Or more accurately,
every act is prescribed by infinitely many plans, and the different plans will have different expected values. Accordingly, the
expected utility of an act cannot be identified with the expected value of an arbitrarily chosen plan that prescribes it. This amounts
to observing that there is a problem in selecting the point at which we start the backwards induction in evaluating the expected
utility of an act.

A natural suggestion is that we should identify the expected utility of an act with the expected value of the best plan prescribing it.
But the fact that plans can be extended indefinitely by forming composites aimed at achieving additional goals indicates that there
will not usually be any best plan. For every plan there will be a better plan. This is just the problem the coextendability criterion
was designed to handle. The idea behind the coextendability criterion can be captured rather neatly in the context of evaluating
acts by backwards induction. In comparing two acts, we should be able to start the backwards induction at any point where any
further acts do not differentiate between the two acts being compared. For example, after running the maze we can expect to go to
lunch. But that is true regardless of whether we enter door A or door B, and which door we enter will not affect the utility gained
by going to lunch, so we can start the backwards induction at a point prior to the act of going to lunch.

Formulated precisely, this way of comparing two acts in terms of their expected utilities should be equivalent to choosing acts in
terms

Page 205

of plans and choosing plans in terms of the coextendability criterion. However, this amounts to a greater divergence from classical
decision theory than might at first be realized. In computing the expected utility of an act, the point at which we can start the
backwards induction will depend upon what acts are being compared with the given act. For example, in deciding whether to enter
door A or door B, we need not take account of the fact that either alternative allows us to go to lunch afterwards. But if we
introduce a third option which precludes our going to lunch, then in deciding between that option and entering door A, we must
take account of the fact that the latter allows us to go to lunch and so begin the backwards induction at a point after the act of going
to lunch. In other words, an act will not have a single expected utility. It will only have expected utilities relative to other acts with
which it is being compared.

A precise formulation of this modified version of classical decision theory should be equivalent to the plan-based decision theory
proposed above. It should be emphasized, however, that this is at best a theory of warrant. Because there are limits to a rational
agent's computational powers, he must plan ahead, deciding what to do tomorrow, and what to do after doing that, and so on. This
amounts to constructing and adopting plans, so plans and their adoption must be essential ingredients in the intellectual repertoire
of a rational agent, even if it is possible to formulate a theory of practical warrant that does not mention plans explicitly. A theory
of practical reasoning must mention plans.

6. Simplifying the Decision Problem

I have urged that the decision-theoretic model should be replaced by what might be called plan-based decision theory.
Unfortunately, plan-based decision theory makes practical reasoning much more complicated than it would be on the decision-
theoretic model. It turns out, however, that in some commonly encountered special cases, the complexity of the decision problem
can be substantially reduced. Pursuing this will also lead us to the characterization of a set of limiting cases in which the decision-
theoretic model itself is provably correct.

In order to prove theorems about plan-acceptability, we must make some formal assumptions about plan composition, subplans,
and expected values. The first six assumptions will become elementary theorems once the concept of a plan is made formally
precise in the next chapter. The seventh assumption is a consequence of the analysis of the expected value of a plan proposed in
the next chapter.

Page 206

Assumption 1: A composite σ+(η+µ) of plans can be rewritten as a composite (σ +η)+µ. That is, if σ +(η+µ) is a composite of σ
and η+µ, then there is a composite σ +η of σ and η such that σ +(η+µ) is also a composite of σ +η and µ.

Assumption 2: If σ and η are both subplans of µ, then there is a composite σ +η of σ and η that is a subplan of µ.

Assumption 3: If σ is a subplan of η and η is a subplan of µ, then σ is a subplan of µ.

Assumption 4: Given a composite σ +η of σ and η and a composite η+µ of η and µ, there is a composite having both the form (σ
+η)+µ and the form σ +(η+µ) (that is, the composite preserves the dependency relations between members of σ and η and
between members of η and µ).

Assumption 5: If a one-step plan ξ is a subplan of a composite µ+v, then ξ is a subplan of either µ or v.

Assumption 6: The only subplans of a one-step plan σ are σ itself and the null plan.

Assumption 7: If σ is a one-step plan prescribing the performance of an infallibly performable act α, then EV(σ) = EU(α).

Let us define:

A set ℘ of plans is closed under composition iff for any plans σ and η in ℘, every composite σ+η of σ and η is also in ℘.

A set ℘ of plans is closed under subplans iff for any plan σ in ℘, if η is a subplan of σ then η is in ℘.

If ℘ is a set of plans and σ is a plan, σ is ℘ -disjoint iff σ contains no non-null subplan that is in ℘.

The main problem in assessing the rational acceptability of a plan is that direct application of the definition would require us to
compare the plan with all logically possible plans. The main way in which the

Page 207

problem can be simplified is by cutting down on the number of alternative plans that must be considered. This can be done if the
plan being evaluated is a member of a set of plans that is appropriately ''unrelated" to all plans outside the set. This is made precise
by the concept of a linearly extendable set of plans:18

A set ℘ of plans is linearly extendable to a set Q of plans iff:

(1) ;
(2) for every plan σ in Q that has a subplan in ℘, there is a pair
of plans σ * and σ ** (the ℘-core of σ and the ℘-residue of σ,
respectively) such that:
(a) σ * is a composite of plans in ℘ and σ ** is in Q and is
℘-disjoint; and
(b) σ is a composite of σ* and σ**; and
(3) for every plan µ that is a composite of plans in ℘ and every
plan v in Q1 if v is ℘-disjoint then if µ+v is a composite of µ
and v, EV(µ+v) = EV(µ) + EV(v).

℘'s being linearly extendable to Q amounts to saying that any plan in Q can be divided into two component subplans, one (the ℘-
core) that is a composite of plans in P and the other (the ℘-residue) "disjoint" from ℘, in such a way that the ℘-core and the ℘−
residue do not interact so as to add or detract from each other's expected values. Note that if ℘ is closed under composition, then
instead of talking about composites of plans in ℘, we can simply talk about members of ℘.

Let us also define:

A set ℘ of plans is linearly extendable iff it is linearly extendable to the set of all possible plans.

Lemma 1: If ℘ is linearly extendable to Q, ℘ is closed under composition and subplans, σ is in ℘, and a plan η in Q is rationally
preferable to σ, then the ℘-core of η is also rationally preferable to σ.

Proof: Suppose the hypothesis holds. As η is rationally preferable to

18 The terminology derives from the "linearity assumption" in planning theory, which is the assumption that plans for achieving different
goals do not interfere with one another.

Page 208

σ, there is a subplan µ of σ and a composite η+µ of η and µ such that (a) for every subplan v of η and a composite σ +v of σ and
v, EV(η+µ) > EV(σ +v).

Let η* be the ℘-core of η and η** be the ℘-residue. As µ is a subplan of σ, µ∈℘, and then as η*∈℘, any composite µ+η* of µ
and η* is in ℘. Let ξ be any subplan of η* and σ +ξ any composite of σ and ξ. By assumptions 2 and 3, there is a composite
ξ+η** of σ and η** that is a subplan of η. By assumption 4, there is a composite σ +(ξ+η**) of σ and ξ+η** that is also a
composite (σ +ξ)+η** of σ +ξ and η**. By (a):

(b) EV(η+µ) > EV(σ +(ξ+η**)) = EV((σ +ξ)+η**).

By assumption 1, µ+(η*+η**) can be rewritten as (µ+η*)+η**. By hypothesis, EV(η+µ) = EV(µ+(η *+ η **)) =
EV((µ+¬*)+¬**) = EV(µ+η *)+EV(η **). As ξ is a subplan of η *, ξ∈℘ so σ + ξ∈℘, and hence EV((σ+ξ)+η **) =
EV(σ+ξ)+EV(η **). Hence by (b), EV(µ+η *)+EV(η **) > EV(σ+ξ)+EV(η **), and so EV(µ+η *) > EV(σ+ξ). We have shown
that for every subplan ξ of η *, EV(µ+η *) > EV(σ+ξ), so η * is rationally preferable to σ

Our main theorem is an immediate corollary of lemma 1:

Theorem 2: If ℘ is linearly extendable to Q and ℘ is closed under composition and subplans, then for any plan σ in ℘, there is a
plan in Q that is rationally preferable to σ iff there is a plan in ℘ that is rationally preferable to σ.

Let us define:

A set ℘ of plans is isolated iff ℘ is linearly extendable and closed under composition and subplans.

According to principle (7), the decision to adopt a plan σ is practically warranted iff σ is strongly acceptable, that is, no plan is
rationally preferable to σ. It follows immediately from theorem 2 that:

Theorem 3: If ℘ is an isolated set of plans, then the decision to adopt a plan σ in ℘ is practically warranted iff there is no plan in
℘ that is rationally preferable to σ.

It would seem that we frequently deal with isolated sets of plans, in

Page 209

which case theorem 3 constitutes a considerable simplification of the problem of determining which plans we are warranted in
adopting.

Perhaps more important, theorem 2 also generates a simplification of the problem of determining what plans we are practically
justified in adopting. Define:

A set ℘ of plans is dynamically isolated iff ℘ is linearly extendable to the set of all plans resulting from a rationally
satisfactory search for plans, and ℘ is closed under composition and subplans.

According to principle (9), the decision to adopt a plan σ is practically justified iff a rationally satisfactory search for plans has led
to the discovery of no plan that we are justified in believing rationally preferable to σ. It follows immediately from theorem 2 that
if ℘ is a dynamically isolated set of plans, then in deciding whether to adopt a plan in ℘, we can confine our search for rationally
preferable plans to plans that are also in ℘.

Traditional decision theory confined its attention to acts, which can be regarded as one-step plans. The decision problem can be
simplified still further for one-step plans. First we prove:

Lemma 2: If σ and η are one-step plans, then η is rationally preferable to σ iff (1) EV(η) > EV(σ) and (2) for every composite
σ+η of σ and η, EV(σ+η) < EV(η) (that is, σ and η compete strictly).

Proof: Assume that σ and η are one-step plans. η is rationally preferable to σ iff there is a subplan µ of σ and a composite η+µ
such that for any subplan v of η and composite σ +v, EV(η+µ) > EV(σ +v). Because σ and η are one-step plans, their only
subplans are themselves and the null plan, so this is equivalent to:

Either

(a) EV(η) > EV(σ) and for every composite σ +η of σ and η, EV(η) > EV(σ +η)

or

(b) there is a composite η+ σ of σ and η such that EV(η+σ) > EV(σ) and for every composite σ +η of σ and η, EV(η+σ)
> EV(σ +η).

But (b) is impossible, so η is rationally preferable to σ iff (a) holds.

Page 210

It is in principle possible to have one-step plans σ, η, and µ, any two of which are strictly competing but the competition is
"cancelled" by combining all three plans, in the sense that the expected value of a composite of all three is at least as great as the
expected value of any of the plans individually. Let us define:

℘ is a strongly competing set of plans iff for any finite subset X of ℘, the expected value of some member of X is at least
as great as the expected value of any composite of members of X.

With the help of lemma 2 we prove another lemma about one-step plans:

Lemma 3: If ℘ is a strongly competing set of one-step plans and ℘ is linearly extendable to Q, then if σ∈℘,η∈ Q,, , and η is
rationally preferable to σ, then some member of ℘ is also rationally preferable to σ.

Proof: Assume the hypothesis. As η is rationally preferable to σ, there is a subplan µ of σ and a composite η+µ such that for
every subplan v of µ and composite σ +v, EV(η+µ) > EV(σ +v). In particular, µ and η+µ must be such that for every composite σ
+η of σ and η, EV(η+µ) > EV(σ +η). As σ is a one-step plan, µ must be either σ or the null plan. If µ = σ then there is a
composite η+ σ of σ and η such that for every composite σ +η of σ and η, EV(η+σ) > EV(σ +η), which is impossible, so µ must
be the null plan. Therefore, for every subplan v of η and composite σ +v, EV(η) > EV(σ +v). Let η* be the ℘-core of η and η**
its ℘-residue. η is a composite η*+η **, and η** is a subplan of η, so EV(η*) + EV(η**) = EV(η+η**) = EV(η) > EV(σ +η**)
= EV(σ) + EV(η**). Consequently, EV(η*) > EV(σ). By hypothesis, ℘ is a strongly competing set of plans, and η* is a
composite of members of ℘, so at least one of the plans ξ in the composite is such that EV(ξ) ≥ EV(η*). Thus EV(ξ) > EV(σ).
Because ℘ is a strongly competing set of plans, ξ and σ are strictly competing. Thus by lemma 2, η* is rationally preferable to σ.

Our main theorem about one-step plans is now:

Theorem 4: If ℘ is a strongly competing set of one-step plans and ℘ is linearly extendable to Q, then for any plan σ in ℘, there
is a plan in Q that is rationally preferable to σ iff there is a plan in ℘ having a higher expected value than σ.

Page 211

A simple account of warranted adoption for one-step plans is an immediate corollary of theorem 4:

Theorem 5: If ℘ is a linearly extendable set of strongly competing one-step plans, then the decision to adopt a plan σ in ℘ is
practically warranted iff there is no plan η in ℘ such that EV(η) > EV(σ).

We get a similar simplification to the theory of practical justification. If we have conducted a rationally satisfactory search for
plans, ℘ is a set of strongly competing one-step plans, and ℘ is linearly extendable to the set of plans resulting from the search,
then in deciding whether to adopt a plan σ in ℘, we need merely look at the other members of ℘ and ask whether any of them has
a higher expected value.

Finally, if we make one further assumption, the theory of warranted plan adoption reduces exactly to traditional decision theory.
This is the assumption that the one-step plans in ℘ prescribe acts that are infallibly performable. In that case, by assumption 7, we
get:

Theorem 6: If Α is a set of infallibly performable acts, ℘ is the set of one-step plans prescribing the members of Α, and ℘ is
linearly extendable and strongly competing, then for any act α in Α, the decision to perform α is practically warranted iff there is
no act ß in A such that EU(ß) > EU(α).

This theorem is important because it spells out precisely the limits of traditional decision theory.19 It is also important because it
seems clear that the assumptions of theorem 6 are often satisfied, and are normally satisfied in those cases to which traditional
decision theory is applied. Thus although the decision-theoretic model fails as a general theory of practical rationality, the
intuitions underlying it are correct for the special case that drives them.

19 Classical decision theory is formulated in terms of acts being alternatives to one another. In Pollock [1983], I argued that it is very difficult
to make sense of that notion. Theorem 6 resolves this problem by reducing the alternativeness relation on acts to the competition relation on
plans. We can say that two acts are alternatives iff the one-step plans prescribing them are competitors. Equivalently, two acts are alternatives
iff performing both has a lower expected value than performing the more valuable of the two.

Page 212

7. Conclusions

The decision-theoretic model directs activity by evaluating acts one at a time in terms of their expected utilities. I have argued that
except in certain special cases, this constitutes an inadequate theory of practical reasoning. In the general case, acts must be viewed
as parts of plans and the plans evaluated as coherent units rather than piecemeal in terms of the acts comprising them. Rationality
dictates choosing acts by first choosing the plans prescribing them. Plans, in turn, are compared by looking at their expected
values. However, because plans can be embedded in one another, a rational agent cannot select plans just by maximizing expected
values. Instead, an agent must employ the more complex coextendability criterion. It does turn out, however, that in one precisely
defined limiting case, the traditional decision-theoretic model is provably correct.

The next several chapters will be devoted to working out the details of the plan-based theory of practical reasoning that has been
sketched in this chapter. Chapter 6 will investigate the logical structure of plans. Chapters 7 and 8 will consider the way in which
plans are constructed and adopted and the way in which the activity of a rational agent is directed by the plans it has adopted.

Page 213

Chapter 6 The Logical Structure of Plans

In the last chapter, it was argued that practical reasoning must proceed by constructing and adopting plans, and actions should be
chosen because they are prescribed by the plans the agent has adopted. Plans thus become a central element in the theory of
practical reasoning, and to make further progress in understanding the nature of that reasoning, we must have a clear understanding
of plans. That is the objective of this chapter.

Plans are, by definition, what we construct when we plan. Accordingly, we cannot make much progress discussing plans in
isolation from planning. My strategy will be to make some general observations about how we construct and use plans and derive
conclusions about the structure of plans from those observations.

There is a large body of literature on planning, but it is noteworthy that this literature has focused on the operation of planning,
with little attempt to give a general account of the logical structure of plans.1 Each planning theory has, for the most part, dealt
with particular kinds of plans, without attempting to say what plans in general should be like. This chapter attempts to rectify this
oversight.

1. Plans, Desires, and Operations

Primitive and Instrumental Desires

We engage in planning about how to satisfy desires. Sometimes we know how to satisfy our desires without having to engage in
any further planning. (If I form the desire to open the door, I know how to do that.) In such a case we are appealing to procedural
knowledge ("knowing how") which consists of (usually simple) plan schemas that are either hardwired in the agent or have been
previously constructed and can be reused in similar circumstances. To avoid an infinite regress, there must be some "basic acts"
that an agent knows how to perform without having to plan. In human beings, these may

1Georgeff and Lansky [1986] and Allen, Hendler, and Tate [1990] are good collections of important papers from the planning-theory
literature.

Page 214

be limited to elementary motor skills. Often we have to engage in at least rudimentary planning, and sometimes we have to engage
in quite complex planning.

As a result of planning, I may form the new desire to do something in order to satisfy the initial desire. For example, if I feel
sleepy and desire not to sleep, I may adopt the plan to go into the kitchen and fix a cup of coffee. This produces in me the desire to
go into the kitchen and fix a cup of coffee-—it becomes something I "want to do". This is an instrumental desire. Instrumental
desires correspond to plans or plan-steps. Instrumental desires may give rise to further planning for how to fulfill them.

Operations

For the sake of uniform terminology, I will take acts to be physically specifiable action-types and actions to be particular instances
of acts. So raising my arm is an act, and a particular instance of raising my arm is an action. It is tempting to think of plans as
prescribing the performance of acts, but that is simplistic. Going into the kitchen and fixing a cup of coffee is not, in the present
sense, an act. It is something I do, and I do it by performing a sequence of actions, but it is not itself an act. Let us call it an
operation. This operation cannot even be identified with a sequence of acts, because there are many different ways of going into
the kitchen and fixing a cup of coffee, and each of these corresponds to a different sequence of acts.

Operations may be characterized in part by what they accomplish rather than just how they are done. Roughly, I perform the
operation of going into the kitchen and fixing a cup of coffee iff I perform a sequence of actions that gets me into the kitchen and
results in a cup of coffee being prepared by me while I am there. There can be other constraints in the specification of an operation
as well, including constraints (of varying degrees of specificity) on the time the operation is to be performed and constraints on
how it is to be done. For example, painting my garage, painting my garage next week, and painting my garage with my left hand
are all operations. We can regard acts (physically specifiable action-types) as the limiting case of operations. Instrumental desires
are desires to perform operations.

Most operations are performed by performing a finite sequence of actions. There are, however, exceptions. Suppose Jones and I
are building a shed. We plan to construct the first wall while it is lying on the ground. We will then raise it up, and I will lean
against it, holding it in place until Jones gets some braces attached. Consider the plan-step

Page 215

that consists of my leaning against the wall until Jones gets it braced. Leaning against the wall until Jones gets it braced must be
viewed as an operation, but it is a complex kind of operation. It takes place over an extended time interval and cannot be broken
into simpler constituents except in an arbitrary way. It involves doing something continuously, over the performance interval.
Other examples of such operations would be Follow the yellow brick road until you get to the first fork, or Keep working on this
problem until it is time to go to class. These "continuous operations" have the form Keep doing A until P, where doing A cannot be
broken into simpler constituents. This is more like engaging in a process than performing an action.

Hierarchical Planning and Scheduling

It is striking how schematic our plans often are. For example, I may plan to paint my garage next week without at this point being
any more specific about just when next week I will paint it. I leave that undecided for now and decide later when exactly to do the
work. That later decision is postponed in order to take account of the additional information I will acquire as the time for painting
approaches. I will decide to paint my garage when it is most convenient, and convenience is a matter of what else is happening and
what else I have to do—matters that I cannot reliably predict at this time. For precisely the same reason, I may leave unspecified
precisely how I intend to perform an operation. As the time for painting approaches, I may form more detailed plans. For instance,
I may plan to paint the south side of the garage in the morning so the sun will not be too hot, I may plan to go to the paint store
today in order to get supplies, and so forth. But some details are typically left undecided right up until the time they must be
executed. For example, I do not decide precisely where to position the ladder until I do it, and I do not decide whether to step onto
the ladder first with my right foot or my left foot until it is time to climb the ladder.2

These examples illustrate that plans are schematic in two different ways. They may leave unspecified (to varying degrees) both
when to perform an operation and how to perform it. These matters must often be decided before the plan can be executed,
however, so this will

2 This is a familiar point in AI planning theory, where such plans are said to be partial. [Sacerdotti 1975, 1977].

Page 216

require further planning. In this sense, planning is hierarchical.3 This further planning is of two sorts. Sometimes it is concerned
exclusively with when to perform operations already planned. I will refer to such planning as scheduling. At other times, the
additional planning concerns how to perform an operation. In this connection, recall that operations are often characterized, in
part, by what they are intended to accomplish (e.g. fix a cup of coffee). As such, the planning required for their operation is of the
same "problem-solving" variety as the original planning that led to the plan prescribing the operation. I will refer to planning that
is not simply scheduling as teleological planning. Teleological planning concerns how to do things or how to accomplish certain
goals.

The distinction between scheduling and teleological planning will turn out to be an important one, and I will say much more about
it later. It cannot, however, be made precise as a distinction between two kinds of plans differentiated by their content.
Teleological plans can also include prescriptions about the absolute or relative times of the performance of the plan-steps, but in
that case the temporal specifications are chosen simultaneously with the plan and are part of the package. The distinction must be
drawn in terms of the way the two kinds of planning proceed, and this will be discussed in chapter 7. The importance of the
distinction lies in part in the fact that by leaving times as unspecified as possible, we facilitate the coordination of different plans.
Even within a single plan, the ability to decide later the exact time to perform the plan-steps enables us to minimize execution
costs by taking advantage of unpredictable features of the circumstances in which we will find ourselves at execution time.

When we engage in further planning for how to execute a previously adopted plan, regardless of whether the further planning is
scheduling or of the teleological variety, we are engaged in subsidiary planning. In chapter 7, I will discuss what effect scheduling
has on a previously adopted plan. Leaving that aside for now, consider what happens when we engage in teleological planning for
how to perform an operation prescribed by a previously adopted plan. The result is sometimes to transform an old plan into a new,
more specific plan. But usually the old plan and the new execution plan are kept separate. The execution plan is not literally part of
the old plan. It is "called by" the old plan, in precisely the sense that programs may call one another. There are obvious advantages
to this in cases where we later have to change our

3 This is again a familiar point in AI. [Sacerdotti 1975, 1977].

Page 217

plans. (Note the similarity to conventional programming wisdom.) If we run into difficulty, we can change an execution plan
without having to reconsider the plan that calls it. Of course, sometimes difficulties with execution plans will result in
reconsideration of the plans calling them. This happens, at least, when we encounter difficulty constructing a good execution plan.

2. Plans as Programs

The simplest plans are linear sequences of operations. But plans often have more complicated structures. For example, my garage-
painting plan may be the following: First, get the paint. Then someday next week when the weather is good, begin by painting the
south side of the garage, then paint the west side, then the north side, and then if there is still time, paint the east side. If there isn't
enough time to finish the east side, postpone that until the next day. This plan involves steps that are conditional in two ways. First,
some steps have preconditions. For example, the actual painting is to begin only if the time is sometime next week and the weather
is good. Second, the last step involves a conditional fork. Because I am uncertain whether I can finish the job in one day, I plan for
that eventuality: I plan to paint the east side if there is time, and otherwise to do it the next day.

The use of conditional steps enables us to make plans in the face of partial ignorance about the circumstances that will be
encountered during execution of the plan. The use of partial (schematic) plans is another mechanism that accomplishes the same
thing. Sometimes we do not know precisely what will happen, but we can be confident that what actually occurs will fall within a
narrow range of alternatives, and then it may be convenient to plan ahead for each alternative. This is particularly true if the
planning for each alternative is fairly complex (and so could not be done during execution) and we will have very little advance
warning of which alternative we will face. But at other times the set of possible alternatives may be too large to plan ahead for
each possibility and the decisions we will have to make when faced with the actual alternative are expected to be easy to make. In
that case it is better to keep the plans schematic and fill in the details on the fly.

Let us say that a plan-step is called when all of the plan-steps leading up to it have been executed. Plan-steps can be conditional in
two different ways, represented by the following plan for riding an elevator:

Page 218

1. Position yourself in front of the elevator door.
2. If the door is closed, push the button.
3. When the door is open, walk through it into the elevator.
4. Ride the elevator to the desired floor.

The second step contains a condition that is checked immediately upon that plan-step being called. If the condition is satisfied, the
step is executed; if it is not satisfied, then no operation is performed. Non-satisfaction of this condition does not have the
consequence that the plan has not been executed. The third step is conditional in a different way. If, at the time that step is called,
the door is not open, we do not ignore the step and proceed with the rest of the plan. Instead, we wait for the condition to become
satisfied. If it does not become satisfied, the step has not been executed and we have failed to execute the plan. I will call these if-
conditions and when-conditions, respectively. If conditions are useful because the agent may not know what conditions it will
encounter when the plan is executed. When-conditions reflect ignorance of timing. The agent may not know just when a plan-step
should be executed, and so it inserts a when-condition to determine that. Both are often formulated in English using ''if", but they
function differently in plans and must be clearly distinguished.

Both if- and when-conditions are situation-types.4 That they may be satisfied at one time but not at another time sets them apart
from what, in philosophical logic, are often called "states of affairs". The latter either obtain or fail to obtain simpliciter. They
cannot obtain at one time and fail to obtain at another.5

If-conditions are evaluated at the time a plan-step is called. If the if-condition is not satisfied at that time, the operation prescribed
by the plan-step need not be performed. By contrast, when-conditions prescribe waiting until something happens and then
performing the operation prescribed by a plan-step. The when-condition typically refers to something repeatable, and the intent is
for the agent to wait until it happens subsequent to the plan-step's being called. For example, if I am trying to meet someone at the
airport, but am unsure what flight she will be on, I may plan to wait until the noon shuttle arrives, and if she has not arrived by
then, I will go back to my office. But the

4 They are what are called "fluents" in the situation calculus [McCarthy and Hayes 1969].

5 See Pollock [1984].

Page 219

noon shuttle arrives every day, so in formulating the plan we need some way of referring to the first arrival to occur subsequent to
that plan-step's being called. As a general mechanism for this, I will allow when-conditions to use a dedicated variable *call-time*
in their formulation, where this variable is always bound to the time the plan-step is called. Thus the when-condition the noon
shuttle has arrived can be formulated more accurately as the noon shuttle has arrived at a time subsequent to *call-time*.

Conditionals are programming constructs. Plans can also involve other standard programming constructs. For example, a plan can
contain loops. The plan for getting into an elevator might be made more complicated by containing a contingency plan regarding
what to do if you do not succeed in entering in while the door is open:

1. Position yourself in front of the elevator door.
2. If the door is closed, push the button.
3. When the door is open, try to walk through it into the elevator.
4. If you fail, push the button and try again.
5. Once you have succeeded, ride the elevator to the desired floor.

Executing the fourth step of this plan involves returning to the second step and looping.6

Plans can also involve something like variable-binding. For instance, I may plan to stop in the doorway of the meeting room, look
around until I locate Stephen, and then walk over and greet him. Consider the relationship between the steps of looking around
until I locate Stephen and walking over and greeting him. The function of the first step is to determine his location, and then the
next step uses that location. In order to do that it must have some way of accessing the location just found, which means that the
location must be stored somehow for later retrieval. The standard way of representing this is with variable-binding. We can think
of the operation of looking around until I locate Stephen as returning the location as a value, and then the actual plan-step has the
form

bind-variable x value-of (looking around until I locate Stephen)

6 There has been some related work on recursion and iteration in plans. See Manna and Waldinger [1987] and Strong [1971].

Page 220

and the next plan-step has the form

walk to location x and greet Stephen.

Given that plans can incorporate conditionals, loops, and variable-binding, it follows that all standard programming constructs can
be incorporated into plans (because others can be defined in terms of these primitive constructs). In other words, we can think of
plans as programs for accomplishing various ends. When-conditions are not standard programming constructs in serial computing,
but they may become such in parallel computing where the order of execution of program steps cannot be predicted beforehand.
Although there is a formal parallel between plans and computer programs, there is an important conceptual difference in that we
think of each step of a computer program as having a determinate outcome, but the results of performing plan-steps can generally
be predicted only with varying degrees of probability.

Another important difference between plans and programs as generally conceived is that plans must be taken to have the form of
parallel programs rather than serial programs. This is not because plan-steps must be performed simultaneously (although that is
sometimes true), but because the exact order in which plan-steps are performed is frequently left unspecified in a plan. Some must
precede others, but often it will not make any difference in which order the steps are performed, and that can be left up to matters
of convenience, or can be determined later in light of the need to coordinate with other plans.7 For example, let us embellish the
elevator-plan and turn it into a plan for riding the elevator to Jones' floor:

1. Position yourself in front of the elevator door.
2. Check the number of Jones' floor on the directory next to the elevator.
3. If the door is closed, push the button.
4. When the door is open, walk through it into the elevator.
5. If you fail, push the button and try again.
6. If you succeed, push the button for Jones' floor.
7. Ride the elevator to thatfloor.8

7 Tate, Hendler, and Drummond [1990] refer to such plans as partial order plans. The first planner capable of generating partial-order plans
was NOAH [Sacerdotti 1975].

8 Note that an explicit representation of the structure of this plan would

Page 221

Figure 1. First version of the elevator plan

The plan need not specify the order in which steps 2 and 3 are performed. All that it should require is that both are performed after
step 1 and before step 4. The order of dependency can be graphed as in figure 1. Note the difference between step 3 and step 4.
Both are linked to pairs of preceding steps, but in different ways. Either both step 2 and step 3 or both step 3 and step 5 must be
executed before step 4 is executed. This is indicated by linking the arrows together. Step 3, on the other hand, is to be executed
when either step 5 or step 1 is executed. The notation used is the familiar notation from and/or graphs.

3. Plans as Graphs

I find the graphical representation of plans to be the most general and most useful. It can be made explicit by defining plans to be
sets of plan-nodes, where the plan-nodes are data structures encoding the links in the graph and the condition/operator structure of
the plan-steps. This can be done as follows:

A plan-node is a data structure having slots for the following:

• Call sets. This is a set of sets of plan-nodes. Successful "non-vacuous" execution (that is, execution in which the if-conditions

involve binding a variable to the number found for Jones' floor in step 2 and then using that in steps 6 and 7.

Page 222

are satisfied) of all the nodes in any of these sets "calls" the current node. Different sets represent different paths to the current
node. For example, the call-sets for node 3 above will be {{node 1} {node 5}}, while the call-sets for node 4 will be {{node 2,
node 3} {node 3, node 5}}. The difference reflects the difference between or-links and and-links.

• If-condition. If this condition is satisfied at the time the node is called, then successful non-vacuous execution of the node
requires that the node-operation be performed at a time beginning with a time at which the when-condition is satisfied. If this
condition is not satisfied, the node is executed vacuously without anything being done.

• When-condition. Performance of the operation is to begin at a time when this condition is satisfied. It need not begin immediately
upon the when-condition's becoming satisfied, but it must begin while the when-condition is satisfied. The variable *call-time* is
bound to the time a node is called.

• Operation. This is the operation to be performed. Among the possibilities are nulop (the null operation, whose performance
requires nothing) and bind-variable. I will refer to this operation as the operation prescribed by the node.

• Subplan. This is a plan for how to perform the operation. Like any other plan, it is a set of plan-nodes, and it may be empty.

• Goals. It will be convenient to keep track of which nodes of a plan aim at the "direct" satisfaction of goals without any further
action on the part of the agent. This slot lists the goals (if any) that the present node aims to satisfy directly. A node is goal-laden
iff this list is nonempty.

These six slots will suffice for the current investigation of the logical structure of plans. For actually building a planning system
that constructs plans with this structure, it may be useful to add some slots to hold further information. For example, the following
may prove useful:

• Expectations. This keeps track of what we expect to be the case when this node is called. It will be used for monitoring plan-
execution. If expectations are not satisfied, plans must be re-evaluated and possibly aborted.

For now, however, I will take a plan-node to have only the first six slots.

Page 223

To explain the precise meaning of the slots of a plan-node, we must define what it is for a plan consisting of such plan-nodes to be
executed. We begin by defining the following concepts:

If n and m are plan-nodes, n is an immediate-ancestor of m iff n is a member of some member of the call-sets of m.

m is an immediate descendant of n iff n is an immediate-ancestor of m.

n is an ancestor of m iff n is an immediate-ancestor of m or n is an immediate-ancestor of an ancestor of m.

m is a descendant of n iff n is an ancestor of m.

A plan is a finite set of plan-nodes, closed under the ancestor-relation (that is, if n is in the plan and m is an ancestor of n, then m is
also in the plan).

Initial nodes are those with which plan execution begins, and terminal nodes are those with which plan execution ends:

n is an initial node iff ∅∈ (call-sets n).

n is a terminal node of a plan σ iff there is no node m in σ that is a descendant of n.

A plan is executed by a finite sequence of operation-performances, where an operation-performance is a concrete event. An
operation-performance has associated with it a time interval over which it occurs, which I will call the performance interval of the
performance. Suppose σ is a plan all of whose nodes have empty subplans. To say that σ is executed by a sequence of operation-
performances relative to a time t0 is to say that plan execution began at t0 (so that is the time at which the initial nodes were called),
and the operation-performances represent the performance of the operations of nodes that were executed non-vacuously in
executing the plan. More generally, plans can call other plans that are subplans for their nodes. In that case, what is required is that
the subplan (rather than the operation) be executed at the appropriate time.

To make this precise, let us begin by defining a flat plan to be one all of whose nodes have empty subplans. A hierarchical plan is
any

Page 224

plan that is not a flat plan. For every hierarchical plan there is an "executionally equivalent" flat plan that results from recursively
replacing nodes having nonempty subplans by their subplans (adjusting the call-sets in the obvious way, that is, the initial nodes of
a subplan are called by the nodes that originally called the node for which that is a subplan, and nodes called in part by that node
are instead called by the terminal nodes of the subplan). I will call this the flattening of the hierarchical plan. A hierarchical plan is
executed by a sequence of operation-performances iff its flattening is. What remains is to define execution for flat plans. That is
done as follows:

If σ is a flat plan and µ is a set of pairs (op,n) where op is an operation-performance and n∈σ, then µ satisfies σ relative to a
starting time t0 iff:

(1) the operation-performances in distinct members of µ are distinct;

(2) each non-initial node is called by previous performances,
that is, for each (op,n)∈ µ :

(a) op is the performance of an operation of the type prescribed by n;

(b) there is a set {n1,...,nk} that is a call-set of n (k possibly 0) such that for some op1...,opk(op1,n1),...,(opk,nk)∈µ and if the
performance intervals of op1,...,opk are [1t1,1t2],... [kt1,kt2] respectively, then the if-condition of n is satisfied at the time t*, which is
the latest time of 1t2,...,kt2 (or at t0 if k = 0);

(c) if [t1,t2] is the performance interval of op, then t0 ≤ t1, and the when-condition of n is satisfied at t1. If the when-condition is
formulated using the variable *call-time*, this is taken to denote t*, defined as in (b);

(3) if a plan-step is called by some of the performances, then it is performed, that is, for each n∈σ, if

(a) there is a set {n1,...,nk} that is a call-set of n (k possibly 0), and

(b) there are op1,...,opk such that (op1,n1),...,(opk,nk)∈µ, and if the performance intervals of op1...,op are [1t1,1t2],..,[kt1,kt2]
respectively then the if-condition of n is satisfied at the latest time of 1t2,...,kt2 (or at t0 if k = 0),

then there is an op such that (op,n)∈µ.

Page 225

In clauses (2c) and (3), the case where k = 0 is the case where n is an initial node. Then we define:

A sequence (op1...,opk) of distinct operation-performances executes a flat plan σ relative to a starting time t0 iff there is a mapping
η from {op1,...,opk} to σ such that the set of pairs {(op1,η(op1)),...,(opkη(opk))} satisfies σ relative to the starting time t0.

A plan is executed iff it is executed by some sequence of operation-performances.

The preceding definitions give precise content to the slots of a plan-node. I will refer to this as the OSCAR plan representation
framework. It can be illustrated by considering the plan to ride the elevator to Jones' floor. We can diagram it as a graph of plan-
nodes as in figure 2. The "naked" arrow pointing to node 1 indicates that it is an initial node.

Note the addition of node 3a to the diagram. This is required by the precise semantics that has now been provided for the if-
condition. The if-condition plays two separate roles: (1) it determines whether the operation is to performed, and (2) it directs the
flow of execution through the plan. If the if-condition is not satisfied, then the node is executed vacuously, and its execution does
not contribute to the calling of its immediate descendants.9 This has the consequence that if node 2 has been executed but the door
is open when node 3 is called, then nodes 2 and 3 together will not call node 4. To get node 4 called under these circumstances, we
must add node 3a.

We can distinguish six different kinds of conditional-dependency that we may want to build into plans:

1. A conditional can determine whether an operation is to be performed and direct the flow of execution by determining whether
descendant nodes are to be called. This is the standard case expressed by the if-condition in plan-nodes.

2. A conditional can direct the flow of execution without specifying any operation to be performed. This is accomplished in the
OSCAR plan formalism by employing nodes prescribing the null operation, as in node 5.

9 This allows us to chain a number of plan-nodes together, all conditional on the if-condition of the first node.

Page 226

Figure 2. The elevator plan

Page 227

3. A conditional can determine whether an operation is to be performed, without affecting the flow of execution. This was the
intent of step 2 in the informal description of the elevator plan. This can be captured (as in the example) in the OSCAR plan
formalism by a pair of nodes having the same immediate descendants, where one of the nodes specifies that if the condition is
satisfied then the operation is to be performed, and the other specifies that if the condition is not performed then the null operation
is to be performed. The function of the second node is just to direct the flow of execution, as in case (2) above.

4. It is often desirable to list several exclusive cases and specify what operation is to be performed and how the flow of execution
is to go as a function of which case is satisfied. That is readily accommodated in the OSCAR plan formalism by having a separate
node for each case.

5. We frequently want to list several exclusive cases and specify what operation is to be performed, without affecting the flow of
control. This can be accomplished just as above by using separate nodes for each condition but giving them all the same immediate
descendants.

6. We may want to list several exclusive cases and have them determine the flow of execution without specifying any operation to
be performed. Again, this can be done by having different nodes for each case, each node prescribing the null operation.

If-conditions determine whether an operation is to be performed. When-conditions impose constraints on when an operation is to
be performed. The when-condition of a node does not indicate that the operation should be performed immediately upon the
condition's being satisfied. Rather, the operation is to be performed beginning at some time at which the condition is satisfied. A
when-condition "opens a window of opportunity". Sometimes we also want to specify when the window of opportunity closes by
using a condition we would formulate in English as, "When Q and before R". For instance, in constructing a plan for getting into a
car, we might include a plan-step of the form "When you get into the car and before you start driving, fasten your seatbelt". It
might seem initially that this kind of when/before locution can be expressed by using a when-condition of the form you are in the
car and have not yet started driving. This is inadequate, however. The second part of the condition is to be understood as requiring
that you have not yet started driving since getting into the car,

Page 228

not that you have not yet ever started driving. However, in the expression ''you are in the car and have not yet started driving",
there is no way to refer to the time of getting into the car, so there is no way to give this the intended meaning. What we want to
require is that you have not yet started driving since the first time you got into the car since the time the node was called. This
cannot be expressed using a single plan-node, but we can express it using a pair of nodes. Recall that the variable *call-time* is
bound to the time a node is called. In general, a node of the form

can be regarded as an abbreviation for the following pair of nodes:

In this construction, the first node is automatically executed as soon as Q becomes true, so that is the *call-time* for the second
node. The second node is then successfully executed if R is not true at call time and does not become true before op is performed. I
believe that this formalism will prove generally adequate for the formulation of plans. This assumption provides the basis for the
design of the PLAN-EXECUTOR, discussed in chapter 8.

Page 229

4. The Expected Value of a Plan

In chapter 5, an account was proposed for how to choose between competing plans in terms of their expected values. The expected
value of a plan σ was defined to be the difference between the definite expected situation-liking of the situation type consisting of
adopting the plan and the definite expected situation-liking of the situation type consisting of not adopting the plan. This suffices
to render the concept well-defined, but a rational agent engaged in plan-based practical reasoning is still faced with the formidable
task of computing or estimating the expected values of plans. This task is complicated by the fact that the way in which a plan is
executed may depend upon contingent facts governing how the plan unfolds at conditional forks, which can in turn affect the
expected execution costs and the likelihood of being able to perform the prescribed operations. We can deal with this by defining
the notion of an execution path through a plan. Intuitively, an execution path is an ordering of plan nodes that describes a way a
plan may be executed. Which execution path will actually occur can be predicted only with probability. We can, however,
compute the probability of each execution path, and the expected value of each execution path, and then we can evaluate the entire
plan as a weighted average of the expected values of the execution paths. More precisely, where σ is a plan and Ω is the set of all
possible execution paths for a, we can calculate the expected value of σ as follows:

where PROBa(ρ/σ) is the probability of ρ being the actual execution path given that σ is adopted.10 The index α is the degree of
justification relative to which the probabilities are being computed. This will be determined by the degree of interest in the plan.

We must understand execution paths in a way that accommodates the fact that we may try to execute a plan and fail. Failures of
execution can contribute significantly to the value of the plan. Failed attempts at execution produce truncated execution paths.
Such truncations can result from either failed when-conditions or failures to perform operations

10 Note that the execution of a plan begins at the time it is adopted. Its initial nodes are called at that time. Of course, if they involve when-
conditions, nothing may actually happen for some time afterwards (sometimes years).

Page 230

during when-conditions. Execution paths that are not truncated are complete.

Obviously, failures of execution can contribute negatively to the value of a plan. For example, if a plan involves jumping over a
crevasse and we try and fail, the results may be catastrophic. At a more mundane level, executing the first part of a plan may
involve significant execution costs, which will be recouped by achieving the goals of the plan only if the plan is successfully
executed. On the other hand, it must not be overlooked that a single plan may aim at achieving several goals (e.g., a plan to run
several errands on one trip), and some of the goals may be achieved even if we fail to execute the entire plan. Thus truncations can
have positive values as well as negative values.

In using (4.1) to compute expected values, a complication arises from the fact that plans containing loops may have infinitely
many (progressively less probable) execution paths, in which case the sum becomes an infinite sum. Although this is not a
difficulty for the theoretical correctness of (4.1), it creates a major practical problem for an agent that must actually compute the
sum. This must be addressed by any attempt to implement plan-based practical reasoning, but it will not be addressed here.

For some looping plans, where we plan to keep doing something until we fail, there will be no finite complete execution paths. All
finite paths represent execution failure at some point, and an infinite path will have zero probability. The plan is adopted with the
assumption that execution will eventually fail, and it gets its entire value from truncated execution paths.

To complete this account, we must give a precise definition of "execution path". Because of parallelism, execution paths are best
conceived as graphs charting the course of execution of a plan, with the links recording which nodes are called by which.
Precisely, define:

A (possibly truncated) execution path through a plan σ is a finite graph ξ whose nodes are labeled by plan-nodes of the flattening
of σ and is such that for each node η of ξ, if η is labeled by the plan-node n of the flattening of σ, and X is the set of immediate
ancestors of η in ξ, then the set of plan-nodes of the flattening of σ labeling the members of X is a member of the call-set of n.

ξ is a truncated execution path through a plan σ iff ξ is an execution path through σ and there is a plan-node n of the flattening of
σ such that some call-set of n consists of plan-nodes that label nodes of ξ, but n does not label any node of ξ.

Page 231

ξ is a complete execution path through σ iff ξ is an execution path through σ and ξ is not truncated.

The intent of this definition is that the execution path represents the nodes that were non-vacuously executed and their calling
history. If a set of plan-nodes labeling nodes in the execution graph is a member of the call set of a plan-node not labeling a node
in the execution graph, then the latter plan-node was not non-vacuously executed. That is, either its when-condition was never
satisfied, or the operation was not successfully performed when the when-condition was satisfied. Accordingly, the execution path
is a truncated execution path.

To incorporate (4.1) into an artilect, we must supply algorithms for computing the probabilities and expected values of execution
paths. The probability PROBα(ρ/ σ) is the probability of ρ's being the execution path given that σ is adopted. The general flavor of
how this probability is computed can be gleaned from the following special case. A linear execution path is one such that given
any two nodes, one is an ancestor of the other. (This precludes the parallel execution of nodes.) Such an execution path is a linear
sequence ρ1,...,ρk of nodes. The probability of the execution path is the probability of the conjunction of those nodes being
executed in that order. If p is a complete execution path, that probability is the product

PROBα(ρ1/ σ)·PROBα(ρ2/ρ1& σ).....PROBα(ρk/ρ1&...&ρk-1& σ)

If p is a truncated execution path, then the product must contain one more term representing the probability of execution being
truncated at ρk. For execution paths involving the parallel execution of different nodes, things are somewhat more complicated, but
the general idea is the same. The difference is that we must consider sets of nodes rather than individual nodes. The probability of
the execution path is the probability of executing all initial nodes times the probability of executing all nodes called by the initial
nodes given that they are called, and so forth.

The expected value of an execution path can be regarded as having two constituents. First, in constructing a plan, the assumption is
that the only sources of positive value are the goal-laden nodes. This may seem an unreasonable assumption, because the goals of a
plan are the situation-types that initiated the planning, but once a plan is discovered it may be apparent that it has beneficial side
effects that were not among the original goals of the plan. However, this can be handled

Page 232

by adding such side effects to the list of goals as they are discovered. Each goal has an expected value, which is stored as the
strength of the desire encoding it,11 and each goal-laden node has a certain propensity to achieve the goal and realize that expected
value. It must be borne in mind, however, that the expected value of a goal may be affected by its being embedded in the context
of the execution path. Different goals achieved by an execution path may either interfere with or reinforce each other, and other
aspects of the execution path can also affect the value of a goal. Accordingly, we must look at the expected value of the goal in the
context of the execution path. This is the difference between the expected situation-liking of the goal, in that context, and the
expected situation-liking of the goal's not being achieved, in that context. The probability that the goal will be achieved by
execution of the goal-laden node may also be a function of the actual execution path in which the goal-laden node occurs. Thus the
positive value of a goal-laden node is the product of the expected value of the goal in the context of that execution path and the
probability of the goal's being achieved by the execution of the goal-laden node in the context of that execution path, less the
expectation of achieving the goals anyway, without executing the plan. The positive constituent of the expected value of the
overall execution path is the sum of these values for all the goal-laden nodes occurring in it. The second constituent of the value of

an execution path is its execution cost. That is the sum of the expected costs of performing each operation in the execution path in
the context of that path. These costs must include any known adverse side effects of executing the operation in the context of the
execution path.

We must be careful to avoid a simplistic view of goals. It is tempting to regard goals as fixed situation-types. But as Georgeff
[1987] points out, there can also be goals of maintaining a current state or of preventing a certain state. Even more problematic is
the fact that we may have the goal to achieve as much of something as we can. For instance, having spilled water on the kitchen
floor shortly before I must leave for school, I may adopt the plan of mopping the floor until I must leave, with the goal of getting it
as dry as I can in the time I have. Such a goal can be viewed as a variable situation-type, with a variable parameter. The value of a
situation of this type is a function of the value of the parameter. Such a goal is not achieved simpliciter. It is achieved with a
certain parameter value. Accordingly, the expected

11 See the discussion of this in chapter 1.

Page 233

value of such a goal is the expected value computed on the basis of a probability distribution of the values of the parameter.

Top-level plans are plans that are not subsidiary to other plans. The preceding account of expected values was designed with top-
level plans in mind, but it also works for subsidiary plans if we treat their goals properly. The goal of a subsidiary plan is the
execution of some operation prescribed by a node of a higher-level plan. This goal is encoded in an instrumental desire. In an
ideally rational agent, the strength of a desire is the difference between the expected situation-liking of the desire's being satisfied
and the expected situation-liking of its not being satisfied, and this can be taken as a measure of the expected value of the
instrumental goal.12 Suppose we have two instrumental desires and plans for their satisfaction, but the plans compete. In deciding
which plan to adopt, an agent should look at which desire is stronger and at the execution costs of the plans, so this suggests that
instrumental desires work just like primitive desires in contributing value to a plan. Of course, for primitive desires, the "raw desire
strength" may differ from the value of the goal in the context of the plan, and in that case it is the latter that must be employed in
computing expected values. But the same is true of instrumental desires. To illustrate, suppose an instrumental desire arises from a
plan to achieve a certain goal G. Suppose a subsidiary plan is constructed for satisfying the instrumental desire, and it turns out
fortuitously that it will also achieve G independently and prior to satisfying the instrumental desire. It was urged above that in
order to get the computation of expected value to come out right, when it is discovered that a plan contributes to the situation-
liking in a previously unanticipated way, that must be added to the list of goals for the plan. Accordingly, in the case envisaged, G
must be added to the list of goals for the subsidiary plan. This will have the result that G and the instrumental desire will each
contribute value to the plan. This, however, seems wrong. Once G is achieved, the satisfaction of the instrumental desire becomes
worthless. This problem is resolved by noting that just as primitive goals must be assessed in the context of the plan, the same is
true of instrumental goals. The instrumental goal must be evaluated in terms of the difference between the expected situation-
liking of the desire's being

12 There is a further complication, which will be ignored for the time being: instrumental desires and instrumental goals are conditional on the
node of the higher-level plan from which they are derived being called. The proper treatment of such conditional goals will be discussed in
chapter 7.

Page 234

satisfied in the context of the plan and the expected situation-liking of its not being satisfied in the context of the plan. In the
context of an execution path in which G is achieved first, subsequent satisfaction of the instrumental desire will receive a value of
zero.

To recapitulate, the expected value of a plan was defined to be the difference between the definite expected situation-liking of the
situation type consisting of adopting the plan and the definite expected situation-liking of the situation type consisting of not
adopting the plan. The problem then arose how to compute these expected values. I have described a solution to this problem, and
it might be possible to build an agent that actually performs the calculations described in an explicit manner. It should be
emphasized, however, that I am not claiming that human beings proceed in this way. At least at the level of explicit reasoning, it is
clear that human beings do not normally perform such complex calculations in the course of their planning. I conjecture, however,
that human beings emply Q&I modules that approximate these calculations to some degree. In this connection it should be
observed that although human estimates of probabilities do not produce precise numerical values, they do produce more than
ordinal comparisons. We are able to estimate not just that one outcome is more likely than another but also that it is a lot more
likely, or just a little more likely, and so forth. Human neural hardware seems to lend itself to analogue computations yielding such
estimates rather than to precise digital calculations. I conjecture that similar Q&I modules perform analogue computations yielding
at least rough approximations of the calculations of expected values described above.

Page 235

Chapter 7 An Architecture for Planning

1. Practical Reasoning

I have argued that a rational agent directs its activity by adopting plans and acting upon them. I have given a general account of the
logical structure of plans and a preliminary account of the criteria that a rational agent uses in choosing among plans. The objective
of this chapter is to complete the latter account and describe the architecture of a rational agent capable of plan-based practical
reasoning. The architecture determines the control structure that governs the way in which the rational agent uses the logical rules
of plan-based reasoning to arrive at practical conclusions. The ultimate objective is to produce an account of sufficient precision to
provide the basis for an artilect OSCAR.

A rational agent begins with primitive desires about the future produced by epistemic cognition and optative dispositions and then
deliberates about how to satisfy those desires. The agent adopts plans on the basis of that deliberation. We can distinguish two
central tasks within practical reasoning: (1) constructing and adopting plans; and (2) directing activity given our desires and plans.
We can think of (1) as being performed by a functional module called the PLANNER, and (2) by a functional module called the
PLAN-EXECUTOR. The flow of data through these modules is depicted in figure 1, which is a slight embellishment of figure 3 of
chapter 1. Circles represent databases and rectangles represent data-processing modules. Solid arrows indicate the flow of new data
that drives the operation of the modules, and dashed arrows indicate the retrieval of previously stored data. One possibly
misleading feature of this diagram is that it might be read as depicting epistemic cognition as separate from the PLANNER and
PLANEXECUTOR. That is not the intent of the diagram. It will become apparent that large parts of planning and plan execution
are carried out by epistemic cognition.

This chapter will investigate the PLANNER and the next chapter will investigate the PLAN-EXECUTOR.

Page 236

Figure 1. Flow of data in practical reasoning

Page 237

2. Planning

We can usefully distinguish three levels of planning: we plan for how to satisfy a primitive desire, for how to perform the
operations prescribed by other plans, and for when to perform them. I will refer to the first of these three kinds of plans as top-level
plans and the others as subsidiary plans. Planning for how to do something is teleological planning. This consists of means-end
reasoning and general problem solving. Planning for when to do something is scheduling. Teleological planning and scheduling
proceed in importantly different ways. When a teleological subsidiary plan is adopted, it is not integrated into the original plan. It
is a separate plan that is called by the original plan. The original plan remains intact. But scheduling proceeds by modifying the
original plan, adding timing instructions. (Of course, timing instructions can also be incorporated into a plan when it is first
constructed. They need not be the result of subsequent scheduling.) The nature of these timing instructions will be discussed in the
next section.

The initial planning that transpires in response to the acquisition of primitive desires is top-level teleological planning. It has
already been observed that such planning tends to be rather schematic. Suppose I form the desire for my garage to look better. In
response to that desire, I may adopt the top-level plan to paint it. Notice just how schematic this plan is. It contains no specification
at all of how I will go about painting it or when I will do it. Having adopted this simple top-level plan, I must plan further. The
adoption of this plan must somehow initiate subsidiary planning for how to paint the garage. The resulting subsidiary plan might
take the following form:

1. Buy the paint.
2. Make sure the ladder is in good condition.
3. When the weather is good, paint each wall of the garage.

The structure of this plan can be represented more accurately by the following graph:

Page 238

Consider each plan-node. Node 1 is going to require further subsidiary planning. I must plan how to buy the paint: what kind of
paint, what color, at what store I should buy it, how I will pay for it, and so forth. Node 2 illustrates something that will be of
considerable importance. Although checking the condition of the ladder is a rather complicated procedure, I need not plan for how
to do it, because I ''know how to do it". Such knowledge consists of a stored plan schema that I am able to retrieve and act upon
whenever I want to check the condition of a ladder. I will call such stored plan schemas standing plans and will discuss them at
greater length later. Node 3 is similar because I know how to paint the wall of a garage.

Having constructed this subsidiary plan for how to paint my garage, and perhaps a further subsidiary plan for node 1, I am still not
ready to paint my garage, because nothing in this plan tells me when to do anything. Node 3 does contain a when-condition, but it
is a very indefinite one. As it stands, I can execute this plan at any future time as long as the weather is good when I do the actual
painting. This plan cries out for scheduling. I must decide when to buy the paint, when to check the ladder, and when to do the
actual painting. This requires further subsidiary planning. It must eventually be determined exactly when operations are to be
performed, but my initial scheduling may be much more indefinite than that. For example, I may decide to buy the paint tomorrow.
That leaves undetermined just when tomorrow I will do it. When tomorrow rolls around, I must do some more specific scheduling.
At that point I may decide to buy the paint in the afternoon, but that is still pretty indefinite. As the day progresses and

Page 239

I get a better picture of what I must do during the day, I will be in a position to decide more precisely just when I will buy the
paint. Knowing that I am going to the grocery store after lunch, I may decide to pick up the paint on my way to the grocery store.
Notice that I may also wait until making this decision to decide just where to buy the paint. Because I am going to buy it while on
my way to the grocery store, it may be more convenient to buy it at one paint store (The Flaming Rainbow) rather than another,
and so I choose my paint store on that basis.

Let me summarize my conclusions so far. First, our top-level plans tend to be very schematic. Adopting a schematic plan must lead
to the initiation of further subsidiary planning. Second, our teleological planning typically leaves the scheduling of nodes quite
indefinite. At some point, further scheduling must occur. Third, some aspects of teleological planning may depend upon decisions
regarding scheduling, so scheduling and teleological planning must be interleaved.

The PLANNER can be viewed as having three components: (1) a component that initiates planning when new primitive desires are
acquired; (2) a component that actually does the planning, constructing new plans that thereby become candidates for adoption;
and (3) a component that determines whether to adopt a candidate plan. These are the PLANNING-INITIATOR, the PLAN-
SYNTHESIZER, and the PLAN-UPDATER, respectively. As I conceive it, the PLANNING-INITIATOR responds to the
acquisition of new desires. It is the trigger that begins the process of planning. As such, it can initiate the operation of the PLAN-
SYNTHESIZER, which produces new plans that are put in a database of candidate-plans. The PLAN -SYNTHESIZER is
responsible for both teleological planning and scheduling. The PLAN-UPDATER is responsible for all changes in what plans are
adopted. Such a change can consist of either the adoption of a new candidate plan or the withdrawal of a previously adopted plan.
This encompasses the modification of previous plans, because that consists of withdrawing the original plan and adopting the
modified plan. This somewhat more detailed understanding of the PLANNER allows us to diagram it as in figure 2.

The next task is to give more precise descriptions of each of the modules in this diagram. Before doing that, however, contrast this
architecture with the architecture implicit in some of the early AI planning literature. That architecture has a simple form. All of
the agent's desires are presented to the PLAN-SYNTHESIZER simultaneously, in one package, and then the PLAN-
SYNTHESIZER is expected to fabricate a plan for this combination. If an agent's desires change—for example, as a

Page 240

Figure 2. Architecture of the PLANNER

Page 241

result of acquiring a new desire—then the planning must be redone. The obvious objection to this architecture is that it could work
only for artificially circumscribed problems. First, a real agent embedded in the real world has a huge number of desires. No
planning algorithm could actually produce a single plan for the simultaneous satisfaction of all these desires. Second, new desires
are added with great rapidity. It is totally impractical to replan from scratch whenever a new desire is acquired. Third, this
architecture completely overlooks the need to choose between competing plans. It cannot be assumed that the
PLANSYNTHESIZER will produce only optimal plans. That is an impossible desideratum. The first two of these considerations
indicate that any rational agent able to function in the real world must be able to plan incrementally for the satisfaction of different
desires and then work at combining the plans.1 The task of combination requires evaluating plans in the context of other plans and
rejecting plans that would be good by themselves but are not good plans when combined with other good plans.

3. Scheduling

To get a better grasp on how scheduling works, let us think some more about the example of painting my garage and deciding
when to buy the paint. This example of scheduling illustrates several things. First, scheduling need not specify times very exactly.
Initially, I decided to buy the paint tomorrow, then tomorrow afternoon, and finally on my way to the grocery store. I may never
explicitly make a more precise decision regarding when to buy the paint, because having decided to buy it on the way to the
grocery store, I let the exact timing be determined by the process of executing the plan. I will say more about this when I talk about
plan execution in the next chapter. The second point illustrated by this example is that scheduling can determine times in different
ways. We can schedule a plan-node to be executed at an absolute time (e.g., 3 P.M.) or during an absolute time interval (e.g., this
afternoon), or we can schedule it relative to the execution of other plan-nodes (e.g., on my way to the store).

1 For some attempts to deal with this problem, see Sussman [1973], Tate [1974], Waldinger [1977], and Pednault [1986].

Page 242

The logical structure of scheduling is fairly simple. Whenever a new plan is adopted, its nodes become candidates for scheduling.
The original teleological planning proceeds by constructing the bare bones of a plan that will, with a certain probability, result in
the satisfaction of a desire. Scheduling proceeds by looking for occurrences to which nodes of the plan can be linked with the
result that the embellished plan becomes preferable to its ancestor. Scheduling often accomplishes this by coordinating steps from
different plans (e.g., buying the paint on the way to the grocery store) or taking account of circumstances external to the plan that
affect either execution costs or the probability of successfully executing the plan (e.g., taking account of the fact that the paint store
is closed from noon to 1 P.M. for lunch). Scheduling constrains the times at which nodes are called (their call-times) with two
mechanisms. First, it establishes additional scheduling links between nodes. The addition of such links imposes new constraints on
the order in which nodes are executed. The links that are imposed by the initial teleological planning will henceforth be called
teleological links. The scheduling links and the teleological links together will comprise the call-sets for a node. Scheduling links
can occur between members of a single plan or members of different plans, and can link nodes of subsidiary plans and higher-level
plans. The result of adding such links is to create new plans that combine previously separate plans. Scheduling may have the
effect of explicitly incorporating subsidiary plans into their containing plans.

Scheduling links between pre-existing nodes constrain the call times of nodes relative to each other. Scheduling can also fix call
times absolutely, stipulating either that a node is to be called at a certain time, or when some particular event occurs. Such absolute
scheduling can be achieved by introducing timing nodes into a plan. These are nodes that are automatically "executed" at a certain
time or when a certain event occurs (without the agent's having to do anything). They can be represented in the OSCAR planning
formalism as nodes in which everything but the when-condition is vacuous: when P, nulop. We can then set the absolute call time
of a node by taking the unit set of a timing node to be one of the call-sets of the given node. For example if we want node n to be
called at 3 P.M., we can construct a timing node m having the form when it is 3 P.M., nulop. Then if we insert {m} into (call-sets
n), this has the result that n is automatically called at 3 P.M.. This can be represented graphically as follows:

Page 243

Scheduling imposes timing constraints on previously adopted plans. It is important to realize, however, that timing constraints can
also be part of the original teleological plan (in which case they are included in the teleological links). For instance, I may decide
to go to a concert that has performances only on Saturday and Sunday evenings. My only way to get to the concert is to go with
Joe, who has a car, and he is going on Sunday. Thus my teleological planning leads me to plan to go with Joe on Sunday. Although
teleological considerations may, in this manner, impose timing constraints, they usually leave many scheduling questions
unanswered. For example, although teleological considerations determine that I will go to the concert on Sunday, they do not
determine that I will leave the house at 7:18 P.M.. We rarely decide precisely when we are going to do something until we actually
do it.

The distinction between scheduling and teleological planning does not lie in the content of the plans produced but in the nature of
the planning operation itself. Scheduling can be defined as the ordering of pre-existing nodes with respect to each other or with
respect to new timing nodes. Teleological planning is any other planning.

Although scheduling is a different operation from teleological planning, it is not independent of it. Difficulties in scheduling can
lead to changes in teleological planning. For example, suppose I need an ingredient for a meal I am cooking, and to get it I must
hurry to the grocery store. This may leave me without time to stop at the paint store, so I alter that part of my schedule. But having
altered that part of my schedule, there is no longer any reason to buy the paint from The Flaming Rainbow rather than another
paint store, so I may alter that part of my subsidiary plan regarding how to buy the paint.

We often make schedules before adopting a plan for how to perform an operation and then fine-tune them later as we refine our
teleological plans. For example, I may decide to go to the store after lunch and before going to school without deciding on a
precise route. In making such a schedule, I am relying upon general knowledge about how long it will take to go to the store and
knowledge to the effect that my precise route will not make much difference to the time required. There is usually no need to make
schedules very precise, so such rough general knowledge is normally quite adequate.

Page 244

4. The PLANNING-INITIATOR

The PLANNING-INITIATOR initiates both teleological planning and scheduling for the satisfaction of newly acquired goals
(encoded as primitive desires) and newly planned operations (encoded as instrumental desires). A superficial examination of the
circumstances in which plans actually get constructed suggests that the structure of the PLANNINGINITIATOR must be rather
complicated. For example, upon acquiring a new desire, we sometimes produce a plan for its satisfaction immediately. But on
other occasions, we seem to postpone planning until we have more time to think about it or more information at our disposal. I
suggest, however, that the structure of the PLANNING-INITIATOR is actually quite simple and that all of this apparent
complexity can be accommodated by a simple architecture. When we acquire a new desire, it is immediately sent to the PLAN-
SYNTHESIZER, along with a measure of the strength of the desire. The latter is used for prioritizing the reasoning tasks involved
in constructing plans. In particular, it determines the degree of interest assigned the queries sent to the interest-driven epistemic
reasoner. The PLAN-SYNTHESIZER then processes the new desires in the order determined by their degrees of interest. While
they are awaiting processing, the desires will be stored on a queue, ordered according to priority, and the PLAN-SYNTHESIZER
will retrieve them one at a time. I will refer to this queue as the desire-queue. My suggestion is that such a prioritized desire-queue
represents the main structure of the PLANNING-INITIATOR. Items are retrieved from the desire-queue in order of strength, and
when an item is retrieved, it is passed to the PLAN-SYNTHESIZER.

Delayed Planning

This simple architecture may seem too simple to accommodate the facts about how planning actually transpires. The first difficulty
is that planning often seems to be postponed. Rather than planning for the satisfaction of a desire as soon as we acquire it, we may
wait until we have more time or more information. However, such delayed planning can be explained by several different general
facts about cognition, without complicating the PLANNING-INITIATOR. The most important point is that thinking takes time
and resources. We almost always have more cognitive operations to perform than we can perform at any given instant.
Accordingly, they must be put on a queue and await their turn. The order in which they are prioritized on the queue reflects some
rough measure of importance. In the case of planning

Page 245

for the satisfaction of desires, strong desires are queued in front of weak desires and so will receive priority in planning. For
example, if I am put in a room with a tiger, I will most likely begin planning immediately for how to get away from the tiger
because that is something I desire very strongly. If at the same time I become mildly curious about the identity of the composer of
the background music that I hear, that too will go on my desire-queue, but the desire will be sufficiently weak that I may never get
around to planning for its satisfaction because I may always have more pressing things to think about.

A second general feature of cognition that leads to delayed planning is that the construction of plans is carried out by the epistemic
reasoner, and epistemic reasoning is interest-driven. This has two important consequences for planning. First, interests come in
varying strengths. When the practical reasoner poses a question for the epistemic reasoner, the strength of the interest that attaches
to the question is determined by the strengths of the desires leading the practical reasoner to pose that question. The point of
assigning strengths to interests is that they govern the priorities that the epistemic reasoner assigns to trying to answer the
questions. To illustrate this point with the preceding example, suppose I become interested in the identity of the composer before
noticing the presence of the tiger. The practical reasoner will pass to the epistemic reasoner the task of planning how to discover
the identity of the composer, and the epistemic reasoner may begin thinking about that. But then when I notice the tiger, questions
of much greater urgency are passed to the epistemic reasoner, with the result that although the questions about the composer
remain of interest, no further reasoning about them will occur until the more pressing questions about the tiger are answered.

Furthermore, even if a question of great interest is passed to the epistemic reasoner, this does not guarantee that much of anything
is going to happen. Only if the reasoner has beliefs at its disposal from which it can make progress in answering the question will
the reasoner engage in active reasoning to that end. If a rational agent does not have appropriate information at its disposal for
answering a question, then even though it retains strong interest in the answer, it may not do anything at all in connection with the
question. It may just record the interest and wait for some relevant new information to come along. Consequently, although the
planning for the satisfaction of strong desires may be initiated before the planning for the satisfaction of weak desires, there may
be nothing the reasoner can do immediately in planning for the strong desires, and so plans for satisfying the weak desires may be
produced before plans for satisfying the strong desires.

Page 246

A final observation is that ordering by strength is only the default ordering of the desire-queue. A reflexive reasoner can engage in
practical reasoning about how best to order planning, and override the default ordering. For instance, a reflexive reasoner can
observe that planning for a lesser desire must be done immediately if the desire is to be achieved, while planning for a greater
desire can be safely postponed, and on that basis reorder the desire-queue.

Opportunistic Planning

Another kind of phenomenon also seems initially to require the PLANNING-INITIATOR to have more structure than I have given
it. This is what might be called opportunistic planning. For example, when I hear about a new book and form the desire to read it, I
do not immediately plan a trip to the bookstore. But when I am in the bookstore or know that I am going to be there or in the
vicinity, that may inspire me to form a plan to look for the book and buy it if it is in stock. In such opportunistic planning, I acquire
a new desire, but instead of immediately planning for its satisfaction, I seem to store it and keep my eyes open for opportunities to
satisfy it. I think that this is a misdescription of what is going on, however. Planning is not really being delayed. Rather, I believe I
will be in the vicinity of the bookstore sometime soon. Given that belief, a plan to buy the book when I am in the vicinity of the
bookstore has a higher expected value than a plan to make a special trip to buy the book, and so I adopt the former plan. All that is
happening in such opportunistic planning is that I am making use of beliefs about forthcoming opportunities. These beliefs make it
feasible to formulate plans with when-conditions that will latch onto such opportunities. This does not require any additional
complications in the architecture of the PLANNING-INITIATOR.

Somewhat the same phenomenon is illustrated by the earlier example of painting my garage. I may not decide from which paint
store I will buy the paint until I schedule the plan-step of buying the paint. Once I decided to buy the paint on my way to the
grocery store, that led me to decide to buy the paint from The Flaming Rainbow, because it was on the way to the grocery store.
What may have happened here is that when first planning to buy the paint, I had the belief that I would probably be in the vicinity
of some suitable paint store sometime in the near future, and so I adopted the plan of buying the paint when presented with such an
opportunity. When I planned my trip to the grocery store, I realized that would put me in the vicinity of The Flaming Rainbow, and
so I decided to buy the paint there.

Page 247

Subsidiary Teleological Planning

Both of these examples of opportunistic planning illustrate a further phenomenon. Initially, we plan to do something (buy the paint
or the book) when some particular kind of opportunity presents itself. Later, when we acquire the belief that we are about to be
presented with such an opportunity, we adopt the more specific plan to perform the operation on that occasion. This involves
further planning. This further planning is a special case of subsidiary planning. Having decided to do something when a particular
kind of opportunity presents itself, we must then plan for how to do it. That involves planning to do it on a particular occasion.
Such planning must be initiated by the PLANNING-INITIATOR. The same point applies to all subsidiary planning. When
subsidiary planning is required, it must be the PLANNING-INITIATOR that initiates it. The mechanism for this is the production
of instrumental desires.2 It is a familiar point that once I plan to do something in order to satisfy a desire, I acquire the new desire
to do that. This is an instrumental desire. It might seem puzzling that we have instrumental desires. Why not just have primitive
desires? There is a simple computational answer to this question. Instrumental desires provide a mechanism for making planning
recursive. Initially, a primitive desire is placed on the desire-queue. When it is retrieved from the queue, planning for its
satisfaction is initiated. If that produces a plan, the adoption of the plan produces new instrumental desires in us to execute the plan
steps. These instrumental desires go on the desire-queue right along with primitive desires, and when they are retrieved from the
desire-queue, that initiates subsidiary planning for their satisfaction.

Applying this model to the paint store example, I first plan to go the paint store sometime when I am in the vicinity. That produces
in me the instrumental desire to go to the paint store sometime when I am in the vicinity, and that desire initiates planning for
doing that. However, this is a case of delayed planning; although interest in constructing such a plan is passed to the epistemic
reasoner, it does not at first have sufficient information at its disposal to allow it to construct a plan. Only when I decide to go to
the grocery store do I acquire beliefs that enable a subsidiary plan to be constructed. The subsidiary plan that is constructed is the
plan to stop at The Flaming Rainbow on the way to the grocery store.

2 See the discussion of instrumental desires in chapter 1.

Page 248

Procedural Knowledge

This picture of recursive plan initiation via instrumental desires must be modified in one respect. Not all desires require planning.
If they did we would have an infinite regress. There must be some desires an agent knows how to satisfy without further planning.
These are of two kinds. First, there must be some basic desires for whose satisfaction the agent has built-in procedures. This is
most obviously the case for simple motor skills. If I desire to raise my arm, I have a built-in procedure for doing that. Of course,
that procedure can be disrupted by injury, exhaustion, or physical constraint, but as long as it is not, it is unnecessary for me to
plan how to raise my arm.

It is rare for me to form the desire to raise my arm, because when I do raise my arm, that is generally part of a more complex
routine that constitutes procedural knowledge for how to do something of a higher level. For example, if I form the desire to turn
on the ceiling light, I know how to do that by raising my arm and activating the wall switch. This procedural knowledge constitutes
a plan schema. I previously referred to such plan schemas as standing plans, and we can regard them as stored in a library-of-
standing-plans. My standing plan for turning on the light is activated by the desire to turn on the light. The presence of the
standing plan in my library-of-standing-plans makes it unnecessary for me to plan how to turn on the light.

Standing plans are plan schemas (as opposed to individual plans) for how to do various things. When a standing plan is retrieved
and instantiated, the result is a plan for achieving some goal. In human beings, an important feature of standing plans is that,
having produced such an instantiation, we need not make an explicit decision to adopt the standing plan. Its adoption is automatic
unless something leads us to override it. On the other hand, it can be overridden in particular cases. For example, if I suspect that I
will get a shock from touching the light switch, I could turn on the light by pushing the switch with a stick. This indicates that
standing plans are default plan schemas for achieving specifiable goals under some specifiable general circumstances.

We can distinguish between two ways in which standing plans can be default governors of behavior. The simpler is that
instantiating a plan schema for a particular task can automatically provide us with a defeasible reason for adopting that plan. (The
nature of such defeasible reasons will be discussed further when we talk about the PLAN-UPDATER.) However, merely having a
reason for adopting a plan requires us to think about whether to adopt it and then make a decision to do so. At

Page 249

least in human beings, our procedural knowledge often shortcuts such decision making, leading us to adopt instances of standing
plans automatically and without reflection unless something forces us to think about them. This distinction can be marked as the
distinction between standing plans as weak defaults and standing plans as strong defaults.

A feature of standing plans that goes hand in hand with their role as strong defaults is that although such standing plans can readily
be retrieved for the purpose of directing activity, they cannot easily be retrieved for inspection by epistemic cognition. When we
use them for directing activity, we seem to retrieve them one step at a time (as each step is called) rather than as a complete plan. If
the standing plan is sufficiently simple, we may be able to reconstruct it by imagining its execution and keeping track of what we
would do at each stage, but for complex standing plans (like that involved in our procedural knowledge for how to walk down a
hall or how to swing a tennis racket), the plan is often too complex for that to be feasible. This observation is much like saying that
such standing plans are ''compiled in".

Human beings employ both kinds of standing plans—compiled and uncompiled. Some standing plans are constructed by explicit
planning and when their instances are retrieved they are treated like any other plans. For example, whenever we acquire a new skill
from a book or by figuring it out in a theoretical way, we begin with an explicitly formulated plan for how to do it. Then for a
while, whenever we want to exercise that skill, we make explicit appeal to that uncompiled standing plan, which at that point is
functioning as a weak default. As time passes and we become more expert at the skill, the originally explicit plan tends to become
more sophisticated and gets compiled in so that we are no longer able to retrieve it for theoretical inspection. Consider learning to
ride a bicycle. Initially you learn rules like, "If you feel yourself leaning to the left, turn the handlebars counterclockwise", but in
time you acquire much more sophisticated rules for steering a bicycle, and at that point you are generally unable to articulate them
explicitly.

Another kind of standing plan is what Bratman [1987, 1989] has called personal policies. An example of a personal policy is,
"Fasten your seatbelt when you get into the car." The personal policy is a kind of plan schema that is retrieved whenever you are in
the appropriate kind of situation. Because the plan itself is readily retrieved by epistemic cognition, it is functioning only as a weak
default rather than a strong default.

Page 250

Standing plans are extremely important in any rational agent embedded in a rapidly changing environment. Plan synthesis is slow.
If an agent always had to construct plans anew before undertaking action, it would not be able to interact with its environment in
an effective way. It is the employment of standing plans that enables human beings to function in real time. My suspicion is that
the vast majority of actions taken by adult human beings are directed by standing plans rather than by explicit new planning.
Planning is the exception rather than the rule. Furthermore, the use of standing plans as strong defaults is faster than their use as
weak defaults, so this is also of extreme importance in a rational agent. The use of standing plans as strong defaults must, however,
be viewed as a practical Q&I module rather than as a part of practical reasoning itself. Such strong defaults are not, strictly
speaking, reasoning. They supplement practical reasoning rather than being a part of it. Only the use of standing plans as weak
defaults is properly part of practical reasoning. Saying this is not in any way to denigrate the importance of strong defaults,
however.

The storage of standing plans involves storing at least three items: (1) a specification of the type of desire to be satisfied, (2) a
specification of the circumstances under which the plan is to be activated to satisfy that desire, and (3) the plan schema itself.
When the PLANNING-INITIATOR retrieves a desire from the desire-queue, it matches it against the desire-types in its library-of-
standing-plans, and if an entry has a matching desire-type, it then checks to see whether the circumstances are believed to be of the
appropriate type. If they are, it uses the match to set the values of the variables used to instantiate the plan, and then the plan is
passed to the PLAN-UPDATER, which decides whether to adopt it. At this point a weak default standing plan is treated just like
any other plan. When I discuss the PLAN-UPDATER, I will argue, however, that we automatically have a defeasible reason for
adopting the instantiation of the standing plan. I will also make some suggestions about how strong default standing plans might be
integrated into the picture. If the PLAN-UPDATER adopts some standing plan for the satisfaction of the triggering desire, then the
adopted plan is sent on to the PLAN-EXECUTOR, but if no standing plan is adopted, then the PLANNING- INITIATOR activates
the PLAN-SYNTHESIZER in order to plan explicitly for the satisfaction of the triggering desire.

Basic actions are actions for which we have built-in procedural knowledge of how to perform them. However, there can be special
circumstances in which we are unable to perform a basic action. For example, I will not be able to raise my arm if my hands are
tied

Page 251

behind my back. This suggests that basic actions should be regarded as the limiting case of standing plans and processed in the
same way.

Scheduling

On the present model of planning initiation, subsidiary teleological planning is mediated by the production of instrumental desires.
The same mechanism can be used for scheduling. Whenever a desire (either primitive or instrumental) to do something is retrieved
from the desire-queue, it is automatically passed to the PLAN-SYNTHESIZER for scheduling. On the present model, the PLAN-
SYNTHESIZER handles both scheduling and teleological planning.

An Architecture for Planning Initiation

The picture of the PLANNING-INITIATOR that emerges from this is the following. Primitive desires are placed on the desire-
queue as they are acquired, and ordered according to the strength of the desire. When a desire is retrieved from the desire-queue, a
check is run to see whether the agent has built-in procedural knowledge of how to satisfy it or possesses acquired procedural
knowledge in the form of a standing plan for its satisfaction stored in its library-of-standing-plans. If the agent has either kind of
procedural knowledge, it is retrieved and passed to the PLAN -UPDATER, which determines whether to adopt it. If it is adopted,
it is passed to the PLAN-EXECUTOR without producing any new instrumental desires.3 If no standing plan is adopted, the
PLANNING-INITIATOR passes the desire to the PLAN-SYNTHESIZER for explicit planning. When the PLAN-SYNTHESIZER
produces a candidate plan for the satisfaction of the desire, that plan is passed to the PLAN-UPDATER, which decides whether to
adopt it. If the plan is adopted, that produces instrumental desires for the execution of its nodes, and these desires are placed back
on the desire-queue, to start the whole process over again. The resulting architecture of plan initiation is diagrammed in figure 3.

5. Complex Desires

The architecture for planning initiation makes fundamental appeal to desires, both primitive and instrumental. But there are some
details concerning desires that remain to be worked out in order for this architecture to work.

3 This will be qualified a bit in the discussion of the PLAN-SYNTHESIZER.

Page 252

Figure 3. Planning initiation

Page 253

Conditional Primitive Desires

Some optative dispositions are built-in. An example is the disposition to get hungry under certain physiological circumstances. But
most of our optative dispositions are learned. For example, a miser was not born with the desire for money or a book lover with the
desire to read. Some of these optative dispositions produce logically simple desires, that is, desires that certain states of affairs
come to obtain. However, many optative dispositions produce conditional desires instead. For instance, suppose my favorite author
writes two kinds of novels: detective stories, which I love, and romance novels, which I despise. Upon hearing that she has written
a new book, I may form the desire to read it if it is a detective story.

How exactly do these conditional desires interact with the desire-queue and the PLANNING-INITIATOR initiator? Typically, the
strength of a conditional desire is attenuated in proportion to the believed probability of its antecedent. For example, if I think it is
unlikely that the new book is a detective story, I will not expend much effort pursuing it. This affects the position of the desire on
the desire-queue. Conditionality also affects the retrieval of standing plans. Standing plans are retrieved on the basis of a match
with the consequent of the conditional desire. Similarly, the PLAN-SYNTHESIZER formulates plans conditional on the
supposition that the antecedent of the desire is satisfied. The PLANUPDATER should evaluate the expected values of the
candidate plans using the strength of the conditional desire rather than the (estimated) strength the unconditional desire will have if
the antecedent turns out to be true.

If the antecedent of a conditional desire is subsequently judged to be true, that will have an effect on any planning or queueing
done with respect to the conditional desire. If the conditional desire is still on the desire-queue, it must be deleted and the
unconditional desire inserted into the desire-queue instead. The expected values of any plans produced for the conditional
satisfaction of the conditional desire will have to be re-evaluated in light of the (presumably) increased strength of the
unconditional desire. This updating of plan evaluations will be a standard feature of the PLAN-UPDATER, which must be
prepared to do such re-evaluation whenever relevant beliefs change.

Instead of discovering that the antecedent of the desire is true, we may discover that it is false. That should have the effect of
cancelling all planning for the desire. The desire should be deleted from the desire-queue if it is still there, and if any planning for
its conditional satisfaction has already occurred, that should be cancelled.

Page 254

Maximizing Desires

Thus far I have been talking about desires to the effect that some specifiable state of affairs obtain. As was observed in chapter 6, a
different kind of desire is for as much of something as possible. For instance, having spilled water on the kitchen floor shortly
before I must leave for school, I may adopt the plan of mopping the floor until I must leave, with the goal of getting it as dry as I
can in the time I have. Such a goal can be viewed as a state type, with a variable parameter. The strength of the desire for a state of
this type is a function of the value of the parameter. Such a desire is not satisfied simpliciter. It is satisfied to a certain degree,6 or
with a certain parameter value. Accordingly, the expected value of a plan aimed at the satisfaction of such a maximizing desire
must be computed on the basis of a probability distribution of the values of the parameter.

For placement on the desire-queue, the maximum strength of the desire is used. For instance, in the case of the spilled water, what
I "really would like" is to get the floor completely dry, so it is the strength of the desire for that optimal state that determines where
it is placed on the desire-queue.4

Conditional Instrumental Desires

There are also some questions about instrumental desires that must be resolved. First, we must consider exactly what instrumental
desires should be produced in response to the adoption of a plan. Two obvious possibilities suggest themselves. The first is that an
agent should only form instrumental desires to execute nodes when they are called. When a plan is first adopted, only the initial
nodes are called, so on this view, an agent should have instrumental desires to execute only the initial nodes. However,
consideration of examples makes it apparent that this is not correct. For example, I may plan a business trip to LA. My plan may
be to arrange with certain individuals to meet with them at a particular time; then after making those arrangements, to fly to LA in
time for the meeting; and then to hold the meeting. If I do not form instrumental desires to execute nodes until the nodes are called,
then I would not form the instrumental desire to fly to LA until I have completed the arrangements for the meeting. But in that
case, I would not do any subsidiary planning for flying to LA until I have completed the arrangements. However, if I am confident
that I can

4 Having this kind of desire will make a difference to what problem the PLAN -SYNTHESIZER poses for the theoretical reasoner.

Page 255

make the arrangements for the meeting, then I may well start planning for the flight before I have completed the arrangements and
I may even begin executing my subsidiary plan. For instance, I may make my flight reservations. This seems clearly rational and
indicates that the formation of instrumental desires should not wait until a node is called.

On the other hand, if a node is not yet called, and it is uncertain whether it will be called (e.g., it is on one execution path stemming
from a conditional fork), then a rational individual does not automatically form the desire to execute it come what may. For
instance, suppose once more that I want to buy paint on my way to the grocery store. There are two routes to the grocery store, and
I plan to choose between them on the basis of how heavy the traffic is when I am driving. If I take one route, I will stop at The
Flaming Rainbow to buy paint, and if I take the other route I will instead stop at The Chartreuse Flamingo to buy paint. Having
adopted this plan, I do not form the instrumental desire to buy paint at The Flaming Rainbow. What I do is form the conditional
desire to buy paint at The Flaming Rainbow if I go that way. This amounts to forming the desire to execute the plan-node if it is
called. I suggest that this is true in general. When a plan is adopted, we form conditional instrumental desires to execute each plan-
node if it is called. As the initial nodes are already called, we form unconditional instrumental desires to execute them. These
conditional and unconditional instrumental desires are placed on the desire-queue, and when they are retrieved, they are passed to
the PLAN-SYNTHESIZER for planning for their satisfaction. In the case of conditional desires, we plan for their conditional
satisfaction, that is, we seek a plan for satisfying them if the antecedent turns out to be true. In general, the handling of conditional
instrumental desires in planning is the same as the handling of conditional primitive desires.

Avoidance Desires

Georgeff [1987] notes that among our goals are sometimes goals of maintenance, that is, we desire to prevent certain things from
changing. This is a special case of a more general kind of desire, which is a desire to avoid something. In the case of maintenance
desires, we desire to avoid something's changing. More generally, we may want to avoid something's happening. A soldier moving
through enemy territory may want to avoid being seen, a crook may want to avoid being caught, a driver may want to avoid
becoming enmeshed in five o'clock traffic, a professor may want to avoid being assigned to univer-

Page 256

sity committees, and so forth. Such avoidance desires raise interesting problems for planning, because it is not clear that we
actually plan for their satisfaction. It is often more accurate to say that we remain alert for situations in which the contra-desired
states of affairs may happen and then engage in practical reasoning for their avoidance. For example, when the soldier who wants
to avoid being seen comes to a clearing, he will at that point engage in practical reasoning about how to get around it without being
seen. Similarly, when the driver who wants to avoid five o'clock traffic notes that it is getting close to five o'clock, she will at that
point begin to think about how to avoid it (e.g., by leaving work early, by taking an alternate route, or by doing something else that
does not require her to drive during the busy period).

On the other hand, we sometimes adopt plans aimed at the general avoidance of contra-desired states of affairs. A police officer
who wants to avoid being shot may take to wearing a bulletproof vest at all times, and a driver who wants to avoid five o'clock
traffic may adopt a general work schedule that allows her to leave for home at four o'clock. There seems to be nothing special
about this kind of planning. It is just like the planning for the satisfaction of any other desire.

How then do we accommodate the kind of avoidance desires for which we do not adopt general plans but instead simply remain
alert for the possible occurrences and then plan for their avoidance? We can fruitfully distinguish between individual desires and
desire-types here. The police officer who wears a bulletproof vest is trying to avoid ever getting shot, and the driver who adjusts
her work schedule is trying to avoid driving in five o'clock traffic as much as possible. The former is just an ordinary desire of the
sort for which we plan all the time, and the latter is a maximizing desire. On the other hand, the soldier who wants to avoid being
seen can be regarded as being subject to repeated desires not to be seen. This requires having some mechanism for producing in
him repeated desires not to be seen whenever the circumstances are such as to suggest that he may be seen. The advantage of
viewing the situation in this way is that it explains why he plans for the individual instances of the desire-type rather than adopting
a general plan for the satisfaction of a single desire not to be seen ever or to be seen as infrequently as possible. However, to make
this work we need an account of the mechanism that produces these repeated desires. I will now suggest that one such mechanism
has to do with the structure of plans.

In constructing plans, we sometimes take note of the most obvious things that could go wrong, keep them in mind, and try to avoid
their

Page 257

happening as we execute other plans. One way to do that is to build their avoidance into the plan, thus increasing its expected
value and placing their avoidance on our list of desires. This is to treat their general avoidance as a single thing that we desire
rather than as a type of thing that we desire. But I am inclined to think that we often proceed in another way. When we construct a
plan, along with the various nodes we store information about possible causes of plan misfire. Then when it is time to execute a
node, we check to see whether the source of misfire is at all likely, and if it is, we form the desire to avoid it. The strength of the
desire is presumably proportional to the probability of the contra-desired state of affairs occurring. An elegant way of achieving all
of this within the OSCAR plan formalism is to build the non-occurrence of the contra-desired states of affairs into the plan-nodes
as part of the specification of the operation prescribed by that node. It is important that what is being built in is the nonoccurrence
rather than the avoidance of the contra-desired states of affairs. The difference is that if we make avoiding P part of the
specification of the operation, that requires us to do something to avoid P. If we merely include the non-occurrence of P as part of
the operation and it is likely that P will not occur even if we take no active steps to avoid it, that is sufficient to make it likely that
that part of the operation will be successfully performed and hence will allow the plan to have a high expected value without our
automatically having to take action to avoid the contra-desired states of affairs. On the other hand, if at some point during the plan
execution it becomes likely that P will occur, then the general mechanisms of planning initiation that are responsible for subsidiary
planning will have the effect that a strong desire for the non-occurrence of P will go on the desire-queue, and the account of the
PLAN-SYNTHESIZER given below will have the effect that we will engage in active planning for its avoidance.

Desire Strengths

Instrumental desires are conditional desires for the execution of plan-nodes if they are called. The mechanism that initiates
subsidiary planning involves placing instrumental desires on the desire-queue. But there is a technical problem that must be solved
in order to do this. The placement of desires on the desire-queue is a function of their strength, so if instrumental desires are going
to be placed on the desire-

Page 258

queue, they must have associated strengths. We need an account of how these strengths are determined. It seems clear that the
strength of an instrumental desire should be related to the expected value of that plan from which it originates. The obvious
proposal is to identify the strength of the desire with the expected value of the plan. There are complications, however. A single
plan can aim at achieving several different goals, while a node of that plan may be involved in seeking only one of those goals. All
of the goals will contribute jointly to the expected value of the plan, but goals unrelated to a node should not affect the strength of
the instrumental desire for the execution of that node.

There are two ways in which a node of a plan may be unrelated to some of the goals at which the plan aims. First, note that if one
plan aims at the satisfaction of a desire, so does its composite with any other plan. But we do not want the strength of a desire
increased by the composition of the first plan with an unrelated plan. Second, a plan can aim at the achievement of several
different goals sequentially. For example, we might have a plan to run several errands on a single trip. A node of this plan may be
called only after the initial goals have already been achieved, so their values should not contribute to the strength of the desire to
execute the remainder of the plan. Let us define the tail of a plan, relative to one of its nodes, to be the set of nodes that are
descendants of that node. This subplan will make the node in question an initial node and will strip off all nodes calling that node
(and their calling ancestors) except insofar as they are called by loops originating with the given node. The tail of a plan relative to
a node is the smallest subplan containing that node essentially. Then the strength of the instrumental desire for the execution of a
node should be equal to the expected value of the tail relative to that node.

The expected values of plans may have to be updated as we acquire new information. (This will be discussed further in section 6).
As the strengths of instrumental desires are determined by the expected values of plans, these strengths may have to be updated as
well and their positions on the desire-queue modified accordingly. This requires some mechanism for keeping track of the sources
of the desire-strengths. That is not problematic, however, because the PLANNER must keep track of the sources of instrumental
desires anyway in order to link the subsidiary plans that are produced for their satisfaction to the plans to which they are
subsidiary.

Page 259

6. The PLAN-SYNTHESIZER

Although the construction of plans is computationally difficult, the architecture of the PLAN-SYNTHESIZER need not be
complex. In general outline, the operation of the PLAN-SYNTHESIZER is as follows. The PLANSYNTHESIZER is activated by
the PLANNING-INITIATOR, which sends it the specification of a desire for whose satisfaction a teleological plan is required or
for which scheduling is required. The function of the PLAN-SYNTHESIZER is then to arrange for the construction of such a plan
and send it on to the PLAN-UPDATER. It does this by passing two tasks to epistemic cognition. The teleological task is the task
of constructing a plan for the satisfaction of that desire which is minimally good.5 (The concept of a minimally good plan will be
given a technical definition in section 7. In the meantime it should be understood intuitively.) If the desire is an instrumental
desire, the scheduling task is the task of looking for ways of improving the plan that generated the desire by inserting scheduling
links and timing nodes. In both cases, the actual plan construction is carried out by epistemic cognition. It is important to realize
that these are tasks of epistemic reasoning, and not tasks of practical reasoning. That a particular plan satisfies one of these
specifications is an objective matter of fact. I will return to a discussion of this epistemic reasoning later, but for now, suppose
epistemic cognition constructs such a plan. It is then passed to the PLAN-UPDATER, which decides whether to adopt it. If the
PLAN-UPDATER adopts the plan, this fact is signaled to the PLAN-SYNTHESIZER, which adjusts its search for new plans in
light of this.

To make this account more precise, consider how the PLANSYNTHESIZER passes its problem to epistemic cognition. Epistemic
cognition is interest-driven. It has two kinds of interests: determining whether certain formulas are true (''whether" questions), and
finding bindings for variables that make certain open formulas true ("which" questions). Interests are passed to epistemic cognition
by putting them in the list of ultimate-epistemic-interests. The interests on this list are prioritized by assigning numerical degrees to
them. These numerical degrees reflect the importance of the practical problems that give rise to the epistemic problems. As a first
try, we might let the degree of interest be the same as the strength of the triggering desire. However,

5 Instead of constructing a new plan from scratch, the construction of a plan for a new desire may involve modifying a previous plan so that it
aims at satisfying the new desire as well as achieving its original goals.

Page 260

this is inadequate in cases in which the triggering desire will almost certainly be satisfied without the agent's doing anything about
it. If something is very likely to happen on its own, then even if we desire it, we probably could not construct a better plan for its
satisfaction than the null plan. In such a case, we do not want to put a lot of effort into trying. This suggests that the strength of our
epistemic interest should be the product of the strength of the triggering desire and our estimate of the probability of its not
occurring on its own. This constitutes a general solution to the problem of assigning degrees to members of ultimate-epistemic-
interests, because such interests always arise from practical problems. The operation of the epistemic reasoner is such that these
practically motivated epistemic interests can give rise to further epistemic interests connected with them only indirectly, but at
every point, when the epistemic reasoner becomes interested in a formula as a way of inferring another formula in which it is
already interested, the degree of interest in the new formula is simply the maximum of the degrees of interest in all formulas from
which interest in it is derived. Recall that these degrees of interest are used by the interest-driven reasoner to prioritize its
reasoning. It pursues questions of greater interest first.

Degrees of justification are assigned to the conclusions drawn by the epistemic reasoner. One of the functions of degrees of
justification is that the more important a question, the more justified a rational agent must be before it can confidently accept an
answer to the question. Thus degrees of justification and degrees of interest go hand in hand.6

When the task set for epistemic cognition is that of finding variable-bindings that will satisfy an open formula, it is not
automatically finished when it is adequately justified in believing it has found one such binding. There may be many, in fact
infinitely many, and in general we may want epistemic cognition to go on searching. Applying this to the search for plans, suppose
epistemic cognition concludes that a certain plan is a minimally good one for satisfying some desire. This conclusion is passed to
the PLAN-UPDATER. Suppose the PLAN-UPDATER adopts the plan. It is natural to suppose that this should lead to a
cancellation of the search for plans aimed at satisfying that desire.

6 A useful interest rule is the following. If we have a reason for P, but it is not strong enough, adopt interest in the reason at the higher interest
level. This will trickle back down the argument recursively and lead us to look for better reasons for the weak links in the arguments.

Page 261

However, adopting a plan for the satisfaction of a desire should not make us totally oblivious to better plans if they come along.
For example, suppose I need something at the grocery store, and the only way to get there is to walk, so despite the fact that it is
raining, I adopt the plan to walk. Then a friend offers me a lift. I am, and should be, able to appreciate the fact that this enables me
to construct a better plan for getting to the grocery store and making my purchase. However, if I had no interest at all in finding
plans for getting to the grocery store, I would be unable to draw that conclusion. Adopting one plan for getting to the grocery store
certainly relieves some of the urgency in looking for other plans, but it should not cancel interest in them altogether. What it must
do is simply lower the degree of interest in finding such plans, thus making the search for such plans a matter of lower priority.

At this point it becomes useful to separate subsidiary teleological planning and scheduling and look at each by itself, because the
differences between them become important.

Subsidiary Teleological Planning

If (1) a plan for the satisfaction of a desire were "perfect", in the sense that it is certain to result in the satisfaction of the desire
without attenuating its value, (2) the probability of its successful execution were 1, and (3) its execution were costless, then there
could never be a better plan, and so there would no reason to continue searching. But of course no plan can ever be perfect in this
sense. As long as a plan is less than certain to succeed and has some execution cost, there is always the possibility of finding a
better plan. The expected value of a perfect plan for satisfying a desire is simply the product of the strength of the desire and the
estimated probability of the desire's not being satisfied without our doing anything. The expected value of a plan aimed at
satisfying several desires is the sum of these products for the different desires. Let the degree of imperfection of a plan be the
difference between this figure and its expected value. When the PLAN-UPDATER adopts a plan for the satisfaction of a desire or
set of desires, the degree of interest that epistemic cognition should retain in finding additional plans for the satisfaction of that
desire or set of desires should be determined by the degree of imperfection of the adopted plan. Notice, however, that the
remaining interest should be changed to an interest in finding plans rationally preferable to the one already found.

Page 262

Scheduling

Similar observations can be made about scheduling. However, we must be more careful than we have been in formulating the
scheduling task the PLAN-SYNTHESIZER passes to epistemic cognition. Let us call the node from which an instrumental desire
is derived its parent node and the plan of which it is a node its parent plan. As a first approximation, the scheduling task is that of
adding scheduling links to the parent node (and possibly also timing nodes to which to connect the scheduling links) in such a way
that the resulting plan is rationally preferable to the original parent plan. This account of the scheduling task is a bit simplistic,
however. Scheduling usually consists of coordinating steps from different plans, in which case the scheduling links tie together
steps from the different plans. In this case the objective should be to produce a composite plan rationally preferable to the union of
the originally separate subplans.

Given this understanding of the scheduling task, suppose epistemic cognition produces such a composite plan and the PLAN-
UPDATER adopts it. A rational agent will still be sensitive to the discovery of better ways of scheduling the node in question, so
adopting this schedule should not result in a complete cancellation of interest in other schedules, but as in the case of subsidiary
teleological planning, it should result in diminished interest in such schedules. This degree of interest should be determined by the
degree of imperfection of the adopted schedule. It should also change our interest from scheduling the node to scheduling it in a
way rationally preferable to the adopted plan.

Scheduling tends to be unstable, for two reasons. First, as time passes, an agent acquires new desires. For example, suppose I plan
to sit at my desk writing all morning, but then I develop a craving for a cup of coffee. To accommodate this desire, I may change
my plan and decide to get up and fix a cup of coffee as soon as I come to a convenient break in my work. This decision can also
lead to reversing previous scheduling decisions. For instance, I might also have planned to make a phone call when I break for
lunch, but it may occur to me that I can do that while I am waiting for the coffee to brew, and so I rearrange my schedule
accordingly. It is to accommodate new desires that we leave schedules as indefinite as possible and do not choose arbitrarily
between tied schedules.7

Another way in which scheduling tends to change over time is that it tends to get more precise as I acquire more information. For
instance,

7 See section 8.

Page 263

in planning to paint my garage, I initially planned to buy paint sometime today. Then when I acquired the belief that I would be
passing close to the paint store on the way to the grocery store, I planned more precisely to buy paint on my way to the grocery
store. As the time for action approaches, we tend to learn more and more about what else will be happening, and we can use that
information to refine our schedule.

Both of these kinds of changes will occur automatically as long as epistemic cognition retains interest in finding preferable
schedules. When the information becomes available that makes it possible to construct preferable schedules, epistemic cognition
will do so as long as it does not have to do more important reasoning that interferes.

The Architecture of the PLAN-SYNTHESIZER

This is all that needs to be said about the PLAN-SYNTHESIZER. Its architecture is basically simple. It is diagrammed in figure 4.
This does not mean, however, that plan synthesis is simple. The hard part of plan synthesis lies in the work done by epistemic
cognition when it searches for plans that aim at the satisfaction of a specified desire and are at least minimally good. This
reasoning is very complex, and no automated reasoner currently in existence is able to do this kind of reasoning satisfactorily. The
various planning algorithms of AI planning theory aim at producing such plans. Thus they are really aimed at a problem of
epistemic reasoning, not one of practical reasoning. The limitations encountered by these planning algorithms are invariably tied to
their inability to handle certain kinds of sophisticated epistemic reasoning.

Consider the kinds of epistemic reasoning required for plan synthesis. First, plans are sets of nodes, and nodes are probably best
represented set-theoretically as well. The epistemic reasoner must be able to reason about plans, comparing them and drawing
conclusions about them, and hence must be able to deal with them as objects. This suggests that it must at least be able to handle
finite set theory. That is already a very difficult problem given the current state of automated reasoning. No extant automated
reasoner can handle more than rather trivial bits of set theory. In addition, the reasoner must be able to assess the expected values
of plans in order to determine whether they are minimally good and whether one is rationally preferable to another, and for that it
must be able to reason about probabilities. That is also a formidable task. Finally, the reasoner must be able to reason about causal
and temporal relations between events in the

Page 264

Figure 4. Architecture of the PLAN-SYNTHESIZER

Page 265

physical world. There is a large literature in AI about such reasoning, most of it spawned by planning theory, but the problems
involved in such reasoning are far from solved. It seems likely that much of the reasoning involved in plan synthesis is analogical,
and explanation-based learning may play an important role. Of course, none of this should be surprising. Epistemic reasoning has
no point in a rational agent other than to serve practical reasoning. Thus all of epistemic reasoning should be of at least indirect
relevance to plan synthesis.8

The upshot is that the epistemic reasoning required by practical reasoning is probably much more complicated than the structure of
the practical reasoning itself. My purpose here is to describe the architecture of the practical reasoner, and I have every expectation
that can be done without solving all the problems of epistemic reasoning that are required to build a rational agent. Such epistemic
reasoning will have to be the target of much more research.

It is noteworthy that many standard AI planning algorithms look more like Q&I modules than implementations of planning within
a system of epistemic reasoning. It is unclear whether human beings employ Q&I modules for planning, but it is clear that such
modules could be a useful addition to an artilect. In particular, incorporating such modules into an implementation of the
architecture described here will allow a test of the architecture without first solving all of the problems of epistemic reasoning
enumerated above.

7. The PLAN-UPDATER

Adopting Plans

The PLAN-UPDATER is responsible for the adoption and retraction of plans. The fundamental principles underlying plan
adoption are those

8 In deciding whether to perform an action or adopt a plan, we often consider hypothetically what would happen if we were to do it. There is
an obvious limit to how much of this hypothetical reflection we can do, and there is no limit to how much of it there is to do. We "reflect" on
it, imagining what would be likely to happen if we were to perform the act. (Note that this is a probability judgment.) We often overlook things
when we do this. That is a common source of plan misfire. Some people are better than others at foreseeing consequences. The amount of
reflection we perform is affected by how much time we have. If things are developing rapidly, we may not reflect at all, but just immediately
execute a standing plan when its preconditions become satisfied. For human beings, it is possible that dreaming and daydreaming play an
important role in planning. They enable the agent to run through scenarios "off line", and consider what would be likely to happen if various
actions were performed.

Page 266

emerging from chapter 5. At that point I proposed the following rule of plan adoption provisionally:

(PA) The decision to adopt a plan σ is practically justified iff a rationally satisfactory search for plans has been conducted and
either:

(i) for every plan µ discovered by the plan search, if we are justified in believing that µ competes with σ, then we are justified in
believing that σ is preferable to µ; or

(ii) (a) the plan search has led to the discovery of no plan that we are justified in believing to be rationally preferable to σ, and

(b) σ has been chosen randomly from the set of all competing plans discovered by the search which are justifiably believed to be
tied with σ.

Thus far, the discussion of the PLANNER has focused on the concept of a rationally satisfactory search and has tried to make
certain aspects of that concept precise. In light of that account, let us reconsider the rule for choosing between the plans revealed
by a rationally satisfactory search. We are now in a position to see that (PA) gives a misleading description of Buridan cases.

Buridan Cases

Buridan cases are those in which competing plans are tied. The basic observation about Buridan cases is that in deciding what
actions to perform, a rational agent chooses at random between the tied plans. However, this is a remark only about the actions
performed as a result of the planning, and not directly about the plans themselves. At some point a random choice must be made,
but that could be either (1) a random choice between competing plans, resulting in one of the tied plans' being adopted at random,
or (2) a random choice between the actions dictated by the tied plans, without either of the tied plans' ever being adopted in its own
right. This is really a question about the control structure of the rational agent. At what point in the architecture is the random
choice made? The simplest suggestion would be that a random choice between plans is made immediately upon producing the
competing plans. However, it takes little reflection to see that, in human beings, things are more complicated than that. Returning
to the example of painting my garage, a decision had to be made about where to buy the paint. Suppose there were two paint stores
between which I could not initially decide. Eventually I decided

Page 267

on The Flaming Rainbow, because it was on my route to the grocery store. That decision made the plan to buy the paint there
preferable to the plan to buy it at the other store. But what happened prior to my deciding to go to the grocery store? I did not
initially decide at random to buy the paint at one of the stores, and then later change my mind because I had a better reason to buy
it at the other store. What I did was decide to buy the paint either at The Flaming Rainbow or at The Chartreuse Flamingo, but I
did not at that point decide arbitrarily to adopt one plan rather than the other. Instead, I stored the set consisting of the two
competing plans and waited until I had some basis for choosing between them.

Consider another example. Suppose I am undecided whether to go to a movie tonight or stay home and watch TV. At this point I
do not arbitrarily decide to adopt one of these plans rather than the other. I decide to do one or the other but leave open which I
will do until either some new consideration gives me a reason to choose one or until I have to choose. In this example, when it
comes time to get ready to go to the movie, I must make a choice, but there is no reason to make a choice before that, and a
rational agent will not make a choice. That would amount to prematurely closing off options that could later turn out to be the best
options.

If an agent has a set Σ of plans that are tied and between which it cannot decide, the rational decision is the disjunctive decision to
execute one of these plans. Eventually the agent must decide between the plans, and if there is still no objective basis for doing so
then the decision must be made at random. The time at which a decision must finally be made is the time at which one of the plans
in Σ first requires something to be done. More accurately, it is the last time at which the when-condition of one of the initial nodes
of one of the plans in Σ is satisfied in conjunction with the if-condition's having been satisfied. So in Buridan cases, the PLANNER
must store sets of plans adopted disjunctively. These are stored as intentions, and in such cases our intentions are disjunctive. For
instance, I may intend to either go to the movie or stay home and watch TV. In the general case, intentions encode disjunctively
adopted sets of plans rather than individual plans. Later, when a choice is forced upon the agent, a plan chosen at random is
adopted. But notice that this is done at execution time and not in advance. In other words, such random choices are made by the
PLANEXECUTOR rather than the PLANNER.

The preceding remarks apply to teleological planning, but much the same is true of scheduling. Scheduling tends to be a matter of

Page 268

continually refining previous schedules as the agent acquires new in- formation or adopts new plans to be fitted into the schedule.
For example, in deciding when to buy the paint for my garage, I schedule the purchase more and more precisely as time passes.
First, I planned (yesterday) to buy the paint today. Then I planned to buy it this afternoon. Then I planned to buy it on my way to
the grocery store. In this way I generate increasingly precise schedules. But it is important to realize that I may never generate an
absolutely precise schedule. As a consequence, at any given time it will typically be the case that nodes from many different plans
have been called, their when-conditions are satisfied, and they are waiting to be executed by having their operations performed.
For instance, I plan to call my travel agent sometime this afternoon to check on my car rental in New Zealand, I plan to start the
barbecue grill pretty soon to fix dinner, I plan to run out to the mailbox and retrieve my mail before it gets dark, and so forth. All
three of these plans have nodes that have been called and are awaiting execution. The when-conditions are sufficiently broad that I
can successfully execute them any time during the next several hours. I might engage in further planning and refine my schedule
for when to do them, but more likely a time will come when I just decide to do one of them, and then later I will decide to do
another, and so on. These decisions are the work of the PLAN-EXECUTOR, not the PLANNER.

The fact that schedules are left flexible until we acquire a good reason for refining them in some way indicates that, like
teleological planning, we do not choose arbitrarily between tied schedules until we have to. When we have several competing
candidate schedules, we normally select one only if it is preferable to all the others. There is, however, one important difference
between tied schedules and tied teleological plans. Usually, tied schedules differ only in their scheduling of some particular node
(or nodes) within a continuous temporal interval. For example, I may have good reason to buy the paint between 2 P.M. and 3
P.M., but not have any reason to prefer one time in that interval to any other time. Rather than choosing randomly to buy the paint
at some particular instant, I leave unspecified when exactly to buy the paint, deciding merely to buy it sometime between 2 P.M.
and 3 P.M.. The times between 2 P.M. and 3 P.M. are preferable to other times, but tied among each other. In effect, I am
undecided between infinitely many absolutely precise schedules, but I can represent that whole set of schedules with one imprecise
schedule which can be adopted as a single plan rather than disjunctively adopting the infinite set of more precise plans. This will
not always be the case, but it is

Page 269

frequently so. This is an important difference between tied schedules and tied teleological plans.

There are some examples in which, contrary to what I have just urged, we do seem to choose schedules at random. Suppose I must
fly to either Boston or New York for a business meeting on a certain date (I can choose either city), and then whichever city I
choose, I must fly to the other city for a business meeting a week later. There are two possible schedules here. It seems that if there
is nothing to favor one schedule over the other, I will choose one at random. I do not leave the matter undecided until I get to the
airport and then decide on the spur of the moment to fly to New York. However, this example is like the teleological example of
deciding whether to go to the movie or stay home and watch TV. If nothing favors one destination rather than the other for my first
trip, I do not decide on a destination until I have to. But eventually I will have to. I must buy my ticket and arrange the business
meeting. So when one of the competing schedules mandates doing something, then I will have to decide randomly between the two
schedules. Just as in the case of teleological planning, if there is nothing to favor the one schedule over the other, there is no reason
to make up my mind beforehand. There is nothing irrational about leaving the schedule indeterminate until the last minute,
deciding only when I finally have to take action. Once again, in order to act we must eventually make a random choice between
competing schedules, or a random choice regarding when to act within the constraints of a single imprecise schedule, but that is no
longer a matter of planning. That decision is made when it is time to act, so it is made by the PLAN-EXECUTOR rather than the
PLANNER.

Perhaps in most cases the PLAN-SYNTHESIZER produces only a single adoptable plan, and so we adopt it outright. But what this
discussion of Buridan cases shows is that sometimes the rational decision will be a disjunctive one deciding on a set of plans
without deciding on a particular member of the set. This requires some small changes in the architecture of the PLANNER as it
has so far been described. Specifically, the list of adopted-plans must either be replaced or augmented by a list of disjunctively-
adopted-plan-sets. From a logical point of view, we need only the latter. Adopted plans can be identified with plan-sets having
single members. But for computational reasons, it may be more convenient to keep these two lists separate, so I will take the
disjunctively-adopted-plan-sets to include only plan-sets with multiple members, and when ties are resolved in Buridan cases I will
take the randomly chosen plan to be moved into the list of adopted-plans.

Page 270

In Buridan cases, subsidiary planning cannot await a decision between the members of a disjunctively adopted plan-set, because
that decision may not occur until it is time to act on the chosen plan. Thus each member of such a plan-set must generate new
instrumental desires that are placed on the desire-queue and passed to the PLANNING-INITIATOR. I suggest that the strength of
these instrumental desires should be attenuated in proportion to the number of plans in the plan-set, just as the desires
corresponding to non-initial nodes are attenuated in proportion to the probability of their being called.

The preceding remarks apply only to Buridan cases, but it may seem that Buridan cases, in which plans are exactly tied, will be
unusual. In human beings, they are not so unusual because our estimates of probabilities tend to be very inexact. As a result, plans
are often tied insofar as we can tell. This suggests that even in agents producing more precise estimates, if plans are almost tied, it
might be useful to treat them as a Buridan case simply because a slight bias in favor of one of them has a high probability of being
reversed as we acquire more relevant information. This suggests treating them as tied until action must be taken, and then choosing
the plan with the higher value. But I will not pursue this line of inquiry further at this time. It will be investigated during
implementation.

Choosing Plans

The preceding understanding of Buridan cases forces us to take a second look at rule (PA). That rule has us randomly choosing
between tied plans in Buridan cases. That is not so much incorrect as misleading. We make the random choice only when we have
to start taking action on one of the plans if it is to be the one chosen for execution. We can clarify this by rewriting (PA) as a rule
for ''disjunctively adopting" sets of tied plans:

(PA*) The decision to disjunctively adopt a set of plans Σ is practically justified iff (1) if Σ has more than one member then any
two members of Σ are justifiably believed to compete, (2) a rationally satisfactory search for plans has been conducted, and (3)
either:

(i) Σ has a single member σ, and for every plan µ discovered by the plan search, if we are justified in believing that µ competes
with σ, then we are justified in believing that σ is preferable to µ (in this case, σ is adopted outright); or

(ii) (a) Σ has more than one member,
(b) the plan search has led to the discovery of no plan that

Page 271

we are justified in believing to be rationally preferable to any member of Σ, and

(c) for every plan µ not in Σ, if µ is justifiably believed to compete with every member of Σ, then some member of Σ is justifiably
believed to be preferable to µ.

On this account, adopting a plan a amounts to disjunctively adopting its unit set {σ}. Notice that (PA*)(ii)(b) has the consequence
that if a plan µ is known to compete pairwise with the members of Σ but we are in ignorance about how it compares (in terms of
rational preferability) with the members of Σ, then µ is treated as if it is tied with them.

Rationally Satisfactory Searches

Rationally satisfactory searches for plans must be organized in certain ways in order for (PA*) to work properly. Suppose the plan
search produces the tied plans µ and σ, and so the agent disjunctively adopts the set {µ,σ}. Then a new plan v is produced, and it is
tied with both µ and σ. At this point, (PA*) has the consequence that the decision to disjunctively adopt {µ ,σ } is no longer
practically justified. That disjunctive adoption should be withdrawn and the agent should instead disjunctively adopt {µ, σ,v}. This
illustrates the rather obvious point that reasoning underlying plan adoption must be defeasible. But now suppose that instead of the
new plan v being tied with both µ and σ, v is tied only with µ and does not compete with σ (PA*) has the consequence that, given
only this information, the original set {µ, σ } should still be disjunctively adopted. That seems unreasonable. What should actually
happen is that the agent should note that because v does not compete with σ, a composite v+ σ is preferable to both µ and σ and
should be adopted in their place. (PA*) has precisely this consequence provided the plan search produces the composite v+ σ. This
indicates that a rationally satisfactory plan search must be organized in such a way that it systematically examines composites of
plans already produced.

A bit more can be said about the nature of rationally satisfactory searches. Plan synthesis is a task of epistemic reasoning. Thus,
that an agent has (up to the present time) behaved rationally in its search for candidate plans is a matter of epistemic rationality.
What is the connection between the epistemic rationality of the search and the practical justification of adopting a plan produced
by the search? Suppose that an agent has behaved rationally in its search for plans up to

Page 272

the present time. Does it follow that the agent is practically justified in adopting one of these plans if it judges that plan to be
preferable to all of the competing plans it has discovered? It might be supposed that this is false on the grounds that a rationally
adequate search must at least produce all of the "most obvious" candidate plans before the agent is justified in adopting the best
candidate plan.

This qualification should be rejected. A crucial feature of reasoning is that it must be "interruptible". In general, there will always
be more reasoning that could be done, but the agent may have to take action before it can do more reasoning. Rational thought
must be such that when the agent has to act, it is reasonable to act on the basis of its current justified conclusions, even if there
always remains the possibility of those conclusions' being retracted at a later time. This is an essential characteristic of
justification, either epistemic or practical. Indeed, this is virtually a definition of justification—justified conclusions are those it is
reasonable to act upon at the present time.

Defeasible Reasons for Plan Adoption

A noteworthy fact about human beings is that in many (perhaps most) cases of routine planning, no more than a single plan for
achieving a particular goal is ever produced. We do not generate a large number of different candidate plans and then choose
among them. We produce a single plan, and if it is "sufficiently good", we are willing to act upon it without engaging in further
search. This is essentially Herbert Simon's [1977] observation that we often satisfice rather than maximize. One plan that is always
available to us is the null plan, which has an expected value of zero. For any other plan to be such that it is reasonable to act upon
it, the agent must reasonably believe that it is better than null plan, that is, that it has a positive expected value. Let us take this to
be our official definition of a plan's being minimally good. My suggestion is that if, at the time an agent must act, only a single new
plan has been uncovered, and to the best of the agent's knowledge it does not compete with any of the previously adopted plans,
then it is reasonable to act upon that plan iff the agent justifiably believes that it is a minimally good plan. This suggests in turn
that as soon as a plan is discovered and evaluated as minimally good, it becomes defeasibly reasonable to adopt that plan. This
practical decision must be defeasible, however, because if another plan is subsequently produced and judged

Page 273

to be preferable to the first, then the adoption of the first plan should be retracted and the new plan adopted in its place.9

Given the right structure for rationally satisfactory searches, the following principle captures the preceding observations and can be
regarded as a corollary of (PA*):

(P1) σ is a minimally good plan is a defeasible reason for adopting σ.

Principle (P1) formulates only a defeasible reason for adopting σ. To get a grasp of what the defeaters for (P1) should be, suppose
the plan search produces a new candidate plan σ, and the agent must decide whether to adopt it. There are four possibilities: (a) the
agent might simply adopt a; (b) the agent might adopt σ while retracting the adoption of some previously adopted plans or
disjunctive set of plans to which σ is rationally preferable; (c) the agent might decline to adopt σ on the grounds that it competes
with another plan that is rationally preferable to it; (d) the agent might incorporate σ into a disjunctive set of tied plans and
disjunctively adopt the set.

In deciding whether to adopt σ, the agent should first check to see whether σ is minimally good. If it is, then the agent has a
defeasible reason for adopting it. If the agent is unaware of any conflicts with previously adopted plans, then σ should be adopted.
In other words, the agent is in situation (a). But if the agent notes that a plan α that competes with σ has also been adopted, the
agent must investigate whether σ is preferable to α. If σ is judged to be preferable to α, then the agent has a defeasible reason for
adopting σ and retracting α. This is situation (b). If the agent judges α to be preferable to σ, then it should decline to adopt σ but
retain α. This is situation (c). Situations (b) and (c) could be handled with the help of a single defeater for (P1):

α is justifiably believed to be rationally preferable to σ is a defeater for (P1).

However, this defeater need not be adopted as a separate principle because it is a consequence of a more general defeater that is
needed to handle situation (d):

(P2) α is justifiably believed to compete with σ and σ is not justifiably believed to be preferable to α is a defeater for (P1).

9 Simon's official definition of satisficing [1977, 173] does not incorporate defeasibility.

Page 274

When applied to the case of ties, (P2) defeats the adoption of the individual members of the tied plan-sets. In this case, we need a
principle supplementing (P1) that governs disjunctive adoption:

(P3) α1,...,α n are justifiably believed to compete pairwise, each is justifiably believed to be minimally good, and none is
justifiably believed to be preferable to another is a prima facie reason for disjunctively adopting { α1,..., α n}.

Note that (P1) is a special case of (P3). Furthermore, the defeater formulated by (P2) should also be a defeater for (P3):

(P4) α is justifiably believed to compete with each of α 1...., α n and no αi is justifiably believed to be preferable to α is a
defeater for (P3).

Reasoning with principles (P1)-(P4) should lead to the same disjunctive adoptions as reasoning with principle (PA*).

In light of these rules, plan adoption can occur in two ways. The most straightforward occurs when new plans are produced by the
PLAN-SYNTHESIZER and put into the set of candidate-plans. These are produced either in response to epistemic interest in
plans that are aimed at satisfying a specified desire and are minimally good, or in response to epistemic interest in a plan aimed at
satisfying that desire and preferable to some already adopted plan that is aimed at the satisfaction of that desire and is minimally
good. When epistemic cognition produces a plan and puts it on the list of candidate-plans, it also produces a belief to the effect
that the plan in question is either minimally good or preferable to other plans aimed at satisfying the same desire. This provides a
defeasible reason for adopting the new plan, in accordance with (P1), and a reason for retracting any plans to which it is rationally
preferable, in accordance with (P2).

A second way in which plan adoption can occur is when an already adopted plan µ is retracted. When that happens, the PLAN-
UPDATER signals the PLAN-SYNTHESIZER to reinitiate planning, which happens by interesting epistemic cognition in finding
an appropriate plan. It may turn out, however, that an appropriate plan σ has already been constructed. σ may have been
constructed but not adopted because µ was judged preferable, but if that latter judgment is subsequently retracted, then σ may be
adopted after all. The logical mechanics of this consist of first having a defeasible reason of the form of (P1) for adopting

Page 275

σ but also having a defeater of the form of (P2). When µ is retracted, the defeater is retracted, thus reinstating the reason for
adopting σ, and so the latter is adopted.

Two kinds of considerations can lead to the retraction of plans. Just as in the case of epistemic reasoning, plans are retracted as a
result of either retracting their bases (this consists of either retracting beliefs or retracting desires) or acquiring a defeater for the
defeasible basis upon which they were adopted. The latter proceeds in terms of (P2) or (P4).

8. An Architecture for Planning

It is useful to combine our conclusions about the architecture of planbased practical reasoning into a single diagram. This is done
in figure 5. To get an overview of the theory, consider the dynamics of planning and plan adoption that results from this
architecture. The basic idea is that the rational agent is looking for minimally good plans, and it keeps its eyes open for better plans
without devoting too much cognitive effort to finding them. Because planning is hierarchical, plans can be adopted without
working out all of the details. Plans are adopted on the basis of judgements about their expected values, so the adoption of partial
plans requires the agent to employ general information about the likelihood of being able to perform non-basic operations and the
expected execution costs and consequences of such performances. The reasoning involved in adopting a partial plan on this basis
proceeds by direct inference.

Many of the complications of practical deliberation arise from discovering conflicts among plans. Epistemic cognition must have
some interest in discovering such conflicts but not an overwhelming interest that would occupy all of its time. In the "doxastic"
implementation described in the next section, this is handled by the same mechanism that leads the epistemic reasoner to become
interested in defeaters for its defeasible reasoning. Again, epistemic cognition must have some interest in finding defeaters but not
so strong an interest that it spends all of its time looking for defeaters.

Conflicts among plans can arise from either scheduling problems or interactions that change the expected value of a plan from that
estimated by the initial direct inference. When such conflicts are found and lead to the plan's no longer being judged minimally
good, the defeasible epistemic reasoner will automatically reopen interest in

Page 276

Figure 5. Architecture for plan-based practical reasoning

Page 277

finding a minimally good plan for achieving the goals of the original plan. This will often lead to repairs in the original plan rather
than replanning from scratch. In hierarchical planning, this will be automatic if the discovered conflict concerns only subsidiary
plans and does not lead the agent to retract the belief that the higher-order plan is minimally good. In that case, only the subsidiary
plan needs to be replaced, which amounts to saying that the overall plan is "repaired" rather than replaced. Of course, the
conclusion that a subsidiary plan is not minimally good can also lead to a reassessment of the expected value of the higher-order
plan and will sometimes lead to its rejection as well.

It was noted above that scheduling tends to be unstable, in two ways. First, as time passes, we tend to acquire new information that
allows us to refine schedules. The new information breaks ties, leading to the adoption of more precise schedules that are
preferable to the original ones. But scheduling is also unstable in another respect. The acquisition of new information often leads
us to retract earlier scheduling decisions and adopt different schedules. Just as in the case of teleological planning, the agent retains
an interest in finding better schedules, and when it finds one, that defeats the adoption of the earlier schedule. But if new
information later changes the evaluation of the refined schedule in such a way that it is no longer judged preferable to the earlier
schedule, the PLAN-UPDATER will automatically withdraw the refined schedule from the list of adopted-plans and reinstate the
original schedule. It may then be moved to refine the original schedule in a different way.

9. The Doxastification of Planning

Plan Updating

For two different reasons, practical reasoning is defeasible. First, practical decisions are based upon beliefs supplied by epistemic
cognition. If those beliefs are retracted, the practical decisions based upon them must also be retracted. Second, plan adoption
proceeds in accordance with principles (P1)-(P4) of section 7, and those are themselves principles of defeasible practical
reasoning. Defeasibility introduces an important complication into the theory of practical rationality. It is insufficient to state just
the defeasible reasons and defeaters for practical reasoning. We must also describe the structure of the reasoning itself. This is no
simple task. We have already seen how complex defeasible epistemic reasoning is. Defeasible practical reasoning promises to be

Page 278

equally complex. Must we construct an entire inference engine for defeasible practical reasoning? Reflection on human thought
suggests an intriguing way of handling this. Rather than requiring separate computational modules for defeasible epistemic
reasoning and defeasible practical reasoning, human cognition makes do with a single module dedicated to epistemic reasoning
and then integrates practical reasoning into that module using a technical trick. The trick involves "doxastifying" normative
judgments. Corresponding to the adoption of a plan is the "epistemic judgment" (that is, belief) that it should be an adopted plan.
This judgment is epistemic in name only. It requires no "objective fact'' to anchor it or give it truth conditions. It is merely a
computational device whose sole purpose is to allow us to use defeasible epistemic reasoning to accomplish defeasible practical
reasoning. Let us abbreviate σ should be an adopted plan (where this is a practical "should", not a moral "should") as σ is
adoptable . Similarly, let us say that a set of plans is disjunctively-adoptable iff it should be disjunctively adopted. A plan is
adoptable iff its unit set is disjunctively-adoptable. Then principles (P1)-(P4) can be rewritten as rules for epistemic reasoning
about plans being adoptable and sets of plans being disjunctively-adoptable. Recall that (P1)-(P4) are as follows:

(P1) σ is a minimally good plan is a defeasible reason for adopting σ.

(P2) α is justifiably believed to compete with σ and σ is not justifiably believed to be preferable to α is a defeater for (P1).

(P3) α1,..., α n are justifiably believed to compete pairwise, each is justifiably believed to be minimally good, and none is
justifiably believed to be preferable to another is a prima facie reason for disjunctively adopting { α 1,..., α n}.

(P4) α is justifiably believed to compete with each of α1,..., αn and no α i is justifiably believed to be preferable to α is a
defeater for (P3).

Now consider the following array of epistemic prima facie reasons and defeaters:

(El) σ is a minimally good plan is a defeasible reason for σ is adoptable .

Page 279

(E2a) α competes with σ and α is minimally good is a defeasible undercutting defeater for (El).

(E2b) σ is preferable to α is a conclusive undercutting defeater for (E2a).

(E3) α1,..., αn compete pairwise and each is minimally good is a prima facie reason for {α1,..., αn} is disjunctively-adoptable .

(E4a) One of α1,..., αn preferable to another is a conclusive undercutting defeater for (E3).

(E4b) α is minimally good and competes with each of α1,..., αn is a defeasible undercutting defeater for (E3).

(E4c) some αi is preferable to α is a conclusive undercutting defeater for (E4b).

With this array of prima facie reasons and defeaters, the epistemic reasoner will conclude that a plan is adoptable iff a properly
constructed defeasible practical reasoner would adopt the plan, and it will conclude that a set of plans is disjunctively-adoptable iff
a properly constructed defeasible practical reasoner would disjunctively adopt the set of plans.10 To illustrate, suppose we have a
prima facie reason of the form (P1) for adopting σ, but we also have a defeater of the form (P2). Then we will have a prima facie
reason of the form (El) for concluding that σ is adoptable, and a defeater of the form (E2a) for this prima facie reason, and we will
lack a defeater-defeater of the form (E2b). The upshot is that the same practical reasoning can be accomplished by coupling the
defeasible epistemic reasoner with a much simpler practical reasoner that adopts or retracts plans on the basis of epistemic
judgments to the effect that they are or are not adoptable.

It is important to realize that the terms "adoptable" (or "should be adopted") and "disjunctively-adoptable" are not given definitions
in

10 The defeasible theoretical reasoner works by adopting interest in defeaters whenever it makes a defeasible inference. Preference between
plans results from relations between composites of subplans of those plans. For rules (E1)-(E4c) to work properly, the reasoner must consider
those composite plans that generate preference relations and consider whether they should be adopted in place of the plans that are first
proposed. This examination of composite plans must be built into the interest rules governing the evaluation of plans.

Page 280

this account. They are just placeholders in epistemic reasoning. Their purpose is to give the reasoning the right structure to
implement the planning architecture. I will refer to this reduction of defeasible practical reasoning to defeasible epistemic
reasoning as the doxastification of practical reasoning, because it reduces defeasible practical reasoning to epistemic reasoning
about beliefs. This turns out to be immensely important for the structure of practical reasoning and may be one of the most
important ideas in the theory of rationality propounded in this book.11

The doxastification of practical reasoning has the result that most of the work of plan updating is done by the epistemic reasoner
rather than by the PLAN -UPDATER itself. Doxastification is an extremely powerful device, and it has the consequence that the
PLAN-UPDATER can be quite simple. The PLAN-SYNTHESIZER poses questions for epistemic cognition regarding the
adoptability of plans satisfying certain constraints, and then epistemic cognition goes its merry way. In particular, it will adopt, and
sometimes withdraw, beliefs to the effect that various plans are adoptable. All the PLAN-UPDATER must do is respond to
changes in beliefs of the form σ is adoptable When such a belief is adopted, the PLAN-UPDATER adopts σ, and when such a
belief is withdrawn, the PLAN-UPDATER retracts the adoption of σ. It was observed earlier that when the adoption of a plan is
retracted, this must reinitiate planning for the satisfaction of the desires the retracted plan aimed at satisfying. But this is now
automatic. Whenever the epistemic reasoner retracts a belief in which it was originally interested, that has the effect of
reawakening interest in it. Similarly, if the epistemic reasoner is looking for a variable binding that satisfies a certain formula, and
it acquires an appropriate belief (a belief in an instance of the formula), then if it subsequently retracts that belief, that will
automatically lead it to reopen the search for variable bindings. That latter is what is involved in the search for plans, so the search
for plans will automatically be reopened without any new instructions having to be passed to the epistemic reasoner.

11 I conjecture that something similar may be true of moral judgments. Presumably morality arises only in a "community of rational agents".
However that goes, moral judgments are going to be analogous to practical judgments in affecting agents' behavior, and like any other
complex reasoning, moral reasoning must be defeasible. The "doxastifying" of moral reasoning could be nothing but a computational device to
enable us to employ the defeasible theoretical reasoner in moral reasoning, without having to build an entirely new inference engine for that
purpose.

Page 281

Adopting Standing Plans

Thus far I have discussed only explicit planning, where epistemic cognition constructs the plan in response to the PLAN-
SYNTHESIZER'S initiating a plan search. But the PLAN-UPDATER must also handle the case in which the plan search is short-
circuited by the retrieval of a standing plan. In that case, the PLAN-SYNTHESIZER forwards the standing plan to the PLAN-
UPDATER, where it must be decided whether the standing plan should be adopted. If the standing plan is adopted, that is the end
of the matter (although the reasoning here is defeasible, so the standing plan might later be retracted), but if the standing plan is not
adopted, then the PLAN-SYNTHESIZER must initiate a plan search. How does the PLAN-UPDATER decide whether to adopt a
standing plan?

If standing plans are to serve as defaults, there must be some kind of prima facie reason for adopting an instance of a standing plan
when it is retrieved. This prima facie reason for adopting instances of standing plans need not be postulated as a new primitive rule
for practical reasoning. It can instead be derived from the rules already enumerated. This can be accomplished by noting that the
account of standing plans as defaults must be augmented with an account of the conditions under which it is rational to adopt a
plan schema as a standing plan. An obvious proposal is that this is based upon the belief that plans of this form will usually be
minimally good plans. This automatically gives us a prima facie reason (in the form of the statistical syllogism) for thinking that a
particular instance of the plan schema is a minimally good plan. Rule (El) then gives us a prima facie reason for concluding that
the instance of the plan schema is adoptable. This proposal also clarifies how standing plans can be overridden. They will
automatically be overridden if, in a particular case, the agent has reason to believe that the instantiation of the standing plan is not
a minimally good plan after all, or the agent has another plan that is believed to be preferable.

The preceding seems unproblematic for weak default standing plans, but there are interesting problems involved in incorporating
strong default standing plans into this picture. If we cannot retrieve strong default standing plans for epistemic inspection, how can
we decide that a particular instance of a standing plan is not a minimally good plan, and how can we compare it with possibly
competing plans to see whether it should be overridden? Consider a concrete example. Most adult human beings know how to
walk down a sidewalk. They have a compiled-in standing plan for this operation and use it without further thought under most
circumstances. However, faced with a

Page 282

ledge jutting out from a cliff and a thousand-foot drop on one side, even if the ledge is as wide and flat as a sidewalk, most people
will proceed very cautiously and think about every step. This is reasonable, because although one is no more likely to fall off the
ledge than to fall off the sidewalk, the results of a fall would be much more serious and hence the plan that was a minimally good
one for walking along the sidewalk may not be a minimally good one for walking along the ledge. That is, when applied to the
ledge, even though the probability of falling is very low, the results of falling are so serious that the plan may have a negative
expected value. To accommodate such reasoning in a rational agent, the agent must have some information about the probabilities
of various outcomes of attempts to execute standing plans. This information must be stored with the plans and retrieved by
PLANUPDATER, which uses it in deciding whether to adopt the standing plan. This information could be stored either in the form
of beliefs or in a more encapsulated form that would be accessible only for a background computation of expected value (one not
carried out by explicit reasoning). The doxastification of practical reasoning suggests that this information must be stored in the
form of beliefs, but the possibility remains that it is stored both ways in order to facilitate efficient computation, because
calculation carried out by explicit reasoning is comparatively slow.

The probability beliefs that make standing plans defeasibly reasonable pertain to the probabilities of outcomes resulting from the
execution of the standing plan under very general circumstances. There may be features of the present circumstances that alter
those probabilities. For example, I have a standing plan for walking down a sidewalk, and stored with that plan is the information
that the probability of its successful execution is extremely high. That makes it defeasibly reasonable for me to adopt that standing
plan if I want to get to the other end of the sidewalk. But in extraordinary circumstances, this defeasible reason may be defeated.
For example, suppose I am a soldier under enemy fire, and I would be fully exposed if I walked down the sidewalk, but there is a
low wall bordering it so that I could crawl down the sidewalk with impunity. Then a rational agent will elect to crawl rather than
walk. This is because I have specific information about the current situation that leads to a different probability estimate from the
general one stored with the standing plan. This leads to a different assessment of the expected value of the standing plan, and in
this case the conclusion is that it is not a minimally good plan.

The natural way to handle this reasoning is in terms of epistemic reasoning involving direct inference. The stored probability is an
in-

Page 283

definite probability conditional upon very general circumstances. It supports a direct inference to the conclusion that the
probability of the plan's being successfully executed is high. But our more specific information about the enemy fire includes
beliefs about the indefinite probability of successfully executing the plan under more specific circumstances, and we believe that
those circumstances actually obtain. Accordingly, this probability takes precedence, defeating the direct inference from the more
general probability and supporting instead a direct inference to the conclusion that the plan is not likely to be successfully
executed.

This reasoning is straightforward provided the relevant probabilities are all encoded in beliefs. Given that the rational agent
possesses all of these beliefs, the reasoning underlying the adoption or rejection of the standing plan can proceed in terms of
principles (E1)-(E4c). No new principles are required to enable epistemic cognition to make all of the requisite judgments.

A Doxastic Implementation

The doxastification of plan adoption has implications for the rest of the planning architecture. The lists of adopted-plans and
disjunctively-adopted-plan-sets are encoded as beliefs about adoptability and disjunctive-adoptability. For the rest of the
PLANNER to make use of these beliefs, it must either respond to the beliefs directly or use the beliefs to construct the associated
lists and then perform computations on the lists. Reflection upon the latter alternative indicates that it would introduce serious
complications into the architecture, because if the adoptability-beliefs are subsequently withdrawn, the lists must be adjusted
accordingly, and computations based upon them must also be adjusted. In other words, the rest of the practical reasoner must also
operate defeasibly. This suggests a thorough-going doxastification of the entire architecture. The trick to achieving this consists of
making use of the full structure of ultimate-epistemic-interests.

First, I have talked about practical cognition sending queries to epistemic cognition by placing the queries in ultimate-epistemic-
interests, but that need not be the only source of ultimate epistemic interests. It is compatible with the architecture for there to be a
list of permanent-ultimate-epistemic-interests that are in ultimate-epistemic-interests from the start, without having to be placed
there by practical cognition. Second, recall that an ultimate epistemic interest encodes a query, together

Page 284

with a degree of interest and an instruction for what to do with an answer. The latter instruction can be of any kind. In particular, it
can tell the reasoner to insert another query into ultimate-epistemic-interests. With these observations, suppose we supply
epistemic cognition with the following permanent-ultimate-epistemic-interests and supplement (E1)-(E4c) with the following
prima facie reasons and defeaters:

permanent-ultimate-epistemic-interests:

(U1) Find a w such that w is a suitable goal. When the belief that w is a suitable goal is produced: insert find anx such that x is a
minimally good plan for achieving w into ultimate-epistemic-interests.

(U2) Find an x such that x is an adoptable plan. When this belief is acquired: insert find ay such that y is a plan for achieving the
same goals as x and y is rationally preferable to x into ultimate-epistemic-interests.

(U3) Find an x such that x is a disjunctively-adoptable plan-set. When the belief that x is a disjunctively-adoptable plan-set is
produced, for each initial node z of a member of x: insert z's if-condition was satisfied when z was first called, and its when-
condition is satisfied but soon to become unsatisfiable into ultimate-epistemic-interests. When this belief is acquired, choose
some x in y at random, and have introspection supply the belief that x was randomly chosen for adoption.

forwards directed prima facie reasons:

(E5) Desiring w is a prima facie reason for believing w is a suitable goal .

(E6) x is an adoptable plan and w is a situation-type consisting of executing a non-basic node of x if it is called is a prima facie
reason for w is a suitable goal . (A non-basic node is one whose operation is not a basic act.)

forwards directed conclusive reasons:

(E7) w is a situation-type having positive relative expected situation-liking is a conclusive reason for w is a suitable goal .

(E8) y is a disjunctively-adoptable plan-set, and x was chosen randomly from the members of y is a conclusive reason for x
is an adoptable plan .

Page 285

backwards directed conclusive reasons:

(E9) x is a situation-type having a non-positive relative expected situation-liking is a conclusive reason for x is not a suitable
goal .

(E10) x is a situation-type having a non-positive relative expected situation-liking is a conclusive undercutting defeater for
(E5).

These will combine to give us the reasoning diagrammed in figure 6. The arrows of the form signify that finding an
instance of one member of ultimate-epistemic-interests leads to the insertion of a new query. My claim is that this constitutes a
doxastic implementation of the planning architecture diagrammed in figure 5.

To see how this works, let us step through the operation of a reasoner supplied with these permanent-ultimate-epistemic-interests
and reasons. The reasoner begins with a permanent interest in finding suitable goals. "Suitable goal" is now treated as an undefined
placeholder, just like "adoptable plan" or "disjunctively-adoptable plan-set". It is a paraphrase of "goal that should (from a
practical point of view) be adopted". The reasoner has three ways of finding suitable goals. If optative dispositions produce the
desire for w, by (E5), this constitutes a prima facie reason for concluding that w is a suitable goal. This corresponds, in figure 5, to
sending the desire to the PLANNING-INITIATOR provisionally but querying epistemic cognition about whether w is a situation-
type having positive relative expected situation-liking. The latter query is now automatic, because the defeasible epistemic
reasoner always adopts interest in defeaters for its inferences, and (E10) formulates a defeater for (E5). (E7) formulates the "direct
epistemic reason'' for adopting goals. I will discuss (E6) below.

Once the reasoner concludes that w is a suitable goal, in accordance with (U1), it sends an interest in finding minimally good plans
for achieving w to ultimate-epistemic-interests. This leads to the epistemic reasoning that constitutes plan synthesis. The reasoning
leading to the search for plans will be prioritized by epistemic cognition according to the degree of interest attached to finding the
plan, and that will be determined by the importance of the goal. This prioritization implements the prioritizing of the desire-queue
in figure 5.

When the reasoner draws the conclusion that a plan is minimally good, this leads, via (El) or (E3), to the conclusion that it is
adoptable or a member of a disjunctively-adoptable plan-set. In the latter case, in accordance with (U3), a query is sent to ultimate-
epistemic-interests

Page 286

Figure 6. Doxastic implementation of the planning architecture

Page 287

leading the reasoner to attend to the conditions under which a choice must be made between the members of the plan-set. When
the reasoner concludes that a choice must be made, that is done and the information that it was done is supplied via introspection
(still in accordance with (U3)) and constitutes a reason (by (E8)) for concluding that the randomly selected plan is adoptable.

When it is concluded that a plan is adoptable, (E6) provides a reason for thinking that executing its nodes if they are called
constitutes a suitable goal. This corresponds to the production of instrumental desires in figure 5.

The upshot is that the apparently complex dynamics of plan adoption and modification, and of scheduling, need not be handled in
an ad hoc way in a rational agent in which practical reasoning is doxastified. These complex dynamics result in a natural way from
the functioning of defeasible epistemic reasoning and its employment in the practical reasoner. Note, however, that a good deal of
the reasoning required is left unspecified in figure 6. The reasoning included in other-reasoning-1 concerns the computation of
expected situation-likings. Other-reasoning2, other-reasoning-4, and other-reasoning-5 are reasoning about the structure of plans.
Other-reasoning-3 is the hardest reasoning. This is the reasoning involved in finding plans. As indicated in section six, this
reasoning will be of the same general sort that is involved in constructive existence proofs in mathematics. Enabling the epistemic
reasoner to perform such reasoning is a difficult task, but not one unique to planning. An obvious consequence of doxastification
of planning is that the PLAN -EXECUTOR must also be doxastified, because it must direct action in terms of defeasible plan-
adoptability beliefs. That will be discussed in the next chapter.

The requested page could not be found.

Return to previous page

Page 289

Chapter 8 Acting

1. Reactive Agents and Planning Agents

In a rational agent, most acting is the result of plan execution. The PLAN-EXECUTOR is the module that executes plans. One of
the principal goals of this chapter is to describe the architecture of the PLAN-EXECUTOR. However, this by itself would not be a
complete picture. It was observed in chapter 1 that optative dispositions produce two kinds of desires: desires for the future and
desires for the present. Only the former can be the subject of planning. The agent cannot plan for the present. Planning takes time,
and it is impossible to plan ahead for a situation that is already here. Desires for the present are typically, but not always, desires to
do something. Those that are not can play no role in directing action (e.g., I hope that my daughter is home safely by now, but if
she isn't, there is nothing I can do about it).

As described in chapter 1, a reactive agent would guide its actions solely on the basis of its desires for present action (what I called
"present-tense action desires"). For example, in response to a pain in its hand, it would form the desire to withdraw its hand, and it
would do so forthwith. Present-tense action desires can compete. A reactive agent might have several present-tense action desires,
only one of which can be satisfied. In such a case, the best the reactive agent can do is act on the desire that is strongest, that is, do
what it most wants to do1.

An agent capable of planning can do better. One way to build a planning agent is to give it the ability to predict what its present-
tense desires are going to be and plan ahead for their satisfaction. Alternatively (or in addition), a planning agent can have
dispositions to form desires for the future and then plan for their satisfaction. Ideally, desires for the future should satisfy a
coherence condition: the agent now desires X for future time t iff at t the agent will then have a present-tense desire for X. Desires
for the future need no longer be desires to do something. They can be desires for arbitrary states of affairs to obtain. Either of these
mechanisms gives a point to present-

1 An interesting implementation of reactive agents can be found in Agre and Chapman [1987].

javascript:parent.goToPage('Page_287')

Page 290

tense desires that are not desires to do something, because the agent can plan ahead for them before they come into existence. The
coherence condition just formulated is too strong to be perfectly implementable, because what is desired for a future time can
change unpredictably as time passes, both as a result of acquiring additional information and as a result of changes in character.
But at least the coherence condition should hold most of the time. Otherwise planning is not going to be an improvement over
reacting.

Planning can supplement but not replace reacting to present-tense action desires. Agents will still be subject to some unpredictable
present-tense action desires and those cannot be handled by planning. So in designing a rational agent, we must, in effect, begin
with a reactive agent and then incorporate planning on top of that. To see how these two sources of action initiation are integrated,
we must first understand how plan execution works. That is the topic of the next section.

2. The PLAN-EXECUTOR

The PLAN-EXECUTOR is the module that executes plans. It will proceed roughly as follows:

(1) Call initial nodes and execute them.

(2) Recursively execute nodes called by nodes that have already been executed.

Several complications must be addressed. First, the epistemic reasoning presupposed by plan execution is defeasible, and the
PLAN-EXECUTOR must accommodate that. The way to do that is, once more, through the doxastification of practical reasoning.
As in the PLANNER, doxastification will allow the bulk of the reasoning involved in plan execution to be done by epistemic
cognition. Second, having adopted a plan and begun its execution, a rational agent does not proceed blindly, come what may. A
rational agent monitors the course of plan execution. If things do not go as anticipated, the execution of the plan may be aborted.
This monitoring consists of keeping a continual check on whether the part of the plan remaining to be executed (the tail of the
plan) is, under the present circumstances, an adoptable plan in its own right. The computational module that does this will be
called the TAIL-MONITOR. As long as the TAIL-MONITOR does not abort plan execution,

Page 291

the PLAN-EXECUTOR will proceed recursively to execute nodes as they are called. A common phenomenon will be that the tail
of the plan is modified by further scheduling as plan execution proceeds. Typically, as we see how the execution of a complex plan
develops and what is true of our current situation, we will acquire reasons for scheduling the remaining nodes more precisely than
we did before plan execution began. This has the effect, via the TAIL-MONITOR, of replacing the tail of the plan by a
modification of it that involves further scheduling, adopting that modification, and then beginning its execution. Of course, it too
may be modified as execution progresses.

Schematically, the PLAN-EXECUTOR can be regarded, as in figure 1, as consisting of a loop. The loop begins by retrieving a
node from a list of called-nodes (originally the initial nodes of top-level adopted plans). It checks to see whether the if-conditions
are satisfied. It does this by passing that question to epistemic cognition. If it is determined that the if-condition is not satisfied,
execution of that node terminates. If it is determined that the if-condition is satisfied, the PLAN-EXECUTOR instructs epistemic
cognition to become interested (and remain interested) in whether the when-condition is satisfied. If at some point epistemic
cognition produces the belief that the when-condition is satisfied, it passes this information back to the PLAN-EXECUTOR. The
PLANEXECUTOR then passes the operation of the node to the ACTION-INITIATOR, along with the subsidiary plan for its
execution if there is one. (The ACTION-INITIATOR will be discussed further below.) Among other things, it resolves last-minute
scheduling questions. When it chooses an operation for execution, it checks to see whether it is accompanied by an execution plan.
If it is not, the operation is assumed to be a basic act, for the performance of which the agent has hardwired routines. Those
routines are then executed mechanically. If instead there is an execution plan, its initial nodes are inserted into the list of called-
nodes, and its execution begins. If a time comes when the TAIL-MONITOR decides the plan is no longer executable even if a
subsidiary plan is adopted, then execution will be aborted. The ACTION-INITIATOR must monitor the execution of an operation

to ensure that it is successful. It does this by querying epistemic cognition. If epistemic cognition concludes that the operation was
successfully executed, the PLAN-EXECUTOR concludes that the node was executed and updates the list of called-nodes and
inserts the new tails that begin with each newly called node into the set of adopted-plans. Then the whole routine begins again.

Page 292

Figure 1. The PLAN-EXECUTOR

Page 293

Running in parallel with this is the TAIL-MONITOR. As soon as a node is called, the TAIL-MONITOR instructs epistemic
cognition to be continually interested in whether the tail of the plan is adoptable. If at any point epistemic cognition concludes that
it is not, the TAIL-MONITOR aborts the plan execution. The epistemic conclusion that the tail is not adoptable may be
accompanied by another epistemic conclusion to the effect that a modification of it is adoptable, and then the PLAN-EXECUTOR
will automatically begin executing the modification just as it executes other adopted plans.

It would be straightforward to write a program to perform these operations mechanically, but that would not accommodate the
defeasability of the agent's access to whether if- and when-conditions are satisfied, operations have been successfully executed,
and so forth. If the agent's beliefs about these matters change, this must alter the course of plan execution. It seems that the best
way to handle this is by doxastifying plan execution. In other words, implement the PLAN-EXECUTOR in terms of epistemic
reasoning by making one addition to the permanent-ultimate-epistemic-interests and adding the following reason schemas:

permanent-ultimate-epistemic-interests:

(U2*) Find an x such that x is an adoptable plan. When the belief that x is an adoptable plan is acquired: insert find ay such that
y is a plan for achieving the same goals as x and y is rationally preferable to x into ultimate-epistemic-interests;

for each initial node z of x: insert z is executable into ultimate-epistemic-interests.

(U4) Find a v such that v is an executable operation. When the belief that v is an executable operation is acquired, send v to the
ACTION-INITIATOR. (The ACTION-INITIATOR will insert v has been executed into ultimate-epistemic-interests when it
tries to execute v.)

forwards directed prima facie reasons:

(E11) x is the tail of y with respect to z and z was an executable node and z has been executed is a prima facie reason for x is
an adoptable plan .

(E12) z is an executable plan-node of expected-value δ, and x is the (nonempty) subsidiary plan of z is a prima facie reason for
x is an adoptable plan .

Page 294

forwards directed conclusive reasons:

(E12) y is the subsidiary plan for z, and z is an executable node, and y has been fully executed is a conclusive reason for
node z has been executed .

(E13) Node z was executable, v is the operation prescribed by node z, and v was executed during the time z was executable is a
conclusive reason for z was executed .

(E14) x is an adoptable plan and z is an initial node of x is a conclusive reason for z is called .

(E15) x was an executable node of plan y and x has been executed is a conclusive reason for x is no longer executable .

backwards directed conclusive reasons:

(E16) z is called, its if-condition was satisfied when it was first called, and its when-condition is satisfied is a conclusive
reason for z is an executable plan-node

(E17) v is the operation prescribed by an executable plan-node z of expected-value δ is a conclusive reason for v is an
executable operation of strength δ .

(E18) x is not prescribed by any executable plan-node of expected-value δ is a conclusive reason for x is not an executable
operation of strength δ

These combine to give us the reasoning diagrammed in figure 2. This constitutes a doxastic implementation of the plan execution
architecture diagrammed in figure 1. To verify this, let us step through the operation of a reasoner supplied with these permanent-
ultimate-epistemic-interests and reason schemas. We begin with beliefs of the form x is adoptable , supplied by the planning
architecture of chapter 9. The pursuit of such beliefs was already among the permanen-tultimate-epistemic-interests, but (U2*)
adds an instruction to the effect that whenever such a belief is acquired, queries about whether the initial nodes of x are executable
should be inserted into ultimate-epistemic-interests. These queries are answered in terms of (E16) and (E17). If the reasoner
concludes that an initial node z is executable and it also concludes that z prescribes an operation v, then it concludes, by (E18), that
v is an executable operation, and by (U4), it sends v to the ACTIONINITIATOR and that initiates interest in whether v has been
executed. Information to the effect that various operations have been executed is used to conclude that nodes prescribing them
have been executed (by

Page 295

Figure 2. Doxastic implementation of the plan execution architecture

Page 296

(E13)) and that plans have been fully executed. When it is concluded that an initial node z has been executed, it is inferred by (Ell)
that the tail of x with respect to z is an adoptable plan, and the loop begins again. Thus we have a doxastic implementation of the
PLAN-EXECUTOR.

3. The ACTION-INITIATOR

The PLAN-EXECUTOR places operations awaiting execution in a list of executable-operations. In addition, the agent may have
primitive present-tense desires to perform some operation, and these are also placed on the list of executable-operations. The task
of the ACTION-INITIATOR is to decide which of these operations to execute at any given time. When it decides to execute one
of these operations, it monitors the attempted execution and when it is ascertained that the operation has been successfully
executed, that operation is deleted from the list of executable-operations.

The fundamental question about the ACTION-INITIATOR is, how does it decide what to do when? The main difficulty in
answering this question arises from the fact that the planning architecture adumbrated in chapter 7 leaves an important gap
between planning and acting. This is due, in part, to the fact that scheduling is rarely very precise. Rationality dictates leaving
schedules as flexible as possible to accommodate new plans as they are adopted and to enable the agent to make use of new
information that may lower execution costs if plan execution is scheduled in light of it. Return to the example of painting my
garage. As the time for buying the paint approaches, I schedule the purchase more and more precisely. First, I planned (yesterday)
to buy the paint today. Then I planned to buy it this afternoon. Then I planned to buy it on my way to the grocery store. In this way
I generate more and more precise schedules. But I may never generate an absolutely precise schedule. When I actually get into the
paint store and stand at the counter, there has to be something that makes me decide to buy the paint now (rather than 30 seconds
from now, or 5 minutes from now). At any given time, it will typically be the case that nodes from many different plans have been
called, their when conditions are satisfied, and they are waiting to be executed by having their operations executed. For instance, I
plan to call my travel agent sometime this afternoon to check on my car rental in New Zealand, I plan to start the barbecue grill
pretty soon to fix dinner, I plan to run out to the mailbox and retrieve my mail before it gets dark, and so

Page 297

forth. All three of these plans have nodes that have been called and are awaiting execution. The when-conditions are sufficiently
broad that I can successfully execute the nodes any time during the next several hours. I might engage in further planning and
refine my schedule for when to do them, but more likely a time will come when I just decide to do one of them, and then later I
will decide to do another, and so on. These decisions are the work of the ACTION-INITIATOR rather than the PLANNER. To
complete the theory of rational plan execution, we need an account of how the ACTION-INITIATOR decides what to do at any
given time.

It was proposed in chapter 1 that the best that can be done without further planning is to marshal the machinery of the reactive
agent and ''do what the agent most wants to do." Plan-nodes correspond to instrumental desires, and instrumental desires have
strengths associated with them. This strength is inherited by the mandated operation when it is passed to the ACTION-
INITIATOR. The executable operations are things the agent "wants to do", and the strength is a measure of how badly the agent
wants to do it. The ACTION-INITIATOR selects the one the agent wants most to do (if there is a tie it randomly selects one of the
most preferred operations) and then initiates the execution of that operation, deleting it from the list of executable-operations. At
the same time it queries epistemic cognition about whether the operation is executed successfully. If the belief is adopted that the
operation was not executed successfully, then it is reinserted into the list of executable-operations so that the agent can try again.

The ACTION-INITIATOR has the hardwired ability to initiate basic acts (basic motor skills). If an executable operation is a basic
act and it is not accompanied by an execution plan, then when it is selected for execution, the built-in routines are executed
automatically. The built-in routines can be overridden by accompanying the act with an execution plan. For instance, I can
normally raise my arm automatically by executing built-in routines for that purpose. But if my arm is anesthetized, I may instead
raise it by lifting it with my other arm. Operations that are not basic acts must be accompanied by execution plans. Whenever an
operation is accompanied by an execution plan and the operation is selected for execution, that subsidiary execution plan is judged
adoptable and its initial nodes are judged to be called. The execution of the subsidiary plan is then carried out by the PLAN-
EXECUTOR.

This simple model of action initiation explains a great deal. There is a temptation in the theory of practical reasoning to think of
the adoption of a plan as beginning a process that grinds inexorably to the

Page 298

execution of the plan unless it is subsequently retracted (that is, unless the agent changes its mind). But that is inaccurate. Adopting
a plan is not like setting a train moving on rigid rails. Although I plan to do something and never explicitly change my mind, the
plan may never be executed just because I never feel like executing it. There may always be other things I want to do more. This
can include doing nothing. For example, I might adopt the plan to go to the grocery store this afternoon. As the afternoon
progresses, it occurs to me at various times that I planned to go to the grocery store, but each time my reaction is, "Oh, I don't feel
like going just now. I will do it later." Finally, the afternoon is over and I have not gone, but there was never a point at which I
explicitly retracted my plan to go. I just didn't do it.

It is not only lethargy that can keep plans from being executed. I may have planned to go to the grocery store but I became
engrossed in writing this chapter, and every time I thought about going to the store I decided that I would rather keep writing and
go later. Eventually the afternoon was over and I had not gone.

Notice that lethargy and wanting to continue writing are present-tense action desires rather than operations prescribed by plans.
That is, they are primitive desires produced by optative dispositions and concern our present behavior rather than our future
behavior. Presumably lethargy is the result of a built-in optative disposition, whereas wanting to continue writing is almost
certainly the result of an acquired optative disposition. These examples illustrate the importance of the mechanisms of the reactive
agent even in a sophisticated planning agent. Such mechanisms play an extremely important role in "modulating" the behavior of
the planning agent.

Page 299

Chapter 9 OSCAR

1. Constructing an Artilect

The previous chapters described the architecture of an artilect in sufficient detail that it is now possible to build systems having
that architecture. The most natural way to do that is to write a computer program to implement the architecture, but it it is
important to realize that the design of the artilect is a more general enterprise. I have proposed a functional description of how a
system of rational cognition can work. This enterprise is not different in kind from giving a functional description of the steering
mechanism of a car or the wiring diagram of a television set. In each case, the functional description is describing how something
works.1 Something can conform to the functional description, and hence work that way, while being built in many different ways
and out of many different materials. What is perhaps unique about cognition is that only the input and output are directly
constrained by the physical world. What goes on in the middle can proceed in any way compatible with the functional description.
The same system of cognition could be realized biologically, on a microchip, or with a system of water hoses and valves.
Implementing it by writing a computer program is just a way of realizing it in electronic circuitry. Programming a computer is not
different in principle from wiring a circuit using a soldering iron. Loading the program closes gates in the computer's circuitry, and
one could do the same thing on a larger-scale circuit with a soldering iron. There is nothing magical about implementing cognition
in a program. That is just one of many ways to build a physical system that satisfies the functional description. However, given the
current state of the art, it is certainly the most convenient way of building such a system, so that is how I will proceed. This in no
way commits us to the view that the mind is much like a digital computer. The use of a digital computer is just one way to
implement the functional description. There may be many other kinds of hardware in which the same functional description can be
implemented (perhaps more efficiently but probably not so easily). Bi-

1 For an extended discussion of functional descriptions, see my [1989].

Page 300

ological hardware is certainly one way of doing this, and connectionist networks might be another.

It is to be emphasized that this book has proposed an architecture for a rational agent, not a complete functional description of a
rational agent. The difference is an important one. An architecture is a framework within which cognition operates. Different parts
of the framework can be filled out in various ways, resulting in somewhat different rational agents that still have the same
architecture. The architecture itself can be viewed as a programmable computational device. It is programmed by providing
computational modules and data structures for the varous functional constituents. To explain this more fully, let us look at the
details of the architecture. The architecture I have proposed is summarized in three crucial diagrams: figure 4 of chapter 4, figure 6
of chapter 7, and figure 2 of chapter 8. For convenience, these diagrams are repeated here, with new numbers. The doxastification
of practical cognition has the effect of collapsing much of it into epistemic cognition, with the result that we can summarize the
architecture with a single more general diagram that omits the details of the doxastification (presented in figure 4). A striking
feature of this diagram is the way it makes it clear that although epistemic cognition is subservient to practical cognition, almost all
of the work of cognition is done by epistemic cognition. The objective of cognition is to produce actions that are conducive to the
agent's "living the good life", but (with the help of doxastification) the mechanisms for selecting such actions are almost entirely
epistemic.

Different parts of the OSCAR architecture have different motivations. In some cases, I have argued that there is only one way
rational cognition can work, and that has generated some of the more general features of the architecture. In other cases, there may
be many ways to achieve a design goal, where the design goal is dictated by more abstract features of the architecture. In such
cases, the design proposed has often been influenced by rather general features of human cognition. But no claim is made that this
is an entirely accurate model of human cognition, and in some respects it clearly is not.

We can regard the OSCAR architecture as a programmable computational device. Programming it consists of specifying the
contents of some databases that the rest of the architecture accesses. These databases constitute the list of permanent-ultimate-
epistemic-interests, the lists of prima facie and conclusive reasons, the relation used for prioritizing the inference-queue, and a list
of Q&I modules. It is not far fetched to regard this as a matter of programming a general computational device.

Page 301

Figure 1. Epistemic cognition

Page 302

Figure 2. Doxastic implementation of the planning architecture

Page 303

Figure 3. Doxastic implementation of the plan execution architecture

Page 304

Figure 4. An architecture for rational cognition

Page 305

Furthermore, it would be unreasonable to stipulate the contents of these databases as a fixed part of the OSCAR architecture,
because it is unlikely that there is just one good way of constructing such databases. In human beings, it is done one way, but there
may be other ways of doing it that are, for some purposes, preferable. In particular, the best choices for these databases may
depend heavily on the hardware used for implementing the architecture. Different hardware may be better suited to different kinds
of computations. For instance, human beings are very good at pattern matching but seem to find unification (two-way pattern
matching) unnatural. On the other hand, unification plays an important role in most contemporary systems of automated reasoning,
and it is easily computed on a digital computer. This suggests that a system of reason-schemas employing unification might be
better suited for an implementation of the OSCAR architecture on a digital computer than it is for certain kinds of biological
implementations.

Thus far, the OSCAR architecture has been described in rather loose prose, the thrust of the book being to defend the general ideas
constituting the architecture rather than laying them down in a form that makes them easily implementable. The next section gives
a more precise description of the architecture.

2. The General Architecture

The OSCAR architecture begins with a situation-evaluator, which produces a (real-measurable) degree of liking for the agent's
current situation. This is presumed to be sensitive to the agent's beliefs about its situation. The likability of a situation is the degree
the agent would like it if it had true beliefs about all relevant aspects of the situation. The objective of the agent's reasoning is to
put itself in situations that are more likable than the situations in which it would find itself if it did not take action.

Ideally, plans are evaluated in terms of the expected likability of their being adopted. This involves reasoning about both
likabilities and probabilities. Such reasoning is computationally difficult, so the OSCAR architecture also allows the use of
shortcut procedures for producing approximate evaluations of plans. Such shortcut procedures are called Q&I modules ("quick and
inflexible"). Q&I modules occur throughout rational cognition. A mark of rationality, however, is that when the output of Q&I
modules conflicts with the output of explicit reasoning, the agent overrides the Q&I modules and adopts the conclusion of the
reasoning.

Page 306

Goals are judged suitable or unsuitable on the basis of their expected likability. The function of goals is to direct the course of
planning. The use of goals constitutes a control structure for planning, in accordance with figure 2. Shortcut procedures for the
choice of goals are indispensable in any realistic agent, because the agent must be able to live in the world before it acquires the
general knowledge required for evaluating the suitability of goals. These take the form of Q&I modules called optative
dispositions, which are dispositions to adopt goals.

In OSCAR, the bulk of the computational work involved in practical cognition is relegated to epistemic cognition. Accordingly,
the core of OSCAR is a sophisticated system of epistemic cognition, based upon a general-purpose defeasible reasoner. Practical
cognition functions by passing queries to epistemic cognition. These queries comprise the list of ultimate-epistemic-interests. The
introduction of a query initiates epistemic cognition aimed at answering it, and queries are stored along with instructions for what
to do with an answer. OSCAR begins with an interest in finding suitable goals. This is encoded as a permanent member of ultimate-
epistemic-interests. When such a goal is found, the corresponding instruction is to insert a new query into ultimate-epistemic-
interests regarding the discovery of adoptable plans aimed at achieving the goal. When such a plan is found, a query is inserted
regarding the satisfaction of the preconditions of its plan-steps. When that query is answered affirmatively, the corresponding
instruction is to pass the prescribed action to the ACTION-INITIATOR. Thus most of the work of practical cognition is performed
by passing queries to ultimate-epistemic-interests with appropriate instructions for what to do with answers to the queries. In many
cases, those instructions take the form of inserting new queries into ultimate-epistemic-interests.

In OSCAR epistemic cognition is performed jointly by a general-purpose defeasible reasoner and an array of special-purpose Q&I
modules. Although an interface to the Q&I modules has been provided, no Q&I modules have been incorporated into the present
implementation.

This general architecture is encoded as follows:

OSCAR:

• Insert the members of permanent-ultimate-epistemic-interests into ultimate-epistemic-interests, and insert them into the inference-
queue.

• Insert the members of premises into the inference-queue, adopting

Page 307

interest in rebutting defeaters for those that are not necessary truths.

• Initialize global-assignment-tree.

• Do the following repeatedly and in parallel: · Run environmental input through the optative dispositions, insert the resulting
desires into the inference-queue, and encode this input in nodes of the inference-graph. Update the desire-strengths of desires
already on the inferencequeue, and adjust their priorities in light of changes in desire-strength.

• Insert new perceptual states into the inference-queue and encode this input in nodes of the inference-graph. Update the saliences
of percepts already on the inference-queue and adjust their priorities in light of changes in salience.

• THINK

• INITIATE-ACTIONS

Epistemic cognition is performed by THINK, whose principal function is to engage in defeasible and deductive reasoning.
OSCAR's defeasible reasoner is based upon seven fundamental ideas: (1) an argument-based account of defeasible reasoning
(formulated in chapter 3), (2) an analysis of defeat-status given a set of interrelated arguments (defended in chapter 3), (3) a
general adequacy criterion for automated defeasible reasoners, called ''i.d.e.-adequacy" (defended in chapter 4), (4) the claim that a
general-purpose defeasible reasoner must have the kind of structure I have called "flag-based" (defended in chapter 4), (5) an
algorithm for computing defeat-status, (6) an interest-driven monotonic reasoner (presented briefly in chapter 4), and (7) an
account of degrees of justification, degrees of interest, and their interactions (discussed in chapter 3). I will give a brief summary
of each of these ideas.

Argument-Based Defeasible Reasoning

In OSCAR, reasoning consists of the construction of arguments, where reasons are the atomic links in arguments. Defeasibility
arises from the fact that some reasons are subject to defeat. Arguments are encoded as inference-graphs. The nodes of an inference-
graph represent premises and conclusions, and the links between the nodes represent dependency relations. All of OSCAR's
reasoning is combined into a global inference graph-the inference-graph. In the interest of theoretical clarity, I defined inference-
graphs in such a way that different arguments for the same conclusion are represented by different nodes. This made it clearer

Page 308

how the algorithm for computing defeat-status works. That algorithm proceeded in terms of "status assignments", which are
defined as follows. We first define:

A node of the inference-graph is initial iff its node-basis and list of node-defeaters is empty.

σ is a partial status assignment iff σ is a function assigning "defeated" and "undefeated" to a subset of the nodes of an inference-
graph in such a way that:

1. σ assigns "undefeated" to all initial nodes;

2. σ assigns "undefeated" to a node α iff σ assigns "undefeated" to all the members of the node-basis of α and σ assigns "defeated"
to all node-defeaters of α; and

3. σ assigns "defeated" to a node α iff either some member of the node-basis of α is assigned "defeated", or some node-defeaters
of α and is assigned "undefeated".

σ is a status assignment iff σ is a partial status assignment and σ is not properly contained in any other partial status assignment

A node is undefeated iff every status assignment assigns "undefeated" to it; otherwise it is defeated.

However, for the purpose of implementing defeasible reasoning, using different nodes to represent different arguments for the
same conclusion is an inefficient representation, because it leads to needless duplication. If we have two arguments supporting a
single conclusion, then any further reasoning from that conclusion will generate two different nodes. If we have two arguments for
each of two conclusions, and another inference proceeds from those two conclusions, the latter will have to be represented by four
different nodes in the inference graph, and so on. This is illustrated in figure 5, where P and Q are each inferred in two separate
ways, and then R is inferred from P and Q.

A more efficient representation of reasoning would take the inference-graph to be an and/or graph rather than a standard graph. In
an and/or graph, nodes are linked to sets of nodes rather than individual nodes. This is represented diagramatically by connecting
the links with arcs. In an and/or inference-graph, when we have multiple arguments for a conclusion, the single node representing
that

Page 309

conclusion will be tied to different bases by separate groups of links. This is illustrated in figure 6 by an and/or inference-graph
encoding the same reasoning as the standard inference-graph in figure 5. In an and/or inference-graph, a support-link will be a set
of supporting-arrows connected with an arc.

Although and/or graphs provide an efficient representation of reasoning, they complicate the computation of defeat-status. Using
simple inference-graphs, we can use the defeat-status computation of chapter 2 to compute defeat-statuses, and then use the
computed defeat-statuses to compute the degrees-of-justification for the nodes in the inference-

Figure 5. Inference-graph with multiple arguments for a single conclusion (top)
Figure 6. And/or inference-graph (bottom)

Page 310

graph. The degree-of-justification for a node is zero if it is defeated, and it is its degree-of-support otherwise.

With and/or inference-graphs, we can no longer separate the computation of defeat-statuses and degrees-of-justification. To
illustrate, consider the two inference-graphs in figures 7 and 8. They could arise from different degrees of justification for the two
nodes supporting R. In figure 7, only the rightmost node is strong enough to defeat S, whereas in figure 8, only the leftmost node is
strong enough to defeat S. The difference has repurcusions, because in figure 7, S is provisionally defeated, and hence T is also
provisionally defeated, but in figure 8, S is defeated outright, and hence T is undefeated. The difficulty is now that if we try to
represent these as and/or graphs, we get the same graph, drawn in figure 9. This representation cannot distinguish between the
situation diagrammed in figure 7 and that diagrammed in figure 8, and accordingly leaves the defeat-status of T indeterminate.

Figure 7. T is provisionally defeated

Page 311

Figure 8. T is undefeated (top)
Figure 9. Status of T is indeterminate (bottom)

Page 312

Figure 10. Status of varies

This difficulty can be avoided by attaching strengths to the support arrows. In figure 10, if we attach the strengths in brackets, we
get a representation of figure 6, and if we attach the strengths in braces, we get a representation of figure 7.

With this modification, we can construct a defeat-status computation that is equivalent to that for simple inference-graphs. The
trick is to take the defeat-status of a node to be its undefeated-degree-of-justification rather than just "defeated" or "undefeated". If
all arguments supporting a node are defeated, then the undefeated-degree-of-justification is 0. Otherwise, it is the maximum of the
strengths of the undefeated arguments. We can then modify the definition given in chapter 2 as follows:

A node of the inference-graph is initial iff its node-basis and list of node-defeaters is empty.

σ is a partial status assignment iff σ is a function assigning real numbers between 0 and 1 to a subset of the nodes of an inference-
graph and to the support-links of those nodes in such a way that:

1. σ assigns its degree of justification to any initial node;

2. If σ assigns a value a to a defeat-node for a support-link and assigns a value less than or equal to α to some member of the link-
basis, then σ assigns 0 to the link;

Page 313

3. Otherwise, if σ assigns values to every member of the link-basis of a link and every link-defeater for the link, σ assigns to the
link the minimum of the strength of the link-rule and the number σ assigns to the members of the link-basis.

4. If every support-link of a node is assigned 0, the node is assigned 0;

5. If some support-link of a node is assigned a value greater than 0, the node is assigned the maximum of the values assigned to its
support-links.

6. If every support-link of a node that is assigned a value is assigned 0, but some support-link of the node is not assigned a value,
then the node is not assigned a value.

σ is a status assignment iff σ is a partial status assignment and σ is not properly contained in any other partial status assignment

The analysis of defeat-status in terms of status assignments is now more complicated than it was for simple inference-graphs. We
want the analysis to be equivalent to the analysis given in terms of simple inference-graphs. To accomplish this, we begin by
noting that each simple inference-graph can be rewritten as an and/or graph, and then each node of the and/or graph corresponds to
a set of nodes of the simple graph. A node of the simple inference-graph, on the other hand, corresponds to an argument in the
and/or graph. An argument is a kind of connected sub-tree of the graph. More precisely:

An argument from an and/or inference-graph for a node N is a subset Α of the nodes and support-links of the graph

such that (1) if a node in Α has any support-links in , exactly one of them is in Α, (2) if a support-link is in Α then the
nodes in its support link-basis are also in Α, and (3) N is in Α.

Nodes in the simple inference-graph correspond one-one to arguments in the and/or inference-graph. The definition of a partial
status assignment for and/or graphs just amounts to saying that a node is assigned "undefeated" iff it is either an initial node or
some argument for it consists of nodes and links that are assigned "undefeated".

The result we want to ensure is the following Correspondence Theorem:

A node of the and/or inference-graph is undefeated iff one of the corresponding nodes of the simple inference-graph is undefeated.

Page 314

Figure 11. Counterexample to the Correspondence Theorem

The computation of defeat-statuses for and/or inference-graphs must be done in such a way as to make the preceding true. To this
end, it is tempting to define:

A node of the and/or inference-graph is undefeated iff every status assignment assigns a non-zero value to it; otherwise it
is defeated.

However, this does not make the Correspondence Theorem true. Figure 11 is a simple counterexample, with the simple inference-
graph on the right and the corresponding and/or graph on the left. In the simple graph, there are two status-assignments, and one
assigns "undefeated" to the left "E" and the other assigns "undefeated to the right "E", but neither "E'' is assigned "undefeated" by
both status-assignments, so both are defeated. In the and/or graph, there are also two status assignments, and each assigns
"undefeated" to "E" (by making a different argument undefeated). Thus on the above proposal, "E" would be undefeated in the
and/or inference-graph, but defeated in the simple inference-graph.

This example makes it clear that the difficulty lies in the fact that, in the and/or graph, there is no argument that comes out
undefeated on both assignments. This suggests that the correct analysis of defeat-status for and/or inference-graphs is:

A node of the and/or inference-graph is undefeated iff the graph contains an argument for the node which is such that
every status assignment assigns a non-zero value to all nodes and links in the argument; otherwise it is defeated.

With this definition it becomes simple to prove the Correspondence Theorem by induction on the length of the arguments. Note
that this

Page 315

would make the computation of defeat-status complicated if it were done for a single inference-node, but it is straightforward to
recursively compute all of the defeat-statuses for the inference-graph simultaneously.

With the understanding that defeat-statuses will be computed as described, the inference-graph will consist of a set of inference-
nodes and support-links. A support-link is a data-structure encoding an inference, and it has slots for the following information:

• support-link-target ·the inference-node supported by the link;

• support-link-basis-the list of inference-nodes from which the inference is made;

• support-link-rule-the reason licensing the inference; this can be either a substantive reason or a string;

• support-link-defeaters-if the inference is defeasible, the set of inference-nodes having the syntactically appropriate form to defeat
it (this ignores considerations of strength).

An inference-node N is a data-structure encoding the following information:

• the node-sequent

• support-links-the support-links supporting the node;

• node-justification-if the node has no support-links, this is a string describing its justification;

• consequent-links-the list of support-links for which this node is a member of the support-link-basis;

• node-defeatees-the list of support-links L such that N is a node-defeater of L;

• the defeat-status-the undefeated degree-of-support;

I.D.E.-Adequacy

Perhaps the greatest problem facing the designers of automated defeasible reasoners is that the set of warranted conclusions
resulting from a set of premises and reason-schemas is not in general recursively enumerable. The solution embodied in OSCAR is
to allow a defeasible reasoner to draw conclusions tentatively, sometimes retracting them later, and perhaps reinstating them still
later, and so on. The set of conclusions drawn by such a reasoner cannot constitute a recursive enumeration of the set of warranted
propositions, but I have proposed instead that it should systematically approximate the set of warranted conclusions in the
following sense:

Page 316

The rules for reasoning should be such that if the reasoner is interested in a proposition p then:

(1) if p is warranted, the reasoner will eventually reach a stage where p is justified and stays justified;

(2) if p is unwarranted, the reasoner will eventually reach a stage where p is unjustified and stays unjustified.

If these conditions are satisfied, the sequence of sets of justified conclusions at different stages of reasoning constitutes a
"defeasible enumeration" of the subset of warranted propositions in which the reasoner is interested, and the reasoner is said to be
"i.d.e.-adequate".

Because the set of warranted propositions is not recursively enumerable, an i.d.e.-adequate reasoner may never stop reasoning. In
simple cases it may stop, by running out of things to do, but in complicated cases it will go on reasoning forever. The significance
of such a reasoner, embedded in a rational agent, is that it tells the agent what to believe "given the current state of its reasoning",
and if the agent has to take action, it does so on the basis of what it believes at that time, even if there is no guarantee that it would
not change its beliefs later if it had more time to reason. This involves the conception of defeasible conclusions as "innocent until
proven guilty". In other words, they are pefectly reasonable beliefs, and it is reasonable to act upon them, despite the fact that the
agent cannot "prove" that they will never have to be retracted.

Flag-Based Reasoners

In the attempt to build an i.d.e.-adequate defeasible reasoner, a natural first inclination is to suppose that when a conclusion is
defeated, the reasoner should stop reasoning from it unless or until it is subsequently reinstated. It turns out, however, that such a
proposal cannot work. Consider two long arguments, and suppose the final step of each defeats an early step of the other. It
follows from the analysis of defeat-status that both arguments are defeated. They undergo collective defeat. But a reasoner that
stopped reasoning from a conclusion once it was defeated would never discover the collective defeat, because having completed
one of the arguments, it would cease developing the other one. For this reason, an i.d.e.-adequate reasoner must continue reasoning
from conclusions even when they are defeated. This suggests that such a reasoner should simply flag conclusions as defeated and
go on reasoning. Defeat-status may affect the priorities that are assigned to performing various inference steps, so that undefeated
conclusions

Page 317

are given some precedence over defeated ones, but inferences from defeated conclusions must still go forth. Such a reasoner is said
to be "flag-based". We can think of a flag-based reasoner as consisting of two largely autonomous modules: a "monotonic
reasoner" that reasons and builds the inference-graph, without paying much attention (except in prioritizing inferences) to defeat-
status, and a module that computes or recomputes defeat-statuses as new inferences are made. Such a reasoner has the form of a
simple loop:

(loop
(draw-a-conclusion)
(recompute-defeat-statuses))

It was shown in chapter 3 that subject to some reasonable assumptions about the structure of prima facie reasons provided to the
reasoner and the adequacy of the monotonic reasoner, the resulting flag-based reasoner will be i.d.e.-adequate.

Interest-Driven Reasoning

OSCAR's monotonic reasoner is based upon the deductive reasoner described in my [1990a]. That was an "interest-driven
suppositional reasoner" for first-order logic. The reference to suppositional reasoning means that it can accommodate natural
deduction rules like conditionalization, reasoning by cases, and reductio ad absurdum. For this purpose, the nodes of the inference-
graph are taken to encode sequents rather than formulas. A sequent is a pair (X,P), where X is a set of formulas (the supposition of
the sequent) and P is an individual formula. The sense in which the reasoner is interest-driven is that it reasons both backwards
from the desired conclusions and forwards from the given premises. Reasoning backwards can be regarded as deriving interests
from interests. This is related to backwards chaining and forwards chaining but it is not quite the same thing. The difference lies in
the fact that different rules of inference and different reason-schemas are employed for backwards and for forwards reasoning. The
motivation for this is that natural rules of inference are often very reasonable when applied in one direction but combinatorially
explosive when applied in the other. For instance, the rule of addition tells us to infer the disjunction (P v Q) from the disjunct P.
As a rule of backwards reasoning, this is eminently reasonable. It tells us that if we want to establish a disjunction, one way is to
try to get the first disjunct. But as a rule of forwards reasoning it would be catastrophic. It would

Page 318

have the reasoner infer every disjunction involving any conclusion it obtains.

We can think of interest-driven reasoning as consisting of three operations: (1) we reason forwards from previously drawn
conclusions to new conclusions; (2) we reason backwards from interests to interests; (3) when we have reasoned backwards to a
set of sequents as interests, and forwards to the same set of sequents as conclusions, then we discharge interest and conclude the
sequent that led to those interests. For example, suppose we are given the premises P and (P ⊃ Q) and are interested in the
conclusion (Q v R). From the latter, we could reason backwards to interest in Q and in R (using addition as our rule of inference).
From the premises we could reason forwards to Q (using modus ponens). We then have Q as both a conclusion and an interest, so
we can discharge interest. Our interest in Q derived from our interest in (Q v R), so when we discharge interest, we conclude (Q v
R), and we are through.

As described in chapter 4, this reasoning proceeds in accordance with three procedures:

REASON-FORWARDS

If a set of sequents X is a forwards reason for a sequent S, some member of X is newly concluded, and the other members of X
have already been concluded, then conclude S.

REASON-BACKWARDS

If interest is adopted in a sequent S, and a pair (X,Y) of sets of sequents is a backwards reason for S, where X is the set of forwards
premises and Y is the set of backwards premises, then if every member of X has been concluded, adopt interest in any members of
Y that have not already been concluded. If all members of both X and Y have been concluded, conclude S. If some members of X
have not been concluded, then simply record (X,Y) as a potential reason for S, for use by DISCHARGE-INTEREST.

DISCHARGE -INTEREST

If interest was adopted in the members of Y as a way of getting the sequent S, and some member of Y is concluded and the other
members of Y have already been concluded, then conclude S. If the pair (X,Y) has been recorded as a potential backwards reason
for S, and some member of X is newly concluded and the other members of X have already been concluded, then adopt interest in

Page 319

any members of Y that have not already been concluded. If all members of both X and Y have been concluded, conclude S.

Reasoning forwards builds the inference-graph, and reasoning backwards builds the interest-graph. When the two graphs meet,
interests are discharged, with the result that sequents that are of interest (as recorded in the interest-graph) are concluded and
incorporated into the inference-graph. In the agent-architecture, queries posed by practical cognition form termini in the interest-
graph. When OSCAR is treated as an isolated defeasible reasoner, these queries are supplied by the operator. When such queries
are answered, the agent does something with the answers. What the agent does is determined by the purpose of the query. This is
accomplished by storing instructions for what to do with an answer along with the query in ultimate-epistemic-interests.

As a deductive reasoner, this monotonic reasoner turns out to be surprisingly efficient, as I have documented in my [1990a].
However, the original motivation for developing it was to incorporate it into a system of defeasible reasoning. This is because
standard deductive reasoners based upon resolution refutation cannot serve that purpose. Such systems, in effect, always reason by
reductio ad absurdum, but reductio ad absurdum is invalid for reasoning involving prima facie reasons. If a contradiction is
obtained from some premises by reasoning via prima facie reasons, that does not support an inference to the negation of the
premises. Instead it defeats the defeasible inferences.

In deductive reasoning, all reasons are equally good (that is, perfect). But defeasible reasons can vary in strength, with important
consequences for the behavior of a defeasible reasoner. For instance, given an argument for a conclusion and a stronger argument
for its negation, the stronger argument wins. A common view in epistemology has been that argument strengths should behave like
probabilities, but I have argued against that in chapter 3. OSCAR instead computes argument-strengths in terms of the "weakest
link" principle. According to this principle, the strength of an argument, and the degree of support it confers on its conclusion, is
the minimum of the (stipulated) degrees of justification of the input premises used and the strengths of the reasons used.

One of the main roles of degrees of support lies in the adjudication of disputes. Given an argument for P and another argument for
~P, the stronger argument wins, that is, the conclusion of the stronger argument is justified and the weaker argument is defeated. If
the arguments are equally strong, they defeat each other collectively, and

Page 320

neither conclusion is justified. More generally, given nodes α and ß of the inference-graph where the sequent supported by α has
the syntactical form of a rebutting or undercutting defeater for ß, α defeats ß iff the degree of support for α is at least as great as
the degree of support for ß.

Interests also come in degrees. A rational agent has practical goals, and this leads to queries regarding how to satisfy those goals
being sent to the epistemic reasoner. The reasoner thus becomes interested in answering those queries, and that initiates backwards
reasoning. But some of the goals will typically be more important than others, and this is reflected by differing degrees of interest
in the queries deriving from those goals. Reasoning backwards from queries ultimate-epistemic-interests preserves the degree-of-
interest. In general, if a sequent in the interest-graph is of interest for more than one reason (that is, there are branches of the
interest-graph leading from it to more than one query in ultimate-epistemic-interests), the degree-of-interest in the sequent is the
minimum of the degrees of interest in the queries from which it derives. This indicates the minimal degree of support an answer
must have in order to satisfy (one source of) the interest.

The Interest-Graph

In the most general case, a backwards reason R has a list of forwards-premises, a list of backwards-premises, a desired-conclusion,
and a list of variables to be used in pattern matching. If R is applicable to a desired-conclusion S, the reasoner matches S against
the desired-conclusion, obtaining instantiations for some of the variables and thereby generating an interest-scheme (X,Y,S). The
reasoner then looks for ways of instantiating the forwards-premise schemes X so that they are validated by conclusions that have
already been drawn and are supported to the requisite degree of justification. A constraint on backwards reasons is that all the
variables occur in the forwards premises and the conclusion, so once instances of the forwards-premises and the conclusion have
been obtained, that uniquely determines the corresponding instance of the backwards-premises. Thus the reasoner obtains an
instance (X*,Y*,S) of R where the members of X* are validated to the requisite degree of justification. The reasoner then reasons
backwards and adopts interest in the members of Y*.

Subsequently, when a new conclusion C is drawn, DISCHARGE-INTEREST-SCHEMES checks the interest-scheme (X,Y,S) to
see whether C can be used to instantiate some member of X, and if so whether the instantiation can be extended so that all
members of X are instantiated

Page 321

to validated sequents. This yields a new instance (X**,Y**,S) of R where, once again, the forwards-premises X** are validated to
the requisite degree of justification, and then the reasoner reasons backwards and adopts interest in the members of Y**.

To implement the above reasoning, the interest-scheme (X,Y,S) must be stored somewhere so that it can be accessed by
DISCHARGE-INTERESTSCHEMES. Along with it must be stored the list of variables remaining to be instantiated and the
degree of justification required for validating instances. Accordingly, I will take an interest-scheme to be a data structure encoding
the following information:

• the instantiated-reason.

• the forwards-basis—a list of formulas.

• the instance-consequent—the sequent of interest.

• the target-interest—the interest-graph node recording interest in the instance-conclusion.

• the instance-variables—the set of variables to be used in finding instances of the forwards-basis by pattern matching.

Interest-schemes to be accessed by DISCHARGE-INTEREST-SCHEMES will be stored in the list interest-schemes.

In most backwards-reasons, the list of forwards-premises is empty (that is, they are "simple" backwards reasons). In that case,
instantiating the reason-consequent uniquely determines the instantiation of the backwards-premises, and so no interest-schemes
need be stored. The reasoner immediately adopts interest in the instantiated backwards-premises.

Reasoning backwards will build the interest-graph. The nodes of the interest-graph are either queries from ultimate-epistemic-
interests or record sequents derivatively of interest. The latter will be referred to as "interests". The links either represent
backwards reasons or connect sequents with queries for which they are answers. A link connects one node—the resultant-
interest—with a list of sequents—the basis, in accordance with a backwards reason. The basis can be segregated into the forwards-
basis and the backwards-basis, corresponding to the forwards-premises and backwards-premises of the reason. The members of the
forwards-basis are already validated, so backwards reasoning begins with the resultant-interest and works backwards to the
backwards-basis, adding its members to the interest-graph if necessary. Then further backwards reasoning from the backwards-
basis will be initiated.

Page 322

In the interest of efficiency, backwards reasoning from the backwards-basis will be done one element at a time. Only when an
argument of adequate strength is found for the first element of the backwards-basis will the reasoner begin looking for an argument
for the second member, and so forth. In this way, it will avoid expending its resources searching for arguments for some members
when it is not possible to find arguments for other members.

When an argument is found for a member of the backwards-basis, the reasoner checks to see whether it is a deductive argument. A
deductive argument is one in which none of the reasons employed are defeasible and no input states are used as premises. If the
argument is deductive, the search for further arguments is cancelled. But if the argument is not deductive, then rather than
cancelling the search for further arguments, the priority of the search is lowered.

To accommodate all of this, the interest-graph-links will be a set of links L encoding the following information:

• the resultant-interest—the interest-graph node from which the backwards reasoning proceeds, or the query in ultimate-epistemic-
interests for which the link records an answer.

• the link-interests—the set of interests recording interest in members of the link-basis.

• the link-basis—if the resultant-interest is a query, this is the unit set of a sequent that answers it; otherwise this is the potential
basis for an inference to the interest-sequent of the resultant-interest, this being the union of the backwards and forwards premises
of an instance of a backwards reason whose conclusion is that interest-sequent.

• the link-rule—an indication of the rule of inference or substantive reason employed in such an inference, or "answer" if the
resultant node is a query. In the latter case, the link is an "answer-link".

• the basis-remainder—if the resultant-interest is not a query, this is the list of elements of the backwards-premises that (1) are not
validated by any nodes of the inference-graph of strength greater than or equal to the degree-of-interest, and (2) for which interests
have not yet been constructed; if the resultant-interest is a query, this is an answer not validated by any nodes of the inference-
graph of strength greater than or equal to the degree-of-interest and for which an interest has not yet been constructed.

• link-defeaters—if the link-rule is defeasible, this is the pair of c-lists for the rebutting-defeater and undercutting-defeater for the
inference described by the link. When the link is created, these c-lists are created with empty lists of c-list-conclusions if they do
not already exist.

Page 323

• the link-defeat-status—T if some conclusion in the c-list-conclusions of one of the link-defeaters has a supposition contained in
the resultant-supposition and a degree-of-justification greater than or equal to the degree-of-interest in the resultant-sequent; NIL
otherwise. This represents a partial computation of defeat-status, proceeding just in terms of the validated members of the link-
basis and the link-defeaters. It is used to lower the priority assigned to the backwards reasoning if L is defeated (according to this
partial computation).

• link-strength—the maximum-degree-of-interest conveyed by the link.

Interests will encode the sequents related by the interest-graph links. This will not be taken to include the queries from ultimate-
epistemic-interests. Thus the interest-graph actually includes both the members of interests and the queries from ultimate-
epistemic-interests. An interest will be a data structure encoding the following information:

• the interest-sequent.

• the right-links—the list of interest-graph-links in which the interest-sequent is a member of the link-basis.

• the left-links—the list of interest-graph-links for which the present interest is the resultant-interest.

• the degree-of-interest in the interest-sequent—a number between 0 and 1; for non-terminal nodes this is the minimum of the
degrees of interest of the interests to which the given interest is linked by right-links.

• the interest-defeat-status—NIL if the defeat-status of any of the right-links is NIL, T otherwise.

Some nodes of the interest-graph will be termini. They represent the starting points for backwards reasoning rather than being for
something else. These will be either queries from ultimate-epistemic-interests or interests in defeaters for defeasible inference
steps performed by the reasoner. Terminal nodes are distinguished by having empty lists of right-links.

The Inference-Queue

The basic control structure for these inference operations is the inference-queue. This is a queue of inferences (either backwards or
forwards) waiting to be performed. The inference-queue will enqueue conclusions encoding input states (which will be percepts
and primitive desires), new conclusions encoding the results of inferences, queries from ultimate-epistemic-interests, and new
interests (interest-graph nodes). Accordingly, I will take the inference-queue to be an ordered list of data-structures called
inference-queue nodes, each encoding the following information:

Page 324

• the item enqueued—a conclusion, a query, or an interest-graph node;

• the item-kind—an indication of whether the enqueued item is a conclusion, a query, or an interest-graph node;

• item-complexity—discussed below;

• discounted-strength—discussed below;

• the degree-of-preference—discussed below.

The ordering of the nodes of the inference-queue will be done by the relation x is i-preferred to y . Specifying this relation is
part of the process of programming OSCAR. A simple preference relation that is used as the default appeals to two properties of
the enqueued item. The first will be referred to as the ''discounted-strength" of the item and will be measured by a real number
between 0 and 1. The discounted-strength of a desire is simply its desire-strength. The discounted-strength of a percept is its
salience. The salience of a percept will, for now, be treated as a primitive property whose value is specified by the perceptual input
systems to which OSCAR is attached. This may be treated in a more sophisticated way later. The discounted-strength of a
conclusion of type "inference" will, in most cases, be measured by the degree-of-justification of the conclusion, but there are two
complications. First, conclusions recording suppositions are generated by interests. For example, interest in a conditional will lead
the reasoner to suppose the antecedent with the objective of inferring the consequent, and the supposition of the antecedent is
recorded as an inference-graph node and a conclusion. The degree-of-justification of this conclusion will automatically be 1, but
the priority assigned to reasoning from it should be a function of the discounted-strength of the generating interest. Accordingly,
when a conclusion is generated by an interest, its discounted-strength will be taken to be the discounted-strength of the interest
rather than the degree-of-justification. Second, it turns out to be desirable to give inferences in accordance with some inference
rules (either backwards or forwards) low priority. This is accomplished by attaching a discount-factor (a real number between 0
and 1) to the rule and using that to lower the degree-of-preference. Accordingly, the discounted-strength of a conclusion of type
"inference" that is not generated by an interest will, in general, be the maximum of the products of the degrees-of-support and the
discount-factor of the node-rule for the undefeated nodes in its node-list, or some fixed number ¬0 if all nodes on the node-list are
defeated. The discounted-strength of an interest will be its interest-priority, which will be discussed below.

The second property to which the default preference relation appeals is "complexity". This is a measure of syntactic complexity,
and the idea behind the preference ordering is that reasoning with simpler

Page 325

formulas is given precedence over reasoning with complex formulas. Accordingly, we define:

Where x is an enqueued item, strength is the discounted-strength of x, and complexity is the complexity of the sequent
expressing the content of x, the degree-of-preference of x is strength/complexity.

The default preference relation is then:

x is i-preferred to y iff the degree-of-preference of x is greater than the degree-of-preference of y.

The default complexity measure simply counts the number of symbol tokens (not counting parentheses) occurring in the sequent
expressing the content of the enqueued item. This has the effect of giving precedence to reasoning with short formulas. The only
justification I have to offer for this complexity measure is that it seems to work reasonably well, and it is a rough reflection of the
way human beings prioritize their reasoning.

The discounted-strength of an interest is its interest-priority. To understand this concept, it must first be realized that degrees of
interest play two roles. They determine how justified an answer must be for it to be an acceptable answer, and they prioritize
reasoning. Initially, the priority of backwards reasoning is determined directly by the degree-of-interest. If something is of interest
ultimately for answering a certain query, and an answer is obtained for that query, this lowers the priority of backwards reasoning
from that interest, but not the degree-of-interest itself (in its role of determining how good answers must be). So the interest-
priority of an interest should be some function of (1) the degree-of-interest, (2) the discount-factor of the backwards reason used in
its derivation, (3) whether the interest is ultimately aimed at answering a query none of whose query-answers are believed, (4)
whether the interest derives from a defeated member of the interest-graph, and (5) whether the node-sequent is already supported
by a conclusion whose degree-of-justification is greater than or equal to the degree-of-interest. The interest-priority must also be a
number between 0 and 1. Supplying the exact definition of interest-priority will be part of the process of programming OSCAR,
but a default definition is built into OSCAR. This definition is the following:

• The interest-priority of a query from permanent-ultimate-epistemic-

Page 326

interests is its degree-of-interest.

• The interest-priority of any other query is ¬0 if it has already been answered, and its degree-of-interest otherwise.

• The interest-priority of an interest-graph node having an empty set of right-links is ¬0 (this represents interest in a defeater for a
defeasible inference);

• The interest-priority of any other interest-graph node node is computed as follows. Let L be the set of its right-links having
defeat-status NIL and resultant-interests with maximum-degreesof-interest greater than the maximum degree-of-justification at
which they have been discharged. If L is empty, the interest-priority of node is α0 otherwise it is the maximum over L of the set of
products of the discount-factor of the link-rule and the interest-priority of the resultant-interest.

α0 serves as a base-level of interest-priority used for reasoning from defeated nodes and for the search for defeaters for inference-
graph nodes. As long as α0 > 0, the reasoner will "eventually" get around to reasoning prioritized in this way, provided new
environmental input does not continually delay it by inserting new items in front of it in the inference-queue. The higher the value
of α0, the more effort the reasoner is likely to expend on these matters.

The data-structures I have been describing are manipulated in epistemic cognition by THINK:

THINK

If the inference-queue is nonempty, let Q be the first member of the inference-queue:

• Remove Q from the inference-queue.

• Let conclusion be the item enqueued by Q if it is a conclusion:

• insert conclusion into the list of processed-conclusions.
• REASON-FORWARDS-FROM conclusion

• Let query be the item enqueued by Q if it is a query, and let priority be its interest-priority:

• REASON-BACKWARDS-FROM-QUERY query priority.

• Let interest be the item enqueued by Q if it is an interest-graph node, and let priority be its interest-priority:

• REASON-BACKWARDS-FROM interest priority.
• FORM-EPISTEMIC-DESIRES-FOR interest.

For a detailed account of the operations performed by THINK, the

Page 327

reader is referred to The OSCAR Manual. This contains a complete description of the OSCAR architecture and details the LISP
code implementing it.

3. Examples

OSCAR can be used without logic to deal with many of the reasoning problems that were discussed above. Consider the problem
diagrammed in figure 2 of chapter 3. The following is a display of OSCAR's reasoning:

Problem #3
Figure 2
Given premises:

A justification = 1
B justification = 1
C justification = 1

Ultimate epistemic interests:

J interest = 1
K interest= 1
L interest = 1

FORWARDS PRIMA FACIE REASONS

pf-reason 1: {A} ||=> D strength = 1
pf-reason 2: {D} ||=> G strength = 1
pf-reason 3: {B} ||=> E strength = 1
pf-reason 4: {C} ||=> F strength = 1
pf-reason 5: {I} ||=> L strength = 1

FORWARDS CONCLUSIVE REASONS

con-reason 1: {G} ||=> J strength = 1
con-reason 2: {E} ||=> H strength = 1
con-reason 3: {H} ||=> K strength = 1
con-reason 4: {F} ||=> I strength = 1
con-reason 5: {F} ||=> (B @ E) strength = 1
con-reason 6: {H} ||=> (D @ G) strength = 1

Page 328

#1
conclusion 1: A
by given
degree-of-support: 1
This node encodes a deductive argument.

#2
conclusion 2: B
by given
degree-of-support: 1
This node encodes a deductive argument.

#3
conclusion 3: C
by given
degree-of-support: 1
This node encodes a deductive argument.

--

Retrieving #<Query #1: J> from the inference-queue.

#1
interest: J
This is of ultimate interest

--

Retrieving #<Query #2: K> from the inference-queue.

#2
interest: K
This is of ultimate interest

--

Retrieving #<Query #3: L> from the inference-queue.

#3
interest: L
This is of ultimate interest

--

Retrieving #<Conclusion #3: C> from the inference-queue.

#4
conclusion 4: ~F
From { 3 } by pf-reason 4
degree-of-support: 1

Page 329

This inference is defeasible.

#4
interest: (C @ F)
Of interest as defeater for inference-nodes (4)
#5
interest: F
Of interest as defeater for inference-nodes (4)

--

Retrieving #<Conclusion #4: F> from the inference-queue.
#5
conclusion 5: I
From { 4 } by con-reason 4
degree-of-support: 1
This inference is not defeasible.

#6
conclusion 6: (B @ E)
From { 4 } by con-reason 5
degree-of-support: 1
This inference is not defeasible.

--

Retrieving #<Conclusion #5: I> from the inference-queue.
#7
conclusion 7: L
From { 5 } by pf-reason 5
degree-of-support: 1
This inference is defeasible.

#6
interest: (I @ L)
Of interest as defeater for inference-nodes (7)
#7
interest: ~L
Of interest as defeater for inference-nodes (7)

= =

Justified belief in L
answers #<Query #3: L> affirmatively.

= =

--

Retrieving #<Conclusion #7: L> from the inference-queue.

--

Retrieving #<Conclusion #2: B> from the inference-queue.
#8
conclusion 8: E
From { 2 } by pf-reason 3
degree-of-support: 1
This inference is defeasible.

#8
interest: (B @ E)
Of interest as defeater for inference-nodes (8)
#9
interest: -E
Of interest as defeater for inference-nodes (8)

Page 330

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 8> has become defeated.

--

Retrieving #<Conclusion #8: E> from the inference-queue.
#9
conclusion 9: H
From { 8 } by con-reason 2
degree-of-support: 1
This inference is not defeasible.

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 9> has become defeated.

--

Retrieving #<Conclusion #9: H> from the inference-queue.
#10
conclusion 10: K
From { 9 } by con-reason 3
degree-of-support: 1
This inference is not defeasible.

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 10> has become defeated.
--
#<Conclusion #10: K> answers #<Query #2: K>
--

#11
conclusion 11: (D @ G)
From { 9 } by con-reason 6
degree-of-support: 1
This inference is not defeasible.

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 11> has become defeated.

--
Retrieving #<Conclusion #10: K> from the inference-queue.
--
Retrieving #<Conclusion #1: A> from the inference-queue.

#12
conclusion 12: D
From { 1 } by pf-reason 1
degree-of-support: 1
This inference is defeasible.

#10
interest: (A @ D)
Of interest as defeater for inference-nodes (12)

#11
interest: -D
Of interest as defeater for inference-nodes (12)

--

Retrieving #<Conclusion #12: D> from the inference-queue.
#13
conclusion 13: G
From { 12 } by pf-reason 2

Page 331

degree-of-support: 1
This inference is defeasible.

#12
interest: (D @ G)
Of interest as defeater for inference-nodes (13)
#13
interest: -G
Of interest as defeater for inference-nodes (13)

--

Retrieving #<Conclusion #13: G> from the inference-queue.
#14
conclusion 14: J
From { 13 } by con-reason 1
degree-of-support: 1
This inference is not defeasible.

= =

Justified belief in J
answers #<Query #1: J> affirmatively.

= =

--

Retrieving #<Conclusion #14: J> from the inference-queue.

--

Retrieving #<Conclusion #11: (D @ G)> from the inference-queue.

--

Retrieving #<Conclusion #6: (B @ E)> from the inference-queue.

--

Retrieving #<lnterest 13: ~G supposing { }> from the inference-queue.

--

Retrieving #<Interest 11: ~D supposing { }> from the inference-queue.

--

Retrieving #<Interest 9: ~E supposing { }> from the inference-queue.

--

Retrieving #<Interest 7: ~L supposing { }> from the inference-queue.

--

Retrieving #<Interest 5: ~F supposing { }> from the inference-queue.

--

Retrieving #<Interest 12: (D @ G) supposing { }> from the inference-queue.

--

Retrieving #<Interest 10: (A @ D) supposing { }> from the inference-queue.

--

Retrieving #<Interest 8: (B @ E) supposing { }> from the inference-queue.

--

Retrieving #<Interest 6: (I @ L) supposing { }> from the inference-queue.

--

Retrieving #<Interest 4: (C @ F) supposing { }> from the inference-queue.

= = = = = = = = = = ULTIMATE EPISTEMIC INTERESTS= = = = = = = = =

Interest in L
is answered affirmatively by #<Conclusion #7: L>

Page 332

Interest in K
is unsatisfied.

Interest in J
is answered affirmatively by #<Conclusion #14: J>

=

ARGUMENT #1
This is an undefeated argument for:
L
which is of ultimate interest.

3. C given
4. F pf-reason 4 from { 3
5. I con-reason 4 from { 4 }
7. L pf-reason 5 from { 5 }

=

ARGUMENT #2
This is a defeated argument for:
K
which is of ultimate interest.

2. B given
8. E pf-reason 3 from { 2 }
9. H con-reason 2 from { 8 }
10. K con-reason 3 from { 9 }

=

ARGUMENT #3
This is an undefeated argument for:
(B @ E)
and it defeats argument #2

3. C given
4. F pf-reason 4 from { 3 }
6. (B @ E) con-reason 5 from { 4 }

=

ARGUMENT #4
This is an undefeated argument for:
J
which is of ultimate interest.

1. A given
12. D pf-reason 1 from { 1 }

13. G pf-reason 2 from { 12 }
14. J con-reason 1 from { 13 }

=

ARGUMENT #5
This is a defeated argument for:
(D @ G)
and it defeats argument #4

2. B given

Page 333

8. E pf-reason 3 from { 2 }
9. H con-reason 2 from { 8
11. (D @ G) con-reason 6 from { 9 }

This argument is defeated by argument #3

=

Elapsed time = 0.08 sec
Cumulative size of arguments = 14
Size of inference-graph = 14
100% of the inference-graph was used in the argument.

For a second example, consider a simple case of collective defeat:

Problem #2
This is a case of collective defeat.
Given premises:

P justification = 1
A justification = 1

Ultimate epistemic interests:

R interest = 1

FORWARDS PRIMA FACIE REASONS

pf-reason 1: {P} ||=> Q strength = 1
pf-reason 2: {Q} ||=> R strength = 1
pf-reason 3: {A} ||=> B strength = 1

BACKWARDS PRIMA FACIE REASONS

pf-reason 4: {} {C} ||=> ~R strength = 1
pf-reason 5: {} {B} ||=> C strength = 1

Page 334

#1
conclusion 1: P
by given
degree-of-support: 1
This node encodes a deductive argument.

#2
conclusion 2: A
by given
degree-of-support: 1
This node encodes a deductive argument.

--

Retrieving #<Query #1: R> from the inference-queue.

#1
interest: R
This is of ultimate interest

--

Retrieving #<Conclusion #2: A> from the inference-queue.

#3
conclusion 3: B
From { 2 } by pf-reason 3
degree-of-support: 1
This inference is defeasible.

#2
interest: (A @ B)
Of interest as defeater for inference-nodes (3)

#3
interest: -B
Of interest as defeater for inference-nodes (3)

--

Retrieving #<Conclusion #3: B> from the inference-queue.

--

Retrieving #<Conclusion #1: P> from the inference-queue.

#4
conclusion 4: Q
From { 1 } by pf-reason 1
degree-of-support: 1
This inference is defeasible.

#4
interest: (P @ Q)
Of interest as defeater for inference-nodes (4)

#5
interest: -Q
Of interest as defeater for inference-nodes (4)

--

Retrieving #<Conclusion #4: Q> from the inference-queue.

#5
conclusion 5: R
From { 4 } by pf-reason 2
degree-of-support: 1

Page 335

This inference is defeasible.

#6
interest: (Q @ R)
Of interest as defeater for inference-nodes (5)

#7
interest: ~R
Of interest as defeater for inference-nodes (5)

=

Justified belief in R
answers #<Query #1: R> affirmatively.

= =

--

Retrieving #<Conclusion #5: R> from the inference-queue.

--

Retrieving #<Interest 7: ~R supposing { }> from the inference-queue.

#8
interest: C
For interest 7 by pf-reason 4

--

Retrieving #<Interest 8: C supposing { }> from the inference-queue.

#9
interest: B
For interest 8 by pf-reason 5

#6
conclusion 6: C
From { 3 } by pf-reason 5
degree-of-support: 1
This inference is defeasible.

#10
interest: (B @ C)
Of interest as defeater for inference-nodes (6)

#11
interest: -C
Of interest as defeater for inference-nodes (6)

#7
conclusion 7: ~R
From { 6 } by pf-reason 4
degree-of-support: 1
This inference is defeasible.

#12
interest: (C @ -R)
Of interest as defeater for inference-nodes (7)

Readopting interest in:

#1
interest: R
Of interest as defeater for inference-nodes (7)

--

Page 336

Recomputed assignment-tree:
assignment-tree 0:

. ((#<Node 6>) (#<Node 4>) (#<Node 3>) (#<Node 2>) (#<Node 1>))

. triangle 1:

.. (#<Node 7> #<Node 5>)

.... assignment-tree 1:

..... ((#<Node 5> . T) (#<Node 7>))

.... assignment-tree 2:

..... ((#<Node 5>) (#<Node 7> . T))

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 7> has become defeated.

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 5> has become defeated.

= =

Lowering the degree of justification of R
retracts the previous answer to #<Query #1: R>

= =

--

Retrieving #<Conclusion #6: C> from the inference-queue.

--

Retrieving #<Conclusion #7: ~R> from the inference-queue.

--

Retrieving #<Interest 9: B supposing { }> from the inference-queue.

--

Retrieving #<lnterest 11: ~C supposing { }> from the inferen ce-queue.

--

Retrieving #<Interest 5: ~Q supposing { }> from the inference-queue.

--

Retrieving #<Interest 3: ~B supposing { }> from the inference-queue.

--

Retrieving #<Interest 10: (B @ C) supposing { }> from the inference-queue.

--

Retrieving #<Interest 6: (Q @ R) supposing { }> from the inference-queue.

--

Retrieving #<Interest 4: (P @ Q) supposing { }> from the inference-queue.

--

Retrieving #<Interest 2: (A @ B) supposing { }> from the inference-queue.

--

Retrieving #<Interest 12: (C @ ~R) supposing { }> from the inference-queue.

= = = = = = = = = = = ULTIMATE EPISTEMIC INTERESTS= = = = = = = = =

Interest in R
is unsatisfied.

= == = = = = = = = = = = = = = =

ARGUMENT #1

This is a defeated argument for:
R
which is of ultimate interest.

Page 337

1. P given
4. Q pf-reason 1 from { 1 }
5. R pf-reason 2 from { 4 }

= == = = = = = = = = = = = = = =

ARGUMENT #2

This is a defeated argument for:
-R
and it defeats argument #1

2. A given
3. B pf-reason 3 from { 2 }
6. C pf-reason 5 from { 3 }
7. ~R pf-reason 4 from { 6 }

This argument is defeated by argument #1

= == = = = = = = = = = = = = = =

Elapsed time = 0.05 sec
Cumulative size of arguments = 7
Size of inference-graph = 7
100% of the inference-graph was used in the argument.

Figure 8 of chapter 3 diagrammed the lottery paradox paradox. The following is a display of OSCAR's reasoning applied to that
problem for the simplified case of three tickets:

Problem #8
Figure 8 -- the lottery paradox paradox
Given premises:

P justification = 1

Ultimate epistemic interests:

-T1 interest = 1
-T2 interest = 1
-T3 interest = 1

FORWARDS PRIMA FACIE REASONS

pf-reason 1: {R} ||=> ~T1 strength = 1
pf-reason 2: {R} ||=> ~T2 strength = 1
pf-reason 3: {R} ||=> ~T3 strength = 1
pf-reason 4: {P} ||=> R strength = 1

FORWARDS CONCLUSIVE REASONS

con-reason 1: {R, ~T1, ~T2} ||=> T3 strength = 1
con-reason 2: {R ~T2, ~T3} ||=> T1 strength = 1
con-reason 3: {R, ~T1, ~T3} ||=> T2 strength = 1
con-reason 4: {~T1, ~T2, ~T3} ||=> ~R strength = 1

Page 338

#1
conclusion 1: P
by given
degree-of-support: 1
This node encodes a deductive argument.

--

Retrieving #<Conclusion #1: P> from the inference-queue.
#2
conclusion 2: R
From { 1 } by pf-reason 4
degree-of-support: 1
This inference is defeasible.

#1
interest: (P @ R)
Of interest as defeater for inference-nodes (2)

#2
interest: -R
Of interest as defeater for inference-nodes (2)

--

Retrieving #<Conclusion #2: R> from the inference-queue.
#3
conclusion 3: ~T1
From { 2 } by pf-reason 1
degree-of-support: 1
This inference is defeasible.

#3
interest: (R @ ~T1)
Of interest as defeater for inference-nodes (3)

#4
interest: T1
Of interest as defeater for inference-nodes (3)

Page 339

#4
conclusion 4: ~T2
From { 2 } by pf-reason 2
degree-of-support: 1
This inference is defeasible.

#5
interest: (R @ ~T2)
Of interest as defeater for inference-nodes (4)

#6
interest: T2
Of interest as defeater for inference-nodes (4)

#5
conclusion 5: ~T3
From { 2 } by pf-reason 3
degree-of-support: 1
This inference is defeasible.

#7
interest: (R @ ~T3)
Of interest as defeater for inference-nodes (5)

#8
interest: T3
Of interest as defeater for inference-nodes (5)

--

Retrieving #<Conclusion #5: ~T3> from the inference-queue.

--

Retrieving #<Interest 8: T3 supposing { }> from the inference-queue.

--

Retrieving #<Conclusion #4: ~T2> from the inference-queue.
#6
conclusion 6: T1
From { 4, 5, 2 } by con-reason 2
degree-of-support: 1
This inference is not defeasible.

--

Recomputed assignment-tree:
assignment-tree 0:
. ((#<Node 3> . T) (#<Node 6>) (#<Node 5>) (#<Node 4>) (#<Node 2>)
(#<Node 1>))

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 3> has become defeated.

--

Retrieving #<Conclusion #6: T1> from the inference-queue.

--

Retrieving #<Interest 6: T2 supposing { }> from the inference-queue.

--

Retrieving #<Interest 4: T1 supposing { }> from the inference-queue.

--

Retrieving #<Query #1: ~T1> from the inference-queue.

#9
interest: ~T1
This is of ultimate interest

Page 340

#<Conclusion #3: ~T1> answers #<Query #1: ~T1>

--

Retrieving #<Query #2: ~T2> from the inference-queue.

#10
interest: ~T2
This is of ultimate interest

=

Justified belief in ~T2
answers #<Query #2: ~T2> affirmatively.

= =

--

Retrieving #<Query #3: ~T3> from the inference-queue.

#11
interest: ~T3
This is of ultimate interest

= =

Justified belief in ~T3
answers #<Query #3: ~T3> affirmatively.

= =

--

Retrieving #<Conclusion #3: ~T1> from the inference-queue.

#7
conclusion 7: T3
From { 3, 4, 2 } by con-reason 1
degree-of-support: 1
This inference is not defeasible.

--

Recomputed assignment-tree:
assignment-tree 0:

.((#<Node 4>) (#<Node 2>) (#<Node 1>))

.triangle 1:

. .(#<Node 5> #<Node 6> #<Node 3> #<Node 7>)

.... assignment-tree 1:

..... ((#<Node 7> . T) (#<Node 3> . T) (#<Node 6>) (#<Node 5>)) ..

.... assignment-tree 2:

..... ((#<Node 7>) (#<Node 3>) (#<Node 6> . T) (#<Node 5> . T))

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 5> has become defeated.

 vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 6> has become defeated.

 vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 7> has become defeated.

= =
Lowering the degree of justification of ~T3
retracts the previous answer to #<Query #3: ~T3>
= =
#8
conclusion 8: T2
From { 3, 5, 2 } by con-reason 3

Page 341

degree-of-support: 1
This inference is not defeasible.

--

Recomputed assignment-tree:
assignment-tree 0:

. ((#<Node 2>) (#<Node 1>))

. triangle 2:

.. (#<Node 5> #<Node 6> #<Node 8> #<Node 4> #<Node 3>

.. #<Node 7>)

.... assignment-tree 3:

..... ((#<Node 7> . T) (#<Node 8> . T) (#<Node 3> . T) (#<Node 6>) (#<Node 4>)

..... (#<Node 5>))

.... assignment-tree 4:

..... ((#<Node 8>) (#<Node 3>) (#<Node 6> . T) (#<Node 7> . T) (#<Node 4> . T)

..... (#<Node 5>))

.... assignment-tree 5:

..... ((#<Node 7>) (#<Node 4>) (#<Node 3>) (#<Node 6> . T) (#<Node 8> . T)

..... (#<Node 5>. T))

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 4> has become defeated.

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 8> has become defeated.

Lowering the degree of justification of ~T2
retracts the previous answer to #<Query #2: ~T2>

#9
conclusion 9: ~R
From { 3,5, 4 } by con-reason 4
degree-of-support: 1
This inference is not defeasible.

--

Recomputed assignment-tree:
assignment-tree 0:

· ((#<Node 1>))

. triangle 3:

. (#<Node 2> #<Node 6> #<Node 7> #<Node 8> #<Node 4>

. #<Node 5> #<Node 3> #<Node 9>)

.... assignment-tree 6:

..... ((#<Node 6> . T) (#<Node 8> . T) (#<Node 9>. T) (#<Node 5>. T)(#<Node 7>)

..... (#<Node 4>) (#<Node 3>) (#<Node 2>))

.... assignment-tree 7:

..... ((#<Node 8>) (#<Node 5>) (#<Node 6> . T) (#<Node 7> . T) (#<Node 9> . T)

..... (#<Node 4> . T) (#<Node 3>) (#<Node 2>))

.... assignment-tree 8:

..... ((#<Node 6>) (#<Node 4>) (#<Node 5>) (#<Node 7> . T) (#<Node 8> . T)

..... (#<Node 9> . T) (#<Node 3> . T) (#<Node 2>))

vvvvvvvvvvvvvvvvvvvvvvvvvvv

#<Node 9> has become defeated.

--

Retrieving #<Conclusion #8: T2> from the inference-queue.

Page 342

--

Retrieving #<Conclusion #7: T3> from the inference-queue.

--

Retrieving #<Conclusion #9: -R> from the inference-queue.

--

Retrieving #<Interest 2: ~R supposing { }> from the inference-queue.

--

Retrieving #<Interest 1: (P @ R) supposing { }> from the inference-queue.

--

Retrieving #<Interest 7: (R @ ~T3) supposing { }> from the inference-queue.

--

Retrieving #<Interest 5: (R @ ~T2) supposing { }> from the inference-queue.

--

Retrieving #<Interest 3: (R @ ~T3) supposing { }> from the inference-queue.

= = = = = = = = = = = ULTIMATE EPISTEMIC INTERESTS= = = = = = = =

Interest in ~T3
is unsatisfied.

Interest in ~T2
is unsatisfied.

Interest in ~T1
is unsatisfied.

= =

ARGUMENT #1

This is a defeated argument for:
~T3
which is of ultimate interest.

1. P given
2. R pf-reason 4 from { 1 }
5. ~T3 pf-reason 3 from { 2 }

= =

ARGUMENT #2

This is a defeated argument for:
T3
and it defeats argument #1

1. P given
2. R pf-reason 4 from { 1 }
4. ~T2 pf-reason 2 from { 2 }
3. ~T1 pf-reason 1 from { 2 }
7. T3 con-reason 1 from {3,4, 2}

= =

ARGUMENT #3

This is a defeated argument for:
T2
and it defeats argument #2

Page 343

1. P given
2. R pf-reason 4 from { 1 }
5. ~T3 pf-reason 3 from { 2 }
3. ~T1 pf-reason 1 from { 2 }
8. T2 con-reason 3 from { 3, 5, 2}

This argument is defeated by argument #2

= =

ARGUMENT #4

This is a defeated argument for:
T1
and it defeats arguments #2, #3

1. P given
2. R pf-reason 4 from { 1 }
5. ~T3 pf-reason 3 from { 2 }
4. ~T2 pf-reason 2 from { 2 }
6. T1 con-reason 2 from { 4, 5,2 }

This argument is defeated by arguments #2, #3

= =

ARGUMENT #5
This is a defeated argument for:
-R
and it defeats arguments #1, #2 , #3, #4, #5

1. P given
2. R pf-reason 4 from { 1 }
4. ~T2 pf-reason 2 from { 2 }
5. ~T3 pf-reason 3 from { 2 }
3. ~T1 pf-reason 1 from { 2 }
9. ~R con-reason 4 from {3, 5,4}

This argument is defeated by arguments #2, #3, #4, #5

= =

ARGUMENT #6

This is a defeated argument for:
~T2
which is of ultimate interest.

1. P given
2. R pf-reason 4 from { 1 }
4. ~T2 pf-reason 2 from { 2

= =

ARGUMENT #7

This is a defeated argument for:
~T1
which is of ultimate interest.

1. P given
2. R pf-reason 4 from { 1 }

Page 344

3. ~T1 pf-reason 1 from { 2

= =

Elapsed time = 0.14 sec
Cumulative size of arguments = 9
Size of inference-graph = 9
100% of the inference-graph was used in the argument.

Given suitable inference rules (in the form of conclusive reasons), OSCAR can also prove theorems in logic. The following is a
simple example:

Problem #30

Given premises:

(q -> r) justification = 1
(r -> (p & q)) justification = 1
(p -> (q v r)) justification = 1

Ultimate epistemic interests:

(p <-> q) interest = 1

#1
conclusion 1: (q -> r)
by given
degree-of-support: 1
This node encodes a deductive argument.

#2
conclusion 2: (r -> (p & q))
by given
degree-of-support: 1
This node encodes a deductive argument.

#3
conclusion 3: (p -> (q v r))
by given
degree-of-support: 1
This node encodes a deductive argument.

--

Retrieving #<Query #1: (p <-> q)> from the inference-queue.

#1
interest: (p <-> q)
This is of ultimate interest

#2
interest: (q -> p)
For interest 1 by bicondit-intro

--

Retrieving #<Interest 2: (q -> p) supposing { }> from the inference-queue.

#4
conclusion 4: q supposition: { q }

Page 345

by supposition
degree-of-support: 1
This node encodes a deductive argument.

#3
interest: p supposition: { q
For interest 2 by conditionalization

#5
conclusion 5: ~(q -> p) supposition: { ~(q -> p)
by supposition
degree-of-support: 1
This node encodes a deductive argument.

--

Retrieving #<Interest 3: p supposing { q }> from the inference-queue.

#6
conclusion 6: ~p supposition: { q, ~p}
by supposition
degree-of-support: 1
This node encodes a deductive argument.

--

Retrieving #<Conclusion #4: q supposing { q }> from the inference-queue.

#4
interest: ~q supposition: { q, ~p}
For interest 3 by reductio using conclusion 4

--

Retrieving #<Conclusion #1: (q -> r)> from the inference-queue.

#7
conclusion 7: r supposition: { q }
From { 1 ,4 } by modus-ponens1
degree-of-support: 1
This node encodes a deductive argument.

#5
interest: ~(q -> r) supposition: { q, ~p}
For interest 3 by reductio using conclusion 1

#6
interest: ~(q -> r) supposition: { ~(q -> p)}
For interest 2 by reductio using conclusion 1

--

Retrieving #<Conclusion #7: r supposing { q }> from the inference-queue.

#7
interest: ~r supposition: { q, ~p}
For interest 3 by reductio using conclusion 7

--

Retrieving #<Interest 7: ~r supposing { q , ~p }> from the inference-queue.

--

Retrieving #<Interest 4: ~q supposing { q , ~p}> from the inference-queue.

--

Retrieving #<Conclusion #6: ~p supposing { q, ~p }> from the inference-queue.

#8
interest: p supposition: { q, ~p}
For interest 3 by reductio using conclusion 6

--

Page 346

Retrieving #<Interest 8: p supposing { q, ~p }> from the inference-queue.

--

Retrieving #<Conclusion #3: (p -> (q v r))> from the inference-queue.

#9
interest: ~(p -> (q v r)) supposition: { q , ~p }
For interest 3 by reductio using conclusion 3

#10
interest: ~(p -> (q v r)) supposition: { ~(q -> p)
For interest 2 by reductio using conclusion 3

--

Retrieving #<Conclusion #2: (r -> (p & q))> from the inference-queue.

#8
conclusion 8: (p & q) supposition: { q
From { 2, 7} by modus-ponens1
degree-of-support: 1
This node encodes a deductive argument.

#11
interest: ~(r -> (p & q)) supposition: { q, ~p }
For interest 3 by reductio using conclusion 2

#12
interest: ~(r -> (p & q)) supposition: { ~(q -> p)}
For interest 2 by reductio using conclusion 2

--

Retrieving #<Conclusion #8: (p & q) supposing { q }> from the inference-queue.

#9
conclusion 9: p supposition: { q }
From { 8 } by simp
degree-of-support: 1
This node encodes a deductive argument.

...

Cancelling #<Interest 8: p supposing { q, ~p }>

...

#10
conclusion 10: (q -> p)
From { 9 } by conditionalization
degree-of-support: 1
This node encodes a deductive argument.

#13
interest: (p -> q)
For interest 1 by bicondit-intro using conclusion 10

...

Cancelling #<Interest 2: (q -> p) supposing { }>
. Cancelling #<Node 5>
. Cancelling #<Node 4>
. Cancelling #<Node 7>
...Cancelling #<Node 8>
.... Cancelling #<Node 9>

. Cancelling #<Interest 12: ~(r -> (p & q)) supposing { ~(q -> p)}>

. Cancelling #<Interest 10: ~(p -> (q v r)) supposing { ~(q -> p)}>

. Cancelling #<Interest 6: ~(q -> r) supposing { ~(q -> p)}>

.Cancelling #<Interest 3: p supposing { q }>

Page 347

. Cancelling #<Node 6>

. Cancelling #<Interest 11: ~(r -> (p & q)) supposing { q, ~p }>

. Cancelling #<Interest 9: ~(p -> (q v r)) supposing { q, ~p }>

. Cancelling #<Interest 8: p supposing { q, ~p }>

. Cancelling #<Interest 7: ~r supposing { q, ~p }>

. Cancelling #<Interest 5: ~(q -> r) supposing { q, ~p }>

. Cancelling #<Interest 4: ~q supposing { q, ~p }>

..

--

Retrieving #<Interest 13: (p -> q) supposing { }> from the inference-queue.

#11
conclusion 11: p supposition: { p }
by supposition
degree-of-support: 1
This node encodes a deductive argument.

#14
interest: q supposition: { p }
For interest 13 by conditionalization

#12
conclusion 12: ~(p -> q) supposition: { ~(p -> q) }
by supposition
degree-of-support: 1
This node encodes a deductive argument.

#15
interest: ~(r -> (p & q)) supposition: { ~(p -> q)
For interest 13 by reductio using conclusion 2

#16
interest: ~(p -> (q v r)) supposition: { ~(p -> q) }
For interest 13 by reductio using conclusion 3

#17
interest: ~(q -> r) supposition: { ~(p -> q)
For interest 13 by reductio using conclusion 1

--

Retrieving #<Interest 14: q supposing { p }> from the inference-queue.

#13
conclusion 13: ~q supposition: { p, ~q }
by supposition
degree-of-support: 1
This node encodes a deductive argument.

#18
interest: ~(r -> (p & q)) supposition: { p, ~q }
For interest 14 by reductio using conclusion 2

#19
interest: ~(p -> (q v r)) supposition: { p, ~q
For interest 14 by reductio using conclusion 3

20
interest: -(q -> r) supposition: { p, -q
For interest 14 by reductio using conclusion 1

--

Retrieving #<Conclusion #11: p supposing { p }> from the inference-queue.

#14

Page 348

conclusion 14: (q v r) supposition: { p }
From { 11 ,3 } by modus-ponens2
degree-of-support: 1
This node encodes a deductive argument.

#21
interest: ~p supposition: { p, ~q}
For interest 14 by reductio using conclusion 11

--

Retrieving #<Conclusion #10: (q -> p)> from the inference-queue.

#22
interest: ~(q -> p) supposition: { p, ~q}
For interest 14 by reductio using conclusion 10

#23
interest: ~(q -> p) supposition: {~(p -> q)
For interest 13 by reductio using conclusion 10

--

Retrieving #<Conclusion #14: (q v r) supposing { p }> from the inference-queue.

--

Retrieving #<Interest 21: ~p supposing { p , q }> from the inference-queue.

--

Retrieving #<Conclusion #13: ~q supposing { p, ~q }> from the inference-queue.

#15
conclusion 15: r supposition: { p, q }
From {13,14 } by disj-syl21
degree-of-support: 1
This node encodes a deductive argument.

#24
interest: q supposition: { p, q }
For interest 14 by reductio using conclusion 13

--

Retrieving #<Interest 24: q supposing { p, ~q }> from the inference-queue.

--

Retrieving #<Conclusion #15: r supposing { p, ~q }> from the inference-queue.

#16
conclusion 16: (p & q) supposition: { p, ~q }
From { 15, 2 } by modus-ponens2
degree-of-support: 1
This node encodes a deductive argument.

#25
interest: ~r supposition: { p, ~q}
For interest 14 by reductio using conclusion 15

--

Retrieving #<Interest 25: ~r supposing { p, ~q }> from the inference-queue.

--

Retrieving #<Conclusion #16: (p & q) supposing { p, ~q }> from the inferencequeue.

#17
conclusion 17: q supposition: { p, ~q }
From { 16 } by simp
degree-of-support: 1
This node encodes a deductive argument.

Page 349

#18
conclusion 18: q supposition: {p}
From { 13,17 } by reductio
degree-of-support: 1
This node encodes a deductive argument.

#19
conclusion 19: (p -> q)
From { 18 } by conditionalization
degree-of-support: 1
This node encodes a deductive argument.

20
conclusion 20: (p <-> q)
From { 10,19 } by bicondit-intro
degree-of-support: 1
This node encodes a deductive argument.

= =

Justified belief in (p <-> q)
answers #<Query #1: (p <-> q)> affirmatively.

= =

ALL QUERIES HAVE BEEN ANSWERED DEDUCTIVELY.

= = = = = = = = = = =ULTIMATE EPISTEMIC INTERESTS= = = = = = = =

Interest in (p <-> q)
is answered affirmatively by conclusion 20

= =

ARGUMENT #1

This is a deductive argument for:
(p <-> q)
which is of ultimate interest.

3. (p ->(q v r)) given
1. (q ->r) given
2. (r -> (p & q)) given

|---

| Suppose: {q}

|---

| 4. q supposition
| 7. r modus-ponens1 from { 1, 4 }
| 8. (p & q) modus-ponens1 from { 2 , 7 }
| 9. p simp from {8}

10. (q -> p) conditionalization from {9}

|--

| Suppose: {p}

|--

|11. p supposition
|14. (q v r) modus-ponens2 from { 11, 3 }

|---

| Suppose: { p, ~q }

|---

| 13. ~q supposition
| 15. r disj-syl21 from {13,14}

Page 350

| 16. (p & q) modus-ponens2 from {15, 2}
| 17. q simp from {16}

| 18. q reductio from { 13, 17}
19. (p -> q) conditionalization from { 18 }
20. (p <-> q) bicondit-intro from { 10 , 19 }

= =

Elapsed time = 0.17 sec
Cumulative size of arguments = 17
Size of inference-graph = 20
85% of the inference-graph was used in the argument.
25 interests were adopted.

Some problems require the use of both defeasible and deductive reasoning. For instance, the lottery paradox paradox was
formulated above so as to avoid the use of logic, but it is more natural to formulate it as follows:

Problem #9
Figure 8 -- the lottery paradox paradox using logic
Given premises:

P justification = 1

Ultimate epistemic interests:

~T1 interest = 1
~T2 interest = 1
~T3 interest = 1

FORWARDS PRIMA FACIE REASONS

pf-reason 1: {R} ||=> ~T1 strength = 1
pf-reason 2: {R} ||=> ~T2 strength = 1
pf-reason 3: {R} ||=> ~T3 strength = 1
pf-reason 4: {P} ||=> R strength = 1

FORWARDS CONCLUSIVE REASONS

con-reason 1: {R} ||=> (T1 v (T2 v T3)) strength = 1

= = = = = = = ULTIMATE EPISTEMIC INTERESTS= = = = = = = = = = = =

Interest in ~T3
is unsatisfied.

Interest in ~T2
is unsatisfied.

Interest in ~T1
is unsatisfied.

= =

Page 351

ARGUMENT #1

This is a defeated argument for:
~T3
which is of ultimate interest.

1. P given
2. R pf-reason 4 from {1}
6. ~T3 pf-reason 3 from {2}

= =

ARGUMENT #2

This is a defeated argument for:
T3
and it defeats argument #1

1. P given
2. R pf-reason 4 from { 1 }
5. ~T2 pf-reason 2 from { 2 }
3. (T1 v (T2 v T3)) con-reason 1 from 2
4. ~T1 pf-reason 1 from { 2 }
15. (T2 v T3) disj-syll 1 from { 3 , 4
16. T3 disj-syl11 from {15,5}

= =

ARGUMENT #3

This is a defeated argument for:
T2
and it defeats argument #2

1. P given
2. R pf-reason 4 from { 1 }
6. ~T3 pf-reason 3 from { 2 }
3. (T1 v (T2 v T3)) con-reason 1 from { 2
4. ~T1 pf-reason 1 from { 2 }
15. (T2 v T3) disj-syl11 from { 3, 4 }
17. T2 disj-syl12 from { 15, 6 }

This argument is defeated by argument #2

= =

ARGUMENT #4

This is a defeated argument for:
~R
and it defeats arguments #1, #2, #3, #4

1. P given
2. R pf-reason 4 from { 1 }
4. ~T1 pf-reason 1 from { 2 }
5. ~T2 pf-reason 2 from { 2 }
6. ~T3 pf-reason 3 from { 2 }
19. ~(T2 v T3) i-neg-disj from { 6 , 5 }

|---

| Suppose: { R }

|---

Page 352

113. R reductio-supposition
144. (T1 v (T2 v T3)) con-reason 1 from { 13
146. T1 disj-syl12 from { 44,19}

47. ~R reductio from { 46 , 4 }

This argument is defeated by arguments #2, #3, #4

= =

ARGUMENT #5

This is a defeated argument for:
T1
and it defeats arguments #2, #3, #4

1. P given
2. R pf-reason 4 from { 1 }
3. (T1 v (T2 v T3)) con-reason 1 from { 2
6. ~T3 pf-reason 3 from { 2 }
5. ~T2 pf-reason 2 from { 2 }
19. ~(T2 v T3) i-neg-disj from { 6, 5}
25. T1 disj-syl22 from { 19, 3

This argument is defeated by arguments #2, #3, #4

= =

ARGUMENT #6

This is a defeated argument for:
~T2
which is of ultimate interest.

1. P given
2. R pf-reason 4 from { 1 }
5. ~T2 pf-reason 2 from { 2 }

= =

ARGUMENT #7

This is a defeated argument for:
~T1
which is of ultimate interest.

1. P given
2. R pf-reason 4 from { 1 }
4. ~T1 pf-reason 1 from { 2 }

= =

Elapsed time = 0.69 sec
Cumulative size of arguments = 15
Size of inference-graph = 51
29% of the inference-graph was used in the argument.
15 interests were adopted.

Another example of interest is the paradox of the preface, as diagrammed in figure 18 of chapter 3:

Page 353

Problem #17
Figure 18 — the paradox of the preface, using logic.
Given premises:

P1 justification = 1
P2 justification = 1
P3 justification = 1
S justification = 1
T justification = 1

Ultimate epistemic interests:
(Q1 & (Q2 & Q3)) interest = 1

FORWARDS PRIMA FACIE REASONS

pf-reason 1: {P1} ||=> Q1 strength = 1
pf-reason 2: {P2} ||=> Q2 strength = 1
pf-reason 3: {P3} ||=> Q3 strength = 1
pf-reason 4: {S} ||=> R strength = 1
pf-reason 5: {T} ||=> ~(Q1 & (Q2 & Q3)) strength = 1
pf-reason 6: {S1} ||=> (T @ ~(Q1 & (Q2 & Q3))) strength = 1
pf-reason 7: {S2} ||=> (T @ ~(Q1 & (Q2 & Q3))) strength = 1
pf-reason 8: {S3} ||=> (T @ -(Q1 & (Q2 & Q3))) strength = 1

FORWARDS CONCLUSIVE REASONS

con-reason 4: {R, Q1 ,Q3} ||=> S2 strength = 1
con-reason 5: {R, Q2, Q3} ||=> S1 strength = 1
con-reason 6: {R, Q1, Q2} ||=> S3 strength = 1

= = = = = = = = = = ULTIMATE EPISTEMIC INTERESTS= = = = = = = = =

Interest in (Q1 & (Q2 & Q3))
is answered affirmatively by conclusion 28

= =

ARGUMENT #1

This is an undefeated argument for:
(Q1 & (Q2 & Q3))
which is of ultimate interest.

1. P1 given
12. Q1 pf-reason 1 from { 1 }
3. P3 given
2. P2 given
8. Q3 pf-reason 3 from { 3 }
9. Q2 pf-reason 2 from { 2}
29. (Q2 & Q3) adjunction from { 8 , 9 }
30. (Q1 & (Q2 & Q3)) adjunction from { 29 , 12 }

= =

Page 354

Page 355

ARGUMENT #2

This is a defeated argument for:
~Q2
and it defeats argument #1

3. P3 given
8. Q3 pf-reason 3 from { 3 }1. P1 given
12. Q1 pf-reason 1 from { 1 }
5. T given
6. ~(Q1 & (Q2 & Q3)) pf-reason 5 from { 5}
38. (~Q1 v ~(Q2 & Q3)) DM from { 6)
39. ~(Q2 & Q3) disj-syl11 from { 38 , 12 }
41. (~Q2v~Q3) DM from {39}
43. ~Q2 disj-syl12 from { 41, 8 }

This argument is defeated by argument #1

= =

ARGUMENT #3

This is a defeated argument for:
~Q3
and it defeats arguments #1, #2

2. P2 given
9. Q2 pf-reason 2 from {2}
1. P1 given
12. Q1 pf-reason 1 from { 1 }
5. T given
6. ~(Q1 & (Q2 & Q3)) pf-reason 5 from { 5}
38. (~Q1 v ~(Q2 & Q3)) DM from { 6 }
39. ~(Q2 & Q3) disj-syl11 from { 38,12 }
41. (~Q2v~Q3) DM from {39}
42. ~Q3 disj-syl11 from { 41,9 }

This argument is defeated by arguments #1 , #2

= =

ARGUMENT #4

This is a defeated argument for:
~Q1
and it defeats arguments #1, #2, #3

3. P3 given
2. P2 given
8. Q3 pf-reason 3 from { 3 }
9. Q2 pf-reason 2 from { 2 }
29. (Q2 & Q3) adjunction from {8 , 9 }
5. T given
6. ~(Q1 & (Q2 & Q3)) pf-reason 5 from { 5 }
38. (~Q1 v ~(Q2 & Q3)) DM from {6}
40. ~Q1 disj-syl12 from { 38 ,29 }

This argument is defeated by arguments #1, #2, #3

Page 356

= =

ARGUMENT #5

This is an undefeated argument for:
(T @ ~(Q1 & (Q2 & Q3)))
and it defeats arguments #2, #3, #4

2. P2 given
3. P3 given
4. S given
9. Q2 pf-reason 2 from {2}
8. Q3 pf-reason 3 from {3}
7. R pf-reason 4 from {4}
10. S1 con-reason 5 from { 9, 8, 7}
11. (T @ ~(Q1 & (Q2 & Q3))) pf-reason 6 from { 10 }

This argument is defeated by arguments #2, #3

= =

ARGUMENT #6

This is an undefeated argument for:
(T @ ~(Q1 & (Q2 & Q3)))
and it defeats arguments #2, #3, #4

1. P1 given
2. P2 given
4. S given
12. Q1 pf-reason 1 from {1}
9. Q2 pf-reason 2 from {2}
7. R pf-reason 4 from {4}
14. S3 con-reason 6 from {12,9, 7}
15. (T @ ~(Q1 & (Q2 & Q3))) pf-reason 8 from {14}

This argument is defeated by arguments #2, #4

= =

ARGUMENT #7

This is an undefeated argument for:
(T @ ~(Q1 & (Q2 & Q3)))
and it defeats arguments #2 , #3 , #4

1. P1 given
3. P3 given
4. S given
12. Q1 pf-reason 1 from { 1 }
8. Q3 pf-reason 3 from { 3}
7. R pf-reason 4 from { 4 }
13. S2 con-reason 4 from {12,8, 7 }

16. (T @ ~(Q1 & (Q2 & Q3))) pf-reason 7 from {13}

This argument is defeated by arguments #3, #4

= =

Elapsed time = 1.24 sec

Page 357

Cumulative size of arguments = 24
Size of inference-graph = 82
29% of the inference-graph was used in the argument.
28 interests were adopted.

OSCAR can also perform deductive reasoning in the predicate calculus and combine such first-order reasoning with defeasible
reasoning. The following is an example of first-order deductive reasoning:

Problem #58
Pelletier's problem 36
Given premises:

(∋∋x)(∃y)(F x y) justification = 1
(∀x)(∃z)(G x z) justification = 1
(∀x)(∀y)(((F x y) v (G x y)) -> (∀z)(((F y z) v (G y z)) -> (H x z))) justification = 1

Ultimate epistemic interests:

(∀x)(∃y)(H x y) interest = 1

= = = = = = = = = =ULTIMATE EPISTEMIC INTERESTS= = = = = = = = = =

Interest in (∀x)(∃y)(H x y)
is answered affirmatively by conclusion 24

= =

ARGUMENT #1

This is a deductive argument for:
(∀x)(∃y)(H x y)
which is of ultimate interest.

3. (∀x)(∀y)(((F x y) v (G x y)) -> (∀z)(((F y z) v (G y z)) -> (H x z))) given
10. (∀y)(((F x7 y)v (G x7 y)) -> (∀z)(((F y z) v (G y z))-> (H x7 z))) Ul from{3 }
1. (∀ x)(∃y)(F x y) given
8. (∃y)(Fx5y) Ul from {1}
9. (Fx5(@y6x5)) El from {8}
17. (~(G x8 (@y6 x8)) -> (F x8 (@y6x8))) conditionalization from {9}
18. ((F x8 (@y6 x8)) v (G x8 (@y6 x8))) disj-cond-2 from {17}
11. (((F x7 x8) v (G x7 x8)) -> (∀z)(((F x8 z) v (G x8 z)) -> (H x7 z))) Ul from {10}

|--

| Suppose: {~(∃y)(H ^x0y)}

|--

| 4. ~(∃y)(H^x0y) reductio-supposition
| 12. (∀y)~(H^x0 y) neg-eg from {4}
| 13. ~(H^x0x22) Ul from {12}
| 19. ~(((F x8 (@y6 x8)) v (G x8 (@y6 x8))) -> (H ^x0 (@y6 x8)))
i-neg-condit from { 18, 13 }
| 20. (∃z)~(((F x8 z) v (G x8 z)) -> (H ^x0 z)) EG from {19}
| 21. ~(∀ z)(((F x8 z) v (G x8 z)) -> (H¬x0 z)) i-neg-ug from {20}
| 22. ~(((F^x0 (@y6 ^x0)) v (G ^x0 (@y6 ^x0))) ->
(∀z)(((F (@y6 ^x0) z) v (G (@y6 ^x0) z)) -> (H ^x0 z)))
i-neg-condit from { 18, 21 }

23. (∃y)(H ¬x0 y) reductio from { 22 ,11}
24. (∀x)(∃y)(H xy) UG from {23}

Page 358

= =

Elapsed time = 0.64 sec
Cumulative size of arguments = 17
Size of inference-graph = 24
70% of the inference-graph was used in the argument.
15 interests were adopted.

4. The Status of the OSCAR Project

The objective of the OSCAR project is to produce a theory of rationality of sufficient detail that it can provide the basis for the
construction of an artilect. This book has described an architecture for rational thought. This architecture provides the framework
for a system of epistemic and practical cognition and it has been implemented in the program OSCAR. "OSCAR" is also the name
of the resulting artilect. It is a consequence of this architecture that the difficult tasks all get relegated to epistemic cognition. The
architecture describes the general structure of epistemic cognition but does not attempt to describe all of the details of the
reasoning required for answering the queries posed by practical cognition. If the general theory embodied in this architecture is
correct, such reasoning can be implemented by providing the artilect with an appropriate system of mental representation, an array
of reason-schemas (including conclusive reasons, prima facie reasons, and defeaters) segregated into backwards and forwards
reason-schemas, and a prioritizing scheme for the inference-queue. If this is done properly, the artilect should be able to do all of
the reasoning required. This is a rather grand claim, and I would not go so far as to say that I am confident that it is correct. But the
only way to find out is to make a concerted effort to incorporate such reasoning into OSCAR and test the result. That is the
objective of the next stage of the OSCAR project.

OSCAR must be provided with both reason-schemas and Q&I modules, neither of which involves further programming at the
level of the architecture. If the theory is correct, the programming task is finished, at least in principle. The program described
above is all the program required for building an artilect.2 The rest of what is involved is a

2 This claim should be qualified in one way. For designing an artilect, perception can, for the most part, be treated as an unanalyzed module
providing input to epistemic cognition. But there is one respect in which that is inadequate. I have lumped the kind of introspection involved in
reflexive cognition into perception, but such introspection is entirely internal to epistemic cognition and should be given a

Page 359

matter of providing appropriate data structures for use by the program rather than a matter of extending the program. The task
becomes one of providing a logical analysis of the various kinds of reasoning and Q&I modules required for answering the queries
posed by practical cognition.

Let us look more closely at the task of enabling OSCAR to do the kinds of reasoning required of a rational agent. We have three
degrees of freedom in the control of OSCAR's reasoning. First, we control the order in which reasoning is performed by stipulating
how tasks are prioritized in the inference-queue. In the current LISP implementation, this is done in rather simple ways, but in
principle, this can be a matter of great complexity and sophistication. This also provides one of the main handles the reflexive
reasoner can use to control its own reasoning. The second degree of freedom concerns the contents of permanent-ultimate-
epistemic-interests. These are, in effect, the set of instructions that drive the whole system. The third degree of freedom concerns
the reason-schemas provided for the reasoner. Part of the problem of providing reason-schemas concerns constructing a system of
mental representation that allows for efficient encoding of the reasoning. This has not been a topic of traditional philosophical
interest, but it has been a matter of great concern in both AI and cognitive psychology. The reason-schemas currently employed by
OSCAR are formulated entirely in first-order logic, but that is almost certainly too simple. However, it can be changed without
changing the architecture, simply by writing new reason-schemas. The next part of the problem of providing reason-schemas
concerns formulating the schemas themselves. This requires describing the schemas in complete logical detail, specifying whether
they formulate conclusive reasons or prima facie reasons, and determining their directionality (backwards or forwards reasons).
For prima facie reasons, defeaters must be described, which is a matter of providing more reason-schemas.

Finding a correct formulation of the reason-schemas involved in various kinds of reasoning is to a large extent a traditional
philosophical problem. Topics of particular interest include induction, abduction, direct inference, probabilistic acceptance rules,
and perceptual knowledge. There is an immense philosophical literature on each of these

computational account. This is just a matter of inserting into the inference-queue various beliefs about what is transpiring in cognition. But
design decisions must be made about which states should be introspectible and under what circumstances introspection occurs. The
programming problems here are trivial, but the design problems may involve some subtle complexities.

Page 360

topics. There are other philosophical problems that are less obviously connected with all of this, but which must nevertheless be
dealt with in order to complete the project. An example is the liar paradox. It was noted in chapter 1 that a reflexive cognizer will
encounter the liar paradox and must be capable of handling it in some non-crippling fashion. I suspect that a great many traditional
philosophical problems may eventually turn out to be relevant to the enterprise of choosing reason-schemas for an artilect. AI itself
has spawned a large literature on reasoning about time, change, causation, and so forth, all of which are of direct relevance to
planning. This research is, in fact, of a traditional philosophical sort, although it has been carried out largely by nonphilosophers.
The AI literature on automated theorem proving is also of direct relevance to the selection of reason-schemas. Any automated
theorem prover could be implemented within OSCAR by selecting the proper reason-schemas and prioritizing relation.

One of the main functions of epistemic cognition in OSCAR is to construct plans. Planning has, of course, been one of the
prominent subfields of AI. It is a familiar point that planning can be viewed as search through a space of possible plans, and most
of the research in planning theory has been directed at controlling search to make it more efficient. In OSCAR, the search is
carried out in the epistemic reasoner. In the OSCAR plan representation scheme, plans are set-theoretic objects. The task of finding
a plan that meets certain criteria is analogous to that of proving mathematical existence theorems by making constructions.

A rational agent cannot live by reasoning alone. In order to survive in a fast-moving and hostile environment, a rational agent must
have a liberal endowment of Q&I modules. That is as true of an artilect as of a natural rational agent. Designing truly sophisticated
Q&I modules may prove more difficult than analyzing reasoning, because we can introspect much of what goes on in reasoning
and use that to guide us in constructing theories of reasoning. That is the traditional method of philosophy. Q&I modules, on the
other hand, are black boxes from the perspective of introspection. The design of appropriate Q&I modules is an engineering
problem, pure and simple. Of course, we can also think of the design of reasoning systems as an engineering problem, but it is
made simpler by the fact that we can observe and copy many of the details of a working reasoning system (human cognition) in
action.

To summarize, the OSCAR project has proposed a general architecture for rational cognition, and this architecture has been
implemented

Page 361

in a LISP program. But many of the most difficult problems remain. These consist of implementing specific kinds of reasoning
within the architecture. The next stage of the OSCAR project will undertake this task.

OSCAR has been provided with a user interface that allows one to use it and experiment with it without doing any programming.
Reason-schemas and problem sets can be typed into the system in a simple and perspicuous form, to encourage would-be cognitive
carpenters to use OSCAR as a tool in their investigations. For instance, an epistemologist investigating inductive reasoning or
inference to the best explanation can test proposed reason-schemas by loading them into OSCAR and seeing how they work on a
variety of concrete problems. Readers are encouraged to obtain a copy of OSCAR and The OSCAR Manual, and experiment with
them. These are available electronically, by anonymous FTP, from aruba.ccit.arizona.edu, in the directory pub/oscar. Help in
obtaining the files by FTP or in running OSCAR can be secured by sending an email message to oscar-help@arizona.edu. Both
The OSCAR Manual and the code will be updated periodically to reflect advances in the OSCAR project. In order to run OSCAR,
all that is needed is access to a computer running Common LISP. Eventually, standalone versions of OSCAR will be produced that
will not require the user to have LISP.

The requested page could not be found.

Return to previous page

Page 363

References

Agre, P. E., and Chapman, D. 1987 Pengi: an implementation of a theory of activity. Proceedings of AAAI-87, 268-272.

Allen, J., Hendler, J., and Tate, A. 1990 Readings in Planning. Los Altos, Calif.: Morgan Kaufmann.

Bacchus, Fahiem 1990 Representing and Reasoning with Probabilistic Knowledge. Cambridge, Mass.: MIT Press.

Baker, A., and Ginsberg, M. 1989 A theorem prover for prioritized circumscription. Proceedings IJCAI-89, 463-467.

Bratman, Michael 1987 Intention, Plans, and Practical Reason. Cambridge, Mass.: Harvard University Press.

———1989 Intention and personal policies. Philosophical Perspectives 3, 443-469.

———1992 Planning and the stability of intention. Minds and Machines 2, 1-16.

Bratman, Michael, Israel, D., and Pollack, M. 1991 Plans and resource-sounded practical reasoning. In Philosophy and AI, ed.
Robert Cummins and John Pollock. Cambridge, Mass.: Bradford Books/MIT Press.

Bundy, Alan 1983 The Computer Modeling of Mathematical Reasoning. London: Academic Press.

Carnap, Rudolph 1950 The Logical Foundations of Probability. Chicago: University of Chicago Press.

———1952 The Continuum of Inductive Methods. Chicago: University of Chicago Press.

Chang, C., and Lee, R. 1973 Symbolic Logic and Mechanical Theorem Proving. London: Academic Press.

javascript:parent.goToPage('Page_361')

Cheng, P. W., and Holyoak, K. J. 1985 Pragmatic reasoning schemas. Cognitive Psychology 17,391-406.

Chisholm, Roderick 1957 Perceiving. Ithaca: Cornell University Press.

Page 364

———1966 Theory of Knowledge. 1st ed. Englewood Cliffs, NJ.: PrenticeHall.

———1977 Theory of Knowledge. 2nd ed. Englewood Cliffs, NJ.: PrenticeHall.

Cohn, A. 1985 On the solution of Schubert's steamroller in many sorted logic. Proceedings IJCAI-85.

Daniel, L. 1983 Planning and operations research. In Artificial Intelligence: Tools, Techniques, and Applications. New York:
Harper & Row.

Dean, T., Firby, J., and Miller, D. 1988 Hierarchical planning involving deadlines, travel time, and resources. Computational
Intelligence 4, 381-398.

de Garis, Hugo 1989 What if AI succeeds?: the rise of the 21st century artilect. AI Magazine 10, 16-27.

Delgrande, J. P. 1988 An approach to default reasoning based on a first-order conditional logic: revised report. Artificial
Intelligence 36, 63-90.

Dennett, Daniel 1987 The Intentional Stance. Cambridge, Mass.: Bradford/MIT Press.

DiFinetti, Bruno 1975 Theory of Probability. New York: Wiley.

Doyle, Jon 1979 A truth-maintenance system. Artificial Intelligence 12, 231-272.

———1988 On universal theories of default. Technical report CMU-CS88-111. Carnegie Mellon Computer Science Department.

———1988a Artificial intelligence and rational self-government. Technical report CMU-CS-88-124. Carnegie Mellon Computer
Science Department.

Drummond, M. 1985 Refining and extending the procedural net. Proceedings IJCAI85, 1010-1012.

Etherington, David 1987 Formalizing nonmonotonic reasoning systems. Artificial Intelligence 31, 41-86.

Etherington, D., Kraus, S., and Perlis, D. 1991 Nonmonotonicity and the scope of reasoning. Artificial Intelligence 52, 221-261.

Etherington, D., and Reiter, R. 1983 On inheritance hierarchies with exceptions. Proceedings of AAAI-83.

Page 365

Fodor, Jerry 1975 The Language of Thought. New York: Thomas Y. Crowell.

Fox, M. S., Allen, B., and Strohm, G. 1981 Job shop scheduling: an investigation in constraint-based reasoning. Proceedings
IJCAI-81.

Gabbay, Dob 1985 Theoretical Foundations for Non-monotonic Reasoning in Expert Systems. Berlin: Springer-Verlag.

———1991 Theoretical foundations for nonmonotonic reasoning Part 2: structured nonmonotonic theories. Proceedings of the
Scandinavian Conference on Artificial Intelligence. Roskilde, Denmark: IOS Press.

Gauthier, David 1986 Morals by Agreement. Oxford: Oxford University Press.

Geffner, Hector 1990 Conditional entailment: closing the gap between defaults and conditionals. Proceedings of the Third
International Workshop on Non-Monotonic Reasoning, 58-72.

Georgeff, Michael P. 1987 Planning. Annual Review of Computer Science 1987,2,359-400.

Georgeff, M., and Lansky, A. 1986 Reasoning about Actions and Plans. Los Altos, Calif.: Morgan Kaufmann.

Ginsberg, M. L. 1989 A circumscriptive theorem prover. Artificial Intelligence 39, 209-230.

Gold, E. M. 1965 Limiting recursion. Journal of Symbolic Logic 30, 28-48.

Goodman, Nelson 1955 Fact, Fiction, and Forecast. Cambridge, Mass.: Harvard University Press.

Halpern, J. Y. 1990 An analysis of first-order logics of probability. Artificial Intelligence 46, 311-350.

Harman, Gilbert 1986 Change in View. Cambridge, Mass.: MIT Press.

Horty, J. 1992 Some direct theories of nonmonotonic inheritance. In Handbook of Logic in Artificial Intelligence and Logic
Programming, ed. D. Gabbay and C. Hogger. Oxford: Oxford University Press.

Page 366

Horty, J., and R. Thomason 1990 Boolean extensions of inheritance networks. Proceedings of AAI-90, 633-639.

Horty, J., Thomason, R., and Touretzky, D. 1990 A skeptical theory of inheritance in nonmonotonic semantic networks. Artificial
Intelligence 42, 311-348.

Israel, David 1980 What's wrong with non-monotonic logic? Proceedings of the First Annual National Conference on Artificial
Intelligence. 99-101.

Jeffrey, Richard 1983 The Logic of Decision,. 2nd Edition. Chicago: University of Chicago Press.

Kraus, S., Lehmann, D., and Magidor, M. 1990 Nonmonotonic reasoning, preferential models, and cumulative logics. Artificial
Intelligence 44, 167-204.

Kyburg, Henry, Jr. 1961 Probability and the Logic of Rational Belief. Middletown, Conn.: Wesleyan University Press.

———1970 Conjunctivitis. In Induction, Acceptance, and Rational Belief, ed. Marshall Swain. Dordrecht: Reidel.

———1974 The Logical Foundations of Statistical Inference. Dordrecht: Reidel.

———1983 The reference class. Philosophy of Science 50, 374-397.

Lackner, J. R., and Garrett, M. F. 1972 Resolving ambiguity: effects of biasing context in the unattended ear. Cognition 1, 359-
372.

Levesque, H. J. 1990 All I know: a study in autoepistemic logic. Artificial Intelligence 42, 263-310.

Levi, Isaac 1980 The Enterprise of Knowledge. Cambridge, Mass.: MIT Press.

Lin, Fangzhen, and Shoham, Yoav 1990 Argument systems: a uniform basis for nonmonotonic reasoning. Technical report
STAN-CS-89-1243. Stanford University, Dept. of Computer Science.

Loui, Ron 1987 Defeat among arguments: a system of defeasible inference. Computational Intelligence 3, 100-106. McCarthy, J.
1980 Circumscription-a form of non-monotonic reasoning. Artificial Intelligence 13, 27-39.

———1984 Applications of circumscription to formalizing common sense

Page 367

knowledge. Proceedings of the Workshop on Nonmonotonic Reasoning, 1984.

McCarthy, J., and Hayes, P. 1969 Some philosophical problems from the standpoint of artificial intelligence. Machine
Intelligence 4,463-502.

McDermott, Drew 1991 A general framework for reason maintenance. Artificial Intelligence 50, 289-329.

McDermott, Drew, and Doyle, Jon 1980 Non-monotonic logic I. Artificial Intelligence 13, 41-72.

Makinson, David 1965 The paradox of the preface. Analysis 25, 205-207.

———1988 General theory of cumulative inference. Proceedings of the 2nd Workshop on Nonmonotonic Reasoning, 1-18.
Grassau, FRG. Springer Verlag.

Manna, Z., and Waldinger, R. J. 1987 A theory of plans. In Reasoning about Actions and Plans: Proceedings of the 1986
Workshop. 11-45. Los Altos, Calif.: Morgan Kaufmann.

Martin, Robert L. 1970 The Paradox of the Liar. New Haven: Yale University Press.

———1984 Recent Essays on Truth and the Liar Paradox. New York: Oxford University Press.

Moore, R. 1985 Semantical considerations on nonmonotonic logic. Artificial Intelligence 25, 75-94.

Nagel, Thomas 1970 The Possibility of Altruism. Oxford: Oxford University Press.

Nute, Donald 1988 Defeasible reasoning: a philosophical analysis in PROLOG. Aspects of AI, ed. J. Fetzer. Reidel.

———1992 Basic defeasible logic. In Intensional Logics for Programming, ed. L. Farinas del Cerro and M. Pentonnen, 125-154.
Oxford: Oxford University Press.

Nute, Donald and Lewis, M. 1986 A users manual for d-Prolog. ACMC Research Report 01-0016. University of Georgia.

Osherson, Daniel, Stern, Joshua, Wilkie, Ormond, and Barto, Andrew 1991 Default probability. Cognitive Science 15, 251-270.

Parfit, Derek 1984 Reasons and Persons. Oxford: Oxford University Press.

Page 368

Pearl, Judea 1988 Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Los Altos, Calif.: Morgan
Kaufmann.

Pednault, E. P. D. 1987 Solving multiagent dynamic world problems in the classical planning framework. In Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop. 42-87. Los Altos, Calif.: Morgan Kaufmann.

Pelletier, F. J. 1986 Seventy-five problems for testing automatic theorem provers. Journal of Automated Reasoning 2, 191-216.
See the errata in Journal of Automated Reasoning 4 (1988), 235-6.

Perlis, Donald 1985 Languages with self-reference I: foundations. Artificial Intelligence 25, 301-322.

Pettit, Philip 1991 Decision theory and folk psychology. In Foundations of Decision Theory, ed. M. Bacharach and S. Hurley.
Oxford: Oxford University Press.

Pollock, John L. 1965 Analyticity and Implication. PhD dissertation, University of California, Berkeley.

———1967 Criteria and our knowledge of the material world. Philosophical Review 76, 28-60.

———1970 The structure of epistemic justification. American Philosophical Quarterly, monograph series 4, 62-78.

———1971 Perceptual Knowledge. Philosophical Review 83, 287-319.

———1974 Knowledge and Justification. Princeton: Princeton University Press.

——1979 Reasons and reasoning. American Philosophical Association Symposium.

———1983 How do you maximize expectation value? Nous 17,409-423.

———1983a Epistemology and probability. Synthese 55, 231-252.

———1986 Contemporary Theories of Knowledge. Totowa, N.J.: Rowman and Littlefield.

———1986a A theory of moral reasoning. Ethics 96, 506-523.

———1987 Defeasible reasoning. Cognitive Science 11, 481-518.

———1989 How to Build a Person; a Prolegomenon. Cambridge, Mass.: Bradford/MIT Press.

———1990 Nomic Probability and the Foundations of Induction. New York: Oxford University Press.

Page 369

———1990a Interest driven suppositional reasoning. Journal of Automated Reasoning 6,419-462.

——1990b OSCAR: a general theory of rationality. Journal of Experimental and Theoretical AI 1, 209-226.

———1990c A theory of defeasible reasoning. International Journal of Intelligent Systems 6, 33-54.

———1991 Self-defeating arguments. Minds and Machines 1, 367-392.

———1992 New foundations for practical reasoning. Minds and Machines 2, 113-144.

———1992a How to reason defeasibly. Artificial Intelligence 57, 1-42.

———1993 The phylogeny of rationality. Cognitive Science 17, 563-588.

———1994 Justification and defeat. Artificial Intelligence 67, 377-408.

———1995 OSCAR - a general purpose defeasible reasoner. Journal of Applied Non-Classical Logics, forthcoming.

———1995a Practical Reasoning in OSCAR. Philosophical Perspectives 9, forthcoming.

Poole, D. 1985 On the comparison of theories: preferring the most specific explanation. Proceedings of Proceedings IJCAI-85.

———1988 A logical framework for default reasoning. Artificial Intelligence 36, 27-48.

Putnam, Hilary 1965 Trial and error predicates and the solution to a problem of Mostowski. Journal of Symbolic Logic 30, 49-57.

Ramsey, Frank 1926 Truth and probability. InThe Foundations of Mathematics, ed. R. B. Braithwaite. Paterson, NJ.: Littlefield,
Adams.mework for default reasoning. Artificial Intelligence 36, 27-48.

Reichenbach, Hans 1949 A Theory of Probability. Berkeley: University of California Press. (Original German edition 1935).

Reiter, Raymond 1980 A logic for default reasoning. Artificial Intelligence 13, 81-132.

Reiter, R., and Criscuolo, G. 1981 On interacting defaults. Proceedings IJCAI-81, 270-276.

Rips, Lance 1983 Cognitive processes in propositional reasoning. Psychological Review 90: 38-71.

———1994 The Psychology of Proof. Cambridge, Mass.: Bradford/MIT Press.

Sacerdotti, E. D. 1975 The non-linear nature of plans. Proceedings IJCAI-75.

Page 370

———1977 A Structure of Plans and Behavior. Amsterdam: Elsevier-North Holland.

Savage, Leonard 1972 The Foundations of Statistics. 2nd Edition. New York: Dover.

Simari, G. R., and Loui, R. P. 1992 A mathematical treatment of defeasible reasoning and its implementation. Artificial
Intelligence 53, 125-158.

Simon, Herbert A. 1977 Models of Discovery. Dordrecht: Reidel.

Skyrms, Brian 1980 Causal Necessity. New Haven: Yale University Press.

Smith, E. E., Langston, C., and Nisbett R. 1992 The case for rules of reasoning. Cognitive Science 16, 1-40.

Smith, George 1992 Strategies, scheduling effects, and the stability of intentions (comments on Bratman). Minds and Machines 2,
17-26.

Stickel, M. E. 1985 Schubert's steamroller problem: formulations and solutions. Journal of Automated Reasoning 2, 89-101.

Strong, H. R. 1971 Translating recursive equations into flowcharts. Journal of Computer Systems Science 5: 254-285.

Sussman, G. J. 1973 A Computational Model of Skill Acquisition. Technical report AI TR-297. Cambridge, Mass.: Artificial
Intelligence Lab, MIT.

Tarski, Alfred 1956 The concept of truth in formalized languages. Logic, Semantics, and Metamathematics, Papersfrom 1923 to
1938, by Alfred Tarski. Oxford: Clarendon Press.

Tate, A. 1974 INTERPLAN: A plan generation system which can deal with interactions between goals. Memo MIP-R-109.
Edinburgh: Machine Intelligence Research Unit, University of Edinburgh.

———1977 Generating project networks. Proceedings IJCAI-77.

Tate, A., Hendler, J., and Drummond, M. 1990 A review of AI planning techniques. In Allen, Hendler, and Tate [1990], 26-49.

Tate, A., and Whiter, A. M. 1984 Planning with multiple resource constraints and an application to a Naval planning problem.
First Conference on the Applications of Artificial Intelligence, Denver.

Page 371

Thomason, R. 1987 NETL and subsequent path-based inheritance theories. In Computers and Mathematics with Applications, ed.
E. Y. Rodin. Elmsford, NY: Pergamon Press.

Touretzky, D. 1984 Implicit orderings of defaults in inheritance systems. Proceedings of AAAI-84.

Touretzky, D., Horty, J., and Thomason, R. 1987 A clash of intuitions: the current state of nonmonotonic multiple inheritance
systems. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence (Proceedings IJCAI-87), Los Altos,
Calif.: Morgan Kaufmann Publishers, 476-482.

Tversky, A. 1977 Features of similarity. Psychological Review 84, 327-352.

Tversky, A., and Kahneman, D. 1974 Judgment under uncertainty: heuristics and biases. Science 185, 1124-1131.

von Neumann, J., and Morgenstern, O. 1944 Theory of Games and Economic Behavior. New York: Wiley.

Waldinger, R. 1977 Achieving several goals simultaneously. Machine Intelligence 8, 94-136.

Warren, D. H. D. 1976 Generating conditional plans and programs. In Proceedings of the AISB Summer Conference, 344-35.
University of Edinburgh, UK4.

Wason, P. 1966 Reasoning. In B. Foss (ed.), New Horizons in Psychology. Harmondsworth, England: Penguin.

Wilson, G. A., and Minker, J. 1976 Resolution, refinements, and search strategies: a comparative study. IEEE Transactions on
Computers C-25 , 782-801.

Wos, L., Overbeek, R., Lusk, E., and Boyle, J. 1984 Automated Reasoning. Englewood Cliffs, NJ.: Prentice Hall.

The requested page could not be found.

Return to previous page

Page 373

Index

A

accrual of reasons, 101

action initiation, 29

ACTION-INITIATOR, 296, 306

adoptable plan, 278

adopted-plans, 269, 291

Agre, P. E., 289

Allen, J., 177, 213

and/or graph, 308

javascript:parent.goToPage('Page_371')
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_101.html#JUMPDEST_Page_101
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_29.html#JUMPDEST_Page_29
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_296.html#JUMPDEST_Page_296
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_278.html#JUMPDEST_Page_278
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_291.html#JUMPDEST_Page_291
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_308.html#JUMPDEST_Page_308

applied epistemology, 51

argument-based defeasible reasoning, 307

argument-complete reasoner, 163

arguments, 38, 86

artilect, 4, 299

assumption of uniform reasons, 91

automated defeasible reasoners, 171

avoidance desires, 255

B

Bacchus, Fahiem, 73

backwards reasoning, 153

backwards reasons, 155

Baker, A., 171

belief/desire psychology, 33

Bratman, Michael, 28, 177, 201, 202, 203, 249

British Museum algorithm, 24, 151

Buridan cases, 201, 266

C

call sets, 221

call-time, 219

called plan-node, 217

called-nodes, 291

candidate-plans, 239, 274

Carnap, Rudolph, 97

Chang, C., 161

Chapman, D., 289

Cheng, P. W., 3

Chisholm, Roderick 40

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_51.html#JUMPDEST_Page_51
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_307.html#JUMPDEST_Page_307
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_86.html#JUMPDEST_Page_86
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_4.html#JUMPDEST_Page_4
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_299.html#JUMPDEST_Page_299
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_73.html#JUMPDEST_Page_73
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_153.html#JUMPDEST_Page_153
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_28.html#JUMPDEST_Page_28
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_202.html#JUMPDEST_Page_202
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_203.html#JUMPDEST_Page_203
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_249.html#JUMPDEST_Page_249
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_24.html#JUMPDEST_Page_24
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_266.html#JUMPDEST_Page_266
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_291.html#JUMPDEST_Page_291
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_239.html#JUMPDEST_Page_239
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_274.html#JUMPDEST_Page_274
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_97.html#JUMPDEST_Page_97
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40

circumscription, 108, 118, 120

classical direct inference, 73

coextendability, 193

cognitive architecture, 6

Cohen, Stewart, 104

Cohn, A., 160

collective defeat, 62, 112

competence/performance distinction, 1

competition between plans, 191, 192

composite of plans, 189

conative dispositions, 7

conclusive reasons, 40, 85

conditional desires, 253

conditional instrumental desires, 254

conditionalization, 88

Correspondence Theorem, 313

credulous reasoners, 62

Criscuolo, G., 40

D

d-initial nodes, 110

d.e.-adequacy, 145, 149

Daniel, L., 177

de Garis, Hugo, 4

Dean, T., 177

decision-theoretic model, 175

deductive ancestor, 89

default logic, 106, 118, 120

defeasible arguments, 39

defeasible inheritance hierarchies, 171

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_108.html#JUMPDEST_Page_108
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_118.html#JUMPDEST_Page_118
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_120.html#JUMPDEST_Page_120
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_73.html#JUMPDEST_Page_73
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_193.html#JUMPDEST_Page_193
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_6.html#JUMPDEST_Page_6
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_104.html#JUMPDEST_Page_104
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_160.html#JUMPDEST_Page_160
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_112.html#JUMPDEST_Page_112
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_191.html#JUMPDEST_Page_191
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_192.html#JUMPDEST_Page_192
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_189.html#JUMPDEST_Page_189
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_253.html#JUMPDEST_Page_253
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_254.html#JUMPDEST_Page_254
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_313.html#JUMPDEST_Page_313
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_110.html#JUMPDEST_Page_110
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_145.html#JUMPDEST_Page_145
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_149.html#JUMPDEST_Page_149
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_4.html#JUMPDEST_Page_4
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_106.html#JUMPDEST_Page_106
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_118.html#JUMPDEST_Page_118
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_120.html#JUMPDEST_Page_120
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_39.html#JUMPDEST_Page_39
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171

defeasible reasoner, 141, 306

defeasible reasoning, 85

defeasibly enumerable set, 143

defeat among inferences, 91, 102

defeat links, 104

defeat status, 109

Page 374

defeaters, 40, 85

definite probability, 60, 72

degrees of interest, 47

degrees of justification, 48, 58

delayed planning, 244

Delgrande, J. P., 40

Dennett, Daniel, 3

design stance, 3

desire-queue, 244

desires, 25, 33, 175

DiFinetti, Bruno 175

direct inference, 72

discounted-strength, 324

disjunctively adopting sets of plans, 270

disjunctively-adoptable set of plans, 278

disjunctively-adopted-plan-sets, 269

doxastic assumption, 54

doxastic-conative loop, 7

doxastification, 280

Doyle, Jon, 36, 40, 41, 63, 171

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_143.html#JUMPDEST_Page_143
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_104.html#JUMPDEST_Page_104
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_72.html#JUMPDEST_Page_72
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_47.html#JUMPDEST_Page_47
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_48.html#JUMPDEST_Page_48
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_244.html#JUMPDEST_Page_244
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_244.html#JUMPDEST_Page_244
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_72.html#JUMPDEST_Page_72
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_324.html#JUMPDEST_Page_324
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_278.html#JUMPDEST_Page_278
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_280.html#JUMPDEST_Page_280
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_41.html#JUMPDEST_Page_41
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171

Drummond, M., 186, 220

E

enumerative induction, 52, 77

epistemic cognition, 7, 36, 141, 175

epistemic desires, 38, 168

epistemic justification, 58, 132

epistemic norms, 1

epistemic probability, 98

epistemic reasoning, 9

epistemology from the design stance, 52

Etherington, David, 40, 61, 109, 169

executable-operations, 296

execution of a plan, 225

execution path through a plan, 229

expected likability, 14, 33, 305

expected utility, 176

expected value of a plan, 229

F

feature-likings, 20, 33

Firby, J., 177

Fitzgerald, Patrick, 197

flag-based reasoners, 148, 316

flat plan, 223

Fodor, Jerry, 44

foreign adoptions, 91

forwards reasoning, 153

forwards reasons, 155

FTPing OSCAR, 361

fully rational agent, 12

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_186.html#JUMPDEST_Page_186
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_168.html#JUMPDEST_Page_168
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_132.html#JUMPDEST_Page_132
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_169.html#JUMPDEST_Page_169
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_296.html#JUMPDEST_Page_296
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_229.html#JUMPDEST_Page_229
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_14.html#JUMPDEST_Page_14
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_176.html#JUMPDEST_Page_176
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_229.html#JUMPDEST_Page_229
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_20.html#JUMPDEST_Page_20
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_197.html#JUMPDEST_Page_197
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_148.html#JUMPDEST_Page_148
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_316.html#JUMPDEST_Page_316
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_153.html#JUMPDEST_Page_153
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_361.html#JUMPDEST_Page_361
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_12.html#JUMPDEST_Page_12

functional descriptions, 1, 299

Fundamental Theorem for Defeasible Reasoning, 164

G

Gabbay, Dov, 140

Garrett, Merrill, xii, 16

Gauthier, David, 34

Geffner, Hector, 171

generalized backwards reasons, 156

generalized statistical syllogism, 69

generic bayesianism, 95

Georgeff, Michael, 171, 177, 213, 232, 255

goals of maintenance, 255

goals, 23, 175, 306

Gold, E. M., 143

Goodman, Nelson, 66, 77

H

Halpern, J. Y., 73

Hampton, Jean, 31

Harman, Gilbert, 177

Hayes, Patrick, 218

Hendler, J., 213, 220

hierarchical plan, 223

hierarchical planning, 215

Hobbes, Thomas 31

Holyoak, K. J., 3

Horty, J., 62, 105, 171

Hume, David, 33

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_299.html#JUMPDEST_Page_299
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_164.html#JUMPDEST_Page_164
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_140.html#JUMPDEST_Page_140
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_xii.html#JUMPDEST_Page_xii
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_16.html#JUMPDEST_Page_16
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_34.html#JUMPDEST_Page_34
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_156.html#JUMPDEST_Page_156
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_69.html#JUMPDEST_Page_69
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_95.html#JUMPDEST_Page_95
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_232.html#JUMPDEST_Page_232
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_23.html#JUMPDEST_Page_23
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_143.html#JUMPDEST_Page_143
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_66.html#JUMPDEST_Page_66
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_73.html#JUMPDEST_Page_73
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_31.html#JUMPDEST_Page_31
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_218.html#JUMPDEST_Page_218
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_215.html#JUMPDEST_Page_215
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_31.html#JUMPDEST_Page_31
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33

Page 375

i.d.e.-adequacy, 162, 315

ideal warrant, 133, 141

if-conditions, 218, 222

immediate inference ancestors, 88

indefinite probabilities, 60, 72

induction, 66, 77

inference ancestor, 89

inference branch, 89

inference graphs, 87, 166

inference-graph, 308

inference-queue, 158, 166, 300, 323

input, 39, 47, 86

instrumental desires, 28, 214

intentions, 28, 33

interest-driven reasoning, 24, 46, 151, 317

interest-graph, 159, 320

interest-graph-links, 322

interest-scheme, 320

interests, 321, 323

interruptibility, 146, 170

introspection, 16

introspective module, 44

inverse statistical syllogism, 69

Israel, David, 142, 177

J

Jeffrey, Richard, 175

K

Kahneman, D., 10

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_315.html#JUMPDEST_Page_315
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_218.html#JUMPDEST_Page_218
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_72.html#JUMPDEST_Page_72
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_66.html#JUMPDEST_Page_66
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_158.html#JUMPDEST_Page_158
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_323.html#JUMPDEST_Page_323
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_39.html#JUMPDEST_Page_39
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_47.html#JUMPDEST_Page_47
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_86.html#JUMPDEST_Page_86
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_28.html#JUMPDEST_Page_28
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_214.html#JUMPDEST_Page_214
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_28.html#JUMPDEST_Page_28
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_24.html#JUMPDEST_Page_24
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_317.html#JUMPDEST_Page_317
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_320.html#JUMPDEST_Page_320
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_322.html#JUMPDEST_Page_322
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_320.html#JUMPDEST_Page_320
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_321.html#JUMPDEST_Page_321
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_323.html#JUMPDEST_Page_323
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_146.html#JUMPDEST_Page_146
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_170.html#JUMPDEST_Page_170
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_16.html#JUMPDEST_Page_16
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_69.html#JUMPDEST_Page_69
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_142.html#JUMPDEST_Page_142
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_10.html#JUMPDEST_Page_10

Kraus, S., 61, 109, 140

Kyburg, Henry, 40, 61, 73, 111

L

Lackner, J. R., 16

Langston, C., 3, 173

language of thought, 44

Lansky, A., 213

Lee, R., 161

Lehmann, D., 140

Lehrer, Keith, xiii

Levesque, Hector, 171

Levi, Isaac, 36

Lewis, M., 171

liar paradox, 46

library-of-standing-plans, 248, 250

likability of a situation, 305

likability, 13

likelihood ratio, 79

Lin, Fangzhen, 105

linear arguments, 39

loops in plans, 219

lottery paradox, 61, 112, 117

Loui, Ron 105, 171

M

McCarthy, J., 40, 108, 218

McDermott, D., 40, 171

Magidor, M., 140

Makinson, David, 125, 140

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_140.html#JUMPDEST_Page_140
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_73.html#JUMPDEST_Page_73
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_111.html#JUMPDEST_Page_111
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_16.html#JUMPDEST_Page_16
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_140.html#JUMPDEST_Page_140
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_xiii.html#JUMPDEST_Page_xiii
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_248.html#JUMPDEST_Page_248
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_250.html#JUMPDEST_Page_250
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_79.html#JUMPDEST_Page_79
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_39.html#JUMPDEST_Page_39
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_112.html#JUMPDEST_Page_112
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_117.html#JUMPDEST_Page_117
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_108.html#JUMPDEST_Page_108
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_218.html#JUMPDEST_Page_218
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_140.html#JUMPDEST_Page_140
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_140.html#JUMPDEST_Page_140

Manna, Z., 219

Martin, Robert L., 46

maximizing desires, 254

mental representation, 44

Miller, D., 177

minimally good plan, 272

Minker, J., 162

mixed physical/epistemic probability, 76

monotonic reasoner, 147, 317

Moore, R., 40

Morgenstern, O., 18

N

Nagel, Thomas, 34

nearest defeasible ancestor, 89

Nicod principle, 77

Nisbett, R., 3, 173

nomic probabilities, 60

non-classical direct inference, 74

nonmonotonic logic, 40, 104

Nute, Donald, 40, 171

O

objective likability, 13

operations, 214, 222

opportunistic planning, 246

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_254.html#JUMPDEST_Page_254
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_76.html#JUMPDEST_Page_76
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_147.html#JUMPDEST_Page_147
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_317.html#JUMPDEST_Page_317
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_18.html#JUMPDEST_Page_18
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_34.html#JUMPDEST_Page_34
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_74.html#JUMPDEST_Page_74
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_104.html#JUMPDEST_Page_104
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_214.html#JUMPDEST_Page_214
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_246.html#JUMPDEST_Page_246

Page 376

optative dispositions, 27, 306

OSCAR, 5, 49, 51, 148, 159, 300, 306

outright defeat, 114

P

paradox of the preface, 125

Parfit, Derek, 34

partial status assignment, 123, 308, 312

Pearl, Judea, 40

Pednault, E. P. D., 241

Pelletier, Jeffrey, 162

perceptible properties, 53

perception, 52

perceptual images, 54

performance costs, 176

Perlis, Donald, 46, 61, 109

permanent-ultimate-epistemic- interests, 283, 293, 300

personal policies, 249

Petit, Philip, 15, 194

pf-node, 89

plan updating, 277

PLAN-EXECUTOR, 235, 289

plan-node, 221

PLAN-SYNTHESIZER, 239, 259

PLAN-UPDATER, 239, 265

planar reasoner, 44

PLANNER, 235

planning, 23

PLANNING-INITIATOR, 239, 244

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_27.html#JUMPDEST_Page_27
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_49.html#JUMPDEST_Page_49
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_51.html#JUMPDEST_Page_51
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_148.html#JUMPDEST_Page_148
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_114.html#JUMPDEST_Page_114
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_34.html#JUMPDEST_Page_34
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_123.html#JUMPDEST_Page_123
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_312.html#JUMPDEST_Page_312
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_176.html#JUMPDEST_Page_176
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_249.html#JUMPDEST_Page_249
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_15.html#JUMPDEST_Page_15
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_194.html#JUMPDEST_Page_194
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_277.html#JUMPDEST_Page_277
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_239.html#JUMPDEST_Page_239
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_259.html#JUMPDEST_Page_259
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_239.html#JUMPDEST_Page_239
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_23.html#JUMPDEST_Page_23
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_239.html#JUMPDEST_Page_239
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_244.html#JUMPDEST_Page_244

planning-theory model, 177

plans, 13, 23, 177, 223, 306

plans as graphs, 221

Pollack, Martha 178

Poole, David, 40, 105

practical cognition, 7, 36, 175

practical justification, 201

practical reasoning, 9

practical warrant, 200

present-tense action desires, 30, 33

prima facie reasons, 40, 85

primitive desires, 29

probabilistically valid rules, 96

procedural knowledge, 1, 248

programming OSCAR, 300

projectibility, 66, 77

provisional defeat, 114

purification of a plan, 189

Putnam, Hilary, 143

Q

Q&I modules, 10, 34, 82, 166, 300

R

Ramsey, Frank, 17

ratiocination, 9

rationality, 1, 3

rationally acceptable, 191

rationally permissible, 176, 190

rationally preferable, 190, 194

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_23.html#JUMPDEST_Page_23
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_178.html#JUMPDEST_Page_178
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_200.html#JUMPDEST_Page_200
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_30.html#JUMPDEST_Page_30
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_29.html#JUMPDEST_Page_29
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_96.html#JUMPDEST_Page_96
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_248.html#JUMPDEST_Page_248
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_66.html#JUMPDEST_Page_66
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_114.html#JUMPDEST_Page_114
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_189.html#JUMPDEST_Page_189
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_143.html#JUMPDEST_Page_143
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_34.html#JUMPDEST_Page_34
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_17.html#JUMPDEST_Page_17
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_191.html#JUMPDEST_Page_191
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_176.html#JUMPDEST_Page_176
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_190.html#JUMPDEST_Page_190
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_190.html#JUMPDEST_Page_190
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_194.html#JUMPDEST_Page_194

rationally prescribed, 176, 190

rationally satisfactory search, 13, 271

reactive agent, 9, 289

reasoning, 9, 35

reasons, 38, 85

rebutting defeater, 40, 85, 93, 103

RECOMPUTE-DEFEAT-STATUSES, 149

reductio ad absurdum, 88

reflexive cognition, 43

Reiter, Raymond, 40, 106, 142

relative frequency, 60

reliability defeaters, 57

Rips, Lance, 155

rules of inference, 89

S

Sacerdotti, E. D., 28, 186, 215, 216, 220

satisficing, 272

Savage, Leonard, 175, 194

scheduling, 215, 237, 241, 262, 267

scheduling links, 242

Schubert steamroller problem, 159

self-defeating arguments, 115

Shoham, Yoav, 105

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_176.html#JUMPDEST_Page_176
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_190.html#JUMPDEST_Page_190
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_35.html#JUMPDEST_Page_35
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_149.html#JUMPDEST_Page_149
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_106.html#JUMPDEST_Page_106
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_142.html#JUMPDEST_Page_142
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_57.html#JUMPDEST_Page_57
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_28.html#JUMPDEST_Page_28
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_186.html#JUMPDEST_Page_186
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_215.html#JUMPDEST_Page_215
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_194.html#JUMPDEST_Page_194
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_215.html#JUMPDEST_Page_215
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_262.html#JUMPDEST_Page_262
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_267.html#JUMPDEST_Page_267
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_242.html#JUMPDEST_Page_242
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_115.html#JUMPDEST_Page_115
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105

Page 377

Simari, G. R., 105, 171

Simon, Herbert, 272

situation-evaluator, 305

situation-likings, 12, 33

skeptical reasoners, 62

Skyrms, Brian, 175

Smith, E. E., 3, 173

Smith, George, 146

specificity defeat, 105

stage of the monotonic reasoner, 149

standing plans, 238, 248, 281

statistical induction, 52, 78

statistical probability, 98

statistical syllogism, 52, 59, 93, 106

status assignment, 121, 124, 308, 313

Stickel, M. E., 160

strict competition, 191

Strohm, G., 177

Strong, H. R., 219

strongly acceptable, 190

strongly prescribed, 190

subplan, 189, 222

subproperty defeaters, 67

subset defeat, 73

subset defeaters, 75

subsidiary planning, 216

subsidiary plans, 237

subsidiary teleological planning, 247, 261

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_12.html#JUMPDEST_Page_12
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_146.html#JUMPDEST_Page_146
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_149.html#JUMPDEST_Page_149
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_238.html#JUMPDEST_Page_238
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_248.html#JUMPDEST_Page_248
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_281.html#JUMPDEST_Page_281
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_78.html#JUMPDEST_Page_78
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_59.html#JUMPDEST_Page_59
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_106.html#JUMPDEST_Page_106
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_121.html#JUMPDEST_Page_121
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_124.html#JUMPDEST_Page_124
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_313.html#JUMPDEST_Page_313
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_160.html#JUMPDEST_Page_160
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_191.html#JUMPDEST_Page_191
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_190.html#JUMPDEST_Page_190
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_190.html#JUMPDEST_Page_190
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_189.html#JUMPDEST_Page_189
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_73.html#JUMPDEST_Page_73
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_75.html#JUMPDEST_Page_75
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_247.html#JUMPDEST_Page_247
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_261.html#JUMPDEST_Page_261

superior plan, 190

support-link, 309, 315

suppositional reasoning, 88

T

tail of a plan, 290

TAIL-MONITOR, 290

Tarski's T-schema, 46

Tarski, Alfred, 46

Tate, A., 177, 186, 213, 220, 241

teleological links, 242

teleological planning, 216, 237

theoretical epistemology, 51

theoretical reasoning, 9

THINK, 326

Thomason, Richmond, 62, 63, 105, 171

timing nodes, 242

top-level plans, 233, 237

Touretzky, D., 62, 67, 105, 171

truth-evaluation module, 44

Tversky, Amos, 10

U

ultimate-epistemic-interests, 36, 47, 163, 166, 259, 283, 306

<undefeated node of the inference-graph, 308, 313, 314

undercutting defeater, 41, 86, 93, 104

V

variable-binding in plans, 219

von Neumann, J., 18

W

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_190.html#JUMPDEST_Page_190
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_309.html#JUMPDEST_Page_309
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_315.html#JUMPDEST_Page_315
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_186.html#JUMPDEST_Page_186
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_242.html#JUMPDEST_Page_242
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_51.html#JUMPDEST_Page_51
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_326.html#JUMPDEST_Page_326
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_242.html#JUMPDEST_Page_242
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_233.html#JUMPDEST_Page_233
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_47.html#JUMPDEST_Page_47
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_259.html#JUMPDEST_Page_259
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_313.html#JUMPDEST_Page_313
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_314.html#JUMPDEST_Page_314
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_41.html#JUMPDEST_Page_41
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_86.html#JUMPDEST_Page_86
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_104.html#JUMPDEST_Page_104
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_18.html#JUMPDEST_Page_18

Waldinger, R. J., 219, 241

warrant, 59, 133, 199

Warren, D. H. D., 186

Wason, P., 3

weakest link principle, 99

when-conditions, 218, 222

Whiter, A. M., 177

Wilson, G. A., 162

 </HTML

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_59.html#JUMPDEST_Page_59
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_186.html#JUMPDEST_Page_186
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_99.html#JUMPDEST_Page_99
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_218.html#JUMPDEST_Page_218
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1655&FileName=Page_162.html#JUMPDEST_Page_162

	Preface
	Chapter 1 - Rational Agents
	Chapter 2 - Epistemology from the Design Stance
	Chapter 3 - The Structure of Defeasible Reasoning
	Chapter 4 - Taking Strength Seriously
	Chapter 5 - Plan-Based Practical Reasoning
	Chapter 6 - The Logical Structure of Plans
	Chapter 7 - An Architecture for Planning
	Chapter 8 - Acting
	Chapter 9 - OSCAR
	References
	Index

