
Health Informatics



 



Morris F. Collen 

Kathryn J. Hannah • Marion J. Ball
(Series Editors)

Computer Medical Databases

The First Six Decades (1950–2010)



ISBN 978-0-85729-961-1    e-ISBN 978-0-85729-962-8
DOI 10.1007/978-0-85729-962-8
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011939795

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored 
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in 
the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright 
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the 
publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of 
a specifi c statement, that such names are exempt from the relevant laws and regulations and therefore free 
for general use.
Product liability: The publisher can give no guarantee for information about drug dosage and application 
thereof contained in this book. In every individual case the respective user must check its accuracy by 
consulting other pharmaceutical literature.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Morris F. Collen
Division of Research 
Broadway 2000
94612 Oakland, California
USA



 v

  Foreword I   

 This latest book by Dr Morris Collen, “ A HISTORY OF MEDICAL DATABASES”  
is a delight. I have never asked Dr. Collen if he reads Rowling’s Harry Potter books. 
Perhaps not; he may be too busy with his own writing. Nonetheless Doctor Collen is 
fully entitled to be known as a Wizard amongst the people of Medical Informatics. I 
note this distinction because diving into this book is very much like diving into the 
Wizard Dumbledore’s magical vase the “Pensive”. A delightful and surprising journey 
begins in which no one ever dies, the relationships between ideas are revealed, and the 
reader feels cleansed of any of his own mistakes and happy to be part of the story. 

 To be fair, Doctor Collen warns his readers that “this book is primarily a history of 
how people applied computers, so it is not a history about the people themselves”. But, 
no matter, I recall that Harry’s hero also took a similar wizardly “above the fray” tone. 
I fi nd I myself have been treated all too kindly by our author; so please excuse this. 

 Doctor Collen also treats the National Library of Medicine rather well. I claim 
this is proper; it’s a grand institution and a source of much stimulus and sustained 
support to research and training in bio-medical uses of computers and information 
systems. It is important to regard this as a real institutional commitment, separate 
from that of any individuals. 

 I hope he may consider another book to hail the other great American institu-
tions, including our great universities and medical centers, that have also supported 
this important work. All these institutions - especially the Federal institutions - even 
great ones – are surprisingly fragile. They are very much subject to the whims and 
waves of societal hopes and of scientifi c “theories”. Serious budget cuts could 
destroy them in only a few years. 

 On the positive side, the NLM can look back 175 years and be proud that 
Presidents and Congress have faithfully supported its mission through depressions, 
wars, and domestic and international hard times. NLM’s proudest national collec-
tions and achievements resulted from abiding Congressional belief and fi nancial 
support. I hope future readers’ trips through the Pensive will again fi nd Morris 
Collen at his keyboard and our American science institutions strong and faithful. 

  Donald Lindberg, M.D.  
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       Foreword II   

 This new volume by Morris Collen, “Computer Medical Databases: The First Six 
Decades, 1950–2010,” is sure to join his 1995 book, “A History of Medical 
Informatics in the United States,” on the bookshelves of health informaticians in the 
U.S. and around the world as a trusted reference. 

 In this book in Chap.   2    , Morrie credits Gio Wiederhold of Stanford University 
with the early defi nition and design of databases as collections of related data, orga-
nized so that usable data may be extracted. Morrie presents the history of medical 
databases in ten chapters. He traces their evolution, giving detailed exemplars of 
specialized clinical databases and secondary healthcare databases. He lays out illu-
minating examples of both knowledge and bibliographic databases and pays tribute 
to the National Library of Medicine – a remarkable institution that in 2011 cele-
brated its 175th year of providing the best-of-the-best medical knowledge to the 
worldwide healthcare community. 

 A mentor, teacher, and friend to many of us for 40 years, Morrie has made and 
continues to make invaluable contributions to Kaiser Permanente and to the global 
medical informatics community; contributions that have transformed many aspects 
of healthcare delivery, medical research, and clinical practice. 

 Every year the American College of Medical Informatics gives the coveted 
Morris Collen Lifetime Achievement Award to an individual whose work has 
advanced the fi eld of health informatics. We are all blessed with the wisdom, friend-
ship, and humanity Morrie has shared so generously. We owe him – who has truly 
earned the title of “father of medical informatics” – our thanks for his tireless and 
insightful work over the years. His contributions, including this latest volume, do 
honor to the fi eld and to those of us who are privileged to have him as a colleague. 

  Marion J. Ball   
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   Series Preface  

  This series is directed to healthcare professionals leading the transformation of 
healthcare by using information and knowledge. For over 20 years, Health 
Informatics has offered a broad range of titles: some address specifi c professions 
such as nursing, medicine, and health administration; others cover special areas of 
practice such as trauma and radiology; still other books in the series focus on 
interdisciplinary issues, such as the computer based patient record, electronic health 
records, and networked healthcare systems. Editors and authors, eminent experts in 
their fi elds, offer their accounts of innovations in health informatics. Increasingly, 
these accounts go beyond hardware and software to address the role of information 
in infl uencing the transformation of healthcare delivery systems around the world. 
The series also increasingly focuses on the users of the information and systems: the 
organizational, behavioral, and societal changes that accompany the diffusion of 
information technology in health services environments.  

 Developments in healthcare delivery are constant; in recent years, bioinformatics 
has emerged as a new fi eld in health informatics to support emerging and ongoing 
developments in molecular biology. At the same time, further evolution of the fi eld 
of health informatics is refl ected in the introduction of concepts at the macro or 
health systems delivery level with major national initiatives related to electronic 
health records (EHR), data standards, and public health informatics.  

 These changes will continue to shape health services in the twenty-fi rst century. 
By making full and creative use of the technology to tame data and to transform 
information, Health Informatics will foster the development and use of new knowl-
edge in healthcare. 

 Kathryn J. Hannah 
 Marion J. Ball   
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   Preface   

 I was privileged to have witnessed the evolution of medical informatics in the United 
States during its fi rst six decades. Donald A. B. Lindberg, Director of the National 
Library of Medicine, advised me that documenting this history would be a worthy 
project since during this period the country moved into a new information era, and 
it was obvious that computers were having a major infl uence on all of medicine. 

 In this book I address history as a chronological accounting of what I considered 
to be signifi cant events. To attempt to preserve historical accuracy and minimize any 
personal biases, I have relied entirely on published documents; and since long-term 
memory can allow history to be mellowed or enhanced, and may blur fact with fan-
tasy, I did not conduct any personal interviews. I recognize that innovators rarely 
publish accounts of their failures; but if they learn from their failures and publish 
their successes, then other innovators can build on their successes and advance the 
technology. This book is primarily a history of how people applied computers, so it 
is not a history about the people themselves. When people are mentioned, their 
associations and contributions are described, and they are usually referenced from 
their own publications. 

 Although the evolution of computer applications to medical care, to biomedical 
research, and to medical education are all related the rates of diffusion of medical 
informatics were different in each of these three fi elds. Since I was primarily 
involved in computer applications to patient care and to clinical research, the history 
of medical informatics for direct patient care in the hospital and in the medical 
offi ce was presented in Book I, A History of Medical Informatics in the United 
States; 1959–1990 (M.Collen 1995). This present book describes the historical evo-
lution of medical digital databases; and it omits the computer processing of digital 
images (for radiology), of photographs (for dermatology), and of analog signals (for 
electrocardiograms). The technical aspects of computer hardware, software, and 
communications are limited to what I judged to be necessary to explain how the 
technology was applied to the development and uses of medical databases. At 
the end of each chapter is a brief summary and commentary of my personal view on 
the chapter’s contents. 



Preface

 The medical informatics literature in the United States for these six decades has 
been so voluminous that it was not possible for this historical review to be  completely 
comprehensive. Undoubtedly I have overlooked some important contributions 
 worthy of historical reference, especially of those never published. It is hoped that 
the sampling of the historical material herein presented will be considered by read-
ers to be reasonably representative, and will serve as a useful bridge between medi-
cal informatics from the past into the future. The concurrent evolution of medical 
informatics in Canada, Europe, and Japan certainly infl uenced this fi eld in the 
United States; however, the scope of this book is limited to the development of 
medical informatics in the United States. 

  Morris Frank Collen    

xii
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  Databases  have sometimes been called data banks, since like money banks that collect, 
store, use, exchange, and distribute money, data banks and databases collect, store, 
use, exchange, and distribute data. In this book the term,  data , may include a single 
datum, like the number, 6; or the letter, a; or the symbol +; or combinations of these 
such as in a collection of facts or statistics; or information stored as textual natural-
language data; or analog signals like phonocardiograms, electrocardiograms; or as 
visual images like x-rays. In this book a database can be more than a collection of 
data, since it can be an aggregate of information and knowledge, where information is 
a collection of data, and knowledge is a collection of information. Coltri  (  2006  )  wrote 
that the heart and the brain of a modern information system resides in its databases; 
and medical databases are especially complex because of the great diversity of medi-
cal information systems with their many different activities, their variety of medical 
services and clinical specialties with their computer-based subsystems; and with all of 
these actively changing and expanding in the ever-changing health-care environment. 
A database-management system is required to capture and process all of these data, 
and to implement all of the required functions of its database (Collen and Ball  1992  ) . 

 To fully appreciate the historical development of computer-stored medical data-
bases, it is helpful to have some knowledge of the evolution of informatics for data-
bases, of the development of the computer hardware and software, and of the 
communications technology that are essential to fully exploit the remarkable capabili-
ties of databases. This chapter very briefl y describes some of the early important devel-
opments that led to modern computer-stored databases. The development of medical 
databases themselves is described in Chap. 2; and the great variety of medical data-
bases that subsequently evolved in these six decades is described in later chapters. 

    1.1   The Evolution of Digital Computing 

 In the 1890s John S. Billings, a physician and the Director of the Army Surgeon 
General’s Library (later to become the National Library of Medicine) initiated a 
series of events that led to the conceptual foundation for the development of medical 
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informatics in the United States (Augarten  1984  ) . As an advisor to the Census Bureau 
for the 1880 and the 1890 census, Billings advised Herman Hollerith, an engineer, 
that there should be a machine for tabulating statistics; and he suggested using 
punched paper cards. In 1882 Hollerith prepared paper cards (the size of dollar bills 
so he could store them in U.S. Treasury fi ling cabinets) with 288 locations for holes. 
He built machines for electrically punching holes in the cards in appropriate loca-
tions for numbers, letters, and symbols; and he invented machines for automatically 
reading the punched cards and tabulating the data. Hollerith generated the fi rst com-
puterized database for the 1890 census. T. Watson Sr. joined Hollerith’s Automated 
Tabulating Machines Company; and in 1924 Watson took over the company and 
changed its name to the International Business Machines (IBM) Corporation; and 
initiated the development of computer hardware and software.  Informatics  was the 
term developed to satisfy the need for a single overall word to represent the domain 
of computing, information science and technology, and data communications. In 
1968 A. Mikhailov, in the Scientifi c Information Department of the Moscow State 
University, published a book with the word  informatika  in its title  (  Mikhailov et al. 
1976  ) . In 1968 an article was published in the French literature with the word ‘infor-
matique’ in its title (Pardon  1968  ) . The derived English word,  informatics , fi rst 
appeared in print in the  Proceedings of MEDINFO 1974  (Anderson and Forsythe 
 1974  ) . Variations of the term evolved, such as  bioinformatics  (Altman  1998  ) . 

  Electronic digital computers  began to be described in the scientifi c literature in 
the 1950s. Blum  (  1986a,   b  )  noted that in the 1940s the word  computer  was a job 
title for a person who used calculators that usually had gears with ten teeth so cal-
culations could be carried out to the base-ten. In the 1950s the term began to be 
applied to an  electronic digital computer . In 1942 the fi rst electronic digital com-
puter was reported to be built in the United States by J. Atanasoff, a physicist at 
Iowa State University (Burks and Burks  1988 ; Mackintosh  1988  ) . In 1943 the 
Electronic Numerical Integrator and Calculator (ENIAC) was built by J. Mauchly, 
J. Eckert, and associates at the University of Pennsylvania; and it is also considered 
by some to be the fi rst electronic digital computer built in the United States (Rosen 
 1969  ) . ENIAC performed sequences of calculations by rewiring its circuits for 
each sequence; and gunners in World War II used it to calculate trajectories of 
shells. In 1945 J. vonNeumann, at the Princeton Institute for Advanced Study, 
devised a method for storing the operating instructions as well as the data to be 
used in calculations (Brazier  1973  ) . In the late 1940s J. Mauchly and associates 
used von Neumann’s stored-program technology, that made possible high-speed 
computer processing, to build the Universal Automatic Computer (UNIVAC) that 
used 5,000 vacuum tubes as on-off switches so that calculations were then carried 
out to the base-2. In 1949 the Electronic Discrete Variable Automatic Computer 
(EDVAC) was built by the Moore School of Electrical Engineering; it used the 
internally stored-programs that had been developed by J.von Neuman; and it was 
an improvement over the UNIVAC (Campbell-Kelly  2009  ) . The UNIVAC and the 
EDVAC were the fi rst commercially available computers in the United States. 
In 1951 UNIVAC was transferred to Remington Rand, and was used by the U. S. 
Census Bureau to complete the 1950 census. In 1948 IBM began to market its fi rst 
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commercial computer, the IBM 604, with 1,400 vacuum tubes and a plug board for 
wiring instructions. In 1952 IBM built its 701 computer, with 4,000 vacuum tubes, 
that was used in the Korean War; and in 1954 IBM built the 704 computer using 
FORTRAN programming (Blum  1983  ) . 

  Magnetic core memory  was invented in 1949 by A. Wang at the Harvard 
Computation Laboratory. In 1953 J. Forrester at the Massachusetts Institute of 
Technology, fabricated the magnetic cores from ferrite mixtures and strung them on 
three-dimensional grids; and magnetic core was the basic element of computer pri-
mary memory until the invention of the microchip in the 1960s (Augarten  1984  ) . In 
1956 IBM developed its IBM 704 computer with magnetic core memory, FORTRAN 
programming, a cathode-ray monitor, and some graphics capability; and it was one 
of the earliest computers used for biomedical research (Reid-Green  1979  ) .  Random-
access memory  (RAM) chips became commonly used for primary main memory in 
a computer because of their high speed and low cost. The earliest secondary storage 
devices for computer data used drives of reels of magnetic tape to sequentially 
record and store digital data. In the late 1940s magnetic disc drives became avail-
able that made possible direct random access to store and retrieve indexed data. 
The earliest small digital compact-disc (CD) was developed to store primarily audio 
material; but in the 1990s the magnetic compact disc, read-only memory (CD-ROM) 
became popular because of its high-density storage capacity. Laser-refl ective, opti-
cal-storage discs were developed (Schipma et al.  1987  ) , that by 2010 were used in 
wireless high-defi nition (Wi-Fi) blu-ray compact disc players. In the 2000s  fl ash  
( thumb )  drives  for storage and for memory were developed that consisted of small 
printed circuit boards. Low-cost storage could be easily added to a computer by 
plugging in a fl ash drive with a Universal Serial Bus (USB). 

  Transistors  were invented by W. Shockley and associates at Bell Laboratories in 
1959, and initiated the second generation of electronic digital computers when IBM 
began marketing its fi rst transistorized computer, the IBM 7090 (Blum  1983  ) . 
In 1959 J. Kilby at Texas Instruments and R. Noyce at Fairchild Semiconductors 
independently made the silicon crystal in a transistor serve as its own circuit board, 
and thereby created the fi rst integrated circuit on a chip (Noyce  1977 ; Boraiko 
 1982  ) . In 1961 Fairchild at Texas Instruments introduced logic chips that in addition 
to the arithmetic  AND  function could also perform Boolean  OR  and  NOT . 

  Minicomputers  were fi rst developed in 1962 by W. Clark and C. Molnar at the 
Lincoln Laboratory of the Massachusetts Institute of Technology (MIT); and it was 
a small special-purpose computer called the “Laboratory Instrument Computer” 
(LINC) (Clark and Molnar  1964  ) . In 1964 the Digital Equipment Company (DEC) 
began the commercial production of the LINC (Hassig  1987  ) . C. Bell designed 
DEC’s fi rst Programmed Data Processor (PDP); and by 1965 DEC’s PDP-8 led in 
the use of minicomputers for many medical applications since it could outperform 
large mainframe computers for certain input/output processing tasks, and at a lower 
cost (Hammond and Lloyd  1972  ) . 

  Third-generation computers  appeared in 1963 using solid-state integrated cir-
cuits that employed large-scale integration (LSI) consisting of hundreds of transis-
tors, diodes, and resistors that were embedded on one or more tiny silicon chips 
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(Blum  1986a  ) . In 1964 IBM introduced its system 360-series that allowed data 
processing operations to grow from a smaller machine in its 360-series to a larger 
one in its 370-series without the need to rewrite essential programs. By the late 
1960s the fourth-generation of computers employed very-large-scale integration 
(VLSI) that contained thousands of components on very tiny silicon chips (Boraiko 
 1982  ) . Soon magnetic primary-core memory was replaced with semiconductor, 
random-access memory (RAM) chips; and by the early 1970s IBM’s system/370 
series used only integrated circuit chips. In 1965 S. Cray at Control Data Corporation 
(CDC), designed its CDC 6600 computer that contained six computer processors 
working in parallel. It was the most powerful computer at the time and was consid-
ered to be the fi rst super-computer (Runyan  1987  ) . 

  Microprocesssors  were developed in 1968 when R. Noyce left Fairchild 
Semiconductors to begin a new company called Intel; and produced the Intel 2008 
that was an 8-bit microprocessor which sold at a price of $120 each, and required 
50–60 additional integrated circuits to confi gure it into a minimum system. In 1973 
Intel’s 8080 microprocessor was introduced and it required only fi ve additional cir-
cuit devices to confi gure a minimum system. The next Intel 8748 was also an 8-bit 
microprocessor; but it was considered to be a microcomputer since it incorporated 
some read-only memory (ROM) chips (Titus  1977  ) . In 1969 M. Hoff fabricated at 
Intel the fi rst central processing unit on a single silicon chip. Intel then developed a 
series of microprocessor chips that revolutionized the personal computer industry. In 
1970 G. Hyatt fi led a patent application for a prototype microprocessor using inte-
grated circuits. In 1971 J. Blankenbaker assembled what is generally credited as 
being the fi rst personal computer (Bulkeley  1986  ) . Further development in the 1970s 
led to large-scale integration with tens-of-thousands of transistors on each chip. In 
1975 Intel’s 8080 microprocessor was the basis for the Altair 8800 that became 
the fi rst commercial personal computer. In 1976 S. Jobs and S. Wozniak founded the 
Apple Computer Company, and designed the fi rst Apple computer that used the 
Motorola 6502 chip. In 1984 the Apple Macintosh computer contained a Motorola 
68000 central processor chip and used a Smalltalk-like operating system; and 
employed some of the features that had been developed at the Xerox Palo Alto 
Research Center (PARC) that included: a mouse pointing device, the ability to dis-
play symbols and icons representing fi les and documents; and provided a graphical-
user-interface (GUI); and it could support applications with multiple windows of 
displays-within-displays (Miller  1984 ; Crecine  1986  ) . The power of a microproces-
sor is greatly infl uenced by the number of transistors it contains on a chip, and 
whether they are connected to function in series or in parallel. The earliest chips 
functioning as a central-processing unit (CPU) had a small number of cores of tran-
sistors, with each core performing a task in series in assembly-line style; and they 
were used for running operating systems, browsers, and operations requiring numer-
ous decisions. In 1980 Intel’s 8080 chips contained 2,300 transistors. In 1981 IBM 
introduced its Personal Computer (IBM PC) that used the Microsoft DOS operating 
system and the Intel 8088 chip it had introduced in 1979 that was a 16-bit processor 
containing 29,000 transistors and performed 60-thousand operations-per-second 
(KOPS), the equivalent of 0.06-millions of instructions-per-second (MIPS). In 1986 
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Intel’s 80386 contained 750,000 transistors; in 1989 its 80486 was a 32-bit processor 
that contained 1.2 million transistors; in 1992 its Pentium chip contained 3.1 million 
transistors; in 2002 its Pentium 4 had 55 million transistors; and in 2006 Intel’s dual-
core chip contained 291 million transistors. 

  Parallel processing units  were developed in the late 1990s as multi-core processor 
chips became available. As the number of cores-per-chip increased, then transactional 
memory techniques evolved that allowed programmers to mark code segments as 
transactions, and a transactional memory system then automatically managed the 
required synchronization issues. Minh et al.  (  2008  )  and associates at Stanford 
University developed the Stanford Transactional Applications for Multi-Processing 
(STAMP) to evaluate parallel processing with transactional memory systems by mea-
suring the transaction length, the sizes of the read-and-write sets, the amount of time 
spent in transactions, and the number of retries per transaction. With increasing com-
puter memory and data storage capabilities, databases rapidly evolved to store collec-
tions of data that were indexed to permit adding, querying, and retrieving from 
multiple, large, selected data sets. In 1999 a single chip processor that functioned as a 
graphics-processing unit (gpu) with numerous cores that simultaneously processed 
data in parallel, was marketed by NVIDIA as GeForce 256; and it was capable of 
processing 10-million polygons per second. By 2010 NVIDIA had a product line 
called TESLA, with a software framework for parallel processing called CUDA; and 
NVIDIA marketed its NV35 graphics-processing unit with a transistor count of about 
135-million that could process very large calculations in 2 min that had previously 
taken up to 2 h. Graphics-processing units are much better at processing very large 
amounts of data, so they are increasingly used for high-defi nition video and for 
3-dimensional graphics for games.  Computer graphics  was defi ned by Fung and 
Mann  (  2004  )  as image synthesis that takes a mathematical description of a scene and 
produces a 2-dimensional array of numbers which is an image; and Fung differenti-
ated it from  computer vision  that is a form of image analysis that takes a 2-dimen-
sional image and converts it into a mathematical description. In 2010 the Advanced 
Micro Devices (AMD) Opteron 6100 processor, a core package of two integrated 
circuits, contained a total of more than 1.8-billion transistors. Traditionally, a central-
processing unit processed data sequentially; whereas a parallel-processing unit divided 
large amounts of similar data into hundreds or thousands of smaller collections of data 
that were processed simultaneously. In 2010 a graphics-processing unit could have 
about 3-billion transistors, as compared to about 1-billion for a central-processing 
unit. Further advances were occurring in the development of multi-core, parallel pro-
cessing, transactional-memory chips for creating general-purpose, high-speed, paral-
lel-processing computers. The evolving hybrid combinations of central-processing 
units and embedded graphics-processing units that were called integrated-graphics 
processors, or high-performance units, or even called personal desk-top supercomput-
ers, were expected to greatly increase computational effi ciency and at a much lower 
cost (Toong and Gupta  1982 ; Wikipedia  2010b ; Villasenor  2010  ) . 

  Computer software  development methodology was advocated by Wasserman 
 (  1982  )  to cover the entire software development cycle, and support transitions 
between phases of the development cycle; and to support validation of the system’s 
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correctness throughout the development cycle to its fulfi lling system specifi cations 
and meeting its user needs. Although advances in computer hardware were the basis 
for many innovations, the software made the hardware usable for computer applica-
tions.  Computer programming languages  were defi ned by Greenes  (  1983  )  as formal 
languages used by humans to facilitate the description of a procedure for solving a 
problem or a task, and which must be translated into a form understandable by the 
computer itself before it could be executed.  Algorithms  are commonly used in com-
puter programming as a method for providing a solution to a particular problem or 
a set of problems; and consist of a set of precisely stated procedures that can be 
applied in the same way to all instances of a problem. For complex problems, such 
as data mining (see Sect.   8.2    ), algorithms are indispensable because only those pro-
cedures that can be stated in the explicit and unambiguous form of an algorithm can 
be presented to a computer (Lewis and Papadimitriou  1978  ) . For ENIAC, the fi rst 
electronic digital computer, the programs of instructions were wiring diagrams that 
showed how to set the machine’s plug boards and switches. In 1945 J. von Neumann 
demonstrated that instructions for the computer could be stored in the computer’s 
electronic memory and treated in the same manner as data (Brazier  1973  ) . The fi rst 
machine language was a series of binary numbers that addressed memory cells for 
storing data; and used accumulators for adding and subtracting numbers; and then 
storing them in registers. To reduce the tedium of writing in machine code, pro-
grammers soon invented an assembly language so that commonly used English 
words, such as  add  or  load , would be translated automatically into the appropriate 
machine code instructions. In subsequent higher-level languages, one English state-
ment could give rise to many machine instructions; and programs tended to be 
shorter, quicker to write; were less prone to error, and had the ability to run on dif-
ferent computers (Davis  1977  ) . 

 FORTRAN (FORmula TRANslator) was developed in 1957 by J. Backus and 
associates at International Business Machines (IBM), and it soon became the stan-
dard language for scientifi c and engineering applications. COBOL (COmmon 
Business-Oriented Language) was created in 1960 by a joint committee of com-
puter manufacturers and users, government and academic representatives interested 
in developing a high-level language that would use ordinary English statements for 
business data processing. By the 1980s COBOL was one of the most commonly 
used programming languages. BASIC (Beginners All-purpose Symbolic Instruction 
Code) was developed in 1964 by J. Kemeny and T. Kurtz at Dartmouth, as a lan-
guage modeled after FORTRAN, to be used for teaching computer programming. 
BASIC was used in 1975 by W. Gates and P. Allen to program the ALTAIR com-
puter that led to the founding of Microsoft (Gates  1989  ) . 

 MUMPS (Massachusetts General Hospital Utility Multi-Programming System) 
was developed in 1966 by N. Pappalardo and associates in G. Barnett’s Laboratory 
of Computer Science at the Massachusetts General Hospital. MUMPS provided an 
operating system, a database-management system for handling large volumes of 
information, and an easy interactive mode for programmer-computer communica-
tion (Barnett et al.  1981  ) . In 1969 MUMPS became commercially available by 
Pappalardo’s Medical Information Technology, Inc. (Meditech); and MUMPS was 
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soon the most commonly used programming language in the United States for 
medical computing applications. MUMPS provided an excellent structure for med-
ical databases with all their complexity; and in the 1980s both the Department of 
Defense and the Veterans Hospitals began installing MUMPS-based medical infor-
mation systems; and in the 2000s the popular Epicare medical information systems 
was also Mumps-based (see also Sect.   4.2    ). Pascal programming language was 
developed in the early 1970s by N. Wirth using structured programming. Versions 
of Pascal were used in the 1980s by Apple computers, and also for the IBM 370 
system; and in the 1990s it was the basis for Oracle’s language PL/SQL. The 
Smalltalk language was developed in the 1970s by A. Kay and associates at Xerox’s 
Palo Alto Research Center (PARC) for their Alto computer. Smalltalk provided a 
graphical-user interface (GUI) that could move displayed text and images by using 
a mouse pointer (Kay  1984  ) . 

 Structured Query Language (SQL) was developed in the early 1970s by 
Chamberlin and Boyce  (  1974  )  and R. Boyce at IBM, as a language designed for the 
query, retrieval, and management of data in a relational database-management sys-
tem, such as had been introduced by Codd  (  1970  ) . In the 1980s the relational data-
base design became dominant in industry; and versions of SQL were generally used 
to construct, manage, and query relational databases (VanName and Catchings 
 1989  )  (See also Sect.   2.2    ). C - language was developed in the mid-1970s by D. 
Ritchie and K.Thompson at Bell Laboratories, as a structured-programming lan-
guage that used block structures of statements and could be used for object-oriented 
programming (Kernighan and Ritchie  1988  ) . In the mid-1980s a new version of 
C-language called C ++  began to be used for large-scale software development; and 
by the 2000s it was one of the most common languages used for commercial-grade 
software; and soon other specialized third-generation languages were developed 
(Blum  1986b  ) . dBASE was developed by Ashton-Tate as a database-management 
system for microcomputers; and dBase II was used by the Apple computer, and by 
the IBM personal computer under Microsoft’s DOS; and dBase III was used by 
UNIX. The language PERL was developed in 1987 with some of the features of 
C-language; and it was widely used for building Web-based applications, for inter-
facing and accessing database modules, for generating SQL queries; and also was 
used for text processing (Chute et al.  1995  ) . Java language was developed in the 
1990s by Sun Microsystems as an object-oriented, high-level programming lan-
guage and, was used for a variety of operating systems including Apple Macintosh, 
Linux, Microsoft Windows, and Sun Solaris. 

 Markup languages had begun to evolve in the 1960s when Generalized Markup 
Language (GML) was developed by IBM to enable the sharing of machine-read-
able, large-project documents used in industry, law, and in government. In 1986 
Standard Generalized Markup Language (SGML) was developed as an International 
Standards Organization (ISO) version of GML, and was used by industry and the 
Armed Services. In 1996 SGML began to be used for Web applications; and in 1998 
it was modifi ed as Extensible Markup Language (XML) that was designed to pro-
vide a standard set of rules for encoding documents in machine-readable form, and 
to help simplify and support the usability of Web services. Hypertext Markup 
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Language (HTML), with some features derived from SGML, was developed in 
1990 by T. Berners-Lee, while at CERN. HTML could be used by Web browsers to 
dynamically format text and images; it became the predominant markup language 
for describing Web pages; and in 2000 HTML became an international standard 
(Wikipedia  2010a  ) . 

  Computer operating systems  were initially sets of routines for data input and 
output; such as consisting of a few-hundred machine instructions for storing binary 
codes from punched paper tape into successive memory locations. In the 1950s 
operating systems ran the programs submitted by users in batch modes. In the 1960s 
time-sharing programs were developed that switched rapidly among several user 
programs; and could give the impression that the programs were being executed 
simultaneously. In 1969 K. Thompson and associates at AT&T Bell Laboratories 
developed the UNIX operating system; a powerful time-sharing operating system 
that was multi-user (it could serve more than one user at a time), multi-tasking 
(it could run several applications at the same time), and with open-architecture (use-
able by different vendor’s computers). By 1983 about 80-percent of colleges that 
granted computer science degrees had adopted UNIX; and several versions of UNIX 
had evolved (Lockwood  1990  ) . In early 1987 SUN Microsystems joined with AT&T 
to create a new version of UNIX with a graphical-user interface and used Internet 
protocols. Since UNIX could run on a large number of different computers, singly 
or in a network, including IBM compatibles and Apple Macintoshes, UNIX became 
a major competitor for the operating systems of networks of desktop computers and 
workstations. In 1974 the fi rst microcomputer operating system, Control Program 
for Microcomputers (CP/M), was developed for 8-bit microprocessors by G. Kildall, 
the founder of Digital Research. CP/M contained an important module called BIOS 
(Basic Input/Output Subsystem) that applications programs and operating systems 
have continued to use to interface with their hardware components. By the end of 
the 1970s, CP/M was used world-wide (Kildall  1981  ) . 

 In the early 1980s IBM needed an operating system for its new 16-bit micropro-
cessor, its Personal Computer (IBM-PC); and IBM contracted with W. Gates to 
develop the Microsoft Disk-Operating System (MS-DOS) (Cringely  1992  ) . In the 
1980s MS-DOS became the most widely used operating system in the nation for 
IBM- compatible personal computers. In the late 1980s W. Gates independently 
developed an operating system called MS-Windows; and Gates separated from IBM 
that continued the development of its IBM-OS/2. The Apple Macintosh appeared in 
1984 using a Smalltalk operating system with a graphical-user interface that permit-
ted the use of displayed menus (lists of options available for selection), and icons 
(symbols representing options) from which the user could select items by pointing 
and clicking a mouse pointer. In May 1990 Microsoft announced its MS-Windows 
3.0 operating system, that employed a graphical-user interface and a mouse-pointer 
selector such as was used by the Apple Macintosh; and it also provided some net-
working capabilities. By the mid-1990s Microsoft’s Windows 95 outsold IBM’s 
OS/2; and MS-Windows became the operating system most commonly used in per-
sonal computers. In 1989 L.Torvalds, a student at the University of Helsinki, and R. 
Stallman released an operating system that supported the functionality of UNIX 
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called LINUX; and it was made freely available to the public on the condition that 
its users would make public all of their changes as well. LINUX Online (  http://
www.linux.org/    ) provided a central location from which users could download 
source code, submit code fi xes, and add new features. In 1999 Version 2.2 of the 
LINUX kernel was released and was shared by all LINUX distributors; and this core 
component of its operating system supported multiple users, multitasking, network-
ing and Internet services, and some 64-bit platforms. In 1999 it already had more 
than 1,000 contributors and about 7-million LINUX users; and it became a competi-
tor to MS Windows (Seltzer  1999  ) .  

    1.2   The Evolution of Data Input and Output Devices 

 Data acquisition, data input, data retrieval, and data output are all challenging basic 
functions of a medical database; and the various devices used to carry out these 
functions changed greatly through these decades with innovations in technology. 
 Punched paper cards  were the earliest mode for entering data into to a computer. 
Punched cards were invented by H. Hollerith in 1882 (Warner  1979 ; Augarten 
 1984  ) ; and he invented a machine that punched a hole into a paper card in a specifi c 
location that corresponded to a digital code for each alphabet letter, for each num-
ber, and for each symbol that was selected. The punched paper cards were then 
passed through card readers that sensed the holes by wires that brushed over the 
cards, and thereby made electrical connections to the metal plate under which the 
cards were passed. Schenthal  (  1960,   1963  )  also used mark-sense paper cards, on 
which a mark was made by a graphite pencil instead of generating a punched hole, 
and the mark could be electrically sensed as data input to a computer. Schenthal also 
used portable-punch cards by using prescored cards, and instead of machine punch-
ing holes, or marking the desired response with a pencil, one could punch-out with 
a stylus the appropriate prescored hole and thereby produced a directly readable 
punched card. Prepunched cards, prepared with specifi c data items for computer 
input, were often used for requisitioning clinical laboratory tests, and also used for 
entering patients’ responses to a questionnaire (Collen  1978  ) . Soon data-entry 
devices that used electronic readers for punched-paper tape followed the use of 
punched cards. Punched paper cards and paper tape became unnecessary for data 
input when keyboard devices, structured like a typewriter but with additional spe-
cial-function keys, were directly connected to computers; and when a key was 
pressed then an electric circuit was closed and sent a corresponding specifi c digital 
code to the computer. 

  Optical character readers  (OCR) were developed in the 1970s that could scan 
documents, and read and input alphanumeric characters that were printed in standard 
fonts of type. Optical character scanners contained light sensors that converted light 
into an electrical voltage that could be sensed by an electronic circuit. OCR recog-
nized the shape of the characters by the contrast of light and dark areas created when 
light was refl ected from the surface of the document, and converted to a bit-map of 
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pixels (picture elements) representing the “on” (dark) areas or “off” (light) areas. 
The OCR software matched each character with a pixel-by-pixel comparison to char-
acter templates stored in memory. As OCR technology advanced in the 1980s, it 
shifted to scanning pages of text and images by transforming the light refl ected from 
the page into electrical voltages that were a function of the light intensity as, for 
example, a gray scale representing a range of shades between black and white. A bit-
mapped graphic image of the page was sent to the computer where fi les of digital 
data were created. Hand-held, optical line-scanners soon became available that could 
be used to guide a read-head along a line of text.  Optically read cards  were devel-
oped and tested at Baylor College of Medicine when laser-imprinted cards were 
coupled to a computer for data input and output. Data in digital format were formed 
on a card with a milliwatt laser beam that placed 5-micron dimples on the specially 
treated surface on the card. A read-write device connected to a personal computer, 
scanned-in the medical information and displayed it on a screen (Brown et al.  1989  ) . 
Optically read cards were also developed by the Veterans Administration (VA), and 
tested with a specially designed work-station that provided the read-write optical-
card technology needed to service patient-care data for its VA Decentralized Hospital 
Computer Program (Gomez et al.  1992  ) . 

  Bar-code readers  were developed in the 1980s as a data-entry device to interpret 
black stripes printed on white paper or on white objects. Bar-code readers were used 
for a wide range of applications in medicine, such as for identifying patients by read-
ing their coded wristbands; and for identifying laboratory specimens, x-ray folders, 
and patients’ charts. The bar codes were read by passing a hand-held scanner over the 
stripes, or by passing the labeled items over a bar-code reader. A commonly used 
method for reading bar-code symbols was by assigning to each character (number, 
letter, or symbol) a unique combination of black bars and intervening white spaces. 
Bar-code readers illuminated the printed code symbols with a bright light that was 
absorbed by the black bars and refl ected back from the white spaces to a photo-detector. 
The scanner transformed the patterns of light and dark into patterns of electrical sig-
nals that were converted into standard codes for the alphanumeric characters, and 
transmitted them to the computer. In the late 1980s microcomputer-based, program-
mable, hand-held terminals permitted data input by bar-code readers or by keypads. 
With the implementation of electronic medical records, Willard et al.  (  1985  )  described 
their use of bar codes, and reported that by their use, data entry was facilitated and 
data-entry errors were decreased. Poon et al.  (  2010  )  and associates at Brigham and 
Women’s Hospital in Boston, also credited the use of bar codes for decreasing error 
rates in the transcription of orders and in the administration of drugs. 

  Radio-frequency identifi cation  (RFID) tags began to be used in hospitals in the 
mid-2000s as an electronic alternative to using bar codes to identify patients during 
medical procedures, to identify x-rays and specimens, and for inventory and the loca-
tion of equipment. Each tag incorporated a very tiny microchip encoded with a 
unique identifi cation number. When the RFID reader device and the RFID tag were 
near enough to each other, then without making contact the reader device broad-
casted radio-frequency waves that were picked up by a tiny antenna connected to the 
chip, and activated the chip’s integrated circuit causing it to transmit by radio waves 



111.2 The Evolution of Data Input and Output Devices

its encoded data to the scanner, that on receiving the tag’s data then communicated to 
a computer database that reported back the desired identifi cation data (Albrecht 
 2008 ; Hornyak  2008  ) . The use of RFID in a hospital to collect data on staff work-
fl ow, in an attempt to increase the effi ciency and effectiveness of patient care, was 
sometimes considered by nursing staff to be a form of surveillance and could create 
social-organizational unrest (Fisher and Monahan  2008  ) . 

  Handwriting-recognition devices  were developed in the 1980s. When used with 
a stylus resembling a pen, the user could write individual letters, numbers, and 
punctuation symbols on digitizing tablets called pen-pads. These usually used a 
wire grid on the tablet as a receiving antenna, and a coil of wire in the pen as the 
sending antenna. The coil sent brief pulses of radio waves that were received by the 
grid. Thus they functioned as radio direction fi nders to identify a precise location. 
An alternative method used a resistor decoding technology that pulsed a voltage 
from each of the four sides of the tablet, which created a voltage gradient across a 
thin metal fi lm that induced a voltage inside the pen, and thereby identifi ed its loca-
tion. The individual characters were read by being compared to stored patterns; they 
were displayed for editing and then stored in the computer. Reading continuous, 
cursive handwriting was much more diffi cult.  Teletypewriters  were among the earli-
est interactive computer devices, which permitted a direct dialogue with users. 
However, since they could only accept typed alphanumeric input and only print one 
character after another, they were soon replaced as data-input devices by visual-
display monitors equipped with  typewriter-like keyboards . 

  Display monitors  were developed in the 1970s to permit a user to enter data by 
directly interacting with the displayed screen. Some touch-sensitive screens used an 
optical system in which a user’s fi nger interrupted crossing beams of infrared light, 
and the intersection of a vertical with a horizontal beam identifi ed the location of the 
touch point. Other touch screens used a capacitance-sensing mechanism in which, 
when a user touched the screen, it changed the capacitance value of that particular 
area of the screen; however, the fi nger was a relatively coarse data-selector device. 
More acceptable was the light pen that employed a light sensor in its tip, which 
when focused at a point on the display sensed the screen’s phosphor glow and 
located its position on an x-y axis. Keyboard selections from computer-displayed 
templates of structured data-sets began to be used for both data entry, such as by 
physicians entering orders for medical procedures; and for data output such as by 
keyboard selections from computer displays of standard phrases as those radiolo-
gists often used in reporting “negative” x-ray examinations, or for routine state-
ments such as those commonly used in patients’ discharge summaries. 

 Input of images initially involved the entry only of any associated descriptive 
text; but by the 2000s information derived directly from digital images began to be 
integrated with its text. Shatkay et al.  (  2006  )  described their method of extracting 
and downloading fi gures from XML published format. The fi gures were segmented 
into several sub-fi gures that were then classifi ed by four image types, such as graph-
ical, microscopy, electrophoresis, and others; that were then further clustered into 
sub-groups by 46 features. They then used a Bayes’ classifi er to match images to a 
base training-group of known classifi ed images. 
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  Mouse  selector-devices were invented in 1968 to effectively use a computer display 
with a graphical-user interface to select and move data on a display; not only up, down, 
and sideways, but also diagonally. The mouse was held with one hand and rolled across 
a fl at surface to direct its pointer on the screen; and buttons were pressed on the mouse 
to control its activity. A microprocessor inside the mouse transmitted a packet of data 
when it detected a change in the position of the mouse or in the state of its buttons. A 
 trackball  was the equivalent of a stationary, turned-over mouse, and used the thumb, 
index and middle fi ngers to manipulate the ball. 

  Speech recognition  for the direct entry of natural-language text was a very desir-
able way for computer users to communicate by voice with a computer, but it 
required developing technology to provide speech recognition for data input to the 
computer. Speech recognition was very diffi cult since the speech patterns of people 
in different regions had nuances in sentence structure. The voice varied between 
individuals, and the waveforms of two persons who spoke the same words appeared 
uniquely different on a display oscilloscope. Spoken words also tended to run 
together, and vocabulary was relatively unlimited. In 1989 speech-recognition sys-
tems appeared that digitized the analog-wave forms of the voice signals, and the 
stream of digital data was then stored. Using a library of stored voice patterns 
recorded by the user, the system was “trained” to match the input speech-pattern to 
one in its library and to associate it with its text equivalent. These early systems 
required the user to pause between individual words or linked phrases. In the 1990s 
some progress began to be made for continuous speech recognition that used more 
complex statistical methods of associations between words; and were mostly used 
by medical specialists in rather limited clinical domains, such as radiologists who 
tended to use short repetitive statements in their reports. In the 2000s some speech-
recognition devices, such as Nuances’ Dragon Naturally Speaking, could correctly 
recognize most commonly spoken words. Lacson and Long  (  2006  )  described the 
use of a mobile phone to enter spoken dietary records into a computer; and then 
classifi ed the words used for food items and food classifi ers, and developed algo-
rithms that allowed them to automatically document the spoken diet records for 
each patient in natural-language text. Data input by a microcomputer was increas-
ingly used for databases that needed an online interactive terminal with programs 
that allowed data entry to a database-management system. Blumenthal and Waterson 
 (  1981  )  described software developed for a Radio Shack microcomputer to format 
and enter data into a research database at the University of Michigan, Ann Arbor. 

  Data output  by computers in the 1940s used primarily Teletype printers and 
punched paper cards. In the 1950s line printers and dot-matrix printers began to be 
connected to computers. Every computer had a number of interfaces for printers, 
which received their signals from the computer’s external bus. Each interface had 
a port consisting of a buffer, in which the data to be printed was stored while the 
data was being printed. In 1961 the IBM Selectric typewriter became available. In 
the 1960s ink-jet printers had appeared that formed images of characters made by 
pushing tiny drops of ink out of a nozzle on to the paper. In 1971 Centronics intro-
duced the impact dot-matrix printer that generated patterns of dots in the shape of 
alphabet letters and numbers. A microprocessor stored the data transmitted from 
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the computer and directed the fi ring of an array of tiny pins contained in the print 
head; and the pins pressed against the inked ribbon to imprint the characters on the 
paper; by the mid-1980s dot-matrix printers dominated the market. Electrostatic 
printers had been developed in the 1950s; and in 1973 Xerox produced its xero-
graphic page printer. In 1975 IBM introduced the fi rst laser printer that employed 
a laser beam controlled by a microprocessor to imprint microscopic dots, line-by-
line, on one full page of paper at a time; by the end of the 1970s laser printers had 
set the standards for computer printers. 

  Visual displays  of data output appeared at the end of the 1950s, and used a matrix 
of dots to form typewriter-like characters on oscilloscope screens. These were 
replaced in the late 1960s by cathode-ray tube (CRT) displays in which an electron 
gun in the neck of the tube projected a beam of electrons that were emitted from the 
surface of the cathode and were pulled towards the anode that surrounded the bell 
of the picture tube. When the electron beam struck the front screen, which was 
coated on the inside with phosphors, this area of the screen briefl y glowed. Varying 
the voltage on the anode modifi ed the intensity of the brightness of the dot-of-light 
(a  pixel ) on the screen. The electron stream passed through an electromagnetic yolk, 
or a defl ection device, on its way to the screen. The computer, by varying the 
strengths of the yolk’s vertical and horizontal magnetic fi elds, defl ected the electron 
beam; and thereby generated and positioned visible characters anywhere on the 
phosphor display screen. The image was maintained as the monitor’s local memory 
repeatedly scanned the display to refresh the phosphor glow. In the 1960s characters 
were formed on the screen by controlling the electron beam with short, line drawing 
movements or by a matrix of dots. A vector generator was added to draw lines by 
designating coordinate positions from one point to the next. 

  Raster-scan displays , such as were used in television tubes, began to be employed 
in the 1980s in personal computers. As the beam moved across the screen, line-by-
line (raster), starting from the upper left corner to the lower right corner, its intensity 
varied from pixel to pixel and thereby generated an image on the screen. In the 
1980s monitors for early microcomputers were mostly monochrome, with white 
letters on a black screen. By the mid-1980s color monitors usually used three sepa-
rate electron guns to provide red, green, and blue colored signals striking appropri-
ate triads of phosphor dots; and three dots in red, green, and blue colors made up a 
pixel. In the 1980s display monitors incorporated graphics microprocessor chips. 

  Flat-panel display screens  were developed in the 1980s. Liquid-crystal displays 
(LCD) with fl at-panel screens consisted of a matrix of twisted crystals sandwiched 
between two light polarizers. When a voltage was applied to a crystal, it untwisted 
and allowed polarized light to pass through, strike the rear polarizer, and be absorbed; 
so the addressed pixel looked dark compared to the rest of the panel. The use of 
back lighting increased the contrast and readability of LCD displays. Gas plasma 
displays operated by exciting neon gas, or mixtures of neon and argon, by applying 
a voltage using a matrix of electrodes separated from the gas in a way to allow indi-
vidual dots (pixels) to be activated. Electroluminescent (EL) displays consisted of a 
thin panel that contained a fi lm of a phosphor that was sandwiched between a front, 
thin transparent fi lm of a dielectric material similar to a semiconductor, and a back 
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refl ective dielectric material. By applying a voltage through a grid of electrodes, 
each pixel could be switched on; and different phosphors were used to produce dif-
ferent colors. 

  Computer graphics  generally referred to the technology that entered, processed, 
and displayed graphs and pictures by digital computers; and they required more 
complex programming. Programs from mathematical representations stored in the 
computer’s memory generated the graphical displays. Three-dimensional objects 
required specialized complex representations of geometric shades and patterns. 
Graphics displays were available as character-based, vector-based, or bit-mapped 
displays; and bit-mapped displays were most suitable for digitized pictures. Graphic 
displays were often used when retrieving related large data sets from a medical 
database, such as the reports of panels of multiple laboratory tests collected over 
long periods of time. To aid their interpretation, such data were often also presented 
as charts and graphic displays; and a patient’s time-trend in data could then be more 
easily used for clinical decision-making. Bull and Korpman  (  1980  )  noted that phy-
sicians could handle large amounts of data most easily and effi ciently if the data 
were presented to them in the form of a graph. Connelly  (  1983  )  also reported that 
computer-generated graphical displays for data aggregation and summarization 
could effectively convey the signifi cance of laboratory results, since visual relation-
ships portrayed by graphs and charts could be more readily grasped; and abnormal 
results and the degree of abnormality could be seen at a glance. As an example, 
Connelly cited the Technicon SMA-12 analyzer that used this type of display. 
Williams  (  1982a  ) ; Williams and Johnson  (  1982b  ) ; Williams et al.  (  1989  )  used radial 
displays of multiple test results that helped to support rapid pattern-recognition by 
the physician when examining the changes in the shape and skew of the displayed 
pattern of results. If all the test results were within normal limits, then when the dots 
representing the test values were connected, a normal polygon would be formed 
with the number of sides corresponding to the number of test results. Abnormal test 
results would distort the polygon; and for comparison both could be displayed on a 
radial arrangement with dots indicating the normal and the abnormal ranges. 
Williams believed that graphic radial displays were readily adaptable to enhance 
pattern recognition of the results of multiple tests, and also were effective for depict-
ing temporal trends in a series of results. Cole  (  1994  )  described as the essential 
dimensions of a graphical display were its integrality and its meaningfulness to 
show by its information design all essential data; as for an example, a radial graph 
usually presented more meaningful information than did a line graph. Computer 
graphics and digital image processing evolved as two different technologies aimed 
at different applications. Computer graphics were usually used for generating physi-
cal models, whereas digital images were used to capture pictures such as x-rays. 
Merging these two technologies was called  visualization ; and in medicine, applica-
tions of visualization were applied to designing prostheses, radiation treatment 
planning, brain structure research, three-dimension modeling, and others. 

  Workstation terminals  were developed in the 1990s to more effi ciently support 
entry and retrieval of data, text, and images; and had the abilities to communicate 
within the database-management system. Cimino et al.  (  1995  )  and associates at 
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Columbia University in New York reported developing a prototype workstation that 
used World Wide Web client–server architecture, and was used by their surgical 
staff to maintain patient lists, and to download and review their patients’ clinical 
data including laboratory, radiology, and pharmacy; and also for a wide variety of 
other purposes including sign-out routines. In the 2000s wireless hand-held mobile 
phones began to function as mobile terminals and permitted caregivers to enter and 
retrieve a patient’s data anywhere in, or within range of the medical facility (see 
Sect.  1.3 ). 

  Structured data entry and reporting  was considered by Johnson and Rosenbloom 
 (  2006  )  to have been initiated by Slack et al.  (  1966,   1967  ) , who used a Laboratory 
Instrument Computer (LINC) to allow patients to directly enter responses to ques-
tions of their past medical history as the series of individual questions were displayed 
on the computer screen. Patients responded to each displayed question by pressing 
either the key on the keyboard corresponding to a “Yes” or to a “No” answer. For a 
“Yes” response a second series of displays was then presented to the patient for a 
second-level series of questions. Slack also employed open-ended questions such as, 
“What is your occupation?”, for which the patient typed in the response using the full 
keyboard. Greenes et al.  (  1970  )  and associates with G. O. Barnett at Harvard Medical 
School, developed computer-generated, structured-output for summaries of patient 
data that were acquired during ambulatory care visits by selecting appropriate data-
sets from a displayed menu of templates.  

    1.3   The Evolution of Computer Communications 

 Computer-based information systems employed a variety of communications tech-
nologies. London  (  1985  )  described a cluster of computers as being either loosely 
coupled in a distributed database-management system or tightly coupled to a central 
computer. When computers were located at different distant sites, the earliest form 
of transmission between them was by using a twisted pair of copper-wire telephone 
lines that had a narrow bandwidth for transmitting analog signals that were adequate 
for voice transmission. For higher-speed, wide-band transmission, coaxial cables 
were used in which a copper wire was covered with a plastic insulating sheath and 
an external wire mesh or metal wrapping for electromagnetic shielding. 

  Computer networks  evolved in the 1960s when large, time-sharing, host comput-
ers provided users that were located at different terminals, with interactive access to 
the mainframe computer. In the 1970s the availability of minicomputers provided 
local data-processing capabilities to various work sites, and created the need for 
distributed data-processing systems. A variety of networking confi gurations were 
then developed to allow multiple users to have access to a common computing facil-
ity by using either: (1) direct tie-lines connecting distributed computers and/or ter-
minals to a central host computer; (2) modems (modulator-demodulator devices) 
that modulated analog signals to digital codes, and back connecting user’s comput-
ers or terminals by telephone lines over a relatively wide geographic area; or (3) a 
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local-area network (LAN) with cables connecting computers to one another (Haney 
 1984  ) ; Steinbach and Busch  (  1985  )  described an early hospital communication sys-
tem that used a DEC VAX minicomputer and MUMPS software to combine voice 
and data communications using a combination of cabling and bundled telephone 
lines connected to modems.  Star networks  appeared in the 1960s when local com-
puters began to communicate with a central host, time-sharing computer; and usu-
ally used telephone lines as links radiating out from the host computer like spokes 
from a central hub. All communications on the network passed through the host 
computer to the users’ terminals. The host computer rapidly shifted connections 
from terminal to terminal, giving each terminal user the illusion of having exclusive 
access to the host computer; however, if the central computer failed then all com-
munication stopped.  Ring networks  connected all computers in a loop, with each 
computer connected to two others. Each message passed around the circle in a sin-
gle direction, it was received by the appropriate module, and was removed when it 
was returned to the original sender.  Bus networks  connected all computers via 
“drop-offs” from a two-way main line; and a message sent by any one computer 
traveled in both directions and could be received by all other computers. Bus local-
area-networks (LANs) were the most common at that time due to their lower cost, 
easy connectivity and expandability; they permitted broadcasting to all other com-
puters, and were resistant to failures of any single computer. 

  Packet switching  for computer communications on telephone lines was con-
ceived in 1948 when C. Shannon introduced the transmission of messages in the 
form of closely spaced pulses that were equivalent to groups of digital bits. That led 
to the development of pulse-code modulation and the use of pulsed or digitized 
signals (Pierce  1972  ) . In 1962 P. Baran at the Rand Corporation, proposed 
using pulse-code modulation and equipping each junction-node in a distributed 
network that connected different computer sites with a small, high-speed, 
digital-communications computer. The computer nearest the sender broke up the 
outgoing message into small packets of digital bits. Each packet was coded within 
its original message as to its sequence, where it came from and its recipient’s 
address. In packet messaging, the packets were then routed as separate message 
blocks through intervening communications computers, so packets from one mes-
sage might be routed over different lines, or packets from different messages could 
be interweaved on one common transmission line. Finally, packets would arrive at 
the computer where they were addressed to go, and where the packets were then 
reassembled into the original message (Kimbleton and Schneider  1975  ) . A wide-
area-network (WAN) typically used public telephone lines for long-distance data 
transmission; and each analog message was transmitted in a continuous stream 
known as  circuit switching , that would tie up the phone line during the entire time 
that one message was being sent. With packet switching, multiple messages in the 
form of digital packets could be sent over one line, and soon replaced analog signals 
in telephone, radio, and satellite communications. 

  Ethernet  was developed in 1973 by R. Metcalfe and associates at Xerox PARC, and 
it became one of the earliest coaxial cable networks for high-speed communications 
(Hodges  1989  ) . In 1985 the Johns Hopkins Hospital reported implementing an Ethernet 
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communications network, with coaxial cables that were attached to transceivers that 
coded and decoded the signals on the channel; and communications servers were used 
to connect terminals and remote printers to the host computer (Tolchin et al.  1985a,   b  ) ; 
Hammond et al.  (  1985  )  described their use of the Ethernet after Xerox Corporation, 
Digital Equipment Corporation (DEC), and Intel Corporation joined together to defi ne 
the strategy for their local-area-network. They used a branching bus communications 
with coaxial cables optimized for high-speed (10-million bits per second) exchange of 
data between their data processing components; and a data communications controller 
was interfaced between the computer data bus and the Ethernet to conform their data to 
the Ethernet format. 

  Fiber-optic cables  were developed in 1970 by Corning Glass, who combined 
strands of hair-like glass fi bers that conducted signals of light through its fi ber core 
and guided the light rays along its length. The higher frequency of light signals car-
ried much more information, so that one single strand of a glass fi ber could carry 
simultaneously 24,000 telephone conversations, compared with 4,000 conversa-
tions on a coaxial cable, or only 24 on a pair of copper telephone wires. By the end 
of the 1980s, fi ber-optic cables capable of transmitting text, voice, and images were 
replacing coaxial cables; and the long-distance transmission of a terabyte (one-trillion 
bits) of data-per-second was achieved using a single strand of optical fi ber (Drexhage 
and Moynihan  1988  ) . In 1991 U.S. senator A. Gore proposed an “information 
superhighways network” linking the nation by fi ber-optic cables, for which the U. 
S. Congress passed the High Performance Computing & Communications (HPCC) 
Act. D. Lindberg, in addition to being the Director of the National Library of 
Medicine, became the fi rst Director of HPCC’s National Coordinating Offi ce 
(Shortliffe  1998  ) . By the end of the 1990s, fi ber-optic cables, some the thickness of 
fi re hoses and packed with hundreds of thousands of miles of optical fi bers, were 
laid everywhere including along the fl oors of the oceans; and carried phone, Internet, 
and Web traffi c fl owing from continent-to-continent with speeds approaching that 
of light depending on their bandwidths and data capacity. 

  Wireless transmission  of a spectrum of radio-frequency signals provides the 
capability to provide instant communications almost anywhere; and is used for the 
communication of radio, broadcast television, mobile phones, satellite data, and for 
a variety of Web services and devices. The radio spectrum in the United States is 
regulated for all non-federal users by the Federal Communications Commission 
(FCC); and users are assigned specifi c frequency bands, and are given maximum 
allowable power levels for their emissions by procedures that were developed prior 
to 1950 (NAS  2010  ) . In the 1980s the International Mobile Telecommunications 
(IMT) began to defi ne  generation standards  for mobile technology with the objec-
tives of requiring each generation to offer signifi cant advances in performance and 
capabilities as compared to the prior generation. Mobile cellular services initially 
used analog radio technologies, and these were identifi ed as fi rst-generation (1G) 
mobile technology systems. In the 1990s digital second-generation (2G) mobile 
technology was initiated and rapidly replaced analog 1G networks. In 1999 the term 
 Wi-Fi  was applied to local-area-networks that were installed without wires for client 
devices in order to decrease the costs of network wiring. In the year 2000 all major 
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existing cellular spectrum bands were made available, and that allowed using more 
multi-band radios, mobile phones, two-way text messaging, and video transmis-
sions. In 2001 third-generation (3G) mobile technology was launched in Japan; and 
in 2002 in the United States by Verizon Wireless; and delivered speeds of 0.4 mbps 
(kilobits-per-second) to 1.5 mbps, that was about 2.4 times faster than by modem 
connections; and 3G cellular phones also added functions such as video-conferenc-
ing, telemedicine; and global-positioning system (GPS) applications that could 
enable a 911 emergency call on a cell phone to inform the emergency responder of 
the location of the emergency caller. In 2003 Skype, a free, mobile, Internet service 
was introduced that allowed users of 3G mobile phones to communicate around the 
world. In 2007 the International Telecommunication Union (ITU) added WiMAX 
technology that included multiple, wireless, broad-band Internet services; including 
Skype that was initiated in 2003 and provided free video and voice calls internation-
ally; and VoIP (Voice over Internet Protocol) that delivered broadband services at a 
lower cost. In 2010 fourth-generation (4G) wireless technology began to be mar-
keted with services that offered between four-to-ten times the performance of 3G 
networks, with peak speeds of 10 mbps or more, and able to service larger gigabyte 
loads at a lower cost. However, since 4G technology operated on different wireless 
frequencies than did prior mobile phones, they required different connectivity tech-
nology (Kapustka  2010  ) . 

 In the 2000s mobile phones powered by rechargeable lithium-ion batteries 
became available from many competing companies and network communications 
carriers. In 2010 among the leading manufacturers in the United States of 3G and 
4G mobile phones were Apple’s iPhone, Research-In-Motion (RIM)’s BlackBerry, 
Google’s Android, and Motorola’s Droid X. Among the leading wireless carriers 
were AT&T, Google, Sprint, and Verizon. Mobile phones were available in a variety 
of shapes, sizes, keyboards, and operating systems; and with interfaces that pro-
vided telephone, email, screens for graphics and photos; with connections to social 
networks including Facebook, Flickr, and Twitter; and with 5–8 megapixel cameras. 
In the 2000s Verizon initiated its Health Information Exchange; and other health 
care, information-technology vendors announced cloud-computing services using 
Web-based technology that could communicate relatively secure and protected 
patient data between collaborating health-care providers. An advance in wireless 
communication was reported, by Wireless Gigabit (WiGi) Alliance, to provide 
faster transmission speeds of up to 6 gigabits-per-second (Williams  2010  ) . A soft-
ware development called HTML5 allowed offl ine storage of information and 
Internet utilities, and used markup programming for Web pages that could add video 
to a Web page (Mulroy  2010  ) . By 2010 physicians in hospitals had begun to use 
mobile hand-held phones to download their patients’ electronic records, and to enter 
clinical orders while seeing their patients. Telemedicine began to demonstrate its 
great potential, but it yet needed a broader infrastructure (Puskin and Sanders  1995 ; 
Mies  2010  ) . In 2010 wireless networks had evolved that did not depend on a fi xed 
infrastructure and could allow for ubiquitous connectivity regardless of the situa-
tion; so that in disaster events where power shortages could interrupt standard line 
and mobile phone communications, specially programmed, mobile phones or other 
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wireless communication devices within range of one another could each act as both 
transmitter and receiver in an ad-hoc network, and pass information from device-to-
device to form a web of connections. However, the network needed to be so designed 
and constructed that a message could get through even when one or more devices 
failed, such as by sending a message along several paths and thereby increase the 
likelihood that that the message would be received (Effros et al.  2010  ) . 

    1.3.1   The Internet and World Wide Web 

 The 1957 launch of the Soviet satellite Sputnik-I surprised the United States; and it 
prompted President Eisenhower to create within the Department of Defense (DoD) 
an Advanced Research Projects Agency (ARPA) with an objective to develop com-
puter and communications technology for defense purposes. In 1962 the fi rst suc-
cessful communications satellite, Telstar, was built, launched, and operated by Bell 
Laboratories; and it relayed computer data and live television signals across the 
United States and to Europe. In 1970 the National Library of Medicine’s Lister Hill 
Center began using satellite communications to send medical information to remote 
villages in Alaska. In 1972 Bolt, Beranek and Newman (BB&N) established Telnet 
as the fi rst public, packet-switching network, which later became a subsidiary of 
General Telephone and Electric (GTE). Tymshare, an early competitor of Telnet, 
contracted with the National Institutes of Health (NIH) to provide communication 
links between medical school computers and the bibliographic databases of the 
National Library of Medicine (NLM) (Miles  1982  ) . By the 1980s earth orbiting, 
communication-satellites were routinely used as an alternative means of transmit-
ting information to remote locations. 

  ARPANET  was created in 1966 when the Department of Defense (DoD) con-
tracted with Bolt, Beranek and Newman (BB&N) in Cambridge, Massachusetts, to 
create a wide-area-network (Kimbleton and Schneider  1975  ) . In 1969 ARPANET 
initiated communications using packet switching; and it became the fi rst nation-
wide, digital network. ARPANET was used to connect academic centers that con-
ducted research for the DoD; and its development led to the evolution of the Internet 
and of the World Wide Web. By installing a communications minicomputer in each 
center to serve as a message router, DoD linked itself to the University of California 
in Los Angeles, then to Stanford Research Institute, to the University of California 
in Santa Barbara, the University of Utah, the Massachusetts Institute of Technology, 
and then to BB&N (Newell and Sproul  1982  ) . Whereas DoD previously had used a 
separate terminal for its communications with each academic center, ARPANET 
permitted all participating computer centers to be linked to any one terminal. The 
basic technology developed for ARPANET by DoD was soon released for private 
commercial development. By 1972 ARPANET was linked to 29 computer centers 
and was then generally referred as the  Internet . The national success of ARPANET 
soon led to the development of a global Internet that greatly changed the means by 
which clinical information could be communicated; and the term,  Internet , became 



20 1 Prologue: The Evolution of Computer Databases

a common representation for the inter-networking of networks. Hartzband and 
Groopman  (  2010  )  observed that nothing changed clinical practice more fundamen-
tally than did the Internet that changed communications between doctor and patient, 
since it provided easily retrieved information to physicians for clinical-decision 
support, and also to patients in search of self-diagnosis, of better understanding of 
their diseases and prescribed therapy. 

 In the 1970s a number of companies began to exploit the ARPANET technology, 
and data processing and data communications began to converge. In 1973 R. 
Metcalfe and associates at the Xerox Palo Alto Research Center (PARC) in California 
developed a local-area network (LAN) called  Ethernet  that linked the 250 personal 
computers used on the PARC’s researchers’ desks. Xerox licensed Ethernet to 
Metcalfe who then started 3-COM (Computer Communication Company) to make 
hardware and software for Ethernet and other LANs; and Ethernet became the stan-
dard protocol for LANs. In 1982 S. McNealy and associates developed the Stanford 
University Network (SUN) and initiated Sun Microsystems. Sun Microsystems 
revised the UNIX operating system for the Ethernet; and built Sun workstations 
with open standards so that every computer could be linked to any other computer 
located anywhere in the LAN. In 1983 Novell, based in Orem, Utah, developed its 
Netware software for communication computers to function as database servers 
connected to personal computers; and by the mid-1980s Novell Netware dominated 
client–server, personal-computer networks. In 1987 Cisco Systems developed data 
routers, with computers that would start, stop, and direct packets of information 
from router to router between networks. By 1989 about 5,000 computers at Stanford 
University were linked by a network similar in operation to ARPANET (Segaller 
 1998  ) . In 1974 V. Cerf, and associates at Stanford University, invented the 
Transmission Control Protocol/Internet Protocol (TCP/IP) that allowed different 
packet-switching networks to inter-connect and to create networks-of-networks. 
The Transmission Control Protocol (TCP) was responsible for ensuring correct 
delivery of messages that moved from one computer to another; and the Internet 
Protocol (IP) managed the sending and receiving of packets of data between com-
puters. In 1992 the TCP/IP was adopted as the standard communications protocol 
for ARPANET (Connolly and Begg  1999  ) . 

 The  Internet  was created in 1986 when the National Science Foundation (NSF) 
initiated its network (NSFNET), and joined other networks to form the foundation 
of the Internet; and in 1986 a total of 2308 Internet hosts had been registered 
(Goldwein  1995  ) . However, in 1995 NSFNET terminated its funding and awarded 
grants to regional networks so that they could buy their own Internet connections; 
and soon the Internet could be accessed in a variety of ways.  Browser  programs, 
such as Mosaic and Netscape, allowed a user to download fi les from the Internet 
directly to their personal computers. 

 In 1989 S. Case founded American Online (AOL), an Internet-service provider 
(ISP), to furnish any user who had a computer with a modem connected to a tele-
phone line, the interactive access to the worldwide use of e-mail through the Internet. 
Major online computer services, including American Online (AOL), Compuserve, 
and others began to offer complete Internet services. In the 1990s with the advent of 
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the ability for personal computers to connect to the Internet through television 
cables that could transmit data more than 100 times faster than the fastest modems, 
the communication of video became common (Glowniak  1995  ) . 

 In the 2000s the Web’s support of e-mail began to replace some modes of per-
sonal communications provided by postal mail and the telephone. 

 The National Library of Medicine (NLM) was frequently accessed in the 1980s 
using the Internet through Telnet to facilitate a wide distribution of NLM’s com-
puter resources, and to allow an Internet user to gain access to the NLM databases 
as if the user was using a terminal within the NLM (Zelingher  1995  ) . A program 
called Gopher was originated at the University of Minnesota; it was superfi cially 
similar to Telnet and also allowed access to a wide range of resources (Glowniak 
 1995  ) . Soon NLM’s MEDLINE became available to users through a nationwide 
network of many individual users and institutional users in government agencies, 
academic centers, hospitals, and commercial organizations. As an example of its 
remarkable growth, in the 1 year of 1997 the NLM’s MEDLINE, with PubMed and 
Internet Grateful Med, received requests for 75-million searches (Lindberg and 
Humphreys  1998  ) . (See also Sect.   9.1    ). In 1989 Anderson et al.  (  1997  )  and associ-
ates at the University of California-Fresno Medical Center, initiated their use of the 
Internet to provide rapid online medical information for their clinical decision-sup-
port system by adding online access to the NLM’s MEDLINE and its databases. 
They modifi ed the CONSIDER program developed by D. Lindberg  (  1968  )  and the 
RECONSIDER program by Blois et al.  (  1981  )  to use for differential diagnoses; and 
added programs for time-series analysis, electrocardiogram signal-analysis, radiol-
ogy digital-images analysis, and an images database. 

 In 1989 Chaney et al.  (  1989  )  and associates at Baylor College in Houston, 
reported developing an Integrated Academic Information Management System 
(IAIMS) supported by the National Library of Medicine (NLM) that used a hyper-
text system for a Virtual Network employing UNIX software and SUN worksta-
tions. In the 1990s the Internet became global when T. Berners-Lee, a computer 
scientist at CERN, the European Particle Physics Laboratory in Geneva, 
Switzerland, devised a method for linking diverse Internet pages to each other by 
using a hypertext program that embedded software within documents that could 
point to other related documents and thereby link non-sequential information. 
Documents were stored on the Web using Hypertext Markup Language (HTML), 
and were displayed by a Web browser; and the Web browser exchanged informa-
tion with a Web server using the HTTP protocol. A user could fi nd, link to, and 
browse related subjects by clicking on highlighted or underlined text; and then 
skip to other pages across the Internet. Berners-Lee assigned and stored a Universal 
Resource Locator (URL) address to each computer location on the Web; and then 
used the Hypertext Transfer Protocol (HTTP) with TCP/IP developed for the 
ARPANET that allowed users to move around the Web and connect to any URL 
in any other location. He used Hypertext Markup Language (HTML) as the pro-
gramming code to create hypertext links; so that a user with a computer-pointing 
device, such as a mouse, could click on a high-lighted word; and the links could 
then transfer desired papers from one journal to another; and could readily display 



22 1 Prologue: The Evolution of Computer Databases

computer-based text, graphics and images, and compile digital information from 
many sources.  Electronic mail  ( e-mail ) was fi rst used in 1972 by R. Tomlinson, at 
Bolt, Beranek and Newman (BB&N) in Cambridge, Massachusetts, to transfer 
fi les from one computer to another; and the symbol @ was selected to identify an 
e-mail address at BB&N. E-mail was rapidly accepted in their network, and later 
was also used on the Internet. 

  World Wide Web , commonly referred to as the Web, was the name applied by T. 
Berners-Lee to the collection of URLs, an addressing system capable of linking 
documents on the Internet from one computer to another. The Web changed the 
usual two-tier model (client-user, data-processing server), to a three-tier model (cli-
ent-user, data-processing applications server, database-management server) over 
different distributed computers (Jennings et al.  1986 ; Berners-Lee et al.  1994 ; 
Connolly and Begg  1999  ) . Whereas the Internet-based resources were often diffi -
cult to use by the non-expert, the Web supported an inexpensive, easy-to-use, cross-
platform graphic-interface to the Internet. The most signifi cant developments that 
drove the rapid growth of the Web was the ease with which a user could successfully 
navigate the complex Web of linked computer systems of the Internet; and how it 
could support large online libraries with computer-mediated, inter-document links; 
and use general hypertext systems for reading and writing, for collaboration links 
and readily posting messages or conducting scientifi c or social networking. An 
international organization called the WWW Consortium was formed to set Internet 
policies, and was composed of industry companies, government agencies, and uni-
versities. In 1985 the U.S. Federal Communications Commission (FCC) released 
several bands of the radio spectrum for unlicensed use; and the IEEE developed 
802.11 standards for Wi-Fi wireless networking technology. In the 1990s a variety 
of commercial, worldwide Wi-Fi locations were operational, and led to the wide use 
of laptop computers. WiFi enabled devices, such as personal computers or mobile 
phones, to deploy local-area networks without any physical wired connections, and 
subscribe to various commercial services and connect to the Internet. In 2005 
Sunnyvale, California became the fi rst city in the United States to offer citywide, 
free Wi-Fi service; and by 2010 free Wi-Fi services were offered at the airports in 
San Jose, San Francisco, and Oakland, California (Bay Area News Group 
06/22/2010); and free Wi-Fi services became available in 6,700 Starbucks’ coffee 
shops (TIME 06/28/2010). In 2010 Wi-Fi service enabled wireless voice applica-
tions over the Internet protocol (VOIP). 

 In the 1990s the combination of low-cost computers and packet switching in 
digital networks spawned a number of new companies; and also generated the soft-
ware  browsers  to search and retrieve information resources on the Web. In 1993 M. 
Andreesen and associates at the University of Illinois Champaign-Urbana, devel-
oped a browser program called Mosaic to access and retrieve information available 
on the Web. In 1994 J. Clarke founded Netscape, and used Mosaic as its Web 
browser calling it Navigator, and developed software using the Web as a platform. 
In 1995 B. Gates added to Microsoft’s Windows 95 its own Web browser called 
Internet Explorer. In 1994 J. Gosling at Sun Microsystems introduced JAVA soft-
ware that could run applications on different computers regardless of their different 
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operating systems, and could run on digital networks across the Internet.  Portals  to 
the Web, also called  search engines , were developed to simplify searches for infor-
mation or to locate material on the Internet by using indexes and directories of Web 
information; and allowed searches of Web pages by key words, phrases, or catego-
ries. In 1995 You Tube initiated a Flikr-style sharing site for videos, and was then 
bought by Google. Such portals were commercialized by Excite, Yahoo! Google, 
and others. Google became very popular by collecting user-generated information, 
and by offering Web responses to queries based on a user-ranking algorithm of its 
stored contents. Google also developed an advertising business that sold a few lines 
of text linked to Web queries; and in 2010 Google reported having several billion 
queries each day (Gomes  2010  ) . Similarly, Wikipedia evolved to collect informa-
tion that was constantly updated by anonymous users. In the 2000s You Tube, 
Google, and Facebook with their video services became popular social networks. In 
2010 Facebook was estimated to have 500-million active users in its online net-
working service despite its laxness in protecting the privacy of personal data, a 
problem that became more evident as Google gathered images from unsecured 
Wi-Fi nets in peoples’ homes (Wi-Fi  2010  ) . 

  Web 2.0  was a term used to describe new collaborative Internet applications. In 
2004 Web 2.0 conferences began to be held that encouraged the expanded use of the 
Web as a computing platform for more applications than just searches, such as run-
ning software applications entirely through a browser. Web 2.0 technologies 
increased user participation in developing and managing    content to change the 
nature and value of the information. Ekberg et al.  (  2010  )  described a Web 2.0 sys-
tem used for self-directed education of teen-age diabetic patients in learning every-
day needs of their disease. As increasingly broader communication services were 
provided to users over the web, more audio and video services were developed for 
audio-video conferencing, such as by using Skype software; and for social networks 
such as for using Facebook and Twitter; and for photo sharing by using Flickr. In the 
1990s the Internet also began to be used to support some medical information sys-
tems, including some Web-based, electronic patient records; but at that date 
McDonald et al.  (  1998  )  still considered the provisions for maintaining adequate 
security for patient data were not yet built into the Internet. Willard et al.  (  1985  )  and 
associates at the University of Minnesota, deployed in 1994 a Web-based, clinical 
information system that was reported to be less expensive to develop and operate 
than a client–server system. Their system provided services to physicians and to 
patient-care areas with connections to their hospital communications network. They 
reported a signifi cant savings in physicians’ time and a substantial reduction in 
interpretive errors. Cimino et al.  (  1995  )  and associates at the Columbia-Presbyterian 
Medical Center in New York, developed a clinical workstation for the hospital sur-
gery service that used the Web client–server architecture; with a Netscape server to 
Navigator clients using Macintosh computers on their local-area network. They 
used Internet protocols with fi les in Hypertext Markup Language (HTML) format, 
and used Uniform Resource Locators (URLs) to point to additional sources on the 
Internet. They built a clinical information browser, and considered Netscape’s stan-
dard security features to be adequate. 
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 In the 2000s an advance in wireless communication was reported by Wireless 
Gigabit (WiGi) Alliance that provided faster transmission speeds of up to 6 giga-
bits-per-second (Williams  2010  ) . A software advance called HTML5 allowed offl ine 
storage of information and Internet utilities, and used markup programming for 
Web pages that could add video to a Web page (Mulroy  2010  ) . The term “cloud 
computing” was sometimes applied to the use of the Web since it was often repre-
sented in networking fl owcharts and diagrams as a cloud; and “tag clouds” used 
words as hyperlinks that led to collections of items associated with the tags. Using 
the Internet, cloud computing enabled a client’s computer applications to run off-
site on a provider’s equipment, and link back to the client; and thereby reduced the 
client’s infrastructure costs; and also enabled the client to quickly scale up-or-down 
to meet changing needs, and pay only for the amount of services needed for a given 
time. In the 2000s cloud-computing services were provided by Microsoft, Google, 
Amazon Web services, and others. V. Barret ( 2010 )    reported that Dropbox, devel-
oped by D. Houston, was storing on remote servers 20-billion documents for 4-mil-
lion users with 500,000 computers. When a user downloaded the Dropbox software 
to the user’s computer, it created a folder for placing fi les that the user wanted to 
access from the Web, or wanted to be linked to Microsoft, Apple, or Linux operat-
ing systems, or to another computer. 

 The history of the Internet and of the World Wide Web, and of their relationship 
to medical informatics was described in some detail by Glowniak  (  1995  ) , by Hafner 
and Lyon  (  1996  ) , and also by Shortliffe  (  1998,   2000  )  who on reviewing the history 
of the Arpanet and the Internet considered it to be one of the most compelling 
examples of how government investments led to innovations with broad economic 
and social effects.  

    1.3.2   World Wide Web Databases 

 In the 1990s the Internet quickly and reliably delivered text, e-mail, music, and images 
by employing a variety of digital communication technologies. By 1995 about 13,000 
Web sites allowed public access. The User’s Network (USENET) was available for 
discussion groups that especially focused on medical subjects; and mailing list ser-
vices commonly referred as listserv provided hundreds of medicine-related mailing 
lists covering all specialties in medicine. The National Institutes of Health (NIH) 
could be accessed at   http://www.nih.gov    , and a very large number of databases could 
be accessed at the National Library of Medicine (NLM) at   http://www.nih.nlm.gov     
(see also Sect.   9.1    ); and most medical centers allowed public access to medical ser-
vices through Web servers (Glowniak  1995  ) . In 1998 the Web transmitted about 
5-million e-mails each minute; and also began to be used by some physicians for pro-
viding consultations and patient education (Borowitz and Wyatt  1998  ) . In 1999 pri-
vate corporations and colleges sponsored the evolving Internet-2; and the Federal 
government supported the Next - Generation (NG) Internet using fi ber-optic digital 
networks to develop the infrastructure for the information revolution that would allow 
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the faster transfer of a mix of text, voice, and video. The Web had already established 
a global consumer market place of virtual stores that sold a wide variety of products 
and services; and it was becoming an important provider of health information to cli-
nicians (Westberg and Miller  1999  ) . A Web Virtual Library was established in 1991 
by T. Berners-Lee, the founder of the World Wide Web, with its use of hypertext links 
to transfer textual, graphic, and video information with the Internet. The Web Library 
became associated with the National Institutes of Health (NIH) and its National 
Library of Medicine (NLM), with a group of international academic institutions, and 
with government and commercial providers. A user could connect to the NLM Web 
server, to the Web Virtual Library of Medicine and Biosciences, and then to many 
other databases (McKinney et al.  1995  ) . 

 Buhle et al.  (  1994  )  and J. Goldwein at the University of Pennsylvania School of 
Medicine, founded OncoLink that they reported to be the fi rst multimedia Web and 
Gopher server released on the Internet. Users in many countries soon accessed it 
internationally; and in 1994 it was estimated to have 20-million users. OncoLink 
represented an electronic library that focused on disseminating multimedia cancer 
information. Its Web users could browse audio, graphic images and video within 
OncoLink, as well as employ hypertext links between other information sources. 
OncoLink employed Gopher services, that had originated at the University of 
Minnesota, as an online information system that provided a hierarchy of menus to 
access information on the Internet; and used the public domain Web browser, 
Mosaic, that allowed users to navigate information available on the Internet. It used 
HTTPS, an encrypted version of HTTP, the HyperText Transport Protocol designed 
for the communication of text fi les and graphics over wide-area networks. Its Web 
software was based on using Hypertext Markup Language (HTML) and Uniform 
Resource Locator (URL). OncoLink Web server software was implemented on 
DEC 3,000–800 computers. It was expected that OncoLink would expand to include 
information from other medical specialties. 

 Patrick et al.  (  1995  )  and associates at the University of Missouri-Columbia, 
described the concept of having a shelf in a virtual library as a general-purpose 
server that could be based on the Web, and be dedicated to a specifi c biomedical 
subject, or be used to browse a specifi c subject for relevant information sources. 
With the traditional concept of using a catalog and shelf directory to locate a desired 
publication, it was still necessary to address the problem of location-dependent 
access to information sources; so they assigned call numbers to the subjects that 
were independent of the location of the information sources; and they used NLM 
MeSH terms and the Unifi ed Medical Language System (UMLS) Metathesaurus 
concept-vocabulary to index the information sources, that included NLM’s data-
bases (see also Sect.   9.1    ). Zelingher  (  1995  )  reported that the University of Iowa 
Hospital maintained a Web-based multimedia service that allowed users to inspect 
medical textbooks, x-rays, and videos for topics in pulmonary medicine. 

 Hersh et al.  (  1996  )  reported developing a searchable database of clinical infor-
mation accessible on the Web, called CliniWeb, that provided: (1) a database of 
clinically-oriented Universal Resource Locators URLs; (2) indexing of URLs with 
terms from the MeSH vocabulary; and (3) an interface for accessing URLs by 
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browsing and searching. He described problems due to Web databases being highly 
distributed and lacking an overall index for all of its information. CliniWeb served 
as a test bed for research in defi ning the optimal methods to build and evaluate a 
clinically oriented Web resource. Hersh also observed that the National Library of 
Medicine (NLM), and other health-related government agencies, used the Web for 
dissemination of free information, including the Centers for Disease Control and 
Prevention (CDC), the Food and Drug Administration (FDA), and the National 
Cancer Institute (NCI). 

 Lowe et al.  (  1996a  )  and associates at the University of Pittsburgh, reviewed the 
evolution of the Internet and of the Web, and described them at that time as rapidly 
evolving from an initial resource used primarily by the research community to a true 
global information network offering a wide range of services. They described the 
Web to be essentially a network-based, distributed hypertext system, with links to 
component objects or nodes (text, images, sound) embedded in a document or in a 
set of documents; and the nodes could be linked to associated nodes to form a data-
base by means of the set of links, so the user could easily navigate between nodes 
based on the user’s needs rather than on fi xed data linkages defi ned in usual infor-
mation-retrieval systems. They described their WebReport system that used a Web-
based database to store clinical images with their associated textual reports for 
diagnostic procedures, including gastrointestinal endoscopy, radiology, and surgical 
pathology. Their WebReport provided services to referring physicians located at 
their practice locations, and who were using HTML for ready access to retrieve and 
view their patients’ images and associated reports, and other procedures (Lowe 
et al.  1996b  ) .  Translational databases  evolved in the late 1900s as the advances in 
informatics and communication technologies allowed Web-based medical databases 
that were located in multiple and diverse institutions, to collect and store, to query 
and exchange computer-based data (see also Sect.   6.1    ).   

    1.4   Summary and Commentary 

 Computer databases evolved with the development of computers and informatics 
technology. In the 1950s large mainframe, time-sharing computers were used for the 
earliest computer applications in medicine when most data were entered into the com-
puter by punched cards, data were stored on magnetic tape or disc drives, and the 
printed output was usually produced in batches. In the 1960s and 1970s computer 
languages were developed that were more easily used by non-programmer physicians 
and medical researchers. It is worthy of crediting Barnett et al.  (  1981  )  and his associ-
ates at the Laboratory of Computer Science at the Massachusetts General Hospital for 
their development as early as 1966 of the language called MUMPS (Massachusetts 
General Hospital Utility Multi-Programming System), that provided an operating sys-
tem, a database-management system for handling large volumes of information, and 
an easy interactive mode for programmer-computer communication; and it was soon 
the most commonly used programming language in the United States for medical 
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computing applications. MUMPS provided a good structure for medical databases 
with all their complexity; and in the 1980s both the Department of Defense and the 
Veterans Hospitals began installing MUMPS-based medical information systems; and 
in the 2000s the popular commercial Epicare medical information systems was also 
Mumps-based. 

 In the 1980s database technology and database-management systems rapidly 
evolved, as computer storage devices became larger and cheaper, as computers 
became more powerful, and as computer networks and distributed-database systems 
were developed. Edelstein  (  1981  )  noted that in its beginnings, users had to under-
stand how and where the data were stored; and data could not be shared by different 
applications, so that resulted in much duplication of data and effort. However, soon 
computer systems were developed to permit standardization of data-access methods 
and to allow some sharing of data. Van Brunt  (  1980  )  noted that despite the increas-
ing use of computer technology in the 1970s, there were not yet any notable effects 
of computers on a physician’s mode of practice. Levy  (  1984  )  noted that although in 
the 1950s computers had introduced the “information age”, it was not until the year 
1983, when microcomputers became internalized into the popular culture of the 
United States, that they became commonly accepted working tools. 

 In the 1990s the Internet made international communications with the use of com-
puters commonplace. Computer applications in many medical services were opera-
tional; and some progress was becoming apparent in the use of electronic medical 
records (EMRs). In the 2000s wireless mobile phones, the Internet, and the World 
Wide Web became the main modes used for local and global communications. 
Microsoft made computers easy for anyone to use; and Facebook made video com-
munication the basis of its social network. Lincoln  (  1990  )  reviewed the important 
contributions of computing to medical care and to medical research, but pointed out 
that there still existed the challenge to formulate appropriate computer logics to prop-
erly relate descriptions of disease, rules for medical practice and general guidelines 
for health care delivery. Hartzband and Groopman  (  2010  )  noted that nothing changed 
clinical practice more fundamentally than did the Internet, since it provided easily 
retrieved information by physicians for clinical-decision support, and by patients in 
search of self-diagnoses and better understanding of their diseases and their prescribed 
therapy.    The Internet and the Web not only changed profoundly personal communica-
tion between the doctor and the patient, but also made possible the global exchange of 
clinical data and medical knowledge between multiple information sources.      
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 Since the early 1900s physicians have followed the teachings of the famed clinician, 
W. Osler, to study and learn from their patients and from the medical records of their 
patients, in order to improve their knowledge of diseases. In the 2000s, as in the 
1900s, physicians continue to initiate this learning process by taking a history of the 
patient’s medical problems, performing a physical examination of the patient, and 
then recording the history and physical examination fi ndings in the patient’s medi-
cal record. To confi rm a preliminary diagnosis and to rule-out other possible diag-
noses, physicians refer the patients for selected tests and procedures that usually 
involve the clinical laboratory, radiology, and other clinical-support services. After 
reviewing the information received from these services, physicians usually arrive at 
a more certain diagnosis, and then prescribe appropriate treatment. For an unusual 
or a complex medical problem, physicians may refer the patient to appropriate clini-
cal specialists, and may also review evidence-based reports of appropriate therapies 
by consulting relevant medical literature and bibliographic databases. 

    2.1   The Origins of Medical Databases 

 Lindberg  (  1979  )  described the degrees of diffi culty in the development of medical 
innovations in the grades of their complexity: (1) the easiest was the automation of 
a simple function such as providing a patient’s billing for services; (2) more diffi cult 
was the automation of a more complex function such as collecting and storing a 
patient’s medical history; (3) very diffi cult was constructing a very complex func-
tion such as a medical database; and (4) the most diffi cult was developing the highly 
complex medical information and database-management system for a hospital, as 
Starr  (  1982  )  had aptly ranked the hospital to be the most complex organizational 
structure created by man. 

  Databases  were defi ned by Frawley et al.  (  1992  )  as logically integrated collec-
tions of data in one or more computer fi les, and organized to facilitate the effi cient 
storage, change, query, and retrieval of contained relevant information to meet the 
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needs of its users. Frawley estimated that the amount of information generated in 
the world doubled every 20 months, and that the size and number of computer data-
bases increased even faster.  Clinical repositories  was the term proposed by Johnson 
 (  1996  )  as more accurately representing a shared resource of patient data that was 
collected for the purpose of supporting clinical care. Johnson advised that a large-
scale, clinical repository required: (a) a data model to defi ne its functional require-
ments and to produce a formal description, (b) a conceptual schema of all the data 
generated in the enterprise and how it was all related, and (c) a database structural 
design to defi ne its technical requirements. Since a medical database usually oper-
ated within a medical database-management system, the database needed to be 
compatible with the information system of the enterprise of which it was a part; and 
it also needed to be operationally and structurally independent of all subsystems and 
applications programs. The evolution, design, implementation, and management of 
computer-stored databases were described in some detail by Connolly and Begg 
 (  1999  ) , Collen  (  1986,   1990,   1994,   1995  ) ; and also by Coltri  (  2006  )  who considered 
computer-stored databases to be one of the most important developments in soft-
ware engineering. 

  Database-management systems  soon replaced the earlier fi le-based systems that 
often stored the same data in multiple fi les, and where it could be more diffi cult to 
retrieve and coordinate a patient’s data. A database-management system was defi ned 
by Blum  (  1986a,   b,   c  )  as software consisting of a collection of procedures and pro-
grams with the requirements for: (1) entering, storing, retrieving, organizing, updat-
ing, and manipulating all of the data within its database; (2) managing the utilization 
and maintenance of the database; (3) including a metadatabase to defi ne applica-
tion-specifi c views of the database; (4) entering data only once, even though the 
same data might be stored in other subsystems; (5) retrieving, transferring, and 
communicating needed data in a usable format, and having the ability to create 
inverted fi les indexed by key terms; (6) maintaining the integrity, security, and 
required level of confi dentiality of its patients’ data; and (7) fulfi lling all manage-
ment, legal, accounting, and economic requirements. 

 In the 1950s with the development of computers, physicians began to bring their 
work in batches to a central computer to be processed. Patient-care data were ini-
tially collected, entered, and merged into computer fi les that were stored on mag-
netic tape, and a fi le-management system was designed to enter, store, and retrieve 
the data. In the 1960s time-shared, mainframe computers that communicated by 
telephone lines to remote data-entry terminals and printers, allowed many users to 
process their data concurrently, and also provided a relatively acceptable turn-
around time for data services. Patients’ data were initially stored in computer data-
bases on magnetic tape; but were soon moved to storage on random-access, 
magnetic disc drives; and were then better organized in a manner more suitable for 
query and retrieval of the data. However, at that time the high costs for computer 
storage greatly limited database capacities. In the 1970s as clinical support subsys-
tems evolved for the clinical laboratory, radiology, pharmacy, and for other clinical 
services, most developed their own separate databases. With the emergence of 
random-access disc storage, subsystem databases could be more readily merged 
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into larger databases and then needed an integrating database-management system. 
The retrieval of subsets of selected data from various databases required some re-
organization of the stored data, and also needed an index to the locations of the 
various data subsets. Attempts were made to design more effi cient databases to 
make them independent of their applications and subsystems, so that a well-
designed database could process almost any type of data presented to it. Terdiman 
 (  1982  )  credited the development of microcomputer technology in the 1970s with 
many of the subsequent advances in database-management systems. 

 In the 1980s microcomputers and minicomputers were increasingly used for 
small database systems. As storage technology continued to become more effi cient, 
and larger and cheaper storage devices became available, then computer-based reg-
istries expanded their storage capacity for larger amounts of data and were then 
generally referred to as databases. When huge storage capacity became available at 
a relatively low-cost, very large collections of data were then often referred to as 
data warehouses. Bryan  (  1988  )  called 1988 the “year of the database”; and he 
reported that more than 20 new or improved database-management systems became 
available in that year. In 1989 the total number of computer-stored databases in the 
world was estimated to be about fi ve-million; and although most of the databases 
were considered to be relatively small, some were huge as was the 1990 U.S. census 
database comprising a million-million bytes of data (Frawley et al.  1992  ) . Prior to 
the 1990s most physicians documented their patient-care activities by handwriting 
in paper-based charts. Surgeons and pathologists usually dictated their reports 
describing their procedures and fi ndings; and medical secretaries then transcribed 
their dictations. With the increasing access to larger computers in the 1990s, medi-
cal center-based physicians began entering a patient’s data directly into the patient’s 
electronic medical record (EMR) using keyboard terminals and clinical worksta-
tions. Dedicated computers became database servers to store and integrate multiple 
databases; and to be able to add new data without disrupting the rest of the system. 
In the 2000s EMRs became more common; and new advances in informatics tech-
nology resulted in more effi cient data management of expanding, multi-media, 
patient-care databases (Coltri  2006  ) . More details on the origins and the develop-
ment of medical databases can be found in Blum  (  1983,   1986a  ) , Blum and Duncan 
 (  1990  ) , Collen  (  1986,   1994,   1995  ) , Coltri  (  2006  ) , Duke and Bowers  (  2006  ) , 
Campell-Kelly  (  2009  ) .  

    2.2   Requirements and Structural Designs 
for Medical Databases 

  Data-modeling designs  to provide the conceptual schema that represented the infor-
mation in clinical repositories were advocated by Johnson  (  1996  )  to be as important 
for large medical databases as were their structural designs. He defi ned the concep-
tual schema for patient care as a representation of all of the data types required to 
manage the health-care process, whether using a hierarchical, a relational, or an 
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object-oriented structural database design, or a combination of database structural 
designs. He advised that the structural design of a database needed to be able to 
provide rapid retrieval of data for individual patients, and to have the capability to 
adapt to changing information needs of growth and new technology; yet he empha-
sized that the primary purpose of the database structural design was to implement 
the conceptual schema. To properly build a database, Johnson  (  1996  )  proposed that 
it was necessary to fi rst develop a model of the database that defi ned its functional 
requirements, its technical requirements, and its structural design. The database 
model needed to produce a formal description, a conceptual schema of all the data 
generated in the enterprise, and how all of the data were related. Thus the users of a 
medical database needed to defi ne its functional requirements as to exactly what 
they wanted the database and its database-management system to do. Since a medi-
cal database usually operated within a larger medical-information system, the func-
tional requirements of the medical database needed to be compatible with those of 
the medical enterprise of which it was a part. Whether a medical database served as 
the primary electronic medical record (EMR), or served as a secondary medical 
database, such as a clinical research database with its data derived from the EMR, 
both had some similar basic functional requirements. Davis and Terdiman  (  1974  )  
recommended that as a minimum, the major goals of a medical database should be: 
(1) to maintain readily accessible all of the relevant data for each patient served; and 
(2) to provide a resource for the systematic retrieval of all relevant data from all 
patients’ records for any desired primary purpose (see Sect.   4.1    ), or for a secondary 
administrative or a research purpose (see Sect.   6.1    ). 

  The structural design  of medical databases was substantially developed by 
Wiederhold  (  1981,   1982,   1983,   1984  ) , Wiederhold et al.  (  1975,   1987  )  at Stanford 
University. Wiederhold emphasized that the effectiveness of a database depended 
on its relevance to its organizational purposes; that it had to serve as a resource to 
the enterprise which had collected the data; and that a database-management system 
was needed to control, store, process, and retrieve the data. He advised that when 
using very large databases it was helpful to apply automated methods for the acqui-
sition and retrieval of the desired information. Several database structural designs 
evolved as new medical and informatics technologies were developed to meet the 
various users’ requirements. 

  Hierarchical tree-structured databases  were considered by Coltri  (  2006  )  to be 
the simplest and earliest structural design used for medical databases. In a hierar-
chical designed database the data was organized in what was usually described 
as a “parent–child” relationship, where each “parent” could have many “children”, 
but each “child” had only one “parent”. Hierarchical data subclasses with inheri-
tance of attributes could also appear in other designed databases, such as in rela-
tional and in object-oriented databases. A. Coltri reported that the best known 
early example of a hierarchical structured, medical database was the one devel-
oped in the 1960s by Barnett  (  1974  ) , Barnett et al.  (  1981  )  and associates (Greenes 
et al.  1969 ; Grossman et al.  1973  ) . Their Massachusetts General Hospital Utility 
Multi-Programming System (MUMPS) was designed for building and managing 
dynamic hierarchical databases with interactive computing applications and 
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online transactional processing. MUMPS provided a good structure for medical 
databases with all their complexity, since its hierarchical structure functions as a 
fundamental persistent saved entity that enables a more complex design than does 
a simple relational table with rows and columns; and this greater complexity 
matches well with the needs of a medical record database. In the 1980s both the 
Department of Defense and the Veterans Hospitals began installing their MUMPS-
based medical information systems; and in the 2000s the popular Epic medical 
information systems was also Mumps-based. Another example of an early hierar-
chical-structured medical database was that developed in the 1960s by Davis 
 (  1970,   1973  ) , Davis et al.  (  1968  ) , Davis and Terdiman  (  1974  ) , Terdiman  (  1982  )  
and associates at Kaiser Permanente (KP) in Oakland, California, to store patients’ 
electronic medical records. The design of each KP patient’s record included 12 
levels of storage that allowed direct access by the patient’s unique medical record 
number to each of the patient’s computer-defi ned visits, which were subdivided 
into medical meaningful parts (“tree branches”) such as laboratory data, diagno-
ses, and clinical services. The database was designed to store all patients’ data 
received; and it also contained program-generated data related to the tree structure 
of the record that included data as to the level of the tree branch and of the length 
of the record, that provided a trail through the record. 

  Relational databases  and their database-management systems were developed in 
the 1960s for large shared databases by Codd  (  1970,   1972,   1979  ) , Codd et al.  (  1993  )  
while at the IBM Research Center in San Jose. Codd required that all data in a rela-
tional database be expressed in the form of two-dimensional tables with uniquely 
labeled rows and columns. Every data element was logically accessible through the 
use of the names of its table and its column; and data transformations resulted from 
following defi ned logical rules. In a relational database the data were organized into 
fi les or tables of fi xed-length records; each record was an ordered list of values, one 
value for each fi eld. Information about each fi eld’s name and potential values was 
maintained in a separate metadatabase. Because of its simplicity, by the 1980s the 
relational database design had become dominant in industry and in medicine. Miller 
et al.  (  1983  )  at the University of Pittsburgh, Pennsylvania, described using a com-
mercial relational database-management system, called System 1022, that provided 
its own programming language (1022 DPL) and permitted clinical data from large 
groups of patients to be entered, stored, queried, and analyzed for clinical studies. 
Friedman et al.  (  1990  )  and associates at Columbia University, noted that the typical 
relational design for a patient database could have a serious impact on query perfor-
mance, because a patient’s data was typically scattered over many different tables, 
so a query language needed to be added. Also noted by Deshpande et al.  (  2003  )  was 
that medical data parameters were often time-stamped, such as when representing 
the beginning and the end of a clinical event; and also when in a relational database 
special approaches were required to query various columns for desired temporal 
data. Structured Query Language (SQL) was developed in the 1970s by D. 
Chamberlin and R. Boyce at the International Business Machines (IBM) to con-
struct, manage, and query relational databases (VanName and Catchings  1989  ) ; and 
SQL soon became the standard language used for programming relational databases. 
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In 1979 a commercial relational database named ORACLE became available from 
the ORACLE Corporation. In the 1980s Ashton-Tate developed dBASE for micro-
computers (Connolly and Begg  1999  ) . Johnson  (  1999  )  described an extension of 
SQL for data-warehouses that enabled analysts to designate groups of rows that 
could be manipulated and aggregated into large groups of data, and then be ana-
lyzed in a variety of ways to solve a number of analytic problems. 

 Marrs and Kahn  (  1995  )  and M. Kahn at Washington University, St. Louis, 
described developing a distributed, relational database-management system across 
multiple sites comprising a single enterprise, when they extended their clinical repos-
itory for Barnes Hospital to include data from Jewish Hospital in the BJC Health 
System that included 15 hospitals and other health care facilities. After considering 
alternative approaches, they chose to add the data from Jewish Hospital to their 
repository, and implemented required changes to accommodate mapping the data 
from other facilities into their database, and to adjust for differences in syntax and 
semantics in patient identifi ers, medication formulary codes, diagnoses codes, and 
other information in their patients’ records. As relational databases grew in size 
and developed multiple dimensions, some commercial search-and-query programs 
for very large relational databases became available, led by Online Analytic Processing 
(OLAP), that provided answers to analytic queries that were multi-dimensional and 
that used relational databases. OLAP generally stored data in a relational structured 
design, and used aggregations of data built from a fact-table according to specifi ed 
dimensions. Relational database structures were considered to be multi-dimensional 
when they contained multiple attributes, such as time periods, locations, product 
codes, and other attributes that could be defi ned in advance and aggregated in hierar-
chies. The combinations of all possible aggregations in the database were expected to 
be able to provide answers to every query that could be anticipated of the stored data 
(Codd et al.  1993  ) . Connolly and Begg  (  1999  )  described a way of visualizing a 
multi-dimensional database by beginning with a fl at, two-dimensional table of data; 
then adding another dimension to form a three-dimensional cube of data called a 
“hypercube”; and then adding cubes of data within cubes of data, with each side of 
each cube being called a “dimension”, with the result being a multi-dimensional 
database. Pendse  (  1998,   2008  )  described in some detail the history of OLAP, and 
credited the publication in 1962 by K. Iverson of A Programming Language (APL) 
as the fi rst mathematically defi ned, multi-dimensional language for processing 
multi-dimensional variables. Multi-dimensional analyses then became the basis for 
several versions of OLAP that were developed in the 1970s and 1980s by IBM and 
others; and in 1999 the Analyst module was available in COGNOS that was subse-
quently acquired by IBM. By the year 2000 new OLAP derivatives were in use by 
IBM, Microsoft, Oracle, and others. 

  Object-oriented databases  were developed in the 1970s at the Xerox Palo Alto 
Research Center (PARC), and used the programming language Smalltalk (Robson 
 1981  ) . Object-oriented databases attempted to bring the database programming and 
the applications programming closer together; and treated the database as a modular 
collection of component data-items called  objects . Objects were members of an 
“entity” that belonged to types or classes of data with their own data and programming 
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codes; and objects incorporated not only data but also descriptions of their behavior 
and of their relationships to other objects. Whereas other database designs sepa-
rately represented information and its manipulation, in an object-oriented system 
the object represented both. Objects used “concepts” such as entities, attributes, and 
relationships; and objects could be members of an entity that belonged to types or 
classes with their own data and programming codes. Objects had an independent 
existence; and could be persons, activities, or observations; and were suffi ciently 
independent to be copied into other programs. Attributes were properties that 
described aspects of objects; and relationships described the association between 
objects (Dawson  1989  ) . Connolly and Begg  (  1999  )  described some relational vari-
ances for an object-oriented database in order to use SQL. 

 Barsalou and Wiederhold  (  1989  )  described their PENGUIN project that applied, 
a three-layered architecture to an object-oriented database that defi ned the object-
based data as a layer of data on top of a relational database-management system, 
with a hypertext interface between the object-oriented and the relational databases 
that provided conceptual integration without physical integration. Their worksta-
tions were Apple personal computers; and they used Apple’s HyperCard program 
for their Macintosh computer that defi ned and manipulated “stacks” of data corre-
sponding to a relational-database structure, with one fi eld for each attribute, written 
in the Macintosh HyperTalk language that allowed querying visual images that 
moved through a hypertext document. 

  Entity-attribute-value (EAV) databases  were developed to help manage the 
highly heterogeneous data within medical databases, where over several years of 
medical care a single patient could accumulate thousands of relevant descriptive 
parameters, some of which might need, from time-to-time, to be readily accessible 
from a large clinical database that contained multiple relational tables. Dinu and 
Nadkarni  (  2007  ) , Nadkarni and Cheung  (  1995  ) , Nadkarni et al.  (  1998  ) , Nadkarni 
et al.  (  1999  ) , Nadkarni et al.  (  2000  ) , Nadkarni and Marenco  (  2001  ) , Brandt et al. 
 (  2002  )  described an EAV database as an alternative to conventional relational-database 
modeling where diverse types of data from different medical domains were gener-
ated by different groups of users. The term, EAV database, was generally applied 
when a signifi cant proportion of the data was modeled as EAV even though some 
tables could be traditional relational tables. Conceptually, an EAV design used a 
database table with three columns: (1) ‘Entity’, that contained data such as the 
patient identifi cation, with a time-stamp of the date-and-time of the beginning and 
end of each clinical event; (2) ‘Attribute’, that identifi ed the event, such a laboratory 
test, or showed a pointer to a separate attribute table; and (3) ‘Value’ column, that 
contained the value of the attribute (such as the result of a laboratory test). A meta-
database was usually added to help provide defi nitions of terms, keys to related 
tables, and logical connections for data presentation, interactive validation, data 
extraction, and for ad-hoc query. Tuck et al.  (  2002  )  described some alternate meth-
ods for mapping object-oriented software systems to relational databases by using 
an EAV approach. Chen et al.  (  2000  )  evaluated the performance of an EAV design; 
and concluded that the advantage of the EAV design was in supporting generic 
browsing among many tables of data, as when following changes in a clinical 
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parameter over many periods of time; and that it also helped to provide schema 
stability as knowledge evolved and the metadata needed to change. However, attri-
bute-centered queries were somewhat less effi cient when using EAV designed data-
bases because of the large numbers of data tables with many more rows than when 
using conventional relational databases. Some early users of variations of the EAV 
model were: McDonald et al.  (  1977a,   b,   1982,   1988  ) , McDonald and Hammond 
 (  1989  )  in the Regenstrief Medical Record (RMR) system; Warner et al.  (  1972, 
  1974  ) , Warner  (  1990  ) , Pryor et al.  (  1983  )  in the HELP system; Stead and Hammond 
 (  1988  ) , Stead et al.  (  1992  ) , Hammond et al.  (  1977  ) , Pryor et al.  (  1982  )  in the TMR 
system; and Friedman et al.  (  1990  ) , Hripcsak et al.  (  1996  )  at Columbia University, 
and the EAV model underlies the architecture of i2b2 (see Sect.   3.3    ). 

  Database-management systems  in large medical centers began to evolve in the 
1950s, and were designed as either: (a) clusters of computers tightly coupled to a 
central large mainframe computer, or (b) loosely-coupled in a distributed database 
system (London  1985  ) . As information communication systems grew to service 
large medical centers, with all of their inpatient and outpatient clinical departments 
that included internal medicine, surgery, pediatrics, obstetrics, gynecology, pathol-
ogy, clinical laboratory, radiology, and others, with their great variety of medical 
applications, all of these required a complex, computer-based, information system 
that communicated data to-and-from all of the various clinical subsystems. As data-
bases grew larger and often contained redundant storage, Coltri  (  2006  )  noted that 
although a single, structural database model could initially allow for simpler coor-
dination, operation, and reporting; yet as clinical databases enlarged and became 
more complex with many functional relationships and subsystem components, with 
frequent changes in their data content, then the ability to restructure a single large 
database in order to satisfy the important need for effi cient querying of its data con-
tent became increasingly diffi cult. 

  Federated databases  developed that could store large volumes of aggregated 
data in multiple partitions or as functional-oriented databases that were logically 
interconnected. They were directly accessible to-and-from multiple applications, 
and allowed multiple users to simultaneously access and query data in the various 
databases (Coltri  2006  ) .  Data warehouses  was the term applied to large, extended, 
central databases that collected and managed data from several different databases; 
and they were capable of servicing the ever-increasing volume of patient data that 
were collected from the ever-changing and expanding medical technologies. As 
data warehouses further enlarged they often developed partitions and data-marts for 
specialized sub-sets of the data warehouse in order to better serve users with differ-
ent functional needs (Connolly and Begg  1999  ) . When data warehouses were found 
to satisfy the needs of different users and effi ciently query large collections of data, 
this led to the development of online analytical processing (OLAP), and of transla-
tional data processing between multiple data warehouses. 

  Translational databases  evolved in the late 1990s with more advanced designs of 
database-management systems to: (a) optimize the translation, transformation, link-
age, exchange, and integration of the increasingly voluminous medical information 
that was becoming accessible from many large databases in multiple institutions 
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that were located worldwide, by using wide-area-networks, the Internet, and the 
World Wide Web; (b) provide access to high-performance, super-computing 
resources; (c) facilitate the concurrent query, analyses, and applications of large 
amounts of data by multi-disciplinary teams; (d) encourage knowledge discovery 
and data mining, and support the transfer of new evidence-based knowledge into 
patient care; and (e) to advance the use of biomedical computational methods. Since 
most data warehouses had been developed with standard database-management sys-
tem designs that often employed their own legacy and data-encoding standards, it 
usually required some reorganization and modifi cation of their source data to be 
compatible with the data that was transferred from other different data warehouses 
and then be merged into a single database schema; so it became necessary to develop 
some translational informatics software.  

    2.3   Databases and Communication Networks 

  Distributed database systems  evolved in the 1970s with the introduction of low-cost 
minicomputers and effi cient communication networks that brought computers 
closer to the users. In a distributed database system with a cluster of specialized 
subsystem databases, each subsystem collected and stored in its separate database 
the data it generated; and a communications network provided linkages for data 
entry to, and retrieval from, an integrating central database, and also to other sub-
system databases as needed. As each specialized clinical service developed its indi-
vidual database to satisfy its own specifi c functional and technical requirements, 
this usually resulted in the need for an overall integrating database-management 
system that could better service the very complex organizational structure of a large 
hospital. This allowed physicians to use clinical workstations connected to client–
server minicomputers connected in a local-area-network that linked the entire hos-
pital. Patient data could be generated and used at the local sites, and collected from 
all of the distributed subsystem databases, and integrated in a central, computer-
based patient record (Friedman et al.  1990 ; Collen  1995  ) . However, since the com-
puters were often made by different manufacturers that used different software, this 
introduced a major problem when interchanging data between differently designed 
computer-database systems. This stimulated the evolution of specialized communi-
cations computers and networks for the distribution of data. Computers began to be 
linked together, usually connected to a central mainframe computer from which 
data could be downloaded to the smaller computers; and this changed the require-
ments and the designs of database-management systems. Wess  (  1978  )  noted that the 
design and implementation of a distributed-database system was more complex and 
demanding than that for a simple networked, data-communication system. By the 
late 1970s a variety of forms of networks for distributed-database systems began to 
appear, either linked together or connected to a central mainframe computer from 
which data could be communicated to-and-from the distributed smaller computers. 
In 1979 Walters  (  1979  )  at the University of California, Davis, began to link 
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microcomputers with their databases to a remote, large host computer using 
MUMPS-based software. Blois et al.  (  1971,   1974  )  advocated using a communica-
tions computer-processor that would perform code conversion, and provide a high-
speed communicating link to each distributed computer. In 1971 Blois initiated the 
fi rst distributed database system for the medical facilities at the University of 
California, San Francisco (UCSF) Hospital. He used a separate, dedicated, commu-
nications minicomputer to connect computers from several different vendors, and 
established the fi rst local-area network (LAN) for medical data communications. 
Blois separated the functions for communications from those for data processing, 
since each subsystem had its own requirements for data input, data processing, and 
data communications. After developing modular subsystems that could stand alone, 
he linked them in a communications network using specifi c standards adopted at 
their onset. His distributed database-management system required a reliable high-
bandwidth, communications computer to perform communications code conversion, 
and also required a high-speed link to each subsystem computer. Wasserman  (  1977, 
  1986  )  while associated with Blois, proposed that a distributed database system should 
be capable of functioning at all levels of data acquisition, data manipulation, data 
retrieval, and data communications for a variety of applications; and he advocated 
that distributed medical databases needed to support an interactive information sys-
tem with advanced software design, and with clinical work-stations. 

 Zeichner et al.  (  1979  )  at Mitre Corporation and Tolchin et al.  (  1980  )  at Johns 
Hopkins University described their distributed database system that contained a 
variety of different independent minicomputers. They used microcomputer-based, 
interface-units between each network minicomputer-processor and the communica-
tions bus. Data exchange used a standard set of protocols between network units, so 
each new or modifi ed application or device could interact with its communications 
bus. In 1980 the Johns Hopkins group implemented a fi ber-optic, local-area-net-
work to integrate several subsystems built by three different manufacturers, each 
with a different operating system. They used microprocessor, network-integrating 
units to perform the conversions of communications codes needed to exchange data 
(Tolchin et al.  1981a ; Tolchin and Stewart  1981  ) . In 1985 they expanded their dis-
tributed clinical-information systems, all linked by Ethernet technology that sup-
ported 10-megabit-per-second data rates on a shared coaxial-cable medium which 
was logically a broadcast bus (Tolchin et al.  1985a,   b  ) . Kuzmak et al.  (  1987  )  
described their addition of a central, clinical-results database to contain all of the 
reports for the clinical laboratory, radiology, and surgical pathology; and it was 
networked to permit the viewing of patients’ reports from any terminal, any per-
sonal computer, or workstation in their hospital. Tolchin et al.  (  1982  )  at the Johns 
Hopkins University and D. Simborg  (  1984  )  at the University of California in San 
Francisco (UCSF), made a signifi cant contribution to networking technology that 
reduced the problem of interfacing multiple incompatible computers, when they 
implemented at the UCSF medical center a fi ber-optic, local-area network that inte-
grated four different minicomputers, by using a fi fth host-computer that was inter-
faced to the network to provide a monitoring service for performance analysis. 
Hammond et al.  (  1985  )  and associates at Duke University reported implementing an 
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Ethernet local-area-network for three types of computers connecting their clinical 
laboratory system to their central “The Medical Record” (TMR) database. 

  Network models  were one of the earliest organizational structures used for clus-
ters of computers with distributed databases; and they displayed pointers to link 
various data sets. Since the same data could reside in more than one data base, it 
required a communications network to link such data. This led in 1971 to a 
Conference on Data Systems Languages (CODASL) that advocated a variance of 
the network model in a hierarchical form of database with a tree-like branching 
structure that, at the start of the database, defi ned connections between fi les (Taylor 
and Frank  1976  ) . 

  Communications  s tandards  for both the communications networks and for their 
transmission of data became essential requirements for the exchange of data between 
different computer systems. In the late 1970s the International Standards Organization 
(ISO) developed an important model and reference base for network systems that 
specifi ed seven layers for the exchange of data between computers, with each layer 
corresponding to the same layer in the other computers. ISO layer one, the physical 
layer, included interface hardware devices, modems, and communication lines, and 
the software driver for each communication device that activated and deactivated 
the electrical and mechanical transmission channels to various equipment. Layer 
two, the data-link layer, provided for transfer of blocks of data between data-terminal 
equipment connected to a physical link, and included data sequencing, fl ow control, 
and error detection to assure error-free communication. Layer three, the network 
control layer, provided routing and switching of messages between adjacent nodes 
in the network. Layer four, the transport layer, provided an end-to-end control of the 
transmission channel once the path was established. Layer fi ve, the session-control 
layer, opened communications, established a dialogue, and maintained the connec-
tion including the control and synchronization for the transfer of messages between 
two computers. Layer six, the presentation layer, insured the message was trans-
ferred in a coded form that the receiving computer could interpret. Layer seven, the 
application-user layer, the only part of the system apparent to the user, provided 
services that facilitated data exchange between application processes on different 
computers (Blaine  1983 ; Huff  1998  ) . Thus each of the seven ISO layers had a 
defi ned set of functions and a layer protocol that established the rules for exchange 
with the corresponding layer in another computer. Orthner  (  1998  )  noted that net-
work protocols required standardization of a variety of processes involved in data 
communications; and this led the International Organization to foster the develop-
ment of the Open System Interconnection (OSI) Reference Model. To permit the 
connection and integration of local-area networks (LANs) with other LANs required 
the development of: (a)  bridges  that operated at level two of the ISO/OSI seven-
level architecture to connect one LAN to another; (b)  routers  that operated at layer 
three and routed packets of data between dissimilar networks; and (c)  gateways  that 
operated at level seven, providing high-speed communications from a host com-
puter to the network. 

  Medical data standards  for data transmission began to be developed in 1983; 
and its early history was reviewed by McDonald  (  1990,   1983  ) , McDonald and 
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Hripsak  (  1992  ) . The proposed standards addressed what items of information 
should be included in defi ning an observation, what data structure should be 
employed to record an observation, how individual items should be encoded and 
formatted, and what transmission media should be supported. Formal attempts to 
improve the standardization of medical data were carried out by collaborating 
committees, such as the subcommittees on Computerized Systems of the American 
Standards for Testing Materials (ASTM), the oldest of the nonprofi t standards-
setting societies, and a standards-producing member of the American National 
Standards Institute (Rothrock  1989  ) . The ASTM technical subcommittee E31.12 
on Medical Informatics considered nomenclatures and medical records (Gabrieli 
 1985  ) . In 1988 ASTM’s subcommittee E31.11 on Data Exchange Standards for 
Clinical Laboratory Results published its specifi cations, E1238, for clinical data 
interchange, and set standards for the two-way digital transmission of clinical data 
between different computers for laboratory, for offi ce, and for hospital systems; so 
that, as a simple example, all dates for years, months and days should be recorded 
as an eight-character string, YYYYMMDD. Thus the date, January 12, 1998, 
should always be transmitted as 19980112 (ASTM  1988a,   b,   1989  ) . The Medical 
Data Interchange (MEDIX) P1157 committee of the Institute of Electrical and 
Electronics Engineers (IEEE), formed at the Symposium on Computer Applications 
in Medical Care (SCAMC) in 1987, was also developing a set of standards based 
on the ISO application-level standards for the transfer of clinical data over large 
networks from mixed sources, such as from both a clinical laboratory and a phar-
macy, for both intra- and inter-hospital data exchange. Linkages of data within a 
hospital were considered to be “tight, synchronous”, and between hospitals were 
assumed to be “loose, asynchronous” (Rutt  1989  ) . McDonald  (  1990  ) , McDonald 
and Hripsak  (  1992  )  emphasized the need for clinical-data interchange standards 
that became essential when electronic medical records (EMRs) became technically 
feasible, and needed to integrate all of the various formats and structures of clinical 
data from the computer-based, clinical laboratory system, the radiology system, 
pharmacy system, and from all of the medical specialty subsystems such as the 
intensive-care unit, the emergency department, and others. Orthner  (  1992  )  described 
several important advances for digital communication systems that evolved in the 
1990s, including: (1) time division multiplexed (TDM) systems that allowed sev-
eral lower-speed digital communication channels to interleave onto a higher-speed 
channel; (2) the evolution of Integrated Services Digital Network (ISDN) that 
developed international standards to satisfy the needs for medical database sys-
tems; and to provide users with universal, digital inter-connectivity regardless of 
modality, including natural-language text, voice, and three-dimensional images; 
(3) the increasing use of broadband fi ber-optics for digital data communication; 
and (4) the evolving global use of wireless communications. 

  Health Level 7  (HL7), an international organization made up of computer ven-
dors, hospital users, and healthcare consultants, was formed in 1987 to develop 
interface standards for transmitting data between medical applications that used dif-
ferent computers within hospital information systems, with the goal of creating a 
common language to share clinical data (Simborg  1987  ) . HL7 communicates data 
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as a sequence of defi ned ASCII characters, which are hierarchically organized into 
segments, fi elds, and components. The message content of HL7 conforms to the 
International Standards Organization (ISO) standards for the applications level 
seven of the Open Systems Interconnection (OSI) model. The HL7 standards use 
the same message syntax, the same data types, and some of the same segment defi -
nitions as ASTM 1238 (McDonald and Hammond  1989 ; McDonald and Siu  1991 ; 
McDonald and Hripsak  1992  ) . HL7 expanded its activities in the 1990s, and became 
one of the accredited Standards Developing Organizations (SDOs) in the American 
Standards Institute (ANSI) to collaborate with other SDOs to develop standards, 
specifi cations and protocols for the interoperability of hospitals clinical and admin-
istrative functions. HL7 version-3 published in 1995 its Reference Information 
Model (HL7 RIM) with the goal of providing improved standard vocabulary speci-
fi cations for the interoperability of healthcare information systems including elec-
tronic medical records; and to improve representation of semantical, syntactical and 
lexical aspects of HL7 messages (Smith and Ceusters  2006  ) . Bakken et al.  (  2000  )  
described some activities of the HL7 Vocabulary Activity Committee related to 
vocabulary domain specifi cations for HL7-coded data elements, and for its guid-
ance in developing and registering terminology and vocabulary domain specifi ca-
tions including those for HL7 RIM. In 2004 HL7 released its draft standards for the 
electronic medical record that included: (1) direct care functions, including care 
management and clinical decision support, (2) supportive care functions, including 
clinical support, research, administrative and fi nancial functions; and (3) informa-
tion infrastructure functions of data security and records management (Fischetti 
et al.  2006  ) .  

    2.4   Classifi cation of Medical Databases 

  Medical databases  are classifi ed in this book in accordance with their objectives, 
which can be to support clinical patient care, or to support medical research, or sup-
port administrative functions, or public health objectives. Medical databases collect, 
integrate, and store data from various sources; and they are usually considered to be 
 primary  databases if the data were initially collected and used to serve the direct 
purposes of the user; and are considered to be  secondary  databases when data 
derived from primary databases were stored in other databases and used for other 
objectives (Glichlich et al.  2007  ) . 

  Clinical databases  include a variety of primary and secondary databases that are 
used primarily by physicians to support their clinical patient care by helping in mak-
ing decisions for the diagnosis and treatment of patients. The great utility of clinical 
databases resides in their capacity for storing huge volumes of information col-
lected from large numbers of patients and from other clinical sources; and for their 
ability to help users to search, retrieve, and analyze information relevant to their 
clinical needs. Michalski et al.  (  1982  )  described clinical databases as constructed to 
collect patient data and to learn more about the phenomena which produced the 
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data; and he divided techniques for using clinical databases into: (a) descriptive 
analyses to extract summaries of important features of a database, such as grouping 
patients with similar syndromes and identifying important characteristics of each 
syndrome; and (b) predictive analyses to derive classifi cation rules, such as develop-
ing rules which predict the course of a disease. Clinical databases were differenti-
ated by Hlatky  (  1991  )  as either primary medical databases that are intended to assist 
and support decision making in direct patient care; or as secondary medical data-
bases that are the repositories of data derived from medical primary databases, and 
these include medical specialized databases (see Chap.   5    ) and medical research 
databases (see Chap.   6    ) 

  Primary medical record databases , also more commonly referred to as patient 
record databases, as electronic medical records (EMRs) or as electronic health 
records (EHRs), are the data repositories used by physicians, nurses, and other 
health-care providers to enter, store, and retrieve patients’ data during the process 
of providing patient care. The National Library of Medicine’s MESH terms defi nes 
an electronic medical record (EMR) as a computer-based system for input, stor-
age, display, retrieval, and printing of information contained in a patient’s medical 
record (Moorman et al.  2009  ) . Primary clinical databases also include the sepa-
rate repositories for storing data collected from clinical specialties, such as from 
surgery, pediatrics, obstetrics, and other clinical services; and from the clinical 
support services, such as from laboratory, radiology, pharmacy, and others. Patient 
record databases may contain data collected over long periods of time, sometimes 
for a patient’s life-time; they are accessed by a variety of users for different 
patient-care purposes; and they need to satisfy legal requirements for maintaining 
the security, privacy and confi dentiality of all of their patients’ data (see also Sect. 
  4.1.1    ). When computer-based patients’ records replaced paper-based patients’ 
charts, the hospital record room was replaced by a computer center that initially 
stored the patient-record databases on magnetic tapes or discs. The rapidly increas-
ing volume of computer-based information stimulated the development of larger 
storage devices and more effi cient database-management systems. For most medi-
cal applications, Blum  (  1986a  )  emphasized that the primary utility of a clinical 
information system depended on its database-management system. It soon became 
apparent that the complex requirements of patient-record databases required com-
bined hierarchical, relational, and object-oriented structural approaches. After a 
review of the patient-record database structures employed in the 1990s, Stead 
et al.  (  1992  )  et al. reported that the major problem for a patient-record database-
management system was the diffi culty of mapping complex logical structures into 
a physical media; and concluded that patient-record databases were much more 
complicated than were databases used for other purposes, that none of the existing 
database structural designs was adequate for developing, as an example, a com-
mon national patient-record database, and some combination of database designs 
would needed to be employed. Dick and Steen  (  1992  )  and E. Steen also reviewed 
the essential technologies needed for a patient-record database system, and agreed 
that in the 1990s there was not yet one medical database system available that 
could serve as a model for computer-based patient record systems, and that could 
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satisfy all the continual changing requirements for timely processing of all the 
information commerce in a comprehensive patient-care system, with all of its dif-
ferent information modalities and changing patient-care technologies, and with its 
strict legal requirements for assuring patients’ data security and confi dentiality. 

 Camp et al.  (  1983  )  described some of the complexities of primary clinical data-
bases, namely: (1) at the time when patient-care information was being obtained it 
was not always known what data might be needed in the future,so this tended to 
enlarge a database with some data that was never used; (2) the database had to store 
information that could be differently structured and formatted, and was often unstan-
dardized; (3) it needed to allow exploring complex data relationships in (frequently) 
a minimal access time, and not unduly interfere with the productivity of busy health 
care providers who were not computer programmers; and (4) a common defi ciency 
of primary clinical databases was that they tended to lack patients’ data for events 
that occurred between recorded visits to their health care providers. Connolly and 
Begg  (  1999  )  noted that since most clinical data were “time-stamped”, it was neces-
sary that data transactions be recorded and retrieved in their correct time sequence. 
Graves  (  1986  )  added that another requirement for a medical database was to provide 
a natural language processing (NLP) program that had the capability to query tex-
tual information such as were obtained by patient interviews, and that could include 
relevant expressed feelings and experiential information. The availability of online 
access to clinical databases greatly facilitated the process of searching and retriev-
ing information when needed in a timely way by physicians for clinical decision-
making. The factors that infl uenced the rate of diffusion of medical databases and 
other computer applications in medical practice were studied by Anderson and Jay 
 (  1984  )  at Purdue and Indiana Universities; and they concluded that physicians had 
the major role in their diffusion. 

  Specialized clinical databases  can be disease-specifi c (as for heart disease or 
cancer), or device- or procedure-specifi c (as for coronary artery bypass surgery), or 
therapy-specifi c (as for anti-viral drugs), or population-specifi c (as for a geriatric 
or a racial group). Safran and Chute  (  1995  )  observed that a clinical database could 
be used to query for information on an individual patient, or to fi nd data on patients 
with similarities to the one being cared for, or to describe a group of patients with 
some common attributes, or to analyze data patterns in terms of trends or relation-
ships. Fries  (  1984  )  noted that some of the most important medical problems were 
the chronic diseases, such as arthritis, cancer, and heart disease; and a study of the 
management of these disorders could be benefi ted by chronic diseases databases 
(see also Sect.   5.3    ). A large medical center often had many specialized clinical 
databases for its various inpatient and outpatient clinical services, and for its clini-
cal support subsystems (laboratory, radiology, pharmacy, and others). As a result it 
usually needed a distributed database-management system to service them all. 
Each clinical subsystem’s database needed extract-load-transfer (ETL) programs 
to move data to-and-from its subsystem database and the central, integrated, clini-
cal database. 

  Clinical research databases  may be primary databases when the clinical patient 
data was collected for the primary purpose of supporting clinical research, such as 
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for clinical trials; but they are usually secondary research databases that contain 
selected data extracted from primary medical databases, such as when they contain 
clinical data extracted from primary medical records for groups of patients with the 
same problem. This differs from primary patient care databases where the medical 
record of each patient needs to contain all of the information collected for all of the 
medical problems of that individual patient. In a secondary research database it is 
usually necessary to extract and transfer the selected data from the primary patient-
record database into the secondary research database; and all patient data trans-
ferred from a primary patient-record database has additional special legal 
requirements for assuring the data validity, data security, and the strict privacy and 
confi dentiality of each patient’s data. Garfolo and Keltner  (  1983  )  emphasized the 
importance of the need to de-identify patient data when a clinical database is also 
used for research purposes (see Sects.   4.1.1     and   6.1.1    ). 

  Biosurveillance databases  were developed by the FDA for the surveillance of 
adverse drug events (see Sect.   7.1    ); and by the CDC for the surveillance of epidemics 
of infectious diseases (see Sect.   7.2    ).  Claims databases  were established by Medicare, 
Medicaid, and commercial health care insurers for collecting from health care pro-
viders their relevant sub-sets of primary medical record data for the purpose of 
arranging payments for claims of provided clinical services (see Sect.   7.3    ).  Medical 
knowledge databases  are comprehensive collections of information from a variety of 
sources, including clinical and research databases, textbooks, and publications by 
experts in specifi c medical issues. They are used to communicate medical informa-
tion in order to support the clinical decision-making process (see Sect.   8.1    ); and large 
knowledge bases with other medical databases have been combined and used for data 
mining to discover new knowledge (see Sect.  8.2    ).  Medical bibliographic databases  
are collections of medical literature developed as fact-and-information locators in 
libraries and other collections of relevant medical publications, and are used to pro-
vide and communicate medical information. The National Library of Medicine 
(NLM) is the primary resource in the world for a variety of bibliographic databases 
(see Sect.   9.1    ). 

  Metadatabases  are developed to store  metadata,  that are data that describe the data 
contained in a database for the purposes of providing a dictionary with defi nitions of 
terms; and a list of coded data in the database with their codes; and to serve as a the-
saurus to recognize different terms that have similar meanings; and to provide a lexi-
con of standard, accepted, defi ned, and correctly spelled terms. A metadatabase needs 
to contain associated relevant information to aid: in the storage and retrieval of data in 
the database; in providing linkages to other data items and fi les; in providing keys to 
related tables; in providing logical connections for data presentation, interactive vali-
dation, data extraction, permitting ad-hoc query; and also providing users with inter-
faces for any metadata additions or corrections. A data dictionary was usually initiated 
as a part of a metadatabase by selecting commonly used terms from a standard medi-
cal dictionary and from related medical literature; and needed to be capable of adding 
new terms from the database itself; so the design of the data dictionary had to allow 
for incorporating new data items when they were introduced, such as for new proce-
dures. As these lexicons became the basis for automated natural-language processing, 
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they also usually included: (1) syntactical information as to whether a word was a 
noun, a verb, or other; and (2) the word’s semantical information as to its meaning in 
the language of medicine (McCray et al.  1987  ) . 

 For a primary patient-record database the metadatabase needed: to provide any 
special instructions for conducting clinical procedures; needed to describe all pro-
cesses and procedures such as clinical laboratory tests; and needed to specify the 
normal and the “alert” boundary limits for each clinical test and procedure. Warner 
 (  1979  )  emphasized that the purpose of a metadatabase was to minimize the chance of 
ambiguity in data representation between the point of data entry and the point at which 
the data was used. Anderson  (  1986  )  credited the Veterans Administration (VA) with 
publishing the fi rst data dictionary as a part of the VA’s computer-based medical record 
(see Sect.   4.2    ). Hammond et al.  (  1977,   1980,   1985  )  and W. Stead described in some 
detail the metadatabase developed for Duke University’s TMR (The Medical Record) 
(see Sect.   4.2    ). Their metadatabase included patients’ identifi cation data; it defi ned 
and coded all clinical variables including patients’ medical problems, diagnostic stud-
ies, and therapies. They used their metadatabase as a dictionary to defi ne the codes for 
their computer-based, clinical laboratory system that was linked to their TMR system. 
Their metadatabase permitted modifying and updating specifi c clinical functions, and 
allowed for differences between various medical specialties and clinics. Sections of 
the metadatabase were devoted to system specifi cations; to medical problems, proce-
dures, therapies; and to health-care providers’ information. It contained patients’ 
demographic and examination data, clinical reports and messages, and also profes-
sional fees and accounting data. An alphabetically arranged thesaurus provided defi -
nitions of synonyms. Where appropriate for free-text input, all codes and their text 
equivalents were defi ned in the metadatabase. The user could enter a code directly; or 
could type in the textual data and then let the program do an alphabetic search in the 
metadatabase and convert the text-string into the appropriate code. With the advent of 
the World Wide Web, Munoz and Hersh  (  1998  )  reported using a Java-based program 
for generating a Web-based metadatabase.  

    2.5   Summary and Commentary 

 In the 1950s patients’ medical records were paper-based and were stored in stacks of 
charts on shelves in a medical record room. In the early 1960s the development of com-
puters allowed patient-care data to be entered into a computer by using punched paper 
cards; and the data were stored and accessed sequentially in computer fl at fi les that had 
little structured relationships; and they were aggregated in fi le-management systems. 
In the late 1960s structured computer databases began to evolve with associated data-
base-management systems. In the 1970s distributed database systems began to be devel-
oped; and in the following decades of the 1980s, 1990s, and the 2000s the development 
of increasingly large and ebhanced medical databases was truly phenomenal. 

 In the 1960s hospital information systems began to be developed that used large 
mainframe computers with integrated databases that serviced all clinical departments. 
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It was soon found that although a single, large, mainframe computer could readily 
integrate patient data into a single database, it could not adequately support the 
information processing requirements for all of the clinical specialty and ancillary 
services in a large medical center. In the 1970s the advent of minicomputers permit-
ted many hospital services to have their subsystems databases directly linked to a 
central mainframe computer that integrated all patients’ data into the patients’ clini-
cal records that were stored in the mainframe computer’s database (Ball and 
Hammon  1975a,   b  ) . Some patient data were manually encoded before being entered 
into the database to facilitate billing for payments of claims, and for the retrieval of 
data for management and clinical research purposes. In the 1980s a diffusion of 
minicomputers and microcomputers were incorporated into a variety of medical 
applications. Micro-computer-based subsystems that had evolved independently for 
specialized clinical and ancillary services usually became subsystems of larger 
medical information systems with an integrating central database-management sys-
tem. Storage technology improved, storage devices became cheaper and larger; reg-
istries grew in size to become databases; databases became data warehouses; and a 
great variety of secondary clinical databases evolved. 

 In the 1990s international communications used computers and local-area net-
works; and the use the Internet and the World Wide Web became commonplace. As 
patient-care data expanded in both volume and complexity, frequent innovations in 
informatics technology provided more effi cient computer-based, clinical-informa-
tion systems in hospitals and in medical offi ces. In the 2000s distributed informa-
tion systems allowed physicians to enter orders and retrieve test results using clinical 
workstations connected to client–server computers in local-area-networks that 
linked multiple medical center databases. By the end of the 2000s there had    evolved 
global wireless communications with translational networks that linked data ware-
houses in collaborating medical centers in the nation.      
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 In the 1950s the clinical data in medical records of patients in the United States were 
mostly recorded in a natural, English-language, textual form. This was commonly 
done by physicians when recording their notes on paper sheets for a patient’s medical 
history and physical examination, for reporting their interpretations of x-ray images 
and electrocardiograms, and for their dictated descriptions of medical and surgical 
procedures. Such patients’ data were generally recorded by health-care professionals 
as hand-written notes, or as dictated reports that were then transcribed and typed on 
paper sheets, that were all collated in paper-based charts; and these patients’ medical 
charts were then stored on shelves in the medical record room. The process of manu-
ally retrieving data from patients’ paper-based medical charts was always cumber-
some and time consuming. An additional frequent problem was when a patient was 
seeing more than one physician on the same day in the same medical facility; then 
that patient’s paper-based chart was often left in the fi rst doctor’s offi ce, and therefore 
was not available to the other physicians who then had to see the patient without hav-
ing access to any recorded prior patient’s information. Pratt  (  1974  )  observed that the 
data a medical professional recorded and collected during the care of a patient was 
largely in a non-numeric form, and in the United States was formulated almost exclu-
sively in English language. He noted that a word, a phrase, or a sentence in this lan-
guage was generally understood when spoken or read; and the marks of punctuation 
and the order of the presentation of words in a sentence represented quasi-formal 
structures that could be analyzed for content according to common rules for: (a) the 
recognition and validation of the string of language data that was a matter of mor-
phology and syntax; (b) the recognition and the registration of each datum and of its 
meaning that was a matter of semantics; and (c) the mapping of the recognized, 
defi ned, syntactical and semantic elements into a data structure refl ected the informa-
tional content of the original language data string, and (d) that these processes 
required defi nition and interpretation of the information by the user. 

 In the 1960s when computer-stored medical databases began to be developed, it 
was soon recognized that a very diffi cult problem was how to process in the com-
puter in a meaningful way, the large amount of free-form, English-language, textual 
data that was present in almost every patient’s medical record; most commonly 
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recorded in patients’ histories, in dictated surgery-operative reports, pathology 
reports, and in the interpretations of x-rays and electrocardiograms. In some clinical 
laboratory reports, such as for microbiology, descriptive textual data was often 
required, and had to be keyed into the computer by the technologist using a full-
alphabet keyboard, or by selecting codes or names for standard phrases from a menu 
that could be entered by specially designed keyboards or by selecting from a visual 
displayed menu (Williams and Williams  1974 ; Lupovitch et al.  1979 ; Smith and 
Svirbely  1988  ) . It was evident that the development of natural language processing 
(NLP) programs were essential, since textual data: (1) was generally unstandardized 
and unstructured, (2) was often diffi cult to interpret, (3) required special computer 
programs to search and retrieve, and (4) narrative text required more storage space 
than did digital numbers or letters. To help overcome these problems, English-
language words and phrases were often converted into numerical codes; and coding 
procedures were developed to provide more uniform, standardized agreements for 
terminology, vocabulary, and meaning. These were followed by the development of 
computer programs for automated encoding methods; and then by special query and 
retrieval languages for processing textual data. In machine translation of data, the 
purpose of recognizing the content of an input natural-language string is to accu-
rately reproduce the content in the output language. In information retrieval these 
tasks involved the categorization and organization of the information content for its 
use by others in a variety of situations. However, since for the automatic processing 
of medical textual data, the required well-formed syntactical language was rare, 
then syntactic/semantic language programs needed to be developed. 

  Natural language processing  (NLP) by computers began to evolve in the 1980s 
as a form of human-computer interaction. There are many spoken languages in this 
world; but this book only considers English language text, and uses NLP to repre-
sent only natural (English) language processing. NLP was defi ned by Obermeier 
 (  1987  )  at Battelle Laboratories, Columbus, OH, as the ability of a computer to pro-
cess the same language that humans used in their normal discourse. He considered 
the central problems for NLP were: (a) how to enter and retrieve uncoded natural-
language text; and (b) how to transform a potentially ambiguous textual phrase into 
an unambiguous form that could be used internally by the computer database. This 
transformation involved the process of combining words or symbols into a group 
that could be replaced by a code or by a more general symbol. Different types of 
parsers evolved which were based on pattern matching, on syntax (grammar), on 
semantics (meaning), on knowledge bases, or on combinations of these methods. 
Hendrix and Sacerdota  (  1981  )  at SRI International, described the complex nature of 
NLP as requiring the study of sources of: (1) lexical knowledge that is concerned 
with individual words, the parts of speech to which they belong, and their meanings; 
(2) syntactic knowledge that is concerned with the grouping of words into meaning-
ful phrases; (3) semantic knowledge that is concerned with composing the literal 
meaning of syntactic units from the semantics of their subparts; (4) discourse knowl-
edge that is concerned with the way clues from the context being processed are used 
to interpret a sentence; and (5) domain knowledge that is concerned with how medi-
cal information constrains possible interpretations. 
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 Clearly NLP had to consider semantics since medical language is relatively 
unstandardized, it has many ambiguities and ill-defi ned terms; and often has multiple 
meanings of the same word. Wells  (  1971  )  offered as an example of semantically 
equivalent phrases: muscle atrophy, atrophy of muscle, atrophic muscle, and muscu-
lar atrophy. In addition NLP had to consider syntax, or the relation of words to each 
other in a sentence; such as when searching for strings of words, such as “mitral 
stenosis and aortic insuffi ciency”, where the importance of the ordering of these 
words is evident since the string, “mitral insuffi ciency and aortic stenosis”, has a very 
different meaning. Similarly, the phrase “time fl ies for house fl ies” made sense only 
when one knew that the word “fl ies” was fi rst a verb and then a noun. Inconsistent 
spelling and typographic errors also caused problems with word searches made by a 
computer program that exactly matched letter-by-letter. Pryor et al.  (  1982  )  also 
observed that the aggregate of data collected by many different health-care profes-
sionals provided the basic information stored in a primary clinical database; and to 
accurately refl ect their accumulated experience required that all of their observations 
had to be categorized and recorded in a consistent and standardized manner for all 
patients’ visits. To facilitate the retrieval of desired medical data, Pryor advocated 
that a clinical database needed to incorporate a coded data-entry format. Johnson 
et al.  (  2006  )  also considered structured data-entry and data-retrieval to be basic tools 
for computer-assisted documentation that would allow a physician to effi ciently 
select and retrieve from a patient’s record all data relevant to the patient’s clinical 
problems; and also to be able to retrieve supplementary data from other sources that 
could be helpful in the clinical-decision process; and to be able to enter into the com-
puter any newly acquired data, and then generate a readable report. 

 McCray  (  1987,   1998  )  at the National Library of Medicine (NLM) described the 
medical lexicon as the embodiment of information about medical terms and language, 
and it served as the foundation for natural language processing (NLP). McCray pro-
posed that the domain knowledge combined with lexical information and sophisti-
cated linguistic analysis could lead to improved representation and retrieval of 
biomedical information and facilitate the development of NLP. McCray et al.  (  2001  )  
studied the nature of strings of words found in the NLM’s UMLS Metathesaurus (see 
Sect.   9.1.1    ), and studied their usefulness in searching articles in the NLM’s MEDLINE 
database. Their studies indicated that the longer the string of words, for example more 
than four words, the less likely it would be found in the body of the text and therefore 
less likely to be useful in natural language processing. Grams and Jin  (  1989  )  reviewed 
the design specifi cations for databases that stored natural language text (including 
graphs, images, and other forms of non-digital information that were collected from 
reference sources such as journals and text books), and could display the requested 
information in a user friendly, natural language format. R. Grams concluded that such 
a database required a companion metadatabase that defi ned terms, and provided a 
thesaurus for data that was acquired from different sources. Friedman and Hripcsak 
 (  1999  ) , after many years of work developing a natural language processing (NLP) 
system, concluded that although encoded medical data was necessary for its accurate 
retrieval, much of the data in patients’ records were recorded in a textual form that was 
extremely diverse, and the meanings of words varied depending on its context; and the 
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patients’ records were usually not readily retrievable. So effi cient NLP systems were 
essential for processing textual data; but these systems were very diffi cult to develop 
and they required substantial amounts of relevant knowledge for each clinical domain 
in which they were employed. 

    3.1   The Development of Standard Terminologies and Codes 

  Medical terminologies  are systemized collections of terms used in medicine to assist a 
person in communicating with a computer; and they require developing and using 
standard defi nitions of: (1)  terms  that are units of formal language such as words or 
numbers; (2)  entities  that are units of reality, such as human body sites, population 
groups, or components of a system or of an organization such as the radiology depart-
ment in a hospital; (3)  codes  that are units of partitions, groups of words, letters, num-
bers, or symbols that represent specifi c items, such as medical diagnoses or procedures; 
(4)  nominal phrases  that are units of natural language; and (5)  concepts  that are repre-
sentations of thoughts formed in the mind, that are mental constructs or representations 
of combined things, objects, or thoughts (Olson et al.  1995 ; Tuttle et al.  1995  ) . 

 Ozbolt et al.  (  1995  )  reported testing manual auditors for their reliability and valid-
ity for coding standard terms they had collected from a set of 465 patients’ medical-
care records that were submitted by nine hospitals. Manual auditors identifi ed almost 
19,000 items in these patients’ records as representing statements of patients’ medi-
cal problems, patients’ outcomes from care, and patient-care problems; and they 
found that their set of standard terms and codes matched 99.1% of these items. They 
concluded that this was a useful demonstration that medical terminologies could 
meet criteria for acceptable accuracy in coding, and that computer-based terminolo-
gies could be a useful part of a medical language system. Hogan and Wagner  (  1996  )  
evaluated allowing health-care practitioners to add free-text information to supple-
ment coded information and to provide more fl exibility during their direct entry of 
medications. They found that the added free-text data often changed the meaning of 
coded data and lowered data accuracy for the medical decision-support system used 
with their electronic medical records (EMRs). Chute  (  1998  )  reviewed in some detail 
the evolution of healthcare terminologies basic to medical data-encoding systems, 
and how its history went back several centuries. Current terminologies and methods 
for encoding medical diagnoses began in the 1940s by the World Health Organization 
(WHO), who undertook the classifying and codifying of diseases by systematic 
assignment of related diagnostic terms to classes or groups. The WHO took over 
from the French the classifi cation system they had adopted in 1893, and was based 
primarily on body site and etiology of diseases (Feinstein  1988  ) . 

  Medical Subject Headings  ( MeSH ) vocabulary fi le was initiated in 1960 by the 
National Library of Medicine (NLM) to standardize its indexing of medical terms 
and to facilitate the use of its search and retrieval programs. MeSH was developed 
primarily for the use of librarians for indexing the NLM’s stored literature citations, 
and was NLM’s way of meeting the problem of variances in medical terminology by 
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instituting its own standard, controlled vocabulary. However, MeSH was not designed 
to serve as a vocabulary for the data in patients’ medical records. MeSH is a highly 
structured thesaurus consisting of a standard set of terms and subject headings that 
are arranged in both an alphabetical and a categorical structure, with categories fur-
ther subdivided into subcategories; and within each subcategory the descriptors are 
arranged hierarchically. MeSH is the NLM’s authority list of technical terms used for 
indexing biomedical journal articles, cataloging books, and for bibliographic search 
of the NLM’s computer-based citation fi le (see also Sect.   9.1    ). 

 The  International Classifi cation of Diseases  (ICD) published under the WHO 
sponsorship was in its sixth revision in 1948. In the 1950s medical librarians manu-
ally encoded ICD-6 codes for diagnoses. In the 1960s ICD-7 codes were generally 
key punched into cards for electronic data processing. The International Classifi cation 
of Diseases, Adapted (ICDA) was used in the United States for indexing hospital 
records, and was based on ICD-8 that was published in 1967. Beginning in 1968 the 
ICDA began to serve as the basis for coding diagnoses data for offi cial morbidity 
and mortality statistics in the United States. In addition, the payors of insurance 
claims began to require ICDA codes for payments; and that encouraged hospitals to 
enter into their computers the patients’ discharge diagnoses with their appropriate 
ICDA codes. The ninth revision, ICD-9, appeared in 1977; and since ICD was origi-
nally designed as an international system for reporting causes of death, ICD-9 was 
revised to better classify diseases. In 1978 its Clinical Modifi cation (ICD-9-CM) 
included more than 10,000 terms and permitted six-digit codes plus modifi ers. ICD-
9-CM also included in its Volume III a listing of procedures. Throughout the three 
decades of the 1980s, 1990s, and 2000s, the ICD-9-CM was the nationwide classi-
fi cation system used by medical record librarians and physicians for the coding of 
diagnoses. The fi nal versions of the ICD-9 codes were released in 2010 (CMS-
2010); and the ICD-10 codes were scheduled to appear in 2011. 

 Chute  (  2010  )  noted that the 1996 Health Insurance Portability and Accountability 
Act (HIPAA) was the fi rst time in legislative history that the healthcare industry was 
subjected to a mandate for data-exchange standards, such as the required use of 
International Classifi cation of Diseases (ICD) codes. HIPAA gave the National 
Committee for Vital and Health Statistics (NCVHS) the authority to oversee health-
information exchange standards, and NCVHS became the fi rst designated commit-
tee for health information technology (HIT) standards. 

 The Standard Nomenclature of Diseases and Operations (SNDO), a compila-
tion of standard medical terms by their meaning or by some logical relationship 
such as by diseases or operations, was developed by the New York Academy of 
Medicine and was published by the American Medical Association in 1933; and 
it was used in most hospitals in the United States for three decades. SNDO listed 
medical conditions in two dimensions: (1) by anatomic site or topographic cate-
gory (for examples, body as a whole, skin, respiratory, cardiovascular, and so 
forth); and (2) by etiology or cause (for examples, due to prenatal infl uence, due 
to plant or parasite, due to intoxication, due to trauma by physical agent, and so 
forth). The two-dimensional SNDO was not suffi ciently fl exible to satisfy clinical 
needs, and its last (5th edition) was published in 1961. 
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  Current Medical Terminology  (CMT) was an important early contribution to the 
standardization of medical terminology; and it was made by Gordon  (  1965  )  and a 
committee of the American Medical Association to develop an alphabetical listing 
of terms with their defi nitions and simplifi ed references. The fi rst edition of CMT 
was published in 1962, with revisions in 1964 and 1965 (Gordon  1968  ) . 

  Current Medical Information and Terminology  (CMIT) was an expanded version 
of CMT in 1971 to provide a distillate of the medical record by using four-digit 
codes for descriptors, such as symptoms, signs, laboratory test results, x-ray and 
pathology reports (Gordon  1970,   1973  ) . CMIT also defi ned its diagnoses terms, that 
was a common defi ciency of SNOP, SNOMED, and ICD as all lacked a common 
dictionary that precisely defi ned their terms, and as a result the same condition 
could be defi ned differently in each and be assigned different codes by different 
coders (Henkind et al.  1986  ) . An important benefi t from using a common dictionary 
was to encourage the standardization of medical terms through their defi nitions, and 
thereby facilitate the interchange of medical information among different health 
professionals and also among different medical databases. Since the data stored in 
patients’ records came from multiple sub-system databases, such as from pathology, 
laboratory, pharmacy, and others, some standards for exchanging data had to be 
established before they could be readily transferred into a computer-based, inte-
grated patient record. Since CMIT was available in machine-readable form, it was 
an excellent source of structured information for more than 3,000 diseases; so it was 
used by Lindberg et al.  (  1968b  )  as a computer-aid to making a diagnosis in his 
CONSIDER program, for searching CMIT by combinations of disease attributes; 
and then listing the diseases in which these attributes occurred. 

  Current Procedural Terminology  (CPT) was fi rst published in 1967 with a four-
digit coding system for identifying medical procedures and services primarily for 
the payment of medical claims; but it was soon revised and expanded to fi ve-digit 
codes to facilitate the frequent addition of new procedures (Farrington  1978  ) . 
Subsequently, the American Medical Association provided frequent revisions of 
CPT; and in the 1970s and 1980s CPT-4 was the most widely accepted system of 
standardized descriptive terms and codes for reporting physician-provided proce-
dures and services under government and private health-insurance programs. In 
1989 the Health Care Financing Organization (HCFA) began to require every physi-
cian’s claim for payment of services provided to patients seen in medical offi ces to 
include ICD-9-CM code numbers for diagnoses, and also to report CPT-4 codes for 
procedures and services (Roper et al  1988, Roper 1989  ) . 

 The  Systemized Nomenclature of Pathologists  (SNOP), a four-dimensional 
nomenclature intended primarily for use by pathologists, was developed by a group 
within the American College of Pathologists led by A. Wells, and was fi rst pub-
lished in 1965. SNOP coded medical terms into four TMEF categories: (1) 
Topography (T) for the body site affected, (2) Morphology (M) for the structural 
changes observed, (3) Etiology (E) for the cause of the disease, and (4) Function 
(F) for the abnormal changes in physiology (Wells  1971  ) . Thus a patient with lung 
cancer who smoked cigarettes and had episodes of shortness of breath at night 
would be assigned the following string of SNOP terms: T2600M8103 (bronchus, 
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carcinoma); E6927 (tobacco-cigarettes); F7103 (paroxysmal nocturnal dyspnea) 
(Pratt  1973  ) . Complete, as well as multiple, TMEF statements were considered to 
be necessary for pathologists’ purposes (Graepel et al.  1975  ) . 

 The result of these applications was the translation of medical text into the four 
fi elds (T, M, E, and F) as listed in the SNOP dictionary. The successful use of SNOP 
by pathologists encouraged R. Cote, G. Gantner, and others to expand SNOP to 
attempt to encompass all medical specialties. In the 1960s the use of SNOP was 
generally adopted by pathologists, as it was well suited for coding data for computer 
entry when using punched cards. In the 1970s it was the basis for the development 
of computer programs to permit automatic SNOP encoding of pathology terms 
(Pratt  1971,   1973,   1974  ) . 

  The Systemized Nomenclature of Medicine  (SNOMED) was fi rst published in 
1977 (SNOMED 1977). In addition to SNOP’s four fi elds of Topography (T), 
Morphology (M), Etiology (E), and Function (F), SNOMED contained three more 
fi elds: (1) Disease (D) for classes of diseases, complex disease entities, and syn-
dromes, which made SNOMED as suitable for statistical reporting as the ICD; (2) 
Procedure (P) for diagnostic, therapeutic, preventive, or administrative procedures; 
and (3) Occupation (O) for the patient’s occupational and industrial hazards (Cote 
1977,  1986 ; Gantner  1980  ) . Some reports compared SNOMED and ICD, and advo-
cated SNOMED as being superior for the purposes of medical care and clinical 
research, since ICD was designed primarily for statistical reporting and its codes 
were often too general to identify specifi c patient problems. In addition SNOMED 
defi ned the logical connections between the categories of data contained in the fi nal 
coded statement; and SNOMED codes could be used to generate ICD codes, but not 
vice versa (Graepel  1976  ) . 

  The Systemized Nomenclature of Human and Veterinary Medicine  (SNOMED-
International) was reported by Lussier et al.  (  1998  )  to have been under development 
since the 1970s; and SNOMED-International (version 2) had appeared in 1979. 
Rothwell and Cote  (  1990  )  proposed that SNOMED-International (version 3) was 
more modular, systemized, and contained linkages among terms so that it could 
serve as a conceptual framework for the representation of medical knowledge; and 
also could support NLP. Rothwell and Cote  (  1996  )  further described SNOMED 
International as having the objective of providing a robust, controlled vocabulary of 
medical terms and concepts that encompassed the entire domains of human and 
veterinary medicine. In 1996 the SNOMED International (version 3.3) used 11 pri-
mary term codes: Topography (T); Morphology (M); Etiology (E); Function (F); 
Living organisms (L); Chemicals, drugs and biological products (C); Physical 
Agents, forces and Activities (A); Occupations (J); Social context (S); Disease/
Diagnosis (D); Procedures (P); and General linkage/modifi ers (G). Mullins et al. 
 (  1996  ) , compared the level of match when using three clinical vocabularies: 
SNOMED International, Read Codes, and NLM’s UMLS, for coding 144 progress 
notes in a group of ambulatory, family practice, clinical records. They reported sig-
nifi cant differences in the level of match for the three coding systems; and that 
SNOMED performed at the highest level of good matches, UMLS next, and Read 
at the lowest level; and they recommended additional studies to better standardize 
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coding procedures. Campbell et al.  (  1998  ) , tested a version of SNOMED-
International at several large medical centers, and concluded that it could adequately 
reconcile different database designs and effi ciently disseminate updates that were 
tailored for locally enhanced terminologies. 

  The Systemized Nomenclature of Medicine Reference Terminology  (SNOMED-RT) 
was also developed by the College of American Pathologists (CAP) to serve as a 
common reference terminology for the aggregation and retrieval of health care 
information that had been recorded by multiple individuals and organizations 
(Stearns et al.  2001  ) . Dolin et al.  (  2001  )  described the SNOMED-RT Procedure 
Model as providing an advanced hierarchical structure with poly-hierarchies repre-
senting super-types and sub-types relationships; and that included clinical actions 
and healthcare services, such as surgical and invasive procedures, courses of ther-
apy, history taking, physical examinations, tests of all kinds, monitoring, adminis-
trative and fi nancial services.  SNOMED Clinical Terms  (SNOMED-CT), was 
developed in 1999 when the similarities were recognized between SNOMED-RT 
and the National Health Service of the United Kingdom that had developed its own 
Clinical Terms Version 3 that evolved from the Read Codes CTV3. Spackman 
 (  2005  )  reported on 3 years use of this clinical terminology, and described changes 
in SNOMED-CT that included removing duplicate terms, improving logic defi ni-
tions, and revising conceptual relationships. 

 Problems with inconsistencies in the various medical terminologies soon became 
apparent. Ward et al.  (  1996  )  described the need for associations of health-care orga-
nizations to be able to maintain a common database of uniformly coded health out-
comes data; and reported the development of the Health Outcomes Institute (HOI) 
with their uniquely coded, medical-data elements. In 2004 the National Health 
Information Infrastructure (NHII) was initiated to attempt to standardize informa-
tion for patients’ electronic medical records (EMRs); and it recommended the stan-
dard terminologies for EMRs to be the Systemized Nomenclature of Medicine 
(SNOMED) and the Logical Observation Identifi ers Names and Codes (LOINC). 
The National Cancer Institute (NCI) developed the Common Data Elements (CDEs) 
to defi ne the data required for research in oncology (Niland et al.  2006  ) . The con-
vergence of medical terminologies became an essential requirement for linking 
multiple databases from different sources that used different coding terminologies. 
In 1987 the National Library of Medicine (NLM) initiated the development of a 
convergent medical terminology with its Unifi ed Medical Language System 
(UMLS), that included a Semantic Network of interrelated semantic classes, and a 
Metathesaurus of interrelated concepts and names that supported linking data from 
multiple sources. UMLS attempted to compensate for differences in terminology 
among different systems such as MeSH, CMIT, SNOP, SNOMED, and ICD. UMLS 
was not planned to form a single convergent vocabulary, but rather to unify terms 
from a variety of standardized vocabularies and codes for the purpose of improving 
bibliographic literature retrieval, and to provide standardized data terms for com-
puter-based information. Humphreys  (  1989,   1990  )  at NLM, described UMLS as a 
major NLM initiative designed to facilitate the retrieval and integration of informa-
tion from many machine-readable information sources, including the biomedical 
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literature, factual databases, and knowledge bases (see also Sect.   9.1.1    ). Cimino and 
Barnett  (  1990  )  studied the problem of translating medical terms between four dif-
ferent controlled terminologies: NLM’s MeSH, International Classifi cation of 
Diseases (ICD-9), Current Procedural Terminology (CPT-4), and the Systemized 
Nomenclature of Medicine (SNOMED). When a user needed to translate a free-text 
term from one terminology to another, the free-text term was entered into one sys-
tem that then presented its list of controlled terms, and the user selected the most 
correct term; but if the user did not recognize any of the presented terms as a correct 
translation then the user could try again. It was recognized that an automatic transla-
tion process would be preferable for the conversion of terms from one system to 
another. They created a set of rules to construct a standard way of representing a 
medical term that denoted semantic features of the term by establishing it as an 
instance of a class, or even more specifi cally of a subclass that inherited all of the 
required properties. They developed an algorithm that compared matches of a sub-
set of terms for the category of “procedures”, and reported that matches from ICD-9 
to the other terminologies appeared to be “good” 45% of the time; and that when a 
match was “suboptimal” (55% of the time) the reason was that ICD-9 did not con-
tain an appropriate matching term. They concluded that the development of a com-
mon terminology would be desirable. 

 Cimino  (  1994  )  and associates at Columbia University also addressed some of the 
inconsistencies in terms in different terminologies, and emphasized the necessity for 
a controlled, common medical terminology that was capable of linking and converg-
ing data from medical applications in different hospital departmental services, from 
different patient-record systems, and also from knowledge-based systems and from 
medical literature databases. They proposed as criteria for a controlled medical termi-
nology: (1) domain completeness, so it did not restrict the depth or breadth of the 
hierarchy; (2) nonredundancy, to prevent multiple terms being added for the same 
concept; (3) synonymy, to support multiple non-unique names for concepts; (4) non-
vagueness, each concept must be complete in its meaning; (5) nonambiguity, each 
concept must have exactly one meaning; (6) multiple classifi cation, so that a concept 
can be assigned to as many classes as required; (7) consistency of views, in that con-
cepts in multiple classes must have the same attributes in each concept; and (8) explicit 
relationships, in that meanings of inter-concept relationships must be clear. Cimino 
 (  1998  )  further added as being desirable, that: controlled medical vocabularies should 
provide an expandable vocabulary content; they should be able to quickly add new 
terms as they arise; be able to change with the evolution of medical knowledge; should 
consider the unit of symbolic processing to be the concept, that is the embodiment of 
a particular meaning; that vocabulary terms must correspond to only one meaning, 
and meanings must correspond to only one term; the meaning of a concept must be 
permanent, but its name can change when, for example, a newer version of the vocab-
ulary is developed; and that controlled medical vocabularies should have hierarchical 
structures, and although a single hierarchy is more manageable, polyhierarchies may 
be allowed; that multipurpose vocabularies may require different levels of granularity; 
and that synonyms of terms should be allowed, but redundancy, such as multiple ways 
to code a term should be avoided. Cimino  (  1994,   1995,   1998  )  applied their criteria for 
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a convergent terminology to their Medical Entities Dictionary (MED) that they devel-
oped for their centralized clinical information system at Columbia University. MED 
included subclassifi cation systems for their ancillary clinical services, including the 
clinical laboratory, pharmacy, and electrocardiography. MED was a MUMPS-based, 
hierarchical data structure, with a vocabulary browser and a knowledge base. Since 
classes of data provided within their ancillary systems were inadequate for the MED 
hierarchy for both the multiple classifi cation criteria and for its use in clinical applica-
tions, a subclassifi cation function was added to create new classes of concepts. By the 
mid-1990s MED contained 32,767 concepts; and it had encoded six million proce-
dures and 48-million test results for more than 300,000 patients. Mays  (  1996  )  and 
associates at the IBM T. J. Watson Research Center in Yorktown Heights, New York, 
described their K-Rep system based on description logic (DL) that considered its 
principal objects of representation to be concepts, such as laboratory tests, diagnostic 
procedures, and others; and that concepts could include sub-concepts, such as the 
concept of a chemistry test could include the sub-concept of a serum sodium test, and 
thereby enabled an increased scalability of concepts. They considered conceptual 
scalability to be an enhancement of system scalability; and their strategy allowed 
multiple developers to concurrently work on overlapping portions of the terminology 
in independent databases. Oliver et al.  (  1995,   1996  )  reported the formation of the 
InterMed Collaboratory that consisted of a group of medical informaticians with 
experience in medical terminology with the objective of developing a common model 
for controlled medical vocabularies. 

  Convergent Medical Terminology  ( CMT ) was developed by a group from Kaiser 
Permanente, the Mayo Clinic, and Stanford University who addressed the objective of 
achieving a convergence of some different existing terminologies to better support the 
development of informatics applications and to facilitate the exchange of data using 
different terminologies. They had found that some medical terminologies, such as 
SNOMED International and ICD-9-CM, used a hierarchical structure that organized 
the concepts into type hierarchies that were limiting since they lacked formal defi ni-
tions for the terms in the systems, and did not suffi ciently defi ne what a term repre-
sented nor how one term differed from another (Campbell et al.  1996  ) . Building on the 
experience with the K-Rep system described by Mays et al.  (  1996  ) , they developed a 
convergent medical terminology they called Galapagos, that could take a collection of 
applications from multiple sites and identify and reconcile confl icting designs; and 
also develop updates tailored specifi cally for compatibility with locally enhanced ter-
minologies. Campbell et al.  (  1998  )  further reported their applications of Galapagos 
for concurrent evolutionary enhancements of SNOMED International at three Kaiser 
Permanente (KP) regions and at the Mayo Clinic. They found their design objectives 
had been met, and Galapagos supported semantic-based concurrency control, and 
identifi ed and resolved confl icting decisions in design. Dolin  (  2004  )  and associates at 
KP described the Convergent Medical Terminology (CMT) as having a core com-
prised of SNOMED-CT, laboratory LOINC, and First DataBank drug terminology, all 
integrated into a poly-hierarchical structured, knowledge base of concepts with logic-
based defi nitions imported from the source terminologies. In 2004 CMT was imple-
mented in KP enterprise-wide, and served as the common terminology across all KP 
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computer-based applications for its 8.4 million members in the United States. CMT 
served as the defi nitive source of concept defi nitions for the KP organization; it pro-
vided a consistent structure and access method to all computer codes used by KP, with 
its inter-operability and cross-mappings to all KP ancillary subsystems. In 2010 KP 
donated the CMT to the National Library of Medicine for its free access. 

 Chute et al.  (  1999  )  introduced the notion of a terminology server that would medi-
ate translations among concepts shared across disparate terminologies. They had 
observed a major problem with a clinical terminology server that was used by clini-
cians to enter patient data from different clinical services was that they were prone to 
use lexical variants of words that might not match their corresponding representations 
within the nomenclature. Chute added as desirable requirements for a convergent 
medical terminology: (1) word normalization by a normalization and lexical variant-
generator code that replaced clinical jargon and completed abbreviated words and 
terms, (2) target terminology specifi cations for supporting other terminologies, such 
as SNOMED-RT or ICD-9-CM, that were used by the enterprise; (3) spell-checking 
and correction, (4) lexical matching of words against a library of indexed words, (5) 
semantic locality by making visible closely related terms or concepts; (6) term com-
position that brought together modifi ers or qualifi ers and a kernel concept; and (7) 
term decomposition that broke apart complex phrases into atomic components.  

    3.2   Encoding Textual Medical Data 

  Encoding text  greatly simplifi ed the search and retrieval of textual data that was 
otherwise done by matching letters and numbers; so when English language terms 
were represented by numerical codes then the textual data were entered into the 
computer in a readable, compact, and consistent format. The disadvantages of 
encoding natural language terms were that users had to be familiar with the coding 
system, codes had a tendency to reduce the fl exibility and richness of textual data 
and to stereotype the information, and codes required updating and revisions for 
new terms or they could become obsolete (Robinson  1974,   1978  ) . Yet the process 
of coding was an important early method used for natural language processing 
(NLP); and manual encoding methods often used special-purpose, structured and 
pre-coded data-entry forms. It soon became evident that effi cient NLP systems 
needed standardized terminology and rules for coding, aggregating, and communi-
cating textual data; and needed automated encoding methods. 

  Automated encoding  of textual data by computer became an important goal since 
the manual coding of text was a tedious and time-consuming process that led to incon-
sistent coding; so efforts were soon directed to developing NLP software for auto-
matic encoding by computer. Bishop  (  1989  )  defi ned its requirements to be: a unique 
code for each term (word or phrase), each code needed to be defi ned, each term needed 
to be independent, synonyms should be equitable to the code of their base terms, each 
code could be linked to codes of related terms, the system should encompass all of 
medicine and be in the public domain, and the format of the knowledge base should 
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be described completely in functional terms to make it independent of the software 
and hardware used. It was also apparent that the formalized structuring and encoding 
of standardized medical terms would provide a great savings of storage space and 
would improve the effectiveness of the search and retrieval process for textual data. 
Automated data encoding, as the alternative to manual encoding, needed to capture 
the data electronically as it occurred naturally in a clinical practice, and then have a 
computer do the automated data encoding. Tatch  (  1964  ) , in the Surgeon General’s 
Offi ce of the U.S. Army, reported automatically encoding diagnoses by punching 
paper tape as a by-product of the normal typing of the clinical record summary sheet. 
The computer program operated upon actual words within selected blocks, one word 
at a time, and translated each letter in the word into a unique numeral; the numeral was 
matched to an identifi cation table and an identity code was appended to the numeral. 
Based on a syntax code, the numerals were added one-at-a-time, until a diagnostic 
classifi cation was determined. The diagnostic code related to the fi nal sum was 
retrieved from computer memory and added to the clinical record summary. 

 Pratt  (  1975  )  at the National Institutes of Health (NIH), reported the automated 
encoding of autopsy diagnoses using the Standard Nomenclature of Pathology 
(SNOP). He noted that in the creation of a computer-based, natural language pro-
cessing (NLP) system, it was necessary to provide for the morphological, syntactic, 
and semantic recognition of the input data. He used SNOP as his semantically orga-
nized dictionary, and noted that SNOP was divided into four major semantic catego-
ries: Topography (T), Morphology (M), Etiology (E), and Function (F). He further 
defi ned additional semantic subcategories and morphemes (the smallest meaningful 
parts of words) to permit the successful identifi cation of word forms that were not 
found in the SNOP dictionary, and also to help in the recognition of medical syn-
onyms. He developed parsing algorithms for morphological, syntactic, and seman-
tic analyses of autopsy diagnoses; and he developed a computer program which, 
when given as input a body of medical text, produced as output a linguistic descrip-
tion and semantic interpretation of the given text (Pratt and Pacak  1969 a,  b  ) . 
Whiting-O’Keefe  (  1983  )  and associates at the University of California in San 
Francisco, reported a system that automatically encoded patients’ data from their 
medical records. A computer program was developed that extracted partially 
encoded patient data that had been gathered by the Summary Time Oriented Record 
(STOR) system for ambulatory patients, and converted it to fully encoded data. The 
primary display of the STOR system was a time-sequenced fl ow sheet. Much of the 
data captured was structured, which could be viewed as a form of partial data cod-
ing, and this made the automated- encoding system feasible. Their coding program 
allowed a user to develop a set of coding specifi cations that determined what data, 
and how the data in the STOR database, was to be coded. In July 1983 the fi rst 
machine-encoded data was passed from the STOR system to the ARAMIS database 
(see also Sect.   5.3    ). 

 Demuth  (  1985  )  described the earliest approaches that had been used to develop 
automated data-encoding systems included: (1) A language-based system that 
matched English words against a dictionary, and if a match or an accepted synonym 
was found, it was then assigned a code. (2) A knowledge-based or expert system 
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that included the domain of knowledge recorded by experts for whom the particular 
data system was intended; and the expert system attempted to mimic the reasoning 
and logic of the users. Hierarchical, tree-based, decision systems tried to automate 
human reasoning and logic by using simple queries and responses; and the decision-
tree design mandated the nature and order of the questions to be asked, and how 
they were to be answered. Demuth concluded that an automated coding system had 
to possess characteristics of both a language-based and a knowledge-based system 
in order to provide the feedback necessary to help a medical records professional 
arrive at the correct codes. Gabrieli  (  1987  )  developed an offi ce information system 
called “Physicians’ Records and Knowledge Yielding Total-Information for 
Consulting Electronically” (PRAKTICE) for processing natural language text in 
medical records (Gabrieli  1984  ) . Gabrieli developed a computer-compatible, medi-
cal nomenclature with a numeric representation, where the location of a term in a 
hierarchical tree served as the code. For example, the diagnosis of polycythemia 
was represented by 4-5-9-1-2, where 4 = clinical medicine, 4-5 = a diagnostic term, 
4-5-9 = hematologic diagnostic term, 4-5-9-1 = red cell disorder, and 4-5-9-
1-2 = polycythemia. He also developed a lexicon that contained more than 100,000 
terms. He used his system for processing medical text; and described his method as 
beginning with a parser that recognized punctuation marks and spaces, and then 
broke down each sentence into individual words while retaining the whole sentence 
intact for reference. Each word was numbered for its place in the sentence, and then 
matched against his word lexicon, and given a grammatical classifi cation (noun, 
verb, etc.) and a semantic characterization (grouped among “clue” medical words, 
modifi ers, or others). The program then looked for any words near to the medical 
term that might be modifi ers altering its meaning (usually adjectives). Thus, the 
term “abdominal pain” might be preceded by a modifi er such as “crampy abdominal 
pain”. The remaining words were then analyzed for their relationship to the other 
words in the sentence. Powsner  (  1987  )  and associates at Yale University reported on 
their use of semantic relationships between terms by linking pairs of related terms 
to try to improve coding and retrieving clinical literature. They found that defi ning 
semantic relationships for certain pairs of terms could be helpful; but multiple 
semantic relationships could occur in the clinical literature that was strongly depen-
dent upon the clinical specialty. In the 1990s and the 2000s more advanced NLP 
systems were developed for both the automated encoding and the automated query-
ing of uncoded textual medical data (see next Sect.  3.3 ).  

    3.3   Querying Textual Medical Data 

 The approaches to automatic encoding of textual data led to the development of 
methods for the automated retrieval of  encoded  textual data, and then for the much 
more diffi cult process of automated retrieval of  uncoded  textual data. The earliest 
retrieval of stored uncoded textual data by the matching of words and phrases within 
the text, such as used for a key-word-in-context (KWIC) search (Kent  1966  ) , led to 
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pattern matching of word strings (Yianilos  1978  ) . Early automated query systems 
attempted to match a word with a similar word in their own data dictionary or lexi-
con; and if no direct match was found the system then searched for a synonym listed 
in their lexicon that could be accepted by the user. Ideally what was needed was a 
natural-language processing (NLP) system that could automatically interact with 
the computer while using English language text. Certainly the fl uent use of the 
English language was markedly different from structured computer languages. 
Computers readily surpassed humans at processing strings of numbers or letters; 
however, people found it more effective to communicate using strings of words and 
phrases. The approach of matching words and phrases was useful for processing 
some highly structured uncoded text; however, this method still ignored the syntax 
of sentences and thereby missed the importance of the locations of words within a 
sentence and of the relations between words. 

 Hersh  (  1998a  )  reviewed the evolution of natural language processing (NLP) for 
information retrieval systems, and noted that they were among the earliest medical 
informatics applications; and he defi ned information retrieval systems as systems to 
catalog and provide information about documents. Querying a medical database 
involved accessing, selecting, and retrieving the desired data; and this was an essen-
tial function for a medical database. This usually required transforming the query so 
it could be executed by the computer by using special programs to retrieve the 
selected data; and this required developing standards for the uniform collection, stor-
age, and exchange of data. Blois  (  1982  )  emphasized that special programming lan-
guages were required to reach into a database and draw together desired subgroups 
of patients’ data; and then to specify the desired operation to be performed on the 
data. Blois proposed that the detailed needs of such retrieval languages could be met 
either by using a form composed on the screen (query-by-form); or by a series of 
selections from a displayed “menu” of terms or phrases; or by the use of a natural-
language, front-end, computer program that converted a question expressed in 
English into a formal query language; and then execute it by the computer database-
system programs. Broering et al.  (  1989  )  noted that without computer help, users had 
to develop their own sets of rules to search, retrieve, and reconcile data from multiple 
databases; and as the numbers of databases increased, it became much more diffi cult 
to manage all of the different rules between databases, so automated programs for 
querying data became a necessity. Hersh and Donohue  (  1998b  )  observed that in 1966 
when the National Library of Medicine (NLM) launched its MEDLINE, it initially 
required specially trained users and a several-week turn-around time for a response 
to a mailed search statement. In 1997 NLM announced its Web-based MEDLINE 
and PubMed with easy-to-use interfaces (see Sect.   9.1.1    ). 

 The ability to query uncoded natural language text was essential for the retrieval 
of many textual reports of clinical procedures and tests, and of physicians’ dictated 
surgery operative reports, pathology reports, x-ray and electrocardiogram interpre-
tations, and for some clinical laboratory reports such as for microbiology that often 
required descriptive textual data rather than numeric data (Williams and Williams 
 1974 ; Lupovitch et al.  1979 ; Levy and Lawrance  1992  ) . Eden  (  1960  )  noted that as 
medical databases increased in size, it took more time to conduct a search by the 
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method of querying by key words; and it was obvious that there was a need to 
develop computer programs that could effi ciently conduct automatic query and 
search programs for textual data in databases. In 1959 one of the earliest programs 
for the search and retrieval of data for medical research was developed by J. Sweeney 
and associates at the University of Oklahoma, and it was called “General Information 
Processing System” (GIPSY). GIPSY was designed to permit the user, without any 
additional programming, to browse through the database, to pose complex queries 
against any of the stored data, and to obtain answers to ad-hoc inquiries from the 
assembled information. GIPSY was used at the University of Oklahoma as the pri-
mary support in projects concerning analysis of patients’ psychiatry records 
(Addison et al.  1969  ) . Nunnery  (  1984  )  reported that in 1973 GIPSY was modifi ed 
for use by health professionals and was then called “Medical Information Storage 
System” (MISSY); and it was then used for some epidemiological studies. In 1982 
a microcomputer-based system called “MICRO-MISSY”, with more statistical pro-
cedures, was written in Microsoft BASIC and used CP/M operating system. In the 
1960s a relatively simple method for entering and retrieving uncoded textual data 
without encoding the data was to enter words, phrases, or sentences into a computer, 
and then retrieve such text by entering into the computer the exact matching of let-
ter-by-letter, or word-by-word, or phrase-by-phrase. This method of natural lan-
guage processing (NLP) was generally referred to as the “ key-word-in-context” 
(KWIC) approach. In the 1960s an early way of applying this KWIC method was by 
using an IBM Magnetic Tape/Selectric Typewriter (MT/ST) that was interfaced to a 
magnetic tape drive connected to a digital computer. Robinson  (  1970  )  used such a 
system to enter narrative surgical-pathology reports; and at the time of the transcrip-
tion, the MT/ST system permitted the information to be entered into the computer 
by the typewriter, and the computer program then matched each word against a 
standard vocabulary, and also identifi ed new or misspelled words for editing. 

 In the early 1960s G. Barnett and associates at the Massachusetts General Hospital 
(MGH) implemented their laboratory information system; and in 1971 they devel-
oped their Computer-Stored Ambulatory Record (COSTAR) system (see also Sect. 
  4.2    ). In 1979 they developed the Medical Query Language (MQL) that was used to 
query their databases that were programmed with the MGH Utility Multiprogramming 
System (MUMPS) language. They structured the narrative textual data, such as com-
monly found in physicians’ progress notes, by using an interactive, conversational 
technique with a predetermined branching structure of the data, and also using a 
fi xed vocabulary. The user entered the query by selecting the desired items from a list 
on a display screen (Barnett and Hoffman  1968 ; Barnett et al.  1969  ) . MQL was used 
for the retrieval and analysis of data from their COSTAR ambulatory patients’ 
records. A MQL query was made up of a series of statements, and each statement 
began with a keyword. MQL queries could be indefi nitely long, or could be broken 
down into a series of sub-queries with each designed to accomplish some portion of 
the total problem. The statement was scanned and passed on to a parser that matched 
the scanned symbols to rules in the MQL grammar, and then the program went on to 
execute the search. MQL permitted non-programmer users to submit complex, 
branching-logic queries that could be intricate and indefi nitely long; and could be 
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broken down into a series of sub-queries; each designed to accomplish some portion 
of the total problem. MQL had capabilities for cross-tabulation reports, scatter plots, 
online help, intermediate data storage, and system maintenance utilities (Morgan 
et al.  1981 ; Shusman et al.  1983 ; Webster et al.  1987  ) . Murphy et al.  (  1999  )  reviewed 
16-years of COSTAR research queries that used MQL to search a large relational 
data warehouse, and reported that MQL was more fl exible than SQL for searches of 
clinical data. 

 Also in the early 1960s H. Warner and associates at the University of Utah LDS 
Hospital, used their database, Health Evaluation through Logical Processing (HELP), 
they had developed for patient care, also for clinical-decision support, and for clini-
cal research (see also Sect.   4.2    ). They stored the patient-care data in sectors orga-
nized in groups dealing with specifi c subsets of potential medical decisions; and they 
developed a query program to search and format the requested data. To permit a 
rapid, interactive response-time, their query functions were run on a microcomputer 
that communicated with their central computer system. The HELP database was also 
used for alert reports from their laboratory, pharmacy, and radiology subsystems 
(Haug and Warner  1984  ) . Ranum  (  1988  )  described their NLP approach to radiology 
reports that were typically presented in a typewritten format. They had formerly cre-
ated a list of common x-ray reports from which the radiologist selected and checked 
the one most appropriate for a patient’s x-ray, or had the option of entering by text a 
different report, They developed a knowledge-based, data-acquisition tool they called 
Special Purpose Radiology Understanding System (SPRUS), that operated within 
their HELP system, and contained knowledge bases for common conditions, begin-
ning with frames of data for 29 pulmonary diseases. Haug et al.  (  1994  ) , described 
their further development of NLP for chest x-ray reports with a new system they 
called Symbolic Text Processor (SymText), that combined a syntactic parser with a 
semantic approach to concepts dealing with the various abnormalities seen in chest 
x-rays, including medical diseases, procedural tubes and treatment appliances; and 
then generated output for the radiologists’ reports to be stored in the patients’ medi-
cal records. Warner et al.  (  1995  )  described their multi-facility system as one using a 
controlled vocabulary, and allowing direct entry of structured textual data by clini-
cians (see also Sect.   4.3    ). 

 In 1962 Lamson et al.  (  1965  ) , at the University of California, Los Angeles, was 
entering surgical pathology diagnoses in full English language text into a computer-
based, magnetic-fi le storage system. The information was keypunched in English 
text in the exact form it had been dictated by the pathologists. A patient’s record was 
retrieved by entering the patient’s name or identifi cation number, and a full prose 
printout of the pathologist’s diagnosis was then provided. To avoid manual coding, 
Lamson collected 3 years of patients’ data into a thesaurus that related all English 
words with identifi able relationships. His computer program matched signifi cant 
words present in a query, and then retrieved patients’ records, which contained these 
words. In 1965 his patients’ fi les contained about 16,000 words and his thesaurus 
contained 5,700 English words. His thesaurus contained hierarchical and synony-
mous relationships of terms; so as for example, to be able to recognize that “dysp-
nea” and “shortness-of-breath” were acceptable synonyms (Jacobs  1967,   1968  ) . 
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It was recognized that more programming would be necessary to provide syntactic 
tests that could help to clear up problems of a syntactic nature; so Lamson, working 
with Jacobs and Dimsdale from IBM, went on to develop a natural-language retrieval 
system that contained a data dictionary for encoded reports from surgical pathology, 
bone-marrow examinations, autopsies, nuclear medicine, and neuroradiology, with 
unique numeric codes for each English word (Okubo et al.  1975  ) . Patients’ records 
were maintained in master text fi les, and new data were merged in the order of 
patients’ medical record numbers. A set of search programs produced a document 
that was a computer printout of the full English text of the initial record in an unal-
tered, unedited form. However, Lamson recognized that more programming was 
necessary to clear up both semantic and syntactic problems. In 1963 Korein and Tick 
at New York University Medical Center, designed a method for storing physician’s 
dictated, uncoded narrative, text in a variable-length, variable-fi eld format. The nar-
rative data were then subjected to a program that fi rst generated an identifi er and 
location of every paragraph in the record; and then reformatted the data on magnetic 
tape with the data content of the document converted into a list of words and a set of 
desired synonyms. On interrogation the program would search for the desired words 
or synonyms, and then would retrieve the selected text. This technique of identifying 
key words served as a common approach to retrieving literature documents (Korein 
 1970 ; Korein et al.  1963 ;  1966  ) . 

 Buck  (  1966  ) , in D. Lindberg’s group at the University of Missouri at Columbia, 
described their program for retrieving patients’ records, from computer fi les that 
included the coded patients’ discharge diagnoses, surgery reports, surgical pathol-
ogy and cytology reports, and the interpretations of electrocardiograms and x-rays. 
The diagnoses fi les were stored on magnetic tape in a fi xed-fi eld format, and pro-
cessed by an IBM 1410 computer system. Queries were entered from punched 
cards containing the code numbers of the diagnoses to be retrieved. The computer 
searched the magnetic-tape fi les that in 1966 contained more than 500,000 patients’ 
records, for the diagnoses, and then identifi ed the medical-record numbers of the 
patients’ records that contained the desired diagnoses. Lindberg  (  1968a,   b  )  also 
developed a computer program called CONSIDER, that allowed a query from a 
remote computer terminal to search, match, and retrieve material from the Current 
Medical Terminology knowledge database that contained defi nitions of more than 
3,000 diseases. The CONSIDER program was interactive in that it allowed the user 
to retrieve lists of diseases, matched by Boolean combinations of terms, and sorted 
in a variety of ways, such as alphabetical, or by frequency, or other. The CONSIDER 
program accepted a set of signs, symptoms, or other medical fi ndings; and then 
responded by arraying a list of names of diseases that involved the set of medical 
fi ndings that had been specifi ed. Blois  (  1981  )  and associates at the University of 
California-San Francisco, expanded the program and called it RECONSIDER, that 
was able to match diseases by parts of disease names, or by phrases within defi ni-
tions. Using a DEC 11/70 minicomputer with the VAX UNIX operating system, 
they were able to search inverted fi les of encoded text of Current Medical 
Information and Terminology (CMIT) 4th edition as the knowledge base. They 
concluded that RECONSIDER could be useful as a means of testing other 
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diagnostic programs (Blois et al.  1981,   1982  ) . Nelson  (  1983  )  and associates at 
New York State University at Stony Brook, tested various query strategies using 
the RECONSIDER program, and reported they were unable to determine a strat-
egy that they considered to be optimal. Anderson et al.  (  1997  )  further modifi ed the 
RECONSIDER program to use it for differential diagnoses; and added a time-
series analysis program, an electrocardiogram-signal analysis program, an x-ray-
images database and a digital-image analysis program. 

 In the 1960s commercial search and query programs for large databases became 
available, led by Online Analytic Processing (OLAP) that was designed to aid in 
providing answers to analytic queries that were multi-dimensional and used rela-
tional databases (Codd et al.  1993  ) . Database structures were considered to be mul-
tidimensional when they contained multiple attributes, such as time periods, 
locations, product codes, diagnoses, treatments, and other items that could be 
defi ned in advance and aggregated in hierarchies. The combination of all possible 
aggregations of the base data was expected to contain answers to every query which 
could be answered from the data. In the early 1970s the Structured Query Language 
(SQL) was developed at IBM by Chamberlin and Boyce  (  1974  )  as a language 
designed for the query, retrieval, and management of data in a relational database-
management system, such as had been introduced by Codd  (  1970  ) . However, Nigrin 
and Kohane  (  1999  )  noted that in general, clinicians and administrators who were 
not programmers could not themselves generate novel queries using OLAP or SQL. 
Furthermore, Connolly and Begg  (  1999  )  advised that when querying a relational 
database and using the programming language, SQL, it required developing algo-
rithms that optimized the length of time needed for computer processing if there 
were many transformations for a high-level query with multiple entities, attributes, 
and relations. T. Connolly also described a way of visualizing a multi-dimensional 
database by beginning with a fl at fi le of a two-dimensional table of data; then adding 
another dimension to form a three-dimensional cube of data called a hypercube; and 
then adding cubes of data within cubes of data, with each side of each cube being 
called a dimension, with the result representing a multi-dimensional database. 
Pendse  (  2008  )  described in some detail the history of OLAP, and credited the pub-
lication in 1962 by K. Iverson of A Programming Language (APL) as the fi rst math-
ematically defi ned, multidimensional language for processing multidimensional 
variables. Multidimensional analyses then became the basis for several versions of 
OLAP developed by International Business Machines (IBM) and others in the 1970s 
and 1980s; and in 1999 appeared as the Analyst module in Cognos that was subse-
quently acquired by IBM. By the year 2000 several new OLAP derivatives were in 
use by IBM, Microsoft, Oracle, and others (see also Sect.   2.2    ). 

 In 1970 C. McDonald and associates at the Regenstrief Institute for Health Care 
and the Indiana University School of Medicine, began to develop a clinical database 
for their Regenstrief Medical Record System (RMRS) (see also Sect.   4.3    ). Much of 
the clinical data was fi led in a manually coded format that could be referenced to the 
system’s data dictionary; and it permitted each clinical subsystem to specify and 
defi ne its data items. Data were entered by code, or by text that had been converted 
to code. The RMRS had a special retrieval program called CARE, that permitted 
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non-programmers to perform complex queries of the medical-record fi les. CARE 
programs also provided quality of care reminders, alert messages, and recommended 
evidence-based practice guidelines (McDonald  1976,   1982  ) . Myers  (  1970  )  and 
associates at the University of Pennsylvania, reported a system in which a pathology 
report was translated into a series of keywords or data elements that were encoded 
using arbitrarily assigned numbers. While the typist entered the text of the pathol-
ogy report using a typewriter controlled by a paper-tape program, the data elements 
were automatically coded, and a punched paper tape was produced as a by-product 
of the typing. The report was then stored on either magnetic tape or on a disk storage 
system. Karpinski  (  1971  )  and associates at the Beth Israel Hospital in Boston, 
described their Miniature Information Storage and Retrieval (MISAR) System, 
written in the MUMPS language for their PDP-15 computer, and designed to main-
tain and search small collections of data on relatively inexpensive computers. 
MISAR was planned to deal with summaries of medical records in order to abstract 
from them correlations of clinical data. It was a fl exible, easy-to-use, online system 
that permitted rapid manipulation of data without the need for any additional com-
puter programming. A principal advantage of MISAR was the ease with which a 
small database could be created, edited, and queried at a relatively low cost. In 1972 
Melski, also at the Beth Israel Hospital in Boston, used MISAR for eight registries; 
each consisting of a single fi le divided into patients’ records; and each record was 
divided into fi elds that could take on one or more values. MISAR stored its patients’ 
records in upright fi les that were arranged in order of the data items as they were 
collected; and the data were also reorganized in inverted fi les by data items, as for 
example, by laboratory chemistry sodium tests, in order to be able to rapidly per-
form searches and manipulate simple variables. Soon the system was expanded to 
MISAR II, with an increase in speed and able to serve simultaneously up to 22 user-
terminals, and to accommodate interactive analyses of multi-center studies and of 
large clinical trials. They were impressed with this improved capability of using a 
convenient terminal to rapidly perform complex searches and analyses of data from 
a computer database (Melski et al.  1978  ) . 

 In 1973 Weyl  (  1975  )  and associates at Stanford University Medical Center, 
developed their Time Oriented Databank (TOD) system that was designed as a 
table-driven computer system to record and analyze medical records. The TOD sys-
tem consisted of more than 60 programs, which supported data entry and data 
update, fi le defi nition and maintenance, and data analysis functions. The TOD sys-
tem was used on a mainframe computer for the ARAMIS database (see also Sect. 
  5.3    ). In 1982 the TOD system converted to a microcomputer-based version called 
MEDLOG (Layard et al.  1983  ) . Enlander  (  1975  )  described a computer program that 
searched for certain pre-established key words in each diagnosis sentence according 
to a hierarchical structure that was based on the four-digit SNOP codes. As a test 
when this mode was applied to 500 diagnostic sentences, the automated key-word 
search then encoded about 75% of the sentences. In the clinical information system 
at Kaiser Permanente in Oakland, CA, Enlander used a visual-display terminal 
equipped with a light-pen pointer to select and enter a diagnosis, and the SNOP-
coded diagnosis was then automatically displayed. 



76 3 Processing Text in Medical Databases

 In 1976 a group at the Harvard School of Public Health developed a generalized 
database-management system called MEDUS/A, for the kinds of data generated in 
the clinical-care process, and also used for clinical research. Its principal mode of 
data acquisition and display was by the use of user-written, interactive question-
naires and reports (Miller and Strong  1978  ) . In 1977 MEDUS/A was used at Harvard 
School of Public Health for a study that used data from patients with diabetes mel-
litus; and also for another study that used data from patients with coronary artery 
disease. King et al.  (  1983a,   1988  )  reported that MEDUS/A enabled nonprogram-
mers to use their databases and customize their data entry, support their data que-
ries, generate reports, and provide statistical analyses. A second version of 
MEDUS/A was written in Standard MUMPS language (Goldstein  1980  ) ; and in 
1983 a statistical package was added called GENESIS. 

 In 1976 a clinical information system called CLINFO was sponsored by the 
Division of Research Resources of the National Institutes of Health (NIH) for data 
entry, query, retrieval, and analysis. It was developed by a consortium of computer 
scientists at the Rand Corporation and a group of clinical investigators at Baylor 
College of Medicine, University of Washington, the University of Oklahoma, and 
at the Vanderbilt University. Lincoln et al.  (  1976  )  at the Rand Corporation and the 
University of Southern California, described the early CLINFO system that was 
used for a test group of leukemia patients. In a single, small, interactive, user-oriented 
system, it provided the integration of the schema, the study data fi le, the compo-
nents designed for data entry and retrieval of time-oriented data, and a statistical 
analysis package. These units had been programmed separately, but their useful-
ness was increased by their integration. The Vanderbilt group that participated in 
the development of CLINFO reported on their fi rst 5 years of experience with its 
use by more than 100 clinical investigators. They found that the positive and suc-
cessful experience with the use of the CLINFO system was due to its set of func-
tions directed towards data management and data analysis; and that it was a friendly, 
easy-to-use, computer tool; and it eliminated for its users the operational problems 
that often had been associated with their shared central-computer resources (Mabry 
et al.  1977 ; Johnston et al.  1982a,   b  ) . The CLINFO consortium reported a series of 
CLINFO-PLUS enhancements written in the C language; and that the system then 
consisted of about 100 systematically designed and closely integrated programs, 
by means of which a clinical investigator could specify for the computer the types 
of data being studied; then enter and retrieve the data in a variety of ways for dis-
play and analysis. The investigators communicated with the system by means of 
simple English-language word-commands, supported by a number of computer-
generated prompts. The system was designed for a clinical investigator with no 
expertise in computing; and the investigator was not required to acquire any knowl-
edge of computing in order to use the system (Whitehead and Streeter  1984 ; 
Thompson et al.  1977  ) . By the end of the 1980s, CLINFO was widely used for 
clinical research in the United States. In 1988 the NIH Division of Research 
Resources (DRR) listed 47 of its 78 General Clinical Research Centers as using 
CLINFO for multidisciplinary and multicategorical research (NIH-DRR  1988  ) . 
Some of these research centers also used a program similar to CLINFO called 
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“PROPHET”, that was developed in the early 1980s by Bolt, Beranek and Newman 
in Cambridge, MA, and allowed the use of interactive, three-dimensional graphics 
designed more for the use of biomedical scientists than for clinical investigators. 
McCormick  (  1977  )  and associates in the Medical Information Systems Laboratory 
at the University of Illinois in Chicago, described their design of a relational-struc-
tured, clinical database to store and retrieve textual data, and also pictorial infor-
mation such as for computer tomography, automated cytology, and other digitized 
images. Their Image Memory was incorporated into an integrated database system 
using a PDP 11/40 minicomputer. They predicted that an image database would 
become a normal component of every comprehensive medical database-manage-
ment system that included digital-imaging technology. 

 With the increasing need to be able to effi ciently query larger and multiple data-
bases, it became evident that more effi cient programs were needed for querying 
uncoded textual data. The need was to replace the usual key-word-in-context 
(KWIC) approach where the user would query uncoded textual data by selecting 
what were judged to be relevant key-words or phrases for the subject that the user 
wanted to query, and then have the program search for, match, and retrieve these key 
words or phrases in the context in which they were found in a reference knowledge 
source. One approach was to expand the number of key-words used to query the 
knowledge source in the hope that additional terms in a phrase or a sentence would 
allow the user to apply some semantic meaning since most English words have 
several meanings, and thus might improve the recognition and matching of the 
users’ information needs, and lead to better retrieval performance. In addition to 
query programs that permitted investigators to search and retrieve uncoded textual 
data from clinical databases by entering user-selected key-words or phrases, more 
sophisticated programs began to be developed to assist the investigator in studying 
medical hypotheses. More advanced NLP systems added knowledge bases to guide 
the user by displaying queries and their responses, and employing rules and deci-
sion trees that led to the best matching code. Although the search for matching 
words in a knowledge base made their retrieval easier, it was still diffi cult to search 
for and retrieve exact, meaningful expressions from text, since although it was easy 
to enter and store and match words, it was not always easy for the retriever to fi gure 
out what they had meant to the one who had originally entered the words into the 
knowledge base. Blois  (  1984  )  explained the problem by saying that computers were 
built to process the symbols fed to them in a manner prescribed by their programs, 
where the meaning of the symbols was known only to the programmers, rarely to 
the program, and never to the computer; consequently one could transfer everything 
in the data except its meaning. Blois further pointed out that the available codes 
rarely matched the clinical data precisely, and the user often had to force the data 
into categories that might not be the most appropriate. Some advanced automated 
NLP programs used machine-learning programs with algorithms that applied rela-
tively simple rules such as, “if-then”, to automatically “learn” from a “training” 
knowledge base that consisted of a large set of sentences in which each had the cor-
rect part of speech attached to each word; and rules were generated for determining 
the part of speech for a word in the query based on the nature of the word in the 
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query, the nature of adjacent words, and the most likely parts of speech for the adja-
cent words. Some used more complex statistical methods that applied weights to 
each input item and then made probabilistic decisions and expressed relative cer-
tainty of different possible answers rather than of only one. Machine-learning pro-
grams would then need to be tested for their accuracy by applying them to query 
new sentences. 

 Sager  (  1978,   1980,   1982a,   b,   1983  )  and associates at New York University, in the 
late 1970s made substantial contributions to natural-language processing (NLP), 
when they initiated their Linguistic String Project (LSP) that extracted and con-
verted the natural-language, free-text, uncoded narrative from patients’ medical 
records into a structured database; and they also addressed the problem of develop-
ing a query program for retrieval requests sent to the database. Story and Hirschman 
 (  1982  )  described the LSP’s early approach to NLP as fi rst recognizing the time-
dated information found in the text of patients’ hospital discharge summaries, such 
as dates and times of clinical events; and then computing from that information the 
ordering of the times of the recorded medical events. As examples, data used in 
patients’ discharge summaries included birth dates, admission and discharge dates, 
dates and times of any recorded patients’ symptoms, signs, and other important 
clinical events. Sager et al.  (  1982a,   b  )  further described their LSP process for con-
verting the uncoded natural-language text that was found in patients’ hospital dis-
charge summaries, into a structured relational database. In a relational database the 
query process had to search several tables in order to complete the full retrieval; so 
that for a query such as, “Find all patients with a positive chest x-ray”, the program 
executed a query on one table to fi nd the patients’ identifi cation numbers, and then 
a sub-query on another table to fi nd those patients reported to have positive chest 
x-ray reports. Whereas earlier attempts at automating encoding systems for text 
dealt with phrases that were matched with terms in a dictionary, this group fi rst 
performed a syntactic analysis of the input data, and then mapped the analyzed 
sentences into a tabular format arrangement of syntactic segments, in which the seg-
ments were labeled according to their medical information content. Using a rela-
tional structured database, in their information-format table the rows corresponded 
to the successive statements in the documents, and the columns in the tables corre-
sponded to the different types of information in the statements. Thus their LSP 
automatic-language processor parsed each sentence, and broke the sentence into 
syntactic components such as subject-verb-object; then divided the narrative seg-
ments into six statement types: general medical management, treatment, medica-
tion, test and result, patient state, and patient behavior; and it then transformed the 
statements into a structured tabular format. This transformation of the record was 
suitable for their database-management system; and it simplifi ed the retrieval of a 
textual record, that when queried was transformed back to the users in a narrative 
form. Sager  (  1983,   1994  )  described in some detail their later approach to converting 
uncoded free-text patient data by relationships of medical-fact types or classes (such 
as body parts, tests, treatments, and others); and by subtypes or sub-classes (such as 
arm, blood glucose, medications, and others). Their Linguistic String Project (LSP) 
information-formatting program identifi ed and organized the free text by syntactic 
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analysis using standard methods of sentence decomposition; and then mapped the 
free-text into a linguistically structured, knowledge base for querying. The results of 
tests for information precision and information recall of their LSP system were bet-
ter than 92% when compared to manual processing. In 1985 they reported that their 
medical-English lexicon, which gave for each word its English and medical classi-
fi cation, then numbered about 8,000 words (Lyman et al.  1985  ) . Sager et al.  (  1986  )  
reported that they had applied their methods of linguistic analysis to a considerable 
body of clinical narrative that included: patients’ initial histories, clinic visit reports, 
radiology and pathology reports, and hospital discharge summaries. They success-
fully tested their approach for automatic encoding of narrative text in the Head-and-
Neck Cancer Database maintained at that time at the Roswell Park Memorial 
Institute. Sager et al.  (  1994  )  reported their Linguistic String Project (LSP) had been 
applied to a test set of asthma patients’ health-care documents; and when subjected 
to a SQL retrieval program the retrieval results averaged for major errors only 1.4%, 
and averaged 7.5% for major omissions. Sager et al.  (  1996  )  further reported using 
Web processing software to retrieve medical documents from the Web; and by using 
software based on Standard Generalized Markup Language (SGML) and Hypertext 
Markup Language (HTML), they coupled text markup with highlighted displays of 
retrieved medical documents. 

 Doszkocs  (  1983  )  and associates at the National Library of Medicine, noted that 
rapid advances had occurred in automated information-retrieval systems for science 
and technology. In the year of 1980 more than 1,000 databases were available for 
computerized searching, and more than two million searches were made in these 
databases. In the 1980s a variety of other approaches were developed for searching 
and querying clinical-research databases that were linked to patient-care databases. 
Kingsland’s  (  1982  )  Research Database System (RDBS) used microcomputers for 
storing and searching a relatively large number of observations in a relatively small 
number of patients’ records. Shapiro  (  1982  )  at the Medical University of South 
Carolina, developed a System for Conceptual Analysis of Medical Practices 
(SCAMP) that was able to respond to a query expressed in natural language. Words 
in free-text, rather than in codes, were used, such as, “Which patients had a pro-
lapsed mitral valve?” The program parsed the request that was expressed in English; 
it looked up relevant matching words in a thesaurus, and passed linguistic and pro-
cedural information found in the thesaurus to a general-purpose retrieval routine 
that identifi ed the relevant patients based on the free-text descriptions. Miller et al. 
 (  1983  )  System 1022 could access and query relational databases. Dozier et al. 
 (  1985  )  used a commercial Statistical Analysis System (SAS) database. Katz  (  1986  )  
reported developing the Clinical Research System (CRS), that was a specialized, 
database-management system intended for storing and managing patient data col-
lected for clinical trials, and designed for the direct use by physicians. 

 Porter  (  1984  ) ; Safran  (  1989a,   b,   c  )  and associates at the Boston’s Beth Israel 
Hospital, the Brigham and Women’s Hospital, and the Harvard Medical School, in 
1964 expanded the PaperChase program (see also Sect.   9.2    ) into a program called 
ClinQuery, that was designed to allow physicians to perform searches in a large 
clinical database. ClinQuery was written in a dialect of MUMPS, and was used to 
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search their ClinQuery database which contained selected patient data that was 
de-identifi ed to protect patient’s privacy; and the data was transferred automatically 
every night from their hospitals clinical-information systems. Adams  (  1986  )  com-
pared three query languages commonly used in the 1980s for medical-database sys-
tems: (1) The Medical Query Language (MQL) that was developed by O. Barnett’s 
group with an objective of query and report generation for patients using the 
Computer-Stored Ambulatory Record (COSTAR), and MQL was portable to any 
database using the MUMPS language. At that date COSTAR was used in more than 
100 sites worldwide, with some carrying 200,000 patient records on-line. (2) The 
CARE System that was developed by C. McDonald’s group, with a focus on sur-
veillance of quality of ambulatory patient care; and contained more than 80,000 
patients’ records, and it was programmed in VAX BASIC running on a DEC VAX 
computer. (3) The HELP (Health Evaluation through Logical Processing) System 
that was developed by H. Warner’s group, with a focus on surveillance of hospital 
patient care, and was implemented on a Tandem system operating in the Latter Day 
Saints (LDS) hospitals in Utah. Adams reported that the three programs had some 
common properties, yet used different designs that focused on the specifi c objec-
tives for which each was developed. Adams concluded that each was successful and 
well used: 

 Broering  (  1987,   1989  )  and associates at Georgetown Medical Center, described 
their BioSYNTHESIS system that was developed as a National Library of Medicine 
(NLM), Integrated Academic Information Management System (IAIMS) research 
project. The objective of the project was to develop a front-end software system that 
could retrieve information that was stored in disparate databases and computer sys-
tems. In 1987 they developed BioSYNTHESIS/I as a gateway system with a single 
entry pointing into IAIMS databases, to make it easier for users to access selected 
multiple databases. BioSYNTHESIS/II was developed to function as an informa-
tion fi nder that was capable of responding to a user’s queries for specifi c informa-
tion, and to be able to search composite knowledge systems containing disparate 
components of information. The system therefore had to be capable of functioning 
independently with the various knowledge bases that required different methods to 
access and search them. Hammond et al.  (  1989  )  reported that a program called 
QUERY was written to permit users to access any data stored in Duke’s The Medical 
Record (TMR) database. The program could access each patient’s record in the 
entire database or in a specifi ed list of records, and carry out the query. The time for 
a typical query run, depending on the complexity of the query, was reported to 
require 4–6 h on a database containing 50,000–100,000 patients. Prather et al. 
 (  1995  )  reported that by 1990 the Duke group had converted their legacy databases 
into relational-structured databases so that personal computers using the SQL lan-
guage could more readily query all of the patients’ records in the TMR clinical 
databases, that by 1995 had accumulated 25 years of patients’ data. Frisse  (  1989  ) , 
Cousins  (  1990  )  and associates at Washington University School of Medicine, 
described a program they developed to enhance their ability to query textual data in 
large, medical, hypertext systems. As the amount of text in a database increased, 
they considered it likely that the proportion of text that would be relevant to their 
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query would decrease. To improve the likelihood of fi nding relevant responses to a 
query, they defi ned a query-network as one that consisted of a set of nodes in the 
network represented by weighted search-terms considered to be relevant to their 
query. They assigned a weight to each search-term in the query-network based on 
their estimate of the conditional probability that the search-term was relevant to the 
primary index subject of their query; and the search-term’s weight could be further 
modifi ed by user feedback to improve the likelihood of its relevance to the query. 
Searches were then initiated based on the relative search-term weights; and they 
concluded that their approach could aid in information retrieval and also assist in the 
discovery of related new information. 

 Frisse  (  1996  )  emphasized that information relevant to a task must be separated 
from information that is not considered relevant, and defi ned the relevance of a 
retrieved set of documents in terms of recall and precision. Frisse defi ned  recall  as 
the percentage of all relevant items in a collection retrieved in response to a query; 
and defi ned  precision  as the percentage of items retrieved that were relevant to the 
query. He defi ned  sensitivity  as the percentage of true positives that were identifi ed; 
and  specifi city  as the percentage of true negatives that were identifi ed. He also noted 
that if the search were widened by adding to the query statement an additional 
search term using the word, “or”, then one was more likely to retrieve additional 
items of interest, but was also more likely to retrieve items not relevant to the spe-
cifi c query. Also, if one increased the number of constraints to a query by using the 
word, “and”, then one would retrieve fewer items but the items retrieved were more 
likely to be relevant to the expanded query. Levy and Rogers  (  1995  )  described an 
approach to natural language processing (NLP) that was used at that time in the 
Veteran’s Administration (VA). A commercial Natural Language Incorporated 
(NLI) software was the NLP interface that allowed English queries to be made of 
the VA database. Software links between the NLP program and the VA database 
defi ned relationships, entities, attributes, and their interrelationships; and queries 
about these concepts were readily answered. When a user typed in a question, the 
NLP processor interpreted the question, translated it into an SQL query and then 
responded. If the query was not understood by the NLP system, it then guided the 
user and assisted in generating a query which could be answered. 

 Friedman et al.  (  1992,   1998a,   b  )  reviewed and classifi ed some of the approaches 
to NLP developed in the 1980s. They classifi ed NLP systems according to their 
linguistic knowledge as: (1) Pattern matching or keyword-based systems that were 
variations of the keyword-in-context approach in which the text was scanned by the 
computer for combinations of medical words and phrases, such as medical diagno-
ses or procedures, and used algorithms to match those in a terminology or vocabu-
lary index; and when identifi ed would be translated automatically into standard 
codes. These were relatively simple to implement but relied only on patterns of key 
words, so relationships between words in a sentence could not readily be estab-
lished. This approach was useful in medical specialties that used relatively highly 
structured text and clinical sub-languages, such as in pathology and radiology. (2) 
Script-based systems combined keywords and scripts of a description or of a knowl-
edge representation of an event that might occur in a clinical situation. (3) Syntactic 
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systems parsed each sentence in the text, identifi ed which words were nouns, verbs, 
and others; and noted their locations in the sequence of words in the sentence. These 
were considered to be minimal semantic systems, where some knowledge of lan-
guage was used, such as syntactic parts of speech, so simple relationships in a noun 
phrase might be established but relationships between different noun phrases could 
not be determined, and it would require a lexicon that contained syntactic word 
categories and a method which recognized non-phrases. (4) Semantic systems added 
defi nitions, synonyms, meanings of terms and phrases, and concepts; and semantic 
grammars could combine frames to provide more domain-specifi c information. 
Semantic systems used knowledge about the semantic properties of words, and 
relied on rules that mapped words with specifi c semantic properties into a semantic 
model that had some knowledge of the domain and could establish relationships 
among words based on semantic properties, and could be appropriate for highly 
structured text that contained simple sentences. (5) Syntactic and semantic systems 
included stages of both of these processes, and used both semantic and syntactic 
information and rules to establish relationships among words in a document based 
on their semantic and syntactic properties. (6) Syntactic, semantic, and knowledge-
based systems included reference, conceptual, and domain information, and might 
also use domain knowledge bases. These were the most complex NLPs to imple-
ment and were used in the most advanced NLP systems that evolved in the 1990s 
and the 2000s. 

 Das and Musen  (  1995  )  at Stanford University, compared three data-manipula-
tion methods for temporal querying by: (1) the consensus query representation, 
Arden Syntax, (2) the commercial standard query language, SQL, and (3) the tem-
poral query language, TimeLineSQL (TLSQL). They concluded that TLSQL was 
the query method most expressive for temporal data; and they built a system called 
“Synchronus” that had the ability to query their legacy SQL databases that sup-
ported various data time-stamping methods. O’Connor et al.  (  2000  )  also noted that 
querying clinical databases often had temporal problems when clinical data was 
not time-stamped; such as when a series of laboratory test reports did not provide 
the time-intervals between the tests. They developed a temporal query system 
called Tzolkin that provided a temporal query language and a temporal abstraction 
system that helped when dealing with temporal indeterminacy and temporal 
abstraction of data. Schoch and Sewell  (  1995  )  compared four commercial NLP 
systems that were reported to be used for searching natural-language text in 
MEDLINE: (1) FreeStyle (FS) from Lexis-Nexis, (2) Physicians Online (POL), (3) 
Target on Dialog (TA) from Knight-Ridder; and (4) Knowledge Finder (KF) avail-
able from Aries only on (CD-ROM). On 1 day in 1995, 36 topics were searched, 
using similar terms, directly on NLM’s MEDLINE; and the fi rst 25 ranked refer-
ences from each search were selected for analysis. They found that all four systems 
agreed on the best references for only one topic. Three systems, FS, KF, and TA 
chose the same fi rst reference; and POL ranked it second. The four searches found 
12 unique references with all concepts matching. The evaluation of NLP systems 
was often based on comparing their individual outputs for completeness of recall 
and for accuracy in matching of specifi ed criteria, and sometimes as compared 
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with the “gold-standard” of manual output by clinical experts; however, given a set 
of criteria, human evaluation was often found to be more variable in its results than 
computer evaluation. 

  Conceptual approaches  to querying large, complex medical databases were devel-
oped in the 1990s; and were based on combining the characteristics of the query 
subject and creating a conceptual model for the search, rather than just using key 
words and phrases; and then ontologies of concepts and relationships of medical 
knowledge began to be developed. Chute  (  1995  )  and associates at the Mayo Clinic in 
Rochester, Minnesota, reported updating their legacy, 4.6-million, paper-based, 
patient-record Master Sheets that dated back to 1909; and with the addition of their 
newer electronic clinical database their researchers were confronted with more than 
200 clinical specialized databases that resided on various hardware that used various 
software. They needed to interface these disparate databases on a spectrum of plat-
forms to many types of workstations using a variety of browsers. To meet these 
problems and facilitate the retrieval of their stored medical information, they intro-
duced Web protocols, graphical browsers, and several versions of Hypertext Mark-up 
Language (HTML) to link to their computer server. They also used the high-level 
language, Perl, which supported SQL interfaces to a number of relational-structured 
databases; and used Perl-interfaces for dynamically generated HTML screens. They 
also observed the legal need for maintaining the security and confi dentiality of patient 
data when using the Web. 

 Hersh  (  1990a,   b,   1995a,   1996a,   1998a,   b  )  and associates at Oregon Health 
Sciences University, outlined their requirements for clinical vocabularies in order 
to facilitate their use with natural language processing (NLP) systems for their 
electronic medical records. The requirements should include: (1) lexical decompo-
sition to allow the meaning of individual words to be recognized in the context of 
the entire sentence; (2) semantic typing to allow for identifi cation of synonyms and 
their translation across semantic-equivalence classes; and (3) compositional exten-
sibility to allow words to be combined to generate new concepts. They addressed 
the problem of accessing documents with desired clinical information when using 
the Web with its highly distributed information sources; and they reported develop-
ing an information-retrieval system called SAPHIRE (Semantic and Probabilistic 
Heuristic Information Retrieval Environment). SAPHIRE was modifi ed from 
NLM’s UMLS Metathesaurus, which had been created by NLM to allow transla-
tion between terms within different medical vocabularies. SAPHIRE provided a 
Concept-Matching Algorithm that processed strings of free text to fi nd concepts; 
and then mapped the concepts into a semantic-network structure for the purposes 
of providing both automated indexing and probabilistic retrieval by matching the 
diverse expressions of concepts present in both the reference documents and in the 
users’ queries. For the purpose of indexing, each textual document was processed 
one sentence at a time; and its concepts were weighted for terms occurring fre-
quently, thereby designating a term’s value as an indexing concept. In retrieval the 
user’s query was processed to obtain its concepts, which were then matched against 
the indexing concepts in the reference documents in order to obtain a weighted list 
of matching documents. To formulate a search with SAPHIRE, the user entered a 



84 3 Processing Text in Medical Databases

free-text query, and received back a list of concepts, to which the user could delete 
or add concepts; and the search was then initiated. A score was calculated sum-
ming the weights for all the concepts, and the concepts with highest scores were 
ranked for fi rst retrievals. Hersh  (  1995a,   b  )  reported a series of modifi cations to 
their concept-matching, indexing-algorithm to improve the sensitivity and speci-
fi city of its automated retrievals. He also completed some evaluations of recall and 
precision of automated information-retrieval systems compared to traditional key-
word retrieval using text-words, and suggested that it was uncertain as to whether 
one indexing or retrieval method was superior to another. Spackman and Hersh 
 (  1996  )  and Hersh evaluated the ability of SAPHIRE to do automatic searches for 
noun phrases in medical-record discharge summaries by matching terms from 
SNOMED, and reported matches for 57% of the phrases. They also reported evalu-
ating the ability of two NLP parsers, called CLARIT and the Xerox Tagger, to 
identify simple noun phrases in medical discharge summaries; and reported exact 
matches for 77% and 69%, respectively, of the phrases. 

 Hersh et al.  (  1996b  )  also reported developing CliniWeb, a searchable database 
of clinical information on the Web, that provided: (1) a database of clinically-ori-
ented Universal Resource Locators (URLs); (2) an index of URLs with terms from 
the NLM’s MeSH vocabulary; (3) and an interface for accessing URLs by brows-
ing and searching. He described problems due to Web databases being highly dis-
tributed and lacking an overall index for all of its information. CliniWeb served as 
a test-bed for research into defi ning the optimal method to build and evaluate a 
clinically oriented Web resource. The user could browse the MeSH hierarchy or 
search for MeSH terms using free-text queries; and then rapidly access the URLs 
associated with those terms. Hersh and Donohue  (  1998b  )  also noted that SAPHIRE 
could query a database in seven languages, other than English, by using a diction-
ary based on the multi-lingual aspects of the NLM’s Unifi ed Medical Language 
System (UMLS) Metathesaurus. He also observed that in addition to the NLM, 
other health-related federal agencies used the Web for dissemination of free infor-
mation, including the Centers for Disease Control and Prevention (CDC), the Food 
and Drug Administration (FDA), and the National Cancer Institute (NCI). Zacks 
and Hersh  (  1998  )  and Munoz and Hersh  (  1998  ) , also working with W. Hersh, stud-
ied a variety of search strategies for retrieving medical-review articles from Web 
hypertext medical documents; and found a great variation in their sensitivity and 
specifi city for accurately retrieving review articles on clinical diagnosis and ther-
apy; and noted that the more complex strategies had higher accuracy rates. Price 
et al.  (  2002  )  also associated with W. Hersh, described developing Smart Query, 
that could provide context-sensitive links from the electronic medical record 
(EMR) to relevant medical-knowledge sources; and could help the clinician fi nd 
answers to questions arising while using a patient’s EMR. 

 Cimino et al.  (  1990,   1994  )  reviewed some methods for information retrieval 
reported in the 1990s. Some were used to provide the retrieval of medical informa-
tion from multiple sources, such as from clinical databases and from medical biblio-
graphic resources; some included the use of NLM’s Unifi ed Medical Language 
System (UMLS) for retrieving medical information by online bibliographic searches, 
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and then integrating the information into their clinical databases. They concluded 
that additional work was needed to: (a) better understand the information needs of 
different users in different settings; (b) satisfy those needs through more sophisti-
cated selection and use of information resources; (c) translate concepts from clinical 
applications to information resources; and (d) better integrate the users’ systems, 
since they noted that although early database-management systems allowed only 
their own data applications to be accessible from their own computer terminals, as 
they developed more advanced approaches they sought to integrate outside informa-
tion sources at the application level so that patient data could be used for real-time, 
literature-retrieval as when an abnormal laboratory test raised questions that could 
be answered by a search of medical literature. In 1998 physicians at Vanderbilt 
University Hospital began to use their locally developed, computer-based, free-text 
summary-report system that facilitated the entry of a limited data summary report 
for the discharge or transfer of patients. They reported that two data-sets were most 
commonly used for these summaries: (1) patients’ treatment items, that comprised 
summaries of clinical care, in addition to patient’s awareness and action items; and 
(2) care-coordination items, that included patients’ discharge and contact informa-
tion, and any social concerns. They recommended formalizing and standardizing 
the various clinical-specialty data-patterns to reduce the variability of the summary 
sign-out notes and to improve the communication of patient information (Campion 
et al.  2010  ) .Zeng and Cimino  (  1999  ) , evaluated the development of concept-oriented 
views of natural-language text in electronic medical records (EMRs). They also 
addressed the problem of “information overload” that often resulted when an excess 
of computer-generated, but unrelated, information was retrieved after clinical que-
ries were entered when using EMRs. They compared the retrieval system’s ability 
to identify relevant patient data and generate either concept-oriented views or tradi-
tional clinical views of the original text; and they reported that concept-oriented 
views contained signifi cantly less non-relevant information; and when responding 
to queries about EMR’s, using concept-oriented views showed a signifi cantly greater 
accuracy in relevant information retrieval. 

 In the 1990s C. Friedman, J. Cimino, G. Hripcsak and associates at Columbia 
University in New York reported developing a natural language processing (NLP) 
system for the automated encoding and retrieval of textual data that made extensive 
use of the Unifi ed Medical Language System (UMLS) of the National Library of 
Medicine (NLM). Their model was based on the assumption that the majority of 
information needs of users could be mapped to a fi nite number of general queries; 
and the number of these generic queries was small enough to be managed by a 
computer-based system but was too large to be managed by humans. A large num-
ber of queries by clinical users were analyzed to establish common syntactic and 
semantic patterns; and the patterns were used to develop a set of general-purpose, 
generic-queries; that were then used for developing suitable responses to common, 
specifi c, clinical-information queries. When a user typed in a question, their com-
puter program would match it to the most relevant generic-query, or to a derived 
combination of queries. A relevant information resource was then automatically 
selected, and a response to the query was generated for presentation to the user. 
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As an alternative, the user could directly select from a list of all generic-queries in 
the system, one or more potentially relevant queries, and a response was then 
developed and presented to the user. Using the NLM’s UMLS Metathesaurus they 
developed a lexicon they called AQUA (A Query Analyzer) that used a Conceptual 
Graph Grammar that combined both syntax and semantics to translate a user’s 
natural-language query into conceptual graph representations that were interpreta-
tions of the various portions of the user’s query; and that could be combined to 
form a corporate graph, that could then be parsed by a method that used the UMLS 
Semantic Net. Starting with identifying the semantic type that best represented the 
query, the parser looked for a word in a sentence of the given domain, for example, 
“pathology”, that could be descended from this type; then looked for semantic rela-
tions this word could have with other words in the sentence; and the algorithm then 
compiled a sublanguage text representing the response to the query (Cimino 
et al.  1993 ; Johnson et al.  1994,   1998  ) . 

 Hripcsak et al.  (  1995  )  described developing a general-purpose NLP system for 
extracting clinical information from narrative reports. They compared the ability of 
their NLP system to identify any of six clinical conditions in the narrative reports of 
chest radiograms, and reported that the NLP system was comparable in its sensitiv-
ity and specifi city to how radiologists read the reports. Hripcsak et al.  (  1996  )  
reported that the codes in their database were defi ned in their vocabulary, the 
Medical Entities Dictionary (MED), which is based on a semantic network and 
serves to defi ne codes and to map the codes to the codes used in the ancillary depart-
ments, such as the clinical laboratory codes. Hripcsak et al.  (  1996  )  also compared 
two query programs they used; (1) AccessMed that used their Medical Entities 
Dictionary (MED) and its knowledge base in a hierarchical network, with links to 
defi ning attributes and values. The AccessMed browser looked up query terms by 
lexical matching of words that looked alike and by matching of synonyms, and it 
then provided links to related terms. (2) Query by Review used a knowledge base 
structured as a simple hierarchy; and provided a browser that allowed a user to move 
to the target terms by a series of menus. They compared the recall and precision 
rates of these two programs to gather the vocabulary terms necessary to perform 
selected laboratory queries; and reported that Query by Review performed some-
what better than AccessMed; but neither was adequate for clinical work. 

 Friedman  (  1994,   1995a,   b,   1997  )  and associates at Columbia University in New 
York made substantial contributions to natural language processing (NLP) with the 
development of their Medical Language Extraction and Encoding (MedLEE) sys-
tem, that became operational in 1995 at Columbia-Presbyterian Medical Center 
(CPMC). Their NLP program was written in a Prolog language that could run on 
various platforms, and was developed at CPMC as a general purpose NLP system. 
Friedman described the MedLEE system as composed of functionally different, 
modular components (or phases), that in a series of steps each component processed 
the text and generated an output used by the subsequent component. The fi rst com-
ponent, the preprocessor, delineated the different sections in the report, separated the 
free-form textual data from any formatted data, used rules to determine word and 
sentence boundaries, resolved abbreviations, and performed a look-up in a lexicon to 
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fi nd words and phrases in the sentences that were required for the next parsing phase; 
and it then generated an output which consisted of lists of sentences and correspond-
ing lexical defi nitions. The parser phase then used the lexical defi nitions to determine 
the structure of each sentence, and the parser’s sentence-grammar then specifi ed its 
syntactic and semantic structures. The phrase-regularization component then regu-
larized the terms in the sentence, re-composed multi-word terms that had been sepa-
rated; and then contiguous and non-contiguous lexical variants were mapped to 
standard forms. The last phase, the encoder, then associated and mapped the regular-
ized terms to controlled vocabulary concepts by querying the synonym knowledge 
base in their Medical Entities Dictionary (MED) for compatible terms. MED served 
as their controlled vocabulary that was used in automated mapping of medical vocab-
ularies to the NLM’s Unifi ed Medical Language System (Forman et al.  1995 ; Zeng 
and Cimino  1996  ) . MED was their knowledge base of medical concepts that con-
sisted of taxonomic and other relevant semantic relations. After using MED’s syn-
onym knowledge base, the regularized forms were translated into unique concepts, 
so that when the fi nal structured forms of the processed reports were uploaded to 
their Medical Center’s centralized patient database, they corresponded to the unique 
concepts in their MED. The output of the structured encoded form was then suitable 
for further processing and interfacing, and could be structured in a variety of formats, 
including reproducing the original extracted data as it was before encoding, or pre-
sented in an XML output, that with Markup language could highlight selected data. 
In their Medical Center the output was translated into an HL7 format and transferred 
into its relational medical database. All computer applications at their Medical Center 
could then reliably access the data by queries that used the structured form and the 
controlled vocabulary of their MED. Friedman et al.  (  1998a,   b  ) , described further 
development of the MedLEE system as one that analyzed the structure of an entire 
sentence by using a grammar that consisted of patterns of well-formed syntactic and 
semantic categories. It processed sentences by defi ning each word and phrase in the 
sentence in accordance with their grammar program; it then segmented the entire 
sentence at certain types of words or phrases defi ned as classes of fi ndings ,  that could 
include medical problems, laboratory tests, medications, and other terms which were 
consistent with their grammar; it then defi ned as modifi ers, qualifi ers and values such 
items as the patient’ age, the body site, the test value, and other descriptors. For the 
fi rst word or phrase in a segment that was associated with a primary fi nding that was 
identifi ed in their grammar, an attempt was made to analyze the part of the segment 
starting with the left-most modifi er (or value) of the primary fi nding; and this process 
was continued until a complete analysis of the segment was obtained After a segment 
was successfully analyzed, then the remaining segments in the sentence were pro-
cessed by applying this same method to each segment; and the process of segmenting 
and analyzing was repeated until an analysis of every segment in each entire sentence 
was completed. 

 Friedman et al.  (  1998b  )  described some additional changes to MedLEE system 
that allowed fi ve modes of processing: (1) The initial segment included the entire 
sentence, and all words and multi-word phrases needed to be arranged into a well-
formed pattern. (2) The sentence was then segmented at certain types of words or 
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phrases; and the process was repeated until an analysis of each segment was obtained. 
(3) An attempt was made to identify a well-formed pattern for the largest prefi x of 
the segment. (4) Undefi ned words were skipped; and (5) the fi rst word or phrase in 
the segment associated with a primary fi nding was identifi ed; the left-most modifi er 
of the fi nding was added; and the remaining portion was processed using the same 
method. The MedLEE system was initially applied to the radiology department 
where radiologists were interpreting their x-ray reports for about 1,000 patients per 
day. The radiologists dictated their reports that were generally well structured and 
composed mostly of natural-language text. The dictated reports were transcribed and 
entered into their Radiology Information System, and then transferred into the clini-
cal database of their CPMC’s Clinical Information System. The automated reports of 
230 chest x-rays were randomly selected and checked by two physicians; and showed 
a recall rate of 70% and a precision of 87% for four specifi ed medical conditions. 
In another evaluation of more than 3,000 sentences, 89% were parsed successfully 
for recall, and 98% were considered accurate based on the judgment of an indepen-
dent medical expert. Hripcsak et al.  (  1995  ) , further evaluated the performance of 
their MedLEE system for 200 patients with six different medical diagnoses, and who 
each had chest x-rays; and found that their NLP system’s fi nal performance report 
was the same as that of the radiologists. Friedman et al.  (  1996  )  reported extending a 
WEB interface to MedLEE by using a WEB browser, or by direct access for process-
ing patients’ records using their Uniform Resource Locator (URL). 

 Cimino  (  1996  )  reviewed other automated information-retrieval systems that also 
used the NLM’s UMLS in some way, and proposed that additional work was needed 
to better understand the information needs of different users in different settings. 
Cimino  (  1996  )  also reviewed the evolution of methods to provide retrieval of infor-
mation from multiple sources, such as from both clinical databases and biblio-
graphic sources. Initially database management systems allowed their own various 
data applications to be accessible from the same computer terminal or workstation. 
More advanced approaches then sought to integrate outside information sources at 
the application level; so that, for example, patient data could be used to drive litera-
ture retrieval strategies, as when an abnormal laboratory test raised questions that 
could be answered by a search of recent medical literature. Cimino also reviewed a 
variety of methods reported in the 1990s; some included the use of NLM’s Unifi ed 
Medical Language System (UMLS) that was employed to retrieve medical informa-
tion by online bibliographic searches to integrate into their clinical databases. Zeng 
et al.  (  1999  ) , evaluated the development of concept-oriented views of natural-lan-
guage text in electronic medical records (EMRs). They addressed the problem of 
information-overload that often resulted when an excess of computer-generated, 
unrelated information was retrieved after clinical queries were entered when using 
EMRs. They compared the retrieval system’s ability to identify relevant patient data 
and generate either concept-oriented views or traditional clinical views of the origi-
nal text, and reported that concept-oriented views contained signifi cantly less non-
specifi c information; and when answering questions about patient’s records, using 
concept-oriented views showed a signifi cantly greater accuracy in information 
retrieval. Friedman and Hripsak  (  1998a  )  published an analysis of methods used to 
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evaluate the performance of medical NLP systems, and emphasized the diffi culty in 
completing a reliable and accurate evaluation. They noted a need to establish a 
“gold reference standard”; and they defi ned 21 requirements for minimizing bias in 
such evaluations. Friedman and Hripsak  (  1998b  )  also reported that most medical 
NLP systems could encode textual information as correctly as medical experts, 
since their reported sensitivity measures of 85% and specifi city measures of 98% 
were not signifi cantly different from each other. Medical NLP systems that were 
based on analysis of small segments of sentences, rather than on analysis of the larg-
est well-formed segment in a sentence, showed substantial increases in performance 
as measured by sensitivity while incurring only a small loss in specifi city. NLP 
systems that contained simpler pattern-matching algorithms that used limited lin-
guistic knowledge performed very well compared to those that contained more 
complex linguistic knowledge. 

 The extension of MedLEE to a domain of knowledge other than radiology involved 
collecting a new training body of information. Johnson and Friedman  (  1996  )  noted 
that the NLP of discharge summaries in patients’ medical records required adding 
demographic data, clinical diagnoses, medical procedures, prescribed medications 
with qualifi ers such as dose, duration, and frequency, clinical laboratory tests and 
their results; and be able to resolve confl icting data from multiple sources, and be 
able to add new single- and multi-word phrases; and found all in an appropriate 
knowledge base. Barrows et al.  (  2000  )  also tested the application of the MedLEE 
system to a set of almost 13,000 notes for ophthalmology visits that were obtained 
from their clinical database. The notational text that is commonly used by the clini-
cians was full of abbreviations and symbols, and was poorly formed according to 
usual grammatical construction rules. After an analysis of these records, a glaucoma-
dedicated parser was created using pattern matching of words and phrases represen-
tative of the clinical patterns sought. This glaucoma-dedicated parser was used, and 
compared to MedLEE for the extraction of information related to glaucoma disease. 
They reported that the glaucoma-dedicated parser had a better recall rate than did 
MedLEE, but MedLEE had a better rate for precision; however, the recall and the 
precision of both approaches were acceptable for their intended use. Friedman  (  2000  )  
reported extending the MedLEE system for the automated encoding of clinical infor-
mation in text reports in to ICD-9, SNOMED, or UMLS codes. 

 Friedman et al.  (  2004  )  evaluated the recall and precision rates when the system 
was used to automatically encode entire clinical documents to UMLS codes. For a 
randomly selected set of 150 sentences, MedLEE had recall and precision rates com-
parable to those for six clinical experts. Xu and Friedman  (  2003  )  and Friedman et al. 
 (  2004  )  described the steps they used with MedLEE for processing pathology reports 
for patients with cancer: (1) Their fi rst step was to identify the information in each 
section, such as the section called specimen; (2) identify the fi ndings needed for their 
research project; (3) analyze the sentences containing the fi ndings, and then extend 
MedLEE’s general schema to include representing their structure; (4) adapt MedLEE 
so that it would recognize their new types of information which were primarily geno-
typypic concepts and create new lexical entrees; (5) to minimize the modifi cations to 
MedLEE, a preprocessing program was also developed to transform the reports into 
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a format that MedLEE could process more accurately, such as when a pathology 
report included multiple specimens it was necessary to link reports to their appropri-
ate specimen; (6) the last step was to develop a post-processing program to transform 
the data needed for a cancer registry. Cimino  (  2000  )  described a decade of use of 
MED for clinical applications of knowledge-based terminologies to all services in 
their medical center, including specialty subsystems. 

 Cao et al.  (  2004  )  reported the application of the MedLEE system in a trial to 
generate a patient’s problem-list from the clinical discharge summaries that had 
been dictated by physicians for a set of nine patients, randomly selected from their 
hospital fi les. The discharge summary reports were parsed by the MedLEE system, 
and then transformed to text knowledge-representation structures in XML format 
that served as input to the system. All the fi ndings that belonged to the preselected 
semantic types were then extracted, and these fi ndings were weighted based on the 
frequency and the semantic type; and a problem list was then prepared as an output. 
A review by clinical experts found that for each patient the system captured more 
than 95% of the diagnoses, and more that 90% of the symptoms and fi ndings associ-
ated with the diagnoses. 

 Bakken et al.  (  2004  ) , reported the use of MedLEE for narrative nurses’ reports; 
and compared the semantic categories of MedLEE with the semantic categories of 
the International Standards Organization (ISO) reference terminology models for 
nursing diagnoses and nursing actions. They found that all but two MedLEE diag-
nosis and procedure-related semantic categories could be mapped to ISO models; 
and they suggested areas for extension of MedLEE. Nielson and Wilson  (  2004  )  at 
the University of Utah reported developing an application that modifi ed MedLEE’s 
parser that, at the time, required sophisticated rules to interpret its structured output. 
MedLEE parsed a text document into a series of observations with associated modi-
fi ers and modifi er values; the observations were then organized into sections corre-
sponding to the sections of the document; the result was an XML document of 
observations linked to the corresponding text; and manual rules were written to 
parse the XML structure and to correlate the observations into meaningful clinical 
observations. Their application employed a rule engine developed by domain experts 
to automatically create rules for knowledge extraction from textual documents; so it 
allowed the user to browse through the raw text of the parsed document, select 
phrases in the narrative text, and then it dynamically created rules to fi nd the cor-
responding observations in the parsed document. 

 Zhou et al.  (  2006  )  used MedLEE to develop a medical terminology model for 
surgical pathology reports. They collected almost 900,000 surgical pathology 
reports that contained more than 104,000 unique terms; and that had two major pat-
terns for reporting procedures beginning with either “bodyloc” (body location) or 
“problem”. They concluded that a NLP system like MedLEE provided an auto-
mated method for extracting semantic structures from a large body of free text, and 
reduced the burden for human developers of medical terminologies for medical 
domains. Chen et al.  (  2006  )  reported a modifi cation in the structured output from 
MedLEE from a nested structured output into a simpler tabular format that was 
expected to be more suitable for some uses such as spread sheets. 
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 Lussier et al.  (  2006  )  reported using BioMedLEE system, an adaptation of 
MedLEE that focuses on extracting and structuring biomedical entities and relations 
including phenotypic and genotypic information in biomedical literature, for auto-
matically processing text in order to map contextual phenotypes to the Gene 
Ontology Annotations (GOA) database which facilitates semantic computations for 
the functions, cellular components and processes of genes. Lussier described the 
PhenoGo system that can automatically augment annotations in the GOA with addi-
tional context, by using BioMedLEE and an additional knowledge-based organizer 
called PhenOS, in conjunction with MeSH indexing and established biomedical 
ontologies. PhenoGo was evaluated for coding anatomical and cellular information, 
and for assigning the coded phenotypes to the correct GOA, and found to have a 
precision rate of 91% and a recall rate of 92%. Chen et al.  (  2008  )  also described 
using MedLEE and BioMedLEE to produce a set of primary fi ndings (such as medi-
cal diagnoses, procedures, devices, medications), with associated modifi ers (such as 
body sites, changes, frequencies). Since NLP systems had been used for knowledge 
acquisition because of their ability to rapidly and automatically extract medical 
entities and fi ndings, relations and modifi ers within textual documents, they 
described their use of both NLP systems for mining textual data for drug-disease 
associations in MEDLINE articles and in patients’ hospital discharge summaries. 
They focused on searching the textual data for eight diseases that represented a 
range of diseases and body sites, for any strong associations between these diseases 
and their prescribed drugs. BioMedLEE was used to encode entities and relations 
within the titles and abstracts of almost 82,000 MEDLINE articles, and MedLee 
was used to extract clinical information from more than 48,000 discharge summa-
ries. They compared the rates of specifi c drug-disease associations (such as levodopa 
for Parkinson’s disease) found in both text sources; and concluded that the two text 
sources complemented each other, since the literature focused on testing therapies 
for relatively long time-spans, whereas discharge summaries focused on current 
practices of drug uses. They also concluded that they had demonstrated the feasibil-
ity of the automated acquisition of medical knowledge from both biomedical litera-
ture and from patients’ records. Wang et al.  (  2008  ) , described using MedLEE to test 
for symptom-disease associations in the clinical narrative reports of a group of hos-
pitalized patients; and reported an evaluation on a random sample for disease-symptom 
associations with an overall recall rate of 90% and a precision of 92%. Borlawsky 
et al.  (  2010  ) , reviewed semantic-processing approaches to NLP for generating inte-
grated data sets from published biomedical literature. They reported using 
BioMedLEE and a subset of PhenoGo algorithms to extract, with a high degree of 
precision, encoded concepts and determine relationships among a body of PubMed 
abstracts of published cancer and genetics literature, with a high degree of 
precision. 

 Hogarth  (  2000  )  and associates at the University of California in Davis introduced 
Terminology Query Language (TQL) as a query-language interface to server imple-
mentations of concept-oriented terminologies. They observed that terminology sys-
tems generally lacked standard methodologies for providing terminology support; 
and TQL defi ned a query-based mechanism for accessing terminology information 
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from one or more terminology servers over a network connection. They described 
TQL to be a declarative language that specifi ed what to get rather than how to get it, 
and it was relatively easy to use as a query-language interface that enabled simple 
extraction of terminology information from servers implementing concept-oriented 
terminology systems. They cited as a common example of another query-language 
interface, the Structured Query Language (SQL) for relational databases (see Sect. 
  2.3    ). TQL allowed the data structures and names for terminology-specifi c data types 
to be mapped to an abstract set of structures with intuitively familiar names and 
behaviors. The TQL specifi cation was based on a generic entity-relationship (E/R) 
schema for concept-based terminology systems. TQL provided a mechanism for 
operating on groups of “concepts” or “terms” traversing the information space 
defi ned by a particular concept-to-concept relationship, and extracted attributes for 
a particular entity in the terminology. TQL output was structured in XML that pro-
vided a transfer format back to the system requesting the terminology information. 
Seol et al.  (  2001  )  noted that it was often diffi cult for users to express their informa-
tion needs clearly enough to retrieve relevant information from a computer database 
system. They took an approach based on a knowledge base that contained patterns 
of information needs, and they provided conceptual guidance with a question-oriented 
interaction based on the integration of multiple query contexts, such as application, 
clinical, and document contexts, based on a conceptual-graph model and using 
XML language. Medonca et al.  (  2001  )  also reviewed NLP systems and examined 
the role that standardized terminologies could play in the integration between a 
clinical system and literature resources, as well as in the information retrieval pro-
cess. By helping clinicians to formulate well-structured clinical queries and to 
include relevant information from individual patient’s medical records, they hoped 
to enhance information retrieval to improve patient care by developing a model that 
identifi ed relevant information themes and added a framework of evidence-based 
practice guidelines. 

 With the advance of wireless communication, Lacson and Long  (  2006  )  described 
the use of mobile phones to enter into their computer in natural language the time-
stamped, spoken, dietary records collected from adult patients over a period of a few 
weeks. They classifi ed the food items and the food quantifi ers, and developed a 
dietary/nutrient knowledge base with added information from resources on food 
types, food preparation, food combinations, portion sizes, and with dietary details 
from the dietary/nutrient resource database of 4,200 individual foods reported in the 
U.S. Department of Agriculture’s Continuing Survey of Food Intakes by Individuals 
(CSFII). They then developed an algorithm to extract the dietary information from 
their patients’ dietary records, and to automatically map selected items to their 
dietary/nutrient knowledge database. They reported a 90% accuracy in the auto-
matic processing of the spoken dietary records. Borlawsky et al.  (  2010  ) , reviewed 
semantic-processing approaches to NLP for generating integrated data sets from 
published biomedical literature. They reported using BioMedLEE and a subset of 
PhenoGo algorithms to extract, with a high degree of precision, encoded concepts 
and determine relationships among a body of PubMed abstracts of published cancer 
and genetics literature, with a high degree of precision. 
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  Informatics for Integrating Biology and the Bedside  ( i2b2 ) was established in 
2004 as a Center at the Partners HealthCare System in Boston, with the sponsorship 
of the NIH National Centers for Biomedical Computing; and it was directed by 
Kohane, Glaser, and Churchill (  https://www.i2b2.org    ). Murphy et al.  (  2007  )  
described i2b2 as capable of serving a variety of clients by providing an inter-oper-
able framework of software modules, called the i2b2 Hive, to store, query, and 
retrieve very large groups of de-identifi ed patient data, including a natural language 
processing (NLP) program. The i2b2 Hive used applications in units, called cells, 
which were managed by the i2b2 Workbench. The i2b2 Hive was an open-source 
software platform for managing medical-record data for purposes of research. It had 
an architecture that was based upon loosely coupled, document-style Web services 
for researchers to use for their own data; with adequate safeguards to protect the 
confi dentiality of patient data that was stored in a relational database, and that was 
able to fuse with other i2b2 compliant repositories. It thereby provided a very large, 
integrated, data-repository for studies of very large patient groups. The i2b2 
Workbench consisted of a collection of users’ “plug-ins” that was contained within 
a loosely coupled visual framework, in which the independent plug-ins from various 
user teams of developers could fi t together. The plug-ins provided the manner in 
which users interfaced with the other cells of the Hive. When a cell was developed, 
a plug-in could then be used to support its operations (Chueh and Murphy  2006  ) . 
McCormick  (  2008  )  and associates at Columbia University in New York, reported 
that in response to an i2b2 team’s challenge for using patients’ discharge summaries 
for testing automated classifi ers for the status of smokers (as a current smoker, non-
smoker, past smoker, or status unknown), they investigated the effect of semantic 
features extracted from clinical notes for classifying a patient’s smoking status and 
compared the performance of supervised classifi ers to rule-based symbolic classi-
fi ers. They compared the performance of: (1) a symbolic rule-based classifi er, which 
relied on semantic features (generated by MedLEE); (2) a supervised classifi er that 
relied on semantic features, and (3) a supervised classifi er that relied only on lexical 
features. They concluded that classifi ers with semantic features were superior to 
purely lexical approaches; and that the automated classifi cation of a patient’s smok-
ing status was technically feasible and was clinically useful. 

 Himes  (  2008  )  and associates at Harvard Medical School and Partners HealthCare 
System, reported using the i2b2 natural-language processing (NLP) program to 
extract both coded data and unstructured textual notes from more than 12,000 elec-
tronic patient records for research studies on patients with bronchial asthma. They 
found that the data extracted by this means was suitable for such research studies of 
large patient populations. Yang et al.  (  2009  )  used the i2b2 NLP programs to extract 
textual information from clinical discharge summaries, and to automatically iden-
tify the status of patients with a diagnosis of obesity and 15 related co-morbidities. 
They assembled a knowledge base with lexical, terminological, and semantic fea-
tures to profi le these diseases and their associated symptoms and treatments. They 
applied a data mining approach to the discharge summaries of 507 patients, which 
combined knowledge-based lookup and rule-based methods; and reported a 97% 
accuracy in predictions of disease status, which was comparable to that of humans. 
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Ware et al.  (  2009  ) , also used the i2b2 NLP programs to focus on extracting diagno-
ses of obesity and 16 related diagnoses from textual discharge summary reports, and 
reported better than 90% agreement with clinical experts as the comparative “gold 
standard”. Kementsietsidis  (  2009  )  and associates at the IBM T. J. Watson Research 
Center developed an algorithm to help when querying clinical records to identify 
patients with a defi ned set of medical conditions, called a “conditions-profi le”, that 
was required for a patient to have in order to be eligible to participate in a clinical 
trial or a research study. They described the usual selection process was to fi rst 
query the database and identify an initial pool of candidate-patients whose medical 
conditions matched the conditions-profi le; and then to manually review the medical 
records of each of these candidates, and identify the most promising patients for the 
study. Since that fi rst step could be complicated, and very time-consuming in a very 
large patient database if one used simple keyword searches for a large number of 
selection criteria in a conditions-profi le, they developed an algorithm that identifi ed 
compatibilities and incompatibilities between the conditions in the profi le. Through 
a series of computational steps the program created a new conditions-profi le, and 
returned to the researcher a smaller list of patients who satisfi ed the revised condi-
tions-profi le; and this new list of patients could then be manually reviewed for those 
suited for the study. 

 Meystre and Haug  (  2003,   2005  )  at the University of Utah described their devel-
opment of a NLP system to automatically analyze patients’ longitudinal electronic-
medical records (EMRs), and to ease for clinicians the formation of a patient’s 
medical-problem list. They developed from the patients’ problem-oriented medical 
records in their Intermountain Health Care program a problem list of about 60,000 
concepts. Using this as a knowledge base, their Medical Problem Model identifi ed 
and extracted from the narrative text in an active patient’s EMR a list of the potential 
medical problems. Then a Medical Document Model used a problem-list manage-
ment-application to form a problem list that could be useful for the physician. In the 
Intermountain Health Care program that used their HELP program, their objective 
was to use this NLP system to automate the development of problem lists, and to 
automatically update and maintain them for the longitudinal care of both ambula-
tory and hospital patients. Meystre et al.  (  2009  )  also reported installing and evaluat-
ing an i2b2 Hive for airway diseases including bronchial asthma, and reported that 
it was possible to query the structured data in patients’ electronic records with the 
i2b2 Workbench for about half of the desired clinical data-elements. Since smoking 
status was typically mentioned only in clinical notes, they used their natural-lan-
guage processing (NLP) program in the i2b2 NLP cell, and they found the auto-
mated extraction of patients’ smoking status had a mean sensitivity of 0.79 and a 
mean specifi city of 0.90. 

 Childs et al.  (  2009  )  described using ClinREAD, a rule-based natural-language 
processing (NLP) system, developed by Lockheed Martin, to participate in the i2b2 
Obesity Challenge program to build software that could query and retrieve data 
from patients’ clinical discharge summaries and make judgments as to whether the 
patients had, or did not have, obesity and any of 15 comorbidities (including asthma, 
coronary artery disease, diabetes, and others). They developed an algorithm with a 
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comprehensive set of rules that defi ned word-patterns to be searched for in the text 
as literal text-strings (called “features”), that were grouped to form word-lists that 
were then matched in the text for the presence of any of the specifi ed disease comor-
bidities. Fusaro  (  2010  )  and associates at Harvard Medical School, reported transfer-
ring electronic medical records from more than 8,000 patients into an i2b2 database 
using Web services. Gainer  (  2010  )  and associates from Partners Healthcare System, 
Massachusetts General Hospital, Brigham and Women’s Hospital, and the University 
of Utah, described their methods for using i2b2 to help researchers query and ana-
lyze both coded and textual clinical data that were contained in electronic patient 
records. Using data from the records of patients with rheumatoid arthritis, the group 
of collaborating investigators were required to develop new concepts and methods 
to query and analyze the data, to add new vocabulary items and intermediate data-
processing steps, and some custom programming. 

 Wynden  (  2010a,   b  )  and associates at the University of California, San Francisco 
(UCSF), described their Integrated Data Repository (IDR) project that contained 
various collections of clinical, biomedical, economic, administrative, and public 
health data. Since standard data warehouse design was usually diffi cult for research-
ers who needed access to a wide variety of data resources, they developed a transla-
tional infrastructure they called OntoMapper, that translated terminologies into 
formal data-encoding standards without altering the underlying source data; and 
also provided syntactic and semantic interoperability for the grid-computing envi-
ronments on the i2b2 platform; and they thereby facilitated sharing data from differ-
ent resources. Sim  (  2010  )  and associates from UCSF and several other medical 
institutions, employed translational informatics and reported their collaboration in 
the Human Studies Database (HSDB) Project to develop semantic and data-sharing 
technologies to federate descriptions of human studies. Their priorities for sharing 
human-studies data included: (1) research characterization of populations, such as 
by outcome variables; (2) registration of studies into the database, ClinicalTrials.
gov; and (3) facilitating translational research collaborations. They used UCSF’s 
OntoMapper to standardize data elements from the i2b2 data model; and they shared 
data using the National Cancer Institute’s caGrid technologies. Zhang  (  2010  )  and 
associates at Case Western Reserve and University of Michigan, developed a query 
interface for clinical research they called Visual Aggregator and Explorer (VISAGE), 
that incorporated three interrelated components: (1) Query Builder with ontology-
driven terminology support; (2) Query Manager that stored and labeled queries for 
reuse and sharing; and (3) Query Explorer for comparative analyses of query results. 
Together these components helped with effi cient query construction, query sharing, 
and data exploration; and they reported that in their experience VISAGE was more 
effi cient for query construction than the i2b2 Web-client. Logan  (  2010  )  and associ-
ates at Oregon Health and Portland State Universities, reviewed the use of graphi-
cal-user interfaces to query a variety of multi-database systems, with some using 
SQL or XML languages and others having been designed with an entity-attribute-value 
(EAV) schema. They reported using Web Ontology Language (OWL) to query, 
select, and extract desired fi elds of data from these multiple data sources; and then 
to re-classify, re-modify, and re-use the data for their specifi c needs. 
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  Translational informatics  developed in the 2000s to support querying diverse 
information resources that were located in multiple institutions. The National Center 
of Biomedical Computing (NCBC) developed technologies to address locating, 
querying, composing, combining, and mining biomedical resources; and each site 
that intended to contribute to the inventory needed to transfer a biosite-map that 
conformed to a defi ned schema and a standard set of metadata. Mirel  (  2010  )  and 
associates at the University of Michigan, described using their Clinical and 
Translational Research Explorer project with its Web-based browser that facilitated 
searching and fi nding relevant biomedical resources for biomedical research. They 
were able to query more than 800 data resources from 38 institutions with Clinical 
and Translational Science Awards (CTSA) funding. Their project was funded by the 
National Centers for Biomedical Computing (NCBC), and was developed through 
a collaborative effort of ten institutions and 40 cross-disciplinary specialists. They 
defi ned a set of task-based objectives and user requirements to support users of their 
project. Denny  (  2010  )  and associates at Vanderbilt University developed an algo-
rithm for phenome-wide association scans (PheWAS) when identifying genetic 
associations in electronic medical records (EMRs) of patients. Using the International 
Classifi cation of Diseases (ICD9) codes, they developed a code translation table and 
automatically defi ned 776 different disease population groups derived from their 
EMR data. They genotyped a group of 6,005 patients in their Vanderbilt DNA 
biobank, at fi ve single nucleotide polymorphisms (SNPs), who also had ICD9 codes 
for seven, selected, associated medical diagnoses (atrial fi brillation, coronary artery 
disease, carotid artery disease, Crohn’s disease, multiple sclerosis, rheumatoid 
arthritis, and systemic lupus erythematosis) to investigate SNP-disease associations. 
They reported that using the PheWAS algorithm, four of seven known SNP-disease 
associations were replicated, and also identifi ed 19 previously unknown statistical 
associations between these SNPs and diseases at  P  < 0.01. 

 In the 2000s the general public use of Internet search engines increased, includ-
ing the use of NLM’s PubMed and other NLM databases, by entering keywords or 
phrases for information about diseases and possible treatments. Google was very 
frequently queried, and it ranked its websites based on the numbers of “hits” on its 
websites. In a study of Google’s effectiveness in searching for medical information, 
Wang et al.  (  2010  )  reported that its specifi city was good, while its sensitivity for 
providing true relevant responses might not always be satisfactory.  

    3.4   Summary and Commentary 

 In the 1950s most physicians recorded their hand-written notes on paper forms that 
were then collected and stored in their patients’ paper-based charts. Surgeons, 
pathologists, and some other clinicians dictated their reports that described the pro-
cedures they had performed on patients; and these reports were then transcribed by 
secretaries and deposited in the patients’ records. Since much of the data in a medi-
cal database was entered, stored, queried, and retrieved in natural language text, it 
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was always evident that the processing of textual data was a critical requirement for 
a medical database. 

 In the 1960s some natural language processing (NLP) was performed by match-
ing key words or phrases. In the 1970s NLP systems for automated text processing 
were primarily syntax-based programs that parsed the text by identifying words and 
phrases as subjects or predicates, and as nouns or verbs. After completing the syntax 
analysis, then semantic-based programs attempted to recognize the meanings of the 
words by referring to data dictionaries or knowledge bases, and using rewrite-rules 
to generate the text that had been represented by the stored codes. 

 By the 1980s NLP systems used both syntactical and semantical approaches, with 
knowledge bases that suggested how expert human parsers would interpret the mean-
ing of words within their particular information contexts. In the 1990s NLP systems 
were able to provide both the automatic encoding of textual data and the retrieving of 
the stored textual data. In the 2000s NLP systems were    suffi ciently developed to be 
able to use convergent medical terminologies, to automatically encode textual data, 
and to successfully query natural language stored in medical databases.      
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  Primary medical record databases  are data repositories constructed for direct health 
care delivery to process clinical information, to carry out the special functions for 
which the data have been collected, integrated, and stored by health-care providers 
for the direct care of their patients. Medical record data are collected in a variety of 
medical sites and for a variety of purposes, including helping physicians in making 
decisions for the diagnosis and treatment of patients, helping nurses in their patient 
care functions, and helping technical personnel in their clinical support services. 
The great utility of medical databases resides in their capacity for storing huge vol-
umes of data, and for their ability to help users to search, retrieve, and analyze 
information on individual patients relevant to their clinical needs. Michalski et al. 
 (  1982  )  added that medical databases were also constructed, in addition to keeping 
track of clinical data, to be used to study and learn more about the phenomena that 
produced the data. 

 Primary medical record databases are also referred to as clinical databases, as 
electronic medical records (EMRs), or as electronic health records (EHRs); and 
they are the data repositories used by physicians, nurses, pharmacists, technicians, 
and other health-care providers to enter, store, and retrieve patient data during the 
process of providing patient care. The National Library of Medicine’s MESH terms 
defi nes an EMR as a computer-based system for the input, storage, display, retrieval, 
and printing of information contained in a patient’s medical record (Moorman et al. 
 2009  ) . Primary medical record databases also include the separate sub-system 
repositories for storing the data collected from clinical specialties such as surgery, 
pediatrics, obstetrics, and other clinical services; and also from the clinical support 
services such as the clinical laboratory, radiology, pharmacy, and others. A patient’s 
medical record may contain data collected over long periods of time, sometimes for 
a patient’s lifetime; and may be accessed by a variety of users for different patient-
care purposes. 

    Chapter 4   
 Primary Medical Record Databases       
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    4.1   Requirements for Medical Record Databases 

  Functional requirements  for a medical record database are many and varied, especially 
when it serves as the primary repository for a large number of patients’ medical 
records. Coltri et al.  (  2006  )  emphasized that the range of data held within a primary 
medical record database in a patient-care setting was vast; and it was constantly 
expanding since the variety of its users included patients, physicians, nurses, techni-
cians, pharmacists, clerks, administrators, business personnel, and researchers; and 
all had their special needs. Davis  (  1970 , Davis et al.  1968  ) , Greenes et al.  (  1969  ) , 
Pryor et al.  (  1982,   1983,   1985  )  Safran and Porter  (  1986  ) , Shortliffe et al.  (  1992  ) , 
Duke et al.  (  2006  ) , and Grams  (  2009  )  all described the requirements of a primary 
medical record database, such as for an electronic medical record (EMR), were to: 
(a) maintain correct and updated patient-identifi cation information in one common 
data-set, and to be able to provide linkage to data of family members and depen-
dents; (b) satisfy all legal requirements for maintaining the security, privacy and 
confi dentiality of all of their patients’ data; (c) contain all of the data collected for 
every patient-care transaction from all clinical support subsystems (such as clinical 
laboratory, imaging, and others), and from all clinical specialty services (such as 
obstetrics, surgery, emergency department, and others); (d) capture patients’ data 
directly at computer terminals at the point of each transaction, and provide a rapid 
response at every terminal at any time of need, for 24 h each day and for 7 days each 
week; (e) identify and characterize the patient’s current and prior medical status and 
treatments; (f) help minimize administrative record keeping and submission of 
forms; (g) permit assessment of patient-care outcomes and of clinical practice pat-
terns; and (h) be user-friendly with self-explanatory functions. Myers and Slee 
 (  1959  )  advised that an EMR should be able to monitor for adverse clinical events 
that could affect patient’s well being or the quality of patient care. Warner  (  1979  )  
specifi ed some additional requirements needed by clinicians, namely: rapid and 
positive identifi cation of a patient’s record; minimal time needed to retrieve, add, or 
modify any particular data item; rapid retrieval of multiple items of the same type 
that had occurred in specifi ed sequential intervals of time in order to be able to 
quickly derive averages or trends of data; and to allow for changes, additions, or 
deletions of data; and he also included a requirement for providing adequate com-
puter-storage space for an expanding database. 

 Dick and Steen  (  1992  )  reviewed the recommendations from an Institute of 
Medicine’s Technology Subcommittee that included in its report that the electronic 
medical record (EMR) and its database-management system should: (1) be the 
core of the entire health-care information system, and should facilitate high-qual-
ity, cost-effective patient care; (2) be able to support a longitudinal, life-time, 
patient-care record; (3) be able to collect, integrate, store, and retrieve data from 
distributed database systems functioning within high-speed communication net-
works; (4) have data entry and retrieval systems capable of providing selected parts 
of the EMR in a format desired by its users; (5) have “smart” terminals and work-
stations that interact directly with the EMR system; (6) support clinical-research 
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databases, and facilitate practice-linked medical education; and (7) ensure the 
security, privacy and confi dentiality of its patients’ data. Pryor et al.  (  1982  )  empha-
sized that all data in an EMR needed to be “time-stamped” so that it could provide 
a continuous history over the time of the patient’s medical care. Stead et al.  (  1992  )  
also summarized the requirements for an optimal patient-record database were to 
collect patient-care data at the transactional level as a by-product of the patient-
care process; be able to serve as the sole legal record of the patient’s care; and be a 
resource for both patient care and clinical research. McHugh  (  1992  )  added some 
specifi c nurses’ needs for an EMR database, such as facilitating the repeated entry 
of common data as a patient’s vital signs; allowing multiple users to query the 
same patient’s record at the same time; and providing alerts and alarms for possible 
adverse events such when medication orders have not been recorded in a timely or 
correct way. Friedman et al.  (  1990  )  emphasized that for effi cient use and retrieval, 
the data needed to be organized by individual patients; clinical terms needed to be 
uniquely and uniformly coded so that data could be reliably retrieved; the database 
design needed to allow adding new types of data, and be fl exible to accommodate 
heterogeneous and complex data types. Levy and Lawrance  (  1992  )  noted the needs 
for effi cient information retrieval from a medical record system for not only the 
data sought from the record itself, but also for information from outside sources 
that could be useful in the care of a patient; and that the data retrieval should also 
satisfy time requirements that vary from the urgent needs for a critical test report 
by an intensive care unit to the routine follow-up report for a health evaluation. 

 Graetz  (  2009  )  and associates at Kaiser Permanente Northern California, sur-
veyed groups of primary caregivers who were using an EMR in Kaiser Permanente, 
a large, prepaid, integrated delivery system, providing comprehensive care to more 
than three-million members. The groups included 1,028 physicians, 129 nurse prac-
titioners and physician assistants; and they were questioned for their perceptions of 
the most important requirements for an EMR in order to satisfy the principal func-
tions of an EMR system to provide all medical staff involved with each patient’s 
current and comprehensive care information. The key requirements reported were: 
(1) to be able to easily transfer patient information among multiple clinicians, and 
(2) to have available when needed all relevant patient information. Palacio et al. 
 (  2010  )  and Schiff and Bates  (  2010  )  also emphasized that the requirements for EMRs 
were to help to reduce errors, improve clinical decision-making, and provide patient 
data in real-time when needed. 

  Technical requirements  for a primary medical record database, such as an elec-
tronic medical record (EMR), also needed to fulfi ll all of the health care users’ 
functional requirements. The basic technical requirements for a primary medical 
database usually included the needs for: (1) Acceptable computer terminals and 
programs for entering, retrieving, and reporting the data; and be capable of exploit-
ing advances in computer technology itself. Greenes et al.  (  1994  )  emphasized the 
importance of a health-care professional’s clinical workstation to represent a portal 
through which the user could interact with other entities in the health-care informa-
tion system, and support to the health-care professional’s needs to effi ciently carry 
out a wide variety of clinical functions, including the ability to provide online alerts 
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and warnings of potential adverse clinical events. Blois  (  1985  )  also advocated the 
need for a workstation within the clinical database-management system that would 
be adaptive; and ideally be capable of learning from the kinds of information a user-
physician retrieved at specifi c times and in particular situations, and then be able to 
anticipate what information the physician was most likely to require next. (2) 
Appropriate specifi cations for the database structure as to whether it was to be 
designed as a relational database, a hierarchical database, an object-oriented data-
base, a network database, or a combination of these structural designs; and whether 
it would most effi ciently function as a single centralized database, or as a federated 
database, or as a distributed database-management system. It also needed to provide 
a fl exible system design that would be able to satisfy changing and expanding 
requirements for technical and medical innovations; and provide adequate capacity 
to store all required data for current needs and for future additions. (3) A secure and 
reliable system with an uninterruptible power supply to maintain a secure database 
that was available to health-care providers in a timely manner for 24 h each day, for 
7 days every week; and the system needed adequate safeguards to assure the secu-
rity, privacy and confi dentiality of all patients’ data. (4) Standard data-coding sys-
tems to permit data interchanges, communication links to other databases, and links 
to information systems in affi liated medical offi ces and hospitals where patients 
also were served (Davis  1970 , Collen  1970 , BSL  1971  ) . (5) A metadatabase with a 
computer-stored data dictionary that defi ned the contents of the database; and 
described all processes and procedures, such as clinical laboratory tests and medica-
tions; and included a vocabulary and codes of all standard terms to facilitate 
exchange of data with other information systems. 

 Dick and Steen  (  1992  )  also reviewed the essential technologies needed for a data-
base-management system for EMRs, and concluded that in the 1990s there was yet no 
single system available that might serve as a model for such systems, and be able to 
satisfy all the continually changing requirements for data processing, in a secure and 
timely manner, all the information commerce in a comprehensive patient-care system. 
By the 2000s an EMR database-management system was expected to be able to inter-
face with a computer-based physician entry (CPOE) module, to communicate with all 
appropriate clinical services, transmit all requisitions for tests and procedures ordered 
for a patient; and then be able to interface to a results-reporting module to send back 
to appropriate terminals the results of completed tests and procedures, including any 
interpretive comments and alert warnings; and in addition be able to provide support 
to the decision-making processes involved in the patient’s care. The medical database-
management system also needed to be able to enter, store, retrieve, and transmit data 
to-and-from each patient’s computer-based record; and be able to collect and store 
each patient’s identifi cation data, and all data generated during a clinical procedure 
(such as a surgical biopsy); and also include the specifi c technical unit where the pro-
cedure was performed, with a record of the date, time, and location of every patient-
care transaction. A timely response to a query was important since some queries 
needed to be answered in: (a) “real-time” (such as for a radiologist’s report for an 
x-ray taken on a trauma patient in the emergency room); or (2) as an “online” report 
for data that is input directly into the system at the point of origin (such as from an 
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intensive-care unit, and the data output is then transmitted directly back to where it is 
needed); or (3) as an “offl ine” report that was entered or queried from some location 
other than where the data was collected, and the response then could be conveniently 
provided at a later time. In the 2000s the needed health information technology (HIT) 
had adequately advanced, so that by 2010 federal fi nancial support became available 
in the United States for the nation-wide implementation of EMRs, even for single 
physicians’ offi ces. 

    4.1.1   Data Security, Privacy and Confi dentially 

 It is an essential requirement for a primary medical record database to establish and 
maintain secure patients’ records, to protect them from any unauthorized activity, 
and to protect the privacy and the confi dentiality of each patient’s data in the data-
base. Dyson  (  2008  )  noted that the issue of privacy is dependent on security, and on 
its relationship to health policy and psychosocial matters. 

  Database security  is maintained by restricting physical access to the computer 
facility, and by limiting access to patients’ records only to authorized personnel; and 
then maintaining records of all such actions taken; and under certain conditions even 
separately storing and/or encrypting very sensitive patient data such as is usually 
done with the clinical data for psychiatric patients. Brannigan  (  1984  )  considered the 
introduction in the 1950s of using telephones with dial access to computer systems 
as an important development in technology to facilitate needed access and yet help 
assure the security of patient data, since remote access to patients’ data fi les in a 
computer system when using ordinary telephone lines with a conventional modem 
needed entering specifi c access numbers. Such remote access allowed programmers 
to access the computer from home, allowed physicians to access the computer sys-
tem from their offi ces, and allowed researchers to exchange information with col-
leagues in other institutions. Security requirements soon introduced the need to use 
passwords, personal identifi cation codes, encryption, and other security techniques 
to fulfi ll the legal requirements for maintaining secure, private patient data. 

  Patient identifi cation (ID) data  that is stored in medical records requires a high 
level of accuracy to minimize errors when querying or transferring patient data. 
Legally, a patient’s ID data may not be released without the patient’s informed con-
sent, and this is an essential requirement for protecting against unauthorized release 
of a patient’s data. All medical information systems and their clinical subsystems 
need to accurately identify each patient’s data, and each patient’s specimens; and to 
collate or link all records and data collected for that patient and for that patient’s 
specimens; and that data linkage is usually accomplished by assigning each patient a 
unique identifi cation (ID) number. Hospitals generally assign a new and unique ID 
hospital number to each patient upon their admission; and with the addition of the 
patient’s name, gender, birth date, and postal address, this data set usually provided 
an adequate accurate identifi cation of the individual. Lindberg  (  1967  )  added a sev-
enth-place check-digit to each patient’s unique ID number to help detect and prevent 



112 4 Primary Medical Record Databases

transmission of incorrect ID numbers due to transcription errors. The check-digit is 
calculated by the computer from the preceding six digits of each patient’s ID number 
using a modulus-eleven method; and the computer system accepts data only if the 
patient’s ID number, including the check-digit, are valid. 

 During a period of hospitalization, all data for a patient are linked by the patient’s 
hospital ID number; and the same ID number is usually used on subsequent admis-
sions of the patient to the same hospital, so that all current test results and procedure 
reports could be compared to prior reports for the same patient. Clinical services 
located within a hospital and its associated clinics usually use the same hospital 
patient’s ID number that is assigned to the patient on admission to the hospital; and 
that ID number is recorded on every report or note for every test and procedure for 
every clinical service for that patient. Every clinical service needed to identify each 
service it provided to each patient with the specifi c patient’s ID number, and then 
accurately link and store the data in that patient’s computer-based medical record. 
Clinics and medical offi ces that were independent from hospitals usually noted the 
referring hospital’s patient ID number, but usually assigned their own accession ID 
number for any services they provided to the patient. The use of multiple ID num-
bers by a patient who received care from multiple medical sources could become a 
problem in accurately linking and collecting all of the patient’s medical data. 

  Privacy and  c onfi dentiality  of patient data are governed by a variety of strict 
legal requirements, including the informed consent for the release of an individual 
patient’s data, and also by de-identifying all patient data that are derived from a 
clinical database and are transferred to a research databases (see also   Sect. 6.1.1    ). 
The sharing of information from databases developed for federal agencies is gov-
erned by the Freedom of Information Act (FOIA) of 1950 that established standards 
for the appropriate disclosure of federal records, and provided researchers with a 
mechanism for obtaining access to de-identifi ed federal patient records. The Privacy 
Act of 1974 addressed the individual’s right to privacy of personal information, and 
prohibited the disclosure of personally identifi able information maintained in a sys-
tem of records without the consent of the individual (Gordis and Gold  1980 ; Cecil 
and Griffi n  1985  ) . In 1996 the U.S. Department of Health and Human Services 
(HHS) enacted the Health Insurance Portability and Accountability Act (HIPAA) 
that established standards for assuring the security and privacy of individually iden-
tifi able health information, called “protected health information” (PHI), during its 
electronic exchange, while allowing the fl ow of health information needed to pro-
vide and promote high quality health care. The electronic exchange of a patient’s 
information requires the informed consent of the individual, who needs to be given 
the options of not consenting to the release of all data, or allow only the release of 
selected data. The HIPAA Privacy Rule defi ned legally de-identifi ed health infor-
mation as being unrestricted in its use after the removal of identifi ers of the indi-
vidual, as specifi ed by the Privacy Act of 1974; and these include: the individual’s 
name, initials, or an identifying number or symbol or other identifying particular 
assigned to the individual, biometric identifi ers such as a fi nger or a voice print, or 
a photograph; and the individual’s age and birth date, gender, postal address, email 
address, telephone number, health plan ID, medical record number, Social Security 
number, and also any identifi ers of the individual’s relatives, household members, 
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and employers. It defi ned a  limited data set  as one that contains legally de-identifi ed 
patients’ health information. The authorization for use of patients’ clinical informa-
tion for research purposes also required authorization by an Institutional Review 
Board (IRB). Within HHS, the Offi ce for Civil Rights (OCR) was responsible for 
implementing and enforcing the HIPAA privacy rules. Congress passed the American 
Recovery and Reinvestment Act (ARRA) of 2009 to provide incentives for the 
adoption of electronic medical records (EMRs), and also included the Health 
Information Technology for Economic and Clinical Health (HITECH) Act that 
specifi ed protection requirements for clinical information that widened the scope of 
the privacy and security protections required under HIPAA. 

 Niland et al.  (  2006  ) , at the University of California at San Diego (UCSD), 
described their Patient-Centered Access to Secure Systems Online (PCASSO), that 
passed patient data in HL7 messages that were stored in PCASSO’s clinical data 
repository; and that were classifi ed in fi ve sensitivity levels, namely: low, standard, 
public-deniable, guardian-deniable, and patient-deniable, with the last level used 
for psychiatry or legal records that the patient’s primary physician considered capa-
ble of causing harm to the patient if disclosed. By the end of the 2000s it became 
easier to create a digital profi le on a person by using the Internet, such as with 
Google, Facebook, and Twitter, since these eroded the privacy of personal informa-
tion when it became available to advertisers, and when users could be monitored at 
website locations such as Google and Yahoo, using portable Apple’s Ipad, and 
mobile “smart phones”, with location-aware applications that could track consum-
ers from site to site, and deliver relevant messages and advertisements in accordance 
with their collected consumer profi les (Spring  2010  ) . In the 2000s the implementa-
tion of translational bioinformatics, the communication of warehouses of clinical 
data from multiple institutions, critically increased the need to fully satisfy the legal 
requirements for assuring the security and privacy of patient data. Morrison  (  2009  )  
and associates at Columbia University described their use of two de-identifi cation 
methods, MedLEE and deid.pl, that they found to be more useful when used together. 
Wynden  (  2010  )  at the University of California, San Francisco (UCSF), described 
the safety precautions adopted for their Integrated Data Repository (IDR) project 
that required clinicians to perform their work within specifi ed environments; and all 
sensitive data was completely separated into protected health information (PHI) 
subsets to satisfy the requirements for HIPAA compliance. Data encryption that 
would make patient data unreadable until the intended recipient un-encrypted it 
began to be explored as an added protection. However, by 2010 it began to be ques-
tioned whether it was completely possible to fully maintain the privacy of personal 
information when communicating and using the Internet.  

    4.1.2   Online Monitoring of Clinical Adverse Events 

 It is an important requirement for the database-management system of a primary 
medical record, such as an electronic medical record (EMR), to have the ability to 
promptly alert and warn health care providers of a potential clinical adverse event 
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that may harm a patient. This is done by designing a system that is capable of con-
tinual online monitoring of the health-care delivery process for specifi ed events 
capable of affecting each patient’s well being or affecting the quality of the patient’s 
care. For any clinical procedure, such as measuring a patient’s blood sugar or blood 
pressure, and comparing the current test result to the patient’s prior test results; then 
with appropriate programmed rules to identify a signifi cant change from prior val-
ues, such a change should signal an alert notice to the physician of either a desired 
benefi cial affect or of an undesired possible harmful effect. This is a very common 
requirement for an EMR system that contains data from the clinical laboratory and/
or from the pharmacy (Myers and Slee  1959  ) . With the advent in the 2000s of 
computer-based order entry to EMRs, the inclusion of monitoring alerts and warn-
ings for potential adverse clinical events began also to provide clinical decision-
support suggestions and clinical practice guidelines. Maronde  (  1978  )  and associates 
at the Los Angeles County-University of Southern California Medical Center, wrote 
that to provide the database for an online adverse events monitoring system, in addi-
tion to the entry of prescribed drugs, clinical laboratory tests, and clinical diagnoses 
into a patient’s computer-based record, they advocated that an assessment of chemi-
cal mutagenesis should also be included when available such as objective data of 
chromosomal breaks, deletions, or additions, since they felt that the possible role of 
drugs in producing mutations had not been given suffi cient attention. They advised 
that monitoring for chemical mutagenesis would entail chromosomal staining and 
study of chromosome morphology, and assessment of the incidence of discernible 
autosomal dominant and sex-linked recessive mutations. 

  Online monitoring for adverse drug events (ADEs)  is a very important require-
ment for a primary patient-care database system such as an electronic medical 
record (EMR), to promptly signal an alert alarm report to the physicians and phar-
macists of an actual or a potential ADE for a patient. An adverse drug event (ADE) 
is a term that generally includes: (a) an adverse drug reaction (ADR) that is any 
response to a drug that is noxious and unintended, such as a toxic or a side effect or 
an allergic reaction to a drug; or (b) an undesired drug-drug interaction that occurs 
at a customary dose used by patients for prophylaxis, diagnosis, or therapy; or (c) an 
error of drug dosage or administration, or the use of a drug for therapy despite its 
contra-indications; or (d) an adverse drug effect on a laboratory test result; or (e) 
any other undesired effect of a drug on a patient (Ruskin  1967 ; Karch and Lasagna 
 1976  ) . The frequent occurrence of ADEs in patients is an important threat to their 
health, and is a substantial burden to medical practice. With the introduction in each 
decade of new drugs the risks of ADEs has increased. Visconti and Smith  (  1967  )  
reported as early as the 1960s that about 5% of hospital admissions were reported 
due to ADEs; and the surveillance of ADEs in the country became a high priority 
for the Food and Drug Administration (see also   Sect. 7.1    ); and ADEs monitoring 
systems began to be reported in the 1960s. 

 In the 1960s Lindberg  (  1968  )  and associates at the University of Missouri School 
of Medicine, reported developing a computer database system that provided a quick 
reference source for drugs, their interactions, and for basic pharmacological prin-
ciples that they had abstracted from AMA Drug Evaluations, manufacturer’s drug 
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inserts such as listed in the Physician’s Desk Reference (PDR), and also from the 
medical literature. Their drug database was organized to be readily accessed in 
accordance with alternate drug names, indications, contraindications, adverse reac-
tions, drug-drug interactions, laboratory tests, route of administration, drug dosage, 
pharmacologic and physiologic actions, and by other items. Their IBM 360/50 data-
base management system supported up to 20 simultaneous users, with terminals 
located conveniently for physicians to use. They could access their database using 
CONSIDER, a general-purpose storage and retrieval program for formatted text, to 
provide alerts for possible ADEs. At that date they estimated that 15% of all patients 
entering a hospital at that time could expect to have an ADE that would prolong 
their hospital stay; that one-seventh of all hospital days were devoted to treating 
drug toxicity; and that during a typical hospital stay a patient might be given as 
many as 20 drugs simultaneously, in which case the patient had a 40% chance of 
having an ADE. By 1977 their system was online, and was also accessible by com-
puter terminals located in a variety of sites in the state of Missouri (Garten et al. 
 1974,   1977  ) . 

 Cluff  (  1964  )  and associates at the Johns Hopkins Hospital developed an early 
monitoring system for ADEs. From a medication order form, patient and prescrip-
tion data for hospital patients were recorded on punched cards; and the data were 
then stored on magnetic tape for computer entry. During the initial one-year of 
1965, from the monitoring of 900 patients they reported that 3.9% were admitted 
with ADEs, and 10.8% acquired ADEs after admission to the hospital. Those who 
received multiple drugs had more ADEs, occurring in 4.2% of patients who received 
fi ve or less drugs, and in 24.2% of patients who received 11–15 drugs (Smith  1966 ; 
Smith et al.  1966  ) . In 1966 the Boston Collaborative Drug Surveillance Program 
(BCDSP) was initiated in the Lemuel Shattuck Hospital in Boston. Nurses were 
trained to collect the medication data and fi ll out a form for each drug ordered by a 
physician; when the patient was discharged the discharge diagnoses and all the drug 
information were transferred to punch cards (Sloane et al.  1966  ) . In 1966 Jick 
 (  1967  )  and associates at Tufts University School of Medicine, joined the BCDSP 
and implemented an ADEs monitoring program for hospitalized patients. By 1970 
the BCDSP involved eight hospitals; and they reported that in six of these hospitals 
6,312 patients had 53,071 drug exposures; 4.8% had ADEs, and in 3.6% of patients 
the drug was discontinued due to the ADE (Jick et al.  1970  ) . Shapiro et al.  (  1971  )  
reported that in a series of 6,199 patients in the medical services of six hospitals 
who were monitored for ADEs, deaths due to administered drugs in the hospitals 
were recorded in 27 patients (0.44%). Miller  (  1973  )  described the monitoring of 
ADEs from commonly used drugs in eight collaborating hospitals, and reported that 
ADEs occurred in 6% of all patients exposed to drugs; about 10% of these ADEs 
were classifi ed as being of major severity, and 4% of these ADEs had either caused 
or strongly infl uenced hospital admission. Porter and Jick  (  1977  )  reported that for 
26,462 monitored medical-service inpatients, 24 (0.9%) were considered to have 
died as a result of ADEs from one or more drugs; the drug-induced death rate was 
slightly less than one-per-1000, and was a rate considered to be consistent in the 
collaborating hospitals from seven countries. Jick  (  1977 , 1978) summarized their 
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experience with monitoring ADEs, and reported that the BCDSP had collaborated 
for 10 years in a program of monitoring ADEs in 40 hospitals in seven countries on 
about 38,000 inpatients and more than 50,000 outpatients. By 1982 their database 
had collected data on over 40,000 admissions in general medical patients in 22 par-
ticipating hospitals (Walker et al.  1983  ) . 

 In 1967 Maronde  (  1971  )  and associates at the University of Southern California 
School of Medicine and the Los Angeles County Hospital initiated a computer-
based, drug dispensing and ADEs monitoring system to process more than 600,000 
outpatient prescriptions per year. At that early date, each prescription was entered 
into the system by a pharmacist who typed in the prescription using a computer 
terminal. They reported that of 52,733 consecutive prescriptions for the 78 drug 
products most frequently prescribed to outpatients, and some had received as many 
as 54 prescriptions during a 112-day period. There were also numerous examples of 
concurrent prescriptions of two different drugs that could result in serious drug-drug 
interactions. It was soon confi rmed that an alerting requirement for ADEs was a 
very important function of an electronic medical record (EMR) system. Melmon 
 (  1971  )  at the University of California in San Francisco observed that although pre-
scribed drugs usually contributed to the physician’s ability to infl uence favorably 
the course of many diseases, their use created a formidable health problem, since 
3–5% of all hospital admissions were primarily for ADEs, 18–30% of all hospital-
ized patients had an ADE while in the hospital, and the duration of hospitalization 
was about doubled as a result; and about one-seventh of all hospital days were 
devoted to the care of ADEs at an estimated annual cost of $3 trillion. 

 In 1970 S. Cohen and associates at Stanford University, initiated an ADEs moni-
toring system that used their MEDIPHOR (Monitoring and Evaluation of Drug 
Interactions by a PHarmacy-Oriented Reporting) system for the prospective study 
and control of drug interactions in hospitalized patients. The goals of their system 
included: (1) establish procedures for collecting drug interaction information from 
the medical literature, and assessing the scientifi c validity and clinical relevance of 
the information; (2) create and implement computer technology capable of prospec-
tive detection and prevention of clinically signifi cant drug interactions; (3) develop 
procedures that utilize the capabilities of the MEDIPHOR system to identify patients 
receiving specifi c drug combinations in order to study the incidence and clinical 
consequences of drug-drug interactions; and (4) evaluate the effects of the 
MEDIPHOR system on medication use and on physicians’ prescribing practices. 
The patient data and prescription data were entered into the system by the pharma-
cist using a cathode-ray-tube terminal in the pharmacy connected to Stanford’s cen-
tral IBM 360/50 ACME database-management system. In the usual mode of 
operation the pharmacist entered the patient’s identifi cation number, followed by a 
three-letter code for each pre-packaged drug, which was then displayed for verifi ca-
tion of the displayed drug strength, prepackaged quantity, and dosage regimen. 
They developed a large computer-stored database of drug-interaction information 
that had been collected from the literature by clinical pharmacologists, and entered 
interactively into their computer using a display terminal located in a central hospi-
tal pharmacy. They maintained a Drug Index that described the components of each 
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drug and the drug class to which it belonged; and an Interaction Table that contained 
for each pair of possible interaction classes whether there was evidence that drugs 
in these two classes could interact with each other. Their Drug Index and Interaction 
Table constituted the drug-interaction database of the MEDIPHOR system. By 1973 
their database contained more than 4,000 pharmaceutical preparations; and pro-
grams were initiated for the MEDIPHOR system to provide automatic online noti-
fi cation and alerts to pharmacists, physicians, and nurses when potentially interacting 
drug combinations were prescribed. Query programs could be used to provide infor-
mation on drug interactions that were currently on record for a given drug or a class 
of drugs, or to produce a data profi le for any drug-drug interaction. The system 
generated drug-interaction reports for physicians and nurses that assigned an alert 
class that ranked the urgency of the report as to its immediacy and severity from: (1) 
the most serious and life threatening, and immediate action is recommended; to 
number (5) when the administration of both drugs could produce some organ toxic-
ity (Cohen et al.  1972,   1974,   1987  ) . One year after the installation of their program, 
an evaluation of its use by physicians found that one-fourth had personally received 
at least one warning report, and 44% of these physicians indicated that they had 
made appropriate changes as a result (Morrell et al.  1977  ) . 

 In 1972 a Pharmacy Automated Drug Interaction Screening (PADIS) System 
was initiated at the Holy Cross Hospital in Fort Lauderdale, Florida, with a database 
system to detect and prevent potential drug-drug interactions. It was designed to 
function as a batch-process system that was run once daily to screen and print all 
patient-medication profi les for possible drug interactions. In a study conducted in 
1974, a manual review of 13,892 daily patient-medication profi les reported a 6.5% 
incidence rate per-day of possible drug interactions; whereas they reported a 9% 
incidence rate per patient-day detected by their computer-based system (Greenlaw 
and Zellers  1978  ) . In 1973 pharmacists at Mercy Hospital in Pittsburgh, Pennsylvania 
developed a database using COBOL programs that were written to update, search, 
list, and revise data; and incorporated a list of 10,000 drug-drug interactions and 
7,000 individual drug-laboratory test interferences from ADE reported in the litera-
ture. Pharmacists dictated patients’ drugs and laboratory tests into a recording 
device; and at the end of a day the recording was re-played and pre-punched cards 
for each drug and for each lab test were assembled with the patients’ identifi cation 
cards. A pharmacist reviewed the printout in conjunction with the patients’ charts, 
and reported any signifi cant potential interactions to the physicians. Daily reviews 
of patients’ charts resulted in entry of all drugs used and laboratory test data reported; 
and a list was printed of potential drug-drug interactions and drug-lab interferences 
Bouchard et al.  (  1973  ) . 

 In 1976 Caranasos  (  1976  )  and associates at the University of Florida, reported 
that in a series of 7,423 medical inpatients, 12.5% had at least one adverse drug 
event; and 16 patients (0.22%) died of drug-associated causes, of which 11 had been 
seriously or terminally ill before the fatal drug reaction occurred. 

 In 1976 H. Warner and associates at the LDS Hospital in Salt Lake City used the 
drug-monitoring sectors in their Health Evaluation through Logical Processing 
(HELP) decision-support program, that contained rules that were established by 
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physicians and pharmacists to monitor online for potential ADEs. ADEs alerts were 
reported for 5.0% of patients, of which 77% of the warning messages resulted in 
changes of therapy. They reported using an algorithm with ten weighted questions 
to produce a score that estimated the probability of an ADE; and characterized the 
severity of an ADE as mild, moderate, or severe; and also classifi ed ADEs as type 
A (dose-dependent, predictable and preventable) that typically produced 70–80% of 
all ADE; or type B (idiosyncratic or allergic in nature, or related to the drug’s phar-
macological characteristics) and that usually were the most serious and potentially 
life threatening of all ADEs. Evans et al.  (  1994  )  reported following almost 80,000 
LDS patients for a 44 month period and concluded that alerts to physicians of ADEs 
detected early was associated with a signifi cant reduction of ADEs. Classen et al. 
 (  1997  )  described a larger group of 91,574 LDS hospital patients that were followed 
for a three-year period, during which 2.43 per 100 admissions developed ADEs. 
The average time from admission to development of an ADE was 3.7 days; and the 
average number of different drugs given to patients before they experienced the 
ADE was 12.5. They concluded that ADEs were associated with a prolonged length 
of hospital stay, and about a two-fold increased risk of death. 

 Reports of ADEs usually described studies of adverse reactions in patients from 
using one or two drugs. However, most hospital patients and most elderly patients 
take multiple prescription drugs (polypharmacy), and are thereby more often 
exposed to potential ADEs. Lindberg  (  1985  )  wrote of the problems of ‘polyphar-
macy’, when patients in hospitals commonly receive multiple drugs simultaneously; 
and the danger of untoward interactions of drugs is thereby multiplied by this prac-
tice. Fassett  (  1989  )  noted that drugs were prescribed for nearly 60% of the United 
States population in any recent year, with the highest exposure rate being in the very 
young and in the very old, where the average American over 60 years of age received 
nearly 11 prescriptions per year. Monane  (  1998  )  and associates at Merck-Medco 
Managed Care program, who provided prescription benefi ts through retail and mail 
pharmacy services to about 51 million Americans, estimated that individuals aged 
65 years and older constituted 12% of the United States population, and consumed 
approximately 30% of prescribed medications. They reported a study from April 1, 
1996 through March 31, 1997, when 2.3 million patients aged 65 years and older 
fi lled at least one prescription through their mail-service pharmacy. They developed 
a drug database monitoring system programmed to identify the most dangerous 
drugs for the elderly. Of more than 23,000 patients aged 65 years and older, who 
received prescription drugs during this 12 month period, 43,000 computer-generated 
alerts to pharmacists triggered phone calls to physicians that resulted in signifi cant 
changes in the medication orders. 

  Monitoring for drug-laboratory test adverse events  that occur from the effects of 
prescribed drugs on the results of clinical laboratory tests is also an important 
requirement for a medical record database, since just as drugs can affect physiologic 
processes they can also affect clinical laboratory test results (McDonald  1981  ) . 
Bouchard  (  1973  )  and associated pharmacists at Mercy Hospital in Pittsburgh, 
Pennsylvania developed a database of adverse events from reports in the literature 
for 10,000 drug-drug interactions and 7,000 drug-laboratory test interferences. 
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The hospital pharmacists dictated into a recording device their patients’ dispensed 
drugs and their laboratory test results. At the end of the day the recording was 
played back; and pre-punched cards for each drug and for each laboratory test result 
were assembled with patients’ identifi cation cards. A pharmacist reviewed the print-
out in conjunction with the patient’s chart, and reported to the physician any signifi -
cant potential interactions or interferences; and a daily list was printed of potential 
drug-drug interactions and drug-laboratory test interferences. 

 In the 1970s H. Warner and associates at the LDS Hospital in Salt Lake City also 
used the drug-monitoring sectors in their Health Evaluation through Logical 
Processing (HELP) decision-support program to monitor online for ADEs includ-
ing adverse drug effects on laboratory tests. When a drug or a history of a drug 
allergy was entered into the computer, it was checked automatically for any ‘alert’ 
conditions; and they reported that 44.8% of all alert messages were warnings for 
potential drug-laboratory adverse events. In the fi rst 16 months of monitoring a total 
of 88,505 drug orders for 13,727 patients, 690 (0.8%) of drug orders resulted in a 
warning alert on 5.0% of all patients; and 532 (77.1%) of the warning messages 
resulted in a change in therapy (Hulse et al.  1976  ) . In 1989 the LDS group activated 
a computerized online ADEs monitor, and Classen et al.  (  1991  )  reported that over 
an 18 month period they monitored 36,653 hospital patients. Whereas voluntary 
ADEs reporting by physicians, nurses, and pharmacists using traditional detection 
methods had reported fi nding 92 ADEs, their computer-based monitor identifi ed 
731 verifi ed ADEs (an overall rate of 1.67%), of which 701 were characterized as 
moderate or severe. Evans et al.  (  1992  )  reported fi nding 401 ADEs in 1 year of use 
of the computer-based monitor, compared to fi nding only 9 ADEs by voluntary 
reporting during the previous year. 

 Groves and Gajewski  (  1978  )  at the Medical University of South Carolina devel-
oped a computer program that automatically alerted the physician when a drug that 
was ordered for a patient could interfere with a laboratory test result. Using pub-
lished information about drug-laboratory test interactions, they compiled a database 
on the effects of each drug listed in their formulary on a variety of laboratory tests. 
When a patient’s identifi cation data and prescribed drug codes were entered, the 
computer program checked to see if there was a match between laboratory tests 
affected by the drugs and any tests that had been performed on the patient; and if a 
match was found then an alert warning was appended to the laboratory test result. 
Speedie  (  1982,   1987  )  and associates at the University of Maryland developed a 
database with a drug-prescribing review system that used a set of rules to provide 
feedback to physicians when prescribing drugs, in an attempt to identify drug orders 
that were potentially inappropriate. Their system was expanded in 1987; and their 
MENTOR (Medical Evaluation of Therapeutic Orders) system was designed to 
monitor inpatient drug orders for possible ADEs and for suboptimal therapy. They 
developed a set of rules that judged: (a) if the drug, its dosage, and regimen were all 
appropriate given the patient’s condition and laboratory results; (b) if timely labora-
tory results were obtained; and (c) if appropriate periodic monitoring of laboratory 
results were being performed. If any of these rules were not followed within a speci-
fi ed time, this triggered an alert signal and printed a patient-specifi c advisory. 
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 In 1986 the Joint Commission on Accreditation of Healthcare Organizations 
(JCAHO) mandated a program of criteria-based, drug use evaluation (DUE) for 
patients receiving medications in hospitals with the goal of monitoring the appropri-
ateness and effectiveness of drug use; and it included the identifi cation of drug-drug 
interactions (MacKinnon and Waller  1993  ) . In 1989 Dolin  (  1992  )  at Kaiser 
Permanente’s Southern-California region, began developing a computer-stored 
medical record on an IBM-PC that was used for patients in the Internal Medicine 
Clinic; and in 1990 added a Pascal interface to a commercially available program 
that listed 808 drug interactions, including some for over-the-counter medications. 
It was programmed so that when a user pressed the F3 key it would fl ag any pre-
scribed drug in the patient’s record that had been found to interact with another 
prescribed drug; and on then pressing the F4 key it would provide comments and 
recommendations. Lesar et al.  (  1990  )  found in a study conducted at the Albany 
Medical Center Hospital, a large tertiary teaching hospital in Albany, New York, 
that from a total of more than 289,000 medication orders written in a one-year study 
at that time, the overall detected error rate was 1.81 signifi cant errors per 1,000 writ-
ten orders. Brennan et al.  (  1991  )  reported that an examination of the medical records 
for a representative sample of more than 2.6 million patients in hospitals in New 
York State revealed that the statewide incidence of ADEs was 3.7%. 

 In the 1990s D. Bates and associates at the Brigham and Women’s Hospital in 
Boston, reported their studies to evaluate: (1) the incidence of ADEs, (2) the inci-
dence of potential ADEs (those with a potential for injury related to a drug); (3) the 
number of ADEs that were actually prevented, such as when a potentially harmful 
drug order was written but was intercepted and cancelled before the order was car-
ried out; and (4) the yields of several strategies for identifying ADEs and potential 
ADEs. They concluded that ADEs occurred frequently; they were usually caused by 
physicians’ decision errors and were of ten preventable by appropriate alerts (Bates 
et al.  1993,   1994  ) . In another 6 month study of medication errors that were the cause 
of 247 ADEs occurring in another group of hospital patients, they found that most 
medication errors occurred in physicians orders (39%) and in nurses medications 
administration (38%); and the remainder were nearly equally divided between tran-
scription and pharmacy errors. They reported that overall, nurses intercepted 86% 
of medication errors, and pharmacists 12%. They concluded that system changes to 
improve dissemination and display of drug and patient information should make 
errors in the use of drugs less likely (Leape et al.  1995  ) . Bates et al.  (  1998  )  evaluated 
an intervention program that used a computer-physician-order-entry (CPOE) sys-
tem with an ADEs monitoring program; and reported a signifi cant decrease in fail-
ures to intercept serious medication errors (from 10.7 to 4.9 events per-1000 patient 
days). Bates et al.  (  1999  )  further reported that during a four-year period of studying 
the effects of CPOE on ADEs, and after excluding medication errors in which doses 
of drugs were not given at the time they were due and these comprised about 1% of 
all ADEs, the remaining numbers of ADEs decreased 81%, from 142 per 1,000 
patient days in the baseline period, to 26.6 per 1,000 patient days in the fi nal period. 
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They noted that they had not found any event monitor that was highly sensitive or 
highly specifi c; but searching for combinations of data could decrease false-positive 
rates; and they concluded that a CPOE system with an online monitoring program 
for potential ADEs could substantially decrease its rate. 

 The Brigham and Women’s Integrated Computer System also added a program 
to automatically screen patients’ medication profi les for pairs of interacting drugs, 
and to provide alerts of possible interactions between two prescribed drugs, or 
between pairs of drug families or classes; and they continued their studies in detect-
ing and preventing ADEs with increasingly larger patient groups. They concluded 
that ADEs were a major cause of iatrogenic injury; and they advocated improving 
the systems by which drugs are ordered, administered, and monitored (Kuperman 
et al.  1994 ; Bates et al.  1995  ) . By 1998 they included a computer-based application 
that used a set of screening rules to detect and monitor ADEs. They studied ADEs 
over an 8 month period for all patients admitted to nine medical and surgical units; 
and compared ADEs identifi ed by (a) their computer-based monitor, by (b) inten-
sive chart review, and by (c) stimulated voluntary reporting by nurses and pharma-
cists. They reported that: (a) computer monitoring identifi ed 2,620 alerts, of which 
275 were determined to be ADEs (45% of all alerts); and that ADEs identifi ed by 
the computer monitor were more likely to be classifi ed as being severe; (b) chart 
review found 398 (65% of the ADEs); and (c) 76 ADEs were detected by both com-
puter monitor and chart review; and (d) voluntary reports detected only 23 (4%) of 
the ADEs. The computer strategy required 11 person-hours per week to execute, 
whereas the chart review required 55 person-hours per week; and the voluntary 
report strategy required 5 person-hours per week (Jha et al.  1998  ) . With the addition 
of a computerized physician-order-entry (CPOE) program that was enhanced with a 
decision-support program to help detect drug-drug interactions, they reported a fur-
ther substantial decrease in the rate of serious medication errors (Bates et al.  1999  ) . 
Rind  (  1995  )  and associates at the Beth Israel Hospital in Boston also emphasized 
the importance of computer-generated alerts for monitoring and detecting ADEs. 
They differentiated between a  reminder , that is a communication that is sent to a 
clinician at the time of a contact with a patient; and an  alert  that is sent as soon as 
the condition warranted. The pharmacy subsystem of the Brigham Integrated 
Computer System then added a program to automatically screen patients’ medica-
tion profi les for pairs of interacting drugs, and to provide alerts of possible interac-
tions between two prescribed drugs, or between pairs of drug families or classes; 
and they continued their studies in detecting and preventing ADEs with increasingly 
larger patient groups. They concluded that ADE were a major cause of iatrogenic 
injury; and advocated improving the systems by which drugs are ordered, adminis-
tered, and monitored (Kuperman et al.  1994 ; Bates et al.  1995  ) . 

 By 1998 the Brigham and Women’s Hospital Integrated Computer System 
included a computer-based, event-detection application that used a set of screening 
rules to detect and monitor ADE. They studied ADE over an 8 month period for all 
patients admitted to nine medical and surgical units; and compared ADE identifi ed 
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by (a) their computer-based monitor, with (b) intensive chart review, and with (c) 
stimulated voluntary reporting by nurses and pharmacists. They reported that: (a) 
computer monitoring identifi ed 2,620 alerts, of which 275 were determined to be 
ADE (45% of all the ADE); and the ADE identifi ed by the computer monitor were 
more likely to be classifi ed as being severe; (b) chart review found 398 (65% of the 
ADE); and (c) 76 ADE were detected by both computer monitor and chart review; 
and (d) voluntary reports detected only 23 (4%) of the ADE. The positive- predic-
tive value of computer-generated alerts was 23% in the fi nal 8 weeks of the study. 
The computer strategy required 11 person-hours per week to execute, whereas the 
chart review required 55 person-hours per week, and voluntary report strategy 
required 5 person-hours per week (Jha et al.  1998  ) . With the addition of a computer-
ized, physician-order-entry subsystem enhanced with a decision-support program to 
help detect drug-drug interactions, they found a further substantial decrease in the 
rate of serious medication errors (Bates et al.  1999  ) . Del Fiol et al.  (  2000  )  described 
their collaboration with a large hospital in Brazil, using a real-time, alert-notifi ca-
tion system, and a knowledge base of drug-drug interactions that included 326 rules 
focused on detecting moderate and severe drug-drug interactions of the common 
drug categories of cardiovascular drugs, oral anticoagulants, antiviral drugs and 
antibiotics. In this study they reported the system had detected that 11.5% of the 
orders had at least one drug-drug interaction, of which 9% were considered to be 
severe. They suggested that since only16% of their rules were actually used in this 
trial study, a small selected group of rules should be able to detect a large amount of 
drug-drug interactions. 

 In 1994 J. Miller and associates at the Washington University Medical School 
and the Barnes-Jewish Hospital in St. Louis, Missouri, began operating their com-
puter-based pharmacy system for seven pharmacies that annually fi lled 1.6 million 
medication orders and dispensed 6 million doses of drugs. They used two commer-
cial pharmacy expert systems that provided alerts for possible ADEs in real time to 
pharmacists: (1) the system DoseChecker examined medication orders for potential 
under-dosing or over-dosing of drugs that were eliminated in the body primarily by 
the kidneys; and gave a recommended new dose for the drug that had caused the 
alert. (2) PharmADE provided alerts for orders of contraindicated drug combina-
tions, and listed the drugs involved and described the contraindications. When a 
potentially dangerous combination was identifi ed, an alert report was sent via fac-
simile to the pharmacy responsible for providing the patient’s drugs; and a daily list 
of alert reports for patients was batch processed (Miller et al.  1999  ) . McMullin et al. 
 (  1997,   1999  )  reported that between May and October 1995, the system electroni-
cally screened 28,528 drug orders and detected dosage problems in 10% of patients; 
for which it then recommended lower doses for 70% of these patients, and higher 
doses for 30%; and after pharmacists alerted the physicians, the doses were appro-
priately adjusted. Hripcsak  (  1996  ) , and associates at the Columbia-Presbyterian 
Medical Center in New York, developed a generalized clinical event monitor that 
would trigger a warning about a possible ADE in clinical care, including possible 
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medication errors, drug allergies, or side effects; and then generate a message to the 
responsible health-care provider. Their objective was to generate alerts in real time 
in order to improve the likelihood of preventing ADEs. Grams et al.  (  1996  )  at the 
University of Florida, reviewed the medical-legal experience in the United States 
with ADEs, and recommended that it should be standard practice to implement a 
sophisticated, computer-based ADEs monitoring system for every clinical service. 
The value of automated monitoring of ADEs became widely recognized as larger 
computerized databases facilitated the capabilities to monitor and investigate trends 
of known ADE, and to provide alerts and early warning signals of possible or poten-
tial ADEs (Berndt et al.  1998  ) . 

 Anderson  (  1997  ) , and associates at Purdue University, reported that in studies 
conducted in a large private teaching hospital, the drug orders entered into the EMR 
database had an error rate of 3.2%; and they suggested that this rate could be signifi -
cantly reduced by involving pharmacists in reviewing drug orders; and that an effec-
tive ADEs monitoring system, by preventing some ADEs, could save a substantial 
number of excess hospital days. Monane  (  1998  ) , and associates at Merck-Medco 
Managed Care program, provided prescription through retail and mail pharmacy 
services for approximately 51 million Americans. They estimated that individuals 
aged 65 years and older constituted 12% of the United States population, and con-
sumed approximately 30% of prescribed medications. They reported a study con-
ducted from April 1, 1996 through March 31, 1997 when 2.3 million patients aged 
65 years and older fi lled at least one prescription through their mail-service phar-
macy. They developed a drug monitoring and ADEs alerting system that was pro-
grammed to identify the most dangerous drugs for the elderly. Of more than 23,000 
patients, aged 65 years and older, who received prescription drugs during this 
12-month period, a total of 43,000 computer-generated alerts to pharmacists trig-
gered phone calls to physicians that resulted in signifi cant changes in the medica-
tion orders. A meta-analysis of deaths resulting from ADEs indicated that it was 
between the 4th and 6th leading cause of death in the United States (Lazarou et al. 
 1998  ) . Raschke  (  1998  )  and associates at the Good Samaritan Regional Medical 
Center in Phoenix, Arizona, using its Cerner hospital information system, devel-
oped a targeted program for 37 drug-specifi c ADEs that provided an alert when a 
physician wrote an order that carried an increased risk of an ADE, such as a pre-
scription with inappropriate dosing. During a 6-month period, their alert system 
provided 53% true-positive alerts, of which 44% had not been recognized by the 
physicians prior to the alert notifi cation. 

 Strom  (  2000  )  emphasized the need for large electronic databases for the monitor-
ing and the surveillance of ADEs in order to be able to discover rare events for the 
drugs in question. Shatin et al.  (  2000  )  reported that the United Health Group founded 
in 1974 and consisting of 12 affi liated health plans in the United States, began to 
study ADEs that were already identifi ed by FDA’s Spontaneous Reporting System 
(SRS). By 1997 they had approximately 3.5 million members representing com-
mercial, Medicaid, and Medicare populations. Their pharmacy database consisted 
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of pharmacy claims that were typically submitted electronically by a pharmacy at 
the time a prescription was fi lled; and included full medication and provider infor-
mation. They were able to identify denominator data in order to calculate adverse 
event rates, and to conduct postmarketing studies of utilization and adverse events 
in their health plans’ populations. As an example, from their claims data they were 
able to study the comparative rates of diarrhea following administration of seven 
different antibiotics. Brown  (  2000  ) , and associates, described RADARx, a Veterans 
Administration (VA) VistA-compatible software that integrated computerized ADE 
screening and probability assessment; and they reported that overall, only 11% of 
RADARx alerts were true positives. Payne et al.  (  2000  )  described the VA Puget 
Sound Health Care System with two medical care centers that used the Veterans 
Affairs Northwest Network (VISN20) that was developed to prevent and detect 
medication errors; and they reported that during a typical day their event monitor 
received 4,802 messages, of which 4,719 (98%) pertained to medication orders; and 
they concluded their clinical event monitor served an important role in enhancing 
the safety of medication use. 

 In the year 2000 the Institute of Medicine estimated that annually about 80,000 
people in the United States were hospitalized and died from ADE; and the report,“ 
To Err is Human: Building a Safer Health System”, increased the attention of the 
nation to the need for improving the safety of drug therapy and for better ADEs 
monitoring (Kohn et al.  2000  ) . In the 2000s,with the advent of computer-stored 
databases for electronic medical records (EMRs), the online monitoring of ADEs 
made it possible to improve the process for detecting and for alerting health care 
providers to potential ADEs. The addition of computer-based physician order-
entry (CPOE) systems for electronic prescribing of medications for patients could 
further reduce the risk for medication errors and ADEs (Ammenwerth et al. 
 2008  ) . 

  Monitoring all clinical laboratory test reports  for signifi cant changes was soon 
recognized to be an important requirement for an EMR, in addition to monitoring for 
adverse effects of prescribed drugs on clinical laboratory test results; and is referred 
to as  interpretive reporting . McDonald  (  1981  )  advised that with the reporting of 
every clinical laboratory test-result for a patient, the physician needed to consider if 
a signifi cant change in a current test result from the value of a prior test-result could 
be explained by a change in the patient’s health status or possibly caused by an 
adverse drug effect or by some other cause. In addition to alert signals, clinical labo-
ratory test reports usually provide interpretive statements that include a defi nition of 
the test, its normal reference levels, and an alert signal for any variations from normal 
levels or for any unexpected changes in the values from prior test results. Physicians 
interpret laboratory test results that differ from standard reference normal limits as an 
indication that the patient may have an abnormal condition. They then initiate fol-
low-up tests and procedures to help arrive at a confi rmed diagnosis; and may order 
follow-up tests to monitor and manage the treatment of the disease; and often use 
tables, histograms, fl ow charts, time-sequenced trend analyses and patterns showing 
relationships between multiple-test results. It is a common requirement for an EMR 
database system to incorporate some decision-support programs in order to provide 
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assistance to physicians in both the ordering of appropriate clinical laboratory tests 
and in the interpretation of the laboratory test results. Information to support the 
decision-making process for diagnosis and treatment is often added to a laboratory 
test report by calculating the predictive value of the test for confi rming a positive 
diagnosis, by recommending additional secondary testing for a borderline or a ques-
tionable positive test result value, and also by suggesting evidence-based, clinical-
practice guidelines to aid in the best use of the test results for the diagnosis and 
treatment of the patient. 

 Lindberg  (  1965  )  and associates at the University of Missouri Medical Center, 
Columbia studied clinical laboratory test panels and patterns that could be signifi -
cant, even when none of the results of individual test’s values in the panel was out-
side normal limits. They reported their studies of combinations of the results from a 
panel of four chemistry tests: serum sodium, potassium, chloride, and bicarbonate; 
and reported that decreased values of sodium and chloride concentrations associ-
ated with normal values of potassium and bicarbonate constituted the most common 
abnormal electrolyte pattern seen in hospitalized patients. D. Lindberg’s group also 
developed AI/COAG, a knowledge-based computer program that reported, ana-
lyzed, and interpreted blood-coagulation laboratory tests, either singly, or as a group 
of six laboratory tests that included: the blood platelet count, bleeding time, pro-
thrombin time, activated partial-thromboplastin time, thrombin time, and urea clot 
solubility. The report of the results of these tests summarized any abnormal fi nd-
ings, interpreted possible explanations of the abnormalities, and allowed an interac-
tive mode of consultation for a user who needed to see a listing of possible diagnoses 
to be considered. Lindberg et al.  (  1980  )  also reported that 91% of laboratory coagu-
lation studies would have been allowed by their automated consultation system. To 
supplement their interpretive reporting they also developed a computer-based, deci-
sion-support program called CONSIDER (Lindberg  1965b , Lindberg et al.  1978 ; 
Tagasuki et al.  1980  ) . 

 Bleich  (  1969  )  at the Beth Israel Hospital in Boston described a program written 
in the MUMPS language for the evaluation of a panel of clinical laboratory tests for 
acid–base disorders. On entering the test values for serum electrolytes, carbon-dioxide 
tension, and hydrogen-ion activity, the computer evaluated the patient’s acid–base 
balance, it provided alerts for appropriate treatment, and also cited relevant refer-
ences. Collen  (  1966  )  and associates at Kaiser Permanente developed sets of deci-
sion rules for alerts that automatically requested a second set of tests if abnormal 
laboratory test results were reported for an initial group of multiphasic screening 
tests (see also   Sect. 5.7    ). Klee  (  1978  )  and associates at the Mayo Clinic developed 
a set of decision rules for a second set of tests to be performed when abnormal test 
results were reported for an initial group of blood tests. The patient’s age, sex, blood 
Coulter-S values and white blood-cell differential counts were keypunched and pro-
cessed with a FORTRAN program written for a CDC 3,600 computer; and patient’s 
test results that exceeded normal reference values were then considered for sequen-
tial testing. Groves and Gajewski  (  1978  )  at the Medical University of South Carolina 
developed a computer program that automatically alerted the physician when a drug 
ordered for a patient could interfere with a laboratory test result. Using published 
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information on drug-test interactions, they compiled a database of information on 
the effect of each drug listed in their formulary on a variety of laboratory tests. 
When a patient’s identifi cation data and a prescribed drug code were entered, the 
computer program checked to see if there was a match between the prescribed drug 
and the laboratory test performed for the patient; and if there was then an alert com-
ment was appended to the report of the test result. Speedie  (  1982,   1987  )  and associ-
ates at the University of Maryland developed a drug-prescribing review system that 
used a set of rules to provide feedback to physicians when prescribing drugs, in an 
attempt to identify drug orders that were potentially inappropriate. Their system 
was expanded in 1987, and their MENTOR (Medical Evaluation of Therapeutic 
Orders) system was designed to monitor inpatient drug orders for possible ADEs, 
and also for suboptimal therapy. They developed a set of rules that monitored: (a) if 
the prescribed drug dosage and regimen were appropriate for the patient’s medical 
condition; (b) if the drug was appropriate and clinical laboratory results were 
obtained in a timely way; and (c) if appropriate periodic monitoring of the patient’s 
laboratory results were being performed. If any of these rules were not followed 
within a specifi ed time, this triggered an alert signal and printed a patient-specifi c 
advisory report. 

 Lincoln and Korpman  (  1980  )  observed that the clinical decision-making process 
could be infl uenced by the report of an alert of an abnormal test result; and then by 
enhancing the alert report with a display of relevant relationships between results 
obtained from other tests. To aid in the interpretation of the results of multiple labora-
tory tests, such as for electrolyte or lipid panels, the results are often presented as 
graphic displays; as examples, for the monthly testing of ambulatory patients with 
cardiac arrhythmias who are taking coumadin (warfarin) medications, or for the daily 
testing of blood glucose values for patients with diabetes who are taking insulin; 
these require regular clinical laboratory testing with standard monitoring procedures 
and provisions for alerts when test values are found to be outside of specifi ed limits; 
and their alert messages are often communicated to patients by displaying time-
sequenced trend analyses showing relationships for multiple test results using tables, 
histograms, radial graphics, or fl ow charts. For hospitalized patients in the intensive-
care-unit, online computer-based monitoring for their heart rate, blood pressure, 
electrocardiogram signals, and other variables are monitored by continual graphic 
displays, and any signifi cant change from prior values triggers immediate alerts and 
alarms. Speicher and Smith  (  1980,   1983  )  and associates at Ohio State University 
advocated interpretive reporting for clinical laboratory tests in order to help support 
problem solving and decision making by adding clinical information to the patient’s 
report of laboratory test results that included detailed defi nitions of each test, inter-
pretations of normal reference levels for each reported test, alert reports for signifi -
cant variations from normal test levels, advising alternative diagnoses to be considered 
for the reported tests abnormalities, and providing and explaining the predictive 
value of the laboratory tests. Smith et al.  (  1984  ) , also at Ohio State University 
Columbus, developed a special language as an aid to interpretive reporting called 
“Conceptual Structure Representation Language” (CSRL). Since the concept of dis-
ease hierarchies is well established in medicine in the form of disease classifi cations, 
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they proposed that their CSRL, when associated with defi ned diagnostic hierarchies 
that contained defi ned test values and knowledge references for specifi c diagnoses, 
when matched to a patient’s test value could then suggest a probable diagnosis. 
Sequential secondary laboratory testing is the process of routinely ordering a repeat 
or a different test, when an initial test has an abnormal result. 

 Salwen and Wallach  (  1982  )  at the S.U.N.Y. Downstate Medical Center in 
Brooklyn devised a series of algorithms for the interpretive analysis of hematology 
test data to defi ne and characterize any abnormal test fi ndings; and to provide clin-
ical-practice guidelines for evaluating the diagnosis of patients with abnormal 
blood counts; and then classifi ed the patient’s panel of tests into a diagnostic group, 
and added recommendations for any further testing. Healy  (  1989  )  and associates at 
Dartmouth Medical School used an expert system as an alternative computer-based 
approach to interpretive reporting. They defi ned an expert system as one consisting 
of a knowledge base of rules, facts and procedures, with a set of mechanisms for 
operating on the knowledge base, and facilities for communicating with additional 
explanation resources. They suggested that in this way expert systems could be 
more fl exible and more intuitive than deterministic or statistically based interpre-
tive systems. Connelly  (  1990  )  at the University of Minnesota advocated embed-
ding expert systems in a computer-based, clinical laboratory system, as a means to 
conveniently look for adverse events that were important to detect and to alert cli-
nicians. He noted that an expert system could automatically scan for suspect results 
that might indicate a variation from an expected result; and then important varia-
tions and their implications could be brought to the attention of clinicians through 
various alerting and interpretive strategies so that the critical information would 
not be overlooked. He described an approach in which the computer-based labora-
tory system notifi ed the expert system of any changes in the status of the laboratory 
specimen; then an event scanner looked for any events that were relevant to pre-
stored knowledge frames; and if conditions specifi ed in the knowledge frames 
were satisfi ed, then the alert processor sent an alert message to a terminal printer 
or display. 

 Hripcsak  (  1996  )  and associates at the Columbia-Presbyterian Medical Center in 
New York City, that serviced 50,000 hospital admissions and 700,000 outpatient 
visits a year, described implementing a clinical adverse-event monitoring system for 
their patients’ care. Their monitor automatically generated alert messages for 
adverse events for abnormal laboratory tests and/or for potential adverse drug-drug 
interactions. Their adverse event monitor employed a set of rules and mechanisms 
for potential adverse clinical events; and queried and checked any rules generated 
by the event against their rule-knowledge base; and if indicated it triggered a perti-
nent alert message. Kuperman  (  1999  )  and associates at Brigham and Women’s 
Hospital in Boston described a computer-based alerting system that suggested up to 
12 diagnoses to be considered for reported abnormal clinical laboratory test results. 
Since it is important for a physician to respond in a timely manner when serious 
abnormal laboratory test results occur for a patient, they reported in a controlled 
study that using an automatic alerting system signifi cantly reduced the elapsed time 
until appropriate treatment was ordered.   
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    4.2   Examples of Early Medical Record Databases 

 Primary clinical databases that served as medical record databases began to be 
established in the 1960s. It was always evident that the storage and retrieval of pri-
mary patient-care data was essential for the accurate diagnosis and treatment of 
patients. As computer storage devices became larger and less costly, a variety of pri-
mary medical record databases emerged during these six decades. Reviews of early 
medical record databases were published by Pryor et al.  (  1985  ) , Stead  (  1989  ) , Collen 
 (  1990  ) , and Tierney and McDonald  (  1991  ) . 

 In the 1950s the Veterans Administration (VA) began to use a card-based fi le 
system for some patient data. In 1965 the VA began to pilot an automated hospital 
information system in the 750-bed VA hospital in Washington, DC.; and it used 
MUMPS programming for the database-management system called File Manager 
(Christianson  1969  ) . By 1968 the VA was operating one of the largest clinical 
databases in the United States that provided services to 94-million United States 
veterans and their immediate dependents and surviving relatives. In the 1960s on 
an average day there were more than 120,000 patients in its 165 hospitals; and in 
an average year there were 5-million visits to its 202 outpatient clinics and another 
1.2-million visits to authorized private physicians. The linkage of patients’ records 
was by the use of an eight-digit claim number (C.No.) and the Social Security 
number. In the 1960s their Longitudinal File began to abstract data from their 
computer-stored patient records into their Patient Treatment File that contained 
all inpatient treatment episodes, listed in time sequence; and included admission 
data, diagnoses, operative procedures, surgical specialty and identity of the sur-
geon involved, anesthetic technique, and disposition of the patient. The 
Longitudinal File was the clinical database used at that time for cohort studies 
(Cope  1968  ) . The File Manager evolved as a package of MUMPs-based routines 
designed to help with information processing routines that were repeatedly 
encountered in data entry and retrieval, and in defi ning new fi les and adding attri-
butes to existing fi les (Timson  1980  ) . In the 1970s several VA medical centers 
began to acquire their own computers; and in 1982 the VA established six regional 
centers to develop a standard management information system using standard 
database dictionaries. In 1983 it deployed its Decentralized Hospital Computer 
System (DHCP) that included the Kernel sharing a common database with a sys-
tem of clinical applications. By the end of the 1980s the DHCP contained most 
clinical inpatient and outpatient subsystems. In the late 1970s the VA began to 
design its new Veterans Health Information Systems and Technology Architecture 
(VistA); and in 1996 the VA changed the name of the DHCP to VistA. By the end 
of the 1990s VistA comprised almost 100 different applications, including the 
clinical database for its Computerized Patient Record System (CPRS) that was 
released in 1996. The integration of the clinical databases from multiple VA facil-
ities followed, with the evolution of the Veterans Integrated Service Networks 
(VISNs); that in the 2000s provided medical services to about 4-million veterans 
with its 163 hospitals and about 1,000 outpatient facilities. 
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 In the 1960s the Department of Defense (DoD) used punched cards and card-
based fi le systems for their patients’ records; until 1974 when DoD established its 
Tri-Service Medical Information Systems Program (TRIMIS). By 1978 TRIMIS 
had implemented its initial operational system at three sites (Bickel  1979  ) . In 1988 
the DoD contracted with Science Applications International Corporation (SAIC) to 
implement its Composite Health Care System (CHCS). With a central mainframe 
computer and a MUMPS-based database-management system, CHCS was imple-
mented in each DoD hospital with links to its associated clinics by a communica-
tions network (Mestrovich  1988  ) . In the 1990s the DoD’s Health Information 
Management Systems (DHIMS) implemented its electronic medical record system 
(CHCS II) that was based on the Veterans Administration’s VistA; and it provided 
data sharing among its military facilities for about 10-million military personnel 
and their families. In 2004 CHCS II expanded to become the Armed Forces Health 
Longitudinal Technology Application (AHLTA); and used graphical display termi-
nals to communicate with its various clinical modules, and provided services at 
about 500 military treatment facilities worldwide. The VA’s VistA and the DoD’s 
AHLTA both evolved from similar MUMPS-based systems, but they diverged to 
satisfy their very different patient care requirements. The VA’s VistA serves a very 
large civilian population in the United States, whereas the DoD’s AHLTA operates 
over a very broad range of worldwide environments. In the 2000s they initiated the 
development of a unifi ed computer-based system to track the medical, benefi ts, and 
administrative records of service members from their induction through the rest of 
their lives. As one of three pilot programs, there was implemented in 2010 in the 
VA’s Spokane Medical Center, and in the DoD’s Fairchild Air Force Base in the 
state of Washington, and in a private health services network since some veterans 
and military service members received private care, the virtual-lifetime-electronic-
record (VLER) system to test the exchange of patient information over a nation-
wide-health-information-network (NHIN). 

 In 1959 Schenthal et al.  (  1960,   1961  )  and J. Sweeney at Tulane Medical School, 
used an IBM 650 computer equipped with magnetic-tape storage devices to process 
medical record data that included diagnoses and laboratory test results for clinic 
patients. They used a mark-sense card reader that sensed marks made with high-
carbon content pencils on special formatted cards. The marks were automatically 
converted into holes that were punched into standard punch cards; these punched 
cards were then read into their computer that processed and stored the data in their 
clinical database. In 1959 W. Spencer and C. Vallbona at the Texas Institute for 
Rehabilitation and Research (TIRR), began to develop a clinical database and a 
general medical information system. TIRR is a private, non-profi t hospital within 
the Texas Medical Center in Houston, Texas, that delivers comprehensive rehabili-
tation services to patients having a wide variety of physical disabilities. In l959 
clinical laboratory reports and physiological test data were manually recorded on 
specially designed source documents; the data were then manually coded, key-
punched, and processed on a batch basis using unit-record equipment. Their soft-
ware consisted of diagrams of complex patch boards. In l96l the acquisition of IBM 
l40l and l620 computers with magnetic tape storage provided for enhanced data 
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processing, data storage and retrieval capabilities, and for a computer-stored medi-
cal record database (Blose et al.  1964  ) . In 1965 the problem of errors in manual data 
entry associated with the use of punched paper tape and punched cards required 
TIRR to advance to online computing with an IBM 1410 computer. A clerk at TIRR 
using a remote typewriter terminal then made data entries. With the establishment 
of a conversational mode between the terminal and the computer, error detection 
and correction by staff personnel became feasible. In l967 the system was further 
enhanced by the acquisition of an IBM 360/50 computer; and in 1968 physicians’ 
orders began to be entered into their medical information system; and appropriate 
displays were accessed on IBM 2,260 cathode-ray-tube terminals located in various 
clinical departments (Beggs et al.  1971  ) . In 1969 these display terminals were con-
nected to the Baylor University’s IBM/360 computer, and patients’ reports were 
then batch-processed daily (Gotcher et al.  1969  ) . In 1970 they initiated their phar-
macy information system; and in 1971 TIRR added a Four-Phase Systems mini-
computer that supported the clinical laboratory information subsystem. By the 
mid-1970s TIRR had a database-management system servicing their various clini-
cal subsystems (Vallbona et al.  1973 ; Vallbona and Spencer  1974  ) . 

 In the early 1960s G. Barnett, and associates at the Laboratory of Computer 
Science, a unit of the Department of Medicine of the Massachusetts General Hospital 
(MGH) and the Harvard Medical School, initiated a pilot project that included a 
clinical laboratory order and reporting system and a medications ordering system 
(Barnett and Hoffman  1968 ; Barnett  1990  ) ; and used Teletype terminals that per-
mitted the interactive entry of orders. With on-line checking of the completeness, 
accuracy, and acceptability of an order, the interactive system would check a new 
medication order against the data in the patient’s computer-based record for possi-
ble drug-drug interactions, or for the effect of a drug on a laboratory test value, or 
for a known patient’s allergic reactions to a prescribed drug. If an alert signal for this 
data was not provided immediately to the physician at the time of the creation of the 
order, Barnett felt that it would be less useful if an urgently needed modifi cation of 
the order were delayed (Barnett  1974  ) . The MGH database system was soon 
expanded into nine patient-care areas with 300 beds, and into three clinical labora-
tories; and it employed more than 100 standard Teletype terminals. Computer infor-
mation was presented to the user in an interactive mode, wherein the computer 
could display a question and the user could enter a response. By 1967 Barnett and 
Castleman  (  1967  )  reported that the computer programs in use at MGH included the 
entering and printing of laboratory test results, and a medications ordering system 
in each patient-care unit that generated each hour a list of medications to be admin-
istered at that time. The programs also provided summaries organized in a format 
designed to display laboratory test results in associated groups, such as for serum 
electrolytes or for hematology tests. Additional modules were being developed for 
pathology, x-ray scheduling and reporting, and for x-ray folder inventory control. 
These modules were all written in MUMPS language, and were implemented on 
several commercially different, but functionally compatible computer systems. 

 In 1971 G. Barnett et al. initiated the Computer-Stored Ambulatory Record 
(COSTAR) system for the Harvard Community Health Plan (HCHP) in Boston. 
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COSTAR operated under the MGH Utility Multi-Programming System (MUMPS) 
language and its operating system (Greenes et al.  1969 ; Grossman et al.  1973 ; 
Barnett et al.  1981  ) . Physicians in their offi ces manually completed structured 
encounter forms that were printed for the fi rst visit of a patient, and were then 
computer-generated for subsequent visits. Physicians recorded on these forms their 
patients’ diagnoses and their orders for patients’ tests and treatments. The com-
pleted forms were collected in the medical record room; and the data were then 
entered into the COSTAR database by clerks using remote terminals connected by 
telephone lines to the computer located at their Laboratory of Computer Science. 
A status report was generated after the entry of any new data into the patient’s 
record, and it provided an updated summary of the patient’s condition, current med-
ications, and latest laboratory test results. Barnett  (  1976  )  wrote that in its implemen-
tation, one of the central objectives of their COSTAR system was to provide for the 
communication of laboratory, electrocardiogram, and x-ray reports. By the late 
1970s COSTAR had completed four revisions of its system at the Harvard 
Community Health Plan. By the end of the 1980s the COSTAR system was widely 
disseminated in the United States and was used in more than 120 sites (Barnett et al. 
 1978 ; Barnett  1989  ) . Even into the 2000s, MUMPS continued to be one of the most 
commonly used computer programs for clinical information systems. 

 In the early 1960s H. Warner, and associates at the LDS Hospital (formerly known 
as the Latter Day Saints Hospital) in Salt Lake City and at the University of Utah, 
initiated their computer-based information system, with the goal of creating inte-
grated, computer-based patients’ records, and also to provide a knowledge base for 
use with their patients’ records  (    Pryor  1983  ) . They initiated operations with a Control 
Data Corporation (CDC) 3,300 computer, and used Tektronix 601 terminals located 
at nursing units that allowed the nurses to select orders from displayed menus, and to 
review the entered orders and the reported results. The terminals were capable of 
displaying 400 characters in 25-column by 16-row patterns, or displaying graphical 
information with a capability of 512 horizontal and 512 vertical dots. Each terminal 
had a decimal keyboard, and two 12-bit, octal-thumbwheel switches for coding data 
into their computer (Warner  1972  ) . In the 1970s Warner’s group developed one of the 
most effective medical database-management systems in that decade. The Health 
Evaluation through Logical Processing (HELP) System they developed at the LDS 
Hospital was the fi rst reported hospital information system to collect patients’ data to 
establish a computer-based, patient-record system with a medical knowledge base 
used to assist physicians in the clinical decision-making process (Gardner et al. 
 1999  ) . Warner (Warner et al.  1974,   1990  )  described the HELP system as being built 
around a central patient database that interfaced to a data dictionary and to a medical 
knowledge base that had been compiled by clinical experts and knowledge engi-
neers. When new data items for a patient were entered into the HELP system, the 
system then displayed logical decision frames that were derived from its knowledge 
base; and these logical frames provided consultative information, and alerts to poten-
tial adverse events such as possible drug-drug interactions. Warner further described 
the HELP System as consisting of four basic elements: (1) a set of programs for gath-
ering data from patients; (2) a hierarchical-structured, patient record database; (3) a logic 
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fi le that contained sets of rules to aid in the clinical decision-making process; and 
(4) a set of fi le management programs. Pryor et al.  (  1983  )  described the HELP sys-
tem’s primary fi les as including: a data fi le of active patients in the system; a rela-
tional-structured fi le with coded demographic data about active patients; a transaction 
fi le of all information needed for managing orders and charges for the services 
received by the patients; and an archived historical fi le for discharged patients. 
In 1971 the Systematized Nomenclature of Pathology (SNOP) codes were used to 
enter diagnoses by using a video terminal (Giebink and Hurst  1975  ) . In addition, 
special coding systems were devised to enter textual data from radiology reports. 
In 1975 the HELP system also included data from the clinical laboratory, multipha-
sic screening program, and computerized electrocardiogram analyses (Kuperman 
et al.  1991  ) . By 1978 the HELP system had outgrown its centralized computer sys-
tem, so during the 1980s a network of minicomputers were interfaced to their exist-
ing central computer. The data stored in their integrated clinical database then 
included reports from the clinical laboratory, surgical pathology, radiology, electro-
cardiography, multiphasic screening, and pharmacy (Pryor et al.  1983 ; Haug et al. 
 1994  ) . In the 1990s their HELP System expanded to provide comprehensive clini-
cal-support services to nine Intermountain Health Care Hospitals in Utah (Gardner 
et al.  1999  ) . Meystre and Haug  (  2005,   2003  )  reported the development of HELP-2, 
with problem-oriented electronic medical records (EMRs), and a NLP system to 
assist physicians in developing their patients’ problem-lists. 

 In 1961 M. Collen, and associates at Kaiser Permanente (KP) in Northern 
California, initiated a medical record database that was designed to store patients’ 
multiphasic examination data (Collen  1965,   1966,   1972       ). In 1965 a clinical com-
puter center was established in KP’s Department of Research to develop a prototype 
medical information system that included subsystems for the clinical laboratory and 
the pharmacy; and it used many procedures already operational in its multiphasic 
health testing system (see also   Sect. 5.7    ). Its hierarchical structured database 
included: (1) patient identifi cation data, patient scheduling for ambulatory care 
appointments, patient registration procedures, statistical reports, and quality control 
procedures; (2) clinical data, that included patients’ histories, physicians’ physical 
examination data, results of laboratory tests and clinical procedures, physician’s 
interpretations of electrocardiograms and x-rays; (3) clinical decision-support that 
included alert signals for test results outside of normal limits, advice rules for sec-
ondary sequential testing, consider rules for likely diagnoses; comparison of a 
patient’s current responses to history questions with previous responses, and pro-
vided signals for any symptoms as being new when reported by the patient for the 
fi rst time; comparisons of current patient data to prior data for any clinically signifi -
cant changes; and (4) the ability to serve as a research database for clinical, epide-
miological, and health services research (Collen  1974,   1978  ) . 

 In 1968 Kaiser Permanente established a computer center in Oakland, California 
with an IBM 360/50 computer to develop a clinical database-management system. 
The database was designed to contain a continuing, integrated, electronic medical 
record (EMR) designed to store all essential medical data for all offi ce and hospital 
visits for the care provided to each patient; and also contained program-generated 
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data related to the tree structure of the record. The database was designed as a hier-
archical tree-structure (see also   Sect. 2.2    ) with 12 levels of storage for each patient’s 
computer-defi ned visit; beginning with level-0 that contained the patient’s identifi -
cation data and also summary-bits that served as indicators of the classes of data 
existing within the other 11 levels of data for diagnoses, clinical laboratory test 
results, pharmacy data, and others. (Davis et al.  1968 ; Davis  1970,   1973 ; Davis and 
Terdiman  1974  ) . The automated multiphasic health testing programs in San 
Francisco and in Oakland entered the data from l50 patients’ health examinations a 
day. For electrocardiography, pathology, and radiology reports an IBM magnetic 
tape/selectric typewriter (MT/ST) was used for processing written or dictated text. 
With slight modifi cations in their typing routines, secretaries used the typewriters to 
store, on analog magnetic tape, the patients’ identifi cation data, results of proce-
dures and laboratory tests, and physicians’ textual data reports. These data were 
transmitted to a receiver MT/ST terminal located in the central computer facility. By 
means of a digital data recorder and converter device, a second tape was created in 
a digital format acceptable for input to the central medical database. A pharmacy 
sub-system was added in 1969. By 1970 the central medical database contained 
more than one million EMRs. In 1971 the database began to include some patients’ 
hospital records, and it used visual display terminals for data entry. In the 1980s a 
regional clinical laboratory was established and its laboratory computer system was 
linked to the mainframe computer (Collen  1974,   1977,   1978 ; Terdiman et al.  1978  ) . 
Lindberg  (  1979  )  wrote that in the 1970s Kaiser Permanente (KP) had the most 
advanced American medical information system. In 1995 the Northern California 
KP Division of Research joined the research units of 10 Health Maintenance 
Organizations (HMOs) in the United States, and formed the HMO Research 
Network, with a partitioned data-warehouse containing more than 8-million patient 
records; with plans to collaborate in nationwide clinical and epidemiology research 
projects, effectiveness evaluations of treatment regimens, and assessment of popula-
tion risks (Selby  1997 ; Friedman  1994,   1984,   2000  ) . In 2005 KP initiated a com-
mercial Epicare medical database-management program with EMRs for the 
comprehensive care of more than 8-million people. 

 In 1962 Children’s Hospital in Akron, Ohio installed an IBM 1,401 computer; 
and after physicians had written their orders for medications, laboratory tests, and 
x-ray examinations, the orders were numerically coded and keypunched into cards 
for data processing (Emmel et al.  1962  ) . In 1964 they discontinued using punched 
cards, and installed at every nursing station a data-entry unit with a matrix of 120 
data-entry buttons, and an electric typewriter that served as an output printer, each 
unit connected to the central computer. A scroll on the data-entry unit was turned 
to show the type of entry to be made. The fi rst two columns of buttons were used 
to enter the type of the physician’s order, the next three columns of buttons were to 
enter the patient’s identifi cation number, the next four columns designated the 
order number, and the remaining three columns of buttons were used to enter mod-
ifi ers such as the type of order and its frequency. The printer then provided print-
outs of the orders for use as requisitions that were also used as laboratory report 
slips to be fi led in the patients’ charts. All data in their clinical database were 
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stored on a random-access device (Campbell  1964  ) . In 1966 a system was installed 
in the Monmouth Medical Center Hospital in Long Branch, New Jersey, with an 
IBM 360/30 computer that used matrix-button input terminals, similar to those at 
Akron Children’s Hospital. These input terminals, along with keyboard typewrit-
ers, were located in the hospital’s nursing stations, pharmacy, laboratory, and radi-
ology; and transmitted data to their central medical database (Monmouth  1966  ) . 

 In 1963 the National Institutes of Health (NIH) in Bethesda, Maryland, initiated 
a central computing facility to provide data-processing support to its various labo-
ratories. By 1964 this central facility contained two Honeywell series-800 comput-
ers (Juenemann  1964  ) . In 1965 NIH established its Division of Computer Research 
and Technology (DCRT), with A. Pratt as its director for intramural project devel-
opment. In 1966 DCRT began to provide computer services with an IBM 360/40 
machine. It then rapidly expanded to use four IBM 360/370 computers that were 
linked to a large number of peripherally located minicomputers in NIH clinics and 
laboratories. By 1970 NIH operated one of the largest clinical information system 
in the United States (Pratt  1972  ) . 

 In 1963 D. Lindberg and associates at the University of Missouri in Columbia 
installed an IBM 1,410 computer in their Medical Center; and initiated a medical 
information system with a medical database for their clinical laboratory, surgical 
pathology, and tumor registry. In 1965 they replaced the punched-card oriented sys-
tem in their clinical laboratory with IBM 1,092/1,093 matrix-keyboard terminals to 
enter test results directly into the computer. They also entered electrocardiogram 
interpretations coded by the cardiologists, radiology interpretations coded by the 
radiologists, and query-and-retrieval programs for data stored in the patients’ fi les. 
Lindberg used the Standard Nomenclature of Diseases and Operations (SNDO) for 
the coding of patients’ discharge diagnoses and surgical operative procedures, and 
stored these on magnetic tape for all patients admitted to the hospital between 1955 
and 1965. Other categories of patients’ data stored in their system included all 
SNDO coded diagnoses for autopsy and surgical pathology specimens, and for all 
coded radiology reports and electrocardiogram interpretations (Lindberg  1964 a,  b, 
  1965a,   b  ) . By1968 they had added textual data from surgical pathology and autopsy 
reports (Lindberg  1968 a,  b  ) . In 1969 Lindberg operated for the Missouri Regional 
Medical Program a computer system providing electrocardiogram (ECG) services. 
The ECGs were transmitted over dial-up telephone lines to the computer center, and 
the automated ECG interpretations were then transmitted to Teletype printers in 
hospitals and in doctors’ offi ces. Lindberg  (  1979  )  reported that in 1970 visiting 
teams from 45 medical institutions in the United States and abroad inspected their 
system. 

 In 1964 the Information Systems Division of the Lockheed Missiles and Space 
Company in Sunnyvale, California, began to apply their aerospace expertise to 
develop a hospital information system (Gall  1974,   1976  ) . In l97l Lockheed sold its 
system to the Technicon Corporation, which had come to dominate automation in 
the clinical laboratory. In March 1971 the El Camino Hospital in Mountain View, 
California, signed a contract for the installation of the Technicon MIS, a medical 
information system that operated with an IBM 370/155 time-shared computer 
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located in Technicon’s offi ces in the city of Mountain View (Shieman  1971  ) . By 
early 1973 Technicon had installed terminals throughout the hospital and in its clini-
cal support services. Over the next several years Technicon continued to refi ne and 
improve the system (Buchanan  1980  ) ; and by 1977 a total of 60 terminals, each 
consisting of a television screen with a light-pen data selector, a keyboard and a 
printer, were located throughout the hospital; with two terminals installed at most 
nursing stations. The terminal’s display screen was used to present a menu list of 
items, such as for laboratory tests; and a specifi c item within the list was selected by 
pointing the light pen at the desired item, and then pressing the switch located on the 
barrel of the light pen. The Technicon database-management system was one of the 
fi rst commercial, clinical-information systems designed to allow the physician to 
enter patient care orders directly online, and then to be able to review the displayed 
results (Blum  1986  ) . Using the light pen, a physician could select a specifi c patient, 
and then enter a full set of medical orders for laboratory tests, medications, x-rays, 
and for other procedures. The computer then stored the orders in its database, and 
then printed in the appropriate locations the laboratory requisitions, pharmacy 
labels, x-ray requisitions, and requests for other procedures. Physicians could also 
generate personal order-sets for common conditions, and then enter the complete 
order with a single light-pen selection (Giebink and Hurst  1975  ) . Watson  (  1977  )  
reported that at the El Camino Hospital, 75% of all orders by physicians were 
entered directly into the computer terminals by the physicians. Physicians, nurses, 
and other hospital personnel used the light-pen technique extensively, and employed 
the keyboard only occasionally (Hodge  1977  ) . Computer-generated printouts 
included lists for medications due-times, laboratory specimens pick-up times; and 
cumulative test result summaries, radiology reports, and discharge summaries 
(Barrett et al.  1979  ) . Physicians, on retrieving patient data from the display termi-
nals, received clinical reminders, and alerts of possible clinical adverse events. 
In 1978 they developed a computer-stored knowledge base that contained informa-
tion on diagnoses, recommended treatments, interpretation aids for laboratory test 
results, and indications for ordering diagnostic tests for certain diseases. Laboratory 
test results and radiology interpretations were available at the terminals as soon as 
they were entered into the system. A cumulative laboratory summary report was 
printed daily, and showed the last seven days of patients’ test results (Sneider  1978  ) . 
A paper-based medical chart was maintained for all handwritten and dictated docu-
ments; since, for physicians, the Technicon system was used primarily as an order-
entry and results-reporting system. Upon discharge, a complete listing of all results 
of tests and procedures were printed at the medical records department and fi led in 
the patient’s paper chart. The Technicon MIS was developed too early for it to be 
accepted by other private hospitals 

 In 1966 the Mayo Clinic established a centralized medical database that con-
tained diagnoses made by physicians in Olmstead County, Minnesota, including the 
Mayo Clinic physicians. Many records contained a complete history of medical care 
from birth to death. A record could be retrieved by entering the patient’s identifi ca-
tion number or by the diagnosis, so it was possible to identify essentially all cases 
of a disease diagnosed in Olmstead County. In the 1970s L. Kurland revised the 
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original Mayo index system so that it conformed to the International Classifi cation 
of Diseases, Adapted, Second Edition (H-ICDA-2). Kurland and Molgaard  (  1981  )  
reported that in 1981 the Mayo Clinic fi les contained 50,000 active patient records 
and past records for 3.5 million patients, representing 10-million clinic visits and 
25-million consultations; and their database was used in descriptive studies of the 
incidence and prognosis of diseases, in case–control studies for identifying risk fac-
tors, and in monitoring cohorts for disease processes. Chute et al.  (  1995  )  reported 
that in 1909 the Mayo Clinic had introduced a paper-based Master Sheet where a 
succinct description of all major inpatient and outpatient data were entered, indexed 
and coded to assist in clinical practice and research inquiry. Over the next several 
years, Chute reported that their Section of Medical Information Resources used the 
PERL language to develop and support SQL interfaces to a variety of relational 
database environments, including World Wide Web interfaces using HTML lan-
guage; yet did not support any Internet access for security reasons. In 1999 Chute 
et al.  (  1999  )  further described their use of a clinical terminology server to enter 
patient data, including reasons for visits, diagnoses, problem lists, and patient out-
comes. In the 2000s the Mayo’s Division of Biomedical Statistics and Informatics 
expanded their medical database operations to study methods to improve patient 
care and to analyze biomedical data. 

 In 1967 L. Weed and associates at the University of Vermont College of Medicine 
in Burlington, initiated their Problem-Oriented Medical Information System 
(PROMIS). In 1971 PROMIS became operational in a 20-bed gynecology ward in 
their University Hospital, with linkages to radiology, laboratory, and pharmacy. 
In 1975 their database-management system employed two Control Data Corporation 
(CDC) l700 series computers with CDC’s operating system, and 14 Digiscribe 
touch-sensitive video terminals including ones located in the pharmacy and in the 
radiology department (Weed  1969 ; Weed et al.  1983 ; Esterhay et al.  1982  ) . By 1977 
their system had 30 touch-sensitive display terminals located in the hospital wards, 
in the pharmacy, clinical laboratory, and in radiology, all connected to a single mini-
computer. The terminals could display 1,000 characters of information in 20 lines 
of 50 characters each, and had 20 touch-sensitive fi elds; and the user selected an 
item by touching the screen at the position of their choice. Textual data could be 
entered by typing on the terminal keyboard. In 1979 PROMIS expanded to employ 
a network of minicomputers (Schultz and Davis  1979  ) . 

 In 1968 W. Hammond and W. Stead at Duke University began to develop for 
their medical offi ces a clinical database-management system employing a minicom-
puter. This was soon expanded to include a laboratory subsystem, and a computer-
based medical record system called The Medical Record (TMR) system (Hammond 
et al.  1973  ) . Their database was programmed in a language called GEMISCH that 
was developed at Duke University; and the database was designed primarily for 
electronic medical records (EMRs) for the direct care of patients. Pryor et al.  (  1982  )  
reported that the patient data was stored in the GEMISCH database and was orga-
nized in modules, including: demographic, subjective and physical patient fi ndings, 
protocol management data, clinical laboratory data, therapy (medications) data, and 
others; organized as variable-length text strings, and indexed using a nine-digit key. 
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In 1975 a metadatabase with a data dictionary was added as a fi xed-length, directly 
accessible fi le that contained a vocabulary, parameter defi nitions, hardware defi ni-
tions, menus, algorithms, user passwords and access privilege controls, and deci-
sion-making rules. TMR provided several query entry approaches, and a number of 
report generators. It permitted each clinic to specify all the online data it needed to 
store; and most data were stored in an encoded form to optimize data storage and 
retrieval (Hammond et al.  1977  ) . Hammond et al.  (  1980  )  reported implementing 
this clinical database system in the University Health Services Clinic, in the renal 
dialysis unit at the Durham Veterans Hospital, and in the Department of Obstetrics 
and Gynecology; and these three applications provided for them a wide variation in 
types and volumes of the patients’ data from which their full TMR system was 
developed. In 1975 their TMR electronic medical record (EMR) database included 
diagnoses, treatment orders, laboratory test results, medications, and patient follow-
up data (Wiederhold  1975  ) . 

 By 1980 Duke’s TMR system used two PDP-11 minicomputers supported by its 
GEMISCH database-management system (Hammond et al.  1980  ) . TMR was dic-
tionary driven, and the TMR programs were modularly constructed. Their 
THERAPY module provided a drug formulary that collected and stored prescribed 
drugs, and was able to monitor some prescribed therapies. The STUDIES module 
provided for ordering laboratory tests and for viewing test results including those 
with graphic displays. The FLOW module provided various time-oriented presenta-
tions of the data. Their APPOINTMENT module supported a multi-specialty patient 
appointment system. When a patient arrived for an appointment, a route sheet for 
the collection of data was provided and a pre-encounter medical summary showing 
any results from tests of the previous four encounters. After seeing a patient the 
physician recorded on the route sheet the patient-care data, including orders and 
prescriptions. The patient then reported to a clerk who entered into the computer the 
orders and requisitions, which were then printed out at the appropriate sites. 
The laboratory technicians usually entered laboratory data as the test results became 
available, fi lling in the blank spaces in full screen displays by typing in the test code. 
If textual data were typed in, then the program did an alphabetic search via the data 
dictionary and converted the text string into the proper code. Their PRINT module 
printed all components of the patient’s record. By 1985 the Duke TMR system had 
increased in size to require a local-area-network (LAN) that linked it to the clinical 
laboratory subsystem using an Ethernet connection; and the clinical laboratory 
could query a patient’s problem-list in the main TMR system through the LAN. By 
the late 1980s the TMR system provided linkages to its referring physicians. The 
subsequent expansion of TMR with a distributed database-management system 
required the synchronization and integration of its databases with a single, common 
patient index. (Hammond et al.  1980,   1985,   1990 ; Stead  1984 ; Stead and Hammond 
 1988  ) . The Duke Cardiology Division used TMR data to develop a model for pre-
dicting patient survival rates based on their Therapy Mode data (see   Sect. 5.2    ). 

 In 1968 S. Siegel at the New York-Downstate Medical Center in Brooklyn, 
described their hospital information system that used IBM 1,440-1,410 computers, 
and a database-management system connected to 40 remote typewriter-terminal 
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printers. They entered the patients’ data using punched cards and paper tape, and 
IBM 1,092 matrix-overlay keyboards; and for data storage they used magnetic tape 
and disks. Terminals were placed in clinical specialties, laboratories, radiology, and 
pharmacy (Siegel  1968  ) . 

 In 1968 B. Lamson, and associates at the University of California Hospitals in 
Los Angeles, acquired their fi rst computer for a clinical laboratory and surgical 
pathology reporting system. Their initial database-management system was gradu-
ally expanded; and by 1975 it provided summary reports that included data received 
from a large number of clinical laboratory computers; and also provided a tumor 
registry (Lamson et al.  1970 ; Lamson  1975  ) . 

 In 1969 the nine Los Angeles County Hospitals initiated a centralized database- 
management system, beginning with an IBM 360/40 computer that was connected 
by telephone cables to remote display terminals and printers located in the admit-
ting offi ces and pharmacies. Pilot testing was conducted by nurses for the order-
entry of medications, diets, and laboratory tests (Runck  1969  ) . R. Jelliffe, and 
associates at the University of Southern California School of Medicine, initiated at 
the Los Angeles County General Hospital a series of programs for clinical pharma-
cology to analyze dosage requirements for a variety of medications (see   Sect. 4.1.2    ). 
In 1972 computer programs were added to analyze data from electrocardiograms 
and echocardiograms (Jelliffe et al.  1977  ) . 

 In 1970 the Johns Hopkins Hospital (JHH) initiated a clinical database for a 
prototype medical information system. For patients’ clinical records it processed 
physicians’ written orders, produced work lists for ward nurses, and generated daily 
computer-printed patient drug profi les. In 1975 a Minirecord (minimal essential 
record) database system was implemented in the JHH Medical Clinic using encoun-
ter forms that were fi lled out for each patient visit; and the forms included an area 
for recording medications and procedures (McColligan et al.  1981  ) . Work also 
began on a prototype Oncology Clinical Information System (OCIS) with a data-
base that contained patient care data for both hospital and clinic services, and also 
clinical laboratory test results and pharmacy data (Blum et al.  1977,   1985 ; Blum 
 1986  ) . In 1976 a radiology reporting system was implemented at JHH using a ter-
minal that permitted the radiologists to select phrases from a menu and compose 
descriptions and interpretations of patient’s x-rays, then enter their reports into the 
clinical database and immediately provide a printed report for the record (Wheeler 
et al.  1976  ) . In 1978 a clinical laboratory information system was operational that 
provided the internal working documents for the laboratories, and produced the 
patients’ laboratory test reports (Johns and Blum  1978  ) . During the early 1980s a 
communications network gradually evolved in the JHH information system. By 
1986 the JHH database-management system included IBM 3,081 and 3,083 com-
puters that supported an inpatient pharmacy system with a unit-dose distribution 
system, a clinical laboratory system that employed three PDP 11/70 computers, and 
a radiology reporting system (Tolchin and Barta  1986  ) . In the 1990s they were 
among the earliest users of Health Level-7 (HL7) interfaces and Extensible Markup 
Language (XML) to exchange data in eight of their systems (Coltri et al.  2006  ) . 
In 1970 R. Grams and associates at the University of Florida in Gainesville, with its 
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500-bed Shands Hospital, began to develop a computer-based clinical laboratory 
system. By 1975 they had a database-management system that serviced their labora-
tory system, and also anatomic pathology, microscopy, chemistry, hematology, 
immunology, microbiology, and blood banking; in addition to their hospital admis-
sions functions. In 1977 they installed a network to integrate these various functions 
with the hospital’s nursing stations and its admissions service. They used one com-
puter for the nursing and admissions functions linked to another computer in the 
laboratory (Grams  1979  ) . 

 In 1972 C. McDonald, and associates at the Regenstrief Institute for Health Care 
and the Indiana University School of Medicine, began to develop their Regenstrief 
Medical Record System (RMRS) for the care of their ambulatory patients. The 
RMRS used a PDP ll/45 computer, with a database that supported the medical 
record fi le and its associated advisory program called CARE. The database was 
designed to permit its modularization into subsystems that could be updated indi-
vidually; and at that time included laboratory, radiology, and other clinical subsys-
tems. The RMR database-management system maintained its medical records in a 
fi xed length and fi xed format fi le. Records could be accessed directly by location 
within the fi le by a set of general-purpose utility programs to store, edit, sort, report, 
extract, retrieve, join, or to cross-tabulate the data contents of medical records. 
Applications programs could also access records by data content, or by pointers 
from other fi les, such as from their laboratory and pharmacy subsystems. Patient 
care data was generally stored in a coded format, although some free-text entry was 
permitted (McDonald  1983  ) . Their clinical database soon included data from their 
clinical laboratory system, pharmacy system, patient appointment fi le, and a dic-
tionary of terms. At that time the RMRS supplemented their paper-based patient 
records with a computer-stored medical record that included laboratory, x-ray, and 
electrocardiogram reports. A two-part patient paper-encounter form was generated 
for each patient’s return visit on which the physicians recorded numeric clinical 
data; and the form was then optically-machine read for entry into the computer. 
A space was provided on the form for writing orders for tests; and within that space 
the computer could print suggestions for other tests that might be indicated. The 
patient’s current prescriptions were listed at the bottom of the encounter form and 
served as a medication profi le. The physician refi lled or discontinued drugs by writ-
ing ‘R’ or ‘D/C’ next to the prescriptions, and could write new prescription orders 
at the bottom of this list. The patient took a carbon copy of this part of the encounter 
form to the pharmacy as the prescription. Thus the encounter form was used by 
physicians for several data entry and retrieving tasks. Data recorded by physicians 
on the encounter forms were entered by clerks into the patients’ computer-stored 
records. Laboratory data were acquired directly from the laboratory computer sub-
system; and prescription data were captured in the hospital and the outpatient phar-
macy systems. For each patient’s return-visit, a patient’s summary report was 
generated which included historical, procedure, and treatment information; and any 
procedure report, such as the result of a clinical laboratory test that was abnormal, 
had an asterisk placed beside the printed value as an alert signal. McDonald 
explained that the early RMRS used paper reports, rather than visual displays for 
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transmitting information to the physicians, as paper forms were cheap, portable, 
easy to browse; and could be annotated with a pencil (McDonald et al.  1977a,   b  ) . 
In the early 1980s the RMRS shared a DEC VAX 11/780 computer with the clinical 
laboratory and pharmacy systems; and used a microcomputer-based workstation to 
display menus from which the user could use a mouse to select and enter data. In 
1982 the RMRs database contained the medical records for 60,000 patients 
(McDonald et al.  1982,   1984a,   b  ) . In 1988 the laboratory, radiology, and pharmacy 
subsystems within the local Veterans and University Hospitals were connected to 
the RMRS; and in the 1990s it served a large network of affi liated hospitals and 
clinics (McDonald et al.  1988,   1989  ) . 

 In 1976 H. Bleich, W. Slack and associates at the Beth Israel Hospital in Boston 
initiated their clinical database-management system. In 1982 they expanded their 
system into the Brigham and Women’s Hospital (Slack  1987  ) . By 1984 their sys-
tem, with programs written in a dialect of MUMPS, ran on a network of Data 
General Eclipse minicomputers that supported 300 video-display terminals distrib-
uted throughout the hospitals. The results from clinical laboratory tests, and the 
reports from radiologists and pathologists were manually entered into their data-
base, as were drug prescriptions that were fi lled in their outpatient pharmacy; and 
health care professionals could retrieve patient information using the visual-display 
terminals. In 1983 a survey of 545 physicians, medical students, and nurses showed 
that they used the computer terminals most of the time to retrieve laboratory test 
results; and 83% of these users said that the terminals enabled them to work faster 
(Bleich et al.  1985  ) . In 1994 this clinical database-management system that had 
been founded in the Beth Israel and the Massachusetts General Hospitals expanded 
to serve the entire, integrated Partners Health Care System, with all of its hospitals, 
and their clinical departments and subsystems (Teich et al.  1999 ; Slack and Bleich 
 1999  ) . Fetter et al.  (  1979  )  described a microcomputer database-management system 
installed at Yale University that used a Digital Equipment Corporation (DEC) 16-bit 
LSI-11 processor with computer terminals installed in Yale’s radiology department 
and its clinical laboratory.  

    4.3   Summary and Commentary 

 Primary medical record databases began to be established in the 1960s. It was 
always evident that the computer-based storage and retrieval of patient-care data 
was essential for providing a high quality of medical care. Although many legal 
requirements were established to try to assure the security, privacy, and confi dential-
ity of personal patient data, it has become evident that breaches in the security and 
privacy of patient data can be expected to occur until more effective policies and 
mechanisms have been implemented, especially as more electronic medical records 
(EMRs) are transmitted over the Internet. 

 An important requirement for a medical record database-management system is 
to assure the quality and safety of patient care by the effective online monitoring for 
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adverse clinical events, especially for adverse drug events (ADEs). During the past 
six decades, the increasing use of drugs in patient care resulted in an increasing 
number of ADEs. It was soon realized that an important application of the increas-
ing computing power and expanding data-storage capacities of medical databases 
will be to use automated systems for monitoring and detecting ADEs; especially for 
patients over the age of 60 years who take multiple prescription drugs, and for whom 
ADEs are more common. In the 1990s it was estimated that less than 1% of the 
3-billion prescriptions written in the United States were entered by a computer; 
however, in the 2000swith the electronic entry of prescriptions for hospital patients, 
a key component of physicians’ order-entry systems is expected to accelerate the 
process (Schiff    and Bates  2010  ) . In the 2000s primary medical record databases 
were evolving to become EMRs; and by 2010, with the fi nancial support of the 
federal government, EMRs were becoming commonplace in the United States.      
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 In the 1960s the high costs for the storage of data in computers, limited many of 
the earliest medical databases to relatively small collections of patients’ data. A fi le 
of patient (or case) identifi ers, with a limited amount of clinical and demographic 
data was usually called a “register”; and the organizational structure that main-
tained it was called a “registry” (Laszlo et al.  1985 ; Laszlo  1985  ) . Drolet and 
Johnson  (  2008  )  reviewed the literature related to registers and registries; and noted 
that the two terms, registries and registers, were often used interchangeably. 
Registries were often initiated for the follow-up care of patients, for tracking 
patients with specifi c diseases of clinical interest, for monitoring trends in the inci-
dence of a disease, or for assessing the use of specifi c medical procedures (Garfolo 
and Keltner  1983  ) . Clinical registries typically included selected and limited data, 
collected from one or more medical institutions or from within a defi ned geo-
graphic region; for patients who had a specifi c disease and/or had been treated with 
a specifi c therapy or medical technology in order to evaluate patient outcomes and/
or assess the cost-effectiveness of a medical technology. Health services registries 
were initiated to monitor trends in the use and costs of health care services, such as 
the rates of hospitalizations and/or offi ce visits. Epidemiology registries were 
established to follow patients with specifi c diseases in order to monitor trends in 
the prevalence and incidence rates of the diseases. Registries often became indis-
tinguishable from databases as they accumulated more data; and as more powerful 
computers with cheaper and larger storage capacities became available; registries 
were then generally referred to as databases. 

 Gliklich and Dreyer  (  2007  )  edited for the Agency for Healthcare Research and 
Quality (AHRQ) a comprehensive user’s guide to developing and conducting a reg-
istry; and defi ned a patient registry as an organized system that uses observational 
study methods to collect uniform clinical and other data to evaluate specifi c out-
comes for a population defi ned by a specifi c disease, condition, or exposure. They 
also reviewed the requirements for clinical registries to assure the security, privacy, 
and confi dentiality of patient data (see also Sect.   4.1.1    ). A very large number of 
specialized medical registries and databases have been reported, and the few 
included herein are considered to be representative examples. 

    Chapter 5   
 Specialized Medical Databases       
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    5.1   Cancer Databases 

  Cancer  ( tumor )  registries  were among the earliest registries established in the 
United States. A cancer registry was defi ned as a data collection system organized 
to provide follow-up data of treated cancer patients, and permit the retrieval of these 
data to provide information on the end results of treatment for evaluation (Byrd 
 1974a,   b  ) . In 1935 a statewide Connecticut Tumor Registry was initiated, that later 
joined the Surveillance, Epidemiology, and End-Results (SEER) Program (Thatford 
et al.  1979  ) . In 1940 a Female Oncology Registry was established at Ohio State 
University, Division of Gynecologic Oncology, that contained data for each patient, 
as was later required by the Centralized Cancer Patient Data System (Tatman  1984  ) . 
In 1947 nine participating hospitals were reported by Breslow  (  1967  )  at the 
California State Department of Public Health, to have formed the largest central 
cancer registry in the United States at that time; and by 1967 it contained fi les on 
300,000 cancer cases, with an annual follow-up that compiled information on the 
end results of therapy for patients with cancer. In 1960 the Kaiser Permanente (KP) 
Division of Research initiated its Cancer Incidence File for Northern California; 
and in 1994 it established the KP Northern California (NC) Cancer Registry. By the 
year 2000 the KPNC Cancer Registry represented 3-million KP members; and it 
contained more than 200,000 patients’ records of cancer diagnosed from 1974 
(Oehrli  1999,   2001,   2002  ) . 

 In 1967 S. Cutler  (  1967  ) , at the National Cancer Institute (NCI), reported on its 
End Results Program, a national cooperative program for evaluating the results of 
cancer therapy. Three state cancer registries (in California, Connecticut and 
Massachusetts) plus nine individual university hospital registries participated in the 
program. These registries submitted annually a punched card for each cancer patient 
seen in their hospitals and clinics. The punched cards contained information on the 
characteristics of the patient (sex, race and age), the nature of the disease (primary 
site, histological type and stage at diagnosis), date of diagnosis and treatment, date of 
last contact, follow-up status, and survival time. Identifying each case only by a 
number protected the confi dentiality of information on individual patients. Cutler 
reported data pertaining to 325,000 cancer patients diagnosed during the 20-year 
period, 1940–1959. The Biometry Branch of the NCI periodically reported on 
national cancer surveys from this data, as, for an example, it’s Third National Cancer 
Survey, 1969 Incidence (NCI  1971  ) . In 1972 the National Cancer Institute merged 
the End Results Program and the National Cancer Surveys, and began the Surveillance, 
Epidemiology, and End-Results (SEER) Program that collected cancer incidence and 
survival data for about 10% of the U.S. population; from fi ve states, fi ve additional 
metropolitan areas, and from Puerto Rico. The SEER Program registries routinely 
collected each year the data from newly diagnosed cancer cases and cancer deaths, 
including patients’ demographics, primary tumor sites, tumor morphology and stage 
at diagnosis, fi rst course of treatment, and follow-up for vital status. The mortality 
data were provided by the National Center for Health Statistics; and the population 
data used for calculating cancer rates were obtained periodically from the Census 
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Bureau. In its fi rst 5 years it included about 350,000 cases of invasive cancers diag-
nosed in patients residing in those areas  (  Young et al. 1976 ; Horm et al.  1973 ; Laszlo 
et al.  1985 ; Laszlo  1985 ; Pryor et al.  1985  ) . In the year 2000 the SEER database 
represented coverage of one-fourth of the United States population, and it contained 
more than 200,000 case records from 1990 to 1999 (Oehrli 2002). 

 While the SEER Program was being developed, the American Association of 
Cancer Institutes was completing a series of workshops on the Centralized Cancer 
Patient Data System (CCPDS), which was also supported in part by the National 
Cancer Institute (NCI). CCPDS was designed to provide a common minimal data-
base for every patient entering any one of 21 comprehensive cancer centers in the 
United States. Data were collected beginning in 1977; and soon nearly 200,000 
cases had been entered. The defi nitions of its terms and its codes in the CCPDS data 
systems were made largely compatible with those of the SEER Program. Its mini-
mal patient data set consisted of 36 items, and did not include the patient’s name or 
any other personal identifi ers. Tumor diagnoses were recorded using the ICD-O 
(International Classifi cation of Diseases for Oncology), 1976 ed. The information 
on treatment was limited to a series of “yes” or “no” responses as to which major 
treatment modalities (surgery, radiation therapy, chemotherapy, endocrine therapy, 
immunotherapy) were used. A determination of follow-up survival information was 
made at least annually. The data sources for CCPDS were the patients’ records that 
resided at a comprehensive cancer center. Data were transferred quarterly on mag-
netic tape from the cancer centers to the Statistical Analysis and Quality Control 
(SACQ) offi ce. The system was limited to data from patients who were fi rst seen at 
the centers on or after July 1, 1977. An annual report provided a demographic 
description of the patients admitted to each center during each calendar year, and 
outlined the basic features of their disease. More detailed and comprehensive analy-
ses of the database were done on an ad-hoc basis to answer particular questions 
about referrals, diagnoses, treatments, and outcomes (Feigl et al.  1981  ) . The CCPDS 
was headed by several National Cancer Institute directors (Pryor et al.  1985  ) ; and 
was terminated in 1982 (Laszlo  1985  ) . 

  Tumor  ( cancer )  registries  were soon used by oncologists for case fi nding and 
patient follow-up. In 1956 the American College of Surgeons established the 
requirement for a hospital to maintain a cancer registry in order to receive the 
College’s approval. In 1974 the American College of Surgeons established its 
Commission on Cancer, and published its Cancer Registry Manual to assist hospi-
tals to establish their hospital-based cancer registries to help assure lifetime follow-
up of cancer patients (Byrd  1974a,   b  ) . The operation of an approved cancer registry 
became a hospital requirement by the Joint Commission on Accreditation of 
Hospitals (JCAH) that was established in 1951; that later became the Joint 
Commission on Accreditation of Healthcare Organizations (JCAHO); and in 2007 
was renamed “The Joint Commission”. In 1970 a manual cancer registry was started 
at the 322-bed Brocton hospital located near Boston (Priest et al.  1983  ) ; and in 1981 
a computer-based regional cancer registry was established (Neitlich et al.  1981, 
  1983  )  from which they were able to document that: (1) the frequency of primary 
cancer sites for cervical cancer and colo-rectal cancer were the most common; (2) 
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the registry provided a 99% follow-up of its cancer patients; (3) the assessment of 
the effectiveness of therapy showed the 5-year survival rate was better for patients 
with cervical cancer than for bowel cancer, and the survival rate of patients with 
non-small cell cancer of the lung was poor; and (4) it was concluded that the pres-
ence of the cancer registry upgraded their hospital programs. Other early cancer 
registries were also reported for patients in the State of Illinois (Cabral and Cheng 
 1978  ) . An early cancer registry was reported by Roswell Park Memorial Institute, a 
comprehensive cancer center in Buffalo, New York, that implemented a database-
management system on a Univac computer and programmed in COBOL, for the 
medical records of their cancer patients; and it also provided a clinical database for 
cancer research (Priore et al.  1978  ) . 

 Early computer-based cancer registries were reported in many academic centers. 
An early registry for patients with uterine cancer was established at the University 
of Wisconsin, Madison; and data were entered into a LINC (Laboratory Instrument 
Computer) with magnetic-tape storage (Peckham et al.  1967  ) ; and in 1974 the 
Wisconsin Storage and Retrieval System (WISAR) was implemented that serviced 
the Wisconsin Clinical Cancer Center and its cancer registry (Entine  1982  ) . In 1972 
a malignant melanoma database that allowed natural language access and query, 
was initiated for a group of 130 patients treated in the melanoma clinic at the 
University of California, San Francisco (Epstein and Walker  1978  ) . This melanoma 
registry was expanded in 1980 to serve 1,154 melanoma patients; and then used an 
INGRES relational database system that was available on the university’s UNIX 
system (Tuttle et al.  1982  ) . In 1974 the Montefi ore Medical Center, an affi liate of 
the Albert Einstein College of Medicine, began to use a Xerox Data System com-
puter to operate a Cancer Registry Data System for the management of the care of 
cancer patients and for clinical research (Janis et al.  1976  ) ; and in 1984 the registry 
contained records on more than 25,000 patients (Markham et al.  1984  ) . In the 1970s 
Duke Medical Center operated a cancer registry for about 2,200 new cancer cases 
per year (Laszlo  1976 ; Laszlo et al.  1985  ) . 

 Blum  (  1977  )  and associates at Johns Hopkins University described a tumor reg-
istry at their Oncology Center for supporting the management of up to 10,000 
patients. Patients with colorectal cancer were recorded in the Johns Hopkins Cancer 
Registry (Kern et al.  1989  ) ; and Enterline et al.  (  1993  )  reported at that date their 
Oncology Center was providing more than 200 patients visits per week. Block and 
Isacoff  (  1977  )  at the University of California in Los Angeles (UCLA) reported that 
from 1955 to 1974, 22,000 patients with cancer were treated at the UCLA Hospital 
and recorded in its Tumor Registry that is a member of the California Tumor 
Registry. Wel et al.  (  1987  )  and associates at the University of Southern California 
(USC) reported the installation of a cancer registry in their USC Cancer Center 
using Duke University’s The Medical Record (TMR) software system operating on 
a Digital Equipment Corporation (DEC) Vax 11/780 computer (see Sect.   4.2    ). 
Cabral and Chang  (  1978  )  at the University of Illinois described their tumor registry 
that was primarily developed and used as a research database management system. 
O’Bryan and Purtilo  (  1982  )  at the University of Nebraska Medical Center reported 
using an Apple III database for a small cancer registry with less than 500 patients 
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that also stored genetic information as to patient pedigrees and kindred. Entine 
 (  1982  )  at the University of Wisconsin Clinical Cancer Center, one of 22 medical 
institutions designated at the time by the National Cancer Institute as a comprehen-
sive cancer center, included its cancer registry in used the University’s Wisconsin 
Storage and Retrieval (WISAR) database system. 

 Hill and Balch  (  1981  )  described a relational database system used by the Offi ce 
of Operations Analysis and Research at the Massachusetts General Hospital for the 
analysis of patient utilization patterns and for its tumor registry. In 1981 a cancer 
registry was established in the Veterans Administration Hospitals in Washington, 
DC (Leahey  1981  ) ; and its Automated Tumor Registry for Oncology Version 2 was 
developed with the National Cancer Institute (Marciniak et al.  1986  ) , and was stan-
dardized in accordance to international reference classifi cations (Richie  1993  ) . In 
1981 the Upper Midwest Oncology Registry System (TUMORS) was reported for 
a multi-hospital cooperative system that fi led case records in the cancer patients’ 
hospital records and in the TUMORS registry (Murray and Wallace  1981  ) . In 1985 
a comprehensive review of cancer registries in the United States reported that 
approximately 1,000 tumor registries were approved by the American College of 
Surgeons Commission on Cancer (Laszlo  1985  ) . In 1987 a National Marrow Donor 
Program was founded in 1987 to build a registry for 100,000 Americans who could 
donate bone marrow to help people with leukemia or other blood diseases (Kolata 
 1989  ) . In 1994 Buhle et al.  (  1994  )  and associates at the University of Pennsylvania 
School of Medicine, began to use OncoLink, a Web server operating on a Digital 
Equipment Corporation (DEC) computer. Nadkarni et al.  (  1998  )  and associates at 
the Yale Cancer Center reported the initial pilot use of the Adaptable Clinical Trials 
DataBase (ACT/DB) that they had created as a client–server database for storing 
clinical trial data. ACT/DB let an investigator design a study by defi ning the attri-
butes to be gathered, its mode of data entry, and of its data display. It used Microsoft 
Access Client running on Windows 95 machines that communicated with an Oracle 
server on a UNIX platform. In its initial deployment it was being used to manage 
the data for seven studies. They later reported that they found maintaining ACT/DB 
was cumbersome when using traditional client–server technology for a large entity-
attribute-value (EAV) database, so they changed to using a Web-based technology 
(WebEAV) as the delivery vehicle. They also had found that conventional data table 
design that used one column for a fi nding or parameter required numerous tables to 
store the many parameters for a patient across several clinical specialties, which 
would further require repeated modifi cations as new clinical and laboratory data 
needed to be recorded. In the EAV design a single table could record the data as one 
row per fi nding; and each row contained entity (E) data (patient identifi cation, visit, 
date and time, etc.); attribute (A) data (name and description of the attribute); and 
value (V) data of the parameter. This EAV design did not require revisions as new 
parameters were entered; and to retrieve data the user only searched the columns for 
patient identifi cation (Nadkarni et al.  2000  ) . 

 Niland et al.  (  2001  )  and associates at the City of Hope National Medical Center 
reported that in 1997 they were selected to serve as the Data Coordinating Center for 
the National Comprehensive Cancer Center (NCCN). They created an Internet-based 
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outcomes research database system to collect data from participating cancer centers 
nationwide; and data was entered directly using the Web, or was submitted over the 
Internet using the File Transfer Protocol (FTP). They reported that in their fi rst year 
of operation, data on more than 6,000 patients had been collected and analyzed.  

    5.2   Cardiovascular Disease Databases 

 In 1968 C. Castle  (  1968  )  reported that the Intermountain Regional Medical Program 
was developing a database for patients with myocardial infarctions who were treated 
in a coronary care unit in one of four hospitals located in their region. Data were 
entered online using a remote computer terminal; or were recorded manually by 
physicians, nurses, or technicians on special forms designed for this purpose. At the 
end of the day the data were coded and keypunched into cards; and then entered by 
remote terminals into their central mainframe computer. 

 In 1969 the Duke Coronary Artery Disease (CAD) database was initiated to collect 
data on patients who had non-invasive cardiac tests, cardiac catheterization, or admis-
sion to the coronary care unit; and it focused on accurately identifying patients at risk 
for coronary artery disease. The primary use of the database was to match a current 
patient with prior patients in the database who were suffi ciently similar in fi ndings to 
provide the prognosis for a projected probable similar course (Rosati et al.  1973 ; Pryor 
et al.  1985  ) . Starmer  (  1974,   1975  )  wrote that the Duke database established a feedback 
path in the treatment of patients with chronic illnesses by providing three ingredients: 
(1) a database, (2) a follow-up program, and (3) a set of rules that allowed the physician 
to compare a patient with those in the database. The advantage of this approach was 
that it allowed the physician to call upon the intervention experience gained from all 
patients similar to the one being currently treated. By 1975 the Duke CAD database 
contained information collected on 1,939 patients admitted to their coronary care unit 
for a myocardial infarction, and 1,723 patients evaluated by cardiac catheterization for 
possible ischemic heart disease. The data for each patient consisted of information 
concerning the present illness, past history, review of organ systems, physical examina-
tion; and clinical laboratory data, x-ray and electrocardiogram reports. The patient’s 
hospital course was documented with daily information concerning symptoms, medi-
cations, and major interventions. Patients were followed at regular intervals to deter-
mine their survival rates, functional status, and any subsequent occurrence of a 
myocardial infarction. Communication to and from the database was available using 
eight remote computer terminals; and physicians interacted directly with the database 
and could construct a Boolean search expression consisting of variables stored in the 
database. On entry of this expression, the program located all patients who satisfi ed the 
search expression. This subgroup was then available for further analysis. The analysis 
most frequently desired was how the members of the subgroup were treated and what 
was their long-term response. To routinely provide this information, a report was gen-
erated which described the characteristics and responses of the patients in a particular 
subgroup; and included data about other descriptors, as well as long-term survival data 
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that resulted from medical or surgical management. Starmer and Rosati  (  1975  )  con-
cluded that the database provided a degree of detail on the course of coronary artery 
disease that was not currently available from textbooks, monographs, and journal arti-
cles; or from their own cardiology staff. 

 Through the 1980s observations continued to be collected prospectively on all 
patients referred for cardiac procedures, treatments, or specialized cardiac care at 
the Duke University Medical Center (Rosati et al.  1982 ; Hlatky et al.  1983 ; Laszlo 
 1985  ) . The database was used both for research and in the management of patients 
at Duke Medical Center. An important application of the database was to evaluate 
various technologies applied to patients with chest pain. The database was also used 
to improve patient care by generating “prognostigrams” that described the expected 
outcome for a new patient based on the collected experience documented in the 
database for prior patients. Over time, a gradual evolution in the database occurred 
so that its use was routinely incorporated into their practice of cardiology. Goldman 
et al.  (  1981  ) , and associates who participated in a Duke-Harvard Collaborative CAD 
database, reported a comparison of the initial estimates by cardiology faculty and 
fellows of the prognosis of patients with coronary artery disease, with their revised 
estimates of the prognoses of their patients after seeing outcomes of matched 
patients from the CAD database. They found that faculty cardiologists’ estimates of 
prognosis of patients were minimally revised after seeing the CAD database patient 
outcomes, whereas the cardiology fellows responded by revising their estimates 
until they fi nally agreed with the prognoses of the faculty cardiologists and the CAD 
database. They concluded that the CAD database aided inexperienced cardiologists 
to become as accurate as faculty cardiologists. Trends in practice were also assessed 
in randomized clinical trials of coronary bypass surgery (Califf et al.  1985  ) . 

 As the focus of the Duke CAD database increased to include all patients suspected 
of having cardiovascular diseases, the system requirements changed, prompting con-
version to a medical record replacement called, “The Medical Record” (TMR). Pryor 
et al.  (  1985  )  wrote that the union of TMR and the Duke Databank for Cardiovascular 
Diseases resulted in a medical record system well suited to administrative, research, 
and patient care functions. Since the patient-care TMR database and the clinical-
research CAD database shared a large portion of data, they developed a program for 
the automatic transfer of data from one to the other which eliminated a duplicate 
entry process and increased the consistency between the databases (Dozier et al. 
 1985  ) . As a follow-up study of the clinical use of the Duke CAD database, Kong 
et al.  (  1989  )  reported on the accuracy of predictions from a statistical model based on 
the experience of a group of 1,744 patients in the database compared with the prog-
nostic predictions of 49 practicing cardiologists who were Duke graduate cardiology 
fellows. Overall, the database model’s estimates for 3-year survival and myocardial 
infarction-free interval for a second group of test patients were signifi cantly more 
accurate than the doctors’ predictions. Pryor et al.  (  1991  )  further reported on the 
analysis of 6,435 consecutive symptomatic patients referred for coronary artery dis-
ease and found 11 characteristics were important in estimating the likelihood of 
severe coronary artery disease. Pryor and Lee  (  1991  )  concluded that analyses of 
clinical databases could improve the predictions of clinical outcomes of patients. 
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 In 1971 the Seattle Heart Watch database was begun as a prospective, commu-
nity, medical practice study to determine the antecedents of acute myocardial infarc-
tion and sudden cardiac death. Bruce et al.  (  1974,   1981  )  at the University of 
Washington, described their use of an exercise-testing unit to study the feasibility of 
symptom-limited, maximal exercise in routine clinical practice to quantify func-
tional aerobic capacity; and to use non-invasive, serial testing methods to defi ne 
changes and mechanisms of cardiovascular impairment. Fifty physicians from 15 
centers collected clinical data on standardized forms concerning their patients’ 
responses to symptom-limited maximal exercise. These data were mailed to the 
University of Washington where they were coded and stored on computer discs for 
subsequent analysis. During a 4-year study the information was collected on 9,212 
persons. Follow-up data for the occurrence of morbidity and mortality from coro-
nary heart disease was obtained by questionnaires mailed twice a year to patients 
with coronary heart disease and once a year to healthy persons. Subsequent analysis 
enabled characterization of subgroups of coronary artery disease patients with 
increased risk of sudden cardiac death, and for patients in whom aorto-coronary 
vein bypass-grafts appeared to improve their survival rates. 

 In 1971 S. David at the C.S.Draper Laboratory in Cambridge, Massachusetts, 
developed a clinical database to support patient care and clinical research for patients 
treated at the Massachusetts General Hospital (MGH) for hyperlipidemia and vari-
ous complications of arteriosclerosis; and in 1977 reported containing records for 
about 1,600 patients. Patient-care data were collected on paper-based forms that 
were sent to a central location where the data were keypunched into cards, checked 
and verifi ed for validity; and then entered into their IBM 360/75 computer. In addi-
tion to collecting and using the information for both patient care and clinical inves-
tigation, their database allowed for the searching and compiling of data for a variety 
of statistical analyses (David  1977  ) . Leavitt and Leinbach  (  1977  ) , also at the MGH, 
reported that their Myocardial Infarction Research Group had employed FEDS 
(Formatted-fi le Editing and Display System) for their database-management system 
that was implemented on a XEROX SIGMA 3 computer. Patients’ records were 
entered and edited using a visual-display terminal, and were organized as fi xed-
length, fi xed-fi eld records, with each patient’s record associated by the patient’s 
identifi cation data. The FEDS initial fi les included CATHLAB with its patients’ 
catheterization-laboratory data. By 1977 their database included 800 patients and 
was available for research projects. 

 A  hyperlipidemia registry , a Program on the Surgical Control of the 
Hyperlipidemias (POSCH), was also described by Long et al.  (  1982  )  and associates 
at the University of Minnesota. This registry was established in 1975; and it used a 
hierarchical-structured database, and System 2000 software operating on dual 
Cyber-730 computers. With some modifi cations in the natural-language processing 
program provided by the System 2000, the POSCH group was able to successfully 
manage their registry, and their clinical research database. 

 In 1973 the National Heart, Lung and Blood Institute (NHLBI) organized a reg-
istry for patients with coronary artery disease to compare the results of medical 
treatment with surgical treatment. This  Coronary Artery Surgery Study  (CASS) 



1595.2 Cardiovascular Disease Databases 

included 14 clinical centers in the United States and one in Canada, a central elec-
trocardiography laboratory, and a coordinating center at the University of Washington 
in Seattle. In 1974 the CASS enrollment was initiated (Killip et al.  1981  ) ; and by the 
end of 1977 they had enrolled 13,000 patients in the registry. Kronmal et al.  (  1978  )  
described the entry of data from the 16 clinics that were keyed directly into pro-
grammable terminals, which usually consisted of a small minicomputer with a dis-
play terminal, a keyboard, and some storage equipment. Much of the checking of 
data for errors, and the conversion of data into a computer-readable format were 
done at each of the clinical sites. The data was later transmitted over telephone lines 
to the CASS data-collection center. In 1981 CASS reported a study of 20,391 
patients who had received cardiac catheterization and angiography between 1975 
and 1979. They stated that high-risk coronary artery disease was commonly found 
in middle-aged patients with defi nite angina, and in older patients with probable 
angina, but was rare in patients with non-specifi c chest pain (Chaitman et al.  1981  ) . 
A subsequent report in 1983 did not fi nd any statistically signifi cant differences 
after 5 years in mortality rates between patients treated medically when compared 
with those treated surgically (Fisher et al.  1983a  ) . They also reported that coronary 
artery bypass surgery improved the quality of life as manifested by the relief of 
chest pain, by the improvement in both subjective and objective measurements of 
functional status, and by a diminished requirement for drug therapy (Fisher et al. 
 1983b  ) . In 1979 the NHLBI also established the Percutaneous Transluminal 
Coronary Angioplasty (PTCA) Registry for patients who had received this treat-
ment procedure for coronary artery disease. The objective of this registry was to 
evaluate the safety and effi cacy of this procedure. By 1982 the PTCA registry had 
collected data from 34 centers in the United States and Europe; and reported on 631 
patients, of whom 80% had single-vessel disease, that coronary angioplasty was 
successful in 59% of the stenosed arteries, with the mean degree of stenosis being 
reduced from 83% to 31% (Kent et al.  1982  ) . They later reported further evidence 
of the effectiveness of the PTCA procedure, with an increase in overall success rate 
from 61% to 78% (Detre et al.  1988  ) . 

 In 1981 the Coordinating Committee for Community Demonstration Studies 
(CCCDS) was formed by the National Heart, Lung and Blood Institute to develop a 
surveillance program for myocardial infarction; and to coordinate the development 
of common outcome measures (cardiovascular risk factors, morbidity and mortality 
events) for three community programs in cardiovascular prevention located in 
Stanford, California, in Minneapolis, Minnesota, and in Pawtucket, Rhode Island. 
Using an algorithm that employed the symptom of pain, clinical laboratory enzyme 
data, and electrocardiogram fi ndings the system monitored the status of patients’ 
heart disease (McKinlay et al.  1989  ) . 

 Flanigan  (  1989  )  at the University of Illinois, reported a vascular surgery registry 
used by three hospitals, that contained more than 9,000 entries for more than 7,500 
patients who were included in one of its 12 sub-registries for vascular disease, includ-
ing aneurysms, cerebrovascular disease, lower extremity arterial disease, and others. 
They used an IBM 3081 mainframe computer located in the University of Illinois 
Computer Center, with a communication system of minicomputers and microcomputer 
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workstations for access to the registry, and with some terminals located in users’ homes. 
Selecting the term, Search Registry, at a terminal brought up patients’ names and oper-
ative records; and then selecting the term, Clinical Research, brought up a description 
of the organization of the registry data and the available statistical methods. In 1990 the 
National Registry of Myocardial Infarction (NRMI) was initiated, sponsored by 
Genentech, Inc., to assess the treatment of patients with acute myocardial infarction, 
and to identify trends in patients’ outcomes. In the 2000s more than 1,000 participating 
hospitals had established registries for studying trends in treatment, electrocardiogram 
data, length of hospital stay, and mortality variations for more than 1.5 million patients 
(Rogers et al.  2000  ) .  

    5.3   Chronic Diseases Databases 

 Fries  (  1984  )  made important contributions to the use of clinical databases for 
chronic diseases. He noted that the major burden of patient health care included 
arthritis, cancer, heart disease, and other chronic diseases; and these conditions 
required monitoring and evaluating various treatment programs over long periods 
of time. Accordingly, an important functional requirement of clinical databases 
for chronic diseases was the capability for record linkage; that is, the ability to 
collate selected, relevant data, which had been collected during multiple separate 
episodes of patient care for these diseases. If the data were collected from multi-
ple medical centers, it was necessary to share or to translate data to a common 
patient identifi er, to agree upon common data terms, to use a uniform mode for 
data entry, and to assure the privacy and confi dentiality of the patient data. Thus 
the requirements for a chronic disease database needed to include that the data 
had to be entered in a format that permitted multiple users the ability for selective 
retrieval in a usable form; and the data collected from different sources needed to 
be suffi ciently standardized to permit aggregation into usable data combinations 
and subsets. 

 As early as 1960 C.Vallbona and W. Spencer at Baylor University College of 
Medicine, began to collect computer-stored, patients’ medical record data. With 
this data and an associated information retrieval system, they established a 
research database for patients with chronic disease and disability at the Texas 
Institute for Research and Rehabilitation (TIRR) (Vallbona et al.  1968,   1973 ; 
Vallbona and Spencer  1974  ) . In 1971 they initiated for a neighborhood clinic, a 
Patient Health-Illness Profi le Database, as a component of a computer-based, out-
patient medical record system for a group of community health centers in Houston, 
Texas. Initially they entered patient data using keypunched cards; and on a batch-
processing basis they used the Baylor computer system to provide periodic reports. 
In 1984 they acquired their own computer; and then maintained their own clinical 
database that was used for both patient care and health services research, for eight 
community health centers with a patient population of 80,000 members (Yusim 
and Vallbona  1986  ) . 
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 A  thyroid disease registry  was initiated in 1960 by R. Nordyke and C. Kulikowski 
in Hawaii. By the end of the 1990s their database contained more than 15,000 
patients that had been referred to the Straub Clinic and the Pacifi c Health Research 
Institute in Honolulu. Each patient’s clinical care data was recorded on a set of three 
printed worksheets. Both coded and natural-language data were then entered into 
the computer by an aide; and a computer-generated report was printed for the 
patient’s chart. The work sheets were periodically revised to suit a variety of research 
studies that were conducted on the cost-effectiveness of alternative treatment modes. 
Based on their experiences with the thyroid clinic database, and with their Nuclear 
Medicine Reporting System (Nordyke et al.  1982 ; Nordyke and Kulikowski  1998  )  
and with a multiphasic health testing system at the Straub Clinic (Gilbert and 
Nordyke  1973  ) , they initiated databases for other chronic disease clinics and spe-
cialty practices, including those for hypertension, gout, diabetes, Parkinson’s dis-
ease, cancer, and back problems. 

 A  rheumatology database  was initiated in 1976 by the American Rheumatism 
Association Medical Information System (ARAMIS) for arthritis patients (Hess 
 1976  ) . J. Fries and associates at Stanford University had described as early as 1972 
a Time-Oriented Data Base (TOD) that provided them with time-oriented medical 
records for patient care (Fries  1972,   1984 ; Fries et al.  1974 ; Fries and McShane 
 1979 ; Weyl et al.  1975  ) . Fries described the evolution of ARAMIS from 1966 to 
1968 as having been developed from databases at four institutions. To allow pooling 
of data, a committee of the American Rheumatism Association (ARA) was formed; 
and a conference was held involving 29 institutions that resulted in the initial formu-
lation of the Uniform Data Base of Rheumatic Disease. ARAMIS listed 422 vari-
ables, including diagnoses, historical, physical examination, laboratory, and therapy. 
By 1986 ARAMIS included 17 databases in the United States and Canada. It con-
tained data for more than 23,000 patients and 150,000 patient visits, covering more 
than 160,000 patient-years of experience, with about 60-million items of individual 
information. The original ARAMIS data-communications system linked peripheral 
centers to the central computer by TYMNET and TELENET; and it allowed data 
access through telephones in the United States and Canada. Soon the data were 
entered into microprocessor databases, and periodically transferred to a large cen-
tral computer over telephone lines or by mailed magnetic tapes. Patient data confi -
dentiality was maintained; and identifying information about any patient within 
ARAMIS was available only to a physician responsible for a particular database. 
Fries strongly promoted chronic disease databases as essential for the proper man-
agement of arthritis and for other chronic diseases (Fries  1984 ; Fries and McShane 
 1986  ) . Lindberg et al.  (  1982  ) , and associates at the University of Missouri, Columbia, 
also developed a Rheumatology Database that was used to aid in the diagnosis of 
patients with arthritis. Reid and Johnson  (  1989  )  described applying their experience 
using this database for rheumatology patients, and also for developing a database 
stored on a personal computer for patients with other chronic diseases, Their data-
base contained a patient demographic fi le, a clinic-visit fi le that contained the data 
collected during a patient’s visit, a drug fi le that contained names and codes of pre-
scribed drugs, a fi le of clinical laboratory test results, and a coded disease fi le; and 
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the database was used for both patient care and clinical research. Peterson et al. 
 (  1983  )  and associates at the University of Connecticut School of Medicine also 
reported developing a database for its Division of Rheumatology, to facilitate the 
retrieval of patient data for clinical care and research. Patient-care data was entered 
from its legacy, paper-based records for relevant prior inpatient and outpatient clini-
cal data for their rheumatology patients.  

    5.4   Genetics and Genomic Databases 

 Genetics clinical databases were developed to collect data for patients with genetic 
disorders, to assist in the plotting of pedigree data, and to manage care and provide 
clinical decision support for the diagnosis and treatment of genetic diseases (Meaney 
 1987  ) . Modern genetics can be traced to Gregor Mendel, whose plant breeding 
experiments in the mid-1900s produced the underlying basis of genetics (Beaty and 
Khoury  2000  ) . Watson and Crick  (  1953  )  described the structure of deoxyribonucleic 
acid (DNA), and this radically changed the study of genetics and initiated a new 
generation of genetic and genomic databases (see also Sect.   9.1.2    ). Each cell in the 
human body contains 46 chromosomes that are strands of DNA composed of 23 
chromosome pairs; and one of each of these pairs is inherited from each parent. All 
DNA is composed of four nucleic acids: guanine (G), cytosine (C), adenine (A), and 
thymine (T) that are formed into base pairs; and nucleic acid (G) always pairs with 
nucleic acid (C), and nucleic acid (A) always pairs with nucleic acid (T). These base 
pairs of nucleic acids are linked into chains that are wound in a spiral that is generally 
referred to as a double helix. A specifi c group of base pairs is called a gene, and is 
found in a specifi c location in a chromosome. Chromosomes carry 50,000–100,000 
individual genes, which produce the proteins that carry out specifi c functions in 
human development or for cellular activities. A mutation is a genetic disorder that 
results from a cell division in which there is a change from the normal sequence of 
base pairs in a gene. If the change occurs in only one gene then the individual may 
be only a carrier and not show the disease; but if the change occurs in both paired 
genes then the person usually displays the genetic disease (Weiland  2000  ) . 

  Genetic linkage databases  have special requirements to satisfy the complex natu-
ral hierarchical structures of patients’ demographic and genetic data; and to be able 
to provide the pedigrees, the kindred or family trees, that are used in genetic research. 
Genetic linkage referred to the tendency of genes to be inherited together as a result 
of their location on the same chromosome; and such linkage could be quantifi ed by 
determining recombination frequencies from family studies. The computer is a use-
ful tool to assist genetic researchers with the problem of determining the linkage of 
genes within chromosomes. The management of pedigree data involves groups of 
related persons in addition to the individual patient’s data (Gersting  1987  ) . Genetic 
linkage databases began to be reported in 1959 when V. McKusick, at the Johns 
Hopkins University, described a genealogical database with census and vital statis-
tics data for about 18,000 Old Order Amish, who were living in Lancaster County, 
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Pennsylvania and in Holmes County, Ohio. McKusick’s goal was to collect data on 
all Amish in the area, who then numbered about 50,000. He gathered a complete 
census by family units, recording for every individual their date of birth (and death) 
and date of marriage. He then assembled a total geneology by the tracing of ances-
tors, as completely as possible and as far back as possible, for each member of the 
population. In the case of this relatively closed population, to which almost no new 
members had been added since it’s founding, the total geneology aimed for com-
pleteness of the database for these immigrants. Since the Amish began arriving in 
America in the 1700s, as of 1986 the total geneology consisted of at least 10 genera-
tions. Output of the program included the printed pedigree up to 12 generations, the 
cumulative percentage completeness of the pedigree for each generation, the cumu-
lative consanguinity in each generation, the common ancestors together with their 
contribution to the total consanguinity; and if desired, the sex-linked coeffi cient of 
consanguinity. Medical data, blood group, sociological and other data were stored 
with the unique identifi cation number of each individual (McKusick  1959,   1966 ; 
McKusick and Cross  1968  ) . McKusick  (  1964  )  described the problems involved in 
studying genetic linkage in man as involving studies that have as their objectives the 
identifi cation of genetic loci that are on the same chromosome pair, and the determi-
nation of how far apart the loci are on a given chromosome. It was usually clear from 
the pedigree pattern when a given trait was determined by a gene on the X chromo-
some. Although it was also clear when a trait was determined by a gene on an auto-
some, in this case it might be any one of 23 pairs of chromosomes that carried the 
specifi c locus. In 1962 McKusick  (  1988,  1989  )  fi rst published a catalog of traits in 
man linked to the X chromosome. He periodically revised this catalog, and in 1966 
fi rst published his classic book on the “Mendelian Inheritance in Man”, which aimed 
to be a comprehensive gene encyclopedia. In 1987 the Online Mendelian Inheritance 
in Man (OMIM) also became available by online computer retrieval. The 1988 edi-
tion of OMIM listed over 2,000 genetic disorders. 

 Murphy et al.  (  1961  )  and associates at Johns Hopkins University began to use a 
computer for estimating genetic linkage; and they devised a computer program to 
carry out the large number of calculations required to make effi cient estimates from 
large human pedigrees of gene linkage problems; and of the probability that two 
genes on the same chromosome parted company during hereditary transmission. 
Their computer program included: (1) determining the genotypic possibilities for 
each person in the pedigree; (2) calculating the probability of obtaining the pedigree 
for various crossover values, and expressing the results as a logarithm of the ratio of 
this probability to that for a specifi ed crossover value; and (3) fi tting a graph to the 
results; and from these were determined appropriate confi dence limits of their esti-
mates (Murphy and Sherwin  1966  ) . Chung  (  1961  )  at the University of Wisconsin 
reported on the early use of a library of programs called SEGRAN; while employ-
ing IBM 650 and the CDC 1604 computers to study human pedigrees in a variety of 
diseases. They also studied the genetic effects on children of the ABO blood groups 
of their parents where incompatibility was found to cause a 12% loss of incompat-
ible children. They could develop physical maps that could specify actual distances 
between landmarks along the chromosomes (Bokuski  1989  ) . 
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 In 1975 the medical genetics department at the Indiana University School of 
Medicine designed and implemented a Medical Genetics Acquisition and Data 
Transfer System (MEGADATS). They collected human pedigree data and labora-
tory test results on appropriate individuals; performed retrievals from the database 
within or across several pedigrees; and maintained confi dentiality of the patient 
data. The system was designed to store and retrieve information collected on 
approximately 15,000 families seen over 14 years. In 1978 the database included 
525,000 individuals; and the information that was retrievable included family pedi-
grees, genotyping, and physical and laboratory diagnostic information. The linkage 
of family members was achieved by a set of pointers to other family records (Kang 
et al.  1978  ) . In 1983 the MEGADATS database continued to store data on the 
525,000 individuals in the 15,000 families. It was used to study Huntington’s dis-
ease, a hereditary disorder of the central nervous system, which resulted in a chronic 
form of chorea showing rapid, jerky, involuntary movements. A Huntington’s cho-
rea project was initiated with the aim of searching for the basic defect, for improv-
ing methods of diagnosis, and developing more effective methods of treatment and 
prevention (Gersting et al.  1983  ) . Gersting  (  1987  )  also described in some detail a 
revised version, MEGADATS-4, as a relational database-management system that 
required little or no programming to carry out a variety of genetics applications, and 
that included patient’s fi les related by family-member fi elds to manage pedigrees. 

 Skolnick et al.  (  1978  )  and associates at the LDS (Church of Jesus Christ of 
Latter-day Saints) operated an extensive program for collecting and storing genea-
logical records of the membership of the Mormon Church. The project began as an 
extraction of data from these records for the construction of family genealogies, 
which would ultimately be linked with medical data to investigate genetic, factors 
in various diseases. In 1973 the system began to use video terminals for data entry, 
with as many as six terminal operators to enter coded data on individuals and fami-
lies; and a team of researchers at the University of Utah began to use these records 
to develop a database linking medical records to investigate the genetic transmission 
of several diseases. In 1974 they introduced a system of automatic record linkage, 
that by 1978 resulted in a computerized geneology of 170,000 Utah families with 
their data for about 1.2 million individuals, stored in a dedicated database on a dedi-
cated Data General Eclipse minicomputer (Bean et al.  1978  ) . In 1978 they pub-
lished the initial results of their fi rst effort to use the LDS records on a large scale 
for studying demography. In order to allow reconstruction of complete genealogies, 
two basic familial relationships, marriage and birth, were represented in addition to 
information about individuals; thereby conceptualizing the data as a set of individu-
als linked by marriages and births. A major asset of this population was the number 
of large families with more than eight children per couple. In addition, before 1890 
polygamy was a widespread practice, and many men had several wives and dozens 
of children. These large sibships led to pedigrees of 2,000–5,000 individuals over 
six or seven generations for Mormon pioneers (Skolnick  1980  ) . In 1980 this Utah 
group described their general database system, the Genealogical Information System 
(GENISYS), as using a high-level query language that allowed researchers to access 
data without having to have an extensive programming background. It provided the 
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ability to do varied data analysis on selected data sets; to be able to add new data to 
existing fi les and new fi les for new applications; and to accommodate the familial 
relationships common to genetic data (Dintleman et al.  1980  ) . In 1980 they also 
reported a new basis for constructing high-level, genetic-linkage maps by detecting 
DNA sequence polymorphisms as polymorphic marker loci linking groups with 
similar restriction fragment length polymorphisms (RFLPs); and then using pedi-
gree analysis to establish high-level linkage relationships that could be useful in 
developing models for human inheritance (Botstein et al.  1980  ) . 

 In 1988 the LDS group reported developing a relational database for their Utah 
population called the Human Genetics Database Management System (HGDBMS) 
that facilitated data collection and data retrieval for human genetics research. In 
addition to the representation of pedigree data, it also included programs for the 
management of clinical parameters, blood samples, and genotype processing. It was 
used for genetic and epidemiologic studies; and was designed to be extended and 
customized to fi t the needs of different genetic applications by adding relations, 
attributes, forms, and reports. Since their genetic analyses, such as gene mapping, 
linkage studies, and segregation analysis, were designed around studies of pedi-
grees, the representation of genealogical data was a major issue for the development 
of the HGDBMS. The system design had to incorporate the ability to link individu-
als and families together to form genealogical records. Seuchter and Skolnick  (  1988  )  
wrote that a genotype-processing unit contained information about the genotyping 
of the extracted DNA. The genotype knowledge unit contained genotypic informa-
tion gathered during the different studies that were managed by HGDBMS. The man-
agement of human genetic data involved a large number of different data structures 
including pedigrees, clinical data, genotypic data, and laboratory information, all 
received from a variety of sources, and at different times. To help with analyzing 
pedigree structures that were linked to family trees, Prokosch et al.  (  1989  )  devel-
oped a rule-based expert system for the Utah Population HGDBMS, that performed 
the preliminary analysis of pedigree data; and for a fairly simple pedigree this could 
lead to the fi nal result. However, when the expert system detected a complexity (for 
example, consanguinity), it would automatically trigger further analysis with the 
appropriate procedural system. Galland and Skolnick  (  1990  )  described in some 
detail a gene mapping expert system (GMES) that they added to help in locating 
genes on one of the 23 pairs of human chromosomes; and they used an expert sys-
tem shell called FROBS (frames plus objects) that allowed a mixed approach using 
objects-and-rules capabilities and algorithms that provided an interface to further 
Lisp programming. Since 1906 the LDS (Church of Jesus Christ of Latter-day 
Saints) has operated this extensive program of collecting and storing genealogical 
records for the membership of the Mormon Church. 

 Mitchell et al.  (  1980  )  and associates at the University of Missouri, Columbia, 
described MEDGEN, their clinical genetics data-management system. They further 
reported the development of their Genetics Offi ce Automation System (GOAS) for 
the Medical Genetics Unit of the University of Missouri that was implemented on an 
IBM PC/XT microcomputer. GOAS included primary databases for the records of 
their patients’ care visits; and also had secondary reference databases that contained 
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diagnostic and family data that were linked by a six-digit patient number to the pri-
mary databases, using a form that was completed from GOAS databases and sent to 
the Missouri Genetics Disease Program (Cutts and Mitchell  1985  ) . In 1984 Buyse 
 (  1984  )  described the Birth Defects Information System (BDIS), an online, computer-
based, information retrieval and decision-support system; that in 1984 contained 
more than 1,000 conditions of birth defects. Its Information Retrieval Facility pro-
vided summaries of current clinical information on a broad range of birth defects. Its 
Diagnostic Assist Facility provided interactive decision support for complex and 
multi-system birth defects and genetic disorders, by comparing the signs and symp-
toms from the entered patient with the more than 600 conditions in the computer 
knowledge base; and it could suggest potential diagnoses and provide information on 
what was needed to confi rm a diagnosis. 

 Yu and Hripcsak  (  2000  )  at the Columbia University in New York described a 
database of genetic diseases and family histories for 22,292 patients that were col-
lected from their electronic medical discharge summaries, using their natural lan-
guage processing system (see also Sect.   3.3    ). 

 The Genetic Sequence Data Bank (GenBank) was chartered to provide a com-
puter database of all known DNA and RNA sequences and related biological and 
bibliographic information. GenBank was funded in 1982 under a contract by the 
National Institute of General Medical Sciences (NIGMS) with IntelliGenetics, 
Inc. of Mountain View, California; and it was co-sponsored by the National 
Library of Medicine (NLM) and the Department of Energy; and in the mid-1980s 
it was managed at Stanford University. By 1989 the GenBank contained approxi-
mately 30-million nucleotides, the building blocks of DNA and RNA, in approxi-
mately 26,000 different entries in biological material and organisms ranging from 
viruses to humans. A cross-referencing system was established with the Human 
Gene Mapping Library, allowing GenBank users to identify and compare human 
genes that have been sequenced with genes that already have been mapped (Swyers 
 1989  ) . The human gene map was to fi x each gene to a particular region of one of 
the 23 pairs of human chromosomes, and to defi ne the complete set of sequences 
of ATCG that make up a human being. In 1989 fewer than 2% of the estimated 
100,000 genes had been mapped (Merz  1989  ) ; and the human genome project was 
to permit new approaches to treating the more than 3,000 inherited genetic dis-
eases, many of which were already mapped to specifi c chromosomes. Congressman 
Claude Pepper supported the legislation authorizing this Center on the basis that 
it would link existing databases, and help disseminate crucial information to 
researchers around the world, thus eliminating duplication of effort and speeding 
progress in unlocking the mysteries of disease. Collins  (  1991  )  reviewed in some 
detail the progress made in understanding how changes in chromosomes and 
mutations in genes can help in identifying disease-causing genes, and how muta-
tions in specifi c genes can cause disease; and he wrote that most of the genes 
causing genetic disorders were identifi ed by the process of functional cloning, 
which required biochemical or structural information about the defect underlying 
the disease; and he provided a table listing recent targets of positional cloning in 
the human genome. In 1992 the GenBank was transferred into the NCBI, that 
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manages GenBank and maintains on the WorldWideWeb the Human Gene Map 
that charts the locations of genes in the 23 pairs of human chromosomes (see also 
Sect.   9.1.2    ). 

 Human genome databases began to be common in the 1900s and were devel-
oped in many academic centers. The association of genes with diseases, and fi nd-
ing commonality between seemingly dissimilar clinical disorders, became an 
active research area for a better understanding of the etiology of disease, and to 
facilitate the development of effective drugs and treatments. A collaborative 
genome center database was reported by Miller et al.  (  1995  )  and associates at Yale 
University School of Medicine that had Internet collaboration with the Albert 
Einstein College of Medicine. Graves et al.  (  1997  ) , and associates at the Baylor 
College of Medicine, described their genomic database for their Human Genome 
Center (see also Sect.   9.1.2    ). 

 Evans et al.  (  1997a,   b  )  and associates at Creighton University applied data min-
ing algorithms to family history data to automatically create hereditary disease pat-
terns. They noted that in most hereditary syndromes, fi nding a correspondence 
between various genetic mutations within a gene (genotype) and a patient’s clinical 
history (phenotype) was challenging. To defi ne possible genotype and phenotype 
correlations, they evaluated the application of data mining technology whereby the 
clinical cancer histories of gene-mutation-positive patients were used to defi ne 
valid, “true” patterns for a specifi c DNA intragenic mutation. For each hereditary 
disease, such as hereditary colon or breast cancer, a set of rules that contained clini-
cal data were evaluated by clinical experts as relevant, valid, and likely to classify a 
patient as positive or negative for having the cancer. They applied their algorithm to 
a group of patients with family histories of probable hereditary colon cancer, and 
found that the results of their computer “recognizer” were in high agreement with 
the diagnoses made by clinical experts. They developed rules for data mining algo-
rithms derived from breast cancer patients known to have the breast cancer BRCA1 
or BRCA2 genes; and found that “true” patterns for a specifi c DNA intragenic 
mutation could be distinguished from “false” patterns with a high degree of reli-
ability. They also reported using data mining algorithms to characterize DNA muta-
tions by patients’ clinical features. 

 Weiland  (  2000  )  at Kaiser Permanente (KP) Northwest Region described the KP 
Human Genome Project that was initiated to study the clinical impact of genetic 
information, and to develop clinical guidelines as to who should be screened and 
who would counsel patients about their genetic fi ndings. When completed this 
Human Genome Project expected to identify about 4,000 genetic disorders, and to 
assist clinicians in the diagnosis and management of genetic diseases, since Weiland 
found that physicians without genetics training were not well equipped to interpret 
complex genetic tests and to provide counseling. In 2005 a Research Program for 
Genes, Environment, and Health (RPGEH) was launched by Kaiser Permanente’s 
Northern California Division of Research, and was affi liated with the University of 
California in San Francisco, to study genetic and environmental factors infl uencing 
common important diseases, including establishing registries for cancer, diabetes, 
asthma, autoimmune disease, osteoporosis, obesity, and other diseases. Based on a 
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membership of 3.3 million Kaiser Health Plan members in Northern California, the 
clinical, genetic, and other information from more than 500,000 consenting members 
were collected from their electronic medical records, from samples of their saliva or 
blood, and from their self-reported health surveys (  www.rpgeh.kaiser.org    ). 

 Mathur and Dinakarpandian  (  2010  )  and associates at the University of Missouri-
Kansas City described the Disease Ontology they used for automated annotation of 
genetic records to measure disease similarity. Corvin et al.  (  2010  )  described the 
Genome-wide Association Studies (GWAS) that had published nearly 400 articles 
identifying common genetic variants that predispose to a variety of common human 
diseases. The human genome is estimated to have about ten million single nucleotide 
polymorphisms (SNPs) that constitute about 0.1% of the genome. Cooper et al. 
 (  2010  )  noted the availability of newer gene-chip technology that can identify and 
measure a half-million SNPs; and can be used to support studies to identify SNPs and 
corresponding genes that are associated with disease; and Cooper reported a genome-
wide database (GWAS) study of Alzheimer’s disease that contains 312,318 SNPs 
measurements on 1,411 patients. Denny et al.  (  2010  )  and associates at Vanderbilt 
University, used genetic data in their longitudinal electronic medical records (EMRs) 
for phenome-wide association scans (PheWAS); and used the International 
Classifi cation Diagnoses version 9 (ICD9) diagnoses classifi cation codes found in 
the patients’ records to approximate the clinical disease phenome; and they devel-
oped a code translation table to automatically defi ne 776 different disease popula-
tions. They genotyped 6,005 patients in their DNA databank at fi ve single nucleotide 
polymorphisms (SNPS), for previously reported disease-SNPs associations for 
Crohn’s disease, multiple sclerosis, and other diseases. Their PheWAS software gen-
erated cases and control populations, and disease-SNPs associations. They were able 
to demonstrate that it was possible to couple GWAS studies with PheWAS studies to 
discover gene-disease associations in patients with genetic diseases.  

    5.5   Neuromental Disease Databases 

 In 1961 Phillips  (  1968  )  at the National Institute of Mental Health (NIMH), in coopera-
tion with the Maryland State Department of Mental Hygiene, established the Maryland 
Psychiatric Case Register, one of the earliest computer-based registries for psychiatric 
cases. It included all patients treated in psychiatric clinics in Maryland, and all Maryland 
residents receiving services in psychiatric clinics in the adjacent District of Columbia. 
Their objectives were to receive complete and accurate reports of service for the defi ned 
population from all of the psychiatric facilities, then process these reports, link all 
records that pertained to the same individual, and then provide an analysis of the longi-
tudinal treatment histories for the patients. They linked records by using a unique pre-
assigned number to each patient; and also used secondary identifi ers that included a 
Soundex name, a sex linkage program, postal address, birth date, race, and Social 
Security number. In the mid-1960s an intensive review of all of their 95,000 identity 
records was made, and they estimated a 99.7% accuracy for their record linkages. 
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 In 1975 Seime and Rine  (  1978  )  at the West Virginia University Medical Center, 
began to develop their Behavioral Medicine Data Retrieval and Analysis Program, 
to provide a clinical database to store and retrieve demographic and clinical infor-
mation designed to improve the diagnosis and treatment of the patients with behav-
ioral problems who were seen in their Ambulatory Care Clinic; and to also use this 
database for teaching and for clinical research. Since the program was developed for 
a medical clinic, the grouping of patients’ data by diagnosis was considered the 
most useful way of classifying the information. Such an organization of patient fi les 
in this database enabled them to compare different diagnostic groups that had been 
coded in DSM-II, a 5-digit code of mental disorders, on all relevant variables. For 
each patient a standard amount of additional data was coded that included a battery 
of psychological tests, past and present history of mental stresses, and fi nal outcome 
data of the effects of treatment. 

 In the early 1980s a general psychiatric database was established at the University 
of Pittsburgh; and by the end of 1982 it contained 5,573 patients (Coffman and 
Mezzich  1983  ) . 

 In 1978 a National Stroke Database and Traumatic Coma Database was estab-
lished by the National Institute of Neurological and Communicative Disorders and 
established two databases (Nichols et al.  1981 ; Gross and Dambrosia  1981  ) . By 1982 
four hospital centers had entered over 1,100 patients into the pilot Stroke Database; 
and six hospital centers had entered over 500 patients into the pilot Traumatic Coma 
Database (Kunitz et al.  1982  ) . A stroke registry was also initiated at Michael Reese 
Hospital in Chicago (Banks et al.  1983  ) . In 1984 a Maryland State registry was estab-
lished at the University of Maryland in Baltimore for reporting all patients with head 
or spinal cord injuries, amputations, and strokes (Shankar et al.  1985  ) .  

    5.6   Perinatal and Childhood Disease Databases 

 Studies of perinatal care require data on prenatal risks for infants and their mothers, 
data on the delivery itself, and on the newborn period or neonatal course. This com-
plex linkage of data, and the trend to regionalization of perinatal care led to the 
recognition of the potential utility of such computer databases. The U.S. Collaborative 
Perinatal Project (CPP) of the National Institute of Neurological and Communicative 
Disorders (NINCDS) followed the course of nearly 56,000 pregnancies between 
1959 and 1966 at 12 medical school affi liated hospitals in the U.S. Using the CPP 
cohort database, risk factors for sudden infant death syndrome (SIDS) were studied 
in 193 SIDS cases identifi ed in the study cohort of 53,721 infants who were born 
alive and surviving the neonatal period (Kraus et al.  1969  ) . 

 In 1975 the Arizona Perinatal Project (APP) was established by the University of 
Arizona and the State of Arizona. In the past they had used a paper-based record 
system in which the records were compiled by the physicians and nurses in per-
forming their regular tasks. Their computer-based system communicated with mul-
tiple hospitals with 17 different terminals and by telephone lines. Data-entry forms 
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were developed by a committee of the APP Project composed of obstetricians, neo-
natologists, nurses, and bioengineers from participating tertiary centers, secondary 
level hospitals, and the Indian Service hospitals. The computer was located in the 
labor suite of St. Josephs Hospital in Phoenix. The Arizona University Hospital 
used a leased phone line. Data entry from the Maricopa County General Hospital 
and the Whiteriver Apache Tribal Hospital was accomplished over dial-up phone 
lines. When an infant was discharged, the signifi cant neonatal events were added to 
the already entered prenatal and labor delivery information, to generate a nursery 
discharge summary, which was the basis for the infant’s continuing health record. 
The system was capable of providing a variety of reports; and statistical summaries 
were prepared on a monthly basis. Searches could be made for specifi c diagnoses, 
treatments, complications, or other clinical information (Jennett et al.  1978 ; Warford 
et al.  1979  ) . In the mid-1970s Chik et al.  (  1981  )  and associates at the Cleveland 
Metropolitan General Hospital began to collect perinatal data in a computer-stored 
database. After 7 years they reported that there were over 60,000 records for moth-
ers, infants, and fetuses in their patient information fi le, for approximately 20,000 
pregnancy episodes. They employed a relational database system called Interactive 
Graphic and Retrieval System (INGRES) developed at the University of California, 
Berkeley. Their programs permitted searches across fi les to link antepartum, intra-
partum, and neonatal data for a specifi c pregnancy; for studies involving retrieval of 
selected sets of mothers or babies with predefi ned characteristics; or for studies of 
the effects of specifi ed procedures (such as fetal monitoring) on infant outcomes. In 
1981 a microcomputer-based, neonatal follow-up database was reported at the East 
Carolina University of Medicine. Their perinatal program served as the referral area 
for 29 counties with approximately 17,000 deliveries per year. This region had one 
of the highest perinatal and neonatal mortality rates in the country. Long-term out-
come parameters of neurological-cognitive development, of medical-nutritional 
problems, and of family disruption and inadequate parenting were followed-up in 
selected high-risk groups of survivors (Engelke et al.  1981  ) . In 1982 a University of 
Illinois regional perinatal database was reported as operational in three hospitals. It 
was described in its fi rst year as already including 20,000 patients. The database 
was used by practitioners to support decision-making processes in patient care, for 
patient demographics, treatment evaluation, medical practice surveillance, peer 
review, and quality control. It was also used by administrators for quarterly data 
analyses for their hospitals, and used by epidemiologists for health services research 
in all network hospitals (Grover et al.  1983  ) . 

 In 1985 a National Perinatal Information Center was established to provide a 
nation-wide perinatal database containing information on mothers and on infants 
with their births and outcomes, collected from about 400 perinatal centers in the 
U.S. The database focused on high-risk mothers and distressed infants. It had the 
goal of improving patient outcomes; and reported that the regionalization of perina-
tal care showed a recognizable decline in infant mortality (Gagnon et al.  1986  ) . 
In 1989 Nagey et al.  (  1989  )  and associates at the University of Maryland School of 
Medicine, described their Maryland Perinatal Database. They developed a paper-
based data-entry form usable by clerks for input to a Digital Equipment Corporation 
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microcomputer database. Their database contained notes from the nursery and labor 
suites; and all clinically signifi cant information available for all gravidas and their 
children, from their fi rst prenatal visit through the infant-and-mother hospital dis-
charge; and they provided discharge summaries from all the nurseries. A variety of 
research projects were conducted, including a review of 33,000 prenatal visits, and 
an analysis of the pattern of the mean change in arterial blood pressure during preg-
nancy. Prather et al.  (  1997  )  and associates at Duke University Medical Center used 
their Perinatal Database for a data-mining project to identify factors that could 
improve the quality and cost effectiveness of perinatal care. Jenders et al.  (  1998  )  and 
associates at Columbia University, New York, implemented a computer-based 
Multi-Institution Immunization Registry for children in New York City. They 
reported that as few as 37% of children in some parts of their city were under-
immunized. Their registry was based in three hospitals, and included a catchment 
area with a total population of more than 400,000. Since its initiation, the objective 
of their registry was to identify, study, and increase the immunization rates of the 
children. Garrido and Barbeau  (  2010  )  and associates at Kaiser Permanente also 
described their database model used for perinatal research.  

    5.7   Other Specialized Medical Databases 

  Acquired Immune Defi ciency Disease  ( AIDS )  Registry  was described by Alterescu 
et al.  (  1983  )  and associates at the Center for Disease Control (CDC), as a special-
ized epidemiological clinical registry for AIDS, to help uncover common factors 
contributing to the prevalence of this serious disease syndrome; to accumulate and 
study a suffi cient number of cases to help provide answers to the medical and epi-
demiological diffi cult questions concerning the AIDS problem. Its AIDS Case 
Registry Interactive System was focused on the follow-up of positive cases and their 
contacts, to treat and educate these patients; and to also study the 16 other infections 
that were sexually transmittable among these high-risk, sexually active individuals. 
They used a computer program called the Medical Information Management System 
(MIMS) that was initially developed by the National Aeronautics and Space 
Administration (NASA) to monitor the health status of astronauts. The MIMS time-
sharing network was fi rst implemented in 1980 by the Cincinnati, Ohio Health 
Department; and it was then used in prevention and training centers in 1982 in 
Baltimore and in 1983 in Puerto Rico. In 1981 investigations of AIDS cases began 
to be reported; and 1,400 cases had been reported to the CDC by 1983. 

  Diabetes mellitus databases  began to be reported in the 1970s. Miller and Strong 
 (  1978  )  reported that the School of Public Health at Harvard University had created in 
1976 a Medical Data Utility System (MEDUS/A) to support its research projects that 
gathered data from patient-care processes in its affi liated health-care delivery institu-
tions. In March 1977 the fi rst project to use MEDUS/A began to compare several 
measures for the short-term control of diabetes mellitus against a measure of the 
long-term damage to the vascular system. Diabetes registries using microcomputers 
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were established in the 1980s at the University of Michigan Diabetes Research and 
Training Center (Lomatch et al.  1981  ) , and at the University of Missouri-Columbia 
School of Medicine (Gardner and Klatchko  1985  ) . In 1993 the Kaiser Permanente 
(KP) Division of Research (DOR) established a diabetes registry; and reported that 
in a group of 2.4 million KP members in 1994, 76,871 (3.2%) were identifi ed as hav-
ing diabetes. Karter et al.  (  1999  )  reported that in a study of 42,533 members who 
responded to a survey and who were classifi ed as having type 2 diabetes, in their 
children who had diabetes there was a higher prevalence of diabetes in the mothers 
than in the fathers. In another study, they compared the effectiveness of several anti-
hyperglycemic therapies, and monitored the effects on glycosylated hemoglobin 
(HbA1c) (Karter et al.  2005  ) . 

  Geriatric databases  for patient care and research began to be reported in the 
1980s. Kuskowski  (  1984  )  at the V.A. Medical Center in Minneapolis, described their 
database, with a DEC PDP 11/44 minicomputer, that they used for evaluating elderly, 
demented, geriatric patients. The goal of their database was to provide ongoing cur-
rent data for their patients; and to serve as a research tool for longitudinal studies of 
the progress of the disease based on their repeated collections of physiological, neu-
rological, and psychological variables. McCormick and McQueen  (  1986  )  at the 
Gerontology Research Center of the National Institute on Aging (NIA) reviewed the 
development of databases for geriatric nursing services and for geriatric research; 
and described their own database for a large, clinical, geriatric research program. The 
basic factors affecting data handling for their system included: the organization and 
storage of data in a structure optimal for ease of: data entry, data manipulation, data 
retrieval, data maintenance, data integrity; and for the appropriate generation of valid 
reports and statistics. Their research program was sponsored by the NIA, and was 
conducted in a 15-bed unit associated with the Johns Hopkins Institution. Daily 
assessments of patients provided a variety of data for entry into their integrated clini-
cal database used for patient care, and also for geriatric research. 

 A registry for elderly patients was reported by Clapp-Channing and Bobula 
 (  1984  )  to be using an Apple II + microcomputer with relational dBASE II soft-
ware. Its purpose was to study elderly patients admitted to Durham County 
General Hospital that provided care to about 12,000 community patients. Medical 
records for groups of study patients were selected in accordance with specifi ed 
criteria. Medical assessments of patients were performed on admission, again on 
discharge to home or to a nursing home, and again 4 months after discharge. 
During their fi rst 14 months, 87 patients participated in a study; and demonstrated 
that a staff member without prior training in using computers could successfully 
manage their registry. 

  International Implant Registry  was initiated in the late 1980s by the MedicAlert 
Foundation that tracked over 11,000 patients treated at nine hospitals and one medi-
cal group. With over two million, man-made devices implanted annually, implant 
procedures ranked with heart disease as a common reason for hospital admissions. 
If there were an implant recall due to some defect in the implant, the registry would 
notify the patient’s physician and the hospital where the implant surgery was per-
formed (ECRI  1989  ) . 
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  Multiphasic health testing  ( MHT )  databases  are specialized medical databases 
that were initiated in the 1960s when computers and automated clinical testing 
devices permitted the development of effi cient technologies for providing routine 
health examinations. In 1963 a multiphasic health testing (MHT) program was 
established by M. Collen and associates at Kaiser Permanente (KP) in Northern 
California. The MHT database stored the data collected during patients’ MHT 
examinations in an electronic medical record (EMR) database; and the database 
sub-sets also served as a registries for a variety of important common diseases, 
including hypertension, diabetes, syphilis, tuberculosis, and others; and it was a 
source for patient care research, clinical and epidemiological research, technology 
assessment, and for evaluative health care research. By 1989 this MHT database had 
collected during its 25-years of operation data for more than 900,000 examinations 
on more than 400,000 members. In the 2000s this legacy MHT database continued 
to be used for longitudinal clinical and epidemiological research, and as a source of 
data in its disease registries (Collen  1965,   1966,   1967,   1978  ) . Garfi eld ( 1970 a, b) 
Warner  (  1972  )  and associates at the Latter Day Saints (LDS) Hospital in Salt Lake 
City, developed a pre-admission automated multi-testing program for their patients 
scheduled for hospital admission; and patients received a self-administered history, 
electrocardiography with an analysis for any change from a prior ECG, spirometry, 
intraocular pressure, blood chemistry (l2-channel automated analyzer on-line from 
the clinical laboratory), and some manually entered data which included age, sex, 
height, weight, blood pressure, and the results of hematology tests and urinalysis. A 
nurse measured the patient’s blood pressure, temperature, respiratory rate, height 
and weight; and entered these data in the patient’s record. On-line computer tests 
were then performed, spirometry, and an electrocardiogram for which a computer 
pattern recognition program reported a classifi cation of the ECG pattern. Other data 
entered into the patient’s record used a remote keyboard terminal, for the results of 
the urinalysis and the hematology tests. The blood chemistry tests run on an l2-chan-
nel AutoAnalyzer operated as an on-line terminal, which allowed the computer to 
store the results directly into the patient’s record. The fi nal report generated for each 
patient contained all the results of the various tests and procedures, as well as an 
alert list of any values outside of normal limits. The reports were then distributed to 
the nursing stations, and placed on the patients’ charts. Subsequent data gathered on 
the patient during the hospital stay were also recorded in the patient’s computer-
based record (Warner  1972 ; Pryor and Warner  1973  ) . In the 1970s multiphasic 
health testing (MHT) systems with their specialized medical databases spread in the 
United States, and were also used in large industries for providing periodic health 
examinations to company executives and employees, and to screen for occupational 
diseases. In the 1980s most MHT programs in the United States were absorbed as 
subsystems of broader enterprise medical information systems such as for Kaiser 
Permanente; or were terminated due to lack of reimbursement from health care 
insurers that paid only for “sick care”. In the 1970s MHT programs were opera-
tional in some international cities, including London, Nancy (France), Mexico City, 
Melbourne, Tokyo; and in the 1990s in Taipei and Hong Kong; and in the 2000s 
MHT programs continued operating in Japan, Taiwan, and China. 
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  Renal end-stage disease registries  began to be reported in the 1960s. Stead 
 (  1984  )  reviewed in some detail the development of computer-based, data processing 
for patients with renal disorders. He described the National Dialysis Registry, that 
was established in 1967 by the Research Triangle Institute, under a contract from 
the National Institutes of Health, and that by 1976 had accumulated data on almost 
35,000 patients from 546 centers. In 1973 the Social Security Administration took 
over the responsibility for the end-stage kidney disease program, with the goal of 
replacing the transplant and dialysis registries with an enhanced system that would 
permit medical review, provide user rates, and support administrative needs. With 
the availability of low-cost microcomputers, regional groups began to develop their 
own registries. In 1975 the Missouri Kidney Program, and the Health Care 
Technology Center at the University of Missouri, joined to establish an end-stage 
renal disease (ESRD) database for the follow-up of ESRD patients in the state of 
Missouri. Their database contained records for 1,300 ESRD patients, dated from 
1965 to 1977, who were receiving renal dialysis or a kidney transplant. They focused 
on developing an epidemiological model for the health care requirements of ESRD 
patients (Rickli et al.  1978  ) . 

  A Renal Transplant Registry  was established by the American College of 
Surgeons in 1963; and by 1976 it included data on more than 25,000 kidney trans-
plants reported from 301 institutions. Reemtsma et al.  (  1966  ) , and associates at 
Tulane University in New Orleans, described the Renal Transplantation Data Pool 
that they developed; and even though their patient population was relatively small, 
they noted that a transplanted kidney needed to be assessed promptly, precisely, and 
frequently for its renal function; and a considerable amount of information needed 
to be shared promptly by physicians as soon as the selected data were collected and 
processed. Special forms were developed for the collection of the data, and spaces 
in the forms were allowed for adding hand written notes. Data was processed for 
individual patients; and summary analyses were provided to contributing groups as 
desired. A Renal Transplant Registry was established in 1978 by J. De Groot and J. 
Simpkins, at Vanderbilt University Medical Center. They estimated that 4,600 renal 
transplants were made in the United States that year; and they reviewed some of the 
databases that had been established for transplant organ matching. Since the demand 
was expected to greatly increase each year, the information processing requirements 
for matching donors and recipients would increase accordingly; and a database was 
established for the expanding data involved in developing antigen matching of 
recipient and donor for kidney transplants. Their Midwest Organ Sharing System 
initially included about one-half of the states in this country; and it had international 
capabilities to interface with various countries in Europe (De Groot and Simpkins 
 1980  ) . In 1986 a National Transplant Database for procuring organs was estab-
lished, and in 1987 more than 9,500 entries were reported in the database for patients 
waiting for kidney transplants. Almost 600 new renal recipients were added to the 
database each month; about 300 recipients were removed each month after they 
received a kidney transplant; and about 200 recipients were usually removed for 
other reasons, such as death, moved away from the center area, or changed their 
mind about the transplant (Ames and Strawn  1987 ; Ames et al.  1988  ) . 
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  Trauma registries  began to be reported in the late 1960s. In 1969 Boyd et al.  (  1973  )  
and associates at Cook County Hospital in Chicago, reported establishing a computer-
based trauma registry. Pollizzi  (  1983  )  described the design and implementation of the 
Quantitative Sentinel that since 1978 used a commercial, patient database-manage-
ment system for trauma and emergency patient-care at the Maryland Institute for 
Emergency Medical Services Systems in Baltimore. Talucci et al.  (  1987  )  and associ-
ates at the Cooper University Medical Center in Camden, New Jersey, used a micro-
computer with a commercial O’Hanlon Computer System’s Data Base Solution, for 
its Southern New Jersey Regional Trauma Center. It served more than 1,000 admis-
sions per year, of which more than 60% were admitted to a 10-bed Trauma Intensive 
Care Unit. Forrey et al.  (  1987  )  and associates at the University of Washington in 
Seattle described a lexicon of terms to foster the adoption of a standardized terminol-
ogy for the nature and mode of injury for patient care and trauma statistics. In 1989 
the Center for Disease Control (CDC) in Atlanta reported that trauma registries were 
being maintained in hospitals in 35 states; and CDC recommended standardized case 
criteria that specifi ed the types of patients to be included in a trauma registry (those 
with blunt or penetrating injuries or burns), and a core set of data items to be collected 
on those patients (Pollack and McClain  1989  ) . Clark  (  1994  )  at the Maine Medical 
Center in Portland, Maine, described their trauma database, that since 1991 used an 
IBM microcomputer with a commercial, general-purpose, data-management system 
called “Paradox”, to link patients’ records from two major hospital trauma registries; 
and by 1994 it contained more than 11,000 hospital discharge abstracts. 

  Twin registries  were initiated in the 1960s to evaluate groups of twin pairs for the 
relative contributions of heredity and environment, and to study problems in medical 
genetics. Hrubec (1978) reviewed for the National Academy of Sciences the prior 
10-years of activities of its National Research Council (NRC) Twin Registry of 16,000 
white adult male, twin pairs, with medical record data obtained from the Department 
of Defense and the Veterans Administration; and this NRC report reviewed their stud-
ies for a variety of medical diseases. Friedman and Lewis  (1978) , Friedman et al.  (1981)  
and associates at Kaiser Permanente (KP) described its KP Twin Registry that was 
initiated in 1974, and included about 8,000 pairs of adult like-sex twins, with the goal 
of carrying out studies of the co-twin control type, examining the relation of various 
environmental factors to disease, such as cigarette smoking to cardiovascular disease 
for which they found only small differences between smokers and non-smokers.  

    5.8   Summary and Commentary 

 Specialized medical databases began to be established in the 1960s in the form of 
registries. When computing power and storage capacity increased and became less 
costly, registries generally enlarged and were referred to as databases. By the 2000s 
most common diseases, conditions, and important clinical processes had specialized 
databases to assist in the follow-up of patient care, to support clinical and epidemi-
ogical research, and for evaluative research and administrative decision support.      
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 Secondary medical databases are classifi ed in this book in accordance with their 
objectives, which usually are to support clinical research, administrative functions, 
medical education, or public health. Since very large medical databases can collect, 
integrate, store, and provide data from various sources and can support multiple 
purposes, they can serve both as a primary databases if the data are initially col-
lected for direct patient care, and can also serve as secondary databases when the 
data are also used for other purposes (Glichlich  2007  ) . After primary medical data-
bases began to be established in the 1960s, it soon became evident that the second-
ary collections of information extracted from primary clinical databases could be of 
great value in supporting clinical research, improving the clinical decision-making 
process, and improving the quality of health care. As computer storage devices 
became larger and less costly, a great variety of secondary clinical databases emerged 
in these six decades. 

    6.1   Clinical Research Databases 

 Clinical research databases are usually developed as secondary databases that have 
been derived from primary clinical databases and are primarily used for clinical and/
or epidemiological research. Clinical research databases contain selected data about 
one or more medical problems that have been extracted from the records of groups of 
patients who have these clinical problems; so they differ from primary medical record 
databases where the medical record for each patient needs to contain all of the infor-
mation collected for all of the medical problems for that individual patient. Blois 
 (  1982  )  further distinguished between databases for keeping medical records and those 
for supporting research because of the different purposes they were intended to serve. 
Blois pointed out that a patient-record database system was what the physician needed 
in order to take care of patients; and the records had to be organized so that one could 
quickly fi nd all the information relevant to the care of the individual patient; whereas 
a clinical research database needed to be organized to conveniently search the records 
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of many patients in order to answer such questions as: what number of patients with a 
particular diagnosis were seen during a specifi ed time period; or what was the distri-
bution rate of a specifi c disease in a specifi ed age group of males? Clinical-research 
databases are used for retrospective epidemiologic research; and for studies to aid in 
prognostic and predictive decision-making as, for example, comparing a current 
patient’s medical record data to the data from a group of prior patients with similar 
clinical problems; such as was done with the Duke cardiovascular database (see Sect. 
  5.2    ), and with the ARAMIS rheumatology database (see Sect.   5.3    ). 

 The Committee on National Statistics has broad interests in clinical trials and in 
public health and environmental monitoring; and it described some of the benefi ts 
of sharing biomedical research data. Although its Subcommittee on Sharing 
Research Data focused on sharing data in the social sciences, it advised that the 
same benefi ts and problems apply to the biomedical sciences. It considered that 
some of the benefi ts of sharing research data included: (1) the ability for re-analysis 
and verifi cation by data on the same research subject that was independently col-
lected by others; (2) shared data could support secondary analyzes such as studying 
the data for purposes other than those for which the primary data were collected; (3) 
shared relevant data could be used to formulate and/or support program practices 
and policies; and (4) large shared databases could be used to discover and develop 
new knowledge, and to generate new research objectives. This Subcommittee also 
reviewed some of the responsibilities and problems associated with sharing scien-
tifi c data, such as: (a) assuring the confi dentiality and privacy of personal data; (b) 
inviting critical peer reviews that could produce a re-analysis of shared data and 
might generate confl icting conclusions; (c) exposing proprietary data to competitive 
markets when the marketing of biomedical research militated against data sharing; 
and (c) sharing with the original researchers the costs as well as benefi ts when 
exploiting the information in the computer databases (Fienberg  1985  ) . 

 Hlatky  (  1991  )  divided common uses of clinical research databases into: (1) 
descriptive analyzes to extract summaries of important features of a database, such 
as grouping patients with similar syndromes, and identifying important characteris-
tics of each syndrome; and (2) predictive analyzes to derive classifi cation rules, such 
as developing diagnostic rules which predict the course of a disease. Davies  (  1992  )  
advised that computer-based patient records that are used for research purposes, such 
as for evaluating the outcomes, effectiveness, costs, utilization, or safety of patient-
care services, would need the patient care data for diagnoses, treatments, and patient 
outcomes as recorded by the health-care providers; and would also need the data to 
be able to be categorized by clinical services, by procedures, and by locations. 

    6.1.1   Requirements for Clinical Research Databases 

 Clinical research databases have general requirements that are similar to those for the 
primary medical record databases from which the research databases are usually 
derived; but they have additional legal requirements for protecting the confi dentiality 
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of patients’ information by de-identifying all patients’ data (see Sect.   4.1.1    ). Gordis 
 (  1980  )  emphasized the need for patients’ information in a research database to have 
adequate individually identifi able data to permit linking all of the data of a patient 
who has received care from multiple sources, in order to conduct comprehensive 
population-based biomedical and epidemiological research; yet recognizing the legal 
need to protect the privacy and confi dentiality of each patient’s data. McGuire  (  2008  )  
and Kurreeman  (  2011  )  also emphasized the need in genome-wide association studies 
(GWAS) to permit a patient’s data linkage in electronic medical records for large 
cohort studies. Pryor  (  1985  )  also noted the need for a secondary medical research 
database to be able to extract and transfer a desired patient’s data from a primary 
patient-record database, and be able to link it to other data sources for additional 
relevant data; but yet always to maintain the privacy and confi dentially of the patient’s 
data. Davies  (  1992  )  and Garfolo  (  1983  )  also advised that computer-based patient 
records that are used for research purposes, whether for evaluating the effectiveness, 
outcomes, costs, utilization, or the safety of patient-care services, would need ade-
quate relevant data about diagnoses, treatments, procedures, and of patients’ out-
comes as was recorded by their health-care providers. 

 Niland  (  2006  )  described additional special needs of databases that were used for 
clinical trials that tested the safety and effi cacy of new treatments. These usually 
included for phase I trials the need to determine the optimal dose of the new treat-
ment; for phase II trials the need to establish to what extent the desired response to 
the new treatment was achieved; and then for phase III trials the need to compare the 
new treatment to an already established treatment or to a placebo. Since clinical tri-
als often involved collaboration with databases from multiple clinical sites, the 
requirements for standardization of data terms and codes, the need for the collection 
of an adequate volume of data for adequate lengths of time, and the anonymization 
of patient data were all essential. When very large, collaborative research databases 
began to include multiple information sources and Web-based databases, then the 
requirements expanded to employ translational informatics technology. Mirel et al. 
 (  2010  )  and associates at the University of Michigan, described their Clinical and 
Translational Resource Explorer, that met the special requirements for clinical 
research databases that participated in Web-based, translational-research projects, 
including the uniform requirements for sharing data from multiple diverse research 
databases, so that a user could search with a single query statement for one or more 
pre-defi ned items across one or more categories in multiple databases, and then 
effi ciently retrieve desired relevant information from these databases. 

  De-identifying patient data  is a very important legal requirement for all personal 
patient data that is transferred from a clinical patient record into a medical research 
database, in order to maintain the privacy and confi dentiality of every patient’s per-
sonal data (see also Sect.   4.1.1    ). In 1996 the U.S. Department of Health and Human 
Services (HHS) enacted the Health Insurance Portability and Accountability Act 
(HIPAA) that established standards for assuring the security and privacy of indi-
vidually identifi able health information, called “protected health information” 
(PHI), during its electronic exchange, while allowing the fl ow of health information 
needed to provide and promote a high quality of health care. The electronic exchange 
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of a patient’s information requires the informed consent of the individual, who 
needs to be given the options of consenting to the release of all personal data, or 
allowing only the release of selected data, or not to release any personal data. The 
HIPAA Privacy Rule allows legally de-identifi ed health information to be unre-
stricted in its use after the removal of identifi ers of the individual, as specifi ed by the 
Privacy Act of 1974; and these restricted data include: (1) the individual patient’s 
name, initials, or an identifying number or symbol, or any other identifying particu-
lar assigned to the individual; (2) biometric identifi ers such as a photograph, or a 
fi nger or a voice print; (3) the individual’s age or birth date, gender, racial back-
ground, postal address or ZIP code, email address, telephone number; (4) the indi-
vidual’s health plan ID, medical record number, diagnoses and procedure codes, the 
patient’s physicians’ ID numbers; (5) the individual’s Social Security number; and 
also any identifi ers of the individual’s relatives, household members, and employ-
ers. A limited data set is defi ned as one that contains legally de-identifi ed patients’ 
health information. The use of patients’ clinical information for research purposes 
also requires authorization by an Institutional Review Board (IRB). Within the fed-
eral Health & Human Services (HHS), the Offi ce for Civil Rights (OCR) is respon-
sible for implementing and enforcing the HIPAA privacy rules. Congress passed the 
American Recovery and Reinvestment Act (ARRA) of 2009 to provide incentives 
for the adoption of electronic medical records (EMRs), and also passed the Health 
Information Technology for Economic and Clinical Health (HITECH) Act that 
specifi ed protection requirements for clinical information that widened the scope of 
the privacy and security protections required under HIPAA. 

 The anonymization of medical record information usually involves altering 
patient-specifi c identifi er data by: (a) the removal of the particular identifi er data; or 
(b) replacing the identifi er data with more general but semantically consistent data; 
or (c) by randomization through the addition of “noise” to the quasi-identifi er data. 
Sweeney  (  1996  )  described a process called “scrubbing” for removing personally 
identifying information in a medical record so that the integrity of the medical data 
remains intact even though the identity of the patient remains confi dential. Their 
Scrub system uses a variety of algorithms operating in parallel to label specifi ed 
identifying items of text as being a proper name, or an address block, a phone num-
ber, or other identifi ers; and applies one detection algorithm for each identifying 
item by using templates and specialized knowledge of what constitutes a name, 
address, phone number, and other identifi ers. Sweeney  (  1997  )  also developed a pro-
gram, named “Datafl y”, that processed all queries to their database by removing 
patient identifi ers and substituting made-up data; and thus developed a resulting 
database with anonymized data. Sweeney  (  2002  )  developed, and described in some 
detail a more advanced privacy protection model named “k-anonymity”, that linked 
sets of identifi ers, called quasi-identifi ers, for better privacy protection of an indi-
vidual patient’s record. Friedlin  (  2008  )  also described their Medical De-identifi cation 
System (MeDS) for scrubbing and de-identifying patients’ records, including narra-
tive reports from clinical laboratory, pathology, and other clinical services. They 
also tested MeDS using a large number of HL7 reports; and concluded that this 
system successfully de-identifi ed a wide range of medical documents, and created 
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scrubbed reports that retained their interpretability and their usefulness for research. 
De-identifi ed patients’ clinical data usually includes disease diagnoses codes; how-
ever Loukides  (  2010a,   b  )  and associates at Vanderbilt University examined whether 
de-identifi ed clinical research data in a large genomic database that contained ICD-9 
diagnoses codes could be linked to the original, identifi able, clinical patients’ 
records. They reported that for their population of 1.2 million patients, 96% of a 
sample of 2,800 patients’ records could be uniquely identifi ed by their diagnoses 
codes; and they recommended that alternative and additional privacy protection 
methods needed to be developed under these conditions.  

    6.1.2   Examples of Early Clinical Research Databases 

 In the late 1960s the Advanced Computer for Medical Research (ACME) database 
system was developed at Stanford Medical Center, with the abilities to handle many 
data sets of many varieties and sizes. Some data had to be held for long periods of 
time, and some data required frequent updating. The database had to be able to 
minimize any inadvertent loss of data, and be able to serve a group of medical 
researchers who often were inexperienced in computer techniques. ACME was a 
typewriter terminal-driven, time-sharing, database-management system, with an 
IBM 360/50 computer that was designed to acquire, analyze, store, and retrieve 
medical research data from a large number of typewriter terminals and from a vari-
ety of laboratory instruments. It used disk drives for primary storage, and magnetic 
tape for backup and archival storage (Frey  1970  ) . In 1966 a general clinical research 
database was established at Kaiser Permanente’s Center for Health Services 
Research in Portland, Oregon, by M. Greenlich, for their outpatients’ data. By 1989 
more than four million records were stored in their Outpatient Utilization System 
database that was used for a variety of clinical research projects (Basmajian  1989  ) . 
Entine  (  1982  )  described the Wisconsin Storage and Retrieval (WISAR) data man-
agement system that was implemented in 1974 at the University of Wisconsin to 
support 15 clinical departments within the University, a clinical cancer center, and 
several State agencies; and to conduct clinical and basic research. In 1977 it had 11 
active databases; and in 1981 it reported having 268 active databases and supported 
a metadatabase. It provided specialized statistical and graphics programs; and had 
supported 45 different clinical trials at one time. WISAR was written in the MIIS 
dialect of the MUMPS language, and it operated on PDP-11, Data General Eclipse, 
and IBM series-1 computers. 

 Safran  (  1986  )  and associates at the Boston’s Beth Israel Hospital, the Brigham 
and Women’s Hospital, and the Harvard Medical School, in 1964 expanded the 
PaperChase program (see Sect.   9.2    ) into a program called ClinQuery that was 
designed to allow physicians to perform searches in a large clinical database. 
ClinQuery was written in a dialect of MUMPS; and it was used to search the 
ClinQuery database that contained selected patients’ data that were de-identifi ed to 
protect patients’ privacy; and the data were transferred automatically every night 
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from each of the hospitals’ clinical-information systems (Porter  1984  ) . Their user 
interface was reported to be easy to use, it provided a rapid response time, and it 
protected the confi dentiality of patient data. In 1988 during an average week, clini-
cians viewed patients’ data using ClinQuery almost 41,000 times. By 1989 their 
ClinQuery research database contained data from the computer-stored records of 
almost 127,000 consecutive patients’ hospitalizations; and during that 5-year period, 
895 health-care providers used ClinQuery 3,724 times (Safran and Porter  1989 ; 
Safran et al.  1989,   1990 ; Safran  1991  ) . By 1992 ClinQuery was run on an indepen-
dent minicomputer that automatically updated each night the data from discharged 
patients, and also any added statistics and graphics programs (Herrmann  1992  ) . By 
1995 they could query the data on one million patients stored in their database 
(Safran  1995  ) . Schoenberg  (  2000  )  reported that to make querying more applicable 
to a wide range of patient-care systems, they categorized patient data into six object-
groups: (1) patients’ demographic data, (2) signals (continuous data like heart rates), 
(3) orders for medications and interventions, (4) medical problems (problem-list 
entries), (5) diagnoses (ICD-9 codes), and (6) progress notes; and each object-group 
could communicate with and co-exist with another object. 

  Translational research databases  evolved in the 1990s as informatics technology 
began to allow Web-based medical databases that were located in multiple and diverse 
institutions to collect, query, and exchange computer-based information. Detmer  (  1995  )  
and associates described developing a Common Gateway Interface (CGI) to provide a 
common standard to assure that Web browsers, HTTP servers, and external processes all 
communicated using a standard set of parameters. When a hyperlink or an HTML form 
was used to initiate a CGI process, the HTTP server received the request, started the CGI 
process with the parameters submitted by the user, accepted the user’s query, and from 
various accessible Web-based information resources selected those capable of respond-
ing to the query; it then performed syntactic and semantic processing to transform the 
query to a canonical form acceptable to each of the chosen information resources; que-
ried each of these resources in parallel; controlled the analysis and the display of 
responses, and then sent the responses to the browser, or sent an electronic-mail message 
to the user. Sittig  (  1996  )  and associates at Partners Healthcare Systems in Boston defi ned 
some key features recommended for Web-based interfaces to clinical-information sys-
tems and their databases. These included having the capabilities for clinical data entry, 
full text retrieval, order entry; for generating medication and procedure lists, problem 
lists and clinical summaries; for e-mail and computer-generated messages, clinical alerts 
and practice guidelines; and for educational and institutional resources. 

 Shortliffe, Barnett, Cimino et al.  (  1996  )  described forming an interdisciplinary proj-
ect involving six participating medical institutions in the United States, called the 
InterMed Collaboratory. Its objectives were to: (1) further the developing, sharing, and 
demonstrating computer software, system components, data sets, and procedures in 
order to facilitate their collaboration; and to support their projects’ goals; and (2) provide 
a distributed suite of clinical applications, guidelines, and knowledge bases for clinical, 
educational, and administrative purposes. They described the InterMed Collaboratory as 
having seven tiers to serve as guides for their various projected research, development, 
and evaluation projects. Kohane  (  1996  )  and associates from several medical centers 
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described implementing in 1994 their use of the Web for sharing patient-care informa-
tion among multiple heterogeneous institutions. They began with a data repository that 
used an Oracle, distributed database-management system in the Childrens Hospital in 
Boston; and bridged the divergent models of each institution by developing a data 
exchange system with three layers: (1) a common information model called the 
“Common Medical Record” (CMR) that was the prerequisite for data sharing; (2) a 
shared set of conventions for visual presentations of the clinical data represented in the 
CMR; and (3) a set of programs that implemented the abstract functions of the visual 
presentations for the user interfaces on the clinician’s computer. They used the Health 
Level Seven (HL7) messaging standards for the interchange formats for communica-
tions between the different clinical information systems (see also Sect.   2.3    ). 

 Van Wingerde et al.  (  1996  )  described in some detail implementing the use of the 
World Wide Web to access multiple medical centers in order to abstract and collect 
clinical data from three individual electronic medical record (EMR) databases. After 
patient and provider identifying data had been removed from the patients’ data in 
their EMR database at Children’s Hospital in Boston, where its data that had been 
previously available only within its own Integrated Hospital Information System, 
they created a set of data structures and software functions common to their Children’s 
Hospital, to the Massachusetts General Hospital, and to the Beth Israel Hospital. 
Since each of these hospitals had different information models, styles of clinical 
documentation, medical record numbering systems and vocabularies, they revised 
their requirements to be capable of providing prior clinical information for a patient 
in any of the three hospitals by accessing over the WEB their multiple legacy EMRs. 
The patient data was fi rst introduced to a browser in their architecture that was capa-
ble of connecting to and reviewing data on the Web from the multiple EMR sites. 
Then site-servers connected to their Agglutinator program used a HL7 communica-
tions protocol to collect the clinical data from the multiple EMRs, reformat the data 
and generate the corresponding HTML; and then convert the data from the various 
EMRs into a defi ned presentation format that was transferred to the user. 

 Hripcsak  (  1999  )  and Cimino  (  1999  )  described their deployment in 1998 of a large-
scale, Web-based, clinical-information system called WebCIS, that replaced the exist-
ing large, legacy, clinical-information system used for Columbia University’s 
ambulatory and ancillary systems, including its radiology and clinical laboratory. 
WebCIS was implemented as a set of Common Gateway Interface (CGI) programs 
written in C language, and running on a UNIX Web server that communicated with 
their central mainframe computer with its large, clinical, relational database. A Health 
Level Seven (HL7) interface simplifi ed coding and vocabulary maintenance. At that 
time WebCIS served 4,300 users in their medical center; and the physicians could 
enter and retrieve data from their patients’ records; and their clinical notes could also 
be signed electronically. They planned for their system to expand to include other sites 
with medical care facilities. They also evaluated a prototype clinical workstation that 
allowed their surgery staff to use WebCIS to develop patient-care applications, and to 
enter and retrieve information in their patients’ electronic medical records (see also 
Sect.   1.3.2    ). They reported that with WebCIS they were able to maintain adequate 
patient data security and confi dentiality. 
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 Nadkarni  (  2000  )  and associates at Yale University reviewed in some detail the use 
at the end of the 1990s of the Web for databases. They concluded that the Web offered 
an opportunity to simplify database deployment, since in a typical Web database 
application, when the user’s browser requested data from a remote Web server, the 
request was transferred to a database server on the same or on another machine in 
the same network and then sent the request on to the Web server, that could format the 
data as a Web page in a hypertext markup language (HTML), and then send it back to 
the user’s browser. They summarized some of the advantages of Web deployment as: 
(a) it was simpler to maintain HTML formats; (b) it eliminated the need for a user to 
maintain multiple versions of forms since all forms resided in the Web server; (c) 
when a user’s browser visited a particular page on its Web site, the page contents were 
then kept on the user’s local machine, and then only changed data-items that needed 
to be re-transferred; and (d) Web-based solutions were usually less costly. Brandt 
 (  2004  )  and associates at Yale University School of Medicine reported creating a Web-
based data repository to integrate their PC-based geriatrics clinical-research programs. 
Their Clinical Study Management System (CSDMS) software supported their data-
base approach to accommodate the requirements of different types of research data-
bases, in addition to their metadatabases. Weber et al.  (  2009  ) , reported that the three 
hospital groups that were affi liated with Harvard Medical School had developed an 
extended, federated, query tool for their multiple, separate, clinical data repositories 
that they called the “Shared Health Research Information Network” (SHRINE). They 
used the Integrating Biology and Bedside (i2b2) platform (see Sect.   3.3    ); and built a 
Query Aggregator Interface that could send queries simultaneously to each hospital; 
and then display aggregate counts of selected groups of matching patients. Wyatt 
 (  2010  )  and associates at the University of Alabama at Birmingham described extend-
ing their traditional clinical data warehouse into a federated Data Access and Sharing 
Initiative (DASI), in order to be able to promote translational capabilities and access 
their organization’s databases; and also to have the ability to access other national 
clinical databases. Logan  (  2010  )  and associates at the Oregon Health and Portland 
State Universities described using graphical-user interface (GUI) structures for trans-
lational research activities that permitted them to extract desired data-sets from mul-
tiple data sources with different languages and structural designs; and to be able to 
modify, reclassify, and reuse the data for their own purposes.   

    6.2   Summary and Commentary 

 After primary medical databases began to be established in the 1960s, it soon 
became evident that secondary collections of data extracted from primary clinical 
databases could be of great value in supporting clinical research, improving the 
clinical decision-making process, and improving the quality of health care. As com-
puter storage devices became larger and less costly, a great variety of secondary 
clinical databases emerged. Clinical research databases contain selected data about 
medical problems that have been extracted from the records of groups of patients 
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who have these clinical problems; and need to be organized to conveniently search 
the records of many patients in order to answer the research questions; so they differ 
from primary medical record databases where each patient’s medical record needs 
to contain all of the information collected for all of the medical problems for that 
individual patient, and needs to be organized so that one can quickly fi nd and retrieve 
in a timely way all the information relevant to the care of the individual patient. 

 Clinical research databases have special requirements to assure the security, privacy, 
and confi dentiality of patient data; and de-identifying patient data is a very important 
legal requirement for all personal patient data that is transferred from a clinical patient 
record into a medical research database. In 1996 the U.S. Department of Health and 
Human Services (HHS) enacted the Health Insurance Portability and Accountability Act 
(HIPAA) that established standards for assuring the security and privacy of individually 
identifi able health information during its electronic exchange, while allowing the fl ow of 
health information needed to provide and promote high quality health care. The HIPAA 
Privacy Rule allows legally de-identifi ed health information to be unrestricted in its use 
after the removal of identifi ers of the individual. Some genomic databases that contained 
diagnoses codes discovered that patients could be linked to their original, identifi able, 
clinical medical records, so it was recommended that alternative and additional privacy 
protection methods needed to be developed under these conditions. 

 In the 1990s translational research databases evolved as informatics technology 
allowed Web-based medical databases located in multiple and diverse institutions to 
collect, query, and exchange computer-based data. In the 2000s the Web offered the 
opportunities to simplify database deployment, since in a typical Web database 
application, when the user’s browser requested data from a remote Web server, the 
request was transferred to a database server on the same or on another machine in 
the same network, and then sent the request on to the Web server that could format 
the data as a Web page in a hypertext markup language (HTML), and then send it 
back to the user’s browser. The advantages of Web deployment were: (a) it was 
simpler to maintain HTML formats; (b) it eliminated the need for a user to maintain 
multiple versions of forms since all forms resided in the Web server; (c) when a 
user’s browser visited a particular page on its Web site, the page contents were then 
kept on the user’s local machine, and then only changed data-items that needed to 
be re-transferred; and (d) Web-based solutions were usually less costly.      
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 Computer-based surveillance systems develop a specialized form of database to 
monitor changes through time in a process involving individuals or population 
groups for their conformity to expected or desired results, to refl ect trends, to signal 
alerts for the occurrence of specifi ed adverse events, or to monitor the effects of 
intervention programs. A computer-based bio-surveillance system is one that has 
been developed with the objective of maintaining a vigil for specifi ed potential 
health hazards, and has been programmed to collect large amounts of relevant data 
from many appropriate resources in order to be able to analyze the data for the speci-
fi ed health hazard conditions. The Food and Drug Agency (FDA) uses several large 
databases for the postmarketing surveillance of adverse drug events (ADEs). The 
Center for Disease Control (CDC) uses a variety of databases for the surveillance of 
potential epidemics of infectious diseases. Other federal agencies that use medical-
related computer databases are the Medicare and Medicaid agencies that maintain 
very large claims databases of the payments for medical services to eligible 
patients. 

    7.1   Surveillance Databases for Adverse Drug Events 

 One of the most important applications for medical database-management systems 
was the development of systems for the surveillance of adverse drug events (ADEs). 
In Sect.   4.1.2     is described the development of computer-based, on-line monitoring 
systems that serve as automated alert systems to warn physicians, nurses, and 
pharmacists of potentially dangerous health hazards for individual patients; such 
as when two drugs that are known to have dangerous drug-drug interactions are 
prescribed for a patient. The frequent occurrence of undesirable effects of medica-
tions on some patients is an important threat to their health, and it is a substantial 
burden of public and private resources for health care. With the introduction in 
each decade of new drugs, the risks of ADEs have increased. An analysis of deaths 
resulting from ADEs indicated that it was about the fi fth leading cause of death in 
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the United States (Lazarou et al.  1998  ) . Visconti and Smith  (  1967  )  reported that in 
the 1960s about 5% of hospital admissions were reported to be due to ADEs. In the 
year 2000 the Institute of Medicine estimated that annually about 80,000 hospital-
ized people in the United States died from ADEs. The Institute’s report, “To Err is 
Human: Building a Safer Health System”, drew the attention of the nation to the 
need for improving the safety of drug therapy, and for better post-marketing, drug-
surveillance systems (Kohn et al.  2000  ) . 

 The U.S. Food and Drug Administration (FDA) defi ned an adverse event as any 
untoward medical occurrence in a patient administered a pharmaceutical product, 
whether or not it is related to, or considered to have a causal relationship with the 
treatment. Adverse events are categorized according to their seriousness, and for a 
drug the expectedness of the event. Adverse event reporting for marketed products is 
dependent on the principle of becoming aware of the event; and collections of data 
for adverse events fall into two categories: (1) for those events that are intentionally 
solicited, meaning data that are part of the uniform collection of information in the 
database; and (2) for those that are unsolicited, meaning that the adverse event is 
volunteered or noted in an unsolicited manner (Glichlich and Dreyer  2007  ) . Ruskin 
 (  1967  ) , a former Director of the Adverse Reactions Task Force of the FDA, defi ned 
an adverse drug event (ADE) as a substantiated noxious pathologic and unintended 
change in the structure (signs), function (symptoms), or chemistry (laboratory data) 
of a patient; and was not a part of the disease; and was linked to a drug used in the 
prophylaxis, diagnosis, or therapy of a disease, or used for the modifi cation of the 
physiologic state of a patient. The FDA considered ADEs to be serious if they resulted 
in: (a) hospitalization, (b) a prolongation of hospitalization, (c) a persistent or signifi -
cant disability, or (d) death. Karch and Lasagna  (  1976  )  defi ned an adverse drug reac-
tion (ADR) as any response to a drug that was noxious and unintended; such as a 
toxic or side effect of a drug, a drug allergy, or an undesired drug-drug interaction; 
and that occurred at customary doses used in patients for prophylaxis, diagnosis, or 
therapy. The more general term adverse drug event (ADE), included: (a) an adverse 
drug reaction (ADR), (b) an error in drug dosage and/or in its administration, (c) use 
of a drug for therapy despite its contra-indications, (d) an adverse drug effect on labo-
ratory tests, and (e) any other undesired effect of a drug on a patient. The term ADE 
generally excludes therapeutic failures, poisonings, and intentional overdoses. 

 In 1962 the World Health Organization (WHO) initiated an international program 
for the promotion of the safety and effi cacy of drugs that led to the implementation 
of the WHO Pilot Research Project for International Drug Monitoring. In 1968 the 
WHO International Drug Monitoring Project moved to Alexandria, Virginia, where 
its International Drug Surveillance Center evaluated voluntary reporting systems for 
ADEs; and developed a metadatabase drug dictionary with a cross-reference system 
between drug names. In 1971 this Center moved to the WHO Headquarters in Geneva 
(Helling and Venulet  1974  ) . In 1972 the WHO reported that the frequency of ADEs 
in seven hospitals in the United States and Canada ranged from 10% to 18% (Royall 
and Venulet  1972  ) . In 1986 the Joint Commission on Accreditation of Healthcare 
Organizations (JCAHO) mandated a program of criteria-based, drug-use evaluation 
(DUE) for patients receiving medications in hospitals, with the goal of developing a 
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database for monitoring the appropriateness and effectiveness of drug use; and it 
included the pharmacists’ intervention in medication dosage recommendations, in 
medication order clarifi cation, and in identifi cation of drug-drug interactions 
(MacKinnon  1993  ) . Hennessey et al.  (  2000  )  wrote that drug utilization review pro-
grams with automated databases were an important approach to improving quality 
and decreasing costs of patient care. Strom     (  2000a,   b  )  affi rmed that drug utilization 
databases were important sources of insight into disease and treatment patterns of 
clinicians; and that the National Disease and Therapeutic Index (NTDI) was gener-
ally the most useful database with its quarterly reporting for more than 400,000 
offi ce-based physicians on all their contacts with patients during a 48 h period. 

 Although some ADEs might be unavoidable, Morrell et al.  (  1977  )  estimated that 
70–80% were potentially preventable. Whereas the earliest pharmacy database-
management systems were primarily used to support drug administration and phar-
macy management functions, it soon became apparent that the prevention and 
detection of ADEs needed to be a very important function of a computer-based 
pharmacy system. The advent of larger computer-stored databases allowed phar-
macy systems to better meet the information needs for discovering and monitoring 
ADEs in inpatient and outpatient care for both prescription drugs and for over-the-
counter medications; and these systems should provide linkage to all of a patient’s 
medical care data by a common patient identifi er. Leape et al.  (  1991  )  and associates 
in Boston reviewed more than 30,000 patients’ hospital records; and identifi ed 3.7% 
with disabilities caused by medical treatment, and reported that drug complications 
were the most common type of adverse events and occurred in 19% of patients. 

  Premarketing drug surveillance  involves the studying, testing and monitoring of 
a new drug before its release, and is an essential process to establish the drug’s 
safety and its effi cacy. So before a new drug is marketed in the United States, it has 
to be tested by the Food and Drug Administration (FDA) for both its effi cacy and 
safety. Patients who are included in pre-approval clinical trials are well monitored 
for concomitant drug use, and are closely studied for any signs of adverse drug 
events (ADEs). This selection process is in contrast to post-marketing studies where 
patients can have multiple diseases and might take multiple prescription drugs and 
over-the-counter medications. The 1962 Kefauver-Harris amendments to the Food, 
Drug and Cosmetic Act began to require pharmaceutical fi rms to report to the FDA 
all ADEs encountered in premarketing clinical trials of their drugs under investiga-
tions. Cuddihy et al.  (  1971  )  of Sandoz Pharmaceutical reported using a commer-
cially available General Retrieval System from Information Science, Inc., of New 
York, that provided a database-management system with the monitoring, search, 
and retrieval capabilities needed for managing and reporting ADEs. Due to the 
increasing complexity of satisfying FDA requirements, Sandoz installed in 1977 an 
IBM 360/65 system with a more sophisticated database-management system 
(Westlin et al.  1977  ) . 

 Windsor  (  1977  )  of Norwich Pharmaceutical Company reported that in the 1 year of 
1972 at least 1,968 articles in the medical literature reported ADEs. A decade later, in 
the 1 year of 1988 Kerr  (  1988  )  estimated that about 55,000 ADEs were fi led with the 
FDA. Canfi eld et al.  (  1998  )  and associates at the University of Maryland described the 



198 Chapter 7 Bio-Surveillance and Claims Databases

complex FDA drug application process that drug developers and manufacturers had to 
follow to request approval of a drug product; and how the process required much inter-
organizational data management. They developed new software for the FDA’s generic 
drug application process that produced a more scalable and fl exible architecture that 
could be generalized to other contexts in inter-organizational, health-care database-
management systems. They reported that 3 years of experience with the new system 
showed an improvement over the prior system. Guess  (  2000  ) , with Merck Research 
Laboratories, wrote of the diffi culties of studying drug safety prior to marketing when 
relevant studies were often unpublished. Guess described some of the criteria used to 
relate experiences in premarketing clinical trials that studied the relative risk of users of 
a drug compared to non-users; and of the need for consistency of the reports from mul-
tiple clinical trials of the drug; and the diffi culties in determining the time interval 
between the administration of a drug and the occurrence of the ADE. 

 Carson et al.  (  1994  )  reviewed the process of testing drugs prior to their approval for 
marketing by FDA; and advised that the background risk of an ADE was considered to 
be: (a) high, if it occurred in greater than one-per-200 cases-per-year; and (b) low, if it 
occurred in less than one-per-10,000 cases-per-year; and (c) intermediate, if its ADE 
rate was in between. Carson described the use of cohort studies that followed a group 
of patients exposed to a new drug, and compared their experience with that of an unex-
posed group or to a group exposed to another drug of the same class. Shapiro  (  1994  )  
reviewed the use of case–control studies reported between 1975 and 1993 that com-
pared cases with a disease to control cases without the disease, looking for differences 
in antecedent exposures. He advocated case–control surveillance for discovering 
unsuspected relationships between drug use and drug risk, by carrying out comparisons 
for patients with the primary disease diagnosis (the cases) with all other patient admis-
sions (the controls) for the prior use of all drugs to which the patients had been exposed. 
Shapiro credited D. Finney and L. Cluff as being among the fi rst to appreciate the need 
for ADEs surveillance programs; and credited the Boston Collaborative Drug 
Surveillance Program (BCDSP) as being the fi rst such system operating on a large 
scale. Randomized controlled clinical trials were generally accepted as the best method 
to study the safety and effi cacy of drugs, since randomization was more likely to dis-
tribute the levels of unanticipated confounding variables more evenly in the control and 
the intervention groups, making it less likely that confounding rather than intervention 
was responsible for any effects found in the analysis of the data. An alternative to ran-
domization was to perform a time-series trial in which the drug intervention was turned 
on-and-off multiple times, and this had the advantage of controlling for underlying 
secular trends (Rind et al.  1995  ) . In the premarketing phases of a drug evaluation, clini-
cal trials were often limited by the relatively small numbers of selected patients studied, 
and by the short time-periods over which the patients were observed. Yet even when 
clinical trials were conducted with large enough numbers to detect events that occur 
relatively frequently, they did not always identify a rare ADE. 

  Postmarketing surveillance  of prescribed drugs for the identifi cation and quanti-
fi cation of known, and also of potentially important unknown risks of ADEs, is 
conducted by the FDA in the United States. Postmarketing evaluation of intended 
benefi cial effects of drugs, and also of unintended and undesired effects of approved 
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drugs, includes assessing the effects of concomitantly administered drugs since 
these may not be fully explored prior to marketing. Sometimes unexpected rare 
ADEs are identifi ed by clinical observations of a series of patients (Strom  2000a,   b  ) . 
The differences between premarketing drug evaluations and clinical trials that 
involve a few thousand individuals, and postmarketing surveillance that needs a 
very large database with tens of thousands of exposed individuals in order to reli-
ably detect a rare ADE, was emphasized by Lesko and Mitchell  (  2000  )  Patients 
included in pre-approval clinical trials are typically well monitored for concomitant 
drug use, and are closely followed for early signs of adverse events; in contrast to 
postmarketing studies where patients can have multiple diseases, and can take mul-
tiple prescription drugs in addition to over-the-counter medications. In the 1950s 
the FDA established a postmarketing drug database to collect voluntary reports on 
ADEs occurring in the practice of medicine; and the FDA established ADEs regis-
tries for voluntary reports from physicians and hospitals of suspected ADEs. The 
FDA also established secondary databases to identify and to monitor ADEs in both 
the premarketing and the postmarketing phases of evaluating the safety and effec-
tiveness of prescription drugs. In the 1960s the FDA began a continuous surveil-
lance of ADEs; and in 1965 it initiated its computerized Spontaneous Reporting 
System (Marlin  1981  ) . DuMouchel  (  1999  )  described the Spontaneous Reporting 
System (SRS) of the FDA to be a computerized database of reports of adverse drug 
reactions collected after the marketing of the drugs that were primarily reported by 
health care professionals. By the 1990s this database contained more than one mil-
lion reports, with the earliest dating back to 1969. 

 In 1997 the U.S. Congress enacted the Food and Drug Administration (FDA). 
Modernization Act of 1997 to improve the regulation of drugs; and it directed FDA, 
CDC, and NIH (including NLM) to collaborate in establishing, maintaining, and 
operating a federally funded database. The database was to serve as a registry for 
clinical trials of experimental treatments of serious or life-threatening conditions, 
whether federally or privately funded; and it was to include information as to the 
description of the drug, details of the treatment, the results of the clinical trial, any 
drug toxicity or adverse events associated with the treatment; and it was to further the 
dissemination of this information. In 2007 this FDA Act was amended to provide a 
more standardized format with detailed specifi cations for a drug clinical trial, includ-
ing its full protocol, summaries of the clinical trial and its results written in both 
technical and in non-technical language, and a time-table for periodic reporting. It 
defi ned an adverse drug event (ADE) as occurring in the course of the use of the drug 
in professional practice; and as one occurring from an overdose of the drug whether 
intentional or accidental, or from abuse of the drug, or from withdrawal of the drug, 
or any failure of expected pharmacological action of the drug. ADEs that exceeded a 
frequency of 5% within any arm of the clinical trial were to be grouped by organ 
system, and tabulated with the number and frequency of such an event within any 
arm of the clinical trial. This FDA Act expanded the database to include the results 
of clinical trials to enable tracking subsequent clinical trials for a drug, to support 
postmarketing surveillance for a drug, to allow the public to search the database for 
the effi cacy and safety of drugs, to provide links to NLM’s MEDLINE for citations 
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to any publication focused on the results of an applicable clinical trial, and to provide 
for active adverse drug events (ADEs) surveillance using electronic data from the 
Medicare Program, the Veterans Administration, and also from private sector health-
related electronic data such as pharmaceutical purchase data and health insurance 
claims data (FDA  1997,   2007 ; Reynolds  1998  ) . 

 Since the information provided to the FDA is volunteered, it generally failed to 
completely identify all ADEs; it does not provide adequate data to quantify the 
relationships between drug therapy and drug toxicity, or to provide the incidence 
rates of ADEs. In 1992 the Prescription Drug User Fee Act (PDUFA) was passed 
that provided FDA with fees from manufacturers submitting a new drug application 
(NDA); and it fi nanced additional reviewers to expedite the processing of new drugs. 
In 1993 the FDA established MEDWATCH, a voluntary Medical Products Reporting 
Program for health professionals to notify FDA of any adverse events from the use 
of medical products. To augment MEDWATCH, in November 1997 the FDA initi-
ated its Adverse Event Reporting System (AERS), a computerized information 
database designed as a pharmaco-surveillance system to support the FDA’s post-
marketing safety surveillance program for all approved drug products, and to moni-
tor them for new adverse events and medication errors. AERS uses MeDDRA 
(Medical Dictionary for Drug Regularity Affairs) as its primary nomenclature to 
classify and search for medically signifi cant ADEs. AERS has the capability to 
receive electronic submissions of ADEs, and to provide automatic signal-generation 
capabilities with improved tools for the analysis of potential adverse event signals. 
The reporting of adverse events from the point of care is voluntary, and FDA receives 
reports of adverse events and medication errors directly from health care profes-
sionals and from consumers, and the reports are reviewed by a group of clinical 
experts. Between 1969 and 2000, AERS collected almost two million reports; how-
ever, since the FDA does not receive reports of all adverse events that occur for a 
drug, and it does not have the actual number of patients that received the drug, it 
cannot calculate the incidence rate of an adverse event in the population being mon-
itored (Kennedy et al.  2000  ) . 

 A variety of post-marketing strategies for the detection and surveillance of known 
and of previously unknown adverse drug events (ADEs) have been reported. In 1964 
Cluff et al.  (  1964  )  and associates at the Johns Hopkins Hospital, developed an early 
drug- surveillance system database to conduct epidemiologic studies of rates of ADEs, 
to classify the ADEs, and to describe hospitalized patients with ADEs. From a medica-
tion order form, patient and drug information for all prescriptions for inpatients were 
recorded on punched cards; and the data were stored on magnetic tape. During the 
initial 1 year of 1965, from the surveillance of 900 patients they reported that 3.9% 
were admitted with an ADE, and 10.8% acquired an ADE after admission to the hos-
pital. Those who received multiple drugs had more ADEs, occurring in 4.2% of patients 
who received fi ve or less drugs, and in 24.2% of those who received 11–15 drugs 
(Smith  1966 ; Smith et al.  1966  ) . Finney  (  1965,   1978  )  described one of the earliest 
approaches used for the surveillance of ADEs. He defi ned drug surveillance as a pro-
cess for the systematic collection of information associated with the use of drugs, and 
the analysis of the information with the objective of obtaining evidence about adverse 
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events, and has the capacity to detect previously unsuspected drug-event associations. 
Finney defi ned an event as: (1) an undesirable happening experienced by the patient in 
the context of the patient’s disease, irrespective of whether the event was thought to be 
wholly or partially caused by the drug, and (2) occurring in the time-interval between 
the drug administration and the appearance of the event. He proposed that the aim of 
drug surveillance was to study serious ADEs; although he advised that opinions would 
differ about the lower limits of the class of events to be regarded as serious. He cau-
tioned that some events reported would be due to overdose or errors of drug administra-
tion, rather than an adverse reaction to the drug. He pointed out that the ascertainment 
of patients’ records of events would be more readily obtained in a hospital environ-
ment, and event-types would be more clearly recognizable there. He advocated the use 
of computers for maintaining a database for the records of the monitored population, 
and that the population had to be large enough to provide statistically signifi cant rates 
of detected ADEs. Finney described, as the simplest statistical procedure to use was to 
compare the totals of events in two successive periods of equal length, and if there were 
a signifi cant increase in the rate of the event in the later period, than a closer study 
would be desirable. He advocated monitoring the incidence rates of paired drug-event 
trends over adequate periods of time; and as soon as any difference between the two 
rates exceeded a pre-defi ned critical value, the computer would be programmed to 
provide an alert warning that further scrutiny was warranted. He cautioned that the 
method was not ideal, that it was not likely to detect anything other than gross effects 
under the usual conditions of patient care, and that detecting a difference in rates that 
exceeded the pre-defi ned critical value was not necessarily proof of a harmful effect of 
a drug, but could be a false-positive alert. 

 In 1966 the Boston Collaborative Drug Surveillance Program (BCDSP) was ini-
tiated in the Lemuel Shattuck Hospital; and nurses were trained to collect the infor-
mation from medical records, from patients, and from their physicians. For each 
drug ordered by a physician, a nurse fi lled out a form with the name of the drug, the 
drug dose, the frequency and route of administration, and the specifi c therapeutic 
indication. When the drug was stopped, the date was recorded with the reason for 
discontinuing the drug and if any ADE that had occurred. When the patient was 
discharged, the diagnoses were recorded, and the data were transferred to punch 
cards (Slone et al.  1966  ) . In 1966 Jick  (  1967  )  and associates at Tufts University 
School of Medicine, joined the BCDSP and implemented a surveillance database 
system in which the effects of prescribed drugs were collected for hospitalized 
patients. Jick et al.  (  1970  )  reported that during their fi rst 9 months about 300 ADEs 
were reported for the 900 patients studied; of which 67% were believed to be due to 
the implicated drug, and 25% of these were believed to be life threatening. Jick et al. 
 (  1970  )  further reported that the BCDSP had found that 4.8% of 6,312 patients in six 
collaborating hospitals had adverse events, where nurses had extracted the data 
from the clinical records and a computer editing program checked the data for com-
pleteness, plausibility and internal consistency. Shapiro et al.  (  1971  )  reported that in 
a series of 6,199 medical patients in six of the BCDSP hospitals, deaths due to drugs 
administered in the hospitals were recorded in 27 patients (0.44%). Miller  (  1973  )  
reported on ADEs from commonly used drugs in eight collaborating hospitals; and 
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found that ADEs occurred in 6% of all drug exposures, and in 28% of all patients. 
About 10% of the ADEs were classifi ed as being of major severity; and in about 4% 
an ADE had either caused or strongly infl uenced the patient’s hospital admission. 
Porter and Jick  (  1977  )  reported that for 26,462 medical inpatients, 24 (0.9%) were 
considered to have died as a result of ADEs from one or more drugs; the drug-
induced death rate was slightly less than one-per-1,000. This death rate was consid-
ered to be consistent in the collaborating hospitals from seven countries; and most 
who died were very ill prior to the event, and more than half had cancer or alcoholic 
liver disease. Jick  (  1977,   1978  )  summarized their experience by defi ning the rela-
tionship between the risk of the baseline illness and the risk of a drug induced illness 
as follows: (a) when the drug risk was high and the baseline risk of illness low, then 
the ADE would be detected readily; (b) if the drug added slightly to a high baseline 
risk then the effect would not be detectable; and when both risks were low, interme-
diate, or high, then systematic evaluations such as by case–control studies would be 
needed. Jick also reported that the BCDSP had collaborated for 10 years in a pro-
gram of in-hospital monitoring and surveillance of adverse drug effects with 40 
hospitals in seven countries for about 38,000 inpatients and more than 50,000 out-
patients. By 1982 this program had collected data for more than 40,000 admissions 
in general medical wards in 22 participating hospitals. As an example of their clini-
cal studies, they reported a review of clinically diagnosed ADEs in a sample of 
4,418 in patients with heart disease who received digoxin and quinidine, separately 
or in combination; and found that signs and symptoms of drug toxicity occurred 
more frequently in patients who were age 70 years or older and who received both 
drugs, pointing out the increased risks of ADEs in the elderly who receive multiple 
drugs (Walker et al.  1983  ) . 

 In 1969 M. Collen and associates at Kaiser Permanente developed a surveillance 
Drug Reaction Monitoring System (DRMS) as an ADEs database in a computer-
based medical information system. The ADEs database included all clinical diagno-
ses and pharmacy-dispensed medications for both inpatients and outpatients treated 
at the program’s San Francisco medical center. Using this DRMS database, Friedman 
(Friedman et al.  1971 ; Friedman  1972,   1978  )  studied the 95 most commonly used 
drugs for carcinogenicity by following a group of 143,574 patients from 1969 to 
1978. Prescriptions obtained in the outpatient pharmacy, and patients’ diagnoses 
recorded by physicians were stored in a central computer; and. the epidemiologic 
approach to the surveillance of ADEs described by Finney  (  1965  )  was applied. In 
1973 this database contained more 1.3 million prescriptions for 3,446 drug products 
dispensed to 149,000 patients. With data collected between 1969 and 1973, their 
initial efforts at data analysis consisted primarily of a search for associations between 
drugs and subsequent ADEs by comparing incidence rates of known or of suspected 
ADEs in users of a drug or of a group of drugs, to the rates of the ADEs in the drug 
non-users. Friedman  (  1984  )  also used case–control methods for identifying possible 
associations of specifi c diseases and the prior use of specifi c drugs. By identifying 
a group of patients with specifi c cancers and a control group without these cancers, 
he compared prior exposure rates to specifi c drugs in both groups. In 1977 he added 
a study of drug carcinogenesis using the computer-based hospital and outpatient 
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records to relate outpatient drug use in 1969–1973 to the subsequent incidence rates 
of cancer (Friedman  1978,   1994,   1984 ; Friedman et al.  2000  ) . Kodlin and Standish 
 (  1970  )  and Ury  (  1972  ) , also at Kaiser Permanente, described a mathematical 
response-time model as a possible method of detecting ADEs. They compared the 
observed number of event-occurrences before and after a drug was administered, 
and used base frequency rates of events that were derived from medical records of 
patients who did not report these events. 

 Most ADEs from taking one or two drugs are known, but ADEs from taking 
three or more prescription drugs are less recognized. As patients age they usually 
require multiple prescription drugs for their increasing morbidity. Simborg  (  1976  )  
reported a 2 year medical record study of ADEs in patients at the Johns Hopkins 
Hospital who were taking combinations of drugs; and they found that more than 
half (52%) of patients who received a combination of the two drugs, spironolactone 
and oral potassium, suffered an ADE. May et al.  (  1977  )  reported a signifi cant 
increase in the frequency of ADEs when patients were given multiple drugs, and 
10% of patients who received eight drugs had ADEs, and 40% of patients who had 
received 16 drugs experienced ADEs. Ouslander  (  1981  )  pointed out that the elderly 
are more susceptible to ADEs and they take combinations of drugs, so more research 
was recommended to help make drug therapy in the elderly safer and more effec-
tive. An effective ADEs surveillance system for elderly patients who take multiple 
drugs would require: (a) a large, longitudinal database of the total care, inpatient 
and outpatient, of a very large, defi ned, elderly population in order to be able to 
include rare conditions and to provide denominators for the rates of ADEs; and (b) 
a very powerful computer system capable of data mining very large numbers of data 
items. Roach et al.  (  1985  )  and associates at Virginia Polytechnic Institute developed 
an expert system for evaluating ADEs from taking drug combinations. To facilitate 
clinician users, they allowed natural language communication with the system. 
They developed a research database of eight commonly used drugs, containing 
information on potential drug interactions, with explanations of the mechanisms as 
to why these interactions occurred; as to whether these were chemicophysical, phar-
macodynamic, pharmokinetic, or physiologic; and what corrective action could be 
taken to minimize interactions. They used PROLOG, a logic programming language 
that provided a means for representing facts about drugs, and specifi ed rules to 
manipulate those facts. 

 Naranjo et al.  (  1981  )  and associates from the University of Toronto considered a 
major problem in drug surveillance studies to be the lack of a reliable method for 
assessing the causal relation between drugs and ADEs. They developed an ADE 
probability scale, and studied the degree of agreement between raters of ADE using 
defi nitions of defi nite, probable, possible, and doubtful ADEs. The agreement 
between-raters, who were two physicians and four pharmacists, who independently 
assessed 63 randomly selected, alleged ADEs was 38–63%, and these scores were 
maintained on re-testing. The agreement between three raters who were attending 
physicians and who independently assessed 28 other cases of alleged ADEs was 
80%; and this was considered to be very high. Michel and Knodel  (  1986  )  at the 
University of South Carolina, Columbia, used Naranjo’s method of probability-scale 
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algorithms to evaluate and score 28 ADEs in 5 months of 1984 to check on the 
consistency in evaluating ADEs, and they concluded that it compared favorably with 
other scoring methods. Blum  (  1983  )  studied methods for the computer modeling of 
clinical causal relationships such as occur with ADEs; and he considered medical 
systems to be inherently probabilistic in nature, and emphasized that the task of dem-
onstrating that a casual relationship was not spurious, that it was not a false-positive 
or false-negative, was the most diffi cult task in deriving causal relationships from 
large clinical databases, due to confounding variables and to lack of adequate size 
and intensity and validity of the fi ndings. He advised that a true causal relationship 
was best established by controlled clinical trials. Ludwig and Heilbronn  (  1983  )  
described an algorithm that combined Bayesian and heuristic approaches to non-
independent observations of multiple conditions. With a database containing many 
attributes (that could be drugs) and diagnoses (that could be ADEs), they evaluated a 
variety of statistical approaches; and reported that a causal network model was infe-
rior to a logistic regression model, but was comparable to that of a linear discriminant 
function and could provide inferences not possible with other simpler statistical 
methods. Smith (Smith  1966 ; Smith et al.  1966  )  and associates at Ohio State 
University Columbus developed a special language as an aid to reporting adverse 
events that they called CSRL (Conceptual Structure Representation Language). They 
proposed that since the concept of disease hierarchy is well established in medicine 
in the form of disease classifi cation, CSRL defi ned diagnostic hierarchies containing 
defi ned test values and knowledge for specifi c diagnoses, to which they matched a 
patient’s test values to fi nd a probable diagnosis, and to also suggest rules to add 
confi dence levels to the provided diagnoses. In 1987 the Drug Surveillance Network, 
a nation-wide network of hospital-based clinical pharmacists, was established to 
serve as a rapid response mechanism for identifying and clarifying early warning 
signals (alerts) of possible problems reported to the pharmaceutical industry or to the 
FDA; and to determine the incidence of specifi c adverse events associated with cer-
tain drugs in hospitalized patients. In 1994 about 400 hospitals participated in this 
Network, and had collected data on more than 10,000 patients (Grasela  1994  ) . 

 Bates et al.  (  1993,   1994  )  and associates at the Brigham and Women’s Hospital in 
Boston, reported their studies to evaluate: (1) the incidence of ADEs, (2) the incidence 
of potential ADEs (those with a potential for injury related to a drug); (3) the number 
of ADEs that were actually prevented, such as when a potentially harmful drug order 
was written but was intercepted and cancelled before the order was carried out; and 
(4) the yields of several strategies for identifying ADEs and potential ADEs. They 
concluded that ADEs were not infrequent, they were often preventable, and they were 
usually caused by errors in physicians’ decisions. They defi ned three levels of patient 
data in accordance with the content level of their information: level (1) included 
demographics, drugs, and laboratory tests; (2) included all medical orders; and level 
(3) included problem lists and diagnoses. In a group of 3,138 patients admitted to their 
medical service with 133 ADEs, 84 (63%) were judged to be severe, 52 (37%) were 
judged to be preventable, and 39 (29%) were judged to be both severe and prevent-
able. In addition ADEs were rated as to the certainty of the evidence for their identifi -
ability and preventability on a 6-point scale; where level “1” meant little evidence, and 
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“6” meant certain evidence. They evaluated the potential for identifying potential 
ADEs using a computer-based ADEs monitor with a program that was able to search 
patient-care databases and identify specifi c relevant data. They concluded that medi-
cal chart review was a more reliable method for reporting ADEs than was solicited 
voluntary reporting by their professional staff; and that a computer-based event moni-
toring and surveillance system was even a more reliable method for identifying, pre-
venting, and reporting ADEs (see also Sect.   4.1.2    ). 

 Strom  (  1994,   2000a,   b ; Strom and Melmon  2000  )  periodically edited comprehen-
sive monographs on pharmaco-epidemiology and ADEs surveillance systems. He 
described a pharmaco-epidemiologic approach as one that generally required study-
ing the association between drug experience and disease incidence; and determining 
the sensitivity (the proportion correctly classifi ed as having the ADE), and the speci-
fi city (the proportion correctly classifi ed as not having the ADE) of the approach. A 
simple measure used was the proportional reporting ratio that was the ratio of the 
proportion of an event reported for the drug being studied to the proportion of the 
same event for all other drugs in the same database. Descriptive epidemiological 
studies included the relative risk-ratio that compared the incidence and prevalence of 
an event following the administration of a drug to its incidence and prevalence before 
the use of the drug. Bayesian statistical methods compared the probability of an ADE 
occurring after the administration of a drug to its prior probability of occurring. 

 Temple  (  1999  )  reviewed the use of meta-analyses, the systematic overviews of data, 
obtained from premarketing and from postmarketing controlled trials and observational 
data; and he considered the prospectively designed randomized trial to be the best 
method of providing unbiased and defi nitive evidence of the benefi ts and risks of drug 
therapy, even though this approach was usually a long, time-consuming process. 

 Samore et al.  (  1997  )  reported that by specifying an adverse event and collecting 
appropriate periodic data, one could determine the prevalence of the adverse event 
in a defi ned population; and in studies where the occurrence of reported ADEs 
could be related to a defi ned denominator population, and a percentage or a rate of 
an ADE could be computed. By establishing an upper limit (for example, two stan-
dard deviations greater than the mean prevalence rate), a cluster of the events could 
indicate an increased incidence rate, and serve as an alert for a possible adverse 
event. However, when registries or databases lacked population information that 
could be used as a denominator, they could not measure the relative risk of an ADE. 
Brewer and Colditz  (  1999  )  at the Harvard School of Public Health also pointed out 
some of the problems associated with the epidemiologic approach to detecting an 
ADE that occurred rarely in a population; and also for detecting an event that 
occurred more frequently than an already established rate for that event in the popu-
lation. They also added that it was necessary to consider ADEs that occurred shortly 
after initiation of drug use, those that occurred with its long-term use, and those that 
occurred remotely after the drug had been discontinued. 

 DuMouchel  (  1999  )  at AT&T Labs used the FDA’s Spontaneous Reporting 
System (SRS) database that contained more than one million ADEs reported 1969–
1990, primarily by health professionals, to search for ADEs that were unusually 
frequent. He emphasized that the full value of this warning system was not realized 
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because of the diffi culty in interpreting its reported frequencies of ADEs, since the 
FDA’s SRS did not allow calculations of incidence rates or dose–response curves 
for given drugs and for their ADEs since such rates require appropriate denomina-
tors with which to calculate the frequencies of the reported drug-ADEs combina-
tions. He used a modifi ed Bayesian approach, with an internally derived-baseline 
frequency as the denominator for calculating a rate for the drug-event combination; 
and then compared the reported frequency of a drug-event combination to its inter-
nally derived baseline frequency to compute a relative-risk measure for the ADEs. 
He pointed out that this method of screening for ADEs in the SRS database did 
nothing to minimize reporting bias; and he advocated appropriate epidemiological 
studies before making decisions on ADE rates. 

 The availability of very large databases also introduced the concept of data min-
ing for data correlations or patterns. Prather  (  1997  )  and associates at Duke University 
defi ned data mining as the search for relationships and global patterns that were 
hidden among vast amounts of data; and they applied data mining techniques to the 
database of their computerized patient record system. Hand  (  1998  )  described data 
mining as a new discipline at the interface of statistics, database technology, pattern 
recognition, and machine learning; and concerned with the secondary analysis of 
large databases in order to fi nd previously unsuspected relationships that could be 
of interest. Szarfman et al.  (  2002  )  reported that since 1998 the FDA had been explor-
ing automated Bayesian data-mining methods using the Multi-Item Gamma Poisson 
Shrinker (MGPS) program, that computed scores for combinations of drugs and 
events that were signifi cantly more frequent than their usual pair-wise associations 
(see also Sect.   8.2    ). The value of automated surveillance of ADEs soon became 
widely recognized, as large computerized databases facilitated the capabilities for 
the surveillance and the investigations of trends of known ADEs, and to provide 
early warning signals of possible or potential ADEs (Berndt et al.  1998  ) . Strom 
 (  2000a,   b  )  defi ned the needs of large electronic databases for ADEs surveillance 
were to contain medical records for: (a) large enough population to be able to dis-
cover rare events for the drugs in question, and (b) include inpatient and outpatient 
care with each patient’s data linked with a unique identifi er to all laboratory tests, 
radiology and other procedures, and to all prescribed and over-the-counter 
medications.  

    7.2   Surveillance Databases for Epidemic Diseases 

 In 1878 an Act of Congress authorized the U.S. Public Health Service to collect 
morbidity reports for quarantinable diseases. The Centers for Disease Control 
(CDC) in Atlanta established a surveillance system to monitor infectious diseases in 
the United States. Data collected at the state and local levels were centralized in 
federal level databases to provide national morbidity reporting and disease-specifi c 
surveillance data (Thacker et al.  1983  ) . Prior to the 1800s health screening tests 
were provided to immigrants as a public health measure by the Marine Hospital 
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Service in order to identify those with a contagious disease such as tuberculosis and 
syphilis, or with a signifi cant chronic disease such as diabetes, and who might 
become a health care burden to the country. In 1930 mass screening techniques were 
applied by the U. S. Public Service for the detection of syphilis and tuberculosis 
(Breslow  1973  ) . Petrie et al.  (  1952  )  and associates reported employing mass screen-
ing techniques in Atlanta, when between 1945 and 1950 more than one-million resi-
dents voluntarily took multiple health screening tests; and they introduced the term 
multiphasic screening as an extension of mass screening. Breslow  (  1950  )  and public 
health associates in San Jose, California, popularized multiphasic screening as an 
effi cient way of providing a group of routine health tests; and S. Garfi eld  (  1970 , b) 
advocated multiphasic testing as an effi cient entry mode to patient care, and an 
effective way to establish databases for multiple diseases. 

 Thomas  (  1971  ) , a consultant to the international Organization of Economic 
Cooperation and Development (OECD) in which the United States was a member- 
country, described the functions of databases in public agencies. He emphasized 
that their databases were usually very large, and the way their databases were orga-
nized had a marked infl uence on all of their activities. He also advised that since 
access to public information could mean political power, and automation often 
involved great changes in access to information, a balance between the increased 
effi ciency of large database management systems for public administration needed 
to be balanced with adequate participatory decision making. In the United States the 
centralized procurement for federal agencies was established by the Brooks Act in 
1965; but the control and use of automated data processing was not to be controlled 
or interfered with in any way. Most of the data in public health databases were com-
posed of appropriate data collected in standardized formats from individual health 
care providers and medical centers, and from city, county, state and/or national pub-
lic health agencies. Some of the data in public administration databases was needed 
to assure accurate personal identifi cation, but most data were used for operative and 
planning purposes. 

 In the 1970s infection surveillance programs began to employ computer databases 
to augment prior manual monitoring methods. In 1980 Hierholzer and Streed  (  1982  )  
at the University of Iowa Hospitals and Clinics initiated an online, infection-control 
surveillance database that was installed on an IBM 370/3033 system in order to sup-
plant existing manual collation methods as well as to provide a number of summary 
reports. A team with special training in epidemiology and infection control methods, 
using criteria established by the Center for Disease Control (CDC), collected, col-
lated, and entered the data. A study comparing the automated methods to the prior 
manual methods showed the new system saved time for both data collection and report 
generation. The system provided several new reports, including antibiotic sensitivity 
reports, surgical infection-rate reports, and a notifi cation of a potential epidemic 
report; and supported related research and education programs. 

 In 1980 LaVenture  (  1982  )  and associates at the Wisconsin State Department of 
Health, initiated a Computer Assisted Disease Surveillance System (CASS) that 
consisted of a database written in a version of the MUMPS program, for individual 
patient’s case records; and provided summary monthly and yearly disease trends. 
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CASS was used to support the needs of their epidemiologists to monitor, prevent, 
and control communicable diseases. Their objectives were to systematically collect 
reports of infectious diseases for the population in their specifi ed region; consoli-
dated the data into reports with meaningful summary tables, graphs and charts; 
interpret the data to detect outbreaks and describe trends of disease or of factors 
determining disease; and regularly disseminate summary data with interpretation to 
physicians, hospitals, and to other public health agencies. Wise  (  1984  )  reported 
using a Radio-Shack TRS-80 Model III microcomputer with fl oppy-disc drives, 
and a set of programs written in Basic language to capture patients’ demographic and 
infection data, and assist with infection control monitoring and reporting at their 
Mt. Sinai Hospital. The database included fi les that permitted the system to gener-
ate appropriate periodic infection surveillance reports, including hospital locations 
of infected patients, frequencies of the sites of infections of the body, and sensitivi-
ties of the infecting organisms to antibiotics. 

 In 1987 the Center for Disease Control (CDC) established a surveillance database 
in the state of Washington for the reporting of patients infected with Escherichia coli 
serotype O157:H7. This organism was fi rst discovered in 1982, as a human pathogen 
that caused bloody diarrhea that was sometimes associated with serious complica-
tions. In 1987 this database reported 93 patients, yielding an annual incidence of 2.1 
cases per 100,000 population. Ostroff et al.  (  1989  )  noted that monitoring occurring 
such infections improved the detection of outbreaks and provided information lead-
ing to better therapy. 

 In 1988 the Healthcare Cost and Utilization Project (HCUP), a group of health 
care databases was developed through a Federal-State-Industry partnership spon-
sored by the Agency for Healthcare Research and Quality (AHRQ). HCUP data-
bases brought together the data collection efforts of state organizations, hospital 
associations, private data organizations, and the Federal government to create a 
large national database of patient-level health care data. Starting in 1988 HCUP 
databases included: (1) the Nationwide Inpatient Sample (NIS) with inpatient data 
from a sample of more than 1,000 hospitals; (2) the Kids’ Inpatient Databases (KID) 
starting in 1997 with a nationwide sample of pediatric inpatient discharges; (3) the 
State Inpatient Databases (SID) starting in 1995 with inpatient discharge abstracts 
from participating states; (4) the State Ambulatory Surgery Databases (SASD) start-
ing in 1997 with data from hospital and free-standing ambulatory surgery encoun-
ters, and (5) the State Emergency Department Databases (SEDD) starting in 1999 
with data from hospital-affi liated emergency departments for visits not resulting in 
hospitalization (HCUP-US Overview AHRQ Website, 10/24/08). 

 Brossette et al.  (  2000  ) , and associates at the University of Alabama at Birmingham, 
applied data-mining techniques to attempt to discover early and unsuspected, useful 
patterns of hospital-based infections and antimicrobial resistance from the analysis of 
their hospital’s clinical laboratory data. Clinical experts in this fi eld of knowledge 
developed rules for identifying data-sets likely to be associated with specifi ed adverse 
events; and when high levels of these data-sets occurred within a specifi ed time period 
then the system would provide an ‘alert’ signal for the possible occurrence of an 
adverse event. They reported the results of a version of their Data Mining Surveillance 
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System (DMSS) that analyzed inpatient microbiology culture data collected over 
15 months in their University Hospital. They found their DMSS was able to provide 
alerts for a possible increase in numbers of resistant bacterial infections that might 
have been undetected by traditional epidemiological methods.  

    7.3   Medical Claims Databases 

 With the introduction of insurance payors for medical services, claims-based 
systems were designed to process individual claims by medical care providers 
for the payment of their clinical services; and as a result claims data are collected 
from many health care providers. The usefulness of claims databases is in their 
very large size, as some have more than a million patients’ records available for 
study. However, such studies are limited to these selected populations; and the 
accuracy of the reported diagnoses they contain has often been questioned since 
the selection of reported diagnoses may have been infl uenced by the factor of 
payment schedules for the submitted claims. It has been generally agreed that 
computer-based claims systems have a distinct accounting orientation, so the 
data they collected were not always reliably suited for clinical research. However, 
they have been used by some for health services and epidemiologic research. 
Wennberg et al.  (  1987  )  advocated the research use of medical claims data, and 
wrote that fi les which contained data maintained by medical insurance plans 
could be used: (a) to evaluate the incidence of death and nonfatal complications 
following medical care, and (b) to test hypotheses about the outcomes of care. He 
gave as advantages of using claims data were their low cost and the ease of 
patient follow-up over long periods; but acknowledged their limitations were the 
adequacy of the data used to control for patient co-morbidity and the lack 
of patients’ outcome information on their functional status. Accordingly, the 
patients’ medical-record databases for clinical care are generally considered to 
provide more accurate diagnosis data since they are primarily used for direct 
patient care, and clinicians need accurate information to weigh the risks versus 
the benefi ts of each procedure they have ordered (Carson et al.  2000  ) . Many 
automated patient-care databases in the United States have been maintained for 
the payments of claims for provided medical services. Among the largest of these 
are the databases for the Medicare and the Medicaid Programs that were both 
created by the Social Security Amendment of 1965. The usefulness of claims 
databases is based on their very large size, as some have more than a million 
patient records available for study. However, such studies are limited to their 
selected populations; and the accuracy of the reported diagnoses they contain has 
often been questioned, since some of their diagnoses may have been selected 
primarily for purposes of maximizing the amounts of the payments of claims, 
rather than accuracy in the reporting of information. Strom et al.  (  1991  )  described 
the use of Medicaid claims data to investigate ADEs.    West (1994) discussed the 
problems with validity and completeness of diagnostic data that is collected in 
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administrative databases. Medical record databases of clinical care are generally 
considered to have more accurate data since they are primarily used for direct 
patient care, and clinicians need objective quantitative information to weigh the 
risks versus the benefi ts of each drug ordered (Carson et al.  2000  ) . 

 The Medicare and the Medicaid Programs that were created by the Social 
Security Amendment of 1965 are among the largest automated patient databases in 
the United States, and have been maintained for payments of claims for medical 
services provided to eligible members. The Medicare Program has been funded 
entirely by the Federal Government and is administered by the Federal Medicare 
Agency within the Department of Health and Human Services; and it provides cov-
erage for medical care to virtually all individuals aged 65 years and older. In the 
1970s Diagnosis Related Groups (DRGs) were created at Yale University, and sub-
sequently became widely used in the United States, especially for reporting Medicare 
claims (Ostrowski and Hildebrand  1983  ) . The Medicaid Program comprises a group 
of 54 programs supported by state and federal funds; and it provides access to medi-
cal care for economically disadvantaged and disabled persons; and it is adminis-
tered by the states with Federal oversight. In 1972 the Medicaid Management 
Information System (MMIS) was created to provide fi scal and management control 
of this large program, with defi ned minimum standards that each state had to meet. 
Mesel and Wirtschafter  (  1976  )  at the University of Alabama offered an early 
approach to the use of claims data for studies as a substitute for patients’ medical 
record data. During a 33 month period from January 1970 to October 1972, all paid 
claims data for the Alabama Medicaid Program were collated to produce individual 
patient medical profi les for more than 400,000 people. Mesel observed that the clin-
ical usefulness of a claims-based profi le depended on how accurately the diagnosis 
submitted by the physician conformed to the diagnosis carried in the patient’s offi ce 
record, and how accurately the insurance carrier personnel encoded each diagnosis. 
He proposed that most physicians realized that vague or minor symptoms given as 
a diagnosis increased the probability that a claim would be rejected for payment, 
and symptoms were therefore commonly escalated to presumptive diagnoses to 
avoid problems with the payment system. In addition, he pointed out that there were 
defi ciencies in the International Classifi cation of Diseases (ICD), the major diag-
nostic scheme for coding diagnoses. Strom et al.  (  1991  )  reported using a Medicaid 
claims database to study an ADE diagnosed as Stevens-Johnson syndrome. 

 By the 1980s the Federal Medicare claims billing system contained a very large 
longitudinal database with patient hospital discharge data as well as hospital and 
physician bills for services, for a large segment of persons using medical services in 
the United States. Since a Medicare patient retained one health insurance claim 
number through time, a longitudinal history of episodes of care could be constructed 
even if the patient moved to different states. In 1988 Medicare Trust Fund data were 
transferred from the Health Care Financing Administration (HCFA) to the National 
Center for Health Services Research (NCHSR). Among other objectives were the 
examination of the role of clinical databases in evaluating particular patterns of 
diagnosis and treatment in specifi c clinical settings in terms of costs and patient 
outcomes; and to determine whether the results of non-experimental studies were 
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valid for comparisons of effectiveness or costs of different treatments across differ-
ent institutions. Greene and Gunselman  (  1984  )  of Blue Cross and Blue Shield of 
North Carolina, refi ned their health insurance claims system to aggregate episodes 
of care for a patient by collecting all claims for services provided for a patient’s 
hospitalizations, in addition to data for discharge diagnoses, surgical procedures, 
and charges for room and meals. Such claims could be received from multiple phy-
sicians, and for ancillary services such as pharmacy, laboratory, radiology, and oth-
ers. Greene noted that epidemiological research on utilization patterns that were 
disease specifi c, surgical-procedure specifi c, and body-region specifi c required the 
synthesis of multiple claims fi les. 

 Public health databases maintained by the National Center for Health Statistics 
were useful sources of data for some types of clinical studies. This National Center 
provided morbidity and mortality statistics, and vital statistics from sources such as 
birth and death certifi cates, and from reportable disease forms. The Nationwide 
Inpatient Sample (NIS) is a family of databases that was developed as a part of the 
Healthcare Cost and Utilization Project (HCUP) that is a Federal-State industry 
partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), 
to support decision-making at the national, state, and community levels. It is a very 
large database that released its fi rst data for the 5 years, 1988–1992; and it contains 
discharge data from about seven million hospital stays, from about 1,000 hospitals 
located in 22 states, that approximated a 20% sample of U. S. community hospitals. 
It contains patient-information regardless of the payer, and includes patients that are 
covered by Medicare, Medicaid, private insurance, and the uninsured. Its large data-
base enables analyses of rare conditions and of uncommon treatments, such as organ 
transplantations (  http://www.ahrq.gov/data/hcup/hcupnis.htm    ).  

    7.4   Summary and Commentary 

 After primary clinical databases began to be established in the 1960s, it was soon 
evident that secondary collections of information from primary clinical databases 
would be of great value in supporting and improving the clinical decision-making 
process. As computer storage devices became larger and less costly, a great variety 
of secondary clinical databases emerged in these six decades. 

 In the past six decades, the increasing use of drugs in patient care resulted in an 
increasing number of adverse drug events (ADEs). Beginning in the 1960s it was 
realized that developing computer-based drug-monitoring systems for studying, 
detecting, and preventing ADEs could be especially useful for hospitalized patients, 
who usually have accessible a full record of all events occurring for each patient. 
This was especially important for patients over the age of 60 years who take multiple 
prescription drugs, and for whom ADEs are more common. An effective ADEs sur-
veillance database-management system for a group of patients who take multiple 
drugs would require: (a) a very large, longitudinal database of the total care of a very 
large defi ned population in order to be able to include rare conditions and to provide 
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denominators for determining rates of ADEs; and (b) a very powerful computer 
capable of data mining very large databases. The advent of computer-based monitor-
ing of patient data permitted the use of strategies designed for the data mining of 
large patient databases, not only to identify and monitor known ADEs, but also to 
provide an early warning alert for unknown and possible adverse events. 

 The large    databases available from national public health databases enabled the 
surveillance of epidemics. The very large size of claims databases enabled the anal-
yses of a variety of medical conditions, and helped to conduct measures of the 
comparative cost-effectiveness of some treatments.      
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  Medical knowledge databases  are collections of information about specifi c medical 
problems, and they are primarily designed to help clinicians make appropriate deci-
sions in the diagnosis and treatment of their patients.  Knowledge discovery  is the 
process of automatically searching knowledge bases and other large computer data-
bases for potentially useful or previously unknown information by using techniques 
from statistics and information science. Gabrieli  (  1978  )  estimated that a total and 
comprehensive medical-knowledge database required by a physician for the prac-
tice of the specialty of internal medicine might consist of about 2 10  distinct facts, 
compounded with patterns and probabilistic semantic relationships; and when treat-
ing a patient would need to include data gathered in the collection of the patient’s 
past and present medical history; the data that originated in the physician’s memory 
of related knowledge and experience; and the physician’s decision as to of probable 
diagnoses and treatments related to the patient’s problems. 

    8.1   Examples of Early Medical Knowledge Databases 

 Lindberg and associates at the University of Missouri Medical Center, Columbia, 
developed a computer-based, decision-support program called CONSIDER 
(Lindberg et al.  1965,   1978  ) , and used their clinical laboratory database for devel-
oping AI/COAG, a knowledge-based computer program that reported, analyzed, 
and interpreted blood-coagulation laboratory studies; either singly, or as a group 
of six laboratory tests that included: the platelet count, bleeding time, prothrom-
bin time, activated partial-thromboplastin time, thrombin time, and urea clot solu-
bility. The printout of test results summarized any abnormal fi ndings, interpreted 
possible explanations of the abnormalities, and allowed an interactive mode of 
consultation to the user who needed to see a listing of possible diagnoses to be 
considered. An initial evaluation of the system reported that 91% of coagulation 
studies reported would have been allowed by the automated consultation system 
(Lindberg et al.  1980  ) . Lindberg had also studied patterns of clinical laboratory 

    Chapter 8   
 Medical Knowledge Databases       

                 



218 Chapter 8 Medical Knowledge Databases

tests in their laboratory knowledge database that could be signifi cant even when 
none of the individual test values in the pattern was outside normal limits. They 
studied combinations of the results from four chemistry tests: serum sodium, 
potassium, chloride, and bicarbonate. They found that decreased values of sodium 
and chloride concentrations associated with normal values of potassium and 
bicarbonate constituted the most common abnormal electrolyte pattern seen in 
hospitalized patients. 

 Bleich  (  1969  )  at the Beth Israel Hospital in Boston used their hospital clinical 
database as a knowledge base, and described a program written in the MUMPS 
language for the evaluation of acid–base disorders. On entering the test values for 
serum electrolytes, carbon-dioxide tension, and hydrogen-ion activity the computer 
program evaluated the patient’s acid–base balance, it recommended appropriate 
treatment, and cited relevant references to the literature. 

 Baskin  (  1978  )  and associates at the University of Illinois in Urbana created an 
early system of programs, called MEDIKAS, to interactively acquire knowledge, 
and to maintain the knowledge in a form that could be readily modifi ed and used, 
and to support the creation of knowledge bases. Initially, a person who was an expert 
in the domain of the knowledge to be stored would need to interact with the data-
base system to construct a formally defi ned representation for the specifi c informa-
tion area. The MEDIKAS system consisted of: (1) a metadatabase dictionary-manager 
that maintained equivalence between English words and phrases in the knowledge 
base; and could look up a term, enter a new term, and remove a term from the dic-
tionary; (2) a semantic network that represented medical concepts by nodes, and 
represented relationships between concepts by links between nodes; and (3) a rule 
interpreter that executed rules which were stored in the knowledge base for the 
automatic generation of queries to the knowledge base. The knowledge base con-
tained statements of its own logical organization (meta-knowledge) to facilitate the 
addition of subsequent knowledge to conform to the structure of the knowledge 
base. 

 In the 1980s the use of medical knowledge bases became relatively common to 
support clinical decision-making, and as a component for expert systems. Bernstein 
 (  1980  )  and associates at the Lister Hill Center of the National Library of Medicine, 
developed “The Hepatitis Knowledge Base” as a prototype information-transfer sys-
tem from the National Library of Medicine’s databases to help medical practitioners 
to select and have rapid access to needed information; and to rapidly integrate related 
facts to support clinical decisions in the diagnosis and treatment of patients with viral 
hepatitis. In an extensive review of the history, and of the problems associated with 
searching for relevant information in the available medical bibliographic databases, 
they advocated the development of medical knowledge databases; and described the 
requirements and costs associated with: (a) the laborious initial development of a 
knowledge database, and (b) with the constant maintenance required to keep its con-
tents current with new information in the continually changing fi eld of medical 
knowledge. Ludwig  (  1981  )  at the University of California, San Francisco, developed 
a software system called Infernet that provided a medical knowledge base developed 
with a group of cardiologists, and beginning with knowledge about the symptom, 
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chest pain. Medical knowledge was represented as a network of causes and effects. 
Infernet provided a computer program for using medical knowledge to make clinical 
inferences using an algorithm that applied a Bayesian approach to infer the likely 
diagnosis for a specifi c patient. Shafer  (  1982  )  and associates at Stanford University 
developed a software package called Aesculapius, used with a microcomputer with 
fl oppy disc storage. The program provided a knowledge base that assisted a physi-
cian to record a patient’s symptoms, signs, and test results; and then to compare these 
fi ndings with those listed in the knowledge base; and it then suggested a likely diag-
nosis. Starmer  (  1984  )  advocated evaluating the effectiveness of a medical knowledge 
database when used to support clinical decisions by incorporating a feedback mecha-
nism that could measure the number of decision errors associated with the use of the 
knowledge database. As an example, they used the Duke cardiac database system to 
couple the data on actual outcomes of similar prior patients in their database (see also 
  Sect. 5.2    ). One approach they used for the selection of treatment for a patient was 
based on pattern recognition, where the set of symptoms presented by a new patient 
was compared to those of similar patients’ cases in the database, and allowed them 
to identify the prior treatment that was likely to result in the most favorable outcome 
for the new patient. By continually adding new case reports to their medical knowl-
edge database, the feedback of new knowledge provided a potential for improved 
selection of treatment for new patients. 

 Clayton  (  1987  )  and associates at the University of Utah developed a medical 
knowledge database to diagnose pulmonary diseases. Using this as a source, they 
found substantial variations in diagnostic accuracy that had resulted from differ-
ences in the interpreting and reporting by radiologists’ of patients’ chest X-ray 
fi ndings. They used their medical knowledge database to study the degree to 
which different pieces of information affected diagnostic accuracy, and how vari-
ability in physicians’ performance affected the ultimate diagnostic conclusion; 
and they studied the ability to selectively convey to a physician the important 
relevant facts already known about the patient and about the likely disease. 
Wiederhold  (  1987  )  and associates at Stanford University described problems they 
had encountered with the acquisition of knowledge from large clinical databases, 
such as: (1) the problem of information-overload experienced by users of the data-
base, and (2) the problem of the fi nding and selecting relevant knowledge for 
clinical purposes. Although electronic databases facilitated the storage and rear-
rangement of data, the user was still left with the task of needing to search through 
many observations to fi nd the relevant ones. They addressed the problem of 
“information-overload” by an automated data-reduction process that produced a 
summarization of the data collected in their time-oriented clinical databases, 
where patient-visit data was collected at variable visit times, and where data col-
lected from each visit was often incomplete. Relevant knowledge was added to 
the knowledge database by clinician experts and also from selected reference text-
books. To help solve the problem of knowledge acquisition, they developed an 
algorithm that searched for the desired disease based on defi ned attributes with 
specifi ed values so when a signifi cant abnormality was found in a given visit, it 
was then noted in the specifi c request or hypothesis. 
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 Medical knowledge bases have been used to develop many expert and clinical 
decision-support systems, including: H. Warner’s HELP, O. Barnett’s DXplain, C. 
McDonalds’s CARE, E. Shortliffe’s MYCIN, J. Myers’ INTERNIST, R. Miller’s 
Quick Medical Reference (QMR), L. Weed’s Knowledge Couplers, and C. 
Kulikowsky’s CASNET.  

    8.2   Knowledge Discovery and Data Mining 

 As the cost for the storage of large volumes of data decreased, the increased avail-
ability of huge clinical databases and data warehouses stimulated searches for 
previously unknown knowledge associations. It is a basic process when deciding 
on a patient’s medical diagnosis, that if the physician has the required knowledge, 
and if the patient has a specifi c group of variables (symptoms, signs, and tests), 
then the patient probably has the suspected diagnosis. Physicians also use sym-
bologic logic, probability, and value theory to arrive at a diagnosis and the appro-
priate treatment for each patient (Ledley and Lusted  1959  ) . Just as physicians 
developed clinical-decision rules (such as, if the patient has symptoms of cough, 
sputum, fever and chills, then consider the probable diagnosis of pneumonia); so 
did computer programmers develop algorithms to identify useful associations 
between data items. It is a diffi cult problem to fi nd rules with suffi cient sensitivity 
to identify important true associations, yet have suffi cient specifi city not to gener-
ate false associations. 

 In the 1960s Sterling  (  1966  )  and associates at the University of Cincinnati, pro-
posed that a high-speed digital computer could be an ideal instrument with which to 
review and query a large number of patients’ clinical records with the objective of 
fi nding within the huge masses of clinical information some important associations 
between the recorded patient-care events. They developed an approach they called 
“robot data screening”. Since the multitude of possible relations between the many 
variables to be analyzed was much too large for traditional statistical or epidemio-
logical approaches, they studied models for analyzing combinations of two vari-
ables, then combinations of three variables, than of four variables, and they soon 
realized that the numbers of combinations of variables would become impractical 
even for their current computer when working full-time. Accordingly, an inspection 
of the fi rst pair of variables could show which were not of interest and could be 
discarded; and this process could be repeated; and variables that were of interest 
would be retained and further coupled with other variables of interest, until only 
associations of interest would remain for the user to study. Sterling reported devel-
oping a computer program that applied criteria, or rules, to check each set of com-
binations of variables, and to eliminate those not to be retained. Depending on the 
outcome of each check, the machine then repeated the selection process with revised 
rules, until all uninteresting variables were eliminated. However, even by this elimi-
nation process, they concluded that too many results were still provided for human 
study. Accordingly they used multivariate statistical and epidemiologic approaches 
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to decrease the number of possible associations that could be due to chance alone, 
or could not be true associations of interest. They refi ned their robot data screening 
program to more closely simulate an investigator pursuing a number of hypotheses 
by examining the screened data, and rejecting some variables and accepting others. 
For a specifi c fi eld of clinical knowledge, cardiology as an example, they developed 
an algorithm that when given a set of antecedent conditions, they could expect a 
certain set of probable consequences to follow; and associations located by this 
screening program could then be scrutinized for the most useful information. 

 In the 1960s some commercial search and query programs for large databases 
became available, led by Online Analytic Processing (OLAP) that provided answers 
to analytic queries that were multi-dimensional, that used relational databases, and 
could be used for data mining (Codd  1970 ; Codd et al.  1993  ) . Connolly and Begg 
 (  1999  )  described a way of visualizing a multi-dimensional database by beginning 
with a fl at two-dimensional table of data; then adding another dimension to form a 
three-dimensional cube of data called a hypercube; and then adding cubes of data 
within cubes of data, with each side of each cube being called a dimension, and with 
the result representing a multi-dimensional database. Database structures were con-
sidered to be multidimensional when they contained multiple attributes, such as 
time-periods, locations, product codes, and others, that could be defi ned in advance 
and aggregated in hierarchies. The combination of all possible aggregations of the 
base data was expected to contain answers to every query that could be answered 
from the data (see also   Sect. 2.2    ). 

 Blum  (  1978,   1980  )  at Stanford University used the ARAMIS rheumatology 
database (see   Sect. 5.3    ), and proposed two different uses for clinical databases: the 
fi rst use was for retrieving a set of facts on a particular object or set of objects; and 
the second use of databases was for deriving or inferring facts about medical prob-
lems. It was for this second use that Blum  (  1982a,   b, c , Blum and Wiederhold  1982  )  
used a knowledge base approach to develop a computer program, called the RX 
Project, to provide assistance to an investigator when studying medical hypotheses. 
The RX Project was a method for automating the discovery, study, and incorpora-
tion of tentative causal relationships when using large medical databases. Its com-
puter program would examine a time-oriented clinical database, and use a Discovery 
Module that applied correlations to generate a list of tentative, possible relation-
ships for hypotheses of the form, “A causes B”. Then a Study Module used a medi-
cal knowledge base containing information that had been entered directly into it by 
clinicians. It also contained automatically incorporated, newly created knowledge; 
and it also provided a statistical package to help create a study design. The study 
design followed accepted principles of epidemiological research, and controlled for 
known confounders of a new hypothesis by using previously identifi ed, causal rela-
tionships contained in the knowledge base. The study design was then executed by 
the online statistical package, and the results were automatically incorporated back 
into the knowledge base. Blum  (  1983  )  further refi ned the RX Project to use causal 
relationships that had been already incorporated in the RX knowledge base to help 
determine the validity of additional causal relationships. The RX Project also helped 
to introduce the use of very large clinical databases for data mining. 
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 Fox  (  1980  )  at the University of California in Los Angeles described their 
database-management system, called A Clinical Information System (ACIS), 
was developed for patient-record applications, for registries, clinical research, 
and also for its linguistic aspects of encoding and retrieving information in natu-
ral language. ACIS processed both hierarchical and inverted data fi les, and it 
provided facilities to manipulate any of the variables in retrieved data. Its data-
bases could be examined using single English words or phrases; and the inverted 
fi les could be manipulated using the Boolean commands, AND, OR, NOT. By 
including the Systemized Nomenclature of Medicine (SNOMED) dictionary, the 
SNOMED codes could be used to translate and explore items of interest. 

 Doszkocs  (  1980  )  and associates at the National Library of Medicine noted that 
rapid advances had occurred in automated information retrieval systems for science 
and technology. In the year of 1980 more than 1,000 databases were available for 
computerized searching, and more than 2-million searches were made in these data-
bases. By the 1990s the availability of very large, low-cost, data-storage devices 
resulted in the generation of very large databases, which could then be aggregated to 
form huge data warehouses. Since traditional methods for querying large databases 
to search for desired information were still slow and expensive, a need developed for 
a new generation of techniques to more effi ciently search through voluminous col-
lections of data. The concept of robot data screening was then expanded to automated 
data mining. 

  Knowledge discovery  was defi ned by Frawley  (  1992  )  and associates at GTE 
Laboratories, in Waltham, Massachusetts as the non-trivial extraction of previously 
unknown and potentially useful information and patterns from large databases. They 
defi ned a ‘pattern’ as a statement that described with some degree of certainty the 
relationships among a subset of the data. They defi ned ‘knowledge’ as a pattern that 
was interesting to the user; and when the output of a computer program that monitored 
a database produced a new pattern, such output could be considered to be ‘discovered 
knowledge’. They defi ned ‘certainty’ as involving the integrity of the database, the 
size of the sample studied, and the degree of support of available relevant domain 
knowledge; and they defi ned an ‘interesting’ pattern as one that was novel, useful, and 
not trivial. They summarized the process of ‘knowledge discovery’ in databases as 
involving the use of a high-level computer language with effi cient running times for a 
large-size database, portraying accurately the contents of the database, and providing 
interesting and useful results to the user. They defi ned a ‘knowledge discovery sys-
tem’ as one that used as input the raw data from a database; and provided output that 
was new domain knowledge directed back to the user. They considered the output of 
a computer program that extracted from a database a set of facts that could produce 
patterns of interest to the user, to have provided ‘discovered knowledge’. For such 
discovered knowledge they advised that the user needed to consider: (1) its certainty, 
since that depended upon the integrity and size of the data sample; (2) its accuracy, 
since seldom was a piece of discovered knowledge true across all of the data; (3) its 
interest to the user, especially when they were novel, useful, and non-trivial to com-
pute; (4) its effi ciency, in that the running time on a computer should be acceptable, 
and a high-level programming language was required; and (5) effi cient discovery 
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algorithms were needed to be designed to extract knowledge from data by identifying 
interesting patterns representing a collection of data sharing some common interest, 
and describing the patterns in a meaningful manner. Frawley reviewed applications of 
the discovery process in medicine and in other domains; and differentiated a ‘knowl-
edge database system’ from an ‘expert system’ that captured knowledge pertaining to 
a specifi c problem. 

 Berman  (  1993  )  and associates at Yale University School of Medicine also 
addressed the diffi culty in maintaining an updated knowledge base to serve as a bib-
liographic retrieval tool. They explored the utility of interfacing their knowledge 
database with information stored in external databases in order to augment their sys-
tem’s information retrieval capabilities. To support their expert system for the clini-
cal management of the disease asthma, they developed a knowledge database that 
integrated biomedical information relevant to asthma, and used their knowledge base 
to answer clinical questions and to guide relevant bibliographic database queries. For 
example, when a clinician initiated a request for the name of a suspected occupa-
tional compound causing asthma, the system fi rst looked for this substance in their 
internal knowledge base of agents known to cause asthma. If a match was not found, 
their system then automatically accessed NLM databases, such as Chemical Abstract 
Service (CAS) Registry and TOXLINE, to fi nd a match for a possible causative 
agent. If one was found, it then looked in its knowledge database to see if any related 
substances could be found there. If at any point in the process a match was found then 
the results were presented to the user. The user was then offered the option of direct-
ing further queries to the NLM databases. 

 Bohren  (  1995  )  and associates at the University of North Carolina at Charleston 
used a general classifi cation system called INC2.5 that was capable of uncovering 
patterns of relationships among clinical records in a database. They described it as 
an algorithm working in an incremental manner by incorporating new data, one 
patient at a time. It was based on “concept formation”, a machine-learning method 
for identifying a diagnosis from patients’ descriptions. Patients with common symp-
toms were grouped together and were represented by a description formed by a 
patient-symptom cluster that summarized their medical condition. INC2.5 used a 
similarity-based, patient-evaluation function which optimized patient outcomes 
with respect to previously seen patients with the most similar group of symptoms; 
and it would provide for the physician a list of information possibly relevant to the 
diagnosis in question. They tested INC2.5 on datasets for patients with breast can-
cer, general trauma, and low back pain. Testing involved an initial learning phase, 
followed by adjusting the certainty threshold to increase confi dence in its perfor-
mance for accurate predictions. Finally, an attempt was made to reduce computer 
running time and reduce costs by determining the optimal variable threshold level 
and the minimal number of variables consistent with an acceptable accuracy of 
prediction. They concluded that the algorithm had the ability to automatically pro-
vide quality information concerning both the predictability of an outcome variable 
and the relevance of the patient’s variables with respect to the outcome; and its per-
formance could be altered by adjusting the certainty threshold, adjusting the vari-
able threshold, and by eliminating irrelevant variables. 
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  Data mining  is generally defi ned as the search for relationships and global patterns 
hidden among vast amounts of recorded data; as the search for data correlations and 
data patterns; for fi nding new patterns that could aid in decision making or prediction; 
for the discovery of new knowledge from querying the large databases; or to identify 
trends within data that went beyond simple analyses. Data mining was introduced in 
the 1990s with the availability of very large, low-cost, data-storage devices for very 
large databases and data warehouses. Data mining was defi ned by Prather  (  1997  )  and 
associates at Duke University, as the search for relationships and global patterns that 
were hidden among vast amounts of data; and they applied data-mining techniques to 
the database of their computerized patient record system. They initiated a data mining 
project using their Duke Perinatal Database (see   Sect. 5.6    ) for a knowledge discovery 
project to identify factors that could contribute to improving the quality and cost effec-
tiveness of perinatal care. Multiple SQL queries were run on their perinatal database 
to create a 2-year data-set sample containing 3,902 births. As each variable was added 
to the data set, it was cleansed of erroneous values by identifying any problems, cor-
recting errors, and eliminating duplicate values. Some alphanumeric fi elds were con-
verted to numerical variables in order to permit statistical analysis. Factor analysis 
was conducted on the extracted dataset and several variables were identifi ed which 
could help categorize patients and lead to a better understanding between clinical 
observations and patient outcomes. They described how a clinical patient-record data-
base could be warehoused and mined for knowledge discovery. Connolly and 
Begg (  1999  )  defi ned data mining as the process of extracting valid, previously unknown 
information from large databases to support decision making; and described four data-
mining techniques: (1) “predictive modeling” that involved building a “training” data 
set with historical known characteristics, and then developing rules that are applied to 
a new data set to determine their accuracy and physical performance; (2) “database 
segmentation” to develop clusters of records of similar characteristics; (3) “link analy-
sis” to discover associations between individual records; and (4) “deviation detection” 
to identify outliers which express deviations from some previously defi ned expecta-
tion or norm. 

 Hand  (  1998  ) , Hand et al.  (  2000  )  described data mining as a new discipline at the 
interface of statistics, database technology, pattern recognition, and machine learn-
ing; and concerned with the secondary analysis of large databases in order to fi nd 
previously unsuspected relationships that could be of interest. Hand defi ned data 
mining as the discovery of interesting, unexpected, or valuable structures in large 
databases; and as the process of seeking interesting information within large data 
sets; also as a new discipline at the interface of statistics, database technology, pat-
tern recognition, and machine learning, and concerned with the secondary analyses 
of large databases in order to fi nd previously unsuspected relationships and to dis-
cover new knowledge that could be of interest. Hand further described data mining 
as the analysis of large observational datasets to fi nd relationships between data 
elements, and to summarize the data in novel ways that were understandable and 
provided useful information. In a medical context, data mining was often used for 
the discovery of new relationships between clinical events; and for the surveillance 
or monitoring of adverse events; and often the data had been collected for some 
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primary purpose other than for data-mining analysis. Unlike hypothesis-driven 
data analyses in which data are analyzed to prove or disprove a specifi c hypothesis 
(for example, the hypothesis that there was an increased incidence in gastrointesti-
nal bleeding among users of non-steroidal anti-infl ammatory drugs), data mining 
made no (or few) prior assumptions about the data to be analyzed. It therefore has 
the potential to discover previously unknown relationships or patterns among the 
data. It would not assess causality in relationships between variables, but would 
only identify associations in which certain sets of values occurred with greater 
frequency than would be expected if they were independent. To prove causality in 
an association, further studies (for example, a randomized controlled clinical trial) 
would be necessary to confi rm or refute that hypothesis. The relationships and 
summaries derived with data mining have been also referred to as “models” or 
“patterns”. Examples of such patterns could include linear equations, rules, clus-
ters, graphs, tree structures, and recurrent patterns in a time series. 

 Hand also noted that since data mining was a relatively new fi eld, it had devel-
oped some new terminology; and an important difference between data mining and 
statistics was the emphasis of the former on algorithms; and that the association of 
data mining with the analysis of large datasets was a key differentiating factor 
between data mining and classical exploratory data analysis as traditionally pursued 
by statisticians. The presence of large datasets could give rise to new problems; such 
as how to analyze the data in a reasonable amount of time; how to decide whether a 
discovered relationship was purely a chance fi nding or not; how to select representa-
tive samples of the data; or how to generalize the models found for sample datasets 
to the whole dataset. Hand described how the process of seeking relationships within 
a dataset involved determining the nature and the structure of the representation 
(model) to be used; then deciding how to quantify and compare how well different 
representations (models) fi tted the data; choosing an algorithmic process to opti-
mize the ‘score function’; and deciding what principles of data management were 
required to implement this process effi ciently. Hand divided data mining approaches 
into two main classes: (1) model building that described the overall shape of the 
data, and included regression models and Bayesian networks; and (2) pattern dis-
covery that described data as a local structure embedded in a mass of irrelevant data, 
such as when detecting signals of adverse drug events, and then having experts in 
the fi eld of knowledge decide what data was interesting. 

 Algorithms for data mining were developed initially for management applica-
tions, such as for planning stock-keeping units for large grocery retailers where 
huge numbers of food items would move through scanners each day. Algorithms 
use ‘rules’ to guide decisions and actions for a fi nal solution, or for an intermediate 
action, or for the next observation to make; so algorithms could be deterministic or 
probabilistic in nature. 

 Most early data mining algorithms were based on Bayes’ essay on probability 
theory published in 1763, in which he proposed that the probability of the occur-
rence of an event could be expressed as the ratio between the current actual rate of 
occurrence of the specifi c event of interest and the total rate of all possible events 
of interest occurring within a specifi ed time interval (Bayes 1763/ 1991  ) . Ledley 
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 (  1959  )  and Lusted explicated the application of Bayes’ formula for estimating the 
probability of a diagnosis when given a set of symptoms; or, for example, estimat-
ing the likelihood of an adverse drug event when a patient had received a specifi c 
drug. Data mining required highly effi cient and scalable algorithms with which to 
process (‘mine’) the ever-increasing sizes of clinical databases. Databases pro-
cessed in the early days of data mining were typically in the millions of data items, 
as opposed to the thousands of data items usually studied by classical statistical 
data-analysis techniques. Data-mining methodology was skewed towards process-
ing all the data rather than sampling it. This desire necessitated the creation of very 
fast simple algorithms. Algorithms for fi nding association ‘rules’ typically relied 
fi rst on detecting frequent item-sets in the data; and the techniques for determining 
frequent item-sets in very large databases generally formed the approach to data 
mining. These algorithms usually incorporated simple pruning strategies with 
which to decide when whole sections of the analysis data could be skipped as not 
likely to contain data that would produce new useful results. A consequence of this 
approach was that it was possible (given suffi cient computing resources) to fi nd all 
patterns in the data for which the ‘support’ exceeded a specifi ed ‘support threshold 
level’. There were many techniques used for data mining, including record linkage, 
outlier detection, Bayesian approaches, decision-tree classifi cation, nearest neigh-
bor methods, rule induction, and data visualization. However, since traditional sta-
tistical methods were generally not well suited to evaluating the probability of 
‘true’ and ‘false’ relationships identifi ed in huge volumes of clinical data, methods 
began to be developed to try to better establish the ‘sensitivity’ (for detecting ‘true’ 
positive associations) and the ‘specifi city’ (for detecting ‘false positive’ or ‘true’ 
negative) of the identifi ed associations. 

 Agrawal  (  1993a,   b,   1994,   1996  )  and associates at IBM’s Almaden Research 
Center developed what they called the ‘Quest Data Mining System’. They took the 
approach that depending on the overall objective of the data analysis and the require-
ments of the data owner, the data mining tasks could be divided into: (a) exploratory 
data analysis, that typically used techniques that were interactive and visual, and 
might employ graphical-display methods; (b) descriptive modeling, that described 
all the data by overall probability distributions, cluster analysis, and by models 
describing the relationship between variables; (c) predictive modeling, that permitted 
the value of one variable to be predicted from the known values of other variables; 
and (d) discovering patterns and association rules of combinations of items that 
occurred frequently. Agrawal further identifi ed a variety of relationships that could 
be identifi ed by data mining, including: ‘associations’, which were relationships in 
which two or more data elements (or events) were found to frequently occur together 
in the database. The data elements (or events) were usually referred to individually 
as ‘items’ and collectively as ‘item-sets’; and the number of times an ‘item’ or ‘item-
set’ occurred in a defi ned population was known as its “support”. Data mining meth-
ods found all frequent ‘item-sets’, that is, all ‘associations’ among items whose 
support exceeded a minimum ‘threshold value’ that exceeded what would be expected 
by chance alone. ‘Rules’ were similar to ‘associations’, except that once identifi ed, 
each frequent item-set was partitioned into ‘antecedents’ and ‘consequents’; and the 
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likelihood that the ‘consequents’ occurred, given that the ‘antecedents’ had occurred, 
was calculated; and this value was known as the ‘confi dence of the rule’. Given a 
dataset, classical data-mining methods were able to fi nd all ‘rules’ whose ‘support’ 
and ‘confi dence’ exceeded ‘specifi ed threshold’ values. Yet discovering ‘rules’ with 
high ‘confi dence’ did not necessarily imply ‘causality’. ‘Sequential patterns’ were 
relationships for which the order of occurrence of events was an important factor in 
determining a relationship. A frequent sequential pattern was a group of item-sets 
that frequently occurred in a specifi c order. ‘Clusters’ were data elements or events 
that were grouped according to logical relationships; for example, a ‘cluster’ of infl u-
enza cases might be found during certain seasons of the year. 

 Fayyad  (  1996  )  and associates also considered data mining as a method to ana-
lyze a set of given data or information in order to identify new patterns. They pub-
lished a comprehensive review of the evolution of “Knowledge Discovery in 
Databases” (KDD), a term they noted to be fi rst used in 1989. They defi ned KDD as 
the use of data mining primarily for the goal of identifying valid, novel, potentially 
useful, and ultimately understandable patterns in data; and they distinguished 
between verifying the user’s hypothesis and automatically discovering new patterns. 
They described the process as involving: (1) defi ne the user’s goal; (2) select the 
data set on which KDD is to be performed; (3) clean and preprocess the data to 
remove ‘noise’, handle missing data, and account for time-sequence information 
changes; (4) reduce the effective number of variables under consideration; (5) select 
the data mining method (summarization, classifi cation, regression, or others); (6) 
select the data mining algorithms, and which models and parameters are appropri-
ate; (7) conduct data mining and search for patterns of interest; (8) interpret the 
mined patterns; and (9) act on the discovered knowledge and check for potential 
confl icts with previously known knowledge. The process could involve signifi cant 
iterations, and might require loops between any of these steps. They emphasized 
that KDD for the data mining of clinical databases needed natural language process-
ing since some important patient-care data, such as reports of procedures, were 
usually stored in their original textual format (see also   Sect. 3.3    ). They described 
two primary goals of data mining: (1) description, that focused on fi nding interpre-
table patterns describing the data; and these goals could be achieved using a variety 
of data mining methods; and (2) prediction, that involved using some variables from 
the database to predict unknown or future values of other variables of interest. Most 
data mining methods were based on techniques from machine learning, pattern rec-
ognition, and statistics; and these included (a) classifi cation methods for mapping a 
data item into a predefi ned group, (b) clustering a set of similar data, (c) regression 
of a data item into a real-valued prediction variable, (d) summarization by fi nding a 
compact description of a subset of data, and (e) probabilistic models such as fre-
quently used for clinical decision-support modeling. These methods were used to 
develop best-fi tting algorithms, and these were viewed as consisting of three pri-
mary types: (1) model representation, that used knowledge (stored data) to describe 
a desired discoverable patterns, (2) search algorithms, designed to fi nd the data in 
the database that best satisfi ed the desired patterns or models; and (3) model evalu-
ation, that used statements as to how well the particular discovered pattern met the 
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goals of the of the search process. They emphasized the importance of natural 
language text processing that became important for data mining of textual informa-
tion in patient-care databases, and for discovering new knowledge patterns from the 
biomedical literature; and noted that some text mining techniques had originated 
from other disciplines, such as computational linguistics and information science. 

 Evans  (  1997a,   b  )  and associates at Creighton University used data mining meth-
ods for the automatic detection of hereditary syndromes. They reported that they 
could apply algorithms to family history data and create highly accurate, clinically 
oriented, hereditary-disease pattern recognizers (see also   Sect. 5.4    ). Wilcox  (  1998  )  
and Hripcsak at Columbia University, also considered data mining to be a form of 
knowledge discovery that used data mining algorithms to enumerate patterns from 
data or to fi t models to data. Their objective was to automatically build queries for 
interpreting data from natural language processing of narrative text, since valuable 
clinical information could reside in clinical progress notes, in radiology and other 
procedure reports, in discharge summaries, and in other documents. They devel-
oped a system to generate rules for the output of a natural language processor 
called Medical Language Extraction and Encoding System (MedLEE) that auto-
matically generated coded fi ndings from any narrative report that was entered into 
it (see also   Sect. 3.3    ). Berndt  (  1998  )  and associates at the University of South 
Florida, described their data warehouse that they used to do comprehensive track-
ing for community health (CATCH), and to evaluate trends in health care issues. 
Nigrin  (  1998  )  and associates at Boston’s Children Hospital used their large data-
base to analyze data patterns in terms of relationships. To facilitate the extraction 
of data from the database by users without programming experience, they devel-
oped Data Extractor (DXtractor) that allowed clinicians to enter a query for a 
defi ned population or patient group, and then explore and retrieve desired individ-
ual patient data, fi nd previously seen patients with similarities to the current patient, 
and generate a list of patients with common attributes. Based on their work with 
DXtractor, Nigrin and Kohane  (  1999  )  described in some detail the development of 
a new data mining tool called Goldminer, which allowed for non-programming 
clinicians, researchers, and administrators to more effectively mine both clinical 
and administrative data in a large database. From primary patient-record databases, 
they developed a separate clinical research database to run Goldminer, that was 
maintained in an Oracle-8 database, that was kept updated by routinely run 
Structured Query Language (SQL) scripts which copied new or modifi ed data from 
the patient record databases. Goldminer was a web-based Java applet, that fi rst 
performed a population survey, and then guided the user through a variety of 
parameter specifi cations to retrieve a particular group of patients; then using logi-
cal Boolean set operations (AND, OR, and NOT), as well as temporal set operators 
to combine data sets, it provided the ability to generate complex overall queries, 
despite relatively simple individual data requests. Nigrin and Kohane  (  2000  )  fur-
ther described the ability of their clinician oriented, data retrieval and data mining 
tool, DXtractor, using standard SQL language and the iterative use of time-based 
and Boolean operations, to allow non-programmers to query medical databases 
containing time-stamped patient data. 
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 Johnson  (  1999  )  described an extension to SQL that enabled the analyst to designate 
groups of rows, and then manipulate and aggregate these groups in various ways to 
solve a number of analytic problems, such as performing aggregations on large amounts 
of data as when doing clinical data mining. Tenabe  (  1999  )  and associates at the National 
Cancer Institute, described an Internet-based hypertext program, called MedMiner, 
which fi ltered and organized large amounts of textual and structured information 
extracted from very large databases, such as NLM’s PubMed. Benoit and Andrews 
 (  2000  ) , at the University of Kentucky in Lexington, described an information retrieval 
framework, based on mathematical principles, to organize and permit end-user manip-
ulation of a retrieved set of data. By adjusting the weights and types of relationships 
between query and set members, it was possible to expose unanticipated, novel rela-
tionships between the query-and-document pair. Holmes  (  2000  ) , and associates at the 
University of Pennsylvania in Philadelphia, applied a learning classifi er system called 
EpiCS, to a large surveillance database to create predictive models that they described 
as robust, and could classify novel data with a 99% accuracy. Brossette  (  2000  )  and 
associates at the University of Alabama at Birmingham developed their Data Mining 
Surveillance System (DMSS) for infection-control surveillance for the automatic early 
detection of any increased rate of hospital infections; and also to have the ability to 
detect an increased frequency in resistant bacterial infections. By applying data mining 
algorithms to their hospital clinical laboratory data, they could automatically detect 
adverse patterns and events that would not have been detected by existing monitoring 
methods (see also   Sect. 4.1.2    ). 

 Lee  (  2000  )  and associates at Rensselaer Polytechnic Institute in Troy, New 
York, applied several data mining techniques to heart disease databases to identify 
high-risk patients, to defi ne the most important variables in heart disease, and to 
build a multivariate relationship model which corresponded to the current medical 
knowledge and could show the relationship between any two variables. They 
found that for the classifi cation of patients with heart disease, neural networks 
yielded a higher percentage of correct classifi cations (89%) than did discriminant 
analysis (79%). Downs  (  2000  )  and associates at the University of North Carolina 
at Chapel Hill, applied data mining algorithms to a large set of data from their 
Child Health Improvement Program; and they studied associations between 
chronic cardio-pulmonary disease and a variety of behavioral health risks includ-
ing exposure to tobacco smoke and to poverty. They concluded that even though 
their data were relatively sparse and inconsistently collected, and some of their 
fi ndings were spurious, and many had been previously described, data mining still 
had the potential to discover completely novel associations. Cooper and Giufridda 
 (  2000  )  described the use of a data mining algorithm called “Knowledge Discovery 
using Structured Query Language” (KDS). Srinivasan and Rindfl esch  (  2002  )  
expanded the concept of data mining to text mining, by using NLM’s MESH 
headings and subheadings to extract related information from NLM’s MEDLINE, 
with the goal to search related concept pairs to discover new knowledge. As an 
example, they could specify a pair of MESH subheadings, such as ‘drug therapy’ 
and ‘therapeutic use’ to approximate the treatment relationship between drugs 
and diseases; and then combine the pair with another conceptual pair to form a 
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‘summary view’ for study of the inter-relationships between the two concepts. 
   Szarfman (2002) reported that since 1998 the FDA had been exploring automated 
Bayesian data-mining methods using the Multi-Item Gamma Poisson Shrinker 
(MGPS) program, that computed scores for combinations of drugs and events that 
were signifi cantly more frequent than their usual pair-wise associations (see also 
  Sect. 7.1    ) Haughton et al.  (  2003  )  published a review of software packages for data 
mining that included SAS Enterprise Miner, SPSS Clementine, GhostMiner, 
Quadstone, and an Excel add-on XLMiner. D. Haughton concluded that SAS 
Enterprise Miner was the most complete; and the SAS and SPSS statistical pack-
ages had the broadest range of features.  

    8.3   Summary and Commentary 

 Medical knowledge databases are collections of information about specifi c medical 
problems, and are primarily designed to help clinicians make appropriate decisions 
in the diagnosis and treatment of their patients. In the 1980s medical knowledge 
bases began to be commonly used to support clinical decision making as rapid 
advances occurred in larger knowledge databases and in faster automated informa-
tion-retrieval systems. It was estimated that in the year of 1980 there were already 
more than 1,000 databases available for computerized searching, and more than 
two-million searches were made in these databases (Doszkocs et al.  1980  ) . 

 Knowledge discovery became the process of automatically searching in very 
large databases for potentially useful, previously unknown information by using 
techniques from statistics and information science. In the 1990s the process of data 
mining applied to very large clinical databases became common by the increasing 
access to computer-based medical records that were stored in low cost, very large 
computer storage, and operated by faster, cheaper computers. 

 Data mining provided the potential of improving the quality and effectiveness of 
patient care by its ability to study and analyze the huge volumes of data collected on very 
large and diverse population groups; and to discover new information and to uncover 
previously unknown important relationships and associations between clinical data.      
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 Bibliographic databases function like the large card catalogs that were established 
by librarians to identify, describe, index, and classify citations, journals, and books, 
so that they could be effectively stored, retrieved, and used when needed. The user 
of an automated medical bibliographic database can enter a query into a search and 
retrieval program using a defi ned set of terms; and all citations that were indexed by 
these terms can then be retrieved. Bibliographic databases are primarily fact loca-
tors that point to information found elsewhere. Factual databases, like those of the 
NLM’s Hazardous Substance Data Bank (HSDB), its Genetics Sequence Data Bank 
(GenBank), and its Physicians’ Data Query (PDQ) are bibliographic databases that 
contain information on specifi c subjects, and are primarily fact providers. 

    9.1   National Library of Medicine (NLM) Databases 

  Note:  (Unless otherwise referenced, much of the information provided in this 
chapter about the NLM has been obtained from its annually published National 
Library of Medicine Programs and Services, its periodically published NLM News 
and NLM Fact Sheets, and from NLM’s Internet Web sites.)  

 The  National Library of Medicine  (NLM), located on the grounds of the National 
Institutes of Health (NIH) in Bethesda, Maryland, is the largest medical library in the 
world. The NLM has the legislative mandate to assist with the advancement of medical 
and related sciences, and to aid in the dissemination and exchange of scientifi c and other 
information important to the progress of medicine and to the public health (Lindberg 
and Schoolman  1986  ) . With its associated Lister Hill National Center for Biomedical 
Communications (LHNCBC) and its National Center for Biotechnology Information 
(NCBI), the NLM maintains a very large number of searchable databases. With its home 
page on the World Wide Web (  www.nlm.nih.gov    ), the NLM provides its library and 
health information services world-wide; and its Web site has become its primary vehicle 
for distributing a wide range of its publications (Lindberg and Schoolman  1986  ) . 

    Chapter 9   
 Medical Bibliographic Databases       
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 A very informative history of the NLM from its beginnings in 1818 to the year 
1976 was written by Miles  (  1982  ) , who reported that the origins of the NLM began 
in 1818 with a few books and journals in the offi ce of the then Surgeon General of 
the Army Joseph Lowell. In 1836 the Library of the Army Surgeon General’s Offi ce 
was established; and in 1865 John Shaw Billings, a Civil War Army surgeon, became 
its director and guided the Library for the next 30 years. Lindberg and Schoolman 
 (  1986  )  attributes the beginnings of medical informatics to John Shaw Billings (see 
also Sect.  9.1.1 ). Blake  (  1986  )  called Billings the greatest medical bibliographer of 
all times; and DeBakey  (  1991  )  wrote that the one man whose name is almost syn-
onymous with the origin of the NLM is John Shaw Billings. Billings compiled the 
fi rst large catalog and bibliography of the medical literature; and the Library of the 
Surgeon General’s Offi ce had it available at that time. Starting with the 1,800 vol-
umes already in the Library, by 1873 Billings had accumulated about 10,000 vol-
umes; and had prepared on index cards an author catalog and a subject catalog. 
Within a decade Billings had raised the Surgeon General’s Library to the fi rst rank 
in the United States (Foote  1994  ) . In 1874 Billings began the indexing of medical 
journals by marking items to be indexed, and then having clerks manually copy 
references onto cards (Miles  1982  ) . In 1876 Billings had accumulated tens of thou-
sands of index cards, which he alphabetized and sent to the Government Printing 
Offi ce that began printing the  Index  -  Catalogue of the National Medical Library . 
The great success of the Index-Catalogue stimulated Billings to conceive of a peri-
odical publication of current medical articles, books, and other literature. In 1879 
the fi rst issue was published of the  Index Medicus  ,  a Monthly Classifi ed Record of 
the Current Medical Literature of the World that listed about 18,000 titles (Lindberg 
and Schoolman  1986  ) . In 1922 the Library of the Surgeon General’s offi ce became 
the Army Medical Library. In 1952 the Army Medical Library was renamed the 
Armed Forces Medical Library (Miles  1982  ) . 

 In 1956 the Armed Forces Medical Library was designated by an act of Congress 
to be the  National Library of Medicine , about 80 years after Billings began calling 
it by that name; and the NLM was placed within the Public Health Service in the 
Department of Health, Education, and Welfare. The NLM was charged by the 
Congress to assist with the advancement of medical and related sciences, and to aid 
in the dissemination and exchange of scientifi c and other information important to 
the progress of medicine and the public health. Congress appropriated funds for 
building the National Library on the campus of the National Institutes of Health 
(NIH) in Bethesda, Maryland; and in 1962 the NLM moved into its new building. In 
1968 the NLM was transferred to the National Institutes of Health (NIH). Early 
Directors of the NLM included Frank B. Rogers who served from 1949 to 1963, and 
Martin M. Cummings who served from 1963 to 1984. Donald A. B. Lindberg, when 
he was the Director of the Information Science Group and Professor of Pathology at 
the University of Missouri School of Medicine in Columbia, had advised that the 
NLM should take the role of a lead agency in orchestrating federal activities in 
medical informatics (Lindberg  1979  ) ; and in 1984 Donald A. B. Lindberg became 
the Director of the NLM with the responsibility and authority to carry out this role 
(NLM News [May-Jun] 1984). 
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 In 1965 the Medical Library Assistance Act called for the creation of a  Regional 
Medical Library Network  (RMLN), since the medical libraries in many states had 
already begun to use and collaborate with the NLM. In 1970 the approval by Congress 
of the Medical Library Assistance Extension Act provided funding for a network of 
seven Regional Libraries in the United States. In 1990 the Medical Library Network 
was expanded to contain eight Regional Medical Libraries, under contract with NLM 
to facilitate the use of NLM services in their respective regions, and to coordinate the 
4,500 member National Network of Libraries of Medicine (NLM Fact Sheets [Mar] 
1996, Oct [06] 1999). In 1969 NLM began to establish  International MEDLARS 
Centers ; and bilateral agreements were established between the NLM and public 
institutions in foreign countries. In 1997 Russia was admitted as its 21st International 
MEDLARS Center (NLM Newsline [Jan-Feb] 1997). 

  Lister Hill National Center for Biomedical Communications  (LHNCBC), named 
in honor of Senator Lister Hill, was established in 1968 by an Act of Congress as 
the research and development division of the NLM, to expand the uses of computers 
and communications technology in the health care fi eld; and it is the NLM’s intra-
mural laboratory for exploring new technologies and approaches to the manage-
ment of biomedical knowledge. Wooster  (  1981  )  described biomedical 
communications as applying to a wide range of activities and broadly including 
medical art and illustrations, photographs, and audio-visual information related to 
the medical and biologic sciences. He reported that the Audio-Visual Production 
Division of the Communicable Disease Center (CDC) became a part of the NLM in 
1968; and its Audiovisual Program Development Branch focused on biomedical 
knowledge that cannot be represented by text, including multimedia technology 
related to art, animation, visual displays, and interactive videodisc-based educa-
tional systems. In 1983 it was reorganized to include the NLM’s National Medical 
Audiovisual Center. The Center established several specialized branches for research 
and development, including: its Cognitive Science Branch, originally called the 
Computer Science Branch, that focuses on the effective use of biomedical knowl-
edge by automated systems, including natural language understanding, artifi cial 
intelligence and expert systems; and it participated in the Unifi ed Medical Language 
System (UMLS) project. Its Communications Engineering Branch conducts and 
sponsors research and development in image and signal processing, and in commu-
nication systems and techniques, including electronic document storage and 
retrieval. Its Information Technology Branch conducts research, development, and 
evaluation of computer-based applications for the processing and transfer of health 
sciences information. Its Educational Technology Branch supports and develops 
innovative methods for training health care professionals; and it operates a Learning 
Center for Interactive Technology for displaying new educational technologies. 

 In 1980 a second building was constructed next to the Library building for the 
Lister Hill Center. The Lister Hill Center played a key role in the development of 
MEDLARS; and it conducted a number of communication experiments using NASA 
satellites, microwave and cable television, and computer-assisted instruction (NLM 
Fact Sheets [Feb] 1995, [Oct] 1988, [Jan 1989]). In 1992 the Lister Hill Center added 
the newly established Offi ce of High Performance Computing and Communications 



236 Chapter 9 Medical Bibliographic Databases

(HPCC), with Donald A.D. Lindberg as its fi rst Director, in addition to his retaining 
the position of Director of the NLM. HPCC was created to conduct research and 
development activities relating to health care projects, including telemedicine, test 
bed networks, virtual reality, imaging, and a gigabit-speed National Research and 
Education Network. HPCC coordinated planning, research and development activi-
ties with federal, industrial, academic, and commercial organizations at all levels. 
Congress provided HPCC with funding for the Next Generation Internet (NGI) to 
develop faster communications networks than possible with the Internet of the 1990s 
(Lindberg  1994,   1995 ; Lindberg and Humphreys  1995  ) . In 2009 the Lister Hill 
Center began to develop its Biomedical Image Transmission via Advanced Networks 
(BITA) project (NLM Programs 2008). 

  National Center for Biotechnology Information  (NCBI) was established in 1988 as 
a division of the NLM, to create automated systems for knowledge related to molecu-
lar biology, biochemistry, and genetics; to perform research into advanced methods on 
how to handle information about biologically important molecules and compounds; to 
enable those engaged in biotechnology research and medical care to use the developed 
systems; and to coordinate efforts to gather biotechnology information worldwide 
(NLM Fact Sheet [Mar] 1989). NCBI serves as a national resource for molecular biol-
ogy information, with the goal to elucidate and understand the molecular processes 
that control health and disease; it creates public databases, conducts research in com-
putational biology, develops software tools for analyzing genome data, and dissemi-
nates biomedical information. NCBI programs are divided into three areas: (1) the 
creation and distribution of databases to support the fi eld of molecular biology; (2) 
basic research in computational molecular biology; and (3) dissemination and support 
of molecular biology and bibliographic databases, software, and services (NLM 
Programs 2008). The NCBI supports a variety of databases, with new databases being 
added frequently to meet the varying needs of the workers in genetics. In 1992 NCBI 
assumed responsibility for NIH’s GenBank Genetic Sequence Database; and it was an 
essential participant in the Human Genome Project headed by Nobel laureate James 
Watson (NLM News [Nov] 1988). NCBI web services were fi rst introduced in 1993; 
and its web services expanded rapidly thereafter. By the end of the year 2000, NCBI 
was supporting 30 databases, and its sites were averaging 9,000,000 ‘hits’ daily. It had 
established itself as the leading national resource for molecular biology information; 
and the NLM was planning to add a third building to provide the additional space 
needed to satisfy its growing needs. 

 In the 2000s NLM continued to explore ways of ensuring that biomedical inves-
tigators could take full advantage of the power of high-end computing; and the 
NLM was joining with NIH’s Biomedical Information Science and Technology 
Initiative (BISTI) (NLM Board of Regents [Jan] 2000). In the year 2000 NLM’s 
collections totaled almost six million publications; the total number of online 
searches in all of its databases that year exceeded 240 million; and it served more 
than 150,000 users world-wide (NLM Programs 2000). In the year 2008 NLM’s 
collections totaled almost 12 million; its PubMed provided more than 775 million 
searches; and NLM collaborated with 18 public institutions in foreign countries that 
served as International MEDLARS Centers (NLM Programs 2008). 
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    9.1.1   NLM Search and Retrieval Programs 

 The National Library of Medicine (NLM) developed a variety of programs to help 
standardize medical terms; and to support electronic access, search, retrieval, and 
links to its large number of databases. 

  Medical Subject Headings  ( MeSH )  Vocabulary File  was initiated in 1960 by the 
NLM to standardize its indexing of medical terms and facilitate the use of its search 
and retrieval programs. MeSH is a highly structured thesaurus consisting of a stan-
dard set of terms or subject headings that are arranged in both an alphabetic and a 
categorical structure, with categories further subdivided into subcategories. Within 
each subcategory the descriptors are arranged hierarchically. MeSH is the NLM’s 
authority list of technical terms used for indexing biomedical journal articles, cata-
loging books, and for bibliographic search of the NLM’s computer-based citation 
fi le. It is divided into two sections: (1) The Alphabetic List that contains the subject 
headings arranged in alphabetic order and cross-referenced; and (2) The Categorized 
List that displays the subject headings in separate categories arranged hierarchically 
and semantically, with an alphanumeric designation for each category and subcate-
gory. MeSH is a powerful tool for providing effi cient access to medical information 
in both the NLM’s printed publications and its online database services. MeSH is 
used to catalog the NLM’s bibliographic material and to retrieve citations to articles. 
MeSH has been continually revised since its introduction in 1960 when it contained 
only about 4,500 headings. In 1986 the MESH Vocabulary File contained informa-
tion on more than 14,000 MeSH headings and 40,000 chemical substances used for 
indexing and retrieving references (NLM Fact Sheet [Jun] 1986). Rada et al.  (  1986  )  
noted that MeSH had been merged with SNOMED; and that an early application of 
MeSH was the indexing of articles published in the MEDINFO Proceedings and in 
the SCAMC Proceedings. Lowe and Barnett  (  1994  )  described how MeSH-based 
searches could be superior to free-text searches by its improved retrieval of relevant 
citations; and by using the MeSH hierarchical tree structure to fi nd the most specifi c 
terms, it allows the searcher to further improve the precision of a MEDLINE search. 
In 1998 there were about 19,000 main headings to MeSH and 800 specialized 
descriptors, in addition to 95,000 headings called Supplementary Chemicals listed 
within a separate chemical thesaurus (NLM Fact Sheet MESH [Aug 26] 1998). 
DeGroote  (  2000  )  reported that even when using unqualifi ed search terms, MeSH 
still provided automatic mapping features that enabled sophisticated searches to be 
performed. MeSH is updated four times weekly for chemical terms, and updated 
annually for the entire fi le. 

  MEDLARS  (MEDical Literature Analysis and Retrieval System) began operation in 
1964 to automate the production of Index Medicus; and it is a computer-based system 
for indexing, storing, and online retrieving of bibliographic information in the NLM’s 
vast store of biomedical information (Austin  1968  ) . By the 1960s the publishing of the 
Index Medicus had become increasingly labor-intensive and expensive. The indexing 
done manually by NLM staff was entered into the computer and stored on magnetic 
tape. The processed magnetic tape activated a high-speed composing device capable of 
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producing photographic masters for printing the Index Medicus. This led NLM to 
spend 3 years to develop the more effi cient automated system called MEDLARS. It 
was important historically in that it was the NLM’s fi rst major foray into the world of 
computer technology to provide information services for the health sciences. 
Furthermore, it was a pioneering effort to use the emerging computer technology of the 
early 1960s for the production of bibliographic publications and for conducting indi-
vidualized searches of the literature (Taine  1963  ) . The fi rst versions of the Index 
Medicus and of MEDLARS were published under contract with General Electric Co., 
using a Honeywell computer system and a computer-driven photocomposer called 
Graphic Arts Composing Equipment (GRACE) that was developed specifi cally for the 
NLM by the Photon Company. At that time it was the fastest computer-driven photo-
composer in the United States. The NLM estimated that during its active life from 1964 
to 1969, GRACE composed 165,000 pages for Index Medicus and other bibliographies 
(NLM News [Nov] 1986). By showing that computer-controlled typesetting was fea-
sible, the NLM created the precursor for computer-based publishing (Lindberg and 
Schoolman  1986  ) . In 1964 magnetic tapes of MEDLARS were made available to other 
U.S and foreign libraries. In 1965 the system was transferred to an IBM 360/50 
machine, that was soon replaced by an IBM 370/155, then by a 370/158, and followed 
in 1977 by twin IBM 370/158 multiprocessors (Miles  1982  ) . Information from 1966 in 
Index Medicus was incorporated in MEDLARS; and in 1969 MEDLARS magnetic 
tapes contained about 900,000 citations to articles published since 1963 (NLM Guide 
to MEDLARS Services 1969). In 1969 the NLM staff provided an Abridged Index 
Medicus (AIM) database to use for testing a remote access system for online literature 
retrieval, employing a Teletypewriter Exchange System (TWX). In 1970 under a con-
tract with System Development Corporation (SDC) located in California, and using the 
AIM-TWX network and a retrieval program called ELHILL (named after Senator 
Lister Hill), the Library began to provide services to users who requested searches by 
employing teletypewriter terminals or computer terminals connected to telephone lines. 
The AIM-TWX database was available to users until 1972, when it was replaced by 
MEDLARS (Miles  1982  ) . 

 Early evaluations of MEDLARS suggested the need for revised quality-control 
measures (Lancaster  1969  ) ; and further enhancements produced MEDLARS II in 
1975, that contained about 20 databases (Cummings and Mehnert  1982  ) . MEDLARS 
III appeared in 1986; and one could search the MEDLARS fi les either to produce a list 
of publications (bibliographic citations) or to retrieve factual information on a specifi c 
question. MEDLARS III used two computer subsystems, ELHILL and TOXNET, on 
which resided more than 40 online databases; that in 1998 contained about 18 million 
references (NLM Fact Sheet [Sep] 1998). MEDLARS continued to represent a family 
of databases of which the MEDLINE database was the most well known at the time. 
By the year 2000 MEDLARS contained several million citations and references to the 
NLM databases and biomedical journal articles. 

  MEDLINE  (MEDlars online) is an online searchable Index Medicus from 1966 
forward, and it was the largest and most extensively used of NLM’s databases (OTA 
Report 1982). MEDLINE was inaugurated in 1970 by the NLM as an experimental 
online retrieval service using the computers of System Development Corporation 
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(SDC) in Santa Monica, California, to store the bibliographic information published 
in the preceding 5 years. At that time, to reach the MEDLINE online prototype that 
had bibliographies of 25 journals and a small database, a person who wanted a search 
would phone long distance and use teletype equipment or other low-speed terminal 
equipment. Since teletypewriters were used in many libraries at that time, with a 
retrieval program named ELHILL, (for Lister Hill), SDC provided an online retrieval 
system called AIM-TWX (Abridged Index Medicus database using the Teletypewriter 
Exchange System). The AIM-TWX network proved so successful that in 1972 NLM 
contracted with a commercial communication network, Tymnet, and its parent com-
pany, Tymshare, to provide online services of MEDLARS to NLM databases (Miles 
 1982  ) . In 1997 searching the NLM’s databases was made free of charges. In the 1980s 
NLM’s MEDLARS was most frequently accessed using Tymnet or Telnet, whose 
parent company was GTE (NLM News [Jan-Feb] 1987). The Telnet service was 
developed to facilitate the wide distribution of computer resources, so that it allowed 
an Internet user to gain access to use NLM databases as if the user was using a termi-
nal within NLM (Zelingher  1995  ) . Soon MEDLINE became available to users through 
a nationwide network of many institutional and individual users, including centers at 
government agencies, academic centers, hospitals, and commercial organizations. 
OLDMEDLINE provided access to journals in the Index Medicus prior to 1966; and 
MEDLINEPlus was added to provide consumer oriented, health information. ELHILL 
served users for 25 years to search MEDLINE and other NLM databases. With the 
great success of the Web-based PubMed and Internet Grateful Med, ELHILL was 
phased out in 1999, and its 23 databases were transferred to the VOYAGER Integrated 
Library System when NLM changed from a mainframe legacy system to a client–
server environment. VOYAGER is an integrated system that combines an open-system 
architecture with relational database technology. For many users of the NLM pro-
grams, VOYAGER became the primary or the only system needed. 

  CITE  (Computerized Information Transfer in English) end-user interface to 
MEDLINE was implemented by NLM in 1979. Whereas ELHILL had limited users 
to a kind of passive system interaction, CITE offered a considerable degree of fl ex-
ibility in the user-system interaction in that it accepted queries in full English-
language sentences, or in phrases or keywords. CITE automatically suggested 
potentially applicable keywords and medical-subject headings. Instead of Boolean-
set operations, CITE performed a closest-match search by identifying documents 
that had some of the user’s selected search terms. In 1979 the CITE/CATLINE 
online catalog made available more than 500,000 references to books and serials 
cataloged at the NLM at that time (Doszkocs  1983  ) . 

  Grateful Med  was released in 1986, on the 150th anniversary of the NLM, as a 
software program on a fl oppy disc for personal computers, in an attempt to simplify 
searches by non-experts. It permitted individuals without any special training to use 
their computers with a modem and a telephone line to log into the NLM’s computer. 
Using their identifi cation codes, and the Boolean operators ‘and’ and ‘or’, users could 
structure a search using MeSH terms and go directly into ELHILL to search the NLM’s 
MEDLINE and CATLINE (NLM Fact Sheet [Mar] 1986). Grateful Med allowed 
health professionals to bypass librarians and go directly to MEDLINE. Lindberg  (  1994  )  
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reported that in the United States, 40% of all searches done on Grateful Med were done 
at home. With the termination of ELHILL in 1999, Grateful Med ceased to function 
and was replaced by users employing Internet Grateful Med. 

  Lonesome Doc  was released in 1991 as a software enhancement to Grateful Med 
that permitted users to order copies of full-text articles for citations received in 
MEDLINE (NLM News [Mar-Apr] 1991). By 1998 Lonesome Doc allowed 
PubMed users to automatically route requests for documents identifi ed in MEDLINE 
to a specifi c library that had agreed to serve them (NLM Fact Sheet [May 29] 1998). 
In the year 2000, users requested more than 800,000 documents (NLM Programs 
2000). 

  Internet Grateful Med  (IGM) became available in 1996 for searches of MEDLINE 
by users with computers equipped to access the Internet and the WorldWideWeb. It 
incorporated the Lonesome Doc capability that linked it to MEDLINE, DOCLINE, 
HSTAT, PDQ, and to CANCERLIT. It offered to the user NLM’s UMLS 
Metathesaurus to display a list of concepts most closely related to the user’s terms; 
and allowed the user to browse concept defi nitions and other related information, 
and navigate through a graphical display of MeSH terms (NLM Fact Sheet Internet 
Grateful Med, [May] 1996, [Aug 27] 1998). Internet Grateful Med provided to users 
an automatic mapping feature that attempted to map unqualifi ed search terms to 
MeSH readings (DeGroote  2000  ) . In the 1 month of January 1997 Internet Grateful 
Med already exceeded 100,000 searches (NLM Newsline [Jan-Feb] 1997). In 1998 
it added search screens for BIOETHICSLINE, ChemID, POPLINE, SPACELINE, 
and TOXLINE (NLM Newsline [Jul-Dec] 1998). 

  PubMed  was introduced in 1997 for free searching of MEDLINE, so that for the 
fi rst time anyone with access to the Web could search through an immense data-
base of references and abstracts for 11 million medical journal articles. PubMed 
became available via the  Entrez  retrieval system developed by NCBI as an inter-
face to MEDLINE in order to facilitate searches, provide an alphabetic list of 
related terms, and save and print selected citations. In the year 2000, users con-
ducted about 244 million searches of MEDLINE via PubMed ;  and the practice of 
linking citations in the bibliographies to corresponding MEDLINE citations in 
PubMed was initiated. The NLM WorldWideWeb site (nlm.nih.gov) became the 
primary vehicle for distributing a wide range of NLM publications. PubMed pro-
vided links to full-text journal articles, that in the year 2000 numbered more than a 
thousand; and it was then beginning to collaborate with publishers to link books to 
PubMed. PubMed provided access and links to the integrated molecular biology 
databases maintained by NCBI (NLM Programs 2000). 

  PubMedCentral  was developed in 1999, and it is managed by NCBI as an integrated, 
web-based repository in PubMed. It is a digital archive of full-text journal articles from 
the life-sciences journal literature, including plant and agricultural research. It permits 
searches of the entire body of a full-text article and locates relevant material regardless 
of its source. It allows integrating the literature with a variety of other information 
resources such as sequence and other factual databases. It can be accessed by users of 
PubMed who will see a special icon next to articles that are in PubMedCentral.  NLM 
Gateway  was created by Lister Hill Center as a Web interface to facilitate searches as a 
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single access point for multiple NLM Internet-based, information retrieval resources. 
It searches within and across all the NLM databases; and thus allows simultaneous 
searches of MEDLINE, OLD MEDLINE, MEDLINEplus, PubMed, LOCATORplus, 
ClinicalTrials.gov, DIRLINE, HSRProj, TOXLINE, OMIM, and HSDB. NLM Gateway 
users enter a query once; and the query is reformulated and sent automatically to mul-
tiple retrieval systems. 

  Toxicology Information Program  (TIP) was established in 1967 to create 
automated toxicology databases, and to provide national access to toxicology 
related information. In 1972 TIP initiated TOXICON (Toxicology Information 
Conversational Online Network) as a retrieval service available on Tymshare net-
work (Miles  1982  ) . Toxicology and Environmental Health Information Program 
(TEHIP), that was originally known as TIP, maintains several online, interactive 
retrieval services on chemicals and toxic substances for their effects on health and 
environment, on toxicology, and on related areas. TEHIP includes CHEMLINE ,  
CHEMID, DIR ,  HSDB ,  RTECS, TOXLINE ,  and TDB ;  and it links users to relevant 
sources of toxicological and environmental sources wherever they reside (NLM 
Programs 2000).  TOXicology data NETwork  (TOXNET), a family of online factual 
databases, became operational in 1985 with the Internet NLM Gateway, to allow 
users to search on toxicology, environmental health, and hazardous chemicals. It 
permits searches in DIRLINE, HSDB, TDB ,  TOXLINE, CCRIS, Gene-Tox, DART, 
NLM Gateway, TRI ,  and other related databases (NLM Programs 2000). 

  Integrated Academic Information Management Systems  (IAIMS) program was 
initiated by the NLM in 1983 to use computer and communication technologies to 
bring together operational and academic information in support of health research, 
health education, patient care and management. Its goal is to integrate the Library’s 
systems with the multitude of individual and institutional information fi les at health 
science centers, and to support the development of academic library-based informa-
tion from specifi c databases to provide clinical information needed by providers of 
patient care. Whereas the Regional Medical Library Network was inter-institutional, 
the IAIMS program supports the development of integrated networks and linkages 
within institutions. Many articles have been published describing the implementa-
tion of IAIMS programs; and many were described at the series of symposia spon-
sored by NLM in 1986; and again in 1988. Matheson  (  1988  )  reported it was evident 
that a heterogeneous group of institutions were employing a variety of strategies in 
an array of goals aimed at different audiences; and Lindberg  (  1988  )  emphasized that 
NLM-sponsored IAIMS programs were an effort to foster integration of the various 
sources of information critical to the operations of academic medical centers. 

  Unifi ed Medical Language System  (UMLS) was initiated in 1986 by the NLM, 
working with a group of academic institutions to address problems created by the exis-
tence of multiple vocabularies and coding systems, and to develop a unifi ed and stan-
dardized medical language system and vocabulary for describing health-care phenomena 
pertaining to patient care, the results of biomedical research, and the management 
aspects of patient care (NLM NEWS [Nov] 1986). UMLS developed knowledge data-
bases and programs (Lindberg and Humphreys  1992 ; Lindberg et al.  1993 ; Humphreys 
and Lindberg  1989 ; Humphreys et al.  1992,   1996,   1998  ) , and made available a set of 
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knowledge sources to the research community, including: (1) a Metathesaurus, (2) a 
Semantic network, (3) a Specialist Lexicon, and (4) an Information Sources Map (orig-
inally called Metamorphosis), together with associated lexical programs. (1)The 
Metathesaurus is a machine-readable knowledge source representing multiple biomed-
ical vocabularies organized as concepts in a common format. It is a large, multi-purpose 
and multi-lingual vocabulary database that contains information about biomedical and 
health related concepts, their various names, and the relationships among them. It was 
built from the electronic versions of many different thesauri, classifi cations, code sets, 
and lists of terms used in patient care, health services billing, public health statistics, 
indexing and cataloging biomedical literature, and basic, clinical and health services 
research (NLM FACT Sheet [Jan] 1993). (2) The Semantic Network organized and 
linked concepts and meanings in the Metathesaurus to provide consistent categoriza-
tion of all its concepts (NLM FACT Sheet [Nov] 1991). (3) The SPECIALIST Lexicon 
is a general English lexicon that includes many single words and multi-word biomedi-
cal terms; and gives their syntactic, morphologic and orthographic information (NLM 
Fact Sheet [Jan] 1994). McCray  (  1995,   1992,   1989 ; McCray et al.  1996 ; McCray  1998 ; 
McCray et al.  2001  )  described the many contributions of the UMLS Lexicon in sup-
porting natural language processing. (4) The Information Sources Map is the software 
program initially used to install the Metathesaurus. The UMLS Metathesaurus, the 
Semantic Network, and its Information Sources Map all served as knowledge sources 
(Lindberg and Humphreys  1990  ) ; and in 1995 NLM began to regularly distribute a set 
of knowledge sources through its Internet-based, UMLS Knowledge Source Server 
(McCray et al.  1996  ) . Humphreys et al.  (  1996  )  noted the potential value of the UMLS 
Metathesaurus joining with several other health-related terminologies to provide a 
more comprehensive terminology. By the year 2000 the UMLS Metathesaurus con-
tained about 800,000 concepts; and its associated programs were licensed by nearly 
1,300 individuals and organizations (NLM Programs 2000). 

  BLAST  (Basic Local Alignment Search Tool) and  QUERY  were introduced by 
NCBI in 1990 as two electronic-mail servers, The BLAST server is an email-based, 
sequence-searching server to facilitate scanning and comparing a user’s sequence 
against the database of all known sequences to determine likely matches. The 
BLAST server uses a sequence-comparison algorithm to search sequence databases 
for optimal local alignments to a query, and provides a method for rapid searching 
and comparing of nucleotide and protein databases. It accepts a formatted message 
containing a DNA or protein sequence, and can compare it against other protein 
sequences. The QUERY server uses the input sequence with which all of the entries 
in a database are to be compared; and it uses the Entrez query system to retrieve data 
from different sequence databases, such as for protein sequences and nucleotide 
sequences, and also data from MEDLINE and GenBank (NCBI [Sep 16] 1998). 

  Entrez  is a major text-based search and retrieval system developed by NCBI for 
searching literature, nucleotide and protein databases, and related MEDLINE cita-
tions. Since an Entrez data domain usually encompasses data from several different 
source databases, in 1998 links were added to PubMed, PubMed Central, GenBank, 
and to a number of NCBI genome databases, including complete genomes, three-
dimensional protein structures, OMIM, and others (NLM Programs 1999, 2000). 



2439.1 National Library of Medicine (NLM) Databases

  LocusLink  was initiated in 1999 by NCBI as a query interface to sequence data and 
descriptive information about genes and proteins, their structure, location, and func-
tion; and it could be accessed from NLM’s home page or from PubMed.  LOCATOR  
is a client–server interface that allows menu-driven Internet access to CATLINE and 
DIRLINE databases (NLM Fact Sheet [May 6] 1998). In 1999, with the success of 
PubMed and Internet Grateful Med (IGM) to provide Web-based access to MEDLINE, 
all public access to ELHILL was terminated, and the software disk-based system for 
searching MEDLINE ceased. TOXNET databases became available on the Web; and 
other NLM databases became available on LOCATORplus. 

 In 1986 the NLM celebrated its sesquicentennial year and 150 years of Library 
services. MEDLINE had its 15th birthday and became available on an optical disc. 
MEDLINE then listed about 3.5 million items in the various NLM databases, about 
eight million references including databases, books, journals, microfi lms, pictures, 
audiovisuals, and other forms of recorded medical knowledge; and MEDLINE was 
accessible at 3,500 institutions (Smith  1986 ;NLM Fact Sheet [Jun] 1986). Haynes et al. 
 (  1986  )  and associates reported that MEDLINE was the best and fastest source for 
searching up-to-date articles. In 1990 a NLM survey found that the users of MEDLINE 
generally reported a positive view of MEDLINE, and more than two-thirds of respon-
dents to the survey used MeSH terms (Wallingford et al.  1990  ) . Lindberg et al.  (  1993  )  
and associates reported that MEDLINE searches were being carried out by physicians 
for individual patients, and rapid access to the medical literature was at times critical to 
patient care. Pao et al.  (  1993  )  and associates wrote that the ability to use MEDLINE 
effectively was clearly one of the many skills essential for effective clinical practice in 
a rapidly changing information environment. Wood  (  1994  )  described three options 
used at that time by health professionals to access MEDLINE: (1) logging onto a 
remote host computer by telephone and modem or by the Internet; (2) subscribing to 
the database on compact disc (CD-ROM); or (3) leasing the data on magnetic tape for 
loading on a local host computer; and Wood concluded that although the preferred 
option varied with the local situation, the trend was for increased access to the Internet. 
In 1997 the NLM announced that access to MEDLINE would be free of any charges 
when using the World Wide Web. In 1998 NLM conducted an extensive evaluation of 
the Internet performance of MEDLINE and its databases, by measuring response times 
for standardized searches in PubMed and Internet Grateful Med; and for downloading 
the front pages of the Web sites for NLM, NCBI, PubMed, and Internet Grateful Med; 
and found considerable variability between various domestic and international organi-
zations (Wood  (  1996  )    ). In 1999 MEDLINE added its ten-millionth journal citation to 
the database (NLM Newsline [Apr-Sep] 1999). By the year 2000 MEDLINE was the 
world’s largest database of published medical information, with nearly 4,500 journals 
from more than 70 countries, with more than 11 million references to, and abstracts of, 
journal articles; and it was searched about 20 million times a month. Bilateral agree-
ments between NLM and over 20 institutions in foreign countries allowed them to 
serve as International MEDLARS Centers. 

  MEDLINEplus  was introduced in 1998 as an enhanced version of MEDLINE that 
features consumer health information (NLM Newsline [Jul-Dec] 1998). It contains 
extensive information from the United States Pharmacopoeia, written in non-technical 
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language useful to patients, for more than 9,000 brand name and generic prescriptions 
and over-the-counter drugs; and it provides information on doses, side effects, drug 
interactions, precautions, and storage for each drug. MEDLINEplus is linked to 
authoritative information on several hundred health topics; and it connects users to 
current health news, medical dictionaries, lists of doctors and hospitals; and to about 
400 health topics that have links to selected resources and encyclopedias on diseases, 
clinical trials, tutorials, fi tness, and nutrition. The popularity of MEDLINEplus was 
attested by the NLM’s report that in the year 2000, its usage rate equaled fi ve million 
page-hits a month; and over 400,000 citations were added to MEDLINEplus (NLM 
Programs 2000). 

 The NLM launched its home-page on the World Wide Web in 1993; and by 1998 
NLM had found that most searches done on its website were for medical or health-
related terms, and only a few requests were for NLM’s services and programs. 
Accordingly, in 1999 NLM redesigned its home-page into fi ve areas: (1) Health 
Information, with direct links to MEDLINE, MEDLINEplus, and to its other data-
bases; (2) Library Services, with LOCATORplus and information of particular 
interest to librarians; (3) Research Programs, including grants and training opportu-
nities; (4) New and Noteworthy, for press releases and exhibits; and (5) General 
Information (NLM Newsline [Apr-Sep] 1999).  

    9.1.2   NLM Specialized Databases 

 By the 2000s, using its search and retrievals systems the NLM and NCBI made 
available more than 40 online specialized databases (NLM MEDLARS [Oct] 1986), 
(NLM Fact Sheet [Sep] 1998); including MEDLINE and others listed here: 

  AIDSLINE  (Acquired Immunodefi ciency Syndrome onLINE) began in 1988 as an 
online computer fi le with about 23,000 references to AIDS literature published since 
1980. In 1989 two databases,  AIDSDRUGS  and  AIDSTRIALS,  were developed to 
provide online access to current information on clinical trials of AIDS drugs and vac-
cines. AIDSDRUGS contained descriptive information about each agent (drugs and 
biologicals) being tested in the clinical trials. AIDSTRIALS provided online access to 
a central source for researchers to fi nd current information about AIDS-related clini-
cal trials of drugs and vaccines being tested (NLM Fact Sheet [Oct] 1989). In 1995 
AIDSLINE contained more than 100,000 references to the literature; including AIDS-
related citations from many MEDLARS databases, abstracts of papers presented at 
various conferences on AIDS; and also citations to HIV/AIDS-related articles from 
newspapers (NLM Fact Sheet [Jan] 1995). In 1999 AIDSLINE contained 140,000 
references (NLM AIDS Information Resources [May] 1999). 

  AVLINE  (Audio-Visuals onLINE) became available in 1975 with 29 citations. It 
has been updated weekly and contains citations and bibliographic information for 
audio-visual materials used in health sciences education. By 1986 it contained more 
than 14,000 citations (NLM Fact Sheet [Jun] 1986); and in 1998 it contained more 
than 31,000 records (NLM Fact Sheet [Sep] 1998). 
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  BIOETHICSLINE  (BIOETHICS onLINE) is an online bibliographic database 
that, since 1973, has been updated bimonthly, and contains citations to documents 
that discuss ethical questions arising in health care or biomedical research. Because 
bioethics is a cross-disciplinary fi eld, the scope of BIOETHICSLINE spans the 
print and non-print materials on bioethical topics, including the literatures of health 
sciences law, philosophy, religion, the social sciences, and the popular media. In 
1986 it contained more than 20,000 citations (NLM Fact Sheet [Jun] 1986). In 1998 
it contained more than 53,000 records (NLM Fact Sheet [Sep] 1998). 

  CANCERLIT  (CANCER LITerature) is sponsored by the NIH’s National Cancer 
Institute (NCI), and is comprehensive and international in scope. It has been updated 
monthly and contains journal articles, government reports, technical reports, meet-
ings abstracts and papers, monographs, letters, and theses on various cancer topics 
since 1983. In 1986 it contained more than 500,000 references on various aspects of 
cancer (NLM Fact Sheet [Jun] 1986); and in 1998 more than 1.3 million records 
(NLM Fact Sheet [Sep] 1998). 

  CANCERPROJ  (CANCER Research PROJects) is also sponsored by NCI; and is 
a collection of summaries of on-going clinical cancer research projects provided by 
investigators in many countries. It has been updated quarterly; and in 1986 it con-
tained about 10,000 records (NLM Fact Sheet [Jun] 1986). 

  CATLINE  (CATalog onLINE) became available in 1973 for online searching on 
the Library’s ELHILL retrieval system. In 1979 it began to add older cataloging 
records to its existing online fi le. It has been updated weekly, and contains refer-
ences to books and serials cataloged at the NLM after the year 1965. In 1986 it 
contained about 600,000 references (NLM Fact Sheet [Jun] 1986). In 1998 it con-
tained more than 786,000 records (NLM Fact Sheet [Sep] 1998). 

  CCRIS  (Chemical Carcinogenesis Research Information System) is a database 
supported by the National Cancer Institute that contains chemical-specifi c data cov-
ering the areas of carcinogenesis, mutagenesis, tumor promotion and tumor inhibi-
tion. Data are derived from studies cited in primary journals, NCI reports, and other 
special sources. CCRIS is resident and searchable in TOXNET. In 1986 it contained 
information on about 1,200 chemical substances (NLM Fact Sheet [Jun] 1986). In 
the year 2000 CCRIS contained more than 8,000 records (NLM Programs 2000). 

  CGAP  (Cancer Genome Anatomy Project) is a database supported by NCBI and 
the National Cancer Institute. Stephenson  (  1997  )  reported CGAP was initiated to 
collect a database of genes expressed in the development of cancer. In the year 2000 
it contained expression data for more than 20,000 human genes. 

  ChemID  (CHEMical IDentifi cation) is an online dictionary of chemicals, that in the 
year 2000 contained more than 350,000 records, primarily describing chemicals of 
biomedical and regulatory importance. ChemID was available to users through Internet 
Grateful Med and ChemIDplus. ChemIDplus has additional features, including chemi-
cal structure search and display for 68,000 chemicals; and has hyperlink locators that 
retrieve data from other sources as MEDLINE or HSDB (NLM Programs 2000). 

  CHEMLINE  (CHEMical Dictionary OnLINE) was initiated in 1972; and is an 
online, interactive, chemical dictionary database maintained under contract with 
Chemical Abstracts Service (CAS), and it has been updated bimonthly. It contains 
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CAS Registry Numbers, chemical names, synonyms, and molecular formulas. In 
1986 it contained almost 700,000 names for chemical substances that could be 
searched and retrieved online (NLM Fact Sheet [Jun] 1986). 

  CLINPROT  (CLINical Cancer PROTocols) is another NCI database that has been 
updated monthly and is designed primarily as a reference tool for clinical oncolo-
gists, and is also useful to other clinicians interested in new cancer treatment meth-
ods. In 1986 it contained more than 5,000 summaries of clinical investigations of 
new anti-cancer agents and treatment modalities (NLM Fact Sheet [Jun] 1986). 

  Clinical Trials  was established in 2000 by the Lister Hill Center working with 
other NIH Institutes and with the Food and Drug Administration (FDA), to provide 
easy Web-based access to current information about clinical research studies; and to 
function as a registry for both federally and privately funded clinical trials of experi-
mental treatments of serious diseases. In 1997 the U.S. Congress enacted the Food and 
Drug Administration Modernization Act of 1997 to improve the regulation of drugs; 
and it directed FDA, CDC, and NIH (including NLM) to establish, maintain, and 
operate a database as a registry for clinical trials of drugs used for the treatment of 
serious or life-threatening diseases. The database was to serve as a registry for clinical 
trials of experimental treatments, whether federally or privately funded, and to include 
information as to the description of the drug, details of the treatment, the results of the 
clinical trial, any drug toxicity or adverse events associated with the treatment; and to 
further the dissemination of this information. This FDA Act was amended in 2007 to 
provide a more standard format with detailed specifi cations for a drug clinical trial; 
and it expanded the database to include the results of clinical trials to enable tracking 
subsequent clinical trials for a drug, to support postmarketing surveillance for a drug, 
to allow the public to search the database for the effi cacy and safety of drugs, and to 
provide links to NLM’s MEDLINE for citations to any publication focused on the 
results of an applicable clinical trial. Clinical Trials.gov provides links to other online 
health resources such as MEDLINEplus. It was designed to be an evolving resource 
that provides timely information to patients and the public. In its fi rst year it contained 
more than 5,000 studies (NLM Programs 2000); and in 2008 nearly 27,000 new reg-
istrations were received (NLM Programs). 

  DART  (Developmental and Reproductive Toxicology) is a bibliographic database 
covering teratology and other aspects of developmental and reproductive toxicology. 
DART is available on the TOXNET system (NLM Fact Sheet [Sep 2] 1998). In the 
year 2000 DART contained more than 46,000 citations (NLM Programs 2000). 

  dbSNP  (database of single nucleotide polymorphisms) was initiated in 1998. 
SNPs (single nucleotide polymorphisms) are the most common forms of DNA 
sequence variations, and they can be used as landmarks to fi nd genes involved in 
diseases. In the year 2000 dbSNP contained more than 800,000 submissions (NLM 
Programs 2000). 

  DIRLINE  (DIRectory of Information Resources OnLINE) is a directory of orga-
nizations that was initiated as an online version of the Library of Congress National 
Referral Center fi les; and it serves as a directory of information resources that is 
maintained by the Library of Congress. It has been updated quarterly, and it contains 
locations and descriptions of a variety of resources, including technical libraries, 
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professional societies, federal and state agencies, university centers, and voluntary 
associations; as well as projects and programs with a biomedical subject focus. In 
1998 it contained about 16,000 records of participating organizations; and it began to 
support direct links and e-mail connections to Web sites of listed organizations (NLM 
Fact Sheet [Sep] 1998). 

  DOCLINE  (DOCument delivery online) was inaugurated in 1985; and is NLM’s 
connection to its Network of Libraries of Medicine. It provides NLM with an auto-
mated, online, inter-library, loan request, routing and referral system. DOCLINE 
automatically sends a request from a library to the nearest library in the Library 
Network that is holding the requested journal title. If the designated library is unable 
to fi ll the request for any reason, the request is automatically forwarded through a 
chain of libraries until the request is either successfully completed or reported as not 
able to be fi lled (Matheson 1986) (NLM Fact Sheet [Apr] 1985). In the year 2000 a 
revised Web-based DOCLINE interfaced the functionality available in the previ-
ously separate SERLINE (SERials OnLINE) with PubMed and LOCATORplus 
retrieval systems. By the year 2000 DOCLINE serviced three-million inter-library 
loan requests annually (NLM Programs 2000). 

  EPILEPSYLINE  contains citations and abstracts of articles on epilepsy, dated 
from 1947, and are maintained in cooperation with the National Institute of 
Neurological and Communicative Disorders. 

  GENE TOX  (GENetic TOXicology) is an online database that was created by the 
Environmental Protection Agency (EPA) to select assay systems for evaluation, 
review data in the scientifi c literature, and recommend proper testing protocols and 
evaluation procedures for these assay systems. It is accessible via TOXNET; and by 
the year 2000 it contained genetic toxicology (mutagenicity) studies for about 3,200 
chemicals (NLM Programs 2000). 

  GENBANK  (Genetic Sequence Data Bank) is the world’s most complete collec-
tion of all known public DNA and protein sequences, and includes sequence records 
submitted directly from researchers. GenBank is a genetic-sequence, data repository 
that contains molecular and sequence information; and genetics information received 
from laboratories around the world. GenBank was chartered to provide a computer 
database of all known DNA and RNA sequences and related biological and biblio-
graphic information; and was funded under a contract by the National Institute of 
General Medical Sciences (NIGMS) with IntelliGenetics, Inc. of Mountain View, 
California; and it was co-sponsored by the NLM and the Department of Energy. By 
1989 the GenBank contained approximately 30 million nucleotides, the building 
blocks of DNA and RNA, in approximately 26,000 different entries in biological 
material and organisms ranging from viruses to humans. A cross-referencing system 
was established with the Human Gene Mapping Library, that allowed GenBank users 
to identify and compare human genes, which have been sequenced with genes that 
already have been mapped (Swyers  1989  ) . 

  Human Genome Gene Map  charts the location of genes in the 23 pairs of human 
chromosomes. It is an NCBI Web site that presents a graphical view of the available 
human sequence data obtained from a variety of sources. It contains descriptions of a 
number of genetic diseases, and provides links to sources of additional information. For 
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each disease-causing gene there is a link to PubMed, OMIM, and LocusLink. This Gene 
Map website also links to NCBI’s Genes and Disease Web page designed to educate the 
public on how an understanding of the human genome will contribute to improving 
the diagnosis and treatment of disease. It fi xes each gene to a particular region of one of 
the 23 human chromosomes, and to defi ne the complete set of sequences of ATCG that 
make up a human being. As of 1989 fewer than 2% of the estimated 100,000 genes had 
been mapped (Merz  1989  ) . In 1992 GenBank was based in the NCBI that assumed 
responsibility for NIH’s GenBank’s Genetic Sequence Database. By the year 2000 more 
than nine million sequences from more than 100,000 species were included in the 
GenBank database (NLM Programs 2000). In the year 2008 NCBI celebrated 25 years 
of GenBank services; and at that time GenBank was comprised of two divisions: (1) the 
traditional nucleotide database that is divided into specialized components consisting of: 
(a) Expressed Sequence Tags (EST’s), (b) Genome Survey Sequence (GSS) records, 
and (c) the Core Nucleotide group; and (2) the Whole Genome Shotgun (WGS) 
sequences that are contigs (overlapping reads) from WGS assemblies that are recorded 
and updated as sequencing progresses and new assemblies are composed; and added in 
2008 was the Transcriptome Shotgun Assembly (TSA). Integrated retrieval tools were 
built to search the sequence data housed in GenBank ,  and to link the result of a search to 
other related sequences and to bibliographic citations (NLM Programs 2008). 

  Human Genome Project  was initiated to permit new approaches to treating the 
more than 3,000 inherited genetic diseases, many of which were already mapped to 
specifi c chromosomes. Congressman Claude Pepper supported the legislation autho-
rizing this project on the basis that it would link existing databases and help dissemi-
nate crucial information to researchers around the world, thus decreasing duplication 
of effort, and hopefully speeding progress in unlocking the mysteries of disease 
(NLM Newsletter 1989). Gerling et al.  (  2003  )  projected that the Human Genome 
Project would move the fi eld of molecular medicine forward with great speed and 
would advance scientifi c discoveries and also the clinical practice of medicine. The 
Human Genome Project, headed by Nobel laureate James Watson, was sponsored by 
the National Institutes of Health and the Department of Energy (formerly the Atomic 
Energy Commission) that was concerned with the genetic effects of radiation. As 
defi ned in 1998 the ambitious goal of this enormous project was to construct a 
GeneMap charting the chromosomal locations of the more than 30,000 human genes, 
and to provide the complete gene linkage and physical mapping of the human genome 
(NLM Newsline [Jul-Dec] 1998). This meant defi ning and locating the three-billion 
deoxyribonucleic acid (DNA) base pairs making up human genes. Then determining 
the sequencing of the DNA’s four chemical bases: adenine (A), thymine (T), cytosine 
(C), and guanine (G), that determine the characteristics of every gene; and that 
together spell out for each person the formation, growth, and any tendency to disease. 
Since DNA sequencing involved a series of repeated steps, it was an ideal process for 
automation that was accelerated by using computers (NLM News [Nov] 1988). 
Venter  (  2007  ) , while working with Celera Genomics, developed an approach to 
assembling the human genome called shotgun sequencing that shreds the genome 
into pieces small enough for computer sequencing machines to work with; and then 
stitching the sequencing pieces back together by matching the overlaps. 
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  HealthSTAR  (Health Services, Technology, Administration, and Research) combined 
former HEALTH (Health Planning and Administration) and HSTAR (Health Services/
Technology Assessment Research) databases are produced cooperatively by NLM and 
the American Hospital Association, and became available in 1996 (NLM Fact Sheet 
[Sep] 1998). In 1986 the former HEALTH already contained more than 300,000 refer-
ences to literature on health planning, organization, fi nancing, management, manpower, 
and related subjects (NLM Fact Sheet [Jun] 1986). In 1998 the combined HealthSTAR 
fi les contained more than three million records (NLM Fact Sheet [Sep] 1998). 

  HISTLINE  (HISTory of medicine onLINE) is an online bibliographic database 
maintained by NLM’s History of Medicine Division. It includes citations to mono-
graphs, journal articles, symposia, and similar publications on the history of medicine 
and related sciences, professions, individuals, institutions, drugs and diseases; giving 
chronological periods and geographical areas; and images of nearly 60,000 portraits, 
photographs, fi ne prints, and graphic arts of medicine from the Middle Ages to the 
present. In 1986 it contained about 70,000 records (NLM Fact Sheet [Jun] 1986). In 
1999 it contained about 190,000 records (NLM Fact Sheet [May 25] 1999). 

  HSDB  (Hazardous Substances Data Bank) is a factual database that focuses on 
the toxicology of more than 4,000 potentially hazardous chemicals. It contains 
information on human toxicology and clinical medicine; and toxicological informa-
tion useful in chemical emergency responses and other applications; and data related 
to the environment, to emergency situations, and to regulatory issues. HSDB has 
been a part of the TOXNET fi les from its start (NLM TOXNET Fact Sheet [Jan] 
1986). In 1986 it contained records for about 4,000 chemical substances (NLM Fact 
Sheet [Jun] 1986). In the year 2000 it contained records for more than 4,500 clinical 
substances and was providing more than 25,000 searches each month and contained 
about 5,000 records (NLM Programs 2000). In the year 2008 HSDB was focusing 
on the toxicology of over 5,000 potentially hazardous chemicals; and was expand-
ing its coverage of chemical compounds of interest in monitoring potential terrorist 
activities (NLM Programs 2008). 

  HSRProj  (Health Services Research Projects) became available in 1995, and pro-
vides access to grants and contracts in health services research. The HSRProj database 
contains citations to research-in-progress funded by both federal and private grants 
and contracts. In 1999 it contained more than 5,000 citations to ongoing or recently 
completed research that was funded since 1995 (NLM Fact Sheet [Apr 29] 1999). 

  HSTAT  (Health Services Technology Assessment Texts) was developed by the 
Lister Hill Center and became available in 1994. It provides a wide variety of 
publications, including full-text resources for clinical practice guidelines, con-
sumer health brochures, technology assessments, and other documents useful in 
health care decision-making. It contains information received from multiple gov-
ernment agencies, including the Agency for Health Care Policy and Research 
(AHCPR), the U.S. Task Force on Preventive Services, and the NIH Consensus 
Program and Clinical Guidelines reports. It provides documents and access 
through its World Wide Web servers; and links to PubMed and other external 
databases (NLM Fact Sheet Internet-Accessible Resources [March] 1995; NLM 
HSTAT Fact Sheet [Feb 8] 2001). 
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  IHM  (Images from the History of Medicine) is the NLM’s database of about 
59,000 historical images and documents of social and historical aspects of medicine 
from the Renaissance to the present .  OLI/IHM is a system for delivering catalogued 
image archives via the World-Wide Web (NLM Fact Sheet [Oct] 1994). 

  LOCATORplus  was released in 1999 as an online catalog database of books, 
journals, monographs, and audiovisuals in the NLM collections. It contains book 
and chapter citations from many specialized databases, such as BIOETHICSLINE, 
HISTLINE, POPLINE, and others. LOCATORplus also contains consumer health 
information in MEDLINEplus and in other sources (NLM Newsline [Jan-Mar] 
1999). 

  NIHSeniorHealth  was developed by the NLM and the National Institute on 
Aging as a talking web site that permits one to hear the text when it is read aloud. It 
provides information on common diseases of the elderly, including Alzheimer’s 
disease, cancers, hearing loss, and others. 

  OLDMEDLINE  (or OLDMED) was fi rst available online in 1996 with more than 
300,000 citations published in the 1964 and 1965 Cumulated Index Medicus, and 
some earlier citations to OLDMED. It does not contain abstracts, and it used older 
versions of MeSH. It was searchable through Internet Grateful Med (NLM Fact 
Sheet [Sep] 1998). 

  OMIM  (Online Mendelian Inheritance in Man) is a catalog of human genes and 
genetic disorders authored by McKusick  (  1988  )  and his colleagues at Johns Hopkins 
University and elsewhere; and it was developed for the World Wide Web by NCBI. 
This database contains textual information and references on genetic disorders, and 
has been updated regularly. It has links to MEDLINE, to sequence records in the 
Entrez system of databases, and to additional related resources. 

  PDQ  (Physician Data Query) is a factual database that was initiated in 1983 by 
the National Cancer Institute (NCI), and was made available by NLM to the medical 
community in 1984. Hubbard et al.  (  1987  )  stated that PDQ is a unique information 
system that encompasses an entire medical specialty; and it is an important compo-
nent of NCI’s program to reduce mortality from cancer. PDQ has been updated 
monthly, and it provides state-of-the-art cancer treatment and referral information. 
It consists of three interlinked fi les: a cancer information and treatment fi le, a direc-
tory of physicians and organizations that provide cancer care, and a fi le of ongoing, 
active NCI supported cancer treatment protocols from the CLINPROT database 
(Esterhay  1984  )  (NLM Fact Sheet [June] 1986). By 1986 the directory fi le con-
tained data on more than 10,000 physicians and about 2,000 institutions; and the 
protocol fi le contained summaries of more than 1,000 active treatment protocols. In 
its fi rst 2 years, the NLM’s PDQ was accessed by more than fi ve million users 
(Kreps  1986  ) . 

  POPLINE  (POPulation Information OnLINE) is produced by the NLM in 
cooperation with the population information programs of several universities. It is 
international in scope; and it includes information on family planning, population 
law and policy, and primary health care including maternal/child health in devel-
oping countries. It has been updated monthly and provides bibliographic citations 
to a variety of materials, including journal and newspaper articles, monographs, 
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technical reports, and unpublished works. In 1986 it contained more than 140,000 
citations and abstracts for literature on population and family planning (NLM 
Fact Sheet [Jun] 1986). 

  RTECS  (Registry of Toxic Effects of Chemical Substances) is a factual database 
of potentially toxic chemicals. It has been updated quarterly; and in 1986 it con-
tained data for more than 80,000 substances. It is the NLM’s version of the National 
Institute for Occupational Safety and Health (NIOSH) annual compilation of sub-
stances with toxic activity. The information in RTECS is structured around chemi-
cal substances with toxic action. Both acute and chronic effects are covered, 
including carcinogenicity, mutagenicity, and reproductive consequences. It includes 
some searchable listings of basic toxicity data and specifi c toxicological effects, and 
exposure standards under various Federal regulations and programs (NLM Fact 
Sheet [Jun] 1986). In 1999 it contained more than 130,000 chemicals (NLM Fact 
Sheet [Jun 17] 1999). 

  SDILINE  (Selective Dissemination of Information onLINE) contains citations 
for the current month in MEDLINE. Users may store profi les of interest areas and 
have Selective Dissemination of Information searches made automatically against 
this fi le. The entire contents of the fi le have been changed monthly, and usually 
consist of about 27,000 citations (NLM Fact Sheet [Sep 3] 1998). 

  SERHOLD  is NLM’s database of machine-readable, holding-statements for bio-
medical serial titles held by U.S. and selected Canadian libraries. SERHOLD was 
created in 1982; and by 1986 it contained nearly one million records (NLM News 
[Nov] 1986). It is accessible through DOCLINE ;  and in the year 2,000 SERHOLD 
included more than one million holding-statements for over 50,000 serial titles from 
3,011 libraries (NLM Fact Sheet [Sep 21] 2001). 

  SERLINE  (SERials onLINE) contains bibliographic records for all serials cataloged 
for the NLM collection, including titles in SERHOLD. It is updated quarterly, and in 
1986 SERLINE contained about 66,000 serial titles (NLM Fact Sheet [Jun] 1986). 

  SPACELINE  (SPACE Life Sciences onLINE) contains bibliographic citations 
contributed by the National Aeronautics and Space Administration (NASA). It con-
tains journal articles, technical reports, books, conference proceedings, basic 
research, and audio-visuals related to life sciences. In 1998 it held about 140,000 
records (NLM Fact Sheet [Sep 3] 1998). 

  TDB  (Toxicology Data Bank) was initiated in 1963, and became available in 1978 
as an online, interactive, factual database composed of approximately 5,000 compre-
hensive and peer-reviewed chemical records. Compounds selected for TDB include 
high volume production or exposure chemicals, drugs, and pesticides with actual or 
potential toxicity. Categories include pharmacological and toxicological data, envi-
ronmental and occupational data. In 1986 it contained records for more than 4,000 
chemical substances (NLM Fact Sheet [Jun] 1986).  TOXICON  (Toxicology 
Information Conversional On-line Network) was inaugurated in 1972, and contained 
citations on pesticides and environmental pollutants. In 1973 TOXICON was absorbed 
into TOXLINE (Miles  1982  ) .  TOXLINE  (TOXicology information onLINE) was ini-
tiated in 1970, and is an extensive collection from 1965 of online bibliographic infor-
mation covering pharmacological, biochemical, physiological, environmental, and 
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toxicological effects of drugs and other chemicals. It has been updated monthly; and 
in 1986 TOXLINE contained almost two million references (NLM Fact Sheet [Jun] 
1986). By the year 2000 TOXLINE contained nearly three million citations (NLM 
Programs 2000).  TRI  (Toxic chemical Release Inventory) is an annually compiled 
series of fi les based upon data submitted by industrial facilities on toxic releases; and 
it is available on TOXNET. It contains data on environmental releases by industrial 
facilities to air, water and soil for more than 600 chemicals specifi ed by the 
Environmental Protection Agency (EPA). As an example for 1 year, TRI94 contained 
about 80,000 records (NLM News [Sep 3] 1998). 

  VISIBLE HUMAN   PROJECT  was begun in 1986, and developed full-color, three-
dimensional, computer-generated, digital images of two human bodies, that provided 
data sets designed to serve as a common reference point for the study of human 
anatomy. It is the creation of complete, anatomically detailed, three-dimensional rep-
resentations of the normal male and female human bodies. In 1991 the NLM con-
tracted with the University of Colorado to acquire normal male and female cadavers, 
and to build a digital image library representing the entire human anatomy. In 1994 
NLM announced the availability of a digital data-set of the human male anatomy that 
was about 15 GB in size, and consisted of frontal radiographs, magnetic resonance 
images, computed tomography images, and images of anatomic serial sections 
(Spitzer et al.  1996  ) . In 1995 NLM announced the creation of a “Visible Woman”, a 
three-dimensional, computer-generated, female “cadaver”, with a resolution that was 
said to be three times sharper than the male cadaver (NLM News [Nov-Dec] 1995). 
The Visible Man and Woman together constituted some 55 GB of data that were 
available on CD-ROMs, or via the Internet, or on magnetic tape from NLM. These 
data sets have been applied to a wide range of diagnostic, treatment, educational, 
artistic, and industrial uses (Ackerman  1992,   1998  ) . 

 By the year 2000 the NLM’s collections totaled almost six million publications, 
including books, journals, audiovisuals, and historical materials; and its databases 
were being accessed on the average of about ten-million times a month. The total 
number of online searches in all of its databases that year exceeded 240 million; and 
it served more than 150,000 users world-wide (NLM Programs 2000). In the year 
2008 NLM’s collections totaled almost 12 millions; its PubMed provided more than 
775 million searches; and NLM collaborated with 18 public institutions in foreign 
countries that served as International MEDLARS Centers (NLM Programs 2008).   

    9.2   Examples of Other Early Bibliographic Medical Databases 

 T. Doszkocs (1980), and associates at the National Library of Medicine (NLM), 
noted that rapid advances had occurred in the 1970s for automated information 
retrieval systems for science and technology. They reported that in the year 1980 
more than 1,000 databases were available for computerized searching, more than two 
million searches were made of these databases; and the NLM served as both database 
producer and distributor offering online access to 19 of its different databases. In 
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1980 there were 528 publicly available bibliographic-related databases that contained 
more than 70 million citations or records that spanned many of the sciences, and the 
majority of these could be searched online. In the United States online access to a 
number of these databases was then provided by Lockheed Information Systems’ 
DIALOG, by Bibliographic Retrieval Services (BRS), and Systems Development 
Corporation (SDC). Marchisotto and Walsh  (  1983  )  also reported that in 1980 there 
were about 800 publicly available bibliographic or bibliographic-related databases, 
with a large number reporting on information in the medical or biomedical fi elds. 
Initiated in 1926, the BioSciences Information Service (BIOSIS), sponsored by the 
Association for the Advancement of Science, the National Academy of Sciences, and 
the American Institute of Biological Sciences was at that time the world’s largest 
English-language abstracting and indexing service for biological and biomedical 
research, with 52% of its Biological Abstracts distributed outside of the United 
States. Lunin and Moerman  (  1984  )  described the work of several members of the 
Combined Health Information Database (CHID) project, that in 1982 developed a 
separate database that became a fi le in Bibliographic Retrieval Services (BRS); and 
that other clearing houses were similarly contributing fi les to the BRS. They described 
the many problems associated with attempting to create a combined clearing house 
for medical fi les because of unstandardized vocabularies and the different goals of 
the vendors. Feinglos  (  1983  )  compared the services of the NLM’s MEDLINE at its 
tenth anniversary in 1981, with those offered by BRS and by Lockheed’s DIALOG. 
Although their contents of the MEDLINE fi les were basically the same, Feinglos 
reported that there were some major differences between these three in costs, acces-
sibility to fi les, and requirements for online MESH vocabulary. 

 Horowitz (1981) and Bleich, at the Beth Israel hospital in Boston, developed a 
computer program, called PaperChase, that permitted users without previous train-
ing to search medical literature in its bibliographic database by author’s name, by 
the name of the journal of publication, title of article, or by medical subject using 
the NLM MESH terms. The PaperChase database was taken from computer tapes 
provided by NLM that was updated monthly. In August 1979 a cathode-ray tube 
terminal was installed in the library of the Beth Israel hospital in Boston, and more 
than 1,000 users conducted more than 8,000 searches in its fi rst year of operation. 
During its fi rst 3 years, from terminals within Beth Israel hospital, 3,654 persons 
used PaperChase to search the medical literature (Horowitz et al.  1983  ) . By 1986 
the PaperChase database included the entire MEDLINE collection of nearly fi ve 
million references (Underhill and Bleich  1986  ) . 

 Rodnick  (  1988  ) , at the University of California, San Francisco, provided a course 
in medical informatics, which included how to perform online literature searches as 
a part of the medical school curriculum. After comparing PaperChase, BRS, and 
NLM’s Grateful Med for searching MEDLINE, they reported that NLM’s Grateful 
Med interfaced more readily with MEDLINE and made searching easier. Brahmi 
 (  1995  )  compared three services: Grateful Med that at that date provided access to 
over 40 databases in the National Library of Medicine; PaperChase that at that date 
provided access to NLM’s MEDLINE, HEALTH, and a few other databases; and 
Physicians’ Online that provided services to MEDLINE and seven other databases. 
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Brahmi described some differences in their accessibility, ease-of-use, timeliness, 
scope, and database coverage that were due to differences in indexing methods, 
coverage dates, text-word fi eld sources and selection of fi elds, and use of MeSH 
terms and Boolean operators when performing a search. 

  Hersh and Hickam (1995)  at the Oregon Health Sciences University, and D. Hickam 
at the Portland VA Medical Center, initiated in 1990 their SAPHIRE Project to facilitate 
the indexing, retrieval, and evaluation of databases, that they considered to consist of 
two types: (1) bibliographic databases that had references to original medical literature 
and contained indexing terms assigned by a human indexer from a controlled vocabu-
lary; and (2) full-text databases that contained the complete text of documents from text 
books, journals, and other print sources, and were mostly indexed from the words pres-
ent in the document. Their SAPHIRE project used word-based automated methods for 
indexing that employed concepts applied to text rather than to individual words; their 
vocabulary for identifying concepts and their synonyms was based on the Metathesaurus 
of NLM’s Unifi ed Medical Language System (UMLS); and it also allowed for Boolean 
and word-based natural-language searches. To facilitate the discovery of relevant WEB 
and non-WEB based documents, including images, they also developed a scheme writ-
ten in JAVA language, for generating ‘metadata tags’ to help authors select NLM’s 
Medical Subject Heading (MeSH) terms that closely represented the medical subjects 
covered in the documents (Munoz and Hersh  1998  ) . Brahmi  (  1995  )  also evaluated alter-
native information retrieval methods as to the relevance of the retrieved documents and 
found a moderate level of inter-observer variability in relevance judgments.  

    9.3   Summary and Commentary 

 By 1974 the National Library of Medicine was generally acknowledged to be the 
largest medical library in the world, with a global network to many countries. In 
1986 at its sesquicentennial that celebrated 150 years of Library services, the 
NLM’s collection of publications numbered more that 3.5 million items, including 
databases, books, journals, microfi lms, pictures, audiovisuals, and other forms of 
recorded medical knowledge (Smith  1986  ) . By the end of the 1990s the NLM had 
granted more than 1,400 licenses to individual and organizations from all over the 
world to use its visible human data sets (NLM Fact Sheet [Aug 21] 1998). In the 
year 2000 the NLM’s collections totaled almost six million publications; the total 
number of online searches in all of its databases that year exceeded 240 million; its 
databases were being accessed on the average of about ten-million times a month; 
and it served more than 150,000 users world-wide (NLM Programs 2000). In the 
year 2008 NLM’s collections totaled almost 12 millions; its PubMed provided 
more than 775 million searches; and NLM collaborated with 18 public institutions 
in foreign countries that served as International MEDLARS Centers (NLM 
Programs 2008). 

 The changes in these six decades of the traditional medical library into a virtual 
library were remarkable. In the 1950s a user who needed to do a bibliographic 
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search would visit a traditional medical library in a building with rooms containing 
stacks and shelves of paper-based publications. Using card-based catalogs the user 
would search for the catalog number of the desired publication by its title, subject, 
or author; and then fi nd, or have a librarian fi nd, and retrieve the desired paper-based 
publication from the shelves. The user would then sign for the loan of the publica-
tion and move with it into a reading room, or borrow and remove it from the library 
for a limited time; and make a copy or an abstract of the desired subject material for 
the user’s own paper-based fi les. In the 1990s a user could do a search from home 
or from an offi ce or a hospital for a desired publication, using a personal computer 
to communicate with a virtual medical library such as NLM’s bibliographic data-
base, PubMed, either by using the Internet with the NLM’s URL or using the World 
Wide Web with GOOGLE; and retrieve, read, and print the desired publication. In 
the 2000s the user could readily use a personal computer or a mobile “smart” phones 
from almost any location to connect to the Internet and to PubMed. 

 Miles  (  1982  )  was prescient in predicting that the library of the future might be a 
virtual paperless one that would not have any rooms for readers; it would contain 
only literature, equipment, and staff; and library information would be delivered to 
users in homes, offi ces, hospitals, laboratories, institutions, and student areas through 
rapid wireless communication systems.      
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 It may be of some interest and possibly of some use to review the remarkable 
developments of medical databases during these six decades from 1950 to 2010; 
and then offer some predictions of what advances in medical databases can be 
expected in the next decade. 

    10.1   A Review of the First Six Decades 

 The basic functional requirements of a medical database changed very little during 
these past six decades of medical computing, even though the rapid diffusion of 
computers bypassed the era of the industrial revolution and brought about an infor-
mation and telecommunications revolution. However, its technical requirements 
greatly changed and expanded during each decade as technology innovations added 
new capabilities and enhancements for the users of a medical database. 

 In the 1950s a “computer” was the job title for a person using a calculator and a set 
of formulae (Blum  1986  ) . In that decade most physicians recorded their hand-written 
patient-care notes on paper forms that were collected and stored in their patients’ paper-
based charts, that were then stacked on shelves in a medical record room. Spurred on 
by World War II, an electronic device was invented in the 1940s that could carry out 
arithmetic and logical functions, and it was also called a “computer”. Soon computer-
ized medical databases began to evolve with the development of new computing and 
informatics technology. Large mainframe, time-sharing computers located in 
air-conditioned rooms were used for the earliest computer applications in medicine. 
Most data were entered into the computer using punched paper cards. The data were 
stored in the computer’s magnetic core memory; it could be accessed sequentially in 
computer fl at fi les in fi le management systems. The printed output of data was usually 
produced in batches; and the fi les were stored and archived on magnetic tape or disks. 

 In the 1960s computer languages began to be developed that were more easily used 
by non-programmer physicians and medical researchers. Barnett  (  1967,   1981  ) , and 
his associates at the Laboratory of Computer Science at the Massachusetts General 

    Chapter 10   
 Epilogue       

                 



260 Chapter 10 Epilogue

Hospital, developed a novel computer language and database-management system they 
called the Massachusetts General Hospital Utility Multi-Programming System 
(MUMPS), that employed an operating system and a database-management system for 
handling large volumes of information; and it provided a relatively easy interactive 
mode for programmer-computer communication. MUMPS soon became the most 
commonly used programming language and database-management system in the 
United States. Structured computer databases began to evolve with associated data-
base-management systems; and hospital information systems began to be developed 
that commonly used a central mainframe computer with an integrating database that 
serviced all clinical departments. It was soon found that although a single, large com-
puter could readily integrate patient data into a single database, it could not adequately 
support the complex information processing requirements for all of the subsystems 
developed for the various clinical specialties and ancillary services in a large medical 
center. Another problem was that surgeons, pathologists, and other clinicians who dic-
tated their reports that described the procedures they had performed on their patients, 
had their dictated reports transcribed by secretaries and deposited in paper-based 
records. Since much of the data in a medical database was entered in English language 
text, it was soon evident that the effi cient processing of textual data was a critical 
requirement. Some textual patient data were manually encoded by trained clerks using 
standard terminologies (such as the International Classifi cation of Diseases) before 
being entered into the computer database, since the coded diagnoses were necessary to 
the billing for the payments of claims for provided medical care services; and also 
facilitated the retrieval of data for management operations and clinical research pur-
poses. In this decade some specialized medical databases began to be established in the 
form of registries; but as computing power and storage capacity increased and became 
less costly, registries generally enlarged and were called databases. 

 In the 1970s some natural language retrieval programs were developed that 
matched key words in context (KWIC). Soon natural language processing (NLP) 
systems were developed using automated text processing approaches; and were pri-
marily syntax-based programs that parsed the text by identifying words and phrases 
as subjects or predicates, and as nouns or verbs. By the end of the 1970s some NLP 
systems used both syntactic and semantic approaches; and after completing the syn-
tax analysis of a sentence, then semantic-based programs attempted to recognize 
concepts of the meanings of the text by referring to data dictionaries, metadata-
bases, or knowledge bases that suggested how human experts might interpret the 
meanings of phrases within their particular information contexts; and rewrite-rules 
would then attempt to regenerate the original text. 

 Also in the 1970s the advent of minicomputers and microcomputers permitted 
some hospital services, commonly the clinical laboratory, to have their subsystem 
databases directly linked to a central mainframe computer that integrated all of a 
patient’s data into the patient’s medical record that was stored in the mainframe 
computer’s database (Ball  1980  ) . Although distributed database management sys-
tems began to be developed, VanBrunt  (  1980  )  observed that despite the increasing 
use of computer technology in the 1970s, there was not yet any notable effects of 
computers on a physician’s mode of practice. 
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 In the 1980s a diffusion of minicomputers and microcomputers were incorporated 
into a variety of medical applications. Microcomputer-based subsystems, that had 
evolved independently for specialized clinical and ancillary services, usually became 
subsystems of a large central, integrating database-management system. More complex 
database-management systems evolved as computers became more powerful, as com-
puter storage devices became larger and cheaper, as computer networks and distributed 
database-management systems were developed, and as a great variety of secondary 
clinical and research databases evolved. Edelstein  (  1981  )  observed that in its beginnings, 
users had to understand how and where data were stored; and since data could not be 
shared by different unstandardized applications, that resulted in much duplication of 
data and effort. However, soon data standards were developed to facilitate some sharing 
of data. Levy  (  1984  )  concluded that although computers had been introduced in the 
1950s, not until the 1980s did computers became internalized into the popular culture of 
the nation, and computers became commonly accepted working tools. After primary 
medical databases were established, it was soon evident that secondary collections of 
data extracted from primary clinical databases could be of great value in supporting 
clinical research, in improving the clinical decision-making process and the quality of 
health care. Clinical research databases soon acquired special legal requirements to 
assure the security, privacy, and confi dentiality of patient data; and the de-identifying of 
personal patient data became a strict legal requirement before the data was transferred 
from a clinical patient record into a medical research database. 

 In the 1990s computer applications in most hospital clinical services were opera-
tional; and some progress was becoming apparent in the use of electronic medical 
records (EMRs). Lincoln ( 1990 ) reviewed the important contributions of computing 
to medical care and to medical research, but pointed out that there still existed the 
challenge to formulate computer logics to properly relate descriptions of disease, 
rules for medical practice and general guidelines for health care delivery. Some 
natural language processing systems began to provide both the automatic encoding 
of textual data and the capability of retrieving the stored textual data. The increasing 
use of prescribed drugs in patient care resulted in an increasing number of adverse 
drug events, especially for elderly patients who take multiple prescription drugs; so 
the monitoring of adverse events became an important function of a clinical data-
base-management system. In the 1990s it was estimated that less than 1% of the 
3-billion prescriptions written in the United States were entered by a computer; 
however, the electronic entry of prescriptions by physicians using computer order-
entry systems was expected to accelerate this process ( Schiff  2010). In the 1990s the 
Internet made nation-wide communications using computers commonplace. 

 In the 2000s wireless mobile phones, the Internet and the World Wide Web became 
the main modes used for local and global communications. Microsoft had made com-
puters easy for anyone to use, and Facebook made video communication the basis for 
social networks. Natural language processing systems were suffi ciently developed to 
be able to automatically encode textual data, and to successfully query the English 
language text commonly stored in medical databases. As patient-care data expanded 
in both volume and complexity, frequent innovations in technology helped to provide 
more effi cient computer-based, clinical-information systems in hospitals and in medical 
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offi ces; and distributed database-management systems allowed physicians to enter 
orders and retrieve test results using clinical workstations connected to client–server 
computer systems that linked multiple medical center databases. 

 In the 2010s Hartzband  (  2010  )  observed that nothing had changed clinical practice 
more fundamentally than did the Internet, since it provided easily retrieved information 
by: (1) physicians for clinical-decision support; and (2) patients in search of 
self-diagnoses and better understanding of their diseases and of their prescribed therapy. 
The Internet and the Web not only changed profoundly personal communication between 
the doctor and the patient, but also made possible the global exchange of clinical data 
and medical knowledge between multiple information sources. With the fi nancial sup-
port of the federal government, in the 2010s electronic medical records (EMRs) were 
becoming commonplace in the United States. EMRs began to be stored in large clusters 
of servers, sometimes called cloud computing, because of their lower cost; despite some 
diffi culties in protecting the security, privacy and confi dentiality of patients’ medical 
data from hackers. Although many legal requirements were established to try to assure 
the security, privacy and confi dentiality of personal patient data in primary EMRs, it 
became increasingly evident that breaches in the security and privacy of patient data 
could be expected to occur until more effective policies and mechanisms were imple-
mented. This was becoming an especial concern as more EMRs were transmitted over 
the Internet, and as translational databases evolved that allowed Web-based medical 
databases that were located in multiple and diverse institutions to collect, query, and 
exchange computer-based patient data. The Web offered opportunities for simplifying 
database deployment, since in a typical Web database application it was simpler to use its 
standardized formats; it eliminated the need for a user to maintain multiple versions of 
data since they all resided in the Web server; when a user’s browser visited a particular 
page on its Web site, the page contents were kept on the user’s local machine, and then 
only the changed data-items needed to be re-transferred; and Web-based transactions 
were usually less costly. The large databases that became available to national public 
health services enabled better surveillance of epidemics. The very large size of claims 
reimbursement databases enabled the analyzes of a variety of medical conditions, and 
helped to conduct measures of the comparative cost-effectiveness of some treatments. 
Medical knowledge databases became common collections of information about specifi c 
medical problems; and as larger knowledge databases were developed in faster auto-
mated information-retrieval systems, knowledge discovery became the process of auto-
matically searching in very large databases for potentially useful, previously unknown 
information by employing techniques from statistics and information science; and the 
process of data mining applied to very large medical databases became more common.  

    10.2   Some Projections for the Next Decade 

 As early as the 1990s Shortliffe et al.  (  1992  )  and others had predicted that physician’s 
computer workstations will become an integral part of the usual medical practice 
environment; and a database-management system will provide an electronic patient 
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record that will allow physicians to perform all necessary functions needed for the 
care of their patients, including the ability to readily review prior care reports that had 
been recorded as text, voice, visual images, or as electrocardiogram signals. 

 It can be reasonably predicted that in the next decade larger computer database-
management systems will more commonly be used to support clinical decisions with 
evidence-based practice guidelines readily accessible from bibliographic and knowl-
edge databases. They will facilitate entering data by voice, mouse or light-pen pointers, 
readily allow entering patient-care orders and retrieving reports of completed proce-
dures. They will allow consultations by wireless communications to-and-from the hos-
pital, the offi ce, or the physician’s home, and better protect patients’ data security and 
privacy. Also projected is the increased effi ciency that will be given to nurses in provid-
ing and recording all of their patient-care information. Patients will also benefi t by 
being able to use telemedicine technology in their homes to make appointments, to 
receive professional advice, to obtain test results, and to order refi ll prescriptions. The 
increased use of the Internet and the World Wide Web will facilitate broadband com-
munications, and the increased use of large sets of servers to provide huge online stor-
age capacities is likely to produce the universal use of electronic patient records linked 
to secure database-management systems, and allow a patient to have a common shared 
EMR when receiving care in diverse medical centers. 

 It can be reasonably projected for the next decade that hand-held portable devices 
with increased wireless capacity and speed will exploit emerging parallel processing by 
computers with multiple core transistors; and these will become regular mobile tools 
for health care providers to communicate with each other and with their patients; to 
review their patients’ records any time at any site; and to transmit advice to patients, 
transmit orders to pharmacies and to laboratories; and to allow physicians and patients 
to communicate text, electronic signals and visual images; and provide telemedicine 
supported by Web-based clinical decision support. Telemedicine will be supported in 
most communities in this country; and x-rays, electrocardiograms, and other portable 
medical equipment will be able to transmit medical information by wireless communi-
cations with acceptable response rates. Universal access to NLM’s PubMed and to 
other online clinical decision support services will be always available. In future 
decades electronic medical records will be standardized so that essential medical infor-
mation will be collected and stored in a national medical database, and be accessible 
wherever the patients and the physicians are located. 

 Miles  (  1982  )  was prescient in predicting that the medical library of the future 
will likely be a virtual paperless one that will have few rooms for readers; it will 
contain only digitized (or to be digitized) literature and computer databases, little 
equipment, and few library staff; and library information will be delivered to users 
in homes, offi ces, hospitals, laboratories, institutions, and student areas - all through 
rapid communication systems. However, further major expansions in computer 
database-management systems for very large medical centers will likely be slower 
in their development in the next few decades because of their increased complexity 
and higher costs. Lindberg  (  1979  )  considered the medical database-management 
system to be one of the most complex informatics technology systems; and Starr 
 (  1982  )  described the hospital as the most complex organizational structure created 
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by man. Furthermore the extraordinary requirements for the successful development 
and implementation of a very large database-management system for a comprehen-
sive medical center complex are similar to those applying to all large complex tech-
nology systems; and as described by Galbraith  (  1967  )  are that they all require: (a) 
long-term heavy investment of capital resources and specialized technical man-
power, (b) accurate planning to infl exibly commit people and capital for long lead 
times, and (c) a long-term commitment from an organization that is competent to 
coordinate a mix of medical, systems, and engineering specialists.      
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