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Preface

Proteins are the working horse of the cellular machinery. They are responsible for
diverse functions ranging from molecular motors to signaling. They catalyze reac-
tions, transport, form the building blocks of viral capsids, traverse the membranes to
yield regulated channels, and transmit information from the DNA to the RNA. They
synthesize new molecules, and they are responsible for their degradation. Proteins
are the vehicles of the immune response and of viral entry into cells.

Perhaps the most common dominator of all proteins is their ability to interact
with one another and with many other types of molecules, whether small or large.
Not only do proteins interact with most known chemical components, but they do
so specifically. That is, they interact at a specific location, with a specified affinity
and kinetics. This is the result of the varied chemistry of the amino acids and cofac-
tors, and the specific three-dimensional shapes of proteins. Protein—protein interac-
tions are divided (somewhat artificially) into permanent and transient interactions,
but even the transient complexes can bind with picomol or nanomol affinity, and
with rate constants of association and dissociation ranging six orders of magnitude.
Another line of division is between homo- and heterocomplexes, which can be fur-
ther distinguished by the number of proteins involved in the complex (dimers, trim-
ers, large multiprotein complexes, etc.). Thus, protein interactions can be discussed
from the point of view of a biophysicist or bioinformatician: The first is interested
in understanding how the various forms of interactions work and assemble, and the
latter is focused on the analysis of the interactions; both aiming toward prediction
of the interaction. However, within cells, proteins often function as parts of large
networks of interactions, also called interactome. In recent years, many aspects of
biology have been likened to these networks, in which distinct nodes (e.g., individual
proteins) can be defined that interact with one another within a system to perform
various biological functions. Network maps have been constructed to depict all of
the possible protein—protein interactions within a cell (i.e., the interactome), essen-
tially providing a low-resolution view of molecular recognition. The distinct view
of protein—protein interactions, from the atomic detail to the cellular interactome
arrangement, has to be investigated at different levels (structure, function, organiza-
tion, energetics, dynamics) with each of these levels being investigated experimen-
tally as well as computationally. To obtain a more complete understanding of cellular
processes, a combination of all of these will be needed.

To be able to predict protein—protein interactions, there is a need to figure out
various aspects of their associations. These range from shape complementarity to
the organization and the relative contributions of the physical components to their
stability. Proteins interact through their surfaces. Thus, to analyze protein—protein
interactions, residues (or atoms) that are in contact across the two-chain interface are
studied. In addition, residues in their vicinity are also inspected to explore their sup-
porting matrix. At the same time, it behooves us to remember that proteins that are
free in solution exist in ensembles of native, though distinct, conformers. In viewing

vii
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viii Preface

proteins as static structures, the properties of a particular population are explored.
Yet, different populations may preferentially associate with different partners. The
overriding reasons for the heightened interest in protein—protein interactions are that
better understanding and better quantization of the key features controlling the inter-
actions should lead to higher success in the prediction of protein associations. This
would assist in the elucidation of cellular pathways and in drug design.

This book covers a broad range of aspects related to prediction of protein—protein
interactions, to interfering with protein—protein interactions, and to their design.
These relate to cellular pathways with the goals of understanding and predicting
function, and to strategies in drug targeting. With the increasing accumulation of
experimental data, the need for computational approaches is rapidly increasing.
This can also be gauged from the rapid growth in the literature in this direction and
the creation of new computational/bioinformatics journals. Accordingly, this book
provides an overview, with the chapters carefully selected and written by leaders in
the field.

Although it is important to predict protein associations, it is a daunting task.
Some associations are obligatory, whereas others are transient, continuously form-
ing, and dissociating. From the physical standpoint, any two proteins can interact.
The question is under what conditions and at what strength. Protein—protein interac-
tions are largely driven by the hydrophobic effect. In addition, hydrogen bonds and
electrostatic interactions play important roles. The physical principles of protein—
protein interactions are general, and many of the interactions observed in vitro are
the result of experimental overexpression or of crystal effects, complicating func-
tional prediction.

Joél Janin, a pioneer in the field of protein science, provides in the first chapter an
overview of the basic principles of protein—protein interactions and the biophysical
forces driving them. Two basic models are suggested to explain the energetic com-
position of protein—protein binding sites: the buried surface model and the hot spot
model. However, this is an oversimplification, as protein interactions have diverse
solutions to accommodate the differences in binding, with rates and affinities span-
ning 10 orders of magnitude. With this diversity of interactions, which relate to the
diversity of life, it is clear that no one model of interaction fits all. Moreover, many
interactions are feasible only after the protein undergoes chemical modification, such
as phosphorylation, allowing for the interactions to be controlled. Still, the basic
biophysical principles of the interactions are the same, independent of the type or
lifetime of the complex.

In the second chapter, “Low-Resolution Recognition Factors Determine Major
Characteristics of the Energy Landscape in Protein—Protein Interaction,” Ilya Vakser
seeks the general shapes and features that make a binding site. The first part of
the chapter provides a detailed description of databases of protein—protein interac-
tions, which are used for computational analysis. This “technical” part is of great
importance, as the results are strongly influenced by the quality and coverage of the
database used. Detailed analysis of binding clearly shows the similarities between
binding and folding of proteins. We are used to examining binding sites at high reso-
lution. However, Vakser points out that the general shape of proteins already dictates
their binding. The existence of large-scale structural recognition features in protein
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association explains the funnel-like intermolecular energy landscape. As in protein
folding, this concept is necessary to explain the kinetics data for protein—protein
association and is useful for docking simulations.

Eric Sundberg takes the investigation of the architecture of binding sites one step
further in the third chapter, and provides a detailed molecular description of its com-
position and how this drives binding. In Chapter 3, “The Molecular Architecture
of Protein—Protein Binding Sites,” he describes the binding site as a dense network
of interacting amino acids, with most of them forming well-defined local clusters.
Within this network of interactions, one can find both negative and positive coop-
erativity. It is important that a number of amino acids interact over long distances
providing long-range communication within binding sites.

High-resolution methods to decipher the architecture and energetics of binding
sites can be slow and are limited to a small set of protein complexes. In recent years,
alternative approaches, based on selection from large libraries, have become more
popular to provide more comprehensive answers. The most commonly used vehicle
for such analysis is phage display. Particularly interesting is the development of the
“shotgun” approach by Sachdev Sidhu and co-workers. In Chapter 4, “Mapping
Protein Function by Combinatorial Mutagenesis,” Gabor P4l and Sidhu describe
the technical aspects of this method and provide different applications for it. In
addition to mapping the contribution of residues to binding, this method provided
a more global picture of the relation between sequence, structure, and conservation
of binding sites. Moreover, the general concept has been extended beyond phage
display by the use of other combinatorial methods, which hold much promise for
the future. It is clear that combinatorial analysis with well-defined libraries and
selections can be used to explore diverse protein functions in a rapid manner and
serve as a more complete set for computational biology than provided by traditional
mutation studies.

The structure of a protein—protein interaction, its affinity and thermodynamic
characteristics, depict a “frozen” state of a complex. This picture ignores the kinetic
nature of complex formation and dissociation, which are of major biological and
biophysical interest. In the next two chapters, Gideon Schreiber and Rebecca Wade
provide a summary of the pathway for protein—protein association. In Chapter 5,
Schreiber analyzes the pathway of association as a three-step reaction. After colli-
sion, the proteins form an encounter complex, which develops into the final complex
through a transition state. Electrostatic forces are the main determinants of this reac-
tion. The structures of the encounter complex and transition state are discussed. In
Chapter 6, Pachov, Gabdoulline, and Wade discusses Brownian dynamics simulation
methods, which are used to simulate the reaction coordinates and rates.

One of the most exciting fronts in computational protein—protein interactions
is the use of the existing knowledge on protein—protein interactions for interface
design. In Chapter 7, “Computational Design of Protein—Protein Interactions,” Julia
Shifman provides numerous examples of successes and failures, yielding an up-to-
date picture of where we are, the main problems facing us, and what we can expect
in the near future. She very elegantly divides the design problem into subareas
(including affinity design; how to achieve specificity; de novo interface design; asso-
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ciation versus dissociation; and protein—protein, protein—peptide, and protein—-DNA
interactions) and discusses the various tools used to achieve success in each area.

The number of files in the Protein Data Bank is rapidly growing, now exceeding
50,000. However, structural information is often not available and even if available
it is often not straightforward to use to predict the protein function. Yet, the involve-
ment of protein—protein interactions in all cellular processes and the consequent
crucial need to figure out their functions has led to focused efforts to predict func-
tions from sequences and, if available, from their structures. A practical way to pre-
dict protein function is through identification of the binding partners. Since the vast
majority of protein chores in living cells are mediated by protein—protein interac-
tions, if the function of at least one of the components with which the protein inter-
acts is identified, it is expected to facilitate its functional and pathway assignment.
Through the network of protein—protein interactions, we can map cellular pathways
and their intricate cross-connectivity. Because two protein partners cannot simulta-
neously bind at the same (or overlapping) site, discovery of the ways in which the
proteins associate should assist in inferring their dynamic regulation. Identification
of protein—protein interactions is at the heart of functional genomics. Prediction of
protein—protein interactions is also crucial for drug discovery. Knowledge of the
pathway, its topology, length, and dynamics should provide useful information for
forecasting side effects. Six chapters of this book address different computational
approaches to map binding.

Methods to map binding consist of a number of layers of information and resolu-
tion. At the high end is protein docking. To be able to dock proteins, the information
on the partners as well as their structure has to be available (or at least the structure
of a close homologue). Howook Hwang, Brian Pierce, and Zhiping Weng (Chapter 8)
provide a detailed description of how protein—protein docking works and the criteria
of success.

However, producing an interactome using high-resolution docking algorithms is
limited by the lack of available structures and knowledge of protein partners. A
complementary method, for which less or no structural information is required, is
mapping protein binding sites. Yanay Ofran, in Chapter 9, “Prediction of Protein
Interaction Sites,” provides a very detailed description and analysis of different
methods for the prediction of protein—protein binding sites, with the plusses and
minuses of the different methods. In Chapter 10, “Predicting Molecular Interactions
in Structural Proteomics,” Irina Kufareva and Ruben Abagyan provide an exciting
outlook on how to use the structural information to map function as embedded in the
subcellular structural organization of the proteins; that is, the relationship between
binding and function, and how we can build a cellwide dynamic and structural inter-
action map. The basic questions to solve are which protein is interacting with which,
where the interaction takes place, and what the different (in structure and composi-
tion) complexes look like.

Most eukaryotic proteins are composed of multiple domains, with each being an
independent folding unit. Multidomain proteins allow the acquisition of new proper-
ties without disrupting the ones they already have. One of the most important prop-
erties a protein can acquire is the ability to interact with other proteins, and thus
defining its interactome. In Chapter 11, Inbar Cohen-Gihon, Roded Sharan, and Ruth
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Nussinov describe the mechanisms by which domain rearrangements occur in the
genome and highlight the role of co-occurring domains in protein—protein interac-
tions. Due to the modularity of the protein domain world, it is straightforward to use
graph theoretical tools to explore domain composition of proteins. Although the num-
bers of domains across several genomes are similar, the sizes of highly connected
domain subgraphs grow with evolution, and thus the complexity of the organism.

A large fraction of cellular proteins are estimated to be “natively disordered,” that
is, unstable in solution. The structures of disordered proteins are not random. Rather,
the disordered state has a significant residual structure. In the disordered state, a pro-
tein exists in an ensemble of conformers. Disordered proteins are believed to account
for a large fraction of all cellular proteins and to play roles in cell-cycle control,
signal transduction, transcriptional and translational regulation, and large macro-
molecular complexes. Although disordered on their own, their native conformation
is stabilized upon binding. Vladimir Uversky and colleagues discuss these proteins
in Chapter 12, “Intrinsically Disordered Proteins and Their Recognition Functions.”
It was suggested that the increasing abundance of intrinsically disordered proteins
in higher organisms is likely due to the change in the cellular requirements for cer-
tain protein functions, particularly regulatory functions/cellular signaling. Many
“hub” domains, such as SH2, SH3, and PDZ, bind to disordered regions, apparently
because disordered regions can bind partners fast, with both high specificity and low
affinity. In this chapter, the authors describe functions and molecular mechanisms
of these disordered peptides with specific focus on recognition and attempt to create
links with the structural properties of these proteins.

As protein—protein interactions play a crucial role in many biological processes,
their disruption can lead to a disease state or cure. Therefore, it is of great interest to
consider them as potential drug targets. In Chapter 13, “Identification of Druggable
Hot Spots on Proteins and in Protein—Protein Interfaces,” Dmitri Beglov and co-
workers describe a powerful approach to the identification of druggable regions on
the protein surfaces by computational mapping, using small molecular probes such
as small organic molecules. Computational mapping places the molecular probes,
whether small molecules or functional groups, on the surface of the protein to
identify the most favorable binding positions. Although x-ray crystallography and
nuclear magnetic resonance (NMR) indicate that organic solvents bind to a limited
number of sites on a protein, computational mapping methods can result in hundreds
of energy minima and do not reveal why some sites bind molecules with different
sizes and polarities, thus presenting a problem in the prediction of these regions. The
authors review the mapping algorithms in the literature and the difficulties that are
involved. Next they describe their mapping based on the fast Fourier transform (FFT)
correlation approach, which samples possible configurations on a dense translational
and rotational grid. The positions are scored using an energy function that includes
attractive and repulsive van der Waals terms, electrostatic interaction energy based
on Poisson—Boltzmann calculations, a cavity term to represent the effect of nonpolar
enclosures, and a structure-based pairwise interaction potential. Finally, they pro-
vide two interesting applications.

Finally, in Chapter 14, “Designing Protein—Protein Interaction Inhibitors,”
Matthieu Montes reviews the various methods available today for virtual compound
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screening of protein—protein interactions inhibitors. Such methods are on the way
to replacing the more traditional blind, high throughput, fragment-based screening,
reducing cost and increasing coverage. In particular, protocols using a wise combi-
nation of structure-based virtual ligand screening and ligand-based virtual ligand
screening methods have led to very interesting inhibitors displaying original scaf-
folds, which can be used as a basis to develop new compounds with therapeutical
interest on challenging targets. However, these methods suffer from similar problems
as other computational methods, such as the need to improve scoring functions, better
account for electrostatics and solvation, and the fundamental problem of how small
molecules can compete with the binding of large proteins on the same binding site.

Overall, although the chapters span the broad area of computational protein—
protein interactions, the area is very extensive, and to keep the size of the book
manageable it is not possible to include all aspects. In particular, areas that are
not addressed in this book relate to membrane proteins and molecular dynamic
simulations of protein—protein interactions, with the goal of obtaining deeper
insights into how the function is performed. Nonetheless, it is hoped that this
book provides a basic outline of major directions in computational protein—pro-
tein interactions.

Ruth Nussinov
Gideon Schreiber
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Proteins are the major players in molecular recognition at the heart of all processes
of life. They interact with the other components of the cell, small molecules, nucleic
acids, membranes, and other proteins to build supramolecular assemblies and
elaborate molecular machines that perform all sorts of functions, from chemical
catalysis and mechanical work to signaling and regulation (Alberts, 1998). Protein—
protein recognition is the mechanism by which the specific interaction between
polypeptide chains creates functional units. Its study has been part of biochemistry,
structural biology, and computational biology for more than 30 years, and it has
now spread to all domains of biology and medical science (Eisenberg et al., 2000).
Protein—protein recognition must be given a chemical and physical basis, which in
practice requires high-resolution three-dimensional structures. The Protein Data
Bank (PDB; Berman et al., 2000) contains that information for several hundreds
of protein assemblies, mostly transient binary complexes and oligomeric proteins.
Cells contain plenty of larger assemblies, still poorly represented in the PDB, with
the exception of the icosahedral viruses, ribosomes, and a few others (Dutta &
Berman, 2005). Their analysis is the next frontier in our understanding of molecular
recognition in biology.

The structures of binary complexes and oligomeric proteins present in the PDB
form only a small sample of what exists in nature, yet they have stimulated a rich
body of biochemical studies by site-directed mutagenesis, supported by biophysi-
cal studies of their thermodynamics and kinetics. The results have been extensively
analyzed and they are the topics of several reviews and collective books (Jones &

1
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2 Computational Protein-Protein Interactions

Thornton, 1996, 2000; Larsen et al., 1998; Kleanthous, 2000; Janin & Wodak, 2003;
Fu, 2004; Russell et al., 2004; Ponstingl et al., 2005; Janin et al., 2007). Two models
of protein—protein interaction have emerged over the years from these studies: the
buried surface model and the hot spot model. The first is geometric and defines the
interface as the protein surface that is solvent accessible in the isolated components,
but not in the complex (Chothia & Janin, 1975); it implies that the interaction is dis-
tributed more or less evenly over that surface. On the other hand, the hot spot model
states that the significant interactions are highly localized. The model was inspired
by the site-directed mutagenesis study of the human growth hormone/growth hor-
mone receptor system (Clackson & Wells, 1995) and subsequent alanine scanning
experiments performed on other systems. In alanine scanning, the residues of one
component in contact with the other are systematically mutated to Ala, and the affin-
ity of the mutants is compared to that of the wild type. Many of the mutations cause
little or no change in affinity, and those that do define the hot spots (Bogan & Thorn,
1998; DeLano, 2002; Wells & McClendon, 2007).

I believe that the two views can be reconciled, and that the nonuniform nature
of protein—protein interfaces can be accounted for by splitting them into a core and
a rim depending on the solvent accessibility of the interface atoms. The rim, which
has an amino acid composition and other properties similar to the solvent accessible
surface, contains very few hot spots. The core differs in its composition, it contains
most of the hot spots, and it is better conserved in evolution than the rim and the
rest of the protein surface, which suggests that it is the main target of the selection
exerted by protein—protein recognition on the protein sequence.

DIVERSITY OF PROTEIN-PROTEIN INTERACTION

In spite of its limited size, the sample of protein assemblies for which structural
data are available shows a diversity that reflects the diversity of life itself (Nooren &
Thornton, 2003a). A broad classification may be based on the time scale on which
the assembly process takes place. At one end of the scale, the collisions that occur at
every instance within the crowded space of the cell create short-lived (submicrosec-
onds) contacts of no biological significance, except that they compete with functional
interactions. Their equivalent in the PDB are the crystal packing contacts, which
are mostly nonspecific and yield stable assemblies only because each molecule is in
contact with many neighbors. The interactions seen in crystal packing may thus be
compared to those in complexes and oligomeric proteins to give a structural basis to
specificity (Janin, 1997; Bahadur et al., 2004).

At the other end of the scale, oligomeric proteins have a long-lived quaternary
structure that self-assembles at the time the subunits are synthesized. Many oligom-
ers dissociate in vitro only when they are made to unfold, and in vivo only when
they enter a degradation pathway; thus, they can be considered as permanent. In
between, protein—protein complexes are made of polypeptide chains that fold inde-
pendently and associate only when they happen to meet. Most are transient, but the
range of affinities and lifetimes covers at least eight orders of magnitude. Examples
of long-lived associations are the trypsin/pancreatic inhibitor complex, with a half-
life of months (Vincent & Ladzunski, 1972), and the complex of barnase, a bacterial
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ribonuclease, with its intracellular inhibitor barstar, which has a K; = 10-#M and a
half-life of days (Schreiber & Fersht, 1993). Antigen—antibody complexes are not
quite as stable; they have a K, in the range 10-8-10-1M and a half-life of minutes to
hours (Foote & Eisen, 1995; Braden & Poljak, 2000; Sundberg & Mariuzza, 2002).
In the immune system, there are much weaker interactions that play an equally
important role: the T cell receptor interacts with its different partners to form com-
plexes that have K;~ 10-°M (Foote & Eisen, 2000). Weak, short-lived interactions
are fully functional in many other processes. In general, the complex between an
enzyme, a protein kinase for instance, and its substrate cannot be long lived because
its dissociation would limit the reaction turnover. Similarly, a fraction of a second
is sufficient for redox proteins to carry out an electron transfer reaction after they
come to be in contact (Crowley & Carrondo, 2004). Cell signaling relies on both
short-lived and stable protein—protein interactions. The response of a cell to an exter-
nal stimulus frequently involves forming a loose initial complex that may become a
stable assembly when it recruits new partners, undergoes phosphorylation or other
chemical changes, and translocates to a different cell compartment. The timescale
may be minutes, or milliseconds in the case of the visual signal.

Irrespective of their stability, all these interactions are biologically significant,
they play major roles in essential processes, and thus are subject to a Darwinian
selection that affects the sequence of the polypeptide chains and the physical chemi-
cal properties of their interfaces.

ACCESSIBLE SURFACE AREA VERSUS FREE ENERGY:
THE HYDROPHOBIC EFFECT REVISITED

In the buried surface model, the interface between two macromolecules is the set of
atoms and residues that lose solvent accessibility in the assembly (Chothia & Janin,
1975; Janin & Chothia, 1990). This geometric definition has a thermodynamical
counterpart due to the relationship between the free enthalpy of a nonpolar organic
solute in water (AG,,) and its solvent accessible surface area (ASA; Lee & Richards,
1971). The following relation is verified when hydrocarbons are transferred from a
nonpolar solvent to water (Hermann, 1972):

AG,, =y ASA (L.1)

Chothia (1974, 1975) used the hydrocarbon solubility data to place the coefficient
y in the range 2025 cal.mol-".A-2. Later estimates yield y = 29 cal.mol-.A-2 for
aromatic hydrocarbons and 31 cal.mol-1.A-2 for aliphatic compounds (Vajda et al.,
1995). A still higher value, 50 cal.mol*'.A*z, has been derived from a comparison
with the macroscopic process, y being the microscopic equivalent of a surface ten-
sion coefficient (Sharp et al., 1991). In addition, analytical models of the hydration
of hard spheres suggest that linearity is achieved only above a certain size of the
spheres (Lum et al., 1999), which implies that y ought to be larger for proteins than
for small molecules.
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Equation 1.1 is a quantitative expression of the hydrophobic effect. Because a
nonpolar solute cannot give or receive H-bonds, the water molecules in contact with
it lose part of their H-bond energy and/or their freedom of orientation (Kauzmann,
1959; Tanford, 1997). This costs free energy, and Equation 1.1 states that, within a
family of similar molecules, the cost is proportional to the number of water mole-
cules concerned. It can just as well be written with the number of carbon atoms in the
hydrocarbon molecule, or the volume it occupies, in place of the ASA, but the ASA is
a more suitable parameter when dealing with a folded protein that is in contact with
the solvent only through its surface atoms.

The free enthalpy of a nonpolar solute contains terms other than AG,,,, but they
take similar values in water and organic solvents. The transfer experiment lumps
together with the hydrophobic effect the balance of the van der Waals interactions
with made water vs. the organic solvent, also likely to increase linearly with the
ASA. However, the reasoning does not apply to polar groups that make H-bonds,
less numerous but much more energetic than van der Waals interactions. Their con-
tribution is a balance between the free enthalpy of water—solute and water—water
H-bonds. It can be positive or negative depending on the nature of the polar groups
and the details of their geometry, and is generally difficult to assess. With large
molecules that make many H-bonds, one may attempt to average the contributions
of individual bonds and use Equation 1.1 for polar as well as nonpolar groups, with
appropriate values of y. However, there are no families of compounds with variable
numbers of polar groups on which to calibrate the coefficients, and the sets that have
been proposed over the years show large discrepancies (Eisenberg & McLachlan,
1986; Ooi et al., 1987; Makhatadze & Privalov, 1994; Xie & Freire, 1994).

PROTEIN-PROTEIN INTERFACES IN THE BURIED SURFACE MODEL

Given the atomic coordinates of the complex between a receptor protein (R) and a
ligand (L; we make this distinction only for convenience, and L may be also a pro-
tein), the size of the RL interface is measured by the buried surface area:

BSA = ASA, + ASAy — ASAg, (1.2)

where ASA|, ASA;, and ASAy, are the solvent-accessible surface areas of free R,
free L, and the RL complex, respectively. When RL dissociates, nonpolar groups in
R and L move from a protein environment to water. The relevant free enthalpy term
can be calculated from Equation 1.1 and the nonpolar contribution to the BSA, but
the value of y derived from hydrocarbon transfer experiments may not be appropri-
ate, due to the discrepancies noted earlier between microscopic and macroscopic
approaches and because the protein environment is more dense and better packed
than an organic solvent.

Nevertheless, the BSA has proved to be a very useful parameter to evaluate the
interaction between two proteins. Its estimation from atomic coordinates is robust,
and it distinguishes between different categories of interactions. Protein—protein
complexes have an average BSA of 1910 A2, and 58% of that BSA belongs to nonpo-
lar groups (Table 1.1). Lo Conte et al. (1999) noted that, in a sample of 75 complexes,
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TABLE 1.1
Properties of Protein—Protein Interfaces
Protein-Protein Weak Crystal
Interface Parameter Complexes? Homodimers®  Dimerse Packingd
Number in data set 70 122 19 188
BSA (A2 1910 3900 1620 570/1510
(SD) (760) (2200) (670) (520)
Number of amino acids 57 104 50 48
% in the interface core® 55 60 51 40
Chemical composition (%)"
Nonpolar 58 65 62 58
Neutral polar 28 23 25 25
Charged 14 12 13 17
Atomic packing?
Buried atoms f,, (%) 34 36 28 21
L, packing index 42 45 34 32
S. complementarity score 0.69 0.70 — 0.63
Number per 1000 A2 BSA
H-bonds 53 4.8 43 3.6
Hydration waters" 10 11 — 15
Residue conservation' s core/rim 0.82 0.87 —
ratio

2 Data of Chakrabarti and Janin (2002) on a subset of the complexes of Lo Conte et al. (1999).

b Data of Bahadur et al. (2003).

¢ Homodimers in equilibrium with the monomer according to the literature (Lévy, 2007).

Pairwise interfaces in crystals of monomeric proteins. The first mean BSA value is for the 1320 inter-

faces in the 152 crystal forms analyzed by Janin and Rodier (1995). All other numbers are for the 188

interfaces with BSA >800 A2 in Bahadur et al. (2004).

¢ Core residues contain interface atoms with zero ASA in the assembly.

f Fraction of the BSA contributed by nonpolar (carbon-containing) chemical groups; groups that contain
N, O, or S are counted as neutral polar, or charged in Asp, Glu, Arg, and Lys side chains.

¢ fy, is the fraction of interface atoms with zero ASA in the assembly; Ly, is defined in Bahadur et al.
(2004), S, is defined in Lawrence and Colman (1993).

b Data from Rodier et al. (2005).

i Ratio of the mean values of the Shannon entropy (s) of the residues of the interface core and rim in the
aligned sequences of homologous proteins: 52 protein components of the complexes (excluding anti-
gen—antibody complexes), 121 homodimers, and 102 monomeric proteins in crystal contacts (Guharoy
& Chakrabarti, 2005).

many enzyme—inhibitor complexes and nearly all the complexes between a protein
antigen and a cognate antibody have an interface that buries 1200-2000 A2, which
they called “standard size.” Figure 1.1 represents the BSA distribution in a larger set
of complexes recently assembled by Hwang et al. (2008). The average BSA in that
set is the same as in Table 1.1, but the range of the values (800-5800 A?) is broader
than in earlier studies. Nevertheless, all but 2 of the 25 antigen—antibody complexes
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FIGURE 1.1 BSA and the mode of protein—protein recognition in complexes. Histogram of
the buried surface area in the nonredundant set of 123 protein—protein complexes assembled
by Hwang et al. (2008). This set includes the structures of the components as well as of the
complexes. After least-square superimposition of the components and the complexes, the
RMS distance between Ca atoms is less than 1.8 A in 23 of the 25 antigen—antibody com-
plexes. The other complexes are marked “rigid body” when the RMS distance is less than 1.8
A and marked “flexible” when it is larger.

and 55% of the other complexes have standard-size interfaces; 7% have a BSA less
than 1200 A2, and 38% a BSA larger than 2000 A2,

The set of Hwang et al. (2008) was assembled to benchmark protein docking algo-
rithms, and it includes the structures of the free components as well as the complexes.
When the free and bound structures are compared by least-square superposition, the
root mean squared (RMS) distance between the Ca atoms ranges between 0.2 and 8
A. Small RMS distances imply that the components of the complex associate as rigid
bodies to a good approximation; they only undergo side-chain rotations and small
main-chain movements. Large RMS distances point to major conformation changes
and to a mechanism of induced fit or flexible recognition. In Figure 1.1, we set the
limit between the two categories at 1.8 A. With that cutoff, all the complexes with a
BSA <1200 A2 and 92% of those with a standard-size interface are in the rigid body
category, which includes all but two of the antigen—antibody complexes and 70% of
the other complexes. The induced fit category contains only 8% of the complexes
with a BSA <2000 A2 and 47% of those with a larger BSA. Thus, the new sample
supports the remark made by Lo Conte et al. (1999) that large interfaces correlate
with large conformation changes in protein—protein complexes.

This remark can be extended to oligomeric proteins, most of which contain large
interfaces (Janin et al., 1988; Jones & Thornton, 1995; Bahadur et al., 2003). Their
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subunits usually fold as they assemble, undergoing disorder-to-order transitions
that are extreme cases of conformation changes. In contrast, crystal packing con-
tacts tend to create small interfaces and induce only minor conformation changes.
Table 1.1 reports mean values of the BSA in homodimers and crystal contacts for
comparison with the complexes. In crystals of monomeric proteins, the average pair-
wise contact buries 570 A2 (Janin & Rodier, 1995), less than the minimum value of
800 A2 observed in complexes or homodimers. Nevertheless, a significant fraction
of the crystal packing interfaces have a BSA >800 A2, and thus are comparable in
size to the interfaces of complexes. Table 1.1 cites properties of these large non-
specific interfaces along with those of the biologically significant assemblies. The
crystal packing interfaces have the same nonpolar fraction as in the complexes, but
they contain fewer buried atoms (f,, = 21% vs. 28%), fewer H-bonds (3.6 vs. 5.3 per
1000 A2), and more water molecules (15 vs. 10 per 1000 A2) in proportion of their
size. Moreover, their S, complementarity score (Lawrence & Colman, 1993) and L,
packing index (Bahadur et al., 2004) are low, which suggests that the nonspecific
interfaces are less tightly packed than specific ones.

The set of homodimeric proteins assembled by Bahadur et al. (2003) has a mean
BSA of 3900 AZ; all the interfaces are at least standard size, and some bury as much
as 10,000 AQ, a surface equivalent to the one buried when a small protein folds. With
65% of the BSA coming from nonpolar groups, the homodimer interfaces are more
hydrophobic than in complexes. They bury a greater proportion of their atoms and
may also be better packed, but the differences indicated by the L, and S, parameters
are marginal, and the density of polar interactions (H-bonds and hydration waters) is
not significantly different from that in complexes. In addition, Table 1.1 also mentions
“weak dimers,” a set of homodimers known to be in equilibrium with the monomers,
assembled by Dey et al. (in preparation) with the help of the PiQSi database (http:/
www.supfam.org/elevy/piqsi/; Lévy, 2007). In this set, the BSA range is 750-3000
A2and the mean is 1620 A2, close to the value reported by Noreen and Thornton
(2003b) in an earlier set of the same type. The interfaces of the weak dimers are
comparable in size to those of the complexes, but they tend to be less polar and bury
fewer atoms; moreover, their low L, index suggests that they are poorly packed like
the crystal packing interfaces.

BURIED SURFACE AREAS AND BINDING FREE ENERGIES

The stability of a complex RL and the affinity of R for L are characterized by the
equilibrium constant (K,) or by the standard state free enthalpy of dissociation per
mol of complex:

AG, = -RT In K,/c° (1.3)
where c° is the standard state concentration (IM by convention); RT = 0.6 kcal.mol™!
at 300K. For short, we shall call AG, a “binding free energy,” but not a “binding

energy’’ as the literature often does. Writing energy for enthalpy ignores the pressure
dependence of the equilibrium, of no significance for most applications. Omitting
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free overlooks the crucial role of entropy, and masks the point that, for a bimolecular
reaction, the value of AG, depends on the choice of c°.

The data in Table 1.1 suggest a broad correlation between the stability of a protein
assembly, and the size and nonpolar character of its interface. To make it quantita-
tive, Horton and Lewis (1992) established a linear relationship between the binding
free energy of a set of complexes and their BSA appropriately weighted for the polar
and nonpolar components. The set comprised mostly enzyme—inhibitor complexes
that have standard-size interfaces and assemble as a rigid body, and the correlation is
unlikely to extend to other systems. It would predict very large binding free energies
for all the complexes that have a BSA >2000 10\2, and thus make them much more
stable than they are in reality. In general, conformation changes and other energy
terms not directly related to the interface size mask any correlation of the BSA with
stability. For instance, most of the complexes involved in signal transduction have
larger interfaces than protease-inhibitor complexes, yet they are often short lived and
display large conformation changes (Lo Conte et al., 1999).

On the other hand, the existence of a correlation between AG, and BSA is sup-
ported by experiments that make small changes in carefully chosen systems. When
the dissociation constant K’y of a mutant complex is compared to the K, of the wild
type, Equation 1.3 (from which c° is eliminated) yields the change in the binding
free energy:

AAG =RT In K/, /K, (1.4)

In the simple case where the mutation affects neither the conformation of the
components nor the polar interactions, the nonpolar contribution dominates:

AAG = AAG,,, = y ABSA (1.5)

where ABSA is the change of the buried surface area caused by the mutation.

Mariuzza and collaborators (Sundberg et al., 2000; Li et al., 2005) have observed
such a relation in experiments where they introduced side chains of different sizes at
given positions of the antigen-combining site of two antilysozyme monoclonal anti-
bodies. They measured the dissociation constant of each mutant complex with the
antigen, then determined x-ray structures to check that there was no conformation
change. AG, was a linear function of the BSA in both series of mutants, but the slope
was nearly three times as large for the H63 antibody mutated on a tyrosine placed at
the center of the interface than for the D1.3 antibody where the mutation site was a
tryptophan at the periphery.

Another example of linear relationship between binding free energy and BSA
concerns complexes with nonprotein ligands. Wells and McClendon (2007) com-
pared the potency of a series of small molecules that bind to protein targets of
pharmaceutical interest. Expressed as a binding free energy, the potency is linearly
related to the number of nonhydrogen atoms in the ligands. In Figure 1.2, that num-
ber was converted into a BSA by assuming that all the ligand atoms are in contact
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FIGURE 1.2 Binding free energies and buried surface area. (O): Mutant data for antibody
D1.3 (Sundberg et al., 2000); AAG is plotted against the BSA change in six mutants of residue
TrpV,92, located at the periphery of the interface with the antigen hen egg lysozyme; the
slope of the regression line is 23 cal.mol-'.A-2. ((J): Mutant data for antibody H63 (Li et al.,
2005); AAG is plotted against the BSA change in four mutants of residue Tyr V33 at the
center of the interface; the slope of the line is 66 cal.mol".A2. (A): AG, of small molecules
bound to proteins of pharmacological interest (Wells & McClendon, 2007); each nonhydro-
gen atom is assumed to contribute 9.5 A2 to the BSA; the slope of the line is 21 cal.mol-".A-2,
(X): Mean and standard deviation of AG, for xenon bound to three proteins (myoglobin, lipid
transfer protein, and T4 lysozyme; Desvaux et al., 2005).

with the protein and that the average BSA per atom is the same as in protein—protein
complexes (9.5 A2; Chakrabarti & Janin, 2002). With these assumptions, the slope
of the regression line is in the range of the values of y for hydrocarbons cited earlier.
The figure also includes the antibody mutation data of Sundberg et al. (2000) and
Li et al. (2005) for comparison. The antibodies have about 80 atoms in contact with
the antigen, and as the mutations remove only a few, the lines cannot be extrapo-
lated to the whole interface. On the other hand, the small molecules of Wells and
McClendon (2007) have up to 56 atoms, and it is not unreasonable to extend that line
to 80. This predicts AG, = 17.5 kcal.mol~!, much more than the 11 kcal.mol! reported
for the D1.3 or H63/lysozyme complexes, but other protein—protein complexes with
interfaces of the same size, barnase/barstar for instance, have binding free energies
of that order or greater. Thus, there is a qualitative, but not quantitative, agreement
between the observed binding free energies and the values expected from the line
in Figure 1.2. Even that must be qualified: the small molecules contain polar atoms,
and we do not know how much of their surface is buried when they bind; and the
plot altogether ignores what happens on the target protein or on the antigen side of
the interface.
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HOT SPOTS AND THE NONADDITIVITY
OF BINDING FREE ENERGIES

In the D1.3 antibody-lysozyme complex, about 19 residues of each partner con-
tribute to the BSA, and, except for the glycines, nearly all have been mutated to
alanine (Ala; Dall’Acqua et al., 1996, 1998). In these experiments, a factor of 2 in
K, equivalent to AAG = 0.4 kcal.mol ! is considered as significant; occasionally,
the mutation improves affinity and AAG is negative, but rarely less than —0.4 kcal.
mol-'. The hot spots are positions where AAG exceeds 1.5 kcal.mol~!' (Clackson
& Wells, 1995) or 2 kcal.mol™! (Bogan & Thorn, 1998), which represent a factor
of 12 and 30 in K, respectively. In antibody D1.3 and lysozyme, 6 of 26 muta-
tions yield a AAG below 0.4 kcal.mol!, and another 6 a AAG above 1.5 kcal.mol~'.
Thus, about one-quarter of the interface residues are silent, and another quarter
are hot spots.

The ASEdb database (http://nic.ucsf.edu/asedb; Thorn & Bogan, 2001) reports
results of alanine-scanning studies in several systems that show a similar fraction
of hot spots, but more silent residues, sometimes up to 50%. It should be noted
that site-directed mutagenesis is blind to interactions involving the protein main
chain, which contributes one-fifth of the BSA and an even larger proportion of the
H-bonds in protein—protein complexes (Lo Conte et al., 1999). In addition, Gly
and Ala residues are often not mutated. On the other hand, the residues that make
large contributions to the BSA are almost always hot spots. More than half of the
residues with AAG > 4 kcal.mol!' in ASEdb are tryptophans, tyrosines, or argin-
ines, with side chains that often bury over 100 A2 in a complex. Thus, mutating to
Ala the peripheral tryptophan of antibody D1.3 removes 145 A2, or one-sixth of the
ASA lost in contacts with lysozyme, while decreasing its affinity for the antigen
by 4 kcal.mol™! (Sundberg et al., 2000). In the trypsin—soybean trypsin inhibitor
complex (PDB entry lavw), the arginine residue in P1 position loses 245 A2, over
one-quarter of the ASA lost by the inhibitor. The effect on affinity of substituting
that arginine is not known, but in the pancreatic inhibitor, the equivalent lysine-to-
Ala mutation raises K, by eight orders of magnitude (AAG = 10 kcal.mol™'; Castro
& Anderson, 1996; Krowarsch et al., 1999), possibly the greatest affinity drop ever
measured for a point mutant.

It has sometimes been claimed that hot spots quantitatively account for the
observed binding free energies. If we assume that the effects of mutations are addi-
tive, a “shaved” complex in which n hot spot residues have been converted to Ala is
expected to have:

AG/, = AG, - ¥, AAG (1.6)

On occasion, the summation yields AG’; = 0, which is the basis for the claim.
However, this only predicts for the shaved complex a K; = 1 M, a value of no particu-
lar significance; AG’; could just as well be negative and K’; > IM. Thus, adding up
AAG values says little about the nature of the interaction or the role of the hot spots.
For the same reason, the small molecule line in Figure 1.2 does not have to pass
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through the origin (the mutant lines do, since the origin corresponds to the wild-type
complex). Instead, the point where it crosses the vertical axis yields a predicted AG,
value for a zero-atom ligand. With L just a point in space, the energy of the system
does not change when RL dissociates, but its entropy does, because L gains freedom
to move by translation. The relevant term in AG, can be approximated as:

AG,,,. ~RT In V/V® (1.7)

trans

where V and V° are the volumes available to L before and after dissociation. V° is
fixed by the standard state concentration (recall that AG, is standard state dependent):
Ve = 1600 A3 in the conventional 1M standard state. V depends on how rigidly bound
the ligand is to the protein; if we assume that it can move by 8x = 0.3—1 A while
remaining bound, V = 47n/3 8x3, and Equation 1.7 yields AG,,,,, = —3.5-6 kcal.mol-!.
This term is the only one in AG, for a zero-atom ligand, and for a one-atom ligand,
it represents the contribution of the ligand entropy, purely translational. Whereas the
zero-atom ligand is just a convention, the one-atom ligand can be real. Xenon binds
to a number of proteins, which makes it useful as a heavy atom for determining
phases in protein crystallography. The observed K, values are in the range 5-100
mM (Desvaux et al., 2005), which happens to place the rare gas right on the small
molecule line of Figure 1.2.

The translational contribution to AG, is by nature nonadditive: with more atoms
in L, the added degrees of freedom are rotational and vibrational, and their free
enthalpy is not volume dependent. Thus, the range of AG,,,,,, values cited earlier for
the zero-atom ligand may be valid for a protein molecule (Finkelstein & Janin, 1989;
Ruvinsky, 2007). Other nonadditive terms derive from the interactions that are made
in the complex. If a pair of chemical groups in R and L interact with an energy (¢),
deleting one in R” and the other in L should cause affinity to drop by AAG = ¢ in the
R’L and the RL" complexes, and also in the R’L’ complex, whereas additivity would
predict 2¢. On the other hand, AAG,), is additive because the change induced by the
mutations concerns the ASA of free R or free L, not the complex.

In reality, AAG almost never represents the energy of the interactions made by the
deleted atoms. This is most obvious for polar interactions. If a polar side chain in R is
engaged in a buried H-bond at the RL interface, the R’L mutant complex will contain
an unpaired polar group in L, and AAG will reflect the net loss of the water—protein
H-bond that this group makes in free L. The contribution of the protein—protein
H-bond to AG,, probably much smaller, can be recovered by deleting the unpaired
polar group in L and preparing the R’L’ complex. This reasoning is at the basis of
the double mutant cycle (Fersht, 1988). Many studies show that the free energy con-
tribution of an H-bond between neutral side chains is less than 1 kcal.mol™!, which
implies that the two-alanine mutation in the double mutant can be silent even though
each of the mutated residues is a hot spot. The method can be extended to cycles of
more than two mutants to test whether the contributions of the pairwise interactions
are themselves additive. Neighboring pairs of interacting residues often display non-
additive cooperative effects that point to a modular architecture of the binding sites
(Reichmann et al., 2005, 2007).
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THE CORE/RIM MODEL OF PROTEIN-PROTEIN INTERFACES

Based on alanine-scanning data, Bogan and Thorn (1998) proposed an O-ring model
of protein—protein interfaces, in which the hot spots are surrounded by energetically
unimportant residues that occlude solvent from them. In parallel, Lo Conte et al.
(1999) noted that only about one-third of the interface atoms are actually buried
(zero ASA) in protein—protein complexes (34% in Table 1.1); another third are in
contact with immobilized water, the remainder with bulk solvent. These authors
represented the interfaces as having a core of buried atoms surrounded by rings
of atoms accessible to the solvent. This led Chakrabarti and Janin (2002) to split
protein—protein interfaces into two regions: the core, made of the residues that con-
tain the buried interface atoms, and the rim, made of the residues in which all the
interface atoms remain solvent accessible. In the average protein—protein complex,
the core contains 55% of the interface residues, the rim 45%. The amino acid com-
position of the rim is very similar to that of the solvent accessible surface, except that
the core is depleted by a factor of nearly two in the charged residues Asp/Glu/Lys
(but not Arg), and enriched by the same factor in the aromatic residues Phe/Tyr/Trp
(Chakrabarti & Janin, 2002). The core represents a larger fraction of the interface
residues in homodimer proteins, and its composition is enriched in aliphatic as well
as in aromatic residues (Bahadur et al., 2003). Weak dimers have interfaces that bury
fewer atoms and have only 51% of their residues in the core; crystal packing contacts,
which bury only one-fifth of their atoms, have only 40% (Table 1.1).

The core/rim model of the interfaces is structure based, but it has a counterpart
in evolution. Although commonly used to identify binding sites (Arnon et al., 2001;
Lichtarge & Sowa, 2002; Ma et al., 2003; Caffrey et al., 2004), the conservation of
the interfaces is far from obvious in many systems. One reason is that the evolu-
tionary pressure is not homogeneous within an interface. Guharoy and Chakrabarti
(2005) calculate the Shannon entropy (s) of the interface residues in sets of homolo-
gous protein sequences; s measures the sequence variability at individual positions
of the sequence, and it is zero at fully conserved positions. Table 1.1 shows that, in
the average homodimeric protein or component of a protein—protein complex, the
Shannon entropy takes lower values for residues of the interface core than the rim.
With no such effect being found at crystal contacts, one may conclude that the spe-
cific interaction between two proteins exerts a stronger selection pressure on the core
than the rim of their interface.

Figure 1.3 illustrates the core and rim and their relationship to sequence conserva-
tion in the Ga/GPy interface of transducin, a heterotrimeric G-protein that interacts
with rhodopsin to initiate the visual signal in the retina (Lambright et al., 1996).
The Ga subunit of transducin has 45 residues in contact with Gpy. In the left panel
of Figure 1.3, its molecular surface is colored red for the core residues, blue for the
rim residues; in the right panel, it is colored according to their Shannon entropy. The
Ga/GPy interface is in two patches. The minor patch implicates the N-terminal helix
of Ga that points out of the subunit on the top; the helix, which comprises 6 core
and 11 rim residues, is disordered in the free subunit. The major patch involves the
main body of the subunit, close to the GTP binding site. It has a well-defined core
of 14 residues surrounded by an equivalent number of rim residues, and resembles
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FIGURE 1.3 (SEE COLOR INSERT FOLLOWING PAGE 174.) The core/rim model
and the conservation of interface residues. The surface of the Ga subunit of transducin (PDB
entry lgot; Lambright et al., 1996) is rendered in gray except for the region in contact with
Gpy. The feature protruding on the top right is the N-terminal helix. (A) The interface core,
made of residues containing atoms buried at the interface, is in red; the rim, made of residues
in which all interface atoms remain solvent accessible, is in blue. (B) The interface is colored
according to the Shannon entropy that measures the divergence of each position in aligned
sequences, ranging from O (red) to 0.4 (pink) to 1.4 (dark blue). Figure made by M. Guharoy
(Bose Institute, Calcutta) with GRASP (Nicholls et al., 1991).

the standard-size interface of a protease—inhibitor complex both in size and in the
O-ring like arrangement of its core and rim. A comparison of the two panels indi-
cates that whereas the sequence of the N-terminal helix is poorly conserved (s > 1
in blue), the major patch is fully conserved (s = 0 in red) in the core, and moderately
(pink) to highly (red) conserved in the rim.

The description of the interface conservation given by the Shannon entropy is
generally consistent with the data from alanine-scanning experiments. Guharoy and
Chakrabarti (2005) report a correlation between AAG and the contribution to the BSA
of the residues of interface core, but not the rim. The correlation yields a slope y =
26-38 cal.mol-'.A=2, close to the values derived from the solubility of hydrocarbons.
Other approaches, for instance, the “residue depth” of Chakravarty and Varadarajan
(1999) or the “hot regions” of Keskin et al. (2005), give a similar picture of the way
hot spots are distributed within an interface. In Figure 1.4, based on the data on five
complexes reported in ASEdDb, nearly all of the mutations with large effects on affin-
ity (AAG > 2 kcal.mol") are seen to concern residues of the interface core. Mutations
of the interface rim are silent (AAG < 0.4 kcal.mol!) or have a moderate effect (0.4-2
kcal.mol™"). This does not imply that the rim plays no part in the interaction, only
that its contribution to AG, does not depend heavily on the nature of the side chains.
The mutations that affect residues outside the interface are silent, with a few excep-
tions that may be due to conformation changes and other indirect effects. A few
silent mutants belong to the interface core; some may represent interactions of main

© 2009 by Taylor & Francis Group, LLC



14 Computational Protein-Protein Interactions

30
[] Not interface
[ Rim
M Core
20
2
=]
s
=
=
=
<
10
0 T T T
<0.4 1.2 2.0 >2

AAG (kcal/mol)

FIGURE 1.4 Alanine scanning and the core/rim model. The alanine-scanning data on five
complexes are taken from ASEdb: barnase/barstar (1brs), Factor VII/Tissue factor (1dan),
RNase inhibitor/RNase A (1dvf), and the two antigen—antibody complexes D1.3/lysozyme
(1vfb) and D1.3/E5.2 (1vfb).

chain atoms; others result from compensating effects that cannot be assessed with
the present data.

DESIGNING INTERACTIONS

In a complex with a standard-size interface, the core typically comprises 26 resi-
dues, 13 on each component, and mutating a few suffices to destroy affinity. The
remark can be turned around to state that mutating a few properly chosen resi-
dues should enable us to create stable complexes. This, of course, is what the
immune system does when it makes antibodies, but the same result has to be
reached by selecting sequences in a rationally designed combinatorial library cre-
ated by introducing degenerate codons in a synthetic gene. In Nygren’s affibodies,
the three-a-helix scaffold of protein Z is made variable at a dozen surface sites,
and the selection is made by phage display (Nord et al., 1995; Nygren & Uhlen,
1997; Nygren, 2008). In Pliickthun’s DARPins, the scaffold contains a variable
number of ankyrin repeats, and the selection tool is ribosome display (Binz et
al., 2003, 2005). X-ray structures are available for an affibody/protein Z complex
(PDB entry 1lpl; Hogbom et al., 2003), and a DARPin/caspase 2 complex (1p2c;
Schweizer et al., 2007). Both display interfaces with a BSA ~ 1600 A2 that impli-
cate mostly, but not exclusively, the randomized residues. In the affibody complex,
11 of the 13 randomized residues lose ASA, and they contribute 70% of the BSA;
the remainder comes from seven framework positions. The DARPin contains four
ankyrin repeats mutated at a total of 22 positions, 14 of which are part of the
interface and contribute 86% of the BSA. The interface size, the total number of
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residues involved, and the abundance of aromatic residues that are selected at the
randomized positions all resemble monoclonal antibodies, and the affinity is at
least as good.

The number of mutation sites can be much reduced, and the selection step elimi-
nated altogether, with the help of symmetry. Grueninger et al. (2008) have introduced
nonpolar side chains at selected surface sites in four bacterial proteins that include
Uro, a homodimer, and Rua, a cyclic tetramer, aiming to create stable assemblies
with twice the original number of subunits. Crystal structures show that a Uro vari-
ant with three substitutions has acquired the designed tetrameric structure, and that
a single mutation changes Rua from a C4 tetramer to a D4 octamer. Another variant
with two substitutions yields a nonsymmetrical octamer, and a third forms fibers.
In these systems, one to three point mutations suffice to generate new assemblies
instead of 11 to 13 in affibodies and DARPins, but each mutation creates several
(presumably) favorable contacts as a result of the symmetry, and the new interfaces
include many nonmutated residues. In the D4 Rua octamer, for instance, the tetramer/
tetramer interface does implicate the eight symmetry-related tyrosines that replace
alanines in the wild type, but they contribute only 9% of the BSA; the remainder
comes from 21 other residues and their symmetry counterparts.

CONCLUSION

Most of the site-directed mutagenesis and biophysical data discussed concern sys-
tems in which rigid-body recognition is a valid approximation. In the Rua octamer
or the complexes with affibodies and DARPins, the components retain their struc-
ture, and the designed assemblies obey the rules that we observe in natural assem-
blies. The Rua octamer was designed ab initio, the affibodies and DARPins were
obtained by a combination of rational design and in vitro selection. The success of
the two approaches proves that our understanding of the rigid-body mode of pro-
tein—protein interaction has reached the point where we can predict novel modes
of interaction and build protein molecules that use them. The CAPRI (Critical
Assessment of Predicted Interactions) experiment, designed to test protein docking
methods (Janin et al., 2003), confirms that view. In seven years, CAPRI has dem-
onstrated conclusively that the structure of a complex can be accurately predicted
from that of its components as long as the conformation changes are small; the
prediction becomes inacurrate or fails altogether when they are large (Schueler-
Forman et al., 2005; Janin & Wodak, 2007; Lensink et al., 2007). Flexible recogni-
tion and induced fit often involve major changes in the partner proteins, including
disorder-to-order transitions in which protein folding is coupled to ligand binding,
as for the N-terminal helix of transducin Ga. As they play a major role in many
processes, uncovering their mechanism will be of great interest in the years to
come.

ACKNOWLEDGMENTS

I acknowledge support of the 3D-Repertoire and SPINE2-Complexes programs
of the European Union, and the very productive collaboration of Dr. R. Bahadur

© 2009 by Taylor & Francis Group, LLC



16 Computational Protein-Protein Interactions

(Jacobs University, Bremen) and Pr. P. Chakrabarti (Bose Institute, Calcutta). Their
colleague Dr. M. Guharoy is thanked for Figure 1.3.

REFERENCES

Alberts B. The cell as a collection of protein machines: Preparing the next generation of
molecular biologists. Cell 1998 92:291-294.

Armon A, Graur D, Ben-Tal N. ConSurf: An algorithmic tool for the identification of func-
tional regions in proteins by surface-mapping of phylogenetic information. J. Mol. Biol.
2001 307:447-463.

Bahadur RP, Chakrabarti P, Rodier F, Janin J. Dissecting subunit interfaces in homodimeric
proteins. Proteins 2003 53:708-719.

Bahadur RP, Chakrabarti P, Rodier F, Janin J. A dissection of specific and non-specific pro-
tein—protein interfaces. J. Mol. Biol. 2004 336:943-955.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne
PE. The Protein Data Bank. Nucleic Acids Res. 2000 28:235-242.

Binz HK, Amstutz P, Pliickthun A. Engineering novel binding proteins from nonimmuno-
globulin domains. Nat. Biotechnol. 2005 23:1257-1268.

Binz HK, Stumpp MT, Forrer P, Amstutz P, Pliickthun A. Designing repeat proteins: Well-
expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin
repeat proteins. J. Mol. Biol. 2003 332:489-503.

Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 1998
280:1-9.

Braden BC, Poljak RJ. Structure and energetics of anti-lyzosome antibodies, in Protein—Protein
Recognition, C. Kleanthous, ed., Oxford University Press, UK, 2000, pp. 126-161.

Caffrey D, Somaroo S, Hughes J, Mintseris J, Huang E. Are protein—protein interfaces
more conserved in sequence than the rest of the protein surface? Protein Sci. 2004
13:190-202.

Castro MJ, Anderson S. Alanine point-mutations in the reactive region of bovine pancreatic
trypsin inhibitor: Effects on the kinetics and thermodynamics of binding to beta-trypsin
and alpha-chymotrypsin. Biochemistry 1996 35:11435-11446.

Chakrabarti P, Janin J. Dissecting protein—protein recognition sites. Proteins 2002
47:334-343.

Chakravarty S, Varadarajan R. Residue depth: A novel parameter for the analysis of protein
structure and stability. Structure 1999 7:723-732.

Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature 1974
248:338-339.

Chothia C. Structural invariants in protein folding. Nature 1975 254:304-308.

Chothia C, Janin J. Principles of protein—protein recognition. Nature 1975 256:705-708.

Clackson T, Wells JA. A hot spot of binding energy in a hormone-receptor interface. Science
1995 267:383-386.

Crowley PB, Carrondo MA. The architecture of the binding site in redox protein complexes:
Implications for the fast dissociation. Proteins 2004 55:603-612.

Dall’ Acqua W, Goldman ER, Eisenstein E, Mariuzza RA. A mutational analysis of the binding
of two different proteins to the same antibody. Biochemistry 1996 35:9667-9676.
Dall’Acqua W, Goldman ER, Lin W, Teng C, Tsuchiya D, Li H, Ysern X, Braden BC, Li
Y, Smith-Gill SJ, Mariuzza RA. A mutational analysis of binding interactions in an

antigen-antibody protein—protein complex. Biochemistry 1998 Jun 37:7981-7991.

DeLano WL. Unraveling hot spots in binding interfaces: Progress and challenges. Curr. Opin.

Struct. Biol. 2002 12:14-20.

© 2009 by Taylor & Francis Group, LLC



Basic Principles of Protein—Protein Interaction 17

Desvaux H, Dubois L, Huber G, Quillin ML, Berthault P, Matthews BW. Dynamics of
xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4
lysozyme explored through xenon-based NMR spectroscopy. J. Am. Chem. Soc. 2005
127:11676-11683.

Dutta S, Berman HM. Large macromolecular complexes in the Protein Data Bank: A status
report. Structure 2005 13:381-388.

Eisenberg D, Marcotte EM, Xenarios, I, Yeates TO. Protein function in the post-genomic era.
Nature 2000 405:823-826.

Eisenberg D, McLachlan AD. Solvation energy in protein folding and binding. Nature 1986
319:199-203.

Fersht AR. Relationships between apparent binding energies measured in site-directed
mutagenesis experiments and energetics of binding and catalysis. Biochemistry 1988
27:1577-1580.

Finkelstein AV, Janin J. The price of lost freedom: entropy of biomolecular complex forma-
tion. Protein Eng. 1989 3:1-3.

Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses.
Proc. Nat. Acad. Sci. USA 1995 92:1254-1256.

Foote J, Eisen HN. Breaking the affinity ceiling for antibodies and T cell receptors. Proc. Nat.
Acad. Sci. USA 2000 97:10679-10681.

Fu H, ed. Protein—Protein Interactions: Methods and Applications (Methods in Molecular
Biology, Vol. 261). Humana Press, Totowa, NJ, 2004.

Grueninger D, Treiber N, Ziegler MO, Koetter JW, Schulze MS, Schulz GE. Designed pro-
tein—protein association. Science 2008 319:206-209.

Guharoy M, Chakrabarti P. Conservation and relative importance of residues across protein—
protein interfaces. Proc. Nat. Acad. Sci. USA 2005 102:15447-15452.

Hogbom M, Ecklund M, Nygren PA, Nordlund P. Structural basis for recognition by an in
vitro evolved affibody. Proc. Nat. Acad. Sci. USA 2003 100:3191-3196.

Hermann RB. Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in
water with solvent cavity surface-area. J. Phys. Chem. 1972 76:2754-2759.

Horton N, Lewis M. Calculation of the free energy of association for protein complexes.
Protein Sci. 1992 1:169-181.

Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Protein—protein docking benchmark version
3.0. Proteins 2008 73:705-709.

Janin J. Specific versus non-specific contacts in protein crystals. Nature Struct. Biol. 1997
4:973-974.

Janin J, Chothia C. The structure of protein—protein recognition sites. J. Biol. Chem. 1990
265:16027-16030.

Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ. CAPRI: A
Critical Assessment of Predicted Interactions. Proteins 2003 52:2-9.

Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J.
Mol. Biol. 1988 204:155-164.

Janin J, Rodier F. Protein—protein interaction at crystal contacts. Proteins 1995 23:580-587.

Janin J, Rodier F, Chakrabarti P, Bahadur RP. Macromolecular recognition in the Protein Data
Bank. Acta Crystallogr. D Biol. Crystallogr. 2007 63:1-8.

Janin J, Wodak S. The third CAPRI assessment meeting. Structure 2007 15:755-759.

Janin J, Wodak SJ, eds. Protein Modules and Protein—Protein Interaction (Advances in Protein
Chemistry, Vol. 61). Academic Press, San Diego, CA, 2003.

Jones S, Thornton JM. Protein—protein interactions: A review of protein dimer structures.
Prog. Biophys. Mol. Biol. 1995 63:31-65.

Jones S, Thornton JM. Principles of protein—protein interactions. Proc. Natl. Acad. Sci. USA
1996 93:13-20.

© 2009 by Taylor & Francis Group, LLC



18 Computational Protein-Protein Interactions

Jones S, Thornton JM. Analysis and classification of protein—protein interactions from a struc-
tural perspective, in Protein—Protein Recognition, C. Kleanthous, ed., Oxford University
Press, UK, 2000, pp. 33-59.

Kauzmann W. Some factors in the interpretation of protein denaturation. Adv. Protein. Chem.
1959 14:1-63.

Keskin O, Ma B, Nussinov R. Hot regions in protein—protein interactions: The organiza-
tion and contribution of structurally conserved hot spot residues. J. Mol. Biol. 2005
345:1281-1294.

Kleanthous C, ed. Protein—Protein Recognition (Frontiers in Molecular Biology). Oxford
University Press, UK, 2000.

Krowarsch D, Dadlez M, Buczek O, Krokoszynska I, Smalas AO, Otlewski J. Interscaffolding
additivity: Binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine
proteases. J. Mol. Biol. 1999 289:175-186.

Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB. The 2.0 A crystal struc-
ture of a heterotrimeric G protein. Nature 1996 379:311-319.

Larsen TA, Olson AJ, Goodsell DS. Morphology of protein—protein interfaces. Structure 1998
6:421-427.

Lawrence MC, Colman PM. Shape complementarity at protein/protein interfaces. J. Mol. Biol.
1993 234:946-950.

Lee BK, Richards FM. The interpretation of protein structures: Estimation of static accessibil-
ity. J. Mol. Biol. 1971 55:379—400.

Lensink MF, Méndez R, Wodak SJ. Docking and scoring protein complexes: CAPRI 3rd
Edition. Proteins 2007 69:704-718.

Lévy ED. PiQSi: Protein quaternary structure investigation. Structure 2007 15:1364-1367.

Li Y, Huang Y, Swaminathan CP, Smith-Gill SJ, Mariuzza RA. Magnitude of the hydropho-
bic effect at central versus peripheral sites in protein—protein interfaces. Structure 2005
13:297-307.

Lichtarge O, Sowa M. Evolutionary predictions of binding surfaces and interactions. Curr.
Opin. Struct. Biol. 2002 12:21-27.

Lo Conte L, Chothia C, Janin J. The atomic structure of protein—protein recognition sites. J.
Mol. Biol. 1999 285:2177-2198.

Lum K, Chandler D, Weeks JD. Hydrophobicity at small and large length scales. J. Phys.
Chem. B 1999 103:4570-4577.

Ma B, Elkayam T, Wolfson H, Nussinov R. Protein—protein interactions: Structurally con-
served residues distinguish between binding sites and exposed protein surfaces. Proc.
Natl. Acad. Sci. USA 2003 100:5772-57717.

Makhatadze GI, Privalov PL. Hydration effects in protein unfolding. Biophys. Chem. 1994
51:291-304.

Nicholls A, Sharp KA, Honig B. Protein folding and association: Insights from the interfacial
and thermodynamic properties of hydrocarbons. Proteins 1991 11:281-296.

Nooren IM, Thornton JM. Diversity of protein—protein interactions. EMBO J. 2003a
22:3486-3492.

Nooren IM, Thornton JM. Structural characterisation and functional significance of transient
protein—protein interactions. J. Mol. Biol. 2003b 325:991-1018.

Nord K, Nilsson J, Nilsson B, Uhlen M, Nygren PA. A combinatorial library of an a—helical
bacterial receptor domain. Protein Eng. 1995 8:601-608.

Nygren PA. Alternative binding proteins: Affibody binding proteins developed from a small
three-helix bundle scaffold. FEBS J. 2008 275:2668-2676.

Nygren PA, Uhlen M. Scaffolds for engineering novel binding sites in proteins. Curr. Op.
Struct. Biol. 1997 7:463-469.

© 2009 by Taylor & Francis Group, LLC



Basic Principles of Protein—Protein Interaction 19

Ooi T, Oobatake M, Némethy G, Scheraga HA. Accessible surface areas as a measure of the
thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. USA 1987
84:3086-3090.

Ponstingl H, Kabir T, Gorse D, Thornton JM. Morphological aspects of oligomeric protein
structures. Prog. Biophys. Mol. Biol. 2005 89:9-35.

Reichmann D, Rahat O, Albeck S, Meged R, Dym O, Schreiber G. The modular architecture
of protein—protein binding interfaces. Proc. Natl. Acad. Sci. USA 2005 102:57-62.
Reichmann D, Rahat O, Cohen M, Neuvirth H, Schreiber G. The molecular architecture of

protein—protein binding sites. Curr. Opin. Struct. Biol. 2007 17:67-76.

Rodier F, Bahadur RP, Chakrabarti P, Janin J. Hydration of protein—protein interfaces. Proteins
2005 60:36-45.

Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A. A structural
perspective on protein—protein interactions. Curr. Opin. Struct. Biol. 2004 14:313-324.

Ruvinsky AM. Calculations of protein-ligand binding entropy of relative and overall molecu-
lar motions. J. Comput. Aided. Mol. Des. 2007 21:361-370.

Schreiber G, Fersht, AR. Interaction of barnase with its polypeptide inhibitor barstar studied
by protein engineering. Biochemistry 1993 32:5145-5150.

Schueler-Furman O, Wang C, Bradley P, Misura K, Baker D. Progress in modeling of protein
structures and interactions. Science 2005 310:638-642.

Schweizer A, Roschitzki-Voser H, Amstutz P, Briand C, Gulotti-Georgieva M, Prenosil E,
Binz HK, Capitani G, Baici A, Pliickthun A, Griitter MG. Inhibition of caspase-2 by
a designed ankyrin repeat protein: Specificity, structure, and inhibition mechanism.
Structure 2007 15:625-636.

Sharp KA, Nicholls A, Fine RF, Honig B. Reconciling the magnitude of the microscopic and
macroscopic hydrophobic effects. Science 1991 252:106-109.

Sundberg EJ, Mariuzza RA. Molecular recognition in antibody-antigen complexes. Adv. Prot.
Chem. 2002 61:119-160.

Sundberg EJ, Urrutia M, Braden BC, Isern J, Tsuchiya D, Fields BA, Malchiodi EL, Tormo J,
Schwarz FP, Mariuzza RA. Estimation of the hydrophobic effect in an antigen-antibody
protein—protein interface. Biochemistry. 2000 39:15375-15387.

Tanford C. How protein chemists learned about the hydrophobic factor. Protein Sci. 1997
6:1358-1366.

Thorn KS, Bogan AA. ASEdb: A database of alanine mutations and their effects on the free
energy of binding in protein interactions. Bioinformatics. 2001 17:284-285.

Vajda S, Weng Z, DeLisi C. Extracting hydrophobicity parameters from solute partition and
protein mutation/unfolding experiments. Protein Eng. 1995 11:1081-1092.

Vincent JP, Lazdunski M. Trypsin-pancreatic trypsin inhibitor association. Dynamics of the
interaction and role of disulfide bridges. Biochemistry 1972 11:2967-2977.

Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein—pro-
tein interfaces. Nature 2007 450:1001-1009.

Xie D, Freire E. Structure based prediction of protein folding intermediates. J. Mol. Biol. 1994
242:62-80.

© 2009 by Taylor & Francis Group, LLC



2 Low-Resolution
Recognition Factors
Determine Major
Characteristics of the
Energy Landscape
in Protein—Protein
Interaction

llya A. Vakser

CONTENTS

OVEIVIBW ..ttt ettt et ettt ettt b et e b et ebt e bt et e sbeenaesbeenaesaeen 21
INETOAUCTION ...ttt et saees 22
DIAtADASES ..ttt ettt st saeen 23
Parallels between Protein Recognition and Protein Folding............ccceceeiieniennnen. 25
Complementarity, Recognition Motifs, and HOt SPOtS.........ccceevvvveriieniieeiiienienieene 27
Large-Scale Recognition FaCtOTS .......cccuevviieiiieiiieiiierieeee et 29
Intermolecular Energy LandSCape .........ccceevveeiienieiiieeiienieesieesie e eveeiee e eaee e 34
Implications fOr DOCKING ........covieriiieiiieiieiie ettt re e 36
ACKNOWIEAZMENES......eoiiieiiiiiieiie ettt ettt sttt ettt e st e ebeesaaeenbeesnaeenseenes 37
RETEIEIICES ..ottt s 38
OVERVIEW

Protein—protein recognition is a key element of life at the molecular level. Our
understanding of the principles of protein recognition is still limited. However,
a significant amount of information on the subject has been already accumulated
and analyzed. The structure of protein—protein complexes is generally more
difficult to determine than the structure of individual proteins. However, the
number of experimentally determined complexes is statistically significant. The
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databases of protein—protein complexes are important for systematic studies of
protein interactions and the design of new predictive tools. A number of such
databases have been compiled and widely utilized in the research community.
The underlying physical principles of protein folding and binding are the same,
which translates into the similarity of the recognition factors in folding and
docking. The concepts of steric and physicochemical complementarity are the
basis for many modeling techniques applicable to both problems. Structural rec-
ognition factors relate to energy landscape characteristics that help understand
the formation of complexes and create better modeling tools. The multiscale
approach to modeling protein interactions reflects the nature of protein recog-
nition, which involves the larger structural factors facilitating complex forma-
tion and the smaller local factors responsible for the final lock of the molecules
within the complex.

INTRODUCTION

Protein—protein complex formation can be viewed from either a more physical per-
spective as a minimization of the free energy of the system or from a more empiri-
cal point of view as a match between various phenomenological structural and/or
physicochemical motifs (so-called recognition factors). In living organisms, proteins
recognize their partners among many other proteins and bind in a specific way in
short physiological timeframes. Given the complexity of the system, from either the
physical or empirical points of view, the formation of a protein—protein complex is a
remarkable event, based on the nature’s superefficient “energy-minimization proto-
col” and guided by long-range and short-range recognition factors. Modern methods
of protein docking are based on our efforts to simulate and navigate the intermolecu-
lar energy landscape, and on our current understanding of the recognition factors
governing complex formation.

The three-dimensional (3D) structure of a protein—protein complex, generally, is
more difficult to determine experimentally than the structure of an individual pro-
tein. Adequate computational techniques to model protein interactions are impor-
tant because of the growing number of known protein 3D structures, particularly in
the context of structural genomics (Russell et al. 2004; Szilagyi et al. 2005; Vakser
2008). The protein docking techniques offer tools for fundamental studies of protein
interactions and provide a structural basis for drug design. Since its introduction in
the 1970s, the protein—protein docking field has grown substantially through the
development of powerful docking algorithms, rapid progress in computer hardware,
and significant expansion of available experimental data on structures of protein—
protein complexes (Lensink et al. 2007; Vakser and Kundrotas 2008).

Nevertheless, our understanding of the principles of protein recognition is still
limited. With the rapid advances in experimental and computational determination of
structures of individual proteins, the importance of modeling of protein 3D interactions
increases. We now face the challenge of structural modeling of protein-interaction
networks on the genome scale, requiring much more powerful docking methodolo-
gies, based on the knowledge of protein—protein recognition characteristics.
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DATABASES

Although the structure of protein—protein complexes is generally more difficult
to determine than the structure of individual proteins, the number of experimen-
tally determined complexes is statistically significant. The databases of protein—
protein complexes are indispensable for systematic studies of protein interactions
and the design of new predictive tools. A number of databases of co-crystallized
protein—protein complexes have been compiled. One early data set of protein—pro-
tein complexes was built by Vakser and Sali (unpublished) based on a 1997 release
of the Protein Data Bank (PDB) containing 5013 entries. It has been extensively
used in studies of knowledge-based potentials (Glaser et al. 2001), intermolecular
energy landscapes (Vakser et al. 1999; Tovchigrechko and Vakser 2001; Papoian
and Wolynes 2003), docking methodology (Tovchigrechko et al. 2002), and other
studies. Other data sets of protein—protein complexes have been compiled and used
to address various aspects of physicochemical and structural features of protein—
protein interfaces (Dasgupta et al. 1997; Keskin et al. 1998; Larsen et al. 1998; Lo
Conte et al. 1999; Ponstingl et al. 2000; Lu et al. 2003; Keskin et al. 2004; Davis and
Sali 2005; Gong et al. 2005; Teyra et al. 2006; Jefferson et al. 2007; Kundrotas and
Alexov 2007).

The data sets of co-crystallized structures are important for studying protein inter-
faces. However, their role in validation of docking procedures is limited. The reason
is that the bound docking problem (rematching of separated components of a com-
plex in their bound conformation) has been solved by modern docking approaches.
The bound docking problem also does not have practical value in the sense that it
does not create new structural information (the knowledge of bound conformations
assumes that the structure of the complex had been determined). The challenge for
the docking techniques is prediction of complexes from the unbound components
(experimentally determined and, even more challenging, modeled). For that matter,
the databases of unbound protein structures corresponding to complexes of known
structure (unbound docking benchmark sets) are important. The selection of crystal
structures for such data sets is much more limited than for the bound sets because
only a limited number of proteins are crystallized in both bound and unbound form
(Mintseris et al. 2005; Gao et al. 2007).

The Dockground resource (http://dockground.bioinformatics.ku.edu) implements
a comprehensive database of co-crystallized (bound) protein—protein complexes,
providing foundation for the expansion to unbound (experimental and simulated)
protein—protein complexes, modeled protein—protein complexes, and systematic sets
of docking decoys. The bound part of Dockground is a relational database of anno-
tated structures based on the Biological Unit file (Biounit) provided by the Research
Collaboratory for Structural Bioinformatics (RCSB) as a separated file containing
a probable biological molecule. Dockground is automatically updated to reflect
the growth of the PDB. It contains 102,527 pairwise complexes from 24,596 PDB
entries, out of a total 52,263 PDB structures (August 2008). The database includes a
dynamic generation of nonredundant data sets of pairwise complexes based either on
the structural similarity (Structural Classification of Proteins [SCOP] classification)
or on user-defined sequence identity.
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The bound part also contains “easy” precompiled complexes sets:

1. Automatically selected representative complexes. The set is regularly
updated and is downloadable as an Excel-readable text file. It is built accord-
ing to the criteria: PDB entry is not obsolete; area of interface buried by
each chain >400 AZ; multimeric state = 2; chains are not tangled, interwo-
ven, or disordered at the interface; no DNA, RNA, or ligand at the interface;
no S-S bonds between chains; and chains are not membrane associated.
The current release contains 1970 complexes.

2. Manually selected representative complexes. The set is updated less fre-
quently and represents a more sophisticated selection of complexes. The
multimeric complexes are considered and monomeric chains clustered
with sequence identity 30%, pairwise complexes are reclustered, oligomer
complex representatives are selected (based on the best resolution), and the
final dimeric representatives are selected. In addition, the selection keeps
interfaces containing metal ion, PO4, SO4, and S-S bonds (if those are
peripheral to the interface), and membrane associated chains (if the mem-
brane-bound part is not part of the structure), and excludes subunit inter-
action that may be obligate (according to the reference in the PDB file).
If several chains interact with other chains as a whole (judged by visual
inspection and analysis of references), they are treated as one entity. If
structures with sequence identity >30% have different binding modes, they
are considered as different entries. The set contains 523 nonobligate inter-
actions from 508 PDB entries and is downloadable as an Excel-readable
text file and as PDB coordinates (separately in four categories: enzyme—
inhibitor, antigen—antibody, cytokine or hormone/receptor, and others).

A selection of bound complexes served as the basis for building the unbound
data set. The rationale for not using all possible bound complexes was that only
the structures relevant to docking should be considered (e.g., structures that are not
disordered, have adequate interface area, etc.). The selection criteria were: the struc-
tures have to be nonobsolete and have >30 residues. Unbound structures are separate
structures that are also co-crystallized in a complex. The web interface allows the
user to select the data set based on sequence identity (calculated by BLAST [Basic
Local Alignment Search Tool]) between bound and unbound proteins, sequence
identity between different bound structures to exclude redundancy, minimal crystal-
lographic resolution, and choice of hetero- or homodimers (or both). As an option,
the selection can be done for structures related to a specific protein.

Preselected data sets based on most common criteria are suggested for an “easy”
download. These downloadable data sets also include the following important
characteristics:

1. Crystal packing (nonbiological interfaces) and obligate complexes (compo-
nents adopt their folds only within the complex) are excluded. Such com-
plexes were detected for the smaller manually selected representative data
set by using related reference in the PDB file and were detected for the
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larger automatically selected data set of all complexes by an automated
procedure. Weng and co-authors showed that obligate complexes can be
distinguished based on properties of the interfaces structure (Mintseris and
Weng 2003, 2005). An automatic classification procedure, NOXClass from
Lengauer’s lab (Zhu et al. 2006), was used to detect obligate and crystal
packing interactions based on interface properties.

2. If the unbound structure is not available in the PDB, it is simulated based on
the bound structure by assigning side-chain conformations from a rotamer
library using SCWRL (Canutescu et al. 2003). Such simulated unbound
structures do not involve backbone changes, which is one of the factors
limiting their utility. For the future releases, new approaches for unbound
structure simulation are designed based on known general differences
between bound and unbound conformations that include both side-chain
and backbone conformational changes.

The resulting unbound data set, built with >97% sequence identity between bound
and unbound structures, contains 4723 nonobligate, biological (not crystal packing)
complexes, originating from 1718 PDB entries. Among those, 892 complexes (from
542 PDB entries) have the unbound structures crystallized. The unbound structures
for the rest of the complexes were simulated.

From this data set the nonredundant data set is obtained, with <30% sequence
identity between the bound complexes. The homomultimers (which are often pre-
sumed to be obligate) are excluded by eliminating complexes with >70% sequence
identity between units. The resulting set contains 523 complexes (from 508 PDB
entries). Among them, 81 complexes are enzyme-inhibitor, 70 are antigen—antibody,
34 are cytokine or hormone/receptor, and 338 are other. Overall, 99 complexes have
both components in unbound form crystallized, and 143 had one unbound compo-
nent crystallized. The rest of the unbound structures were simulated.

The distribution of complexes according to the change from unbound to bound
conformations is shown in Figure 2.1. The comparison of bound and unbound crystal
structures shows that most changes are <4 A RMSD (all atoms), with a clear peak
in 0.5-2 A interval. Some complexes have very large RMSD values due to domain
movements. The simulated unbound structures are normally distributed with smaller
RMSD values because they do not involve the conformational changes of the back-
bone. More adequate techniques for simulation of unbound conformations that
involve backbone conformations are under development.

PARALLELS BETWEEN PROTEIN RECOGNITION
AND PROTEIN FOLDING

The underlying physical principles that determine the structure of individual pro-
teins and the structure of protein complexes are identical. Statistically derived res-
idue-residue and atom—atom preferences for protein—protein interfaces were found
to be similar to those in protein cores (Tsai et al. 1996; Vajda et al. 1997; Keskin et
al. 1998; Glaser et al. 2001; Zhou and Zhou 2002; Liang et al. 2007). A major role
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FIGURE 2.1 Distribution of biological, nonobligate complexes according to the bound/
unbound all atom RMSD.

of hydrophobicity in protein folding is well established (Richards 1977; Dill 1990).
Studies of protein—protein interfaces confirm the importance of hydrophobicity in
complex formation as well (Korn and Burnett 1991; Vakser and Aflalo 1994; Young
et al. 1994; Tsai et al. 1996; Keskin et al. 2004). The importance of the concept of
the energy funnel, first demonstrated for protein folding (Bryngelson et al. 1995; Dill
1999), has been expanded to the intermolecular energy landscape in protein—protein
interactions (Tsai et al. 1999; Shoemaker et al. 2000; Tovchigrechko and Vakser
2001; Baker and Lim 2002; Hunjan et al. 2008; O’Toole and Vakser 2008; Ruvinsky
and Vakser 2008a, 2008b). Tight packing of structural elements inside proteins is
one of the fundamental concepts in our understanding of protein structures (Ponder
and Richards 1987; Hubbard and Argos 1994; Jiang et al. 2003). The same concept
of compactness applies to protein—protein interfaces as well (Keskin et al. 2004;
Douguet et al. 2006).

The interaction of secondary structure elements in protein structures may be for-
mulated in terms of docking, even though docking is traditionally considered to be
a problem of matching two separate molecules. The main difference in matching
secondary structure elements and matching separate molecules is in the constraints
imposed by the environment. A number of studies explored the applicability of dock-
ing to secondary structure packing (Ausiello et al. 1997; Yue and Dill 2000; Vakser
and Jiang 2002; Inbar et al. 2003; Jiang et al. 2003). A multiplicity of physicochemi-
cal factors obviously plays a role in the packing of secondary structure elements in
proteins and in the formation of protein complexes. However, the well-known tight
packing of structural elements suggests the importance of the geometric fit.

Earlier studies of this subject were primarily focused on helix—helix packing
(Richmond and Richards 1978; Cohen et al. 1979; Chothia et al. 1981; Murzin and
Finkelstein 1988; Reddy and Blundell 1993; Walther et al. 1996). One reason was
the limited number of high-quality crystal structures, mostly containing helices. A
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traditional biochemical view on interactions of secondary structure elements largely
neglected geometric complementarity as an important factor (with the exception of
helix—helix interactions). A docking algorithm based on geometric complementarity
was applied to a comprehensive database of secondary structure elements derived
from the PDB (Jiang et al. 2003). The results show that the steric fit plays an impor-
tant role in the interaction of all secondary structure elements. Docking procedures
have been utilized in protein-structure prediction (Yue and Dill 2000; Haspel et al.
2002; Inbar et al. 2003). In such cases, the secondary structure elements are docked
by rigid-body procedures followed by structural refinement.

Docking approaches are popular in modeling the structure of transmembrane
(TM) helix bundles in G-protein coupled receptors and other integral membrane
proteins. The few existing crystal structures of integral membrane proteins provide
useful information on the TM bundle configurations. The TM helices are roughly
parallel to each other; they are of similar length (determined by the thickness of the
membrane) and are well packed. Thus, it is reasonable to assume that the structure
of the bundle is determined primarily by the helix—helix interactions, rather than by
the interhelical loops (which, of course, still determine the general topology of the
bundle). Most helix-helix interfaces in TM bundles are predominantly binary—if
two interfaces overlap, one of them is usually dominant. In that regard, TM bun-
dles are ideal objects for docking predictions. At the same time, helices are simple
enough to provide validation ground for new docking concepts (e.g., see Pappu et al.
1999). It has been noted that the side chains at the helix—helix interfaces, on average,
are shorter than those at the noninterface helix areas (Jiang and Vakser 2000, 2004).
This structural characteristic creates a low-resolution recognition factor that allows
one to model the TM bundle at low resolution (Vakser and Jiang 2002). However, a
high-resolution model of the TM bundle requires an explicit conformational search
of the helix internal coordinates (primarily side chains). Thus, from the practical
point, the high-resolution modeling of TM bundles is currently useful only if accom-
panied by a set of experimentally derived structural constraints.

COMPLEMENTARITY, RECOGNITION MOTIFS, AND HOT SPOTS

The protein—protein binding site architecture has been extensively studied in recent
years (Reichmann et al. 2007). Among many factors contributing to protein recogni-
tion and the efforts to model it, a tight geometric complementarity between inter-
acting protein surfaces is a cornerstone of protein—protein docking methodology
since its inception in 1978 (Wodak and Janin 1978). Systematic database analysis
of the rapidly growing number of co-crystallized protein—protein complexes pro-
vides an increasing amount of evidence supporting this concept (Keskin et al. 2004;
Douguet et al. 2006). A number of investigations of packing and buried surface
area at protein—protein interfaces (Lawrence and Colman 1993; Hubbard and Argos
1994; Janin 1995) supported the general conclusion that the interacting proteins have
a high degree of surface complementarity, but indicated that there is a significant
variation in this regard between different complexes. For example, packing at the
antigen—antibody interface is relatively loose (Lawrence and Colman 1993; Mariuzza
and Poljak 1993). The contact surface area in protein—protein complexes generally
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varies from 500 to 5000 A2 with many complexes having even larger contact areas
(Lo Conte et al. 1999; Douguet et al. 2006).

Most protein—protein interfaces are found to be more hydrophobic than exposed
areas (Korn and Burnett 1991; Vakser and Aflalo 1994; Young et al. 1994; Tsai and
Nussinov 1997). Hydrophobic amino acid residues tend to be enriched in the interface
in hydrophobic patches of 200-400 A2 (Jones and Thornton 1996; Tsai et al. 1996;
Lijnzaad and Argos 1997). A high degree of electrostatic and hydrogen-bonding
complementarity is also observed for protein—protein interfaces (Janin 1995; McCoy
et al. 1997; Tsai et al. 1997, Larsen et al. 1998).

The receptor (the larger protein in the complex) sites are often concave (Ho and
Marshall 1990; Peters et al. 1996; Binkowski et al. 2003; Nicola and Vakser 2007).
The binding surface is also known to be more conserved than the nonbinding surface.
A degree of residues conservation and evolutionary importance is an indicator of the
binding and/or functional region (Zhang et al. 1999; Armon et al. 2001; Elcock and
McCammon 2001; Cammer et al. 2003; Yao et al. 2003). It has also been determined
that entropic properties of the binding site are different from those of the nonbinding
surface (Elcock 2001; Rajamani et al. 2004). The binding “hot spots” theory points
to existence of a small number (e.g., three) of interface residues that are key to bind-
ing. They are usually positioned in the middle of the interface, are inaccessible to
solvent, complementary to other hot spot residues across the interface, are evolution-
ary conserved, and maintain their conformation upon binding (Halperin et al. 2004;
Rajamani et al. 2004; Vakser 2004; Keskin et al. 2005; Moreira et al. 2007).

The interface residues with the largest conformational change upon binding
were studied by docking techniques (Tovchigrechko and Vakser 2005). The study
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FIGURE 2.2 The significance of the side-chain conformation change in docking. The total
number of complexes is 31. The unbound interface side-chains conformers with the largest
bound/unbound RMSD were replaced by the bound ones. The criterion for correct prediction
is a near-native match (<5 A ligand interface C* RMSD) in 10 lowest-energy predictions. See
text for details.
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determined how the replacement of a limited number of such side chains with their
bound conformations affects the performance of a rigid-body docking procedure on
the benchmark of the unbound protein structures (Chen et al. 2003). The root mean
square deviation (RMSD) of a side chain was calculated after superimposing the N,
C, C¢, and CP atoms in the same residue taken from bound and unbound protein con-
formations. All the interface residues were sorted by this side-chain RMSD. N side
chains with the largest RMSD were selected and replaced by their bound conform-
ers. The side-chain replacement was done for both receptor and ligand. The value of
N was setto 1, 3, 5, and to all interface residues. The benchmarking protocol was run
for each pair of generated structures. The results are summarized in Figure 2.2. The
number of successfully docked complexes significantly increases when only three
side chains are brought into the bound conformation. There is no improvement with
a larger number of replaced side chains, and the number of correctly docked com-
plexes still does not reach the one obtained for true bound structures (27 complexes).
Therefore, one can conclude that for N > 3 the backbone conformational change
becomes the limiting factor for the binding.

LARGE-SCALE RECOGNITION FACTORS

One of the most fundamental questions concerning ligand—receptor interaction is
whether such a process of intermolecular association is generally determined by
local structural elements of the participating molecules or whether there are also
large-scale motifs in molecule structures that facilitate complex formation. The local
physicochemical and steric factors are responsible for the final “lock™ of the mol-
ecules when their binding sites are already in close proximity. At the same time, the
existing evidence suggests that there are structurally determined factors that contrib-
ute to bringing the binding sites to such proximity.

An important insight into the basic rules of protein recognition is provided by
the studies of large-scale structural recognition factors, such as correlation of the
antigenicity of surface areas with their accessibility to large probes (Novotny et al.
1986), role of the surface clefts (Laskowski et al. 1996), binding-site characterization
based on geometric criteria (Ho and Marshall 1990; Peters et al. 1996; Nicola and
Vakser 2007), study of the “low-frequency” surface properties (Duncan and Olson
1993), recognition of proteins deprived of atom-size structural features (Vakser 1995;
Vakser and Nikiforovich 1995; Vakser 1996b; Vakser et al. 1999), and backbone
complementarity in protein recognition (Vakser 1996¢). The practical importance
of the large-scale recognition factors for docking methodologies is that they often
allow one to ignore local structural inaccuracies (e.g., those caused by conforma-
tional changes of the partners upon complex formation).

The effect is illustrated in Figure 2.3, showing the lowest energy low-resolution
match between unbound hemagglutinin and the BH151 antibody, which is a mean-
ingful approximation of the correct binding mode (Vakser 1997). The binding
involves significant conformational changes in the surface side chains. Thus, the
high-resolution rigid-body docking mode was unable to produce adequate structures.
The match shows the low-resolution surface complementarity between the molecu-
lar structures. A closer examination, however, reveals multiple discrepancies in the
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FIGURE 2.3 The lowest-energy low-resolution match between unbound hemagglutinin
(light gray) and the BH151 antibody (dark gray).

atom-size details (penetrations, gaps, physicochemical inconsistencies). Both the
low-resolution complementarity and the high-resolution mismatches are the direct
results of the elimination of small structural details from the docking procedure,
which was specifically designed to provide such effects.

The backbone complementarity in protein—protein recognition was studied directly
by representing the molecules by C® atoms only and applying the C-centered poten-
tials for intermolecular energy calculations. A systematic six-dimensional search for
complementarity between ligand and receptor backbone structures revealed that, in
most cases, the low-energy configurations of the complexes are nonrandomly related
to their crystal structures.

The computer experiment revealed that all tested backbone structures, except
antigen—antibody, in all 10 low-energy configurations (in one case, in 6 of 10), were
found within 12 A from the crystallographically determined position in the complex
(Figure 2.4). Taking into account the remarkably nonrandom character of the results,
one may conclude that the main-chain fold plays an important role in protein recogni-
tion. At the same time, the results showed that the role of the main chain in antigen—
antibody complexes is less significant than in the other cases of protein complexes.
The reason may be that the antibody molecules, with basically the same main-chain
fold, have to recognize different antigens. This means that the backbone cannot be
a recognition factor in this case. The conformational differences in the main chain
of the recognition loops in the variable domain of Fab may just facilitate the specific
arrangement of the side chains, which could reflect certain differences in the prin-
ciples of complex formation. Thus, the complementarity between the backbones, in
general, may facilitate the initial placement of the ligand at the binding site of the
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FIGURE 2.4 The lowest-energy complexes of the backbone structures. The molecular pairs
are: (A) o and P subunits of human hemoglobin, (B) trypsin and BPTI, (C) subtilisin and chy-
motrypsin inhibitor, (D) acid proteinase and peptide inhibitor, (E) al-a2 subunits of MHC I
and a peptide, (F) the variable region of Fab and lysozyme, and (G) the variable region of Fab
and a peptide. The thick chain represents the receptor (light gray) and the ligand (dark gray).
The backbone of the ligand in the crystal structure is shown by the thin chain.

receptor. At the same time, the identity and the specific conformation of the surface
side chains play the crucial role at the subsequent stage of the complex formation.

Observation of co-crystallized protein—protein complexes and low-resolution
protein—protein docking studies suggests the existence of a binding-related aniso-
tropic shape characteristic of protein—protein complexes. A recent study (Nicola and
Vakser 2007) systematically assessed the global shape of proteins in a nonredundant
database of co-crystallized protein—protein complexes by measuring the distance
of the surface residues to the protein’s center of mass. The results showed that on
average the binding site residues are closer to the center of mass than the nonbind-
ing surface residues. The data clearly shows a tendency of the interface residues
to be closer than average to the center of mass. The effect is not detectable for the
small interfaces, but increases dramatically for the large interfaces. The paradigm
is illustrated in Figure 2.5. Examples of actual interfaces are shown in Figure 2.6.
Arguably, a small interface is geometrically less likely than a large one to have a
deep concavity or significant flatness detectable by a simple measure of the average
distance to the protein center of mass. On the other hand, a large interface on the
larger protein within a complex geometrically can be of any type—concave, convex,
or flat (Figure 2.5). The fact that it is by far more likely to be close to the protein
center of mass than the rest of the surface does not follow from geometry, but rather
is due to free energy aspects of protein binding/folding.

A systematic evaluation of the low-resolution protein—protein recognition was
performed on a comprehensive nonredundant database of co-crystallized protein—
protein complexes. The docking program GRAMM was used to delete the atom-size
structural details and to systematically dock the resulting molecular images. The
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FIGURE 2.5 Schematic illustration of some possible protein—protein complex geometries.
The distances from the center of mass (arrows) illustrate (A) more likely geometries (binding
site on average is closer to the center of mass than the nonbinding surface) and (B) less likely
geometries. For simplicity, the illustration shows proteins of different sizes. However, the
same paradigm of binding site close to the center of mass applies to homodimers.

results revealed the existence of the low-resolution recognition in 52% of all com-
plexes in the database and in 76% of the 113 complexes with >4000 A2 interface area.
Limitations of the docking and analysis tools used in that study suggested that the
actual number of complexes with the low-resolution recognition is higher (Vakser et
al. 1999). A more sophisticated approach for the detection of low-resolution recogni-
tion was based on different models of random matches (Tovchigrechko and Vakser
2001). The recognition was considered detected if the binding area was more popu-
lated by the low-energy docking predictions than by the matches generated in the
random models. The number of complexes with detected recognition based on dif-
ferent random models varied significantly. However, the results confirmed that such
recognition is likely to be the universal feature in protein—protein association.

The same techniques have been applied to docking of protein models of different
accuracies (Tovchigrechko et al. 2002). To simulate the precision of protein models,

A B

FIGURE 2.6 Examples of protein—protein interfaces. A cross-section through the structure
shows (A) small interface with undetectable binding-related shape anisotropy (1138 A?), (B)
large flat interface (7004 A?), and (C) large concave interface (4055 A2).
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all proteins in the protein—protein database were structurally modified in the range
of 1 to 10 A RMSD, with 1 A intervals. A sophisticated procedure was specifically
designed and implemented for that purpose. All resulting models of the proteins
(Figure 2.7 shows an example of models) were docked. The statistical significance of
the docking was analyzed, and the results were correlated with the precision of the
models. The data showed that even highly imprecise protein models (>6 A RMSD)
still yield structurally meaningful docking results that are accurate enough to pre-
dict binding interfaces and to serve as starting points for further structural analysis.
An example of docking protein models of low accuracy is shown in Figure 2.8. The
study demonstrated the applicability of existing docking techniques to models of
various accuracies and, at the same time, the existence of the large recognition fac-
tors in protein structures.

.

Crystal A RMS=6A

FIGURE 2.7 The array of trypsin structures, from the x-ray to low-resolution models.

Crystal

FIGURE 2.8 Results of the low-resolution docking of trypsin and BPTI. The experimental
structures are on the left and the low-resolution models (RMS = 6 A, both trypsin and BPTI)
are on the right. The dark gray spheres are the BPTI center of mass in the 100 lowest energy
positions. The light gray sphere (indicated by an arrow) is the BPTI center of mass in the co-
crystallized complex. For comparison, the experimental structure of trypsin (thin dark gray
chain) is overlapped with the model. The docking of the models clearly preserves the cluster
of correct predictions in the area of the binding site.
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INTERMOLECULAR ENERGY LANDSCAPE

The existence of the large-scale structural recognition factors in protein association
has to do with the funnel-like intermolecular energy landscape. The concept of the
funnel-like energy landscapes has had a significant impact on the understanding
of protein folding (Dill 1999). The kinetics of the amino acid chain folding into a
unique 3D structure are impossible to explain using “flat” energy landscapes, where
minima are located on the energy “surface” that do not favor the native structure
(so-called golf-course landscapes). The general slope of the energy landscape toward
the native structure (“the funnel”) explains the kinetics of protein folding. It also
provides the basis for protein-structure prediction. The basic physicochemical and
structural principles of protein binding are similar, if not identical, to those of pro-
tein folding. Thus, the funnel concept can be naturally extended to intermolecular
energy (Tsai et al. 1999; Tovchigrechko and Vakser 2001; Wolynes 2005). As in pro-
tein folding, this concept is necessary to explain the kinetics data for protein—protein
association. The existence of a funnel in protein—protein interactions is supported
by considerations regarding long-range electrostatic and/or hydrophobic “‘steering
forces” and the geometry of proteins (Berg and von Hippel 1985; McCammon 1998),
energy estimates for near-native complex structures (Camacho et al. 2000), and the
binding mechanism that involves protein folding (Shoemaker et al. 2000).

It has been shown that simple energy functions, including coarse-grained (low-res-
olution) models, reveal major landscape characteristics. The large-scale, systematic
studies of protein—protein complexes confirmed the existence of the intermolecular
binding funnel (Vakser et al. 1999; Tovchigrechko and Vakser 2001).

A simplified representation of the landscape was used for a systematic study of its
large-scale characteristics in a large nonredundant data set of protein complexes. The
focus of the study was on the basic features of the low-resolution energy basins and
their distribution on the landscape (O’Toole and Vakser 2008). The results clearly
show that, in general, the number of such basins is small (Figure 2.9), these basins
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FIGURE 2.9 Distribution of complexes with a certain number of basins.
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are well formed, correlated with actual binding modes, and the pattern of basins
distribution depends on the type of the complex.

GRAMM-X docking was applied to a comprehensive nonredundant database of
nonobligate protein—protein complexes to determine the size of the intermolecular
energy funnel (Hunjan et al. 2008). The unbound structures were simulated using a
rotamer library. The procedure generated grid-based matches, based on a smoothed
Lennard-Jones potential, and minimized them off the grid with the same potential.
The minimization generated a distribution of distances, based on a variety of met-
rics, between the grid-based and the minimized matches. The metric selected for the
analysis, ligand interface RMSD, provided three independent estimates of the funnel
size: based on the distribution amplitude for the near-native matches (Figure 2.10),
deviation from random, and correlation with the energy values. The three methods
converge to similar estimates of ~6—84 ligand interface RMSD. The results indi-
cated dependence of the funnel size on the type of the complex (smaller for antigen—
antibody, medium for enzyme—inhibitor, and larger for the rest of the complexes) and
the funnel size correlation with the size of the interface.

In a subsequent study, the energy landscapes of 92 protein—protein complexes
were described by conformational ensembles of docked protein matches developed
for each of the considered resolutions from 1.7 to 5.5 A (Ruvinsky and Vakser 2008a).
The results demonstrated that the ruggedness and the slope are markedly higher for
funnels then for other basins at all resolutions. The results also showed that increas-
ing of the potential range decreases the number of multiconformational clusters
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FIGURE 2.10 Distribution of minimization distances (the difference between scan and
minimized positions) versus the minimized positions (the end points of the minimization).
Each point on the distribution plots corresponds to a match. There are 2000 matches for each
of the 399 protein—protein interactions.
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substantially, increases the number of near-native docked matches, and keeps the
energy gap of the landscape at the same level. The results revealed that averaged
characteristics of the energy basins (the ruggedness and the energy slope) may be a
more stable indicator of the native funnel than the basin depth and its occupancy.

Since the protein—protein intermolecular energy landscape is based on distance-
dependent potentials, it is grounded in the shape of the interacting molecules. This
connection is especially transparent in the case of van der Waals—only force fields,
including the digitized Lennard-Jones potentials, used in a number of surface
complementarity docking algorithms including GRAMM. This geometry—energy
dichotomy was addressed in earlier docking studies (Vakser 1996a) and allows one
to conveniently use the energetic and geometric considerations interchangeably in
exploring protein recognition factors.

The potential smoothing approach in GRAMM is based on extending the range
of the potential, at the same time lowering the resolution of the geometric molecular
image (Vakser 1995, 1996a). This allows direct tracking of major landscape charac-
teristics to the structural details of protein shape. The atomic size details correspond
to “high-frequency” landscape fluctuation. The individual residues side chains and
larger structural fragments (e.g., secondary structure elements) produce progres-
sively larger (lower frequency) fluctuations. The largest (lowest frequency) fluctua-
tions (funnels/basins) correspond to macrostructural recognition factors (binding
sites and similar size shape characteristics; Tovchigrechko and Vakser 2001).

Beyond these general considerations, a limited number of basin distributions can
be specifically tracked back to a known class of shape characteristics. One example is
enzyme—inhibitor complexes, which often have a dominant basin (typically, the fun-
nel) that corresponds to the geometrically pronounced binding site on the enzyme.
However, in most other cases the connection is not easily made and requires detailed
structure-function investigation of the interacting proteins.

IMPLICATIONS FOR DOCKING

The knowledge of the major characteristics of the binding sites, such as hydrophobic
clusters, hot spot residues, and so forth, helps to narrow the global search for the
binding mode, by providing the opportunity to focus on specific sites on the protein
surfaces, as well as on limited areas of the intramolecular conformational space.

A number of protein docking approaches implement a multistage/multiscale
approach, where the initial global search is performed at lower resolution, followed
by the local refinement to a higher resolution (Pappu et al. 1999; Gray et al. 2003;
Li et al. 2003; Carter et al. 2005; Tovchigrechko and Vakser 2005). The change of
resolution is an essential part of the refinement. A major impediment to the refine-
ment protocols is the uncertainties in the landscape transformation (Pappu et al.
1999). Such uncertainties led to the loss of the refinement trajectories, unneces-
sary oversampling, and so forth. Thus, the quantitative description of the landscape
change according to the resolution is important for designing refinement procedures
for docking.

The use of the simpler energy functions at the first (scan) stage of docking has
two related aspects. First, it is to make the procedure computationally feasible, since
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it involves global search in the docking coordinates space. Second, for some algo-
rithms explicitly, and for many implicitly, simpler functions result in a simpler land-
scape that still serves as a meaningful approximation of the “real” landscape. The
value of such simpler landscapes is that they reduce the inherent “high-frequency”
energy fluctuations from more detailed force fields, which allows a sparse sampling
procedure to detect the binding funnel area.

A typical second docking stage often involves scoring (reevaluation of the
same matches with a more accurate, but computationally expensive, energy func-
tion) and sometimes refinement (minimization, often more detailed than at the first
stage potential, involving structure movement; e.g., off the grid, on a finer grid, etc.,
depending on the algorithm).

In such a scheme, it is critical that the set of the matches submitted to the second
stage contains at least one match within the funnel. Otherwise the refinement, which
is local by design, will not produce a near-native structure. This requirement is by
far not trivial, given the scope of the global search, and the fact that the scan stage of
most global search procedures is the rigid-body one. This results in the need for the
scan stage to generate huge numbers of matches (often in the hundreds of thousands)
for the subsequent refinement. Such numbers of starting points for the refinement
reduces its reliability, because the accuracy has to be compromised for the sake of
computational feasibility.

Obviously improving the methods of the funnel detection at the scan stage would
drastically reduce the number of starting points for the second stage, thus allowing it
to perform a better refinement. For such a task, the knowledge of the average number
of funnel-like basins per complex and the size of the funnel is important. Specifically,
the knowledge of the average funnel size suggests the maximal distance of a scan
match from the native structure in order for the refinement to succeed. The funnel
sizes detected by geometry-only procedures may underestimate the “real” size of
the funnel, due to the absence of electrostatics and desolvation components and the
rigid-body approximation. However, they are adequate to docking algorithms where
the global search scan stage is based on the rigid-body approximation and the steric
fit is the principal component of the force field.

Another important implication for practical docking directly relates to the rug-
gedness and slope characteristics. The basin depth-related ruggedness and slope have
not been utilized in protein docking. Among various approaches to funnel detection,
docking procedures typically use the energy/score of the top-ranked match and,
optionally, the cluster occupancy, in part related to the density-related ruggedness.
Thus, the existing docking methods do not properly account for the basin shape. As
a distinct property of the funnel, the depth-related ruggedness and the slope should
complement the energy and the cluster occupancy in the docking funnel detection.
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OVERVIEW

In recent years, many aspects of biology have been likened to networks, in which
distinct nodes (e.g., cells or molecules) can be defined that interact with one
another within a system to perform various biological functions. While networks
have most commonly been invoked to describe large, organismal level systems,
they have also found some traction in illustrating the ways in which proteins
interact with one another. Network maps have been constructed to depict all
of the possible protein—protein interactions within a cell (e.g., the interactome),
essentially a low-resolution view of molecular recognition. At higher resolu-
tion, thinking of protein—protein binding sites as networks of amino acid resi-
dues that communicate with one another both structurally and energetically has
begun to reveal how the modular architecture of protein interfaces and the net-
worked communications within them serve as driving forces for protein com-
plex specificity and affinity. Studies aimed at defining the biophysical basis of
these communication events within protein—protein binding sites may serve as an
experimental foundation for improving algorithms designed to predict protein—
protein interactions.
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INTRODUCTION

Interactions between proteins are essential for nearly all cellular processes (Gascoigne
and Zal, 2004; Pawson and Nash, 2000; Warren, 2002) and aberrant protein—protein
interactions contribute to the pathogenesis of numerous human diseases (Rual et
al., 2005). As the genomewide mapping of protein—protein interactions has identi-
fied many of the molecular components of numerous physiological and pathological
processes (Bouwmeester et al., 2004; Giot et al., 2003; Ito et al., 2001; Li et al.,
2004; Uetz et al., 2000) and structural genomics efforts have determined structures
of many of the constituent protein domains involved in these interactions, the ability
to predict the binding specificities and energies of protein complexes from protein
structures alone has reached paramount importance.

With the postgenomic emergence of systems biology, many biological events have
been likened to networks, in which numerous distinct nodes are described that inter-
act with one another within a system resulting in various functions. The description
of biological events as networks and the application of network analysis tools to these
structures have provided novel insights into biological systems that had been over-
looked prior to defining these events in a networked manner (Bader et al., 2008).

Networks can also be defined for subsystems within the context of a broader organ-
ismal system, such as for a protein interactome. For instance, the entire set of proteins
(e.g., the proteome) within a particular system, such as a cell, that bind to one another
can be defined as a network. Interactome maps of proteins have now been assembled
for the proteomes of numerous organisms and cell types, to varying degrees of com-
pleteness. These protein interaction maps have, for instance, provided insight into the
modularity of the proteome, in which a relatively small number of protein core com-
plexes, or machines, carry out a large number of cellular processes and these core
complexes are functionally modified by changes in the attachment of proteins to them,
rather than by dissolution and reconstitution of wholly new protein core complexes.

At even greater detail, the molecular interfaces formed when two proteins interact
with one another can also be defined as networks. In this way, individual amino acids
(e.g., nodes) within a binding site (e.g., the system) are interconnected in myriad
ways, and this very interconnectedness is essential for protein—protein binding (e.g.,
function). As such, any protein—protein interaction can be described as a networked
system. Structural and energetic connections between the individual amino acids
in an interface exist and defining them quantitatively is currently a major focus in
the structural biology community. These networked connections within protein—pro-
tein interfaces may prove to be one of the key driving forces in the development of
improved algorithms for protein—protein interaction prediction in the future.

What follows is a description of how our view of protein binding interfaces has
evolved and where it may be going, as well as how it could affect computational efforts
in modeling protein—protein interactions and, ultimately, drug discovery and design.

STRUCTURAL HETEROGENEITY IN PROTEIN-PROTEIN INTERFACES

Our evolving understanding of protein—protein interactions indicates that there is a
distinct physical organization to protein binding sites. This molecular architecture
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of protein—protein interfaces has direct consequences for the specificities and affini-
ties of protein complexes. Describing the architectural details that allow for produc-
tive associations is essential for our understanding of, and for our ability to predict,
protein—protein interactions.

Protein domains are subsets of protein sequences that can fold stably and function
independently from the rest of the protein chain from which it derives. Domains can
also evolve independently of larger proteins, as patterns of domain interactions are
commonly observed within organisms and across taxa (Pereira-Leal and Teichmann,
2005). Most proteins are constructed of multiple domains (Pawson and Nash, 2003),
which can mediate interactions with other proteins, often through associations with
other domains. An overrepresentation of domain pairs in large data sets of experi-
mentally determined protein—protein interactions has been observed (Deng et al.,
2002; Han et al., 2004; Liu et al., 2005; Riley et al., 2005; Sprinzak and Margalit,
2001). Also, structurally based domain—domain interaction databases (Finn et al.,
2005; Stein et al., 2005) include many domain—domain interactions that are shared
between diverse protein—protein complexes. Thus, protein—protein interactions are
thought to be mediated by a limited set of domain—domain interactions and, as
such, domains act as primary recognition elements for protein—protein interactions.
Accordingly, it has been argued that this constitutes a “protein recognition code”
(Sudol, 1998) and that cell regulatory and signaling systems are assembled largely
through protein domain interactions (Pawson and Nash, 2003).

Just as domains, being subsets of whole proteins, are generally responsible for
driving interactions, only some fraction of the residues on the molecular surface
of a domain are involved in binding. That there is chemical heterogeneity within a
protein binding site has been obvious since the first structures of proteins were deter-
mined, and it was clear that molecular interfaces would necessarily be populated by
mixtures of different amino acids that contributed distinct chemical groups to the
interface. Once numerous structures of protein complexes had been determined to
high resolution, it was observed that although there was a great deal of heterogene-
ity in the chemical and structural makeup of interfaces, they were also similarities.
In general, protein—protein interfaces are on the order of 1500-2000 A2 in total
buried surface area, relatively planar in shape, exhibit a hydrophobicity intermediate
between the protein core and the entirety of the protein molecular surface, and con-
tain approximately one hydrogen bond per 100 A2 of buried surface area from each
protein (Janin et al., 2007; Jones and Thornton, 1996).

Which of these general characteristics that are inherent to protein interfaces is
most critical for specific and high affinity interactions? Certainly the hydrophobic
effect is the main driving force for protein association. That protein binding and pro-
tein folding share the same critical determinant is not entirely surprising, as numer-
ous investigators have made the argument that protein binding can be considered, in
actuality, a subset of protein folding events.

To understand any system, a series of perturbations and observations is required.
For the interrogation of protein—protein interactions, this generally means that pro-
teins, or protein complexes, are altered by mutagenesis and quantitative measure-
ments of the changes in the energetics of binding and/or structural modifications to
the protein interface are measured. The correlations between energetic and structural
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changes in perturbed protein—protein interactions can form the basis of predictive
algorithms.

In this way, quantitative estimations of the hydrophobic effect in protein—protein
interactions by mutating large hydrophobic residues within an interface to various
residues with exceedingly smaller and less hydrophobic side chains have been made.
The thermodynamic and structural changes associated with these mutations are then
measured by isothermal titration calorimetry and x-ray crystallography, respectively.
In this way, an estimated energetic contribution to binding due to hydrophobicity at
the center of an interface has been measured to be 46 cal/mol/A2 (Li et al., 2005),
while at the periphery it was determined to be 21 cal/mol/A? (Sundberg et al., 2000).
Despite the fact that protein—protein interfaces are generally relatively planar, they
still exhibit some degree of curvature, especially at the edge of the interface, and the
significant energetic difference between positionally distinct sites is expected due
to this curvature of the binding site, as well as greater solvent accessibility at the
periphery of the interface.

If hydrophobicity was the only important parameter for protein binding, however,
the exquisite specificity of protein—protein interactions would be dramatically cur-
tailed and the tendency to aggregate heightened. Indeed, many other structural and/
or chemical properties of protein interfaces have been correlated with binding. A
far from exhaustive list of these important parameters includes properties such as:
the shape and chemical complementarity of the two binding surfaces; the amount of
surface area buried upon complex formation; the number and distribution of hydro-
gen bonds and side chains formed across the interface; whether water molecules are
excluded upon binding or remain within the binding site and, if so, whether they
mediate intermolecular electrostatic interactions; the amino acid composition within
the interface; and the degree of conservation of particular residues across species.

Indeed, numerous protein interface prediction algorithms have been developed
that rely on the various attributes that, to some extent at least, distinguish protein
binding sites from other portions of the protein molecular surface. Since initial efforts
to predict surface patches that coincide with protein—protein interfaces (Jones and
Thornton, 1997), several dozen methods to predict interface residues have been pub-
lished (reviewed in Zhou and Qin, 2007). These interface prediction algorithms gen-
erally rely on distinguishing characteristics of protein interface residues, including:

1. Sequence conservation of interface residues are generally more conserved
evolutionarily than noninterface residues.

2. Amino acid type—Hydrophobic and aromatic residues, as well as arginine, are
more abundant, while charged residues are reduced in frequency in interfaces.

3. Secondary structure—Depending on the data set used, B-strands may be
found to be more common than a-helices in protein interfaces (Neuvirth et
al., 2004), while the opposite can also be found, and nonregular secondary
structures are even more common (Guharoy and Chakrabarti, 2007).

4. Solvent accessibility—Interface residues tend to be more solvent accessible
in comparison to noninterface residues.

5. Conformational entropy of side chains—Interface residues are more rigid,
most likely in order to reduce the entropic cost of binding.
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Each of these characteristics alone, however, are relatively weak signifiers of whether
an amino acid will reside in an interface or not, and thus numerous data streams are
required to provide confidence in these predictions.

Despite situations in which perhaps each of these parameters critically contribute
to the association of two proteins, even such a comprehensive sequential and struc-
tural analysis of an interface amounts to an insufficient description of a protein—pro-
tein interface that is required for accurate predictions of the specificity and affinity
of interactions. The situation is further complicated because similar structural and/
or chemical entities are not necessarily equally important energetically across all
protein complexes. Clearly, something is encoded in protein—protein interfaces that
transcends structure, at least static structure, a functional component that is at least
one of the keys to understanding protein—protein interactions.

ENERGETIC MOSAICITY IN PROTEIN-PROTEIN INTERFACES

It was not until the mid-1990s that the energetic mosaicity of protein binding sites
began to be appreciated. When the structure of a complex of proteins is determined,
all of the atoms that make intermolecular contacts are readily identified. The totality
of these contact atoms, and the amino acid residues from which they come, con-
stitute what is referred to as the “structural epitope.” That all, or at least most, of
these contact residues are energetically favorable for binding would have seemed
a reasonable assumption. This turns out, in general, not to be the case, as was first
determined when Clackson and Wells (1995) adopted a strategy of alanine scan-
ning mutagenesis to assess the energetic contributions of individual amino acids
in a hormone-receptor complex. In this type of analysis, each interface residue is
systematically mutated to alanine (in effect, paring its side-chain moiety back to a
single methyl group) and the change in binding energy upon complex formation rela-
tive to the wild-type complex is measured. Certain amino acid residues within this
hormone—receptor interface contribute significantly to the binding energy and were
thus termed “hot spots,” while other residues were energetically silent with respect
to the interaction was evident. This subset of energetically significant residues within
the interface is often referred to as the “functional epitope.”

Within a given protein—protein interface, hot spot residues are more likely to be
found in the central portion of the binding site, often surrounded by a ring of less
energetically important residues (Bogan and Thorn, 1998). This distribution of bind-
ing energy within the interface mirrors the construction of folded globular proteins
and likely serves a similar purpose, that is, to exclude water from the sites of energetic
importance. Indeed, occlusion of solvent from the center of the interface is a require-
ment for high affinity interactions. Additionally, even in a situation where residues
from the interface core and periphery can make equal energetic contributions to
binding, those at the periphery may be more easily replaced by energetically stabiliz-
ing water molecules when their side chains are pared back (Janin, 1999). Despite this
general topological arrangement of hot spots concentrated in the protein interface
core, there are numerous and notable exceptions to this energetically important core/
silent ring architecture including protein complexes in which no hot spots can be
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identified (Roisman et al., 2005; Svensson et al., 2004) or interactions in which hot
spot residues extend to the periphery of the interface (Buonpane et al., 2005).

In addition to the generalized topology of interface core hot spot residency, there
is no significant correlation between the surface accessibility and binding energy
contribution of any particular interface residue (Bogan and Thorn, 1998; Lo Conte et
al., 1999), although residues in the core of the interface tend to exhibit a correlation
between changes in accessible surface area and binding free energies that is not seen
for peripheral interface residues (Guharoy and Chakrabarti, 2005). The difficulty in
identifying energetically important interface residues from examination of the three-
dimensional structure of a protein complex alone is exacerbated by the fact that
many types of amino acids can serve as hot spots, but no one amino acid type always
does, and that some residues that appear to make few contacts within an interface
can contribute significantly to binding energetics, sometimes due to destabilization
of the unbound proteins (DeLano, 2002).

Still, a number of notable attempts have been made to predict hot spot residues
within protein—protein interfaces. Kortemme and Baker (2002) developed a quanti-
tative model for binding energies based on an all-atom rotamer description of side
chains with an energy function dominated by Lennard-Jones interactions, solvent
interactions, and hydrogen bonding. Using this algorithm, 79% of the hot spots in 19
protein—protein interactions with a total of 233 mutations were correctly predicted
with an average error of 1.06 kcal/mol. While this suggests that the underlying physi-
cal principles incorporated into this model are in fact important drivers of protein
associations, several aspects were not well predicted. In particular, the magnitude of
electrostatic effects and the effects of replacing water-mediated hydrogen bonds with
direct protein-to-protein hydrogen bonds across interfaces were underpredicted. In
a similar effort, Serrano and co-workers developed an energy function of a physical
description of protein—protein interactions that was informed by considering a train-
ing set of nine protein complexes with 339 mutations in order to optimize the set of
parameters and weighting factors that best accounted for changes in the stability of
the mutant proteins (Guerois et al., 2002). When applied to a set of four protein com-
plexes with 82 mutations, the correlation between the experimental and theoretical
changes in binding free energy was 0.64 with a standard deviation of 0.8 kcal/mol.

Even in the absence of experimentally determined three-dimensional structures,
hot spots can be identified with a reasonable degree of confidence. Ofran and Rost
(2007a) applied ISIS, an algorithm for predicting all interface residues, to predict only
hotspots by training the method on: (1) the sequence environment of each residue,
including four residues on each side; (2) the evolutionary profile of this nine-residue
window; (3) the predicted solvent accessibility of the residue; (4) the solvent acces-
sibility of the immediate sequence environment, including one residue on each side;
(5) the predicted secondary structure state of the residue and its immediate sequence
environment; and (6) the evolutionary conservation of the residue (Ofran and Rost,
2007b). When applied to a set of experimental mutations with binding free energy
changes of greater than 2.5 kcal/mol, this prediction method using only sequence,
evolutionary conservation, and predicted structure was able to identify roughly half
of the hot spots that an in silico alanine scanning model such as those described
earlier were able to predict. Despite these encouraging advances in predicting which
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residues within a protein—protein interface will act as hot spots, the necessity of per-
forming extensive experimental mutagenesis and binding analysis to quantitatively
describe the energetic contributions of individual amino acids with such an interface
persists.

ARCHITECTURAL MODULARITY IN PROTEIN INTERFACES
AND COOPERATIVE BINDING ENERGETICS

Whether hot spot residues in a protein—protein interface adopt positions within the
conventional core—ring archetype or are more dispersed throughout the binding site,
they are not simply distributed in a random fashion throughout the interface. Instead,
hot spots tend to be clustered within discrete groups, or “hot regions” (Keskin et al.,
2005; Reichmann et al., 2005). The resulting decomposition of protein interfaces
into modules, which has been shown both computationally and experimentally, has
significant energetic consequences for protein—protein interactions.

Further contributing to the heterogeneity of protein—protein interfaces is the fre-
quent presence of cooperativity, in that the energetic contribution to binding of a
protein that has been simultaneously mutated at multiple residues is significantly
different than the summation of the changes in binding energy of the single-site
mutants (Albeck et al., 2000; Bernat et al., 2004; Yang et al., 2003). That is, not only
can hot spots be of varying energetic significance in and of themselves, but also their
energetic contributions to binding can vary depending on whether and where other
hot spot residues are located in the interface. In many protein—protein interactions,
such site-to-site energetic communication is a major contributor to protein binding.
Compelling evidence has been mounting of late that the modular architecture that
is structurally imprinted on protein binding sites not only results in a certain rough-
ness to the energetic landscape of the interface, but serves as the driver of networked
energetic communication in protein—protein interactions.

A recent analysis (Keskin et al., 2005) of a structurally nonredundant database of
all hot regions (Keskin et al., 2004) in the Protein Data Bank (Berman et al., 2000)
at the time has suggested that hot spots are both preorganized in the unbound state
of the protein and that they are clustered into densely packed hot regions. Energetic
contributions from hot spots within a single hot region were, in general, cooperative,
while those residing in separate hot regions were energetically additive. This type
of networking of interactions within a protein—protein interface may be a general
strategy by which energetic cooperativity between residues can be utilized to dictate
the stability of protein—protein complexes.

Indeed, this modular architecture of protein—protein binding sites has been rigor-
ously investigated experimentally. In the TEM1-p-lactamase/B-lactamase inhibitor
protein (TEM1-BLIP) complex, Schreiber and co-workers constructed contact maps
of the interface, taking into account physical interactions including hydrogen bonds
and van der Waals interactions, by which the interface was divided into five indi-
vidual clusters or modules, each with numerous interacting residues and few interac-
tions between (Reichmann et al., 2005). Using a combination of alanine scanning
mutagenesis, surface plasmon resonance (SPR) analysis, and x-ray crystallography,
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it was shown that mutations residing in distinct modules do not affect one another
energetically, and thus, entire modules could be deleted (i.e., by paring back all side
chains within that module by mutation to alanine) with negligible structural or ener-
getic consequences on the remainder of the interface. Conversely, mutations within
a single module were responsible for cooperative energetic and structural changes
within that module.

Another way in which to perturb an interface to affect the affinity of an interac-
tion is to subject one of the proteins in a complex to directed evolution, such as by
phage or yeast display. This iterative process of mutation and selection (in this case
for tighter binding to an unmodified target protein) describes an affinity maturation
pathway of protein variants that, in total, can span many orders of magnitude in
affinity. Because numerous mutations are made that together increase the affinity,
the dissection of these affinity maturation pathways by interrogating the structural
and energetic changes associated with different combinations of mutations makes
this is an especially powerful method for investigating biophysical parameters that
are combinatorial by definition, such as energetic cooperativity.

Following this strategy, we recently presented detailed structural and energetic
analyses of additive versus cooperative effects within a protein—protein interaction.
Using a model system consisting of a yeast display affinity-matured T cell receptor
(TCR) protein that exhibited a ~1500-fold affinity increase for the bacterial superan-
tigen SEC3 (Kieke et al., 2001), group and individual TCR maturation and reversion
pathway mutations were analyzed for binding to SEC3 by surface plasmon reso-
nance analysis (Yang et al., 2003). As in the TEM1-BLIP complexes, energetic coop-
erativity was observed within a single hot region, in this case defined by the second
complementarity determining region (CDR2) loop, while combinations of mutations
from distinct hot regions were found to be energetically additive. Even though this
is one of the most highly affinity-matured complexes characterized to date, the ulti-
mate high affinity variant was found to be restricted by negative cooperativity (i.e.,
the summation of the changes in the binding free energies of the individual muta-
tions exceed the change in binding free energy of the final, fully evolved variant).
Two maturation mutations in particular accounted quantitatively for the entirety of
this negative cooperativity. By determining the x-ray crystal structures of several
of these variant TCR proteins that define this affinity maturation pathway, it was
observed that the mutations at these two positions exerted opposing conformational
changes on the CDR2 loop, providing a structural basis for short-range negative
cooperativity (Cho et al., 2005).

In a similar study involving another affinity-matured TCR—superantigen model
protein—protein interaction system, we investigated whether amino acids separated
by long distances and residing at the peripheral extremes of the interface could act in
an energetically cooperative manner (Moza et al., 2006). The hV(2.1 TCR had been
previously affinity-matured by yeast display to bind the superantigen TSST-1 with an
increased affinity of greater than 3000-fold relative to the wild-type TCR (Buonpane
et al., 2005). Analysis of each of the individual residue changes revealed that there
were four mutations within the interface that were energetically significant in the
affinity maturation process. Three of these positions are located within the CDR2
loop of the TCR and form one hot region, while the fourth is located in the third
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framework region (FR3) loop and forms a distinct hot region. From the x-ray crystal
structure of this TCR—superantigen complex (Moza et al., 2007), it is evident that
these two hot regions are separated by more than 20 A and each lies at the periphery
of the interface. TCR variants in which every possible combination of these four
amino acids as either their wild type or affinity-matured residue were tested for
binding to the superantigen, and the binding free energy of the combinatorial vari-
ants were compared to the summation of binding free energies of their correspond-
ing single-site mutants to ascertain the extent of cooperativity. As expected, several
of the amino acids within the CDR2 hot region exhibited cooperative energetics.
Surprisingly, though, combinations of mutations involving residues from each of the
CDR2 and FR3 hot regions were also found to be energetically cooperative, and
furthermore, the magnitude of this inter-hot regional cooperativity was significantly
greater than the observed intra-hot regional cooperativity (Moza et al., 2006).

If, in all protein complexes, cooperative energetics existed only within hot regions,
and not between them, the quantitative prediction of protein—protein interactions
may be considerably simplified. The aforementioned example suggests that this may
not be the case. However, the jury remains out on this question as a recent bioinfor-
matics analysis of the hVB2.1 TCR-superantigen complex in question (del Sol and
Carbonell, 2007) has suggested that the CDR2 and FR3 hot regions form a single,
albeit large, module in which one might reasonably expect energetically coopera-
tive residues at any distance. In such a rapidly evolving field such as the analysis of
cooperativity in protein—protein interactions, this may be more indicative of a mere
semantic discrepancy than an actual biophysical rule.

CAPITALIZING ON UNDERSTANDING: PREDICTING
INTERACTIONS AND DESIGNING DRUGS

Although progress in developing computational methods for the quantitative predic-
tions of protein—protein interactions has been made recently (Guerois et al., 2002;
Huo et al., 2002; Kortemme and Baker, 2002; Massova and Kollman, 1999; Sharp,
1998), the current robustness of these algorithms is not such that the laborious task of
determining the structure of a given protein complex can be circumvented. It is clear
that these methods are unable to account for aspects of molecular recognition that
are important in determining complex formation, but for which we currently have a
fundamental lack of understanding.

A fundamental lack of understanding of cooperative binding energetics may
be one of the major impediments to formulating with greater accuracy algorithms
for protein—protein interaction prediction. If cooperativity existed only within hot
regions, and not between them, the task of accurately predicting the binding param-
eters for protein complexes would be greatly simplified. Some recent results suggest
that this may be an overly generalized representation of macromolecular interfaces
and that a broader consideration of cooperativity within protein—protein interac-
tions, while more technically and computationally demanding, may ultimately lead
to more accurate predictive algorithms. It also appears from recent results that only
a subset of hot regions may need to be considered as potentially cooperative. The
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recent advances in defining the molecular architectures of protein—protein interfaces
as networks of individual amino acids residues provide an experimental avenue by
which such predictive algorithms can be built.

Because protein—protein interactions are pervasive in biological processes, they
are also important therapeutic targets, and thus the prediction of protein—protein
interactions is critical for drug design. The development of small molecule inhibitors
of such interactions has proven difficult (Arkin and Wells, 2004), largely due to the
relatively planar nature of these interfaces, which tend not to present well-defined
binding pockets. The presence of hot spots and hot regions within protein inter-
faces provides possible sites at which potent small molecule inhibitors may bind to
effectively block the association of much larger molecules. Indeed, small peptides
selected by phage display generally bind their protein binding partners at hot spots
(Sidhu et al., 2003), and the discovery of small molecules that inhibit the interaction
of B7-1 with CD28 and modulate T cell activation, and in which the drug binds at a
hot spot, has been reported (Erbe et al., 2002; Green et al., 2003).

If certain distinct hot regions may be linked energetically, the potency of a small-
molecule inhibitor that targets a cooperative hot region may be amplified relative to
a small molecule that targets a hot region that is strictly additive. This could have
important ramifications for the choice of which hot region within a protein—protein
interaction to target for small molecule inhibition, for instance, by structure-based
drug design.
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INTRODUCTION

Biological processes are mediated through macromolecular interactions and virtually
all of these processes involve proteins. Proteins play a key role in biology through inter-
actions with diverse ligands, including other proteins, nucleic acids, carbohydrates,
lipids, and small molecules [1-3]. A genuine understanding of biological processes
requires detailed characterization of the interacting molecules. High-resolution struc-
tures of molecular complexes provide crucial information about the interacting sur-
faces, or structural epitopes, but structural data alone cannot explain how affinity and
specificity are achieved. To enable in silico design of protein structure and function,
there is a crucial need for not only structural data, but also complementary functional
data that describe the energetic roles of individual protein residues.

Although the three-dimensional structures of proteins are undeniably complex,
the accumulation of a large database of high-resolution structures reveals common
themes in folding, and it appears that there are a limited number of basic folds that
are used in nature [4,5]. This knowledge has served as an important input for math-
ematical descriptions that describe protein folding and structure. In an analogous
manner, a large-scale functional data set describing the energetics of protein—protein
interactions would be an invaluable tool for elucidating common principles of molec-
ular recognition with the accuracy necessary for computational modeling.

To build functional data sets, systematic amino acid replacements through site-
directed mutagenesis are used to map the binding energetics of individual side chains
that constitute binding interfaces. In particular, alanine scanning studies have been
used to define the subsets of side chains that form energetically favorable interac-
tions and constitute the functional epitope within the structural epitope [6]. However,
conventional mutagenesis strategies based on biophysical analysis of individual
point mutants are slow and ill-suited for acquiring the quantities of data required
for developing mathematical descriptions of the kinetics and thermodynamics of
protein—protein interactions. Indeed, it has become apparent that high-throughput
technologies for protein analysis will be needed to accelerate progress beyond what
is possible with traditional biophysical methods [7].

This chapter focuses on phage display strategies for combinatorial mutagenesis,
which are designed to enable the high-throughput mapping of binding energetics at
protein—protein interfaces. The so-called shotgun scanning approaches assess ener-
getics by DNA sequencing and statistical analysis, rather than by biophysical analy-
sis of purified proteins. These methods harness the power of combinatorial methods
for rapid and quantitative analysis or protein function, and unlike conventional bio-
physical methods, they are compatible with high-throughput strategies.

PHAGE DISPLAY TECHNOLOGY

Developed more than two decades ago, phage display is the first and still domi-
nant molecular display technology [8,9]. The method relies on genetic engineering
to produce fusion proteins consisting of polypeptides of interest fused to bacterio-
phage coat proteins, and this results in the display of heterologous proteins on the
surfaces of phage particles that also encapsulate the encoding DNA (Figure 4.1).
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FIGURE 4.1 The phage display selection cycle. Libraries of protein variants (assorted
shapes) are displayed on filamentous phage particles as fusions to coat proteins. Each phage
particle displays a unique variant and encapsulates the encoding DNA. Highly diverse librar-
ies can be produced and selected for binding to immobilized target. Nonbinding phages are
washed away, while binding phages are retained and amplified in host bacteria. Repeated
selection and amplification cycles further enrich the population for binding clones. DNA
sequencing of individual clones decodes the sequences of displayed polypeptides.

Thus, a physical linkage is established between the phenotype (displayed protein)
and genotype (encapsulated DNA), and phage display provides an in vitro version
of Darwinian evolution. Using combinatorial mutagenesis, a library of billions of
protein variants can be produced and represented as phage pools that can be cycled
through rounds of binding selection against immobilized ligands to enrich for func-
tional members [10]. The selected phage population can be amplified by passage
through bacteria and the amplified pool can be cycled through additional rounds
of selection to further enrich the pool for binding clones. Subsequently, individual
clones can be amplified and the genomic DNA can be sequenced to decode the
sequence of each displayed polypeptide.

SITE-DIRECTED MUTAGENESIS AND ALANINE SCANNING

The dawn of the protein engineering era was brought by recombinant DNA tech-
nologies that enable cloning of genes [11-14], production of recombinant proteins in
bacterial hosts [15,16], and introduction of site-directed mutations into genes to alter
protein sequences in a systematic manner [17-21]. Site-directed mutagenesis was
used to alter protein structure, and basic principles of protein chemistry could be
deduced from the resulting effects on function [22—55]. The first systematic approach
for assessing the energetics of protein interactions was alanine scanning mutagen-
esis, which removes all side-chain atoms past the p-carbon and can thus be used to
assess the roles of individual side chains [56,57].
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One of the first alanine scans was performed on the high affinity binding site (Site
1) of human growth hormone (hGH) for its receptor (hGHR) [57]. This was followed
by a scan of the complementary binding site on the hGHR [56]. The binding affini-
ties of mutated proteins were compared to that of the wild type (wt) and the effects
of alanine (Ala) substitutions on binding energy (AAG,,,.,) were mapped onto the
three-dimensional structures of the molecules. These experiments revealed that only
a small subset of residues contribute most of the binding energy on both sides of the
interface, and these residues cluster together to form interacting “hot spots” of bind-
ing energy [6]. Subsequently, alanine scanning experiments have revealed similar
clusters of energetically important residues in many other protein—protein interac-
tions [58], and currently almost 100 such data sets have been compiled [59]. Overall,
alanine scanning studies have led to a better understanding of the importance of the
spatial organization of functional residues in binding interfaces.

Alanine scanning and other site-directed mutagenesis methods have proven invalu-
able for probing particular aspects of protein function in individual cases. However,
the accumulated database is extremely sparse in comparison with the overwhelming
complexity of protein structure and function. Because alanine scanning deals with
proteins on an individual basis, the method is by nature slow and laborious. To address
these limitations, combinatorial shotgun scanning methods have been developed.

THE SHOTGUN SCANNING METHOD

Shotgun alanine scanning uses phage-displayed libraries in which positions of inter-
est are varied as either the wt or Ala using specially designed degenerate codons
(Table 4.1 and Figure 4.2). Using conventional DNA synthesis techniques, the nature
of the genetic code necessitates two additional substitutions in the case of some amino
acids, but, nevertheless, the additional substitutions do not affect the analysis [60].

The library is subjected to several rounds of two independent selections. One
is a “function” selection to assess effects of alanine substitutions on binding to the
ligand of interest and the second is a “structure’” selection for binding to an antibody
that recognizes an epitope distinct from the mutated region. The structure selec-
tion provides a control data set that accounts for biases in the naive library and for
mutational effects that alter levels of protein display on phage. Following each selec-
tion, clones exhibiting specific binding to the selection target are subjected to DNA
sequencing. By sequencing several hundred clones, the wt/Ala ratios at each position
can be determined with statistical accuracy.

To estimate the effect of each alanine mutation on protein function, it is assumed
that each wt/Ala ratio is equivalent to the ratio of the corresponding equilibrium bind-
ing constants (K, /K, 1,). With this assumption, a statistical AAG value can be cal-
culated for the function selection (AAG,,.) and for the structure selection (AAGy,,.,)
by substituting the wt/Ala ratio for the ratio of equilibrium binding constants in the
standard equation: AAG = RT In(K, /K, ;,)- Finally, the AAG for the structure selec-
tion is used to correct the AAG for the function selection, and the difference between
the two is taken as an estimate of AAG,,, .. the difference in binding free energy
between alanine-substituted and wt protein for binding to the ligand of interest. To
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TABLE 4.1
Shotgun Scanning Codons

Alanin Scan® Serine Scan® Homolog Scan¢

wt Codond m2 m3 Codond m2 m3 Codond Homo
A KCT KCT S
C KST G S WGT WGT S
D GMT KMC A Y GAM E
E GMA KMG A * GAM D
F KYT S \% TYC TWC Y
G GST RGT GST G
H SMT D P MRC N R MAC N
1 RYT T Vv AKC RTT \'
K RMA E T ARM N R ARG R
L SYT P \Y TYG P \Y MTC 1
M RYG T Vv AKS T \Y MTG L
N RMC D T ARC D T RAC D
P SCA YCT SCA A
Q SMA E P YMG E P SAA E
R SST G P MGT G P ARG K
S KCC KCC A
T RCT WCG ASC S
\" GYT KYT RTT 1
W KSG G S TSG G S TKG L
Y KMT D S TMC D S TWC F

Note: For each scan, degenerate shotgun codons were designed to encode the wild-type amino acid and

one or more substitutions.

4 Amino acids are represented by the single-letter amino acid code.

b The shotgun codon for each amino acid ideally encodes only the wild type or one type of mutant, but
the degeneracy of the genetic code necessitates the occurrence of two other amino acids (m2 and m3)
for some substitutions. Asterisks (*) indicate a stop codon.

¢ For the homolog scan, binomial shotgun codons were designed to encode the wild type and a similar
amino acid (Homo).

4 Equimolar DNA degeneracies in shotgun codons are represented by the IUB code (K = G/T, M = A/C,
R=A/G,S =G/C,W=A/T,Y = C/T).

visualize the functional epitope, the binding free energy values are mapped onto the
three-dimensional protein structure.

EXAMPLES OF SHOTGUN SCANNING

Shotgun scanning has been used to analyze the functions of numerous proteins
(Table 4.2), and in many cases, subsequent biophysical analysis has been used to con-
firm the accuracy of the results. In addition to alanine scanning, the method has been
expanded to include other types of scans, including homolog and serine scanning.

© 2009 by Taylor & Francis Group, LLC



62 Computational Protein-Protein Interactions

NN 15N @ — N Ln \O [ [e)}
\O e O D~ D~ D~ D~ D~ D~
A — — et — — — — — —
K D K T F R
Y R K D T F R I
R A A K T E R I
Y R A A K T E R I
Y K D K T F R I
A R K D K T E R I
A R K K F R I
Y R D K T F R I
K K F R I
5 Y R D K T F R
o —~
3 s
Z £
= =
< )
= o)
8 <
<
C

FIGURE 4.2 The shotgun scanning method. The illustration depicts alanine scanning anal-
ysis of hGH Site 1 for binding to the hGHR. (A) An hGH library with positions varied as the
wt or alanine was selected for binding to the hGHR, and selected clones were sequenced and
aligned. Ten representative sequences at nine scanned positions are shown with alanine muta-
tions shaded in gray. (B) For each scanned position, the wt/Ala ratio was determined and used
to assess the effect of alanine substitution as a statistical AAG value by substituting the wt/Ala
ratio for the K, /K, , ratio in the standard thermodynamic equation: AAGy,,.,,, = RT In(K, ./
K, a1) = RT In(wt/Ala). For greater accuracy, the AAG values can be corrected for effects on
protein structure using data from a selection for binding to an antibody that recognizes an
epitope distinct from the scanned region. (C) When mapped onto the structure of hGH, the
shotgun scan results reveal a hot spot (black spheres) composed of a cluster of side chains
that contribute most of the binding energy. Black or white spheres indicate scanned positions
with AAG,,,.,,, values greater than or less than 0.8 kcal/mol, respectively. The x-ray structure
(PDB entry 3HHR) was depicted using the UCSF Chimera package from the Resource for
Biocomputing, Visualization, and Informatics at the University of California, San Francisco

[141].
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TABLE 4.2
Proteins Analyzed by Shotgun Scanning
Number of
Scanned
Scanned Protein Binding Partner Positions Substitutions Refs.
hGH hGHR 35 Alanine 60
Serine 62
Homolgo 62
Comprehensive 67
Affinity-matured hGH variant hGHR 35 Alanine 64
Serine 62
Homolgo 62
Gene-8 major coat protein Phage coat 50 Alanine 68,69, 71
Gene-3 minor coat protein Phage coat 150 Alanine 70
Antibody ErbB2 61 Alanine 61
Homolog 61
Antibody VEGF 30 Homolog 80
Antibody BR3 40 Alanine 81
BR3 Antibodies (4) 22 Alanine 81
BR3 BAFF 22 Alanine 93
BCMA BAFF, APRIL 25 Alanine 97
TACI BAFF, APRIL 31 Alanine 94
Erbin PDZ domain Peptide 44 Alanine 101
Homolog 101
Peptide IGF-1 11 Alanine 103
Peptide EF-Tu 20 Homolog 104
Caveolin-1 Protein kinase A 20 Homolog 107
eNOS 20 Homolog 108
Streptavidin Biotin 30 Alanine 109
Engrailed homeodomain Specific DNA 30 Alanine 121
Homolog 121
SGP1-1; SGPI-2 Trypsin 18 Paralog 126
EntB EntF 18 Alanine 127
PPARy SRC-1, TRAP220 14 Alanine 129
SRC-1 PPARY 7 Alanine 129
EGF EGF receptor 33 Ortholog 131

Furthermore, combinatorial data has been used to detect intramolecular cooperativ-
ity by analysis of double-alanine frequencies. A related quantitative saturation (QS)
scanning approach has also been developed to assess the effects of all possible muta-
tions using spatially restricted libraries. The following sections describe the major
shotgun scanning studies that have been reported to date.
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SHOTGUN ScANNING oF HGH

The hGH system was the first to be characterized by shotgun scanning and it pro-
vides examples of all of the major variations on the method. In the first shotgun
alanine scanning experiment, 19 residues were scanned in Site 1 of hGH for bind-
ing to the hGHR, and the results were compared to the previous results of conven-
tional alanine scanning [60]. Importantly, the two data sets were virtually identical,
and thus shotgun scanning was shown to accurately map binding energetics without
requiring time-consuming biophysical analyses. Subsequently, several additional
studies used alternative shotgun scanning approaches to further dissect the function
of hGH.

Homolog and Serine Scanning

Since shotgun alanine scanning proved to be very efficient for mapping the hGH
functional epitope, other mutagenesis schemes were applied to provide alternative
views [61]. The removal of a side chain by alanine substitution is a drastic mutation,
and so, homolog scanning with chemically similar substitutions was developed as a
more subtle probe of function. In addition, because alanine substitutions introduce
apolar groups at the interface, it can be argued that the method overemphasizes the
importance of polar side chains. Thus, serine scanning was developed to test the
effects of replacing side chains with the smallest polar side chain.

Serine scanning was applied to 35 residues in Site 1 of hGH and, in general, the
results were found to track with those of alanine scanning (Figure 4.3) [62]. Thus, it
was concluded that serine and alanine scanning are equally effective for assessing
side chain contributions to binding. The analysis also showed that the burial of polar
serine residues at the interface is no more detrimental than the burial of apolar ala-
nine residues. Thus, it appears that serine is a versatile side chain capable of making
a wide variety of packing interactions, and this conclusion agrees with the finding
that serine is highly prevalent in the combining sites of antibodies [63—67].

An analogous homolog scan of hGH also provided insights into the nature of the
binding site. As expected, most homologous substitutions were much less deleterious
than alanine or serine substitutions (Figure 4.3). However, none of the homologous
substitutions across the binding site caused a substantial improvement in binding.
This suggests that the site is already optimized within the narrow scope of the
chemically similar sequence space explored by homolog scanning. Indeed, affin-
ity maturation studies have shown that improved affinity requires substitutions that
significantly alter the chemical character of the binding site [68,69]. Thus, it appears
that subtle tweaking of the hGH binding site does not alter function appreciably, and,
consequently, significant improvements in affinity require nonconservative muta-
tions that cause large changes in the interface.

Shotgun Scanning of a High Affinity hGH Variant

Shotgun scanning has also been used to understand the basis for the improved affinity
of an hGH variant (hGH,), derived by in vitro evolution [63]. hGH, contains 15 muta-
tions within Site 1 and binds to the hGHR approximately 400-fold tighter than the wt.
The effects of alanine substitutions were determined for 35 residues that constitute
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FIGURE 4.3 (SEE COLOR INSERT FOLLOWING PAGE 174.) Alternative views of
hGH Site 1 for binding to the hGHR. The first four panels show the energetic effects of (A)
alanine, (B) homolog or (C) serine substitutions on hGH, or (D) alanine substitutions on a
high affinity hGH variant. All maps were derived by shotgun scanning, except the alanine
scanning map for hGH, which was derived by conventional site-directed mutagenesis. The
residues are colored according to the AAG,,,,... values as follows: cyan < —0.4 kcal/mol; —0.4
kcal/mol < green < 0.4 kcal/mol; 0.4 kcal/mol < orange < 1.0 kcal/mol; red > 1.0 kcal/mol;
gray untested. Panel E shows the results of a double-alanine frequency analysis of shotgun
scanning data to detect cooperativity among 19 side chains. Scanned positions are colored red
or green, and red indicates residues predicted to exhibit cooperativity with at least two other
residues. Panel F illustrates the results of quantitative saturation scanning, which assesses the
tolerance to all possible mutations. The residues are colored according to SI values, as fol-
lows: cyan < -2; -2 < green < 3; 3 < yellow < 6; red 2 6. Larger SI values indicate positions that
are less tolerant to substitution, and thus are important for binding. The x-ray structures of
hGH and the high affinity variant (PDB entries 3HHR and 1kf9, respectively) were rendered
in Pymol (DeLano Scientific, San Carlos, CA).

or closely border the binding interface, and the distribution of binding energy was
found to differ significantly from that of the wt (Figure 4.3D) [64]. Although the
hot spot residues of the wt were still important, their contributions were attenu-
ated and additional binding energy was acquired from residues on the periphery of
the hot spot. Side chains that inhibited binding of wt hGH were substituted by side
chains that made positive contributions in the new interface. Interestingly, some side
chains that were not mutated nevertheless acquired more important functional roles
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in the high affinity variant. Taken together, these changes produced an expanded
and diffused hot spot in which improved affinity resulted from numerous small con-
tributions distributed broadly across the interface. The results were consistent with
structural studies, which revealed widespread differences between the wt and vari-
ant hormone—receptor interfaces [65]. Clearly, the improved function of hGH, was
achieved through wholesale structural reconfiguration of binding elements rather
than through minor adjustments in the wt interface.

Assessing Intramolecular Cooperativity

Alanine scanning provides information on the functional roles of individual resi-
dues, but it does not assess whether there is cooperativity between residues. To detect
cooperativity, double mutation cycles are required so that the effects of two indi-
vidual mutations can be compared to the effect of the corresponding double mutant
[71-73]. In the absence of cooperativity, the system is additive and the sum of the
effects of individual mutations equals the effect of the double mutant. Although dou-
ble mutation cycles offer a rigorous means for detecting cooperativity, the number of
mutants required for a comprehensive analysis makes the approach impractical for
large binding sites.

With shotgun alanine scanning, it has been shown that the same data set used for
assessing individual residue contributions can be used to detect intramolecular coop-
erativity by pairwise correlation analysis of double-alanine mutants, as the occur-
rence of double-alanine mutations is positively or negatively influenced by positive
or negative cooperativity, respectively [66]. The validity of this approach was dem-
onstrated for hGH, using the shotgun data set originally acquired for mapping indi-
vidual contributions of 19 residues in Site 1 [60]. More than 700 unique sequences
were analyzed and statistically reliable assessments of additivity were calculated for
144 of 171 residue pairs by comparing predicted and actual counts of double-alanine
occurrences. Unfortunately, the remaining pairs could not be evaluated due to a low
occurrence of double-alanine mutations at combinations of functionally important
residues. Nonetheless, the analysis revealed that the binding site is highly additive, as
only 15 of the pairs exhibited evidence of cooperativity and even these pairs deviated
less than twofold from additivity. Eight of the nineteen side chains were involved in
two or more cooperative interactions, and, notably, five of these eight were charged
residues, suggesting that many of the cooperative effects arise from electrostatic
interactions (Figure 4.3E). Subsequent biophysical analysis showed that the predic-
tions were accurate for five of six residue pairs tested, thus confirming the accuracy
and sensitivity of the method.

Mapping Binding Sites in a Comprehensive Manner

hGH was also scanned with a QS scanning strategy designed to assess the structural
and functional consequences of all possible mutations at 35 positions within Site 1
(Figure 4.3F) [67]. The 35 residues were divided into six nonoverlapping libraries
containing five or six residues each, and libraries were restricted spatially rather than
chemically. Each library contained only one of the six functionally most important
residues defined by alanine scanning, and positions were assigned to libraries in
a manner that maximized distances between residues in a common library. These
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design principles were intended to reduce cooperative interactions between proximal
positions and to ensure that no single library contained a disproportionate number
of hot spot residues. The positions were subjected to saturation mutagenesis using
degenerate codons encoding all 20 natural amino acids. Each library was subjected
separately to structural and functional selections in a manner analogous to shotgun
alanine scanning, and several hundred clones were sequenced from each selection.
In total, a database of approximately 2000 hGH variants was compiled and analyzed
to reveal a comprehensive view of the binding site.

The information content of the data set was analyzed in terms of randomness of
amino acid frequencies at each position using a parameter known as the transformed
Shannon entropy (TH). The TH values vary between 1 (a totally conserved position
with only one type of residue) and 20 (a totally random position with equal repre-
sentation of all 20 residue types). The structure selection yielded high TH values
across the surface, consistent with the supposition that surface residues do not play
a major role in stabilizing the protein fold. However, the sequences were depleted in
proline in helical regions, consistent with the helix-breaking properties of proline,
and in cysteine at all positions, suggesting that cysteine residues may interfere with
the native disulfides of hGH. Surprisingly, most positions were highly abundant in
hydrophobic residues, and this observation contradicts the common assumption that
protein stability is compromised by solvent-exposed hydrophobes. On average, the
TH values for the function selection were lower than those for the structure selection,
and this finding was consistent with the fact that the sequence requirements for func-
tional hGH molecules are expected to be more constrained than the requirements for
structure alone.

As both the structure and function selections require correct folding, the additional
constraints imposed by function were quantified by a specificity index (S7) defined
as the difference between the TH values for the structure and function selections. A
positive mean S/ value across the 35 scanned positions indicated that, as expected,
receptor binding imposed constraints beyond those imposed by structure, and a large
standard deviation indicated that these were position-specific constraints.

The SI values were mapped onto the structure of hGH, in a manner analogous
to AAG,,, ., for alanine scanning, to visualize the tolerance of the binding site to
mutational pressure (Figure 4.3F). The SI is an extremely robust probe of the energy
surface, and it is significantly more powerful than alanine scanning for assessing
the functional adaptability of the binding site. There is a general correspondence
between the functional epitope defined by the two methods, as the high SI values
superimpose on the alanine scanning hot spot residues, but the epitope defined by S
values is somewhat more expansive. This is because, at several high specificity posi-
tions, the preferred residue type is not the wt amino acid, and these positions offer
potential for affinity maturation. In general, the hot spot residues defined by alanine
scanning had the highest SI values indicating that these positions require the highest
degree of specificity, and furthermore, the wt residue type is usually preferred. Large
negative SI values were rare and likely indicated mutations that stabilize structure
but inhibit function.

By comparing the frequencies of mutations relative to wt, it was possible to pre-
dict single-site substitutions that should improve affinity. These predictions were
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validated by biophysical analysis of mutant proteins, which confirmed that affinity
was improved by all six mutations that were tested. Thus, QS scanning provided
a full view of the functional adaptability of hGH Site 1, and the data was accurate
enough to guide the design of improved variants by rational design.

QS scanning also provided insights into the nature of protein—protein interactions
in general, and the results challenged several common assumptions about protein
function and evolution. In particular, many apparently conservative substitutions
were not tolerated, while many nonconservative changes were accommodated. Thus,
the role of amino acids in molecular recognition is highly context dependent and
cannot be reliably predicted on the basis of chemical character alone. Furthermore,
sequence conservation across species proved to be a poor predictor of mutational
tolerance, and thus evolutionary conservation does not necessarily signify that a resi-
due is important for function, but, rather, may reflect other constraints imposed by
biology. Taken together, the results indicated that the design of a functional hGH
molecule based strictly on biophysical principles would be very different from that
of the natural molecule based on evolutionary pressures.

MAPPING THE ASSEMBLY OF THE FILAMENTOUS PHAGE COAT

In an effort to better understand and improve the phage display platform, shotgun
alanine scanning has been applied to the phage particle to study how pVIII and pIII
assemble into the coat [68—71]. The filamentous phage particle is a long rod consist-
ing of a single-stranded DNA (ssDNA) genome coated with approximately 2700
copies of the major coat protein (pVIII; Figure 4.4A) [72,73]. One end of the particle
is capped with five copies each of the minor coat proteins pVII and pIX and the other
end is capped with five copies each of the minor coat proteins plIII and pVI [74]. In
a bacterial host, coat proteins insert spontaneously into the inner membrane and
ssDNA is recruited to an assembly pore composed of nonstructural viral proteins
(pL, pIV, and pXI; Figure 4.4B). At the assembly site, the ssDNA is extruded through
the pore and concomitantly surrounded by coat proteins, and, in this way, assembled
phage particles are secreted into the extracellular environment without lysis of the
host cell.

The length of the phage coat consists of interlocking layers of pVIII molecules
arranged around the ssDNA in a symmetrical array (Figure 4.5A) [72,75-77]. Each
pVIII molecule makes extensive contacts with other pVIII molecules in the three
layers below and in the three layers above, but only minor contacts with other pVIII
molecules within the same layer [78]. Shotgun alanine scanning was used to identify
the important residues required for the incorporation of pVIII into the phage coat.
To enable selection for pVIII incorporation, an hGH—pVIII fusion protein was used
in a system that resulted in the display of only a few copies of the fusion protein in
a coat composed predominantly of wt pVIII molecules. The entire pVIII sequence
was scanned, and selection for hGH display was used as a proxy for incorporation
into the phage coat. The analysis predicted that only nine nonalanine side chains
were required for efficient incorporation. Indeed, simultaneous alanine substitutions
for all side chains except these nine produced a “mini-pVIII” that incorporated into
the phage coat almost as efficiently as the wt (Figure 4.5B). When mapped onto the
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FIGURE 4.4 Filamentous bacteriophage structure and assembly. (A) The filamentous phage
particle is a long rod consisting of an ssDNA genome encapsulated in a coat composed of the
major coat protein, pVIII. One end of the particle is capped by the minor coat proteins pVII
and pIX, and the other end is capped with pIII and pVI. (B) In the bacterial host, coat proteins
(white cylinders) insert spontaneously into the inner membrane with the N and C termini
located in the periplasm or cytoplasm, respectively. Genomic ssDNA is recruited to an assem-
bly site, where it is extruded through a pore (gray cylinders) and concomitantly surrounded
by coat proteins. In this way, the assembled phage particles are secreted into the extracellular
environment without lysis of the host cell.

structure of pVIIL, the nine side chains form three distinct epitopes (Figure 4.5C).
Two of these epitopes are hydrophobic patches at either end of the molecule, which
interlock with analogous patches on neighboring pVIII molecules. The third epitope
is a basic patch consisting of three lysines near the bottom of the molecule, which
interacts with the negatively charged DNA core. The analysis revealed that despite
the complex structure of the phage coat, the assembly process is driven by only a few
protein—protein and protein—DNA interactions mediated by hot spot clusters in the
pVIII helix. Furthermore, the relaxed requirements for incorporation into the phage
coat suggested that it may be possible to evolve mutant or even nonnatural coat pro-
teins as improved platforms for phage display, and indeed, both of these suppositions
have been verified [79].
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FIGURE 4.5 Shotgun alanine scanning of the phage coat. (A) The length of the phage coat
consists of interlocking layers of pVIII molecules arranged around the ssDNA in a sym-
metrical array. Each pVIII molecule makes extensive contacts with other pVIII molecules in
the three layers below and in the three layers above, but only minor contacts with other pVIII
molecules within the same layer. (B) Based on shotgun alanine scanning analysis, a “mini-
pVIII” variant with only nine nonalanine side chains was shown to contain all of the struc-
tural information necessary for efficient incorporation into the phage coat. (C) A structural
model of mini-pVIII reveals that the nine nonalanine side chains form three distinct epitopes.
Two of these epitopes are hydrophobic patches at either end of the molecule, which interlock
with analogous patches on neighboring pVIII molecules in the phage coat. The third epitope
is a negatively charged patch consisting of three lysines near the C terminus, which interacts
with the negatively charged DNA core.

An analogous approach was used to decipher the functional epitope responsible
for the assembly of the minor coat protein pIII [70]. plIII consists of three domains;
the first two are required for host recognition and infection, but only the C-terminal
domain is required for incorporation into the phage coat. Shotgun alanine scanning
of the 150-residue C-terminal domain revealed that only 24 residues located among
the last 70 positions were necessary for the incorporation of pIlI into the phage coat.
Thus, despite considerable differences in size and structure, both plIII and pVIII rely
on only a small set of residues to enable assembly into the phage coat. These findings
suggest that heterologous proteins may be readily recruited into virions to enable
rapid evolution of new viral functions such as host range expansion.
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ExpLORING How ANTIBODIES RECOGNIZE ANTIGENS

Antibodies are professional binding proteins produced by the immune system to
recognize and neutralize foreign molecules or antigens. Billions of antibodies with
unique specificities are present in vertebrate immune repertoires, but unlike most
natural proteins that have evolved over millions of years, functional antibodies
evolve over a span of weeks. The study of antibody structure and function has con-
tributed significantly to our understanding of molecular recognition. Furthermore,
antibodies are ideally suited for phage display, and several shotgun scanning studies
have focused on antigen-binding sites to shed light on the mechanisms involved in
antigen recognition [61,80,81].

The first antibody studied by shotgun scanning was a monoclonal antibody that
binds to human ErbB2, a member of the epidermal growth factor receptor family
that has been implicated in the progression of certain cancers [61]. The efficient shot-
gun scanning method enabled comprehensive analysis of the antigen-binding site by
both alanine and homolog scanning. In total, 60 residues were scanned and map-
ping of the alanine scanning data onto the x-ray crystal structure revealed that the
solvent-exposed functional epitope involves only heavy chain residues (Figure 4.6A).
Alanine scanning also identified a number of buried residues that act as scaffolding
to hold the functional epitope in a binding-competent conformation. The homolog
scan further refined the view of the functional epitope afforded by alanine scan-
ning. In particular, the functional epitope defined by homologous substitutions was
roughly half the size of that defined by alanine substitutions, and it was concluded
that this smaller subset of essential side chains may be involved in precise contacts
with the antigen. The validity of the shotgun scanning results was subsequently veri-
fied by structure elucidation of the antibody in complex with antigen, demonstrating
that the shotgun scanning approach can provide valuable insights into molecular
recognition even in advance of structural analysis [82].

Phage display can be used to derive antibodies from “synthetic” libraries with
manmade binding sites. In another application of the restricted diversity concept,
synthetic antibodies were evolved with binding sites restricted to a tetranomial
code (tyrosine, serine, alanine, and aspartate) [83]. Subsequently, the diversity was
restricted even further to only a binary combination of tyrosine and serine, which
nevertheless proved sufficient for the recognition of diverse antigens [84]. Notably,
the binary code was also shown to be effective for generating binding sites sup-
ported by a small fibronectin domain scaffold [85]. Structural analysis of several of
these minimalist binding sites revealed that tyrosine dominates the interface con-
tacts, while small residues allow for space and conformational flexibility [80,83—
86]. One of the antibodies, derived for binding to vascular endothelial growth factor
(VEGF), was subjected to shotgun scanning to further explore the mechanisms of
antigen recognition [80]. Truncation scanning with short side chains showed that
tyrosine residues provide most of the binding energy, but homolog scanning revealed
that most of the tyrosines could be replaced with phenyalanine without affecting
binding (Figure 4.6B). Furthermore, saturation scanning showed that affinity could
be improved by substituting several tyrosines with other amino acid types. Taken
together, these results showed that tyrosine is particularly well-suited for naive
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FIGURE 4.6 Shotgun scanning of antibodies. Main chains are shown as tubes and scanned
side chains are shown as sticks. Side chains for which substitutions were predicted to reduce
binding significantly (>5-fold) are colored gray while others are colored white. (A) Mapping
of alanine (left) and homolog (right) scanning data onto the structure of an anti-ErbB2 anti-
gen-binding fragment (Fab; PDB entry 1L71). (B) Mapping of truncation (left) and homolog
(right) scanning data onto the structure of an anti-VEGF Fab (PDB entry 1TZI). (C) Mapping
of alanine scanning data for binding to human (left) or mouse (right) antigen onto the struc-
ture of an anti-BR3 Fab (PDB entry 2HFG). The x-ray structures were rendered in Pymol
(DeLano Scientific, San Carlos, CA).

antigen recognition because the side chain is able to mediate many diverse interac-
tions, but subsequent replacement of tyrosine by residues that improve key contacts
may be useful for affinity maturation.

Shotgun scanning has also been used to understand cross-reactivity in antigen
recognition by an antibody that recognizes both human and mouse versions of a
cell-surface receptor (BR3) involved in B-cell activation [81]. Alanine scanning of
the antibody revealed a common hot spot that interacts with a conserved epitope
on the human and mouse antigens. Moreover, the conserved epitope on BR3 is also
the interaction site for the natural ligand BAFF, and structural analysis showed that
the antibody mimics the binding site of BAFF in terms of topology and chemis-
try. However, aside from the common hot spot, the antibody uses distinct auxiliary
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regions of its binding site to recognize either human or mouse BR3 (Figure 4.6C).
Since the antibody was derived by phage display through a multistep process, the
evolution of the binding site could be tracked, and it was found that the common hot
spot arose first and additional residues were subsequently recruited during affinity
maturation against the different antigens.

MAPPING CROSS-REACTIVITY IN A COMPLEX RECEPTOR—LIGAND NETWORK

The cell-surface receptor BR3 is part of a complex network of cross-reactive receptors
and ligands that mediate B-cell maturation and activation [87-92]. In addition to BR3,
the system involves two other receptors (BCMA and TACI) and two ligands (BAFF and
APRIL). Whereas the receptors BCMA and TACI recognize both ligands, BR3 rec-
ognizes only BAFF. Because the signaling pathways regulated by this receptor—ligand
system are of considerable therapeutic interest, shotgun scanning was used to map the
functional epitopes of all three receptors for binding to their respective ligands.
Shotgun alanine scanning of BR3 was performed using a 26-residue “mini-BR3”
fragment that was sufficient for binding to BAFF [93]. The scan revealed a focused
functional epitope of seven residues residing mainly on a p-hairpin. These findings
enabled further minimization of the BR3 protein by transplantation of the functional
epitope into a structured B-hairpin. The resulting “bhp-BR3” peptide was crystal-
lized in complex with trimeric BAFF and the structure revealed a convex epitope on
BR3 bound to a cavity formed at the subunit interface of BAFF. Moreover, the BR3
epitope was centered on a “DXL” motif (Figure 4.7A) that was conserved among the
three receptors, suggesting that BCMA and TACI likely recognize ligands through a
similar structural mechanism. At the same time, sequence differences at other posi-
tions could also explain differences in receptor-ligand preferences. These predictions

FIGURE 4.7 Shotgun alanine scanning of BR3, BCMA, and TACI. Main chains are shown
as tubes and side chains for which substitutions were predicted to reduce binding significantly
(>5-fold) are shown as sticks. The Asp and Leu residues of the conserved DXL motif are
colored gray. The functional epitopes are shown for (A) the minimized bhp-BR3 binding to
BAFF (PDB entry 10SG), (B) BCMA binding to BAFF and APRIL (PDB entry 1xu2), and
(C) TACI binding to BAFF and APRIL (PDB entry 1xut). X-ray structures were rendered in
Pymol (DeLano Scientific, San Carlos, CA).
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were confirmed by the elucidation of crystal structures for BCMA bound to BAFF
and APRIL, and for TACI bound to APRIL [94-96].

Subsequently, shotgun alanine scanning was used to explore the interactions of
BCMA and TACI with BAFF and APRIL [94,97]. BCMA binds tightly to APRIL
but recognizes BAFF with low affinity. For binding to both ligands, the alanine scan
revealed a common hot spot centered on the conserved DXL motif (Figure 4.7B).
However, significant differences were also discovered between the two ligand inter-
actions, and these differences were exploited to design an APRIL-selective BCMA
mutant with no detectable affinity for BAFF [97]. TACI binds to both BAFF and
APRIL with high affinity, and again, alanine scanning revealed that both ligands are
recognized by a common functional epitope involving the DXL motif (Figure 4.7C).
However, recognition of each of the two ligands also relied on different sets of resi-
dues located in a module near the C terminus of TACI. Structural analysis revealed
that the two modules together form a concave binding site that mediates high affinity
recognition of both ligands [94].

In summary, the comprehensive shotgun alanine scanning of all three receptors
revealed both common elements and differences in their functional epitopes, and
these findings in turn served to explain the patterns of cross-reactivity and selectivity
for ligand recognition.

STUDIES OF PROTEIN—PEPTIDE INTERACTIONS

Many intracellular protein—protein interactions are mediated by modular domains
that recognize discrete peptide motifs within proteins. These peptide-binding
domains are usually imbedded in large multidomain proteins that are responsible for
assembling protein networks [98]. Phage display has proven useful for exploring the
specificity of peptide-binding domains, and in addition, phage display has proven
useful for deriving peptide ligands against many diverse proteins directly from naive
peptide libraries [10]. In several studies, shotgun scanning techniques have been
used to explore both sides of protein—peptide interfaces.

Analysis of the Erbin PDZ Domain

PDZ domains are modules that recognize the extreme C termini of other proteins and act
as scaffolding to assemble intracellular complexes [99,100]. Most PDZ domains recog-
nize ligands by a common mechanism, whereby a peptide inserts in an extended manner
into a cleft located between a 3-strand and an a-helix. To better understand the molecular
basis for PDZ domain specificity, the PDZ domain of Erbin (Erbin PDZ) was subjected to
detailed structural and functional analysis [101]. First, phage-displayed peptide libraries
were used to derive an optimal C-terminal peptide ligand for Erbin PDZ (W-4-E-3-T2-
W-1-V9), and, subsequently, the NMR structure of the complex was solved.

The interaction of the peptide with Erbin PDZ was also investigated by scanning
mutagenesis. The ligand was subjected to conventional alanine scanning with syn-
thetic analogs, and Erbin PDZ was subjected to shotgun alanine and homolog scan-
ning (Figure 4.8A). The analysis confirmed that all five ligand side chains contribute
favorably to the binding interaction. On the PDZ domain side of the interface, how-
ever, the scanning analysis revealed favorable side chain interactions with only three

© 2009 by Taylor & Francis Group, LLC



Mapping Protein Function by Combinatorial Mutagenesis 75

FIGURE 4.8 (SEE COLOR INSERT FOLLOWING PAGE 174.) Shotgun scanning of
proteins binding to peptides and small molecules. (A) Alanine (left) and homolog (right)
scanning data mapped onto the structure of Erbin PDZ bound to a peptide (PDB entry 1N7T).
Erbin PDZ is shown as a surface. The peptide main chain is shown as a tube and side chains
are shown as sticks. Residues are colored according to the predicted fold reduction in binding
due to substitution, as follows: green < 5; 5 < yellow < 25; red > 25. (B) Alanine scanning
data mapped onto the structure of a streptavidin monomer bound to biotin (PDB entry 1STP).
The main chain is shown as a tube and side chains are shown as sticks colored according to
the predicted fold reduction in binding due to substitution, as follows: green < 3; 3 < yellow
< 9; red 2 9. Biotin is colored blue. (C) Alanine scanning data mapped onto the structure of
PPARy bound to SRC1 (PDB entry 1RDT). PPARY is shown as a surface. A peptide frag-
ment of SRC1 is shown with the main chain depicted as a tube and the side chains depicted
as sticks. The residues are colored according to the predicted fold reduction in binding due to
substitution, as follows: green < 3; 3 < yellow < 10; red > 10. X-ray structures were rendered
using Pymol (DeLano Scientific, San Carlos, CA).
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of the ligand side chains (Val®, Thr2, and Trp~#). For the other two positions (Trp!
and Glu™) it appeared that the ligand side chains interacted mainly with the PDZ
domain main chain, and, in fact, alanine scanning suggested that several side-chain
contacts inhibit binding. Thus, it was suggested that, unlike hormone-receptor and
antibody—antigen interfaces that are dominated by side-chain interactions, protein—
peptide interactions apparently rely on both side-chain and main-chain interactions.

Analysis of Peptide Ligands

Shotgun scanning can also be applied to the rapid generation and analysis of peptide
ligands, which are typically displayed as fusions to pVIIL. In one study, naive phage-
displayed libraries were first used to derive a disulfide-constrained peptide ligand for
insulin-like growth factor I (IGF-1) [102], and, subsequently, the ligand was analyzed
by shotgun alanine scanning [103]. The scan revealed that roughly half of the peptide
side chains are required for binding and many of these are located on a helical seg-
ment. Complementary NMR analysis suggested that many residues that contribute
to function are also required for structural stabilization of the helix, showing that
structural and functional effects are often coupled in small peptides.

In another study, naive peptide-phage libraries yielded ligands for the Escherichia
coli elongation factor Tu (EF-Tu), a protein that is essential for polypeptide transla-
tion and is involved in numerous natural interactions [104]. Perhaps because of its
multifunctional nature, EF-Tu gave rise to multiple disulfide-constrained ligands
with only limited sequence homology. One of these peptides was subjected to shot-
gun homolog scanning, and many of the resulting sequences were shown to rec-
ognize EF-Tu more effectively than the parent. Thus, homolog scanning was used
simultaneously to obtain information about the binding interaction and to derive
more effective peptide ligands. EF-Tu is an antibiotic target, but surprisingly, the
peptide ligands did not compete with several antibiotics for binding to EF-Tu, sug-
gesting that phage display may have targeted a hitherto uncharacterized binding site
on the protein.

Analysis of the Caveolin-1 Scaffolding Domain

Caveolin-1 is a membrane-associated intracellular protein that oligomerizes to form
caveolae, flask-shaped invaginations in the plasma membrane [105,106]. Although
the structure and function of caveolin-1 is complex, a small “scaffolding” domain
has been shown to mediate homooligomerization and several other protein—protein
interactions. The 20-residue caveolin scaffolding domain (CSD) was displayed as a
peptide on phage and the entire sequence was subjected to shotgun homolog scan-
ning to investigate the interaction between caveolin-1 and the catalytic subunit of
protein kinase A (PKAcat) [107]. Mutations at only four positions were predicted
to be deleterious for binding and mutations at four other positions were predicted
to improve binding, suggesting that the affinity of the interaction between CSD and
PKAcat can be readily improved. The mutagenesis data were also used as constraints
in computational docking experiments to help define plausible structural solutions
for the interaction.

In a subsequent study, the same shotgun homolog scanning approach was used
to study the interaction between CSD and another natural ligand, endothelial nitric
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oxide synthase (eNOS) [108]. The data set from this scan was compared to that from
the scan against PK Acat to identify similarities and differences between the binding
sites for the two ligands. At six positions, both scans showed similar preferences for
the wt CSD sequence, suggesting that these side chains are important for recognition
of both ligands. At five other positions, both ligands appeared to prefer the mutant
sequence, suggesting that mutations at these positions may improve ligand binding
in a general way. Finally, at a third set of seven positions, the two data sets showed
marked differences, suggesting that PK Acat and eNOS interact differently with CSD
residues at these positions. Taken together, these results suggest that PK Acat and
eNOS utilize both common and unique interactions to recognize overlapping bind-
ing sites on CSD.

MAPPING THE STREPTAVIDIN—BIOTIN INTERACTION

The interaction between streptavidin and biotin is the tightest noncovalent interac-
tion known in nature [109]. The interaction has proven to be highly useful for affinity
labeling applications and has served as a model system for understanding how proteins
recognize small molecules. Streptavidin is a homotetramer and the binding contribu-
tions of residues in direct contact with biotin have been investigated by conventional
site-directed mutagenesis [110—114]. To further explore the mechanisms responsible
for high affinity biotin recognition, shotgun alanine scanning was applied to 38 resi-
dues, including second-sphere residues that are not directly in the binding site. Because
high affinity binding requires tetrameric structure, selections for binding to biotin
were sensitive not only to direct effects on the binding pocket, but also to indirect
effects on the quaternary structure. The study reiterated results for some previously
analyzed residues and revealed a complex network of hydrophobic residues that serve
to buttress the biotin binding site and help to align key contact residues (Figure 4.8B).
In addition, it was hypothesized that other residues act to strengthen the interactions
between subunits to establish a stable tetrameric structure. Overall, the large-scale
shotgun scanning analysis facilitated the exploration of areas far from the binding site
and established a more comprehensive view of the structure—function requirements for
high affinity recognition of small molecules by proteins.

EXPLORING THE BAsIS FOR AFFINITY AND SPECIFICITY IN A DNA-BINDING PROTEIN

The engrailed homeodomain recognizes a specific DNA sequence. The interac-
tion has been investigated by structural analysis, site-directed mutagenesis, and in
vitro selection experiments [115-120]. These studies mapped the subset of residues
that contact DNA and are required for binding, but the role of noncontacting resi-
dues remained unclear. To provide a more comprehensive view of the interaction,
30 residues were subjected to shotgun alanine scanning and 15 of these were also
subjected to homolog scanning [121]. The scans showed that many residues could
be readily replaced without affecting function, and some substitutions even resulted
in slight improvements to affinity or specificity. However, approximately one-third
of the positions were intolerant to substitutions, and these were mainly scaffolding
residues involved in maintaining the proper orientation of residues in direct contact
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with DNA. In particular, residues that were intolerant to alanine substitutions either
were buried in the hydrophobic core or were part of a hydrophobic network that sup-
ports the formation of a sharp turn between two helices. In addition, the patterns of
sequence conservation among selected clones were in good agreement with consen-
sus patterns observed in alignments of human homeodomains, and it was interesting
that disease-related natural mutations often occur at positions that were conserved
in the scans. These results showed that the sequence constraints for homeodomain
function, as defined by shotgun scanning, are also reflected in the evolutionary his-
tory of the natural system.

DETECTING COOPERATIVITY IN A PROTEASE INHIBITOR

Two serine protease inhibitor paralogs, Schistocerca gregaria serine protease inhibi-
tor-1 (SGPI-1) and -2 (SGPI-2), share high sequence identity but exhibit different
inhibition profiles. Both proteins inhibit arthropod trypsins, but only SGPI-2 inhib-
its mammalian trypsins [122—125]. The 35-residue proteins differ at 18 positions
and a shotgun “paralog” scanning strategy was devised to determine the basis for
the differing specificities. The two sequences were shuffled to produce all possible
chimeras, and this library was selected for binding to either arthropod or mamma-
lian trypsin [126]. A comparison of the results from the two scans revealed differ-
ent sequence patterns that were likely responsible for the differing specificities. The
analysis also revealed significant covariance between certain positions, suggesting
that these positions may function in a cooperative manner. In particular, it was found
that elements of the hydrophobic core are functionally coupled with a surface loop.
This predicted functional coupling, so far unique among reversible protease inhibi-
tors, was verified using point mutations. Thus, the rapid paralog scanning strategy
was able to detect complex cooperative relationships that would be impossible to
elucidate with conventional site-directed mutagenesis methods.

SHOTGUN SCANNING BEYOND PHAGE DISPLAY

Shotgun scanning was first developed with phage display, and this remains the predomi-
nant platform. However, the conceptual basis of the method is compatible with any com-
binatorial technology that allows for the selection of functional variants in an exhaustive
and defined manner. Indeed, shotgun scanning was in part derived from an earlier “bino-
mial” mutagenesis strategy that relied on a survival selection inside cells [66]. In recent
years, several studies have used shotgun scanning strategies with other selection tech-
niques, including survival selections, protein complementation assays, and yeast surface
display. These alternative approaches extend shotgun scanning to protein systems that
are not suitable for phage display and further expand the utility of the method.

SHOTGUN SCANNING BY SURVIVAL SELECTION

The interactions between several components of the E. coli enterobactin synthesis
pathway were studied using an in vivo selection based on the fact that enterobac-
tin is necessary for survival under iron-depleted conditions [127]. Enterobactin is
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synthesized by a nonribosomal peptide synthetase system through a multistep reac-
tion pathway in which biosynthetic intermediates are covalently linked to carrier
proteins. One such carrier protein domain, EntB-ArCP, interacts with two other pro-
teins (EntE and EntF). Shotgun alanine scanning was used to analyze a proposed
interaction site on EntB-ArCP, and 5 of 18 scanned residues were found to be impor-
tant, as judged by conservation of the wt sequence in variants that permitted sur-
vival in iron-depleted media. Subsequent in vitro analysis of point-mutated proteins
revealed that the conserved residues affected the interaction of EntB-ArCP with
EntF but not with EntE. This study showed that shotgun scanning can be used in
vivo, provided that a vital cellular function can be exploited for selection. However,
the study also highlighted that, without a parallel selection for structure, individual
variants need to be analyzed to assess whether a given trait is due to effects on func-
tion or structure.

SHOTGUN SCANNING BY PROTEIN COMPLEMENTATION ASSAYS

In the dihydrofolate reductase (DHFR) protein complementation assay, two comple-
mentary fragments of DHFR are fused to two proteins of interest, and functional
DHEFR only forms if the proteins interact [128]. Recently, the method was combined
with shotgun scanning technology to probe the interactions between the transcrip-
tion factor PPARy and two coactivators (SRC1 and TRAP220) [129]. All together, 14
or 12 positions in PPARy were alanine scanned for binding to SRC1 or TRAP220,
respectively. The analysis revealed that a common set of six residues was required
for binding to both ligands, but other residues appeared to function in a ligand-
selective manner. In a complementary experiment, shotgun alanine scanning was
applied to a peptide representing the binding region of SRCI, and it was found that
binding was mediated predominantly by an “LXXLL” motif, which is common to
both SRC1 and TRAP220, but also utilized several residues that are not conserved
among the two ligands. Mapping of the alanine scanning data onto the structure of
the PPARY-SRC1 complex revealed that the functionally important residues of the
binding partners interact at the interface (Figure 4.8C). An assay for correct protein
folding, utilizing fusions of PPARy with a green fluorescent protein reporter [130],
was used to independently assess the effects of mutations on protein expression and
stability. Five residues were found to be important for stability, and these were also
hot spot residues for coactivator binding. As the protein complementation assay is
applicable to many different proteins, this method should be of general use for map-
ping protein—protein interactions in an in vivo environment.

SHOTGUN SCANNING BY YEAST DispLAY

Shotgun scanning has also been demonstrated with protein libraries displayed on
the surfaces of yeast cells. An ortholog scanning strategy for affinity maturation was
designed to take advantage of the observation that, in previous studies, affinity was
often improved by substitutions resembling variations among natural orthologs [131].
A library of human epidermal growth factor (EGF) variants was designed to incor-
porate sequence variations from orthologs in other species [132,133]. Yeast-displayed
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libraries were selected for binding to the EGF receptor and EGF variants with up to
30-fold improvements in affinity were obtained. It was concluded that since natural
selection eliminates variations that are deleterious for structure and function, the use
of libraries biased toward natural diversity might be an efficient and general means
for improving function in protein families. In addition, the study also showed that
shotgun scanning analysis in yeast may be a viable alternative for proteins that do
not fold correctly in bacteria.

CONCLUSIONS AND FUTURE PERSPECTIVES

Shotgun scanning methods have been utilized in numerous studies to analyze protein
function, and the results clearly demonstrate the efficiency and rigor of the approach.
Moreover, the general concept has been extended beyond phage display by the use
of other combinatorial methods that should enable many additional studies in the
future. It is clear that combinatorial analysis with well-defined libraries and selec-
tions can be used to explore diverse protein functions in a rapid manner. In parallel,
combinatorial libraries with restricted diversities have been used to derive synthetic
proteins that are comparable to natural proteins in terms of function, and yet are
simplified in terms of structure [134,135]. These synthetic proteins should be ideally
suited for analysis by shotgun scanning approaches to reveal basic principles govern-
ing molecular recognition in protein—protein interfaces.

Because the main expense for shotgun scanning is DNA sequencing, wider adop-
tion of the method should be enabled by recent advances in sequencing methods
that have reduced cost and increased throughput by several orders of magnitude
[136,137]. Furthermore, the generation of diverse, well-defined protein repertoires
has been made routine by the development of optimized library construction meth-
odologies [10,138] and new DNA synthesis strategies [139]. Finally, robotics and
automation technologies are being applied to combinatorial selections, and should
enable high-throughput generation and analysis of protein function [140]. In the near
future, we envision that these technological advances will be integrated into an auto-
mated system that will enable the exponential acceleration of investigations into the
principles governing protein structure and function.
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OVERVIEW

The structure of a protein—protein interaction, its affinity, and thermodynamic char-
acteristics depict a “frozen” state of a complex. This picture ignores the kinetic
nature of complex formation and dissociation, which are of major biological and bio-
physical interest. In this chapter I focus on recent advances in describing the kinetics
of protein—protein association, and how a combination of computational tools and
experimental data helped us to decipher the pathway.
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The rapid formation of specific interactions between proteins is important for
many biological processes, including signal transduction and the immune response.
For proteins to recognize one another and to interact, their interfaces have to be
oriented toward one another at a highly specific conformation. This reaction, which
occurs within the milieu of endless competing macromolecules, can be compared
to two blind men finding each other in the streets of New York. Yet, it is done
rapidly at rates of only one to five orders of magnitude below the Smoluchowski
diffusion collision limit of 10'° M-'s-!. The rate of association of a protein complex
is limited by diffusion and geometric constraints of the binding sites (diffusion con-
trol). Subsequent chemical processes may further slow the reaction process. Typical
association rates are in the order of 105-10° M-!s!, but rate constants of >10° M-!s!
have been measured for interactions where the speed of the process is of functional
importance. In these cases, strong favorable electrostatic forces enhanced the rate
of association.

INTRODUCTION

The association reaction between two proteins can be viewed as a random process,
where the rate of association is a function of diffusion limited collisions (which is
defined from the Stokes—Einstein relation) divided by the chance of a collision to
occur at the exact orientation that will lead to complex formation. For a diffusion-
controlled reaction of two similar-sized particles, the rate of collision (k) is given by
the Smoluchowski relation:

k, = 4nRD G.1)

with R being the sum of the effective radii of the particles, and D is the diffusion
coefficient, which is calculated from:

kT
6TNR (52)

Here, n is the relative viscosity (to water at 20°C). Taking Equations 5.1 and 5.2
together shows that &, is independent of the size of the proteins and inversely lin-
ear with n, as was indeed shown to be true experimentally using different types of
crowding agents (Kuttner et al., 2005). For two spherical particles in water, Equation
5.1 predicts a rate of collision of ~10'© M-'s-!. However, the rate of association in the
absence of electrostatic forces is only in the order of 10*~10°M-'s-!. This means that
only 1 out of 10*-10° collisions will transform into a complex. This is not surprising,
as binding involves the exact rearrangements of the two interfaces one relatively to
the other, and thus involves a component of rotational diffusion. A basic mechanistic
question is whether association can be viewed as a simple diffusion-limited reac-
tion or whether it involves a reaction-limited component, accounting for desolvation
and structural rearrangement of the interfaces. Moreover, is association a two-state
reaction (unbound to bound) or do intermediates (also called encounter complexes

© 2009 by Taylor & Francis Group, LLC



The Association of Protein—Protein Complexes 89

Transition
state

Unbound
state
Energy

Encounter
complex
Final
complex
k ky
— — -
A+B o AB AB
k_q k_y

Ry B

FIGURE 5.1 Free energy diagram describing the pathway of protein—protein binding. Two
proteins (A and B) in solution will collide with one another at a rate dictated by diffusion to
form an encounter complex, A:B, which following structural rearrangement and desolvation
develops into the final complex, AB.

or transient complexes) play a role along the reaction path (Figure 5.1)? For associa-
tion to be two-state, a random collision has to be sufficiently precise to promote the
formation of correct short-range interactions found in the final complex. The random
chance for two patches of 1 A2 to collide, assuming a total protein surface area of
2000 A?is 1 to 4 x 10°. However, complex formation requires many residues to
interact simultaneously, reducing the change further. Thus, the assumption that pro-
tein—protein association is simply a diffusion process is not realistic. The most basic
description for association (according to Figure 5.1) will be to divide the process
into two parts, one that is diffusion limited (with a rate of k,), at which the encounter
(transient complex) is formed, and the second (with a rate of k,) for the formation of
the final complex. Under these assumptions the rate of association will be equal to:

_ kK,
"k +k, (5.3)

where k_, is the dissociation rate of the encounter complex, and K, = k_/k, is the sta-
bility of the encounter complex. Under these conditions, k, represents the reaction-
limited rate. Thus, if k,>> k_|, than k_, = k,.

An early attempt to satisfy the observed rate of association using computer simu-
lations was done by Northrup and Erickson (1992), who tried to explain the relatively
faster rates of association by assuming that binding is speeded up by multiple col-
lisions of large bodies that are proximate to each other (in the order of 10) and that
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association can be assumed to occur when two to three correct interprotein interac-
tions are formed. These assumptions were used to simulate binding using Brownian
dynamics simulations (Gabdoulline and Wade, 1997). The obtained rates were in rea-
sonable agreement with the experimental rates. A somewhat broader view was taken
by Zhou (Vijayakumar et al., 1998), who assigns a region where association occurs in
a diffusion-controlled limit and defines it as the encounter complex. In this region, he
neglects the short-ranged nonelectrostatic effects as the encounter-complex configu-
rations are separated by at least one layer of solvent; therefore, short-ranged forces
such as hydrophobic and van der Waals interactions are relatively weak in the diffu-
sion process leading to the encounter complex. However, short-range interactions are
essential for determining the location and size of the encounter-complex ensemble in
configurational space, which in turn affect the magnitude of k,. An encounter-com-
plex ensemble that is less restricted in translation and rotation will lead to a higher
k,, (Alsallaq and Zhou, 2007a, 2007b). Variation of the restriction in translation and
rotation within the encounter complex with solvent conditions or among different
protein complexes can be viewed as a configurational entropy effect.

A similar approach to calculate association rates, adding the assumption that the
exact location of a protein complex is located within a binding funnel minimum, was
used by Schlosshauer and Baker (2004). Both Zhou and Schlosshauer predict the exis-
tence of some sort of encounter/transition complex, which is less restricted than the
exact binding complex. The size, energy, and location of the encounter complex were
calculated from Brownian dynamics simulation (Spaar et al., 2006). Experimental
work using a variety of methods supports the existence of this encounter complex,
and assigned its location (Schreiber, 2002; Miyashita et al., 2004; Volkov et al., 2006;
Harel et al., 2007; Suh et al., 2007). The picture emerging from the experimental
data suggests that the encounter complex is in the region of the final complex, with
the two proteins already aligned one toward the other; however, the interface is still
mostly desolvated and structural rearrangement of the interface residues to provide
an exact match has not yet occurred. Therefore, the transition state would be com-
posed of desolvation and structural rearrangement. Further increase in binding rates
can be obtained through columbic forces disseminated through charged residues.

THE CONTRIBUTION OF ELECTROSTATIC
EFFECTS ON THE RATE OF ASSOCIATION

The one factor that contributes more than any other to the rate of association is
electrostatic attraction between proteins, as seen by analyzing the effects of muta-
tions on k,, (Figure 5.2). While mutations of charged residues can affect k_, by more
than 20-fold (Sheinerman et al., 2000; Selzer and Schreiber, 2001), mutations on
noncharged residues have only minor effects on the rate of binding. The picture is
fundamentally different when analyzing the effect of mutations on k., where no
significant difference is seen between either group. Moreover, the effect of mutations
on kg is much larger than on k.

Another clear indication on the effect of electrostatic forces on the rate of associa-
tion is the salt dependence of k. The relation between ionic strength, protein-charge
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FIGURE 5.2 The change in the rate constants of (A) association and (B) dissociation plotted
against the change in charge resulting from a mutation. The rate constants were measured for
55 mutations in barnase—barster, TEM1-BLIP, and IFNa2-IFNAR2 complexes in solution
using a stopped-flow instrument.

complementarity, and k,, was shown to follow the Debye—Hiickel energy of interac-
tion between a pair of proteins according to the following equation (Selzer et al.,
2000):

ink, —tng — (-1 ) (5.4)
RT \1+ka

where k,, and k?, are the rates of association in the presence and absence of electro-
static forces, respectively, U is the electrostatic energy of interaction, k is the inverse
Debye length, and a is the minimal distance of approach. Hence, k_, is the sum of
two components: (1) the basal rate of association in the absence of electrostatic forces
(kfn ) and (2) the contribution of the electrostatic forces between the proteins (“Y/gq).
The later can be attended by mutation (changing U) or changing solution conditions.
Equation 5.1 suggests that a plot of Ink,, versus 1 + ka (which is proportional to the
ionic strength [/]) is linear, with the slope being equal to ~Y/;. The intercept of the line
at 1 + ka = 0 corresponds to the basal rate where electrostatic forces are shielded by
salt (Figure 5.3). The intercept at 1 + ka= 1 corresponds to Ink,, in the absence of salt,
with the electrostatic forces being maximized (Selzer and Schreiber, 1999). This linear
relation was shown to hold for the association of TEM1-BLIP, interferon—receptor,
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FIGURE 5.3  Association rate constants of wild-type and mutant TEM1-BLIP protein com-
plexes determined at different salt concentrations, with In k_, plotted against 1/(1 + xa). The
data can be fitted to a line using Equation 5.4.

on

hirudin—thrombin, barnase—barstar, and a heterodimeric leucine zipper for all
salt concentrations tested (Wendt et al., 1997; Piehler and Schreiber, 1999). From
Equation 5.4, a computer program (PARE [Protein Association Rate Enhancement])
was developed, which predicts the rate of association of mutant proteins. PARE is
able to accurately calculate the rate of association for many mutant proteins (Selzer
et al., 2000; Kiel et al., 2004; Stewart and Van Bruggen, 2004; Schreiber et al.,
2006). Yet, one should be aware that the basal rate of association is not directly cal-
culated in Equation 5.4, but has to be obtained by other methods such as Brownian
dynamic simulations or from experimental data.

The ionic strength in the cell is ~150 mM. At this ionic strength, charge—charge
interactions are partially shielded, reducing the negative effect of nonspecific inter-
actions. A good example for this was reported for the complex of barnase—barstar
in the presence of the polyion hirudin (Schreiber and Fersht, 1996). Measuring k,,
at low salt was actually slower than in higher salt, due to nonspecific interactions of
barnase with hirudin, which occluded free barnase from the system. The rate peaked
at 150-200 mM salt, and slowed down at higher salt (this time due to masking of
the charges). Thus, the physiological ionic strength is optimal to obtain fast specific
binding, yet reduce nonspecific binding.
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ALTERING ASSOCIATION RATES BY PROTEIN DESIGN

We have shown that Equation 5.4 (as implemented in PARE) predicts the rate of asso-
ciation of mutant proteins (Selzer et al., 2000). However, it can also be used for protein
design of faster binding complexes. This is of particular interest for mutations placed
outside the physical binding site, and thus not affecting the rate of dissociation, as was
shown for TEM1-BLIP and Ras—Ral (Selzer et al., 2000; Kiel et al., 2004). For both
TEMI-BLIP and Ras—Ral, a strong increase in the rate of association was achieved
(250-fold and 17-fold, respectively), with an excellent correlation between the calcu-
lated and experimental values. This increased k,, was, however, not accompanied by
a change in kg, leading to an increased binding affinity of the magnitude described.
This observation has far reaching implications on our understanding of the transition
state for association, as will be described in the following. It is important to note that
Equation 5.4 successfully predicts the rate change also for mutations located within the
physical binding site of protein complexes, as was shown for the interactions between
barnase—barstar, TEM1-BLIP, Ras—Ral, AChE—fasciculin, hirudin—thrombin, and oth-
ers (Schreiber and Fersht, 1996). PARE is available at http:/www.weizmann.ac.il/home/
bcges/PARE.html.

An interesting outcome of the RalGDS-RBD design was that the electrostatic poten-
tial map of the designed RalGDS-RBD variant was similar to that observed for Raf
(Figure 5.4), which is the native Ras affector. This is despite the very different sequence
of the two affectors (<15% homology). The initial aim of this project was to optimize
through mutation the electrostatic energy of interaction between RalGDS-RBD and
Ras. The similarity of the obtained electrostatic potential maps suggests that the natural
complex between Ras and Raf is optimized by natural selection for fast biding.

THE BASAL RATE OF ASSOCIATION

Basal rates of association are, according to Equation 5.4, the rates in the absence of
electrostatic forces. These can be calculated either by extrapolating the experimental
values of k, to infinite salt or by introducing mutations that reduce the electrostatic
energy of interaction to zero. Doing so, showed that the basal rates of association are
4 x 10* M-'s~! for thrombin—hirudin and TEM1-BLIP, 6 x 10’ for Ras—Raf, and 2 x
10° M-'s~! for AChE—fass (Shaul and Schreiber, 2005).

It is important to note that Equation 5.4 ignores the contribution of noncharged
residues to k,, (except for their contribution to the basal rate). Although their contri-
bution is small, it was found to be significant in a number of cases. For example, the
mutation A19W in IFNa?2 reduced k, by fourfold, a reduction that clearly relates to
structural rearrangement during the process of association (as verified using double-
mutant cycle analysis with W100A on IFNAR?2 [Slutzki et al., 2006]).

THE ABUNDANCE OF HOT SPOTS FOR ASSOCIATION

Analyzing the contribution of electrostatics toward the rate of association of proteins
in a database of 68 transient heteroprotein—protein complexes using HyPare (http://
bip.weizmann.ac.il/HyPare) has shown a small contribution (<10-fold) for about half
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FIGURE 5.4 ®-value analysis of the transition state for association determined for hot
spot mutations (affecting the affinity by >2 kcal/mol) collected from TEM1-BLIP, barnase—
barstar, and Ras—Ral binding. ® values close to one suggest a similar interaction in the transi-
tion state as in the native complex, whereas values close to zero indicate the residues do not
form any interprotein contacts in the transition state.

of the complexes (Shaul and Schreiber, 2005). In 25% of the complexes electrostatic
forces had a major effect on &, by affecting binding by >100-fold. Defining a residue
being a hot spot for association as one that changes &, by over 10-fold leaves about
half the complexes without any potential hot spot, and a few hot spots per complex in
the others. Of those, about 40% are calculated to increase the rate of association upon
mutation, and thus increase binding affinity. This is very different from hot spots
for dissociation, where experiments show the large majority of mutations to cause
weaker binding. Moreover, about 40% of the hot spots for association are located
outside the physical boundary of the binding site, making them ideal candidates for
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protein engineering. These data suggest that a majority of protein—protein complexes
are not optimized for fast association. This may not be surprising, as the proteins act
in a complex environment, where too many charged residues could actually reduce
specificity of binding. Hot spot residues are not evenly distributed between all types
of amino acids. About 75% of all hot spots are charged residues. This is understand-
able, as a charge-reverse mutant changes the total charge by two. More intriguing is
the small number of hydrophobic in comparison to polar residues that are hot spots.

BROWNIAN DYNAMICS (BD) SIMULATIONS

Brownian dynamics (BD) is based on the Brownian motion theory, which describes
the dynamic behavior of particles immersed in a solution. These particles are sub-
jected to stochastic collisions with the solvent molecules (which are smaller both in
their size and their mass) and to the viscous drag effects of the water molecules. This
leads to the seemingly random motion of the particles, or in other words Brownian
motion. The computation of biomolecular diffusional association rates by BD simu-
lation dates back to the 1980s (the Northrup—Allison—-McCammon [NAM] method),
which is still widely used to compute bimolecular association rates (Northrup and
Erickson, 1992). The association rate is given by the product of an analytically com-
puted rate (k(b)) and a probability (p) that is computed from simulations. k(b) is the
rate at which the two molecules approach to within a center-to-center separation
distance (b), where b is sufficiently large so that the intermolecular forces are centro-
symmetric or negligible. B is the probability that the two molecules, having reached
separation b, go on to form a diffusional encounter complex and “react,” rather than
diffuse away to infinite separation. For the NAM method (a), a large number of
simulations are started with the molecules in random orientations at separation b
and the fraction of reactive trajectories is recorded. 3 is computed by correcting this
fraction to account for the fact that trajectories are truncated when the molecules
reach separation (q).

When applying equations that describe the motility of the particles in BD simula-
tions, one can describe their movements (Elcock et al., 2001; Gabdoulline and Wade,
2002). The classical use of BD is for &, calculations, which are generally in a good
agreement with the experimental rates (Gabdoulline and Wade, 1997, 2001). More
recent developments include the use of BD for protein—protein docking, protein
adsorption to a solid surface, ion channel permeation studies, and enzyme design
(Gabdoulline and Wade, 2002). Spaar and colleagues have used the trajectories gen-
erated during the BD simulations to analyze the free energy landscape of encounter
complexes (Spaar and Helms, 2005; Spaar et al., 2006) through modeling the tra-
jectories occupancy maps. Another approach, weighted-ensemble Brownian (WEB)
dynamics, was proposed by Huber and Kim, and has recently been further developed
and applied (Huber and Kim, 1996; Rojnuckarin et al., 2000). Rather than simulate
the association of a single pair of molecules, as in the NAM method, one molecule is
replaced by an ensemble of pseudoparticles or weighted probability packets. These
occupy bins along the intermolecular reaction coordinate that are equally sampled
through splitting and combining the weighted pseudoparticles and thus speeding
up the time of simulation. Because of their long-range nature, electrostatic forces
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have an important, if not the most important, influence on biomolecular associa-
tion. However, solving the Poisson—Boltzmann equation (PBE) along the reaction
pathway would take much to long to be feasible. The “test charge” approximation
is usually used. In this approximation, the partial charges on one molecule, whose
interior low dielectric cavity is neglected, move in the field of the other, as com-
puted from solution of the PBE. Gabdoulline and Wade (1996) introduced “effec-
tive charges” that were calculated to reproduce, in a single continuum dielectric, the
electrostatic potential of a molecule computed from the PBE for a heterogeneous
dielectric. Replacing test charges by effective charges results in a more accurate
approximation of the PBE in BD simulations and better agreement with experiment
for the ionic strength dependence of protein—protein association rates.

Other forces, in addition to electrostatics, can influence diffusion association.
Camacho and colleagues (Camacho et al., 2000; Camacho and Vajda, 2001) stud-
ied the influence of hydrophobic desolvation, which has a shorter range than elec-
trostatic interactions, on the free energy landscape for protein—protein association.
They found hydrophobic desolvation to be particularly important for electrostati-
cally, weakly attracting proteins. Furthermore, they suggest that the mechanism for
molecular recognition requires one of the interacting proteins, usually the smaller of
the two, to anchor a specific side chain in a structurally constrained binding groove
of the other protein, providing a steric constraint that helps to stabilize a nativelike
bound intermediate (Rajamani et al., 2004).

ANALYTICAL MODELS TO CALCULATE PROTEIN
ASSOCIATION RATE CONSTANTS

According to the work by Zhou, a protein pair that has reached a reaction region
with defined finite volume V; has a finite rate, g, to form the native complex (Zhou,
1993; Alsallaq and Zhou, 2007b). In this treatment of protein association, the reac-
tion rate g models the conformational rearrangement that brings the protein pair
from the encounter complex to the native complex. That is, k, (from Equation 5.3)
equals g. The equilibrium constant, K|, is given by Vgge <V7sT where <U>* is the
average interaction energy within the transient complex. By starting Brownian tra-
jectories from within the reaction region one can obtain the surviving fraction, S, of
the trajectories. The surviving fraction S depends on the rate g and on how much the
absorbing boundary is extended to form the reaction region. In a Brownian dynamics
study of protein—protein association under the influence of electrostatic interactions,
it was discovered that the survival fraction S is insensitive to the presence of the
electrostatic interaction energy (Zhou, 1993). Thus:

k, = koe <V kT (5.5)

with &, being the basal rate constant in the absence of external forces, which equals to:

ko= gVrrSo/(1-Sy) (5.6)
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where S, is the survival fraction without any biasing force. This suggests that the
association is stereo specific and the interaction energy is long ranged. The accu-
racy of Equation 5.5 has been demonstrated against results from Brownian dynamics
simulations and experiments (Zhou et al., 1997; Vijayakumar et al., 1998; Alsallaq
and Zhou, 2008). This equation resolves one of the two main obstacles for reliable
prediction of protein association rate constants by making it possible to rigorously
treat electrostatic interactions. The effect of electrostatic interactions is captured by
the Boltzmann factor e~<V"%7, which can be obtained by averaging over a relatively
small number of representative configurations in the encounter complex. The basal
rate constant k, still needs to be obtained through force-free Brownian dynamics
simulations, but these simulations are inexpensive.

MAPPING ENCOUNTER COMPLEXES ALONG
THE ASSOCIATION PATHWAY

Structural studies of encounter complexes are routinely done to study the transition
state and intermediates of protein folding or enzyme catalysis. A range of experi-
mental tools has been developed for this task. Nuclear magnetic resonance (NMR) is
a powerful tool to pin down the residual structures of the unfolded state, as well as
to capture transient folding intermediates (Krishna et al., 2004). Phi-value analysis
defines whether specific interactions are formed already during the intermediate or
transition state of the reaction (Fersht et al., 1992; Petrovich et al., 2006). Time-
resolved spectroscopy and single-molecule spectroscopy are powerful tools, which
were frequently applied to investigate intermediates and transition states in folding
(Nolting et al., 1997). While these experimental tools provide only a partial view,
they are extremely valuable for molecular dynamic simulations and other theoreti-
cal studies, as they provide experimental reference points to tune the simulation.
In comparison, structural studies on the pathway for protein association are much
less common. This may be partly attributed to the technical difficulties stemming
from the low population of the binding intermediates, and the ill-defined nature of
the transition state for binding. Still, the development of protein-engineering tools,
NMR, spectroscopy, and single-molecule methods resulted in a number of interest-
ing experimental studies shedding light on the way proteins associate.

Experimental evidence of the structure of the encounter complex of the electron
transfer complex of yeast cytochrome ¢ peroxidase (CcP) and iso-1-cytochrome c
was recently presented by Volkov et al. (2006) using paramagnetic NMR spectros-
copy. The complex is very short lived, with a dominant structure supporting electron
transfer and a dynamic encounter complex. The results support the view that the
conformational space sampled by the protein molecules during the dynamic part of
the interaction is localized around the CcP position in the dominant orientation. This
finding is in agreement with the view that an encounter complex facilitates formation
of the dominant complex via preorientation of the protein molecules and reduced
dimensionality search. For CcP binding electrostatic attraction plays a dominant role
in determining the nature of the encounter complex.
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Tang et al. (2006) did a similar study for the association between the phospho-
carrier protein, Hpr, and three proteins in the bacterial phosphotransferase system
(using paramagnetic relaxation enhancement [PRE] NMR). However, they found a
much broader definition of the encounter complex, which was spread across its adja-
cent surface, with electrostatic attraction being the main driving force in its stabili-
zation. However, these experiments were initially being done in the absence of salt,
where nonspecific electrostatic attraction of these highly charged proteins is strong
over a long range (Schreiber and Fersht, 1996). Indeed, in a follow-up paper (Suh et
al., 2007), they showed that the nonspecific part of the encounter complex is reduced
to a large extent by adding salt, while more specific encounter complexes (located in
the region of the final complex) were less affected. The importance of nonspecific
encounter complexes to association is not yet clear and may very well be marginal.

PHI-VALUE ANALYSIS OF BINDING INTERMEDIATES

Phi-value analysis was successfully applied to map the transition state for protein
folding and became the golden standard for many theoretical simulations (Fersht
and Daggett, 2002). It has been demonstrated that this analysis can be used also
for studying the transition state for protein—protein association (Taylor et al., 1998;
Mateu et al., 1999; Wu et al., 2002; Kiel et al., 2004; Levy et al., 2005). Equation
5.7 gives the basic formulation for such analysis for binding, with U and C being the
unbound and bound states and i the transition state.

D, .= AAGHV /AAGEY (M)
with AAG#V being calculated from:
AAG#VY = —RT In (k "k ™" (5.8)

where k., ™" is the association rate of the mutated complex and k,,*" is the association
rate of the wild-type complex. The free energy of binding can be determined directly
from the affinity (Kp) using the mass action equation, or from the ratio of K, = kg/
k,, (assuming two state-biding), with AG®-V = —RTIn(K},). Mutations that induce a
similar effect on the transition state and the free energy of binding will have a ®
value of 1, while mutations that have no effect on ¥, but change the binding affinity,
will have a @ value of zero. Figure 5.4 shows a ®-value analysis for a large number
of hot spot mutations (affecting the affinity by >2 kcal/mol) collected from TEM1—
BLIP, barnase—barstar, and Ras—Ral binding (Schreiber and Fersht, 1996; Albeck
et al., 2000; Kiel et al., 2004; Reichmann et al., 2005, 2007). The mutations were
divided into three groups: one group consists of noncharged residues, the second is
for charged residues located within the binding interface, and the third is for charged
residues located outside the physical binding interface. The reason we analyze only
hot spot residues is to avoid erroneous @ values, as the experimental error for AAG
measurements is in the order of 0.3 kcal/mol. As only very few resides located out-
side the physical binding site pass this criteria, multiple mutations were used for this
group that were designed to increase specifically association (Selzer et al., 2000;

© 2009 by Taylor & Francis Group, LLC



The Association of Protein—Protein Complexes 99

Kiel et al., 2004). The data clearly demonstrate that noncharged mutations always
have @ values close to zero, while charged residues located outside the physical bind-
ing site have @ values close to one. Charged residues located within the binding site
have mixed values. These results clearly show that noncharged residues do not form
specific contacts during the transition state for association, and hence confirm the
mutant data. Conversely, charged residues do affect association; however, their effect
is related to long-range columbic forces and not to specific short-range interactions.
This explains why charged residues have intermediate @ values when located within
the binding site (they exert both long-range effects on association and short-range
effects on dissociation). Thus, the evolving picture from ® value analysis for binding
is much simpler than that found for folding, with the association transition preceding
the formation of short-range interactions.

DIRECT EVIDENCE FOR THE EXISTENCE
OF AN ENCOUNTER COMPLEX

Direct evidence from kinetic studies for the existence of an encounter complex along
the association pathway was presented for RalGDS-RBD binding Ras (Kiel et al.,
2004). This interaction shows a nonlinear increase in association with concentration.
Using PARE (Selzer et al., 2000), charged mutations were designed that specifically
increased k,, and showed that the increase in k,, was a result of an increased rate of
formation of the encounter complex (k, in Equation 5.3), while the rate of conversion
to final complex (k,) was unchanged at a rate of ~400 s~!. This demonstrates that
increasing electrostatic steering by mutation stabilizes the encounter complex and
the transition state to a similar extent as the final complex, and that a rate-limiting
transition state exists. A similar conclusion was reached from studying the pKa shift
of His102 in barnase in the free and barstar bound form (Schreiber and Fersht, 1993,
1995). The pKa of Hisl02 in unbound barnase was 6.3, while in complex a shift
to <5 was measured. The pH dependence of k_, showed a similar pKa value as for
the unbound protein; thus, the shift in pKa upon binding occurs after the transition
state. X-ray crystallography has shown that the shift in pKa can be attributed to the
tight interactions of His102 with its surrounding on the barstar protein, suggesting
again that these interactions are not yet formed during the transition state. A similar
behavior was observed for the association of R67 DHFR, with a pK, of 6.6 that was
attributed to H62, but a dissociation reaction with a pK, of under 5.5 (Mejean et al.,
2001), with the pK, shift being attributed to specific short-range interactions that are
not formed at the transition state for association. These studies provide a clear state-
ment that short range interactions are mostly not formed during the transition state
for binding.

DOUBLE-MUTANT CYCLE ANALYSIS AS A TOOL TO DECIPHER
THE STRUCTURE OF THE TRANSITION STATE FOR BINDING

Double-mutant cycles measure the coupling energy between a pair of residues from
the difference in binding free energy of two single mutations and the double-mutant.
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Accordingly, the activation interaction energy, AAG*,,, is a measure of the interac-
tion between two residues at the transition state and is equal to:

AAGiim = AAGix»A, YA~ AAGix»A - AAGi\(»A (5.9

where X and Y represent the wild-type residues and A represents a mutant (Carter
et al., 1984; Horovitz, 1987; Horovitz and Fersht, 1990; Schreiber and Fersht, 1995).
Like ®-value analysis, this technique was first applied successfully to protein-fold-
ing studies (Carter et al., 1984; Horovitz et al., 1990).

From a large number of double-mutant cycles calculated for the activated complex
of barnase and barstar, significant coupling energies for association were determined
only between charged residues distanced less than 10 A from one another in the
final complex (Schreiber and Fersht, 1996). None of the noncharged residues had a
significant AAG*#, value with any other residue. A similar experiment was done for
the interaction between cytochrome C, and the bacterial reaction center, but only
between charged residues. Relating the energy transfer rate (k,), which for these
types of reactions is similar to k,, (Miyashita et al., 2004), to the distance between
the probed residues showed that residues interact at the activated complex up to a
distance of 10 A (Tetreault et al., 2002). A similar result was obtained for the interac-
tion between TEM1-B-lactamase and its protein inhibitor BLIP (Harel et al., 2007).
Repeating the same double-mutant cycles at up to 1 M salt (which masks most of the
effects of charges) showed that for barnase—barstar, as for the complex between P.
laminosum Cyt f and plastocyanin, some but not all pairwise charge—charge interac-
tions were maintained, suggesting that structural specificity of the activated complex
is preserved even at high salt (Frisch et al., 2001; Miyashita et al., 2003).

MODELING THE TRANSITION STATE FOR BINDING
USING SIMULATIONS BASED ON EXPERIMENTAL
DOUBLE-MUTANT CYCLE DATA

The experimental mutant and double-mutant cycle data measured for the association
process were further used to model the structures of the encounter and association
transition-state complexes. In the study of Harel et al. (2007) the transition-state struc-
tures were modeled from the experimental AAG*#,, values by introducing structural
perturbations of one protein relative to the other, and searching for those interprotein
orientations that best account for the experimental AAG¥,,, values (Figure 5.5; Harel
et al., 2007). Similarly, Miyashita et al. (2004) related the experimental &, values
of mutations to differences in the calculated electrostatic energies for a wide range
of cytochrome C,-reaction center (Cyt-RC) configurations. Both studies gave a very
similar description of the transition state for association. In both cases, the transi-
tion state was stabilized by electrostatic interactions, with the ensemble of structures
spread out around the final complex, but in neither cases short-range interactions
were formed during the transition state, suggesting a solvated transition state. The
average transition state structure was not necessarily located exactly on the binding
site, but may be shifted toward one side of the interface. This was observed for
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FIGURE 5.5 (SEE COLOR INSERT FOLLOWING PAGE 174.) Mapping the transition
state for protein—protein association using double-mutant cycle data as constraints (Harel et
al., 2007). Each point represents the center of mass of 1 of 2220 configurations perturbed
from the native complex. The point in the middle of each cap represents the x-ray structure of
the native complex. The different colors represent configurations selected by different filter-
ing cutoffs; cooler colors designate a configuration that passes a more stringent cutoff (thus
has a higher probability of being occupancy in the transition state). TEM1 was the mobile
protein in the simulations, while BLIP was fixed. The TEM1-BLIP complex was electro-
statically optimized using the program PARE, by introducing mutations located outside the
physical binding interface.

both Cyt-RC and for the electrostatically optimized TEM1-BLIP interface, while for
barnase—barster the transition state overlaps the final complex (Harel et al., 2007).
These data suggest a certain pathway for association (energy funnel), which would
help in speeding up association. In contradiction to these results, no indication for
specific transition state structures was found for the interaction of wild-type TEM1-
BLIP or the complex between IFNa2 and IFNAR?2. Therefore, a diffusive transition
state was suggested for these interactions. Specific transition states are character-
ized by defined interprotein orientations, which cannot be modeled for the diffu-
sive transition states. As was clearly shown for the TEM1-BLIP complex, mutations
introduced through rational design can change the transition state from diffusive to
specific and vice versa (Harel et al., 2007).

FRUITFUL AND FUTILE ENCOUNTERS ALONG THE
ASSOCIATION REACTION BETWEEN PROTEINS

Experimental data on kinetic processes can, at best, provide snapshots along the
reaction coordinates, with computer simulations using BD filling in the gaps. The
association between TEM1 and BLIP and barnase with barstar are perfectly suited
for detailed computational simulations that can be compared with the large bulk of
experimental data gathered on these systems, including the many mutations that
directly affect the rate of association (Selzer et al., 2000; Harel et al., 2007). Spaar
and colleagues have used the trajectories generated during the BD simulations in
order to analyze the free energy landscape of the encounter complex (Spaar and
Helms, 2005; Spaar et al., 2006). This was done through modeling the occupancy
map. As the number of the trajectories was very high, the occupancy maps could
be interpreted using probability distribution, from which the entropy landscape was
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calculated. The free energy landscape could be obtained by summing the energy and
the entropy contributions, as follows (Spaar and Helms, 2005; Spaar et al., 2006):

AG = AE,, + AE,, — TAS (5.10)

where AG is the free energy, AE,, is the electrostatic energy, AE, is the desolvation
energy, T is the temperature, and AS is the entropy. From the free energy landscape
one can compute the encounter complex region (the minimum in the free energy
landscape) and the optimal association and dissociation pathways. Using these tools,
two encounter complex regions were mapped along the association reaction of bar-
nase and barstar, one above the interface and the other above the RNA binding loop
(Spaar and Helms, 2005; Spaar et al., 2006). Analyzing the effect of mutations on the
encounter complex showed that a single mutation could considerably alter the free
energy landscape and change the population of the two minima (i.e., the two regions
of the encounter complex). As expected for a charged protein pair like barnase—
barstar, the free energy landscape was also affected by ionic strength.

The results of the BD simulation for wild-type TEMI1-BLIP also shows two
encounter regions; however, both are not at the interface. The left region is larger and
energetically more favorable, yet more distant from the interface (Figure 5.6). Both

(A)Encounter Region (B) Successful (C) Experiment
Trajectories and Simulation

Wild
Type

BLIP +4

D23R
E28R

FIGURE 5.6 (SEE COLOR INSERT FOLLOWING PAGE 174.) Brownian dynam-
ics simulations of TEM1-BLIP mutants. BLIP is represented as a gray surface, TEM1 wild
type is represented as a purple ribbon. All the simulations were done at 150 mM NaCl. (A)
Encounter complexes are drawn as yellow isosurfaces representing the center of mass of
TEMI on BLIP at AG < -2.0 kcal/mol (transparent yellow) and AG < —3.0kcal/mol (dark
yellow). (B) Superimposition of the successful configurations at AG < -3.0 kcal/mol (dark
yellow) and the encounter complex region, defined by AG < -3.0 kcal/mol, marked in trans-
parent yellow. (C) An overlay of the successful trajectories from the BD simulation and the
experimentally mapped transition state (see Figure 5.5).
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regions may be valid encounter complexes; however, they imply a diffusive encoun-
ter complex, as the two regions are broad and remote from each other. Furthermore,
these encounter regions do not guide the interaction toward the final complex, as can
be seen from the analysis of successful trajectories, which shows very few of the
encounter complex trajectories developing into a complex. This is in line with our
inability to identify a specific transition state for wild-type TEM1-BLIP (Harel et
al., 2007). To better understand the role of the encounter regions observed in the BD
simulations for the association reaction, a number of mutant proteins with perturbed
association rates (as experimentally determined) were studied. Most notable were
mutants that enlarge the encounter region near or above the physical binding site
(BLIP mutant BLIP +4 in Figure 5.6), and mutants that expand the encounter regions
(BLIP D23R,E28R, particularly the left one, Figure 5.6). Mutations of group I have
a very significant effect on &, (up to 100-fold), while mutations of group II did not
change the association rate at all. These mutants clearly show that no simple rela-
tion can be found between either the size or the energy of the encounter regions and
the rate of association. Moreover, even the analysis of successful encounters does
not always correlate with the observed change in k. For example, the encounter
region of the BLIP D23R,E28R double-mutant shows a much higher degree of suc-
cessful trajectories compared to the wild type, but has the same k_,. Conversely, for
group I, a correlation between successful encounters and k,, was observed. Group
I mutations, which are located at the vicinity but outside the physical binding site,
were designed to optimize the electrostatic energy of interaction of the complex
(Selzer et al., 2000). We have noted that the experimentally determined transition
state, which could be assigned only for TEM1-BLIP with optimized electrostatic
attraction (group I mutations) is smaller than the BD calculated encounter region.
However, the experimentally determined transition state better fits the area of suc-
cessful trajectories mapped for these mutants. This subgroup within the encounter
region can be assumed to be much closer to the transition state, which is defined as
the activated form of a molecule that has partly undergone a chemical reaction. As
the transition state has to be on the pathway to product formation, only successful
trajectories fulfill this requirement.

The mutant data presented here suggest that some of the encounter regions do
not contribute to association and thus are futile encounters. In general, the futile
regions are distant from the interface, and although the simulations suggest these
regions to be energetically favorable, they do not influence the association rate. The
reason for this is that in reality, futile encounters do not develop into final complexes
and hardly affect the concentration of free protein in solution. Finally, the data pre-
sented here could explain why group I mutations do not change the rate of dissocia-
tion, despite their large effect on the electrostatic complementarity between the two
proteins, that causes an increase in the rate of association. From the comparison of
the encounter complex to successful encounter trajectories, it becomes clear that
encounters are readily formed, but most of them are futile. The mutations in group I
were designed to increase the percent of fruitful encounters and hence k_,. However,
still most encounters will dissociate (see Figure 5.1). Thus, even for group I muta-
tions, once the final complex dissociates, it will have a small chance of re-forming.
This behavior is a result of the relative flat energy landscape leading to association
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prior to the transition state, which is characterized by desolvation and formation of
short-range interactions, versus the steep energy landscape leading to dissociation,
which is composed of breaking the short-range interactions between the proteins
(Figure 5.1).

SUMMARY

The association of proteins to form a complex is a multistep process, which starts
by random collisions of the individual proteins. Multiple collisions and rotational
diffusion brings the proteins to an orientation that is close to that of the native com-
plex, leading to the formation of a transient complex. This part of the process is
diffusion controlled, and strongly affected by electrostatic interactions. Computer
simulations and experimental data suggest that the transient complex develops into
the native complex through a transition state. Structurally, the transient complex and
the transition state seem to be similar; however, the transition state is smaller, with
the encounter complex also occupying futile areas that will not further develop into
a complex. The most important parameter that affects the rate of association is the
electrostatic force, which can act over a distance. However, local surface complimen-
tarily and desolvation also play an important role, and in some cases mutations can
be located that change the rate of association due to these factors.

REFERENCES

Albeck, S., Unger, R., & Schreiber, G. (2000) Evaluation of direct and cooperative contribu-
tions towards the strength of buried hydrogen bonds and salt bridges. J Mol Biol, 298,
503-520.

Alsallag, R. & Zhou, H. X. (2007a) Prediction of protein—protein association rates from a
transition-state theory. Structure, 15, 215-224.

Alsallag, R. & Zhou, H. X. (2007b) Energy landscape and transition state of protein—protein
association. Biophys J, 92, 1486-1502.

Alsallaq, R. & Zhou, H. X. (2008) Electrostatic rate enhancement and transient complex of
protein—protein association. Proteins, 71, 320-335.

Camacho, C. J., Kimura, S. R., DeLisi, C., & Vajda, S. (2000) Kinetics of desolvation-medi-
ated protein—protein binding. Biophys J, 78, 1094-1105.

Camacho, C. J. & Vajda, S. (2001) Protein docking along smooth association pathways. Proc
Natl Acad Sci USA, 98, 10636-10641.

Carter, P. J., Winter, G., Wilkinson, A. J., & Fersht, A. R. (1984) The use of double mutants
to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus
stearothermophilus). Cell, 38, 835-840.

Elcock, A. H., Sept, D., & McCammon, J. A. (2001) Computer simulation of protein—protein
interactions. J. Phys. Chem. B, 105, 1504-1518.

Fersht, A. R. & Daggett, V. (2002) Protein folding and unfolding at atomic resolution. Cell,
108, 573-582.

Fersht, A. R., Matouschek, A., & Serrano, L. (1992) The folding of an enzyme. I. Theory of
protein engineering analysis of stability and pathway of protein folding. J Mol Biol,
224, 771-782.

Frisch, C., Fersht, A. R. & Schreiber, G. (2001) Experimental assignment of the structure of
the transition state for the association of barnase and barstar. J Mol Biol, 308, 69-77.

© 2009 by Taylor & Francis Group, LLC



The Association of Protein—Protein Complexes 105

Gabdoulline, R. R. & Wade, R. C. (1996) Analytically defined surfaces to analyze molecular
interaction properties. J Mol Graph, 14, 341-353, 374-375.

Gabdoulline, R. R. & Wade, R. C. (1997) Simulation of the diffusional association of barnase
and barstar. Biophys J, 72, 1917-1929.

Gabdoulline, R. R. & Wade, R. C. (2001) Protein—protein associaton: Investigation of fac-
tors influencing asaociation rates by Brownian dynamics simulations. J Mol Biol, 306,
1139-1155.

Gabdoulline, R. R. & Wade, R. C. (2002) Biomolecular diffusional association. Curr Opin
Struct Biol, 12, 204-213.

Harel, M., Cohen, M., & Schreiber, G. (2007) On the dynamic nature of the transition state for
protein—protein association as determined by double-mutant cycle analysis and simula-
tion. J Mol Biol, 371, 180-196.

Horovitz, A. (1987) Non-additivity in protein—protein interactions. J Mol Biol, 196, 733-735.

Horovitz, A. & Fersht, A. R. (1990) Strategy for analysing the cooperativity of intramolecular
interactions in peptides and proteins. J Mol Biol, 214, 613-617.

Horovitz, A., Serrano, L., Avron, B., Bycroft, M., & Fersht, A. R. (1990) Strength and coop-
erativity of contributions of surface salt bridges to protein stability. J Mol Biol, 216,
1031-1044.

Huber, G. A. & Kim, S. (1996) Weighted-ensemble Brownian dynamics simulations for pro-
tein association reactions. Biophys J, 70, 97-110.

Kiel, C., Selzer, T., Shaul, Y., Schreiber, G., & Herrmann, C. (2004) Electrostatically optimized
Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association
by stabilizing the encounter complex. Proc Natl Acad Sci USA, 101, 9223-9228.

Krishna, M. M., Hoang, L., Lin, Y., & Englander, S. W. (2004) Hydrogen exchange methods
to study protein folding. Methods, 34, 51-64.

Kuttner, Y. Y., Kozer, N., Segal, E., Schreiber, G., & Haran, G. (2005) Separating the contribu-
tion of translational and rotational diffusion to protein association. J Am Chem Soc, 127,
15138-15144.

Levy, Y., Cho, S. S., Onuchic, J. N. & Wolynes, P. G. (2005) A survey of flexible protein
binding mechanisms and their transition states using native topology based energy land-
scapes. J Mol Biol, 346, 1121-1145.

Mateu, M. G., Sanchez Del Pino, M. M. & Fersht, A. R. (1999) Mechanism of folding and
assembly of a small tetrameric protein domain from tumor suppressor p53. Nat Struct
Biol, 6, 191-198.

Mejean, A., Bodenreider, C., Schuerer, K., & Goldberg, M. E. (2001) Kinetic characterization
of the pH-dependent oligomerization of R67 dihydrofolate reductase. Biochemistry, 40,
8169-8179.

Miyashita, O., Onuchic, J. N., & Okamura, M. Y. (2003) Continuum electrostatic model for
the binding of cytochrome c2 to the photosynthetic reaction center from Rhodobacter
sphaeroides. Biochemistry, 42, 11651-11660.

Miyashita, O., Onuchic, J. N., & Okamura, M. Y. (2004) Transition state and encounter com-
plex for fast association of cytochrome c2 with bacterial reaction center. Proc Natl Acad
Sci USA, 101, 16174-16179.

Nolting, B. et al. (1997) The folding pathway of a protein at high resolution from microsec-
onds to seconds. Proc Natl Acad Sci USA, 94, 826-830.

Northrup, S. H. & Erickson, H. P. (1992) Kinetics of protein—protein association explained by
Brownian dynamic computer simulation. Proc Natl Acad Sci USA, 89, 3338-3342.

Petrovich, M., Jonsson, A. L., Ferguson, N., Daggett, V., & Fersht, A. R. (2006) Phi-analysis
at the experimental limits: Mechanism of beta-hairpin formation. J Mol Biol, 360,
865-881.

Piehler, J. & Schreiber, G. (1999) Biophysical analysis of the interaction of human ifnar2
expressed in E. coli with IFNalpha2. J Mol Biol, 289, 57-67.

© 2009 by Taylor & Francis Group, LLC



106 Computational Protein-Protein Interactions

Rajamani, D., Thiel, S., Vajda, S., & Camacho, C.J. (2004) Anchor residues in protein—protein
interactions. Proc Natl Acad Sci USA, 101, 11287-11292.

Reichmann, D. et al. (2005) The modular architecture of protein—protein binding interfaces.
Proc Natl Acad Sci USA, 102, 57-62.

Reichmann, D. et al. (2007) Binding hot spots in the TEM1-BLIP interface in light of its
modular architecture. J Mol Biol, 365, 663—-679.

Rojnuckarin, A., Livesay, D. R., & Subramaniam, S. (2000) Bimolecular reaction simulation
using weighted ensemble Brownian dynamics and the University of Houston Brownian
dynamics program. Biophys J, 79, 686—693.

Schlosshauer, M. & Baker, D. (2004) Realistic protein—protein association rates from a simple
diffusional model neglecting long-range interactions, free energy barriers, and land-
scape ruggedness. Protein Sci, 13, 1660-1669.

Schreiber, G. (2002) Kinetic studies of protein—protein interactions. Curr Opin Struct Biol,
12, 41-47.

Schreiber, G. & Fersht, A. R. (1993) Interaction of barnase with its polypeptide inhibitor
barstar studied by protein engineering. Biochemistry, 32, 5145-5150.

Schreiber, G. & Fersht, A. R. (1995) Energetics of protein—protein interactions: Analysis of
the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol,
248, 478-486.

Schreiber, G. & Fersht, A. R. (1996) Rapid, electrostatically assisted association of proteins.
Nat Struct Biol, 3, 427-431.

Schreiber, G., Shaul, Y., & Gottschalk, K. E. (2006) Electrostatic design of protein—protein
association rates. Methods Mol Biol, 340, 235-249.

Selzer, T., Albeck, S., & Schreiber, G. (2000) Rational design of faster associating and tighter
binding protein complexes. Nat Struct Biol, 7, 537-541.

Selzer, T. & Schreiber, G. (1999) Predicting the rate enhancement of protein complex forma-
tion from the electrostatic energy of interaction. J Mol Biol, 287, 409—419.

Selzer, T. & Schreiber, G. (2001) New insights into the mechanism of protein—protein associa-
tion. Proteins, 45, 190-198.

Shaul, Y. & Schreiber, G. (2005) Exploring the charge space of protein—protein association: A
proteomic study. Proteins, 60, 341-352.

Sheinerman, F. B., Norel, R., & Honig, B. (2000) Electrostatic aspects of protein—protein
interactions. Curr Opin Struct Biol, 10, 153-159.

Slutzki, M., Jaitin, D. A., Yehezkel, T. B., & Schreiber, G. (2006) Variations in the unstructured
C-terminal tail of interferons contribute to differential receptor binding and biological
activity. J Mol Biol, 360, 1019-1030.

Spaar, A., Dammer, C., Gabdoulline, R. R., Wade, R. C., & Helms, V. (2006) Diffusional
encounter of barnase and barstar. Biophys J, 90, 1913-1924.

Spaar, A. & Helms, V. (2005) Free energy landscape of protein—protein encounter resulting
from Brownian dynamics simulations of barnase:barstar. J Chem Theory Comput, 1,
723-736.

Stewart, R. C. & Van Bruggen, R. (2004) Association and dissociation kinetics for CheY inter-
acting with the P2 domain of CheA. J Mol Biol, 336, 287-301.

Suh, J. Y., Tang, C., & Clore, G. M. (2007) Role of electrostatic interactions in transient
encounter complexes in protein—protein association investigated by paramagnetic relax-
ation enhancement. J Am Chem Soc, 129, 12954—-12955.

Tang, C., Iwahara, J., & Clore, G. M. (2006) Visualization of transient encounter complexes in
protein—protein association. Nature, 444, 383-386.

Taylor, M. G., Rajpal, A., & Kirsch, J. F. (1998) Kinetic epitope mapping of the chicken
lysozyme. HyHEL-10 Fab complex: Delineation of docking trajectories. Protein Sci,
7, 1857-1867.

© 2009 by Taylor & Francis Group, LLC



The Association of Protein—Protein Complexes 107

Tetreault, M., Cusanovich, M., Meyer, T., Axelrod, H., & Okamura, M. Y. (2002) Double
mutant studies identify electrostatic interactions that are important for docking cyto-
chrome c2 onto the bacterial reaction center. Biochemistry, 41, 5807-5815.

Vijayakumar, M. et al. (1998) Electrostatic enhancement of diffusion-controlled protein—pro-
tein association: Comparison of theory and experiment on barnase and barstar. J Mol
Biol, 278, 1015-1024.

Volkov, A. N., Worrall, J. A., Holtzmann, E. & Ubbink, M. (2006) Solution structure and
dynamics of the complex between cytochrome ¢ and cytochrome c peroxidase deter-
mined by paramagnetic NMR. Proc Natl Acad Sci USA, 103, 18945-18950.

Wendt, H. et al. (1997) Very rapid, ionic strength-dependent association and folding of a het-
erodimeric leucine zipper. Biochemistry, 36, 204-213.

Wu, L. C., Tuot, D. S., Lyons, D. S., Garcia, K. C., & Davis, M. M. (2002) Two-step binding
mechanism for T-cell receptor recognition of peptide MHC. Nature, 418, 552-556.

Zhou, H. X. (1993) Brownian dynamics study of the influences of electrostatic interaction and
diffusion of protein—protein association kinetics. Biophys J, 64, 1711-1726.

Zhou, H. X., Wong, K. Y., & Vifayakumar, M. (1997) Design of fast enzymes by optimizing
interaction potential in active site. Proc Natl Acad Sci, 94, 12372-12377.

© 2009 by Taylor & Francis Group, LLC



6 Computational
Simulations of Protein—
Protein and Protein-—
Nucleic Acid Association

Georgi V. Pachov, Razif R. Gabdoulline,
and Rebecca C. Wade

CONTENTS
OVEIVIEW ..ttt ettt a et st e et s bt et bt e bt eb e b e eate bt e st e bt estenaeenee 110
INETOAUCTION ...t ettt 110
Bimolecular ASSOCIAtION .....c.eevuiruieriieienieeie ettt 110
Diffusional Encounter COmplex..........cccevierierieniinienenieneeie e 111
Bound ComPIeX......ccuueiirieiieieiieierieee ettt 111
Molecular DiffiSion ........cooeeieriiieiieienieee et e 111
Electrostatic INteractions .........eouerveriierieriieieetieie ettt sttt 112
REACHION RALES......eiiiiiiieiiciiee e e 113
Theoretical and Computational AppProaches............ceceeeeeereerererneneeneniesenens 114
Particle-Based APProaches...........ccooeeuerieiienieniinienieeieneteee e 114
Density-Distribution Approaches..........cocceoeeierierieninieniiieneee e 116
Electrostatic Enhancement of Association Rates ..........c.cceceveeviniineniencncnn. 117
Recent Advances in Computational Approaches ...........ccceeeevenieeieneeieneeieneenn 117
Protein—Protein INteractions...........coeevuerieiienieniinienieieseee e 117
Computation of Association Rates .........c.cceoereenerieninieninecceceece 117
Dissection of the Determinants of Binding ..........cccccevevveniincninncnienennene 117
Quantification of the Encounter COmpleX........ccocoveererienenienienienieeienene 118
Induced Fit Phenomena.........cccooeeiiriiienieniiiecececeeeee e 119
Crowding Phenomena ...........cceoeeiiriiiienieniiiee e 119
Protein—Nucleic Acid INtEractions ...........ccceeeeriieieniiniienieieneee e 119
Computation of Association Rates .........c.ccevivienerieniiienineceieeeeee 119
Specificity and NONSPECIICILY ....coveruerieriieieniieieniieieeicee e 120
Chromatin MOdEIS.........couiiiiriiriiiiiniieeecee e 121
OULLOOK ..ttt ettt et b ettt ae e 122
ACKNOWIEAZMENTS.....c.eiiiiiiiiiiieieeee et 123
RETEICIICES ...ttt 123

© 2009 by Taylor & Francis Group, LLC



110 Computational Protein-Protein Interactions

OVERVIEW

The kinetics of the formation of macromolecular complexes contribute to their biologi-
cal function. We first describe key features and determinants of bimolecular association
kinetics. Then we present an overview of theoretical and computational approaches to
calculating kinetic properties. Finally, we discuss recent computational advances with
selected examples of protein—nucleic acid and protein—protein complexation.

INTRODUCTION

The formation of biological complexes between proteins, proteins and small mol-
ecules, and proteins and nucleic acids is critical to many biological processes, includ-
ing cell signaling, gene transcription, enzyme catalysis, and the immune response.
Molecular association is governed by both the kinetic and the thermodynamic prop-
erties of the molecules and of the medium in which they are immersed. Inside a cell,
the medium is packed with a wide variety of different molecules and is considered to
be crowded. Biomacromolecular complexes vary widely in their affinities and life-
times, ranging from obligate and permanent to transient and short-lived complexes.
Here, we will only consider bimolecular association to form a transient complex.
Complexation is usually characterized in terms of affinity, as weak (and loose) or
strong (and tight). The variation in affinity is often largely determined by the varia-
tion in dissociation rate. Association rates can, however, also vary over many orders
of magnitude between complexes and can be critical in the biological context. For
example, the snake toxin fasciculin must not only strongly inhibit acetylcholinest-
erase (an enzyme that is critical to neural transmission) but also reach its target
quickly (Quinn 1987). Similarly, the intracellular inhibitor barstar protects the bac-
terium Bacillus amyloquefaciens from the enzyme barnase, which it excretes to act
as an extracellular ribonuclease (Jucovic and Hartley 1996). The protein interleu-
kin-4 forms a complex with its cellular receptor, and the time of this process is a
measure for the regulation of the immune system (Wang, Shen, and Sebald 1997).
Furthermore, the speed at which the lac repressor binds to its chromosomal /ac oper-
ator regulates gene expression in the cell (EIf, Li, and Xie 2007).

Here, we discuss the use of computational approaches to address the problem of
understanding how a biomolecular complex forms and the macromolecular interac-
tions involved. First, important parameters for describing the kinetics of molecu-
lar association are introduced. Then, we focus on theoretical and computational
approaches for calculating association rates and discuss the current limitations of
these approaches. The chapter ends with a review of recent computational advances
in studying protein—protein and protein—nucleic acid association.

BIMOLECULAR ASSOCIATION

Molecules diffuse in the cellular environment, and, upon molecular recognition, can
form bound complexes. Active transport processes may also contribute to binding
but will not be discussed here. Bimolecular association can be considered to entail
two steps. In the first step, an intermediate is formed by diffusion; this is called a
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diffusional encounter complex. In the second step, this intermediate evolves to form
a tightly bound complex. Bimolecular association is diffusion controlled when the
first step is rate limiting; it is reaction controlled when the second step determines
the rate of association.

Diffusional Encounter Complex
Characterization of the diffusional encounter complex is important for protein and
nucleic acid design studies aimed at altering the association kinetics. In diffusion-
controlled processes, formation of the encounter complex determines the bimolecular
association rate constant. The rate of diffusional association has an upper limit, that is,
the binding of two molecules cannot be faster than their rate of collision. In aqueous
solvent, this limit is around 10° M-'s™! for uniformly reactive spheres of the size of a
small- to medium-sized protein (Smoluchowski 1917) with no forces between them.
A random collision of two molecules does not usually result in binding. A freely
diffusing molecule must come close to its binding patch on a target molecule and
form a diffusional encounter complex. Geometrically, the encounter complex can be
viewed as an ensemble of configurations able to evolve to the bound state. During
a single encounter, the two molecules can undergo rotational reorientation while
remaining trapped in the vicinity of each other and undergoing multiple collisions.
This effect is known as a diffusive entrapment. A Brownian dynamics (BD) study
(Northrup and Erickson 1992) of two noninteracting spheres of the size of small
proteins showed that, because of the diffusive entrapment effect, the association rate
was about 400 times larger (2 x 106 M-!s!) than the rate calculated by a simple geo-
metric correction of the Smoluchowski rate considering two contacts as the criterion
for binding (1 x 10*M-'s™1). An association rate constant of about 10° M-'s-! is typical
of protein—protein pairs that bind without strong electrostatic interactions. Attractive
electrostatic forces can lead to higher rates very close to the Smoluchowski rate.

Bound Complex

After formation of the encounter complex, the biomolecules must adjust their positions to
form a fully bound complex. As well as translation and reorientation, they may undergo
changes in conformation and induced fit to achieve a bound complex. Within the com-
plex, the biomolecules are held together by short-range noncovalent interactions such as
salt bridges, hydrogen bonds, and van der Waals interactions. These interactions depend
on the chemical properties of the interacting groups on both molecules as well as their
spatial arrangement. The interactions may be mediated by individual water molecules.
One or several binding sites on a biomolecule may stabilize the complex. A subtle change
in the binding sites can change the binding mode significantly. As a result, biological asso-
ciations are dependent on the structure of both molecules and can be highly specific.

MOLECULAR DIFFUSION

For a particle undergoing normal diffusion, the average value of the squared dis-
placement (r) in n spatial dimensions is proportional to the time (¢) elapsed

<r?>=2nDt 6.1
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where D is the diffusion coefficient. In some studies of molecular diffusion in cells
and nuclei, anomalous diffusion has been observed with the displacement showing a
smaller or larger dependence on time corresponding, respectively, to subdiffusion or
superdiffusion (Dix and Verkman 2008).

The flux of particles (J) across a defined area is related to the concentration (C)
gradient by Fick’s first law

J=-DVC 6.2)

Many transport phenomena are described by the continuity equation

v.7+9C =0 6.3)
ot

which describes the conservation of matter. Fick’s second law, or the diffusion equa-
tion, can be derived from Equations 6.2 and 6.3

€ __ DAC 6.4
ot

When a particle moves in a fluid, it experiences friction to an extent depending on
the properties of the fluid. The macroscopic quantity describing the internal resis-
tance to flow is viscosity (). For a moving sphere with radius r, it is inversely related
to the diffusion coefficient (D) through the Stokes—Einstein formula

kT
- 6mrD ©.5)

n

where kj is the Boltzmann constant and 7 is the temperature. The crowded cyto-
plasmic and nuclear environments have been observed to result in diffusion of small
proteins such as GFP (green fluorescent protein) that is slower by a factor of about
4 than that observed in aqueous solution (Dix and Verkman 2008). The cellular
environment is heterogeneous and thus it is a simplification to describe it by a mac-
roscopic viscosity. Indeed, the crowded intracellular environment can, depending on
solute size, result in subdiffusion (Dix and Verkman 2008).

ELECTROSTATIC INTERACTIONS

The interaction forces between biomolecules vary in strength, type, and origin, and
a wide spectrum of forces contributes to complex formation (Motiejunas and Wade
2007). Here, we will discuss only electrostatic interactions as their contribution to the
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kinetics of bimolecular association has been shown to be considerable. Electrostatic
interactions are important for bimolecular association because they are relatively
long range and may therefore guide the association process by means of attractive
and repulsive interactions. Their importance is shown by the dependence of associa-
tion rates on ionic strength and pH and the generally much greater influence on the
association rate of mutations of charged than of neutral residues.

Ionic solutions screen the electrostatic interactions between the molecular solutes.
One way to treat the ions is to compute the molecular electrostatic potential (¢) using
the nonlinear Poisson—-Boltzmann equation

_4i
~Ve@) Vo(r)= p(r)+2q,-n,~e ksT 6.6)

where &(r) is the position dependent dielectric permittivity, p(r) is the molecular
charge density, and ¢; and n; are the charge and the concentration of the i-th ionic
species in the bulk, respectively. Equation 6.6 can be approximated by the linear
Poisson—Boltzmann equation if the exponential is expanded as a Taylor series

—Ve) Vo) + ex?¢ = p(r) 6.7)

where « is the Debye—Hiickel screening length. Equations 6.6 and 6.7 are used in
studies of interactions between macromolecules in continuum solvent, that is, when
water molecules and ions are not modeled explicitly.

When two approaching molecules come close in an aqueous solvent, an electro-
static desolvation effect arises due to the lower dielectric constant of the solute com-
pared to that of the solvent. Charges located at the bimolecular complex interface
become desolvated upon complex formation resulting in an unfavorable electrostatic
energy change. This desolvation effect becomes significant at short distances and is
mainly dependent on the location and magnitude of the charged groups.

ReacTiON RATES

If a molecule of type X forms a complex of type Z with a molecule of type Y, then the
reaction kinetics are characterized by the association and dissociation rate constants,
k,, and k. , respectively,

on

X+Y22Z
kg 6.8)
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The rate constants can be related to an equilibrium association constant

'
““ky 6.9)

The reciprocal of K, is the equilibrium dissociation constant K,. An analytical solu-
tion for the diffusion-controlled association constant K, can be obtained for uniform
spheres reacting at a center-to-center distance r (Smoluchowski 1917)

K()n = 4T[I" (DX + DY)’ (610)

where D, and D, are the diffusion constants for species X and Y, respectively.
Equation 6.10 is valid when there are no forces between the spheres. For interacting

spheres, k,, is given by (Berg and von Hippel 1985)
- 4nr(Dy +Dy)
o y pUIKT
I —dr ©.11)
n

r

where U(r) is a centrosymmetric interaction potential between the spheres. For more
complicated geometries and interaction forces, numerical approaches are necessary
to compute association rates (see the next section).

THEORETICAL AND COMPUTATIONAL APPROACHES

For biological molecules, the bimolecular diffusional association rate constant
can be computed using two distinct approaches. In the first approach (see sec-
tions ‘“Particle-Based Approaches” and ‘“Density-Distribution Approaches”),
absolute rate constants are computed using a model that accounts for the forces
between the interacting biomolecules as well as relevant properties of the cel-
lular environment. Diffusional motion is treated with particle-based Brownian
dynamics (BD) simulations (Northrup and Erickson 1992) or a density-distri-
bution-based formalism (Schlosshauer and Baker 2004). In the second approach
(see “Electrostatic Enhancement of Association Rates” section), the relative
rather than the absolute association rate constants are computed from the inter-
action energy between the molecules.

PARTICLE-BASED APPROACHES

The calculation of bimolecular association rate constants by simulation of the diffu-
sional motion of the interacting particles was first implemented by Northrup, Allison,
and McCammon (NAM; Northrup, Allison, and McCammon 1984). In the NAM
method, one of the interacting molecules is placed at the center of a sphere, while the
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other one starts Brownian moves at a distance b (see Figure 6.1A). The b distance
is chosen such that there are no forces between the molecules at this separation or
that the forces are centrosymmetric. For these cases, the rate constant for the mol-
ecules to approach a separation b can be computed from Equation 6.10 or Equation
6.11 with r = b. By generating thousands of trajectories and monitoring those that
fulfill criteria for forming an encounter complex, the probability of reaction () can
be obtained, and thus the association rate constant k,, calculated (see Figure 6.1A).

A B
NAM q surface q surface WEB
b surface b surface
‘ »
ym— b k0n=J JondS
1-(1-B)b/q surface
[-reactive probability J-steady state flux
C D
Time- dependent Density-distribution
High
=
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i
E
8
<]
3]
O]
YVS t) Low
U Ut
kon(®) = kon(1 + _ken +..) kon(€) = pbulk J“ D(r)ekT V ekT p(r, t) d
4nD(nDt)*
S(¢)-survival probability p(r, t)-concentration density
E PARE
2
Encounter
<UI;B .
Electrostatic association Kon S KT
rate enhancement =
kgn ~ UCoulomb ‘ 5 .
€ KT(1+xa) oun
FIGURE 6.1 (SEE COLOR INSERT FOLLOWING PAGE 174.) Schematic figure of the

methods for calculating bimolecular association rates (see “Theoretical and Computational

Approaches” section for more details).
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The trajectories are truncated when the molecules reach a separation q (at the “q sur-
face”). Each trajectory is started from a randomly chosen position and orientation on
the “b surface.” The two diffusing molecules can be modeled in atomic detail.

Superoxide dismutase was the first system to which the NAM method was applied
(Allison, Ganti, and McCammon 1985; Antosiewicz, Briggs, and McCammon 1996;
Stroppolo et al. 2000). Subsequently, it has been applied to many diffusion-influ-
enced enzymes (Wade 1996; Wade et al. 1998).

It has also been applied to compute protein—protein association rates by monitor-
ing the formation of native polar contacts in the experimentally determined bound
complex (Gabdoulline and Wade 1997, 2001; Elcock et al. 1999) or the formation of
electron-transfer complexes (Northrup, Boles, and Reynolds 1988). A wide range of
protein—protein interactions has been investigated with this approach, including gly-
colytic enzymes interacting with actin filaments and antigen—antibody complexation
(Northrup, Boles, and Reynolds 1988; Altobelli and Subramaniam 2000; Fogolari
et al. 2000; Ouporov et al. 2001; Rienzo et al. 2001; Sept and McCammon 2001;
Haddadian and Gross 2006).

Another formalism for using BD simulations to calculate association rates was
developed by Huber and Kim (1996). It is called weighted-ensemble Brownian
(WEB) dynamics and, in contrast to the NAM method, the diffusing particle is
represented as an ensemble of weighted probability packets or pseudoparticles (see
Figure 6.1B). Multiple BD trajectories are simulated in the available configuration
space, which is divided into bins along the intermolecular reaction coordinate that
are equally sampled (Huber and Kim 1996). The rate constants are obtained from
the reactive steady-state flux J;; (Figure 6.1B). The WEB method was found to be
very efficient in calculating rates when there are large free energy barriers to asso-
ciation (Rojnuckarin, Livesay, and Subramaniam 2000).

An alternative BD method deals with a pair of reactant biomolecules for which
trajectories are started in a reaction region and the time-dependent probability of
finding them again in this region in the absence of a reaction is calculated (Lee and
Karplus 1987). Zhou designated this reaction region as a “reaction volume” (V; see
Figure 6.1C) and expressed the time-dependent rate coefficient (k,(t)) via the sur-
vival probability (S(t)) of the reactant biomolecules started in V (Zhou and Szabo
1996). The steady-state association rate constant k,,, is reached at long times with the
known asymptotic behavior (Figure 6.1C).

DENSITY=-DISTRIBUTION APPROACHES

In the density-distribution approach, a finite difference solution of the partial differ-
ential diffusion equation is computed (Song et al. 2004; Cheng et al. 2007). In this
continuum model, the concentration density p(r,t) under appropriate boundary condi-
tions is derived from the time-dependent Smoluchowski equation (see Figure 6.1D).
Knowing the interaction potential (U(r)) between the reactants and the diffusion coef-
ficients, the association rate constant can be computed (Figure 6.1D). This algorithm is
computationally less demanding than BD simulations with the NAM approach when
applied to enzyme-substrate association. However, the atomic-detail properties of the
substrate cannot be treated as it is modeled by a density distribution.
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ELECTROSTATIC ENHANCEMENT OF ASSOCIATION RATES

Zhou (1997) proposed that the variation in the rate constant for bimolecular associa-
tion is dependent on the electrostatic interaction energy between proteins in transient
intermediate configurations. Selzer and Schreiber (1999) showed that this approxima-
tion is valid for the bound complex of the proteins as well, and their algorithm, called
PARE (Predicting Association Rate Enhancement), is implemented as a Web server
(http://www.weizmann.ac.il/home/bcges/PARE.html). The difference between these
two methods for estimating the rate enhancement is that in the first method (Zhou
1997) the average Poisson—Boltzmann electrostatic interaction energy (<U>"?) in the
encounter complex is calculated, while in the second method (Selzer and Schreiber
1999), the Coulombic interaction energy (U“°"?) in the bound complex is com-
puted and the ionic environment is accounted for by a Debye—Hiickel term (see
Figure 6.1e). A disadvantage of these methods is that only the rate enhancement can
be predicted, whereas the basal rate (k_, ) should be computed by another method or
obtained from experiments. On the other hand, an advantage of this approach is that
it can be used for rapid, structure-based calculation of the electrostatic steering of
the association of two proteins (Schreiber, Shaul, and Gottschalk 2006). Using this
approach one can design faster and tighter binding proteins by optimizing the elec-
trostatic interaction between a reactant protein—protein pair (Schreiber, Shaul, and
Gottschalk 2006) and faster enzymes can be designed by altering the electrostatic
potential in the active site (Zhou, Wong, and Vijayakumar 1997).

RECENT ADVANCES IN COMPUTATIONAL APPROACHES
PROTEIN—PROTEIN INTERACTIONS

Computation of Association Rates

Most of the methods depicted in Figure 6.1 have been applied to kinetic studies
of protein—protein association, particularly focusing on electrostatic enhancement
of association rates (Gabdoulline and Wade 2002). Most applications to protein—
protein association involve solving the Poisson—Boltzmann (PB) equation. It
has been shown that the degree of accuracy of prediction of association rates is
dependent on both the definition of the solute—solvent dielectric boundary and
the use of a linear or nonlinear PB equation (Alsallaq and Zhou 2007, 2008a). As
mentioned earlier, electrostatic rate enhancement can be used as a criterion for
protein design (Schreiber, Shaul, and Gottschalk 2006), and a study of 68 tran-
sient heteroprotein—protein complexes showed electrostatic steering leading to an
increase of over 100-fold in k,, for about 25% of the complexes studied (Shaul and
Schreiber 2005).

Dissection of the Determinants of Binding

The association and dissociation rates together determine the binding affinity. It has
been shown that it is possible to design mutants that change the binding affinity by
changing only the association rates for a number of different protein complexes (Selzer,
Albeck, and Schreiber 2000; Schreiber, Shaul, and Gottschalk 2006). For example, in
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the case of Cdc25B phosphatase binding to its Cdk2-pIpY/CycA substrate, the regions
most important for association and for dissociation are clearly distinguished. In the
phosphatase, the former are remote hot spot residues, while the latter are at the active
site (Sohn, Buhrman, and Rudolph 2007). Large (>100-fold) changes in association
rates were observed upon single point mutation, thus dramatically changing the bind-
ing affinity (Sohn, Buhrman, and Rudolph 2007). Another example is a triple mutant
of the Ras effector protein Ral, a guanine nucleotide dissociation stimulator (RalGDS)
that was designed to bind faster than the wild-type protein to the Ras protein and was
found experimentally to bind 14 times faster (Kiel et al. 2004). The mutant had binding
properties similar to Raf, another Ras effector.

Quantification of the Encounter Complex

The diffusional encounter complex, an intermediate state marking the endpoint of
diffusion of two proteins toward each other, plays an important role in determining
the association rates. However, its structure cannot be directly determined experi-
mentally (Gabdoulline and Wade 1999).

The encounter complex is an ensemble of target positions near the bound com-
plex, and achieving this ensemble in BD simulations ensures subsequent binding of
the molecules when the association is diffusion controlled. The encounter complex
can be expected to be near to, but not coincident with, the transition state for bind-
ing. The nature of this transition state for the association of barnase and barstar was
investigated in double-mutant cycle experiments by Frisch, Fersht, and Schreiber
(2001). They found evidence for contacts between charged groups. The activation
entropy of the transition state was found to be small, indicating a small degree of
desolvation. The residue—residue contacts maintained in the transition state differed
at low and high ionic strength, indicating that the structure of the intermediate state
changes with changing solvent conditions. All these findings regarding the transition
state are consistent with the models of the encounter complexes generated by BD
simulation (Gabdoulline and Wade 1997).

The structure of the transition state has been investigated by introducing muta-
tions that alter association rates and modeling bimolecular configurations that fit
experimental data (Miyashita, Onuchic, and Okamura 2004; Harel, Cohen, and
Schreiber 2007). Recently, a BD study (Spaar et al. 2006) showed that the structure
of the encounter complex is affected by mutations making it difficult to precisely
characterize the encounter complex using mutational data. A detailed picture of the
association dynamics of hydrogenase HydA2 and ferredoxin PetF1 was revealed
by combining BD and molecular dynamics (MD) simulations (Long et al. 2008),
and this enabled a transition state ensemble of configurations for electron transfer
to be quantified. Very recently, it has become possible to quantify such transient
intermediate complexes using long-range distance restraints derived from paramag-
netic nuclear magnetic resonance (NMR) methods (Tang, Iwahara, and Clore 2006;
Volkov et al. 2006) and this is expected to shed more light on the nature of encoun-
ter complexes. Indeed, Kim et al. (2008) have combined these NMR techniques
with replica exchange MD simulations with a coarse-grain model to identify spe-
cific and nonspecific binding configurations in a transient protein—protein encounter
complex.
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Induced Fit Phenomena

In general, there is more than one intermediate state in the association process because
protein—protein binding consists of multiple steps: diffusion, conformer selection, and
refolding or induced fit (Gruenberg, Leckner, and Nilges 2004). It is not simple, how-
ever, to quantify all intermediates experimentally, although it can be shown in some
cases that a one-step model of association is not sufficient (Kourentzi et al. 2008).

An extreme case of induced fit occurs when the protein folds or refolds upon
binding to its partner (Levy et al. 2005). It was shown (Levy, Onuchic, and Wolynes
2007) that this may be followed by a fly-casting effect coupled to electrostatic steer-
ing for the Ets domain of SAP-1 protein binding to its specific DNA sequence. A
significant induced fit was found in the case of fasciculin 2 (Fas2) binding to ace-
tylcholinesterase (AChE), two proteins that bind with a very high association rate
constant. It was found that the conformation of Fas2 able to bind AChE is not stable
in the unbound form of Fas2 and that the association process should follow a confor-
mational change of a stable form of Fas2 that is not complementary to AChE (Bui
and McCammon 2006; Bui et al. 2006).

Crowding Phenomena

The influence of crowding agents cannot be explained simply as the action of obsta-
cles, volume exclusion, or the change in the solvent viscosity, because there is a
complex dependence of the solute molecular dynamics and reactions in crowded
solutions on the properties of the molecular interactions in the system. An inverse
linear relation was found between translational diffusion of proteins and viscos-
ity in almost all solutions tested, in accordance with the Stokes—Einstein relation.
Conversely, no simple relation was found between either rotational diffusion rates
or association rates (k,,) and viscosity (Kozer et al. 2007). In all crowded solutions,
the measured absolute k,, values, but not the k, values, were found to be lower than
in buffer. In the presence of low mass crowding agents, k,, depends inversely on the
solution viscosity. In high mass polymer solutions, k,, changes only slightly, even at
viscosities 12-fold higher than water (Kozer and Schreiber 2004). See also a recent
review on this topic (Zhou 2008). Simulations using a model at the one spherical
particle/macromolecule level of barnase—barstar association in crowded solutions
designed to represent the cytoplasmic environment revealed a biphasic time course,
indicating that crowding exerts different effects over different timescales (Ridgway
et al. 2008). Crowding influences not only the rates but also the equilibrium param-
eters of chemical reactions (Chebotareva 2007) making the quantitative description
of crowding phenomena for enzymes in vivo even more difficult.

PrOTEIN—NUCLEIC ACID INTERACTIONS

Computation of Association Rates

The backbone of nucleic acids contains negatively charged phosphate groups. This
negative electrostatic potential leads to attraction of nucleic acids to proteins with
positive binding sites. Therefore, the formation of a nucleic acid—protein complex is
strongly governed by electrostatic interactions, which enhance the association rate.
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Such rate enhancement was predicted by applying the PARE method (see Figure 6.1¢)
to an atomistic model of protein—RNA (U1A-UISLII) interactions (Qin and Zhou
2008). The results, based on changing the ionic strength and making mutations, have
been shown to be consistent with experiments (Qin and Zhou 2008). In another study,
BD simulations were carried out for the translation protein elF4E binding to five anal-
ogous mRNA cap molecules. The association rates were computed for varying elec-
trostatic and hydrodynamic interactions in the system and displayed values very close
to the rates determined by experiment (Bachut-Okrasinska and Antosiewicz 2007).

Allsallaqg and Zhou (2008b) developed a theoretical model showing that nonspe-
cific binding to DNA enhances the protein—nucleic acid association rate and that
binding to a linear DNA leads to a slightly higher association rate constant than to a
circular DNA. The formation of an open complex of DNA and a bacterial RNA poly-
merase (RNAP) from the closed one was analyzed by Djordjevic and Bundschuh
(2008). The rate of formation of the open complex was derived from a quantita-
tive model for a reversible two-step binding mechanism. The authors found that it
depends on the interaction energies of the closed and opened complexes as well as
on the DNA duplex melting energy.

Specificity and Nonspecificity

Binding Dynamics

Recently much effort has been put into understanding the dynamics of DNA-binding
proteins: how they search for their target molecule, what interactions govern this pro-
cess, how specifically they locate the binding site, and so on. The way in which the
proteins bind to the DNA (specifically or nonspecifically) can explain the observa-
tion of association kinetic rates higher than the Smoluchowski rate in some protein—
DNA studies (Halford and Marko 2004). These studies suggest three-dimensional
(3D) diffusion of the protein to the DNA followed by one-dimensional (1D) diffusion
of the protein along the DNA to form a bound complex. This type of diffusion is
referred to in the literature as facilitated diffusion.

Facilitated Diffusion

Slutsky and Mirny (2004) proposed that for an optimal search for the target DNA,
a protein should spend half of its time in 3D diffusion and the other half in 1D dif-
fusion, sliding along the DNA. Their study aimed at quantitatively investigating the
specific and nonspecific binding of proteins to DNA. However, a theoretical lattice
Monte Carlo study (Rezania, Tuszynski, and Hendzel 2007) of transcription factors
(TFs) binding to DNA molecules showed that even if only 15% of the diffusional
search time is spent freely in solution, the timescale of target location is consistent
with experimental measurements. In this diffusional search, the TFs might exhibit
conformational changes, which could affect the association rate constant. Such
conformational changes during the searching and sliding mechanisms have been
investigated to detect the shortest binding time to the DNA consistent with thermo-
dynamics (Hu, Grosberg, and Bruinsma 2008). The simultaneous interactions of
multiple proteins with a long DNA chain have been investigated using Monte Carlo
simulations (van der Heijden and Dekker 2008). Three possible interactions were
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proposed: noncooperative/cooperative binding, position-dependent dissociation, and
linear motion along the DNA. It was found that noncooperative binding leads to gaps
on the DNA that are smaller than the size of the protein binding site and therefore to
an overestimation of the apparent size of the binding site of the protein by as much as
30%. For cooperatively bound proteins, the protein—DNA dissociation curve showed
exponential behavior indicating the importance of the cooperativity in the protein—
DNA interactions (van der Heijden and Dekker 2008). Murugan has developed a
generalized theory based on the assumption that first the protein binds nonspecifi-
cally to DNA by 3D diffusion and second experiences 1D diffusion to locate the
specific DNA binding site (Murugan 2007).

Intersegment Transfer

Some nucleic acid binding proteins have multiple binding sites (Brown, Izard, and
Misteli 2006) allowing them to bind simultaneously to several nucleic acid binding
sites. For example, a protein can jump from one DNA segment to another with-
out dissociating, a process called intersegment transfer. In this way, the protein can
bind specifically to the target site and a rate enhancement can be observed (Hu and
Shklovskii 2007). Lattice simulations (Wedemeier et al. 2008) showed that increas-
ing the nucleic acid chain density increases the protein diffusion in the case of
intersegment transfer. Moreover, the diffusion coefficient appeared to be reciprocal
to the chain density in 1D sliding on the DNA (Wedemeier et al. 2008).

In summary, several factors contribute to the high association rates for nucleic
acid binding proteins, such as transcription factors, and DNA; these include 1D dif-
fusion, intersegment transfer, and conformational changes upon binding (Alsallaq
and Zhou 2008b).

Chromatin Models

Chromatin is a biological structure occurring in the cell nucleus that consists of
a highly packed DNA molecule and histone proteins. The positively charged his-
tones attract the negative DNA molecule, which wraps around them, and together
they form a single unit called the nucleosome. The conformation and compaction
of the chromatin depend on the interactions between the nucleosomes as well as
on the presence of other factors influencing chromatin dynamics. Since chromatin
has features on different time and length scales, a considerable number of theoreti-
cal models exist that aim to elucidate the driving forces for chromatin compaction.
Chromatin has been modeled on a coarse-grained level in which several atoms, resi-
dues, or the whole nucleosome are represented as a single geometrical object; the
interactions involved are included; and the dynamics are simulated either by BD
or Monte Carlo (Arya, Zhang, and Schlick 2006; Merlitz et al. 2006; Langowski
and Heermann 2007; Kepper et al. 2008; Stehr et al. 2008). Attempts to predict
the conformation of chromatin fiber have been made at an atomistic level as well
(Wong, Victor, and Mozziconacci 2007). Some studies have focused on the interac-
tions involved at a single nucleosome level, and the binding dynamics of the linker
histone to the nucleosome have been investigated experimentally (Brown, Izard, and
Misteli 2006) and theoretically (Fan and Roberts 2006). The binding of the linker
histone and its stoichiometry as well as the nucleosome repeat lengths influence
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FIGURE 6.2 Position of the linker histone GHS (light gray) generated by BD simulations.
It is located between different conformations of the linker DNAs generated by normal mode
analysis (Pachov, Gabdoulline, and Wade 2007, unpublished data).

chromatin compaction leading to topologically differing fibers (Routh, Sandin, and
Rhodes 2008). Recently, it was found that the binding mode of the linker histone
GHS is robust to a wide range of linker DNA conformations (see Figure 6.2) (Pachov,
Gabdoulline, and Wade 2007, unpublished data). This was revealed by all-atom BD
simulations, which also showed two main binding sites on the GHS, in agreement with
experimental data (Brown, Izard, and Misteli 2006). In many biological processes,
like DNA transcription, replication, and repair, the proteins involved must quickly
find their target site. The kinetics of such a process are directly influenced by the
level of DNA exposure and histone tail acetylation on the nucleosome (Kampmann
2005), and these are also topics being studied by computational simulation.

OUTLOOK

We have discussed characterization of the kinetics of biomacromolecular com-
plex formation from a theoretical and computational perspective. New experimen-
tal techniques and methods are being developed to study the interactions between
biomolecules over different time and length scales. However, these techniques are
still insufficient to precisely describe and quantify the detailed dynamics of associ-
ating biomacromolecules. Here, computational approaches can be of value because
they provide a detailed description of the association process. On the other hand,
simulations of macromolecular complexation are computationally demanding
and require the use of approximations such as the neglect of molecular flexibility.
Furthermore, establishing the effects on macromolecular association of the hetero-
geneous and crowded cellular environment is a challenge for both computational
and experimental approaches. Surmounting these hurdles requires the development
of multiple-scale and coarse-grained models with more accurate molecular interac-
tion force fields as well as the development of highly parallelized software and new
computing hardware to permit detailed simulations over many orders of time and
length scales.
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INTRODUCTION

Protein—protein interactions determine the outcome of all cellular processes includ-
ing signal transduction, cell division, DNA replication, transcription and transla-
tion, biosynthesis, and degradation. Hence, modulating protein—protein interactions
is of great interest for both basic science and applied research such as drug design.
Directed evolution and combinatorial screening techniques are powerful and well-
established means of engineering protein complexes with enhanced affinity and
binding specificity. Although very successful in obtaining the end product, these
techniques do not address some basic questions such as what makes a particular pro-
tein a high-affinity binder or how to obtain a protein with slightly different binding
characteristics. Computational approaches to modulating protein—protein interac-
tions are directed toward answering these fundamental questions. These approaches,
in principle, provide a fast and efficient way to supply proteins with desired binding
properties. However, computational techniques require high-resolution structures for
the protein—protein complexes, which are not always available. In addition, they rely
on our still incomplete knowledge of the physical basis for protein binding affinity
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and specificity. Due to these limitations, relatively few successful examples of com-
putationally designed protein—protein interactions have been reported. However,
even when not completely successful, investigations of this type greatly advance
our understanding of the molecular forces that govern protein binding. With the
exponentially growing number of new structures of protein—protein complexes and
a constant progress in method development, computational approaches are evolving
into a generally accepted strategy for modulating protein—protein interactions. This
chapter reviews the methods for design of protein—protein interactions, summarizes
keystone studies in this area, and points out future directions of research.

COMPUTATIONAL METHODS FOR MODULATING
BINDING INTERACTIONS

Two different structure-based strategies have been applied to the redesign of pro-
tein—protein interactions. The first strategy involves optimizing the long-range
electrostatic interactions between the two proteins in the complex by introducing
charge altering mutations on the protein surface frequently outside of the bind-
ing interface. The second strategy, usually referred to as computational protein
design, uses side-chain repacking algorithms to predict mutations that lead to
better packing, hydrogen bonding, and solvation directly at the binding interface.
While the first strategy is rather tolerant to imperfections in structural models
of protein—protein complexes, the second strategy relies on the accurate descrip-
tion of interactions across the binding interface, with even small inaccuracies fre-
quently resulting in erroneous predictions. Although more error prone, the second
strategy would provide us with a more universal approach to design of protein—
protein interactions.

OPTIMIZATION OF LONG-TERM ELECTROSTATIC INTERACTIONS

To enhance association rates of protein complexes, Selzer et al. proposed optimiza-
tion of long-range electrostatic interactions between the two binding partners.! This
approach is based on an observation that the association rate, k,,, is affected mostly
by mutations involving charge alterations, while mutations of uncharged residues
have minor effects on k,,.>~* Optimization of the long-range electrostatic interac-
tions between the two proteins leads to faster formation of an encounter complex that
subsequently relaxes to the final stereospecific complex (Figure 7.1A).° A program
called PARE (Protein Association Rate Enhancement) calculates k,, of binding by
computing the difference in the Debye—Hiickel energy between the two individual
proteins and their complex.! k,, can be increased by introducing mutations that
improve charge complementarity of the binding interface. The described method
does not allow us to make any predictions about the dissociation rate, k,;, and hence
the K,. Nevertheless, by picking the mutation sites wisely, for example, in the vicin-
ity of the binding interface rather than in its center, it has been possible to preserve
the k,; values similar to the wild type.' Hence, in principle, improvement in both k,,
and K, could be achieved using the described strategy.
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FIGURE 7.1 Methods for binding interface redesign. (A) Enhancement of protein associa-
tion rate through improvement of long-range electrostatic interactions. Free energy of pro-
tein—protein interactions for (1) nonoptimized and (2) electrostatically optimized proteins
complexes. A+B represents free proteins, A:B is the encounter complex, and AB is the final
complex. The formation of the encounter complex is the rate-limiting state for association.
The figure is reproduced from Selzer and Schreiber.’ (B) The computational protein design
approach. 1: Protein coordinates are retrieved from the PDB. 2: Sequence positions to be
redesigned are defined. Rotamers (or low-energy side chain conformations) are placed at
each designed position. 3: The pairwise energy function, including rotamer—backbone and
rotamer—rotamer interactions, is calculated. 4: Fast search algorithms are used to search
through the conformational space to find the lowest-energy sequence(s). (C) Illustration of
the negative design concept. The wild-type protein binds to the desired target and to several
alternative targets. The binding free energies of the desired and the alternative complexes are
similar. In procedures not including negative design, the free energy of binding is minimized
for the complex with the desired target. In procedures including negative design, free energy
of binding is minimized for the complex with the desired target and maximized for the com-
plexes with alternative targets.
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© 2009 by Taylor & Francis Group, LLC



132 Computational Protein-Protein Interactions

To improve electrostatic complementarity at protein interfaces, Tidor and col-
leagues proposed a more elaborate strategy based on continuum electrostatics mod-
els.%8 In this strategy, the free energy of binding is evaluated using two opposing
energetic terms: favorable electrostatic interactions between the two proteins in the
complex and the unfavorable desolvation of the charged groups occurring upon com-
plex formation. The optimal ligand charge distribution is calculated to produce the
most favorable balance of these opposing free energy contributions. Mutations are
then introduced on the ligand to best fit this calculated charge distribution.

CoMPUTATIONAL PROTEIN DESIGN

The second strategy that has been used to reengineer protein binding interfaces is
referred to as computational protein design (Figure 7.1B).>!° In this approach, pro-
teins are designed by searching through a vast number of amino acid sequences until
the optimal protein sequence is selected. During the search, the protein backbone
is often kept rigid, while protein side chains are selected from a library of low-
energy side chain conformations called rotamers."! Rotameric sequences are evalu-
ated with a full-atom energy function that contains terms describing van der Waals
interactions, hydrogen bonding, electrostatics, and solvation.!> Various algorithms
have been applied to efficiently search the sequence space and to obtain the lowest-
energy protein sequence(s).!® Several computational protein design packages have
been developed by different groups.'*-'# All of them are based on the same approach
but differ slightly in the implementation of the energy function and in the search
algorithms used for sequence selection. Computational protein design was initially
applied to build structural protein units and predict stabilizing mutations.'*!* More
recently, the effort in the field has shifted toward functional design, where the bio-
logical function of a protein is being modified or completely altered. Several excel-
lent examples of such work include designing proteins with a novel fold,? creating
new enzymes??? and sensor molecules.!?3

Computational design of protein—protein interactions is one of the directions in
the field that presents a particular interest. Ultimately, computational methods should
enable the design of receptors and inhibitors for any protein of interest. Nevertheless,
at this time, such designs present a major challenge due to several shortcomings
in the available computational methods. First, the energy functions used in protein
design packages have been initially developed for stabilization of monomeric pro-
teins and are not optimal for design of protein—protein interfaces. Such energy func-
tions, for example, often fail to capture the importance of residues that form salt
bridges and hydrogen bonds across the binding interface, resulting in substitution
of these residues with hydrophobic amino acids. Second, it remains a challenge to
accurately model conformational changes frequently associated with protein bind-
ing.?* The ability to model such changes, however, becomes essential if novel pro-
tein—protein complexes are to be designed. Third, water molecules that frequently
mediate intermolecular hydrogen bond interactions have been initially ignored by
the protein design programs. Although most of the water molecules do not contrib-
ute significantly to protein—protein binding,? a few highly conserved waters might
be very important for binding and should be retained during the binding interface
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redesign.?¢ In spite of these limitations in the protein design methods, several suc-
cessful examples of redesigning protein—protein interactions have emerged in the
past decade.

AT THE BEGINNING

Initial designs of protein—protein interfaces used a combination of computational
methods and a manual selection of amino acid substitutions. Several studies focused
on design of receptors using coiled coils as a protein scaffold. These small helical
domains are an ideal system for testing the basic principles of protein—protein asso-
ciation due to their simplicity and the wealth of biochemical and structural infor-
mation about them. Among the first engineered receptors was a two-helix hairpin
designed to recognize the calmodulin binding domain of calcineurin (CaN).?” An
idealized three-helix bundle geometry was used to generate a model for the back-
bone conformation of the complex between a helical peptide CaN and a two-helix
receptor. Starting from this backbone structure, the buried receptor residues were
redesigned using a side chain-repacking algorithm.?® The solvent-exposed recep-
tor residues were chosen manually by generating favorable electrostatic interac-
tions between the three helixes. When tested experimentally, the designed receptors
exhibited binding affinities to CaN ranging from 0.2 to 50 uM. Unfortunately, the
receptors were not monomeric in solution as intended, suggesting that modeling of
the alternative folds might be necessary to achieve the correct specificity.

Another study reports the design of a two-helix-bundle mimetic of interleukin-4
(IL-4).2° IL-4 binds to its receptor IL-4Ra with two adjacent antiparallel helixes,
exhibiting an affinity of 1.4 nM. The authors mimicked IL-4 by drafting the residues
most important for the IL-4Ra recognition on a well-studied coiled coil, GCN4.
Molecular dynamics simulations were performed to verify that the designed mol-
ecules could fold prior to binding. The IL-4 mimetics showed K, s ranging from
2 mM to 5 pM, depending on the fraction of the IL-4 binding site incorporated
into the molecules. These earlier studies demonstrate that receptors with micromolar
affinities could be designed from helical bundles and that computational methods
greatly facilitate such designs. Nevertheless, more sophisticated strategies would be
required to generate receptors with alternative geometries, tighter association, and
better binding specificity.

ENHANCING PROTEIN BINDING AFFINITY

Accurately predicting binding affinities of protein—protein complexes remains an
open problem in computational biology. Predicting mutations that enhance binding
is a related and more difficult task. Studies where predictions of affinity-enhancing
mutations were verified experimentally remain rare but invaluable, especially if they
include structural characterization of the redesigned complexes. Both correct and
incorrect predictions of such mutations could serve to improve the existing compu-
tational methods for design of protein—protein interactions. In addition, such stud-
ies facilitate the development of molecules for use in various biotechnological and
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biomedical applications, including high-affinity antibodies, inhibitors of undesired
protein—protein interactions, and sensors for optical imaging.

An approach that enhances association rates and binding affinities through opti-
mization of electrostatic complementarity between the two proteins in the complex
was first applied to increase the association rate between the TEM1 B-lactamase and
its protein inhibitor BLIP (Figure 7.2A).! Electrostatic forces make no contribution
to association of these proteins, indicating that the binding interface is not optimized
electrostatically. To improve the electrostatic complementarity of the BLIP-TEM1
complex, single mutations were introduced on the surface of BLIP. All the predicted
single mutants of BLIP exhibited an increase in association rate for TEMI1, with
the best mutation showing a 20-fold increase. Combining four beneficial mutations
together resulted in a BLIP mutant that showed a 240-fold increase in k,, and a 290-
fold decrease in K ;.

The same approach was used to optimize electrostatic steering between Ras and
its effector, Ral guanine nucleotide dissociation stimulator (RalGDS).3® Analysis of
the charge distribution at the Ras—RalGDS binding interface showed that introduc-
tion of positive charge in two regions of RalGDS would be beneficial for binding.
Single mutations to Lys in these two regions were predicted to increase the associa-
tion rate to Ras by up to 10-fold. An excellent agreement between the computational
predictions and experimental results was demonstrated. Combining the three most
promising mutations in a single RalGDS mutant resulted in a molecule that binds
Ras 14 times faster and 25-fold tighter than wild-type RalGDS.

In attempt to develop higher-affinity antibodies, affinity-enhancing mutations
were predicted on the antibody surface using either electrostatic optimization of
the binding interface or the computational protein design techniques.’-** Variable
success has been achieved in predicting the effect of single mutations on the anti-
body—antigen affinity. Nevertheless, some of the affinity-enhancing mutations were
always correctly identified. Combining several of such mutations in a single design
usually produced an additive effect on binding affinity. Using this strategy, a six-
fold improvement in association rate was achieved for the antibody against vascular
endothelial growth factor (VEGF),?? a ten-fold improvement in affinity was engi-
neered into an anti-epidermal growth factor receptor drug cetuximax,’' and a ten-
fold improvement in affinity was demonstrated in the engineered antibody for the
I-domain of integrin VLA1.33 A substantial 140-fold improvement in binding affinity
was obtained by introducing six mutations into an antilysozyme antibody.* These
studies demonstrate that computational methods are becoming a more accepted
strategy for improving binding properties of therapeutic molecules.

In an interesting study by Song et al., binding affinity was enhanced between an
intercellular adhesion molecule-1 (ICAM-1) and an integrin lymphocyte function-
associated antigen (LFA-1).3* The interaction between ICAM-1 and LFA-1 is critical
to many immunological responses, including those evoked in autoimmune diseases
and in immune rejection of organ transplantation. Hence, design of competitive
antagonists of the [ICAM-1/LFA-1 interaction could have an important therapeutical
application. The authors used four different computational design programs to intro-
duce mutations into ICAM-1. The majority of single ICAM-1 mutants, when tested
in a cell surface binding assay, showed unaltered or increased percent of binding
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FIGURE 7.2 (SEE COLOR INSERT FOLLOWING PAGE 174.) Examples of protein inter-
face design. (A) Design of BLIP mutants with enhanced association rate for TEM1 B-lactamase.
The figure shows wild-type BLIP with the TEM1 binding interface (green) and mutation sites pre-
dicted to increase the association rate. Color coding displays the extent of the predicted association
rate increase: blue, less than 50% increase: yellow, more than 50% increase; red, ten-fold increase.
The figure is reproduced from Selzer et al.' (B) Redesign of calmodulin for improved binding
specificity. Calmodulin is embracing the peptide target with its two globular domains. Twenty-
four calmodulin side chains selected for optimization are shown in red. Peptide side chains that
were allowed to change conformation during the calculation are shown in cyan. Calcium atoms
are shown as yellow spheres. The figure is reproduced from Shifman and Mayo.*’ (C) Design of
the PDZ domains with altered binding properties showing wild-type PDZ domain with its natural
ligand, the KQTSV peptide (red). Residues on the PDZ domain selected for the optimization are
shown in green. The figure is reproduced from Reina et al.#’ (D) Design of peptides that recognize
transmembrane domains of integrins. A backbone geometry for the helix—helix interaction was
selected from two helixes in the photosystem I reaction center. The sequence of the integrin ay,
was threaded into the right helix. Fourteen positions on the second helix were designed (pink). The
figure is reproduced from Yin et al.!
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to LFA-1 compared to wild-type ICAM-1. All the designed ICAM-1 mutants with
multiple amino acid substitutions, however, performed poorly in the cell surface
assay. Combining five beneficial single mutations produced an ICAM1 mutant with
a 20-fold improvement in binding affinity.

In a recent study, Kuhlman et al. proposed a strategy for improving binding affin-
ity by introducing single mutations that substitute polar amino acids at the binding
interface for nonpolar ones and nonpolar amino acids for larger nonpolar amino
acids.® Such mutations are predicted to enhance affinity if the free energy of bind-
ing is calculated to be more favorable than that of the wild-type complex and each
monomer is not significantly destabilized by the mutation. This strategy was tested
on a protein—protein and a protein—peptide complex. Nine out of 12 predicted muta-
tions selected for experimental testing were correctly identified to be beneficial for
binding. Although this method works well in predicting single mutations, it cannot
be generalized for redesign of an entire binding interface. First, because combining
several of such mutations might lead to problems with protein solubility. Second, the
method would automatically eliminate intermolecular hydrogen bonds, which are
important for both binding affinity and specificity.

An interesting strategy was proposed for enhancing affinities of proteins that
undergo substantial conformational changes upon binding to their ligands. For these
proteins, mutations could be computed that stabilize the ligand-bound protein con-
formation over the ligand-free state without directly affecting interactions with the
ligand. This idea was first explored by redesigning the I domain of the hetorodimeric
integrin aMp2.3¢ The computational protein design approach was used to introduce
hydrophobic mutations that stabilize the I domain in the active conformation. All
the mutations were made relatively far from the binding site of the ligand, iC3b.
When expressed on the cell surface as part of the intact heterodimeric receptor, the
designed I domains bound to iC3b 10 times better compared to wild-type (WT).
Furthermore, when expressed in isolation from other integrin domains using an arti-
ficial transmembrane domain, designed I domains were active in ligand binding in
contrary to wild-type I domains. This study establishes a new viable strategy for
increasing protein binding affinity through stabilization of the ligand-bound protein
conformation. The potential of such a strategy has yet to be fully explored.

To summarize, two methods have been applied to enhance binding affinities in
proteins. Optimizing long-range electrostatic interactions between the two binding
partners proved a successful approach for enhancing protein association rate and bind-
ing affinity. Nevertheless, the method cannot be applied to protein—protein complexes
where electrostatic interactions have already been optimized by nature, such as in the
barnase/barstar complex.’” The computational protein design approach was shown
to predict single affinity-enhancing mutations with a relatively high success rate.
Nevertheless, attempts to simultaneously redesign the entire binding interface fre-
quently yielded protein complexes with reduced affinity. This is due to possible error
accumulation associated with prediction of each single mutation. Until more accurate
energy functions for the protein interface design are developed, a winning strategy for
binding affinity enhancement is to experimentally test each predicted mutation and
only then to combine the beneficial mutations into a single design. Alternatively, a
small library of protein sequences could be designed and tested experimentally.3?
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ALTERING PROTEIN BINDING SPECIFICITY

Protein—protein interactions are often determining factors in the outcome of the
complicated signaling pathways. In the cellular environment, a large number of pro-
teins coexist in the same cellular compartment and compete for the available binding
partners. How do proteins select their cognate binding partners over a multitude of
other proteins? Nature solves this problem by supplying each protein with a correct
binding specificity. What determines protein binding specificity at the structural and
amino acid sequence level remains largely unknown. However, recent studies that
report designs of several proteins with altered binding specificity helped to shed
light on the origins of this important property. Manipulating protein binding speci-
ficity becomes especially important in the area of drug design, since an ideal drug
should inhibit the desired pathway without disturbing all other processes in the cell.
Computational protein design methods are a potentially invaluable tool for supplying
therapeutic molecules with high binding specificity.

To improve protein binding specificity, in principle, we should consider several
states: a desired state corresponding to a protein in complex with a target of interest
and alternative states corresponding to a protein in complex with all undesired tar-
gets (Figure 7.1C). Optimization of binding specificity requires designing sequences
with minimum energy in the desired state and maximum energies in the alternative
states. The concept of designing against certain protein conformation is referred
to as negative design. Although the concept is intuitively clear, its implementation
is not so straightforward for several reasons. First, the procedures for using both
positive and negative design require substantially more complicated algorithms and
more computational power compared to procedures that incorporate positive design
only. Second, the alternative states are not always known and the high-resolution
structures for the alternative states are often not available. Hence, some of the pro-
tein design studies utilize a negative design procedure, while other studies choose
to ignore it.

Havranek and Harbury developed an approach that incorporates explicit negative
design in the sequence selection procedure.*® Using genetic algorithms, the proce-
dure selects amino acid sequences with a maximum energy gap between the target
protein conformation and a set of alternative undesired structures. The procedure
was tested by designing two sequences of coiled coils that preferentially associate
into homodimers and do not cross-hybridize with each other. Eight positions (four
on each helix) were simultaneously optimized considering four states: the desired
homodimeric state, and the alternative states of the unfolded, the aggregated, and the
heterodimer. Experimental results on 13 designs show a good correlation between
the predicted and the experimental free energies of the homodimeric and the het-
erodimeric states. Predictions of the protein stability (the energy difference between
the folded and the unfolded states) were generally less accurate and showed high
dependence on the molecular force field used. To demonstrate the necessity of using
the explicit negative design for specificity optimization, the authors performed a
similar calculation without considering the alternative states in the optimization
procedure. The obtained sequences exhibited worse specificity scores than most
of the sequences predicted with the negative design procedure. Unfortunately, no
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experimental results were obtained to verify the predictions. Even if the negative
design procedure might not be necessary or applicable to all design problems, the
presented algorithm remains an important keystone in the field of protein design.

Shifman and Mayo were the first to increase binding specificity of calmodu-
lin (CaM), a small a-helical protein that in nature regulates hundreds of targets in
response to changes in Ca?* concentration (Figure 7.2B).*° A number of structures
for the CaM-target complexes reveal that CaM binds to ~25 amino acid helical seg-
ments by embracing them with two globular domains. Rotation of the CaM globular
domains with respect to each other allows CaM to generate slightly different binding
surfaces for each target, resulting in low CaM binding specificity. The goal was to
increase CaM binding specificity toward a single CaM target, smooth muscle myosin
light chain kinase (smMLCK). Starting from the structure of the CaM-smMLCK
complex, the 24 fully buried positions on CaM were optimized for better interactions
with the selected target. The resulting eightfold CaM mutant retained the wild-type
affinity to the desired target and exhibited reduced affinity to six alternative CaM
targets, showing up to 120-fold increase in binding specificity.*’ In the second gen-
eration design, the number of the CaM residues that were optimized was increased,
including the surface accessible interfacial positions.*' Several slightly different opti-
mization procedures yielded six CaM mutants, of which several lost some binding
affinity to smMLCK. The best CaM mutant, with 13 binding interface mutations,
retained the wild-type binding affinity to smMLCK and exhibited up to 155-fold
increase in binding specificity. In our recent work, we optimized CaM for inter-
actions with another target, Ca**/CaM-dependent protein kinase II (CaMKII) and
tested the binding of the designed CaMs to two targets, the desired target CaMKII
and the alternative target calcineurin (CaN).*> Our CaM variants exhibited a two- to
fourfold improvement in binding to CaMKII and substantial decrease in binding
to CaN, demonstrating up to 900-fold increase in binding specificity. In all these
works, no explicit negative design was incorporated in the sequence selection proce-
dure. However, both the calculated and the experimental free energies of binding for
the designed CaM sequences in the alternative states were higher than those of the
wild-type CaM sequence. These results show that incorporating the negative design
procedure is not necessary to achieve the correct binding specificity in at least some
protein—protein complexes.

Extending our work on CaM, two groups introduced complementary mutations to
both CaM and its peptide target to create binding interfaces with specificity orthog-
onal to wild type.##* These CaM—peptide complexes could be used to construct
calcium indicators for optical imaging. The native CaM—peptide complexes, pre-
viously used for design of such indicators, suffer from susceptibility to unwanted
interactions with multiple calmodulin targets in the cell. The indicators made from
the redesigned CaM—peptide pairs, with orthogonal to wild-type specificity, do not
display this unwanted quality.

To design binding interfaces with novel specificities, Kortemme et al. developed
a computational second-site suppressor strategy.* In this strategy, mutations disrup-
tive for the interface are first introduced into one partner and are then compensated
by mutations in the second interaction partner. The designed molecules associate
tightly with each other but show reduced affinity to the original interaction partner.
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This method was first tested by redesigning the binding interface of the colicin E7
DNase-Im7 immunity protein complex (E7-Im7).* Different colicins interact with
their cognate immunity proteins exhibiting high affinity and very high specificity
(107-103-fold affinity differences between the cognate and noncognate pairs). Such
binding properties are important since colicins are cytotoxic in the absence of their
cognate immunity proteins; the toxicity is inhibited upon colicin—-immunity protein
interaction. To design a novel colicin—-immunity protein complex, three interface
perturbing mutations were introduced on colicin E7 and nine positions on the cog-
nate immunity protein Im7 were subsequently redesigned. Four predicted sequences
of the designed protein pairs were tested experimentally. The two mutant pairs that
contain eight and nine mutations at the binding interface showed subnanomolar to
lower nanomolar binding affinity for each other. At the same time, the affinity of
the noncognate complexes (one designed and one wild-type molecule) was about 30
times lower. High binding specificity of the designed pairs was confirmed by per-
forming functional essays both in vitro and in vivo. The crystal structure for one of
the redesigned complexes was solved and showed a good agreement between the pre-
dicted and the actual side chain conformations of the mutated residues. This study is
the first successful attempt to supply a protein—protein complex with an orthogonal
binding specificity. Nevertheless, the redesigned E7-Im7 complexes exhibited sub-
stantially lower affinities and binding specificities compared to those of the native
colicin—-immunity protein pairs.

To further improve the specificity of the E7-Im7 complexes, the authors focused
on differences in binding orientation exhibited by various native colicin-immunity
complexes.? In the design procedure, alternative backbone conformations of the two
interacting proteins were created by systematically sampling rigid-body rotations of
one of the proteins. These backbone conformations were subsequently used to per-
form the binding interface redesign. Two computational protocols were tested: the
second site suppressor protocol described earlier and the affinity protocol that does
not incorporate any negative design element. After initial screening of 11 designed
pairs, 3 were further pursued. The best design, produced by the affinity protocol,
incorporated a new hydrogen bond network across the binding interface. Crystal
structure of the designed complex was solved and confirmed most of the predicted
intermolecular interactions. The small differences between the predictions and the
reality were due to a tightly bound water molecule that was not considered in the
design procedure. Using the newly obtained crystal structure and retaining the tightly
bound water, the authors reoptimized the binding interface focusing on the residues
surrounding the hydrogen bond network. The resulting designs exhibited a 300-fold
difference in binding affinity between the cognate and the noncognate pairs. This
study demonstrates the power of iterative approach, where an initial interface design
is followed by its biochemical and structural characterization and by another round
of redesign. This work also supports the hypothesis that negative design is not always
required to obtain protein complexes with the desired binding specificity.

Computational approaches could be used to break the symmetry at dimeric inter-
faces. This was done by Bolon et al., who redesigned the natively homodimeric SspB
adaptor protein into a heterodimer.*® Using a computational protein design approach,
the authors optimized eight positions on the dimeric interface (four positions on
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each monomer) employing two different strategies. One strategy sought to enhance
specificity using both positive and negative design, while the second strategy opti-
mized only the stability of the target conformation ignoring the negative design.
SspB mutants designed solely with the positive design procedure assembled into het-
erodimers; however, they also formed equally stable homodimers. In contrast, SspB
mutants designed considering explicit negative design assembled most exclusively
into heterodimers, but were less stable than the molecules designed for stability
only. This work suggests that in the design of protein—protein complexes, a trade-off
between affinity and specificity might be always observed. In addition, it presents an
example of a protein—protein system where the desired and the alternative states are
substantially similar. Hence, the explicit use of the negative design is necessary to
prevent the undesired protein assemblies.

Reina et al. redesigned the PDZ domain for binding to new targets (Figure 7.2C).
In nature, this small globular domain serves to recognize unstructured C-terminal
sequences of many proteins.*’ Starting from the structure of the PDZ domain bound
to one of such sequences, the authors redesigned this protein to recognize three tar-
gets: the C-terminus of a kinesin-like molecule and two sequences containing either
hydrophobic or polar substitutions at two positions of the original peptide. Two of the
redesigned PDZ domains were shown to bind to their desired targets with K, values
similar to that of the original PDZ—peptide complex, while the third PDZ domain
exhibited two orders of magnitude lower (better) K, compared to the wild type. The
best PDZ domain mutant was demonstrated to specifically recognize its target pep-
tide in a yeast two-hybrid assay, demonstrating that such molecules could be used in
various biotechnological applications such as affinity chromatography and western
blotting. The ability to not only alter the binding specificity but to also substantially
increase the affinity of the redesigned binding partners distinguishes this study from
similar efforts in protein design.

Redesign of binding interfaces could be used to generate chimeric proteins
with dual functionalities. Chevalier et al. applied the computational protein design
approach to engineer a protein that binds to a chimeric DNA target site.*® To fuse the
two domains of distantly related homing endonucleases, the N-terminal domain of an
endonuclease I-Dmol was substituted for a single subunit of the homodimeric endo-
nuclease I-Crel producing an initial model for the chimeric endonuclease E-Drel. The
helix—helix interface between the two halves of E-Drel was subsequently optimized
using the standard protein design procedure. The best E-Drel candidate sequences
containing eight to twelve mutations were generated and screened in vivo to ensure
proper folding and solubility. Biochemical characterization of several soluble E-Drel
variants revealed that they were able to bind to and cleave a 23-bp chimeric DNA tar-
get site with high specificity and wild-type kinetics. This study shows the promise of
the computational protein design approach in creating proteins with novel functions.

In summary, great success has been demonstrated in redesigning protein-binding
specificity using computational protein design. Protein complexes with increased or
altered binding specificity can now be designed. It remains unclear if incorporation
of negative design in the sequence selection procedure is always beneficial. While
some studies demonstrate the great utility of negative design, others show that stabi-
lization of the desired state automatically results in destabilization of the alternative
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states. The utility of negative design highly depends on the protein system, on the
similarity of the desired and the alternative states, and the number of protein posi-
tions being optimized.

DE NOVO DESIGN OF PROTEIN-PROTEIN COMPLEXES

The redesign of the existing protein complexes has seen a considerable success in the
past decade. Nevertheless, it remains a major challenge to computationally design
protein complexes that do not exist in nature. The main difficulty comes from our
inability to generate a realistic model for the backbone structure of the two proteins
in the novel protein—protein complex. Conventional docking algorithms cannot be
applied to create such a model since the sequence of the protein—protein interface
is not known a priori but is subject to subsequent design. To overcome this prob-
lem, Huang et al. developed a strategy to dock the two protein structures with an
unknown binding interface sequence.* For this purpose, they used a reduced amino
acid side-chain representation at the protein interface with side chains artificially
restricted to C; atoms. By systematically translating and rotating one protein with
respect to another and evaluating the binding interface complementarity, the best
conformation of the two protein backbones is determined. Starting from this con-
formation, the amino acid sequence for the novel protein—protein interface is then
selected. This approach was applied to design a heterodimer of the GB1 domain of
the protein G, a protein that is monomeric in nature.”® Using a helix-to-helix binding
arrangement for the model of the dimeric complex, a total of 24 positions on the two
monomers were simultaneously redesigned to produce 12-fold and 8-fold mutants of
GBI. A binding affinity of 300 uM was experimentally measured for the designed
complex. Such weak binding affinity could be partially explained by the low stability
of one of the monomers. In spite of the modest experimental success, the described
method for design of novel protein complexes is definitely promising and should be
tested in other protein systems.

Until recently, all designs of protein—protein interfaces focused on water-solu-
ble proteins. In a recent exciting work, Yin et al. report a method for modulating
protein—protein interactions inside membranes.’! The authors designed helical
peptides to bind to transmembrane regions of two closely related integrins (a5
and o,p;; Figure 7.2D). The starting backbone geometry for this helix—helix
complex was generated by searching through the database of membrane—protein
structures and selecting helix—helix orientations exhibited by similar sequence
motifs. The sequence of the target integrin transmembrane domain was threaded
onto one helix, while the second helix was designed using the computational
protein design approach. The energy function for this design included a van der
Waals term and a membrane depth-dependent, knowledge-based potential.>> The
resulting peptides were demonstrated to bind specifically to the desired integ-
rin in micelles and in bacterial membranes. In addition, the peptides interacted
with the transmembrane integrin domains in mammalian cells, where they were
shown to inhibit integrin heterodimer formation, stimulating integrin activation.
The reported methodology provides a general way to design binding partners
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to membrane proteins and to probe the functional consequences of blocking pro-
tein—protein interactions in membranes.

CONCLUSIONS AND FUTURE DIRECTIONS

In the last decade, great progress has been achieved in computational design of pro-
tein—protein interactions. Many studies have demonstrated that binding affinity and
specificity could be improved or altered in a predictive way. In a few studies, the
desired binding properties of the computationally designed proteins have been also
verified in the cellular environment. Crystal structures of some of the complexes
have been solved and proved extremely valuable in pointing out the strengths and the
weaknesses of the computational methods for protein interface design.

The future challenge lies in designing high-affinity complexes from proteins that
show no considerable binding in nature. These include novel receptors for a protein
of interest or novel binders and inhibitors of the existing protein—protein interac-
tions. To enable such designs, several shortcomings in the existing computational
procedures should be addressed. The computational methods still frequently fail
to correctly predict the effect of various mutations on the free energy of binding.
To overcome this problem, the energy functions for protein design should be fine-
tuned to capture the delicate balance between the favorable electrostatic interactions
and the unfavorable desolvation of the polar groups at protein binding interfaces.
In addition, a more accurate yet easily computable description of electrostatic and
hydrogen bond interactions is needed to model energetics and specificity at protein—
protein interfaces. Progress in this direction has been recently reported.>*->> Explicit
modeling of water molecules at binding interfaces might also help to achieve better
designs. A solvated rotamer approach, developed for this purpose, allows introduc-
tion of water-mediated contacts across the binding interface.’® Experimental valida-
tion of such newly designed contacts is still to come.

Finally, the progress in design of new protein binders is highly dependent on our
ability to generate backbone structures for the novel protein complexes. Here, we are
faced with two major questions: what protein scaffold to pick for design of a novel
binding molecule and how to dock this molecule into the selected binding site. The
answer to the first question largely depends on the protein complex to be designed.
Frequently, the scaffold for the new binding partner could be inferred from a homol-
ogous protein that already binds to the protein of interest. Alternatively, it could
be taken from an unrelated protein with some structural similarity in the region of
the binding interface. Once the scaffold is selected, it remains a major challenge
to create a good model for the backbone structure of a novel protein—protein com-
plex since the sequence of the binding interface is unknown prior to design. Each
backbone conformation would result in a distinct set of the low-energy solutions
for the binding interface. It is not known a priori, which backbone would produce
the lowest-energy sequence. Introducing backbone flexibility, including flexibility
of each single molecule as well as flexibility in relative orientation between the two
molecules in the complex, becomes extremely important for design of novel binding
interfaces. It has been recently shown that exploring several alternative backbone
structures during a helical ligand design leads to a larger and a more diverse set of
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low-energy solutions than can be achieved using the native backbone as a template.’
Hence, a winning strategy for design of novel protein—protein complexes might be
to select a number of backbone structures and to perform the design on each of the
structures, selecting the lowest-energy sequences only at the end. Alternatively, a
single amino acid sequence could be designed to be compatible with an ensemble
of different backbone conformations. These and other ideas should be explored and
experimentally tested in the next few years. In spite of the described challenges,
with a growing number of research groups working in the field and with constant
improvement in methodology, I envision the universal use of computational methods
for modulating protein—protein interactions in the near future.
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INTRODUCTION

Biological and biochemical processes rely on networks of molecular interactions.
A crucial component of these networks includes proteins, which recognize and
associate with one another to perform roles such as cell cycle regulation, signal
transduction, and antigen recognition in living organisms. Several systematic
experimental techniques, namely, yeast two-hybrid (Fields and Song 1989; Bartel
and Fields 1995), mass spectrometry (Gavin, Bosche, et al. 2002; Ho, Gruhler, et
al. 2002), protein chips (Zhu, Bilgin, et al. 2001), and phage display (Mullaney
and Pallavicini 2001), investigate protein—protein interactions on a genomic scale.
These high throughput techniques are rapidly accumulating information on pro-
tein—protein interaction.
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Complementary to the information gained by these techniques, it is of interest
to know how proteins are interacting at the atomic level, by determining or predict-
ing the three-dimensional (3D) structures of the protein complexes of interest. Such
structures help further our understanding of important residues guiding the protein
interaction and provide deeper insight into the protein—protein interaction network.
Additionally, the structure of a protein complex can be used in structure-based drug
design of inhibitor molecules or design of proteins for improved binding affinities or
altered specificities.

Without the high-resolution structure of a protein complex, one can perform
protein—protein docking, which is an in silico method to predict a protein com-
plex structure, given individual protein structures as input. The input structures are
generally obtained from x-ray diffraction, nuclear magnetic resonance (NMR), or
homology modeling. One may also perform DNA—protein docking (Liu, Guo, et al.
2008; van Dijk and Bonvin 2008), RNA—protein docking (Jonker, Ilin, et al. 2007),
RNA-small ligand docking (Guilbert and James 2008), and protein—small ligand
docking (Chen and Zhi 2001). This chapter will address fundamental components
of computational protein—protein docking methods, with specific examples based on
the ZDOCK suite of algorithms developed in our lab.

PrROTEIN—PROTEIN DOCKING

Docking programs often take input files in the Protein Data Bank (PDB) macromo-
lecular structure format (Berman, Westbrook, et al. 2000), which contain Cartesian
(X, ¥, z) coordinates of atom positions in angstroms. X-ray crystallography usually
provides a single protein structure, whereas the NMR method provides multiple
copies of a protein in different conformations. Thus, to use protein structures from
NMR for docking, users need to select a representative structure among the multiple
conformations. Although it is recommended to use x-ray crystal structures with reso-
lution better than (i.e., less than) 2.5 A for docking, it has been shown that protein
docking simulation results are not severely affected by the protein structures with
resolutions as low as 3.25 A (Chen, Mintseris, et al. 2003).

Protein—protein docking can be subdivided into two categories, bound docking
and unbound docking, based on the source of the target proteins to be docked.
Bound docking takes the experimentally determined structure of the complex, sep-
arates the component proteins, and attempts to reproduce the complex structure.
Unbound docking takes as input individually determined protein structures. As the
complex structure is already known (by definition) prior to bound docking, bound
docking is primarily a way to assess a docking algorithm and is of little predictive
use. In terms of difficulty level, unbound docking is much more difficult, since
unbound docking must model protein side chain and backbone movements that
occur upon binding.
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EVALUATION OF DOCKING PERFORMANCE AND
AccURACY OF PrepICTED PROTEIN COMPLEX
Quantitative measurement is required to evaluate the accuracy of predicted protein

complex models by a docking algorithm. The most common measure is the root
mean square deviation (RMSD):

RMSD = \/;Z{[x,,(i)— 5, OF +17,()= 3, OF +[2,()— 2,0 |

i=1

where N is the total number of atoms, and (x, y, z) are the Cartesian coordinates
of atoms in predicted (p) and native (1) protein complexes. The predicted complex
and the native complex have to be structurally aligned to minimize the RMSD.
Depending upon the focus, RMSD can be calculated using all atoms in the complex
or only atoms in the binding interface from both receptor and ligand, or atoms only
from the ligand. One can choose to use all atoms, only backbone atoms, or only Ca
atoms, with minor impact on the resulting RMSD values.

The Critical Assessment of PRedicted Interactions (CAPRI; Janin, Henrick, et al.
2003) is a community-wide blind test of docking algorithms, where an unreleased
structure of a protein complex is predicted by various participant groups. In CAPRI,
the predictions are evaluated by the fraction of native contacts (fnat) and the fraction
of nonnative contacts (fnon-nat) along with interface RMSD (iRMSD) and ligand
RMSD (IRMSD). All submitted predictions are grouped into four classes: incorrect,
acceptable, medium, and high, based on a Boolean expression that contains the four
metrics (Mendez, Leplae, et al. 2003).

CURRENT APPROACHES FOR UNBOUND RIGID-BODY DOCKING

Proteins often undergo conformational changes upon interaction with other mol-
ecules, including other proteins, DNA, RNA, or small ligands. The conformational
changes mostly occur on surface atoms, yet this conformational variability between
unbound and bound forms must be accounted for in a successful protein—protein
docking algorithm. Explicitly searching the backbone and side chain degrees of free-
dom, even if restricted to surface residues, is too computationally intensive and can
yield false positives if not performed correctly.

Alternatively, rigid-body docking approaches keep the protein conformation
fixed during the docking process and allow small clashes between the two proteins.
This allowance of small clashes provides implicit modeling of the generally small
side chain and backbone movements that take place to accommodate the proteins
as they form a complex. Rigid-body docking (or “initial stage” docking) is typi-
cally followed by a refinement stage, which takes the top models from the initial
stage and optimizes side-chain and backbone conformation, without large-scale
movements of the predicted complex (Chen, Li, et al. 2003; Li, Chen, et al. 2003;
Figure 8.1).
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Protein-Protein Docking

Receptor

Initial-Stage Docking:
Surface search with
scoring function

Refinement-Stage:
Energy minimization
with clash removal

FIGURE 8.1 Two-stage approach to protein—protein docking.
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There are two components to any rigid-body docking approach: searching the
possible protein orientations in the 6D space (3 translational and 3 rotational degrees
of freedom) and scoring the search results so that nativelike complex predictions can
be discriminated from nonnative complex predictions.

SEARCHING THE SPACE OF PossIBLE COMPLEX STRUCTURES

A variety of different methods have been used to successfully search the possible
binding interfaces between two proteins in docking algorithms. Monte Carlo meth-
ods (Gray, Moughon, et al. 2003; Zacharias 2003) utilize random sampling in the 6D
space to create candidate orientations. Geometric hashing has been used for protein
docking (Fischer, Lin, et al. 1995), in addition to alignment and functional motif
detection of biological molecules (Nussinov and Wolfson 1991; Rosen, Lin, et al.
1998). The algorithm indexes protein surfaces with their unique characteristics in
various reference states in a hash table that is used to calculate a correlation between
two proteins.

Another search strategy, the fast Fourier transform (FFT), has been one of the
more popular approaches in rigid-body protein—protein docking (Vakser 1995;
Gabb, Jackson, et al. 1997; Chen, Li, et al. 2003; Kozakov, Brenke, et al. 2006) since
its first application for this purpose (Katchalski-Katzir, Shariv, et al. 1992). In FFT
docking, the two input proteins (referred to as receptor and ligand) are discretized
onto individual 3D grids, resulting in 3D functions of R(X, y, z) for receptor and L(x,
y, z) for ligand. Because the FFT algorithm does not speed up the rotational space, it
must be sampled explicitly and the ligand is rediscretized after each rotation. In the
case of ZDOCK (Chen, Li, et al. 2003), a Euler angle set with sampling spacing of
15° or 6° is used to perform rotation search.

For each rotational conformation of the ligand, the best translation is found using
correlation between the receptor and ligand grids. The score of a particular ligand
translation of (i, j, k) is obtained by adding the product of overlapping grid points
from receptor and ligand:

S(z',j,/e)zZL(x+z',y+j,z+/e)xR(x,y,z)

PN

The score is calculated for all possible combinations of (i, j, k) for the global trans-
lational search and this step has a computational cost that scales with N6 (O(N6)),
where N is the number of grid points in each dimension. Alternatively, this can
be performed in one step using the discrete Fourier transform (DFT) and inverse
Fourier transform (IFT) of the discretized proteins:

sG, j,/e)z%]FT[]FT(L)xDFT(R)]
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FFT is an efficient way to compute DFT and IFT with computational cost of
O(log(N3)). As a result, FFT reduces the total computational cost from O(N6) to
O(N3log(N3)). It should also be noted that the FFT has also been used to dock spher-
ical harmonic representations of the receptor and ligand (Ritchie and Kemp 2000),
as opposed to 3D Cartesian grids.

ScorING FuNcTION

With an effective search strategy in place, it is also crucial to have an accurate and
fast method to compute scoring function for ranking docking predictions. The most
frequently used term in docking scoring functions is shape complementarity. As
proteins undergo relatively small conformational changes during complexation, the
binding sites can be identified by the complementarity of the protein surfaces at the
interface. Two other terms that are often used in docking scoring functions are elec-
trostatics and desolvation.

Shape Complementarity

From the earliest computational protein docking efforts in the late 1970s (Greer and
Bush 1978; Wodak and Janin 1978), shape complementarity (SC) has successfully
been used to score docking predictions. This optimization of fit between surfaces is
based, at the atomic level, on the physical van der Waals (vdW) potential. It was men-
tioned earlier in this chapter that softening protein surface is essential for unbound
rigid-body docking to allow marginal clashes between target proteins and it is the SC
term that can contribute to the softening of the protein surface. The vdW is distance
dependent and is composed of two terms: repulsive force for short distances and
attractive force for long distances. vdW potentials are often approximated with the
Lennard-Jones 6-12 potential:

A B
V=

12 6
r r

where the 7'? term represents short-distance repulsive energy and the r° term rep-
resents attractive energy. The parameters A and B are dependent on the particular
atoms being considered, and the minimum of this potential occurs at the sum of the
vdW radii of the two atoms.

In FFT docking algorithms, SC is often implemented in two ways: grid-based
shape complementarity (GSC) and pairwise shape complementarity (PSC). GSC was
the first to be developed and was used in some docking algorithms (Gabb, Jackson, et
al. 1997), but later it was shown that PSC performs better than GSC (Chen and Weng
2003) and PSC was implemented in the ZDOCK docking algorithm (Chen, Li, et al.
2003). The difference between GSC and PSC is that PSC computes the total num-
ber of receptor-ligand atom pairs within a distance cutoff, minus a clash penalty,
whereas GSC computes the number of grid points on the molecular surfaces that
overlap, minus clash penalty for core points that overlap (Chen and Weng 2003).
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Electrostatics

In addition to shape complementarity, electrostatics is a crucial component of
the energetics of many protein—protein interactions. Electrostatic energy can
be computed by solving the Poisson—Boltzmann equation (Honig and Nicholls
1995); however, for computing efficiency it is often approximated using the
Coulombic equation.

Programs that use electrostatics include DOT (Mandell, Roberts, et al. 2001),
MolFit (Heifetz, Katchalski-Katzir, et al. 2002), and ZDOCK (Chen, Li, et al. 2003).
One study used electrostatics to generate molecular trajectories to perform docking
simulations with some success (Fitzjohn and Bates 2003).

Desolvation Energy

In solution, proteins are surrounded by water molecules, and in order for a protein
to interact with other proteins, the water molecules around the interaction interface
must rearrange. Desolvation is an energetic (largely entropic) term that considers such
changes (breaking water—protein bonds to form protein—protein and water—water
bonds) and is often referred to as the hydrophobic effect (Chothia and Janin 1975).

Atomic level representations of contact propensities are valuable sources of infor-
mation in protein—protein docking. Statistical potentials, which are also known as
knowledge-based potentials, have been used in computational protein structure pre-
diction for many years. These potentials are a measure of significance of occurrence
for an observed contact between a pair of atoms (or residues) versus a reference
state. One example is atom contact energy (ACE; Zhang, Vasmatzis, et al. 1997),
which was derived from propensities of atoms within 6 A, as seen in monomeric
crystal structures. Other statistical potentials have more advanced functions, such as
distance-scaled, finite, ideal gas reference (DFIRE; Zhou and Zhou 2002); this func-
tion has proven effective in protein—protein docking and folding.

We recently developed a pair potential IFACE (Interface Atomic Contact Energies),
specifically geared toward detecting protein—protein interfaces (Mintseris, Pierce, et
al. 2007). IFACE distinguishes itself from other pair potentials in that it optimizes
atom types in a principled way. For a total of M atom types, a Monte Carlo simulation is
performed to divide all 167 nonhydrogen amino acid atoms into M types. A simulated
annealing procedure was used to ensure that the mutual information was maximized
for the set of atom types (Mintseris and Weng 2004). The resultant atom types were
then assigned pairwise IFACE energies based on the observed atom contacts within a
nonredundant data set of 150 transient protein—protein complexes. The energy terms
are computed as a log ratio of the actual numbers of contacts and numbers of contacts
in a reference state. This reference state is a novel aspect of our approach; it captures all
possible contacts between the surface atoms of the interacting proteins.

PROTEIN-PROTEIN DOCKING BENCHMARK

A protein—protein docking benchmark is a curated set of protein structures for evalu-
ating the performance of docking algorithms (Chen, Mintseris, et al. 2003). Each
test case includes a pair of unbound proteins, whose structures are available both
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in complex and in unbound forms. The benchmark is a nonredundant data set in
terms of complexes, as classified by SCOP (Structural Classification of Proteins;
Murzin, Brenner, et al. 1995). Since the benchmark was first released in 2003 (Chen,
Mintseris, et al. 2003), two updates were made, in 2005 (Mintseris, Wiehe, et al.
2005) and 2008 (Hwang, Pierce, et al. 2008).

Benchmark version 3.0, the most recent version, is composed of 124 test cases
(Hwang, Pierce, et al. 2008). They are classified based on two different schemes:
docking difficulty and biological function. For docking difficulty, three levels are
considered: 88 rigid-body cases, 19 medium cases, and 17 difficult cases, largely
determined by the extent of interface conformational changes upon complex forma-
tion. For the biological classification, three categories include 34 enzyme—inhibitor
cases, 25 antigen—antibody cases, and 65 other cases.

ZDOCK, RDOCK, AND ZRANK

ZDOCK (Chen, Li, et al. 2003) is an FFT-based initial stage rigid-body docking
algorithm with an optimized scoring function. To overcome the limitation of treat-
ing unbound proteins as rigid bodies, ZDOCK softens the protein surfaces with a
scoring function that allows light overlaps between two protein interfaces to take
into account possible conformational changes. Throughout its different versions,
the scoring function in ZDOCK has contained various combinations of three major
terms—shape complementarity, electrostatics, and desolvation:

ZDOCK 1.3 (Chen and Weng 2002): Grid-Based Shape Complementarity
(GSC) + Electrostatics + Desolvation

ZDOCK 2.1 (Chen and Weng 2003): Pairwise Shape Complementarity (PSC)

ZDOCK 2.3 (Chen, Li, et al. 2003): Pairwise Shape Complementarity (PSC) +
Electrostatics + Desolvation

ZDOCK 3.0 (Mintseris, Pierce, et al. 2007) : Pairwise Shape Complementarity
(PSC) + Electrostatics + IFACE

One notable advance in the most recent ZDOCK version 3.0 scoring function
is the incorporation of the pairwise statistical potential IFACE (Mintseris, Pierce,
et al. 2007), which contains 12 atom types. This potential was developed using the
atomic propensities across transient protein—protein interfaces and replaces the ACE
(Zhang, Vasmatzis, et al. 1997) term in the previous version of ZDOCK, which has
18 atom types. Inclusion of IFACE in ZDOCK 3.0 results in significant improvement
in docking success across a docking benchmark (Mintseris, Pierce, et al. 2007).

Once ZDOCK has produced docking predictions, which are either 3,600 or
54,000 depending on the angular sampling density selected (15° or 6°), the predic-
tions are then processed in the refinement stage, which resolves clashes by optimiz-
ing side-chain conformations and backbone conformations with RDOCK (Li, Chen,
et al. 2003). After the refinement, the docking results are rescored to improve the
ranking of the near-native predictions.

RDOCK is composed of two parts: energy minimization of docking predictions from
ZDOCK with CHARMM (Brooks, Bruccoleri, et al. 1983) and reranking the optimized
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predictions with its own scoring function. The scoring function for RDOCK reranking
is composed of desolvation energy and electrostatics within interface atom pairs:

AGyiging = AGycp + BXAE,,,
where f is a scaling factor (set to 0.9 as default in RDOCK).

While RDOCK is being used for energy minimization and reranking the min-
imized predictions, it takes approximately one minute to minimize one test case
and this leads to an inevitable limitation for RDOCK. It was recommended to use
RDOCK for 1000-2000 predictions out of 54,000 from ZDOCK (Li, Chen, et al.
2003), which could result in losing near-native predictions that were ranked above
2000 by ZDOCK. To overcome this limitation, ZRANK (Pierce and Weng 2007)
was developed.

ZRANK is a reranking method that can process 54,000 ZDOCK predictions effi-
ciently and accurately, scoring roughly 180 predictions per minute on a single Intel
Pentium III 2.0 GHz machine. The scoring function of ZRANK is a linear weighted
sum of van der Waals attractive and repulsive energies, electrostatics short-range and
long-range attractive and repulsive energies, and desolvation:

SCOre = WvdW_aEvdW_a + WvdW_rEvdW_r + W E

elec_sra™~elec_sra

+ WeIeL;sr;Eelecfsrr-i_ WeleCJraEelecha-l_ WeleL‘JrrEeleCJrr-l_ stEds
The weights in the ZRANK scoring function (denoted by W in the equation)
were determined using a downhill simplex minimization algorithm (Press 2002) to
optimally rank ZDOCK 2.3 predictions for a set of Protein Docking Benchmark 1.0
benchmark cases. The weights that were obtained are (Pierce and Weng 2007):

van der Waals attractive: 1.0

van der Waals repulsive: 0.009
Electrostatics short-range attractive: 0.31
Electrostatics short-range repulsive: 0.34
Electrostatics long-range attractive: 0.44
Electrostatics long-range repulsive: 0.50
Desolvation: 1.02

Utilizing this weighted scoring function to rescore ZDOCK predictions led to
significant improvements in docking success rates when tested using Benchmark
2.0 cases (the cases in the training set were excluded in this evaluation). Because
no structural minimization of the predictions was necessary prior to scoring with
ZRANK, this indicates that near-native predictions from rigid-body docking possess
adequate structural and energetic information to be discriminated from incorrect
predictions in many cases.

Following the development of ZRANK, the question of whether this function
could be used for refined cases was addressed. After using the docking program
RosettaDock (Gray, Moughon, et al. 2003) to refine the structural models from
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ZDOCK, using the ZRANK program to rescore these refined models resulted
in improved success for Benchmark 2.0 cases (Pierce and Weng 2008). The suc-
cess rate improved further when reoptimizing the ZRANK weights specifically to
rescore refined models and incorporating the IFACE potential as another term in the
ZRANK function. In addition to the docking benchmark, ZRANK has been suc-
cessfully used to score docking models in the CAPRI docking experiment (Wiehe,
Pierce, et al. 2007).

In addition to rescoring and refinement, filtering false positive predictions from a
set of docking predictions is often an important step in protein complex prediction.
For instance, mutagenesis data on a complex may be available to help remove predic-
tions without specified residues in the interface. There are also general properties of
proteins that can be used to filter predictions, such as removing predictions of anti-
gens bound to non-CDR portions of antibodies (Chen, Li, et al. 2003).

Clustering is another method to guide analysis of protein docking predictions.
This is based on the concept of a low-energy funnel in the vicinity of the binding
site between two proteins, thus the abundance of structurally similar low-energy
docking models may indicate a binding site (Zhang, Chen, et al. 1999). This has
been implemented, for instance, in the clustering server ClusPro (Comeau, Gatchell,
et al. 2004). Usually, iRMSD or IRMSD between docking predictions is used as a
metric for clustering predictions within a given radius cutoff, for example, 8 A. Two
possible uses for clustering docking results are: (1) clustering docking predictions
with a metric and cutoff so that the average binding energy can be calculated for
cluster comparison and (2) selecting cluster representative structures efficiently to
assess redundancy within a cluster (Tong and Weng 2004). While not strictly related
to locating energy funnels, eliminating structure redundancy can be useful when
comparing many different protein—protein docking predictions at once.

RMSD AND PERFORMANCE EVALUATION

We typically use interface Ca atoms for iRMSD calculation between predicted com-
plexes and native complexes to evaluate predicted structures from ZDOCK. Interface
Ca atoms are defined as the Ca atoms of residues that have any atom within 10 A of
the binding partner protein in the complex. iRMSD of 2.5 A is used as a cutoff to
determine a near-native prediction (hit).

We use two ways to measure performance of docking algorithms: success rate
and average hit count. Success rate measures the percent of test cases that have a hit
in the given top N predictions, and average hit count divides the total number of hits
for all test cases in the given top N predictions by the number of test cases.

ZDOCK/ZRANK PERFORMANCE ON BENCHMARK 3.0

We tested the performance of ZDOCK 3.0 and ZRANK along with other ZDOCK
versions on a Benchmark 3.0 data set. During the construction of the benchmark, the
unbound structures were superposed onto bound complexes. Hence, prior to docking,
unbound ligands and receptors were randomly rotated to avoid biased docking results
due to specifically sampling a near-native configuration (the starting configuration).
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FIGURE 8.2 Average hit count comparison between different ZDOCK versions and
ZRANK with two rotational sampling spacings: fine grain (FG; 6°) and coarse grain (C-G;
15°).

The average hit count for Benchmark 3.0 in Figure 8.2 shows the performance of
ZDOCK 3.0 at 6° (FG or fine grain) rotational sampling density to produce the larg-
est number of near-native predictions within the top 1000 predictions. The other ver-
sions of ZDOCK at FG sampling and ZRANK have substantially more hits compared
with the 15° (CG or coarse grain) rotational search. Since the FG rotational search
samples more densely than the CG search, it has more opportunities to produce near-
native structural predictions. In addition, the new scoring function of ZDOCK 3.0
provides better discrimination of near-native predictions from false-positive predic-
tions, causing this scoring scheme to produce the highest hit count.

The success rate results tell a different story. In the success rate comparison
(Figure 8.3), ZDOCK 3.0 with the CG rotational search performs the best, followed
by ZRANK and ZDOCK 3.0 with FG rotational search. This implies the FG rota-
tional search increases the number of highly ranked false-positive predictions in
addition to the highly ranked near-native predictions, with more false-positive pre-
dictions ranked in the top few.

Figure 8.4 shows success rate comparison between different versions of ZDOCK
with the FG rotational search and ZRANK on the 88 rigid cases in Benchmark 3.0.
Reranking ZDOCK predictions with ZRANK outperforms ZDOCK with FG rota-
tional search and the reranking elevates success rate by ~12% at Np = 1000 in the
case of ZDOCK 3.0. This indicates that ZRANK is most effective on structures with
small conformational changes.
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FIGURE 8.3 Success rate comparison between different ZDOCK versions with different
rotational search spacings and reranking results with ZRANK.
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CASE STUDIES WITH ZDOCK AND ZRANK

DockING wiTH ReBUILT MISSING ATOMS/RESIDUES ON BENCHMARK 2.0

For unbound—unbound docking cases, independently crystallized structures that are
used for docking can sometimes have missing residues and/or atoms that may be
located in the vicinity of the protein—protein interface of interest. To verify whether
this has a noticeable impact on docking performance, we tested if rebuilding these
missing residues and atoms improves docking results.

Among the cases from Benchmark 2.0, there are two rigid cases (PDB codes for
the complex structures: 1F51 and 1K4C) with interface residues that have missing
atoms for which ZDOCK 2.3 does not produce a hit within its top 2000 predictions.
We rebuilt all residues with missing atoms on both unbound receptor and ligand
using the Accelrys Insight II software package.

1F51 is a complex of sporulation response factor B (PDB code for the unbound
protein: 1IXM) and sporulation response factor F (PDB code for the unbound pro-
tein: 1SRR), which is involved in phosphoryl group transfer (Zapf, Sen, et al. 2000).
In all, 114 residues from the receptor (1IXM) and 10 residues from the ligand (1SRR)
had missing atoms to be rebuilt, of which 16 residues of the receptor and 3 residues
of the ligand were in the interface. After rebuilding, these protein structures were
docked using ZDOCK 2.3 with 6° sampling, resulting in six hits within the top 2000
predictions. Figure 8.5 shows the highest-ranked hit, which is ranked 315, which has
an iRMSD of 1.56 A compared with the complex structure.

FIGURE 8.5 (SEE COLOR INSERT FOLLOWING PAGE 174.) ZDOCK prediction for
test case 1F51 using rebuilt residues prior to docking. 1SRR is colored magenta, 1IXM chain
A is colored green, and 1IXM chain B is colored cyan. The rebuilt interface residues with
missing atoms are displayed as red sticks.
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1K4C is a bound—unbound antibody—antigen case with Fab taken from the com-
plex structure (PDB code for the complex structure: 1K4C) and potassium channel
Kcsa (PDB code for the unbound protein: 1JVM; Zhou, Morais-Cabral, et al. 2001).
We followed the same procedure we performed with the 1F51 case and one inter-
face residue with missing atoms from 1JVM was located. The identified residue was
rebuilt and docking was performed using ZDOCK 2.3. As a result, we obtained nine
hits within the top 2000 predictions. Figure 8.6 shows the highest-ranked hit, which
is ranked 601, with iRMSD 0.88 A compared with the complex.

It is of interest to see the docking prediction improvement by rebuilding missing
atoms in unbound structures from docking test cases, which were unable to produce
hits. Strikingly, the results for the 1K4C test case improved by building only one
interface residue, tyrosine. This shows the high sensitivity of ZDOCK and protein—
protein recognition itself. Similar studies may be implemented in a systematic way to
locate hot spot residues in protein—protein interfaces using docking algorithms.

DockING WiTH FLEXIBLE INTERFACE LooPs

Protein—protein docking with highly mobile proteins is one of the major challenges in
the docking field (Ehrlich, Nilges, et al. 2005; Bonvin 2006). This includes proteins
with flexible loops in interfaces, which was addressed in a study where a conformational

FIGURE 8.6 (SEE COLOR INSERT FOLLOWING PAGE 174.) Structure prediction
for test case 1K4C. 1JVM is colored in blue, cyan, magenta, and green and 1K4C is colored
in salmon and gray. The rebuilt interface residue with missing atoms is displayed as sticks
in red.
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FIGURE 8.7 Loop modeling of the 1AK4 ligand (PDB code: 1E6J), which is the HIV
capsid protein. Residue numbers V86-E98 in the unbound structure were modeled (modeled
loop: light gray; unbound loop: black; bound loop: dark gray). The modeled loop with the best
docking result is shown.

search of flexible interface loops in unbound protein structures was performed in low
resolution and incorporated into docking (Bastard, Prevost, et al. 2000).

In Benchmark 2.0, there are 13 medium and 8 difficult cases with moderate or
large conformational changes upon protein—protein association (Mintseris, Wiehe,
et al. 2005). For rigid-body docking algorithms, it is inherently difficult to solve the
docking problem with highly mobile proteins. To address this problem, we selected
Benchmark 2.0 test cases (PDB codes: 1AK4, 1K5D, and 1ATN) for which ZDOCK
2.3 is unable to produce hits within the top 2000 predictions due to the conforma-
tional change of a single mobile loop in the interface. We used the Accelrys Insight I1
software package to remodel the mobile interface loops for these three test cases. For
the selected cases, each of the mobile interface loops from the unbound structure was
targeted to be modeled, while the remainder of the protein was kept fixed. We gener-
ated nine unbound structures with remodeled loops, plus one unbound structure with
the bound loop inserted. The docking results are summarized in Table 8.1.

1AK4 is the complex of cyclophilin (PDB code: 2CPL) and an HIV capsid pro-
tein (PDB code: 1E6J). A loop from the HIV capsid protein (residues V86-E98 of
chain P; shown in Figure 8.7) was targeted for remodeling in the unbound structure.
ZDOCK 2.3 obtained at least one hit within the top 2000 predictions with eight out
of nine unbound structures with modeled loop, and with the unbound structure with
the bound loop inserted as well.

1K5D is the complex of Ran GTPage (PDB code: 1RRP) and Ran GAP protein
(PDB code: 1YRG). A loop from Ran GTPase (residues Q69-181 of chain A) was
targeted for remodeling in the unbound structure. ZDOCK 2.3 obtained at least one
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TABLE 8.1
Summary of Docking Results with Flexible Interface Loops

Number Number Best Ranked Hit

Complex? Modeled Loop® of Loops® of Hits? (iRMSD)®
1AK4 1E6J_P: V86-E98 8 20 32(2324)
1K5D IRRP_A: Q69-181 5 8 163 (1.88 A)
1ATN 11JJ_B: R439-Y453 1 3 1479 (2.19 &)

2 PDB codes of the complexes. Detailed information about complexes is available at
http://zlab.bu.edu/benchmark/.
Targeted loops for remodeling in the unbound structures. (PDBcode_Chain: starting

o

residue-ending residue.)

¢ Number of unbound structures with a remodeled loop that produced at least one hit in
the top 2000 ZDOCK predictions.

¢ Number of hits with the unbound structure with remodeled loop that produced the
largest number of hits.

¢ The best ranked hit with the unbound structures with remodeled loop, along with its
iRMSD.

hit within the top 2000 predictions with five out of nine unbound structures with
modeled loop, and with the unbound structure with the bound loop inserted as well.

1ATN is the complex of Actin (PDB code: 11JJ) and Dnase I (PDB code: 3DNI).
A loop from actin (residues R439-Y453 of chain B) was targeted for remodeling in
the unbound structure. ZDOCK 2.3 obtained at least one hit within the top 2000
predictions with one out of nine unbound structures with modeled loops, and with
the unbound structure with the bound loop inserted as well.

Overall, the docking results seen in Table 8.1 reflect the docking difficulties of the
respective cases. Specifically, 1AK4 is a rigid-body case with mild conformational
change, 1K5D is a medium case with moderate conformational change, and 1ATN is
a difficult case with severe backbone conformational change in the interface.

CONCLUSION

Protein—protein interactions play critical roles in biological and biochemical systems.
Understanding these interactions on a molecular level can aid redesign or modula-
tion of the interaction network, possibly providing therapeutic value. Protein—protein
docking is an active research area and is advancing rapidly. The recent progress
and success in the CAPRI blind test (Janin and Wodak 2007) indicates that many
protein—protein interactions can be successfully solved by protein—protein dock-
ing. In addition, docking experiments such as CAPRI stimulate the application of
protein—protein docking knowledge to other fields, such as protein—-RNA docking
or protein—-DNA docking. The incorporation of accurate docking methods with
homology modeling and genomic scale macromolecular interaction maps will allow
biologists to have greater insight into molecular functions and, in the broader scope,
biological systems.
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At this stage, much of the success in protein—protein docking is limited to rigid-
body protein docking, which allows a small degree of conformational changes on
protein surfaces. Protein surface structural plasticity upon association is one of the
major challenges that have to be addressed in the next step of docking. The ZDOCK
suite of algorithms is capable of producing hits with unbound structures with con-
formational changes, as long as the conformational search results are provided. The
next step for improvement will be incorporating an ensemble of multiple conforma-
tions of an unbound protein in the ZDOCK framework.
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OVERVIEW

Proteins recognize and bind to each other through interaction sites. Hence, understand-
ing the mechanisms that underlie protein—protein interaction requires the elucidation of
the characteristics of interaction sites. Analysis of interaction sites have revealed some
of their commonalities and suggested that it may be possible to identify these sites a
priori. Prediction methods that identify protein interaction sites from the structure or
even the sequence of a protein will enhance the study of protein—protein interaction,
and may break new grounds in protein design and even in the development of drugs.
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TARGETING BINDING SITES

Benzodiazepinedione and Nutlin are new anticancer drugs that are currently in
advanced clinical trials. They represent a new promising approach in drug devel-
opment: both of them are small molecules designed to thwart protein—protein
interaction by binding specifically and selectively to a protein interaction site, thus
preventing the interaction. Although Benzodiazepinedione and Nutlin are two very
different molecules, they both target the same binding site: the one where a pro-
tein called HDM?2 binds the tumor suppressor protein p53. The interaction between
these two proteins is believed to prevent p53 from suppressing the tumor. When
Benzodiazepinedione and Nutlin bind specifically to the binding site of p53 on
HMD2, they prevent the interaction and allow the suppression of the tumor by p53
(Vassilev 2004; Vassilev, Vu, et al. 2004; Koblish, Zhao, et al. 2006). Attacking
protein—protein interaction sites is becoming increasingly popular in drug develop-
ment (Archakov, Govorun, et al. 2003; Arkin and Wells 2004; Rudolph 2007; Wells
and McClendon 2007). However, to target interaction sites, one needs first to iden-
tify the residues that compose them. In this chapter I will review the computational
attempts to identify protein—protein interaction sites using various approaches, tools,
and sources of data.

A KEY TO UNDERSTANDING BIOLOGICAL PROCESSES

Hopes for new types of drugs, however, are not the original raison d’tere of the
field of interaction site prediction. Since biological processes are realized by the
interaction of proteins, to fully understand or to manipulate biological processes one
needs to unravel the mechanisms that underlie protein interactions. The first step
in this direction is the identification of interaction sites. Prediction of binding sites
would improve the understanding of molecular recognition and interactions. It may
enhance the computational prediction of protein—protein interactions and lay the
foundation for a rational design of interaction sites.

IDENTIFYING INTERFACES FROM 3-D STRUCTURE OF COMPLEXES

Protein—protein interaction sites are rather different from sites that bind small
ligands, nucleic acids, metal ions, and even small peptides. Interfaces between pro-
teins and smaller substrates are typically cavities and concave clefts (Laskowski,
Luscombe, et al. 1996; Peters, Fauck, et al. 1996; Pettit and Bowie 1999). Proteins,
however, tend to bind to each other through much larger and more structurally intri-
cate surfaces (Janin 1995; Jones and Thornton 1996; Bahadur, Chakrabarti, et al.
2004; Keskin, Tsai, et al. 2004). The most straightforward way to identify protein
interaction sites is by analyzing the three-dimensional (3-D) structure of the com-
plex of two or more chains. For example, the infection of humans by the HIV virus
is mediated by the interaction of two proteins: gp120 from the HIV and the human
protein CD4, which is a receptor expressed on the surface of the immune system’s
T cells. When the 3-D structure of this complex was solved (Kwong, Wyatt, et al.
1998), it was greeted with excitement as a crucial step in highlighting the interaction
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sites and thus revealing the mechanism of HIV infection (Balter 1998). While 3-D
is indeed a powerful means to identify binding sites, it is hardly a silver bullet: 3-D
structures are available for less than 1% of all known pairs of interacting proteins.
This gap is growing by the day as the throughput of experimental methods for the
detection of interacting proteins grows rapidly, leaving the technologies for structure
determination of complexes far behind. Between 2006 and 2008 intAct (Kerrien,
Alam-Faruque, et al. 2007), a major database of protein—protein interactions, grew
by more than 100,000 pairwise interactions. At the same time less than 1000 new
3-D structures of heterocomplexes were added to the Protein Data Bank (PDB), the
major database of protein structure.

WHEN THERE IS NO STRUCTURE AVAILABLE

In the absence of experimentally solved 3-D structures of the complex, it has been
suggested to rely on methods for computational prediction of the 3-D structure of the
complex of two proteins (Fernandez-Recio, Totrov, et al. 2004). The field of modeling
the structure of complexes, or docking as it is called by its practitioners, is far from
being able to provide accurate 3-D models on a large scale. Currently, its ability to
provide reliable models is limited to those cases in which there is a good experimen-
tally solved 3-D structure of the respective unbound proteins. Even in those cases,
most docking algorithms provide numerous possible models for the complex, each of
which may suggest different surface patches as interaction sites. Indeed, a common
practice in docking is to use predictions of interaction sites to choose the right model.
Thus, while docking could sometimes help identify interaction sites, it is more com-
mon for docking to use interaction site prediction than vice versa. Computational
approaches for the prediction of interaction sites are based on an attempt to identify
general features that are shared by many interaction sites and then use these features
to identify new putative interaction sites. Searching for such features requires the
analysis of known interaction sites. To curate a large data set of interaction sites that
will allow for such analysis, one first needs to define interaction sites.

HOW TO DEFINE AN INTERACTION SITE

Most definitions rely to some extent on structural considerations, attempting to
come up with a formulation that will capture all and only the residues that are
localized in the protein—protein interface. Numerous definitions have been sug-
gested, but each of them suffers from some shortcomings that may bias the set of
residues that it identifies as interaction sites. A common definition is: All residues
that are accessible to solvent in the unbound state but are buried in the interface
in the bound state. Obviously, the number of residues that will be captured by this
definition depends to a large extent on the definition of “solvent-accessible residue.”
Deeming a residue exposed depends on the choice of a cutoff—either in terms of
its absolute accessible area or in terms of percentage of its theoretically calculated
surface area that is accessible to solvent. Typically, only a few residues have zero
accessibility to the solvent and virtually none is 100% exposed. The vast majority
of residues can, at least theoretically, interact with a water molecule in the solvent.
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Yet only in some of these residues is the exposed area large enough to allow for
an effective interaction of the residue with another protein (even if the interaction
is mediated by a water molecule). Different choices of the minimal exposed area
that renders a residue exposed will result in identification of different interaction
sites. Therefore, a modification of the earlier definition was suggested: All residues
whose accessible area was reduced upon binding. Although this definition over-
comes the problem of choosing a cutoff for exposure, it may be too permissive by
introducing into the interaction sites some residues at the rim of the interface that
do not form any physical contact with the other protein, yet upon interaction go
through marginal reduction in their accessible area. Another shortcoming of both
of these definitions is their inability to account for interaction-dependent confor-
mational changes. Many proteins undergo conformational changes upon interac-
tion, which result in substantial changes in the exposure of residues even if they
are not located in the interface. It may, therefore, happen that a buried residue in
the unbound state will move to the interface in the bound state. Alternatively, con-
formational changes may affect the accessibility of some residues that are remote
from the binding site. These definitions will miss such cases.

Looking only at the bound state may offer a solution to this problem. Such is
the approach of the following definition: All residues in a protein chain that are in
contact with a residue in another protein chain. The problem with this definition is
that it relies on the somewhat fuzzy notion of contact. We assume that if two resi-
dues are very close to each other, they are in physical interaction. Thus, to use this
definition one has to define a distance cutoff for rendering two residues contacting.
The choice of a cutoff, again, depends on many physical, structural, and statistical
considerations. It is common to require a certain minimal distance between the C,,
or Cg atoms. A similar approach is to require a certain minimal distance between
the center of mass of the residues. This minimal required distance is typically set
between 5 and 8 angstroms. However, one has to bear in mind that if this distance
cutoff is applied uniformly to any pair of amino acids, the result would be a data
set that is biased toward smaller residues, as their C, atoms, for example, are more
likely to be spatially closer to each other than those of bulky residues. To account
for this possible bias some studies have required a minimal distance, typically 4—6
angstroms, between any heavy atom from a residue on one chain and any heavy
atom from a residue on the other chain. This definition would lead to identifying
interaction sites without any size bias, but it may allow some pairs of residues that
are too far apart to be in actual physical interaction to be identified as part of the
interaction sites.

More intricate definitions—for example, setting different distance cutoffs for each
possible combination of amino acids—are possible. However, comparative analyses
of the residues that will be identified by such different definitions suggest that the
differences between the interaction sites they identify are fairly small. Any of these
definitions solves some biases but introduces others. Therefore, when choosing a
definition of interaction sites for a specific study or when using data sets of interac-
tion sites curated by others, it is important to consider the biases that the definition
entails and try to account for them.
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DIFFERENT TYPES OF INTERFACES

Protein—protein interaction comes in different flavors: There are interactions that
are permanent, namely, interactions between chains that could not function without
each other, and interactions that are transient, namely, interactions between chains
that have a molecular function also in their unbound state or when they are bound
to another partner. Some interactions, while transient, modify one or both of the
proteins involved. Such is the case in phosphorylation, cleavage, or unibiquitination,
to name just a few. Interactions may occur in different environments, under different
chemical and physical conditions; proteins interact in different cellular compart-
ments, even inside the lipid bilayer of the membrane. Each of these types of inter-
actions may be stabilized by different mechanisms, and hence the interaction sites
involved may be different in their characteristics. Many studies have attempted to
characterize the differences between the mechanisms that stabilize different types
of interactions. In particular, they looked at residue—residue contacts, that is, nonco-
valent interactions between residues that stabilize structures. A basic distinction was
drawn between the contacts that stabilize the structure of a single chain and those
that stabilize a complex of chains. Several studies have shown that there are differ-
ent types of contacts in play in these two types of interactions (Jones and Thornton
1996, 1997; McCoy, Chandana Epa, et al. 1997; Keskin, Bahar et al. 1998; Lo Conte,
Chothia, et al. 1999; Sheinerman, Norel, et al. 2000; Glaser, Steinberg, et al. 2001;
Ofran and Rost 2003a).

Another distinction was drawn between permanent and transient interactions, or
between obligatory and nonobligatory ones. Early studies that have looked at small
data sets of only a few complexes have shown that obligatory or permanent interactions
tend to be mediated by larger interfaces (Jones and Thornton 1996, 1997). When larger
data sets were used, more differences were found: The transient complexes not only
have smaller contact areas, but the interfaces themselves are different. In particular,
they tend to be more polar on average. It was also shown that obligatory interactions
tend to require more conformational changes upon association/dissociation than tran-
sient ones (Jones and Thornton 1996, 1997). More comprehensive studies that ana-
lyzed hundreds of complexes have reaffirmed the difference in the characteristics of
the interfaces between complexes that are obligatory (sometimes referred to as obli-
gomers) and complexes that are transient. Differences were also found between inter-
faces in homo-oligomeric interactions and those in hetero-oligomeric interactions.

INTERACTION SITES VERSUS OTHER SURFACE RESIDUES

When looking at the sequences of the interaction sites, studies have suggested that
interface residues tend to be more conserved than other surface residues (Jones and
Thornton 1996, 1997). It seems, based on later and more comprehensive analyses,
that the level of conservation, while significant, is fairly small (Caffrey, Somaroo,
et al. 2004; Ofran and Rost 2007b). Protein—protein interactions have been shown
to be one of the functional descriptors that are least conserved among homologues
proteins: Typically, sequence identity of less than 40% is sufficient to determine
that two proteins share the same 3-D fold (Rost 1999). Sixty percent sequence
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identity is sufficient in most cases to determine that two homologous proteins are
located in the same subcellular localization (Rost, Liu, et al. 2003). Eighty percent
sequence identity would usually suffice to infer molecular function (Rost, Liu, et al.
2003). However, to infer that two proteins interact with the same partners, the level
of sequence identity must be higher than 80% and by some accounts even greater
than 90% (Mika and Rost 2006). These observations point in the same direction:
Interaction sites may be conserved but typically not highly conserved. Whether this
level of conservation is instrumental in interaction site prediction is still debated
(Armon, Graur, et al. 2001; Caffrey, Somaroo, et al. 2004; Res, Mihalek, et al. 2005;
de Vries and Bonvin 2008).

Interaction sites have structural features that distinguish them from other surface
residues. By and large, they are more planar and tend to have different secondary
structure compositions. As opposed to sequence conservation, analysis of struc-
tural conservation—that is, identification of residues that are structurally aligned
across a protein family—found that interface residues are highly conserved struc-
turally to the extent that their structural conservation alone may be a good way to
distinguish between interaction sites and other surface residues (Ma, Elkayam, et
al. 2003). Again, different types of interfaces tend to have different structural fea-
tures. For example, antigen—antibody interactions are mediated by interfaces that
are very different than other types of interfaces in many of their traits, including
their secondary structures (Ofran, Schlessinger, et al. 2008). The same is true for
protease—inhibitor complexes (Jackson 1999). Antibodies and antigenic proteins are
two opposite cases in terms of prediction. The interaction sites on the antibody are
fairly easy to identify, even when there is no 3-D available; they typically fall within
a few well-defined loops on the antibody, known as complementarity determining
regions (CDRs). The interaction sites on antigenic proteins (aka B-cell epitopes, the
regions on the protein surface that bind specifically to the antibody), on the other
hand, are extremely hard to predict (Greenbaum, Andersen, et al. 2007). In fact, an
assessment of existing methods for the prediction of B-cell epitopes has concluded
that most of them are at most marginally better than random (Blythe and Flower
2005). This poor performance has to do with peculiar molecular characteristics of
epitopes (Burgoyne and Jackson 2006; Ofran, Schlessinger, et al. 2008) and their
interdependence in complex immunological cellular and molecular processes. Until
the early 2000s, most of the known structural data about protein—protein interactions
came from complexes of either antigen—antibody or protease—inhibitor (Smith and
Sternberg 2002). However, over the last years the available data has grown to include
many other types of protein—protein interfaces.

As the peculiarities of these two types of interactions became clearer, it became
a common practice to exclude protease—inhibitor and antigen—antibody complexes
from large-scale analyses and from training sets for new predictors. The justifiability
of this practice is debated (de Vries and Bonvin 2008).

PREDICTIVE FEATURES

Computational prediction of interface requires the identification of common denom-
inators between interfaces. However, given the variations between interaction sites
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of different types, lumping all of them together may only allow for the identification
of very general common denominators. Consequently, methods attempting to predict
all types of protein interaction sites may pay in accuracy for the general applicabil-
ity. Methods focusing on one type of interaction could theoretically produce more
accurate predictions. In practice, however, for most types of interactions there are
not enough known examples. Only a few types of interactions are covered by enough
known examples to allow for the training of a specific prediction method. Table 9.1
lists types of interactions that are targeted by specialized methods.

EXPERIMENTAL DATA IMPROVES PREDICTION
BUT LIMITS APPLICABILITY

Clearly, the more experimentally collected features that are taken into account, the
better the predictions will be. If a method relies on an experimentally determined 3-D
structure of the unbound chain, it can take into account the overall physicochemical
characteristics of each residue, and not just its sequence neighbors. If a method also
utilizes functional knowledge of the protein, such as its subcellular localization or
molecular function, it can take into account considerations such the conditions and
the environment under which the interactions occur. The downside, obviously, is that
a method that requires a wide range of experimental data would be applicable only to
proteins for which all these data are available. The vast majority of known proteins
are only known by their amino acid sequence. As of summer 2008, for every protein
deposited in SWISS-PROT, a database of functionally annotated proteins, there are
more than 10 protein sequences in databases that have no functional annotation. For
every protein in the PDB—the database of structurally annotated proteins—there
are more than 100 unannotated proteins in other databases with no such annotation.
By and large, methods could be delimited according to the extent of experimental
data they require, and their consequential applicability and performance.

TABLE 9.1
Specialized Method for Prediction of Specific Types of Interaction Sites

Type of Interaction
Heterooligomer
All types of interactions
Transient heterooligomer

Homodimers

Functionally important surface elements
Obligomers (obligatory interactions)
Protease—inhibitor

Antigen—antibody

B-cell epitopes

CDRs

Example Methods
Chung, Wang, et al. 2006; Res, Mihalek, et al. 2005
Chen and Zhou 2005; Kufareva, Budagyan, et al. 2007
Fariselli, Pazos, et al. 2002; Neuvirth, Raz, et al. 2004,
Ofran and Rost 2007a
Pettit, Bare, et al. 2007
Armon, Graur, et al. 2001; Pettit, Bare, et al. 2007
Dong, Wang, et al. 2007
Yan, Honavar, et al. 2004
Yan, Honavar, et al. 2004
Haste Andersen, Nielsen, et al. 2006
Kabat 1985; Ofran, Schlessinger, et al. 2008
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EARLY METHODS

Early methods have been developed when available data was fairly meager. Therefore,
these methods relied mostly on general, and often theoretical, parameters. Such was
a method introduced by Kini and Evans (1996), who relied on their observation that
proline is abundant in sequence segments that are flanking the interaction sites. Their
suggestion was to simply search for sequence elements enclosed by proline rich seg-
ments and to identify them as putative interaction sites. This method is applicable to
any sequence and does not require any additional data, but it was soon outperformed
by more elaborate methods. Theoretical considerations were behind another method
(Gallet, Charloteaux, et al. 2000) that suggested computing the hydrophobic moment
of sequence stretches to determine whether there are likely to be interaction sites.
This method is based on a simple computation that could be performed on any pro-
tein sequence and was aimed to identify any type of interaction site. While utilizing
an elegant idea, it was proven too simple for this robust task.

Later methods that incorporated a similar idea and combined it with other fea-
tures achieved better performance. Jones and Thornton (1997), relying on their
earlier structural analysis of protein—protein interfaces (Jones and Thornton 1996),
introduced a method that uses topology, solvent accessible surface area (ASA), and
hydrophobicity to predict whether a given surface patch is likely to be an interaction
site. To perform this analysis, the method requires an experimentally determined
3-D structure of the unbound chain. These pioneering and rudimentary methods
were based on small data sets, simple computational procedures, and theoretical
physicochemical considerations. The next generation of prediction methods is differ-
ent in all three aspects: they are based on increasingly larger datasets, they employ
sophisticated algorithms (predominantly machine learning ones), and they rely more
on knowledge-based parameters than on theoretically derived ones.

THE NEXT GENERATION

The structure-based method of Jones and Thornton (1997) analyzed interaction sites
as patches of residues on the surface. Some subsequent methods used a similar patch-
based definition, but improved performance by using much larger data sets to train
sophisticated algorithms such as Bayesian networks or support vector machines
(SVM) (Bradford and Westhead 2005; Bradford, Needham, et al. 2006). The patch-
based approach is also employed by some general methods that attempt to identify all
functionally important residues, including interaction sites of any ilk, such as Ben-Tal’s
group ConSurf method (Armon, Graur, et al. 2001) and the hotPatch server (Pettit,
Bare, et al. 2007) that search for conserved and functionally important surface patches.
Most recent methods, however, replaced the notion of patch by the analyses of individ-
ual residues. Some of these methods use only sequence and sequence-derived features
to predict interaction sites from sequence (Ofran and Rost 2003b; Koike and Takagi
2004; Res, Mihalek, et al. 2005; Ofran and Rost 2007a), but most of them require
a full 3-D model of the protein (Fariselli, Pazos, et al. 2002; Bordner and Abagyan
2005; Bradford and Westhead 2005; Chen and Zhou 2005; Chung, Wang, et al. 2006;
de Vries, van Dijk, et al. 2006; Li, Huang, et al. 2006; Liang, Zhang, et al. 2006;
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Wang, Chen, et al. 2006; Wang, Wong, et al. 2006; Dong, Wang, et al. 2007; Kufareva,
Budagyan, et al. 2007; Negi, Schein, et al. 2007; Neuvirth, Heinemann, et al. 2007,
Darnell, LeGault, et al. 2008; Murga, Ondrechen, et al. 2008).

Another category of methods relies on external sources of information, such as
protein—protein interactions, in an attempt to identify sequence motifs that may over-
lap with the interaction sites (Sprinzak and Margalit 2001; Sprinzak, Altuvia, et al.
2006; Guo, Wu, et al. 2008). Similarly, it has been suggested to use protein—protein
interaction data to search for positions that coevolve in interacting proteins and iden-
tify them as putative interaction sites (Pazos and Valencia 2002).

WHAT THE USER NEEDS TO KNOW

For the user, the critical differences between the methods are the required input data
and the performance. These two questions are usually interdependent: A method that
requires only sequence would be widely applicable but usually performs poorly. The
performance is dramatically improved when also using evolutionary conservation,
but then the method is not applicable to proteins with no or just a few known homo-
logues (Koike and Takagi 2004; Res, Mihalek, et al. 2005; Ofran and Rost 2007a).
Methods that rely also on protein—protein interaction data restrict applicability fur-
ther but may improve performance. The best performing methods are those that rely
also on 3-D structure, but they are also the most limited in their applicability.

ASSESSING PERFORMANCE

The assessment of the performance of any prediction method is not a trivial task. In
the case of interaction site prediction, there are multiple difficulties. Since develop-
ers use different definitions for interaction sites, they essentially attempt to predict
slightly different things. Hence, their results are not fully comparable. Developers
report their own assessment of the method when they first introduce it, but different
developers use different data sets to assess their performance and different statisti-
cal measures to report it (for further discussion of assessment in bioinformatics, see
Baldi, Brunak, et al. 2000). Furthermore, they use different criteria for deeming a
prediction successful. What fraction of an observed patch should be covered by the
prediction to be considered a hit? What fraction of the predicted patch should be
covered by the observed one? There is no standard answer to these questions.

Some attempts are made to establish a standard benchmark that will allow for
objective, independent assessment of different methods (Zhou and Qin 2007). So far
these attempts have only limited success (de Vries and Bonvin 2008). As per the sta-
tistical methods for assessing performance, the most commonly used measures are:

TP+TN
TP+ FP+TN+FEN

® accuracy =

where TP, TN, FP, and FN are the number of predictions that are true positive, true
negative, false positive, and false negative, respectively. This measure gives the
same weight for successful prediction of interaction sites and of residues that are
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not interaction sites. This usually results in over optimistic assessment of the per-
formance. The developers’ self assessed values for accuracy are currently between
0.5 and 0.9.

TP
TP+FP

which measures what fraction of the positive predictions is correct (i.e., how often
a predicted interaction site is also an experimentally observed one). Self-assessed
values are between 0.4 and 0.9.

* precision =

TP
TP+ FN

which measures what fraction of the observed interaction sites were correctly identi-
fied by the method. Self-assessed values are between 0.05 and 0.7.

TN
TN + FP

which measures the fraction of correct negative predictions.

* coverage = recall = sensitivity =

e specificity =

¢ Matthews Correlation coefficient (MCC) =

TP x TN - FP x EN
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

which attempts to account for data sets that are not balanced but scores positive and
negative predictions equally.

* Area under receiver operating curve (AUC), which measures the area under
the curve of the graph one gets from plotting sensitivity versus (1 — specific-
ity). However, this figure is known to be problematic for unbalanced data
sets (when there are substantial differences between the size of the negative
and the size of the positive data sets, like in the case of interaction sites
versus other residues).

The relevant measure that should be considered when choosing a method depends
on, to a large extent, the user’s needs: Most users want to know how reliable the pos-
itive predictions are (namely, how reliable is the identification of interaction sites).
Hence, for them the most relevant measures are precision and recall. In most cases
there is a trade-off between these two measures: The user can choose parameters
that increase precision on the account of recall and vice versa. Therefore, users
should ask themselves what is more important for them: not to miss any putative
interaction site (higher recall) or not to receive false positives (higher precision).
For a review of the self-reported performance of current methods, see de Vries and
Bonvin (2008).
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HOT SPOTS

Several methods have reported high levels of precision, but most of them had fairly
low levels of recall. That is, when they identify a residue as part of the interaction
site, they are usually correct; however, they fail to identify many of the residues in
the interface. This fact coincides with a fundamental observation about protein—
protein interfaces in general: Only very few of the residues in protein—protein
interfaces are absolutely essential for the interaction. In a typical 1200-2000
A2 interface, less than 5% of interface residues contribute more than 2 kcal/mol
to binding. In small interfaces this can mean as few as one amino acid on each
protein (Bogan and Thorn 1998). A common way to explore the importance of
a residue for interaction is by mutating it, typically to alanine, and measuring
the effect of this substitution on the interaction (Wells 1991; Morrison and Weiss
2001). Often this is done sequentially on a large scale in a procedure known as
alanine scanning. Many experiments have demonstrated that most interface resi-
dues could be mutated without affecting the affinity of the protein to its partners
(Clackson and Wells 1995; Thorn and Bogan 2001). Those few residues that, upon
mutation, change the affinity are often assumed to be the most essential for the
interaction and are deemed hot spots (Bogan and Thorn 1998). Identification of hot
spots was also shown to be useful in docking (Halperin, Wolfson, et al. 2004). It
has been suggested that the poor recall should be attributed to the fact that some
methods actually predict hot spots rather than all interface residues (Ofran and
Rost 2007b). Several new methods, databases, and analyses, therefore, attempt
explicitly to identify hot spots rather than all interface residues (Ma, Wolfson, et
al. 2001; Kortemme and Baker 2002; Ofran and Rost 2007b; Darnell, LeGault, et
al. 2008; Guney, Tuncbag, et al. 2008). Figure 9.1 shows the complex of human
growth hormone bound to the extracellular part of its domain. When removing
the hormone, the interface is revealed: it covers 70 residues of the receptor, 35 on
each chain. However, in an alanine scan only 10 of them—?35 on each chain—were
found to be critical to the stability of the complex. The structure of one chain of the
homodimeric receptor was used to predict interaction sites, using a structure-based
method called ProMate (Neuvirth, Raz, et al. 2004)). The sequence of the same
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bound to the extracellular  (defined b; C (detected by predicted from predicted from
domain of its receptor from the ligand) mutations to alanine) structure sequence

FIGURE 9.1 (SEE COLOR INSERT FOLLOWING PAGE 174.) Interaction sites and their
prediction: The complex of human growth hormone and the extracellular domain of its recep-
tor (left). When the hormone is removed, the interface residues on the receptors are revealed.
Only a few of them are critical for stabilizing the complex. Two prediction methods, one that
is based on structure and one that is based on sequence, were used to predict the interaction
sites.
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chain was fed to ISIS (Ofran and Rost 2007), a sequence-based method, to predict
its interaction sites from sequence. It is interesting to note that the structure-based
method identified not only all of the hot spots and some of the other interface resi-
dues, but also the site of the homodimeric interaction at the bottom of the recep-
tor. The sequence-based method captured four of the five hot spots and one other
interface residue.

DESIGN OF TOOLS

Virtually all recent methods are based on supervised machine learning. That is,
they are based on a large training set classified into verified interaction sites and
verified noninteraction sites. The data are fed into an algorithm that learns subtle—
and possibly nonlinear—dependencies between various features, or descriptors, of
a residue and its classification as an interaction site or a noninteraction site. The sta-
tistical model of dependencies can then be used to classify a new residue, based on
its descriptors. Prediction methods differ in their choice of training sets, their choice
of descriptors, and their choice of algorithms. Other than the distinction between
patches and individual residues mentioned earlier, fundamental distinctions between
prediction methods are:

* The type of interaction (permanent or transient, homodimeric or heterodi-
meric, specific to a family or a function, etc.). Table 9.1 lists types of pro-
tein—protein interactions predicted by different methods.

* The type of algorithm used for training (most common are parametric
approaches, artificial neural networks [ANNs], support vector machines
[SVMs], and Bayesian networks).

* The way the interface is defined (patch, contacting residues, hot spots, etc.).

* The data used for training (large or small data set, hand selected, or auto-
matically generated).

* The descriptors that are used for classification (physicochemical character-
istics, structural ones, evolutionary conservation, hydrophobicity). Table 9.2
lists various descriptors.

TABLE 9.2
Common Descriptors Used for Prediction of Interaction Sites

Descriptor Comments

Features Derived from 3-D Structure

Neighbor list: Residues in spatial 9-20 residues
vicinity to the residue in question
B-factor A crystallographic measure that approximates the flexibility of a
residue.
Solvent accessibility (ASA) Measured in A2,
Relative solvent accessibility Measured as a fraction of the overall surface of the residue that is

exposed to solvent.
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TABLE 9.2 (CONTINUED)
Common Descriptors Used for Prediction of Interaction Sites (Continued)

Descriptor Comments
Shape index/curvedness
Secondary structure Three state (helix, strand, loop) or more.
Sequence distance The separation in sequence between residues within the same

patch. Some results indicate that structurally contiguous
residues that are not adjacent in sequence are more likely to
form interaction sites.

Planarity
Predicted/Approximate Structural Features

Predicted secondary structure Methods relying only on sequence can use computational tools to

Predicted solvent accessibility generate predicted solvent accessibility/secondary structure.
This improves performance without limiting applicability to
proteins with known 3-D structure.

Sequence neighbor list Can be used instead of neighbor list to approximate the
environment of the analyzed residue. Nine to fifteen residues
around the residue in question. Four to seven on each side of
the residue. Some structure-based methods use this in
addition to neighbor list.

Evolutionary Features

Sequence profile Extracted from a multiple sequence alignment, a profile reveals
patterns of evolutionary conservation.

Conservation score A quantification of the level of conservation of an individual
position.

Conservation of physicochemical If the position is not conserved, scoring conservation of traits

traits such as charge, hydrophobicity, or size may improve prediction.
Physicochemical Features

Hydrophobicity Several different scales are available.

Electrostatic potential Measured for individual residue or for a patch. Requires 3-D
structure.

Atom propensities Serves as a way to sum physicochemical properties across
residues in the patch.

Desolvation energy Used mostly in predictions for rigid-body docking.

External Knowledge

Protein—protein interaction Can be used to: (1) identify sequence or structural elements that
are significantly overrepresented in interacting pairs, and (2) to
assess coevolution of positions in interacting pairs.

Functional annotation of the Enzyme-inhibitor and antigen—antibody have different types of

protein interfaces than other complexes. Adding this information may

improve prediction.
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Different methods have different strengths and weaknesses. Therefore, a user
that wisely integrates the output of several different prediction methods would most
likely get predictions that are better than those of any single method. This could also
be done automatically with a metaserver that automatically submits a query to differ-
ent methods and weighs the results of each of them to produce a consensus prediction
(Qin and Zhou 2007).

CONCLUSION

Between 2003 and 2009, dozens of new methods for the prediction of interaction
sites were introduced. Their performance steadily improves and they are reliable
enough to inform experiments. They are often used to choose targets for mutagenesis
and for analyzing protein function and interaction. Three developments allow for
the growth of these methods. First, the deluge of protein—protein interaction data,
particularly structural data, provides sufficient data sets for the training of machine-
learning algorithms. Second, elaborate study, both experimental and computational,
revealed some of the principles of protein interaction and enabled a careful choice of
descriptors for training, and finally, communication with computer scientists allows
for the choice of state-of-the-art algorithms that improve performance further. These
three factors are likely to be the keys for further improvements of the methods. The
new data that are required will enable the training of more specialized methods that
focus on specific types of interactions, such as interaction of membrane proteins,
antibody—antigen interactions, interactions of enzymes and their targets, interactions
that are mediated by water, and so forth. More data on each type of interaction will
also allow for more detailed analysis of its traits and, therefore, for better choice of
descriptors. Finally, based on these descriptors, computer scientists will be able to
devise specific methods for better predictions.
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INTRODUCTION

As the number of files in the Protein Data Bank (PDB) exceeded 50,000 (repre-
senting around 10,000 protein domains at 95% level of sequence identity), it is
becoming increasingly important to develop the understanding of the protein func-
tion and the next level of subcellular structural organization."> This, among other
aspects, requires understanding of what other biological molecules or cellular
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structures interact with each domain, which residues are involved in this interac-
tion (e.g., References 3 and 4), and what conformational changes accompany the
binging. Structure-based computational approaches to these questions invariably
face the issue of protein flexibility, which is further complicated by the existence
of unstructured, partially structured, or conditionally structured interfaces.> While
the dream of predictive millisecond-scale molecular dynamics serving as a “com-
putational microscope” persists (K. Schulten, award lecture at the ISQBP meeting
in Ascona, 2008; also Reference 6) and may even be getting more tangible as com-
puters become faster, the ability to make reliable predictions on the basis of such
trajectory is still lacking.
The task of predicting molecular interactions has three principal aspects:

A. Predicting the interfaces on a given molecule that are involved in intermo-
lecular interactions. As a subtask one may include predicting a class (but
hardly the identity) of the interaction partner (say, protein, peptide, mem-
brane, a small substrate).” During the last years, computational methods
making these kinds of predictions have improved dramatically and may be
quite useful.

B. Predicting the spatial arrangement of two interacting molecules given the
apostructures of both, aka docking. Existence of homologous interacting
pairs with already solved three-dimensional (3D) structures greatly facili-
tates solving this problem. However, when such template complex structure
is not available, obtaining a crystallographic quality model may be exceed-
ingly difficult due to the induced fit.

C. Predicting the identity of molecules (including proteins) involved in direct
transient specific interactions with each other. In the most general form,
solving this problem requires precise, large-scale prediction of conforma-
tional ensembles and Gibbs free binding energies between all possible pairs
of biological molecules, which is unrealistic even with the use of the best
state-of-the-art computing resources.

From the biological standpoint, the three aspects should be considered in a
different order, by increasing attention to details: C (what) to A (where) to B
(how). We, however, order them by their computational complexity. For example,
in context of protein—protein interactions, task A is tangible and applicable to
thousands of proteins constituting entire structural genomes. Task B, in spite of
the achieved limited success in protein docking,® largely remains an academic
exercise. Task C appears to be impossible to solve due to the enormous com-
plexity of biological systems and the imperfections in existing methods of free
energy calculations.

While for protein—protein interactions only task A can be solved with reasonable
effort and outcome, all three kinds of predictions are approaching widespread practi-
cal use in cases when the interacting partner is a small chemical. Recent advances in
small molecule docking and related applications led to a number of successful solutions
of tasks A and B in this context. Though more difficult than others, task C becomes
quite tangible for druglike compounds and is represented by two kinds of screening:
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Cl. Ligand screening, that is, searching for a natural substrate or a new com-
pound to specifically bind to the source protein.

C2. Ligand specificity profiling, that is, searching for the proteins in a subclass
or even in the entire structural proteome that bind specifically to a given
small molecule.

In this chapter, we present an overview of some methods for predicting the three
aspects of molecular interactions. We will focus on targets where a good quality
atomic resolution 3D model either has been determined experimentally or can be
reliably built by homology (unfortunately, de novo predictors of the 3D structure
from the amino acid sequence are still unreliable).>'© We will also focus on the tran-
sient, not permanent, interactions. In most cases, permanent binding partners are
known in advance, and when this is not the case, they are more easily predictable.!!
We will present an analysis of the induced conformational changes upon binding that
create the single biggest challenge for modelers of protein interactions, and describe
several methods to overcome this difficulty. Our analysis and the optimization of
the prediction methods relied on an ever-growing body of structural data and the
improved methods of molecular mechanics with related energy functions.

CHARACTERIZING MOLECULAR INTERFACES

COMPREHENSIVE SETS OF TRANSIENT MOLECULAR INTERACTIONS IN 3D

Of more than 10,000 unique protein domains found in the 2008 release of the PDB,!?
only about 10% are represented in transient complexes with their biological pro-
tein partners. Selection and preparation of a sufficiently large collection of these
complexes to be used as a training and validation set is a prerequisite for any study
addressing the problem of protein interface prediction.!3-!> Unfortunately, artificial
constructs, crystal packing, and other artifacts present a substantial challenge for
both manual and automatic identification of true biological interactions. Although
manual intervention during the set collection helps reduce the number of errors, it
limits the size of the set and possibilities of timely updates. On the other hand, only
a truly large-scale effort can lead to a statistically significant and diverse set without
overrepresentation of large families of homologues.

We collected a set of as many as 858 protein domains participating in crystallized
transient protein—protein complexes. The entire PDB was organized into families,
one family per domain, with each family containing all publicly available good qual-
ity structures of the domain with its possible binding partners. To reduce the noise
while preserving the automation, we only collected the domains represented by mul-
tiple, yet “partner-diverse” structures, and used consistency criteria to achieve the
following goals:

¢ Transient complexes were distinguished from permanent ones based on
comparison of PDB complex compositions across the family.

e Each domain was treated in context of its permanent biological unit. In
~20% of the set, the biological unit was found to be different from the
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monomer. The permanent biological multimers were treated as a whole to
avoid potential contamination of the data set with intersubunit (obligate,
permanent) interfaces that never get exposed in biological environments.

* Each transient complex was guaranteed to have at least one unbound struc-
ture of its receptor domain.

e Multiple protein partners binding to the same or different sites on the pro-
tein surface were taken into account.

* Superimposition and structural comparison of the multiple structures pro-
vided means for characterization of the induced conformational changes.

For simplicity, we did not include in the set any protein domain that formed per-
manent heterotrimers or higher multimers, or any domain that was simultaneously
bound to more than four distinct protein partners.

The collected set provides a fairly comprehensive representation of transient pro-
tein—protein interactions in the PDB. It covered all major classes of biological inter-
actions such as enzyme—inhibitor, hormone-receptor, structural protein, and many
types of regulatory interactions. However, antibody—antigen interactions were pur-
posely excluded from the set, as well as all families featuring antibodies as the only
type of interacting partner. Epitope prediction must be considered as a standalone
task in computational biology. Being different from biological interfaces by both
physicochemical properties and (typically) location, epitopes are only recognized by
antibodies, naturally selected to target even most noninterface-like patches.

The family size ranged from 2 to 30 (median 6, mean 8.61) structures (Figure 10.1)
and was limited by the requirement of using no more than 15 PDB entries and no more
than two chains from each entry per protein domain. In a large fraction of cases (361
of 858, 42%), protein domains were found to interact with a variety of protein part-
ners. Such interactions often involved nonoverlapping patches on the protein surface.

Using a similar approach, we also collected a set of ~800 protein domains that
have been crystallized apo or in complexes with small molecule ligands. In the
following, we present a comparative analysis of the two sets and a comprehensive
description of induced fit changes.

PROPERTIES AND FLEXIBILITY OF TRANSIENT MOLECULAR INTERFACES

Protein surface patches involved in transient interaction with other proteins or small
molecule ligands differ

¢ from the rest of the surface,
* from permanent multimer interfaces (e.g., Figure 10.2), and
» from each other (small molecule interface vs. protein interface)

by a number of properties. Properties such as relative residue frequencies, physical
fields, hydrophobicity, size, charge, evolutionary rates, and so forth have statistically
significant differences when compared between classes of protein surface patches
(e.g., Reference 16). These properties can be used to predict molecular interfaces
(task A).
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FIGURE 10.1 Eight hundred fifty-eight transient protein interfaces represented by two or
more PDB entries. Family size refers to the number of PDB structures representing the same
protein domain in apo form or in complex with transient protein partners. These families
were used to evaluate the induced conformational changes at protein interfaces.

To predict complex geometries (task B) a different question gains primary impor-
tance. Since induced fit presents the major challenge for all docking algorithms, one
needs a clear understanding of the nature and the degree of changes that can happen
upon binding of a protein to a protein or a small molecule partner. Such studies were
previously performed only for small sets of proteins.!”!8

To collect the induced fit data, we used the sets of transient protein interactions
in 3D described earlier. Given a family of complexes formed by a particular protein
domain, we compared each complex with all other complexes of the same compo-
sition (same protein partner in case of protein interactions, same small molecule
for protein—ligand interactions), complexes of other compositions, and unbound
structures. The unbound structures were also compared to one another to assess the
degree of changes stemming from natural protein flexibility rather than induced by
binding partners.

For protein—protein interactions, the obtained data for 858 protein ensembles are
presented in Figure 10.3. In the majority of the cases (77%), comparison of a bound
form of a protein to its unbound form or a complex of different compositions shows
a strong deviation (>1.5 A) of at least one interface residue. On average, about one-
fourth of interface residue backbones deviate above that threshold. Moreover, at least
one interface side chain is displaced by more than 1.5 A almost always (99%), and
more than one-half of side chains strongly deviate on average. The corresponding
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FIGURE 10.2 Desolvation properties of obligate and transient interfaces in the collected set of
858 protein domains involved in crystallized transient protein complexes in PDB. (a) Buried solvent
accessible surface area, (b) desolvation energy. As shown, the transient interfaces are smaller in
size, are associated with smaller desolvation penalty, and, therefore, are more difficult to predict.
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FIGURE 10.3 Flexibility of protein—protein interfaces and induced fit. On average, more than one-half of interface side chains are displaced by more
than 1.5 A when compared between different complex compositions (bound vs. unbound/bound to a different protein partner), giving an average inter-
face side chain RMSD of ~4 A. In contrast, when compared between complexes of the same composition (bound vs. bound to the same protein partner),
the expected fraction of strongly deviating side chains is less than one-fourth, and the average interface side chain RMSD is below 2 A. At least one
interface residue backbone deviates by more than 1.5 A in 78% of the cases, and by at least one side chain in 99% of the cases.
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values observed between complexes of the same composition due to natural protein
flexibility (white bars), or even between unbound structures (gray bars), are signifi-
cantly lower. Some induced changes involved large-scale domain, termini, or loop
movements and extended as far as 25-50 A (Figure 10.4).

In contrast, ligand-binding interfaces appear more stable. Being a little smaller in
size (the number of residues involved in small-molecule binding is about two-thirds
of an average protein interface size; Figure 10.5) they are usually more buried, which
restricts potential movements of the interface side chains. Only about 4% of the
interface residue backbones deviate above the threshold of 1.5 A, and about 18% of
the side chains (1 to 2 side chains per interface; Figure 10.6).

In short, our analysis proved that in spite of comparable sizes 