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Preface
Proteins are the working horse of the cellular machinery. They are responsible for 
diverse functions ranging from molecular motors to signaling. They catalyze reac-
tions, transport, form the building blocks of viral capsids, traverse the membranes to 
yield regulated channels, and transmit information from the DNA to the RNA. They 
synthesize new molecules, and they are responsible for their degradation. Proteins 
are the vehicles of the immune response and of viral entry into cells.

Perhaps the most common dominator of all proteins is their ability to interact 
with one another and with many other types of molecules, whether small or large. 
Not only do proteins interact with most known chemical components, but they do 
so specifically. That is, they interact at a specific location, with a specified affinity 
and kinetics. This is the result of the varied chemistry of the amino acids and cofac-
tors, and the specific three-dimensional shapes of proteins. Protein–protein interac-
tions are divided (somewhat artificially) into permanent and transient interactions, 
but even the transient complexes can bind with picomol or nanomol affinity, and 
with rate constants of association and dissociation ranging six orders of magnitude. 
Another line of division is between homo- and heterocomplexes, which can be fur-
ther distinguished by the number of proteins involved in the complex (dimers, trim-
ers, large multiprotein complexes, etc.). Thus, protein interactions can be discussed 
from the point of view of a biophysicist or bioinformatician: The first is interested 
in understanding how the various forms of interactions work and assemble, and the 
latter is focused on the analysis of the interactions; both aiming toward prediction 
of the interaction. However, within cells, proteins often function as parts of large 
networks of interactions, also called interactome. In recent years, many aspects of 
biology have been likened to these networks, in which distinct nodes (e.g., individual 
proteins) can be defined that interact with one another within a system to perform 
various biological functions. Network maps have been constructed to depict all of 
the possible protein–protein interactions within a cell (i.e., the interactome), essen-
tially providing a low-resolution view of molecular recognition. The distinct view 
of protein–protein interactions, from the atomic detail to the cellular interactome 
arrangement, has to be investigated at different levels (structure, function, organiza-
tion, energetics, dynamics) with each of these levels being investigated experimen-
tally as well as computationally. To obtain a more complete understanding of cellular 
processes, a combination of all of these will be needed.

To be able to predict protein–protein interactions, there is a need to figure out 
various aspects of their associations. These range from shape complementarity to 
the organization and the relative contributions of the physical components to their 
stability. Proteins interact through their surfaces. Thus, to analyze protein–protein 
interactions, residues (or atoms) that are in contact across the two-chain interface are 
studied. In addition, residues in their vicinity are also inspected to explore their sup-
porting matrix. At the same time, it behooves us to remember that proteins that are 
free in solution exist in ensembles of native, though distinct, conformers. In viewing 
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viii Preface

proteins as static structures, the properties of a particular population are explored. 
Yet, different populations may preferentially associate with different partners. The 
overriding reasons for the heightened interest in protein–protein interactions are that 
better understanding and better quantization of the key features controlling the inter-
actions should lead to higher success in the prediction of protein associations. This 
would assist in the elucidation of cellular pathways and in drug design.

This book covers a broad range of aspects related to prediction of protein–protein 
interactions, to interfering with protein–protein interactions, and to their design. 
These relate to cellular pathways with the goals of understanding and predicting 
function, and to strategies in drug targeting. With the increasing accumulation of 
experimental data, the need for computational approaches is rapidly increasing. 
This can also be gauged from the rapid growth in the literature in this direction and 
the creation of new computational/bioinformatics journals. Accordingly, this book 
provides an overview, with the chapters carefully selected and written by leaders in 
the field.

Although it is important to predict protein associations, it is a daunting task. 
Some associations are obligatory, whereas others are transient, continuously form-
ing, and dissociating. From the physical standpoint, any two proteins can interact. 
The question is under what conditions and at what strength. Protein–protein interac-
tions are largely driven by the hydrophobic effect. In addition, hydrogen bonds and 
electrostatic interactions play important roles. The physical principles of protein–
protein interactions are general, and many of the interactions observed in vitro are 
the result of experimental overexpression or of crystal effects, complicating func-
tional prediction.

Joël Janin, a pioneer in the field of protein science, provides in the first chapter an 
overview of the basic principles of protein–protein interactions and the biophysical 
forces driving them. Two basic models are suggested to explain the energetic com-
position of protein–protein binding sites: the buried surface model and the hot spot 
model. However, this is an oversimplification, as protein interactions have diverse 
solutions to accommodate the differences in binding, with rates and affinities span-
ning 10 orders of magnitude. With this diversity of interactions, which relate to the 
diversity of life, it is clear that no one model of interaction fits all. Moreover, many 
interactions are feasible only after the protein undergoes chemical modification, such 
as phosphorylation, allowing for the interactions to be controlled. Still, the basic 
biophysical principles of the interactions are the same, independent of the type or 
lifetime of the complex.

In the second chapter, “Low-Resolution Recognition Factors Determine Major 
Characteristics of the Energy Landscape in Protein–Protein Interaction,” Ilya Vakser 
seeks the general shapes and features that make a binding site. The first part of 
the chapter provides a detailed description of databases of protein–protein interac-
tions, which are used for computational analysis. This “technical” part is of great 
importance, as the results are strongly influenced by the quality and coverage of the 
database used. Detailed analysis of binding clearly shows the similarities between 
binding and folding of proteins. We are used to examining binding sites at high reso-
lution. However, Vakser points out that the general shape of proteins already dictates 
their binding. The existence of large-scale structural recognition features in protein 
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association explains the funnel-like intermolecular energy landscape. As in protein 
folding, this concept is necessary to explain the kinetics data for protein–protein 
association and is useful for docking simulations.

Eric Sundberg takes the investigation of the architecture of binding sites one step 
further in the third chapter, and provides a detailed molecular description of its com-
position and how this drives binding. In Chapter 3, “The Molecular Architecture 
of Protein–Protein Binding Sites,” he describes the binding site as a dense network 
of interacting amino acids, with most of them forming well-defined local clusters. 
Within this network of interactions, one can find both negative and positive coop-
erativity. It is important that a number of amino acids interact over long distances 
providing long-range communication within binding sites.

High-resolution methods to decipher the architecture and energetics of binding 
sites can be slow and are limited to a small set of protein complexes. In recent years, 
alternative approaches, based on selection from large libraries, have become more 
popular to provide more comprehensive answers. The most commonly used vehicle 
for such analysis is phage display. Particularly interesting is the development of the 
“shotgun” approach by Sachdev Sidhu and co-workers. In Chapter 4, “Mapping 
Protein Function by Combinatorial Mutagenesis,” Gábor Pál and Sidhu describe 
the technical aspects of this method and provide different applications for it. In 
addition to mapping the contribution of residues to binding, this method provided 
a more global picture of the relation between sequence, structure, and conservation 
of binding sites. Moreover, the general concept has been extended beyond phage 
display by the use of other combinatorial methods, which hold much promise for 
the future. It is clear that combinatorial analysis with well-defined libraries and 
selections can be used to explore diverse protein functions in a rapid manner and 
serve as a more complete set for computational biology than provided by traditional 
mutation studies.

The structure of a protein–protein interaction, its affinity and thermodynamic 
characteristics, depict a “frozen” state of a complex. This picture ignores the kinetic 
nature of complex formation and dissociation, which are of major biological and 
biophysical interest. In the next two chapters, Gideon Schreiber and Rebecca Wade 
provide a summary of the pathway for protein–protein association. In Chapter 5, 
Schreiber analyzes the pathway of association as a three-step reaction. After colli-
sion, the proteins form an encounter complex, which develops into the final complex 
through a transition state. Electrostatic forces are the main determinants of this reac-
tion. The structures of the encounter complex and transition state are discussed. In 
Chapter 6, Pachov, Gabdoulline, and Wade discusses Brownian dynamics simulation 
methods, which are used to simulate the reaction coordinates and rates.

One of the most exciting fronts in computational protein–protein interactions 
is the use of the existing knowledge on protein–protein interactions for interface 
design. In Chapter 7, “Computational Design of Protein–Protein Interactions,” Julia 
Shifman provides numerous examples of successes and failures, yielding an up-to-
date picture of where we are, the main problems facing us, and what we can expect 
in the near future. She very elegantly divides the design problem into subareas 
(including affinity design; how to achieve specificity; de novo interface design; asso-
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ciation versus dissociation; and protein–protein, protein–peptide, and protein–DNA 
interactions) and discusses the various tools used to achieve success in each area.

The number of files in the Protein Data Bank is rapidly growing, now exceeding 
50,000. However, structural information is often not available and even if available 
it is often not straightforward to use to predict the protein function. Yet, the involve-
ment of protein–protein interactions in all cellular processes and the consequent 
crucial need to figure out their functions has led to focused efforts to predict func-
tions from sequences and, if available, from their structures. A practical way to pre-
dict protein function is through identification of the binding partners. Since the vast 
majority of protein chores in living cells are mediated by protein–protein interac-
tions, if the function of at least one of the components with which the protein inter-
acts is identified, it is expected to facilitate its functional and pathway assignment. 
Through the network of protein–protein interactions, we can map cellular pathways 
and their intricate cross-connectivity. Because two protein partners cannot simulta-
neously bind at the same (or overlapping) site, discovery of the ways in which the 
proteins associate should assist in inferring their dynamic regulation. Identification 
of protein–protein interactions is at the heart of functional genomics. Prediction of 
protein–protein interactions is also crucial for drug discovery. Knowledge of the 
pathway, its topology, length, and dynamics should provide useful information for 
forecasting side effects. Six chapters of this book address different computational 
approaches to map binding.

Methods to map binding consist of a number of layers of information and resolu-
tion. At the high end is protein docking. To be able to dock proteins, the information 
on the partners as well as their structure has to be available (or at least the structure 
of a close homologue). Howook Hwang, Brian Pierce, and Zhiping Weng (Chapter 8) 
provide a detailed description of how protein–protein docking works and the criteria 
of success.

However, producing an interactome using high-resolution docking algorithms is 
limited by the lack of available structures and knowledge of protein partners. A 
complementary method, for which less or no structural information is required, is 
mapping protein binding sites. Yanay Ofran, in Chapter 9, “Prediction of Protein 
Interaction Sites,” provides a very detailed description and analysis of different 
methods for the prediction of protein–protein binding sites, with the plusses and 
minuses of the different methods. In Chapter 10, “Predicting Molecular Interactions 
in Structural Proteomics,” Irina Kufareva and Ruben Abagyan provide an exciting 
outlook on how to use the structural information to map function as embedded in the 
subcellular structural organization of the proteins; that is, the relationship between 
binding and function, and how we can build a cellwide dynamic and structural inter-
action map. The basic questions to solve are which protein is interacting with which, 
where the interaction takes place, and what the different (in structure and composi-
tion) complexes look like.

Most eukaryotic proteins are composed of multiple domains, with each being an 
independent folding unit. Multidomain proteins allow the acquisition of new proper-
ties without disrupting the ones they already have. One of the most important prop-
erties a protein can acquire is the ability to interact with other proteins, and thus 
defining its interactome. In Chapter 11, Inbar Cohen-Gihon, Roded Sharan, and Ruth 
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Nussinov describe the mechanisms by which domain rearrangements occur in the 
genome and highlight the role of co-occurring domains in protein–protein interac-
tions. Due to the modularity of the protein domain world, it is straightforward to use 
graph theoretical tools to explore domain composition of proteins. Although the num-
bers of domains across several genomes are similar, the sizes of highly connected 
domain subgraphs grow with evolution, and thus the complexity of the organism.

A large fraction of cellular proteins are estimated to be “natively disordered,” that 
is, unstable in solution. The structures of disordered proteins are not random. Rather, 
the disordered state has a significant residual structure. In the disordered state, a pro-
tein exists in an ensemble of conformers. Disordered proteins are believed to account 
for a large fraction of all cellular proteins and to play roles in cell-cycle control, 
signal transduction, transcriptional and translational regulation, and large macro-
molecular complexes. Although disordered on their own, their native conformation 
is stabilized upon binding. Vladimir Uversky and colleagues discuss these proteins 
in Chapter 12, “Intrinsically Disordered Proteins and Their Recognition Functions.” 
It was suggested that the increasing abundance of intrinsically disordered proteins 
in higher organisms is likely due to the change in the cellular requirements for cer-
tain protein functions, particularly regulatory functions/cellular signaling. Many 
“hub” domains, such as SH2, SH3, and PDZ, bind to disordered regions, apparently 
because disordered regions can bind partners fast, with both high specificity and low 
affinity. In this chapter, the authors describe functions and molecular mechanisms 
of these disordered peptides with specific focus on recognition and attempt to create 
links with the structural properties of these proteins.

As protein–protein interactions play a crucial role in many biological processes, 
their disruption can lead to a disease state or cure. Therefore, it is of great interest to 
consider them as potential drug targets. In Chapter 13, “Identification of Druggable 
Hot Spots on Proteins and in Protein–Protein Interfaces,” Dmitri Beglov and co-
workers describe a powerful approach to the identification of druggable regions on 
the protein surfaces by computational mapping, using small molecular probes such 
as small organic molecules. Computational mapping places the molecular probes, 
whether small molecules or functional groups, on the surface of the protein to 
identify the most favorable binding positions. Although x-ray crystallography and 
nuclear magnetic resonance (NMR) indicate that organic solvents bind to a limited 
number of sites on a protein, computational mapping methods can result in hundreds 
of energy minima and do not reveal why some sites bind molecules with different 
sizes and polarities, thus presenting a problem in the prediction of these regions. The 
authors review the mapping algorithms in the literature and the difficulties that are 
involved. Next they describe their mapping based on the fast Fourier transform (FFT) 
correlation approach, which samples possible configurations on a dense translational 
and rotational grid. The positions are scored using an energy function that includes 
attractive and repulsive van der Waals terms, electrostatic interaction energy based 
on Poisson–Boltzmann calculations, a cavity term to represent the effect of nonpolar 
enclosures, and a structure-based pairwise interaction potential. Finally, they pro-
vide two interesting applications.

Finally, in Chapter 14, “Designing Protein–Protein Interaction Inhibitors,” 
Matthieu Montes reviews the various methods available today for virtual compound 
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screening of protein–protein interactions inhibitors. Such methods are on the way 
to replacing the more traditional blind, high throughput, fragment-based screening, 
reducing cost and increasing coverage. In particular, protocols using a wise combi-
nation of structure-based virtual ligand screening and ligand-based virtual ligand 
screening methods have led to very interesting inhibitors displaying original scaf-
folds, which can be used as a basis to develop new compounds with therapeutical 
interest on challenging targets. However, these methods suffer from similar problems 
as other computational methods, such as the need to improve scoring functions, better 
account for electrostatics and solvation, and the fundamental problem of how small 
molecules can compete with the binding of large proteins on the same binding site.

Overall, although the chapters span the broad area of computational protein–
protein interactions, the area is very extensive, and to keep the size of the book 
manageable it is not possible to include all aspects. In particular, areas that are 
not addressed in this book relate to membrane proteins and molecular dynamic 
simulations of protein–protein interactions, with the goal of obtaining deeper 
insights into how the function is performed. Nonetheless, it is hoped that this 
book provides a basic outline of major directions in computational protein–pro-
tein interactions.

Ruth Nussinov

Gideon Schreiber

© 2009 by Taylor & Francis Group, LLC



xiii

Editors
Ruth Nussinov received her Ph.D. in 1977 from the biochemistry department at 
Rutgers University, New Brunswick, NJ. She did her postdoctoral work in the struc-
tural chemistry department of the Weizmann Institute of Science, Rehovot, Israel. 
Subsequently, Dr. Nussinov worked in the chemistry department at the University of 
California, Berkeley, the biochemistry department at Harvard University, Cambridge, 
MA, and the National Institutes of Health (NIH), Bethesda, MD. She joined Tel 
Aviv University, Israel, in 1984, and in 1990, she became a professor in the depart-
ment of human genetics at Tel Aviv University’s medical school, the Sackler School 
of Medicine. In 1985, Dr. Nussinov accepted a concurrent position at the National 
Cancer Institute of the NIH, where she is a Senior Principal Investigator heading 
the Computational Structural Biology Group. She has authored around 350 scien-
tific papers, edited numerous journals, and speaks frequently at both national and 
international meetings. Her interests largely focus on protein folding and dynamics, 
protein–protein interactions, amyloid conformations and toxicity, and large multi-
molecular associations with the goal of understanding the protein structure–function 
relationship.

Gideon Schreiber received his doctorate in biochemistry at the Hebrew University, 
Jerusalem, in 1992. After a postdoctoral period at the Medical Research Council’s 
(MRC) Laboratory of Molecular Biology in Cambridge, U.K., working in the labora-
tory of Professor Alan Fersht, he joined the Weizmann Institute of Science, Rehovot, 
Israel, as Senior Scientist. Presently, he is an associate professor at the department of 
biological chemistry at the same institute. His research interests include the investiga-
tion of protein–protein interactions, from the basic understanding of the mechanism 
to protein–design. His work spans bioinformatics and algorithm development, bio-
physical bench work, protein-design and engineering to applied biology. In addition, 
Dr. Schreiber is a director of the Israel Structural Proteomic Center, located at the 
Institute, and which aims to provide structures of proteins and protein–complexes to 
the biological community.

© 2009 by Taylor & Francis Group, LLC



xv

Contributors

Ruben Abagyan
The Scripps Research Institute
La Jolla, California

Dmitri Beglov
Structural Bioinformatics Lab
Boston University
Boston, Massachusetts

Ryan Brenke
Department of Biomedical  

Engineering
Boston University
Boston, Massachusetts

Gwo-Yu Chuang
Department of Biomedical  

Engineering
Boston University
Boston, Massachusetts

Inbar Cohen-Gihon
Sackler Faculty of Medicine
Tel Aviv University
Tel Aviv, Israel

A. Keith Dunker
Center for Computational Biology and 

Bioinformatics
Indiana University School of Medicine
Indianapolis, Indiana

Monika Fuxreiter
Biological Research Center
Hungarian Academy of Sciences
Budapest, Hungary

Razif R. Gabdoulline
Molecular and Cellular Modeling Group
EML Research gGmbH
Heidelberg, Germany
and
BioQuant
University of Heidelberg
Heidelberg, Germany

David Hall
Department of Biomedical  

Engineering
Boston University
Boston, Massachusetts

Howook Hwang
Bioinformatics Program
Boston University
Boston, Massachusetts

Joël Janin
Yeast Structural Genomics
Université Paris-Sud
Orsay, France

Dima Kozakov
Department of Biomedical  

Engineering
Boston University
Boston, Massachusetts

Irina Kufareva
The Scripps Research Institute
La Jolla, California

© 2009 by Taylor & Francis Group, LLC



xvi Contributors

Melissa Landon
Department of Biochemistry
Rosenstiel Basic Medical Sciences 

Research Center
Brandeis University
Waltham, Massachusetts

Matthieu Montes
Chaire de Bioinformatique
Conservatoire National des Arts et 

Métiers
Paris, France

Chi Ho Ngan
Department of Biomedical  

Engineering
Boston University
Boston, Massachusetts

Yanay Ofran
The Goodman Faculty of Life Science
Bar Ilan University
Ramat Gan, Israel

Christopher J. Oldfield
Center for Computational Biology and 

Bioinformatics
Indiana University School of Medicine
Indianapolis, Indiana

Georgi V. Pachov
Molecular and Cellular Modeling Group
EML Research gGmbH
Heidelberg, Germany

Gábor Pál
Department of Biochemistry
Eötvös Loránd University
Budapest, Hungary

Brian Pierce
Bioinformatics Program
Boston University
Boston, Massachusetts

Roded Sharan
School of Computer Science
Tel Aviv University
Tel Aviv, Israel

Yang Shen
Computer Science and Artificial 

Intelligence Laboratory
Department of Biological  

Engineering
Massachusetts Institute of  

Technology
The Stata Center
Cambridge, Massachusetts

Julia M. Shifman
Department of Biological Chemistry
The Hebrew University of Jerusalem
Jerusalem, Israel

Sachdev S. Sidhu
Banting and Best Department of 

Medical Research
Terrence Donnelly Centre for Cellular 

and Biomolecular Research
University of Toronto
Toronto, Ontario

Eric J. Sundberg
Boston Biomedical Research Institute
Watertown, Massachusetts

Spencer Thiel
Structural Bioinformatics Lab
Boston University
Boston, Massachusetts

Peter Tompa
Biological Research Center
Hungarian Academy of Sciences
Budapest, Hungary

© 2009 by Taylor & Francis Group, LLC



Contributors xvii

Vladimir N. Uversky
Center for Computational Biology and 

Bioinformatics
Indiana University School of Medicine
Indianapolis, Indiana
and
Institute for Biological Instrumentation
Russian Academy of Sciences
Pushchino, Moscow Region, Russia
and
Institute for Intrinsically Disordered 

Protein Research
Indiana University School of Medicine
Indianapolis, Indiana

Sandor Vajda
Department of Biomedical Engineering
Boston University
Boston, Massachusetts

Ilya A. Vakser
Center for Bioinformatics and 

Department of Molecular Biosciences
University of Kansas
Lawrence, Kansas

Rebecca C. Wade
Molecular and Cellular Modeling 

Group
EML Research gGmbH
Heidelberg, Germany

Zhiping Weng
Bioinformatics Program and 

Department of Biomedical 
Engineering

Boston University
Boston, Massachusetts
and
Program in Bioinformatics and 

Integrative Biology
University of Massachusetts Medical 

School
Worcester, Massachusetts

Brandon Zerbe
Department of Biomedical Engineering
Boston University
Boston, Massachusetts

© 2009 by Taylor & Francis Group, LLC



1

1 Basic Principles of Protein–
Protein Interaction

Joël Janin

Proteins are the major players in molecular recognition at the heart of all processes 
of life. They interact with the other components of the cell, small molecules, nucleic 
acids, membranes, and other proteins to build supramolecular assemblies and 
elaborate molecular machines that perform all sorts of functions, from chemical 
catalysis and mechanical work to signaling and regulation (Alberts, 1998). Protein–
protein recognition is the mechanism by which the specific interaction between 
polypeptide chains creates functional units. Its study has been part of biochemistry, 
structural biology, and computational biology for more than 30 years, and it has 
now spread to all domains of biology and medical science (Eisenberg et al., 2000). 
Protein–protein recognition must be given a chemical and physical basis, which in 
practice requires high-resolution three-dimensional structures. The Protein Data 
Bank (PDB; Berman et al., 2000) contains that information for several hundreds 
of protein assemblies, mostly transient binary complexes and oligomeric proteins. 
Cells contain plenty of larger assemblies, still poorly represented in the PDB, with 
the exception of the icosahedral viruses, ribosomes, and a few others (Dutta & 
Berman, 2005). Their analysis is the next frontier in our understanding of molecular 
recognition in biology.

The structures of binary complexes and oligomeric proteins present in the PDB 
form only a small sample of what exists in nature, yet they have stimulated a rich 
body of biochemical studies by site-directed mutagenesis, supported by biophysi-
cal studies of their thermodynamics and kinetics. The results have been extensively 
analyzed and they are the topics of several reviews and collective books (Jones & 
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2 Computational Protein-Protein Interactions

Thornton, 1996, 2000; Larsen et al., 1998; Kleanthous, 2000; Janin & Wodak, 2003; 
Fu, 2004; Russell et al., 2004; Ponstingl et al., 2005; Janin et al., 2007). Two models 
of protein–protein interaction have emerged over the years from these studies: the 
buried surface model and the hot spot model. The first is geometric and defines the 
interface as the protein surface that is solvent accessible in the isolated components, 
but not in the complex (Chothia & Janin, 1975); it implies that the interaction is dis-
tributed more or less evenly over that surface. On the other hand, the hot spot model 
states that the significant interactions are highly localized. The model was inspired 
by the site-directed mutagenesis study of the human growth hormone/growth hor-
mone receptor system (Clackson & Wells, 1995) and subsequent alanine scanning 
experiments performed on other systems. In alanine scanning, the residues of one 
component in contact with the other are systematically mutated to Ala, and the affin-
ity of the mutants is compared to that of the wild type. Many of the mutations cause 
little or no change in affinity, and those that do define the hot spots (Bogan & Thorn, 
1998; DeLano, 2002; Wells & McClendon, 2007).

I believe that the two views can be reconciled, and that the nonuniform nature 
of protein–protein interfaces can be accounted for by splitting them into a core and 
a rim depending on the solvent accessibility of the interface atoms. The rim, which 
has an amino acid composition and other properties similar to the solvent accessible 
surface, contains very few hot spots. The core differs in its composition, it contains 
most of the hot spots, and it is better conserved in evolution than the rim and the 
rest of the protein surface, which suggests that it is the main target of the selection 
exerted by protein–protein recognition on the protein sequence.

Diversity of Protein–Protein interaCtion

In spite of its limited size, the sample of protein assemblies for which structural 
data are available shows a diversity that reflects the diversity of life itself (Nooren & 
Thornton, 2003a). A broad classification may be based on the time scale on which 
the assembly process takes place. At one end of the scale, the collisions that occur at 
every instance within the crowded space of the cell create short-lived (submicrosec-
onds) contacts of no biological significance, except that they compete with functional 
interactions. Their equivalent in the PDB are the crystal packing contacts, which 
are mostly nonspecific and yield stable assemblies only because each molecule is in 
contact with many neighbors. The interactions seen in crystal packing may thus be 
compared to those in complexes and oligomeric proteins to give a structural basis to 
specificity (Janin, 1997; Bahadur et al., 2004).

At the other end of the scale, oligomeric proteins have a long-lived quaternary 
structure that self-assembles at the time the subunits are synthesized. Many oligom-
ers dissociate in vitro only when they are made to unfold, and in vivo only when 
they enter a degradation pathway; thus, they can be considered as permanent. In 
between, protein–protein complexes are made of polypeptide chains that fold inde-
pendently and associate only when they happen to meet. Most are transient, but the 
range of affinities and lifetimes covers at least eight orders of magnitude. Examples 
of long-lived associations are the trypsin/pancreatic inhibitor complex, with a half-
life of months (Vincent & Ladzunski, 1972), and the complex of barnase, a bacterial 
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ribonuclease, with its intracellular inhibitor barstar, which has a Kd ≈ 10–14 M and a 
half-life of days (Schreiber & Fersht, 1993). Antigen–antibody complexes are not 
quite as stable; they have a Kd in the range 10–8–10–10 M and a half-life of minutes to 
hours (Foote & Eisen, 1995; Braden & Poljak, 2000; Sundberg & Mariuzza, 2002). 
In the immune system, there are much weaker interactions that play an equally 
important role: the T cell receptor interacts with its different partners to form com-
plexes that have Kd ≈ 10–6 M (Foote & Eisen, 2000). Weak, short-lived interactions 
are fully functional in many other processes. In general, the complex between an 
enzyme, a protein kinase for instance, and its substrate cannot be long lived because 
its dissociation would limit the reaction turnover. Similarly, a fraction of a second 
is sufficient for redox proteins to carry out an electron transfer reaction after they 
come to be in contact (Crowley & Carrondo, 2004). Cell signaling relies on both 
short-lived and stable protein–protein interactions. The response of a cell to an exter-
nal stimulus frequently involves forming a loose initial complex that may become a 
stable assembly when it recruits new partners, undergoes phosphorylation or other 
chemical changes, and translocates to a different cell compartment. The timescale 
may be minutes, or milliseconds in the case of the visual signal.

Irrespective of their stability, all these interactions are biologically significant, 
they play major roles in essential processes, and thus are subject to a Darwinian 
selection that affects the sequence of the polypeptide chains and the physical chemi-
cal properties of their interfaces.

aCCessible surfaCe area versus free energy: 
the hyDroPhobiC effeCt revisiteD

In the buried surface model, the interface between two macromolecules is the set of 
atoms and residues that lose solvent accessibility in the assembly (Chothia & Janin, 
1975; Janin & Chothia, 1990). This geometric definition has a thermodynamical 
counterpart due to the relationship between the free enthalpy of a nonpolar organic 
solute in water (∆Gnp) and its solvent accessible surface area (ASA; Lee & Richards, 
1971). The following relation is verified when hydrocarbons are transferred from a 
nonpolar solvent to water (Hermann, 1972):

 ∆Gnp = γ ASA (1.1)

Chothia (1974, 1975) used the hydrocarbon solubility data to place the coefficient 
γ in the range 20–25 cal.mol–1.Å–2. Later estimates yield γ = 29 cal.mol–1.Å–2 for 
aromatic hydrocarbons and 31 cal.mol–1.Å–2 for aliphatic compounds (Vajda et al., 
1995). A still higher value, 50 cal.mol–1.Å–2, has been derived from a comparison 
with the macroscopic process, γ being the microscopic equivalent of a surface ten-
sion coefficient (Sharp et al., 1991). In addition, analytical models of the hydration 
of hard spheres suggest that linearity is achieved only above a certain size of the 
spheres (Lum et al., 1999), which implies that γ ought to be larger for proteins than 
for small molecules.
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4 Computational Protein-Protein Interactions

Equation 1.1 is a quantitative expression of the hydrophobic effect. Because a 
nonpolar solute cannot give or receive H-bonds, the water molecules in contact with 
it lose part of their H-bond energy and/or their freedom of orientation (Kauzmann, 
1959; Tanford, 1997). This costs free energy, and Equation 1.1 states that, within a 
family of similar molecules, the cost is proportional to the number of water mole-
cules concerned. It can just as well be written with the number of carbon atoms in the 
hydrocarbon molecule, or the volume it occupies, in place of the ASA, but the ASA is 
a more suitable parameter when dealing with a folded protein that is in contact with 
the solvent only through its surface atoms.

The free enthalpy of a nonpolar solute contains terms other than ∆Gnp, but they 
take similar values in water and organic solvents. The transfer experiment lumps 
together with the hydrophobic effect the balance of the van der Waals interactions 
with made water vs. the organic solvent, also likely to increase linearly with the 
ASA. However, the reasoning does not apply to polar groups that make H-bonds, 
less numerous but much more energetic than van der Waals interactions. Their con-
tribution is a balance between the free enthalpy of water–solute and water–water 
H-bonds. It can be positive or negative depending on the nature of the polar groups 
and the details of their geometry, and is generally difficult to assess. With large 
molecules that make many H-bonds, one may attempt to average the contributions 
of individual bonds and use Equation 1.1 for polar as well as nonpolar groups, with 
appropriate values of γ. However, there are no families of compounds with variable 
numbers of polar groups on which to calibrate the coefficients, and the sets that have 
been proposed over the years show large discrepancies (Eisenberg & McLachlan, 
1986; Ooi et al., 1987; Makhatadze & Privalov, 1994; Xie & Freire, 1994).

Protein–Protein interfaCes in the burieD surfaCe MoDel

Given the atomic coordinates of the complex between a receptor protein (R) and a 
ligand (L; we make this distinction only for convenience, and L may be also a pro-
tein), the size of the RL interface is measured by the buried surface area:

 BSA = ASAL + ASAR – ASARL (1.2)

where ASAL, ASAR, and ASARL are the solvent-accessible surface areas of free R, 
free L, and the RL complex, respectively. When RL dissociates, nonpolar groups in 
R and L move from a protein environment to water. The relevant free enthalpy term 
can be calculated from Equation 1.1 and the nonpolar contribution to the BSA, but 
the value of γ derived from hydrocarbon transfer experiments may not be appropri-
ate, due to the discrepancies noted earlier between microscopic and macroscopic 
approaches and because the protein environment is more dense and better packed 
than an organic solvent.

Nevertheless, the BSA has proved to be a very useful parameter to evaluate the 
interaction between two proteins. Its estimation from atomic coordinates is robust, 
and it distinguishes between different categories of interactions. Protein–protein 
complexes have an average BSA of 1910 Å2, and 58% of that BSA belongs to nonpo-
lar groups (Table 1.1). Lo Conte et al. (1999) noted that, in a sample of 75 complexes, 
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many enzyme–inhibitor complexes and nearly all the complexes between a protein 
antigen and a cognate antibody have an interface that buries 1200–2000 Å2, which 
they called “standard size.” Figure 1.1 represents the BSA distribution in a larger set 
of complexes recently assembled by Hwang et al. (2008). The average BSA in that 
set is the same as in Table 1.1, but the range of the values (800–5800 Å2) is broader 
than in earlier studies. Nevertheless, all but 2 of the 25 antigen–antibody complexes 

table 1.1
Properties of Protein–Protein interfaces

interface Parameter
Protein–Protein 

Complexesa homodimersb

Weak 
Dimersc

Crystal 
Packingd

Number in data set 70 122 19 188

BSA  (Å2) 
(SD)

1910
(760)

3900
(2200)

1620 
(670)

570/1510 
(520)

Number of amino acids
% in the interface coree

57
55

104
60

50
51

48
40

Chemical composition (%)f

Nonpolar
Neutral polar
Charged

58
28
14

65
23
12

62
25
13

58
25
17

Atomic packingg

Buried atoms fbu (%)
LD packing index
Sc complementarity score

34
42

0.69

36
45

0.70

28
34
—

21
32

0.63

Number per 1000 Å2 BSA
H-bonds
Hydration watersh

5.3
10

4.8
11

4.3
—

3.6
15

Residue conservationi s core/rim 
ratio

0.82 0.87 —

a Data of Chakrabarti and Janin (2002) on a subset of the complexes of Lo Conte et al. (1999).
b Data of Bahadur et al. (2003).
c Homodimers in equilibrium with the monomer according to the literature (Lévy, 2007).
d Pairwise interfaces in crystals of monomeric proteins. The first mean BSA value is for the 1320 inter-

faces in the 152 crystal forms analyzed by Janin and Rodier (1995). All other numbers are for the 188 
interfaces with BSA >800 Å2 in Bahadur et al. (2004).

e Core residues contain interface atoms with zero ASA in the assembly.
f Fraction of the BSA contributed by nonpolar (carbon-containing) chemical groups; groups that contain 

N, O, or S are counted as neutral polar, or charged in Asp, Glu, Arg, and Lys side chains.
g fbu is the fraction of interface atoms with zero ASA in the assembly; LD is defined in Bahadur et al. 

(2004), Sc is defined in Lawrence and Colman (1993).
h Data from Rodier et al. (2005).
i Ratio of the mean values of the Shannon entropy (s) of the residues of the interface core and rim in the 

aligned sequences of homologous proteins: 52 protein components of the complexes (excluding anti-
gen–antibody complexes), 121 homodimers, and 102 monomeric proteins in crystal contacts (Guharoy 
& Chakrabarti, 2005).
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and 55% of the other complexes have standard-size interfaces; 7% have a BSA less 
than 1200 Å2, and 38% a BSA larger than 2000 Å2.

The set of Hwang et al. (2008) was assembled to benchmark protein docking algo-
rithms, and it includes the structures of the free components as well as the complexes. 
When the free and bound structures are compared by least-square superposition, the 
root mean squared (RMS) distance between the Cα atoms ranges between 0.2 and 8 
Å. Small RMS distances imply that the components of the complex associate as rigid 
bodies to a good approximation; they only undergo side-chain rotations and small 
main-chain movements. Large RMS distances point to major conformation changes 
and to a mechanism of induced fit or flexible recognition. In Figure 1.1, we set the 
limit between the two categories at 1.8 Å. With that cutoff, all the complexes with a 
BSA <1200 Å2 and 92% of those with a standard-size interface are in the rigid body 
category, which includes all but two of the antigen–antibody complexes and 70% of 
the other complexes. The induced fit category contains only 8% of the complexes 
with a BSA <2000 Å2 and 47% of those with a larger BSA. Thus, the new sample 
supports the remark made by Lo Conte et al. (1999) that large interfaces correlate 
with large conformation changes in protein–protein complexes.

This remark can be extended to oligomeric proteins, most of which contain large 
interfaces (Janin et al., 1988; Jones & Thornton, 1995; Bahadur et al., 2003). Their 
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antigen/antibody
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figure 1.1 BSA and the mode of protein–protein recognition in complexes. Histogram of 
the buried surface area in the nonredundant set of 123 protein–protein complexes assembled 
by Hwang et al. (2008). This set includes the structures of the components as well as of the 
complexes. After least-square superimposition of the components and the complexes, the 
RMS distance between Cα atoms is less than 1.8 Å in 23 of the 25 antigen–antibody com-
plexes. The other complexes are marked “rigid body” when the RMS distance is less than 1.8 
Å and marked “flexible” when it is larger.
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subunits usually fold as they assemble, undergoing disorder-to-order transitions 
that are extreme cases of conformation changes. In contrast, crystal packing con-
tacts tend to create small interfaces and induce only minor conformation changes. 
Table 1.1 reports mean values of the BSA in homodimers and crystal contacts for 
comparison with the complexes. In crystals of monomeric proteins, the average pair-
wise contact buries 570 Å2 (Janin & Rodier, 1995), less than the minimum value of 
800 Å2 observed in complexes or homodimers. Nevertheless, a significant fraction 
of the crystal packing interfaces have a BSA >800 Å2, and thus are comparable in 
size to the interfaces of complexes. Table 1.1 cites properties of these large non-
specific interfaces along with those of the biologically significant assemblies. The 
crystal packing interfaces have the same nonpolar fraction as in the complexes, but 
they contain fewer buried atoms (fbu = 21% vs. 28%), fewer H-bonds (3.6 vs. 5.3 per 
1000 Å2), and more water molecules (15 vs. 10 per 1000 Å2) in proportion of their 
size. Moreover, their Sc complementarity score (Lawrence & Colman, 1993) and LD 
packing index (Bahadur et al., 2004) are low, which suggests that the nonspecific 
interfaces are less tightly packed than specific ones.

The set of homodimeric proteins assembled by Bahadur et al. (2003) has a mean 
BSA of 3900 Å2; all the interfaces are at least standard size, and some bury as much 
as 10,000 Å2, a surface equivalent to the one buried when a small protein folds. With 
65% of the BSA coming from nonpolar groups, the homodimer interfaces are more 
hydrophobic than in complexes. They bury a greater proportion of their atoms and 
may also be better packed, but the differences indicated by the LD and Sc parameters 
are marginal, and the density of polar interactions (H-bonds and hydration waters) is 
not significantly different from that in complexes. In addition, Table 1.1 also mentions 
“weak dimers,” a set of homodimers known to be in equilibrium with the monomers, 
assembled by Dey et al. (in preparation) with the help of the PiQSi database (http://
www.supfam.org/elevy/piqsi/; Lévy, 2007). In this set, the BSA range is 750–3000 
Å2 and the mean is 1620 Å2, close to the value reported by Noreen and Thornton 
(2003b) in an earlier set of the same type. The interfaces of the weak dimers are 
comparable in size to those of the complexes, but they tend to be less polar and bury 
fewer atoms; moreover, their low LD index suggests that they are poorly packed like 
the crystal packing interfaces.

burieD surfaCe areas anD binDing free energies

The stability of a complex RL and the affinity of R for L are characterized by the 
equilibrium constant (Kd) or by the standard state free enthalpy of dissociation per 
mol of complex:

 ∆Gd = –RT ln Kd/c° (1.3)

where c° is the standard state concentration (1M by convention); RT ≈ 0.6 kcal.mol–1 
at 300K. For short, we shall call ∆Gd a “binding free energy,” but not a “binding 
energy” as the literature often does. Writing energy for enthalpy ignores the pressure 
dependence of the equilibrium, of no significance for most applications. Omitting 
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8 Computational Protein-Protein Interactions

free overlooks the crucial role of entropy, and masks the point that, for a bimolecular 
reaction, the value of ∆Gd depends on the choice of c°.

The data in Table 1.1 suggest a broad correlation between the stability of a protein 
assembly, and the size and nonpolar character of its interface. To make it quantita-
tive, Horton and Lewis (1992) established a linear relationship between the binding 
free energy of a set of complexes and their BSA appropriately weighted for the polar 
and nonpolar components. The set comprised mostly enzyme–inhibitor complexes 
that have standard-size interfaces and assemble as a rigid body, and the correlation is 
unlikely to extend to other systems. It would predict very large binding free energies 
for all the complexes that have a BSA >2000 Å2, and thus make them much more 
stable than they are in reality. In general, conformation changes and other energy 
terms not directly related to the interface size mask any correlation of the BSA with 
stability. For instance, most of the complexes involved in signal transduction have 
larger interfaces than protease-inhibitor complexes, yet they are often short lived and 
display large conformation changes (Lo Conte et al., 1999).

On the other hand, the existence of a correlation between ∆Gd and BSA is sup-
ported by experiments that make small changes in carefully chosen systems. When 
the dissociation constant K’d of a mutant complex is compared to the Kd of the wild 
type, Equation 1.3 (from which c° is eliminated) yields the change in the binding 
free energy:

 ∆∆G = RT ln K’d /Kd (1.4)

In the simple case where the mutation affects neither the conformation of the 
components nor the polar interactions, the nonpolar contribution dominates:

 ∆∆G ≈ ∆∆Gnp = γ ∆BSA (1.5)

where ∆BSA is the change of the buried surface area caused by the mutation.
Mariuzza and collaborators (Sundberg et al., 2000; Li et al., 2005) have observed 

such a relation in experiments where they introduced side chains of different sizes at 
given positions of the antigen-combining site of two antilysozyme monoclonal anti-
bodies. They measured the dissociation constant of each mutant complex with the 
antigen, then determined x-ray structures to check that there was no conformation 
change. ∆Gd was a linear function of the BSA in both series of mutants, but the slope 
was nearly three times as large for the H63 antibody mutated on a tyrosine placed at 
the center of the interface than for the D1.3 antibody where the mutation site was a 
tryptophan at the periphery.

Another example of linear relationship between binding free energy and BSA 
concerns complexes with nonprotein ligands. Wells and McClendon (2007) com-
pared the potency of a series of small molecules that bind to protein targets of 
pharmaceutical interest. Expressed as a binding free energy, the potency is linearly 
related to the number of nonhydrogen atoms in the ligands. In Figure 1.2, that num-
ber was converted into a BSA by assuming that all the ligand atoms are in contact 
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with the protein and that the average BSA per atom is the same as in protein–protein 
complexes (9.5 Å2; Chakrabarti & Janin, 2002). With these assumptions, the slope 
of the regression line is in the range of the values of γ for hydrocarbons cited earlier. 
The figure also includes the antibody mutation data of Sundberg et al. (2000) and 
Li et al. (2005) for comparison. The antibodies have about 80 atoms in contact with 
the antigen, and as the mutations remove only a few, the lines cannot be extrapo-
lated to the whole interface. On the other hand, the small molecules of Wells and 
McClendon (2007) have up to 56 atoms, and it is not unreasonable to extend that line 
to 80. This predicts ∆Gd ≈ 17.5 kcal.mol–1, much more than the 11 kcal.mol–1 reported 
for the D1.3 or H63/lysozyme complexes, but other protein–protein complexes with 
interfaces of the same size, barnase/barstar for instance, have binding free energies 
of that order or greater. Thus, there is a qualitative, but not quantitative, agreement 
between the observed binding free energies and the values expected from the line 
in Figure 1.2. Even that must be qualified: the small molecules contain polar atoms, 
and we do not know how much of their surface is buried when they bind; and the 
plot altogether ignores what happens on the target protein or on the antigen side of 
the interface.
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figure 1.2 Binding free energies and buried surface area. (): Mutant data for antibody 
D1.3 (Sundberg et al., 2000); ∆∆G is plotted against the BSA change in six mutants of residue 
TrpVL92, located at the periphery of the interface with the antigen hen egg lysozyme; the 
slope of the regression line is 23 cal.mol–1.Å–2. (): Mutant data for antibody H63 (Li et al., 
2005); ∆∆G is plotted against the BSA change in four mutants of residue Tyr VH33 at the 
center of the interface; the slope of the line is 66 cal.mol–1.Å–2. (): ∆Gd of small molecules 
bound to proteins of pharmacological interest (Wells & McClendon, 2007); each nonhydro-
gen atom is assumed to contribute 9.5 Å2 to the BSA; the slope of the line is 21 cal.mol–1.Å–2. 
(×): Mean and standard deviation of ∆Gd for xenon bound to three proteins (myoglobin, lipid 
transfer protein, and T4 lysozyme; Desvaux et al., 2005).
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hot sPots anD the nonaDDitivity 
of binDing free energies

In the D1.3 antibody–lysozyme complex, about 19 residues of each partner con-
tribute to the BSA, and, except for the glycines, nearly all have been mutated to 
alanine (Ala; Dall’Acqua et al., 1996, 1998). In these experiments, a factor of 2 in 
Kd equivalent to ∆∆G = 0.4 kcal.mol–1 is considered as significant; occasionally, 
the mutation improves affinity and ∆∆G is negative, but rarely less than –0.4 kcal.
mol–1. The hot spots are positions where ∆∆G exceeds 1.5 kcal.mol–1 (Clackson 
& Wells, 1995) or 2 kcal.mol–1 (Bogan & Thorn, 1998), which represent a factor 
of 12 and 30 in Kd, respectively. In antibody D1.3 and lysozyme, 6 of 26 muta-
tions yield a ∆∆G below 0.4 kcal.mol–1, and another 6 a ∆∆G above 1.5 kcal.mol–1. 
Thus, about one-quarter of the interface residues are silent, and another quarter 
are hot spots.

The ASEdb database (http://nic.ucsf.edu/asedb; Thorn & Bogan, 2001) reports 
results of alanine-scanning studies in several systems that show a similar fraction 
of hot spots, but more silent residues, sometimes up to 50%. It should be noted 
that site-directed mutagenesis is blind to interactions involving the protein main 
chain, which contributes one-fifth of the BSA and an even larger proportion of the 
H-bonds in protein–protein complexes (Lo Conte et al., 1999). In addition, Gly 
and Ala residues are often not mutated. On the other hand, the residues that make 
large contributions to the BSA are almost always hot spots. More than half of the 
residues with ∆∆G > 4 kcal.mol–1 in ASEdb are tryptophans, tyrosines, or argin-
ines, with side chains that often bury over 100 Å2 in a complex. Thus, mutating to 
Ala the peripheral tryptophan of antibody D1.3 removes 145 Å2, or one-sixth of the 
ASA lost in contacts with lysozyme, while decreasing its affinity for the antigen 
by 4 kcal.mol–1 (Sundberg et al., 2000). In the trypsin–soybean trypsin inhibitor 
complex (PDB entry 1avw), the arginine residue in P1 position loses 245 Å2, over 
one-quarter of the ASA lost by the inhibitor. The effect on affinity of substituting 
that arginine is not known, but in the pancreatic inhibitor, the equivalent lysine-to-
Ala mutation raises Kd by eight orders of magnitude (∆∆G = 10 kcal.mol–1; Castro 
& Anderson, 1996; Krowarsch et al., 1999), possibly the greatest affinity drop ever 
measured for a point mutant.

It has sometimes been claimed that hot spots quantitatively account for the 
observed binding free energies. If we assume that the effects of mutations are addi-
tive, a “shaved” complex in which n hot spot residues have been converted to Ala is 
expected to have:

 ∆G’d = ∆Gd – ∑n ∆∆G (1.6)

On occasion, the summation yields ∆G’d ≈ 0, which is the basis for the claim. 
However, this only predicts for the shaved complex a Kd ≈ 1 M, a value of no particu-
lar significance; ∆G’d could just as well be negative and K’d > 1M. Thus, adding up 
∆∆G values says little about the nature of the interaction or the role of the hot spots. 
For the same reason, the small molecule line in Figure 1.2 does not have to pass 
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through the origin (the mutant lines do, since the origin corresponds to the wild-type 
complex). Instead, the point where it crosses the vertical axis yields a predicted ∆Gd 
value for a zero-atom ligand. With L just a point in space, the energy of the system 
does not change when RL dissociates, but its entropy does, because L gains freedom 
to move by translation. The relevant term in ∆Gd can be approximated as:

 ∆Gtrans ≈ RT ln V/V°  (1.7)

where V and V° are the volumes available to L before and after dissociation. V° is 
fixed by the standard state concentration (recall that ∆Gd is standard state dependent): 
V° ≈ 1600 Å3 in the conventional 1M standard state. V depends on how rigidly bound 
the ligand is to the protein; if we assume that it can move by δx = 0.3–1 Å while 
remaining bound, V ≈ 4π/3 δx3, and Equation 1.7 yields ∆Gtrans ≈ –3.5–6 kcal.mol–1. 
This term is the only one in ∆Gd for a zero-atom ligand, and for a one-atom ligand, 
it represents the contribution of the ligand entropy, purely translational. Whereas the 
zero-atom ligand is just a convention, the one-atom ligand can be real. Xenon binds 
to a number of proteins, which makes it useful as a heavy atom for determining 
phases in protein crystallography. The observed Kd values are in the range 5–100 

mM (Desvaux et al., 2005), which happens to place the rare gas right on the small 
molecule line of Figure 1.2.

The translational contribution to ∆Gd is by nature nonadditive: with more atoms 
in L, the added degrees of freedom are rotational and vibrational, and their free 
enthalpy is not volume dependent. Thus, the range of ∆Gtrans values cited earlier for 
the zero-atom ligand may be valid for a protein molecule (Finkelstein & Janin, 1989; 
Ruvinsky, 2007). Other nonadditive terms derive from the interactions that are made 
in the complex. If a pair of chemical groups in R and L interact with an energy (ε), 
deleting one in R’ and the other in L’ should cause affinity to drop by ∆∆G = ε in the 
R’L and the RL’ complexes, and also in the R’L’ complex, whereas additivity would 
predict 2ε. On the other hand, ∆∆Gnp is additive because the change induced by the 
mutations concerns the ASA of free R or free L, not the complex.

In reality, ∆∆G almost never represents the energy of the interactions made by the 
deleted atoms. This is most obvious for polar interactions. If a polar side chain in R is 
engaged in a buried H-bond at the RL interface, the R’L mutant complex will contain 
an unpaired polar group in L, and ∆∆G will reflect the net loss of the water–protein 
H-bond that this group makes in free L. The contribution of the protein–protein 
H-bond to ∆Gd, probably much smaller, can be recovered by deleting the unpaired 
polar group in L and preparing the R’L’ complex. This reasoning is at the basis of 
the double mutant cycle (Fersht, 1988). Many studies show that the free energy con-
tribution of an H-bond between neutral side chains is less than 1 kcal.mol–1, which 
implies that the two-alanine mutation in the double mutant can be silent even though 
each of the mutated residues is a hot spot. The method can be extended to cycles of 
more than two mutants to test whether the contributions of the pairwise interactions 
are themselves additive. Neighboring pairs of interacting residues often display non-
additive cooperative effects that point to a modular architecture of the binding sites 
(Reichmann et al., 2005, 2007).
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the Core/riM MoDel of Protein–Protein interfaCes

Based on alanine-scanning data, Bogan and Thorn (1998) proposed an O-ring model 
of protein–protein interfaces, in which the hot spots are surrounded by energetically 
unimportant residues that occlude solvent from them. In parallel, Lo Conte et al. 
(1999) noted that only about one-third of the interface atoms are actually buried 
(zero ASA) in protein–protein complexes (34% in Table 1.1); another third are in 
contact with immobilized water, the remainder with bulk solvent. These authors 
represented the interfaces as having a core of buried atoms surrounded by rings 
of atoms accessible to the solvent. This led Chakrabarti and Janin (2002) to split 
protein–protein interfaces into two regions: the core, made of the residues that con-
tain the buried interface atoms, and the rim, made of the residues in which all the 
interface atoms remain solvent accessible. In the average protein–protein complex, 
the core contains 55% of the interface residues, the rim 45%. The amino acid com-
position of the rim is very similar to that of the solvent accessible surface, except that 
the core is depleted by a factor of nearly two in the charged residues Asp/Glu/Lys 
(but not Arg), and enriched by the same factor in the aromatic residues Phe/Tyr/Trp 
(Chakrabarti & Janin, 2002). The core represents a larger fraction of the interface 
residues in homodimer proteins, and its composition is enriched in aliphatic as well 
as in aromatic residues (Bahadur et al., 2003). Weak dimers have interfaces that bury 
fewer atoms and have only 51% of their residues in the core; crystal packing contacts, 
which bury only one-fifth of their atoms, have only 40% (Table 1.1).

The core/rim model of the interfaces is structure based, but it has a counterpart 
in evolution. Although commonly used to identify binding sites (Arnon et al., 2001; 
Lichtarge & Sowa, 2002; Ma et al., 2003; Caffrey et al., 2004), the conservation of 
the interfaces is far from obvious in many systems. One reason is that the evolu-
tionary pressure is not homogeneous within an interface. Guharoy and Chakrabarti 
(2005) calculate the Shannon entropy (s) of the interface residues in sets of homolo-
gous protein sequences; s measures the sequence variability at individual positions 
of the sequence, and it is zero at fully conserved positions. Table 1.1 shows that, in 
the average homodimeric protein or component of a protein–protein complex, the 
Shannon entropy takes lower values for residues of the interface core than the rim. 
With no such effect being found at crystal contacts, one may conclude that the spe-
cific interaction between two proteins exerts a stronger selection pressure on the core 
than the rim of their interface.

Figure 1.3 illustrates the core and rim and their relationship to sequence conserva-
tion in the Gα/Gβγ interface of transducin, a heterotrimeric G-protein that interacts 
with rhodopsin to initiate the visual signal in the retina (Lambright et al., 1996). 
The Gα subunit of transducin has 45 residues in contact with Gβγ. In the left panel 
of Figure 1.3, its molecular surface is colored red for the core residues, blue for the 
rim residues; in the right panel, it is colored according to their Shannon entropy. The 
Gα/Gβγ interface is in two patches. The minor patch implicates the N-terminal helix 
of Gα that points out of the subunit on the top; the helix, which comprises 6 core 
and 11 rim residues, is disordered in the free subunit. The major patch involves the 
main body of the subunit, close to the GTP binding site. It has a well-defined core 
of 14 residues surrounded by an equivalent number of rim residues, and resembles 

© 2009 by Taylor & Francis Group, LLC



Basic Principles of Protein–Protein Interaction 13

the standard-size interface of a protease–inhibitor complex both in size and in the 
O-ring like arrangement of its core and rim. A comparison of the two panels indi-
cates that whereas the sequence of the N-terminal helix is poorly conserved (s > 1 
in blue), the major patch is fully conserved (s = 0 in red) in the core, and moderately 
(pink) to highly (red) conserved in the rim.

The description of the interface conservation given by the Shannon entropy is 
generally consistent with the data from alanine-scanning experiments. Guharoy and 
Chakrabarti (2005) report a correlation between ∆∆G and the contribution to the BSA 
of the residues of interface core, but not the rim. The correlation yields a slope γ = 
26–38 cal.mol–1.Å–2, close to the values derived from the solubility of hydrocarbons. 
Other approaches, for instance, the “residue depth” of Chakravarty and Varadarajan 
(1999) or the “hot regions” of Keskin et al. (2005), give a similar picture of the way 
hot spots are distributed within an interface. In Figure 1.4, based on the data on five 
complexes reported in ASEdb, nearly all of the mutations with large effects on affin-
ity (∆∆G > 2 kcal.mol–1) are seen to concern residues of the interface core. Mutations 
of the interface rim are silent (∆∆G < 0.4 kcal.mol–1) or have a moderate effect (0.4–2 
kcal.mol–1). This does not imply that the rim plays no part in the interaction, only 
that its contribution to ∆Gd does not depend heavily on the nature of the side chains. 
The mutations that affect residues outside the interface are silent, with a few excep-
tions that may be due to conformation changes and other indirect effects. A few 
silent mutants belong to the interface core; some may represent interactions of main 

A B

figure 1.3 (SEE COLOR INSERT FOLLOWING PAGE 174.) The core/rim model 
and the conservation of interface residues. The surface of the Gα subunit of transducin (PDB 
entry 1got; Lambright et al., 1996) is rendered in gray except for the region in contact with 
Gβγ. The feature protruding on the top right is the N-terminal helix. (A) The interface core, 
made of residues containing atoms buried at the interface, is in red; the rim, made of residues 
in which all interface atoms remain solvent accessible, is in blue. (B) The interface is colored 
according to the Shannon entropy that measures the divergence of each position in aligned 
sequences, ranging from 0 (red) to 0.4 (pink) to 1.4 (dark blue). Figure made by M. Guharoy 
(Bose Institute, Calcutta) with GRASP (Nicholls et al., 1991).
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chain atoms; others result from compensating effects that cannot be assessed with 
the present data.

Designing interaCtions

In a complex with a standard-size interface, the core typically comprises 26 resi-
dues, 13 on each component, and mutating a few suffices to destroy affinity. The 
remark can be turned around to state that mutating a few properly chosen resi-
dues should enable us to create stable complexes. This, of course, is what the 
immune system does when it makes antibodies, but the same result has to be 
reached by selecting sequences in a rationally designed combinatorial library cre-
ated by introducing degenerate codons in a synthetic gene. In Nygren’s affibodies, 
the three-α-helix scaffold of protein Z is made variable at a dozen surface sites, 
and the selection is made by phage display (Nord et al., 1995; Nygren & Uhlen, 
1997; Nygren, 2008). In Plückthun’s DARPins, the scaffold contains a variable 
number of ankyrin repeats, and the selection tool is ribosome display (Binz et 
al., 2003, 2005). X-ray structures are available for an affibody/protein Z complex 
(PDB entry 1lp1; Högbom et al., 2003), and a DARPin/caspase 2 complex (1p2c; 
Schweizer et al., 2007). Both display interfaces with a BSA ≈ 1600 Å2 that impli-
cate mostly, but not exclusively, the randomized residues. In the affibody complex, 
11 of the 13 randomized residues lose ASA, and they contribute 70% of the BSA; 
the remainder comes from seven framework positions. The DARPin contains four 
ankyrin repeats mutated at a total of 22 positions, 14 of which are part of the 
interface and contribute 86% of the BSA. The interface size, the total number of 
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figure 1.4 Alanine scanning and the core/rim model. The alanine-scanning data on five 
complexes are taken from ASEdb: barnase/barstar (1brs), Factor VII/Tissue factor (1dan), 
RNase inhibitor/RNase A (1dvf), and the two antigen–antibody complexes D1.3/lysozyme 
(1vfb) and D1.3/E5.2 (1vfb).
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residues involved, and the abundance of aromatic residues that are selected at the 
randomized positions all resemble monoclonal antibodies, and the affinity is at 
least as good.

The number of mutation sites can be much reduced, and the selection step elimi-
nated altogether, with the help of symmetry. Grueninger et al. (2008) have introduced 
nonpolar side chains at selected surface sites in four bacterial proteins that include 
Uro, a homodimer, and Rua, a cyclic tetramer, aiming to create stable assemblies 
with twice the original number of subunits. Crystal structures show that a Uro vari-
ant with three substitutions has acquired the designed tetrameric structure, and that 
a single mutation changes Rua from a C4 tetramer to a D4 octamer. Another variant 
with two substitutions yields a nonsymmetrical octamer, and a third forms fibers. 
In these systems, one to three point mutations suffice to generate new assemblies 
instead of 11 to 13 in affibodies and DARPins, but each mutation creates several 
(presumably) favorable contacts as a result of the symmetry, and the new interfaces 
include many nonmutated residues. In the D4 Rua octamer, for instance, the tetramer/
tetramer interface does implicate the eight symmetry-related tyrosines that replace 
alanines in the wild type, but they contribute only 9% of the BSA; the remainder 
comes from 21 other residues and their symmetry counterparts.

ConClusion

Most of the site-directed mutagenesis and biophysical data discussed concern sys-
tems in which rigid-body recognition is a valid approximation. In the Rua octamer 
or the complexes with affibodies and DARPins, the components retain their struc-
ture, and the designed assemblies obey the rules that we observe in natural assem-
blies. The Rua octamer was designed ab initio, the affibodies and DARPins were  
obtained by a combination of rational design and in vitro selection. The success of 
the two approaches proves that our understanding of the rigid-body mode of pro-
tein–protein interaction has reached the point where we can predict novel modes 
of interaction and build protein molecules that use them. The CAPRI (Critical 
Assessment of Predicted Interactions) experiment, designed to test protein docking 
methods (Janin et al., 2003), confirms that view. In seven years, CAPRI has dem-
onstrated conclusively that the structure of a complex can be accurately predicted 
from that of its components as long as the conformation changes are small; the 
prediction becomes inacurrate or fails altogether when they are large (Schueler-
Forman et al., 2005; Janin & Wodak, 2007; Lensink et al., 2007). Flexible recogni-
tion and induced fit often involve major changes in the partner proteins, including 
disorder-to-order transitions in which protein folding is coupled to ligand binding, 
as for the N-terminal helix of transducin Gα. As they play a major role in many 
processes, uncovering their mechanism will be of great interest in the years to 
come.
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2 Low-Resolution 
Recognition Factors 
Determine Major 
Characteristics of the 
Energy Landscape 
in Protein–Protein 
Interaction

Ilya A. Vakser

overvieW

Protein–protein recognition is a key element of life at the molecular level. Our 
understanding of the principles of protein recognition is still limited. However, 
a significant amount of information on the subject has been already accumulated 
and analyzed. The structure of protein–protein complexes is generally more 
difficult to determine than the structure of individual proteins. However, the 
number of experimentally determined complexes is statistically significant. The 

Contents

Overview .................................................................................................................. 21
Introduction ..............................................................................................................22
Databases .................................................................................................................23
Parallels between Protein Recognition and Protein Folding ....................................25
Complementarity, Recognition Motifs, and Hot Spots ............................................27
Large-Scale Recognition Factors .............................................................................29
Intermolecular Energy Landscape ...........................................................................34
Implications for Docking .........................................................................................36
Acknowledgments .................................................................................................... 37
References ................................................................................................................ 38

© 2009 by Taylor & Francis Group, LLC



22 Computational Protein-Protein Interactions

databases of protein–protein complexes are important for systematic studies of 
protein interactions and the design of new predictive tools. A number of such 
databases have been compiled and widely utilized in the research community. 
The underlying physical principles of protein folding and binding are the same, 
which translates into the similarity of the recognition factors in folding and 
docking. The concepts of steric and physicochemical complementarity are the 
basis for many modeling techniques applicable to both problems. Structural rec-
ognition factors relate to energy landscape characteristics that help understand 
the formation of complexes and create better modeling tools. The multiscale 
approach to modeling protein interactions reflects the nature of protein recog-
nition, which involves the larger structural factors facilitating complex forma-
tion and the smaller local factors responsible for the final lock of the molecules 
within the complex.

introDuCtion

Protein–protein complex formation can be viewed from either a more physical per-
spective as a minimization of the free energy of the system or from a more empiri-
cal point of view as a match between various phenomenological structural and/or 
physicochemical motifs (so-called recognition factors). In living organisms, proteins 
recognize their partners among many other proteins and bind in a specific way in 
short physiological timeframes. Given the complexity of the system, from either the 
physical or empirical points of view, the formation of a protein–protein complex is a 
remarkable event, based on the nature’s superefficient “energy-minimization proto-
col” and guided by long-range and short-range recognition factors. Modern methods 
of protein docking are based on our efforts to simulate and navigate the intermolecu-
lar energy landscape, and on our current understanding of the recognition factors 
governing complex formation.

The three-dimensional (3D) structure of a protein–protein complex, generally, is 
more difficult to determine experimentally than the structure of an individual pro-
tein. Adequate computational techniques to model protein interactions are impor-
tant because of the growing number of known protein 3D structures, particularly in 
the context of structural genomics (Russell et al. 2004; Szilagyi et al. 2005; Vakser 
2008). The protein docking techniques offer tools for fundamental studies of protein 
interactions and provide a structural basis for drug design. Since its introduction in 
the 1970s, the protein–protein docking field has grown substantially through the 
development of powerful docking algorithms, rapid progress in computer hardware, 
and significant expansion of available experimental data on structures of protein–
protein complexes (Lensink et al. 2007; Vakser and Kundrotas 2008).

Nevertheless, our understanding of the principles of protein recognition is still 
limited. With the rapid advances in experimental and computational determination of 
structures of individual proteins, the importance of modeling of protein 3D interactions 
increases. We now face the challenge of structural modeling of protein-interaction 
networks on the genome scale, requiring much more powerful docking methodolo-
gies, based on the knowledge of protein–protein recognition characteristics.
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Databases

Although the structure of protein–protein complexes is generally more difficult 
to determine than the structure of individual proteins, the number of experimen-
tally determined complexes is statistically significant. The databases of protein–
protein complexes are indispensable for systematic studies of protein interactions 
and the design of new predictive tools. A number of databases of co-crystallized 
protein–protein complexes have been compiled. One early data set of protein–pro-
tein complexes was built by Vakser and Sali (unpublished) based on a 1997 release 
of the Protein Data Bank (PDB) containing 5013 entries. It has been extensively 
used in studies of knowledge-based potentials (Glaser et al. 2001), intermolecular 
energy landscapes (Vakser et al. 1999; Tovchigrechko and Vakser 2001; Papoian 
and Wolynes 2003), docking methodology (Tovchigrechko et al. 2002), and other 
studies. Other data sets of protein–protein complexes have been compiled and used 
to address various aspects of physicochemical and structural features of protein–
protein interfaces (Dasgupta et al. 1997; Keskin et al. 1998; Larsen et al. 1998; Lo 
Conte et al. 1999; Ponstingl et al. 2000; Lu et al. 2003; Keskin et al. 2004; Davis and 
Sali 2005; Gong et al. 2005; Teyra et al. 2006; Jefferson et al. 2007; Kundrotas and 
Alexov 2007).

The data sets of co-crystallized structures are important for studying protein inter-
faces. However, their role in validation of docking procedures is limited. The reason 
is that the bound docking problem (rematching of separated components of a com-
plex in their bound conformation) has been solved by modern docking approaches. 
The bound docking problem also does not have practical value in the sense that it 
does not create new structural information (the knowledge of bound conformations 
assumes that the structure of the complex had been determined). The challenge for 
the docking techniques is prediction of complexes from the unbound components 
(experimentally determined and, even more challenging, modeled). For that matter, 
the databases of unbound protein structures corresponding to complexes of known 
structure (unbound docking benchmark sets) are important. The selection of crystal 
structures for such data sets is much more limited than for the bound sets because 
only a limited number of proteins are crystallized in both bound and unbound form 
(Mintseris et al. 2005; Gao et al. 2007).

The Dockground resource (http://dockground.bioinformatics.ku.edu) implements 
a comprehensive database of co-crystallized (bound) protein–protein complexes, 
providing foundation for the expansion to unbound (experimental and simulated) 
protein–protein complexes, modeled protein–protein complexes, and systematic sets 
of docking decoys. The bound part of Dockground is a relational database of anno-
tated structures based on the Biological Unit file (Biounit) provided by the Research 
Collaboratory for Structural Bioinformatics (RCSB) as a separated file containing 
a probable biological molecule. Dockground is automatically updated to reflect 
the growth of the PDB. It contains 102,527 pairwise complexes from 24,596 PDB 
entries, out of a total 52,263 PDB structures (August 2008). The database includes a 
dynamic generation of nonredundant data sets of pairwise complexes based either on 
the structural similarity (Structural Classification of Proteins [SCOP] classification) 
or on user-defined sequence identity.
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The bound part also contains “easy” precompiled complexes sets:

 1. Automatically selected representative complexes. The set is regularly 
updated and is downloadable as an Excel-readable text file. It is built accord-
ing to the criteria: PDB entry is not obsolete; area of interface buried by 
each chain >400 Å2; multimeric state = 2; chains are not tangled, interwo-
ven, or disordered at the interface; no DNA, RNA, or ligand at the interface; 
no S–S bonds between chains; and chains are not membrane associated. 
The current release contains 1970 complexes.

 2. Manually selected representative complexes. The set is updated less fre-
quently and represents a more sophisticated selection of complexes. The 
multimeric complexes are considered and monomeric chains clustered 
with sequence identity 30%, pairwise complexes are reclustered, oligomer 
complex representatives are selected (based on the best resolution), and the 
final dimeric representatives are selected. In addition, the selection keeps 
interfaces containing metal ion, PO4, SO4, and S–S bonds (if those are 
peripheral to the interface), and membrane associated chains (if the mem-
brane-bound part is not part of the structure), and excludes subunit inter-
action that may be obligate (according to the reference in the PDB file). 
If several chains interact with other chains as a whole (judged by visual 
inspection and analysis of references), they are treated as one entity. If 
structures with sequence identity >30% have different binding modes, they 
are considered as different entries. The set contains 523 nonobligate inter-
actions from 508 PDB entries and is downloadable as an Excel-readable 
text file and as PDB coordinates (separately in four categories: enzyme–
inhibitor, antigen–antibody, cytokine or hormone/receptor, and others).

A selection of bound complexes served as the basis for building the unbound 
data set. The rationale for not using all possible bound complexes was that only 
the structures relevant to docking should be considered (e.g., structures that are not 
disordered, have adequate interface area, etc.). The selection criteria were: the struc-
tures have to be nonobsolete and have >30 residues. Unbound structures are separate 
structures that are also co-crystallized in a complex. The web interface allows the 
user to select the data set based on sequence identity (calculated by BLAST [Basic 
Local Alignment Search Tool]) between bound and unbound proteins, sequence 
identity between different bound structures to exclude redundancy, minimal crystal-
lographic resolution, and choice of hetero- or homodimers (or both). As an option, 
the selection can be done for structures related to a specific protein.

Preselected data sets based on most common criteria are suggested for an “easy” 
download. These downloadable data sets also include the following important 
characteristics:

 1. Crystal packing (nonbiological interfaces) and obligate complexes (compo-
nents adopt their folds only within the complex) are excluded. Such com-
plexes were detected for the smaller manually selected representative data 
set by using related reference in the PDB file and were detected for the 
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larger automatically selected data set of all complexes by an automated 
procedure. Weng and co-authors showed that obligate complexes can be 
distinguished based on properties of the interfaces structure (Mintseris and 
Weng 2003, 2005). An automatic classification procedure, NOXClass from 
Lengauer’s lab (Zhu et al. 2006), was used to detect obligate and crystal 
packing interactions based on interface properties.

 2. If the unbound structure is not available in the PDB, it is simulated based on 
the bound structure by assigning side-chain conformations from a rotamer 
library using SCWRL (Canutescu et al. 2003). Such simulated unbound 
structures do not involve backbone changes, which is one of the factors 
limiting their utility. For the future releases, new approaches for unbound 
structure simulation are designed based on known general differences 
between bound and unbound conformations that include both side-chain 
and backbone conformational changes.

The resulting unbound data set, built with >97% sequence identity between bound 
and unbound structures, contains 4723 nonobligate, biological (not crystal packing) 
complexes, originating from 1718 PDB entries. Among those, 892 complexes (from 
542 PDB entries) have the unbound structures crystallized. The unbound structures 
for the rest of the complexes were simulated.

From this data set the nonredundant data set is obtained, with <30% sequence 
identity between the bound complexes. The homomultimers (which are often pre-
sumed to be obligate) are excluded by eliminating complexes with >70% sequence 
identity between units. The resulting set contains 523 complexes (from 508 PDB 
entries). Among them, 81 complexes are enzyme-inhibitor, 70 are antigen–antibody, 
34 are cytokine or hormone/receptor, and 338 are other. Overall, 99 complexes have 
both components in unbound form crystallized, and 143 had one unbound compo-
nent crystallized. The rest of the unbound structures were simulated.

The distribution of complexes according to the change from unbound to bound 
conformations is shown in Figure 2.1. The comparison of bound and unbound crystal 
structures shows that most changes are <4 Å RMSD (all atoms), with a clear peak 
in 0.5–2 Å interval. Some complexes have very large RMSD values due to domain 
movements. The simulated unbound structures are normally distributed with smaller 
RMSD values because they do not involve the conformational changes of the back-
bone. More adequate techniques for simulation of unbound conformations that 
involve backbone conformations are under development.

Parallels betWeen Protein reCognition 
anD Protein folDing

The underlying physical principles that determine the structure of individual pro-
teins and the structure of protein complexes are identical. Statistically derived res-
idue–residue and atom–atom preferences for protein–protein interfaces were found 
to be similar to those in protein cores (Tsai et al. 1996; Vajda et al. 1997; Keskin et 
al. 1998; Glaser et al. 2001; Zhou and Zhou 2002; Liang et al. 2007). A major role 
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of hydrophobicity in protein folding is well established (Richards 1977; Dill 1990). 
Studies of protein–protein interfaces confirm the importance of hydrophobicity in 
complex formation as well (Korn and Burnett 1991; Vakser and Aflalo 1994; Young 
et al. 1994; Tsai et al. 1996; Keskin et al. 2004). The importance of the concept of 
the energy funnel, first demonstrated for protein folding (Bryngelson et al. 1995; Dill 
1999), has been expanded to the intermolecular energy landscape in protein–protein 
interactions (Tsai et al. 1999; Shoemaker et al. 2000; Tovchigrechko and Vakser 
2001; Baker and Lim 2002; Hunjan et al. 2008; O’Toole and Vakser 2008; Ruvinsky 
and Vakser 2008a, 2008b). Tight packing of structural elements inside proteins is 
one of the fundamental concepts in our understanding of protein structures (Ponder 
and Richards 1987; Hubbard and Argos 1994; Jiang et al. 2003). The same concept 
of compactness applies to protein–protein interfaces as well (Keskin et al. 2004; 
Douguet et al. 2006).

The interaction of secondary structure elements in protein structures may be for-
mulated in terms of docking, even though docking is traditionally considered to be 
a problem of matching two separate molecules. The main difference in matching 
secondary structure elements and matching separate molecules is in the constraints 
imposed by the environment. A number of studies explored the applicability of dock-
ing to secondary structure packing (Ausiello et al. 1997; Yue and Dill 2000; Vakser 
and Jiang 2002; Inbar et al. 2003; Jiang et al. 2003). A multiplicity of physicochemi-
cal factors obviously plays a role in the packing of secondary structure elements in 
proteins and in the formation of protein complexes. However, the well-known tight 
packing of structural elements suggests the importance of the geometric fit.

Earlier studies of this subject were primarily focused on helix–helix packing 
(Richmond and Richards 1978; Cohen et al. 1979; Chothia et al. 1981; Murzin and 
Finkelstein 1988; Reddy and Blundell 1993; Walther et al. 1996). One reason was 
the limited number of high-quality crystal structures, mostly containing helices. A 
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traditional biochemical view on interactions of secondary structure elements largely 
neglected geometric complementarity as an important factor (with the exception of 
helix–helix interactions). A docking algorithm based on geometric complementarity 
was applied to a comprehensive database of secondary structure elements derived 
from the PDB (Jiang et al. 2003). The results show that the steric fit plays an impor-
tant role in the interaction of all secondary structure elements. Docking procedures 
have been utilized in protein-structure prediction (Yue and Dill 2000; Haspel et al. 
2002; Inbar et al. 2003). In such cases, the secondary structure elements are docked 
by rigid-body procedures followed by structural refinement.

Docking approaches are popular in modeling the structure of transmembrane 
(TM) helix bundles in G-protein coupled receptors and other integral membrane 
proteins. The few existing crystal structures of integral membrane proteins provide 
useful information on the TM bundle configurations. The TM helices are roughly 
parallel to each other; they are of similar length (determined by the thickness of the 
membrane) and are well packed. Thus, it is reasonable to assume that the structure 
of the bundle is determined primarily by the helix–helix interactions, rather than by 
the interhelical loops (which, of course, still determine the general topology of the 
bundle). Most helix–helix interfaces in TM bundles are predominantly binary—if 
two interfaces overlap, one of them is usually dominant. In that regard, TM bun-
dles are ideal objects for docking predictions. At the same time, helices are simple 
enough to provide validation ground for new docking concepts (e.g., see Pappu et al. 
1999). It has been noted that the side chains at the helix–helix interfaces, on average, 
are shorter than those at the noninterface helix areas (Jiang and Vakser 2000, 2004). 
This structural characteristic creates a low-resolution recognition factor that allows 
one to model the TM bundle at low resolution (Vakser and Jiang 2002). However, a 
high-resolution model of the TM bundle requires an explicit conformational search 
of the helix internal coordinates (primarily side chains). Thus, from the practical 
point, the high-resolution modeling of TM bundles is currently useful only if accom-
panied by a set of experimentally derived structural constraints.

CoMPleMentarity, reCognition Motifs, anD hot sPots

The protein–protein binding site architecture has been extensively studied in recent 
years (Reichmann et al. 2007). Among many factors contributing to protein recogni-
tion and the efforts to model it, a tight geometric complementarity between inter-
acting protein surfaces is a cornerstone of protein–protein docking methodology 
since its inception in 1978 (Wodak and Janin 1978). Systematic database analysis 
of the rapidly growing number of co-crystallized protein–protein complexes pro-
vides an increasing amount of evidence supporting this concept (Keskin et al. 2004; 
Douguet et al. 2006). A number of investigations of packing and buried surface 
area at protein–protein interfaces (Lawrence and Colman 1993; Hubbard and Argos 
1994; Janin 1995) supported the general conclusion that the interacting proteins have 
a high degree of surface complementarity, but indicated that there is a significant 
variation in this regard between different complexes. For example, packing at the 
antigen–antibody interface is relatively loose (Lawrence and Colman 1993; Mariuzza 
and Poljak 1993). The contact surface area in protein–protein complexes generally 
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varies from 500 to 5000 Å2 with many complexes having even larger contact areas 
(Lo Conte et al. 1999; Douguet et al. 2006).

Most protein–protein interfaces are found to be more hydrophobic than exposed 
areas (Korn and Burnett 1991; Vakser and Aflalo 1994; Young et al. 1994; Tsai and 
Nussinov 1997). Hydrophobic amino acid residues tend to be enriched in the interface 
in hydrophobic patches of 200–400 Å2 (Jones and Thornton 1996; Tsai et al. 1996; 
Lijnzaad and Argos 1997). A high degree of electrostatic and hydrogen-bonding 
complementarity is also observed for protein–protein interfaces (Janin 1995; McCoy 
et al. 1997; Tsai et al. 1997; Larsen et al. 1998).

The receptor (the larger protein in the complex) sites are often concave (Ho and 
Marshall 1990; Peters et al. 1996; Binkowski et al. 2003; Nicola and Vakser 2007). 
The binding surface is also known to be more conserved than the nonbinding surface. 
A degree of residues conservation and evolutionary importance is an indicator of the 
binding and/or functional region (Zhang et al. 1999; Armon et al. 2001; Elcock and 
McCammon 2001; Cammer et al. 2003; Yao et al. 2003). It has also been determined 
that entropic properties of the binding site are different from those of the nonbinding 
surface (Elcock 2001; Rajamani et al. 2004). The binding “hot spots” theory points 
to existence of a small number (e.g., three) of interface residues that are key to bind-
ing. They are usually positioned in the middle of the interface, are inaccessible to 
solvent, complementary to other hot spot residues across the interface, are evolution-
ary conserved, and maintain their conformation upon binding (Halperin et al. 2004; 
Rajamani et al. 2004; Vakser 2004; Keskin et al. 2005; Moreira et al. 2007).

The interface residues with the largest conformational change upon binding 
were studied by docking techniques (Tovchigrechko and Vakser 2005). The study 
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figure 2.2 The significance of the side-chain conformation change in docking. The total 
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text for details.
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determined how the replacement of a limited number of such side chains with their 
bound conformations affects the performance of a rigid-body docking procedure on 
the benchmark of the unbound protein structures (Chen et al. 2003). The root mean 
square deviation (RMSD) of a side chain was calculated after superimposing the N, 
C, Cα, and Cβ atoms in the same residue taken from bound and unbound protein con-
formations. All the interface residues were sorted by this side-chain RMSD. N side 
chains with the largest RMSD were selected and replaced by their bound conform-
ers. The side-chain replacement was done for both receptor and ligand. The value of 
N was set to 1, 3, 5, and to all interface residues. The benchmarking protocol was run 
for each pair of generated structures. The results are summarized in Figure 2.2. The 
number of successfully docked complexes significantly increases when only three 
side chains are brought into the bound conformation. There is no improvement with 
a larger number of replaced side chains, and the number of correctly docked com-
plexes still does not reach the one obtained for true bound structures (27 complexes). 
Therefore, one can conclude that for N > 3 the backbone conformational change 
becomes the limiting factor for the binding.

large-sCale reCognition faCtors

One of the most fundamental questions concerning ligand–receptor interaction is 
whether such a process of intermolecular association is generally determined by 
local structural elements of the participating molecules or whether there are also 
large-scale motifs in molecule structures that facilitate complex formation. The local 
physicochemical and steric factors are responsible for the final “lock” of the mol-
ecules when their binding sites are already in close proximity. At the same time, the 
existing evidence suggests that there are structurally determined factors that contrib-
ute to bringing the binding sites to such proximity.

An important insight into the basic rules of protein recognition is provided by 
the studies of large-scale structural recognition factors, such as correlation of the 
antigenicity of surface areas with their accessibility to large probes (Novotny et al. 
1986), role of the surface clefts (Laskowski et al. 1996), binding-site characterization 
based on geometric criteria (Ho and Marshall 1990; Peters et al. 1996; Nicola and 
Vakser 2007), study of the “low-frequency” surface properties (Duncan and Olson 
1993), recognition of proteins deprived of atom-size structural features (Vakser 1995; 
Vakser and Nikiforovich 1995; Vakser 1996b; Vakser et al. 1999), and backbone 
complementarity in protein recognition (Vakser 1996c). The practical importance 
of the large-scale recognition factors for docking methodologies is that they often 
allow one to ignore local structural inaccuracies (e.g., those caused by conforma-
tional changes of the partners upon complex formation).

The effect is illustrated in Figure 2.3, showing the lowest energy low-resolution 
match between unbound hemagglutinin and the BH151 antibody, which is a mean-
ingful approximation of the correct binding mode (Vakser 1997). The binding 
involves significant conformational changes in the surface side chains. Thus, the 
high-resolution rigid-body docking mode was unable to produce adequate structures. 
The match shows the low-resolution surface complementarity between the molecu-
lar structures. A closer examination, however, reveals multiple discrepancies in the 
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atom-size details (penetrations, gaps, physicochemical inconsistencies). Both the 
low-resolution complementarity and the high-resolution mismatches are the direct 
results of the elimination of small structural details from the docking procedure, 
which was specifically designed to provide such effects.

The backbone complementarity in protein–protein recognition was studied directly 
by representing the molecules by Cα atoms only and applying the Cα-centered poten-
tials for intermolecular energy calculations. A systematic six-dimensional search for 
complementarity between ligand and receptor backbone structures revealed that, in 
most cases, the low-energy configurations of the complexes are nonrandomly related 
to their crystal structures.

The computer experiment revealed that all tested backbone structures, except 
antigen–antibody, in all 10 low-energy configurations (in one case, in 6 of 10), were 
found within 12 Å from the crystallographically determined position in the complex 
(Figure 2.4). Taking into account the remarkably nonrandom character of the results, 
one may conclude that the main-chain fold plays an important role in protein recogni-
tion. At the same time, the results showed that the role of the main chain in antigen–
antibody complexes is less significant than in the other cases of protein complexes. 
The reason may be that the antibody molecules, with basically the same main-chain 
fold, have to recognize different antigens. This means that the backbone cannot be 
a recognition factor in this case. The conformational differences in the main chain 
of the recognition loops in the variable domain of Fab may just facilitate the specific 
arrangement of the side chains, which could reflect certain differences in the prin-
ciples of complex formation. Thus, the complementarity between the backbones, in 
general, may facilitate the initial placement of the ligand at the binding site of the 

figure 2.3 The lowest-energy low-resolution match between unbound hemagglutinin 
(light gray) and the BH151 antibody (dark gray).

© 2009 by Taylor & Francis Group, LLC



Low-Resolution Recognition Factors 31

receptor. At the same time, the identity and the specific conformation of the surface 
side chains play the crucial role at the subsequent stage of the complex formation.

Observation of co-crystallized protein–protein complexes and low-resolution 
protein–protein docking studies suggests the existence of a binding-related aniso-
tropic shape characteristic of protein–protein complexes. A recent study (Nicola and 
Vakser 2007) systematically assessed the global shape of proteins in a nonredundant 
database of co-crystallized protein–protein complexes by measuring the distance 
of the surface residues to the protein’s center of mass. The results showed that on 
average the binding site residues are closer to the center of mass than the nonbind-
ing surface residues. The data clearly shows a tendency of the interface residues 
to be closer than average to the center of mass. The effect is not detectable for the 
small interfaces, but increases dramatically for the large interfaces. The paradigm 
is illustrated in Figure 2.5. Examples of actual interfaces are shown in Figure 2.6. 
Arguably, a small interface is geometrically less likely than a large one to have a 
deep concavity or significant flatness detectable by a simple measure of the average 
distance to the protein center of mass. On the other hand, a large interface on the 
larger protein within a complex geometrically can be of any type—concave, convex, 
or flat (Figure 2.5). The fact that it is by far more likely to be close to the protein 
center of mass than the rest of the surface does not follow from geometry, but rather 
is  due to free energy aspects of protein binding/folding.

A systematic evaluation of the low-resolution protein–protein recognition was 
performed on a comprehensive nonredundant database of co-crystallized protein–
protein complexes. The docking program GRAMM was used to delete the atom-size 
structural details and to systematically dock the resulting molecular images. The 

CBA
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figure 2.4 The lowest-energy complexes of the backbone structures. The molecular pairs 
are: (A) α and β subunits of human hemoglobin, (B) trypsin and BPTI, (C) subtilisin and chy-
motrypsin inhibitor, (D) acid proteinase and peptide inhibitor, (E) α1–α2 subunits of MHC I 
and a peptide, (F) the variable region of Fab and lysozyme, and (G) the variable region of Fab 
and a peptide. The thick chain represents the receptor (light gray) and the ligand (dark gray). 
The backbone of the ligand in the crystal structure is shown by the thin chain.
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results revealed the existence of the low-resolution recognition in 52% of all com-
plexes in the database and in 76% of the 113 complexes with >4000 Å2 interface area. 
Limitations of the docking and analysis tools used in that study suggested that the 
actual number of complexes with the low-resolution recognition is higher (Vakser et 
al. 1999). A more sophisticated approach for the detection of low-resolution recogni-
tion was based on different models of random matches (Tovchigrechko and Vakser 
2001). The recognition was considered detected if the binding area was more popu-
lated by the low-energy docking predictions than by the matches generated in the 
random models. The number of complexes with detected recognition based on dif-
ferent random models varied significantly. However, the results confirmed that such 
recognition is likely to be the universal feature in protein–protein association.

The same techniques have been applied to docking of protein models of different 
accuracies (Tovchigrechko et al. 2002). To simulate the precision of protein models, 

A B C

figure 2.6 Examples of protein–protein interfaces. A cross-section through the structure 
shows (A) small interface with undetectable binding-related shape anisotropy (1138 Å2), (B) 
large flat interface (7004 Å2), and (C) large concave interface (4055 Å2).

BA

figure 2.5 Schematic illustration of some possible protein–protein complex geometries. 
The distances from the center of mass (arrows) illustrate (A) more likely geometries (binding 
site on average is closer to the center of mass than the nonbinding surface) and (B) less likely 
geometries. For simplicity, the illustration shows proteins of different sizes. However, the 
same paradigm of binding site close to the center of mass applies to homodimers.
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all proteins in the protein–protein database were structurally modified in the range 
of 1 to 10 Å RMSD, with 1 Å intervals. A sophisticated procedure was specifically 
designed and implemented for that purpose. All resulting models of the proteins 
(Figure 2.7 shows an example of models) were docked. The statistical significance of 
the docking was analyzed, and the results were correlated with the precision of the 
models. The data showed that even highly imprecise protein models (>6 Å RMSD) 
still yield structurally meaningful docking results that are accurate enough to pre-
dict binding interfaces and to serve as starting points for further structural analysis. 
An example of docking protein models of low accuracy is shown in Figure 2.8. The 
study demonstrated the applicability of existing docking techniques to models of 
various accuracies and, at the same time, the existence of the large recognition fac-
tors in protein structures.

RMS=2ÅCrystal RMS=4Å RMS=6Å

figure 2.7 The array of trypsin structures, from the x-ray to low-resolution models.

Crystal RMS=6Å

figure 2.8 Results of the low-resolution docking of trypsin and BPTI. The experimental 
structures are on the left and the low-resolution models (RMS = 6 Å, both trypsin and BPTI) 
are on the right. The dark gray spheres are the BPTI center of mass in the 100 lowest energy 
positions. The light gray sphere (indicated by an arrow) is the BPTI center of mass in the co-
crystallized complex. For comparison, the experimental structure of trypsin (thin dark gray 
chain) is overlapped with the model. The docking of the models clearly preserves the cluster 
of correct predictions in the area of the binding site.
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interMoleCular energy lanDsCaPe

The existence of the large-scale structural recognition factors in protein association 
has to do with the funnel-like intermolecular energy landscape. The concept of the 
funnel-like energy landscapes has had a significant impact on the understanding 
of protein folding (Dill 1999). The kinetics of the amino acid chain folding into a 
unique 3D structure are impossible to explain using “flat” energy landscapes, where 
minima are located on the energy “surface” that do not favor the native structure 
(so-called golf-course landscapes). The general slope of the energy landscape toward 
the native structure (“the funnel”) explains the kinetics of protein folding. It also 
provides the basis for protein-structure prediction. The basic physicochemical and 
structural principles of protein binding are similar, if not identical, to those of pro-
tein folding. Thus, the funnel concept can be naturally extended to intermolecular 
energy (Tsai et al. 1999; Tovchigrechko and Vakser 2001; Wolynes 2005). As in pro-
tein folding, this concept is necessary to explain the kinetics data for protein–protein 
association. The existence of a funnel in protein–protein interactions is supported 
by considerations regarding long-range electrostatic and/or hydrophobic “steering 
forces” and the geometry of proteins (Berg and von Hippel 1985; McCammon 1998), 
energy estimates for near-native complex structures (Camacho et al. 2000), and the 
binding mechanism that involves protein folding (Shoemaker et al. 2000).

It has been shown that simple energy functions, including coarse-grained (low-res-
olution) models, reveal major landscape characteristics. The large-scale, systematic 
studies of protein–protein complexes confirmed the existence of the intermolecular 
binding funnel (Vakser et al. 1999; Tovchigrechko and Vakser 2001).

A simplified representation of the landscape was used for a systematic study of its 
large-scale characteristics in a large nonredundant data set of protein complexes. The 
focus of the study was on the basic features of the low-resolution energy basins and 
their distribution on the landscape (O’Toole and Vakser 2008). The results clearly 
show that, in general, the number of such basins is small (Figure 2.9), these basins 
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are well formed, correlated with actual binding modes, and the pattern of basins 
distribution depends on the type of the complex.

GRAMM-X docking was applied to a comprehensive nonredundant database of 
nonobligate protein–protein complexes to determine the size of the intermolecular 
energy funnel (Hunjan et al. 2008). The unbound structures were simulated using a 
rotamer library. The procedure generated grid-based matches, based on a smoothed 
Lennard-Jones potential, and minimized them off the grid with the same potential. 
The minimization generated a distribution of distances, based on a variety of met-
rics, between the grid-based and the minimized matches. The metric selected for the 
analysis, ligand interface RMSD, provided three independent estimates of the funnel 
size: based on the distribution amplitude for the near-native matches (Figure 2.10), 
deviation from random, and correlation with the energy values. The three methods 
converge to similar estimates of ~6–8Ǻ ligand interface RMSD. The results indi-
cated dependence of the funnel size on the type of the complex (smaller for antigen–
antibody, medium for enzyme–inhibitor, and larger for the rest of the complexes) and 
the funnel size correlation with the size of the interface.

In a subsequent study, the energy landscapes of 92 protein–protein complexes 
were described by conformational ensembles of docked protein matches developed 
for each of the considered resolutions from 1.7 to 5.5 Å (Ruvinsky and Vakser 2008a). 
The results demonstrated that the ruggedness and the slope are markedly higher for 
funnels then for other basins at all resolutions. The results also showed that increas-
ing of the potential range decreases the number of multiconformational clusters 
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substantially, increases the number of near-native docked matches, and keeps the 
energy gap of the landscape at the same level. The results revealed that averaged 
characteristics of the energy basins (the ruggedness and the energy slope) may be a 
more stable indicator of the native funnel than the basin depth and its occupancy.

Since the protein–protein intermolecular energy landscape is based on distance-
dependent potentials, it is grounded in the shape of the interacting molecules. This 
connection is especially transparent in the case of van der Waals–only force fields, 
including the digitized Lennard-Jones potentials, used in a number of surface 
complementarity docking algorithms including GRAMM. This geometry–energy 
dichotomy was addressed in earlier docking studies (Vakser 1996a) and allows one 
to conveniently use the energetic and geometric considerations interchangeably in 
exploring protein recognition factors.

The potential smoothing approach in GRAMM is based on extending the range 
of the potential, at the same time lowering the resolution of the geometric molecular 
image (Vakser 1995, 1996a). This allows direct tracking of major landscape charac-
teristics to the structural details of protein shape. The atomic size details correspond 
to “high-frequency” landscape fluctuation. The individual residues side chains and 
larger structural fragments (e.g., secondary structure elements) produce progres-
sively larger (lower frequency) fluctuations. The largest (lowest frequency) fluctua-
tions (funnels/basins) correspond to macrostructural recognition factors (binding 
sites and similar size shape characteristics; Tovchigrechko and Vakser 2001).

Beyond these general considerations, a limited number of basin distributions can 
be specifically tracked back to a known class of shape characteristics. One example is 
enzyme–inhibitor complexes, which often have a dominant basin (typically, the fun-
nel) that corresponds to the geometrically pronounced binding site on the enzyme. 
However, in most other cases the connection is not easily made and requires detailed 
structure-function investigation of the interacting proteins.

iMPliCations for DoCking

The knowledge of the major characteristics of the binding sites, such as hydrophobic 
clusters, hot spot residues, and so forth, helps to narrow the global search for the 
binding mode, by providing the opportunity to focus on specific sites on the protein 
surfaces, as well as on limited areas of the intramolecular conformational space.

A number of protein docking approaches implement a multistage/multiscale 
approach, where the initial global search is performed at lower resolution, followed 
by the local refinement to a higher resolution (Pappu et al. 1999; Gray et al. 2003; 
Li et al. 2003; Carter et al. 2005; Tovchigrechko and Vakser 2005). The change of 
resolution is an essential part of the refinement. A major impediment to the refine-
ment protocols is the uncertainties in the landscape transformation (Pappu et al. 
1999). Such uncertainties led to the loss of the refinement trajectories, unneces-
sary oversampling, and so forth. Thus, the quantitative description of the landscape 
change according to the resolution is important for designing refinement procedures 
for docking.

The use of the simpler energy functions at the first (scan) stage of docking has 
two related aspects. First, it is to make the procedure computationally feasible, since 
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it involves global search in the docking coordinates space. Second, for some algo-
rithms explicitly, and for many implicitly, simpler functions result in a simpler land-
scape that still serves as a meaningful approximation of the “real” landscape. The 
value of such simpler landscapes is that they reduce the inherent “high-frequency” 
energy fluctuations from more detailed force fields, which allows a sparse sampling 
procedure to detect the binding funnel area.

A typical second docking stage often involves scoring (reevaluation of the 
same matches with a more accurate, but computationally expensive, energy func-
tion) and sometimes refinement (minimization, often more detailed than at the first 
stage potential, involving structure movement; e.g., off the grid, on a finer grid, etc., 
depending on the algorithm).

In such a scheme, it is critical that the set of the matches submitted to the second 
stage contains at least one match within the funnel. Otherwise the refinement, which 
is local by design, will not produce a near-native structure. This requirement is by 
far not trivial, given the scope of the global search, and the fact that the scan stage of 
most global search procedures is the rigid-body one. This results in the need for the 
scan stage to generate huge numbers of matches (often in the hundreds of thousands) 
for the subsequent refinement. Such numbers of starting points for the refinement 
reduces its reliability, because the accuracy has to be compromised for the sake of 
computational feasibility.

Obviously improving the methods of the funnel detection at the scan stage would 
drastically reduce the number of starting points for the second stage, thus allowing it 
to perform a better refinement. For such a task, the knowledge of the average number 
of funnel-like basins per complex and the size of the funnel is important. Specifically, 
the knowledge of the average funnel size suggests the maximal distance of a scan 
match from the native structure in order for the refinement to succeed. The funnel 
sizes detected by geometry-only procedures may underestimate the “real” size of 
the funnel, due to the absence of electrostatics and desolvation components and the 
rigid-body approximation. However, they are adequate to docking algorithms where 
the global search scan stage is based on the rigid-body approximation and the steric 
fit is the principal component of the force field.

Another important implication for practical docking directly relates to the rug-
gedness and slope characteristics. The basin depth-related ruggedness and slope have 
not been utilized in protein docking. Among various approaches to funnel detection, 
docking procedures typically use the energy/score of the top-ranked match and, 
optionally, the cluster occupancy, in part related to the density-related ruggedness. 
Thus, the existing docking methods do not properly account for the basin shape. As 
a distinct property of the funnel, the depth-related ruggedness and the slope should 
complement the energy and the cluster occupancy in the docking funnel detection.
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3 The Molecular 
Architecture of Protein–
Protein Binding Sites

Eric J. Sundberg

overvieW

In recent years, many aspects of biology have been likened to networks, in which 
distinct nodes (e.g., cells or molecules) can be defined that interact with one 
another within a system to perform various biological functions. While networks 
have most commonly been invoked to describe large, organismal level systems, 
they have also found some traction in illustrating the ways in which proteins 
interact with one another. Network maps have been constructed to depict all 
of the possible protein–protein interactions within a cell (e.g., the interactome), 
essentially a low-resolution view of molecular recognition. At higher resolu-
tion, thinking of protein–protein binding sites as networks of amino acid resi-
dues that communicate with one another both structurally and energetically has 
begun to reveal how the modular architecture of protein interfaces and the net-
worked communications within them serve as driving forces for protein com-
plex specificity and affinity. Studies aimed at defining the biophysical basis of 
these communication events within protein–protein binding sites may serve as an 
experimental foundation for improving algorithms designed to predict protein–
protein interactions.
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introDuCtion

Interactions between proteins are essential for nearly all cellular processes (Gascoigne 
and Zal, 2004; Pawson and Nash, 2000; Warren, 2002) and aberrant protein–protein 
interactions contribute to the pathogenesis of numerous human diseases (Rual et 
al., 2005). As the genomewide mapping of protein–protein interactions has identi-
fied many of the molecular components of numerous physiological and pathological 
processes (Bouwmeester et al., 2004; Giot et al., 2003; Ito et al., 2001; Li et al., 
2004; Uetz et al., 2000) and structural genomics efforts have determined structures 
of many of the constituent protein domains involved in these interactions, the ability 
to predict the binding specificities and energies of protein complexes from protein 
structures alone has reached paramount importance.

With the postgenomic emergence of systems biology, many biological events have 
been likened to networks, in which numerous distinct nodes are described that inter-
act with one another within a system resulting in various functions. The description 
of biological events as networks and the application of network analysis tools to these 
structures have provided novel insights into biological systems that had been over-
looked prior to defining these events in a networked manner (Bader et al., 2008).

Networks can also be defined for subsystems within the context of a broader organ-
ismal system, such as for a protein interactome. For instance, the entire set of proteins 
(e.g., the proteome) within a particular system, such as a cell, that bind to one another 
can be defined as a network. Interactome maps of proteins have now been assembled 
for the proteomes of numerous organisms and cell types, to varying degrees of com-
pleteness. These protein interaction maps have, for instance, provided insight into the 
modularity of the proteome, in which a relatively small number of protein core com-
plexes, or machines, carry out a large number of cellular processes and these core 
complexes are functionally modified by changes in the attachment of proteins to them, 
rather than by dissolution and reconstitution of wholly new protein core complexes.

At even greater detail, the molecular interfaces formed when two proteins interact 
with one another can also be defined as networks. In this way, individual amino acids 
(e.g., nodes) within a binding site (e.g., the system) are interconnected in myriad 
ways, and this very interconnectedness is essential for protein–protein binding (e.g., 
function). As such, any protein–protein interaction can be described as a networked 
system. Structural and energetic connections between the individual amino acids 
in an interface exist and defining them quantitatively is currently a major focus in 
the structural biology community. These networked connections within protein–pro-
tein interfaces may prove to be one of the key driving forces in the development of 
improved algorithms for protein–protein interaction prediction in the future.

What follows is a description of how our view of protein binding interfaces has 
evolved and where it may be going, as well as how it could affect computational efforts 
in modeling protein–protein interactions and, ultimately, drug discovery and design.

struCtural heterogeneity in Protein–Protein interfaCes

Our evolving understanding of protein–protein interactions indicates that there is a 
distinct physical organization to protein binding sites. This molecular architecture 
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of protein–protein interfaces has direct consequences for the specificities and affini-
ties of protein complexes. Describing the architectural details that allow for produc-
tive associations is essential for our understanding of, and for our ability to predict, 
protein–protein interactions.

Protein domains are subsets of protein sequences that can fold stably and function 
independently from the rest of the protein chain from which it derives. Domains can 
also evolve independently of larger proteins, as patterns of domain interactions are 
commonly observed within organisms and across taxa (Pereira-Leal and Teichmann, 
2005). Most proteins are constructed of multiple domains (Pawson and Nash, 2003), 
which can mediate interactions with other proteins, often through associations with 
other domains. An overrepresentation of domain pairs in large data sets of experi-
mentally determined protein–protein interactions has been observed (Deng et al., 
2002; Han et al., 2004; Liu et al., 2005; Riley et al., 2005; Sprinzak and Margalit, 
2001). Also, structurally based domain–domain interaction databases (Finn et al., 
2005; Stein et al., 2005) include many domain–domain interactions that are shared 
between diverse protein–protein complexes. Thus, protein–protein interactions are 
thought to be mediated by a limited set of domain–domain interactions and, as 
such, domains act as primary recognition elements for protein–protein interactions. 
Accordingly, it has been argued that this constitutes a “protein recognition code” 
(Sudol, 1998) and that cell regulatory and signaling systems are assembled largely 
through protein domain interactions (Pawson and Nash, 2003).

Just as domains, being subsets of whole proteins, are generally responsible for 
driving interactions, only some fraction of the residues on the molecular surface 
of a domain are involved in binding. That there is chemical heterogeneity within a 
protein binding site has been obvious since the first structures of proteins were deter-
mined, and it was clear that molecular interfaces would necessarily be populated by 
mixtures of different amino acids that contributed distinct chemical groups to the 
interface. Once numerous structures of protein complexes had been determined to 
high resolution, it was observed that although there was a great deal of heterogene-
ity in the chemical and structural makeup of interfaces, they were also similarities. 
In general, protein–protein interfaces are on the order of 1500–2000 Å2 in total 
buried surface area, relatively planar in shape, exhibit a hydrophobicity intermediate 
between the protein core and the entirety of the protein molecular surface, and con-
tain approximately one hydrogen bond per 100 Å2 of buried surface area from each 
protein (Janin et al., 2007; Jones and Thornton, 1996).

Which of these general characteristics that are inherent to protein interfaces is 
most critical for specific and high affinity interactions? Certainly the hydrophobic 
effect is the main driving force for protein association. That protein binding and pro-
tein folding share the same critical determinant is not entirely surprising, as numer-
ous investigators have made the argument that protein binding can be considered, in 
actuality, a subset of protein folding events.

To understand any system, a series of perturbations and observations is required. 
For the interrogation of protein–protein interactions, this generally means that pro-
teins, or protein complexes, are altered by mutagenesis and quantitative measure-
ments of the changes in the energetics of binding and/or structural modifications to 
the protein interface are measured. The correlations between energetic and structural 
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changes in perturbed protein–protein interactions can form the basis of predictive 
algorithms.

In this way, quantitative estimations of the hydrophobic effect in protein–protein 
interactions by mutating large hydrophobic residues within an interface to various 
residues with exceedingly smaller and less hydrophobic side chains have been made. 
The thermodynamic and structural changes associated with these mutations are then 
measured by isothermal titration calorimetry and x-ray crystallography, respectively. 
In this way, an estimated energetic contribution to binding due to hydrophobicity at 
the center of an interface has been measured to be 46 cal/mol/Å2 (Li et al., 2005), 
while at the periphery it was determined to be 21 cal/mol/Å2 (Sundberg et al., 2000). 
Despite the fact that protein–protein interfaces are generally relatively planar, they 
still exhibit some degree of curvature, especially at the edge of the interface, and the 
significant energetic difference between positionally distinct sites is expected due 
to this curvature of the binding site, as well as greater solvent accessibility at the 
periphery of the interface.

If hydrophobicity was the only important parameter for protein binding, however, 
the exquisite specificity of protein–protein interactions would be dramatically cur-
tailed and the tendency to aggregate heightened. Indeed, many other structural and/
or chemical properties of protein interfaces have been correlated with binding. A 
far from exhaustive list of these important parameters includes properties such as: 
the shape and chemical complementarity of the two binding surfaces; the amount of 
surface area buried upon complex formation; the number and distribution of hydro-
gen bonds and side chains formed across the interface; whether water molecules are 
excluded upon binding or remain within the binding site and, if so, whether they 
mediate intermolecular electrostatic interactions; the amino acid composition within 
the interface; and the degree of conservation of particular residues across species.

Indeed, numerous protein interface prediction algorithms have been developed 
that rely on the various attributes that, to some extent at least, distinguish protein 
binding sites from other portions of the protein molecular surface. Since initial efforts 
to predict surface patches that coincide with protein–protein interfaces (Jones and 
Thornton, 1997), several dozen methods to predict interface residues have been pub-
lished (reviewed in Zhou and Qin, 2007). These interface prediction algorithms gen-
erally rely on distinguishing characteristics of protein interface residues, including:

 1. Sequence conservation of interface residues are generally more conserved 
evolutionarily than noninterface residues.

 2. Amino acid type—Hydrophobic and aromatic residues, as well as arginine, are 
more abundant, while charged residues are reduced in frequency in interfaces.

 3. Secondary structure—Depending on the data set used, β-strands may be 
found to be more common than α-helices in protein interfaces (Neuvirth et 
al., 2004), while the opposite can also be found, and nonregular secondary 
structures are even more common (Guharoy and Chakrabarti, 2007).

 4. Solvent accessibility—Interface residues tend to be more solvent accessible 
in comparison to noninterface residues.

 5. Conformational entropy of side chains—Interface residues are more rigid, 
most likely in order to reduce the entropic cost of binding.
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Each of these characteristics alone, however, are relatively weak signifiers of whether 
an amino acid will reside in an interface or not, and thus numerous data streams are 
required to provide confidence in these predictions.

Despite situations in which perhaps each of these parameters critically contribute 
to the association of two proteins, even such a comprehensive sequential and struc-
tural analysis of an interface amounts to an insufficient description of a protein–pro-
tein interface that is required for accurate predictions of the specificity and affinity 
of interactions. The situation is further complicated because similar structural and/
or chemical entities are not necessarily equally important energetically across all 
protein complexes. Clearly, something is encoded in protein–protein interfaces that 
transcends structure, at least static structure, a functional component that is at least 
one of the keys to understanding protein–protein interactions.

energetiC MosaiCity in Protein–Protein interfaCes

It was not until the mid-1990s that the energetic mosaicity of protein binding sites 
began to be appreciated. When the structure of a complex of proteins is determined, 
all of the atoms that make intermolecular contacts are readily identified. The totality 
of these contact atoms, and the amino acid residues from which they come, con-
stitute what is referred to as the “structural epitope.” That all, or at least most, of 
these contact residues are energetically favorable for binding would have seemed 
a reasonable assumption. This turns out, in general, not to be the case, as was first 
determined when Clackson and Wells (1995) adopted a strategy of alanine scan-
ning mutagenesis to assess the energetic contributions of individual amino acids 
in a hormone–receptor complex. In this type of analysis, each interface residue is 
systematically mutated to alanine (in effect, paring its side-chain moiety back to a 
single methyl group) and the change in binding energy upon complex formation rela-
tive to the wild-type complex is measured. Certain amino acid residues within this 
hormone–receptor interface contribute significantly to the binding energy and were 
thus termed “hot spots,” while other residues were energetically silent with respect 
to the interaction was evident. This subset of energetically significant residues within 
the interface is often referred to as the “functional epitope.”

Within a given protein–protein interface, hot spot residues are more likely to be 
found in the central portion of the binding site, often surrounded by a ring of less 
energetically important residues (Bogan and Thorn, 1998). This distribution of bind-
ing energy within the interface mirrors the construction of folded globular proteins 
and likely serves a similar purpose, that is, to exclude water from the sites of energetic 
importance. Indeed, occlusion of solvent from the center of the interface is a require-
ment for high affinity interactions. Additionally, even in a situation where residues 
from the interface core and periphery can make equal energetic contributions to 
binding, those at the periphery may be more easily replaced by energetically stabiliz-
ing water molecules when their side chains are pared back (Janin, 1999). Despite this 
general topological arrangement of hot spots concentrated in the protein interface 
core, there are numerous and notable exceptions to this energetically important core/
silent ring architecture including protein complexes in which no hot spots can be 
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identified (Roisman et al., 2005; Svensson et al., 2004) or interactions in which hot 
spot residues extend to the periphery of the interface (Buonpane et al., 2005).

In addition to the generalized topology of interface core hot spot residency, there 
is no significant correlation between the surface accessibility and binding energy 
contribution of any particular interface residue (Bogan and Thorn, 1998; Lo Conte et 
al., 1999), although residues in the core of the interface tend to exhibit a correlation 
between changes in accessible surface area and binding free energies that is not seen 
for peripheral interface residues (Guharoy and Chakrabarti, 2005). The difficulty in 
identifying energetically important interface residues from examination of the three-
dimensional structure of a protein complex alone is exacerbated by the fact that 
many types of amino acids can serve as hot spots, but no one amino acid type always 
does, and that some residues that appear to make few contacts within an interface 
can contribute significantly to binding energetics, sometimes due to destabilization 
of the unbound proteins (DeLano, 2002).

Still, a number of notable attempts have been made to predict hot spot residues 
within protein–protein interfaces. Kortemme and Baker (2002) developed a quanti-
tative model for binding energies based on an all-atom rotamer description of side 
chains with an energy function dominated by Lennard-Jones interactions, solvent 
interactions, and hydrogen bonding. Using this algorithm, 79% of the hot spots in 19 
protein–protein interactions with a total of 233 mutations were correctly predicted 
with an average error of 1.06 kcal/mol. While this suggests that the underlying physi-
cal principles incorporated into this model are in fact important drivers of protein 
associations, several aspects were not well predicted. In particular, the magnitude of 
electrostatic effects and the effects of replacing water-mediated hydrogen bonds with 
direct protein-to-protein hydrogen bonds across interfaces were underpredicted. In 
a similar effort, Serrano and co-workers developed an energy function of a physical 
description of protein–protein interactions that was informed by considering a train-
ing set of nine protein complexes with 339 mutations in order to optimize the set of 
parameters and weighting factors that best accounted for changes in the stability of 
the mutant proteins (Guerois et al., 2002). When applied to a set of four protein com-
plexes with 82 mutations, the correlation between the experimental and theoretical 
changes in binding free energy was 0.64 with a standard deviation of 0.8 kcal/mol.

Even in the absence of experimentally determined three-dimensional structures, 
hot spots can be identified with a reasonable degree of confidence. Ofran and Rost 
(2007a) applied ISIS, an algorithm for predicting all interface residues, to predict only 
hotspots by training the method on: (1) the sequence environment of each residue, 
including four residues on each side; (2) the evolutionary profile of this nine-residue 
window; (3) the predicted solvent accessibility of the residue; (4) the solvent acces-
sibility of the immediate sequence environment, including one residue on each side; 
(5) the predicted secondary structure state of the residue and its immediate sequence 
environment; and (6) the evolutionary conservation of the residue (Ofran and Rost, 
2007b). When applied to a set of experimental mutations with binding free energy 
changes of greater than 2.5 kcal/mol, this prediction method using only sequence, 
evolutionary conservation, and predicted structure was able to identify roughly half 
of the hot spots that an in silico alanine scanning model such as those described 
earlier were able to predict. Despite these encouraging advances in predicting which 
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residues within a protein–protein interface will act as hot spots, the necessity of per-
forming extensive experimental mutagenesis and binding analysis to quantitatively 
describe the energetic contributions of individual amino acids with such an interface 
persists.

arChiteCtural MoDularity in Protein interfaCes 
anD CooPerative binDing energetiCs

Whether hot spot residues in a protein–protein interface adopt positions within the 
conventional core–ring archetype or are more dispersed throughout the binding site, 
they are not simply distributed in a random fashion throughout the interface. Instead, 
hot spots tend to be clustered within discrete groups, or “hot regions” (Keskin et al., 
2005; Reichmann et al., 2005). The resulting decomposition of protein interfaces 
into modules, which has been shown both computationally and experimentally, has 
significant energetic consequences for protein–protein interactions.

Further contributing to the heterogeneity of protein–protein interfaces is the fre-
quent presence of cooperativity, in that the energetic contribution to binding of a 
protein that has been simultaneously mutated at multiple residues is significantly 
different than the summation of the changes in binding energy of the single-site 
mutants (Albeck et al., 2000; Bernat et al., 2004; Yang et al., 2003). That is, not only 
can hot spots be of varying energetic significance in and of themselves, but also their 
energetic contributions to binding can vary depending on whether and where other 
hot spot residues are located in the interface. In many protein–protein interactions, 
such site-to-site energetic communication is a major contributor to protein binding. 
Compelling evidence has been mounting of late that the modular architecture that 
is structurally imprinted on protein binding sites not only results in a certain rough-
ness to the energetic landscape of the interface, but serves as the driver of networked 
energetic communication in protein–protein interactions.

A recent analysis (Keskin et al., 2005) of a structurally nonredundant database of 
all hot regions (Keskin et al., 2004) in the Protein Data Bank (Berman et al., 2000) 
at the time has suggested that hot spots are both preorganized in the unbound state 
of the protein and that they are clustered into densely packed hot regions. Energetic 
contributions from hot spots within a single hot region were, in general, cooperative, 
while those residing in separate hot regions were energetically additive. This type 
of networking of interactions within a protein–protein interface may be a general 
strategy by which energetic cooperativity between residues can be utilized to dictate 
the stability of protein–protein complexes.

Indeed, this modular architecture of protein–protein binding sites has been rigor-
ously investigated experimentally. In the TEM1-β-lactamase/β-lactamase inhibitor 
protein (TEM1-BLIP) complex, Schreiber and co-workers constructed contact maps 
of the interface, taking into account physical interactions including hydrogen bonds 
and van der Waals interactions, by which the interface was divided into five indi-
vidual clusters or modules, each with numerous interacting residues and few interac-
tions between (Reichmann et al., 2005). Using a combination of alanine scanning 
mutagenesis, surface plasmon resonance (SPR) analysis, and x-ray crystallography, 
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it was shown that mutations residing in distinct modules do not affect one another 
energetically, and thus, entire modules could be deleted (i.e., by paring back all side 
chains within that module by mutation to alanine) with negligible structural or ener-
getic consequences on the remainder of the interface. Conversely, mutations within 
a single module were responsible for cooperative energetic and structural changes 
within that module.

Another way in which to perturb an interface to affect the affinity of an interac-
tion is to subject one of the proteins in a complex to directed evolution, such as by 
phage or yeast display. This iterative process of mutation and selection (in this case 
for tighter binding to an unmodified target protein) describes an affinity maturation 
pathway of protein variants that, in total, can span many orders of magnitude in 
affinity. Because numerous mutations are made that together increase the affinity, 
the dissection of these affinity maturation pathways by interrogating the structural 
and energetic changes associated with different combinations of mutations makes 
this is an especially powerful method for investigating biophysical parameters that 
are combinatorial by definition, such as energetic cooperativity.

Following this strategy, we recently presented detailed structural and energetic 
analyses of additive versus cooperative effects within a protein–protein interaction. 
Using a model system consisting of a yeast display affinity-matured T cell receptor 
(TCR) protein that exhibited a ~1500-fold affinity increase for the bacterial superan-
tigen SEC3 (Kieke et al., 2001), group and individual TCR maturation and reversion 
pathway mutations were analyzed for binding to SEC3 by surface plasmon reso-
nance analysis (Yang et al., 2003). As in the TEM1-BLIP complexes, energetic coop-
erativity was observed within a single hot region, in this case defined by the second 
complementarity determining region (CDR2) loop, while combinations of mutations 
from distinct hot regions were found to be energetically additive. Even though this 
is one of the most highly affinity-matured complexes characterized to date, the ulti-
mate high affinity variant was found to be restricted by negative cooperativity (i.e., 
the summation of the changes in the binding free energies of the individual muta-
tions exceed the change in binding free energy of the final, fully evolved variant). 
Two maturation mutations in particular accounted quantitatively for the entirety of 
this negative cooperativity. By determining the x-ray crystal structures of several 
of these variant TCR proteins that define this affinity maturation pathway, it was 
observed that the mutations at these two positions exerted opposing conformational 
changes on the CDR2 loop, providing a structural basis for short-range negative 
cooperativity (Cho et al., 2005).

In a similar study involving another affinity-matured TCR–superantigen model 
protein–protein interaction system, we investigated whether amino acids separated 
by long distances and residing at the peripheral extremes of the interface could act in 
an energetically cooperative manner (Moza et al., 2006). The hVβ2.1 TCR had been 
previously affinity-matured by yeast display to bind the superantigen TSST-1 with an 
increased affinity of greater than 3000-fold relative to the wild-type TCR (Buonpane 
et al., 2005). Analysis of each of the individual residue changes revealed that there 
were four mutations within the interface that were energetically significant in the 
affinity maturation process. Three of these positions are located within the CDR2 
loop of the TCR and form one hot region, while the fourth is located in the third 
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framework region (FR3) loop and forms a distinct hot region. From the x-ray crystal 
structure of this TCR–superantigen complex (Moza et al., 2007), it is evident that 
these two hot regions are separated by more than 20 Å and each lies at the periphery 
of the interface. TCR variants in which every possible combination of these four 
amino acids as either their wild type or affinity-matured residue were tested for 
binding to the superantigen, and the binding free energy of the combinatorial vari-
ants were compared to the summation of binding free energies of their correspond-
ing single-site mutants to ascertain the extent of cooperativity. As expected, several 
of the amino acids within the CDR2 hot region exhibited cooperative energetics. 
Surprisingly, though, combinations of mutations involving residues from each of the 
CDR2 and FR3 hot regions were also found to be energetically cooperative, and 
furthermore, the magnitude of this inter-hot regional cooperativity was significantly 
greater than the observed intra-hot regional cooperativity (Moza et al., 2006).

If, in all protein complexes, cooperative energetics existed only within hot regions, 
and not between them, the quantitative prediction of protein–protein interactions 
may be considerably simplified. The aforementioned example suggests that this may 
not be the case. However, the jury remains out on this question as a recent bioinfor-
matics analysis of the hVβ2.1 TCR–superantigen complex in question (del Sol and 
Carbonell, 2007) has suggested that the CDR2 and FR3 hot regions form a single, 
albeit large, module in which one might reasonably expect energetically coopera-
tive residues at any distance. In such a rapidly evolving field such as the analysis of 
cooperativity in protein–protein interactions, this may be more indicative of a mere 
semantic discrepancy than an actual biophysical rule.

CaPitalizing on unDerstanDing: PreDiCting 
interaCtions anD Designing Drugs

Although progress in developing computational methods for the quantitative predic-
tions of protein–protein interactions has been made recently (Guerois et al., 2002; 
Huo et al., 2002; Kortemme and Baker, 2002; Massova and Kollman, 1999; Sharp, 
1998), the current robustness of these algorithms is not such that the laborious task of 
determining the structure of a given protein complex can be circumvented. It is clear 
that these methods are unable to account for aspects of molecular recognition that 
are important in determining complex formation, but for which we currently have a 
fundamental lack of understanding.

A fundamental lack of understanding of cooperative binding energetics may 
be one of the major impediments to formulating with greater accuracy algorithms 
for protein–protein interaction prediction. If cooperativity existed only within hot 
regions, and not between them, the task of accurately predicting the binding param-
eters for protein complexes would be greatly simplified. Some recent results suggest 
that this may be an overly generalized representation of macromolecular interfaces 
and that a broader consideration of cooperativity within protein–protein interac-
tions, while more technically and computationally demanding, may ultimately lead 
to more accurate predictive algorithms. It also appears from recent results that only 
a subset of hot regions may need to be considered as potentially cooperative. The 
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recent advances in defining the molecular architectures of protein–protein interfaces 
as networks of individual amino acids residues provide an experimental avenue by 
which such predictive algorithms can be built.

Because protein–protein interactions are pervasive in biological processes, they 
are also important therapeutic targets, and thus the prediction of protein–protein 
interactions is critical for drug design. The development of small molecule inhibitors 
of such interactions has proven difficult (Arkin and Wells, 2004), largely due to the 
relatively planar nature of these interfaces, which tend not to present well-defined 
binding pockets. The presence of hot spots and hot regions within protein inter-
faces provides possible sites at which potent small molecule inhibitors may bind to 
effectively block the association of much larger molecules. Indeed, small peptides 
selected by phage display generally bind their protein binding partners at hot spots 
(Sidhu et al., 2003), and the discovery of small molecules that inhibit the interaction 
of B7-1 with CD28 and modulate T cell activation, and in which the drug binds at a 
hot spot, has been reported (Erbe et al., 2002; Green et al., 2003).

If certain distinct hot regions may be linked energetically, the potency of a small-
molecule inhibitor that targets a cooperative hot region may be amplified relative to 
a small molecule that targets a hot region that is strictly additive. This could have 
important ramifications for the choice of which hot region within a protein–protein 
interaction to target for small molecule inhibition, for instance, by structure-based 
drug design.
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introDuCtion

Biological processes are mediated through macromolecular interactions and virtually 
all of these processes involve proteins. Proteins play a key role in biology through inter-
actions with diverse ligands, including other proteins, nucleic acids, carbohydrates, 
lipids, and small molecules [1–3]. A genuine understanding of biological processes 
requires detailed characterization of the interacting molecules. High-resolution struc-
tures of molecular complexes provide crucial information about the interacting sur-
faces, or structural epitopes, but structural data alone cannot explain how affinity and 
specificity are achieved. To enable in silico design of protein structure and function, 
there is a crucial need for not only structural data, but also complementary functional 
data that describe the energetic roles of individual protein residues.

Although the three-dimensional structures of proteins are undeniably complex, 
the accumulation of a large database of high-resolution structures reveals common 
themes in folding, and it appears that there are a limited number of basic folds that 
are used in nature [4,5]. This knowledge has served as an important input for math-
ematical descriptions that describe protein folding and structure. In an analogous 
manner, a large-scale functional data set describing the energetics of protein–protein 
interactions would be an invaluable tool for elucidating common principles of molec-
ular recognition with the accuracy necessary for computational modeling.

To build functional data sets, systematic amino acid replacements through site-
directed mutagenesis are used to map the binding energetics of individual side chains 
that constitute binding interfaces. In particular, alanine scanning studies have been 
used to define the subsets of side chains that form energetically favorable interac-
tions and constitute the functional epitope within the structural epitope [6]. However, 
conventional mutagenesis strategies based on biophysical analysis of individual 
point mutants are slow and ill-suited for acquiring the quantities of data required 
for developing mathematical descriptions of the kinetics and thermodynamics of 
protein–protein interactions. Indeed, it has become apparent that high-throughput 
technologies for protein analysis will be needed to accelerate progress beyond what 
is possible with traditional biophysical methods [7].

This chapter focuses on phage display strategies for combinatorial mutagenesis, 
which are designed to enable the high-throughput mapping of binding energetics at 
protein–protein interfaces. The so-called shotgun scanning approaches assess ener-
getics by DNA sequencing and statistical analysis, rather than by biophysical analy-
sis of purified proteins. These methods harness the power of combinatorial methods 
for rapid and quantitative analysis or protein function, and unlike conventional bio-
physical methods, they are compatible with high-throughput strategies.

Phage DisPlay teChnology

Developed more than two decades ago, phage display is the first and still domi-
nant molecular display technology [8,9]. The method relies on genetic engineering 
to produce fusion proteins consisting of polypeptides of interest fused to bacterio-
phage coat proteins, and this results in the display of heterologous proteins on the 
surfaces of phage particles that also encapsulate the encoding DNA (Figure 4.1). 
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Thus, a physical linkage is established between the phenotype (displayed protein) 
and genotype (encapsulated DNA), and phage display provides an in vitro version 
of Darwinian evolution. Using combinatorial mutagenesis, a library of billions of 
protein variants can be produced and represented as phage pools that can be cycled 
through rounds of binding selection against immobilized ligands to enrich for func-
tional members [10]. The selected phage population can be amplified by passage 
through bacteria and the amplified pool can be cycled through additional rounds 
of selection to further enrich the pool for binding clones. Subsequently, individual 
clones can be amplified and the genomic DNA can be sequenced to decode the 
sequence of each displayed polypeptide.

site-DireCteD Mutagenesis anD alanine sCanning

The dawn of the protein engineering era was brought by recombinant DNA tech-
nologies that enable cloning of genes [11–14], production of recombinant proteins in 
bacterial hosts [15,16], and introduction of site-directed mutations into genes to alter 
protein sequences in a systematic manner [17–21]. Site-directed mutagenesis was 
used to alter protein structure, and basic principles of protein chemistry could be 
deduced from the resulting effects on function [22–55]. The first systematic approach 
for assessing the energetics of protein interactions was alanine scanning mutagen-
esis, which removes all side-chain atoms past the β-carbon and can thus be used to 
assess the roles of individual side chains [56,57].

Library

Amplification in bacterial host

Immobilized
targetProtein

Washed away non-binding clones

In vitro binding selection

DNA

figure 4.1 The phage display selection cycle. Libraries of protein variants (assorted 
shapes) are displayed on filamentous phage particles as fusions to coat proteins. Each phage 
particle displays a unique variant and encapsulates the encoding DNA. Highly diverse librar-
ies can be produced and selected for binding to immobilized target. Nonbinding phages are 
washed away, while binding phages are retained and amplified in host bacteria. Repeated 
selection and amplification cycles further enrich the population for binding clones. DNA 
sequencing of individual clones decodes the sequences of displayed polypeptides.
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One of the first alanine scans was performed on the high affinity binding site (Site 
1) of human growth hormone (hGH) for its receptor (hGHR) [57]. This was followed 
by a scan of the complementary binding site on the hGHR [56]. The binding affini-
ties of mutated proteins were compared to that of the wild type (wt) and the effects 
of alanine (Ala) substitutions on binding energy (∆∆GAla-wt) were mapped onto the 
three-dimensional structures of the molecules. These experiments revealed that only 
a small subset of residues contribute most of the binding energy on both sides of the 
interface, and these residues cluster together to form interacting “hot spots” of bind-
ing energy [6]. Subsequently, alanine scanning experiments have revealed similar 
clusters of energetically important residues in many other protein–protein interac-
tions [58], and currently almost 100 such data sets have been compiled [59]. Overall, 
alanine scanning studies have led to a better understanding of the importance of the 
spatial organization of functional residues in binding interfaces.

Alanine scanning and other site-directed mutagenesis methods have proven invalu-
able for probing particular aspects of protein function in individual cases. However, 
the accumulated database is extremely sparse in comparison with the overwhelming 
complexity of protein structure and function. Because alanine scanning deals with 
proteins on an individual basis, the method is by nature slow and laborious. To address 
these limitations, combinatorial shotgun scanning methods have been developed.

the shotgun sCanning MethoD

Shotgun alanine scanning uses phage-displayed libraries in which positions of inter-
est are varied as either the wt or Ala using specially designed degenerate codons 
(Table 4.1 and Figure 4.2). Using conventional DNA synthesis techniques, the nature 
of the genetic code necessitates two additional substitutions in the case of some amino 
acids, but, nevertheless, the additional substitutions do not affect the analysis [60].

The library is subjected to several rounds of two independent selections. One 
is a “function” selection to assess effects of alanine substitutions on binding to the 
ligand of interest and the second is a “structure’” selection for binding to an antibody 
that recognizes an epitope distinct from the mutated region. The structure selec-
tion provides a control data set that accounts for biases in the naïve library and for 
mutational effects that alter levels of protein display on phage. Following each selec-
tion, clones exhibiting specific binding to the selection target are subjected to DNA 
sequencing. By sequencing several hundred clones, the wt/Ala ratios at each position 
can be determined with statistical accuracy.

To estimate the effect of each alanine mutation on protein function, it is assumed 
that each wt/Ala ratio is equivalent to the ratio of the corresponding equilibrium bind-
ing constants (Ka,wt/Ka,Ala). With this assumption, a statistical ∆∆G value can be cal-
culated for the function selection (∆∆Gfunc) and for the structure selection (∆∆Gstruct) 
by substituting the wt/Ala ratio for the ratio of equilibrium binding constants in the 
standard equation: ∆∆G = RT ln(Ka,wt/Ka,Ala). Finally, the ∆∆G for the structure selec-
tion is used to correct the ∆∆G for the function selection, and the difference between 
the two is taken as an estimate of ∆∆GAla-wt, the difference in binding free energy 
between alanine-substituted and wt protein for binding to the ligand of interest. To 
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visualize the functional epitope, the binding free energy values are mapped onto the 
three-dimensional protein structure.

exaMPles of shotgun sCanning

Shotgun scanning has been used to analyze the functions of numerous proteins 
(Table 4.2), and in many cases, subsequent biophysical analysis has been used to con-
firm the accuracy of the results. In addition to alanine scanning, the method has been 
expanded to include other types of scans, including homolog and serine scanning. 

table 4.1
shotgun scanning Codons

alanin scanb serine scanb homolog scanc

wta Codond m2 m3 Codond m2 m3 Codond homo

A KCT KCT S

C KST G S WGT WGT S

D GMT KMC A Y GAM E

E GMA KMG A * GAM D

F KYT S V TYC TWC Y

G GST RGT GST G

H SMT D P MRC N R MAC N

I RYT T V AKC RTT V

K RMA E T ARM N R ARG R

L SYT P V TYG P V MTC I

M RYG T V AKS T V MTG L

N RMC D T ARC D T RAC D

P SCA YCT SCA A

Q SMA E P YMG E P SAA E

R SST G P MGT G P ARG K

S KCC KCC A

T RCT WCG ASC S

V GYT KYT RTT I

W KSG G S TSG G S TKG L

Y KMT D S TMC D S TWC F

Note: For each scan, degenerate shotgun codons were designed to encode the wild-type amino acid and 
one or more substitutions.

a Amino acids are represented by the single-letter amino acid code.
b The shotgun codon for each amino acid ideally encodes only the wild type or one type of mutant, but 

the degeneracy of the genetic code necessitates the occurrence of two other amino acids (m2 and m3) 
for some substitutions. Asterisks (*) indicate a stop codon.

c For the homolog scan, binomial shotgun codons were designed to encode the wild type and a similar 
amino acid (Homo).

d Equimolar DNA degeneracies in shotgun codons are represented by the IUB code (K = G/T, M = A/C, 
R = A/G, S = G/C, W= A/T, Y = C/T).
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figure 4.2 The shotgun scanning method. The illustration depicts alanine scanning anal-
ysis of hGH Site 1 for binding to the hGHR. (A) An hGH library with positions varied as the 
wt or alanine was selected for binding to the hGHR, and selected clones were sequenced and 
aligned. Ten representative sequences at nine scanned positions are shown with alanine muta-
tions shaded in gray. (B) For each scanned position, the wt/Ala ratio was determined and used 
to assess the effect of alanine substitution as a statistical ∆∆G value by substituting the wt/Ala 
ratio for the Ka,wt/Ka,Ala ratio in the standard thermodynamic equation: ∆∆GAla-wt = RT ln(Ka,wt/
Ka,Ala) = RT ln(wt/Ala). For greater accuracy, the ∆∆G values can be corrected for effects on 
protein structure using data from a selection for binding to an antibody that recognizes an 
epitope distinct from the scanned region. (C) When mapped onto the structure of hGH, the 
shotgun scan results reveal a hot spot (black spheres) composed of a cluster of side chains 
that contribute most of the binding energy. Black or white spheres indicate scanned positions 
with ∆∆GAla-wt values greater than or less than 0.8 kcal/mol, respectively. The x-ray structure 
(PDB entry 3HHR) was depicted using the UCSF Chimera package from the Resource for 
Biocomputing, Visualization, and Informatics at the University of California, San Francisco 
[141].
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Furthermore, combinatorial data has been used to detect intramolecular cooperativ-
ity by analysis of double-alanine frequencies. A related quantitative saturation (QS) 
scanning approach has also been developed to assess the effects of all possible muta-
tions using spatially restricted libraries. The following sections describe the major 
shotgun scanning studies that have been reported to date.

table 4.2
Proteins analyzed by shotgun scanning

scanned Protein binding Partner

number of 
scanned 
Positions substitutions refs.

hGH hGHR 35 Alanine 60

Serine 62

Homolgo 62

Comprehensive 67

Affinity-matured hGH variant hGHR 35 Alanine 64

Serine 62

Homolgo 62

Gene-8 major coat protein Phage coat 50 Alanine 68, 69, 71

Gene-3 minor coat protein Phage coat 150 Alanine 70

Antibody ErbB2 61 Alanine 61

Homolog 61

Antibody VEGF 30 Homolog 80

Antibody BR3 40 Alanine 81

BR3 Antibodies (4) 22 Alanine 81

BR3 BAFF 22 Alanine 93

BCMA BAFF, APRIL 25 Alanine 97

TACI BAFF, APRIL 31 Alanine 94

Erbin PDZ domain Peptide 44 Alanine 101

Homolog 101

Peptide IGF-1 11 Alanine 103

Peptide EF-Tu 20 Homolog 104

Caveolin-1 Protein kinase A 20 Homolog 107

eNOS 20 Homolog 108

Streptavidin Biotin 30 Alanine 109

Engrailed homeodomain Specific DNA 30 Alanine 121

Homolog 121

SGP1-1; SGPI-2 Trypsin 18 Paralog 126

EntB EntF 18 Alanine 127

PPARγ SRC-1, TRAP220 14 Alanine 129

SRC-1 PPARγ 7 Alanine 129

EGF EGF receptor 33 Ortholog 131
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Shotgun Scanning of hgh

The hGH system was the first to be characterized by shotgun scanning and it pro-
vides examples of all of the major variations on the method. In the first shotgun 
alanine scanning experiment, 19 residues were scanned in Site 1 of hGH for bind-
ing to the hGHR, and the results were compared to the previous results of conven-
tional alanine scanning [60]. Importantly, the two data sets were virtually identical, 
and thus shotgun scanning was shown to accurately map binding energetics without 
requiring time-consuming biophysical analyses. Subsequently, several additional 
studies used alternative shotgun scanning approaches to further dissect the function 
of hGH.

homolog and serine scanning
Since shotgun alanine scanning proved to be very efficient for mapping the hGH 
functional epitope, other mutagenesis schemes were applied to provide alternative 
views [61]. The removal of a side chain by alanine substitution is a drastic mutation, 
and so, homolog scanning with chemically similar substitutions was developed as a 
more subtle probe of function. In addition, because alanine substitutions introduce 
apolar groups at the interface, it can be argued that the method overemphasizes the 
importance of polar side chains. Thus, serine scanning was developed to test the 
effects of replacing side chains with the smallest polar side chain.

Serine scanning was applied to 35 residues in Site 1 of hGH and, in general, the 
results were found to track with those of alanine scanning (Figure 4.3) [62]. Thus, it 
was concluded that serine and alanine scanning are equally effective for assessing 
side chain contributions to binding. The analysis also showed that the burial of polar 
serine residues at the interface is no more detrimental than the burial of apolar ala-
nine residues. Thus, it appears that serine is a versatile side chain capable of making 
a wide variety of packing interactions, and this conclusion agrees with the finding 
that serine is highly prevalent in the combining sites of antibodies [63–67].

An analogous homolog scan of hGH also provided insights into the nature of the 
binding site. As expected, most homologous substitutions were much less deleterious 
than alanine or serine substitutions (Figure 4.3). However, none of the homologous 
substitutions across the binding site caused a substantial improvement in binding. 
This suggests that the site is already optimized within the narrow scope of the 
chemically similar sequence space explored by homolog scanning. Indeed, affin-
ity maturation studies have shown that improved affinity requires substitutions that 
significantly alter the chemical character of the binding site [68,69]. Thus, it appears 
that subtle tweaking of the hGH binding site does not alter function appreciably, and, 
consequently, significant improvements in affinity require nonconservative muta-
tions that cause large changes in the interface.

shotgun scanning of a high affinity hgh variant
Shotgun scanning has also been used to understand the basis for the improved affinity 
of an hGH variant (hGHv), derived by in vitro evolution [63]. hGHv contains 15 muta-
tions within Site 1 and binds to the hGHR approximately 400-fold tighter than the wt. 
The effects of alanine substitutions were determined for 35 residues that constitute 
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or closely border the binding interface, and the distribution of binding energy was 
found to differ significantly from that of the wt (Figure 4.3D) [64]. Although the 
hot spot residues of the wt were still important, their contributions were attenu-
ated and additional binding energy was acquired from residues on the periphery of 
the hot spot. Side chains that inhibited binding of wt hGH were substituted by side 
chains that made positive contributions in the new interface. Interestingly, some side 
chains that were not mutated nevertheless acquired more important functional roles 

A B

C D

E F

figure 4.3 (SEE COLOR INSERT FOLLOWING PAGE 174.) Alternative views of 
hGH Site 1 for binding to the hGHR. The first four panels show the energetic effects of (A) 
alanine, (B) homolog or (C) serine substitutions on hGH, or (D) alanine substitutions on a 
high affinity hGH variant. All maps were derived by shotgun scanning, except the alanine 
scanning map for hGH, which was derived by conventional site-directed mutagenesis. The 
residues are colored according to the ∆∆Gmut-wt values as follows: cyan < –0.4 kcal/mol; –0.4 
kcal/mol ≤ green < 0.4 kcal/mol; 0.4 kcal/mol ≤ orange < 1.0 kcal/mol; red ≥ 1.0 kcal/mol; 
gray untested. Panel E shows the results of a double-alanine frequency analysis of shotgun 
scanning data to detect cooperativity among 19 side chains. Scanned positions are colored red 
or green, and red indicates residues predicted to exhibit cooperativity with at least two other 
residues. Panel F illustrates the results of quantitative saturation scanning, which assesses the 
tolerance to all possible mutations. The residues are colored according to SI values, as fol-
lows: cyan < –2; –2 ≤ green < 3; 3 ≤ yellow < 6; red ≥ 6. Larger SI values indicate positions that 
are less tolerant to substitution, and thus are important for binding. The x-ray structures of 
hGH and the high affinity variant (PDB entries 3HHR and 1kf9, respectively) were rendered 
in Pymol (DeLano Scientific, San Carlos, CA).
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in the high affinity variant. Taken together, these changes produced an expanded 
and diffused hot spot in which improved affinity resulted from numerous small con-
tributions distributed broadly across the interface. The results were consistent with 
structural studies, which revealed widespread differences between the wt and vari-
ant hormone–receptor interfaces [65]. Clearly, the improved function of hGHv was 
achieved through wholesale structural reconfiguration of binding elements rather 
than through minor adjustments in the wt interface.

assessing intramolecular Cooperativity
Alanine scanning provides information on the functional roles of individual resi-
dues, but it does not assess whether there is cooperativity between residues. To detect 
cooperativity, double mutation cycles are required so that the effects of two indi-
vidual mutations can be compared to the effect of the corresponding double mutant 
[71–73]. In the absence of cooperativity, the system is additive and the sum of the 
effects of individual mutations equals the effect of the double mutant. Although dou-
ble mutation cycles offer a rigorous means for detecting cooperativity, the number of 
mutants required for a comprehensive analysis makes the approach impractical for 
large binding sites.

With shotgun alanine scanning, it has been shown that the same data set used for 
assessing individual residue contributions can be used to detect intramolecular coop-
erativity by pairwise correlation analysis of double-alanine mutants, as the occur-
rence of double-alanine mutations is positively or negatively influenced by positive 
or negative cooperativity, respectively [66]. The validity of this approach was dem-
onstrated for hGH, using the shotgun data set originally acquired for mapping indi-
vidual contributions of 19 residues in Site 1 [60]. More than 700 unique sequences 
were analyzed and statistically reliable assessments of additivity were calculated for 
144 of 171 residue pairs by comparing predicted and actual counts of double-alanine 
occurrences. Unfortunately, the remaining pairs could not be evaluated due to a low 
occurrence of double-alanine mutations at combinations of functionally important 
residues. Nonetheless, the analysis revealed that the binding site is highly additive, as 
only 15 of the pairs exhibited evidence of cooperativity and even these pairs deviated 
less than twofold from additivity. Eight of the nineteen side chains were involved in 
two or more cooperative interactions, and, notably, five of these eight were charged 
residues, suggesting that many of the cooperative effects arise from electrostatic 
interactions (Figure 4.3E). Subsequent biophysical analysis showed that the predic-
tions were accurate for five of six residue pairs tested, thus confirming the accuracy 
and sensitivity of the method.

Mapping binding sites in a Comprehensive Manner
hGH was also scanned with a QS scanning strategy designed to assess the structural 
and functional consequences of all possible mutations at 35 positions within Site 1 
(Figure 4.3F) [67]. The 35 residues were divided into six nonoverlapping libraries 
containing five or six residues each, and libraries were restricted spatially rather than 
chemically. Each library contained only one of the six functionally most important 
residues defined by alanine scanning, and positions were assigned to libraries in 
a manner that maximized distances between residues in a common library. These 
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design principles were intended to reduce cooperative interactions between proximal 
positions and to ensure that no single library contained a disproportionate number 
of hot spot residues. The positions were subjected to saturation mutagenesis using 
degenerate codons encoding all 20 natural amino acids. Each library was subjected 
separately to structural and functional selections in a manner analogous to shotgun 
alanine scanning, and several hundred clones were sequenced from each selection. 
In total, a database of approximately 2000 hGH variants was compiled and analyzed 
to reveal a comprehensive view of the binding site.

The information content of the data set was analyzed in terms of randomness of 
amino acid frequencies at each position using a parameter known as the transformed 
Shannon entropy (TH). The TH values vary between 1 (a totally conserved position 
with only one type of residue) and 20 (a totally random position with equal repre-
sentation of all 20 residue types). The structure selection yielded high TH values 
across the surface, consistent with the supposition that surface residues do not play 
a major role in stabilizing the protein fold. However, the sequences were depleted in 
proline in helical regions, consistent with the helix-breaking properties of proline, 
and in cysteine at all positions, suggesting that cysteine residues may interfere with 
the native disulfides of hGH. Surprisingly, most positions were highly abundant in 
hydrophobic residues, and this observation contradicts the common assumption that 
protein stability is compromised by solvent-exposed hydrophobes. On average, the 
TH values for the function selection were lower than those for the structure selection, 
and this finding was consistent with the fact that the sequence requirements for func-
tional hGH molecules are expected to be more constrained than the requirements for 
structure alone.

As both the structure and function selections require correct folding, the additional 
constraints imposed by function were quantified by a specificity index (SI) defined 
as the difference between the TH values for the structure and function selections. A 
positive mean SI value across the 35 scanned positions indicated that, as expected, 
receptor binding imposed constraints beyond those imposed by structure, and a large 
standard deviation indicated that these were position-specific constraints.

The SI values were mapped onto the structure of hGH, in a manner analogous 
to ∆∆GAla-wt for alanine scanning, to visualize the tolerance of the binding site to 
mutational pressure (Figure 4.3F). The SI is an extremely robust probe of the energy 
surface, and it is significantly more powerful than alanine scanning for assessing 
the functional adaptability of the binding site. There is a general correspondence 
between the functional epitope defined by the two methods, as the high SI values 
superimpose on the alanine scanning hot spot residues, but the epitope defined by SI 
values is somewhat more expansive. This is because, at several high specificity posi-
tions, the preferred residue type is not the wt amino acid, and these positions offer 
potential for affinity maturation. In general, the hot spot residues defined by alanine 
scanning had the highest SI values indicating that these positions require the highest 
degree of specificity, and furthermore, the wt residue type is usually preferred. Large 
negative SI values were rare and likely indicated mutations that stabilize structure 
but inhibit function.

By comparing the frequencies of mutations relative to wt, it was possible to pre-
dict single-site substitutions that should improve affinity. These predictions were 
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validated by biophysical analysis of mutant proteins, which confirmed that affinity 
was improved by all six mutations that were tested. Thus, QS scanning provided 
a full view of the functional adaptability of hGH Site 1, and the data was accurate 
enough to guide the design of improved variants by rational design.

QS scanning also provided insights into the nature of protein–protein interactions 
in general, and the results challenged several common assumptions about protein 
function and evolution. In particular, many apparently conservative substitutions 
were not tolerated, while many nonconservative changes were accommodated. Thus, 
the role of amino acids in molecular recognition is highly context dependent and 
cannot be reliably predicted on the basis of chemical character alone. Furthermore, 
sequence conservation across species proved to be a poor predictor of mutational 
tolerance, and thus evolutionary conservation does not necessarily signify that a resi-
due is important for function, but, rather, may reflect other constraints imposed by 
biology. Taken together, the results indicated that the design of a functional hGH 
molecule based strictly on biophysical principles would be very different from that 
of the natural molecule based on evolutionary pressures.

Mapping the aSSeMbly of the filaMentouS phage coat

In an effort to better understand and improve the phage display platform, shotgun 
alanine scanning has been applied to the phage particle to study how pVIII and pIII 
assemble into the coat [68–71]. The filamentous phage particle is a long rod consist-
ing of a single-stranded DNA (ssDNA) genome coated with approximately 2700 
copies of the major coat protein (pVIII; Figure 4.4A) [72,73]. One end of the particle 
is capped with five copies each of the minor coat proteins pVII and pIX and the other 
end is capped with five copies each of the minor coat proteins pIII and pVI [74]. In 
a bacterial host, coat proteins insert spontaneously into the inner membrane and 
ssDNA is recruited to an assembly pore composed of nonstructural viral proteins 
(pI, pIV, and pXI; Figure 4.4B). At the assembly site, the ssDNA is extruded through 
the pore and concomitantly surrounded by coat proteins, and, in this way, assembled 
phage particles are secreted into the extracellular environment without lysis of the 
host cell.

The length of the phage coat consists of interlocking layers of pVIII molecules 
arranged around the ssDNA in a symmetrical array (Figure 4.5A) [72,75–77]. Each 
pVIII molecule makes extensive contacts with other pVIII molecules in the three 
layers below and in the three layers above, but only minor contacts with other pVIII 
molecules within the same layer [78]. Shotgun alanine scanning was used to identify 
the important residues required for the incorporation of pVIII into the phage coat. 
To enable selection for pVIII incorporation, an hGH–pVIII fusion protein was used 
in a system that resulted in the display of only a few copies of the fusion protein in 
a coat composed predominantly of wt pVIII molecules. The entire pVIII sequence 
was scanned, and selection for hGH display was used as a proxy for incorporation 
into the phage coat. The analysis predicted that only nine nonalanine side chains 
were required for efficient incorporation. Indeed, simultaneous alanine substitutions 
for all side chains except these nine produced a “mini-pVIII” that incorporated into 
the phage coat almost as efficiently as the wt (Figure 4.5B). When mapped onto the 

© 2009 by Taylor & Francis Group, LLC



Mapping Protein Function by Combinatorial Mutagenesis 69

structure of pVIII, the nine side chains form three distinct epitopes (Figure 4.5C). 
Two of these epitopes are hydrophobic patches at either end of the molecule, which 
interlock with analogous patches on neighboring pVIII molecules. The third epitope 
is a basic patch consisting of three lysines near the bottom of the molecule, which 
interacts with the negatively charged DNA core. The analysis revealed that despite 
the complex structure of the phage coat, the assembly process is driven by only a few 
protein–protein and protein–DNA interactions mediated by hot spot clusters in the 
pVIII helix. Furthermore, the relaxed requirements for incorporation into the phage 
coat suggested that it may be possible to evolve mutant or even nonnatural coat pro-
teins as improved platforms for phage display, and indeed, both of these suppositions 
have been verified [79].
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figure 4.4 Filamentous bacteriophage structure and assembly. (A) The filamentous phage 
particle is a long rod consisting of an ssDNA genome encapsulated in a coat composed of the 
major coat protein, pVIII. One end of the particle is capped by the minor coat proteins pVII 
and pIX, and the other end is capped with pIII and pVI. (B) In the bacterial host, coat proteins 
(white cylinders) insert spontaneously into the inner membrane with the N and C termini 
located in the periplasm or cytoplasm, respectively. Genomic ssDNA is recruited to an assem-
bly site, where it is extruded through a pore (gray cylinders) and concomitantly surrounded 
by coat proteins. In this way, the assembled phage particles are secreted into the extracellular 
environment without lysis of the host cell.
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An analogous approach was used to decipher the functional epitope responsible 
for the assembly of the minor coat protein pIII [70]. pIII consists of three domains; 
the first two are required for host recognition and infection, but only the C-terminal 
domain is required for incorporation into the phage coat. Shotgun alanine scanning 
of the 150-residue C-terminal domain revealed that only 24 residues located among 
the last 70 positions were necessary for the incorporation of pIII into the phage coat. 
Thus, despite considerable differences in size and structure, both pIII and pVIII rely 
on only a small set of residues to enable assembly into the phage coat. These findings 
suggest that heterologous proteins may be readily recruited into virions to enable 
rapid evolution of new viral functions such as host range expansion.
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figure 4.5 Shotgun alanine scanning of the phage coat. (A) The length of the phage coat 
consists of interlocking layers of pVIII molecules arranged around the ssDNA in a sym-
metrical array. Each pVIII molecule makes extensive contacts with other pVIII molecules in 
the three layers below and in the three layers above, but only minor contacts with other pVIII 
molecules within the same layer. (B) Based on shotgun alanine scanning analysis, a “mini-
pVIII” variant with only nine nonalanine side chains was shown to contain all of the struc-
tural information necessary for efficient incorporation into the phage coat. (C) A structural 
model of mini-pVIII reveals that the nine nonalanine side chains form three distinct epitopes. 
Two of these epitopes are hydrophobic patches at either end of the molecule, which interlock 
with analogous patches on neighboring pVIII molecules in the phage coat. The third epitope 
is a negatively charged patch consisting of three lysines near the C terminus, which interacts 
with the negatively charged DNA core.
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exploring how antibodieS recognize antigenS

Antibodies are professional binding proteins produced by the immune system to 
recognize and neutralize foreign molecules or antigens. Billions of antibodies with 
unique specificities are present in vertebrate immune repertoires, but unlike most 
natural proteins that have evolved over millions of years, functional antibodies 
evolve over a span of weeks. The study of antibody structure and function has con-
tributed significantly to our understanding of molecular recognition. Furthermore, 
antibodies are ideally suited for phage display, and several shotgun scanning studies 
have focused on antigen-binding sites to shed light on the mechanisms involved in 
antigen recognition [61,80,81].

The first antibody studied by shotgun scanning was a monoclonal antibody that 
binds to human ErbB2, a member of the epidermal growth factor receptor family 
that has been implicated in the progression of certain cancers [61]. The efficient shot-
gun scanning method enabled comprehensive analysis of the antigen-binding site by 
both alanine and homolog scanning. In total, 60 residues were scanned and map-
ping of the alanine scanning data onto the x-ray crystal structure revealed that the 
solvent-exposed functional epitope involves only heavy chain residues (Figure 4.6A). 
Alanine scanning also identified a number of buried residues that act as scaffolding 
to hold the functional epitope in a binding-competent conformation. The homolog 
scan further refined the view of the functional epitope afforded by alanine scan-
ning. In particular, the functional epitope defined by homologous substitutions was 
roughly half the size of that defined by alanine substitutions, and it was concluded 
that this smaller subset of essential side chains may be involved in precise contacts 
with the antigen. The validity of the shotgun scanning results was subsequently veri-
fied by structure elucidation of the antibody in complex with antigen, demonstrating 
that the shotgun scanning approach can provide valuable insights into molecular 
recognition even in advance of structural analysis [82].

Phage display can be used to derive antibodies from “synthetic” libraries with 
manmade binding sites. In another application of the restricted diversity concept, 
synthetic antibodies were evolved with binding sites restricted to a tetranomial 
code (tyrosine, serine, alanine, and aspartate) [83]. Subsequently, the diversity was 
restricted even further to only a binary combination of tyrosine and serine, which 
nevertheless proved sufficient for the recognition of diverse antigens [84]. Notably, 
the binary code was also shown to be effective for generating binding sites sup-
ported by a small fibronectin domain scaffold [85]. Structural analysis of several of 
these minimalist binding sites revealed that tyrosine dominates the interface con-
tacts, while small residues allow for space and conformational flexibility [80,83–
86]. One of the antibodies, derived for binding to vascular endothelial growth factor 
(VEGF), was subjected to shotgun scanning to further explore the mechanisms of 
antigen recognition [80]. Truncation scanning with short side chains showed that 
tyrosine residues provide most of the binding energy, but homolog scanning revealed 
that most of the tyrosines could be replaced with phenyalanine without affecting 
binding (Figure 4.6B). Furthermore, saturation scanning showed that affinity could 
be improved by substituting several tyrosines with other amino acid types. Taken 
together, these results showed that tyrosine is particularly well-suited for naïve 
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antigen recognition because the side chain is able to mediate many diverse interac-
tions, but subsequent replacement of tyrosine by residues that improve key contacts 
may be useful for affinity maturation.

Shotgun scanning has also been used to understand cross-reactivity in antigen 
recognition by an antibody that recognizes both human and mouse versions of a 
cell-surface receptor (BR3) involved in B-cell activation [81]. Alanine scanning of 
the antibody revealed a common hot spot that interacts with a conserved epitope 
on the human and mouse antigens. Moreover, the conserved epitope on BR3 is also 
the interaction site for the natural ligand BAFF, and structural analysis showed that 
the antibody mimics the binding site of BAFF in terms of topology and chemis-
try. However, aside from the common hot spot, the antibody uses distinct auxiliary 

A

B

C

figure 4.6 Shotgun scanning of antibodies. Main chains are shown as tubes and scanned 
side chains are shown as sticks. Side chains for which substitutions were predicted to reduce 
binding significantly (>5-fold) are colored gray while others are colored white. (A) Mapping 
of alanine (left) and homolog (right) scanning data onto the structure of an anti-ErbB2 anti-
gen-binding fragment (Fab; PDB entry 1L7I). (B) Mapping of truncation (left) and homolog 
(right) scanning data onto the structure of an anti-VEGF Fab (PDB entry 1TZI). (C) Mapping 
of alanine scanning data for binding to human (left) or mouse (right) antigen onto the struc-
ture of an anti-BR3 Fab (PDB entry 2HFG). The x-ray structures were rendered in Pymol 
(DeLano Scientific, San Carlos, CA).
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regions of its binding site to recognize either human or mouse BR3 (Figure 4.6C). 
Since the antibody was derived by phage display through a multistep process, the 
evolution of the binding site could be tracked, and it was found that the common hot 
spot arose first and additional residues were subsequently recruited during affinity 
maturation against the different antigens.

Mapping croSS-reactivity in a coMplex receptor–ligand network

The cell-surface receptor BR3 is part of a complex network of cross-reactive receptors 
and ligands that mediate B-cell maturation and activation [87–92]. In addition to BR3, 
the system involves two other receptors (BCMA and TACI) and two ligands (BAFF and 
APRIL). Whereas the receptors BCMA and TACI recognize both ligands, BR3 rec-
ognizes only BAFF. Because the signaling pathways regulated by this receptor–ligand 
system are of considerable therapeutic interest, shotgun scanning was used to map the 
functional epitopes of all three receptors for binding to their respective ligands.

Shotgun alanine scanning of BR3 was performed using a 26-residue “mini-BR3” 
fragment that was sufficient for binding to BAFF [93]. The scan revealed a focused 
functional epitope of seven residues residing mainly on a β-hairpin. These findings 
enabled further minimization of the BR3 protein by transplantation of the functional 
epitope into a structured β-hairpin. The resulting “bhp-BR3” peptide was crystal-
lized in complex with trimeric BAFF and the structure revealed a convex epitope on 
BR3 bound to a cavity formed at the subunit interface of BAFF. Moreover, the BR3 
epitope was centered on a “DXL” motif (Figure 4.7A) that was conserved among the 
three receptors, suggesting that BCMA and TACI likely recognize ligands through a 
similar structural mechanism. At the same time, sequence differences at other posi-
tions could also explain differences in receptor–ligand preferences. These predictions 

A B C

figure 4.7 Shotgun alanine scanning of BR3, BCMA, and TACI. Main chains are shown 
as tubes and side chains for which substitutions were predicted to reduce binding significantly 
(>5-fold) are shown as sticks. The Asp and Leu residues of the conserved DXL motif are 
colored gray. The functional epitopes are shown for (A) the minimized bhp-BR3 binding to 
BAFF (PDB entry 1OSG), (B) BCMA binding to BAFF and APRIL (PDB entry 1xu2), and 
(C) TACI binding to BAFF and APRIL (PDB entry 1xut). X-ray structures were rendered in 
Pymol (DeLano Scientific, San Carlos, CA).
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were confirmed by the elucidation of crystal structures for BCMA bound to BAFF 
and APRIL, and for TACI bound to APRIL [94–96].

Subsequently, shotgun alanine scanning was used to explore the interactions of 
BCMA and TACI with BAFF and APRIL [94,97]. BCMA binds tightly to APRIL 
but recognizes BAFF with low affinity. For binding to both ligands, the alanine scan 
revealed a common hot spot centered on the conserved DXL motif (Figure 4.7B). 
However, significant differences were also discovered between the two ligand inter-
actions, and these differences were exploited to design an APRIL-selective BCMA 
mutant with no detectable affinity for BAFF [97]. TACI binds to both BAFF and 
APRIL with high affinity, and again, alanine scanning revealed that both ligands are 
recognized by a common functional epitope involving the DXL motif (Figure 4.7C). 
However, recognition of each of the two ligands also relied on different sets of resi-
dues located in a module near the C terminus of TACI. Structural analysis revealed 
that the two modules together form a concave binding site that mediates high affinity 
recognition of both ligands [94].

In summary, the comprehensive shotgun alanine scanning of all three receptors 
revealed both common elements and differences in their functional epitopes, and 
these findings in turn served to explain the patterns of cross-reactivity and selectivity 
for ligand recognition.

StudieS of protein–peptide interactionS

Many intracellular protein–protein interactions are mediated by modular domains 
that recognize discrete peptide motifs within proteins. These peptide-binding 
domains are usually imbedded in large multidomain proteins that are responsible for 
assembling protein networks [98]. Phage display has proven useful for exploring the 
specificity of peptide-binding domains, and in addition, phage display has proven 
useful for deriving peptide ligands against many diverse proteins directly from naïve 
peptide libraries [10]. In several studies, shotgun scanning techniques have been 
used to explore both sides of protein–peptide interfaces.

analysis of the erbin PDz Domain
PDZ domains are modules that recognize the extreme C termini of other proteins and act 
as scaffolding to assemble intracellular complexes [99,100]. Most PDZ domains recog-
nize ligands by a common mechanism, whereby a peptide inserts in an extended manner 
into a cleft located between a β-strand and an α-helix. To better understand the molecular 
basis for PDZ domain specificity, the PDZ domain of Erbin (Erbin PDZ) was subjected to 
detailed structural and functional analysis [101]. First, phage-displayed peptide libraries 
were used to derive an optimal C-terminal peptide ligand for Erbin PDZ (W–4–E–3–T–2–
W–1–V0), and, subsequently, the NMR structure of the complex was solved.

The interaction of the peptide with Erbin PDZ was also investigated by scanning 
mutagenesis. The ligand was subjected to conventional alanine scanning with syn-
thetic analogs, and Erbin PDZ was subjected to shotgun alanine and homolog scan-
ning (Figure 4.8A). The analysis confirmed that all five ligand side chains contribute 
favorably to the binding interaction. On the PDZ domain side of the interface, how-
ever, the scanning analysis revealed favorable side chain interactions with only three 
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A

B C

figure 4.8 (SEE COLOR INSERT FOLLOWING PAGE 174.) Shotgun scanning of 
proteins binding to peptides and small molecules. (A) Alanine (left) and homolog (right) 
scanning data mapped onto the structure of Erbin PDZ bound to a peptide (PDB entry 1N7T). 
Erbin PDZ is shown as a surface. The peptide main chain is shown as a tube and side chains 
are shown as sticks. Residues are colored according to the predicted fold reduction in binding 
due to substitution, as follows: green < 5; 5 ≤ yellow < 25; red ≥ 25. (B) Alanine scanning 
data mapped onto the structure of a streptavidin monomer bound to biotin (PDB entry 1STP). 
The main chain is shown as a tube and side chains are shown as sticks colored according to 
the predicted fold reduction in binding due to substitution, as follows: green < 3; 3 ≤ yellow 
< 9; red ≥ 9. Biotin is colored blue. (C) Alanine scanning data mapped onto the structure of 
PPARγ bound to SRC1 (PDB entry 1RDT). PPARγ is shown as a surface. A peptide frag-
ment of SRC1 is shown with the main chain depicted as a tube and the side chains depicted 
as sticks. The residues are colored according to the predicted fold reduction in binding due to 
substitution, as follows: green < 3; 3 ≤ yellow < 10; red ≥ 10. X-ray structures were rendered 
using Pymol (DeLano Scientific, San Carlos, CA).
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of the ligand side chains (Val0, Thr–2, and Trp–4). For the other two positions (Trp–1 
and Glu–3) it appeared that the ligand side chains interacted mainly with the PDZ 
domain main chain, and, in fact, alanine scanning suggested that several side-chain 
contacts inhibit binding. Thus, it was suggested that, unlike hormone–receptor and 
antibody–antigen interfaces that are dominated by side-chain interactions, protein–
peptide interactions apparently rely on both side-chain and main-chain interactions.

analysis of Peptide ligands
Shotgun scanning can also be applied to the rapid generation and analysis of peptide 
ligands, which are typically displayed as fusions to pVIII. In one study, naïve phage-
displayed libraries were first used to derive a disulfide-constrained peptide ligand for 
insulin-like growth factor I (IGF-1) [102], and, subsequently, the ligand was analyzed 
by shotgun alanine scanning [103]. The scan revealed that roughly half of the peptide 
side chains are required for binding and many of these are located on a helical seg-
ment. Complementary NMR analysis suggested that many residues that contribute 
to function are also required for structural stabilization of the helix, showing that 
structural and functional effects are often coupled in small peptides.

In another study, naïve peptide-phage libraries yielded ligands for the Escherichia 
coli elongation factor Tu (EF-Tu), a protein that is essential for polypeptide transla-
tion and is involved in numerous natural interactions [104]. Perhaps because of its 
multifunctional nature, EF-Tu gave rise to multiple disulfide-constrained ligands 
with only limited sequence homology. One of these peptides was subjected to shot-
gun homolog scanning, and many of the resulting sequences were shown to rec-
ognize EF-Tu more effectively than the parent. Thus, homolog scanning was used 
simultaneously to obtain information about the binding interaction and to derive 
more effective peptide ligands. EF-Tu is an antibiotic target, but surprisingly, the 
peptide ligands did not compete with several antibiotics for binding to EF-Tu, sug-
gesting that phage display may have targeted a hitherto uncharacterized binding site 
on the protein.

analysis of the Caveolin-1 scaffolding Domain
Caveolin-1 is a membrane-associated intracellular protein that oligomerizes to form 
caveolae, flask-shaped invaginations in the plasma membrane [105,106]. Although 
the structure and function of caveolin-1 is complex, a small “scaffolding” domain 
has been shown to mediate homooligomerization and several other protein–protein 
interactions. The 20-residue caveolin scaffolding domain (CSD) was displayed as a 
peptide on phage and the entire sequence was subjected to shotgun homolog scan-
ning to investigate the interaction between caveolin-1 and the catalytic subunit of 
protein kinase A (PKAcat) [107]. Mutations at only four positions were predicted 
to be deleterious for binding and mutations at four other positions were predicted 
to improve binding, suggesting that the affinity of the interaction between CSD and 
PKAcat can be readily improved. The mutagenesis data were also used as constraints 
in computational docking experiments to help define plausible structural solutions 
for the interaction.

In a subsequent study, the same shotgun homolog scanning approach was used 
to study the interaction between CSD and another natural ligand, endothelial nitric 
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oxide synthase (eNOS) [108]. The data set from this scan was compared to that from 
the scan against PKAcat to identify similarities and differences between the binding 
sites for the two ligands. At six positions, both scans showed similar preferences for 
the wt CSD sequence, suggesting that these side chains are important for recognition 
of both ligands. At five other positions, both ligands appeared to prefer the mutant 
sequence, suggesting that mutations at these positions may improve ligand binding 
in a general way. Finally, at a third set of seven positions, the two data sets showed 
marked differences, suggesting that PKAcat and eNOS interact differently with CSD 
residues at these positions. Taken together, these results suggest that PKAcat and 
eNOS utilize both common and unique interactions to recognize overlapping bind-
ing sites on CSD.

Mapping the Streptavidin–biotin interaction

The interaction between streptavidin and biotin is the tightest noncovalent interac-
tion known in nature [109]. The interaction has proven to be highly useful for affinity 
labeling applications and has served as a model system for understanding how proteins 
recognize small molecules. Streptavidin is a homotetramer and the binding contribu-
tions of residues in direct contact with biotin have been investigated by conventional 
site-directed mutagenesis [110–114]. To further explore the mechanisms responsible 
for high affinity biotin recognition, shotgun alanine scanning was applied to 38 resi-
dues, including second-sphere residues that are not directly in the binding site. Because 
high affinity binding requires tetrameric structure, selections for binding to biotin 
were sensitive not only to direct effects on the binding pocket, but also to indirect 
effects on the quaternary structure. The study reiterated results for some previously 
analyzed residues and revealed a complex network of hydrophobic residues that serve 
to buttress the biotin binding site and help to align key contact residues (Figure 4.8B). 
In addition, it was hypothesized that other residues act to strengthen the interactions 
between subunits to establish a stable tetrameric structure. Overall, the large-scale 
shotgun scanning analysis facilitated the exploration of areas far from the binding site 
and established a more comprehensive view of the structure–function requirements for 
high affinity recognition of small molecules by proteins.

exploring the baSiS for affinity and Specificity in a dna-binding protein

The engrailed homeodomain recognizes a specific DNA sequence. The interac-
tion has been investigated by structural analysis, site-directed mutagenesis, and in 
vitro selection experiments [115–120]. These studies mapped the subset of residues 
that contact DNA and are required for binding, but the role of noncontacting resi-
dues remained unclear. To provide a more comprehensive view of the interaction, 
30 residues were subjected to shotgun alanine scanning and 15 of these were also 
subjected to homolog scanning [121]. The scans showed that many residues could 
be readily replaced without affecting function, and some substitutions even resulted 
in slight improvements to affinity or specificity. However, approximately one-third 
of the positions were intolerant to substitutions, and these were mainly scaffolding 
residues involved in maintaining the proper orientation of residues in direct contact 
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with DNA. In particular, residues that were intolerant to alanine substitutions either 
were buried in the hydrophobic core or were part of a hydrophobic network that sup-
ports the formation of a sharp turn between two helices. In addition, the patterns of 
sequence conservation among selected clones were in good agreement with consen-
sus patterns observed in alignments of human homeodomains, and it was interesting 
that disease-related natural mutations often occur at positions that were conserved 
in the scans. These results showed that the sequence constraints for homeodomain 
function, as defined by shotgun scanning, are also reflected in the evolutionary his-
tory of the natural system.

detecting cooperativity in a proteaSe inhibitor

Two serine protease inhibitor paralogs, Schistocerca gregaria serine protease inhibi-
tor-1 (SGPI-1) and -2 (SGPI-2), share high sequence identity but exhibit different 
inhibition profiles. Both proteins inhibit arthropod trypsins, but only SGPI-2 inhib-
its mammalian trypsins [122–125]. The 35-residue proteins differ at 18 positions 
and a shotgun “paralog” scanning strategy was devised to determine the basis for 
the differing specificities. The two sequences were shuffled to produce all possible 
chimeras, and this library was selected for binding to either arthropod or mamma-
lian trypsin [126]. A comparison of the results from the two scans revealed differ-
ent sequence patterns that were likely responsible for the differing specificities. The 
analysis also revealed significant covariance between certain positions, suggesting 
that these positions may function in a cooperative manner. In particular, it was found 
that elements of the hydrophobic core are functionally coupled with a surface loop. 
This predicted functional coupling, so far unique among reversible protease inhibi-
tors, was verified using point mutations. Thus, the rapid paralog scanning strategy 
was able to detect complex cooperative relationships that would be impossible to 
elucidate with conventional site-directed mutagenesis methods.

shotgun sCanning beyonD Phage DisPlay

Shotgun scanning was first developed with phage display, and this remains the predomi-
nant platform. However, the conceptual basis of the method is compatible with any com-
binatorial technology that allows for the selection of functional variants in an exhaustive 
and defined manner. Indeed, shotgun scanning was in part derived from an earlier “bino-
mial” mutagenesis strategy that relied on a survival selection inside cells [66]. In recent 
years, several studies have used shotgun scanning strategies with other selection tech-
niques, including survival selections, protein complementation assays, and yeast surface 
display. These alternative approaches extend shotgun scanning to protein systems that 
are not suitable for phage display and further expand the utility of the method.

Shotgun Scanning by Survival Selection

The interactions between several components of the E. coli enterobactin synthesis 
pathway were studied using an in vivo selection based on the fact that enterobac-
tin is necessary for survival under iron-depleted conditions [127]. Enterobactin is 
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synthesized by a nonribosomal peptide synthetase system through a multistep reac-
tion pathway in which biosynthetic intermediates are covalently linked to carrier 
proteins. One such carrier protein domain, EntB-ArCP, interacts with two other pro-
teins (EntE and EntF). Shotgun alanine scanning was used to analyze a proposed 
interaction site on EntB-ArCP, and 5 of 18 scanned residues were found to be impor-
tant, as judged by conservation of the wt sequence in variants that permitted sur-
vival in iron-depleted media. Subsequent in vitro analysis of point-mutated proteins 
revealed that the conserved residues affected the interaction of EntB-ArCP with 
EntF but not with EntE. This study showed that shotgun scanning can be used in 
vivo, provided that a vital cellular function can be exploited for selection. However, 
the study also highlighted that, without a parallel selection for structure, individual 
variants need to be analyzed to assess whether a given trait is due to effects on func-
tion or structure.

Shotgun Scanning by protein coMpleMentation aSSayS

In the dihydrofolate reductase (DHFR) protein complementation assay, two comple-
mentary fragments of DHFR are fused to two proteins of interest, and functional 
DHFR only forms if the proteins interact [128]. Recently, the method was combined 
with shotgun scanning technology to probe the interactions between the transcrip-
tion factor PPARγ and two coactivators (SRC1 and TRAP220) [129]. All together, 14 
or 12 positions in PPARγ were alanine scanned for binding to SRC1 or TRAP220, 
respectively. The analysis revealed that a common set of six residues was required 
for binding to both ligands, but other residues appeared to function in a ligand-
selective manner. In a complementary experiment, shotgun alanine scanning was 
applied to a peptide representing the binding region of SRC1, and it was found that 
binding was mediated predominantly by an “LXXLL” motif, which is common to 
both SRC1 and TRAP220, but also utilized several residues that are not conserved 
among the two ligands. Mapping of the alanine scanning data onto the structure of 
the PPARγ-SRC1 complex revealed that the functionally important residues of the 
binding partners interact at the interface (Figure 4.8C). An assay for correct protein 
folding, utilizing fusions of PPARγ with a green fluorescent protein reporter [130], 
was used to independently assess the effects of mutations on protein expression and 
stability. Five residues were found to be important for stability, and these were also 
hot spot residues for coactivator binding. As the protein complementation assay is 
applicable to many different proteins, this method should be of general use for map-
ping protein–protein interactions in an in vivo environment.

Shotgun Scanning by yeaSt diSplay

Shotgun scanning has also been demonstrated with protein libraries displayed on 
the surfaces of yeast cells. An ortholog scanning strategy for affinity maturation was 
designed to take advantage of the observation that, in previous studies, affinity was 
often improved by substitutions resembling variations among natural orthologs [131]. 
A library of human epidermal growth factor (EGF) variants was designed to incor-
porate sequence variations from orthologs in other species [132,133]. Yeast-displayed 
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libraries were selected for binding to the EGF receptor and EGF variants with up to 
30-fold improvements in affinity were obtained. It was concluded that since natural 
selection eliminates variations that are deleterious for structure and function, the use 
of libraries biased toward natural diversity might be an efficient and general means 
for improving function in protein families. In addition, the study also showed that 
shotgun scanning analysis in yeast may be a viable alternative for proteins that do 
not fold correctly in bacteria.

ConClusions anD future PersPeCtives

Shotgun scanning methods have been utilized in numerous studies to analyze protein 
function, and the results clearly demonstrate the efficiency and rigor of the approach. 
Moreover, the general concept has been extended beyond phage display by the use 
of other combinatorial methods that should enable many additional studies in the 
future. It is clear that combinatorial analysis with well-defined libraries and selec-
tions can be used to explore diverse protein functions in a rapid manner. In parallel, 
combinatorial libraries with restricted diversities have been used to derive synthetic 
proteins that are comparable to natural proteins in terms of function, and yet are 
simplified in terms of structure [134,135]. These synthetic proteins should be ideally 
suited for analysis by shotgun scanning approaches to reveal basic principles govern-
ing molecular recognition in protein–protein interfaces.

Because the main expense for shotgun scanning is DNA sequencing, wider adop-
tion of the method should be enabled by recent advances in sequencing methods 
that have reduced cost and increased throughput by several orders of magnitude 
[136,137]. Furthermore, the generation of diverse, well-defined protein repertoires 
has been made routine by the development of optimized library construction meth-
odologies [10,138] and new DNA synthesis strategies [139]. Finally, robotics and 
automation technologies are being applied to combinatorial selections, and should 
enable high-throughput generation and analysis of protein function [140]. In the near 
future, we envision that these technological advances will be integrated into an auto-
mated system that will enable the exponential acceleration of investigations into the 
principles governing protein structure and function.
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5 The Association 
of Protein–Protein 
Complexes

Gideon Schreiber

overvieW

The structure of a protein–protein interaction, its affinity, and thermodynamic char-
acteristics depict a “frozen” state of a complex. This picture ignores the kinetic 
nature of complex formation and dissociation, which are of major biological and bio-
physical interest. In this chapter I focus on recent advances in describing the kinetics 
of protein–protein association, and how a combination of computational tools and 
experimental data helped us to decipher the pathway.
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The rapid formation of specific interactions between proteins is important for 
many biological processes, including signal transduction and the immune response. 
For proteins to recognize one another and to interact, their interfaces have to be 
oriented toward one another at a highly specific conformation. This reaction, which 
occurs within the milieu of endless competing macromolecules, can be compared 
to two blind men finding each other in the streets of New York. Yet, it is done 
rapidly at rates of only one to five orders of magnitude below the Smoluchowski 
diffusion collision limit of 1010 M–1s–1. The rate of association of a protein complex 
is limited by diffusion and geometric constraints of the binding sites (diffusion con-
trol). Subsequent chemical processes may further slow the reaction process. Typical 
association rates are in the order of 105–106 M–1s–1, but rate constants of >109 M–1s–1 
have been measured for interactions where the speed of the process is of functional 
importance. In these cases, strong favorable electrostatic forces enhanced the rate 
of association.

introDuCtion

The association reaction between two proteins can be viewed as a random process, 
where the rate of association is a function of diffusion limited collisions (which is 
defined from the Stokes–Einstein relation) divided by the chance of a collision to 
occur at the exact orientation that will lead to complex formation. For a diffusion-
controlled reaction of two similar-sized particles, the rate of collision (k1) is given by 
the Smoluchowski relation:

 k1 = 4πRD (5.1)

with R being the sum of the effective radii of the particles, and D is the diffusion 
coefficient, which is calculated from:

 

D
k T

R
B=

6πη  (5.2)

Here, η is the relative viscosity (to water at 20°C). Taking Equations 5.1 and 5.2 
together shows that k1 is independent of the size of the proteins and inversely lin-
ear with η, as was indeed shown to be true experimentally using different types of 
crowding agents (Kuttner et al., 2005). For two spherical particles in water, Equation 
5.1 predicts a rate of collision of ~1010 M–1s–1. However, the rate of association in the 
absence of electrostatic forces is only in the order of 104–106M–1s–1. This means that 
only 1 out of 104–106 collisions will transform into a complex. This is not surprising, 
as binding involves the exact rearrangements of the two interfaces one relatively to 
the other, and thus involves a component of rotational diffusion. A basic mechanistic 
question is whether association can be viewed as a simple diffusion-limited reac-
tion or whether it involves a reaction-limited component, accounting for desolvation 
and structural rearrangement of the interfaces. Moreover, is association a two-state 
reaction (unbound to bound) or do intermediates (also called encounter complexes 
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or transient complexes) play a role along the reaction path (Figure 5.1)? For associa-
tion to be two-state, a random collision has to be sufficiently precise to promote the 
formation of correct short-range interactions found in the final complex. The random 
chance for two patches of 1 Å2 to collide, assuming a total protein surface area of 
2000 Å2 is 1 to 4 × 106. However, complex formation requires many residues to 
interact simultaneously, reducing the change further. Thus, the assumption that pro-
tein–protein association is simply a diffusion process is not realistic. The most basic 
description for association (according to Figure 5.1) will be to divide the process 
into two parts, one that is diffusion limited (with a rate of k1), at which the encounter 
(transient complex) is formed, and the second (with a rate of k2) for the formation of 
the final complex. Under these assumptions the rate of association will be equal to:

 

k
k k

k k
on =

+−

1 2

1 2
 (5.3)

where k–1 is the dissociation rate of the encounter complex, and K1 = k–1/k1 is the sta-
bility of the encounter complex. Under these conditions, k2 represents the reaction-
limited rate. Thus, if k2 >> k–1, than kon = k1.

An early attempt to satisfy the observed rate of association using computer simu-
lations was done by Northrup and Erickson (1992), who tried to explain the relatively 
faster rates of association by assuming that binding is speeded up by multiple col-
lisions of large bodies that are proximate to each other (in the order of 10) and that 

Encounter
complex

Final
complex

A+B A:B AB
k1

k–2

k1

k–1

Transition
state

Unbound
state

Energy

figure 5.1 Free energy diagram describing the pathway of protein–protein binding. Two 
proteins (A and B) in solution will collide with one another at a rate dictated by diffusion to 
form an encounter complex, A:B, which following structural rearrangement and desolvation 
develops into the final complex, AB.
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association can be assumed to occur when two to three correct interprotein interac-
tions are formed. These assumptions were used to simulate binding using Brownian 
dynamics simulations (Gabdoulline and Wade, 1997). The obtained rates were in rea-
sonable agreement with the experimental rates. A somewhat broader view was taken 
by Zhou (Vijayakumar et al., 1998), who assigns a region where association occurs in 
a diffusion-controlled limit and defines it as the encounter complex. In this region, he 
neglects the short-ranged nonelectrostatic effects as the encounter-complex configu-
rations are separated by at least one layer of solvent; therefore, short-ranged forces 
such as hydrophobic and van der Waals interactions are relatively weak in the diffu-
sion process leading to the encounter complex. However, short-range interactions are 
essential for determining the location and size of the encounter-complex ensemble in 
configurational space, which in turn affect the magnitude of kon. An encounter-com-
plex ensemble that is less restricted in translation and rotation will lead to a higher 
kon (Alsallaq and Zhou, 2007a, 2007b). Variation of the restriction in translation and 
rotation within the encounter complex with solvent conditions or among different 
protein complexes can be viewed as a configurational entropy effect.

A similar approach to calculate association rates, adding the assumption that the 
exact location of a protein complex is located within a binding funnel minimum, was 
used by Schlosshauer and Baker (2004). Both Zhou and Schlosshauer predict the exis-
tence of some sort of encounter/transition complex, which is less restricted than the 
exact binding complex. The size, energy, and location of the encounter complex were 
calculated from Brownian dynamics simulation (Spaar et al., 2006). Experimental 
work using a variety of methods supports the existence of this encounter complex, 
and assigned its location (Schreiber, 2002; Miyashita et al., 2004; Volkov et al., 2006; 
Harel et al., 2007; Suh et al., 2007). The picture emerging from the experimental 
data suggests that the encounter complex is in the region of the final complex, with 
the two proteins already aligned one toward the other; however, the interface is still 
mostly desolvated and structural rearrangement of the interface residues to provide 
an exact match has not yet occurred. Therefore, the transition state would be com-
posed of desolvation and structural rearrangement. Further increase in binding rates 
can be obtained through columbic forces disseminated through charged residues.

the Contribution of eleCtrostatiC 
effeCts on the rate of assoCiation

The one factor that contributes more than any other to the rate of association is 
electrostatic attraction between proteins, as seen by analyzing the effects of muta-
tions on kon (Figure 5.2). While mutations of charged residues can affect kon by more 
than 20-fold (Sheinerman et al., 2000; Selzer and Schreiber, 2001), mutations on 
noncharged residues have only minor effects on the rate of binding. The picture is 
fundamentally different when analyzing the effect of mutations on koff, where no 
significant difference is seen between either group. Moreover, the effect of mutations 
on koff is much larger than on kon.

Another clear indication on the effect of electrostatic forces on the rate of associa-
tion is the salt dependence of kon. The relation between ionic strength, protein-charge 
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complementarity, and kon was shown to follow the Debye–Hückel energy of interac-
tion between a pair of proteins according to the following equation (Selzer et al., 
2000):

 ln ln ( )k k U
RTon on= −

+
0 1

1 κa
 (5.4)

where kon and kon
0  are the rates of association in the presence and absence of electro-

static forces, respectively, U is the electrostatic energy of interaction, κ is the inverse 
Debye length, and a is the minimal distance of approach. Hence, kon is the sum of 
two components: (1) the basal rate of association in the absence of electrostatic forces 
( kon

0 ) and (2) the contribution of the electrostatic forces between the proteins (–U/RT). 
The later can be attended by mutation (changing U) or changing solution conditions. 
Equation 5.1 suggests that a plot of lnkon versus 1 + κa (which is proportional to the 
ionic strength [I]) is linear, with the slope being equal to –U/RT. The intercept of the line 
at  1 + κa = 0 corresponds to the basal rate where electrostatic forces are shielded by 
salt (Figure 5.3). The intercept at  1 + κa = 1 corresponds to lnkon in the absence of salt, 
with the electrostatic forces being maximized (Selzer and Schreiber, 1999). This linear 
relation was shown to hold for the association of TEM1–BLIP, interferon–receptor, 
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figure 5.2 The change in the rate constants of (A) association and (B) dissociation plotted 
against the change in charge resulting from a mutation. The rate constants were measured for 
55 mutations in barnase–barster, TEM1–BLIP, and IFNα2–IFNAR2 complexes in solution 
using a stopped-flow instrument.
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hirudin–thrombin, barnase–barstar, and a heterodimeric leucine zipper for all 
salt concentrations tested (Wendt et al., 1997; Piehler and Schreiber, 1999). From 
Equation 5.4, a computer program (PARE [Protein Association Rate Enhancement]) 
was developed, which predicts the rate of association of mutant proteins. PARE is 
able to accurately calculate the rate of association for many mutant proteins (Selzer 
et al., 2000; Kiel et al., 2004; Stewart and Van Bruggen, 2004; Schreiber et al., 
2006). Yet, one should be aware that the basal rate of association is not directly cal-
culated in Equation 5.4, but has to be obtained by other methods such as Brownian 
dynamic simulations or from experimental data.

The ionic strength in the cell is ~150 mM. At this ionic strength, charge–charge 
interactions are partially shielded, reducing the negative effect of nonspecific inter-
actions. A good example for this was reported for the complex of barnase–barstar 
in the presence of the polyion hirudin (Schreiber and Fersht, 1996). Measuring kon 
at low salt was actually slower than in higher salt, due to nonspecific interactions of 
barnase with hirudin, which occluded free barnase from the system. The rate peaked 
at 150–200 mM salt, and slowed down at higher salt (this time due to masking of 
the charges). Thus, the physiological ionic strength is optimal to obtain fast specific 
binding, yet reduce nonspecific binding.

Association Rate Constants Between
Tem-1 and Different BLIP Mutants

Ionic strength (M)

In
 k

on

107
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0.51.0 0.2 0.1 0.02

figure 5.3 Association rate constants of wild-type and mutant TEM1–BLIP protein com-
plexes determined at different salt concentrations, with ln kon plotted against 1/(1 + κa). The 
data can be fitted to a line using Equation 5.4.
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altering assoCiation rates by Protein Design

We have shown that Equation 5.4 (as implemented in PARE) predicts the rate of asso-
ciation of mutant proteins (Selzer et al., 2000). However, it can also be used for protein 
design of faster binding complexes. This is of particular interest for mutations placed 
outside the physical binding site, and thus not affecting the rate of dissociation, as was 
shown for TEM1–BLIP and Ras–Ral (Selzer et al., 2000; Kiel et al., 2004). For both 
TEM1–BLIP and Ras–Ral, a strong increase in the rate of association was achieved 
(250-fold and 17-fold, respectively), with an excellent correlation between the calcu-
lated and experimental values. This increased kon was, however, not accompanied by 
a change in koff, leading to an increased binding affinity of the magnitude described. 
This observation has far reaching implications on our understanding of the transition 
state for association, as will be described in the following. It is important to note that 
Equation 5.4 successfully predicts the rate change also for mutations located within the 
physical binding site of protein complexes, as was shown for the interactions between 
barnase–barstar, TEM1–BLIP, Ras–Ral, AChE–fasciculin, hirudin–thrombin, and oth-
ers (Schreiber and Fersht, 1996). PARE is available at http://www.weizmann.ac.il/home/
bcges/PARE.html.

An interesting outcome of the RalGDS-RBD design was that the electrostatic poten-
tial map of the designed RalGDS-RBD variant was similar to that observed for Raf 
(Figure 5.4), which is the native Ras affector. This is despite the very different sequence 
of the two affectors (<15% homology). The initial aim of this project was to optimize 
through mutation the electrostatic energy of interaction between RalGDS-RBD and 
Ras. The similarity of the obtained electrostatic potential maps suggests that the natural 
complex between Ras and Raf is optimized by natural selection for fast biding.

the basal rate of assoCiation

Basal rates of association are, according to Equation 5.4, the rates in the absence of 
electrostatic forces. These can be calculated either by extrapolating the experimental 
values of kon to infinite salt or by introducing mutations that reduce the electrostatic 
energy of interaction to zero. Doing so, showed that the basal rates of association are 
4 × 104 M–1s–1 for thrombin–hirudin and TEM1–BLIP, 6 × 105 for Ras–Raf, and 2 × 
105 M–1s–1 for AChE–fass (Shaul and Schreiber, 2005).

It is important to note that Equation 5.4 ignores the contribution of noncharged 
residues to kon (except for their contribution to the basal rate). Although their contri-
bution is small, it was found to be significant in a number of cases. For example, the 
mutation A19W in IFNα2 reduced kon by fourfold, a reduction that clearly relates to 
structural rearrangement during the process of association (as verified using double-
mutant cycle analysis with W100A on IFNAR2 [Slutzki et al., 2006]).

the abunDanCe of hot sPots for assoCiation

Analyzing the contribution of electrostatics toward the rate of association of proteins 
in a database of 68 transient heteroprotein–protein complexes using HyPare (http://
bip.weizmann.ac.il/HyPare) has shown a small contribution (<10-fold) for about half 
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of the complexes (Shaul and Schreiber, 2005). In 25% of the complexes electrostatic 
forces had a major effect on kon by affecting binding by >100-fold. Defining a residue 
being a hot spot for association as one that changes kon by over 10-fold leaves about 
half the complexes without any potential hot spot, and a few hot spots per complex in 
the others. Of those, about 40% are calculated to increase the rate of association upon 
mutation, and thus increase binding affinity. This is very different from hot spots 
for dissociation, where experiments show the large majority of mutations to cause 
weaker binding. Moreover, about 40% of the hot spots for association are located 
outside the physical boundary of the binding site, making them ideal candidates for 
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figure 5.4 Φ-value analysis of the transition state for association determined for hot 
spot mutations (affecting the affinity by >2 kcal/mol) collected from TEM1–BLIP, barnase–
barstar, and Ras–Ral binding. Φ values close to one suggest a similar interaction in the transi-
tion state as in the native complex, whereas values close to zero indicate the residues do not 
form any interprotein contacts in the transition state.
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protein engineering. These data suggest that a majority of protein–protein complexes 
are not optimized for fast association. This may not be surprising, as the proteins act 
in a complex environment, where too many charged residues could actually reduce 
specificity of binding. Hot spot residues are not evenly distributed between all types 
of amino acids. About 75% of all hot spots are charged residues. This is understand-
able, as a charge-reverse mutant changes the total charge by two. More intriguing is 
the small number of hydrophobic in comparison to polar residues that are hot spots.

broWnian DynaMiCs (bD) siMulations

Brownian dynamics (BD) is based on the Brownian motion theory, which describes 
the dynamic behavior of particles immersed in a solution. These particles are sub-
jected to stochastic collisions with the solvent molecules (which are smaller both in 
their size and their mass) and to the viscous drag effects of the water molecules. This 
leads to the seemingly random motion of the particles, or in other words Brownian 
motion. The computation of biomolecular diffusional association rates by BD simu-
lation dates back to the 1980s (the Northrup–Allison–McCammon [NAM] method), 
which is still widely used to compute bimolecular association rates (Northrup and 
Erickson, 1992). The association rate is given by the product of an analytically com-
puted rate (k(b)) and a probability (β) that is computed from simulations. k(b) is the 
rate at which the two molecules approach to within a center-to-center separation 
distance (b), where b is sufficiently large so that the intermolecular forces are centro-
symmetric or negligible. β is the probability that the two molecules, having reached 
separation b, go on to form a diffusional encounter complex and “react,” rather than 
diffuse away to infinite separation. For the NAM method (a), a large number of 
simulations are started with the molecules in random orientations at separation b 
and the fraction of reactive trajectories is recorded. β is computed by correcting this 
fraction to account for the fact that trajectories are truncated when the molecules 
reach separation (q).

When applying equations that describe the motility of the particles in BD simula-
tions, one can describe their movements (Elcock et al., 2001; Gabdoulline and Wade, 
2002). The classical use of BD is for kon calculations, which are generally in a good 
agreement with the experimental rates (Gabdoulline and Wade, 1997, 2001). More 
recent developments include the use of BD for protein–protein docking, protein 
adsorption to a solid surface, ion channel permeation studies, and enzyme design 
(Gabdoulline and Wade, 2002). Spaar and colleagues have used the trajectories gen-
erated during the BD simulations to analyze the free energy landscape of encounter 
complexes (Spaar and Helms, 2005; Spaar et al., 2006) through modeling the tra-
jectories occupancy maps. Another approach, weighted-ensemble Brownian (WEB) 
dynamics, was proposed by Huber and Kim, and has recently been further developed 
and applied (Huber and Kim, 1996; Rojnuckarin et al., 2000). Rather than simulate 
the association of a single pair of molecules, as in the NAM method, one molecule is 
replaced by an ensemble of pseudoparticles or weighted probability packets. These 
occupy bins along the intermolecular reaction coordinate that are equally sampled 
through splitting and combining the weighted pseudoparticles and thus speeding 
up the time of simulation. Because of their long-range nature, electrostatic forces 
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have an important, if not the most important, influence on biomolecular associa-
tion. However, solving the Poisson–Boltzmann equation (PBE) along the reaction 
pathway would take much to long to be feasible. The “test charge” approximation 
is usually used. In this approximation, the partial charges on one molecule, whose 
interior low dielectric cavity is neglected, move in the field of the other, as com-
puted from solution of the PBE. Gabdoulline and Wade (1996) introduced “effec-
tive charges” that were calculated to reproduce, in a single continuum dielectric, the 
electrostatic potential of a molecule computed from the PBE for a heterogeneous 
dielectric. Replacing test charges by effective charges results in a more accurate 
approximation of the PBE in BD simulations and better agreement with experiment 
for the ionic strength dependence of protein–protein association rates.

Other forces, in addition to electrostatics, can influence diffusion association. 
Camacho and colleagues (Camacho et al., 2000; Camacho and Vajda, 2001) stud-
ied the influence of hydrophobic desolvation, which has a shorter range than elec-
trostatic interactions, on the free energy landscape for protein–protein association. 
They found hydrophobic desolvation to be particularly important for electrostati-
cally, weakly attracting proteins. Furthermore, they suggest that the mechanism for 
molecular recognition requires one of the interacting proteins, usually the smaller of 
the two, to anchor a specific side chain in a structurally constrained binding groove 
of the other protein, providing a steric constraint that helps to stabilize a nativelike 
bound intermediate (Rajamani et al., 2004).

analytiCal MoDels to CalCulate Protein 
assoCiation rate Constants

According to the work by Zhou, a protein pair that has reached a reaction region 
with defined finite volume VRR has a finite rate, g, to form the native complex (Zhou, 
1993; Alsallaq and Zhou, 2007b). In this treatment of protein association, the reac-
tion rate g models the conformational rearrangement that brings the protein pair 
from the encounter complex to the native complex. That is, k2 (from Equation 5.3) 
equals g. The equilibrium constant, K1, is given by VRRe–<U.*/kBT, where <U>* is the 
average interaction energy within the transient complex. By starting Brownian tra-
jectories from within the reaction region one can obtain the surviving fraction, S, of 
the trajectories. The surviving fraction S depends on the rate g and on how much the 
absorbing boundary is extended to form the reaction region. In a Brownian dynamics 
study of protein–protein association under the influence of electrostatic interactions, 
it was discovered that the survival fraction S is insensitive to the presence of the 
electrostatic interaction energy (Zhou, 1993). Thus:

 
k k e U k TB

1 0= −< .*/
 (5.5)

with k0 being the basal rate constant in the absence of external forces, which equals to:

 k0 = gVRRS0/(1–S0) (5.6)
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where S0 is the survival fraction without any biasing force. This suggests that the 
association is stereo specific and the interaction energy is long ranged. The accu-
racy of Equation 5.5 has been demonstrated against results from Brownian dynamics 
simulations and experiments (Zhou et al., 1997; Vijayakumar et al., 1998; Alsallaq 
and Zhou, 2008). This equation resolves one of the two main obstacles for reliable 
prediction of protein association rate constants by making it possible to rigorously 
treat electrostatic interactions. The effect of electrostatic interactions is captured by 
the Boltzmann factor e–<U.*/kBT, which can be obtained by averaging over a relatively 
small number of representative configurations in the encounter complex. The basal 
rate constant k0 still needs to be obtained through force-free Brownian dynamics 
simulations, but these simulations are inexpensive.

MaPPing enCounter CoMPlexes along 
the assoCiation PathWay

Structural studies of encounter complexes are routinely done to study the transition 
state and intermediates of protein folding or enzyme catalysis. A range of experi-
mental tools has been developed for this task. Nuclear magnetic resonance (NMR) is 
a powerful tool to pin down the residual structures of the unfolded state, as well as 
to capture transient folding intermediates (Krishna et al., 2004). Phi-value analysis 
defines whether specific interactions are formed already during the intermediate or 
transition state of the reaction (Fersht et al., 1992; Petrovich et al., 2006). Time-
resolved spectroscopy and single-molecule spectroscopy are powerful tools, which 
were frequently applied to investigate intermediates and transition states in folding 
(Nolting et al., 1997). While these experimental tools provide only a partial view, 
they are extremely valuable for molecular dynamic simulations and other theoreti-
cal studies, as they provide experimental reference points to tune the simulation. 
In comparison, structural studies on the pathway for protein association are much 
less common. This may be partly attributed to the technical difficulties stemming 
from the low population of the binding intermediates, and the ill-defined nature of 
the transition state for binding. Still, the development of protein-engineering tools, 
NMR, spectroscopy, and single-molecule methods resulted in a number of interest-
ing experimental studies shedding light on the way proteins associate.

Experimental evidence of the structure of the encounter complex of the electron 
transfer complex of yeast cytochrome c peroxidase (CcP) and iso-1-cytochrome c 
was recently presented by Volkov et al. (2006) using paramagnetic NMR spectros-
copy. The complex is very short lived, with a dominant structure supporting electron 
transfer and a dynamic encounter complex. The results support the view that the 
conformational space sampled by the protein molecules during the dynamic part of 
the interaction is localized around the CcP position in the dominant orientation. This 
finding is in agreement with the view that an encounter complex facilitates formation 
of the dominant complex via preorientation of the protein molecules and reduced 
dimensionality search. For CcP binding electrostatic attraction plays a dominant role 
in determining the nature of the encounter complex.
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Tang et al. (2006) did a similar study for the association between the phospho-
carrier protein, Hpr, and three proteins in the bacterial phosphotransferase system 
(using paramagnetic relaxation enhancement [PRE] NMR). However, they found a 
much broader definition of the encounter complex, which was spread across its adja-
cent surface, with electrostatic attraction being the main driving force in its stabili-
zation. However, these experiments were initially being done in the absence of salt, 
where nonspecific electrostatic attraction of these highly charged proteins is strong 
over a long range (Schreiber and Fersht, 1996). Indeed, in a follow-up paper (Suh et 
al., 2007), they showed that the nonspecific part of the encounter complex is reduced 
to a large extent by adding salt, while more specific encounter complexes (located in 
the region of the final complex) were less affected. The importance of nonspecific 
encounter complexes to association is not yet clear and may very well be marginal.

Phi-value analysis of binDing interMeDiates

Phi-value analysis was successfully applied to map the transition state for protein 
folding and became the golden standard for many theoretical simulations (Fersht 
and Daggett, 2002). It has been demonstrated that this analysis can be used also 
for studying the transition state for protein–protein association (Taylor et al., 1998; 
Mateu et al., 1999; Wu et al., 2002; Kiel et al., 2004; Levy et al., 2005). Equation 
5.7 gives the basic formulation for such analysis for binding, with U and C being the 
unbound and bound states and ‡ the transition state.

 Φass = ∆∆G‡–U /∆∆GC–U (5.7)

with ∆∆G‡–U being calculated from:

 ∆∆G‡–U = –RT ln (kon
wt/kon

mut) (5.8)

where kon
mut is the association rate of the mutated complex and kon

wt is the association 
rate of the wild-type complex. The free energy of binding can be determined directly 
from the affinity (KD) using the mass action equation, or from the ratio of KD = koff/
kon (assuming two state-biding), with ∆GC–U = –RTln(KD). Mutations that induce a 
similar effect on the transition state and the free energy of binding will have a Φ 
value of 1, while mutations that have no effect on ‡, but change the binding affinity, 
will have a Φ value of zero. Figure 5.4 shows a Φ-value analysis for a large number 
of hot spot mutations (affecting the affinity by >2 kcal/mol) collected from TEM1–
BLIP, barnase–barstar, and Ras–Ral binding (Schreiber and Fersht, 1996; Albeck 
et al., 2000; Kiel et al., 2004; Reichmann et al., 2005, 2007). The mutations were 
divided into three groups: one group consists of noncharged residues, the second is 
for charged residues located within the binding interface, and the third is for charged 
residues located outside the physical binding interface. The reason we analyze only 
hot spot residues is to avoid erroneous Φ values, as the experimental error for ∆∆G 
measurements is in the order of 0.3 kcal/mol. As only very few resides located out-
side the physical binding site pass this criteria, multiple mutations were used for this 
group that were designed to increase specifically association (Selzer et al., 2000; 
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Kiel et al., 2004). The data clearly demonstrate that noncharged mutations always 
have Φ values close to zero, while charged residues located outside the physical bind-
ing site have Φ values close to one. Charged residues located within the binding site 
have mixed values. These results clearly show that noncharged residues do not form 
specific contacts during the transition state for association, and hence confirm the 
mutant data. Conversely, charged residues do affect association; however, their effect 
is related to long-range columbic forces and not to specific short-range interactions. 
This explains why charged residues have intermediate Φ values when located within 
the binding site (they exert both long-range effects on association and short-range 
effects on dissociation). Thus, the evolving picture from Φ value analysis for binding 
is much simpler than that found for folding, with the association transition preceding 
the formation of short-range interactions.

DireCt eviDenCe for the existenCe 
of an enCounter CoMPlex

Direct evidence from kinetic studies for the existence of an encounter complex along 
the association pathway was presented for RalGDS-RBD binding Ras (Kiel et al., 
2004). This interaction shows a nonlinear increase in association with concentration. 
Using PARE (Selzer et al., 2000), charged mutations were designed that specifically 
increased kon and showed that the increase in kon was a result of an increased rate of 
formation of the encounter complex (k1 in Equation 5.3), while the rate of conversion 
to final complex (k2) was unchanged at a rate of ~400 s–1. This demonstrates that 
increasing electrostatic steering by mutation stabilizes the encounter complex and 
the transition state to a similar extent as the final complex, and that a rate-limiting 
transition state exists. A similar conclusion was reached from studying the pKa shift 
of His102 in barnase in the free and barstar bound form (Schreiber and Fersht, 1993, 
1995). The pKa of His102 in unbound barnase was 6.3, while in complex a shift 
to <5 was measured. The pH dependence of kon showed a similar pKa value as for 
the unbound protein; thus, the shift in pKa upon binding occurs after the transition 
state. X-ray crystallography has shown that the shift in pKa can be attributed to the 
tight interactions of His102 with its surrounding on the barstar protein, suggesting 
again that these interactions are not yet formed during the transition state. A similar 
behavior was observed for the association of R67 DHFR, with a pKa of 6.6 that was 
attributed to H62, but a dissociation reaction with a pKa of under 5.5 (Mejean et al., 
2001), with the pKa shift being attributed to specific short-range interactions that are 
not formed at the transition state for association. These studies provide a clear state-
ment that short range interactions are mostly not formed during the transition state 
for binding.

Double-Mutant CyCle analysis as a tool to DeCiPher 
the struCture of the transition state for binDing

Double-mutant cycles measure the coupling energy between a pair of residues from 
the difference in binding free energy of two single mutations and the double-mutant. 
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Accordingly, the activation interaction energy, ∆∆G‡
int, is a measure of the interac-

tion between two residues at the transition state and is equal to:

 ∆∆G‡
int = ∆∆G‡

X→A, Y→A – ∆∆G‡
X→A – ∆∆G‡

Y→A (5.9)

where X and Y represent the wild-type residues and A represents a mutant (Carter 
et al., 1984; Horovitz, 1987; Horovitz and Fersht, 1990; Schreiber and Fersht, 1995). 
Like Φ-value analysis, this technique was first applied successfully to protein-fold-
ing studies (Carter et al., 1984; Horovitz et al., 1990).

From a large number of double-mutant cycles calculated for the activated complex 
of barnase and barstar, significant coupling energies for association were determined 
only between charged residues distanced less than 10 Å from one another in the 
final complex (Schreiber and Fersht, 1996). None of the noncharged residues had a 
significant ∆∆G‡

int value with any other residue. A similar experiment was done for 
the interaction between cytochrome C2 and the bacterial reaction center, but only 
between charged residues. Relating the energy transfer rate (k2), which for these 
types of reactions is similar to kon (Miyashita et al., 2004), to the distance between 
the probed residues showed that residues interact at the activated complex up to a 
distance of 10 Å (Tetreault et al., 2002). A similar result was obtained for the interac-
tion between TEM1-β-lactamase and its protein inhibitor BLIP (Harel et al., 2007). 
Repeating the same double-mutant cycles at up to 1 M salt (which masks most of the 
effects of charges) showed that for barnase–barstar, as for the complex between P. 
laminosum Cyt f and plastocyanin, some but not all pairwise charge–charge interac-
tions were maintained, suggesting that structural specificity of the activated complex 
is preserved even at high salt (Frisch et al., 2001; Miyashita et al., 2003).

MoDeling the transition state for binDing 
using siMulations baseD on exPeriMental 
Double-Mutant CyCle Data

The experimental mutant and double-mutant cycle data measured for the association 
process were further used to model the structures of the encounter and association 
transition-state complexes. In the study of Harel et al. (2007) the transition-state struc-
tures were modeled from the experimental ∆∆G‡

int values by introducing structural 
perturbations of one protein relative to the other, and searching for those interprotein 
orientations that best account for the experimental ∆∆G‡

int values (Figure 5.5; Harel 
et al., 2007). Similarly, Miyashita et al. (2004) related the experimental kon values 
of mutations to differences in the calculated electrostatic energies for a wide range 
of cytochrome C2-reaction center (Cyt-RC) configurations. Both studies gave a very 
similar description of the transition state for association. In both cases, the transi-
tion state was stabilized by electrostatic interactions, with the ensemble of structures 
spread out around the final complex, but in neither cases short-range interactions 
were formed during the transition state, suggesting a solvated transition state. The 
average transition state structure was not necessarily located exactly on the binding 
site, but may be shifted toward one side of the interface. This was observed for 
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both Cyt-RC and for the electrostatically optimized TEM1–BLIP interface, while for 
barnase–barster the transition state overlaps the final complex (Harel et al., 2007). 
These data suggest a certain pathway for association (energy funnel), which would 
help in speeding up association. In contradiction to these results, no indication for 
specific transition state structures was found for the interaction of wild-type TEM1–
BLIP or the complex between IFNα2 and IFNAR2. Therefore, a diffusive transition 
state was suggested for these interactions. Specific transition states are character-
ized by defined interprotein orientations, which cannot be modeled for the diffu-
sive transition states. As was clearly shown for the TEM1–BLIP complex, mutations 
introduced through rational design can change the transition state from diffusive to 
specific and vice versa (Harel et al., 2007).

fruitful anD futile enCounters along the 
assoCiation reaCtion betWeen Proteins

Experimental data on kinetic processes can, at best, provide snapshots along the 
reaction coordinates, with computer simulations using BD filling in the gaps. The 
association between TEM1 and BLIP and barnase with barstar are perfectly suited 
for detailed computational simulations that can be compared with the large bulk of 
experimental data gathered on these systems, including the many mutations that 
directly affect the rate of association (Selzer et al., 2000; Harel et al., 2007). Spaar 
and colleagues have used the trajectories generated during the BD simulations in 
order to analyze the free energy landscape of the encounter complex (Spaar and 
Helms, 2005; Spaar et al., 2006). This was done through modeling the occupancy 
map. As the number of the trajectories was very high, the occupancy maps could 
be interpreted using probability distribution, from which the entropy landscape was 

TEM1-BLIP wt

Low
Occupancy

Hight
Occupancy

TEM1-BLIP
Electrostaticaly

optimized Barnase-Barstar

figure 5.5 (SEE COLOR INSERT FOLLOWING PAGE 174.) Mapping the transition 
state for protein–protein association using double-mutant cycle data as constraints (Harel et 
al., 2007). Each point represents the center of mass of 1 of 2220 configurations perturbed 
from the native complex. The point in the middle of each cap represents the x-ray structure of 
the native complex. The different colors represent configurations selected by different filter-
ing cutoffs; cooler colors designate a configuration that passes a more stringent cutoff (thus 
has a higher probability of being occupancy in the transition state). TEM1 was the mobile 
protein in the simulations, while BLIP was fixed. The TEM1–BLIP complex was electro-
statically optimized using the program PARE, by introducing mutations located outside the 
physical binding interface.
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calculated. The free energy landscape could be obtained by summing the energy and 
the entropy contributions, as follows (Spaar and Helms, 2005; Spaar et al., 2006):

 ∆G = ∆Eel + ∆Eds – T∆S (5.10)

where ∆G is the free energy, ∆Eel is the electrostatic energy, ∆Eds is the desolvation 
energy, T is the temperature, and ∆S is the entropy. From the free energy landscape 
one can compute the encounter complex region (the minimum in the free energy 
landscape) and the optimal association and dissociation pathways. Using these tools, 
two encounter complex regions were mapped along the association reaction of bar-
nase and barstar, one above the interface and the other above the RNA binding loop 
(Spaar and Helms, 2005; Spaar et al., 2006). Analyzing the effect of mutations on the 
encounter complex showed that a single mutation could considerably alter the free 
energy landscape and change the population of the two minima (i.e., the two regions 
of the encounter complex). As expected for a charged protein pair like barnase–
barstar, the free energy landscape was also affected by ionic strength.

The results of the BD simulation for wild-type TEM1–BLIP also shows two 
encounter regions; however, both are not at the interface. The left region is larger and 
energetically more favorable, yet more distant from the interface (Figure 5.6). Both 

(A) (B)Encounter Region

Wild
Type

D23R
E28R

BLIP +4

Successful
Trajectories

(C) Experiment
and Simulation

figure 5.6 (SEE COLOR INSERT FOLLOWING PAGE 174.) Brownian dynam-
ics simulations of TEM1–BLIP mutants. BLIP is represented as a gray surface, TEM1 wild 
type is represented as a purple ribbon. All the simulations were done at 150 mM NaCl. (A) 
Encounter complexes are drawn as yellow isosurfaces representing the center of mass of 
TEM1 on BLIP at ∆G < –2.0 kcal/mol (transparent yellow) and ∆G < –3.0kcal/mol (dark 
yellow). (B) Superimposition of the successful configurations at ∆G < –3.0 kcal/mol (dark 
yellow) and the encounter complex region, defined by ∆G < –3.0 kcal/mol, marked in trans-
parent yellow. (C) An overlay of the successful trajectories from the BD simulation and the 
experimentally mapped transition state (see Figure 5.5).
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regions may be valid encounter complexes; however, they imply a diffusive encoun-
ter complex, as the two regions are broad and remote from each other. Furthermore, 
these encounter regions do not guide the interaction toward the final complex, as can 
be seen from the analysis of successful trajectories, which shows very few of the 
encounter complex trajectories developing into a complex. This is in line with our 
inability to identify a specific transition state for wild-type TEM1–BLIP (Harel et 
al., 2007). To better understand the role of the encounter regions observed in the BD 
simulations for the association reaction, a number of mutant proteins with perturbed 
association rates (as experimentally determined) were studied. Most notable were 
mutants that enlarge the encounter region near or above the physical binding site 
(BLIP mutant BLIP +4 in Figure 5.6), and mutants that expand the encounter regions 
(BLIP D23R,E28R, particularly the left one, Figure 5.6). Mutations of group I have 
a very significant effect on kon (up to 100-fold), while mutations of group II did not 
change the association rate at all. These mutants clearly show that no simple rela-
tion can be found between either the size or the energy of the encounter regions and 
the rate of association. Moreover, even the analysis of successful encounters does 
not always correlate with the observed change in kon. For example, the encounter 
region of the BLIP D23R,E28R double-mutant shows a much higher degree of suc-
cessful trajectories compared to the wild type, but has the same kon. Conversely, for 
group I, a correlation between successful encounters and kon was observed. Group 
I mutations, which are located at the vicinity but outside the physical binding site, 
were designed to optimize the electrostatic energy of interaction of the complex 
(Selzer et al., 2000). We have noted that the experimentally determined transition 
state, which could be assigned only for TEM1–BLIP with optimized electrostatic 
attraction (group I mutations) is smaller than the BD calculated encounter region. 
However, the experimentally determined transition state better fits the area of suc-
cessful trajectories mapped for these mutants. This subgroup within the encounter 
region can be assumed to be much closer to the transition state, which is defined as 
the activated form of a molecule that has partly undergone a chemical reaction. As 
the transition state has to be on the pathway to product formation, only successful 
trajectories fulfill this requirement.

The mutant data presented here suggest that some of the encounter regions do 
not contribute to association and thus are futile encounters. In general, the futile 
regions are distant from the interface, and although the simulations suggest these 
regions to be energetically favorable, they do not influence the association rate. The 
reason for this is that in reality, futile encounters do not develop into final complexes 
and hardly affect the concentration of free protein in solution. Finally, the data pre-
sented here could explain why group I mutations do not change the rate of dissocia-
tion, despite their large effect on the electrostatic complementarity between the two 
proteins, that causes an increase in the rate of association. From the comparison of 
the encounter complex to successful encounter trajectories, it becomes clear that 
encounters are readily formed, but most of them are futile. The mutations in group I 
were designed to increase the percent of fruitful encounters and hence kon. However, 
still most encounters will dissociate (see Figure 5.1). Thus, even for group I muta-
tions, once the final complex dissociates, it will have a small chance of re-forming. 
This behavior is a result of the relative flat energy landscape leading to association 

© 2009 by Taylor & Francis Group, LLC



104 Computational Protein-Protein Interactions

prior to the transition state, which is characterized by desolvation and formation of 
short-range interactions, versus the steep energy landscape leading to dissociation, 
which is composed of breaking the short-range interactions between the proteins 
(Figure 5.1).

suMMary

The association of proteins to form a complex is a multistep process, which starts 
by random collisions of the individual proteins. Multiple collisions and rotational 
diffusion brings the proteins to an orientation that is close to that of the native com-
plex, leading to the formation of a transient complex. This part of the process is 
diffusion controlled, and strongly affected by electrostatic interactions. Computer 
simulations and experimental data suggest that the transient complex develops into 
the native complex through a transition state. Structurally, the transient complex and 
the transition state seem to be similar; however, the transition state is smaller, with 
the encounter complex also occupying futile areas that will not further develop into 
a complex. The most important parameter that affects the rate of association is the 
electrostatic force, which can act over a distance. However, local surface complimen-
tarily and desolvation also play an important role, and in some cases mutations can 
be located that change the rate of association due to these factors.
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overvieW

The kinetics of the formation of macromolecular complexes contribute to their biologi-
cal function. We first describe key features and determinants of bimolecular association 
kinetics. Then we present an overview of theoretical and computational approaches to 
calculating kinetic properties. Finally, we discuss recent computational advances with 
selected examples of protein–nucleic acid and protein–protein complexation.

introDuCtion

The formation of biological complexes between proteins, proteins and small mol-
ecules, and proteins and nucleic acids is critical to many biological processes, includ-
ing cell signaling, gene transcription, enzyme catalysis, and the immune response. 
Molecular association is governed by both the kinetic and the thermodynamic prop-
erties of the molecules and of the medium in which they are immersed. Inside a cell, 
the medium is packed with a wide variety of different molecules and is considered to 
be crowded. Biomacromolecular complexes vary widely in their affinities and life-
times, ranging from obligate and permanent to transient and short-lived complexes. 
Here, we will only consider bimolecular association to form a transient complex. 
Complexation is usually characterized in terms of affinity, as weak (and loose) or 
strong (and tight). The variation in affinity is often largely determined by the varia-
tion in dissociation rate. Association rates can, however, also vary over many orders 
of magnitude between complexes and can be critical in the biological context. For 
example, the snake toxin fasciculin must not only strongly inhibit acetylcholinest-
erase (an enzyme that is critical to neural transmission) but also reach its target 
quickly (Quinn 1987). Similarly, the intracellular inhibitor barstar protects the bac-
terium Bacillus amyloquefaciens from the enzyme barnase, which it excretes to act 
as an extracellular ribonuclease (Jucovic and Hartley 1996). The protein interleu-
kin-4 forms a complex with its cellular receptor, and the time of this process is a 
measure for the regulation of the immune system (Wang, Shen, and Sebald 1997). 
Furthermore, the speed at which the lac repressor binds to its chromosomal lac oper-
ator regulates gene expression in the cell (Elf, Li, and Xie 2007).

Here, we discuss the use of computational approaches to address the problem of 
understanding how a biomolecular complex forms and the macromolecular interac-
tions involved. First, important parameters for describing the kinetics of molecu-
lar association are introduced. Then, we focus on theoretical and computational 
approaches for calculating association rates and discuss the current limitations of 
these approaches. The chapter ends with a review of recent computational advances 
in studying protein–protein and protein–nucleic acid association.

biMolecular aSSociation

Molecules diffuse in the cellular environment, and, upon molecular recognition, can 
form bound complexes. Active transport processes may also contribute to binding 
but will not be discussed here. Bimolecular association can be considered to entail 
two steps. In the first step, an intermediate is formed by diffusion; this is called a 
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diffusional encounter complex. In the second step, this intermediate evolves to form 
a tightly bound complex. Bimolecular association is diffusion controlled when the 
first step is rate limiting; it is reaction controlled when the second step determines 
the rate of association.

Diffusional encounter Complex
Characterization of the diffusional encounter complex is important for protein and 
nucleic acid design studies aimed at altering the association kinetics. In diffusion-
controlled processes, formation of the encounter complex determines the bimolecular 
association rate constant. The rate of diffusional association has an upper limit, that is, 
the binding of two molecules cannot be faster than their rate of collision. In aqueous 
solvent, this limit is around 109 M–1s–1 for uniformly reactive spheres of the size of a 
small- to medium-sized protein (Smoluchowski 1917) with no forces between them.

A random collision of two molecules does not usually result in binding. A freely 
diffusing molecule must come close to its binding patch on a target molecule and 
form a diffusional encounter complex. Geometrically, the encounter complex can be 
viewed as an ensemble of configurations able to evolve to the bound state. During 
a single encounter, the two molecules can undergo rotational reorientation while 
remaining trapped in the vicinity of each other and undergoing multiple collisions. 
This effect is known as a diffusive entrapment. A Brownian dynamics (BD) study 
(Northrup and Erickson 1992) of two noninteracting spheres of the size of small 
proteins showed that, because of the diffusive entrapment effect, the association rate 
was about 400 times larger (2 × 106 M–1s–1) than the rate calculated by a simple geo-
metric correction of the Smoluchowski rate considering two contacts as the criterion 
for binding (1 × 104 M–1s–1). An association rate constant of about 106 M–1s–1 is typical 
of protein–protein pairs that bind without strong electrostatic interactions. Attractive 
electrostatic forces can lead to higher rates very close to the Smoluchowski rate.

bound Complex
After formation of the encounter complex, the biomolecules must adjust their positions to 
form a fully bound complex. As well as translation and reorientation, they may undergo 
changes in conformation and induced fit to achieve a bound complex. Within the com-
plex, the biomolecules are held together by short-range noncovalent interactions such as 
salt bridges, hydrogen bonds, and van der Waals interactions. These interactions depend 
on the chemical properties of the interacting groups on both molecules as well as their 
spatial arrangement. The interactions may be mediated by individual water molecules. 
One or several binding sites on a biomolecule may stabilize the complex. A subtle change 
in the binding sites can change the binding mode significantly. As a result, biological asso-
ciations are dependent on the structure of both molecules and can be highly specific.

Molecular diffuSion

For a particle undergoing normal diffusion, the average value of the squared dis-
placement (r) in n spatial dimensions is proportional to the time (t) elapsed

 <r2> = 2nDt (6.1)
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where D is the diffusion coefficient. In some studies of molecular diffusion in cells 
and nuclei, anomalous diffusion has been observed with the displacement showing a 
smaller or larger dependence on time corresponding, respectively, to subdiffusion or 
superdiffusion (Dix and Verkman 2008).

The flux of particles (J) across a defined area is related to the concentration (C) 
gradient by Fick’s first law

 J = –D∇C (6.2)

Many transport phenomena are described by the continuity equation

 ∇⋅ + ∂
∂

=J
C

t
0 	 (6.3)

which describes the conservation of matter. Fick’s second law, or the diffusion equa-
tion, can be derived from Equations 6.2 and 6.3

 
∂
∂

= −C
t

DΔC (6.4)

When a particle moves in a fluid, it experiences friction to an extent depending on 
the properties of the fluid. The macroscopic quantity describing the internal resis-
tance to flow is viscosity (η). For a moving sphere with radius r, it is inversely related 
to the diffusion coefficient (D) through the Stokes–Einstein formula

 

η
π

= k T

rD
B

6  (6.5)

where kB is the Boltzmann constant and T is the temperature. The crowded cyto-
plasmic and nuclear environments have been observed to result in diffusion of small 
proteins such as GFP (green fluorescent protein) that is slower by a factor of about 
4 than that observed in aqueous solution (Dix and Verkman 2008). The cellular 
environment is heterogeneous and thus it is a simplification to describe it by a mac-
roscopic viscosity. Indeed, the crowded intracellular environment can, depending on 
solute size, result in subdiffusion (Dix and Verkman 2008).

electroStatic interactionS

The interaction forces between biomolecules vary in strength, type, and origin, and 
a wide spectrum of forces contributes to complex formation (Motiejunas and Wade 
2007). Here, we will discuss only electrostatic interactions as their contribution to the 
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kinetics of bimolecular association has been shown to be considerable. Electrostatic 
interactions are important for bimolecular association because they are relatively 
long range and may therefore guide the association process by means of attractive 
and repulsive interactions. Their importance is shown by the dependence of associa-
tion rates on ionic strength and pH and the generally much greater influence on the 
association rate of mutations of charged than of neutral residues.

Ionic solutions screen the electrostatic interactions between the molecular solutes. 
One way to treat the ions is to compute the molecular electrostatic potential (ϕ) using 
the nonlinear Poisson–Boltzmann equation

 – ∇	ε(r) ∇ φ ρ( ) ( )r r q n ei i

q

k T

i

i

B= +
−∑ 	 (6.6)

where ε(r) is the position dependent dielectric permittivity, ρ(r) is the molecular 
charge density, and qi and ni are the charge and the concentration of the i-th ionic 
species in the bulk, respectively. Equation 6.6 can be approximated by the linear 
Poisson–Boltzmann equation if the exponential is expanded as a Taylor series

 – ∇	ε(r) ∇	φ(r) + ε·κ2	φ = ρ(r) (6.7)

where κ is the Debye–Hückel screening length. Equations 6.6 and 6.7 are used in 
studies of interactions between macromolecules in continuum solvent, that is, when 
water molecules and ions are not modeled explicitly.

When two approaching molecules come close in an aqueous solvent, an electro-
static desolvation effect arises due to the lower dielectric constant of the solute com-
pared to that of the solvent. Charges located at the bimolecular complex interface 
become desolvated upon complex formation resulting in an unfavorable electrostatic 
energy change. This desolvation effect becomes significant at short distances and is 
mainly dependent on the location and magnitude of the charged groups.

reaction rateS

If a molecule of type X forms a complex of type Z with a molecule of type Y, then the 
reaction kinetics are characterized by the association and dissociation rate constants,  
kon and koff , respectively,

 

X Y

k

Z

k

on

off

+ →←
 (6.8)
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The rate constants can be related to an equilibrium association constant

 

K
k

k
a

on

off

=
 (6.9)

The reciprocal of Ka is the equilibrium dissociation constant Kd. An analytical solu-
tion for the diffusion-controlled association constant Kon can be obtained for uniform 
spheres reacting at a center-to-center distance r (Smoluchowski 1917)

 Kon = 4πr (DX + DY), (6.10)

where DX and DY are the diffusion constants for species X and Y, respectively. 
Equation 6.10 is valid when there are no forces between the spheres. For interacting 
spheres, kon  is given by (Berg and von Hippel 1985)

 

k
r D D

e

r
dr

on
X Y

U r kT

r

= +
∞

∫
4

2

π ( )

( )/

 (6.11)

where U(r) is a centrosymmetric interaction potential between the spheres. For more 
complicated geometries and interaction forces, numerical approaches are necessary 
to compute association rates (see the next section).

theoretiCal anD CoMPutational aPProaChes

For biological molecules, the bimolecular diffusional association rate constant 
can be computed using two distinct approaches. In the first approach (see sec-
tions “Particle-Based Approaches” and “Density-Distribution Approaches”), 
absolute rate constants are computed using a model that accounts for the forces 
between the interacting biomolecules as well as relevant properties of the cel-
lular environment. Diffusional motion is treated with particle-based Brownian 
dynamics (BD) simulations (Northrup and Erickson 1992) or a density-distri-
bution-based formalism (Schlosshauer and Baker 2004). In the second approach 
(see “Electrostatic Enhancement of Association Rates” section), the relative 
rather than the absolute association rate constants are computed from the inter-
action energy between the molecules.

particle-baSed approacheS

The calculation of bimolecular association rate constants by simulation of the diffu-
sional motion of the interacting particles was first implemented by Northrup, Allison, 
and McCammon (NAM; Northrup, Allison, and McCammon 1984). In the NAM 
method, one of the interacting molecules is placed at the center of a sphere, while the 
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other one starts Brownian moves at a distance b (see Figure 6.1A). The b distance 
is chosen such that there are no forces between the molecules at this separation or 
that the forces are centrosymmetric. For these cases, the rate constant for the mol-
ecules to approach a separation b can be computed from Equation 6.10 or Equation 
6.11 with r = b. By generating thousands of trajectories and monitoring those that 
fulfill criteria for forming an encounter complex, the probability of reaction (β) can 
be obtained, and thus the association rate constant kon calculated (see Figure 6.1A). 

Jss-steady state flux

NAM q surface q surface

b surface

Bins

b surface

Enconter

kon =
4πD bβ 

β-reactive probability 

1–(1–β)b/q 

WEB
A B
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E

D
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Reaction
volume

V
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kon e
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kon= Jss  n dS∫

kon(t) = ρbulk
1 n D(r)e∫

{
4πD(πDt)

kon(t) = kon(1 +                       + ...)kon
½

U(r)
kT

–
e ρ(r, t) dS
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e
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0

γ

figure 6.1 (SEE COLOR INSERT FOLLOWING PAGE 174.) Schematic figure of the 
methods for calculating bimolecular association rates (see “Theoretical and Computational 
Approaches” section for more details).
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The trajectories are truncated when the molecules reach a separation q (at the “q sur-
face”). Each trajectory is started from a randomly chosen position and orientation on 
the “b surface.” The two diffusing molecules can be modeled in atomic detail.

Superoxide dismutase was the first system to which the NAM method was applied 
(Allison, Ganti, and McCammon 1985; Antosiewicz, Briggs, and McCammon 1996; 
Stroppolo et al. 2000). Subsequently, it has been applied to many diffusion-influ-
enced enzymes (Wade 1996; Wade et al. 1998).

It has also been applied to compute protein–protein association rates by monitor-
ing the formation of native polar contacts in the experimentally determined bound 
complex (Gabdoulline and Wade 1997, 2001; Elcock et al. 1999) or the formation of 
electron-transfer complexes (Northrup, Boles, and Reynolds 1988). A wide range of 
protein–protein interactions has been investigated with this approach, including gly-
colytic enzymes interacting with actin filaments and antigen–antibody complexation 
(Northrup, Boles, and Reynolds 1988; Altobelli and Subramaniam 2000; Fogolari 
et al. 2000; Ouporov et al. 2001; Rienzo et al. 2001; Sept and McCammon 2001; 
Haddadian and Gross 2006).

Another formalism for using BD simulations to calculate association rates was 
developed by Huber and Kim (1996). It is called weighted-ensemble Brownian 
(WEB) dynamics and, in contrast to the NAM method, the diffusing particle is 
represented as an ensemble of weighted probability packets or pseudoparticles (see 
Figure 6.1B). Multiple BD trajectories are simulated in the available configuration 
space, which is divided into bins along the intermolecular reaction coordinate that 
are equally sampled (Huber and Kim 1996). The rate constants are obtained from 
the reactive steady-state flux Jss  (Figure 6.1B). The WEB method was found to be 
very efficient in calculating rates when there are large free energy barriers to asso-
ciation (Rojnuckarin, Livesay, and Subramaniam 2000).

An alternative BD method deals with a pair of reactant biomolecules for which 
trajectories are started in a reaction region and the time-dependent probability of 
finding them again in this region in the absence of a reaction is calculated (Lee and 
Karplus 1987). Zhou designated this reaction region as a “reaction volume” (V; see 
Figure 6.1C) and expressed the time-dependent rate coefficient (kon(t)) via the sur-
vival probability (S(t)) of the reactant biomolecules started in V (Zhou and Szabo 
1996). The steady-state association rate constant kon is reached at long times with the 
known asymptotic behavior (Figure 6.1C).

denSity-diStribution approacheS

In the density-distribution approach, a finite difference solution of the partial differ-
ential diffusion equation is computed (Song et al. 2004; Cheng et al. 2007). In this 
continuum model, the concentration density ρ(r,t) under appropriate boundary condi-
tions is derived from the time-dependent Smoluchowski equation (see Figure 6.1D). 
Knowing the interaction potential (U(r)) between the reactants and the diffusion coef-
ficients, the association rate constant can be computed (Figure 6.1D). This algorithm is 
computationally less demanding than BD simulations with the NAM approach when 
applied to enzyme-substrate association. However, the atomic-detail properties of the 
substrate cannot be treated as it is modeled by a density distribution.
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electroStatic enhanceMent of aSSociation rateS

Zhou (1997) proposed that the variation in the rate constant for bimolecular associa-
tion is dependent on the electrostatic interaction energy between proteins in transient 
intermediate configurations. Selzer and Schreiber (1999) showed that this approxima-
tion is valid for the bound complex of the proteins as well, and their algorithm, called 
PARE (Predicting Association Rate Enhancement), is implemented as a Web server 
(http://www.weizmann.ac.il/home/bcges/PARE.html). The difference between these 
two methods for estimating the rate enhancement is that in the first method (Zhou 
1997) the average Poisson–Boltzmann electrostatic interaction energy (<U>PB) in the 
encounter complex is calculated, while in the second method (Selzer and Schreiber 
1999), the Coulombic interaction energy (UCoulomb) in the bound complex is com-
puted and the ionic environment is accounted for by a Debye–Hückel term (see 
Figure 6.1e). A disadvantage of these methods is that only the rate enhancement can 
be predicted, whereas the basal rate ( kon

0 ) should be computed by another method or 
obtained from experiments. On the other hand, an advantage of this approach is that 
it can be used for rapid, structure-based calculation of the electrostatic steering of 
the association of two proteins (Schreiber, Shaul, and Gottschalk 2006). Using this 
approach one can design faster and tighter binding proteins by optimizing the elec-
trostatic interaction between a reactant protein–protein pair (Schreiber, Shaul, and 
Gottschalk 2006) and faster enzymes can be designed by altering the electrostatic 
potential in the active site (Zhou, Wong, and Vijayakumar 1997).

reCent aDvanCes in CoMPutational aPProaChes

protein–protein interactionS

Computation of association rates
Most of the methods depicted in Figure 6.1 have been applied to kinetic studies 
of protein–protein association, particularly focusing on electrostatic enhancement 
of association rates (Gabdoulline and Wade 2002). Most applications to protein–
protein association involve solving the Poisson–Boltzmann (PB) equation. It 
has been shown that the degree of accuracy of prediction of association rates is 
dependent on both the definition of the solute–solvent dielectric boundary and 
the use of a linear or nonlinear PB equation (Alsallaq and Zhou 2007, 2008a). As 
mentioned earlier, electrostatic rate enhancement can be used as a criterion for 
protein design (Schreiber, Shaul, and Gottschalk 2006), and a study of 68 tran-
sient heteroprotein–protein complexes showed electrostatic steering leading to an 
increase of over 100-fold in kon for about 25% of the complexes studied (Shaul and 
Schreiber 2005).

Dissection of the Determinants of binding
The association and dissociation rates together determine the binding affinity. It has 
been shown that it is possible to design mutants that change the binding affinity by 
changing only the association rates for a number of different protein complexes (Selzer, 
Albeck, and Schreiber 2000; Schreiber, Shaul, and Gottschalk 2006). For example, in 
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the case of Cdc25B phosphatase binding to its Cdk2-pTpY/CycA substrate, the regions 
most important for association and for dissociation are clearly distinguished. In the 
phosphatase, the former are remote hot spot residues, while the latter are at the active 
site (Sohn, Buhrman, and Rudolph 2007). Large (>100-fold) changes in association 
rates were observed upon single point mutation, thus dramatically changing the bind-
ing affinity (Sohn, Buhrman, and Rudolph 2007). Another example is a triple mutant 
of the Ras effector protein Ral, a guanine nucleotide dissociation stimulator (RalGDS) 
that was designed to bind faster than the wild-type protein to the Ras protein and was 
found experimentally to bind 14 times faster (Kiel et al. 2004). The mutant had binding 
properties similar to Raf, another Ras effector.

Quantification of the encounter Complex
The diffusional encounter complex, an intermediate state marking the endpoint of 
diffusion of two proteins toward each other, plays an important role in determining 
the association rates. However, its structure cannot be directly determined experi-
mentally (Gabdoulline and Wade 1999).

The encounter complex is an ensemble of target positions near the bound com-
plex, and achieving this ensemble in BD simulations ensures subsequent binding of 
the molecules when the association is diffusion controlled. The encounter complex 
can be expected to be near to, but not coincident with, the transition state for bind-
ing. The nature of this transition state for the association of barnase and barstar was 
investigated in double-mutant cycle experiments by Frisch, Fersht, and Schreiber 
(2001). They found evidence for contacts between charged groups. The activation 
entropy of the transition state was found to be small, indicating a small degree of 
desolvation. The residue–residue contacts maintained in the transition state differed 
at low and high ionic strength, indicating that the structure of the intermediate state 
changes with changing solvent conditions. All these findings regarding the transition 
state are consistent with the models of the encounter complexes generated by BD 
simulation (Gabdoulline and Wade 1997).

The structure of the transition state has been investigated by introducing muta-
tions that alter association rates and modeling bimolecular configurations that fit 
experimental data (Miyashita, Onuchic, and Okamura 2004; Harel, Cohen, and 
Schreiber 2007). Recently, a BD study (Spaar et al. 2006) showed that the structure 
of the encounter complex is affected by mutations making it difficult to precisely 
characterize the encounter complex using mutational data. A detailed picture of the 
association dynamics of hydrogenase HydA2 and ferredoxin PetF1 was revealed 
by combining BD and molecular dynamics (MD) simulations (Long et al. 2008), 
and this enabled a transition state ensemble of configurations for electron transfer 
to be quantified. Very recently, it has become possible to quantify such transient 
intermediate complexes using long-range distance restraints derived from paramag-
netic nuclear magnetic resonance (NMR) methods (Tang, Iwahara, and Clore 2006; 
Volkov et al. 2006) and this is expected to shed more light on the nature of encoun-
ter complexes. Indeed, Kim et al. (2008) have combined these NMR techniques 
with replica exchange MD simulations with a coarse-grain model to identify spe-
cific and nonspecific binding configurations in a transient protein–protein encounter 
complex.
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induced fit Phenomena
In general, there is more than one intermediate state in the association process because 
protein–protein binding consists of multiple steps: diffusion, conformer selection, and 
refolding or induced fit (Gruenberg, Leckner, and Nilges 2004). It is not simple, how-
ever, to quantify all intermediates experimentally, although it can be shown in some 
cases that a one-step model of association is not sufficient (Kourentzi et al. 2008).

An extreme case of induced fit occurs when the protein folds or refolds upon 
binding to its partner (Levy et al. 2005). It was shown (Levy, Onuchic, and Wolynes 
2007) that this may be followed by a fly-casting effect coupled to electrostatic steer-
ing for the Ets domain of SAP-1 protein binding to its specific DNA sequence. A 
significant induced fit was found in the case of fasciculin 2 (Fas2) binding to ace-
tylcholinesterase (AChE), two proteins that bind with a very high association rate 
constant. It was found that the conformation of Fas2 able to bind AChE is not stable 
in the unbound form of Fas2 and that the association process should follow a confor-
mational change of a stable form of Fas2 that is not complementary to AChE (Bui 
and McCammon 2006; Bui et al. 2006).

Crowding Phenomena
The influence of crowding agents cannot be explained simply as the action of obsta-
cles, volume exclusion, or the change in the solvent viscosity, because there is a 
complex dependence of the solute molecular dynamics and reactions in crowded 
solutions on the properties of the molecular interactions in the system. An inverse 
linear relation was found between translational diffusion of proteins and viscos-
ity in almost all solutions tested, in accordance with the Stokes–Einstein relation. 
Conversely, no simple relation was found between either rotational diffusion rates 
or association rates (kon) and viscosity (Kozer et al. 2007). In all crowded solutions, 
the measured absolute kon values, but not the koff values, were found to be lower than 
in buffer. In the presence of low mass crowding agents, kon depends inversely on the 
solution viscosity. In high mass polymer solutions, kon changes only slightly, even at 
viscosities 12-fold higher than water (Kozer and Schreiber 2004). See also a recent 
review on this topic (Zhou 2008). Simulations using a model at the one spherical 
particle/macromolecule level of barnase–barstar association in crowded solutions 
designed to represent the cytoplasmic environment revealed a biphasic time course, 
indicating that crowding exerts different effects over different timescales (Ridgway 
et al. 2008). Crowding influences not only the rates but also the equilibrium param-
eters of chemical reactions (Chebotareva 2007) making the quantitative description 
of crowding phenomena for enzymes in vivo even more difficult.

protein–nucleic acid interactionS

Computation of association rates
The backbone of nucleic acids contains negatively charged phosphate groups. This 
negative electrostatic potential leads to attraction of nucleic acids to proteins with 
positive binding sites. Therefore, the formation of a nucleic acid–protein complex is 
strongly governed by electrostatic interactions, which enhance the association rate. 
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Such rate enhancement was predicted by applying the PARE method (see Figure 6.1e) 
to an atomistic model of protein–RNA (U1A-U1SLII) interactions (Qin and Zhou 
2008). The results, based on changing the ionic strength and making mutations, have 
been shown to be consistent with experiments (Qin and Zhou 2008). In another study, 
BD simulations were carried out for the translation protein eIF4E binding to five anal-
ogous mRNA cap molecules. The association rates were computed for varying elec-
trostatic and hydrodynamic interactions in the system and displayed values very close 
to the rates determined by experiment (Bachut-Okrasinska and Antosiewicz 2007).

Allsallaq and Zhou (2008b) developed a theoretical model showing that nonspe-
cific binding to DNA enhances the protein–nucleic acid association rate and that 
binding to a linear DNA leads to a slightly higher association rate constant than to a 
circular DNA. The formation of an open complex of DNA and a bacterial RNA poly-
merase (RNAP) from the closed one was analyzed by Djordjevic and Bundschuh 
(2008). The rate of formation of the open complex was derived from a quantita-
tive model for a reversible two-step binding mechanism. The authors found that it 
depends on the interaction energies of the closed and opened complexes as well as 
on the DNA duplex melting energy.

specificity and nonspecificity

Binding Dynamics
Recently much effort has been put into understanding the dynamics of DNA-binding 
proteins: how they search for their target molecule, what interactions govern this pro-
cess, how specifically they locate the binding site, and so on. The way in which the 
proteins bind to the DNA (specifically or nonspecifically) can explain the observa-
tion of association kinetic rates higher than the Smoluchowski rate in some protein–
DNA studies (Halford and Marko 2004). These studies suggest three-dimensional 
(3D) diffusion of the protein to the DNA followed by one-dimensional (1D) diffusion 
of the protein along the DNA to form a bound complex. This type of diffusion is 
referred to in the literature as facilitated diffusion.

Facilitated Diffusion
Slutsky and Mirny (2004) proposed that for an optimal search for the target DNA, 
a protein should spend half of its time in 3D diffusion and the other half in 1D dif-
fusion, sliding along the DNA. Their study aimed at quantitatively investigating the 
specific and nonspecific binding of proteins to DNA. However, a theoretical lattice 
Monte Carlo study (Rezania, Tuszynski, and Hendzel 2007) of transcription factors 
(TFs) binding to DNA molecules showed that even if only 15% of the diffusional 
search time is spent freely in solution, the timescale of target location is consistent 
with experimental measurements. In this diffusional search, the TFs might exhibit 
conformational changes, which could affect the association rate constant. Such 
conformational changes during the searching and sliding mechanisms have been 
investigated to detect the shortest binding time to the DNA consistent with thermo-
dynamics (Hu, Grosberg, and Bruinsma 2008). The simultaneous interactions of 
multiple proteins with a long DNA chain have been investigated using Monte Carlo 
simulations (van der Heijden and Dekker 2008). Three possible interactions were 
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proposed: noncooperative/cooperative binding, position-dependent dissociation, and 
linear motion along the DNA. It was found that noncooperative binding leads to gaps 
on the DNA that are smaller than the size of the protein binding site and therefore to 
an overestimation of the apparent size of the binding site of the protein by as much as 
30%. For cooperatively bound proteins, the protein–DNA dissociation curve showed 
exponential behavior indicating the importance of the cooperativity in the protein–
DNA interactions (van der Heijden and Dekker 2008). Murugan has developed a 
generalized theory based on the assumption that first the protein binds nonspecifi-
cally to DNA by 3D diffusion and second experiences 1D diffusion to locate the 
specific DNA binding site (Murugan 2007).

Intersegment Transfer
Some nucleic acid binding proteins have multiple binding sites (Brown, Izard, and 
Misteli 2006) allowing them to bind simultaneously to several nucleic acid binding 
sites. For example, a protein can jump from one DNA segment to another with-
out dissociating, a process called intersegment transfer. In this way, the protein can 
bind specifically to the target site and a rate enhancement can be observed (Hu and 
Shklovskii 2007). Lattice simulations (Wedemeier et al. 2008) showed that increas-
ing the nucleic acid chain density increases the protein diffusion in the case of 
intersegment transfer. Moreover, the diffusion coefficient appeared to be reciprocal 
to the chain density in 1D sliding on the DNA (Wedemeier et al. 2008).

In summary, several factors contribute to the high association rates for nucleic 
acid binding proteins, such as transcription factors, and DNA; these include 1D dif-
fusion, intersegment transfer, and conformational changes upon binding (Alsallaq 
and Zhou 2008b).

Chromatin Models
Chromatin is a biological structure occurring in the cell nucleus that consists of 
a highly packed DNA molecule and histone proteins. The positively charged his-
tones attract the negative DNA molecule, which wraps around them, and together 
they form a single unit called the nucleosome. The conformation and compaction 
of the chromatin depend on the interactions between the nucleosomes as well as 
on the presence of other factors influencing chromatin dynamics. Since chromatin 
has features on different time and length scales, a considerable number of theoreti-
cal models exist that aim to elucidate the driving forces for chromatin compaction. 
Chromatin has been modeled on a coarse-grained level in which several atoms, resi-
dues, or the whole nucleosome are represented as a single geometrical object; the 
interactions involved are included; and the dynamics are simulated either by BD 
or Monte Carlo (Arya, Zhang, and Schlick 2006; Merlitz et al. 2006; Langowski 
and Heermann 2007; Kepper et al. 2008; Stehr et al. 2008). Attempts to predict 
the conformation of chromatin fiber have been made at an atomistic level as well 
(Wong, Victor, and Mozziconacci 2007). Some studies have focused on the interac-
tions involved at a single nucleosome level, and the binding dynamics of the linker 
histone to the nucleosome have been investigated experimentally (Brown, Izard, and 
Misteli 2006) and theoretically (Fan and Roberts 2006). The binding of the linker 
histone and its stoichiometry as well as the nucleosome repeat lengths influence 
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chromatin compaction leading to topologically differing fibers (Routh, Sandin, and 
Rhodes 2008). Recently, it was found that the binding mode of the linker histone 
GH5 is robust to a wide range of linker DNA conformations (see Figure 6.2) (Pachov, 
Gabdoulline, and Wade 2007, unpublished data). This was revealed by all-atom BD 
simulations, which also showed two main binding sites on the GH5, in agreement with 
experimental data (Brown, Izard, and Misteli 2006). In many biological processes, 
like DNA transcription, replication, and repair, the proteins involved must quickly 
find their target site. The kinetics of such a process are directly influenced by the 
level of DNA exposure and histone tail acetylation on the nucleosome (Kampmann 
2005), and these are also topics being studied by computational simulation.

outlook

We have discussed characterization of the kinetics of biomacromolecular com-
plex formation from a theoretical and computational perspective. New experimen-
tal techniques and methods are being developed to study the interactions between 
biomolecules over different time and length scales. However, these techniques are 
still insufficient to precisely describe and quantify the detailed dynamics of associ-
ating biomacromolecules. Here, computational approaches can be of value because 
they provide a detailed description of the association process. On the other hand, 
simulations of macromolecular complexation are computationally demanding 
and require the use of approximations such as the neglect of molecular flexibility. 
Furthermore, establishing the effects on macromolecular association of the hetero-
geneous and crowded cellular environment is a challenge for both computational 
and experimental approaches. Surmounting these hurdles requires the development 
of multiple-scale and coarse-grained models with more accurate molecular interac-
tion force fields as well as the development of highly parallelized software and new 
computing hardware to permit detailed simulations over many orders of time and 
length scales.

Linker DNA

Linker DNA

Linker
histone

Nucleosome

figure 6.2 Position of the linker histone GH5 (light gray) generated by BD simulations. 
It is located between different conformations of the linker DNAs generated by normal mode 
analysis (Pachov, Gabdoulline, and Wade 2007, unpublished data).
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7 Computational 
Design of Protein–
Protein Interactions

Julia M. Shifman

introDuCtion

Protein–protein interactions determine the outcome of all cellular processes includ-
ing signal transduction, cell division, DNA replication, transcription and transla-
tion, biosynthesis, and degradation. Hence, modulating protein–protein interactions 
is of great interest for both basic science and applied research such as drug design. 
Directed evolution and combinatorial screening techniques are powerful and well-
established means of engineering protein complexes with enhanced affinity and 
binding specificity. Although very successful in obtaining the end product, these 
techniques do not address some basic questions such as what makes a particular pro-
tein a high-affinity binder or how to obtain a protein with slightly different binding 
characteristics. Computational approaches to modulating protein–protein interac-
tions are directed toward answering these fundamental questions. These approaches, 
in principle, provide a fast and efficient way to supply proteins with desired binding 
properties. However, computational techniques require high-resolution structures for 
the protein–protein complexes, which are not always available. In addition, they rely 
on our still incomplete knowledge of the physical basis for protein binding affinity 
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and specificity. Due to these limitations, relatively few successful examples of com-
putationally designed protein–protein interactions have been reported. However, 
even when not completely successful, investigations of this type greatly advance 
our understanding of the molecular forces that govern protein binding. With the 
exponentially growing number of new structures of protein–protein complexes and 
a constant progress in method development, computational approaches are evolving 
into a generally accepted strategy for modulating protein–protein interactions. This 
chapter reviews the methods for design of protein–protein interactions, summarizes 
keystone studies in this area, and points out future directions of research.

CoMPutational MethoDs for MoDulating 
binDing interaCtions

Two different structure-based strategies have been applied to the redesign of pro-
tein–protein interactions. The first strategy involves optimizing the long-range 
electrostatic interactions between the two proteins in the complex by introducing 
charge altering mutations on the protein surface frequently outside of the bind-
ing interface. The second strategy, usually referred to as computational protein 
design, uses side-chain repacking algorithms to predict mutations that lead to 
better packing, hydrogen bonding, and solvation directly at the binding interface. 
While the first strategy is rather tolerant to imperfections in structural models 
of protein–protein complexes, the second strategy relies on the accurate descrip-
tion of interactions across the binding interface, with even small inaccuracies fre-
quently resulting in erroneous predictions. Although more error prone, the second 
strategy would provide us with a more universal approach to design of protein–
protein interactions.

optiMization of long-terM electroStatic interactionS

To enhance association rates of protein complexes, Selzer et al. proposed optimiza-
tion of long-range electrostatic interactions between the two binding partners.1 This 
approach is based on an observation that the association rate, kon, is affected mostly 
by mutations involving charge alterations, while mutations of uncharged residues 
have minor effects on kon.2–4 Optimization of the long-range electrostatic interac-
tions between the two proteins leads to faster formation of an encounter complex that 
subsequently relaxes to the final stereospecific complex (Figure 7.1A).5 A program 
called PARE (Protein Association Rate Enhancement) calculates kon of binding by 
computing the difference in the Debye–Hückel energy between the two individual 
proteins and their complex.1 kon can be increased by introducing mutations that 
improve charge complementarity of the binding interface. The described method 
does not allow us to make any predictions about the dissociation rate, koff, and hence 
the Kd. Nevertheless, by picking the mutation sites wisely, for example, in the vicin-
ity of the binding interface rather than in its center, it has been possible to preserve 
the koff values similar to the wild type.1 Hence, in principle, improvement in both kon 
and Kd could be achieved using the described strategy.
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figure 7.1 Methods for binding interface redesign. (A) Enhancement of protein associa-
tion rate through improvement of long-range electrostatic interactions. Free energy of pro-
tein–protein interactions for (1) nonoptimized and (2) electrostatically optimized proteins 
complexes. A+B represents free proteins, A:B is the encounter complex, and AB is the final 
complex. The formation of the encounter complex is the rate-limiting state for association. 
The figure is reproduced from Selzer and Schreiber.5 (B) The computational protein design 
approach. 1: Protein coordinates are retrieved from the PDB. 2: Sequence positions to be 
redesigned are defined. Rotamers (or low-energy side chain conformations) are placed at 
each designed position. 3: The pairwise energy function, including rotamer–backbone and 
rotamer–rotamer interactions, is calculated. 4: Fast search algorithms are used to search 
through the conformational space to find the lowest-energy sequence(s). (C) Illustration of 
the negative design concept. The wild-type protein binds to the desired target and to several 
alternative targets. The binding free energies of the desired and the alternative complexes are 
similar. In procedures not including negative design, the free energy of binding is minimized 
for the complex with the desired target. In procedures including negative design, free energy 
of binding is minimized for the complex with the desired target and maximized for the com-
plexes with alternative targets.
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To improve electrostatic complementarity at protein interfaces, Tidor and col-
leagues proposed a more elaborate strategy based on continuum electrostatics mod-
els.6–8 In this strategy, the free energy of binding is evaluated using two opposing 
energetic terms: favorable electrostatic interactions between the two proteins in the 
complex and the unfavorable desolvation of the charged groups occurring upon com-
plex formation. The optimal ligand charge distribution is calculated to produce the 
most favorable balance of these opposing free energy contributions. Mutations are 
then introduced on the ligand to best fit this calculated charge distribution.

coMputational protein deSign

The second strategy that has been used to reengineer protein binding interfaces is 
referred to as computational protein design (Figure 7.1B).9,10 In this approach, pro-
teins are designed by searching through a vast number of amino acid sequences until 
the optimal protein sequence is selected. During the search, the protein backbone 
is often kept rigid, while protein side chains are selected from a library of low-
energy side chain conformations called rotamers.11 Rotameric sequences are evalu-
ated with a full-atom energy function that contains terms describing van der Waals 
interactions, hydrogen bonding, electrostatics, and solvation.12 Various algorithms 
have been applied to efficiently search the sequence space and to obtain the lowest-
energy protein sequence(s).13 Several computational protein design packages have 
been developed by different groups.14–18 All of them are based on the same approach 
but differ slightly in the implementation of the energy function and in the search 
algorithms used for sequence selection. Computational protein design was initially 
applied to build structural protein units and predict stabilizing mutations.14,19 More 
recently, the effort in the field has shifted toward functional design, where the bio-
logical function of a protein is being modified or completely altered. Several excel-
lent examples of such work include designing proteins with a novel fold,20 creating 
new enzymes21,22 and sensor molecules.17,23

Computational design of protein–protein interactions is one of the directions in 
the field that presents a particular interest. Ultimately, computational methods should 
enable the design of receptors and inhibitors for any protein of interest. Nevertheless, 
at this time, such designs present a major challenge due to several shortcomings 
in the available computational methods. First, the energy functions used in protein 
design packages have been initially developed for stabilization of monomeric pro-
teins and are not optimal for design of protein–protein interfaces. Such energy func-
tions, for example, often fail to capture the importance of residues that form salt 
bridges and hydrogen bonds across the binding interface, resulting in substitution 
of these residues with hydrophobic amino acids. Second, it remains a challenge to 
accurately model conformational changes frequently associated with protein bind-
ing.24 The ability to model such changes, however, becomes essential if novel pro-
tein–protein complexes are to be designed. Third, water molecules that frequently 
mediate intermolecular hydrogen bond interactions have been initially ignored by 
the protein design programs. Although most of the water molecules do not contrib-
ute significantly to protein–protein binding,25 a few highly conserved waters might 
be very important for binding and should be retained during the binding interface 
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redesign.26 In spite of these limitations in the protein design methods, several suc-
cessful examples of redesigning protein–protein interactions have emerged in the 
past decade.

at the beginning

Initial designs of protein–protein interfaces used a combination of computational 
methods and a manual selection of amino acid substitutions. Several studies focused 
on design of receptors using coiled coils as a protein scaffold. These small helical 
domains are an ideal system for testing the basic principles of protein–protein asso-
ciation due to their simplicity and the wealth of biochemical and structural infor-
mation about them. Among the first engineered receptors was a two-helix hairpin 
designed to recognize the calmodulin binding domain of calcineurin (CaN).27 An 
idealized three-helix bundle geometry was used to generate a model for the back-
bone conformation of the complex between a helical peptide CaN and a two-helix 
receptor. Starting from this backbone structure, the buried receptor residues were 
redesigned using a side chain–repacking algorithm.28 The solvent-exposed recep-
tor residues were chosen manually by generating favorable electrostatic interac-
tions between the three helixes. When tested experimentally, the designed receptors 
exhibited binding affinities to CaN ranging from 0.2 to 50 µM. Unfortunately, the 
receptors were not monomeric in solution as intended, suggesting that modeling of 
the alternative folds might be necessary to achieve the correct specificity.

Another study reports the design of a two-helix-bundle mimetic of interleukin-4 
(IL-4).29 IL-4 binds to its receptor IL-4Rα with two adjacent antiparallel helixes, 
exhibiting an affinity of 1.4 nM. The authors mimicked IL-4 by drafting the residues 
most important for the IL-4Rα recognition on a well-studied coiled coil, GCN4. 
Molecular dynamics simulations were performed to verify that the designed mol-
ecules could fold prior to binding. The IL-4 mimetics showed Kds ranging from 
2 mM to 5 µM, depending on the fraction of the IL-4 binding site incorporated 
into the molecules. These earlier studies demonstrate that receptors with micromolar 
affinities could be designed from helical bundles and that computational methods 
greatly facilitate such designs. Nevertheless, more sophisticated strategies would be 
required to generate receptors with alternative geometries, tighter association, and 
better binding specificity.

enhanCing Protein binDing affinity

Accurately predicting binding affinities of protein–protein complexes remains an 
open problem in computational biology. Predicting mutations that enhance binding 
is a related and more difficult task. Studies where predictions of affinity-enhancing 
mutations were verified experimentally remain rare but invaluable, especially if they 
include structural characterization of the redesigned complexes. Both correct and 
incorrect predictions of such mutations could serve to improve the existing compu-
tational methods for design of protein–protein interactions. In addition, such stud-
ies facilitate the development of molecules for use in various biotechnological and 
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biomedical applications, including high-affinity antibodies, inhibitors of undesired 
protein–protein interactions, and sensors for optical imaging.

An approach that enhances association rates and binding affinities through opti-
mization of electrostatic complementarity between the two proteins in the complex 
was first applied to increase the association rate between the TEM1 β-lactamase and 
its protein inhibitor BLIP (Figure 7.2A).1 Electrostatic forces make no contribution 
to association of these proteins, indicating that the binding interface is not optimized 
electrostatically. To improve the electrostatic complementarity of the BLIP–TEM1 
complex, single mutations were introduced on the surface of BLIP. All the predicted 
single mutants of BLIP exhibited an increase in association rate for TEM1, with 
the best mutation showing a 20-fold increase. Combining four beneficial mutations 
together resulted in a BLIP mutant that showed a 240-fold increase in kon and a 290-
fold decrease in Kd.

The same approach was used to optimize electrostatic steering between Ras and 
its effector, Ral guanine nucleotide dissociation stimulator (RalGDS).30 Analysis of 
the charge distribution at the Ras–RalGDS binding interface showed that introduc-
tion of positive charge in two regions of RalGDS would be beneficial for binding. 
Single mutations to Lys in these two regions were predicted to increase the associa-
tion rate to Ras by up to 10-fold. An excellent agreement between the computational 
predictions and experimental results was demonstrated. Combining the three most 
promising mutations in a single RalGDS mutant resulted in a molecule that binds 
Ras 14 times faster and 25-fold tighter than wild-type RalGDS.

In attempt to develop higher-affinity antibodies, affinity-enhancing mutations 
were predicted on the antibody surface using either electrostatic optimization of 
the binding interface or the computational protein design techniques.31–33 Variable 
success has been achieved in predicting the effect of single mutations on the anti-
body–antigen affinity. Nevertheless, some of the affinity-enhancing mutations were 
always correctly identified. Combining several of such mutations in a single design 
usually produced an additive effect on binding affinity. Using this strategy, a six-
fold improvement in association rate was achieved for the antibody against vascular 
endothelial growth factor (VEGF),32 a ten-fold improvement in affinity was engi-
neered into an anti-epidermal growth factor receptor drug cetuximax,31 and a ten-
fold improvement in affinity was demonstrated in the engineered antibody for the 
I-domain of integrin VLA1.33 A substantial 140-fold improvement in binding affinity 
was obtained by introducing six mutations into an antilysozyme antibody.31 These 
studies demonstrate that computational methods are becoming a more accepted 
strategy for improving binding properties of therapeutic molecules.

In an interesting study by Song et al., binding affinity was enhanced between an 
intercellular adhesion molecule-1 (ICAM-1) and an integrin lymphocyte function-
associated antigen (LFA-1).34 The interaction between ICAM-1 and LFA-1 is critical 
to many immunological responses, including those evoked in autoimmune diseases 
and in immune rejection of organ transplantation. Hence, design of competitive 
antagonists of the ICAM-1/LFA-1 interaction could have an important therapeutical 
application. The authors used four different computational design programs to intro-
duce mutations into ICAM-1. The majority of single ICAM-1 mutants, when tested 
in a cell surface binding assay, showed unaltered or increased percent of binding 
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figure 7.2 (SEE COLOR INSERT FOLLOWING PAGE 174.) Examples of protein inter-
face design. (A) Design of BLIP mutants with enhanced association rate for TEM1 β-lactamase. 
The figure shows wild-type BLIP with the TEM1 binding interface (green) and mutation sites pre-
dicted to increase the association rate. Color coding displays the extent of the predicted association 
rate increase: blue, less than 50% increase: yellow, more than 50% increase; red, ten-fold increase. 
The figure is reproduced from Selzer et al.1 (B) Redesign of calmodulin for improved binding 
specificity. Calmodulin is embracing the peptide target with its two globular domains. Twenty-
four calmodulin side chains selected for optimization are shown in red. Peptide side chains that 
were allowed to change conformation during the calculation are shown in cyan. Calcium atoms 
are shown as yellow spheres. The figure is reproduced from Shifman and Mayo.40 (C) Design of 
the PDZ domains with altered binding properties showing wild-type PDZ domain with its natural 
ligand, the KQTSV peptide (red). Residues on the PDZ domain selected for the optimization are 
shown in green. The figure is reproduced from Reina et al.47 (D) Design of peptides that recognize 
transmembrane domains of integrins. A backbone geometry for the helix–helix interaction was 
selected from two helixes in the photosystem I reaction center. The sequence of the integrin αIIb 
was threaded into the right helix. Fourteen positions on the second helix were designed (pink). The 
figure is reproduced from Yin et al.51
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to LFA-1 compared to wild-type ICAM-1. All the designed ICAM-1 mutants with 
multiple amino acid substitutions, however, performed poorly in the cell surface 
assay. Combining five beneficial single mutations produced an ICAM1 mutant with 
a 20-fold improvement in binding affinity.

In a recent study, Kuhlman et al. proposed a strategy for improving binding affin-
ity by introducing single mutations that substitute polar amino acids at the binding 
interface for nonpolar ones and nonpolar amino acids for larger nonpolar amino 
acids.35 Such mutations are predicted to enhance affinity if the free energy of bind-
ing is calculated to be more favorable than that of the wild-type complex and each 
monomer is not significantly destabilized by the mutation. This strategy was tested 
on a protein–protein and a protein–peptide complex. Nine out of 12 predicted muta-
tions selected for experimental testing were correctly identified to be beneficial for 
binding. Although this method works well in predicting single mutations, it cannot 
be generalized for redesign of an entire binding interface. First, because combining 
several of such mutations might lead to problems with protein solubility. Second, the 
method would automatically eliminate intermolecular hydrogen bonds, which are 
important for both binding affinity and specificity.

An interesting strategy was proposed for enhancing affinities of proteins that 
undergo substantial conformational changes upon binding to their ligands. For these 
proteins, mutations could be computed that stabilize the ligand-bound protein con-
formation over the ligand-free state without directly affecting interactions with the 
ligand. This idea was first explored by redesigning the I domain of the hetorodimeric 
integrin αMβ2.36 The computational protein design approach was used to introduce 
hydrophobic mutations that stabilize the I domain in the active conformation. All 
the mutations were made relatively far from the binding site of the ligand, iC3b. 
When expressed on the cell surface as part of the intact heterodimeric receptor, the 
designed I domains bound to iC3b 10 times better compared to wild-type (WT). 
Furthermore, when expressed in isolation from other integrin domains using an arti-
ficial transmembrane domain, designed I domains were active in ligand binding in 
contrary to wild-type I domains. This study establishes a new viable strategy for 
increasing protein binding affinity through stabilization of the ligand-bound protein 
conformation. The potential of such a strategy has yet to be fully explored.

To summarize, two methods have been applied to enhance binding affinities in 
proteins. Optimizing long-range electrostatic interactions between the two binding 
partners proved a successful approach for enhancing protein association rate and bind-
ing affinity. Nevertheless, the method cannot be applied to protein–protein complexes 
where electrostatic interactions have already been optimized by nature, such as in the 
barnase/barstar complex.37 The computational protein design approach was shown 
to predict single affinity-enhancing mutations with a relatively high success rate. 
Nevertheless, attempts to simultaneously redesign the entire binding interface fre-
quently yielded protein complexes with reduced affinity. This is due to possible error 
accumulation associated with prediction of each single mutation. Until more accurate 
energy functions for the protein interface design are developed, a winning strategy for 
binding affinity enhancement is to experimentally test each predicted mutation and 
only then to combine the beneficial mutations into a single design. Alternatively, a 
small library of protein sequences could be designed and tested experimentally.38
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altering Protein binDing sPeCifiCity

Protein–protein interactions are often determining factors in the outcome of the 
complicated signaling pathways. In the cellular environment, a large number of pro-
teins coexist in the same cellular compartment and compete for the available binding 
partners. How do proteins select their cognate binding partners over a multitude of 
other proteins? Nature solves this problem by supplying each protein with a correct 
binding specificity. What determines protein binding specificity at the structural and 
amino acid sequence level remains largely unknown. However, recent studies that 
report designs of several proteins with altered binding specificity helped to shed 
light on the origins of this important property. Manipulating protein binding speci-
ficity becomes especially important in the area of drug design, since an ideal drug 
should inhibit the desired pathway without disturbing all other processes in the cell. 
Computational protein design methods are a potentially invaluable tool for supplying 
therapeutic molecules with high binding specificity.

To improve protein binding specificity, in principle, we should consider several 
states: a desired state corresponding to a protein in complex with a target of interest 
and alternative states corresponding to a protein in complex with all undesired tar-
gets (Figure 7.1C). Optimization of binding specificity requires designing sequences 
with minimum energy in the desired state and maximum energies in the alternative 
states. The concept of designing against certain protein conformation is referred 
to as negative design. Although the concept is intuitively clear, its implementation 
is not so straightforward for several reasons. First, the procedures for using both 
positive and negative design require substantially more complicated algorithms and 
more computational power compared to procedures that incorporate positive design 
only. Second, the alternative states are not always known and the high-resolution 
structures for the alternative states are often not available. Hence, some of the pro-
tein design studies utilize a negative design procedure, while other studies choose 
to ignore it.

Havranek and Harbury developed an approach that incorporates explicit negative 
design in the sequence selection procedure.39 Using genetic algorithms, the proce-
dure selects amino acid sequences with a maximum energy gap between the target 
protein conformation and a set of alternative undesired structures. The procedure 
was tested by designing two sequences of coiled coils that preferentially associate 
into homodimers and do not cross-hybridize with each other. Eight positions (four 
on each helix) were simultaneously optimized considering four states: the desired 
homodimeric state, and the alternative states of the unfolded, the aggregated, and the 
heterodimer. Experimental results on 13 designs show a good correlation between 
the predicted and the experimental free energies of the homodimeric and the het-
erodimeric states. Predictions of the protein stability (the energy difference between 
the folded and the unfolded states) were generally less accurate and showed high 
dependence on the molecular force field used. To demonstrate the necessity of using 
the explicit negative design for specificity optimization, the authors performed a 
similar calculation without considering the alternative states in the optimization 
procedure. The obtained sequences exhibited worse specificity scores than most 
of the sequences predicted with the negative design procedure. Unfortunately, no 

© 2009 by Taylor & Francis Group, LLC



138 Computational Protein-Protein Interactions

experimental results were obtained to verify the predictions. Even if the negative 
design procedure might not be necessary or applicable to all design problems, the 
presented algorithm remains an important keystone in the field of protein design.

Shifman and Mayo were the first to increase binding specificity of calmodu-
lin (CaM), a small α-helical protein that in nature regulates hundreds of targets in 
response to changes in Ca2+ concentration (Figure 7.2B).40 A number of structures 
for the CaM-target complexes reveal that CaM binds to ~25 amino acid helical seg-
ments by embracing them with two globular domains. Rotation of the CaM globular 
domains with respect to each other allows CaM to generate slightly different binding 
surfaces for each target, resulting in low CaM binding specificity. The goal was to 
increase CaM binding specificity toward a single CaM target, smooth muscle myosin 
light chain kinase (smMLCK). Starting from the structure of the CaM–smMLCK 
complex, the 24 fully buried positions on CaM were optimized for better interactions 
with the selected target. The resulting eightfold CaM mutant retained the wild-type 
affinity to the desired target and exhibited reduced affinity to six alternative CaM 
targets, showing up to 120-fold increase in binding specificity.40 In the second gen-
eration design, the number of the CaM residues that were optimized was increased, 
including the surface accessible interfacial positions.41 Several slightly different opti-
mization procedures yielded six CaM mutants, of which several lost some binding 
affinity to smMLCK. The best CaM mutant, with 13 binding interface mutations, 
retained the wild-type binding affinity to smMLCK and exhibited up to 155-fold 
increase in binding specificity. In our recent work, we optimized CaM for inter-
actions with another target, Ca2+/CaM-dependent protein kinase II (CaMKII) and 
tested the binding of the designed CaMs to two targets, the desired target CaMKII 
and the alternative target calcineurin (CaN).42 Our CaM variants exhibited a two- to 
fourfold improvement in binding to CaMKII and substantial decrease in binding 
to CaN, demonstrating up to 900-fold increase in binding specificity. In all these 
works, no explicit negative design was incorporated in the sequence selection proce-
dure. However, both the calculated and the experimental free energies of binding for 
the designed CaM sequences in the alternative states were higher than those of the 
wild-type CaM sequence. These results show that incorporating the negative design 
procedure is not necessary to achieve the correct binding specificity in at least some 
protein–protein complexes.

Extending our work on CaM, two groups introduced complementary mutations to 
both CaM and its peptide target to create binding interfaces with specificity orthog-
onal to wild type.43,44 These CaM–peptide complexes could be used to construct 
calcium indicators for optical imaging. The native CaM–peptide complexes, pre-
viously used for design of such indicators, suffer from susceptibility to unwanted 
interactions with multiple calmodulin targets in the cell. The indicators made from 
the redesigned CaM–peptide pairs, with orthogonal to wild-type specificity, do not 
display this unwanted quality.

To design binding interfaces with novel specificities, Kortemme et al. developed 
a computational second-site suppressor strategy.45 In this strategy, mutations disrup-
tive for the interface are first introduced into one partner and are then compensated 
by mutations in the second interaction partner. The designed molecules associate 
tightly with each other but show reduced affinity to the original interaction partner. 
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This method was first tested by redesigning the binding interface of the colicin E7 
DNase–Im7 immunity protein complex (E7–Im7).45 Different colicins interact with 
their cognate immunity proteins exhibiting high affinity and very high specificity 
(107–108-fold affinity differences between the cognate and noncognate pairs). Such 
binding properties are important since colicins are cytotoxic in the absence of their 
cognate immunity proteins; the toxicity is inhibited upon colicin–immunity protein 
interaction. To design a novel colicin–immunity protein complex, three interface 
perturbing mutations were introduced on colicin E7 and nine positions on the cog-
nate immunity protein Im7 were subsequently redesigned. Four predicted sequences 
of the designed protein pairs were tested experimentally. The two mutant pairs that 
contain eight and nine mutations at the binding interface showed subnanomolar to 
lower nanomolar binding affinity for each other. At the same time, the affinity of 
the noncognate complexes (one designed and one wild-type molecule) was about 30 
times lower. High binding specificity of the designed pairs was confirmed by per-
forming functional essays both in vitro and in vivo. The crystal structure for one of 
the redesigned complexes was solved and showed a good agreement between the pre-
dicted and the actual side chain conformations of the mutated residues. This study is 
the first successful attempt to supply a protein–protein complex with an orthogonal 
binding specificity. Nevertheless, the redesigned E7–Im7 complexes exhibited sub-
stantially lower affinities and binding specificities compared to those of the native 
colicin–immunity protein pairs.

To further improve the specificity of the E7–Im7 complexes, the authors focused 
on differences in binding orientation exhibited by various native colicin–immunity 
complexes.26 In the design procedure, alternative backbone conformations of the two 
interacting proteins were created by systematically sampling rigid-body rotations of 
one of the proteins. These backbone conformations were subsequently used to per-
form the binding interface redesign. Two computational protocols were tested: the 
second site suppressor protocol described earlier and the affinity protocol that does 
not incorporate any negative design element. After initial screening of 11 designed 
pairs, 3 were further pursued. The best design, produced by the affinity protocol, 
incorporated a new hydrogen bond network across the binding interface. Crystal 
structure of the designed complex was solved and confirmed most of the predicted 
intermolecular interactions. The small differences between the predictions and the 
reality were due to a tightly bound water molecule that was not considered in the 
design procedure. Using the newly obtained crystal structure and retaining the tightly 
bound water, the authors reoptimized the binding interface focusing on the residues 
surrounding the hydrogen bond network. The resulting designs exhibited a 300-fold 
difference in binding affinity between the cognate and the noncognate pairs. This 
study demonstrates the power of iterative approach, where an initial interface design 
is followed by its biochemical and structural characterization and by another round 
of redesign. This work also supports the hypothesis that negative design is not always 
required to obtain protein complexes with the desired binding specificity.

Computational approaches could be used to break the symmetry at dimeric inter-
faces. This was done by Bolon et al., who redesigned the natively homodimeric SspB 
adaptor protein into a heterodimer.46 Using a computational protein design approach, 
the authors optimized eight positions on the dimeric interface (four positions on 
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each monomer) employing two different strategies. One strategy sought to enhance 
specificity using both positive and negative design, while the second strategy opti-
mized only the stability of the target conformation ignoring the negative design. 
SspB mutants designed solely with the positive design procedure assembled into het-
erodimers; however, they also formed equally stable homodimers. In contrast, SspB 
mutants designed considering explicit negative design assembled most exclusively 
into heterodimers, but were less stable than the molecules designed for stability 
only. This work suggests that in the design of protein–protein complexes, a trade-off 
between affinity and specificity might be always observed. In addition, it presents an 
example of a protein–protein system where the desired and the alternative states are 
substantially similar. Hence, the explicit use of the negative design is necessary to 
prevent the undesired protein assemblies.

Reina et al. redesigned the PDZ domain for binding to new targets (Figure 7.2C). 
In nature, this small globular domain serves to recognize unstructured C-terminal 
sequences of many proteins.47 Starting from the structure of the PDZ domain bound 
to one of such sequences, the authors redesigned this protein to recognize three tar-
gets: the C-terminus of a kinesin-like molecule and two sequences containing either 
hydrophobic or polar substitutions at two positions of the original peptide. Two of the 
redesigned PDZ domains were shown to bind to their desired targets with Kd values 
similar to that of the original PDZ–peptide complex, while the third PDZ domain 
exhibited two orders of magnitude lower (better) Kd compared to the wild type. The 
best PDZ domain mutant was demonstrated to specifically recognize its target pep-
tide in a yeast two-hybrid assay, demonstrating that such molecules could be used in 
various biotechnological applications such as affinity chromatography and western 
blotting. The ability to not only alter the binding specificity but to also substantially 
increase the affinity of the redesigned binding partners distinguishes this study from 
similar efforts in protein design.

Redesign of binding interfaces could be used to generate chimeric proteins 
with dual functionalities. Chevalier et al. applied the computational protein design 
approach to engineer a protein that binds to a chimeric DNA target site.48 To fuse the 
two domains of distantly related homing endonucleases, the N-terminal domain of an 
endonuclease I-DmoI was substituted for a single subunit of the homodimeric endo-
nuclease I-CreI producing an initial model for the chimeric endonuclease E-DreI. The 
helix–helix interface between the two halves of E-DreI was subsequently optimized 
using the standard protein design procedure. The best E-DreI candidate sequences 
containing eight to twelve mutations were generated and screened in vivo to ensure 
proper folding and solubility. Biochemical characterization of several soluble E-DreI 
variants revealed that they were able to bind to and cleave a 23-bp chimeric DNA tar-
get site with high specificity and wild-type kinetics. This study shows the promise of 
the computational protein design approach in creating proteins with novel functions.

In summary, great success has been demonstrated in redesigning protein-binding 
specificity using computational protein design. Protein complexes with increased or 
altered binding specificity can now be designed. It remains unclear if incorporation 
of negative design in the sequence selection procedure is always beneficial. While 
some studies demonstrate the great utility of negative design, others show that stabi-
lization of the desired state automatically results in destabilization of the alternative 
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states. The utility of negative design highly depends on the protein system, on the 
similarity of the desired and the alternative states, and the number of protein posi-
tions being optimized.

De novo Design of Protein–Protein CoMPlexes

The redesign of the existing protein complexes has seen a considerable success in the 
past decade. Nevertheless, it remains a major challenge to computationally design 
protein complexes that do not exist in nature. The main difficulty comes from our 
inability to generate a realistic model for the backbone structure of the two proteins 
in the novel protein–protein complex. Conventional docking algorithms cannot be 
applied to create such a model since the sequence of the protein–protein interface 
is not known a priori but is subject to subsequent design. To overcome this prob-
lem, Huang et al. developed a strategy to dock the two protein structures with an 
unknown binding interface sequence.49 For this purpose, they used a reduced amino 
acid side-chain representation at the protein interface with side chains artificially 
restricted to Cβ atoms. By systematically translating and rotating one protein with 
respect to another and evaluating the binding interface complementarity, the best 
conformation of the two protein backbones is determined. Starting from this con-
formation, the amino acid sequence for the novel protein–protein interface is then 
selected. This approach was applied to design a heterodimer of the GB1 domain of 
the protein G, a protein that is monomeric in nature.50 Using a helix-to-helix binding 
arrangement for the model of the dimeric complex, a total of 24 positions on the two 
monomers were simultaneously redesigned to produce 12-fold and 8-fold mutants of 
GB1. A binding affinity of 300 µM was experimentally measured for the designed 
complex. Such weak binding affinity could be partially explained by the low stability 
of one of the monomers. In spite of the modest experimental success, the described 
method for design of novel protein complexes is definitely promising and should be 
tested in other protein systems.

Until recently, all designs of protein–protein interfaces focused on water-solu-
ble proteins. In a recent exciting work, Yin et al. report a method for modulating 
protein–protein interactions inside membranes.51 The authors designed helical 
peptides to bind to transmembrane regions of two closely related integrins (αIIβ3 
and αvβ3; Figure 7.2D). The starting backbone geometry for this helix–helix 
complex was generated by searching through the database of membrane–protein 
structures and selecting helix–helix orientations exhibited by similar sequence 
motifs. The sequence of the target integrin transmembrane domain was threaded 
onto one helix, while the second helix was designed using the computational 
protein design approach. The energy function for this design included a van der 
Waals term and a membrane depth-dependent, knowledge-based potential.52 The 
resulting peptides were demonstrated to bind specifically to the desired integ-
rin in micelles and in bacterial membranes. In addition, the peptides interacted 
with the transmembrane integrin domains in mammalian cells, where they were 
shown to inhibit integrin heterodimer formation, stimulating integrin activation. 
The reported methodology provides a general way to design binding partners 
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to membrane proteins and to probe the functional consequences of blocking pro-
tein–protein interactions in membranes.

ConClusions anD future DireCtions

In the last decade, great progress has been achieved in computational design of pro-
tein–protein interactions. Many studies have demonstrated that binding affinity and 
specificity could be improved or altered in a predictive way. In a few studies, the 
desired binding properties of the computationally designed proteins have been also 
verified in the cellular environment. Crystal structures of some of the complexes 
have been solved and proved extremely valuable in pointing out the strengths and the 
weaknesses of the computational methods for protein interface design.

The future challenge lies in designing high-affinity complexes from proteins that 
show no considerable binding in nature. These include novel receptors for a protein 
of interest or novel binders and inhibitors of the existing protein–protein interac-
tions. To enable such designs, several shortcomings in the existing computational 
procedures should be addressed. The computational methods still frequently fail 
to correctly predict the effect of various mutations on the free energy of binding. 
To overcome this problem, the energy functions for protein design should be fine-
tuned to capture the delicate balance between the favorable electrostatic interactions 
and the unfavorable desolvation of the polar groups at protein binding interfaces. 
In addition, a more accurate yet easily computable description of electrostatic and 
hydrogen bond interactions is needed to model energetics and specificity at protein–
protein interfaces. Progress in this direction has been recently reported.53–55 Explicit 
modeling of water molecules at binding interfaces might also help to achieve better 
designs. A solvated rotamer approach, developed for this purpose, allows introduc-
tion of water-mediated contacts across the binding interface.56 Experimental valida-
tion of such newly designed contacts is still to come.

Finally, the progress in design of new protein binders is highly dependent on our 
ability to generate backbone structures for the novel protein complexes. Here, we are 
faced with two major questions: what protein scaffold to pick for design of a novel 
binding molecule and how to dock this molecule into the selected binding site. The 
answer to the first question largely depends on the protein complex to be designed. 
Frequently, the scaffold for the new binding partner could be inferred from a homol-
ogous protein that already binds to the protein of interest. Alternatively, it could 
be taken from an unrelated protein with some structural similarity in the region of 
the binding interface. Once the scaffold is selected, it remains a major challenge 
to create a good model for the backbone structure of a novel protein–protein com-
plex since the sequence of the binding interface is unknown prior to design. Each 
backbone conformation would result in a distinct set of the low-energy solutions 
for the binding interface. It is not known a priori, which backbone would produce 
the lowest-energy sequence. Introducing backbone flexibility, including flexibility 
of each single molecule as well as flexibility in relative orientation between the two 
molecules in the complex, becomes extremely important for design of novel binding 
interfaces. It has been recently shown that exploring several alternative backbone 
structures during a helical ligand design leads to a larger and a more diverse set of 
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low-energy solutions than can be achieved using the native backbone as a template.57 
Hence, a winning strategy for design of novel protein–protein complexes might be 
to select a number of backbone structures and to perform the design on each of the 
structures, selecting the lowest-energy sequences only at the end. Alternatively, a 
single amino acid sequence could be designed to be compatible with an ensemble 
of different backbone conformations. These and other ideas should be explored and 
experimentally tested in the next few years. In spite of the described challenges, 
with a growing number of research groups working in the field and with constant 
improvement in methodology, I envision the universal use of computational methods 
for modulating protein–protein interactions in the near future.
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introDuCtion

Biological and biochemical processes rely on networks of molecular interactions. 
A crucial component of these networks includes proteins, which recognize and 
associate with one another to perform roles such as cell cycle regulation, signal 
transduction, and antigen recognition in living organisms. Several systematic 
experimental techniques, namely, yeast two-hybrid (Fields and Song 1989; Bartel 
and Fields 1995), mass spectrometry (Gavin, Bosche, et al. 2002; Ho, Gruhler, et 
al. 2002), protein chips (Zhu, Bilgin, et al. 2001), and phage display (Mullaney 
and Pallavicini 2001), investigate protein–protein interactions on a genomic scale. 
These high throughput techniques are rapidly accumulating information on pro-
tein–protein interaction.
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Complementary to the information gained by these techniques, it is of interest 
to know how proteins are interacting at the atomic level, by determining or predict-
ing the three-dimensional (3D) structures of the protein complexes of interest. Such 
structures help further our understanding of important residues guiding the protein 
interaction and provide deeper insight into the protein–protein interaction network. 
Additionally, the structure of a protein complex can be used in structure-based drug 
design of inhibitor molecules or design of proteins for improved binding affinities or 
altered specificities.

Without the high-resolution structure of a protein complex, one can perform 
protein–protein docking, which is an in silico method to predict a protein com-
plex structure, given individual protein structures as input. The input structures are 
generally obtained from x-ray diffraction, nuclear magnetic resonance (NMR), or 
homology modeling. One may also perform DNA–protein docking (Liu, Guo, et al. 
2008; van Dijk and Bonvin 2008), RNA–protein docking (Jonker, Ilin, et al. 2007), 
RNA–small ligand docking (Guilbert and James 2008), and protein–small ligand 
docking (Chen and Zhi 2001). This chapter will address fundamental components 
of computational protein–protein docking methods, with specific examples based on 
the ZDOCK suite of algorithms developed in our lab.

protein–protein docking

Docking programs often take input files in the Protein Data Bank (PDB) macromo-
lecular structure format (Berman, Westbrook, et al. 2000), which contain Cartesian 
(x, y, z) coordinates of atom positions in angstroms. X-ray crystallography usually 
provides a single protein structure, whereas the NMR method provides multiple 
copies of a protein in different conformations. Thus, to use protein structures from 
NMR for docking, users need to select a representative structure among the multiple 
conformations. Although it is recommended to use x-ray crystal structures with reso-
lution better than (i.e., less than) 2.5 Å for docking, it has been shown that protein 
docking simulation results are not severely affected by the protein structures with 
resolutions as low as 3.25 Å (Chen, Mintseris, et al. 2003).

Protein–protein docking can be subdivided into two categories, bound docking 
and unbound docking, based on the source of the target proteins to be docked. 
Bound docking takes the experimentally determined structure of the complex, sep-
arates the component proteins, and attempts to reproduce the complex structure. 
Unbound docking takes as input individually determined protein structures. As the 
complex structure is already known (by definition) prior to bound docking, bound 
docking is primarily a way to assess a docking algorithm and is of little predictive 
use. In terms of difficulty level, unbound docking is much more difficult, since 
unbound docking must model protein side chain and backbone movements that 
occur upon binding.
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evaluation of docking perforMance and 
accuracy of predicted protein coMplex

Quantitative measurement is required to evaluate the accuracy of predicted protein 
complex models by a docking algorithm. The most common measure is the root 
mean square deviation (RMSD):
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where N is the total number of atoms, and (x, y, z) are the Cartesian coordinates 
of atoms in predicted (p) and native (n) protein complexes. The predicted complex 
and the native complex have to be structurally aligned to minimize the RMSD. 
Depending upon the focus, RMSD can be calculated using all atoms in the complex 
or only atoms in the binding interface from both receptor and ligand, or atoms only 
from the ligand. One can choose to use all atoms, only backbone atoms, or only Cα 
atoms, with minor impact on the resulting RMSD values.

The Critical Assessment of PRedicted Interactions (CAPRI; Janin, Henrick, et al. 
2003) is a community-wide blind test of docking algorithms, where an unreleased 
structure of a protein complex is predicted by various participant groups. In CAPRI, 
the predictions are evaluated by the fraction of native contacts (fnat) and the fraction 
of nonnative contacts (fnon-nat) along with interface RMSD (iRMSD) and ligand 
RMSD (lRMSD). All submitted predictions are grouped into four classes: incorrect, 
acceptable, medium, and high, based on a Boolean expression that contains the four 
metrics (Mendez, Leplae, et al. 2003).

Current aPProaChes for unbounD rigiD-boDy DoCking

Proteins often undergo conformational changes upon interaction with other mol-
ecules, including other proteins, DNA, RNA, or small ligands. The conformational 
changes mostly occur on surface atoms, yet this conformational variability between 
unbound and bound forms must be accounted for in a successful protein–protein 
docking algorithm. Explicitly searching the backbone and side chain degrees of free-
dom, even if restricted to surface residues, is too computationally intensive and can 
yield false positives if not performed correctly.

Alternatively, rigid-body docking approaches keep the protein conformation 
fixed during the docking process and allow small clashes between the two proteins. 
This allowance of small clashes provides implicit modeling of the generally small 
side chain and backbone movements that take place to accommodate the proteins 
as they form a complex. Rigid-body docking (or “initial stage” docking) is typi-
cally followed by a refinement stage, which takes the top models from the initial 
stage and optimizes side-chain and backbone conformation, without large-scale 
movements of the predicted complex (Chen, Li, et al. 2003; Li, Chen, et al. 2003; 
Figure 8.1).
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Protein-Protein Docking
Ligand Receptor

Initial-Stage Docking:
Surface search with

scoring function

Refinement-Stage:
Energy minimization

with clash removal

figure 8.1 Two-stage approach to protein–protein docking.
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There are two components to any rigid-body docking approach: searching the 
possible protein orientations in the 6D space (3 translational and 3 rotational degrees 
of freedom) and scoring the search results so that nativelike complex predictions can 
be discriminated from nonnative complex predictions.

Searching the Space of poSSible coMplex StructureS

A variety of different methods have been used to successfully search the possible 
binding interfaces between two proteins in docking algorithms. Monte Carlo meth-
ods (Gray, Moughon, et al. 2003; Zacharias 2003) utilize random sampling in the 6D 
space to create candidate orientations. Geometric hashing has been used for protein 
docking (Fischer, Lin, et al. 1995), in addition to alignment and functional motif 
detection of biological molecules (Nussinov and Wolfson 1991; Rosen, Lin, et al. 
1998). The algorithm indexes protein surfaces with their unique characteristics in 
various reference states in a hash table that is used to calculate a correlation between 
two proteins.

Another search strategy, the fast Fourier transform (FFT), has been one of the 
more popular approaches in rigid-body protein–protein docking (Vakser 1995; 
Gabb, Jackson, et al. 1997; Chen, Li, et al. 2003; Kozakov, Brenke, et al. 2006) since 
its first application for this purpose (Katchalski-Katzir, Shariv, et al. 1992). In FFT 
docking, the two input proteins (referred to as receptor and ligand) are discretized 
onto individual 3D grids, resulting in 3D functions of R(x, y, z) for receptor and L(x, 
y, z) for ligand. Because the FFT algorithm does not speed up the rotational space, it 
must be sampled explicitly and the ligand is rediscretized after each rotation. In the 
case of ZDOCK (Chen, Li, et al. 2003), a Euler angle set with sampling spacing of 
15° or 6° is used to perform rotation search.

For each rotational conformation of the ligand, the best translation is found using 
correlation between the receptor and ligand grids. The score of a particular ligand 
translation of (i, j, k) is obtained by adding the product of overlapping grid points 
from receptor and ligand:
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The score is calculated for all possible combinations of (i, j, k) for the global trans-
lational search and this step has a computational cost that scales with N6 (O(N6)), 
where N is the number of grid points in each dimension. Alternatively, this can 
be performed in one step using the discrete Fourier transform (DFT) and inverse 
Fourier transform (IFT) of the discretized proteins:
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FFT is an efficient way to compute DFT and IFT with computational cost of 
O(log(N3)). As a result, FFT reduces the total computational cost from O(N6) to 
O(N3log(N3)). It should also be noted that the FFT has also been used to dock spher-
ical harmonic representations of the receptor and ligand (Ritchie and Kemp 2000), 
as opposed to 3D Cartesian grids.

Scoring function

With an effective search strategy in place, it is also crucial to have an accurate and 
fast method to compute scoring function for ranking docking predictions. The most 
frequently used term in docking scoring functions is shape complementarity. As 
proteins undergo relatively small conformational changes during complexation, the 
binding sites can be identified by the complementarity of the protein surfaces at the 
interface. Two other terms that are often used in docking scoring functions are elec-
trostatics and desolvation.

shape Complementarity
From the earliest computational protein docking efforts in the late 1970s (Greer and 
Bush 1978; Wodak and Janin 1978), shape complementarity (SC) has successfully 
been used to score docking predictions. This optimization of fit between surfaces is 
based, at the atomic level, on the physical van der Waals (vdW) potential. It was men-
tioned earlier in this chapter that softening protein surface is essential for unbound 
rigid-body docking to allow marginal clashes between target proteins and it is the SC 
term that can contribute to the softening of the protein surface. The vdW is distance 
dependent and is composed of two terms: repulsive force for short distances and 
attractive force for long distances. vdW potentials are often approximated with the 
Lennard-Jones 6-12 potential:
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where the r12 term represents short-distance repulsive energy and the r6 term rep-
resents attractive energy. The parameters A and B are dependent on the particular 
atoms being considered, and the minimum of this potential occurs at the sum of the 
vdW radii of the two atoms.

In FFT docking algorithms, SC is often implemented in two ways: grid-based 
shape complementarity (GSC) and pairwise shape complementarity (PSC). GSC was 
the first to be developed and was used in some docking algorithms (Gabb, Jackson, et 
al. 1997), but later it was shown that PSC performs better than GSC (Chen and Weng 
2003) and PSC was implemented in the ZDOCK docking algorithm (Chen, Li, et al. 
2003). The difference between GSC and PSC is that PSC computes the total num-
ber of receptor–ligand atom pairs within a distance cutoff, minus a clash penalty, 
whereas GSC computes the number of grid points on the molecular surfaces that 
overlap, minus clash penalty for core points that overlap (Chen and Weng 2003).
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electrostatics
In addition to shape complementarity, electrostatics is a crucial component of 
the energetics of many protein–protein interactions. Electrostatic energy can 
be computed by solving the Poisson–Boltzmann equation (Honig and Nicholls 
1995); however, for computing efficiency it is often approximated using the 
Coulombic equation.

Programs that use electrostatics include DOT (Mandell, Roberts, et al. 2001), 
MolFit (Heifetz, Katchalski-Katzir, et al. 2002), and ZDOCK (Chen, Li, et al. 2003). 
One study used electrostatics to generate molecular trajectories to perform docking 
simulations with some success (Fitzjohn and Bates 2003).

Desolvation energy
In solution, proteins are surrounded by water molecules, and in order for a protein 
to interact with other proteins, the water molecules around the interaction interface 
must rearrange. Desolvation is an energetic (largely entropic) term that considers such 
changes (breaking water–protein bonds to form protein–protein and water–water 
bonds) and is often referred to as the hydrophobic effect (Chothia and Janin 1975).

Atomic level representations of contact propensities are valuable sources of infor-
mation in protein–protein docking. Statistical potentials, which are also known as 
knowledge-based potentials, have been used in computational protein structure pre-
diction for many years. These potentials are a measure of significance of occurrence 
for an observed contact between a pair of atoms (or residues) versus a reference 
state. One example is atom contact energy (ACE; Zhang, Vasmatzis, et al. 1997), 
which was derived from propensities of atoms within 6 Å, as seen in monomeric 
crystal structures. Other statistical potentials have more advanced functions, such as 
distance-scaled, finite, ideal gas reference (DFIRE; Zhou and Zhou 2002); this func-
tion has proven effective in protein–protein docking and folding.

We recently developed a pair potential IFACE (Interface Atomic Contact Energies), 
specifically geared toward detecting protein–protein interfaces (Mintseris, Pierce, et 
al. 2007). IFACE distinguishes itself from other pair potentials in that it optimizes 
atom types in a principled way. For a total of M atom types, a Monte Carlo simulation is 
performed to divide all 167 nonhydrogen amino acid atoms into M types. A simulated 
annealing procedure was used to ensure that the mutual information was maximized 
for the set of atom types (Mintseris and Weng 2004). The resultant atom types were 
then assigned pairwise IFACE energies based on the observed atom contacts within a 
nonredundant data set of 150 transient protein–protein complexes. The energy terms 
are computed as a log ratio of the actual numbers of contacts and numbers of contacts 
in a reference state. This reference state is a novel aspect of our approach; it captures all 
possible contacts between the surface atoms of the interacting proteins.

Protein–Protein DoCking benChMark

A protein–protein docking benchmark is a curated set of protein structures for evalu-
ating the performance of docking algorithms (Chen, Mintseris, et al. 2003). Each 
test case includes a pair of unbound proteins, whose structures are available both 
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in complex and in unbound forms. The benchmark is a nonredundant data set in 
terms of complexes, as classified by SCOP (Structural Classification of Proteins; 
Murzin, Brenner, et al. 1995). Since the benchmark was first released in 2003 (Chen, 
Mintseris, et al. 2003), two updates were made, in 2005 (Mintseris, Wiehe, et al. 
2005) and 2008 (Hwang, Pierce, et al. 2008).

Benchmark version 3.0, the most recent version, is composed of 124 test cases 
(Hwang, Pierce, et al. 2008). They are classified based on two different schemes: 
docking difficulty and biological function. For docking difficulty, three levels are 
considered: 88 rigid-body cases, 19 medium cases, and 17 difficult cases, largely 
determined by the extent of interface conformational changes upon complex forma-
tion. For the biological classification, three categories include 34 enzyme–inhibitor 
cases, 25 antigen–antibody cases, and 65 other cases.

zDoCk, rDoCk, anD zrank

ZDOCK (Chen, Li, et al. 2003) is an FFT-based initial stage rigid-body docking 
algorithm with an optimized scoring function. To overcome the limitation of treat-
ing unbound proteins as rigid bodies, ZDOCK softens the protein surfaces with a 
scoring function that allows light overlaps between two protein interfaces to take 
into account possible conformational changes. Throughout its different versions, 
the scoring function in ZDOCK has contained various combinations of three major 
terms—shape complementarity, electrostatics, and desolvation:

ZDOCK 1.3 (Chen and Weng 2002): Grid-Based Shape Complementarity 
(GSC) + Electrostatics + Desolvation

ZDOCK 2.1 (Chen and Weng 2003): Pairwise Shape Complementarity (PSC)
ZDOCK 2.3 (Chen, Li, et al. 2003): Pairwise Shape Complementarity (PSC) + 

Electrostatics + Desolvation
ZDOCK 3.0 (Mintseris, Pierce, et al. 2007) : Pairwise Shape Complementarity 

(PSC) + Electrostatics + IFACE

One notable advance in the most recent ZDOCK version 3.0 scoring function 
is the incorporation of the pairwise statistical potential IFACE (Mintseris, Pierce, 
et al. 2007), which contains 12 atom types. This potential was developed using the 
atomic propensities across transient protein–protein interfaces and replaces the ACE 
(Zhang, Vasmatzis, et al. 1997) term in the previous version of ZDOCK, which has 
18 atom types. Inclusion of IFACE in ZDOCK 3.0 results in significant improvement 
in docking success across a docking benchmark (Mintseris, Pierce, et al. 2007).

Once ZDOCK has produced docking predictions, which are either 3,600 or 
54,000 depending on the angular sampling density selected (15° or 6°), the predic-
tions are then processed in the refinement stage, which resolves clashes by optimiz-
ing side-chain conformations and backbone conformations with RDOCK (Li, Chen, 
et al. 2003). After the refinement, the docking results are rescored to improve the 
ranking of the near-native predictions.

RDOCK is composed of two parts: energy minimization of docking predictions from 
ZDOCK with CHARMM (Brooks, Bruccoleri, et al. 1983) and reranking the optimized 
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predictions with its own scoring function. The scoring function for RDOCK reranking 
is composed of desolvation energy and electrostatics within interface atom pairs:

 ∆Gbinding = ∆GACE + β × ∆Eelec 

where β is a scaling factor (set to 0.9 as default in RDOCK).
While RDOCK is being used for energy minimization and reranking the min-

imized predictions, it takes approximately one minute to minimize one test case 
and this leads to an inevitable limitation for RDOCK. It was recommended to use 
RDOCK for 1000–2000 predictions out of 54,000 from ZDOCK (Li, Chen, et al. 
2003), which could result in losing near-native predictions that were ranked above 
2000 by ZDOCK. To overcome this limitation, ZRANK (Pierce and Weng 2007) 
was developed.

ZRANK is a reranking method that can process 54,000 ZDOCK predictions effi-
ciently and accurately, scoring roughly 180 predictions per minute on a single Intel 
Pentium III 2.0 GHz machine. The scoring function of ZRANK is a linear weighted 
sum of van der Waals attractive and repulsive energies, electrostatics short-range and 
long-range attractive and repulsive energies, and desolvation:

  Score = WνdW_aEνdW_a + WνdW_rEνdW_r + Welec_sraEelec_sra 

 + Welec_srrEelec_srr+ Welec_lraEelec_lra+ Welec_lrrEelec_lrr+ WdsEds 

The weights in the ZRANK scoring function (denoted by W in the equation) 
were determined using a downhill simplex minimization algorithm (Press 2002) to 
optimally rank ZDOCK 2.3 predictions for a set of Protein Docking Benchmark 1.0 
benchmark cases. The weights that were obtained are (Pierce and Weng 2007):

van der Waals attractive: 1.0
van der Waals repulsive: 0.009
Electrostatics short-range attractive: 0.31
Electrostatics short-range repulsive: 0.34
Electrostatics long-range attractive: 0.44
Electrostatics long-range repulsive: 0.50
Desolvation: 1.02

Utilizing this weighted scoring function to rescore ZDOCK predictions led to 
significant improvements in docking success rates when tested using Benchmark 
2.0 cases (the cases in the training set were excluded in this evaluation). Because 
no structural minimization of the predictions was necessary prior to scoring with 
ZRANK, this indicates that near-native predictions from rigid-body docking possess 
adequate structural and energetic information to be discriminated from incorrect 
predictions in many cases.

Following the development of ZRANK, the question of whether this function 
could be used for refined cases was addressed. After using the docking program 
RosettaDock (Gray, Moughon, et al. 2003) to refine the structural models from 
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ZDOCK, using the ZRANK program to rescore these refined models resulted 
in improved success for Benchmark 2.0 cases (Pierce and Weng 2008). The suc-
cess rate improved further when reoptimizing the ZRANK weights specifically to 
rescore refined models and incorporating the IFACE potential as another term in the 
ZRANK function. In addition to the docking benchmark, ZRANK has been suc-
cessfully used to score docking models in the CAPRI docking experiment (Wiehe, 
Pierce, et al. 2007).

In addition to rescoring and refinement, filtering false positive predictions from a 
set of docking predictions is often an important step in protein complex prediction. 
For instance, mutagenesis data on a complex may be available to help remove predic-
tions without specified residues in the interface. There are also general properties of 
proteins that can be used to filter predictions, such as removing predictions of anti-
gens bound to non-CDR portions of antibodies (Chen, Li, et al. 2003).

Clustering is another method to guide analysis of protein docking predictions. 
This is based on the concept of a low-energy funnel in the vicinity of the binding 
site between two proteins, thus the abundance of structurally similar low-energy 
docking models may indicate a binding site (Zhang, Chen, et al. 1999). This has 
been implemented, for instance, in the clustering server ClusPro (Comeau, Gatchell, 
et al. 2004). Usually, iRMSD or lRMSD between docking predictions is used as a 
metric for clustering predictions within a given radius cutoff, for example, 8 Å. Two 
possible uses for clustering docking results are: (1) clustering docking predictions 
with a metric and cutoff so that the average binding energy can be calculated for 
cluster comparison and (2) selecting cluster representative structures efficiently to 
assess redundancy within a cluster (Tong and Weng 2004). While not strictly related 
to locating energy funnels, eliminating structure redundancy can be useful when 
comparing many different protein–protein docking predictions at once.

rMSd and perforMance evaluation

We typically use interface Cα atoms for iRMSD calculation between predicted com-
plexes and native complexes to evaluate predicted structures from ZDOCK. Interface 
Cα atoms are defined as the Cα atoms of residues that have any atom within 10 Å of 
the binding partner protein in the complex. iRMSD of 2.5 Å is used as a cutoff to 
determine a near-native prediction (hit).

We use two ways to measure performance of docking algorithms: success rate 
and average hit count. Success rate measures the percent of test cases that have a hit 
in the given top N predictions, and average hit count divides the total number of hits 
for all test cases in the given top N predictions by the number of test cases.

zDoCk/zrank PerforManCe on benChMark 3.0

We tested the performance of ZDOCK 3.0 and ZRANK along with other ZDOCK 
versions on a Benchmark 3.0 data set. During the construction of the benchmark, the 
unbound structures were superposed onto bound complexes. Hence, prior to docking, 
unbound ligands and receptors were randomly rotated to avoid biased docking results 
due to specifically sampling a near-native configuration (the starting configuration).
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The average hit count for Benchmark 3.0 in Figure 8.2 shows the performance of 
ZDOCK 3.0 at 6° (FG or fine grain) rotational sampling density to produce the larg-
est number of near-native predictions within the top 1000 predictions. The other ver-
sions of ZDOCK at FG sampling and ZRANK have substantially more hits compared 
with the 15° (CG or coarse grain) rotational search. Since the FG rotational search 
samples more densely than the CG search, it has more opportunities to produce near-
native structural predictions. In addition, the new scoring function of ZDOCK 3.0 
provides better discrimination of near-native predictions from false-positive predic-
tions, causing this scoring scheme to produce the highest hit count.

The success rate results tell a different story. In the success rate comparison 
(Figure 8.3), ZDOCK 3.0 with the CG rotational search performs the best, followed 
by ZRANK and ZDOCK 3.0 with FG rotational search. This implies the FG rota-
tional search increases the number of highly ranked false-positive predictions in 
addition to the highly ranked near-native predictions, with more false-positive pre-
dictions ranked in the top few.

Figure 8.4 shows success rate comparison between different versions of ZDOCK 
with the FG rotational search and ZRANK on the 88 rigid cases in Benchmark 3.0. 
Reranking ZDOCK predictions with ZRANK outperforms ZDOCK with FG rota-
tional search and the reranking elevates success rate by ~12% at Np = 1000 in the 
case of ZDOCK 3.0. This indicates that ZRANK is most effective on structures with 
small conformational changes.

ZDOCK BM3.0 Hit Count, All Cases

ZDOCK 2.1 FG
ZDOCK 2.3 FG
ZDOCK 3.0 FG
ZDOCK 2.1 ZR
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figure 8.2 Average hit count comparison between different ZDOCK versions and 
ZRANK with two rotational sampling spacings: fine grain (FG; 6°) and coarse grain (C–G; 
15°).
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ZDOCK BM3.0 Success Rate, Rigid-Body Cases
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figure 8.4 Success rate comparison between different ZDOCK versions with the fine 
grain (FG, 6°) rotational search spacing, with and without ZRANK, considering rigid-body 
cases only.
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figure 8.3 Success rate comparison between different ZDOCK versions with different 
rotational search spacings and reranking results with ZRANK.
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Case stuDies With zDoCk anD zrank

docking with rebuilt MiSSing atoMS/reSidueS on benchMark 2.0

For unbound–unbound docking cases, independently crystallized structures that are 
used for docking can sometimes have missing residues and/or atoms that may be 
located in the vicinity of the protein–protein interface of interest. To verify whether 
this has a noticeable impact on docking performance, we tested if rebuilding these 
missing residues and atoms improves docking results.

Among the cases from Benchmark 2.0, there are two rigid cases (PDB codes for 
the complex structures: 1F51 and 1K4C) with interface residues that have missing 
atoms for which ZDOCK 2.3 does not produce a hit within its top 2000 predictions. 
We rebuilt all residues with missing atoms on both unbound receptor and ligand 
using the Accelrys Insight II software package.

1F51 is a complex of sporulation response factor B (PDB code for the unbound 
protein: 1IXM) and sporulation response factor F (PDB code for the unbound pro-
tein: 1SRR), which is involved in phosphoryl group transfer (Zapf, Sen, et al. 2000). 
In all, 114 residues from the receptor (1IXM) and 10 residues from the ligand (1SRR) 
had missing atoms to be rebuilt, of which 16 residues of the receptor and 3 residues 
of the ligand were in the interface. After rebuilding, these protein structures were 
docked using ZDOCK 2.3 with 6° sampling, resulting in six hits within the top 2000 
predictions. Figure 8.5 shows the highest-ranked hit, which is ranked 315, which has 
an iRMSD of 1.56 Å compared with the complex structure.

figure 8.5 (SEE COLOR INSERT FOLLOWING PAGE 174.) ZDOCK prediction for 
test case 1F51 using rebuilt residues prior to docking. 1SRR is colored magenta, 1IXM chain 
A is colored green, and 1IXM chain B is colored cyan. The rebuilt interface residues with 
missing atoms are displayed as red sticks.
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1K4C is a bound–unbound antibody–antigen case with Fab taken from the com-
plex structure (PDB code for the complex structure: 1K4C) and potassium channel 
Kcsa (PDB code for the unbound protein: 1JVM; Zhou, Morais-Cabral, et al. 2001). 
We followed the same procedure we performed with the 1F51 case and one inter-
face residue with missing atoms from 1JVM was located. The identified residue was 
rebuilt and docking was performed using ZDOCK 2.3. As a result, we obtained nine 
hits within the top 2000 predictions. Figure 8.6 shows the highest-ranked hit, which 
is ranked 601, with iRMSD 0.88 Å compared with the complex.

It is of interest to see the docking prediction improvement by rebuilding missing 
atoms in unbound structures from docking test cases, which were unable to produce 
hits. Strikingly, the results for the 1K4C test case improved by building only one 
interface residue, tyrosine. This shows the high sensitivity of ZDOCK and protein–
protein recognition itself. Similar studies may be implemented in a systematic way to 
locate hot spot residues in protein–protein interfaces using docking algorithms.

docking with flexible interface loopS

Protein–protein docking with highly mobile proteins is one of the major challenges in 
the docking field (Ehrlich, Nilges, et al. 2005; Bonvin 2006). This includes proteins 
with flexible loops in interfaces, which was addressed in a study where a conformational 

figure 8.6 (SEE COLOR INSERT FOLLOWING PAGE 174.) Structure prediction 
for test case 1K4C. 1JVM is colored in blue, cyan, magenta, and green and 1K4C is colored 
in salmon and gray. The rebuilt interface residue with missing atoms is displayed as sticks 
in red.
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search of flexible interface loops in unbound protein structures was performed in low 
resolution and incorporated into docking (Bastard, Prevost, et al. 2006).

In Benchmark 2.0, there are 13 medium and 8 difficult cases with moderate or 
large conformational changes upon protein–protein association (Mintseris, Wiehe, 
et al. 2005). For rigid-body docking algorithms, it is inherently difficult to solve the 
docking problem with highly mobile proteins. To address this problem, we selected 
Benchmark 2.0 test cases (PDB codes: 1AK4, 1K5D, and 1ATN) for which ZDOCK 
2.3 is unable to produce hits within the top 2000 predictions due to the conforma-
tional change of a single mobile loop in the interface. We used the Accelrys Insight II 
software package to remodel the mobile interface loops for these three test cases. For 
the selected cases, each of the mobile interface loops from the unbound structure was 
targeted to be modeled, while the remainder of the protein was kept fixed. We gener-
ated nine unbound structures with remodeled loops, plus one unbound structure with 
the bound loop inserted. The docking results are summarized in Table 8.1.

1AK4 is the complex of cyclophilin (PDB code: 2CPL) and an HIV capsid pro-
tein (PDB code: 1E6J). A loop from the HIV capsid protein (residues V86-E98 of 
chain P; shown in Figure 8.7) was targeted for remodeling in the unbound structure. 
ZDOCK 2.3 obtained at least one hit within the top 2000 predictions with eight out 
of nine unbound structures with modeled loop, and with the unbound structure with 
the bound loop inserted as well.

1K5D is the complex of Ran GTPage (PDB code: 1RRP) and Ran GAP protein 
(PDB code: 1YRG). A loop from Ran GTPase (residues Q69-I81 of chain A) was 
targeted for remodeling in the unbound structure. ZDOCK 2.3 obtained at least one 

figure 8.7 Loop modeling of the 1AK4 ligand (PDB code: 1E6J), which is the HIV 
capsid protein. Residue numbers V86-E98 in the unbound structure were modeled (modeled 
loop: light gray; unbound loop: black; bound loop: dark gray). The modeled loop with the best 
docking result is shown.
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hit within the top 2000 predictions with five out of nine unbound structures with 
modeled loop, and with the unbound structure with the bound loop inserted as well.

1ATN is the complex of Actin (PDB code: 1IJJ) and Dnase I (PDB code: 3DNI). 
A loop from actin (residues R439-Y453 of chain B) was targeted for remodeling in 
the unbound structure. ZDOCK 2.3 obtained at least one hit within the top 2000 
predictions with one out of nine unbound structures with modeled loops, and with 
the unbound structure with the bound loop inserted as well.

Overall, the docking results seen in Table 8.1 reflect the docking difficulties of the 
respective cases. Specifically, 1AK4 is a rigid-body case with mild conformational 
change, 1K5D is a medium case with moderate conformational change, and 1ATN is 
a difficult case with severe backbone conformational change in the interface.

ConClusion

Protein–protein interactions play critical roles in biological and biochemical systems. 
Understanding these interactions on a molecular level can aid redesign or modula-
tion of the interaction network, possibly providing therapeutic value. Protein–protein 
docking is an active research area and is advancing rapidly. The recent progress 
and success in the CAPRI blind test (Janin and Wodak 2007) indicates that many 
protein–protein interactions can be successfully solved by protein–protein dock-
ing. In addition, docking experiments such as CAPRI stimulate the application of 
protein–protein docking knowledge to other fields, such as protein–RNA docking 
or protein–DNA docking. The incorporation of accurate docking methods with 
homology modeling and genomic scale macromolecular interaction maps will allow 
biologists to have greater insight into molecular functions and, in the broader scope, 
biological systems.

table 8.1
summary of Docking results with flexible interface loops

Complexa Modeled loopb

number 
of loopsc

number 
of hitsd

best ranked hit 
(irMsD)e

1AK4 1E6J_P: V86-E98 8 20 32 (2.32 Å)

1K5D 1RRP_A: Q69-I81 5  8 163 (1.88 Å)

1ATN 1IJJ_B: R439-Y453 1  3 1479 (2.19 Å)

a PDB codes of the complexes. Detailed information about complexes is available at 
http://zlab.bu.edu/benchmark/.

b Targeted loops for remodeling in the unbound structures. (PDBcode_Chain: starting 
residue-ending residue.)

c Number of unbound structures with a remodeled loop that produced at least one hit in 
the top 2000 ZDOCK predictions.

d Number of hits with the unbound structure with remodeled loop that produced the 
largest number of hits.

e The best ranked hit with the unbound structures with remodeled loop, along with its 
iRMSD.
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At this stage, much of the success in protein–protein docking is limited to rigid-
body protein docking, which allows a small degree of conformational changes on 
protein surfaces. Protein surface structural plasticity upon association is one of the 
major challenges that have to be addressed in the next step of docking. The ZDOCK 
suite of algorithms is capable of producing hits with unbound structures with con-
formational changes, as long as the conformational search results are provided. The 
next step for improvement will be incorporating an ensemble of multiple conforma-
tions of an unbound protein in the ZDOCK framework.
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9 Prediction of Protein 
Interaction Sites

Yanay Ofran

overvieW

Proteins recognize and bind to each other through interaction sites. Hence, understand-
ing the mechanisms that underlie protein–protein interaction requires the elucidation of 
the characteristics of interaction sites. Analysis of interaction sites have revealed some 
of their commonalities and suggested that it may be possible to identify these sites a 
priori. Prediction methods that identify protein interaction sites from the structure or 
even the sequence of a protein will enhance the study of protein–protein interaction, 
and may break new grounds in protein design and even in the development of drugs.
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targeting binDing sites

Benzodiazepinedione and Nutlin are new anticancer drugs that are currently in 
advanced clinical trials. They represent a new promising approach in drug devel-
opment: both of them are small molecules designed to thwart protein–protein 
interaction by binding specifically and selectively to a protein interaction site, thus 
preventing the interaction. Although Benzodiazepinedione and Nutlin are two very 
different molecules, they both target the same binding site: the one where a pro-
tein called HDM2 binds the tumor suppressor protein p53. The interaction between 
these two proteins is believed to prevent p53 from suppressing the tumor. When 
Benzodiazepinedione and Nutlin bind specifically to the binding site of p53 on 
HMD2, they prevent the interaction and allow the suppression of the tumor by p53 
(Vassilev 2004; Vassilev, Vu, et al. 2004; Koblish, Zhao, et al. 2006). Attacking 
protein–protein interaction sites is becoming increasingly popular in drug develop-
ment (Archakov, Govorun, et al. 2003; Arkin and Wells 2004; Rudolph 2007; Wells 
and McClendon 2007). However, to target interaction sites, one needs first to iden-
tify the residues that compose them. In this chapter I will review the computational 
attempts to identify protein–protein interaction sites using various approaches, tools, 
and sources of data.

a key to unDerstanDing biologiCal ProCesses

Hopes for new types of drugs, however, are not the original raison d’tere of the 
field of interaction site prediction. Since biological processes are realized by the 
interaction of proteins, to fully understand or to manipulate biological processes one 
needs to unravel the mechanisms that underlie protein interactions. The first step 
in this direction is the identification of interaction sites. Prediction of binding sites 
would improve the understanding of molecular recognition and interactions. It may 
enhance the computational prediction of protein–protein interactions and lay the 
foundation for a rational design of interaction sites.

iDentifying interfaCes froM 3-D struCture of CoMPlexes

Protein–protein interaction sites are rather different from sites that bind small 
ligands, nucleic acids, metal ions, and even small peptides. Interfaces between pro-
teins and smaller substrates are typically cavities and concave clefts (Laskowski, 
Luscombe, et al. 1996; Peters, Fauck, et al. 1996; Pettit and Bowie 1999). Proteins, 
however, tend to bind to each other through much larger and more structurally intri-
cate surfaces (Janin 1995; Jones and Thornton 1996; Bahadur, Chakrabarti, et al. 
2004; Keskin, Tsai, et al. 2004). The most straightforward way to identify protein 
interaction sites is by analyzing the three-dimensional (3-D) structure of the com-
plex of two or more chains. For example, the infection of humans by the HIV virus 
is mediated by the interaction of two proteins: gp120 from the HIV and the human 
protein CD4, which is a receptor expressed on the surface of the immune system’s 
T cells. When the 3-D structure of this complex was solved (Kwong, Wyatt, et al. 
1998), it was greeted with excitement as a crucial step in highlighting the interaction 
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sites and thus revealing the mechanism of HIV infection (Balter 1998). While 3-D 
is indeed a powerful means to identify binding sites, it is hardly a silver bullet: 3-D 
structures are available for less than 1% of all known pairs of interacting proteins. 
This gap is growing by the day as the throughput of experimental methods for the 
detection of interacting proteins grows rapidly, leaving the technologies for structure 
determination of complexes far behind. Between 2006 and 2008 intAct (Kerrien, 
Alam-Faruque, et al. 2007), a major database of protein–protein interactions, grew 
by more than 100,000 pairwise interactions. At the same time less than 1000 new 
3-D structures of heterocomplexes were added to the Protein Data Bank (PDB), the 
major database of protein structure.

When there is no struCture available

In the absence of experimentally solved 3-D structures of the complex, it has been 
suggested to rely on methods for computational prediction of the 3-D structure of the 
complex of two proteins (Fernandez-Recio, Totrov, et al. 2004). The field of modeling 
the structure of complexes, or docking as it is called by its practitioners, is far from 
being able to provide accurate 3-D models on a large scale. Currently, its ability to 
provide reliable models is limited to those cases in which there is a good experimen-
tally solved 3-D structure of the respective unbound proteins. Even in those cases, 
most docking algorithms provide numerous possible models for the complex, each of 
which may suggest different surface patches as interaction sites. Indeed, a common 
practice in docking is to use predictions of interaction sites to choose the right model. 
Thus, while docking could sometimes help identify interaction sites, it is more com-
mon for docking to use interaction site prediction than vice versa. Computational 
approaches for the prediction of interaction sites are based on an attempt to identify 
general features that are shared by many interaction sites and then use these features 
to identify new putative interaction sites. Searching for such features requires the 
analysis of known interaction sites. To curate a large data set of interaction sites that 
will allow for such analysis, one first needs to define interaction sites.

hoW to Define an interaCtion site

Most definitions rely to some extent on structural considerations, attempting to 
come up with a formulation that will capture all and only the residues that are 
localized in the protein–protein interface. Numerous definitions have been sug-
gested, but each of them suffers from some shortcomings that may bias the set of 
residues that it identifies as interaction sites. A common definition is: All residues 
that are accessible to solvent in the unbound state but are buried in the interface 
in the bound state. Obviously, the number of residues that will be captured by this 
definition depends to a large extent on the definition of “solvent-accessible residue.” 
Deeming a residue exposed depends on the choice of a cutoff—either in terms of 
its absolute accessible area or in terms of percentage of its theoretically calculated 
surface area that is accessible to solvent. Typically, only a few residues have zero 
accessibility to the solvent and virtually none is 100% exposed. The vast majority 
of residues can, at least theoretically, interact with a water molecule in the solvent. 
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Yet only in some of these residues is the exposed area large enough to allow for 
an effective interaction of the residue with another protein (even if the interaction 
is mediated by a water molecule). Different choices of the minimal exposed area 
that renders a residue exposed will result in identification of different interaction 
sites. Therefore, a modification of the earlier definition was suggested: All residues 
whose accessible area was reduced upon binding. Although this definition over-
comes the problem of choosing a cutoff for exposure, it may be too permissive by 
introducing into the interaction sites some residues at the rim of the interface that 
do not form any physical contact with the other protein, yet upon interaction go 
through marginal reduction in their accessible area. Another shortcoming of both 
of these definitions is their inability to account for interaction-dependent confor-
mational changes. Many proteins undergo conformational changes upon interac-
tion, which result in substantial changes in the exposure of residues even if they 
are not located in the interface. It may, therefore, happen that a buried residue in 
the unbound state will move to the interface in the bound state. Alternatively, con-
formational changes may affect the accessibility of some residues that are remote 
from the binding site. These definitions will miss such cases.

Looking only at the bound state may offer a solution to this problem. Such is 
the approach of the following definition: All residues in a protein chain that are in 
contact with a residue in another protein chain. The problem with this definition is 
that it relies on the somewhat fuzzy notion of contact. We assume that if two resi-
dues are very close to each other, they are in physical interaction. Thus, to use this 
definition one has to define a distance cutoff for rendering two residues contacting. 
The choice of a cutoff, again, depends on many physical, structural, and statistical 
considerations. It is common to require a certain minimal distance between the Cα 
or Cβ atoms. A similar approach is to require a certain minimal distance between 
the center of mass of the residues. This minimal required distance is typically set 
between 5 and 8 angstroms. However, one has to bear in mind that if this distance 
cutoff is applied uniformly to any pair of amino acids, the result would be a data 
set that is biased toward smaller residues, as their Cα atoms, for example, are more 
likely to be spatially closer to each other than those of bulky residues. To account 
for this possible bias some studies have required a minimal distance, typically 4–6 
angstroms, between any heavy atom from a residue on one chain and any heavy 
atom from a residue on the other chain. This definition would lead to identifying 
interaction sites without any size bias, but it may allow some pairs of residues that 
are too far apart to be in actual physical interaction to be identified as part of the 
interaction sites.

More intricate definitions—for example, setting different distance cutoffs for each 
possible combination of amino acids—are possible. However, comparative analyses 
of the residues that will be identified by such different definitions suggest that the 
differences between the interaction sites they identify are fairly small. Any of these 
definitions solves some biases but introduces others. Therefore, when choosing a 
definition of interaction sites for a specific study or when using data sets of interac-
tion sites curated by others, it is important to consider the biases that the definition 
entails and try to account for them.
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Different tyPes of interfaCes

Protein–protein interaction comes in different flavors: There are interactions that 
are permanent, namely, interactions between chains that could not function without 
each other, and interactions that are transient, namely, interactions between chains 
that have a molecular function also in their unbound state or when they are bound 
to another partner. Some interactions, while transient, modify one or both of the 
proteins involved. Such is the case in phosphorylation, cleavage, or unibiquitination, 
to name just a few. Interactions may occur in different environments, under different 
chemical and physical conditions; proteins interact in different cellular compart-
ments, even inside the lipid bilayer of the membrane. Each of these types of inter-
actions may be stabilized by different mechanisms, and hence the interaction sites 
involved may be different in their characteristics. Many studies have attempted to 
characterize the differences between the mechanisms that stabilize different types 
of interactions. In particular, they looked at residue–residue contacts, that is, nonco-
valent interactions between residues that stabilize structures. A basic distinction was 
drawn between the contacts that stabilize the structure of a single chain and those 
that stabilize a complex of chains. Several studies have shown that there are differ-
ent types of contacts in play in these two types of interactions (Jones and Thornton 
1996, 1997; McCoy, Chandana Epa, et al. 1997; Keskin, Bahar et al. 1998; Lo Conte, 
Chothia, et al. 1999; Sheinerman, Norel, et al. 2000; Glaser, Steinberg, et al. 2001; 
Ofran and Rost 2003a).

Another distinction was drawn between permanent and transient interactions, or 
between obligatory and nonobligatory ones. Early studies that have looked at small 
data sets of only a few complexes have shown that obligatory or permanent interactions 
tend to be mediated by larger interfaces (Jones and Thornton 1996, 1997). When larger 
data sets were used, more differences were found: The transient complexes not only 
have smaller contact areas, but the interfaces themselves are different. In particular, 
they tend to be more polar on average. It was also shown that obligatory interactions 
tend to require more conformational changes upon association/dissociation than tran-
sient ones (Jones and Thornton 1996, 1997). More comprehensive studies that ana-
lyzed hundreds of complexes have reaffirmed the difference in the characteristics of 
the interfaces between complexes that are obligatory (sometimes referred to as obli-
gomers) and complexes that are transient. Differences were also found between inter-
faces in homo-oligomeric interactions and those in hetero-oligomeric interactions.

interaCtion sites versus other surfaCe resiDues

When looking at the sequences of the interaction sites, studies have suggested that 
interface residues tend to be more conserved than other surface residues (Jones and 
Thornton 1996, 1997). It seems, based on later and more comprehensive analyses, 
that the level of conservation, while significant, is fairly small (Caffrey, Somaroo, 
et al. 2004; Ofran and Rost 2007b). Protein–protein interactions have been shown 
to be one of the functional descriptors that are least conserved among homologues 
proteins: Typically, sequence identity of less than 40% is sufficient to determine 
that two proteins share the same 3-D fold (Rost 1999). Sixty percent sequence 
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identity is sufficient in most cases to determine that two homologous proteins are 
located in the same subcellular localization (Rost, Liu, et al. 2003). Eighty percent 
sequence identity would usually suffice to infer molecular function (Rost, Liu, et al. 
2003). However, to infer that two proteins interact with the same partners, the level 
of sequence identity must be higher than 80% and by some accounts even greater 
than 90% (Mika and Rost 2006). These observations point in the same direction: 
Interaction sites may be conserved but typically not highly conserved. Whether this 
level of conservation is instrumental in interaction site prediction is still debated 
(Armon, Graur, et al. 2001; Caffrey, Somaroo, et al. 2004; Res, Mihalek, et al. 2005; 
de Vries and Bonvin 2008).

Interaction sites have structural features that distinguish them from other surface 
residues. By and large, they are more planar and tend to have different secondary 
structure compositions. As opposed to sequence conservation, analysis of struc-
tural conservation—that is, identification of residues that are structurally aligned 
across a protein family—found that interface residues are highly conserved struc-
turally to the extent that their structural conservation alone may be a good way to 
distinguish between interaction sites and other surface residues (Ma, Elkayam, et 
al. 2003). Again, different types of interfaces tend to have different structural fea-
tures. For example, antigen–antibody interactions are mediated by interfaces that 
are very different than other types of interfaces in many of their traits, including 
their secondary structures (Ofran, Schlessinger, et al. 2008). The same is true for 
protease–inhibitor complexes (Jackson 1999). Antibodies and antigenic proteins are 
two opposite cases in terms of prediction. The interaction sites on the antibody are 
fairly easy to identify, even when there is no 3-D available; they typically fall within 
a few well-defined loops on the antibody, known as complementarity determining 
regions (CDRs). The interaction sites on antigenic proteins (aka B-cell epitopes, the 
regions on the protein surface that bind specifically to the antibody), on the other 
hand, are extremely hard to predict (Greenbaum, Andersen, et al. 2007). In fact, an 
assessment of existing methods for the prediction of B-cell epitopes has concluded 
that most of them are at most marginally better than random (Blythe and Flower 
2005). This poor performance has to do with peculiar molecular characteristics of 
epitopes (Burgoyne and Jackson 2006; Ofran, Schlessinger, et al. 2008) and their 
interdependence in complex immunological cellular and molecular processes. Until 
the early 2000s, most of the known structural data about protein–protein interactions 
came from complexes of either antigen–antibody or protease–inhibitor (Smith and 
Sternberg 2002). However, over the last years the available data has grown to include 
many other types of protein–protein interfaces.

As the peculiarities of these two types of interactions became clearer, it became 
a common practice to exclude protease–inhibitor and antigen–antibody complexes 
from large-scale analyses and from training sets for new predictors. The justifiability 
of this practice is debated (de Vries and Bonvin 2008).

PreDiCtive features

Computational prediction of interface requires the identification of common denom-
inators between interfaces. However, given the variations between interaction sites 
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of different types, lumping all of them together may only allow for the identification 
of very general common denominators. Consequently, methods attempting to predict 
all types of protein interaction sites may pay in accuracy for the general applicabil-
ity. Methods focusing on one type of interaction could theoretically produce more 
accurate predictions. In practice, however, for most types of interactions there are 
not enough known examples. Only a few types of interactions are covered by enough 
known examples to allow for the training of a specific prediction method. Table 9.1 
lists types of interactions that are targeted by specialized methods.

exPeriMental Data iMProves PreDiCtion 
but liMits aPPliCability

Clearly, the more experimentally collected features that are taken into account, the 
better the predictions will be. If a method relies on an experimentally determined 3-D 
structure of the unbound chain, it can take into account the overall physicochemical 
characteristics of each residue, and not just its sequence neighbors. If a method also 
utilizes functional knowledge of the protein, such as its subcellular localization or 
molecular function, it can take into account considerations such the conditions and 
the environment under which the interactions occur. The downside, obviously, is that 
a method that requires a wide range of experimental data would be applicable only to 
proteins for which all these data are available. The vast majority of known proteins 
are only known by their amino acid sequence. As of summer 2008, for every protein 
deposited in SWISS-PROT, a database of functionally annotated proteins, there are 
more than 10 protein sequences in databases that have no functional annotation. For 
every protein in the PDB—the database of structurally annotated proteins—there 
are more than 100 unannotated proteins in other databases with no such annotation. 
By and large, methods could be delimited according to the extent of experimental 
data they require, and their consequential applicability and performance.

table 9.1
specialized Method for Prediction of specific types of interaction sites

type of interaction example Methods

Heterooligomer Chung, Wang, et al. 2006; Res, Mihalek, et al. 2005

All types of interactions Chen and Zhou 2005; Kufareva, Budagyan, et al. 2007

Transient heterooligomer Fariselli, Pazos, et al. 2002; Neuvirth, Raz, et al. 2004; 
Ofran and Rost 2007a

Homodimers Pettit, Bare, et al. 2007

Functionally important surface elements Armon, Graur, et al. 2001; Pettit, Bare, et al. 2007

Obligomers (obligatory interactions) Dong, Wang, et al. 2007

Protease–inhibitor Yan, Honavar, et al. 2004

Antigen–antibody Yan, Honavar, et al. 2004

B-cell epitopes Haste Andersen, Nielsen, et al. 2006

CDRs Kabat 1985; Ofran, Schlessinger, et al. 2008
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early MethoDs

Early methods have been developed when available data was fairly meager. Therefore, 
these methods relied mostly on general, and often theoretical, parameters. Such was 
a method introduced by Kini and Evans (1996), who relied on their observation that 
proline is abundant in sequence segments that are flanking the interaction sites. Their 
suggestion was to simply search for sequence elements enclosed by proline rich seg-
ments and to identify them as putative interaction sites. This method is applicable to 
any sequence and does not require any additional data, but it was soon outperformed 
by more elaborate methods. Theoretical considerations were behind another method 
(Gallet, Charloteaux, et al. 2000) that suggested computing the hydrophobic moment 
of sequence stretches to determine whether there are likely to be interaction sites. 
This method is based on a simple computation that could be performed on any pro-
tein sequence and was aimed to identify any type of interaction site. While utilizing 
an elegant idea, it was proven too simple for this robust task.

Later methods that incorporated a similar idea and combined it with other fea-
tures achieved better performance. Jones and Thornton (1997), relying on their 
earlier structural analysis of protein–protein interfaces (Jones and Thornton 1996), 
introduced a method that uses topology, solvent accessible surface area (ASA), and 
hydrophobicity to predict whether a given surface patch is likely to be an interaction 
site. To perform this analysis, the method requires an experimentally determined 
3-D structure of the unbound chain. These pioneering and rudimentary methods 
were based on small data sets, simple computational procedures, and theoretical 
physicochemical considerations. The next generation of prediction methods is differ-
ent in all three aspects: they are based on increasingly larger datasets, they employ 
sophisticated algorithms (predominantly machine learning ones), and they rely more 
on knowledge-based parameters than on theoretically derived ones.

the next generation

The structure-based method of Jones and Thornton (1997) analyzed interaction sites 
as patches of residues on the surface. Some subsequent methods used a similar patch-
based definition, but improved performance by using much larger data sets to train 
sophisticated algorithms such as Bayesian networks or support vector machines 
(SVM) (Bradford and Westhead 2005; Bradford, Needham, et al. 2006). The patch-
based approach is also employed by some general methods that attempt to identify all 
functionally important residues, including interaction sites of any ilk, such as Ben-Tal’s 
group ConSurf method (Armon, Graur, et al. 2001) and the hotPatch server (Pettit, 
Bare, et al. 2007) that search for conserved and functionally important surface patches. 
Most recent methods, however, replaced the notion of patch by the analyses of individ-
ual residues. Some of these methods use only sequence and sequence-derived features 
to predict interaction sites from sequence (Ofran and Rost 2003b; Koike and Takagi 
2004; Res, Mihalek, et al. 2005; Ofran and Rost 2007a), but most of them require 
a full 3-D model of the protein (Fariselli, Pazos, et al. 2002; Bordner and Abagyan 
2005; Bradford and Westhead 2005; Chen and Zhou 2005; Chung, Wang, et al. 2006; 
de Vries, van Dijk, et al. 2006; Li, Huang, et al. 2006; Liang, Zhang, et al. 2006; 
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Wang, Chen, et al. 2006; Wang, Wong, et al. 2006; Dong, Wang, et al. 2007; Kufareva, 
Budagyan, et al. 2007; Negi, Schein, et al. 2007; Neuvirth, Heinemann, et al. 2007; 
Darnell, LeGault, et al. 2008; Murga, Ondrechen, et al. 2008).

Another category of methods relies on external sources of information, such as 
protein–protein interactions, in an attempt to identify sequence motifs that may over-
lap with the interaction sites (Sprinzak and Margalit 2001; Sprinzak, Altuvia, et al. 
2006; Guo, Wu, et al. 2008). Similarly, it has been suggested to use protein–protein 
interaction data to search for positions that coevolve in interacting proteins and iden-
tify them as putative interaction sites (Pazos and Valencia 2002).

What the user neeDs to knoW

For the user, the critical differences between the methods are the required input data 
and the performance. These two questions are usually interdependent: A method that 
requires only sequence would be widely applicable but usually performs poorly. The 
performance is dramatically improved when also using evolutionary conservation, 
but then the method is not applicable to proteins with no or just a few known homo-
logues (Koike and Takagi 2004; Res, Mihalek, et al. 2005; Ofran and Rost 2007a). 
Methods that rely also on protein–protein interaction data restrict applicability fur-
ther but may improve performance. The best performing methods are those that rely 
also on 3-D structure, but they are also the most limited in their applicability.

assessing PerforManCe

The assessment of the performance of any prediction method is not a trivial task. In 
the case of interaction site prediction, there are multiple difficulties. Since develop-
ers use different definitions for interaction sites, they essentially attempt to predict 
slightly different things. Hence, their results are not fully comparable. Developers 
report their own assessment of the method when they first introduce it, but different 
developers use different data sets to assess their performance and different statisti-
cal measures to report it (for further discussion of assessment in bioinformatics, see 
Baldi, Brunak, et al. 2000). Furthermore, they use different criteria for deeming a 
prediction successful. What fraction of an observed patch should be covered by the 
prediction to be considered a hit? What fraction of the predicted patch should be 
covered by the observed one? There is no standard answer to these questions.

Some attempts are made to establish a standard benchmark that will allow for 
objective, independent assessment of different methods (Zhou and Qin 2007). So far 
these attempts have only limited success (de Vries and Bonvin 2008). As per the sta-
tistical methods for assessing performance, the most commonly used measures are:

accuracy•	  = 
TP TN

TP FP TN FN

+
+ + +

where TP, TN, FP, and FN are the number of predictions that are true positive, true 
negative, false positive, and false negative, respectively. This measure gives the 
same weight for successful prediction of interaction sites and of residues that are 
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not interaction sites. This usually results in over optimistic assessment of the per-
formance. The developers’ self assessed values for accuracy are currently between 
0.5 and 0.9.

precision•	  = 
TP

TP FP+
which measures what fraction of the positive predictions is correct (i.e., how often 
a predicted interaction site is also an experimentally observed one). Self-assessed 
values are between 0.4 and 0.9.

coverage•	  = recall = sensitivity = 
TP

TP FN+
which measures what fraction of the observed interaction sites were correctly identi-
fied by the method. Self-assessed values are between 0.05 and 0.7.

specificity•	  = 
TN

TN FP+
which measures the fraction of correct negative predictions.

Matthews Correlation coefficient (MCC) =•	

TP TN - FP FN

(TP FP)(TP FN)(TN FP)(TN F

× ×
+ + + + NN)

which attempts to account for data sets that are not balanced but scores positive and 
negative predictions equally.

Area under receiver operating curve (AUC), which measures the area under •	
the curve of the graph one gets from plotting sensitivity versus (1 – specific-
ity). However, this figure is known to be problematic for unbalanced data 
sets (when there are substantial differences between the size of the negative 
and the size of the positive data sets, like in the case of interaction sites 
versus other residues).

The relevant measure that should be considered when choosing a method depends 
on, to a large extent, the user’s needs: Most users want to know how reliable the pos-
itive predictions are (namely, how reliable is the identification of interaction sites). 
Hence, for them the most relevant measures are precision and recall. In most cases 
there is a trade-off between these two measures: The user can choose parameters 
that increase precision on the account of recall and vice versa. Therefore, users 
should ask themselves what is more important for them: not to miss any putative 
interaction site (higher recall) or not to receive false positives (higher precision). 
For a review of the self-reported performance of current methods, see de Vries and 
Bonvin (2008).

© 2009 by Taylor & Francis Group, LLC



Prediction of Protein Interaction Sites 177

hot sPots

Several methods have reported high levels of precision, but most of them had fairly 
low levels of recall. That is, when they identify a residue as part of the interaction 
site, they are usually correct; however, they fail to identify many of the residues in 
the interface. This fact coincides with a fundamental observation about protein–
protein interfaces in general: Only very few of the residues in protein–protein 
interfaces are absolutely essential for the interaction. In a typical 1200–2000 
Å2 interface, less than 5% of interface residues contribute more than 2 kcal/mol 
to binding. In small interfaces this can mean as few as one amino acid on each 
protein (Bogan and Thorn 1998). A common way to explore the importance of 
a residue for interaction is by mutating it, typically to alanine, and measuring 
the effect of this substitution on the interaction (Wells 1991; Morrison and Weiss 
2001). Often this is done sequentially on a large scale in a procedure known as 
alanine scanning. Many experiments have demonstrated that most interface resi-
dues could be mutated without affecting the affinity of the protein to its partners 
(Clackson and Wells 1995; Thorn and Bogan 2001). Those few residues that, upon 
mutation, change the affinity are often assumed to be the most essential for the 
interaction and are deemed hot spots (Bogan and Thorn 1998). Identification of hot 
spots was also shown to be useful in docking (Halperin, Wolfson, et al. 2004). It 
has been suggested that the poor recall should be attributed to the fact that some 
methods actually predict hot spots rather than all interface residues (Ofran and 
Rost 2007b). Several new methods, databases, and analyses, therefore, attempt 
explicitly to identify hot spots rather than all interface residues (Ma, Wolfson, et 
al. 2001; Kortemme and Baker 2002; Ofran and Rost 2007b; Darnell, LeGault, et 
al. 2008; Guney, Tuncbag, et al. 2008). Figure 9.1 shows the complex of human 
growth hormone bound to the extracellular part of its domain. When removing 
the hormone, the interface is revealed: it covers 70 residues of the receptor, 35 on 
each chain. However, in an alanine scan only 10 of them—5 on each chain—were 
found to be critical to the stability of the complex. The structure of one chain of the 
homodimeric receptor was used to predict interaction sites, using a structure-based 
method called ProMate (Neuvirth, Raz, et al. 2004)). The sequence of the same 

Human growth hormone 
bound to the extracellular 

domain of its receptor

Interface residues
(defined by distance

from the ligand)

Interaction hot spots
(detected by

mutations to alanine)

Interaction sites
predicted from

structure

Interaction sites
predicted from

sequence

figure 9.1 (see Color insert folloWing Page 174.) Interaction sites and their 
prediction: The complex of human growth hormone and the extracellular domain of its recep-
tor (left). When the hormone is removed, the interface residues on the receptors are revealed. 
Only a few of them are critical for stabilizing the complex. Two prediction methods, one that 
is based on structure and one that is based on sequence, were used to predict the interaction 
sites.
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chain was fed to ISIS (Ofran and Rost 2007), a sequence-based method, to predict 
its interaction sites from sequence. It is interesting to note that the structure-based 
method identified not only all of the hot spots and some of the other interface resi-
dues, but also the site of the homodimeric interaction at the bottom of the recep-
tor. The sequence-based method captured four of the five hot spots and one other 
interface residue.

Design of tools

Virtually all recent methods are based on supervised machine learning. That is, 
they are based on a large training set classified into verified interaction sites and 
verified noninteraction sites. The data are fed into an algorithm that learns subtle—
and possibly nonlinear—dependencies between various features, or descriptors, of 
a residue and its classification as an interaction site or a noninteraction site. The sta-
tistical model of dependencies can then be used to classify a new residue, based on 
its descriptors. Prediction methods differ in their choice of training sets, their choice 
of descriptors, and their choice of algorithms. Other than the distinction between 
patches and individual residues mentioned earlier, fundamental distinctions between 
prediction methods are:

The type of interaction (permanent or transient, homodimeric or heterodi-•	
meric, specific to a family or a function, etc.). Table 9.1 lists types of pro-
tein–protein interactions predicted by different methods.
The type of algorithm used for training (most common are parametric •	
approaches, artificial neural networks [ANNs], support vector machines 
[SVMs], and Bayesian networks).
The way the interface is defined (patch, contacting residues, hot spots, etc.).•	
The data used for training (large or small data set, hand selected, or auto-•	
matically generated).
The descriptors that are used for classification (physicochemical character-•	
istics, structural ones, evolutionary conservation, hydrophobicity). Table 9.2 
lists various descriptors.

table 9.2
Common Descriptors used for Prediction of interaction sites

Descriptor Comments

features Derived from 3-D structure
Neighbor list: Residues in spatial 
vicinity to the residue in question

9–20 residues

B-factor A crystallographic measure that approximates the flexibility of a 
residue.

Solvent accessibility (ASA) Measured in Å2.

Relative solvent accessibility Measured as a fraction of the overall surface of the residue that is 
exposed to solvent.
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table 9.2 (ContinueD)
Common Descriptors used for Prediction of interaction sites (Continued)

Descriptor Comments

Shape index/curvedness

Secondary structure Three state (helix, strand, loop) or more.

Sequence distance The separation in sequence between residues within the same 
patch. Some results indicate that structurally contiguous 
residues that are not adjacent in sequence are more likely to 
form interaction sites.

Planarity

Predicted/approximate structural features
Predicted secondary structure
Predicted solvent accessibility

Methods relying only on sequence can use computational tools to 
generate predicted solvent accessibility/secondary structure. 
This improves performance without limiting applicability to 
proteins with known 3-D structure.

Sequence neighbor list Can be used instead of neighbor list to approximate the 
environment of the analyzed residue. Nine to fifteen residues 
around the residue in question. Four to seven on each side of 
the residue. Some structure-based methods use this in 
addition to neighbor list.

evolutionary features
Sequence profile Extracted from a multiple sequence alignment, a profile reveals 

patterns of evolutionary conservation.

Conservation score A quantification of the level of conservation of an individual 
position.

Conservation of physicochemical 
traits

If the position is not conserved, scoring conservation of traits 
such as charge, hydrophobicity, or size may improve prediction.

Physicochemical features
Hydrophobicity Several different scales are available.

Electrostatic potential Measured for individual residue or for a patch. Requires 3-D 
structure.

Atom propensities Serves as a way to sum physicochemical properties across 
residues in the patch.

Desolvation energy Used mostly in predictions for rigid-body docking.

external knowledge
Protein–protein interaction Can be used to: (1) identify sequence or structural elements that 

are significantly overrepresented in interacting pairs, and (2) to 
assess coevolution of positions in interacting pairs.

Functional annotation of the 
protein

Enzyme–inhibitor and antigen–antibody have different types of 
interfaces than other complexes. Adding this information may 
improve prediction.
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Different methods have different strengths and weaknesses. Therefore, a user 
that wisely integrates the output of several different prediction methods would most 
likely get predictions that are better than those of any single method. This could also 
be done automatically with a metaserver that automatically submits a query to differ-
ent methods and weighs the results of each of them to produce a consensus prediction 
(Qin and Zhou 2007).

ConClusion

Between 2003 and 2009, dozens of new methods for the prediction of interaction 
sites were introduced. Their performance steadily improves and they are reliable 
enough to inform experiments. They are often used to choose targets for mutagenesis 
and for analyzing protein function and interaction. Three developments allow for 
the growth of these methods. First, the deluge of protein–protein interaction data, 
particularly structural data, provides sufficient data sets for the training of machine-
learning algorithms. Second, elaborate study, both experimental and computational, 
revealed some of the principles of protein interaction and enabled a careful choice of 
descriptors for training, and finally, communication with computer scientists allows 
for the choice of state-of-the-art algorithms that improve performance further. These 
three factors are likely to be the keys for further improvements of the methods. The 
new data that are required will enable the training of more specialized methods that 
focus on specific types of interactions, such as interaction of membrane proteins, 
antibody–antigen interactions, interactions of enzymes and their targets, interactions 
that are mediated by water, and so forth. More data on each type of interaction will 
also allow for more detailed analysis of its traits and, therefore, for better choice of 
descriptors. Finally, based on these descriptors, computer scientists will be able to 
devise specific methods for better predictions.
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10 Predicting Molecular 
Interactions in 
Structural Proteomics

Irina Kufareva and Ruben Abagyan

introDuCtion

As the number of files in the Protein Data Bank (PDB) exceeded 50,000 (repre-
senting around 10,000 protein domains at 95% level of sequence identity), it is 
becoming increasingly important to develop the understanding of the protein func-
tion and the next level of subcellular structural organization.1,2 This, among other 
aspects, requires understanding of what other biological molecules or cellular 
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structures interact with each domain, which residues are involved in this interac-
tion (e.g., References 3 and 4), and what conformational changes accompany the 
binging. Structure-based computational approaches to these questions invariably 
face the issue of protein flexibility, which is further complicated by the existence 
of unstructured, partially structured, or conditionally structured interfaces.5 While 
the dream of predictive millisecond-scale molecular dynamics serving as a “com-
putational microscope” persists (K. Schulten, award lecture at the ISQBP meeting 
in Ascona, 2008; also Reference 6) and may even be getting more tangible as com-
puters become faster, the ability to make reliable predictions on the basis of such 
trajectory is still lacking.

The task of predicting molecular interactions has three principal aspects:

 A. Predicting the interfaces on a given molecule that are involved in intermo-
lecular interactions. As a subtask one may include predicting a class (but 
hardly the identity) of the interaction partner (say, protein, peptide, mem-
brane, a small substrate).7 During the last years, computational methods 
making these kinds of predictions have improved dramatically and may be 
quite useful.

 B. Predicting the spatial arrangement of two interacting molecules given the 
apostructures of both, aka docking. Existence of homologous interacting 
pairs with already solved three-dimensional (3D) structures greatly facili-
tates solving this problem. However, when such template complex structure 
is not available, obtaining a crystallographic quality model may be exceed-
ingly difficult due to the induced fit.

 C. Predicting the identity of molecules (including proteins) involved in direct 
transient specific interactions with each other. In the most general form, 
solving this problem requires precise, large-scale prediction of conforma-
tional ensembles and Gibbs free binding energies between all possible pairs 
of biological molecules, which is unrealistic even with the use of the best 
state-of-the-art computing resources.

From the biological standpoint, the three aspects should be considered in a 
different order, by increasing attention to details: C (what) to A (where) to B 
(how). We, however, order them by their computational complexity. For example, 
in context of protein–protein interactions, task A is tangible and applicable to 
thousands of proteins constituting entire structural genomes. Task B, in spite of 
the achieved limited success in protein docking,8 largely remains an academic 
exercise. Task C appears to be impossible to solve due to the enormous com-
plexity of biological systems and the imperfections in existing methods of free 
energy calculations.

While for protein–protein interactions only task A can be solved with reasonable 
effort and outcome, all three kinds of predictions are approaching widespread practi-
cal use in cases when the interacting partner is a small chemical. Recent advances in 
small molecule docking and related applications led to a number of successful solutions 
of tasks A and B in this context. Though more difficult than others, task C becomes 
quite tangible for druglike compounds and is represented by two kinds of screening:
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 C1. Ligand screening, that is, searching for a natural substrate or a new com-
pound to specifically bind to the source protein.

 C2. Ligand specificity profiling, that is, searching for the proteins in a subclass 
or even in the entire structural proteome that bind specifically to a given 
small molecule.

In this chapter, we present an overview of some methods for predicting the three 
aspects of molecular interactions. We will focus on targets where a good quality 
atomic resolution 3D model either has been determined experimentally or can be 
reliably built by homology (unfortunately, de novo predictors of the 3D structure 
from the amino acid sequence are still unreliable).9,10 We will also focus on the tran-
sient, not permanent, interactions. In most cases, permanent binding partners are 
known in advance, and when this is not the case, they are more easily predictable.11 
We will present an analysis of the induced conformational changes upon binding that 
create the single biggest challenge for modelers of protein interactions, and describe 
several methods to overcome this difficulty. Our analysis and the optimization of 
the prediction methods relied on an ever-growing body of structural data and the 
improved methods of molecular mechanics with related energy functions.

CharaCterizing MoleCular interfaCes

coMprehenSive SetS of tranSient Molecular interactionS in 3d

Of more than 10,000 unique protein domains found in the 2008 release of the PDB,12 
only about 10% are represented in transient complexes with their biological pro-
tein partners. Selection and preparation of a sufficiently large collection of these 
complexes to be used as a training and validation set is a prerequisite for any study 
addressing the problem of protein interface prediction.13–15 Unfortunately, artificial 
constructs, crystal packing, and other artifacts present a substantial challenge for 
both manual and automatic identification of true biological interactions. Although 
manual intervention during the set collection helps reduce the number of errors, it 
limits the size of the set and possibilities of timely updates. On the other hand, only 
a truly large-scale effort can lead to a statistically significant and diverse set without 
overrepresentation of large families of homologues.

We collected a set of as many as 858 protein domains participating in crystallized 
transient protein–protein complexes. The entire PDB was organized into families, 
one family per domain, with each family containing all publicly available good qual-
ity structures of the domain with its possible binding partners. To reduce the noise 
while preserving the automation, we only collected the domains represented by mul-
tiple, yet “partner-diverse” structures, and used consistency criteria to achieve the 
following goals:

Transient complexes were distinguished from permanent ones based on •	
comparison of PDB complex compositions across the family.
Each domain was treated in context of its permanent biological unit. In •	
~20% of the set, the biological unit was found to be different from the 
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monomer. The permanent biological multimers were treated as a whole to 
avoid potential contamination of the data set with intersubunit (obligate, 
permanent) interfaces that never get exposed in biological environments.
Each transient complex was guaranteed to have at least one •	 unbound struc-
ture of its receptor domain.
Multiple protein partners binding to the same or different sites on the pro-•	
tein surface were taken into account.
Superimposition and structural comparison of the multiple structures pro-•	
vided means for characterization of the induced conformational changes.

For simplicity, we did not include in the set any protein domain that formed per-
manent heterotrimers or higher multimers, or any domain that was simultaneously 
bound to more than four distinct protein partners.

The collected set provides a fairly comprehensive representation of transient pro-
tein–protein interactions in the PDB. It covered all major classes of biological inter-
actions such as enzyme–inhibitor, hormone–receptor, structural protein, and many 
types of regulatory interactions. However, antibody–antigen interactions were pur-
posely excluded from the set, as well as all families featuring antibodies as the only 
type of interacting partner. Epitope prediction must be considered as a standalone 
task in computational biology. Being different from biological interfaces by both 
physicochemical properties and (typically) location, epitopes are only recognized by 
antibodies, naturally selected to target even most noninterface-like patches.

The family size ranged from 2 to 30 (median 6, mean 8.61) structures (Figure 10.1) 
and was limited by the requirement of using no more than 15 PDB entries and no more 
than two chains from each entry per protein domain. In a large fraction of cases (361 
of 858, 42%), protein domains were found to interact with a variety of protein part-
ners. Such interactions often involved nonoverlapping patches on the protein surface.

Using a similar approach, we also collected a set of ~800 protein domains that 
have been crystallized apo or in complexes with small molecule ligands. In the 
following, we present a comparative analysis of the two sets and a comprehensive 
description of induced fit changes.

propertieS and flexibility of tranSient Molecular interfaceS

Protein surface patches involved in transient interaction with other proteins or small 
molecule ligands differ

from the rest of the surface,•	
from permanent multimer interfaces (e.g., Figure•	  10.2), and
from each other (small molecule interface vs. protein interface)•	

by a number of properties. Properties such as relative residue frequencies, physical 
fields, hydrophobicity, size, charge, evolutionary rates, and so forth have statistically 
significant differences when compared between classes of protein surface patches 
(e.g., Reference 16). These properties can be used to predict molecular interfaces 
(task A).
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To predict complex geometries (task B) a different question gains primary impor-
tance. Since induced fit presents the major challenge for all docking algorithms, one 
needs a clear understanding of the nature and the degree of changes that can happen 
upon binding of a protein to a protein or a small molecule partner. Such studies were 
previously performed only for small sets of proteins.17,18

To collect the induced fit data, we used the sets of transient protein interactions 
in 3D described earlier. Given a family of complexes formed by a particular protein 
domain, we compared each complex with all other complexes of the same compo-
sition (same protein partner in case of protein interactions, same small molecule 
for protein–ligand interactions), complexes of other compositions, and unbound 
structures. The unbound structures were also compared to one another to assess the 
degree of changes stemming from natural protein flexibility rather than induced by 
binding partners.

For protein–protein interactions, the obtained data for 858 protein ensembles are 
presented in Figure 10.3. In the majority of the cases (77%), comparison of a bound 
form of a protein to its unbound form or a complex of different compositions shows 
a strong deviation (>1.5 Å) of at least one interface residue. On average, about one-
fourth of interface residue backbones deviate above that threshold. Moreover, at least 
one interface side chain is displaced by more than 1.5 A almost always (99%), and 
more than one-half of side chains strongly deviate on average. The corresponding 
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figure 10.1 Eight hundred fifty-eight transient protein interfaces represented by two or 
more PDB entries. Family size refers to the number of PDB structures representing the same 
protein domain in apo form or in complex with transient protein partners. These families 
were used to evaluate the induced conformational changes at protein interfaces.
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figure 10.2 Desolvation properties of obligate and transient interfaces in the collected set of 
858 protein domains involved in crystallized transient protein complexes in PDB. (a) Buried solvent 
accessible surface area, (b) desolvation energy. As shown, the transient interfaces are smaller in 
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figure 10.3 Flexibility of protein–protein interfaces and induced fit. On average, more than one-half of interface side chains are displaced by more 
than 1.5 A when compared between different complex compositions (bound vs. unbound/bound to a different protein partner), giving an average inter-
face side chain RMSD of ~4 A. In contrast, when compared between complexes of the same composition (bound vs. bound to the same protein partner), 
the expected fraction of strongly deviating side chains is less than one-fourth, and the average interface side chain RMSD is below 2 A. At least one 
interface residue backbone deviates by more than 1.5 A in 78% of the cases, and by at least one side chain in 99% of the cases.
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values observed between complexes of the same composition due to natural protein 
flexibility (white bars), or even between unbound structures (gray bars), are signifi-
cantly lower. Some induced changes involved large-scale domain, termini, or loop 
movements and extended as far as 25–50 A (Figure 10.4).

In contrast, ligand-binding interfaces appear more stable. Being a little smaller in 
size (the number of residues involved in small-molecule binding is about two-thirds 
of an average protein interface size; Figure 10.5) they are usually more buried, which 
restricts potential movements of the interface side chains. Only about 4% of the 
interface residue backbones deviate above the threshold of 1.5 A, and about 18% of 
the side chains (1 to 2 side chains per interface; Figure 10.6).

In short, our analysis proved that in spite of comparable sizes on the interface, 
small molecules induce less conformational changes upon binding to their receptors 
than possible protein partners. Even though some exceptions to this rule exist (e.g., 
activation loop transitions in protein kinases),19 the task of predicting interfaces, 
binding geometry, and even identifying the small molecule ligands appears more 
tangible compared with protein–protein interaction predictions.

PreDiCting Protein–Protein interaCtions

phySicocheMical propertieS or evolutionary patternS?

Computational methods for protein interface prediction can be divided into two 
major classes: (1) methods incorporating evolutionary conservation information 
derived from multiple sequence alignments (MSA) and projected on a protein sur-
face, and (2) those based solely on geometrical and physicochemical properties of 
the surface.

Methods on the first class rely on the broad evidence of interface residues mutat-
ing at slower rates than the rest of the protein surface.20–23 In general, functionally 
important surface residues are expected to be conserved. Since interior residues 
responsible for efficient folding and stability also fall under this category, a strong 
conservation signal from protein interfaces is only observed when the residue con-
servation of the interface is compared with that of the surface. Modern multiple 
sequence alignment methods incorporating residue substitution matrices and phylo-
genetic trees20,24–27 allow detection of even weak conservation signal. It was argued, 
however, that conservation score alone is not sufficient for accurate discrimination 
and can be misleading in several ways.28–31 The high variability of alignment compo-
sition and extent, unbalanced subfamily representations, and local alignment errors 
need to be taken into account. The prediction greatly depends on the algorithm of 
deriving scores from the alignment. Even the most sophisticated algorithms break 
down on the proteins with no or few orthologs. Most important, many protein inter-
faces are not expected to be better conserved at all, either because of their function 
(e.g., the adaptable binding surfaces of the immune system proteins) or because they 
were formed late in evolution.29

Alignment-independent prediction methods rely on an assumption that pro-
tein interfaces are different from the rest of the surface by their physicochemical 
and geometrical properties. Although it was demonstrated that the composition of 
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(a) Antithrombin III: 50-residue loop moves by 33 Å, β-sheet
    opens/closes

(b) PKA regulatory subunit: 141-residue domain moves by 
     40 Å, α-helix forms between the domains

(c) Interleukin-1 receptor type I: 144-residue domain moves 
     by 43 Å

(d) Peroxiredoxin-1: 31-residue C-terminus unfolds and moves
      by 25 Å

Bound
                       (coagulation factor X)

Bound (PKA)

Unbound

Unbound

Unbound

Bound
(IL1R antagonist)

Bound
(antagonist peptide)

Bound
(sulfiredoxin-1)

figure 10.4 Some examples of large conformational changes at protein–protein inter-
faces. Whereas the interaction surfaces could be predicted with the methods described in this 
chapter, the induced rearrangements and the docking pose could not.
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protein interface patches had statistically significant biases,32–41 the attempts of using 
the differences for patch discrimination have encountered several difficulties. The 
physical properties of the interfaces are highly diverse38,42,43 and vary between pro-
tein families and complex types. Even within a single interface the binding energy is 
not distributed evenly among residues; instead, there are so-called hot spots, which 
contribute most of the interaction energy, while the other interface residues are of 
relatively minor importance.17,44,45 Finally, the extent and shape of a protein patch in 
which the small local biases accumulate into a statistically significant signal is not 
known in advance.

Despite the described difficulties, both approaches have been successfully applied 
to prediction of protein interfaces on isolated protein structures. The decision about 
choosing one of the two approaches in each particular case depends on the nature of 
the protein of interest and available resources. It should be taken into account that 
in realistic situations, the absence of knowledge about the interaction patch shape 
(which depends strongly on the partner), and the ambiguity of interface definition 
make 100% success rates unachievable. On the other hand, all methods provide a 
statistically significant prediction with high likelihood for the predicted interface 
residues to be really involved in protein interactions.

In the following we present three methods for prediction of protein interfaces 
on the surface of isolated proteins with available 3D structures. The first method, 
REVCOM, belongs to the class of alignment-dependent methods, and the other two, 
ODA and PIER, to that of the alignment-independent methods.
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figure 10.5 Protein–protein and protein–ligand interface sizes in residues. The average 
size of a ligand-binding interface constitutes about two-thirds of a protein-binding interface.
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figure 10.6 Flexibility of small molecule binding interfaces and induced fit. Less than one-fifth of interface side chains are displaced by more than 
1.5 A when compared between different complex compositions. At least one interface residue backbone deviates by more than 1.5 A in only 33% of the 
cases, and by at least one side chain in 77% of the cases. The median number of strongly deviating side chains is one.
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protein interface prediction with revcoM

Many residue conservation calculation algorithms only work well if a positionally 
accurate and compositionally balanced sequence alignment is used, and provide 
highly variable results otherwise. This variability, along with limited performance 
of simple conservation measures on weakly conserved interfaces, urged the develop-
ment of a Bayesian method, robust evolutionary conservation measure (REVCOM),16 
that employs phylogenetic trees to calculate evolutionary rates. REVCOM improves 
the conservation prediction algorithm by making it more robust and less sensitive 
to (1) local alignment errors, (2) overrepresentation of sequences in some branches, 
and (3) occasional presence of unrelated sequences. The method was evaluated and 
compared with an entropy-based conservation measure on a set of 1494 protein inter-
faces. By REVCOM conservation measures, 62% of the analyzed protein interfaces 
were found to be more conserved than the remaining surface at the 5% significance 
level. A consistent method to incorporate alignment reliability was proposed and 
demonstrated to reduce arbitrary variation of calculated rates upon inclusion of dis-
tantly related or unrelated sequences into the alignment.

REVCOM measures were combined with residue-type distributions in a sup-
port vector machine (SVM)-based method for predicting protein interfaces on the 
structure of an isolated protein. The models were trained and cross-validated on a 
carefully selected set of biologically relevant protein–protein interfaces. Data for 
noninterface residues was not removed from the data set. Removing this data reduces 
the number of false positives in the cross-validation, which provides a biased mea-
sure of accuracy since the identity of noninterface residues is not known beforehand 
for an actual prediction.

The recall and precision achieved by the model on cross-validation were, respec-
tively, 35% higher and 24% higher than expected from a random assignment. Ninety-
seven percent of the predicted interface patches overlapped with the actual interface, 
even though on average only 22% of the surface residues were included in the pre-
dicted patch. The receiver operating characteristic (ROC) curve for the fivefold 
cross-validation on the complete dimer set is shown in Figure 10.7. This curve shows 
the tradeoff between sensitivity and specificity for the prediction.

optiMal docking area (oda)

Extensive experimental and theoretical kinetic studies (reviewed in Reference 46) 
indicate that specific protein association is often preceded by formation of the 
encounter complex, which is primarily driven by electrostatics and desolvation. 
More specific interactions, such as hydrogen bonding and salt bridges, form later and 
account for the specificity of the final orientation. The important role of desolvation 
was discussed and used in several applications, for example, to discriminate between 
docking solutions.47

The relative contributions of electrostatic and hydrophobic forces to complex for-
mation vary widely among different complexes.48 In particular, statistical analyses 
of known protein–protein complex structures have clearly shown the hydrophobic 
character of protein interfaces in obligate complexes.33,40,49 Moreover, it has been 
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demonstrated that large hydrophobic patches correlate with obligate protein inter-
faces.50 However, in transient complexes, the residue preferences at the interface are 
less pronounced and are not strong enough to unambiguously predict the interface 
location.

The optimal docking area (ODA)11 method represented an attempt to character-
ize the desolvation properties of protein surfaces and further analyze their role in 
transient complex formation.

Different subsets of adjacent surface residues were evaluated in order to map 
low desolvation areas on protein surfaces. In contrast to the common approach that 
involves dividing the protein surface into equal-area patches, the ODA method gen-
erated a series of patches of increasing size with a common center and searched for 
the ODA, that is, the patch with the lowest desolvation energy. The surface points that 
generated the ODAs with significant low-energy values were used to define a region 
over the protein surface most likely to be involved in interaction with other proteins. 
Instead of accounting for trivial hydrophobicity, the patch surface energy was evalu-
ated based on atomic solvation parameters previously derived from octanol/water 
transfer experiments and adjusted for protein–protein binding.51 The method was 
applied and shown to successfully identify nonobligate protein interaction sites.
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figure 10.7 Receiver operator characteristic (ROC) curve for fivefold cross-validation 
of the REVCOM-based protein interface prediction method on the set of 632 dimer inter-
faces. The area under the curve is 0.79. False positive rate = (false positives)/(false positives + 
true negatives) and true positive rate = (true positives)/(true positives + false negatives). The 
default SVM operating point with a decision value cutoff is marked.

© 2009 by Taylor & Francis Group, LLC



198 Computational Protein-Protein Interactions

protein interface recognition (pier)

Inspired by the success of ODA, the protein interface recognition (PIER)52 method 
applied machine learning techniques for further optimization of atom desolvation 
parameters in the context of protein–protein associations. This led to an alignment-
independent method for protein interface identification with improved reliability, 
accuracy, and speed.

Interface prediction by PIER starts with generation of surface patches in the spirit 
of ODA; however, for each protein the patch generation radius was fixed and given 
by the formula

  d ASA= + ×27 235 0 018 400
1000. . , 

where ASA400
1000  is the accessible surface area (ASA) of the isolated molecule, trimmed 

to fit in the range of [400,1000] Å2. For proteins whose total ASA exceeded 10,000 
Å2, using this equation produced the distance of 14 Å, and resulted in surface patches 
with average ASA between 900 and 1000 Å2. The deviations in the values of ASA 
between different patches reflected the curvature and packing of the surface atoms 
within the patch. For each patch (P), 12 patch descriptors were calculated. These 
descriptors simply represented a total ASA of 12 subresidue atomic groups, whose 
representation was previously found to be significantly different between interface 
and noninterface patches. The PIER value for the patch was calculated as a linear 
combination of the obtained descriptors and further transferred to individual resi-
dues within the patch. Based on the per-residue PIER decision value, the residues are 
predicted to be either interface or noninterface.

The proposed alignment-independent method demonstrated improved perfor-
mance over the previously published methods. On a diverse benchmark of 748 pro-
teins known to be involved in homo- and heterodimeric interactions, permanent as 
well as transient, the overall precision at the residue level was 60% at the recall 
threshold of 50%. The method was also tested on other benchmarks. Using the 
method, we identified potential new interfaces and corrected mislabeled oligomeric 
states. Several predictions with PIER are presented in Figure 10.8.

A cross-validated partial least squares (PLS) regression algorithm53 provides a 
natural environment to incorporate and evaluate the relative contribution of new 
surface descriptors including those derived from sequence alignments. In particu-
lar, we found that when added to the set of PIER descriptors, the evolutionary 
signal contributed as little as 7%–10%, with the rest (90%–93%) being provided 
by atomic group composition descriptors. Adding evolutionary signals only mar-
ginally influenced the prediction performance; moreover, for certain classes of 
proteins, using conservation scores actually resulted in deteriorated prediction. 
This exercise demonstrated that while both alignment-dependent and alignment-
independent approaches maybe successful, combining them does not improve the 
success rate significantly.
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(a) Human protein phosphatase 2A (PP2A) PR65/A regulatory subunit; complexes with:

...Activin receptor 2B ... BMP-binding endothelial
    regulator protein CV2

...BMP receptor 1A
(b) Bone morphogenetic protein 2A (BMP2A), complex with:

...Ran GTPase-activating
   protein 1 dimer

...Small ubiquitin-related
   modifier 3 (SUMO3)

PIER interface propensity signal:
Low High

(c) Sentrin-specific protease 2 (SENP2), complex with:

...PP2A PR65/B regulatory subunit ...PP2A catalytic subunit ... Simian virus 40 small-t antigen

figure 10.8 Precise identification of multiple interfaces (white patches) on the surface of an isolated protein with PIER.
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predicting MeMbrane interfaceS: Moda

Reversible recruitment of soluble proteins to cellular membranes represents another 
class of important biological intermolecular interactions and underlines many cellu-
lar processes and events. In many cases, this recruitment is not mediated by explicit 
covalently attached membrane anchors and is based solely on the surface properties. 
A number of computational methods predicting peripheral membrane interactions 
are based on homology with known membrane-targeting modules. They, however, 
fail to encompass the entire biological space and yield many false positives, since 
conservation of the structural motif does not always mean conservation of the func-
tion (i.e., PH domains and C2 domains).54,55 By combining the PIER approach with 
the analysis of protein surface curvature and local electrostatic potential, we devel-
oped a fast computational method, which, given a 3D structure of a protein, predicts 
its membrane propensity and identifies the membrane contact elements on its sur-
face. The method was named MODA,56 or membrane ODA. MODA prediction of the 
protein–membrane interfaces on known peripheral proteins correlated well with the 
experimental data; it achieved the precision of 64% at 50% recall at the residue level 
(7% precision expected from random prediction). Moreover, using the method, we 
were able to identify several novel potential peripheral proteins, which were conse-
quently validated using NMR spectroscopy and micelle titration (Figure 10.9).

protein docking

Predicting the geometry of association of two proteins known to bind each other 
is also a legitimate, albeit more rare and much more difficult task than predicting 
protein interaction patches.57 Its applicability is limited to the cases where both the 
identity and three-dimensional structure of the second partner are known. Since 
the beginning of the Critical Assessment of PRediction of Interactions (CAPRI) 
competitions,58 two main problems make the protein docking task unreliable: (1) 
an unpredictable degree of induced rearrangements or restructuring upon complex 
formation, and (2) poorly predictable specifics of conformational changes even for 
small degrees of induced fit (e.g., Reference 59).

The large degree of induced rearrangements may include (1) conditional structur-
ing of the previously unstructured loop or region (e.g., the activation loop of protein 
kinases,19,60,61 or loop 6 of TIM α/β barrels); (2) domain swapping (e.g., References 
62 and 63); (3) large displacements of secondary structure elements, especially N- 
or C-terminal (e.g., helix 12 in nuclear receptors, opening of two parallel β-strands 
in serpins); and (4) large relative movements of protein domains, for example, the 
“swivelling” in pyruvate phosphate dikinase, Ca-dependent domain movements in 
calmodulin, and integrin domains. The changes may have some functional context, 
for example, being associated with protein activation like in serpins or kinases. 
Sadly, no computational method so far has claimed any success in predicting those 
changes without prior knowledge of the answer.

For cases where the restructuring of domains, parts, and the interface atoms is 
minor, the protein docking has been a half-solved problem (e.g., References 8 and 
64). If the changes are limited to minor backbone shifts and rearrangements of a 
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figure 10.9 Discovery of novel peripheral membrane proteins and identification of membrane interfaces with MODA. MODA-positive residues are 
shown in sticks; backbone amides with chemical shifts are shown as Spheres.
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fraction of the interface side chains, in 40% to 80% of the cases (depending on a 
problem set) the top scoring pose will have most of the residue–residue contacts cor-
rectly predicted and the interface patch can be around 2 A RMSD from the crystal-
lographic solution. Of course the caveats include the fact that the correct solution can 
be either completely missed because of a large rearrangement, or not ranked as a top 
solution due to inability of the refinement to find all smaller changes necessary for 
the native interface and scoring function to recognize the near-native solution.65

The first successful combination ab initio of all-atom protein–protein dock-
ing and interface refinement that led to a single solution was published in Nature 
Structural Biology in 1994.66 The uncomplexed lysozyme was docked to the HyHel5 
antibody without any prior knowledge about the epitope location. The procedure 
used all-atom representation and worked in two natural phases. The initial posi-
tional sampling was performed by searching from multiple starting positions with 
the pseudo-Brownian jumps followed by minor relaxations of torsional angles. At 
the refinement phase, the 30 lowest-energy conformations from all the searches were 
then refined by a global optimization of the interface side chains and positional vari-
ables67 with relaxed backbone using an extended set of energy terms with desolvation 
and side-chain entropy. The near-native solution found was surprisingly close to the 
crystallographic structure (root mean square deviation [RMSD] of 1.57 A for all 
backbone atoms of lysozyme) and had a considerably lower energy (by 20 kcal/mol) 
than any other solution after refinement.

Although the first phase of the docking procedure can be performed on various 
resolution models using a variety of search methods (most notably, multidimensional 
fast Fourier transform, or FFT) and scoring functions68 (also reviewed in References 
47, 64, 69, and 70), it became clear after 1994 that the refinement with a detailed 
atomic model and detailed energy function was necessary to both improve the abil-
ity to recognize the native solution and improve the quality of the pose. The 1994 
refinement protocol using internal coordinate sampling was essentially preserved in 
the later modifications of the Internal Coordinate Mechanics–based protocols lead-
ing to the high accuracy predictions in the first two CAPRI meetings71,72 and was 
later “rediscovered.”73 Refinement procedures using molecular dynamics were also 
proven to be successful.74–76

Overall, the unpredictable and unexpected rearrangements of protein segments 
and domains, their partially unstructured character,5 as well as a relative paucity of 
the available high quality and complete (i.e., “dockable”) three-dimensional mod-
els of the interacting components prevent protein docking from becoming a routine 
practical tool of molecular biology comparable to x-ray crystallography.

Protein interaCtions With sMall MoleCules

Small molecules are much easier to deal with. First, their interfaces with proteins 
are guaranteed to be small in contrast to proteins where a large variation of interface 
area is observed. Consequently, specific ligands cannot afford to avoid a tight fit to 
one of the ligand’s conformers, which, in turn, makes the prediction of ligand bind-
ing sites for nanomolar ligands a feasible task (see References 77 and 78 for a list). 
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Furthermore, for any new ligand it is relatively easy to predict how it docks into a 
“preformed” pocket because the number of degrees of freedom including the posi-
tional ones is small enough for a reliable sampling and structure prediction.

pocketoMe baSed on gauSSian convolution 
of the lennard-JoneS potential

Since strong, small ligands require a tight fit whether the binding has polar, charge, 
hydrophobic, or mixed nature, the most general form of interatomic interaction 
potential, van der Waals potential, may be predictive of a small-molecule interface 
on a protein. Straightforwardly computed with the Lennard-Jones equation, it is not 
predictive; however, its aggregate value allows clear distinction between an area 
occupied by a typical small molecule and the rest of the protein surface.79 The cumu-
lative value can be mathematically defined as a convolution of the potential with a 
Gaussian kernel. We tried different radii and found that the radius of 2.6A results in 
the best performance of the method.

The generated potential can be contoured at a certain level to give an envelope 
that resembles the envelope of strong binders in most cases. The predicted envelope 
is particularly valuable for open and extended pockets with many binding surfaces 
and does not require anything but a set of coordinates. We used this method to gener-
ate the bounding box for unbiased ligand–receptor cross-docking.80

The method is fast and can be applied to a currently known structural proteome 
of an organism. For example, we applied the Gaussian convolution pocket predic-
tion method to a small set of proteins from the malarial parasite, Plasmodium falci-
parum, but it can be scaled up to much larger sets of proteins.81 The site prediction 
methods can also be adjusted to a particular task and involve other principles, from 
geometrical to evolutionary (see Reference 82 for a review).

croSS-docking of a ligand to a Single receptor conforMation 
with the icM algorithM overcoMeS liMited induced fit

As described earlier, in most cases, ligand binding induces only small conforma-
tional changes. This opens possibilities for successful prediction of binding poses of 
ligands in the pockets that have not been co-crystallized with them (the so-called 
cross-docking problem). To quantify the extent that rigid-body receptor docking can 
overcome the extent on the induced fit, we performed cross-docking simulations for 
1000 ligands and 300 proteins from different complex structures.88 It was shown that 
for about one-half of the cases (46%) such cross-docking with the Internal Coordinate 
Mechanics (ICM) docking algorithm83 predicts a correct near-native geometry as the 
top-scoring solution. To overcome the induced fit obstacle for the remaining cases, 
one of the induced fit protocols needs to be applied.

If multiple conformations of a pocket are known in advance, a simple protocol, 
called MRC (multiple receptor conformation) docking can be used.84 This procedure 
can also be accelerated using a so-called 4D approach in which the receptor con-
former becomes a variable in the docking procedure.88 
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advanced approacheS to induced fit in ligand docking

Often only one conformer of the receptor is known. It was shown that to dock a 
ligand correctly to an incorrect pocket, one can simply delete the uncertain parts 
in a certain way and rely on the rest of the pocket to position the ligand correctly. 
The idea came from the “omission” modeling proven to be successful for side chain 
prediction.85 The uncertain parts can later be refined around the identified ligand 
position. The scan alanines and refine (SCARE) algorithm80 replaces pairs of neigh-
boring side chains by alanines and docks the ligand to each gapped version of the 
pocket. Unlike in Reference 86, the selection of the residue pairs by SCARE is per-
formed in an unbiased systematic fashion, which results in a general algorithm appli-
cable on a scale of complete proteomes. All docked positions are scored, refined with 
original side chains and flexible backbone, and rescored. In the optimal version of 
the protocol, pairs of residues were replaced by alanines and only one best scoring 
conformation was selected from each “gapped” pocket for refinement. The optimal 
SCARE protocol identifies a near-native conformation (under 2 A RMSD) as the 
lowest rank for 80% of pairs if the docking bounding box is defined by the predicted 
pocket envelope, and for as many as 90% of the pairs if the bounding box is derived 
from the known answer with a 5 A margin.

ligand Screening and profiling

As shown earlier, predicting the correct binding pose of a ligand required some form 
of treatment of the induced fit. Those relevant receptor models provide necessary 
starting points for (1) identification of a small-molecule binder to a protein of interest 
in a large database of chemicals (ligand screening), or (2) identification of possible 
protein targets for a single, given small molecule (ligand profiling).

The DOLPHIN protocol89 gives a specific recipe for predicting the changes 
associated with binding of so-called type II kinase inhibitors to their target 
kinases. Similar to the SCARE protocol, the type II compatible model of a target 
kinase is built by omission of the part of the structure with consequent ligand 
docking and full-atom complex refinement. Using the ICM binding score87 that has 
been previously derived from a multireceptor screening benchmark as a compro-
mise between approximated Gibbs free energy of binding and numerical errors, 
we screened a large database of kinase ligands and showed that the correct type II 
ligands for the modified kinase are selected in the top 1.5%–3.5% of the database. 
Further on, based on experimental data, we derived the kinase-specific systematic 
free energy contributions originating from the different abundance of the relevant 
conformer and other protein features. By combining these energy contributions 
with the calculated binding energies, we could identify the kinase specificity pro-
file of individual type II ligands. The ligand specificity profiling approach can be 
extended to the whole structural interactome as the relevant models and protein 
offsets become available.
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ConClusions

The structural interactome is the next great challenge for structural proteomics that 
clearly cannot be solved by crystallography alone and requires computational struc-
tural methods because of enormous combinatorics of possible interactions. In this 
chapter we reviewed (1) the interaction interface prediction methods; (2) the induced 
conformational changes for different types of interacting partners; and (3) the ability of 
the available methods to predict the binding pose, its relative score or binding energy, 
and binding specificity. The recent methods for small-molecule ligands, including 
pocket prediction, receptor flexible docking (SCARE, 4D, and MRC protocols), and 
improved scoring, are paving the way to predictive structural chemogenomics.

For protein–protein (or membrane) interactions, the most practical kinds of struc-
ture-based predictions include predicting interfaces with other proteins (without the 
prediction of their identity) and with a membrane. Predicting the geometry, identity, 
or strength of protein–protein interactions de novo from unbound structures, without 
evolutionary heuristics, seems to be much more problematic because of a much larger 
role and scale of unpredictable, induced conformational changes. A comprehensive 
benchmark described in this review may help to develop and test better methods for 
predicting large-scale conformational changes upon interaction.
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overvieW

Protein–protein recognition occurs via interacting domains. Protein domains are 
conserved components within proteins, usually folding independently of other parts 
of the protein. This property allows modularity in the protein domain architecture. 
In most cases domains have a distinct function and many domains mediate protein–
protein interactions. Combining the modular nature of domain rearrangement and 
the relative independence of their functionality allows proteins to acquire additional 
roles by the acquisition of new domains. Indeed, organisms tend to manipulate exist-
ing domain architectures to create new proteins, rather than creating new architec-
tures ab initio. The acquired domain can mediate a new protein–protein interaction 
and therefore increase the protein connectivity in the protein–protein interaction 
network. This increased connectivity within and between the biological systems of 
an organism frequently enhances its complexity. Thus, the rate of domain rearrange-
ments rises with the increase in organisms’ complexity during evolution. Here we 
survey various ways to create new protein domain architectures and the impact of 
creating new proteins by domain rearrangements on protein connectivity and organ-
isms’ complexity. Within this framework, we highlight the role of domains as medi-
ating protein–protein interactions.

introDuCtion

Protein domains are highly conserved sequences with a distinct structure, function, 
and/or common ancestry. A definition of domain may be either sequence or struc-
ture based; from a structural point of view, a domain is defined as an independently 
folding unit, which is both compact and stable. On the other hand, domains are com-
monly defined as protein regions where their sequence is highly conserved during 
evolution [1]. The average length of domains ranges from 100 to 250 amino acids 
[2]. Families of domains contain domains that probably share a common ancestor. 
Although the structure and sequence definitions of domains are different in their 
essence, their domain assignment to families is often similar [3]. Small proteins are 
composed of a single domain, whereas larger, and most of the eukaryotic proteins, 
are multidomains [4]. Domains, sometimes termed modules, compose proteins in a 
modular manner. Although the potential number of domain combinations is huge, 
there is a limited collection of domain types that are duplicated, diverged, and inte-
grated in other proteins in various ways. This usually involves the following sce-
nario: (1) a genomic sequence that codes for one or more domains is duplicated; (2) 
the duplicated area selectively diverges by mutations, deletions, or insertions; and, 
sometimes, (3) a recombination or fusion with other genes occurs [5]. Most of the 
new proteins were created by expansion of existing architectures rather than the 
creation of new ones ab initio. Domain shuffling creates new functions, enables pro-
teins to form more interactions with other proteins or DNA, and generally increases 
the organisms’ functionality. In this chapter, we describe the mechanisms by which 
domain rearrangements occur in the genome; review the main findings in the field 
of complexity by protein domain rearrangements during evolution; and highlight the 
role of co-occurring domains in protein–protein interactions.
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DoMains have a key role in Protein–
Protein interaCtions

The modular nature of the formation of multidomain proteins allows proteins to 
acquire new properties without disrupting the ones they already have. One of the 
most important properties a protein can acquire is the ability to interact with other 
proteins. Many domains are known to mediate particular protein–protein interac-
tions and a relatively large fraction of these are modular interaction domains. These 
domains usually fold such that their N and C termini are adjacent in space [6]. In 
most cases, a protein interaction domain recognizes a particular sequence of resi-
dues. For example, the well-known SH3 domain, which mediates a broad range of 
protein–protein interaction in various organisms, recognizes the motif PXXP, where 
a proline is followed by any two residues followed by an additional proline. The 
SH2 domain, which has a role in many tyrosine kinase signaling proteins, requires 
a phosphotyrosine site in its ligands [7]. These domains are examples of well-known 
mediators of protein–protein interactions and are found in more than one hundred 
copies in the human genome [6]. Itzhaki et al. [8] investigated cellular protein–pro-
tein interaction networks from their domain–domain interactions. They found that 
there is a repertoire of conserved domain pairs that is responsible for a variety of 
interactions in the cell and conclude that different organisms use the same interaction 
building blocks to perform protein–protein interactions. Park et al. [9] investigated 
domain–domain interactions as related to their structural families. They found that 
interactions can be classified based on their domain families and that there are dif-
ferent interaction types for functional, structural, and regulatory purposes. In addi-
tion, they showed that domains from the same family tend to interact, both within 
and between polypeptide chains. This type of functional coupling of domains can be 
identified by their co-occurrence within the same protein complex as well [10].

Creating neW DoMain arChiteCtures

As noted earlier, the repertoire of protein domains is limited, and novel proteins are 
created by combining existing proteins with additional domains. The creation of new 
gene structures during evolution involves one or more molecular mechanisms, in 
which duplication of a whole gene or a part of it plays a crucial role. Several genetic 
mechanisms may lead to the formation of a new domain architecture and new func-
tional genes. Possible domain rearrangements are exemplified in Figure 11.1.

gene and doMain duplication

An important mechanism to create functional innovation during evolution is the 
duplication of either an entire gene or particular gene segments. Duplication of an 
entire gene may result in one of the following possibilities: (1) the duplicate acquires 
mutations and becomes nonfunctional; and (2) one of the duplicates accumulates 
mutations without disrupting the activity in the cell. When a contributing muta-
tion occurs, new functions are added to the organism (neofunctionalization), and 
(3) both duplicates lose some of their functions and together maintain the original 
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function (subfunctionalization) [11]. The latter becomes possible mainly because of 
the modular nature of proteins, that is, their domain compositions, because the par-
ticular function of a mutated domain in one of the duplicates is backed up by its 
corresponding domain in the other duplicate. However, sometimes only parts of the 
gene are duplicated. This type of duplication is initiated by duplication of the area 
in the gene that encodes one or more particular domain. The duplicated domain may 
retain its original function, resulting in a duplicated specific function of the protein, 
or mutate, diverge, and acquire a new or modified function, resulting in a special-
ized protein composed of an old combination of domains and a new specialized, 
diverged domain. In some cases, either the unmodified or the modified domain may 
undergo recombination with other genes. Occurrence of gene and domain duplicates 
in the genome may take place via domain shuffling through paralogous recombina-
tions and/or the formation of fused proteins by the union of different domains [12]. 
In some cases, domain pairs or triplets tend to be duplicated together and therefore 
appear jointly more than expected by chance [13]. It is believed that there is a single 
origin of domain combinations, that is, similar combinations that are found in differ-
ent species have a common ancestor [14].

exon and doMain Shuffling

It has been shown that there is a correlation between the borders of exons and protein 
domains in many eukaryotic genomes [15]. In many globular proteins, a more or less 
exact correlation exists between the exon of the gene and the domain architecture 
of its protein product. In most of the cases, domain duplication at the protein level 
implies that exon duplication occurred at the DNA level [16]. Exon shuffling, known 
also as domain shuffling, is a well-known mechanism in creating new genes. In this 
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figure 11.1 Possible scenario for evolution of protein architecture.
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process, two or more exons, either from different genes or a duplicated exon, are 
brought together to create a new exon–intron arrangement. This may occur either 
during recombination or by reverse transcription exon insertions [17]. For example, 
the construction of many trypsin-like proteases is believed to be related to exon 
shuffling [18]. These proteins have a common ancestor for a particular part, and 
between the signal peptide and the zymogen activation domain of the ancestral pro-
tease, some other regulatory modules were inserted. It was assumed that exon shuf-
fling is the mechanism that enables a mobility of domains. Exon shuffling plays a 
central role in the evolution of protein modularity. Most of these proteins are extra-
cellular, for example, extracellular parts of receptors or components of the extracel-
lular matrix. Modular proteins that are believed to be formed by exon shuffling are 
unique to metazoans and equivalents were not found in prokaryotes or in plants [17]. 
Furthermore, it has been shown that about 19% of the exons in eukaryotic genes are 
assumed to be created by exon shuffling [19].

fuSionS, fiSSionS, and doMain accretion

Particular types of recombinations may result in either a fusion of two proteins or in 
the split of a single gene into two or more smaller proteins. Fusions of either domains 
and proteins or two entire proteins are extremely important for the creation of new 
domain architectures. The union of two components participating in the same bio-
logical process has two main advantages. First, there is an increased efficiency of 
the united gene on top of the activation of two independent genes. Furthermore, as 
opposed to the original genes that had separate regulatory regions, the fused gene 
is found under a single regulatory system, which promises coexpression of the gene 
products [20,21]. Figure 11.2 illustrates the two scenarios. Marcotte et al. [20] showed 
that it is possible to infer protein–protein interactions from genome sequences if the 
two apparently interacting proteins have homologs in other genomes, where they are 
fused into a single protein chain. This technique has been termed the Rosetta stone 
method [20]. Rosetta stone proteins have been detected in a variety of organisms. It 
has been shown that in many cases, microbial genes that are found fused in other 
genomes are of the same functional category [22]. About half of the fused genes are 

B. Consecutive

FusedProtein IIProtein I

FusedProtein IIProtein I

A. Interacting

figure 11.2 Detecting protein–protein interaction from genome sequences (the Rosetta 
stone model). (A) Fusion of two proteins that interact with each other. (B) Fusion of two 
consecutive genes. Both fusions increase the efficiency of the united protein and promise 
coexpression of the gene products.
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found in their standalone form in close proximity on the chromosome, usually as a 
part of a microbial operon. This may be an intermediate stage of fusion, where the 
genes are separated from each other, yet are coregulated [23]. During the course of 
evolution, fusion of small protein components into larger protein units have con-
tributed much more functional novelties in organisms than the split of proteins into 
smaller components, and it has been found that fusions are about four times more 
common than fission events [24].

Domain accretion is the event characterized by the addition of a new DNA frag-
ment encoding a distinct domain to an existing combination of domains. The contri-
bution of such an addition of domain is in the supply of a new functional unit to the 
protein, which results in an increase in the protein and proteome complexity. This 
phenomenon is much more common in the evolution of eukaryotes than in that of 
prokaryotes. Moreover, there is an increasing tendency of domain accretion in meta-
zoans in general and in primates in particular. In fact, there is a twofold increase in 
domain accretion events in the human genome as compared to invertebrate genomes. 
In the human genome, domain accretion is most prominent in genes involved in tran-
scription regulation and chromatin remodeling [25].

retropoSition, tranSpoSable eleMentS, and ab initio creation of doMainS

Transposable elements can be divided into two types: those that require an RNA 
intermediate, which is reverse transcribed back to the DNA, and those that move 
by a cut and paste mechanism. The former, an important mechanism for creating 
gene duplicates, is the reverse transcription of mRNA back into the genome. This 
process is termed retroposition and is mediated by reverse transcriptase [26] and the 
resulting cDNA is integrated back to the DNA usually at a random target [27]. Since 
these fragments are retroposed without their regulatory regions, the functional nov-
elty usually arises from the addition of a retroposed coding region into an existing 
protein. In mammals and especially in the human genome, long interspersed nuclear 
elements (LINEs) serve as a source for reverse transcriptase activity. They have a 
major role in the retrotransposition of promoter and exons, especially of nuclear 
genes [27–29]. The second type of transposable elements is those that are removed 
from one locus on the genome and immediately relocated in other place. The most 
famous family of transposable elements is the Alu sequences [30]. Transposable ele-
ments are abundant in mammals and especially in primates and are believed to have 
a large contribution to protein diversity [31].

An ab initio creation of an entire protein almost does not exist. There are two 
main reasons why evolution tends to create new genes by the expansion of existing 
ones. First, duplication, divergence, and recombination of existing genes are much 
faster than de novo initiation of domains. Second, it is very difficult to overcome the 
error-correction machineries in the transcription and translation processes to obtain 
a new domain. However, in a few cases there is de novo formation of the functional 
domain, which usually occurs when a previously intronic sequence is converted into 
a coding exon [32].
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netWork rePresentation of Protein DoMains

Due to the modularity of the protein domain world, it is straightforward to use graph 
theoretical tools to explore domain composition of proteins. The domain content of 
proteins either can be related by retaining the exact sequential order of the domains 
in the protein or by consisting of a similar “bag of domains,” that is, without consid-
ering the order. In most graphical representations of domains, the order of domains 
within the protein chain is not considered, and the result is the so-called co-occur-
ring domain graph or referred to as a domain overlap graph. In such a network, nodes 
correspond to domains, and edges represent two domains that are found within the 
same protein. Wuchty and Almaas [33] found that in many co-occurrence domain 
networks there is a giant component that contains the vast majority of the nodes. 
With regard to the evolutionary aspect, they found that although the numbers of 
domains across several genomes are similar, the sizes of highly connected domain 
subgraphs grow with evolution. Przytycka et al. [34] used this graph representation 
of domains to study the dynamics of the acquisition of new domains and persistence 
of domain combinations during evolution. They found that in most cases similar 
domain architectures have a common ancestor and that the topology of most domain 
co-occurrence networks cannot be explained by a possible mechanism of preferen-
tial attachment. The co-occurrence domain graph can also be used to investigate 
functionality. Ye and Godzik [35] divided this network into clusters and found that 
clusters tend to contain domains with similar functions. Domain composition of 
proteins can also be represented on a bipartite graph, where nodes correspond to 
proteins and domains, and edges connect between proteins and their constituent 
domains. Cohen-Gihon et al. [36] applied graph theoretical tools to this type of net-
work and found co-occurring domain sets (CDSs) in the Saccharomyces cerevisiae 
proteins more than expected by chance. They found that these sets tend to contain 
ancient domains that are conserved from bacteria or archaea and that the proteins 
containing them are highly functionally coherent and enriched in protein–protein 
interactions. As opposed to graph representation that does not consider the order of 
domains, Bornberg-Bauer et al. [37] have used directed graphs to represent the order 
of domains within proteins. On such a graph, nodes correspond to protein domains 
and a directed edge connects between two consecutive domains in their N-to-C ter-
minal order. They found that such graphs are sparsely connected, except for some 
regions that are highly clustered. These clusters tend to include functionally related 
domains, most of them related to signal transduction and cell adhesion.

inCreasing DoMain CoMPlexity in 
eukaryotes anD Metazoa

The formation of novel proteins by various domain rearrangements is in most cases 
the result of either one of the mechanisms described earlier or combinations of sev-
eral of them, and is likely to contribute considerably to the increasing complexity 
of organisms. Complexity of organisms is mainly reflected by the ability to create 
interactions among an organism’s components. Such components may be protein–
protein and protein–DNA interactions at the molecular level, or interactions between 
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cells, tissues, and organs at higher levels. Thus, the contribution of a novel protein to 
its organism complexity can be estimated by its new connectivity, where highly con-
nected proteins are more likely to increase complexity [38]. The acquisition of a new 
domain into an existing protein may immediately enable the protein to mediate new 
interactions and therefore increase its connectivity. As a result, it is not surprising 
that the evolution of eukaryotes in general and multicellular organisms in particular 
is correlated with an increased rate of protein domain manipulations. In the follow-
ing paragraphs, we survey recent findings regarding the correlation between various 
protein domain manipulations and the increasing complexity during evolution.

The origin of eukaryotes was an extremely important milestone in evolution. As 
opposed to prokaryotes, eukaryotic genomes encode completely novel systems such 
as the organization of chromosomes, distinct growth phases in cell cycle, RNA pro-
cessing, ubiquitin-based posttranslational modifications, endoplasmic reticulum, and 
obviously the emergence of the nucleus. The entire set of eukaryotic innovations may 
be classified into three main evolutionary scenarios [39]:

 1. Prokaryotic domains that have recruited modified functions in eukaryotes 
but with no significant biochemical changes. An example is the actin- and 
tubulin-based eukaryotic cytoskeleton that has emerged from the prokary-
otic cytoskeletal proteins MreB and FtsZ [40].

 2. Prokaryotic domains that were expanded into new superfamilies in eukary-
otes, for example, the ancient helix-turn-helix fold produced several eukary-
otic superfamilies of peptide interacting adaptors [41].

 3. Completely new domains that originated after the emergence of the eukary-
otes, for example, the POZ domain that mediates interactions in transcription 
and Ub signaling [52].

Apart from this classification, it was found that eukaryotic proteins significantly 
tend to acquire additional domains, increasing with these accretions their connectiv-
ity in protein networks [25]. In addition, eukaryotic genomes have more multidomain 
architectures than prokaryotic ones, ranging from 65% to 80% multidomain archi-
tectures in eukaryotes and 40% to 65% in prokaryotes, depending on the detecting 
methods [4,42].

The number of different domains encoded by a genome increases with the organ-
ism’s complexity and the number of unique domain architectures is correlated with 
the organism’s complexity [1,39,43]. Whereas in single-celled organisms only a 
small fraction of proteins contain tandem domains, the corresponding fraction in 
multicellular organisms is doubled and rises to 11% on average. Fong et al. [44] stud-
ied the evolution of domain architectures in eukaryotes by reconstructing ancestral 
protein architectures. They found that organisms have gained domains mainly by 
adding new domains to the protein termini, rather than substituting internal domains 
within the protein chain. Bjorklund et al. [45] defined a domain distance measure to 
investigate the evolution of protein architectures in eukaryotes. They also found that 
domains tend to be added at the protein termini and that insertions and deletions are 
more common than internal repetitions of domains.
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It has been shown that the expansion in protein families resulting in a greater 
number of genes is not simply correlated with organism complexity, measured by 
its number of cell types. The expansion of only a small fraction of protein fami-
lies is correlated with the organism’s complexity [46]. Furthermore, they found that 
some expansions in protein families are progressive, that is, related to the increas-
ing biological complexity of the organism, while some are conservative and related 
to a successful adaptation of the organism to its environment. Ciccarelli et al. [47] 
have shown that in some cases, a selection against duplication may result in creative 
changes of the protein architecture. They found a family of genes that were under a 
strong selection against duplication across metazoans apart from primates. The latter 
family had undergone a series of segmental duplications, inversions, translocations, 
exon loss, and domain accretion that lead to a novel function. Ekman et al. [48] stud-
ied the evolution of multidomain architectures and the emergence of new domains 
in eukaryotic in general and in metazoan species in particular. They found that the 
rate of creation of new domain architectures was accelerated in the metazoan clade, 
compared to other species. However, there was no significant increase in the forma-
tion of new domains in metazoan, emphasizing the earlier description of creation of 
new domain architectures by shuffling of existing ones. Tordai et al. [49] showed that 
intronic recombinations facilitated the shuffling of some domains in metazoa, con-
tributing to the increased functionality of many metazoan systems. Recently, it has 
been found that the origin of metazoans was accompanied by an abundant domain 
shuffling, mainly in cell adhesion proteins and in signaling systems [50]. In higher 
eukaryotes, such as mouse and human, it has been shown that tissue-specific pro-
teins are composed significantly of more domains than housekeeping ones, and that 
they particularly contain more metazoan-specific domains [51].

ConClusions

In the postgenomic era, the ever-growing genome and protein sequence data and 
their domain assignments facilitate the exploration of domain architectures of pro-
teins and their implication for organisms’ evolution; yet, despite the large amount 
of data, deciphering the actual and precise processes in which biological systems 
acquire new functions and improve existing ones by adding, duplicating, or remov-
ing domains is still an extremely difficult task. Our survey provides a summary of 
what is currently known on domain rearrangement during evolution and its contri-
bution to creating new protein–protein interactions. However, this broad field is far 
from being fully covered and there is still much we can learn on the evolution of 
complex biological systems by their domain content.
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12 Intrinsically Disordered 
Proteins and Their 
Recognition Functions
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and Peter Tompa

overvieW

The existence of intrinsically disordered proteins (IDPs) that lack well-folded 
states yet fulfill key biological roles has challenged the classical structure–function 
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paradigm. Their recognition led to the onset of an entire field that aims to elaborate 
the structural characteristics and mechanism of action of IDPs. Based on bioinfor-
matics predictions, IDPs are abundant in different genomes and carry out mostly 
regulatory functions that are often related to molecular recognition. Biophysical data 
provide evidence that most IDPs do not behave like fully random coils, but rather 
exhibit a limited structural organization either at a secondary or tertiary structure 
level. Residual structures of IDPs, which are often distinguished in interactions with 
their partners, are described by related concepts of preformed elements, molecular 
recognition features, primary contact sites, or linear motifs. All these structural ele-
ments act as recognition motifs that facilitate formation of productive contacts with 
the target and result in specific binding modes. IDPs often adopt a partly or fully 
folded state in their bound form, yet their interactions and the nature of the inter-
faces are distinct from that of globular proteins. Although many details are yet to be 
revealed, the basic concepts of IDP action transform our view on the structural basis 
of protein functionality.

introDuCtion: the ConCePt of 
Protein intrinsiC DisorDer

Proteins are major components of living cells and play crucial roles in the mainte-
nance of life. Aberrations in protein function may result in pathological conditions 
and lead to disease. A unique three-dimensional (3-D) structure was long believed 
to be an obligatory prerequisite to protein function. This belief became a corner-
stone in molecular biology and is supported by several thousand crystal structures. 
According to the classical structure–function paradigm, the primary amino acid 
sequence determines the protein’s unique 3-D structure, which, in turn, determines 
its specific function. Although counterexamples were scattered in the literature for 
more than 70 years, evidence accumulated only recently that many protein regions 
and even entire proteins might lack stable tertiary and/or secondary structure in 
solution yet possess crucial biological functions [1–20]. This transition occurred 
mostly due to the efforts of four research groups, which almost simultaneously and 
completely independently came to the important conclusion that naturally flexible 
proteins, instead of being just rare exceptions, represent a new and very broad class 
of proteins [1,2,4,10]. This important conclusion was reached commencing from 
absolutely different starting points and was based on rather different areas of exper-
tise: bioinformatics (Dr. A. K. Dunker’s group), nuclear magnetic resonance (NMR) 
spectroscopy (Dr. P. E. Wright’s group), multiparametric protein folding/misfolding 
studies (Dr. V. N. Uversky’s group), and protein structural characterization (Dr. P. 
Tompa’s group). Since the publication of key studies and reviews describing this new 
concept, the literature on this class of proteins is virtually exploding. The recogni-
tion that protein function may not require a well-folded state has led to the develop-
ment of the protein trinity model [21], according to which function may originate 
from three distinct states: ordered, molten globule, and random coil, and transitions 
between them. This model was subsequently expanded to include a fourth state (pre-
molten globule) and transitions between all four states [8].
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These naturally flexible proteins/regions are known by different names, includ-
ing intrinsically disordered [5], natively denatured [22], natively unfolded [23], 
intrinsically unstructured [2], and natively disordered proteins [18]. This clearly 
indicates that there is not a consensus in this field regarding nomenclature, which 
suggests the need for an ontology of incompletely folded proteins and regions. In 
this chapter, all types of such proteins are called intrinsically disordered proteins 
(IDP), which means that they exist as a structural ensemble, either at the secondary 
or at the tertiary level. The terms natively unfolded or intrinsically unstructured 
will be used to indicate subclasses of IDPs either random-coil-like and premol-
ten globular forms. Intrinsically disordered proteins or regions (IDRs) exist as a 
dynamic ensemble of conformations with significantly varying backbone torsion 
angles, without a single equilibrium structure. In contrast, ordered proteins can 
be characterized by a distinguished conformation, where backbone torsion angles 
are confined to small regions of the Ramachandran map. Globular proteins may 
undergo large-scale conformational changes, which occur in a cooperative manner. 
Such cooperativity cannot operate in IDPs, due to the lack of well-defined tertiary 
structure interactions.

IDPs and IDRs differ from structured globular proteins and domains with regard 
to many attributes, including amino acid composition, sequence complexity, hydro-
phobicity, charge, flexibility, and type and rate of amino acid substitutions over 
evolutionary time. For example, IDPs are significantly depleted in a number of so-
called order-promoting residues, including bulky hydrophobic (Ile, Leu, and Val) 
and aromatic amino acid residues (Trp, Tyr, and Phe), which would normally form 
the hydrophobic core of a folded globular protein, and IDPs/IDRs also possess low 
content of Cys and Asn residues. On the other hand, IDPs were shown to be sub-
stantially enriched in so-called disorder-promoting amino acids: Ala, Arg, Gly, Gln, 
Ser, Pro, Glu, and Lys [5,24–26]. This is illustrated in Figure 12.1, which represents 
the relative content of each amino acid in two IDP data sets in reference to ordered 
proteins [18,27]. Data are extracted from the DisProt database [28] that currently 
assembles 520 experimentally verified disordered proteins.

Based on the above-mentioned differences between IDPs and globular proteins, 
numerous disorder predictors have been developed, including the family of PONDR® 
(Predictor of Naturally Disordered Regions) algorithms [24,29], charge-hydropathy 
plot (CH-plot) [4], cumulative distribution function analysis (CDF-analysis) [16], 
NORSp [30], GlobPlot [31,32], FoldIndex© [33], IUPred [34], and DisoPred [35–37]. 
Several IDP predictors have been compared in recent publications [16,26,38–43]. In 
fact, comparing several predictors on an individual protein of interest or on a protein 
data set can provide additional insight regarding the predicted disorder [44,45].

Application of various disorder predictors to different proteomes revealed that 
IDPs and IDRs are highly abundant in nature, and the overall amount of disorder in 
proteins increases from bacteria to archaea to eukaryota, with over half of the eukary-
otic proteins containing long-predicted IDRs [3,16,37]. The increasing abundance of 
IDRs in higher organisms is likely due to a change in the cellular requirements for 
certain protein functions, particularly regulatory functions/cellular signaling. In sup-
port of this hypothesis, the majority of known signaling proteins and transcription 
factors were predicted to contain long ID regions [6,46].
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In this review we describe functions and molecular mechanisms of IDPs/IDRs, 
with specific focus on recognition, and attempt to create links with the structural 
properties of these proteins. These concepts serve as a basis for a novel structure/
disorder–function paradigm.

funCtions of DisorDereD Proteins

functional characterization of idpS

Early bioinformatics analysis revealed that IDPs/IDRs carry out pivotal biological 
functions [2,4,5,8–10,21,47]. They are commonly involved in signaling and regula-
tory pathways, via specific protein–protein, protein–nucleic acid, and protein–ligand 
interactions [2,4,5,7–11,13,14,17–19,21,48–52]. Sites of posttranslational modifica-
tions, such as acetylation, hydroxylation, ubiquitination, methylation, phosphoryla-
tion, and those of proteolytic attack are frequently associated with regions of intrinsic 
disorder [50]. The functional diversity provided by IDPs and IDRs was suggested 
to complement functions of ordered proteins and ordered protein regions [50–52]. 
Specific functions of IDPs can be grouped into four broad classes: (1) molecular 

recognition; (2) molecular assembly; (3) protein modification; and (4) entropic chain 
activities with 28 separate functions initially identified [7].
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figure 12.1 Amino acid composition of intrinsically disordered regions of 10 residues 
or longer from the DisProt database, relative to the set of globular proteins computed as 
(Disordered–Ordered)/(Ordered). Dark gray indicates DisProt 1.0 (152 proteins), while light 
gray indicates DisProt 3.4 (460 proteins). Amino acid compositions were calculated per dis-
ordered regions and then averaged. The arrangement of the amino acids is by peak height for 
the DisProt 3.4 release. Confidence intervals were estimated using per-protein bootstrapping 
with 10,000 iterations. Negative peaks correspond to the amino acids in which the disordered 
segments are depleted, and positive peaks indicate the amino acids in which IDRs/IDPs are 
enriched in comparison with the set of ordered proteins.
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In fact, signaling and regulation are among the most important functions of IDPs 
[6,15,17]. Qualitatively, it seems reasonable that highly mobile proteins would pro-
vide a better basis for signaling and recognition. For example, disordered regions can 
bind partners with both high specificity and low affinity [53]. This means that the 
regulatory interactions can be specific and also can be easily dispersed. Obviously 
this represents a keystone of signaling—turning a signal off is as important as turn-
ing it on [5]. Another crucial property of ID proteins for their function in signaling 
networks is binding diversity, that is, their ability to interact with many partners 
[54,55]. This opens a unique opportunity for one regulatory region or one regulatory 
protein to bind to various targets [47,55] or the ability of several regulatory regions/
proteins to bind to one protein [47]. An interesting consequence of this feature is the 
polymorphism of IDPs/IDRs in the bound state; they might have completely differ-
ent geometries in the complex form, depending on the nature of the bound partner 
[55–57].

Promiscuity of IDPs, that is, their capability to interact with various partners, can 
also be utilized in organizing complex protein–protein interaction networks. The 
architecture of these networks can be described by a highly heterogeneous scale-
free topology, in which proteins have widely different connectivities, with some of 
them having only one connection (ends), whereas others possess tens, hundreds, and 
possibly thousands of links (hubs) [58]. It has been shown that there are two gen-
eral ways of how a hub can have multiple interactions: it either can be intrinsically 
disordered and serve as an anchor or it can act as a stable globular scaffold interact-
ing with intrinsically disordered regions of its targets [17]. The general importance 
of intrinsic disorder in hubs has been corroborated by several studies [59–62]. The 
importance of disorder in the partners of structured hub proteins was also shown for 
the partners of 14-3-3 [55,63] and calmodulin [62].

Recently, the functional annotations in the SwissProt database were analyzed 
from a structured-versus-disordered point of view [50–52] using function-related 
keywords that are associated with at least 20 proteins. By performing predictions for 
the function-associated and properly chosen random sets, the disorder- and order-
associated functions as well as structurally ambiguous functions were identified. 
Out of 710 functions (keywords), 310 were found to be order-associated, 238 disor-
der-associated, and 170 structurally ambiguous [50–52]. If functional keywords are 
grouped into 11 Gene Ontology (GO) categories, order-associated functions fall into 
only 7 categories, while disorder-associated functions cover essentially all functional 
categories [50]. This observation might imply that the functional repertoire is larger 
for disordered proteins compared to that for structured proteins [18].

functional claSSification of idpS

Functions of IDPs can also be classified by their actual molecular mechanism of 
action. In this respect, their functions can either stem directly from their disordered 
state or be related to molecular recognition, when they either transiently or perma-
nently bind other macromolecule(s) or small ligand(s). By this criterion, IDPs were 
classified into five [10] and later into six [19] categories. Recently, the recognition of 
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disorder in prion proteins suggested their addition to this scheme [64]. These classes 
(Table 12.1) cover all distinct modes of IDP/IDR actions described thus far [28].

entropic functions
Entropic chains are not involved in partner recognition. Their function directly 
results from disorder. By their actual mode of action, entropic chains can function as 
entropic springs, bristles/spacers, linkers, and clocks, and in all these subcategories 
they either influence the localization of attached domains or generate force against 
movements/structural changes [7]. For the best characterized examples, one should 
refer to entropic gating in the nuclear pore complex by disordered regions of nucleo-
porins (NUPs) [65], the entropic spacer/bristle domains of microtubule-associated 

table 12.1
Classification scheme of iDPs based on their Molecular Modes of action

Protein Partner function

entropic Chains
Nup2p FG repeat region na Gating in NPC

K channel N-terminal region na Timing of gate inactivation

Display sites
CREB KID PKA Phosphorylation site

Cyclin B N-terminal domain E3 ubiquitin ligase Ubiquitination site

Chaperones
ERD 10/14 (e.g.) luciferase Prevention of aggregation

hnRNP A1 (e.g.) DNA Strand reannealing

effectors
p27Kip1 CycA-Cdk2 Inhibition of cell cycle

Securin Separase Inhibition of anaphase

assemblers
RNAP II CTD mRNA maturation factors Regulation of mRNA maturation

CREB p300/CBP Initiation of transcription

scavengers
Casein Calcium phosphate Stabilization of calcium phosphate in milk

Salivary PRPs Tannin Neutralization of plant tannins

Prions
Ure2p Utilization of urea under nitrogen

Sup35p NusA, mRNA Suppression of stop codon, translation 
read through

Note: Two examples within each category are given, specifying the binding partner (if applicable) and 
the actual cellular function of the protein.
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proteins [66], and the entropic spring PEVK region of titin, which is responsible for 
passive tension in resting muscle [67].

functions by transient binding
Display sites serve as the sites of posttranslational modifications because enzymatic 
modifications are facilitated in flexible and structurally adaptable regions in proteins. 
This feature has been demonstrated by limited proteolysis, which tends to occur in 
loop and linker regions in globular proteins [68]. Phosphorylation [69], ubiquitina-
tion [70], and deacetylation [71] also correlate with local disorder. Disorder predic-
tion in proteins with short recognition elements (linear motifs [72]) corroborates this 
idea, and in a systematic study, linear motifs were found to preferentially reside in a 
locally disordered sequential environment [73].

Chaperones can also require disorder for transient binding, and IDPs were fre-
quently identified as protein and RNA chaperones [13]. RNA chaperones have a very 
high proportion of disorder (40% of their residues fall into long-disordered regions), 
but protein chaperones are also among the most disordered proteins (15% of their 
residues are located within long disordered regions). To elucidate the involvement 
of disordered regions in the mechanism of chaperone action, an “entropy transfer” 
model of disordered chaperones was suggested [13].

functions by Permanent binding
Effectors usually modify the activity of their partner enzyme [10]. Some of the 
best characterized IDPs, such as p27Kip1 (the inhibitor of Cdks) [54,74], securin 
(the inhibitor of separase) [75], and calpastatin (the inhibitor of calpain) [76,77], 
can be found in this category. Effectors may sometimes have the potential to both 
inhibit and activate their partners, as suggested in the case of p27Kip1 [78], or the C 
fragment of DHPR II-III loop [79] that was captured by the concept of moonlight-
ing [49].

Assemblers either target the activity of attached domains or assemble multipro-
tein complexes. Due to their open and extended structural state, IDPs may also func-
tion by permanent partner binding such as accessory proteins [10]. The evidence for 
this function is the high level of disorder in a significant number of scaffold proteins 
[80], such as BRCA1 and Ste5 [81,82], the correlation of disorder with hub function 
in the interactome [60–62], and the increase of average disorder with the number of 
partners in multiprotein complexes [83].

Scavengers store and/or neutralize small ligand molecules by permanent binding. 
Casein(s) in milk, for example, store calcium phosphate seeds and enable a high total 
calcium-phosphate concentration [84].

Prions present a novel functional category of IDPs that was not included in previ-
ous classification schemes [9,10]. Prions are thought of traditionally as pathogens, 
mostly because of their involvement in mad cow diseases [85]. The autocatalytic con-
formational conversion characteristic of prions, however, also occurs in the normal 
physiological functions of proteins of yeast [86] and even higher organisms [87,88]. 
These prion proteins have disordered Q/N-rich prion domains [64] that are capable 
of autocatalytic transition to an altered conformation, with potentially advantageous 
phenotypic consequences on the organism that harbors them.
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transient struCtural eleMents in iDPs

Structural characterization of idpS

A wide range of physicochemical methods suitable to characterize partly folded 
protein conformations was applied to elaborate the structural organization of IDPs/
IDRs. The list of these techniques includes x-ray crystallography [89], NMR spec-
troscopy [18,90–93], near-ultraviolet (UV) circular dichroism (CD) [94], far-UV CD 
[4,95–97], optical rotatory dispersion (ORD) [4,95], Fourier transform infrared spec-
troscopy (FTIR) [4], Raman spectroscopy and Raman optical activity [98], differ-
ent fluorescence techniques [99,100], numerous hydrodynamic techniques (including 
gel filtration, viscometry, small angle x-ray scattering [SAXS], small angle neutron 
scattering [SANS], sedimentation, and dynamic and static light scattering) [99,100], 
rate of proteolytic degradation [68,101–105], mobility in sodium dodecyl sulfate 
(SDS) gel electrophoresis [10,106], conformational stability [99,107–110], hydrogen 
deuterium (H/D) exchange [100], immunochemical methods [111,112], interaction 
with molecular chaperones [99], electron microscopy or atomic force microscopy 
[99,100,113], and the charge state analysis of electrospray ionization mass spectrom-
etry [114]. For more detailed reviews on methods used to detect IDPs and IDRs, see  
References 8, 18, 91, and 100.

Based on the results obtained by a series of biophysical methods, conformational 
behavior and structural features of IDPs/IDRs resemble those of the nonnative states 
of “normal” globular proteins, which may exist in at least four different conforma-
tions: ordered, molten globule, premolten globule, and coil-like [11,20,110,115]. The 
main structural features of extended IDPs are [5,8,9,11,18,116]: (1) a specific amino 
acid sequence with low overall hydrophobicity and high net charge; (2) hydrody-
namic properties typical of a random coil in poor solvent, or premolten globule-like 
conformation; (3) low content of ordered secondary structure; (4) the absence of a 
tightly packed core; (5) high conformational flexibility; (6) a “turn out” response to 
the environmental changes, with the structural complexity increase at extreme pH 
or high temperature; and (7) an ability to partially fold in the presence of specific 
binding partners. Such behavior is detected by numerous hydrodynamic techniques 
(gel filtration, viscometry, SAXS, SANS, sedimentation, dynamic and static light 
scattering), far-UV CD, ORD, FTIR, and NMR spectroscopy.

IDPs/IDRs can be classified into two groups: (1) collapsed disorder, where intrin-
sic disorder is present in a molten globule form; and (2) extended disorder, where 
intrinsic disorder is present in a form of random coil or premolten globule under 
physiological conditions in vitro [5,11,18]. Native molten globules, being highly 
compact, possess a well-developed secondary structure, whereas native coils and 
native premolten globules are extremely flexible, essentially noncompact (extended), 
and have little or no ordered secondary structure under physiological conditions. 
Because of the lack of the hydrophobic core and the presence of only marginal lev-
els of residual secondary structure, native coils and native premolten globules are 
grouped together in a class of natively unfolded or intrinsically unstructured pro-
teins. It has been proposed that premolten globules exhibit the behavior of squeezed 
macromolecular coils, as water is a poor solvent for a polypeptide chain [8,9,11,117]. 
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Recently, it has been shown that water at ambient temperatures is a poor solvent 
for generic polypeptide backbones [118–120]. As a result, archetypal IDP sequences 
such as polyglutamine and glycine-serine block copolypeptides, despite the lack of 
hydrophobic residues, prefer ensembles of collapsed structures in aqueous environ-
ment [118–120]. These collapsed random coils are similar to, if not identical with, 
the premolten globule forms described earlier.

The idea of a systematic structural analysis of natively unfolded proteins seems to 
be redundant—one expects to be consistently observing the properties of an unfolded 
polypeptide chain. However, the situation is not so simple even for a “normal” globu-
lar protein in the presence of large concentrations of strong denaturants, such as 8 M 
urea or 6 M GdmCl; that is, under conditions where these proteins lose the majority 
of their specific structure, become essentially unfolded. In fact, it has been repeat-
edly shown that even under these conditions the polypeptide chains might contain 
some residual structure, suggesting that a polypeptide chain does not reach a random 
coil conformation [121–127]. Natively unfolded proteins were observed to possess 
a noticeable residual structure. In fact, a systematic analysis of several dozens of 
natively unfolded proteins revealed that, according to their structural properties and 
conformational behavior, they can be grouped into two structurally different cat-
egories: native coils and native premolten globules. Figure 12.2 illustrates a striking 
difference between these two protein classes, representing a “double wavelength” 
plot, [θ]222 versus [θ]200 dependence. In this plot, one group of natively unfolded pro-
teins was characterized by far-UV CD spectra characteristic of almost completely 
unfolded polypeptide chains (with [θ]200 = –(18,900 ± 2800) deg·cm2·dmol–1 and [θ]222 

= –(1700 ± 700) deg·cm2·dmol–1), whereas another group possessed spectra typical of 
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the premolten globule state of globular proteins, being consistent with the existence 
of some residual secondary structure (with [θ]200 = –(10,700 ± 1300) deg·cm2·dmol–1 
and [θ]222 = –(3900 ± 1100) deg·cm2·dmol–1) [8,9,11,116].

Detailed NMR analysis of several IDPs has provided deeper understanding of 
their fine structural details. In general, because the amino acid residues within coil-
like and premolten globule-like IDPs share a similar chemical environment, being all 
prevalently exposed to the solvent, they share similar NMR frequencies, thus result-
ing in a strong overlap of the 1H resonances. Therefore, while bidimensional NMR 
spectra of folded proteins display a broad distribution of NMR frequencies, NMR 
spectra of IDPs typically possess a very low spread of the resonance frequencies 
of amide protons [90,92,93]. However, the recent advances in the multidimensional 
NMR based on the uniformly 15N- and 13C-labeled proteins have enabled studies 
of highly disordered proteins. This is because the chemical shifts of the 15N and 
13C resonances are well dispersed even for completely unfolded polypeptide chains, 
allowing unambiguous resonance assignments [90,92,93]. Based on the assigned 
backbone resonances, various NMR parameters can be used to characterize residual 
structure in unfolded and partly folded states. For example, deviations of the chemi-
cal shifts from random coil values, especially for 13C_, 15N_, and 1H_, can be used to 
calculate the relative population of dihedral angles in the α or β regions [90,92,93]. 
The chemical shifts of the C_ nuclei from those expected for a fully random coil 
ensemble of conformations are known as secondary chemical shifts. Residues with 
positive C_ secondary chemical shifts have preferences for helical regions of the ϕ–ψ 
space, whereas residues that populate more extended conformations show the oppo-
site pattern. Additionally, abnormally low (relative to random coil values) amide pro-
ton temperature coefficients and low hydrogen exchange rates indicate the existence 
of residual structures within IDPs [90,92,93].

For example, a high-resolution NMR analysis of α-synuclein revealed that 
although it is largely unfolded in a solution in agreement with other techniques, such 
as far-UV CD, SAXS, FTIR, gel filtration, and dynamic light scattering, it exhibits 
a region between residues 6 and 37 with a preference for helical conformation [128]. 
Interestingly, the helical propensity found in this N-terminal region was strongly 
attenuated by an A30P mutation associated with the early onset of Parkinson’s 
disease, whereas another familial mutation, A53T, was shown to leave this region 
unperturbed, exerting a more modest and local influence on structural propensity 
[129]. Furthermore, it has been shown that the residual structure in another synuclein 
family member, β-synuclein (which lacks residues 62–72), differed significantly from 
that of α-synuclein. In fact, β-synuclein possessed a lower predisposition toward heli-
cal structure in the second half of its N-terminal domain, and a higher preference for 
extended structures in its C-terminal tail [130]. Importantly, as it will be discussed 
in subsequent sections, some regions with residual structure might be directly related 
to IDP functionality.

tranSient Structural eleMentS and recognition by idpS

Biophysical characterization of IDPs/IDRs mentioned in the previous section made 
it evident that although these proteins/segments do not possess a single, well-folded 
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state, they often exhibit transient, residual organization either at the secondary or 
tertiary structure level. In the following sections, these transient elements will be 
classified and their connection to binding functions of IDPs will be described.

Preformed structural elements
IDPs often undergo disorder-to-order transition upon binding to their partners, which 
raises the question whether the structure adopted in the bound form is enforced by 
the partner molecule or reflects inherent conformational preferences of IDPs. In other 
words, the binding-coupled folding of IDPs may be induced by the template or, alter-
natively, a conformational selection scenario may be occurring. To answer this ques-
tion, the structures of 26 IDPs complexed with their globular partners were analyzed 
for the predictability of their secondary structural elements [131]. Three algorithms, 
GOR, ALB, and PROF, were used, which all suggested that the accuracy of predict-
ing secondary structural elements in IDPs is higher than that in either their partner 
proteins or randomized sequences (Figure 12.3). This observation suggests that IDPs 
may have rather strong conformational preferences for their bound conformations, 
that is, they probably use elements for recognition that are partially/transiently pre-
formed in the solution state (Figure 12.4). This preference is strongest for helices and 
is weakest for extended structures. Although the insight from studying complexes 
under steady-state conditions is not fully conclusive on the role of these preformed 
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figure 12.3 Predictability of the secondary structure of IDPs in the bound state. A selec-
tion of 26 IDP structures in complex with their partners was analyzed for the predictability of 
the secondary structure attained in the complex from sequence. Prediction accuracies calcu-
lated by the ALB method for full-length IDPs (black columns), randomized sequences of IDPs 
(cross-hatched columns), sequences of globular partners (gray columns), and randomized 
sequences of partners (hatched columns) are displayed by two measures, Q3 (position-based 
accuracy) and SOV (segmental overlap). These show that the intrinsic structural preferences 
of IDPs are strongly correlated with their conformation attained in the bound form.
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elements in binding, in certain cases a similar structure in the free and bound states 
was actually observed when IDPs have been characterized in the solution state by 
NMR. Such correlation is apparent in the case of the kinase inducible domain (KID) 
of cAMP response element binding (CREB) [132,133], p21Cip1/p27Kip2 [54,74], p53 
[134], FlgM [135,136], PKI alpha [137], thymosin beta4 [138], Bad (PDB: 2bzw), and 
measles virus nucleoprotein [139]. Such preformed elements might also serve as ini-
tial contact points of interaction, but this issue requires further study. A very similar 
concept (intrinsically folded structural units, IFSUs) has also been suggested, based 
on studying the molecular function and binding of p27Kip1 [140].

Molecular recognition elements/features
Intrinsic conformational preferences of IDPs/IDRs can be utilized to predict the 
sites for the disorder-to-order transitions [141]. In fact, it had been noticed long ago 
that PONDR VL-XT sometimes gives short regions of predicted order bounded by 
regions of predicted disorder [142]. This is illustrated in Figure 12.5, which rep-
resents a structure of the complex between the 4E binding protein 1 (4EBP1) and 
the eukaryotic translation initiation factor 4E [143] (Figure 12.5A) and the PONDR 

figure 12.4 Illustration of disorder-to-order transition upon binding. This example 
shows the binding of a disordered region of Bad (ribbon) to Bcl-XL (globular structure) (PDB: 
2bzw).
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figure 12.5 (SEE COLOR INSERT FOLLOWING PAGE 174.) Example of binding 
regions and their positions relative to the regions of predicted order (PONDR® VL-XT score) 
and α-MoRF. (A) Eukaryotic initiation factor (blue) and the binding region of 4EBP1 (red). 
(B) The PONDR® VL-XT prediction for 4EBP1 with the binding region (blue bar) and the 
predicted α-MoRF region (pink bar) shown.
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VL-XT prediction for 4EBP1 (Figure 12.5B). In nonbound form, 4EBP1 was shown 
to be completely disordered by NMR [144], but its short stretch underwent a disor-
der-to-order transition upon interaction with the binding partner [143]. Figure 12.5B 
shows that there is a sharp dip in the PONDR VL-XT plot in the area of the binding 
region. This drop is flanked by long regions of predicted disorder.

Additional work has validated the use of these distinctive downward spikes in 
PONDR VL-XT curves to locate functional binding regions [141] within IDRs. 
These elements consist of a short region that undergoes coupled binding and fold-
ing within a longer region of disorder. We call these features molecular recogni-
tion elements (MoREs). Later, these regions were renamed as molecular recognition 
features (MoRFs) to emphasize their unique polymorphic nature. An algorithm has 
been elaborated [141] for identification of regions having a propensity for α-helix-
forming molecular recognition features (α-MoRFs) based on a discriminant function 
that indicates such regions while giving a low false-positive error rate on a collection 
of structured proteins. Application of this predictor to databases of genomics and 
functionally annotated proteins indicates that α-MoRFs are likely to play important 
roles in protein–protein interactions involved in signaling events [141].

This first α-MoRF identifier was developed using a training data set of a limited 
size (a set of 13 proteins containing 15 potential α-MoRFs). Recently, the prediction 
algorithm was improved by (1) including additional α-MoRF examples and their 
cross species homologues in the positive training set; (2) carefully extracting mono-
mer structure chains from the Protein Data Bank (PDB) as the negative training 
set; (3) including attributes from recently developed disorder predictors, secondary 
structure predictions, and amino acid indices; and (4) constructing neural network 
based predictors and performing validation [145]. The sensitivity, specificity, and 
accuracy of the resulting predictor, α-MoRF-PredII, were 0.87 ± 0.10, 0.87 ± 0.11, 
and 0.87 ± 0.08, respectively, over 10 cross-validations [145].

Systematic studies of PDB entries revealed that protein complexes deposited in 
this database often comprise a short protein segment bound to a larger globular pro-
tein [146]. Analysis of literature data showed that some of these short peptides, being 
specifically folded into α-helix, β-hairpin, β-strand, polyproline II helix, or irregular 
structure, and so forth, within their complexes with globular partners, are intrin-
sically disordered prior to the corresponding complex formation. Thus, all these 
regions can be considered as illustrative members of the subset of protein–protein 
interactions involving disorder-to-order transitions during the complex formation 
and, hence, can be considered as MoRFs. In a recent study, short polypeptide chains 
with lengths between 10 and 70 residues that are bound to a globular partner (with 
chains ≥100 residues) were extracted from PDB [146]. This process resulted in a 
data set comprising 372 nonredundant protein chains (9093 residues). The secondary 
structure assignment showed that 27% of this data set consisted of α-helical residues, 
12% were β-sheet residues, and approximately 48% of the residues had an irregular 
conformation. The remaining 13% of the residues were found to be disordered as 
they were characterized by missing coordinate information in their respective PDB 
files [146]. This data set can be used for further studies to find sequence attributes for 
discriminating these different MoRFs from one another and from ordered proteins.
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Primary Contact sites
Primary contact sites (PCSs) are short recognition motifs that are kinetically dis-
tinguished in binding. PCSs were derived from the observation that the large-scale 
structural reorganization concomitant to binding of IDPs is usually realized very 
rapidly. In fact, structural disorder is thought to confer the advantage of rapid bind-
ing [147]. Hence, it was reasoned that certain regions within the disordered ensemble 
are more exposed than others, and thereby may serve as the first sites of contact with 
the partner. This idea was experimentally checked in the case of two IDPs: calpasta-
tin and MAP2 [148].

It was suggested that limited proteolysis at extremely low concentrations of pro-
teases may preferentially affect regions of an IDP that are exposed relative to oth-
ers. At very low concentrations, proteases of narrow (trypsin, chymotrypsin, and 
plasmin) or broad (subtilisin and proteinase K) substrate specificity preferentially 
cleave both proteins in regions thought to make the first contact with the partner. 
In calpastatin, subdomains A, B, and C, and in MAP2c, the central Pro-rich region 
(PRR), were identified. This not fully random structural behavior was further probed 
by CD spectroscopy and NMR relaxation spectroscopy. In the case of calpastatin, 
the CD spectra and hydration of the two halves are not additive, which suggests long-
range tertiary interactions within the protein. In MAP2c, no such tertiary interac-
tions could be identified, but exposure of the PCSs could be accounted for by local 
structural constraints. Urea- and temperature-dependence of the CD spectrum of 
its central PRR pointed to the presence of PP-II helix conformation in this region, 
which is rather stretched out and keeps the interaction site exposed.

Some additional observations in the literature are also in line with the concept of 
PCSs. For example, rapid assembly of large membrane-bound complexes of highly 
repetitive and disordered membrane-associated proteins, such as AP180, epsin1, and 
auxilin in exocytosis [149,150], is essential for proper execution of the membrane 
fusion. It was suggested that a large capture radius of specific, exposed recognition 
elements enabled by the disordered nature of these proteins provides the key ingredi-
ent of this mechanism [151]. A structural study on p53, the tumor-suppressor tran-
scription factor, also provides relevant information on the concept of PCSs. p53 has 
a long, disordered N-terminal transactivator domain (TAD), which has two binding 
sites, one for the E3 ubiquitin ligase MDM2, and the other for the 70 kDa subunit of 
replication protein A (RPA70). Paramagnetic relaxation enhancement (PRE) experi-
ments identified distance constraints in TAD [152], and suggested that TAD is rather 
compact and dynamic, with the two binding motifs separated by an average distance 
of 10–15 Å. Prior to binding, a more extended conformation of the ensemble must be 
populated to expose binding for sites for either MDM2 or RPA70, in agreement with 
the PCS concept [152].

short linear Motifs
Analyses of sequences that were observed to mediate specific protein–protein inter-
actions, whether they result in a stable complex or enzymatic modification, suggested 
that the element of recognition is often a short motif of discernible conservation, also 
denoted as a “consensus” sequence. The generality of this relation has led to the 
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concept of linear motifs (LMs; also denoted as eukaryotic linear motifs [ELMs] and 
short linear motifs [SLiMs]). Such elements were first implicated in recognition by 
kinases or binding sites of SH3 domains [153]. Linear motifs are usually defined by 
a short consensus pattern, with conserved residues that are interspersed with rather 
freely exchangeable, variable positions. The first set of residues serves as specificity 
determinants, whereas the second likely acts as spacers. Due to their evolutionary 
variability, LMs may constitute dynamic switchlike elements, frequently generated 
and erased in evolution. The typical length of LMs is between 5 and 25 residues, and 
their specificity is determined by a few conserved residues, while the embedding 
sequence environment is hardly constrained. Due to the resulting limited informa-
tion content, LMs are much more difficult to identify by sequence comparisons than 
domains. Traditional BLAST searches cannot positively identify LMs, but special 
algorithms that focus on nonglobular regions and that combine large-scale interac-
tion data can tackle this problem (DILIMOT [154] and SLiMDisc [155]).

LMs have been collected in the ELM database available through the ELM server 
[72], which contains about 800 ELM examples that belong to more than 100 ELM 
classes. LMs were suggested to fall into locally disordered regions [32,72], which 
was corroborated in a systematic analysis by bioinformatics predictors [73]. It was 
found that disordered 20-residue-long flanking segments contribute to the plasticity 
of LMs (Figure 12.6A). LMs also have a peculiar amino acid composition, in that 
they resemble the characteristic composition of IDPs (Figure 12.6B), but they are 
enriched in both certain hydrophobic (Trp, Leu, Phe, and Tyr) and charged (Arg and 
Asp) residues. Furthermore, LMs are depleted in Gly and Ala, perhaps to limit the 
tendencies for both flexibility and secondary structure. In addition, Pro dominates 
in both LMs and their flanking segments, probably due to its direct involvement in 
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interactions and also due to providing the extended secondary structural motif, PP-II 
helix.

We also noted that the amino acid composition of the specificity determinant 
(restricted) and variable (nonrestricted) sites markedly differ, which explains the 
above-noted peculiarity of amino acid propensities. Conserved positions are occu-
pied by either hydrophobic and rigid, or charged and flexible residues, whereas non-
restricted positions abound in flexible residues, similarly to IDPs in general. The 
only exception is Pro, which prefers both restricted positions and flanking regions, 
indicating its dual role as a contact residue and promoter of an open structure. In 
all, the unique amino acid composition suggests a mixed nature of LMs, with a few 
specificity-determinant residues strongly favoring order, grafted on a completely dis-
ordered carrier sequence flanking and intervening the region critical for interaction.

interaCtion of iDPs With their Partners

induced folding accoMpanying binding

Alterations in environmental or cellular conditions, or interactions with other pro-
teins, nucleic acids, membranes, or small molecules induce function-associated 
conformational changes or disorder-to-order transitions in IDPs. One of the most 
important IDP features is their unique capability to fold under a variety of condi-
tions [2,4–10,14,15,17,20,156], including functional folding triggered by the inter-
action with specific binding partners. This process is schematically illustrated by 
Figure 12.4 showing how the disordered region folds into an α-helical segment upon 
interaction with the binding partner. Such behavior was described for several indi-
vidual IDPs involved in protein–protein interactions, including p27Kip1 [74,157] and 
p53 [134], the conformation of which in the free state presage their structure in the 
folded, bound state. Some benefits of IDP binding are actually due to the binding-
coupled folding process as the large decrease in conformational entropy accompa-
nying the disorder-to-order transition decreases binding affinity and may uncouple 
it from specificity. Hence, highly specific interactions become easily reversible that 
can be exploited in signaling and regulation. We also have to note, however, that 
IDPs can remain substantially disordered [57] in the bound state.

A well-documented case of the astonishing conformational plasticity of IDPs was 
described for the highly abundant presynaptic brain protein, α-synuclein. In fact this 
protein is known to adopt a series of absolutely different conformations depending 
on its environment. For example, this protein may either stay substantially unfolded, 
or adopt a partially folded conformation, or fold into α-helix or β-structure spe-
cies, both in monomeric and oligomeric forms. Furthermore, it might form several 
morphologically different types of aggregates, including oligomers (spheres or 
doughnuts), amorphous aggregates, and amyloid-like fibrils depending on the pro-
tein environment. In other words, α-synuclein has an exceptional ability to fold in a 
template-dependent manner [158–160].

When IDPs fold, their folding energy landscapes are markedly different from the 
funnel-like surface of globular proteins [161–163]. In the case of IDPs, out of a multi-
plicity of energy minima that coexist in the free state, different ones can be selected, 
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depending on the partner. Furthermore, formation of a well-defined structure is ini-
tiated by tertiary structure interactions between an IDP and its partner; that is, the 
folding funnel is constructed by two terms that include the intermolecular interaction 
energies in addition to the intramolecular conformation energies.

Due to the noncooperative nature of IDP folding, their interaction interfaces are 
also different from those of complexes of globular proteins. An elegant approach to 
predict whether a given complex was formed from the association of ordered pro-
teins or by the binding coupled folding of IDPs has been elaborated by Nussinov and 
collaborators [164]. According to this approach, a plot of the normalized monomer 
area (NMA) versus the normalized interface area (NIA) nicely separates complexes 
formed from structured proteins as compared to complexes formed from unfolded 
proteins by coupled binding and folding. That is, associations of structured proteins 
exhibit small NMAs and NIAs, and so lie near the origin of the NMA–NIA plot. On 
the other hand, complexes formed by coupled binding and folding have much larger 
NMAs and NIAs, and so are spread out and lie far from the origin of the NMA-
versus-NIA plot. As a result, a linear boundary can be calculated to separate the two 
groups [164]. If a double NMA–NIA plot is constructed, one for each partner of a 
complex, the interacting pairs can be divided into three groups: (1) both partners are 
structured; (2) one partner is structured and the second partner is disordered; and (3) 
both partners are intrinsically disordered [55]. This approach was recently utilized 
to analyze structures of 13 complexes between various regions of p53 and its unique 
binding partners [55] (Figure 12.7). This analysis clearly showed the importance of 
disorder-to-order transitions for many of the structurally characterized interactions 
involving the p53 protein. For 10 of these partners, the interactions are mediated 
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by regions experimentally characterized as intrinsically disordered, where PONDR 
VL-XT detects the majority of these binding regions as short predictions of order 
within a longer prediction of disorder. These structures are complexes between p53 
and cyclin A [165], sirtuin [166], CBP [167], S100ββ [168], set9 [169], tGcn5 [170], 
Rpa70 [171], Mdm2 [172], Tfb1 [173], and itself [174]. The remaining three interac-
tions are mediated by the structured DBD, namely, between p53 and the following 
partners: DNA [175], 53BP1 [176], and 53BP2 [177].

Four complexes involve a single region of the p53 sequence bound to four differ-
ent partners. This represents a unique feature of IDPs linked to multiple specificities. 
The mentioned p53 region is the 374–388 fragment, which was shown to interact 
with cyclin A [165], sirtuin [166], CBP [167], and S100ββ [168]. Interestingly, the 
four complexes displayed all three major secondary structure types: a region became 
a helix upon binding to S100ββ, a sheet upon binding to sirtuin, and a coil with two 
distinct backbone trajectories upon binding to CBP and cyclin A2 [55] (Figure 12.8). 
Next, the involvement of various p53 residues in the mentioned interactions were 
analyzed to test the hypothesis that p53 utilized different residues for the interactions 
with different partners [55]. To this end, the buried surface area for each residue in 
each interaction was quantified by calculating the ∆ASA. Figure 12.8B shows that 
different amino acid interaction profiles are seen for each of the interactions, sug-
gesting that the same residues are used to different extents in the four interfaces.

Molecular architecture of the interfaceS of idpS

The chemical nature of the interface of IDP complexes is unique in amino acid 
composition and geometry, as shown by a few analyses of IDP interaction sites. 
Gunasekaran and colleagues analyzed the interfaces of 10 two-state complexes, 44 
ribosomal proteins, and 5 complexes of bona fide disordered proteins [164]. This 
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study has been extended by Meszaros and colleagues, who have assembled a data 
set of 39 complexes of experimentally verified IDPs, and analyzed a variety of their 
features [178]. In a related study, Vacic and colleagues have presented a detailed 
analysis of 258 MoRFs, shown to correlate with disorder [27]. Although definitions 
of the subjects of the studies differed, the underlying features of interfaces were 
found to be very similar.

The comparison of the global geometrical features of the interfaces of disordered 
and globular proteins suggested that the distributions of size are not much differ-
ent, with the area of IDP interfaces being slightly smaller but falling into about the 
same range as those of ordered complexes (1141 ± 110 Å2) [27], maybe with some 
bias against very large interfaces (>3000 Å2) [27,164,178]. Characteristic differences 
were seen when surfaces and interfaces were normalized to chain length; however, 
IDPs have a much larger per-residue surface area and a much larger per-residue inter-
face area than globular proteins (Figure 12.9A). When their ratio is calculated, it is 
clear that IDPs not only have relatively larger surfaces, they also use its larger por-
tion for interaction with their partner, sometimes 50% of the whole, as opposed to 
only 5%–15% for most ordered proteins [164,178].

The number of continuous segments the interface is made up of also differs sig-
nificantly. In the case of globular proteins, distinct segments of the chain come into 
proximity to form a binding site, and thus their binding surfaces are more fragmented. 
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figure 12.9 Surface and interface area, and segmentation of interfaces of IDPs. (A) IDPs 
use a large fraction of their surfaces for binding. The total surface area per residue is given 
as a function of the interface area per residue for the smaller chain of ordered complexes 
(triangles), and for disordered proteins in complex with an ordered protein (circles). (B) IDPs 
(dark gray) tend to use less segments to make up the binding site than globular proteins (light 
gray). The distribution of interfaces with the given number of noncontinuous sequence seg-
ments is shown. A database of 72 ordered complexes and 37 complexes of disordered proteins 
has been used in the study.
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In fact, ordered proteins hardly ever use a single segment for binding, and their seg-
mentation number occasionally even exceeds the value of 10 [178]. In contrast, in 
about 60% of cases, the IDP interface corresponds to a single continuous segment 
only (Figure 12.9B), and they contain more than three separate segments in a single 
case of a Sigma28-FlgM complex (PDB: 1sc5) only.

The ratio of buried/exposed area of IDPs is much smaller on average both for polar 
and hydrophobic residues, which suggests that they keep their hydrophobic residues 
exposed for contact with the partner, instead of generating a hydrophobic core [178]. 
Actually, IDPs have a larger fraction of their hydrophobic residues exposed than 
that of globular proteins (IDPs: 40%–90%, ordered proteins: 15%–50%) [178]. The 
interfaces of IDPs are not only more hydrophobic than their surfaces in general, but 
they are also more hydrophobic than the buried regions of the protein [27,164,178]. 
Exposure of hydrophobic amino acids and/or this compositional bias also follows 
from the analysis of ELMs [73], two-state complexes [164], and MoRFs [27].

IDP interfaces are also unique with respect to the types of contacts they usu-
ally make: They rely much more on hydrophobic–hydrophobic contacts (IDPs: 33%, 
ordered proteins: 22%), whereas ordered proteins utilize polar–polar contacts sig-
nificantly more often (IDPS: 27%, ordered proteins: 33%) [164,178]. This difference 
might arise because IDPs require more enthalpic stabilization to counteract their 
decrease in configurational entropy. IDP interfaces are tighter, that is, structurally 
more complementary, which may be related from their binding by induced folding 
upon binding, which enables a better adaptation to the structure of the partner.

A critical point of their interactions is whether the foregoing differences manifest 
themselves in differences of the interaction energies of the two types of complexes. 
Whereas no comprehensive experimental analysis has been carried out to this end, 
we have shown that the pairwise interresidue interaction energy of IDPs can be esti-
mated by low-resolution force fields deduced from globular structures. The ensuing 

60

50

40

30

20

10

0
0.05 0.15 0.25 0.35 0.45

Interface/Surface Area

%

0.55 0.65

(B)

figure 12.9 (Continued)

© 2009 by Taylor & Francis Group, LLC



Intrinsically Disordered Proteins and Their Recognition Functions 243

algorithm, IUPred [34], can distinguish disordered from ordered proteins by showing 
characteristically less potential interresidue interaction energy for IDPs. By apply-
ing the same approach for analyzing the interfaces [178], it was found that ordered 
proteins tend to realize more stabilizing interactions within their polypeptide chains, 
whereas IDPs derive more stabilization from the interaction with the partner. This 
tilts their structural balance toward the folded state in the presence of the partner and 
explains why IDPs do not fold in isolation.

ConCluDing reMarks

A wealth of experimental data demonstrates that essential biological, mostly regula-
tory functions, such as signal transduction or transcription regulation are intertwined 
with the presence of IDPs/IDRs. Recognition by IDPs offers various advantages 
for biomolecular associations, such as fast kinetics and specificity without excessive 
binding strength. All these properties are encoded in the lack of a single, distin-
guished equilibrium structure as well as the noncooperative mode of conformational 
rearrangements of IDPs. Based on biophysical evidence, IDPs span a wide range of 
structural categories from random coils to molten globules. Various links between 
the residual structures of IDPs and their functions have been established. These rec-
ognition motifs can either provide thermodynamic benefits by reducing the entropic 
penalty of binding or can be kinetically advantageous by accelerating the forma-
tion of productive contacts via transiently exposed specific interaction sites. Current 
efforts aim to elaborate details of the binding mechanisms and also to predict puta-
tive binding sites from the primary sequence. Although much has to be learned on 
the nonconventional modes of action of IDPs, the basis of a new disorder–function 
paradigm has already been laid down.

referenCes

 1. Romero, P., Z. Obradovic, C. R. Kissinger, J. E. Villafranca, E. Garner, S. Guilliot, and 
A. K. Dunker, Thousands of proteins likely to have long disordered regions. Pac Symp 
Biocomput, 1998. 437–48.

 2. Wright, P. E. and H. J. Dyson, Intrinsically unstructured proteins: Re-assessing the pro-
tein structure-function paradigm. J Mol Biol, 1999. 293(2): 321–31.

 3. Dunker, A. K., Z. Obradovic, P. Romero, E. C. Garner, and C. J. Brown, Intrinsic protein 
disorder in complete genomes. Genome Inform Ser Workshop Genome Inform, 2000. 11: 
161–71.

 4. Uversky, V. N., J. R. Gillespie, and A. L. Fink, Why are “natively unfolded” proteins 
unstructured under physiologic conditions? Proteins, 2000. 41(3): 415–27.

 5. Dunker, A. K., J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero, J. S. Oh, 
C. J. Oldfield, A. M. Campen, C. M. Ratliff, K. W. Hipps, J. Ausio, M. S. Nissen, 
R. Reeves, C. Kang, C. R. Kissinger, R. W. Bailey, M. D. Griswold, W. Chiu, E. C. Garner, 
and Z. Obradovic, Intrinsically disordered protein. J Mol Graph Model, 2001. 19(1): 
26–59.

 6. Iakoucheva, L. M., C. J. Brown, J. D. Lawson, Z. Obradovic, and A. K. Dunker, Intrinsic 
disorder in cell-signaling and cancer-associated proteins. J Mol Biol, 2002. 323(3): 
573–84.

© 2009 by Taylor & Francis Group, LLC



244 Computational Protein-Protein Interactions

 7. Dunker, A .K., C. J. Brown, J. D. Lawson, L. M. Iakoucheva, and Z. Obradovic, Intrinsic 
disorder and protein function. Biochemistry, 2002. 41(21): 6573–82.

 8. Uversky, V. N., Natively unfolded proteins: A point where biology waits for physics. 
Protein Sci, 2002. 11(4): 739–56.

 9. Uversky, V. N., What does it mean to be natively unfolded? Eur J Biochem, 2002. 269(1): 
2–12.

 10. Tompa, P., Intrinsically unstructured proteins. Trends Biochem Sci, 2002. 27(10): 
527–33.

 11. Uversky, V. N., Protein folding revisited. A polypeptide chain at the folding-misfolding-
nonfolding cross-roads: Which way to go? Cell Mol Life Sci, 2003. 60(9): 1852–71.

 12. Tompa, P., Intrinsically unstructured proteins evolve by repeat expansion. Bioessays, 
2003. 25(9): 847–55.

 13. Tompa, P. and P. Csermely, The role of structural disorder in the function of RNA and 
protein chaperones. FASEB J, 2004. 18(11): 1169–75.

 14. Dyson, H. J. and P. E. Wright, Intrinsically unstructured proteins and their functions. Nat 
Rev Mol Cell Biol, 2005. 6(3): 197–208.

 15. Uversky, V. N., C. J. Oldfield, and A. K. Dunker, Showing your ID: Intrinsic disorder as an 
ID for recognition, regulation and cell signaling. J Mol Recognit, 2005. 18(5): 343–84.

 16. Oldfield, C. J., Y. Cheng, M. S. Cortese, C. J. Brown, V. N. Uversky, and A. K. Dunker, 
Comparing and combining predictors of mostly disordered proteins. Biochemistry, 
2005. 44(6): 1989–2000.

 17. Dunker, A. K., M. S. Cortese, P. Romero, L. M. Iakoucheva, and V. N. Uversky, Flexible 
nets: The roles of intrinsic disorder in protein interaction networks. FEBS J, 2005. 
272(20): 5129–48.

 18. Daughdrill, G. W., G. J. Pielak, V. N. Uversky, M.S. Cortese, and A.K. Dunker, Natively 
disordered proteins, in Handbook of Protein Folding, J. Buchner and T. Kiefhaber, 
Editors. 2005, Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co., pp. 271–353.

 19. Tompa, P., The interplay between structure and function in intrinsically unstructured 
proteins. FEBS Lett, 2005. 579(15): 3346–54.

 20. Fink, A. L., Natively unfolded proteins. Curr Opin Struct Biol, 2005. 15(1): 35–41.
 21. Dunker, A. K. and Z. Obradovic, The protein trinity—linking function and disorder. Nat 

Biotechnol, 2001. 19(9): 805–6.
 22. Schweers, O., E. Schonbrunn-Hanebeck, A. Marx, and E. Mandelkow, Structural stud-

ies of tau protein and Alzheimer paired helical filaments show no evidence for beta-
structure. J Biol Chem, 1994. 269(39): 24290–7.

 23. Weinreb, P. H., W. Zhen, A. W. Poon, K. A. Conway, and P. T. Lansbury, Jr., NACP, a pro-
tein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 
1996. 35(43): 13709–15.

 24. Romero, P., Z. Obradovic, X. Li, E. C. Garner, C. J. Brown, and A. K. Dunker, Sequence 
complexity of disordered protein. Proteins, 2001. 42(1): 38–48.

 25. Williams, R. M., Z. Obradovi, V. Mathura, W. Braun, E. C. Garner, J. Young, S. Takayama, 
C. J. Brown, and A. K. Dunker, The protein non-folding problem: Amino acid determi-
nants of intrinsic order and disorder. Pac Symp Biocomput, 2001: 89–100.

 26. Radivojac, P., L. M. Iakoucheva, C. J. Oldfield, Z. Obradovic, V. N. Uversky, and 
A. K. Dunker, Intrinsic disorder and functional proteomics. Biophys J, 2007. 92(5): 
1439–56.

 27. Vacic, V., V. N. Uversky, A. K. Dunker, and S. Lonardi, Composition Profiler: A tool for 
discovery and visualization of amino acid composition differences. BMC Bioinformatics, 
2007. 8: 211.

 28. Sickmeier, M., J. A. Hamilton, T. LeGall, V. Vacic, M. S. Cortese, A. Tantos, B. Szabo, 
P. Tompa, J. Chen, V. N. Uversky, Z. Obradovic, and A. K. Dunker, DisProt: The Database 
of Disordered Proteins. Nucleic Acids Res, 2007. 35(Database issue): D786–93.

© 2009 by Taylor & Francis Group, LLC



Intrinsically Disordered Proteins and Their Recognition Functions 245

 29. Li, X., P. Romero, M. Rani, A. K. Dunker, and Z. Obradovic, Predicting protein disorder 
for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform, 1999. 
10: 30–40.

 30. Liu, J. and B. Rost, NORSp: Predictions of long regions without regular secondary 
structure. Nucleic Acids Res, 2003. 31(13): 3833–5.

 31. Linding, R., L. J. Jensen, F. Diella, P. Bork, T. J. Gibson, and R. B. Russell, Protein 
disorder prediction: Implications for structural proteomics. Structure (Camb), 2003. 
11(11): 1453–9.

 32. Linding, R., R. B. Russell, V. Neduva, and T. J. Gibson, GlobPlot: Exploring protein 
sequences for globularity and disorder. Nucleic Acids Res, 2003. 31(13): 3701–8.

 33. Prilusky, J., C. E. Felder, T. Zeev-Ben-Mordehai, E. H. Rydberg, O. Man, J. S. Beckmann, 
I. Silman, and J. L. Sussman, FoldIndex: A simple tool to predict whether a given pro-
tein sequence is intrinsically unfolded. Bioinformatics, 2005. 21(16): 3435–8.

 34. Dosztanyi, Z., V. Csizmok, P. Tompa, and I. Simon, IUPred: Web server for the predic-
tion of intrinsically unstructured regions of proteins based on estimated energy content. 
Bioinformatics, 2005. 21(16): 3433–4.

 35. Jones, D. T. and J. J. Ward, Prediction of disordered regions in proteins from position 
specific score matrices. Proteins, 2003. 53(Suppl 6): 573–8.

 36. Ward, J. J., L. J. McGuffin, K. Bryson, B. F. Buxton, and D. T. Jones, The DISOPRED 
server for the prediction of protein disorder. Bioinformatics, 2004. 20(13): 2138–9.

 37. Ward, J. J., J. S. Sodhi, L. J. McGuffin, B. F. Buxton, and D. T. Jones, Prediction and 
functional analysis of native disorder in proteins from the three kingdoms of life. J Mol 
Biol, 2004. 337(3): 635–45.

 38. Melamud, E. and J. Moult, Evaluation of disorder predictions in CASP5. Proteins, 2003. 
53(Suppl 6): 561–5.

 39. Jin, Y. and R. L. Dunbrack, Jr., Assessment of disorder predictions in CASP6. Proteins, 
2005. 61(Suppl 7): 167–75.

 40. Peng, K., S. Vucetic, P. Radivojac, C. J. Brown, A. K. Dunker, and Z. Obradovic, 
Optimizing long intrinsic disorder predictors with protein evolutionary information. J 
Bioinform Comput Biol, 2005. 3(1): 35–60.

 41. Peng, K., P. Radivojac, S. Vucetic, A. K. Dunker, and Z. Obradovic, Length-dependent 
prediction of protein intrinsic disorder. BMC Bioinformatics, 2006. 7: 208.

 42. Ferron, F., S. Longhi, B. Canard, and D. Karlin, A practical overview of protein disorder 
prediction methods. Proteins, 2006. 65(1): 1–14.

 43. Bordoli, L., F. Kiefer, and T. Schwede, Assessment of disorder predictions in CASP7. 
Proteins, 2007. 69(Suppl 8): 129–36.

 44. Uversky, V. N., A. Roman, C. J. Oldfield, and A. K. Dunker, Protein intrinsic disorder 
and human papillomaviruses: Increased amount of disorder in E6 and E7 oncoproteins 
from high risk HPVs. J Proteome Res, 2006. 5(8): 1829–42.

 45. Mohan, A., W. J. Sullivan, Jr., P. Radivojac, A. K. Dunker, and V. N. Uversky, Intrinsic 
disorder in pathogenic and non-pathogenic microbes: Discovering and analyzing the 
unfoldomes of early-branching eukaryotes. Mol Biosyst, 2008. 4(4): 328–40.

 46. Liu, J., N. B. Perumal, C. J. Oldfield, E. W. Su, V. N. Uversky, and A. K. Dunker, Intrinsic 
disorder in transcription factors. Biochemistry, 2006. 45(22): 6873–88.

 47. Dunker, A. K., E. Garner, S. Guilliot, P. Romero, K. Albrecht, J. Hart, Z. Obradovic, 
C. Kissinger, and J. E. Villafranca, Protein disorder and the evolution of molecular rec-
ognition: Theory, predictions and observations. Pac Symp Biocomput, 1998: 473–84.

 48. Dunker, A. K., C. J. Brown, and Z. Obradovic, Identification and functions of usefully 
disordered proteins. Adv Protein Chem, 2002. 62: 25–49.

 49. Tompa, P., C. Szasz, and L. Buday, Structural disorder throws new light on moonlight-
ing. Trends Biochem Sci, 2005. 30(9): 484–9.

© 2009 by Taylor & Francis Group, LLC



246 Computational Protein-Protein Interactions

 50. Xie, H., S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker, V. N. Uversky, 
and Z. Obradovic, Functional anthology of intrinsic disorder. 1. Biological processes 
and functions of proteins with long disordered regions. J Proteome Res, 2007. 6(5): 
1882–98.

 51. Vucetic, S., H. Xie, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker, Z. Obradovic, 
and V. N. Uversky, Functional anthology of intrinsic disorder. 2. Cellular compo-
nents, domains, technical terms, developmental processes, and coding sequence 
diversities correlated with long disordered regions. J Proteome Res, 2007. 6(5): 
1899–916.

 52. Xie, H., S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker, Z. Obradovic, and 
V. N. Uversky, Functional anthology of intrinsic disorder. 3. Ligands, post-translational 
modifications, and diseases associated with intrinsically disordered proteins. J Proteome 
Res, 2007. 6(5): 1917–32.

 53. Schulz, G.E., Nucleotide binding proteins, in Molecular Mechanism of Biological 
Recognition, M. Balaban, Editor. 1979, New York: Elsevier/North-Holland Biomedical 
Press, pp. 79–94.

 54. Kriwacki, R. W., L. Hengst, L. Tennant, S. I. Reed, and P. E. Wright, Structural studies 
of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: Conformational disorder medi-
ates binding diversity. Proc Natl Acad Sci USA, 1996. 93(21): 11504–9.

 55. Oldfield, C. J., J. Meng, J. Y. Yang, M. Q. Yang, V. N. Uversky, and A. K. Dunker, 
Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their 
partners. BMC Genomics, 2008. 9(Suppl 1): S1.

 56. Dajani, R., E. Fraser, S. M. Roe, M. Yeo, V. M. Good, V. Thompson, T. C. Dale, and 
L. H. Pearl, Structural basis for recruitment of glycogen synthase kinase 3beta to the 
axin-APC scaffold complex. Embo J, 2003. 22(3): 494–501.

 57. Tompa, P. and M. Fuxreiter, Fuzzy complexes: Polymorphism and structural disorder in 
protein–protein interactions. Trends Biochem Sci, 2008. 33(1): 2–8.

 58. Jeong, H., S. P. Mason, A. L. Barabasi, and Z. N. Oltvai, Lethality and centrality in 
protein networks. Nature, 2001. 411(6833): 41–2.

 59. Ekman, D., S. Light, A. K. Bjorklund, and A. Elofsson, What properties characterize the 
hub proteins of the protein–protein interaction network of Saccharomyces cerevisiae? 
Genome Biol, 2006. 7(6): R45.

 60. Dosztanyi, Z., J. Chen, A. K. Dunker, I. Simon, and P. Tompa, Disorder and sequence 
repeats in hub proteins and their implications for network evolution. J Proteome Res, 
2006. 5(11): 2985–95.

 61. Patil, A. and H. Nakamura, Disordered domains and high surface charge confer hubs 
with the ability to interact with multiple proteins in interaction networks. FEBS Lett, 
2006. 580(8): 2041–5.

 62. Haynes, C., C. J. Oldfield, F. Ji, N. Klitgord, M. E. Cusick, P. Radivojac, V. N. Uversky, 
M. Vidal, and L. M. Iakoucheva, Intrinsic disorder is a common feature of hub proteins 
from four eukaryotic interactomes. PLoS Comput Biol, 2006. 2(8): e100.

 63. Bustos, D. M. and A. A. Iglesias, Intrinsic disorder is a key characteristic in partners that 
bind 14-3-3 proteins. Proteins, 2006. 63(1): 35–42.

 64. Pierce, M. M., U. Baxa, A. C. Steven, A. Bax, and R. B. Wickner, Is the prion domain of 
soluble Ure2p unstructured? Biochemistry, 2005. 44(1): 321–8.

 65. Elbaum, M., Materials science. Polymers in the pore. Science, 2006. 314(5800): 
766–7.

 66. Mukhopadhyay, R. and J. H. Hoh, AFM force measurements on microtubule-associated 
proteins: The projection domain exerts a long-range repulsive force. FEBS Lett, 2001. 
505(3): 374–8.

© 2009 by Taylor & Francis Group, LLC



Intrinsically Disordered Proteins and Their Recognition Functions 247

 67. Trombitas, K., M. Greaser, S. Labeit, J. P. Jin, M. Kellermayer, M. Helmes, and 
H. Granzier, Titin extensibility in situ: Entropic elasticity of permanently folded and 
permanently unfolded molecular segments. J Cell Biol, 1998. 140(4): 853–9.

 68. Fontana, A., P. P. de Laureto, B. Spolaore, E. Frare, P. Picotti, and M. Zambonin, Probing 
protein structure by limited proteolysis. Acta Biochim Pol, 2004. 51(2): 299–321.

 69. Iakoucheva, L. M., P. Radivojac, C. J. Brown, T. R. O’Connor, J. G. Sikes, Z. Obradovic, 
and A. K. Dunker, The importance of intrinsic disorder for protein phosphorylation. 
Nucleic Acids Res, 2004. 32(3): 1037–49.

 70. Cox, C. J., K. Dutta, E. T. Petri, W. C. Hwang, Y. Lin, S. M. Pascal, and R. Basavappa, 
The regions of securin and cyclin B proteins recognized by the ubiquitination machinery 
are natively unfolded. FEBS Lett, 2002. 527(1-3): 303–8.

 71. Khan, A. N. and P. N. Lewis, Unstructured conformations are a substrate requirement for 
the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem, 2005. 280(43): 
36073–8.

 72. Puntervoll, P., R. Linding, C. Gemund, S. Chabanis-Davidson, M. Mattingsdal, S. 
Cameron, D.M. Martin, G. Ausiello, B. Brannetti, A. Costantini, F. Ferre, V. Maselli, 
A. Via, G. Cesareni, F. Diella, G. Superti-Furga, L. Wyrwicz, C. Ramu, C. McGuigan, 
R. Gudavalli, I. Letunic, P. Bork, L. Rychlewski, B. Kuster, M. Helmer-Citterich, 
W.N. Hunter, R. Aasland, and T.J. Gibson, ELM server: A new resource for investigating 
short functional sites in modular eukaryotic proteins. Nucleic Acids Res, 2003. 31(13): 
3625–30.

 73. Fuxreiter, M., P. Tompa, and I. Simon, Structural disorder imparts plasticity on linear 
motifs. Bioinformatics, 2007. 23: 950–6.

 74. Lacy, E.R., I. Filippov, W. S. Lewis, S. Otieno, L. Xiao, S. Weiss, L. Hengst, and 
R. W. Kriwacki, p27 binds cyclin-CDK complexes through a sequential mechanism 
involving binding-induced protein folding. Nat Struct Mol Biol, 2004. 11(4): 358–64.

 75. Waizenegger, I., J. F. Gimenez-Abian, D. Wernic, and J. M. Peters, Regulation of human 
separase by securin binding and autocleavage. Curr Biol, 2002. 12(16): 1368–78.

 76. Kiss, R., Z. Bozoky, D. Kovacs, G. Rona, P. Friedrich, P. Dvortsak, P. Tompa, and 
A. Perczel, Calcium-induced tripartite binding of intrinsically disordered calpastatin to 
its cognate enzyme, calpain. FEBS Lett, 2008. 582(15):2149–54.

 77. Kiss, R., D. Kovacs, P. Tompa, and A. Perczel, Local structural preferences of cal-
pastatin, the intrinsically unstructured protein inhibitor of calpain. Biochemistry, 2008. 
47(26): 6936–45.

 78. Olashaw, N., T. K. Bagui, and W. J. Pledger, Cell cycle control: A complex issue. Cell 
Cycle, 2004. 3(3): 263–4.

 79. Haarmann, C. S., D. Green, M. G. Casarotto, D. R. Laver, and A. F. Dulhunty, The 
random-coil ‘C’ fragment of the dihydropyridine receptor II-III loop can activate or 
inhibit native skeletal ryanodine receptors. Biochem J, 2003. 372(Pt 2): 305–16.

 80. Cortese, M. S., V. N. Uversky, and A. K. Dunker, Intrinsic disorder in scaffold proteins: 
Getting more from less. Prog Biophys Mol Biol, 2008. 98(1):85–106.

 81. Bhattacharyya, R. P., A. Remenyi, M. C. Good, C. J. Bashor, A. M. Falick, and W. A. 
Lim, The Ste5 scaffold allosterically modulates signaling output of the yeast mating 
pathway. Science, 2006. 311(5762): 822–6.

 82. Mark, W. Y., J. C. Liao, Y. Lu, A. Ayed, R. Laister, B. Szymczyna, A. Chakrabartty, and 
C. H. Arrowsmith, Characterization of segments from the central region of BRCA1: An 
intrinsically disordered scaffold for multiple protein–protein and protein–DNA interac-
tions? J Mol Biol, 2005. 345(2): 275–87.

 83. Hegyi, H., E. Schad, and P. Tompa, Structural disorder promotes assembly of protein 
complexes. BMC Struct Biol, 2007. 7: 65.

© 2009 by Taylor & Francis Group, LLC



248 Computational Protein-Protein Interactions

 84. Holt, C., N. M. Wahlgren, and T. Drakenberg, Ability of a beta-casein phosphopeptide 
to modulate the precipitation of calcium phosphate by forming amorphous dicalcium 
phosphate nanoclusters. Biochem J, 1996. 314(Pt 3): 1035–9.

 85. Prusiner, S. B., Prions. Proc Natl Acad Sci USA, 1998. 95(23): 13363–83.
 86. Tuite, M. F. and N. Koloteva-Levin, Propagating prions in fungi and mammals. Mol 

Cell, 2004. 14(5): 541–52.
 87. Fowler, D. M., A. V. Koulov, W. E. Balch, and J. W. Kelly, Functional amyloid—from 

bacteria to humans. Trends Biochem Sci, 2007. 32(5): 217–24.
 88. Si, K., S. Lindquist, and E. R. Kandel, A neuronal isoform of the aplysia CPEB has 

prion-like properties. Cell, 2003. 115(7): 879–91.
 89. Ringe, D. and G. A. Petsko, Study of protein dynamics by X-ray diffraction. Methods 

Enzymol., 1986. 131: 389–433.
 90. Dyson, H. J. and P. E. Wright, Insights into the structure and dynamics of unfolded pro-

teins from nuclear magnetic resonance. Adv Protein Chem, 2002. 62: 311–40.
 91. Bracken, C., L. M. Iakoucheva, P. R. Romero, and A. K. Dunker, Combining predic-

tion, computation and experiment for the characterization of protein disorder. Curr Opin 
Struct Biol, 2004. 14(5): 570–6.

 92. Dyson, H. J. and P. E. Wright, Unfolded proteins and protein folding studied by NMR. 
Chem Rev, 2004. 104(8): 3607–22.

 93. Dyson, H. J. and P. E. Wright, Elucidation of the protein folding landscape by NMR. 
Methods Enzymol, 2005. 394: 299–321.

 94. Fasman, G.D., Circular Dichroism and the Conformational Analysis of Biomolecules. 
1996, New York: Plenum Press.

 95. Adler, A. J., N. J. Greenfield, and G. D. Fasman, Circular dichroism and optical rotatory 
dispersion of proteins and polypeptides. Methods Enzymol, 1973. 27: 675–735.

 96. Provencher, S. W. and J. Glockner, Estimation of globular protein secondary structure 
from circular dichroism. Biochemistry, 1981. 20(1): 33–7.

 97. Woody, R. W., Circular dichroism. Methods Enzymol., 1995. 246: 34–71.
 98. Smyth, E., C. D. Syme, E. W. Blanch, L. Hecht, M. Vasak, and L. D. Barron, Solution 

structure of native proteins with irregular folds from Raman optical activity. Biopolymers, 
2001. 58(2): 138–51.

 99. Uversky, V.N., A multiparametric approach to studies of self-organization of globular 
proteins. Biochemistry (Mosc), 1999. 64(3): 250–66.

 100. Receveur-Brechot, V., J. M. Bourhis, V. N. Uversky, B. Canard, and S. Longhi, Assessing 
protein disorder and induced folding. Proteins, 2006. 62(1): 24–45.

 101. Markus, G., Protein substrate conformation and proteolysis. Proc Natl Acad Sci USA, 
1965. 54: 253–8.

 102. Mikhalyi, E., Application of Proteolytic Enzymes to Protein Structure Studies. 1978, 
Boca Raton, FL: CRC Press.

 103. Hubbard, S. J., F. Eisenmenger, and J. M. Thornton, Modeling studies of the change in 
conformation required for cleavage of limited proteolytic sites. Protein Sci, 1994. 3(5): 
757–68.

 104. Fontana, A., P. Polverino de Laureto, V. De Filippis, E. Scaramella, and M. Zambonin, 
Probing the partly folded states of proteins by limited proteolysis. Fold Des, 1997. 2(2): 
R17–26.

 105. Fontana, A., M. Zambonin, P. Polverino de Laureto, V. De Filippis, A. Clementi, and 
E. Scaramella, Probing the conformational state of apomyoglobin by limited proteoly-
sis. J Mol Biol, 1997. 266(2): 223–30.

 106. Iakoucheva, L. M., A. L. Kimzey, C. D. Masselon, R. D. Smith, A. K. Dunker, and 
E. J. Ackerman, Aberrant mobility phenomena of the DNA repair protein XPA. Protein 
Sci, 2001. 10(7): 1353–62.

© 2009 by Taylor & Francis Group, LLC



Intrinsically Disordered Proteins and Their Recognition Functions 249

 107. Privalov, P. L., Stability of proteins: Small globular proteins. Adv Protein Chem, 1979. 
33: 167–241.

 108. Ptitsyn, O., Molten globule and protein folding. Adv Protein Chem, 1995. 47: 83–229.
 109. Ptitsyn, O. B., Kinetic and equilibrium intermediates in protein folding. Protein Eng, 

1994. 7(5): 593–6.
 110. Uversky, V. N. and O. B. Ptitsyn, Further evidence on the equilibrium “pre-molten glob-

ule state”: Four-state guanidinium chloride-induced unfolding of carbonic anhydrase B 
at low temperature. J Mol Biol, 1996. 255(1): 215–28.

 111. Westhof, E., D. Altschuh, D. Moras, A. C. Bloomer, A. Mondragon, A. Klug, and 
M. H. Van Regenmortel, Correlation between segmental mobility and the location of 
antigenic determinants in proteins. Nature, 1984. 311(5982): 123–6.

 112. Berzofsky, J. A., Intrinsic and extrinsic factors in protein antigenic structure. Science, 
1985. 229(4717): 932–40.

 113. Brown, H. G., J. C. Troncoso, and J. H. Hoh, Neurofilament-L homopolymers are less 
mechanically stable than native neurofilaments. J Microsc, 1998. 191(Pt 3): 229–37.

 114. Kaltashov, I. A. and A. Mohimen, Estimates of protein surface areas in solution by elec-
trospray ionization mass spectrometry. Anal Chem, 2005. 77(16): 5370-–9.

 115. Uversky, V. N. and O. B. Ptitsyn, “Partly folded” state, a new equilibrium state of protein 
molecules: Four-state guanidinium chloride-induced unfolding of beta-lactamase at low 
temperature. Biochemistry, 1994. 33(10): 2782–91.

 116. Uversky, V. N., Natively unfolded proteins, in Unfolded Proteins: From Denatured to 
Intrinsically Disordered. T. P. Creamer, Editor. 2008, Hauppauge, NY: Nova Science 
Publishers, pp. 237–94.

 117. Tcherkasskaya, O. and V. N. Uversky, Denatured collapsed states in protein folding: 
Example of apomyoglobin. Proteins, 2001. 44(3): 244–54.

 118. Crick, S. L., M. Jayaraman, C. Frieden, R. Wetzel, and R. V. Pappu, Fluorescence 
correlation spectroscopy shows that monomeric polyglutamine molecules form col-
lapsed structures in aqueous solutions. Proc Natl Acad Sci USA, 2006. 103(45): 
16764–9.

 119. Vitalis, A., X. Wang, and R. V. Pappu, Quantitative characterization of intrinsic disorder 
in polyglutamine: Insights from analysis based on polymer theories. Biophys J, 2007. 
93(6): 1923–37.

 120. Tran, H. T., A. Mao, and R. V. Pappu, Role of backbone-solvent interactions in deter-
mining conformational equilibria of intrinsically disordered proteins. J Am Chem Soc, 
2008. 130(23): 7380–92.

 121. Dill, K. A. and D. Shortle, Denatured states of proteins. Annu Rev Biochem, 1991. 60: 
795–825.

 122. Pappu, R. V., R. Srinivasan, and G. D. Rose, The Flory isolated-pair hypothesis is not 
valid for polypeptide chains: Implications for protein folding. Proc Natl Acad Sci USA, 
2000. 97(23): 12565–70.

 123. Shortle, D., The denatured state (the other half of the folding equation) and its role in 
protein stability. FASEB J, 1996. 10(1): 27–34.

 124. Shortle, D. R., Structural analysis of non-native states of proteins by NMR methods. 
Curr Opin Struct Biol, 1996. 6(1): 24–30.

 125. Gillespie, J. R. and D. Shortle, Characterization of long-range structure in the denatured 
state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation 
and calculation of an ensemble of structures. J Mol Biol, 1997. 268(1): 170–84.

 126. Gillespie, J. R. and D. Shortle, Characterization of long-range structure in the denatured 
state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide 
spin labels. J Mol Biol, 1997. 268(1): 158–69.

 127. Wang, Y. and D. Shortle, Residual helical and turn structure in the denatured state of 
staphylococcal nuclease: Analysis of peptide fragments. Fold Des, 1997. 2(2): 93–100.

© 2009 by Taylor & Francis Group, LLC



250 Computational Protein-Protein Interactions

 128. Eliezer, D., E. Kutluay, R. Bussell, Jr., and G. Browne, Conformational properties 
of alpha-synuclein in its free and lipid-associated states. J Mol Biol, 2001. 307(4): 
1061–73.

 129. Bussell, R., Jr. and D. Eliezer, Residual structure and dynamics in Parkinson’s disease-
associated mutants of alpha-synuclein. J Biol Chem, 2001. 276(49): 45996–46003.

 130. Sung, Y. H. and D. Eliezer, Residual structure, backbone dynamics, and interactions 
within the synuclein family. J Mol Biol, 2007. 372(3): 689–707.

 131. Fuxreiter, M., I. Simon, P. Friedrich, and P. Tompa, Preformed structural elements 
feature in partner recognition by intrinsically unstructured proteins. J Mol Biol, 2004. 
338(5): 1015–26.

 132. Parker, D., M. Rivera, T. Zor, A. Henrion-Caude, I. Radhakrishnan, A. Kumar, 
L. H. Shapiro, P. E. Wright, M. Montminy, and P. K. Brindle, Role of secondary struc-
ture in discrimination between constitutive and inducible activators. Mol Cell Biol, 
1999. 19(8): 5601–7.

 133. Radhakrishnan, I., G. C. Perez-Alvarado, H. J. Dyson, and P. E. Wright, Conformational 
preferences in the Ser133-phosphorylated and non-phosphorylated forms of the kinase 
inducible transactivation domain of CREB. FEBS Lett, 1998. 430(3): 317–22.

 134. Lee, H., K. H. Mok, R. Muhandiram, K. H. Park, J. E. Suk, D. H. Kim, J. Chang, 
Y. C. Sung, K. Y. Choi, and K. H. Han, Local structural elements in the mostly unstruc-
tured transcriptional activation domain of human p53. J Biol Chem, 2000. 275(38): 
29426–32.

 135. Daughdrill, G. W., L. J. Hanely, and F. W. Dahlquist, The C-terminal half of the anti-
sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical 
conformations. Biochemistry, 1998. 37(4): 1076–82.

 136. Dedmon, M. M., C. N. Patel, G. B. Young, and G. J. Pielak, FlgM gains structure in liv-
ing cells. Proc Natl Acad Sci USA, 2002. 99(20): 12681–4.

 137. Hauer, J. A., P. Barthe, S. S. Taylor, J. Parello, and A. Padilla, Two well-defined motifs in 
the cAMP-dependent protein kinase inhibitor (PKIalpha) correlate with inhibitory and 
nuclear export function. Protein Sci, 1999. 8(3): 545–53.

 138. Domanski, M., M. Hertzog, J. Coutant, I. Gutsche-Perelroizen, F. Bontems, M. F. Carlier, 
E. Guittet, and C. van Heijenoort, Coupling of folding and binding of thymosin beta4 
upon interaction with monomeric actin monitored by nuclear magnetic resonance. J Biol 
Chem, 2004. 279(22): 23637–45.

 139. Longhi, S., V. Receveur-Brechot, D. Karlin, K. Johansson, H. Darbon, D. Bhella, R. Yeo, 
S. Finet, and B. Canard, The C-terminal domain of the measles virus nucleoprotein is 
intrinsically disordered and folds upon binding to the C-terminal moiety of the phospho-
protein. J Biol Chem, 2003. 278(20): 18638–48.

 140. Sivakolundu, S. G., D. Bashford, and R. W. Kriwacki, Disordered p27Kip1 exhibits 
intrinsic structure resembling the Cdk2/cyclin A-bound conformation. J Mol Biol, 2005. 
353(5): 1118–28.

 141. Oldfield, C. J., Y. Cheng, M. S. Cortese, P. Romero, V. N. Uversky, and A. K. Dunker, 
Coupled folding and binding with alpha-helix-forming molecular recognition elements. 
Biochemistry, 2005. 44(37): 12454–70.

 142. Garner, E., P. Romero, A.K. Dunker, C. Brown, and Z. Obradovic, Predicting bind-
ing regions within disordered proteins. Genome Inform Ser Workshop Genome Inform, 
1999. 10: 41–50.

 143. Mader, S., H. Lee, A. Pause, and N. Sonenberg, The translation initiation factor eIF-4E 
binds to a common motif shared by the translation factor eIF-4 gamma and the transla-
tional repressors 4E-binding proteins. Mol Cell Biol, 1995. 15(9): 4990–7.

 144. Fletcher, C. M. and G. Wagner, The interaction of eIF4E with 4E-BP1 is an induced fit 
to a completely disordered protein. Protein Sci, 1998. 7(7): 1639–42.

© 2009 by Taylor & Francis Group, LLC



Intrinsically Disordered Proteins and Their Recognition Functions 251

 145. Cheng, Y., C. J. Oldfield, J. Meng, P. Romero, V. N. Uversky, and A. K. Dunker, Mining 
alpha-helix-forming molecular recognition features with cross species sequence align-
ments. Biochemistry, 2007. 46(47): 13468–77.

 146. Mohan, A., C. J. Oldfield, P. Radivojac, V. Vacic, M. S. Cortese, A. K. Dunker, and 
V. N. Uversky, Analysis of molecular recognition features (MoRFs). J Mol Biol, 2006. 
362(5): 1043–59.

 147. Pontius, B. W., Close encounters: Why unstructured, polymeric domains can increase 
rates of specific macromolecular association. Trends Biochem Sci, 1993. 18(5): 181–6.

 148. Csizmok, V., M. Bokor, P. Banki, É. Klement, K. F. Medzihradszky, P. Friedrich, 
K. Tompa, and P. Tompa, Primary contact sites in intrinsically unstructured proteins: 
The case of calpastatin and microtubule-associated protein 2. Biochemistry, 2005. 44: 
3955–64.

 149. Kalthoff, C., J. Alves, C. Urbanke, R. Knorr, and E. J. Ungewickell, Unusual structural 
organization of the endocytic proteins AP180 and epsin 1. J Biol Chem, 2002. 277(10): 
8209–16.

 150. Scheele, U., J. Alves, R. Frank, M. Duwel, C. Kalthoff, and E. Ungewickell, Molecular 
and functional characterization of clathrin- and AP-2-binding determinants within a dis-
ordered domain of auxilin. J Biol Chem, 2003. 278(28): 25357–68.

 151. Dafforn, T. R. and C. J. Smith, Natively unfolded domains in endocytosis: Hooks, lines 
and linkers. EMBO Rep, 2004. 5(11): 1046–52.

 152. Vise, P., B. Baral, A. Stancik, D. F. Lowry, and G. W. Daughdrill, Identifying long-range 
structure in the intrinsically unstructured transactivation domain of p53. Proteins, 2007. 
67(3): 526–30.

 153. Neduva, V. and R. B. Russell, Linear motifs: Evolutionary interaction switches. FEBS 
Lett, 2005. 579(15): 3342 –5.

 154. Neduva, V. and R. B. Russell, DILIMOT: Discovery of linear motifs in proteins. Nucleic 
Acids Res, 2006. 34(Web Server issue): W350–5.

 155. Davey, N. E., D. C. Shields, and R. J. Edwards, SLiMDisc: Short, linear motif dis-
covery, correcting for common evolutionary descent. Nucleic Acids Res, 2006. 34(12): 
3546–54.

 156. Dyson, H. J. and P. E. Wright, Coupling of folding and binding for unstructured pro-
teins. Curr Opin Struct Biol, 2002. 12(1): 54–60.

 157. Bienkiewicz, E. A., J. N. Adkins, and K. J. Lumb, Functional consequences of preor-
ganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). 
Biochemistry, 2002. 41(3): 752–9.

 158. Uversky, V. N., Neuropathology, biochemistry, and biophysics of alpha-synuclein aggre-
gation. J Neurochem, 2007. 103(1): 17–37.

 159. Uversky, V. N., alpha-Synuclein misfolding and neurodegenerative diseases. Curr 
Protein Peptide Sci, 2008. 9(5): 507–40.

 160. Uversky, V. N., A protein-chameleon: Conformational plasticity of alpha-synuclein, a 
disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn, 2003. 
21(2): 211–34.

 161. Dill, K. A. and H. S. Chan, From Levinthal to pathways to funnels. Nat Struct Biol, 
1997. 4(1): 10–19.

 162. Nymeyer, H., N. D. Socci, and J. N. Onuchic, Landscape approaches for determining the 
ensemble of folding transition states: Success and failure hinge on the degree of frustra-
tion. Proc Natl Acad Sci USA, 2000. 97(2): 634–9.

 163. Onuchic, J. N., H. Nymeyer, A. E. Garcia, J. Chahine, and N. D. Socci, The energy 
landscape theory of protein folding: Insights into folding mechanisms and scenarios. 
Adv Protein Chem, 2000. 53: 87–152.

© 2009 by Taylor & Francis Group, LLC



252 Computational Protein-Protein Interactions

 164. Gunasekaran, K., C. J. Tsai, and R. Nussinov, Analysis of ordered and disordered pro-
tein complexes reveals structural features discriminating between stable and unstable 
monomers. J Mol Biol, 2004. 341(5): 1327–41.

 165. Lowe, E. D., I. Tews, K. Y. Cheng, N. R. Brown, S. Gul, M. E. Noble, S. J. Gamblin, 
and L. N. Johnson, Specificity determinants of recruitment peptides bound to phospho-
CDK2/cyclin A. Biochemistry, 2002. 41(52): 15625–34.

 166. Avalos, J. L., I. Celic, S. Muhammad, M. S. Cosgrove, J. D. Boeke, and C. Wolberger, 
Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell, 2002. 10(3): 
523–35.

 167. Mujtaba, S., Y. He, L. Zeng, S. Yan, O. Plotnikova, Sachchidanand, R. Sanchez, 
N. J. Zeleznik-Le, Z. Ronai, and M. M. Zhou, Structural mechanism of the bromodo-
main of the coactivator CBP in p53 transcriptional activation. Mol Cell, 2004. 13(2): 
251–63.

 168. Wu, H., M. W. Maciejewski, A. Marintchev, S. E. Benashski, G. P. Mullen, and 
S. M. King, Solution structure of a dynein motor domain associated light chain. Nat 
Struct Biol, 2000. 7(7): 575–9.

 169. Chuikov, S., J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin, G. S. Ivanov, K. McKinney, 
P. Tempst, C. Prives, S. J. Gamblin, N. A. Barlev, and D. Reinberg, Regulation of p53 
activity through lysine methylation. Nature, 2004. 432(7015): 353–60.

 170. Poux, A. N. and R. Marmorstein, Molecular basis for Gcn5/PCAF histone acetyltrans-
ferase selectivity for histone and nonhistone substrates. Biochemistry, 2003. 42(49): 
14366–74.

 171. Bochkareva, E., L. Kaustov, A. Ayed, G. S. Yi, Y. Lu, A. Pineda-Lucena, J. C. Liao, 
A. L. Okorokov, J. Milner, C. H. Arrowsmith, and A. Bochkarev, Single-stranded DNA 
mimicry in the p53 transactivation domain interaction with replication protein A. Proc 
Natl Acad Sci USA, 2005. 102(43): 15412–7.

 172. Kussie, P. H., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and 
N. P. Pavletich, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor 
transactivation domain. Science, 1996. 274(5289): 948–53.

 173. Di Lello, P., L. M. Jenkins, T. N. Jones, B. D. Nguyen, T. Hara, H. Yamaguchi, 
J. D. Dikeakos, E. Appella, P. Legault, and J. G. Omichinski, Structure of the Tfb1/p53 
complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the 
activation domain of p53. Mol Cell, 2006. 22(6): 731–40.

 174. Kuszewski, J., A. M. Gronenborn, and G. M. Clore, Improving the packing and accuracy 
of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc, 
1999. 121(10): 2337–8.

 175. Cho, Y., S. Gorina, P. D. Jeffrey, and N. P. Pavletich, Crystal structure of a p53 tumor 
suppressor-DNA complex: Understanding tumorigenic mutations. Science, 1994. 
265(5170): 346–55.

 176. Joo, W. S., P. D. Jeffrey, S. B. Cantor, M. S. Finnin, D. M. Livingston, and N. P. Pavletich, 
Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 
BRCT structure. Genes Dev, 2002. 16(5): 583–93.

 177. Gorina, S. and N. P. Pavletich, Structure of the p53 tumor suppressor bound to the 
ankyrin and SH3 domains of 53BP2. Science, 1996. 274(5289): 1001–5.

 178. Meszaros, B., P. Tompa, I. Simon, and Z. Dosztanyi, Molecular principles of the interac-
tions of disordered proteins. J Mol Biol, 2007. 372(2): 549–61.

© 2009 by Taylor & Francis Group, LLC



253

13 Identification of 
Druggable Hot Spots on 
Proteins and in Protein–
Protein Interfaces

Dmitri Beglov, Ryan Brenke, Gwo-Yu Chuang, 
David Hall, Melissa Landon, Chi Ho Ngan, 
Yang Shen, Spencer Thiel, Brandon Zerbe, 
Dima Kozakov, and Sandor Vajda

overvieW

The interactions of proteins with each other and other biochemical compounds play 
a central role in various aspects of the structural and functional organization of the 
cell. Elucidation of such interactions is a major step toward understanding cellular 
pathways and processes and also suggests avenues for drug design. One observation 
that emerges from these studies is that the various residues in the binding region do 
not equally contribute to the binding free energy. By replacing individual interface 
residues with alanine (known as alanine scanning mutagenesis), Clackson and Wells 
found that a central hydrophobic region of human growth hormone receptor accounts 
for more than three-quarters of the binding free energy.1 This led the authors to 
introduce the notion of hot spots.
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Subsequent studies have shown that hot spots can be identified in most if not all 
protein–protein and protein–small molecule interfaces.2 A database of hot spots in 
proteins, ASEdb,3 collected single alanine mutations and associated binding affin-
ity in protein–protein, protein–nucleic acids, and protein–small molecule interac-
tions. Efforts were made to interpret these data so that hot spot residues could 
be characterized. For instance, after analyzing 2325 alanine mutants, Bogan and 
Thorn2 found that (1) hot spots tend to cluster at the center of the interface where 
they are protected from the bulk solvent and (2) some amino acids appear more 
often in hot spots. In particular, hot spots are often enriched in tryptophan, tyrosine, 
and arginine and are surrounded by residues that most likely serve to occlude the 
solvent but which do not contribute significantly to binding free energy. Work by 
Hu and co-workers4 also showed that polar residues (arginine, glutamine, histi-
dine, aspartic acid, and asparagine) were generally conserved in interfaces and 
further that these conserved polar residues are frequently in hot spots; however, 
as these authors and other investigators have observed, a residue’s solvent acces-
sibility, polarity, and charges are necessary but probably not sufficient conditions 
for the identification of hot spots.5,6 In addition, some residues that are not within 
the interface can also contribute substantially to the free energy of binding when 
assayed by alanine scanning mutagenesis. This is most often explained by changes 
in three-dimensional conformation of the binding site.5

Another powerful approach to the identification of hot spots, which is frequently 
utilized in drug design, involves screening libraries of fragment-sized compounds 
for binding to the target protein.7 Both NMR and x-ray crystallography techniques 
have been used for such fragment-based screening. Using NMR, the 15N-labeled 
protein is screened against a library of fragment compounds.8,9 Applications to a 
variety of proteins demonstrate that small organic compounds have a strong pref-
erence for binding at the energetic hot spots on protein surfaces although not nec-
essarily with large binding free energies. A high hit rate is a good predictor of 
druggability: Indeed, high correlation was observed between the number of differ-
ent probes binding to a site and the ability to identify high-affinity (Kd < 300 nM), 
nonpeptide, noncovalent inhibitors that bind there.9 The x-ray technique applica-
tion of this idea, known as multiple solvent crystal structures (MSCS) method, 
is based on solving the structure of the protein in aqueous solutions of various 
compounds, primarily organic solvents.10,11 Each structure shows a few organic 
molecules associated with the protein surface in the first shell of water molecules. 
The power of the method arises from superimposing a number of structures solved 
in different solvents. Most organic compounds generally cluster in the binding 
site, and the overlapping probe clusters form “consensus” sites that highlight the 
functionally most important subsites. As demonstrated by applications to porcine 
elastase10–12 and thermolysin,13,14 some organic molecules may also bind at crystal 
contacts or in small buried pockets, but the large consensus sites generally occur 
in the hot spots of the binding site.

Since the identification of hot spots by alanine scanning mutagenesis, nuclear 
magnetic resonance (NMR), or x-ray crystallography is expensive, it is important to 
explore whether similar information can be obtained via a computational approach. 
In fact, the first report that only a small number of amino acids contribute actively to 
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binding energetics was based on simple free energy calculations by Novotny and co-
workers.15 More recent approaches have simulated computational alanine scanning 
mutagenesis employing free energy perturbation and thermodynamic cycles with 
the expectation that a full description of the structural and energetic consequences 
of mutagenesis can be predicted. Massova and Kollman16 estimated the binding free 
energy from energies in the gas phase (electrostatic, van der Waals, and internal 
energy terms); solvation free energies (Poisson–Boltzmann and nonpolar contribu-
tions); and vibrational, rotational, and translational entropies for the complex and 
the component molecules. They used these energy terms to study the interactions 
between the tumor suppressor protein p53 and oncoprotein Mdm2 demonstrating 
excellent agreement with experimental binding data. The accuracy of this approach 
relies on the accuracy of the free energy estimates, and the adequate calculation of 
the entropic terms requires extensive conformational sampling at considerable com-
putational costs. Kortemme and Baker proposed a simplified free energy model6 with 
the following physical considerations of dominant molecular interactions: (1) shape 
complementarity, (2) polar interactions involving ion pairs and hydrogen bonds, (3) 
the interactions of protein atoms with the solvent including a penalty for the desolva-
tion of buried polar groups, and (4) the effects of mutations on both the protein–pro-
tein complex and the unbound partners. The relative weight of the energy terms and 
amino acid dependent reference energies were parameterized using a training set of 
stability changes measured in 743 single alanine mutations in monomeric proteins. 
The parameterized free energy function was tested on a database of 19 complexes 
with known crystal structures and with measured changes in binding energy on ala-
nine mutagenesis. Remarkably, this methodology predicted 79% of the interface hot 
spot residues. Furthermore, the authors were able to make more precise explanations 
of some earlier observations on hot spots attributing much of their success on the 
inclusion of an environment-dependent hydrogen bonding term.6

In this chapter we focus on computational fragment mapping, a method that can 
be considered a direct computational analogue of the fragment-based approaches 
based on the use of NMR or x-ray crystallography. After a brief description of the 
method, we present mapping results for the zinc endopeptidase thermolysin, which 
has its x-ray structure determined in four aqueous solutions of different organic sol-
vents.13,14 This validation study shows that the same or even more complete infor-
mation can be obtained by computational mapping. The second application is to 
renin aspartic protease, a long-standing pharmaceutical target for the treatment of 
hypertension. We do not have experimental mapping data for renin, so our goal is 
to instead show that mapping can reliably identify the hot spots that substantially 
contribute to the free energy of ligand binding and hence should be the primary tar-
gets of drug design efforts. Indeed, the major consensus sites found trace the shape 
of the first approved renin inhibitor, aliskiren,17,18 rather than that of peptidomimetic 
inhibitors that have been studied for several decades but which have not provided 
any successful drug candidates. In the third application we explore the binding site 
structure of PPARγ, a ligand activated transcription factor, and show that mapping 
identifies the hot spots both in the ligand binding site and in the surface regions of 
PPARγ that interact with other proteins. Finally, we provide a number of examples 
of hot spots in protein–protein interfaces.
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CoMPutational Protein MaPPing

Computational mapping methods place molecular probes on the protein surface to 
explore the protein’s binding properties. A number of methods identify potential 
binding sites.19–21 Some early methods such as GRID22 and multiple copy simulta-
neous search (MCSS)23,24 have been developed to find favorable binding positions 
for specific molecules or functional groups rather than to identify hot spots. Both 
methods result in many energy minima, and, consequently, it is difficult to determine 
which of the minima are actually relevant.10 For example, English et al.14 compared 
the GRID and MCSS results with x-ray structures of thermolysin determined in four 
different organic solvents and showed that both methods found minima close to the 
experimentally observed positions; however, the closest minima were not among 
those with the lowest free energies. Thus, these methodologies resulted in false posi-
tives (i.e., conformations with favorable energy that are not located near any experi-
mentally observed binding site). The mapping algorithms CS-Map71 and FTMAP70 
were developed to alleviate these problems by using an improved energy function 
and thermodynamic inspired sampling. We first developed CS-Map to reproduce 
NMR and x-ray screening results using a number of organic molecules as virtual 
probes.25,26 For each probe, the algorithm generates more than 6000 bound positions 
by a multistart rigid-body docking based on the nonlinear simplex algorithm, further 
refines the positions by energy minimization, clusters the resulting conformations, 
and ranks the clusters on the basis of this average free energy. Results are better 
than for GRID or MCSS because the simplex algorithm provides better sampling, 
the scoring potential includes a solvation term, and the final ranking is based on the 
average cluster free energy rather than the energy of individual docked conforma-
tions. Another difference is that the mapping algorithm’s goal is to find consensus 
sites where several low energy probe clusters overlap instead of the goal of finding 
favorable binding positions. Each of these factors helps the method to avoid irrel-
evant local minima, which provides a strong safeguard against false positives. We 
have shown that CS-Map was able to identify the most important subsite in a num-
ber of proteins;25–31 nevertheless, there was clear need for improvements. In some 
cases the sampling turned out to be inadequate, particularly if the protein had deep 
pockets.28 Although the largest consensus site was generally reliable, results became 
noisy for the smaller sites, and some of the subsites were not identified. In addition, 
the algorithm was slow; it required more than 1000 CPU hours on a 1 GHz PIII pro-
cessor to map a single small protein with 16 probes. Running the program on mul-
tiple processors makes the computations feasible, but it is still difficult to perform 
large-scale studies, particularly if the goal is to map several structures or models of 
a protein to account for its flexibility.26

More recently we have developed FTMAP,70 an improved mapping algorithm based 
on the fast Fourier transform (FFT) correlation approach. FTMAP starts with sam-
pling billions of probe positions on a dense translational and rotational grid. The posi-
tions are scored using an energy function that includes attractive and repulsive van der 
Waals terms, electrostatic interaction energy based on Poisson–Boltzmann calcula-
tions, a cavity term to represent the effect of nonpolar enclosures, and a structure-based 
pairwise interaction potential. In spite of its relative complexity, the energy expression 
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is written as a sum of correlation functions with components defined on grids. This 
enables the use of the extremely efficient FFT correlation method for function evalua-
tion.32 The FTMAP algorithm consists of five steps as follows:

Step 1: Rigid-body docking of probe molecules. Protein structures are down-
loaded from the Protein Data Bank (PDB)33 and all bound ligands and water 
molecules are removed. For each structure, the 16 small molecules shown 
in Figure 13.1 are used as probes. For each probe, billions of docked con-
formations are sampled by a special-purpose rigid-body docking algorithm 
based on the FFT correlation approach. Mapping requires only the atomic 
coordinates of the two molecules, that is, no a priori information on the 
binding site is used. The 2000 best poses for each probe are retained for 
further processing.

Step 2: Minimization and rescoring. The free energy of each of the 2000 com-
plexes, generated in Step 1, is minimized using the CHARMM (Chemistry at 
HARvard Macromolecular Mechanics) potential with the analytic continuum 
electrostatic (ACE) model representing the electrostatics and solvation terms 
as implemented in version 27 of CHARMM34 using the parameter set from 
version 19 of the program. The ACE model includes a surface area depen-
dent term to account for the solute–solvent van der Waals interactions. The 
minimization is performed using an adopted basis Newton–Raphson method. 
During the minimization, the protein atoms are held fixed, while the atoms of 
the probe molecules are free to move.

figure 13.1 (SEE COLOR INSERT FOLLOWING PAGE 174.) Small organic mole-
cules used as probes in protein mapping. The probes are colored as follows: ethanol, sky blue; 
isopropanol, green; isobutanol, cyan; acetone, violet; acetaldehyde, olive; dimethyl ether, 
sand; cyclohexane, chocolate; ethane, purple; acetonitrile, pale green; urea, orange; meth-
ylamine, zinc; phenol, deep blue; benzaldehyde, gold; benzene, silver; acetamide, lemon; 
N,N-dimethylformamide, yellow. Oxygen atoms are colored red; nitrogen atoms are colored 
blue. (From Brenke, R. et al., 2009. Reprinted with permission from Bioinformatics.)
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Step 3: Clustering and ranking. The minimized probe conformations from 
Step 2 are grouped into clusters using a simple greedy algorithm. The low-
est energy structure is selected and the structures within 3 Å RMSD are 
joined in the first cluster. The members of this cluster are removed, and 
the next lowest energy structure is selected to start the second cluster. This 
step is repeated until the entire set is exhausted. Clusters with less than 10 
members are excluded from consideration thereby avoiding narrow energy 
minima with low entropy.35 The retained clusters are ranked on the basis of 
their Boltzmann averaged energies.

Step 4: Determination of consensus sites. To determine the hot spots, FTMAP 
uses the consensus clustering idea based on the original MSCS experiments10,36 
and finds the regions on the protein where clusters of different probes overlap. 
Six clusters with the lowest average free energies are retained for each probe. 
The clusters of different probes are clustered using the distance between the 
centers of mass of the cluster centers as the distance measure. FTMAP again 
uses a simple greedy algorithm to find the cluster with the maximum number 
of neighbors (defined as cluster centers within 4 Å from each other), forming 
consensus site 1 (CS1). Members of CS1 are then removed from consideration, 
and the procedure is repeated until all clusters are exhausted. The structures 
are then redistributed among the consensus sites such that each structure is 
closest to the center of its own consensus site, and finally the consensus sites 
are ranked based on the number of their clusters. Duplicate clusters of the 
same type are considered in the count.

Step 5: Characterization of the binding site. First, FTMAP selects the largest 
consensus site (CS1) that generally identifies the most important subsite (or 
hot spot). CS1 forms the kernel of the binding site. Since additional clus-
tering of probes close to the main consensus site is likely to indicate other 
subsites of the binding site, the binding site is expanded by adding any 
consensus site (irrespective of its size) within 7 Å from any consensus site 
already in the binding site. This procedure continues until no further expan-
sion is possible. The resulting set of consensus sites is used to describe the 
binding site.

the MaPPing of therMolysin

Thermolysin is a thermostable extracellular bacterial zinc endopeptidase with a large 
active-site cleft consisting of at least four subsites (S2, S1, ′S1 , and ′S2 ). The ′S1  sub-
site is the main specificity pocket.13,37 It forms a distinct cavity that is lined with 
hydrophobic residues (F130, L33, V139, and L202), whereas polar residues (N112, 
E143, R203, and H231) are toward its edge.38,39

English et al.13,14 determined high-resolution x-ray structures of thermolysin 
from crystals soaked in aqueous solutions of isopropanol, acetone, acetonitrile, 
and phenol. An increasing number of solvent interaction sites was identified as the 
organic solvent concentrations increased; however, the ′S1  subsite is exceptional on 
two accounts. First, ′S1  is the only probe binding site at low solvent concentration 
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levels. Furthermore, the concentrations must be substantially increased (up to 80% 
in the case of isopropanol) before binding occurs at any other location. Second, ′S1  
is the only site where all four solvent molecules bind. The superimposition of the 
four mapped thermolysin structures solved in 5% isopropanol, 50% acetone, 80% 
acetonitrile, and 50 mM phenol (Figure 13.2A) shows the four organic solvent mol-
ecules binding within the ′S1  pocket.

Superimposing all structures obtained in the four solvents at different concen-
trations shows isopropanol, acetone, and phenol binding at 12, 6, and 2 positions, 
respectively, whereas acetonitrile binds only at the ′S1  site. Figure 13.2B shows the 
overlay of all probe molecules that bind in the active site. As described, the ′S1  
pocket binds all four probes. Two more isopropanol molecules from the structure of 
thermolysin in 90% isopropanol are shown below the main specificity pocket occu-
pying the S1 and S2 subsites. Finally, the upper left side of Figure 13.2B along the 
active site cleft shows an isopropanol and an acetonitrile. This site binds a crystal-
lographic water molecule in the original structure, and it starts to bind isopropanol 
and acetone at 80% and 70% concentrations, respectively.

As discussed by Mattos and Ringe,10 the binding of the maximum number of 
probe molecules generally identifies the most important subsite in the active site of 
an enzyme. The ′S1  pocket of thermolysin clearly satisfies this condition. The nearby 
positions that also bind clusters of probe molecules are likely to be further subsites 
of the active site (Figure 13.2B). Although probes binding far from the main consen-
sus site often identify further important sites (e.g., allosteric sites, residues involved 
in dimerization, etc.), such secondary positions for thermolysin include only a bur-
ied pocket in the interior of the protein, several crystal contacts, and an interaction 
site created by a protein-bound molecule of dimethyl sulfoxide (DMSO).13 Thus, the 
focus of this section will be on the identification of hot spots in the active site, and 
probes binding at secondary locations will be ignored.

Since no thermolysin structure without any bound ligand was available, a struc-
ture co-crystallized with the dipeptide Val-Lys, a cleavage product (PDB code 2tlx), 
was mapped. The peptide, the active site Zn2+ ion, and all crystallographic water 
molecules were removed before mapping. To explore the information that can be 
obtained by generic mapping methodology, all 16 probes shown in Figure 13.1 were 
used rather than only the four probes with experimental mapping results available. 
For each probe, the six lowest free energy clusters were superimposed to identify 
the consensus sites (CSs) defined by overlapping probe clusters. The largest consen-
sus site (CS1) contains clusters of all 16 probes, plus second clusters of isopropanol, 
isobutanol, and N,N-dimethylformamide. Figure 13.2C shows that these centers 
(i.e., lowest energy structures of the 19 clusters in CS1) form a very tight superclus-
ter in the ′S1  pocket. This outcome is in excellent agreement with the results of the 
MSCS experiments that show ′S1  being the only subsite binding all four solvent 
molecules.14

As described earlier, the algorithm first identifies the largest consensus site (always 
denoted as CS1), expands it if there is any further (even relatively small) consensus 
site within 7 Å, and continues this expansion until no further consensus sites can 
be reached. Figure 13.2D shows the consensus site at ′S1 , and the three adjacent 
sites. CS2 is a fairly elongated supercluster of 16 clusters, covering both the S1 and 
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figure 13.2 Binding of organic solvents to thermolysin, determined by x-ray crystallogra-
phy and computational mapping. (A) Probe molecule binding in the S1’ pocket of thermolysin, 
based on superimposing thermolysin structures solved in isopropanol, acetone, acetonitrile, 
and phenol. (B) Probe molecules in the active site of thermolysin, based on superimposing 
thermolysin structures solved in isopropanol, acetone, acetonitrile, and phenol. (C) Centers 
of probe clusters in the largest consensus site of thermolysin, located in the S1’ pocket, from 
mapping the protein using the 16 probes shown in Figure 13.1. (D) Centers of probe clusters 
in the four consensus sites located in the active site of thermolysin, determined by mapping 
the thermolysin protein using the 16 probes shown in Figure 13.1. The probes are shaded to 
distinguish between the different consensus sites as follows: CS1, gray (at S1’); CS2, dark 
gray (near S2); CS6, black (near S1); and CS7, light gray (top right). (From Brenke, R. et al., 
2009. Reprined with permission from Bioinformatics.) 
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S2 subsites. The next consensus site within 7 Å is CS6, which includes eight probe 
clusters and expands from subsite ′S1  to subsite S1. Finally, CS7 includes seven probe 
clusters that overlap a methanol and an acetone molecule. Thus, the main consensus 
site CS1 and the three adjacent sites, CS2, CS6, and CS7, identify all subsites of the 
active site that bind any organic solvent in the MSCS experiments.13,14

The residues that interact with a large number of probes in the active site also 
tend to favorably interact with the specific ligands of the protein.7,8 To show that 
computational mapping can provide such information, the nonbonded interactions 
and hydrogen bonds between each thermolysin residue and the probes, which are 
taken both from the experimental13,14 and the computational mapping results, are 
shown in Figures 13.2B and 13.2D, respectively. FTMAP finds all residues that 
are important for substrate binding and most residues participating in the catalytic 
mechanism (Figures 13.3A and 13.3B): H142, H146, and E166 coordinate the Zn2+ 
ion in the active site; E143 serves as the general base; Y157 and H231 provide stabili-
zation of the transition state; the backbone of W115 forms two hydrogen bonds with 
the substrate in the S1 pocket; and N112 and the backbone of A113 form hydrogen 
bonds with the leaving group on one side and R203 on the opposite side of the ′S1  
pocket.38,39 While these results are essentially complete, note that the experimental 
mapping misses residues E166 and H231 as well as some of the hydrogen bonds.

Note that the mapping results reflect the importance of each residue for substrate 
binding rather than for catalytic activity. For example, computational mapping finds 
a large number of hydrogen bonds for R203 (Figure 13.3B). Although R203 does not 
directly participate in hydrolysis, it forms hydrogen bonds with the carbonyl group of 
the residue at the ′P1  position38,39 and is known to be crucial for substrate binding.40 In 
contrast, the mapping does not find D226, which is part of the catalytic mechanism,38,39 
although this residue is not particularly important (the D226A mutation introduces 
only a minor perturbation in the activity41). In spite of their completeness, the compu-
tational results do not seem to overpredict the importance of any residue. The experi-
mental mapping is slightly less specific and finds a few residues (N116, G117, D150, 
Y211, and G212) that do not seem to play major roles.38,39 Note that in computational 
mapping very few or no probes interact with these residues (Figure 13.3A).

iDentifiCation of the Druggable hot sPots of renin

Renin is an enzyme secreted by the kidneys that is involved in the first step of the 
rennin–angiotensin system (RAS), a system that regulates blood pressure and volume 
balance and is a common target for the treatment of hypertension. Renin hydrolyzes 
angiotensinogen into angiotensin I, which is in turn further hydrolyzed by angiotensin 
converting enzyme (ACE) into angiotensin II. Angiotensin II has numerous physi-
ological effects including vasoconstriction and the stimulation of thirst. Inhibition 
of either step in RAS is possible, and ACE inhibitors have been Food and Drug 
Administration (FDA) approved since the early 1980s. Aliskiren, approved by the 
FDA in 2007, is the first non-peptidomimetic drug that inhibits renin. Following the 
completion of computational mapping of renin detailed in this section, the structure 
of aliskiren-bound renin was deposited in the PDB with code 2v0z; however, at the 
time of our mapping studies,30 no such structure was available.
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figure 13.3 (A) Intermolecular nonbonded interactions between probes and thermo-
lysin residues, determined by x-ray crystallography13,14 and computational mapping. The 
experimental and computational results are based on the interactions found between various 
thermolysin residues and the probes in the clusters shown in Figures 13.2B and 13.2D, respec-
tively. (B) The same as panel A, but for hydrogen bonds rather than nonbonded interactions. 
(From Brenke, R. et al., 2009. Reprinted with permission from Bioinformatics.)
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For comparison with the mapping results, aliskiren was docked to a renin struc-
ture (PDB code 1RNE) using the GOLD program. Details regarding key contacts 
and hydrogen-bonding positions from the literature were used in conjunction with 
qualitative information, specifically Figure 13.4, to determine the most appropriate 
docked conformation for use in the analyses. The resulting conformation exhibited 
high similarity to the aliskiren-bound structure that has been later deposited in the 
PDB. Figure 13.4B shows the most similar docked conformation of aliskiren, colored 
in purple, in the binding pocket of renin. The conformation of the peptidomimetic 
inhibitor in 1RNE is shown in green. The resulting contact data between aliskiren 
and renin were used to compare the mapping results to residue interactions made by 
aliskiren and the peptidomimetic inhibitors of renin.

Five renin structures were mapped to predict favorable binding locations within 
the peptide binding pocket. As shown in Figure 13.5B, all consensus sites that were 
found to be located in the binding region are shown superimposed onto the structure 
of PDB code 1rne, renin with inhibitor. Consensus sites are shown in Figure 13.5A 
according to the structure from which they were derived; structures utilized from the 
PDB for the study were 1bil, 1bim, 1hrn, 1rne, and 2ren, where 2ren is an unliganded 
structure of renin and the other four structures are bound by peptidomimetic inhibi-
tors. Given the confinement of all consensus sites to the same region of the binding 
pocket, it was concluded that small changes in the conformation of residues in the 
binding region do not affect the mapping results significantly.

Figure 13.5B is a close-up view of the consensus sites located in the binding 
pocket. In this depiction, all consensus sites resulting from the five structures are 
colored uniformly in light blue. For clarity, only the probe cluster representatives 
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figure 13.4 (SEE COLOR INSERT FOLLOWING PAGE 174.) (A) Published fig-
ure from Novartis depicting the conformation of aliskiren with respect to a peptidomimetic. 
(From J. M. Wood et al., Structure-based design of aliskiren, a novel orally effective renin 
inhibitor, Biochem Biophys Res Commun, 308, 698–705, 2003. Reprinted with permission 
from Biochemical and Biophysical Research Communications). (B) Resulting docked con-
formation of aliskiren, shown in purple, in the peptide-binding pocket of renin. The rela-
tive conformation of the same peptidomimetic from panel A is shown in green. The docked 
conformation of aliskiren is qualitatively consistent with the published figure. Key struc-
tural features, such as the occupation of the S

SP

3  pocket, conjectured to be responsible for the 
affinity of aliskiren, are preserved in the docked conformation. (From M.R. Landon et al., 
Identification of hot spots within druggable binding sites of proteins by computational solvent 
mapping, J Med Chem, 50, 1231–1240, 2007. Reprinted with permission from the Journal of 
Medicinal Chemistry.)
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that comprise the consensus sites are displayed. The conformation of GOLD docked 
aliskiren is shown in purple in Figure 13.4B to allow for comparison to the mapping 
results. It is readily apparent from this view that the consensus sites in the binding 
region overlap significantly with the region occupied by aliskiren, making contacts 
primarily in the S1, S3, and ′S2  subsites. The absence of probe clusters in the S2 and 
S4 subsites is illustrated in Figures 13.5C and 13.5D, where the four peptidomimetic 
inhibitors taken from the bound PDB structures that were used for mapping are 
added in green. Figure 13.5D is a side view of the binding region. Figures 13.5C and 
13.5D emphasize that while each of the peptidomimetic inhibitors makes significant 
contacts in the S2 and S4 regions, neither aliskiren nor the mapping probes do so to 
a visible extent. Interestingly, one of the densest regions of probe molecules is found 
in the SSP

3  subsite, a region of the binding pocket that was described in the Novartis 
publication as being unique to the binding modality of aliskiren versus other renin 
inhibitors.
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figure 13.5 (SEE COLOR INSERT FOLLOWING PAGE 174.) Mapping results for 
five structures of renin. (A) The first and second ranked consensus sites resulting from the 
mapping of the different structures are superimposed in the peptide binding pocket of renin, 
demonstrating the reproducibility of the results. Each color represents the results of a dis-
tinctive protein. (B) Closer examination of the consensus sites depicted in panel A, now all 
colored light blue and shown in relation to the docked conformation of aliskiren, supports 
the importance of the S1, S2, S3, and S

SP

3  subsites for ligand affinity. (C and D) The preferred 
binding mode of aliskiren as compared to the peptidomimetics, shown in green, is confirmed 
by the mapping results. The S2 and S4 subsites are bound preferentially by the peptidomimet-
ics, but not by aliskiren or the mapping probes. (From M.R. Landon et al., Identification of 
hot spots within druggable binding sites of proteins by computational solvent mapping, J 
Med Chem, 50, 1231–1240, 2007. Reprinted with permission from the Journal of Medicinal 
Chemistry.)
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The ranks of the consensus sites occupying the different subsites of the binding 
pocket are summarized in Table 13.1, where the assignment of residues to a sub-
site was utilized from a previous publication.42 With the exception of the unbound 
structure, the top ranked consensus sites occupy both the S1 and S3 subsites of the 
binding pocket for each structure; in the case of the unbound structure, the consen-
sus site in the S3 pocket is first and the consensus site in the S1 pocket is second. 
Conformational changes undergone by aspartyl proteases upon ligand binding may 
account for the difference in mapping results existing between the unbound and the 
bound structures, in particular the change in shape of the S3 region of the active site.43 
The important result is that no significantly populated consensus site is present in 
the S4 pocket, and only a single, low-ranked consensus site is found in the S2 subsite. 
This analysis suggests that the S2 and S4 subsites bind druglike functional groups 
with lower affinity than the other subsites of the peptide binding pocket. Based on 
these results, we can conclude that the S1, S3, and SSP

3  subsites of the binding pocket 
are hot spots for fragment binding and, within the S3 subsite, the SSP

3  region displays 
particularly high affinity for small molecules.

Subsequent to the characterization of hot spots within the binding pocket of renin, 
the mapping algorithm was applied to the identification of specific residues that are 
crucial for ligand affinity within the hot spot regions. Residues were defined as part 
of the binding pocket if, based on the docking, any of their atoms were within 6 Å 
of an atom of the bound aliskiren. In addition, calculating interactions for the probe 
molecules, we determined interactions for both aliskiren and the four peptidomi-
metic inhibitors shown in Figures 13.5C and 13.5D for comparison. The resulting 
residue-based interaction distributions are shown in Figure 13.6, with the residues 
composing the binding pocket placed in sequence order on the horizontal axis. 
Residue interactions were calculated separately for each peptidomimetic inhibitor 
and then averaged to create one value. A high level of agreement exists between the 

table 13.1
rankings of the Consensus sites Present in the subsites of the binding 
Pocket of renin for the five structures Mapped

PDb/subsite s4 s3 s2 s1 s1’ s2’

1RNE NP 1 (28) NP 1 (28) 6 (7) 2 (15)

1HRN NP 1 (24) 4 (12)a 1 (24) 4 (12)a 2 (15)

1BIL NP 1 (19) NP 1 (19) NP 2 (15)

1BIM NP 1 (24) NP 1 (24) 2 (14) 2 (14)

2REN NP 1 (11) NP 2 (8) NP NP

Source: From M.R. Landon et al., Identification of hot spots within druggable binding sites of proteins 
by computational solvent mapping, J Med Chem, 50, 1231–1240, 2007. Reprinted with permis-
sion from the Journal of Medicinal Chemistry.

Note: The number in parentheses indicates the number of probe clusters used to create the consensus site. 
NP = not present.

a Both consensus sites have the same number of clusters.
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distributions for aliskiren, shown in dark gray, and the mapping probes, shown in 
black (Figure 13.6); in particular, atom interactions are enriched in both distributions 
for residues G13 and Y75, located in the SSP

3  and S1 subsites, respectively. However, 
while both aliskiren and the peptidomimetic inhibitors interact significantly with the 
catalytic D32, located in the S1 subsite, the residue was not highly interactive with 
mapping probes; because both aliskiren and the mapping probes make the highest 
level of interactions in the S1 subsite with Y75, this may suggest that while D32 is 
necessary for catalysis, it may contribute less to the binding affinity of ligands than 
the surrounding residues.

As compared to the high level of agreement existing between the GOLD docked 
aliskiren’s and the mapping probes’ distribution of residue interactions, the compari-
son of interaction distributions between the mapping probes and the peptidomimetics 
yielded a very low level of correlation. Residues predicted to be hot spots based on the 
analysis of interactions made with the peptidomimetics, shown in Figure 13.6 as the 
light gray distribution, were located primarily in the S2 subsite, such as residues S76 
and A218. Agreement between the peptidomimetics and aliskiren was only seen in the 
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figure 13.6 Distribution of atom-based residue interactions in the binding pocket of renin 
for the mapping probes, aliskiren, and three different peptidomimetics. In the case of the pep-
tidomimetics, the average number of interactions at each residue was utilized. The Pearson 
correlation coefficient between the mapping probes and aliskiren is 0.72, while that between 
the mapping probes and the peptidomimetics is 0.19. (From M.R. Landon et al., Identification 
of hot spots within druggable binding sites of proteins by computational solvent mapping, J 
Med Chem, 50, 1231–1240, 2007. Reprinted with permission from the Journal of Medicinal 
Chemistry.)
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S1 region with the two catalytic aspartic acids, D32 and D215. As a quantitative mea-
sure of similarity, the Pearson correlation coefficients (R) in a pairwise fashion for the 
three distributions were calculated. Assuming that there are 20 residues in the entire 
binding site, the threshold for a correlation coefficient to be significant with a p-value 
of less than 0.01 is R = 0.52. The calculated R-value between the mapping probes 
and the GOLD bound aliskiren was 0.72, significantly higher than the R-value of 0.19 
existing between the mapping probes and the peptidomimetic inhibitors. The correla-
tion between aliskiren and the peptidomimetics was an intermediate value of 0.53; the 
main reason for the differences in correlation existing between the two different inhibi-
tor types when compared to the mapping results is due to proximity of the mapping 
probes and aliskiren to S3SP compared to the peptidomimetic inhibitor’s absence in 
this subregion. Strong hydrophobic interactions in this region allow aliskiren to exhibit 
high affinity despite its decrease in peptide-like character. This suggests that residues 
predicted by mapping as being highly interacting with the probes can serve as starting 
points for the development of high-affinity, druglike inhibitors.

hot sPots in the liganD binDing DoMain of PParγ

The peroxisome proliferator activated receptor-γ (PPARγ) is a ligand-activated 
transcription factor and a member of the nuclear receptor superfamily that plays 
an important role in adipogenesis and glucose homeostasis. PPARγ and the closely 
related receptors PPARα and PPARδ bind a variety of fatty acids and their metabo-
lites.44–46 Synthetic PPARγ agonists, including thiazolidinediones (TZDs), have been 
shown to be effective as insulin sensitizing agents, in reducing insulin resistance, 
and in lowering plasma glucose levels in patients with type 2 diabetes.47 The effects 
of ligands on PPARγ are mediated through the ligand-binding domain (LBD), a 
region of 270 amino acid residues in the C-terminal half of the receptor.45 In addition 
to its role in ligand binding, the LBD also contains dimerization and transactivation 
regions, which includes the transcriptional activation function 2 (AF-2) associated 
with helix 12 (H12). Structural48–55 and biochemical56,57 studies have helped to elu-
cidate the mechanism of ligand-induced transcription activation by PPARγ. Upon 
binding of an agonist, the PPARγ LBD undergoes conformational changes, most 
notably in the AF-2 region. These changes result in the displacement of corepressor 
proteins that inhibit transcription and recruitment of coactivator proteins, which are 
required for transcriptional activation.

The LBD is comprised of a three-layer antiparallel α-helical sandwich of 13 
helices and a small four-stranded β-sheet (Figure 13.7A). This architecture is 
very similar to that of other nuclear receptors with the exception of an extra 
helix, designated H2’, between the first β-strand and H3. The three long helices 
(H3, H7, and H10/H11) form the two outer layers of the sandwich. The middle 
layer of helices (H4, H5, H8, and H9) occupies the top half of the domain and 
is absent from the bottom half, thereby creating a very large cavity (1400 Å3) 
for ligand binding. This large ligand-binding cavity has a distinct, three-arm 
Y-shape, which allows PPARγ to bind ligands with multiple branches or singly 
branched ligands in multiple conformations. On its lower half, the right-hand side 
of the LBD is sealed by a two-stranded β-sheet, while the left side is sealed by the 
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short C-terminal α-helix (H12) of the receptor, which constitutes the receptor’s 
ligand dependent activating function 2 region (AF-2). A critical step during the 
activation process involves ligand-induced alteration of the conformation of H12 
to an active or “on” position, shown in Figure 13.7A, which acts as a molecular 
switch and creates a binding cleft on the receptor for the coactivator.45,46 A cleft 
for the corepressor is formed in the same surface region when H12 is in the inac-
tive or “off” position. In the unliganded LBD, the flexible pocket is believed to 
be in an equilibrium of conformational states and can adopt the active state even 
in absence of an agonist.45,56,57

To identify binding hot spots on the surface of PPARγ LBD, 12 LBD structures28 
listed in Table 13.2 were mapped. The mapping used seven solvent molecules as 
probes: acetone, acetonitrile, urea, methanol, isopropanol, tert-butanol, and phe-
nol. The results show 10 binding consensus sites (Figure 13.7B). For reference, 
Figure 13.7b also shows the bound agonist farglitazar (GI262570) from the structure 
1fm9 (see Table 13.2).

H9 H1

H8

H4–5 H3
H2

C1 P3

B

P1P2

F
P4

E1

E2

C2

A B

H10 H7
H12

H6

H11

H2'

figure 13.7 Structure of the PPARγ LBD. (A) The polypeptide backbone is shown as 
a cartoon, indicating the 12 α-helices that comprise the domain. The agonist farglitazar 
(GI262570, from PDB structure 1fm9) is shown as a stick representation. (B) Approximate 
location of the hot spots or sites identified by the uniform mapping. Sites P1 through P4 are 
subsites of the ligand binding site of PPARγ, with P1 located at the TZD or carboxyl head 
group of the bound agonist, P2 slightly to the right, and P3 and P4 at the upper and lower 
distal ends, respectively, of the ligand binding site. Sites F and B are, respectively, in the 
front and back of the LBD, the latter in the dimerization domain. Sites C1 and C2 are located 
in the region of coactivator binding, with C2 overlapping with the SRC-1 peptide. Finally, 
sites E1 and E2 are in channels leading to the binding site, with E2 overlapping the puta-
tive ligand entrance. (From S.-H. Sheu et al., PPAR-γ ligand binding domain by computa-
tional solvent mapping, Biochemistry 44, 1193–1209, 2005. Reprinted with permission from 
Biochemistry.)
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Four of the sites identified (P1 through P4) are within the ligand binding site 
(Figure 13.7B). Site P1 is on the left arm of the Y-shaped cavity adjacent to the 
carboxyl group of the PPARγ ligand GI262570, which makes hydrogen bonds with 
residues S289, H323, H449, and Y473. This largely hydrophilic pocket is important 
for the binding of all strong agonists, and accommodates the polar TZD or car-
boxyl headgroup that interacts with H12. The cavity in the structure with GI262570 
extends downward to accommodate the benzophenone tail of the agonist. The P2 site 
is buried slightly to the right of P1 between helices H3 and H5. Sites P1 and P2 are 
adjacent to the AF-2 motif. Site P1 is present only in structures co-crystallized with 
a strong agonist. In contrast, site P2 is already formed in the ligand-free PPARγ. In 
structure 4prg, which has the bound partial agonist GW0073, one finds site P2 rather 
than site P1. Sites P1 and P2 are very close to each other and share a number of resi-
dues. However, a number of residues are absent from site P2 but become accessible 
to the solvent upon agonist binding, thereby opening up the new binding site P1. 
These newly accessible residues include Q286, H323, and Y473. Y473 is located 
on helix H12, and access to it contributes to the stabilization of H12 in the active 
conformation. It appears that the strong nonbonded interactions and hydrogen bonds 
between the head group of TZD, a carboxyl group, and the protein are necessary for 
creating a pocket at site P1. Indeed, as shown in Table 13.3, neither the ligand-free 

table 13.2
PParγ structures in the Protein Data bank (PDb), studied by Computational 
solvent Mapping

Chaina structure h12b ligand ref.

1prg(a) Homodimer On none 48, 49

1prg(b) Homodimer Off none 48, 49

4prg(a) Homodimer On GW0072 (partial agonist) 50

4prg(b) Homodimer Off GW0072 (partial agonist) 50

2prg(a) Homodimer with SRC-1 peptide On Rosiglitazone (TZD) 48

1fm6(d) PPARγ/RXRα heterodimer with SRC-1 peptide On Rosiglitazone (TZD) 51

1fm9(d) PPARγ/RXRα heterodimer with SRC-1 peptide On Farglitazar (GI262570) 51

1k74(d) PPARγ/RXRα heterodimer with SRC-1 peptide On GW409544 52

1i7i(a) Homodimer On Tesaglitazar (AZ242) 53

1i7i(b) Homodimer Off Tesaglitazar (AZ242) 53

1nyx(a) Homodimer On Ragaglitazar (DRF2725) 54

1knu(a) Homodimer On 3q (carbazole analog of 
ragaglitazar)

55

Source: Sheu, S.-H., Kaya, T., Waxman, D. J., and Vajda, S. PPAR-γ ligand binding domain by compu-
tational solvent mapping. Biochemistry 44:1193–1209, 2005. With permission.

a PDB code. The number in parentheses specifies the chain studied.
b Position of the H12 helix. On and off denote active (or activelike) and inactive positions of the helix, 

respectively.
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structure 1prg nor the partial agonist-bound structure 4prg has any consensus site 
in the vicinity of site P1. However, once the hydrophilic, high affinity pocket at P1 
becomes accessible, it siphons away the probes from P2 resulting in the loss of P2.

Table 13.3 indicates that site P1 binds about the same number of probes in each 
of the structures with strong agonists bound. This suggests that strong agonists are 
likely to induce similar conformational changes. Furthermore, it appears that pocket 
P1 is the result of a complex set of cooperative conformational changes in a number 
of residues (primarily Q286, F363, H449, Y473, H323, S289, and I341), which are 
somewhat coordinated by the large movement of R288.

Site P3 is important for partial agonist binding and domain stabilization. P3 is at the 
end of the right arm of the Y-shaped cavity, which is defined by helix H3 from the left, 
helix H2 from the right, the loop connecting helices H1 and H2 from the top, and helix 
H5 from the back. The only ligand known to reach into this site is the partial agonist 
GW0072, which places one of its two benzylamide groups in P3. The P3 site is a large 
pocket, which is at least partially open in all PPARγ structures. In the apo structure, 
the P3 site is open and available to the probes as suggested by the data in Table 13.3. 
Based on the number of probe clusters bound, the binding of the partial agonist yields 
a smaller P3 site, and the pocket is even smaller in structures with strong agonists. In 
all such structures, the R288 side chain moves upward into the P3 site and closes down 
part of the pocket. A less open pocket at site P3 in all agonist-bound structures agrees 
with the observations that ligand binding globally stabilizes the LBD domain.45,53,56,57

Site P4 is the most hydrophobic part of the ligand binding pocket. Site P4 is close 
to the lower end of the ligand binding site, which is defined by H3 from the left and 

table 13.3
number of Clusters and ranking of the binding sites, Determined by 
targeted Mapping

PParγ (Chain)

site
1prg 
(a)

1prg 
(b)

4prg 
(a)

4prg 
(b)

2prg 
(a)

1fm6 
(d)

1fm9 
(d)

1k74 
(d)

1i7i 
(a)

1i7i 
(b)

1knu 
(a)

1nyx 
(a)

P1 7(1) 9(1) 6(2) 9(1)  8(2) 7(2) 6(2) 9(1)

P2 9(2) 11(1) 3(5) 5(4)

P3 9(1)  9(2) 8(1) 6(2) 5(4) 7(2) 3(6) 3(5)  5(3) 6(3) 4(5) 4(5)

P4 8(3)  9(3) 5(3) 7(1) 5(5) 5(4) 8(1) 5(4) 10(1) 8(1) 9(1) 2(7)

B  2(5) 3(6) 4(5)  3(6) 5(4) 4(4)

F 7(2) 5(3) 6(2) 2(7) 5(5) 2(7)

C1 7(4) 4(4) 2(7) 3(5) 5(4) 5(3)  5(4) 4(6) 6(3) 6(3)

C2 2(5)  2(4) 3(7) 6(3) 6(3) 3(7) 3(6)  4(5) 5(4) 6(2)

E1 4(5) 6(2)

E2 4(6) 2(6) 5(3) 2(7) 3(6) 3(6)

Source: Sheu, S.-H., Kaya, T., Waxman, D. J., and Vajda, S. PPAR-γ ligand binding domain by compu-
tational solvent mapping. Biochemistry 44:1193–1209, 2005. With permission.

Note: For each PPARγ structure, the table shows the number of clusters found at each of the 10 sites, P1 
through E2. The numbers in parentheses indicate the rank of the corresponding consensus site 
among all consensus sites for that structure, ranked on the basis of the number of clusters.
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by the β-sheet and helix H2’ from the right. As seen in Table 13.3, site P4 is acces-
sible to probes in the ligand-free PPARγ structures. The pocket at site P4 is slightly 
smaller after binding the partial agonist GW00720 (4prg), which places its carboxyl 
group in this region. P4 is also reduced in structures with short agonists such as 
rosiglitazone (2prg and 1fm6) in which the distal end does not reach site P4. P4 gen-
erally remains large for longer agonists that have their distal end group bound at P4. 
Ragaglitazar in 1nyx has a bulky phenoxazine end group, and it is too short to reach 
site P4, which is small and binds only two probe clusters. A carbazole ring of 3q in 
1knu is rotated downward into the P4 pocket resulting in its larger size (Table 13.3).

Site B is a potential hot spot in the dimerization region. Site B is located in the 
back of the LBD between helices H7 and H10/H11, and close to residue Q444 on the 
latter. This site is part of the protein surface involved in forming both the PPARγ–
RXRα heterodimer and the PPARγ homodimer. Nettles et al.58 demonstrated that, 
due to an allosteric effect, H11 conveys structural information between the ligand 
and H12, thereby affecting receptor activation. Since the size of site B depends on 
both the ligand and dimerization partner, it may play a role in this communication.

Site F is a surface pocket between H3 and H12. This site is created either almost 
exclusively by the inward motion of the Q286 side chain upon binding of the partial 
agonist in 4prg or by the binding of agonists that do not have a bulky group protrud-
ing downward from the site P1 pocket. The significance of this pocket for coactivator 
recognition was considered unknown; however, more recently it was demonstrated 
that this region is likely to be the binding site for a secondary coactivator.59

C1 and C2 are sites in the coactivator binding region around helix H12 and close 
to the putative region of the coactivator/corepressor binding. Site C2 is located 
between helices H12 and the H4/H5 boundary. The pocket overlaps with the binding 
site of the SRC-1 coactivator peptide, which is present in several x-ray structures. As 
shown in Table 13.3, site C2 is present in the ligand-free and partial-agonist-bound 
structures but only when H12 is in the active state. Agonist binding stabilizes site C2, 
which accommodates about the same number (five or six) clusters in all structures 
with agonists. Site C1 is located on the opposite side of H12 close to the center of a 
triangle formed by H10, H12, and the loop between the two helices. Although there 
is no direct evidence that this site is involved in coactivator binding, the coactivators 
of PPARγ are large proteins and hence are likely to extend beyond the known SRC-1 
peptide binding site, thus also covering the site C1. The C1 site is very weak or absent 
in structures in which H12 is in the inactive position.

The numbers of probe clusters in C1 and C2 appear to provide information on the 
coactivator binding specificity of a particular PPARγ structure. Without a ligand, 
site C2 is very small in both chains of 1prg (Table 13.3), whereas site C1 discrimi-
nates between the activelike and inactive forms. The binding of the partial agonist 
creates both C1 and C2 in the active chain of 4prg, but both sites are of modest 
size. In addition, none of the sites are present in chain b, and thus the binding of the 
partial agonist GW0072 is unable to stabilize the coactivator recognition pockets. 
All active agonist-bound structures exhibit stable C1 and C2 binding sites, suggest-
ing that they may be prerequisites for coactivator binding. The relative strengths 
of the two pockets seem to depend on the properties of the agonist. Both mapped 
rosiglitazone-bound structures 2prg and 1fm6 have a modest C1 and very strong C2, 

© 2009 by Taylor & Francis Group, LLC



272 Computational Protein-Protein Interactions

the latter containing six clusters (Table 13.3). The binding of the L-tyrosine deriva-
tives in 1fm9 and 1k74 creates a relatively large C1 site (five clusters) and a smaller 
C2 site (three clusters).

E1 and E2 are putative entrance sites, surface pockets at the openings on the two 
ends of the PPARγ LBD binding site. Site E2 is located between helix H2 and the 
β-sheet. This position is frequently mentioned as the putative entrance to the LBD 
binding site.53 In view of the lack of any alternative site at the distal end of the bind-
ing site, our results support the hypothesis that the ligands are likely to enter through 
the pocket at site E2. Indeed, the loop connecting H2’ and H3 is very flexible and 
does not prevent the entrance of large ligands into the binding site. Site E1 is most 
likely produced specifically by L-tyrosine agonists, primarily through their effects 
on the orientation of the F182 side chain.

iDentifiCation of Druggable hot sPots 
in Protein–Protein interfaCes

Finding small-molecule inhibitors against protein–protein interaction (PPI) targets 
has always been a challenge. It is very hard to obtain a low-nanomolar inhibitor 
that does not violate Lipinski’s rule of five60 due to the fact that PPI interfaces are 
typically large and flat, resulting in the necessary noncovalent contacts needed 
for affinity to not converge to a small volume.61 Nevertheless, small-molecule PPI 
inhibitors are often more desirable than their protein counterparts due to their oral 
availability and their ability to pass through cell membranes. Current examples 
of PPI inhibition targets include IL-2, Bcl-XL, HDM2, HPV E2, ZipA binders, 
TNF disruptors, and others.62 Binding hot spot determination is important because 
identifying a small number of residues that provide a relatively large portion of the 
binding free energy helps to select the regions to target for inhibitor design. This 
can be done by alanine scanning mutagenesis or computational methods such as 
protein mapping. The plasticity of the PPI interfaces should also be considered 
because a number of findings showed that binding of small molecules on flat PPI 
interfaces creates a substantial cavity at the binding site. Fragment-based screen-
ing, using chemical fragments with an average molecular weight between 100 to 
300 Da, can be more efficient than traditional high throughput screening (HTS) 
because it can cover more chemical space. Moreover, the HTS libraries are often 
biased toward past drug discovery research on traditional druggable targets, which 
is also overcome by fragment-based screening.

Computational analyses of PPI interfaces provide some insights on the physi-
cal nature of these binding surfaces. Eyrisch and Helms63 ran molecular dynamics 
(MD) simulations on PPI interfaces in Bcl-XL, MDM2, and IL-2 and used the cavity 
identifier program PASS to scan for cavities on the trajectory snapshots. As a result, 
20–36 transient pockets were observed during MD simulations as compared to the 
2–5 pockets identified from the ligand-free crystal structures. The pockets were all 
found to be open up to 440 ps, vanished and reappeared again several times. The 
pocket polarity ratio (ratio of the sum of N, O, and S atoms to the sum of N, O, S, 
and C atoms) is lower in the larger pockets than overall on the protein surface. This 
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suggests that the hydrophobic interiors open up to form these pockets and the hydro-
phobicity increases the likelihood of ligand binding. Notably in all three cases, full 
openings of cavities are identified at the known inhibitor binding site despite the fact 
that PASS did not identify the inhibitor binding site in the static ligand-free IL-2 
structure. The corresponding inhibitors that docked computationally in these simu-
lated transient pockets had very low root mean square deviation (RMSD) from the 
crystallized structures. The protocol demonstrated that the flat PPI interfaces shown 
in the unbound structures are flexible and can yield favorable binding cavities. As a 
result, this plasticity has to be taken into account when designing PPI inhibitors.

Protein mapping can be applied to identify the binding hot spots on the PPI inter-
face. For example, a PPI inhibitor of IL-2 shown in Figures 13.8A and 13.8B is com-
posed of two components, a hydrophilic fragment containing a piperidyl guanidine 
forming a hydrogen bond with the side-chain carboxylate of E62, and a hydropho-
bic fragment containing a biaryl alkyne located in a narrow channel created by the 
hydrophobic side chains of M39, R38, F42, L72, and K76. As shown in Figure 13.8A 
and 13.8B, the binding of the inhibitor creates a long cavity not seen in the unbound 
structure. For the protein mapping of the unbound IL-2 shown in Figure 13.8C the 
largest consensus site, containing 20 probe clusters, is located near E62 where the 
hydrophilic part of the compound interacts. The fourth largest consensus site, con-
taining 10 probe clusters, is located near R38, L72, and F42 where the hydrophobic 
end of the compound resides. This suggests that these two regions are the binding hot 
spots of this interface for small molecules. Similar binding hot spots are observed in 
the mapping of the compound bound IL-2 (Figure 13.8D).

Another example of a PPI target is the bacterial protein RecA. RecA is a mul-
tifunctional DNA-dependent ATPase that catalyzes recombination and acts as the 
signal protein to start the SOS repair response. The SOS response results in the syn-
thesis of approximately 30 proteins, many of which work to repair damaged DNA. 
Free RecA binds to single-stranded DNA (ssDNA), which then acts as a substrate 
for additional RecA molecules to bind. This results in long nucleoprotein filaments 
consisting of RecA, ssDNA, and either ATP or ADP depending on the state of the 
protein. Electron micrograph studies show that these filaments exist in two confor-
mational states.64 The active state with bound ATP is represented by an extended 
filament with a pitch of ~95 Å, while the first crystal structures of RecA, solved in 
the absence of DNA and ATP, show an inactive form with a pitch of 83 Å.65

Because the activity of RecA lies in its ability to form long filaments on ssDNA, 
the protein–protein interface between neighboring RecA subunits in these fila-
ments is of particular interest. Roca and Cox defined nine residues (A214–R222) 
in the protein–protein interface as the RecA “signature series.”66 Five of the nine 
residues are identical in 64 RecA sequences. Three residues that make specific 
contacts in a region of the neighboring subunit, K216, F217, and R222, have been 
shown to be intolerant to most mutations.67 Least tolerant is F217, which, when 
mutated to 14 other residues, showed little or no RecA activity; however, when 
mutated to tyrosine, the protein retained full functionality and also increased the 
cooperative interaction between RecA subunits 250-fold.68 This suggests that the 
hot spot to which F217 binds contains the capacity to bind tightly to the additional 
hydroxyl group of tyrosine.
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An inactive RecA structure bound to the ATP analog MnANP-PNP was mapped 
(PDB code 1xms).69 All ligands and waters were removed during mapping, and map-
ping was performed only on single monomers. Thirteen probes were used in this 
study. Seven high ranking probes were found in the ATP binding site, while all 13 
of the probes were found in the largest consensus site (CS1). CS1 was identified to 
be in a hydrophobic pocket located in the interface between two RecA monomers, 
consisting of the residues I93-A95, Q118-G122, A125, A148-T150, and I155. This 
was identified to be the location where the F217 residue from the neighboring RecA 
monomer interacts. Figure 13.9 shows detail of the mapping results in CS1 with the 
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figure 13.8 (A) Overlap of the compound on unbound IL-2 crystal structure. (B) The com-
pound bound IL-2 crystal structure. (C) Protein mapping result of unbound IL-2. Consensus 
sites shown in the figure from left to right are fourth, first, and sixth largest consensus sites, 
respectively. (D) Protein mapping result of compound bound IL-2. Consensus sites shown in 
the figure from left to right are first, fourth, and sixth largest consensus sites, respectively.
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neighboring monomer overlapping. What is noteworthy is that many of the probes 
that contain hydroxyl groups or other hydrogen donors have these groups oriented 
toward the bottom of this pocket. Together with the mutation results suggesting that 
tyrosine may bind to this pocket tighter than phenylalanine, this shows that mapping 
not only reveals hot spots that are important for protein–protein interactions but may 
also elucidate details of the binding properties of these hot spots.

ConClusions

As demonstrated by alanine scanning mutagenesis, the interfaces in protein–protein 
complexes and the binding sites of proteins generally contain smaller regions that 
provide major contributions to the binding free energy and hence are the prime tar-
gets in drug design. Screening of compound libraries by NMR or x-ray crystallogra-
phy shows that such hot spot regions bind a large variety of small organic molecules 
of various sizes and polarities. Although the binding of most small compounds is 
weak, a relatively high hit rate is predictive of target sites that are likely to bind 
druglike ligands with high affinity. The goal of this review was to show that mapping 
algorithms can provide similar information computationally. By selecting 16 probe 
molecules with different properties, such as hydrogen bond donors and acceptors or 
aliphatic and aromatic hydrocarbons, mapping provides an excellent characteriza-
tion of protein binding sites. The applications presented demonstrate the type of 
information that can be obtained by mapping. We have mapped thermolysin because 
the structure of this protein has been determined in aqueous solutions of four organic 

R222
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figure 13.9 (SEE COLOR INSERT FOLLOWING PAGE 174.) Detail of the E. coli 
RecA CS1 pocket with the consensus cluster shown in green and neighboring subunit shown 
in orange. The probes are shown in atomic colors with carbons colored green, oxygens col-
ored red, and nitrogen colored blue.
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solvents. Mapping correctly identifies all-important subsites of the binding site and 
finds all-important residues. As we have shown, the mapping results are even more 
complete than the ones provided by x-ray crystallography. In the second example, we 
considered renin, a long standing pharmaceutical target for the treatment of hyper-
tension, and showed that the few largest consensus sites trace out the shape of the 
first approved renin inhibitor, aliskiren, rather than that of peptidomimetic inhibitors 
that have been studied for several decades but did not provide any successful drug 
candidate. It is important that the mapping reveals the better fit of aliskiren into the 
hot spots even when applied to a renin structure without any bound ligand or to struc-
tures co-crystallized with peptidomimetic inhibitors. The next application was to the 
peroxisome proliferator activated receptor (PPARγ) ligand binding domain (LBD). 
The mapping identified 10 sites as hot spots for the recognition of interaction part-
ners by the LBD. Four of these sites (P1 through P4) are in the ligand binding site, 
two (C1 and C2) in the coactivator binding area, one in the dimerization region (B), 
two (E1 and E2) in the lower half of LBD where E2 is at the putative ligand entrance 
site, and an additional site of unknown function is on the surface (F). We note that 
this last pocket has been recently identified as a secondary coactivator binding site.59 
Finally, we showed that mapping can find hot spot regions in protein–protein inter-
face even before the pockets are formed due to the interactions with small molecular 
ligands. Thus, we concluded that mapping provides potentially very useful informa-
tion for drug design.

We note that the method of screening libraries of small compounds by NMR 
to explore the binding properties of proteins (known as SAR by NMR) has been 
developed by the Fesik group for Abbott Laboratories, and it has been applied to 
many drug targets during the last decade.9 At present, several other companies also 
screen libraries of fragment-sized compounds, either by NMR or by x-ray crystal-
lography, as part of their core technology. This includes small companies such as 
Astex Therapeutics, Locus Pharmaceuticals, and De Novo Pharmaceuticals as well 
as many larger companies such as Vertex, Astra-Zeneca, Lilly, Novartis, and Roche; 
however, there are almost no detailed results from this work in the public domain. 
Since the methodology is costly and labor intensive, academic labs rarely report 
new studies. In fact, the available data are scarce enough that the interplay between 
experimental and computational solvent mapping is truly symbiotic; that is, experi-
ments validate the computational method, which in turn supports the generality and 
meaning of the small organic molecules clustering in the hot spot regions of pro-
tein binding sites and potential protein–protein interfaces. We note that the FTMAP 
program is freely available for academic use by contacting Sandor Vajda (vajda@
bu.edu) or Dima Kozakov (midas@bu.edu).
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14 Designing Protein–Protein 
Interaction Inhibitors

Matthieu Montes

Protein–protein interactions (PPIs) play a crucial role in many biological processes, 
such as cellular communication, immune defense, viral self-assembly, cell growth, pro-
liferation, differentiation, and programmed cell death.1,2 Since their disruption can lead 
to a disease state,3 it is of great interest to consider them as potential drug targets.4

Whereas traditional active sites that are targeted in drug design projects are gen-
erally well defined and display limited size and complexity, PPIs are far more chal-
lenging.5 There are several issues to consider such as a general lack of reference 
small molecules targeting these interfaces,6 a relatively large buried surface area 
on each partner7 with variable contact points,5 and the difficulty of deriving short 
peptide inhibitors as the residues involved in the protein–protein interface are not 
contiguous in the sequence.8

Currently, most of the available molecules targeting PPIs are relatively large (pep-
tides or small proteins,9,10 aptamers, or antibodies). The lack of identified “druglike” 
small-molecule inhibitors is probably due to the traditional concept that PPIs can 
only be “slightly” modulated11 and that structure-based design of small-molecule 
inhibitors targeting PPIs is still viewed as quite difficult12 compared to “classical” 
drug targets that naturally bind small molecules.6 Different methods can be used to 
identify small-molecule inhibitors of PPI including fragment-based screening and 
virtual screening of compound collections. In this chapter, a focus will be made on 
the virtual screening approaches that can be applied to the identification of novel and 
original PPI small-molecule inhibitors.
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virtual sCreening

In the early stage of research of a drug discovery program, high throughput screen-
ing (HTS) procedures are applied for hit identification into large small-molecule 
databases. These methods, which have been shown to be successful for many tar-
gets, cost from $100,000 to $1 million for 1 million compounds and can display 
low hit rates.13–15 In silico screening allows a huge reduction of time and costs by 
rationally selecting, using a computational method, a subset of the compound col-
lection on the basis of the structure of the target (structure-based virtual ligand 
screening, SBVLS) or on the basis of the structure of known actives (ligand-based 
virtual ligand screening, LBVLS) prior to their experimental testing. After a selec-
tion of a “clean and proper” compound collection and a retrieval of the data on the 
PPI targeted (known structure of the partners, known inhibitors, etc.), a virtual 
screening protocol can be defined and prepared. For SBVLS studies, it is manda-
tory to define a binding pocket on the protein–protein interface targeted and to 
assess its structural and physicochemical properties. For LBVLS studies, it is nec-
essary to have at least the structure of one already known inhibitor (or a hit identi-
fied after SBVLS; see Figure 14.1). After a short introduction on protein–protein 
interfaces properties, the different steps and requirements of the procedure will be 
detailed in the following sections.

3D Structure of the PPI
Xray, NMR, Model

No Yes

2D/3D similarity search
ROCS, Lasso

Ligand-based VLS Structure-based VLS

Docking/scoring
Surflex, FlexX, ICM, GOLD, eHits

SB-Pharmacophores
Catalyst, Unity, Disco, GASP

Pharmacophores
Catalyst, Unity, Disco, GASP

QSAR
ComFa, ComSia

Confirmed hits
from SBVLS

But known inhibitors

figure 14.1 Example of the methods that can be used to identify PPI inhibitors depend-
ing on the starting material. If the 3D structure of the interface is known, it is recommended 
to use SBVLS methods. If inhibitors are already known or if hits have been identified with 
SBVLS, it can be interesting to use LBVLS methods to retrieve compounds that share a 
similar structure or pharmacophore and to derive QSAR for compound optimization. Italics 
indicate software that can be used.
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Protein–Protein interfaCes

Numerous investigations have described protein–protein interfaces.7,16–23 Jones and 
Thornton proposed a classification of the PPIs into four groups, namely, homodi-
mers, heterocomplexes, enzyme–inhibitor, and antibody–antigen20 distinguish-
ing obligatory interactions from transient interactions. Obligatory interactions are 
found between protomers, usually unstable on their own, that form permanent and 
optimized contacts with the other protomers involved in “obligate” complexes, for 
example, in the cytochrome c oxidase (Protein Data Bank [PDB] code 1ocr). Many 
heterocomplexes involve transient interactions between protomers that are not neces-
sarily colocalized in the cell and exist independently as stable entities in solution.20 
The nature of the interface generally differs with the strength of the interaction as 
obligate complexes rely more on hydrophobic interactions compared to transient 
complexes that usually rely more on polar interactions like salt bridges and hydrogen 
bonds.7,19,24 The shape complementarity of the interface is essential for the partner 
recognition and the strength of the interaction.20,25 Antigen–antibody and heterocom-
plexes seem to have a lower shape complementarity compared to homodimeric and 
enzyme–inhibitor complexes.26 In these cases, the level of packing can be as high as 
the interior of the protein fold.7,20,27 The surface area of the interaction is also vari-
able depending on the type of the complex. Approximately 750–1400 Å2 of surface 
area is buried on each side of the interface.7 Obligate complexes, in general, display a 
larger buried surface area (more than 1400 Å2) compared to transient complexes and 
particularly to enzyme–inhibitor complexes that can be less than 1000 Å2.21,28,29

It has been shown that a minority of residues, so-called hot spots, contributes to 
the majority of the binding energy.30 The recognition site thus forms one or several 
“patches” composed by a cluster of surface atoms in the interface forming a sig-
nature of the protein interaction; the number of patches depends on the size of the 
interface.31,32 Some of the residues composing the patch can be slightly more con-
served than the rest of the surface residues, particularly for the residues composing 
an obligate interface.33,34 Although identification of conserved residues alone is gen-
erally not sufficient to detect protein–protein interfaces33 or hot spots,35 it can still be 
helpful for characterization of functional regions of proteins like in the Web-based 
tools ConSurf 36–38 or Patchfinder.39

binDing site iDentifiCation anD the “Druggable PoCket”

A critical step for a structure-based in silico screening project is the definition of the 
binding pocket.40 A “druggable pocket” is a cavity available at the surface of the pro-
tein displaying specific physicochemical properties compatible with the binding of a 
druglike small molecule.41,42 These properties include a sufficient volume, a specific 
shape, the content in hydrophobic residues, or the roughness of the surface.41,43–46 
Protein interfaces are not flat and rigid but generally display pockets or voids when 
the partner is removed.8,11,31,47 A large number of computational methods are avail-
able to identify binding pockets on protein surfaces based on geometric and/or ener-
getic criterions, for example, LIGSITE,48,49 PASS,50 SiteMap,45 PocketFinder,51 or 
CAST.52 Energetic algorithms like GRID,53 VdW-FFT,54 DrugSite,41 or SCa43 identify 
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binding potential pockets by determining binding potentials or potential binding 
energies. Other methods such as computational solvent mapping,55,56 SURFNET,57 
or Q-SiteFinder,58 use molecular probes to screen the protein surface and evaluate 
binding potentials. Binding pockets and interfaces can also be identified and com-
pared with programs using binding site databases like MED-SuMo,59 CavBase,60 
SiteEngines,61 SitesBase,62 LigASite,63 or sc-PDB.64 When combined with hot spots 
or interface conserved residues prediction algorithms, these methods should be able 
to identify overlapping binding pockets.11

Once the pocket is identified, it is very important to assess its physicochemi-
cal properties (size, charges, solvent accessibility, hydrophobic character, roughness, 
etc.), as it will impact directly on the performance of the structure-based methods 
used in the drug discovery program.65–67

sCreening libraries anD CoMPounD ColleCtions

To perform an in silico screening, it is necessary to use a compound collection. It 
is very difficult to evaluate the number of small molecules (especially because of 
the large number of compounds composing industrial proprietary compound collec-
tions), but several millions are available for purchase and have been used already in 
different virtual screening projects.68–70 An interesting review of the different com-
mercially available compound collections was written by Bradley in 2002 revising 
chemical substance databases, fine chemical databases, medicinal chemistry data-
bases, and screening libraries containing purely synthetic or natural products.71 Most 
of the screening libraries propose cherry-picking purchases, diversity subsets and 
subsets focused on a particular class of target (like ion channels or kinases). One 
can also use virtual small-molecule libraries generated in silico from chemical frag-
ments, but it is mandatory to keep in mind that some of these virtual small molecules 
will not necessarily be easily synthesized.72,73

Small molecules are generally available in two dimensions in the MDL structure 
data format (SDF)74 or in the simplified molecular input line entry system (SMILES).75 
Most of the algorithms need the three-dimensional (3D) structure of the small mol-
ecules to work correctly and use different 3D file formats like 3D SDF,74 Tripos 
Mol2, or PDB.76 This multiplicity of the file formats can lead to a large number of 
errors and a robust file conversion procedure, including 3D generation algorithms, 
are needed. Several programs exist like Omega,77 Corina, Concord, or ICM78 that 
allow the multiconformer generation needed by LBVLS or SBVLS packages. This 
step is crucial as the quality of the conformers will impact directly on the perfor-
mance of the LBVLS or SBVLS procedures.79 It is also very important to verify the 
protonation states and charges, and to sample, if possible, the different tautomeric 
forms of the compounds, as they can be considered as distinct molecules and impact 
on the performance of the screening.80,81 If the final goal of the project is to design 
a drug candidate, it can also be interesting to filter the compound collection on the 
basis of the compounds predicted ADME-Tox (administration, distribution, metabo-
lism, elimination, toxicity) to possibly reduce the attrition rate during the develop-
ment.82–91 These properties can be computed from simple molecular descriptors as 
in the Lipinski rule of five (RO5)92,93 like molecular weight, logP, logS, number of 
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hydrogen bond donors and acceptors, polar surface area, and so forth,94–96 or using 
known undesirable fragments databases like unstable or reactive groups,84,97–100 
known frequent hitters,84,101–103 and toxic groups.84,91,97,104,105 Additional information 
about the metabolism of the compounds can be obtained via PGP-efflux106 or cyto-
chrome P450 binding107 prediction methods. Recently, Neugebauer et al.108 proposed 
a machine-learning method based on QSAR descriptors in order to predict the com-
pounds’ ability as a potential PPI inhibitor. Using the structural information of 25 
PPI inhibitors combined with the information of 1137 non-PPI inhibitors, they cal-
culated various descriptors and tried to identify the most significant combination of 
descriptors that allowed a good discrimination between PPI inhibitors and non-PPI 
inhibitors. This work is very promising in deriving RO5-like rules for the prediction 
of PPI inhibitor potential.

Of course all these methods are very simplified models, very far from the reality 
of the behavior of a small molecule in a whole organism, but they still can provide 
useful information for compound development.109

sbvls: DoCking anD sCoring

To perform SBVLS studies, it is necessary to use the structure of the target interface 
(obtained experimentally via nuclear magnetic resonance [NMR] or x-ray crystallo-
graphy, or modeled using homology or threading methods). SBVLS consists gener-
ally into predicting the orientation (molecular docking) and evaluating the interaction 
(scoring) of the small molecules composing the database into a binding pocket on the 
surface of the target interface (see earlier for the binding site prediction methods and 
structure preparation for SBVLS).

Different docking methods have been proposed for the prediction of ligand bind-
ing modes. They are classified in two categories: rigid-body docking of multicon-
former libraries (see earlier about conformer generation) and flexible docking.

During rigid-body docking, the receptor and ligand remain rigid while an ori-
entation search of the ligand is performed. Different rigid-body docking programs 
exist and have been reported in the literature such as DOCK,110 FRED, FLOG,111 
EUDOC,112 or PLANTS113 (which can also perform flexible docking). Despite being 
less accurate than flexible docking methods, rigid-body docking methods are inter-
esting because they are very fast (e.g., FRED can dock several molecules per second 
on a single processor). They can be used as preliminary filters on a hierarchical pro-
tocol to reduce the “noise” and remove from the compound collection the molecules 
that display a low surface complementarity with the binding pocket.114–118

Different algorithms exist to treat the problem of flexibility, as simulation methods, 
like molecular dynamics, are not applicable for high throughput prediction of ligand 
binding modes. The algorithms, as classified by Brooijmans and Kuntz in 2003, are 
systematic search algorithms, stochastic algorithms, and deterministic algorithms.119

Systematic search algorithms try to explore all the degrees of freedom of the 
molecules. Fragmentation/reconstruction algorithms reduce the complexity of the 
problem by dividing the molecules into rigid cores and flexible joints. After docking 
of the rigid cores, flexible joints are simulated until the full molecule is reconstructed 
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incrementally. Different software use this method, including DOCK,110 Surflex,120 
FlexX,121 Glide,122 or SLIDE.123

Stochastic search algorithms generate different ligand conformations by applying 
random modifications in the torsion angles of the molecule. Because they involve ran-
dom, stochastic algorithms, they have to be rerun several times with different initial 
conditions to efficiently cover the conformational space. Different algorithms involve 
stochastic searches, like Monte Carlo (MC) and genetic algorithms (GAs), used in 
numerous programs. Monte Carlo uses the Metropolis criterion to accept or reject a 
new conformation generated at random. If the energy of the new conformation is pre-
ferred, it is accepted, otherwise it can be accepted with the Boltzmann probability. MC 
is used in ICM,78 LigandFit,124 QXP,125 DockVision,126 MCDOCK,127 PRODOCK,128 
Glide,122 or Autodock 2.x.129 In evolutionary algorithms like GAs, a large number of 
conformations is generated as an initial population of solutions. The population evolves 
and the energetically preferred solutions survive (selection criteria) and are submitted 
to evolution criteria (crossing-overs and random mutations), thus constituting the next 
population. GAs are used in GOLD,130 Autodock 3.x,131 and DockVision.126

In deterministic search algorithms, the initial state determines the changes that 
will lead to the next steps of the simulation. Generally, the lowest-energy state is pre-
ferred at each step of the simulation. Unlike MC, molecular dynamics (MD) cannot 
cross high-energy barriers and are generally trapped in a local minimum119 unless 
they are performed at high temperature. Few methods have been developed for 
SBVLS using molecular dynamics because they are, in general, very time consum-
ing and thus not very applicable unless very few compounds remain in the hit list, 
such as at the very final steps of an SBVLS process, in order to accurately predict 
their binding energies.117,132–134

The evaluation of the proposed binding poses after docking and the ranking of the 
ligands constituting the database are crucial steps for the performance of an SBVLS 
protocol.119,135 The final objective of an SBVLS protocol is to discriminate the actives 
from the inactives. Accurate evaluation of the free energy of binding can be per-
formed by FEP/TI methods, but they are very time consuming and cannot be applied 
on large scale to hundred of thousands of small molecules. Alternate approximation 
methods have been developed to evaluate the relative binding energies of different 
compounds’ so-called scoring functions. Scoring functions have two main purposes: 
they serve as fitness functions to optimize the positioning of the ligand into the bind-
ing pocket and they are used to rank the different ligands composing the database 
in order to select the most promising ones. Scoring functions can be classified into 
three groups: force-field-based scoring functions, knowledge-based scoring func-
tions, and empirical scoring functions.119,135

Force-field-based scoring functions use the nonbonded terms of the classical 
molecular mechanics force fields. For example, DOCK,110 Autodock,129 and D-Score136 
scoring functions are based on the AMBER force field, whereas G-Score136 is based 
on the TRIPOS136 force field. Nonbonded terms used in force-field-based scoring 
functions are, in general, an electrostatic term described by a Coulombic potential 
and a van der Waals interaction term described by a “softened” 4-8, 6-9, or “classi-
cal” 6-12 Lennard-Jones potential as in DOCK
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where Aij and Bij are van der Waals repulsion and attraction parameters for atoms i 
and j, qi and qj their charge, r the distance between i and j, and ε the dielectric con-
stant. “Soft” potentials are used to make the function more tolerant to small clashes 
between the ligand and the receptor. These functions have the drawback of evaluat-
ing only the enthalpic part of the interaction and neglect the entropic and solvation 
parts. Some advanced force-field-based scoring functions like the one in ICM137 can 
treat the solvation part by resolving the Poisson equation using the boundary element 
method. The finite differences method has also been used by Wei et al. to treat the 
desolvation of ligands in receptor–ligand complexes.138 Desolvation approached by 
the generalized Born method can also be used as an optional parameter in DOCK.139 
However, all these methods are computationally expensive and are only applicable on 
a reduced set of ligands (at the end of a hierarchical SBVLS protocol, for instance).

Knowledge-based scoring functions are issued from statistical mechanics, which 
define interaction potentials from atom pair distances observed in protein–ligand 
complexes.140 Free energy of binding of an atom pair of atom types i and j in a 
receptor-ligand complex (or potential of mean force, PMF) would be of the form
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where kb is the Boltzmann constant, r is the distance between the atoms involved in 
the pair, and the last part represents the interaction density between atom pairs when 
the interaction is occurring (ρseg) compared to when it is not occurring (ρbulk). These 
potentials of mean force have been used for protein-folding studies but can also be 
used as scoring functions to evaluate receptor–ligand interaction.

Contrary to the scoring functions described, empirical scoring functions are not 
based on physics but on experimental observations. Empirical scoring functions have 
the goal of evaluating the binding energy using noncorrelated terms that describe the 
different contribution to the interaction, each term weighted by a coefficient derived 
from statistical analysis of receptor–ligand complexes with experimentally mea-
sured free energy of binding. Different empirical scoring functions exist and differ 
with the terms they include and the way of simulating the different contributions 
to the binding energy. For example, LUDI 141 has two polar contact terms account-
ing for ionic and neutral hydrogen bonds, whereas they are included in the same 
term for Chemscore,142 PLP,143 and LigScore.144 F-Score136 and LUDI include a term 
accounting for aromatic contacts. LUDI, Chemscore, and Surflex include pseudo-
entropic terms that take into account the number of rotatable bonds of the ligand 
to approximate the entropy loss penalty to the binding energy. Solvation terms can 
also be included, such as in LigScore or Fresno.145 LigScore is an interesting scoring 
function containing both force field (a regular Lennard-Jones potential accounting 
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for van der Waals interaction) and empirical terms (accounting for polar contacts and 
ligand desolvation).

Different groups have evaluated the relative performance of docking–scoring 
software for their ability to retrieve the experimental pose and to discriminate 
between actives and inactives in relatively large data sets,114,115,146–153 and each soft-
ware has its advantages and limits. The performance is generally dependent on the 
database used, the structural and physicochemical properties of the binding site, and 
the parameters used (thus the users’ experience of the program114,115,154). It is thus of 
major importance to derive parameters for docking and scoring related to the bind-
ing pocket properties. Consensus scoring148,155–158 and/or docking–scoring114,115,159 
can also be used to improve the performance of the enrichment.

Protein–protein interfaces sometimes display a relative high flexibility160 and 
sometimes let transient pockets appear.12 It is, thus, very important to assess the 
flexibility of the region targeted for SBVLS studies (backbone, side chains, or loops 
around the hot spots or interface conserved residues). Different docking methods 
accounting for partial flexibility of the receptor have been developed to face this phe-
nomenon, in particular using softened 6-9 or 4-8 Lennard Jones potentials describ-
ing van des Waals interaction in the scoring function or by reducing the van der 
Waals radii of heavy atoms to let the scoring be more tolerant to small clashes after 
docking. Another option is to perform the SBVLS on multiple rigid experimental 
structures (x-ray, NMR)161,162 or multiple simulated structures obtained by molecular 
dynamics or normal modes, for instance.163–171 Some flexible docking algorithms can 
also include side chain flexibility,113,164,172–174 but it seems that according for receptor 
flexibility during the docking process increases the “noise,” and thus makes it more 
difficult to discriminate between true hits and false positives.175,176

lbvls: siMilarity searCh, Qsar, anD PharMaCoPhores

When one or several ligands have already been identified for a particular target, it is 
possible to develop new ligands based on this reference. Ligand-based virtual ligand 
screening (LBVLS) procedures consist of retrieving compounds with similar struc-
ture, shape, or physicochemical properties compared to the reference ligand(s).

Similarity search methods can be applied, based on the two-dimensional (2D) 
substructure of the reference structure177 represented by molecular fingerprints 
derived from the fragments composing the molecule,178 the connectivity between 
the fragments and sometimes even molecular descriptors computed from the struc-
ture.179,180 Many molecular descriptors have already been described (see ADME-Tox 
earlier and Refs. 181–192) and can be used in such approaches. Shape81,193 or surface 
descriptors181,194 can also be used in similarity search methods, the choice of the 
descriptors used impacting directly on the screening performance.195,196 Similarity 
search methods based on 3D descriptors and in particular shape descriptors like 
the ones used in ROCS197 or LASSO198 can be used for scaffold hopping, that is, 
change the molecular scaffold but keep the activity. Other scaffold hopping methods 
exist199–204 and have been recently reviewed in Refs. 205–207.

Quantitative structure–activity relationship (QSAR) models can also be used 
against PPIs. A QSAR model is a statistical model that relates the properties of 
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a molecule (such as its biological activity) to its structure. 3D QSAR models like 
ComFa or ComSia use, for example, steric and electrostatic fields displayed around 
the superimposition of the known actives to make predictions for the activity of new 
compounds. Screening and selection of small molecules compatible with the corre-
sponding fields can lead to novel small-molecules identification.208 A combination of 
docking methods and 3D QSAR have also been performed, so-called receptor-based 
3D QSAR.209–213

In the same idea, structure-based pharmacophore screening and particularly 
3D-pharmacophores using descriptors derived from the structural and physicochem-
ical properties of the interface can be used for PPI inhibitor screening.214,215 Different 
pharmacophore modeling software exist such as Unity, Catalyst, Disco, or GASP216 
and are widely use for drug discovery projects.214,217–219

Unfortunately, in the case of PPIs, there are generally few reference inhibitors, but 
peptides, hot spots, or pharmacophores can be derived from the structure and prop-
erties of the protein partners involved in the interaction, and can be used as a refer-
ence. Combined with the knowledge of the structure of the interface, these methods 
can be very useful for finding new hits targeting PPIs. They can also be used when 
potential inhibitors have been identified in order to retrieve analogues and derive 
structure–activity relationships for lead optimization (Figure 14.2).

suCCessful aPPliCations on PPi inhibitors iDentifiCation

Virtual screening procedures have already been successfully applied in numerous 
targets displaying “traditional” active sites, but even if it still seems to be challeng-
ing to target PPIs, several advances in the field are very encouraging and have been 
recently reviewed in Refs. 8 and 220–223. In general, when starting a project against 
a specific PPI, the structure of at least one protein partner (obtained via experimen-
tal or molecular modeling methods) is available but not the structure of any known 
inhibitor. That is why SBVLS methods are most often used, but if a hit is found, 
LBVLS can also be part of the drug design procedure to reenrich the hit list.

The p53 tumor suppressor is a transcription factor considered as the “guardian 
of the genome” as it reacts to cellular stress by activating transcription of numerous 
genes implied in the cell cycle arrest, DNA repair, and apoptosis.224 Murine double 
minute 2 protein (MDM2) regulates p53 forming an inactive MDM2–p53 complex 
and addresses it for proteasomal degradation. MDM2 binds to a helical region of p53 
close to the N-terminus (see Ref. 3 for a review of the interaction). Inactivation of p53 
is common in about half of the tumors. Potential inhibitors of MDM2–p53 are thus 
seen as a promising path for cancer treatment.

Two applications of pharmacophore models on PPIs have been performed on 
the p53–MDM2 interface using pharmacophores derived from the structure of the 
MDM2 binding pocket (Figure 14.3). The first study was performed by Galatin and 
Abraham225 using the program Unity. By screening the NCI database on a pharma-
cophore derived from the key binding residues of p53 (F19, L23, W26), they identi-
fied inhibitors that inhibit the interaction and activate p53-dependent transcription in 
MDM2 overexpressing cells. Bowman et al.226 performed a similar study. They used 
their in-house method, MPS (multiple protein structure), to derive a receptor-based 
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pharmacophore model, which identified the hot spots of binding. After screening 
their in-house 35,000 compound collection on the pharmacophore model, they iden-
tified five nonpeptide small-molecule inhibitors of the human p53–MDM2 interac-
tion, the most potent displaying a Ki of 110 nM. Each inhibitor represented a novel 
scaffold on p53–MDM2 inhibition and their binding modes have been assessed 
using flexible induced-fit docking into the binding pocket showing that their struc-
ture mimics the key binding residues of p53.

A recent study of Weber, Holak, et al.227 on the p53–MDM2 interaction led to 
an interesting protocol combining 2D similarity screening with the structure of 
Nutlin-3 (a known small-molecule inhibitor of the interaction).228 They identified 278 
compounds with various scaffolds from their vendors’ database. Using the program 
LIGSITE,48,49 they extracted the binding pocket available in the interface between 
p53 and MDM2. After generating different conformers for the 278 compounds 
identified through 2D similarity, they performed shape similarity with the shape 
of the pocket using the program M3dsml (Gerber molecular design). Using this 
protocol, they prioritized 131 compounds for experimental testing. By combining 

Large compound collection
(~2 000 000)

~600 000

~100 000

~1 000 hits

~50 hits

Drug candidates

~10 leads

~10 000 ~10 000

Structure-based
1st screening

Ligand-based
2nd screening

Compounds optimization 
Lead-generation

Experimental testing
In vitro hit confirmation

Rigid-body docking

Consensus flexible
docking/scoring

Visual analysis
Manual selection

Experimental testing
In vivo animal models

ADME-Tox filtering

figure 14.2 Example flowchart of a structure-based drug design protocol. The ADME-
Tox filter is used to select druglike compounds in the initial compound collection. Once a 
binding pocket is identified in the protein–protein interface, the resulting compounds will 
be subjected to rigid-body docking followed by consensus flexible docking/scoring. The hits 
will then be validated in vitro. A similarity search will then be performed on the confirmed 
hits to find more active compounds that will be optimized using medicinal chemistry. The 
most promising compounds after optimization will then be evaluated in vivo to select drug 
candidates.
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LBVLS and SBVLS, they identified novel scaffolds that could bind on the MDM2 
pocket. After synthesis of analogues of the most promising compounds after experi-
mental validation of the binding, they identified isoquinolin-1-one derivatives that 
can dissociate p53 and MDM2 in vitro, and thus provide a good starting point as 
potential inhibitors for the treatment of the numerous cancers associated with this 
interaction.224

During HIV-1 infection, there are interactions between auxiliary viral proteins 
and surface proteins of the hosts’ CD4+ lymphocytes that impact directly on the 
efficiency of the infection and disease progression. HIV-1 Nef, an auxiliary viral 
protein, displays an SH3 domain binding surface that can be targeted to develop a 
new class of antiviral compounds.

Betzi et al.229 performed a study on the SH3 domain–HIV-1 Nef interaction com-
bining hierarchical SBVLS and LBVLS. They defined the binding site for docking 
with a hydrophobic groove on HIV-1 Nef bordered by key hydrophobic and charged 
residues (hot spots) involved in the interaction, so-called the RT loop binding region 
(RTBLR) cavity (Figure 14.4). They first performed an SBVLS step using FlexX on 
the National Cancer Institute diversity library filtered to contain only druglike com-
pounds. A pharmacophoric filter based on the properties of the RTLBR cavity was 
then applied on the 335 compounds retained after SBVLS and led to 33 candidates 
that were visually inspected. The 10 most promising were tested experimentally and 
one compound, D1, was found active on the PPI in the micromolar range (Kd = 
1.8 µM). Then, an LBVLS step by using a 2D-similarity screening based on D1 

P53 transactivation
domain

MDM2 binding pocket

figure 14.3 (SEE COLOR INSERT FOLLOWING PAGE 174.) X-ray structure of the 
MDM2–p53 fragment complex. MDM2 is displayed as a solid surface, whereas the p53 frag-
ment is displayed as a cartoon colored in magenta. The MDM2 binding pocket is colored in 
orange. Figure generated with PyMol.
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substructure was performed on a 435,000-compound collection. The 70 most similar 
compounds were evaluated experimentally resulting in another promising candidate, 
DLC27, displaying a Kd of 0.98 µM on the interaction. These two compounds were 
highly original and were, to date, the first druglike molecules identified that bind 
HIV-1 Nef–SH3 binding surface in the micromolar range and are very promising for 
the development of new antiviral therapies.

ConCluDing reMarks

In the last few years, there has been major progress in the identification and develop-
ment of PPI inhibitors. Until now, most of them have been retrieved using blind HTS 
or fragment-based screening, but recently, inhibitors issued from virtual screening 
protocols have arisen. The different successes presented are very promising for vir-
tual screening methods that can constitute an interesting alternative to experimental 
screening. In particular, protocols using a wise combination of SBVLS and LBVLS 
methods have led to very interesting inhibitors displaying original scaffolds, which 
can be used as a basis to develop new compounds with therapeutical interest on chal-
lenging targets.

However, there are still several improvements to be made to routinely dis-
cover PPI inhibitors using virtual screening. The scoring functions used in virtual 
screening still need improvements, as in most of the cases there are still a lot of 
false positives. A better account for electrostatics and, in particular, solvation and 
accurate protonation and tautomeric states management can certainly improve 
the discriminating accuracy between actives and inactives. It also seems very 
important to take into account the particular physicochemical properties of the 

SH3 RT loop

HIV1 Nef RTLBR

figure 14.4 X-ray structure of the HIV1 Nef/SH3 domain complex. HIV1 Nef is dis-
played as a solid surface, whereas SH3 domain is displayed as a cartoon colored in magenta. 
The RT loop binding region is colored in orange. Figure generated with PyMol.
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binding pocket defined in the interface in the parameters of the different tools 
used for screening. A better knowledge of the particular properties of PPI inhibi-
tors will also certainly be of interest to optimize these parameters. Several other 
points need to be addressed including the treatment of flexibility on the receptor 
side and the evaluation of the potential of the hits retrieved after screening to be 
easily optimized.

It appears clearer with the recent successful applications that virtual screening 
methods can lead to promising compounds targeting PPIs and establish high expec-
tations for future inhibitors targeting this challenging class of interactions.
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