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SERIES EDITORS' FOREWORD 

The series Advances in Industrial Control aims to report and encourage 
technology transfer in control engineering. The rapid development of control 
technology has an impact on all areas of the control discipline. New theory, new 
controllers, actuators, sensors, new industrial processes, computer methods, 
new applications, new philosophies ... , new challenges. Much of this 
development work resides in industrial reports, feasibility study papers and the 
reports of advanced collaborative projects. The series offers an opportunity for 
researchers to present an extended exposition of such new work in all aspects of 
industrial control for wider and rapid dissemination. 

A key objective in industrial plant is to maintain continuous operation and 
produce outputs meeting the desired specifications. Over recent decades, 
complex plant has become more and more instrumented in an attempt to 
improve process monitoring. The consequence has been that process plant data 
is widely and readily available. The problem arising is what to do with this data. 
A growing band of experts and engineers have been looking at this problem. 
The outcome has been a growth in black-box and grey-box data-based methods 
for modelling and related activities. Among such activities are those of fault 
detection and diagnosis methods, which have enjoyed considerable expansion 
over recent years. 

This timely Advances in Industrial Control monograph by E.L. Russell, L.B. 
Chiang and R.D. Braatz contributes to this activity in using plant data for fault 
detection and diagnosis. The monograph presents an application-orientated 
text on methods based on a statistical framework. In fact the presentation of this 
approach is comprehensive and systematic; the statistical background, the 
derivation of the methods and a detailed look at applications are all covered. A 
valuable feature of the monograph is a final chapter reviewing current 
alternative methods for the fault-detection problem. 

It is useful to note that this text by Russell et al. complements a recent 
Advances in Industrial Control monograph by x.z. Wang entitled Data Mining 
and Knowledge Discovery for Process Monitoring and Control (ISBN 1-852333-
137-2). Both books have a strong applications flavour and should be of special 
interest to the engineering practitioner in the process and chemical engineering 
domains. 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 

Glasgow, Scotland, UK 



PREFACE 

Modern chemical plants are large scale, highly complex, and operate with 
a large number of variables under closed loop control. Early and accurate fault 
detection and diagnosis for these plants can minimize downtime, increase the 
safety of plant operations, and reduce manufacturing costs. Chemical pro­
cesses are becoming more heavily instrumented, resulting in large quantities 
of data becoming available for use in detecting and diagnosing faults. Uni­
variate control charts (e.g., Shewhart charts) have a limited ability to detect 
and diagnose faults in such processes due to large correlations in the process 
data. This has led to a surge of academic and industrial effort concentrated 
towards developing more effective process monitoring methods. 

While techniques based on first-principles models have been around for 
more than two decades, their contribution to industrial practice has not been 
pervasive due to the huge cost and time required to develop a sufficiently 
accurate process model for a complex chemical plant. The process moni­
toring techniques that have dominated the literature for the past decade 
and have been most effective in practice are based on models constructed 
almost entirely from process data. The purpose of this book is to bring 
these data-driven process monitoring techniques to practicing engineers, and 
to engineering undergraduate or graduate students. Besides describing the 
state-of-the-art on methods based on chemometrics, pattern classification, 
and system identification, the methods are compared through application to 
the Tennessee Eastman Chemical plant simulator. This gives the readers an 
understanding of the strengths and weaknesses of various approaches, as well 
as some realistic homework problems. 

Although much effort has been devoted to process monitoring by both 
academics and industrially employed engineers, books on this subject are 
very limited. The most closely related to this book is "Fault Detection and 
Diagnosis in Chemical and Petrochemical Processes," written by David M. 
Himmelblau and published in 1978. It was a ground-breaking book, but is 
now dated by two decades of significant advances in process monitoring theory 
and practice. Also, beyond providing some basic background on statistics and 
univariate process control charts, Himmelblau's book focused primarily on 
the use of detailed mathematical models. In contrast, as discussed above, this 
text focuses almost entirely on data-driven processing monitoring techniques, 
as these are the most promising in process applications. 



x 

The goal of the book is to present the theoretical background and prac­
tical techniques for data-driven process monitoring. The intended audience 
is engineering students and practicing engineers. The book is appropriate for 
a first-year graduate or advanced undergraduate course in process monitor­
ing. As the most effective method for learning the techniques is by applying 
them, the Tennessee Eastman Chemical plant simulator used in this text 
has been made available at http://brahms.scs.uiuc.edu. Readers are encour­
aged to collect process data from the simulator, and then apply a range of 
process monitoring techniques to detect, isolate, and diagnose various faults. 
The process monitoring techniques can be implemented using commercial 
software packages such as the MATLAB PLS Toolbox and ADAPTx. 

The authors thank International Paper, DuPont, and the National Center 
for Supercomputing Applications for funding over the past three years this 
book was being written. 

Urbana, Illinois E.L.R., L.H.C., R.D.B 
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INTRODUCTION 



CHAPTER! 

INTRODUCTION 

In the chemical and other related industries, there has been a large push to 
produce higher quality products, to reduce product rejection rates, and to 
satisfy increasingly stringent safety and environmental regulations. Process 
operations that were at one time considered acceptable are no longer ade­
quate. To meet the higher standards, modern chemical processes contain a 
large number of variables operating under closed loop control. The standard 
process controllers (PID controllers, model predictive controllers, etc.) are 
designed to maintain satisfactory operations by compensating for the effects 
of disturbances and changes occurring in the process. While these controllers 
can compensate for many types of disturbances, there are changes in the 
process which the controllers cannot handle adequately. These changes are 
called faults. More precisely, a fault is defined as an unpermitted deviation 
of at least one characteristic property or variable of the system [95J. 

The types of faults occurring in chemical processes include process pa­
rameter changes, disturbance parameter changes, actuator prob­
lems, and sensor problems [109J. Catalyst poisoning and heat exchanger 
fouling are examples of process parameter changes. A disturbance parameter 
change can be an extreme change in the concentration of a process feed stream 
or in the ambient temperature. An example of an actuator problem is a stick­
ing valve, and a sensor producing biased measurements is an example of a 
sensor problem. To ensure that the process operations satisfy the performance 
specifications, the faults in the process need to be detected, diagnosed, and 
removed. These tasks are associated with process monitoring. Statistical 
process control (SPC) addresses the same issues as process monitoring, but 
to avoid confusion with standard process control, the methods mentioned in 
this text will be referred to as process monitoring methods. 

The goal of process monitoring is to ensure the success of the planned op­
erations by providing information recognizing and indicating anomalies of the 
behavior. The information not only keeps the plant operator and maintenance 
personnel better informed of the status of the process, but also assists them 
to make appropriate remedial actions to remove the abnormal behavior from 
the process. As a result of proper process monitoring, downtime is minimized, 
safety of plant operations is improved, and manufacturing costs are reduced. 
As chemical processes have become more highly integrated and complex, the 

E. L. Russell et al., Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
© Springer-Verlag London Limited 2000



4 1. Introduction 

faults occurring in modern processes present monitoring challenges that are 
not readily addressed using univariate control charts (e.g., Shewhart charts, 
see Section 2.3). The weaknesses of univariate control charts for detecting 
faults in multivariate processes have led to a surge of research literature con­
centrated on developing better methods for process monitoring. This growth 
of research activity can also be explained by the fact that chemical processes 
are becoming more heavily instrumented, resulting in large quantities of data 
becoming available for use in process monitoring, and that modern computers 
are becoming more powerful. The availability of data collected during various 
operating and fault conditions is essential to process monitoring. The stor­
age capacity and computational speed of modern computers enable process 
monitoring algorithms to be computed when applied to large quantities of 
data. 

1.1 Process Monitoring Procedures 

The four procedures associated with process monitoring are: fault detec­
tion, fault identification, fault diagnosis, and process recovery. There 
appears to be no standard terminology for these procedures as the termi­
nology varies across disciplines; the terminology given by Raich and Cinar 
[189] is adopted here. Fault detection is determining whether a fault has 
occurred. Early detection may provide invaluable warning on emerging prob­
lems, with appropriate actions taken to avoid serious process upsets. Fault 
identification is identifying the observation variables most relevant to diag­
nosing the fault. The purpose of this procedure is to focus the plant operator's 
and engineer's attention on the subsystems most pertinent to the diagnosis 
of the fault, so that the effect of the fault can be eliminated in a more effi­
cient manner. Fault diagnosis is determining which fault occurred, in other 
words, determining the cause of the observed out-of-control status. Isermann 
[94] more specifically defines fault diagnosis as determining the type, location, 
magnitude, and time of the fault. The fault diagnosis procedure is essential to 
the counteraction or elimination of the fault. Process recovery, also called 
intervention, is removing the effect of the fault, and it is the procedure 
needed to close the process monitoring loop (see Figure 1.1). Whenever a 
fault is detected, the fault identification, fault diagnosis, and process recovery 
procedures are employed in the respective sequence; otherwise, only the fault 
detection procedure is repeated. 

While all four procedures may be implemented in a process monitoring 
scheme, this is not always necessary. For example, a fault may be diagnosed 
(fault diagnosis) without identifying the variables immediately affected by 
the fault (fault identification). Additionally, it is not necessary to automate 
all four procedures. For instance, an automated fault identification procedure 
may be used to assist the plant operators and engineers to diagnose the fault 
(fault diagnosis) and recover normal operation. Often the goal of process 
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monitoring is to efficiently incorporate the plant operators and engineers into 
the process monitoring loop rather than to automate the monitoring scheme 
entirely. 

After a fault occurs, the in-control operations can often be recovered by 
reconfiguring the process, repairing the process, or retuning the controllers. 
Once a fault has been properly diagnosed, the optimal approach to coun­
teract the fault may not be obvious. A feasible approach may be to retune 
the standard process controllers. Several methods have been developed to 
evaluate controller performance [33, 72, 109, 190, 201, 212], and these can 
be used to determine which controllers in the process need to be retuned to 
restore satisfactory performance. In the case of a sensor problem, a sensor 
reconstruction technique can be applied to the process to restore in-control 
operations [43]. Even though process recovery is an important and necessary 
component of the process monitoring loop, process recovery is not the focus 
of this book. 

Fig. 1.1. A schemata of the process monitoring loop 

1.2 Process Monitoring Measures 

A typical process monitoring scheme contains one or more measures, based on 
developments from statistical theory, pattern classification theory, informa­
tion theory, and/or systems theory. These measures are calculated directly 
from the process data, which in some way represent the state or behavior 
of the process. The idea is to convert the large amount of on-line data col­
lected from the process into a few meaningful measures, and thereby assist 
the operators in determining the status of the operations and if necessary in 
diagnosing the faults. For fault detection, limits may be placed on some of the 
measures, and a fault is detected whenever one of the measures is evaluated 
outside the limits. In this way, the measures are able to define the in-control 
process behavior and accordingly the out-of-control status. By developing 
measures that accurately characterize the behavior of each observation vari­
able, the measure value of one variable can be compared against the measure 
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values for other variables to determine the variable most affected by the 
fault. Faults can also be diagnosed by developing and comparing measures 
that accurately represent the different faults of the process. 

The goal of process monitoring is to develop measures that are maximally 
sensitive and robust to all faults. Faults are manifested in several ways, 
however, and it is highly unlikely that all faults occurring in a process can 
be effectively detected and diagnosed with only a few measures. Since each 
measure characterizes a fault in a different manner, one measure will be more 
sensitive to certain faults and less sensitive to other faults relative to other 
measures. This motivates using multiple process monitoring measures, with 
the proficiency of each measure determined for the particular process and the 
possible faults at hand. 

The measures of a process monitoring scheme are mainly derived based 
on three approaches; namely, data-driven, analytical, and knowledge­
based. The data-driven measures are derived directly from process data. In 
contrast to the data-driven approach, the analytical approach uses mathemat­
ical models often constructed from first-principles while the knowledge-based 
approach uses qualitative models. The analytical approach is applicable to 
information rich systems, where satisfactory models and enough sensors 
are available, while the knowledge-based approach is better applied to in­
formation poor systems, where few sensors or poor models are available 
[54]. Examples of the analytical approach include parameter and state es­
timation (see Section 11.1), and residual-based methods (see Section 11.2). 
Examples of the knowledge-based approach include cause-effect graphs and 
expert systems (see Section 11.3). 

Analytical and knowledge-based approaches have been studied extensively 
in the literature [53, 78], and several surveys are available [53, 91, 227]. An 
overview of analytical and knowledge-based approaches is provided in Chap­
ter 11. The fact that analytical measures require accurate detailed models to 
be effective [40, 96, 238] has motivated a large amount of effort devoted to 
developing analytical measures that are more robust to model uncertainties 
[27, 47, 54, 138]. It has been shown that when uncertain models are used, 
control performance must be traded off against diagnostic performance [167] 
and the fault detection and control schemes should be designed together [211]. 
FUndamental issues associated with the identification and control of uncer­
tain systems [18, 17, 48, 143, 193, 191, 194, 218, 217] further complicate the 
design of robust fault detection and diagnosis measures. 

Most applications of the analytical and knowledge-based measures have 
been to systems with a relatively small number of inputs, outputs, and states 
[44, 93, 97, 109, 124]. It is difficult to apply the analytical approach to large 
scale systems (i.e., systems containing a large number of inputs, outputs, 
and/or states) because it requires accurate detailed models in order to be 
effective [40, 96, 238]. Accurate models for large scale systems are difficult 
to obtain given all the crosscouplings associated with a multivariable system 



1.3 Data-driven Process Monitoring Methods 7 

[93]. It is challenging to apply the knowledge-based approach to large scale 
systems because constructing the fault models demands a large amount of 
effort [238] and requires skills beyond those of the typical engineer [5]. 

Because accurate detailed models are difficult to develop, most of the 
process monitoring methods applied to industrial processes are based on data­
driven measures. The data-driven monitoring methods use the process data 
collected during normal operating conditions to develop the measures for 
detecting and identifying faults, and the data collected during specific faults 
to develop the measures for diagnosing faults. Because these methods are 
data-driven, the proficiency of these methods is highly dependent on the 
quantity and quality of the process data. While a large quantity of data is 
available from most processes, only a small portion typically is useful, i.e., 
where it can be determined with confidence that the data were not somehow 
corrupted and no unknown faults occurred in the process. This book focuses 
on data-driven measures, more specifically, on extracting information useful 
for process monitoring from the data collected from the process. 

1.3 Data-driven Process Monitoring Methods 

Data-driven process monitoring statistics are based on a handful of methods. 
These methods not only differ in their objectives, but also in the number 
of parameters that needs to be estimated to develop the appropriate statis­
tics. The proficiency of the process monitoring methods depends on their 
objectives and the number of required independent parameters, and these 
aspects along with the advantages and disadvantages of various methods are 
discussed in this book. 

Traditional monitoring methods consisted of limit sensing and discrep­
ancy detection. Limit sensing raises an alarm when observations cross pre­
defined thresholds, and has been applied traditionally because it is easy to 
implement and understand. Limit sensing, however, lacks sensitivity to some 
process upsets because it ignores interactions between the process variables 
for the various sensors [40, 94]. Discrepancy detection raises an alarm by 
comparing simulated to actual observed values. Discrepancy detection highly 
depends on model accuracy, and model inaccuracies are unavoidable in prac­
tice. Since it is difficult to distinguish genuine faults from errors in the model, 
discrepancy detection can lack robustness [40]. As discussed in Section 1.2, 
robust discrepancy detection statistics have been studied, however, effective 
statistics are difficult to obtain, especially for large scale systems. 

Limit sensing determines thresholds for each observation variable without 
using any information from the other variables, and in this way is identical to 
the univariate statistical techniques discussed in Section 2.3. These methods 
ignore the correlations among the observation variables (spacial correla­
tions) and the correlations among measurements of the same variable taken 
at different times (serial correlations). (Note that spacial correlations also 
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refer to correlations between different measurements taken at essentially the 
same physical location. ) Process data are spacially correlated because there is 
often a large number of sensor readings taken throughout the process and the 
variability of the process variables is restricted to a lower dimension (for ex­
ample, due to phase equilibria or conservation laws, such as the material and 
energy balances) [42]. Also, process data are serially correlated because the 
sampling intervals are relatively small and the standard process controllers 
are unable to remove all the systematic trends due to inertial components, 
such as tanks, reactors, and recycle streams. Because limit sensing does not 
take into account the spacial correlations, it lacks sensitivity to many faults 
occurring in chemical processes [98,99], and because limit sensing also ignores 
the serial correlations, it lacks robustness [73]. 

The need to handle spacial correlations has led to the development and 
employment of process monitoring statistics based on Principal Compo­
nent Analysis (peA) for monitoring chemical processes. peA is a dimen­
sionality reduction technique for process monitoring which has been heavily 
studied and applied to chemical processes over the past decade. peA is an op­
timal dimensionality reduction technique in terms of capturing the variance 
of the data, and it accounts for correlations among variables [98, 99]. The 
lower dimensional representations of the data produced by peA can improve 
the proficiency of detecting and diagnosing faults using multivariate statis­
tics. The structure abstracted by peA can be useful in identifying either the 
variables responsible for the fault and/or the variables most affected by the 
fault. In cases where most of the information in the data can be captured 
in only two or three dimensions, which can be true for some processes [144], 
the dominant process variability can be visualized with a single plot (for ex­
ample, see Figure 4.2). Irrespective of how many dimensions are required in 
the lower dimensional space, other plots (e.g., T2 and Q charts) can be used 
which look similar to univariate control charts but are based on multivari­
ate statistics. These control charts can help the operators and engineers to 
interpret significant trends in the process data [120]. 

Fisher Discriminant Analysis (FDA) is a dimensionality reduction 
technique developed and studied within the pattern classification com­
munity [41]. FDA determines the portion of the observation space that is 
most effective in discriminating amongst several data classes. Discriminant 
analysis is applied to this portion of the observation space for fault diagno­
sis. The dimensionality reduction technique is applied to the data in all the 
classes simultaneously. Thus, all fault class information is utilized when the 
discriminant function is evaluated for each class and better fault diagnosis 
performance is expected. The theoretical developments for FDA suggest that 
it should be more effective than peA for diagnosing faults. 

Partial Least Squares (PLS) are data decomposition methods for max­
imizing covariance between predictor (independent) block and predicted (de­
pendent) block for each component. PLS attempts to find loading and score 
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vectors that are correlated with the predicted block X while describing a 
large amount of the variation in the predictor block Y [228]. A popular ap­
plication of PLS is to select X to contain sensor data and Y to contain only 
product quality data [144]. Similar to PCA, such inferential models (also 
known as soft sensors) can be used for detecting, identifying, and diagnosing 
faults [144, 181, 182]. Another application of PLS primarily focusing on fault 
diagnosis is to define Y as class membership [26]. This PLS method is known 
as discriminant Partial Least Squares. 

The process monitoring statistics based on PCA, PLS, and FDA can be 
extended to include serial correlations by augmenting the data collected at 
a particular time instant to the data collected during several of the previous 
consecutive sampling intervals. This is an ad hoc procedure to include serial 
correlations or process dynamics into the dimensionality reduction methods. 
An alternative method to address serial correlations is to average the mea­
surements over many data points (this method has the similar philosophy 
of CUSUM and EWMA charts, see Section 2.3 for a brief discussion). An­
other simple approach is to use a larger sampling interval. However, these 
approaches do not utilize the useful developments made in system identifica­
tion theory for quantifying serial correlation. A class of system identification 
methods that produces state variables directly from the data are called sub­
space algorithms. The subspace algorithm based on Canonical Variate 
Analysis (CVA) is particularly attractive because of its close relationship to 
PCA, FDA, and PLS. These relationships motivate the deviation of CVA­
based statistics for fault detection, identification, and diagnosis that take 
serial correlations into account. 

1.4 Book Organization 

Modern industrial processes, whether an entire chemical plant or a single 
paper machine, are large scale systems. With the heavy instrumentation typ­
ical of modern processes, large scale processes produce an exceptionally large 
amount of data. Even though much information is available from these pro­
cesses, it is beyond the capabilities of an operator or engineer to effectively 
assess process operations simply from observing the data. By computing some 
meaningful statistics for the process operators and engineers, process moni­
toring scheme for a large scale system can be improved significantly. 

A good process monitoring scheme employs multiple statistics or meth­
ods for fault detection, identification, and diagnosis [40]. To maximize the 
efficiency of employing multiple statistics, however, the confidence of each 
statistic needs to be assessed for the different operating conditions and types 
of faults. The effectiveness of various process monitoring statistics has been 
investigated on simulations of processes [125, 133, 189]. After introducing 
the data-driven process monitoring techniques, this book illustrates and com-
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pares them on a simulation of a realistic large scale process, the Tennessee 
Eastman process [39]. 

The book is organized into five parts. Part I (this chapter) is an intro­
duction to process monitoring approaches. Part II provides the background 
necessary to understand the data-driven process monitoring methods in Part 
III. Chapter 2 provides an introduction to multivariate statistics, and Chap­
ter 3 covers pattern classification. The process monitoring methods described 
in Part III are PCA, FDA, PLS, and CVA. The methods as described in 
the literature are extended in cases where the process monitoring statistics 
are incomplete or inadequate. Part IV describes the application of the pro­
cess monitoring methods to the Tennessee Eastman process. The Tennessee 
Eastman process is described in Chapter 8, while Chapter 9 states how the 
methods are applied to the Tennessee Eastman problem. The results of the 
methods applied to the simulated data are discussed in Chapter 10. Part V 
provides an overview of analytical and knowledge-based approaches. 



Part II 

BACKGROUND 



CHAPTER 2 

MULTIVARIATE STATISTICS 

2.1 Introduction 

The effectiveness of the data-driven measures depends on the characteriza­
tion of the process data variations. There are two types of variations for 
process data: common cause and special cause [171]. The common cause 
variations are those due entirely to random noise (e.g., associated with sensor 
readings), whereas special cause variations account for all the data variations 
not attributed to common cause. Standard process control strategies may 
be able to remove most of the special cause variations, but these strategies 
are unable to remove the common cause variations, which are inherent to 
process data. Since variations in the process data are inevitable, statistical 
theory plays a large role in most process monitoring schemes. 

The application of statistical theory to monitor processes relies on the 
assumption that the characteristics of the data variations are relatively un­
changed unless a fault occurs in the system. By the definition of a fault as 
an abnormal process condition (see Chapter 1), this is a reasonable assump­
tion. It implies that the properties of the data variations, such as the mean 
and variance, are repeatable for the same operating conditions, although the 
actual values of the data may not be very predictable. The repeatability of 
the statistical properties allows thresholds for certain measures, effectively 
defining the out-of-control status, to be determined automatically. This is an 
important step to automating a process monitoring scheme. 

The purpose of this chapter is to illustrate how to use statistical meth­
ods for monitoring processes, in particular methods using the multivariate 
T2 statistic. This chapter begins in Section 2.2 by describing the data pre­
treatment procedure, which is typically performed before determining the 
statistical parameters (mean, covariance, etc.) for the data. The traditional 
approach to statistical process monitoring using univariate statistics is dis­
cussed in Section 2.3. Then in Section 2.4, the T2 statistic is described along 
with its advantages over univariate statistics for process monitoring. It is 
shown in Section 2.5 how to apply the T2 statistic with statistically-derived 
thresholds, in order to automate the fault detection procedure and to remove 
outliers from the training data. In Section 2.6, the applicability of the T2 
statistic is determined in terms of the amount of data available to calculate 
the statistical parameters. 

E. L. Russell et al., Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
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2.2 Data Pretreatment 

To effectively extract the information in the data relevant to process mon­
itoring, it is often necessary to pretreat the data in the training set. The 
training set contains off-line data available for analysis prior to the on­
line implementation of the process monitoring scheme and is used to develop 
the measures representing the in-control operations and the different faults. 
The pretreatment procedures consist of three tasks: removing variables, 
autoscaling, and removing outliers. 

The data in the training set may contain variables that have no infor­
mation relevant to monitoring the process, and these variables should be 
removed before further analysis. For instance, it may be known a priori that 
certain variables exhibit extremely large measurement errors, such as those 
due to improper sensor calibrations, or some of the variables may be phys­
ically separate from the portion of the process that is being monitored. In 
these instances, the proficiency of the process monitoring method can be 
improved by removing the inappropriate variables. 

Process data often need to be scaled to avoid particular variables dom­
inating the process monitoring method, especially those methods based on 
dimensionality reduction techniques, such as peA and FDA. For example, 
when performing an unscaled dimensionality reduction procedure on tem­
perature measurements varying between 300K and 320K and concentration 
measurements varying between 0.4 and 0.5, the temperature measurements 
would dominate even though the temperature measurements may be no more 
important than the concentration measurements for monitoring the process. 

Autoscaling standardizes the process variables in a way that ensures each 
variable is given equal weight before the application of the process monitoring 
method. It consists of two steps. The first step is to subtract each variable 
by its sample mean because the objective is to capture the variation of the 
data from the mean. The second step is to divide each variable of the mean­
centered data by its standard deviation. This step scales each variable to 
unit variance, ensuring that the process variables with high variances do not 
dominate. When autoscaling is applied to new process data, the mean to 
be subtracted and the standard deviation to be divided are taken from the 
training set. 

Outliers are isolated measurement values that are erroneous. These val­
ues may significantly influence the estimation of statistical parameters and 
other parameters related to a given measure. Removing the outliers from 
the training set can significantly improve the estimation of the parameters 
and should be an essential step when pretreating the data [178]. Obvious 
outliers can be removed by plotting and visually inspecting the data for out­
lying points. More rigorous methods based on statistical thresholds can be 
employed for removing outliers, and a method for doing this using the T2 
statistic is discussed in Section 2.5. For simplicity of presentation only, it is 
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assumed in the remainder of this book that the data has been pretreated, 
unless otherwise stated. 

2.3 Univariate Statistical Monitoring 

A univariate statistical approach to limit sensing can be used to determine 
the thresholds for each observation variable (a process variable observed 
through a sensor reading), where these thresholds define the boundary for in­
control operations and a violation of these limits with on-line data would in­
dicate a fault. This approach is typically employed using a Shewhart chart 
[159, 37, 7] (see Figure 2.1) and has been referred to as limit sensing [40] 
and limit value checking [94]. The values of the upper and lower con­
trollimits on the Shewhart chart are critical to minimizing the rate of false 
alarms and the rate of missed detections. A false alarm is an indication 
of a fault, when in actuality a fault has not occurred; a missed detection 
is no indication of a fault, though a fault has occurred. For fault detection, 
there is an inherent tradeoff between minimizing the false alarm and missed 
detection rates. Tight threshold limits for an observation variable result in 
a high false alarm and low missed detection rate, while limits which are too 
spread apart result in a low false alarm and a high missed detection rate. 

In-control Out-of-control ~. Upper Control Limit 

f · / 
\ Lower Control Limit 

Fig. 2.1. An illustration of the Shewhart chart. The black dots are observations. 

Given certain threshold values, statistical hypothesis theory can be ap­
plied to predict the false alarm and missed detection rates based on the 
statistics of the data in the training sets. Consider the case where there can 
potentially be a single fault i (the more general case of multiple fault classes 
will be treated thoroughly in the next chapter). Let w represents the event 
of an in-control operation and Wi represents the event of a specific fault, i. 
Consider a single observation x with the null hypothesis (assign x as w) and 
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the alternative hypothesis (assign x as Wi), the false alarm rate is equal to 
the type I error, and the missed detection rate for fault i is equal to the type 
II error [1591. This is illustrated graphically in Figure 2.2. 

Fig. 2.2. The type I and type II error regions for the null hypothesis (assign x as 
w) and the alternative hypothesis (assign x as Wi). The probability density function 
for x conditioned on W is p(xlw)j the probability density function for x conditioned 
on Wi is P(XIWi). The probability of a type I error is a and the probability of a type 
II error is {3. Using Bayesian decision theory [41], these notions can be generalized 
to include a priori probabilities of wand Wi. 

Increasing the threshold (shifting the vertical line to the right in Figure 
2.2) decreases the false alarm rate but increases the missed detection rate. 
Attempts to lower the false alarm rate are usually accompanied with an 
increase in the missed detection rate, with the only ways to get around this 
tradeoff being to collect more data, or to reduce the normal process variability 
(e.g., through installation of sensors of higher precision). The value of the type 
I error, also called the level of significance 0:, specifies the degree of tradeoff 
between the false alarm rate and the missed detection rate. 

As a specific example, assume for the null hypothesis that any devia­
tions of the process variable x from a desired value fL are due to inherent 
measurement and process variability described by a normal distribution with 
standard deviation a: 

p(x) = a~ exp [_ (x ~~)2] . (2.1) 

The alternative hypothesis is that x # fL. Assuming that the null hypothesis 
is true, the probabilities that x is in certain intervals are 

Pr{x < (fL - co:/2a)} = 0:/2 (2.2) 
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Pr{x> (I-' + Ca /20")} = a/2 (2.3) 

where Ca /2 is the standard normal deviate corresponding to the (1 - a/2) 
percentile. The standard normal deviate is calculated using the cumulative 
standard normal distribution [81]j the standard normal deviates correspond­
ing to some common a values are listed in Table 2.1. 

Table 2.1. Some typical standard normal deviate values 

a/2 Ca /2 

0.00135 3.00 
0.0025 2.81 
0.005 2.58 
0.01 2.33 

0.025 1.96 

The lower and upper thresholds for the process variable x are I-' - Ca /20" 

and I-' + Ca /20", respectively. Figure 2.3 illustrates the application of Shewhart 
chart to monitor the Mooney viscosity of an industrial elastomer [171]. The 
desired value I-' is 50.0j a standard deviation value of 0" = 0.5 is known to 
characterize the intrinsic variability associated with the sampling procedure. 
Since all the data points fall inside the upper and lower control limit lines 
corresponding to Ca /2 = 3.0, the process is said to be "in control" . 

As long as the sample mean and standard deviation of the training set 
accurately represent the true statistics of the process, the thresholds using 
(2.2) and (2.3) should result in a false alarm rate equal to a when applied to 
on-line data. If 20,000 data points were collected during "in control" operation 
defined by Ca /2 = 3.0, 27 data points would be expected to fall above the 
upper control limit, while 27 data points would be expected to fall below 
the lower control limit. Some typical a values for fault detection are 0.005, 
0.01, and 0.05. It has been suggested that even if x does not follow a normal 
distribution, the limits derived from (2.2) and (2.3) are effective as long as 
the data in the training set are an accurate representation of the variations 
during normal operations [113]. 

Process monitoring schemes based on Shew hart charts may not provide 
adequate false alarm and missed detection rates. These rates can be im­
proved by employing measures that incorporate observations from multiple 
consecutive time instances, such as the cumulative sum (CUSUM) and 
exponentially-weighted moving average (EWMA) charts [159, 171]. 
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Fig. 2.3. Shewhart chart for the Mooney viscosity data taken from [171J 

For a given false alarm rate, these methods can increase the sensitivity to 
faults over the measures using the Shewhart charts and accordingly decrease 
the missed detection rate, but at the expense of increasing the detection 
delay, which is the amount of time expended between the start of the fault 
and time to detection. This suggests that the CUSUM and EWMA charts are 
better suited for faults producing small persistent process shifts, and the She­
whart charts are better for detecting faults producing sudden large process 
shifts. 

The univariate statistical charts (Shewhart, CUSUM, and EWMA) deter­
mine the thresholds for each observation variable individually without con­
sidering the information contained in the other variables. As discussed in 
Section 1.3, because these methods ignore the correlation between variables, 
they do not accurately characterize the behavior of most modern chemical 
processes. The next section describes the multivariate T2 statistic, which 
takes into account the correlations between the variables. 
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2.4 T2 Statistic 

Let the data in the training set, consisting of m observation variables and n 
observations for each variable, be stacked into a matrix X E Rnxm, given by 

[ :~~ :~~ ::: :~:l X= 

X~l X~2 : :: X~m 
then the sample covariance matrix of the training set is equal to 

s= _l_XTX. 
n-l 

An eigenvalue decomposition of the matrix S, 

S = VAVT , 

(2.5) 

(2.6) 

(2.7) 

reveals the correlation structure for the covariance matrix, where A is diago­
nal and V is orthogonal (VTV = I, where I is the identity matrix) [66]. The 
projection y = VTx of an observation vector x E R m decouples the observa­
tion space into a set of uncorrelated variables corresponding to the elements 
of y. The variance of the ith element of y is equal to the ith eigenvalue in the 
matrix A. Assuming S is invertible and with the definition 

z = A- 1/ 2 VT x, (2.8) 

the Hotelling's T2 statistic is given by [99] 

T2 = ZTz. (2.9) 

The matrix V rotates the major axes for the covariance matrix of x so that 
they directly correspond to the elements of y, and A scales the elements of y 
to produce a set of variables with unit variance corresponding to the elements 
of z. The conversion of the covariance matrix is demonstrated graphically in 
Figure 2.4 for a two-dimensional observation space (m = 2). 

The T2 statistic is a scaled squared 2-norm of an observation vector x 
from its mean. The scaling on x is in the direction of the eigenvectors and is 
inversely proportional to the standard deviation along the eigenvectors. This 
allows a scalar threshold to characterize the variability of the data in the 
entire m-dimensional observation space. Given a level of significance, appro­
priate threshold values for the T2 statistic can be determined automatically 
by applying the probability distributions discussed in the next section. 
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Fig. 2.4. A graphical illustration of the covariance conversion for the T2 statistic 

2.5 T2 Statistic Thresholds 

Appropriate thresholds for the T2 statistic based on the level of significance, 
a, can be determined by assuming the observations are randomly sampled 
from a multivariate normal distribution. If it is assumed additionally that the 
sample mean vector and covariance matrix for normal operations are equal 
to the actual mean vector and covariance matrix, respectively, then the T2 
statistic follows a X2 distribution with m degrees of freedom [146]' 

T~ = x!(m). (2.10) 

The set T2 :s T~ is an elliptical confidence region in the observation space, 
as illustrated in Figure 2.5 for two process variables m = 2. Applying (2.10) 
to process data produces a confidence region defining the in-control status 
whereas an observation vector projected outside this region indicates that a 
fault has occurred. Given a level of significance a, Figure 2.5 illustrates the 
conservatism eliminated by employing the T2 statistic versus the univariate 
statistical approach outlined in Section 2.3. As the degree of correlation be­
tween the process variables increases, the elliptical confidence region becomes 
more elongated and the amount of conservatism eliminated by using the T2 
statistic increases. 

When the actual covariance matrix for the in-control status is not known 
but instead estimated from the sample covariance matrix (2.6), faults can be 
detected for observations taken outside the training set using the threshold 
given by 

T 2 _ m(n-1)(n+1)F( -) 
0< - ( ) 0< m, n m nn-m 

(2.11) 

where F 0< (m, n - m) is the upper 100a% critical point of the F -distribution 
with m and n - m degrees of freedom [146]. For a given level of significance, 
the upper in-control limit in (2.11) is larger (more conservative) than the 
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Fig. 2.5. A comparison of the in-control status regions using the T2 statistic (2 .9) 
and the univariate statistics (2 .2) and (2 .3) for two process variables [189, 208] 

limit in (2.10), and the two limits approach each other as the amount of data 
increases (n -+ 00) [209]. 

When the sample covariance matrix (2.6) is used, the outliers in the train­
ing set can be detected using the threshold given by 

T2 = (n -1)2(m/(n - m -l))Fa(m,n - m -1). 
a n(l + (m/(n - m - l))Fa(m, n - m - 1) 

(2.12) 

For a given level of significance, the upper in-control limit in (2.12) is smaller 
(less conservative) than the limit in (2.10), and the two limits approach each 
other as the amount of data increases (n -+ 00) [209] . Equation (2.12) is also 
appropriate for detecting faults during process startup, when the covariance 
matrix is determined recursively on-line because no data are available a priori 
to determine the in-control limit. 

The upper control limits in (2.10), (2.11), and (2.12) assume that the 
observation at one time instant is statistically independent to the observations 
at other time instances. This can be a bad assumption for short sampling 
intervals. However, if there are enough data in the training set to capture the 
normal process variations, the T2 statistic can be an effective tool for process 
monitoring even if there are mild deviations from the normality or statistical 
independence assumptions [16, 113]. 

There are several extensions that are usually not studied in the process 
control literature, but for which there are rigorous statistical formulations. In 
particular, lower control limits can be derived for T2 [209] which can detect 
shifts in the covariance matrix (although the upper control limit is usually 
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used to detect shifts in mean, it can also detect changes in the covariance 
matrix) [75]. 

The above T2 tests are multivariable generalizations of the Shewhart chart 
used in the scalar case. The single variable CUSUM and EWMA charts can be 
generalized to the multivariable case in a similar manner [113, 140,200,225]. 
As in the scalar case, the multivariable CUSUM and EWMA charts can detect 
small persistent changes more readily than the multivariable Shewhart chart, 
but with increased detection delay. 

2.6 Data Requirements 

The quality and quantity of the data in the training set have a large influ­
ence on the effectiveness of the T2 statistic as a process monitoring tool. An 
important question concerning the training set is, "How much data is needed 
to statistically populate the covariance matrix for m observation variables?" 
This question is answered here by determining the amount of data needed 
to produce a threshold value sufficiently close to the threshold obtained by 
assuming infinite data in the training set. 

For a given level of significance a, a threshold based on infinite observa­
tions in the training set, or equivalently an exactly known covariance matrix, 
can be computed using (2.10), and the threshold for n observations in the 
training set is calculated using (2.11). The relative error produced by these 
two threshold values, 

m(n - 1)(n + 1) F. ( ) 2 ( ) 
( ) a m, n - m - Xa m 

nn-m 
f = --..!.--~----,~-:-------

x~(m) 
(2.13) 

indicates the sufficiency of the data amount n, where a large f implies that 
more data should be collected. Table 2.2 shows the data requirements using 
(2.13) for various numbers of observation variables, where f = 0.10 and a = 
0.5; this implies that the medians of the T2 statistic using (2.10) and (2.11) 
differ by less than 10%. The table indicates that the required number of 
observations is approximately 10 times the dimensionality of the observation 
space. The data requirements given in Table 2.2 do not take into account 
sensitivities that occur when some diagonal elements of A in (2.8) are small. In 
such cases the accuracy of the estimated values of the corresponding diagonal 
elements of the inverse of A will be poor, which will give erratic values for T2 
in (2.9). This motivates the use of the dimensionality reduction techniques 
described in Part III of this book. 
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Table 2.2. The amount of data n required for various number of observation 
variables m where € = 0.10 and a = 0.5 

Number of Observation Variables Data Requirement 
m n 
1 19 
2 30 
3 41 
4 52 
5 63 
10 118 
25 284 
50 559 
100 1110 
200 2210 

2.7 Homework Problems 

1. Read the original article by Hotelling on the T2 statistic [86]. How much 
of the results of this chapter were anticipated by Hotelling? Suggest rea­
sons why these ideas took so long to work their way into industrial process 
applications. 

2. Write a short report on the lower control limits for the T2 statistic dis­
cussed by [209]. For what type of chemical processes and faults will such 
limits be useful? Give a specific process example (list process, sensors, 
actuators, etc.). Suggest reasons why most of the chemical process con­
trol and statistics literature ignores the lower control limit. Justify your 
statements. 

3. Write a short report on the single variable CUSUM and EWMA con­
trol charts, including the mathematical expressions for the upper control 
limits in terms of a distribution function and assumptions on the noise 
statistics. You are welcome to use any books or journal articles on sta­
tistical quality control. 

4. Extend the report in Problem 3 to the case of multivariate systems. 
5. Consider the photographic process with the covariance matrix given in 

Table 1 of Jackson and Mulholdkar [101]. Reproduce as much as possible 
the results reported in the subsequent tables. Discuss the relative mer­
its of the multivariate T2 compared to scalar Shewhart charts for that 
process. 



CHAPTER 3 

PATTERN CLASSIFICATION 

3.1 Introduction 

Today's processes are heavily instrumented, with a large amount of data col­
lected on-line and stored in computer databases. Much of the data are usually 
collected during out-of-control operations. When the data collected during 
the out-of-control operations have been previously diagnosed, the data can 
be categorized into separate classes where each class pertains to a particular 
fault. When the data have not been previously diagnosed, cluster analysis 
may aid the diagnoses of the operations during which the data were collected 
[203], and the data can be categorized into separate classes accordingly. If hy­
perplanes can separate the data in the classes as shown in Figure 3.1, these 
separating planes can define the boundaries for each of the fault regions. 
Once a fault is detected using on-line data observations, the fault can be 
diagnosed by determining the fault region in which the observations are lo­
cated. Assuming the detected fault is represented in the database, the fault 
can be properly diagnosed in this manner. 

This assignment of data to one of several categories or classes is the prob­
lem addressed by pattern classification theory [41]. The typical pattern 
classification system assigns an observation vector to one of several classes 
via three steps: feature extraction, discriminant analysis, and max­
imum selection (see Figure 3.2). The objective of the feature extraction 
step is to increase the robustness of the pattern classification system by re­
ducing the dimensionality of the observation vector in a way that retains 
most of the information discriminating amongst the different classes. This 
step is especially important when there is a limited amount of quality data 
available. Using the information in the reduced dimensional space, the dis­
criminant calculator computes for each class the value of the discriminant 
function, a function quantifying the relationship between the observation 
vector and a class. By selecting the class with the maximum discriminant 
function value, the discriminant functions indirectly serve as the separating 
planes shown in Figure 3.1; however, in general the decision boundaries will 
not be linear. 

The objective of this chapter is to provide an overview of the statistical 
approach to pattern classification. The focus of this chapter is on parametric 
approaches to pattern classification. Assuming the statistical distributions of 
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Fig. 3.1. A graphical illustration of the separating plane approach to pattern 
classification 

the classes are known, an optimal pattern classification system can be de­
veloped using a parametric approach, while nonparametric approaches, such 
as the nearest neighbor rule [28], are suboptimal [41]. Pattern classification 
theory has been a key factor in developing fault diagnosis methods [187, 189], 
and the background in this chapter is important to understanding the fault 
diagnosis methods discussed in Part III. This chapter proceeds in Section 
3.2 by presenting the optimal discriminant analysis technique for normally 
distributed classes. Section 3.3 discusses the feature extraction step. 

3.2 Discriminant Analysis 

The pattern classification system assigns an observation to class i with the 
maximum discriminant function value 

(3.1) 

where 9j{X) is the discriminant function for class j given a data vector x 
E 'R. m. The statistics of the data in each class can provide analytical measures 
to determine the optimal discriminant functions in terms of minimizing the 
error rate, the average probability of error. With Wi being the event of class 
i (for example, a fault condition), the error rate can be minimized by using 
the discriminant function [41] 

(3.2) 



3.2 Discriminant Analysis 27 

MAX o Class # 

Data Feature Vector Discriminant Calculator Maximum Selector Decision 

Fig. 3.2. A schemata of a typical pattern classification system, where fi(X) are the 
feature extraction functions and 9i(t) are the discriminant analysis functions 

where P{wilx) is the a posteriori probability of x belonging to class i. This 
is equivalent to choosing the separating curves to be the points at which the 
a posteriori probabilities are equal. 

Using Bayes' rule, 

P( .1 ) - p(xlwi)P(wi) 
W. X - p(x) (3.3) 

where P{Wi) is the a priori probability for class Wi, p{x) is the probability 
density function for x, and p{xlwd is the probability density function for x 
conditioned on Wi. It can be shown that identical classification occurs when 
(3.2) is replaced by [41] 

(3.4) 

If the data for each class is normally distributed, P(XIWi) is given by 

where m is the number of measurement variables, and J.Li and Ei are the 
mean vector and covariance matrix for class i, respectively [41]. Substituting 
(3.5) into (3.4) gives 

() 1 ( )T -1 m 1 9i x =-2" X-J.Li Ei (x-J.Li)-"2 ln27r -2"ln[det(Ei)]+lnP(wi) 
(3.6) 
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This equation assumes that the mean vector and covariance matrix are 
known. In process monitoring applications, the true mean and covariance are 
not known. If the mean vector and covariance matrix are estimated and the 
sufficient data are available for each class to obtain highly accurate estimates, 
then using the estimated mean vector and covariance matrix in (3.6) will re­
sult in nearly optimal classification. Assuming that the a priori probability 
for each class is the same, the discriminant function (3.6) can be replaced by 

(3.7) 

where Xi is the mean vector for class i and Si E Rmxm is the sample co­
variance matrix for class i. Using this discriminant function for classification 
will be referred to as multivariate statistics (MS) when it uses the entire 
data dimensionality for classification. If sufficient data are not available to 
accurately estimate the mean vector and covariance matrix for each class, 
then (3.6) will result in suboptimal classifications. In this case dimensional­
ity reduction can be used to improve classification, as described in the next 
section. 

Assuming that the a priori probability for each class is the same and the 
total amount of variability in each class is the same, an identical classification 
occurs when (3.6) is replaced by 

(3.8) 

where Tl is the T2 statistic for class i (see last chapter). By using the thresh­
old T~ in (2.11), the values for each gi(X) in (3.8) can be converted to levels of 
significance which implicitly account for the uncertainties in the mean vector 
and covariance matrix for each class. 

3.3 Feature Extraction 

The objective of the pattern classification system is to minimize the misclas­
sification rate, the number of incorrect classifications divided by the total 
number of classifications, whenever it is applied to testing data, data in­
dependent of the training set. The dimensionality reduction of the feature 
extraction step can play a key role in minimizing the misclassification rate 
for observations outside the training set, especially when the dimensionality 
of the observation space m is large and the number of observations in each 
class n is small. If the statistical parameters such as the mean and covari­
ance of the classes are known exactly, from an information point of view the 
entire observation space should be maintained for the discriminant analysis 
step. In reality, inaccuracies in the statistical parameters of the classes exist. 
Consequently, the amount of information obtained in some directions of the 
observation space, specifically those that do not add much information in dis­
criminating the data in the training set, may not outweigh the inaccuracies 
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in the statistical parameters, and the elimination of these directions in the 
feature extraction step can decrease the misclassification rate when applied 
to data independent of the training set. 

The dimensionality reduction of the feature extraction step can also be 
motivated using system identification theory [137J. In system identification, 
it is shown that the accuracy of a model can be improved by decreasing the 
number of independent model parameters. This is due to the fact that the 
mean-squared error of the parameter estimates is reduced by decreasing the 
number of independent model parameters. By decreasing the number of in­
dependent parameters, the variance contribution of the parameter estimates 
on the mean-squared error is decreased more than the bias contribution is in­
creased. These same arguments can be applied to the feature extraction step. 
For normally distributed classes, the covariance matrix has m( m + 1) /2 inde­
pendent parameters. Reducing the data dimensionality reduces the number 
of independent parameters in the covariance matrix. This increases the bias 
of the estimate of the covariance matrix, but decreases the variance. When 
the decrease in the variance contribution to the parameter error outweighs 
the increase in the bias contribution, the dimensionality reduction results in 
better covariance estimates and possibly lower misclassification rates when 
applied to data outside the training set. 

Once the dimensionality reduction has been performed, classification is 
performed by applying discriminant analysis to the reduced dimensional 
space. Applications of discriminant analysis to various reduced dimensional 
spaces will be described in Part III. In particular, Chapter 5 describes a 
procedure for optimally reducing the dimensionality in terms of pattern clas­
sification. 

3.4 Homework Problems 

1. Derive Equation 3.4. 
2. Derive Equation 3.6. 
3. Derive Equation 3.8. 
4. Explain in detail how to use (3.8) to compute levels of significance for 

each class i. 
5. Consider the case where all the class covariance matrices in (3.5) are 

equal, Ei = E. Show that the discriminant function (3.6) can be re­
placed by a discriminant function which is linear in x without changing 
the classification. With this linear discriminant function, show that the 
equations 9i(X) = gj(x) define separating planes as shown in Figure 3.1. 
Derive the equations for the separating curves when the class covariance 
matrices are not equal. What are the shapes of these separating curves? 
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METHODS 



CHAPTER 4 

PRINCIP AL COMPONENT ANALYSIS 

4.1 Introduction 

By projecting the data into a lower dimensional space that accurately 
characterizes the state of the process, dimensionality reduction techniques 
can greatly simplify and improve process monitoring procedures. Principal 
Component Analysis (peA) is such a dimensionality reduction technique. 
It produces a lower dimensional representation in a way that preserves the 
correlation structure between the process variables, and is optimal in terms 
of capturing the variability in the data. 

The application of peA as a dimensionality reduction tool for monitoring 
chemical processes has been studied by several academic and industrial engi­
neers [120, 182]. Applications of peA to plant data have been conducted at 
DuPont and other companies, with much of the results published in confer­
ence proceedings and journal articles [111, 182, 181, 228]. Several academics 
have performed similar studies based on data collected from computer sim­
ulations of processes [77, 105, 125, 144, 186, 187, 189, 208]. For some appli­
cations, most of the variability in the data can be captured in two or three 
dimensions [144], and the process variability can be visualized with a sin­
gle plot. This one-plot visualization and the structure abstracted from the 
multidimensional data assist the operators and engineers in interpreting the 
significant trends of the process data [120]. 

For the cases when most of the data variations cannot be captured in two 
or three dimensions, methods have been developed to automate the process 
monitoring procedures [146, 182, 189]. The application of peA in these meth­
ods is motivated by one or more of three factors. First, peA can produce 
lower dimensional representations of the data which better generalize to data 
independent of the training set than that using the entire dimensionality of 
the observation space, and therefore, improve the proficiency of detecting and 
diagnosing faults. Second, the structure abstracted by peA can be useful in 
identifying either the variables responsible for the fault and/or the variables 
most affected by the fault. Third, peA can separate the observation space 
into a subspace capturing the systematic trends of the process and a subspace 
containing essentially the random noise. Since it is widely accepted that cer­
tain faults primarily affect one of the two subspaces [43, 230, 231], applying 
one measure developed for one subspace and another measure developed for 

E. L. Russell et al., Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
© Springer-Verlag London Limited 2000



34 4. Principal Component Analysis 

the other subspace can increase the sensitivity of the process monitoring 
scheme to faults in general. The three aforementioned attributes of PCA are 
further discussed later in this chapter. 

The purpose of this chapter is to describe the PCA methods for process 
monitoring. It begins in Section 4.2 by defining PCA and in Section 4.3 by 
discussing the different methods which can be used to automatically deter­
mine the order of the PCA representation. Sections 4.4, 4.5, and 4.6 discuss 
the PCA developments for fault detection, identification, and diagnosis, re­
spectively. In Section 4.7 is a discussion of dynamic peA (DPCA), which 
takes into account serial correlations in the process data. Section 4.8 discusses 
other PCA-based process monitoring methods. 

4.2 Principal Component Analysis 

PCA is a linear dimensionality reduction technique, optimal in terms of cap­
turing the variability of the data. It determines a set of orthogonal vectors, 
called loading vectors, ordered by the amount of variance explained in the 
loading vector directions. Given a training set of n observations and m pro­
cess variables stacked into a matrix X as in (2.5), the loading vectors are 
calculated by solving the stationary points of the optimization problem 

vTXTXv 
max ----;;;;---
v#O vTv 

(4.1) 

where v E n.m. The stationary points of (4.1) can be computed via the 
singular value decomposition (SVD) 

(4.2) 

where U E n.nxn and V E n.mxm are unitary matrices, and the matrix 
E E n.nxm contains the nonnegative real singular values of decreasing 
magnitude along its main diagonal (CTI ~ CT2 ~ ••• ~ CTmin(m,n) ~ 0), and 
zero off diagonal elements. The loading vectors are the orthonormal column 
vectors in the matrix V, and the variance of the training set projected along 
the ith column of V is equal to CT~. Solving (4.2) is equivalent to solving an 
eigenvalue decomposition of the sample covariance matrix S, 

S = _l_XTX = VAVT 
n-l 

(4.3) 

where the diagonal matrix A = ET E E n.mxm contains the nonnegative real 
eigenvalues of decreasing magnitude (AI ~ A2 ~ ... ~ Am ~ 0) and the ith 
eigenvalue equals the square of the ith singular value (i.e., Ai = CT~). 
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In order to optimally capture the variations of the data while minimizing 
the effect of random noise corrupting the peA representation, the loading 
vectors corresponding to the a largest singular values are typically retained. 
The motivation for reducing the dimensionality of the peA representation 
is analogous to the arguments given in Section 3.3 for pattern classification. 
Selecting the columns of the loading matrix P E 'R,mxa to correspond to the 
loading vectors associated with the first a singular values, the projections of 
the observations in X into the lower dimensional space are contained in the 
score matrix, 

T=XP, (4.4) 

and the projection of T back into the m-dimensional observation space, 

A T 
X=TP. (4.5) 

The difference between X and X is the residual matrix E: 

E=X-X. (4.6) 

The residual matrix captures the variations in the observation space 
spanned by the loading vectors associated with the m - a smallest singu­
lar values. The subspaces spanned by X and E are called the score space 
and residual space, respectively. The subspace contained in the matrix E 
has a small signal-to-noise ratio, and the removal of this space from X can 
produce a more accurate representation of the process, X. 

Defining ti to be ith column of T in the training set, the following prop-
erties can be shown (see Homework Problem 5) [181) 

1. Var(tl) ~ Var(t2) ~ ... ~ Var(ta ). 

2. Mean(ti) = OJ Vi. 
3. tlTtk = OJ Vi '# k. 
4. There exists no other orthogonal expansion of a components that cap­

tures more variations of the data. 

A new observation (column) vector in the testing set, x E 'R,m, can be 
projected into the lower dimensional score space ti = x T Pi where PI is the 
ith loading vector (see Figure 4.1). The transformed variable ti is also called 
the ith principal component of x [102]. To distinguish between the trans­
formed variables and the transformed observation, the transformed variables 
will be called principal components and the individual transformed ob­
servations will be called scores. The statistical properties listed above allow 
each of the scores to be monitored separately using the univariate statistical 
procedures discussed in Section 2.3. With the vectors projected into the lower 
dimensional space using peA, only a variables needed to be monitored, as 
compared with m variables without the use of peA. When enough data are 
collected in the testing set, the score vectors tl, t2,"" ta can be formed. IT 
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these score vectors do not satisfy the four properties listed above, the testing 
set is most likely collected during different operating conditions than for the 
training set. This abstraction of structure from the multidimensional data 
is a key component of the score contribution method for fault identification 
discussed in Section 4.5. 

X -----i~ 

Data 

Loading 
Vectors 

p 

Loading 
Vectors 

A 
I-----i~ x 

Filtered 
Data 

Fig. 4.1. The projection of the observation vector x into the score and residual 
spaces, and the computation of the filtered observation :i 

To illustrate the application of PCA, experimental data from [25, 50] are 
used. The data set consists of three classes, with each class containing 4 
measurements and 50 observations. Class 3 data are used to construct X as 
in (2.5), where n = 50 and m = 4. After autoscaling X and solving (4.3), we 
have 

and 

[
1.92 0 0 0] 

A = 0 0.96 0 0 
o 0 0.88 0 ' 
o 0 0 0.24 

[
0.64 -0.29 0.052 -0.71] 

V = 0.64 -0.23 0.25 0.69 . 
0.34 0.33 -0.88 0.11 
0.25 0.87 0.41 -0.09 

(4.7) 

(4.8) 

The total variance for X projected along V is equal to the trace of A, which 
is 4.0. The ith value in the diagonal of A indicates the amount of variance 
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captured by the ith principal component. If only one principal component 
is retained (i.e., a = 1), (1.92/4.0)100% = 48.0% of the total variance is 
captured. For a = 2, 72% of the total variance is captured. For a = 2, the 
loading matrix P is equal to the first two columns of V: 

[
0.64 -0.29] 

P = 0.64 -0.23 . 
0.34 0.33 
0.25 0.87 

(4.9) 

The score matrix T is calculated according to (4.4). The advantage of 
retaining only two principal components is that the process variability can 
be visualized by plotting t2 versus tl (see Figure 4.2). 

It is easy to verify that Var(td~ Var(t2) by observing that the variation 
along the horizontal axis is much greater than that of the vertical axis for 
the Class 3 data in Figure 4.2. The ellipsoid and the data for Class 3 are 
centered at the origin, which indicates that Mean(td = Mean(t2) = O. It is 
straightforward to verify that tl and t2 are orthogonal to each other. 

A threshold defines an elliptical confidence region for data belonging to 
Class 3 (the calculation of the threshold will be described in Section 4.4). In 
this example, statistics predicts that there is a 95% probability that a Class 
3 data point should fall inside the ellipsoid. It is clearly shown in Figure 4.2 
that PCA is able to separate Class 3 data from Classes 1 and 2, except for 
the apparent outlier located at (tb t 2) = (2.5,5.6). 

4.3 Reduction Order 

It is commonly accepted and with certain assumptions theoretically justified 
[230] that the portion of the PCA space corresponding to the larger singular 
values describes most of the systematic or state variations occurring in the 
process, and the portion of the PCA space corresponding to the smaller 
singular values describe the random noise. By appropriately determining the 
number of loading vectors, a, to maintain in the PCA model, the systematic 
variations can be decoupled from the random variations, and the two types 
of variations can be monitored separately, as discussed in Section 4.4. Several 
techniques exist for determining the value of the reduction order a [100, 77], 
but there appears to be no dominant technique. The methods for determining 
a described here are: 

1. the percent variance test, 
2. the scree test, 
3. parallel analysis, and 
4. the PRESS statistic. 

The percent variance method determines a by calculating the smallest 
number of loading vectors needed to explain a specific minimum percentage 
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Fig. 4.2. The projections of experimental data [50, 25J for three classes onto the 
first two PCA loading vectors 

of the total variance. (Recall that the variance associated with the ith loading 
vector is equal to the square of the singular value, ul.) Because this minimum 
percentage is chosen arbitrarily, it may be too low or too high for a particular 
application. 

The scree test assumes that the variance, ul, corresponding to the ran­
dom noise forms a linear profile. The dimension of the score space a is de­
termined by locating the value of ul where the profile is no longer linear. 
The identification of this break can be ambiguous, and thus, this method is 
difficult to automate. It is especially ambiguous when several breaks from 
linearity occur in the profile. 

Parallel analysis determines the dimensionality by comparing the vari­
ance profile to that obtained by assuming independent observation variables. 
The reduction order is determined as the point at which the two profiles cross. 
This approach ensures that the significant correlations are captured in the 
score space, and it is particularly attractive since it is intuitive and easy to 
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automate. Ku, Storer, and Georgakis [1251 recommend the parallel analysis 
method, because in their experience, it performs the best overall. 

The dimension of the score space can also be determined using a cross­
validation procedure with the PREdiction Sum of Squares (PRESS) 
statistic [2321, 

PRESS(i) = _1 IIX - XII~ 
mn 

(4.10) 

where i is the number ofloading vectors retained to calculate X and 11·IIF is 
the Frobenius norm (the square root of the sum of squares of all the elements). 
For the implementation of this technique, the training set is divided into 
groups. The PRESS statistic for one group is computed based on various 
dimensions of the score space, i, using all the other groups. This is repeated 
for each group, and the value i associated with the minimum average PRESS 
statistic determines the dimension of the score space. 

4.4 Fault Detection 

As discussed in Section 2.4, the T2 statistic can be used to detect faults for 
multivariate process data. Given an observation vector x and assuming that 
A = ET E is invertible, the T2 statistic in (2.9) can be calculated directly 
from the peA representation (4.2) 

(4.11) 

This follows from the fact that the V matrix in (2.7) can be computed to 
be identical to the V matrix in (4.2), and the a; are equal to the diagonal 
elements of A. When the number of observation variables is large and the 
amount of data available is relatively small, the T2 statistic (4.11) tends to 
be an inaccurate representation of the in-control process behavior, especially 
in the loading vector directions corresponding to the smaller singular values. 
Inaccuracies in these smaller singular values have a huge effect on the cal­
culated T2 statistic because the square of the singular values are inverted in 
(4.11). Additionally, the smaller singular values are prone to errors because 
these values contain small signal-to-noise ratios and the associated loading 
vector directions often suffer from a lack of excitation. Therefore, in this case 
the loading vectors associated only with the larger singular values should be 
retained in calculating the T2 statistic. 

By including in the matrix P the loading vectors associated only with the 
a largest singular values, the T2 statistic for the lower dimensional space can 
be computed [991 

(4.12) 
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where Ea contains the first a rows and columns of E. The T2 statistic (4.12) 
measures the variations in the score space only. IT the actual mean and co­
variance are known, the T2 statistic threshold derived from (2.1O) is 

( 4.13) 

When the actual covariance matrix is estimated from the sample covariance 
matrix, the T2 statistic threshold derived from (2.11) is 

T 2 = a{n -1){n + l)p ( _) 
a () a a, n a. nn-a 

(4.14) 

To detect outliers in the training set, the threshold derived from (2.12) is 

T2 _ (n - 1)2{a/{n - a - 1))Fa{a, n - a-I) 
a - n{1 + (a/{n - a -1))Fa{a,n - a-I) . 

( 4.15) 

Because the T2 statistic in (4.12) is not affected by the inaccuracies in the 
smaller singular values of the covariance matrix, it is able to better repre­
sent the normal process behavior and provides a more robust fault detection 
measure when compared to the T2 statistic in (4.11). Using the arguments 
in Section 4.3, the T2 statistic (4.12) can be interpreted as measuring the 
systematic variations of the process, and a violation of the threshold would 
indicate that the systematic variations are out-of-control. 

For the example in the last section, we have n = 50 and a = 2. According 
to an F-distribution table [811, FO.05 {2,48) = 3.19. The threshold T~ is 
equal to 6.64 according to (4.14). The elliptical confidence region, as shown 
in Figure 4.2, is given by 

(4.16) 

with 

E2 = [1.92 0 ] 
a 0 0.96 . (4.17) 

The equation 

( 4.18) 

converts this region into the ellipse in Figure 4.2. Inserting (4.18) into (4.16) 
gives 

(4.19) 

or 

t~ t~ < 6 64 
1.92 + 0.96 - . 

(4.20) 
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where t = ttl t2] T. 
Data from Classes 1 and 2 are used to illustrate that the PCA model is 

able to detect data that do not come from Class 3. The data sets for Classes 
1 and 2 are first autoscaled according to the mean and standard deviation 
of Class 3. Equation 4.4 is used to calculate the score matrices for Classes 1 
and 2. As shown in Figure 4.2, the mean of each score vector for Classes 1 
and 2 is not equal to zero. Indeed, all the data points for Classes 1 and 2 fall 
outside the elliptical confidence region, indicating data from Classes 1 and 2 
are indeed different from the Class 3 data. 

The T2 statistic in (4.11) is overly sensitive to inaccuracies in the PCA 
space corresponding to the smaller singular values because it directly mea­
sures the variation along each of the loading vectors. In other words, it 
directly measures the scores corresponding to the smaller singular values. 
The portion of the observation space corresponding to the m - a smallest 
singular values can be monitored more robustly by using the Q statistic 
[101, 100, 103, 119, 233] 

r = (I - ppT)X, (4.21 ) 

where r is the residual vector, a projection of the observation x into the 
residual space. Since the Q statistic does not directly measure the variations 
along each loading vector but measures the total sum of variations in the 
residual space, the Q statistic does not suffer from an over-sensitivity to 
inaccuracies in the smaller singular values [101]. The Q statistic, also known 
as the squared prediction error (SPE), is a squared 2-norm measuring the 
deviation of the observations to the lower dimensional PCA representation. 

The distribution for the Q statistic has been approximated by Jackson 
and MudhoIkar [101] 

Q = () [hoca v'202 1 (}2 hO{ho - 1)] l/ho 
a 1 (}l + + ()~ (4.22) 

n 

" 2' where (}i = ~ (Tj', ho = 
j=a+l 

2fh(}3 . 
1 - 3(}~ , and COl IS the normal deviate cor-

responding to the (I - 0:) percentile. Given a level of significance, 0:, the 
threshold for the Q statistic can be computed using (4.22) and be used to 
detect faults. 

Within the context of Section 4.3, the Q statistic measures the random 
variations of the process, for example, that associated with measurement 
noise. The threshold (4.22) can be applied to define the normal variations 
for the random noise, and a violation of the threshold would indicate that 
the random noise has significantly changed. The T2 and Q statistics along 
with their appropriate thresholds detect different types of faults, and the 
advantages of both statistics can be utilized by employing the two measures 
together. When these two statistics are utilized along with their respective 
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thresholds, it produces a cylindrical in-control region, as illustrated for a = 2 
in Figure 4.3. The figure indicates that the 'x' data was collected during in­
control operations, the '0' data represents a T2 statistic violation, and the 
'+' data represents a Q statistic violation. 

SPE 

Fig. 4.3. A graphical illustration for fault detection using the Q and T2 statistics 

4.5 Fault Identification 

Once a fault has been detected, the next step is to determine the cause of the 
out-of-control status. Diagnosing the fault can be a challenging task for the 
plant operators and engineers in view of the fact that usually a large number 
of process variables are monitored, many of the variables go out-of-control in 
a short time period when a fault occurs, and chemical processes are highly 
integrated and complex. The objective of fault identification is to determine 
which observation variables are most relevant to diagnosing the fault, thereby 
focusing the plant operators and engineers on the subsystem(s) most likely 
where the fault occurred. This assistance provided by the fault identification 
scheme in locating the fault can effectively incorporate the operators and 
engineers in the process monitoring scheme and significantly reduce the time 
to recover in-control operations. 

'Iraditionally, univariate statistical techniques were employed for fault 
identification. Given an observation vector x, the-normalized errors for each 
variable x j were calculated as 

ej = (Xj - J.Lj)/Sj (4.23) 
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where ILj is the mean and 8j is the standard deviation of the lh variable. 
These normalized errors were plotted on the same graph, and thresholds 
based on the level of significance were used to detect the out-of-control vari­
ables, as discussed in Section 2.3. However, univariate statistical techniques 
for fault identification can leave out variables that are responsible for the 
fault because the techniques do not account for correlations among the pro­
cess variables, or can give alarm readings for so many variables that the 
engineer has little guidance on the main variables of concern [113]. 

Contribution plots are a PCA approach to fault identification that takes 
into account the spacial correlations, thereby improving upon the univariate 
statistical techniques [113, 157]. The approach is based on quantifying the 
contribution of each process variable to the individual scores of the PCA 
representation, and for each process variable summing the contributions only 
of those scores responsible for the out-of-control status. The procedure is 
applied in response to a T2 violation, and it is summarized as follows. 

1. Check the normalized scores (ti/Ui)2 for the observation x and determine 
the r ~ a scores responsible for the out-of-control status. For instance, 
those scores with (ti/ui)2 > (T~)I/a. (Recall that ti is the score of the 
observation projected onto the ith loading vector, and Ui is the corre­
sponding singular value.) 

2. Calculate the contribution of each variable x j to the out-of-control scores 
ti 

t· 
cont· . = ~P' ·(x· - 11.-) >,J 2 <,J J t"] 

U-> 

(4.24) 

where Pi,j is the (i,j)th element of the loading matrix P. 
3. When conti,j is negative, set it equal to zero. 
4. Calculate the total contribution of the lh process variable, Xj, 

r 

CONTj = ~)conti,j). (4.25) 
i=1 

5. Plot CONTj for all m process variables, Xj, on a single graph. 

The variables responsible for the fault can be prioritized or ordered by the 
total contribution values CONTj, and the plant operators and engineers can 
immediately focus on those variables with high CO NTj values and use their 
process knowledge to determine the cause of the out-of-control status. While 
the overall variable contribution approach can be applied to the portion of 
the observation space corresponding to the m - a smallest singular values, 
it is not practical because the total contribution values CONTj would be 
overly sensitive to the smaller singular values. 

Wise et al. [231J developed a PCA approach to fault identification which 
is based on quantifying the total variation of each of the process variables 
in the residual space. Assuming that the m - a smallest singular values are 
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all equal, the variance for each variable Xj inside the residual space can be 
estimated as [231] 

(4.26) 

Given q new observations, the variance of the jth variable outside the peA 
model space can be tested where 

S~/B~ > Fa(q - a-I, n - a-I) (4.27) 

would indicate an out-of-control variable, where s; and B~ are the variance 
estimates of the lh variable for the new and training set observations, re­
spectively, and Fa(q - a-I, n - a-I) is the (1 - a) percentile limit using 
the F distribution [81]. Equation 4.27 is testing the null hypothesis, with 
the null hypothesis being Sj = Bj and the one-sided alternative hypothesis 
being Sj > Bj. The one-sided alternative hypothesis is accepted (i.e., the null 
hypothesis is rejected) if (4.27) holds [81]. In most of the times, the variable 
that is responsible for a fault has a larger variance than it has in the training 
set (i.e., Sj > Bj). However, this is not always true. For example, a broken 
sensor may give constant reading, indicating that Sj < Bj. This motivates the 
use of two-sided hypothesis testing, with the null hypothesis being Sj = Bj 

and the two-sided alternative hypothesis being Sj "# Bj. We conclude Bj "# Sj 

if [81] 

(4.28) 

or 

B;/S; > Fa / 2 (n - a -1,q - a-I). (4.29) 

In addition, a large shift in the mean inside the residual space occurs if 
[231,81] 

ILj - jJ.j -7======== > ta/2(q + n - 2a - 2) •. 1 1 1 
Sjy q-IJ + n=a 

(4.30) 

or 

ILi - jJ.j -...:r======= < -ta/2(q + n - 2a - 2), 
B" 1_1_ + _1_ 

1 Y q-IJ n-IJ 

(4.31) 

where ILj and jJ.j are the means of Xj for the new and training set observations, 
respectively, and ta/2(q + n - 2a - 2) is the (1 - a/2) percentile limit using 
the t distribution. Equations 4.30 and 4.31 are testing the null hypothesis, 
with the null hypothesis being ILj = jJ.j and the alternative hypothesis being 
ILj "# jJ.j. The alternative hypothesis is accepted if (4.30) or (4.31) holds [81]. 
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The variables responsible for the out-of-control status, detected by the Q 
statistic, can be identified using (4.27), (4.30), and (4.31). In addition, the 
variables can be prioritized using the expression values (4.27), (4.30), and 
(4.31) where the variable with the largest expression value is given priority. 
In [231), sensor failures are detected and identified using (4.27), (4.30), and 
(4.31). Other PCA-based methods developed specifically for detecting sensor 
failures are discussed elsewhere [43, 164). 

The fault identification approaches using (4.27), (4.30), and (4.31) require 
a group of q > > 1 observations. As discussed in Section 2.3, measures based 
on several consecutive observations are able to increase the robustness and 
sensitivity over measures based on only a single observation, but result in a 
slower response time for larger process shifts. A fault identification measure 
based on an observation vector at a single time instant is the normalized error 

(4.32) 

where Tj is the ph variable of the residual vector. The values of (4.32) can be 
used to prioritize the variables where the variable with the highest normalized 
error is given priority. The measure (4.32), when compared to (4.27), (4.30), 
and (4.31), is able to more accurately indicate the current status of the process 
immediately after a large process shift. 

4.6 Fault Diagnosis 

The previous section discussed fault identification methods, which identify 
the variables associated with the faulty subsystem. Although these methods 
assist in diagnosing the faults, it may take a substantial amount of time and 
process expertise on behalf of the plant operators and engineers before the 
fault is properly diagnosed. Much of this time and expertise can be elimi­
nated by employing an automated fault diagnosis scheme. One approach is 
to construct separate PCA models for each process unit [77). A fault associ­
ated with a particular process unit is assumed to occur if the PCA model for 
that unit indicates that the process is out-of-control. While this approach can 
narrow down the cause of abnormal process operations, it will not unequiv­
ocally diagnose the cause. This distinguishes these fault isolation techniques 
(which are based on non-supervised classification) from the fault diagnosis 
techniques (which are based on supervised classification) described below. 

Several researchers have proposed techniques to use principal component 
analysis for fault diagnosis. The simplest approach is to construct a single 
PCA model and define regions in the lower dimensional space which Classifies 
whether a particular fault has occurred [231). This approach is unlikely to be 
effective when a significant number of faults can occur [238). 

It was described in Chapter 3 how a pattern classification system can 
be applied to diagnose faults automatically, The feature extraction step was 
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shown to be important especially when the dimensionality of the data is large 
and the quantity of quality data is relatively small (see Section 3.3). A PCA 
approach which can handle a larger number of faults than using a single 
PCA model is to develop a separate PCA model based on data collected 
during each specific fault situation, and then apply the Q [123], T2 [186], or 
other statistics [186, 187, 189,238] to each PCA model to predict which fault 
or faults most likely occurred. This approach is a combination of Principal 
Component Analysis and discriminant analysis [187]. Various discriminant 
functions for diagnosing faults, and these are discussed in the following. 

One way to use PCA for fault diagnosis is to derive one model based on 
the data from all fault classes. Stacking the data for all fault classes into 
matrix X, the loading matrix P can be calculated based on (4.2) or (4.3). 
The maximum likelihood classification for an observation x is fault class i 
with the maximum score discriminant, which is derived from (3.6) to be 

9i(X} = -~(x - Xi) T P (p T SiP) -1 pT (x - Xi) + In(Pi} 

-~ In [det (pTSip)] 

where Xi is the mean vector for class i, 

(4.33) 

(4.34) 

ni is the number of data points in fault class i, Xi is the set of vectors Xj 

which belong to the fault class i, and Si E 'R,mxm is the sample covariance 
matrix for fault class i, as defined in (2.6). 

H P is selected to include all of the dimensions of the data (i. e., P = V E 
'R,mxm) and the overall likelihood for all fault classes is the same, Equation 
4.33 reduces to the discriminant function for multivariate statistics (MS) as 
defined in (3.7). MS selects the most probable fault class based on maximizing 
the discriminant function (3.7). MS also serves as a benchmark for the other 
statistics, as the dimensionality should only be reduced if it decreases the 
misclassification rate for a testing set. 

The score discriminant, residual discriminant, and combined dis­
criminant are three discriminant analysis techniques used with multiple 
PCA models [186]. Assuming the PCA models retain the important vari­
ations in discriminating between the faults, an observation x is classified as 
being in the fault class i with the maximum score discriminant 

1 _ 1 
9i(X} = -2'xT PiEa,~pt X - 2'In[det(E~,i}] + In(Pi} (4.35) 

where Pi is the loading matrix for fault class i, Ea,i is the diagonal matrix 
Ea as shown in (4.12) for fault class i (E~,i is the covariance matrix of PiX), 
and Pi is the overall likelihood of fault class i [103, 189]. Note that (4.35) 
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assumes that the observation vector x has been autoscaled according to the 
mean and standard deviation of the training set for fault class i. Equation 
4.35 is based on the discriminant function (3.6). 

The matrices p., Ea ,., and P' in (4.35) depend solely on fault class i, that 
is, the discriminant function for each fault class is derived individually. A 
weakness of this approach is that useful information for other classes is not 
utilized when each model is derived. In general, the reduction order a for each 
fault class is different. This indicates that the discriminant function (4.35) for 
each fault class i is evaluated based on different dimensions of the projected 
data pt x. This inconsistency can result in relatively high misclassification 
rates. 

In contrast to (4.35), the projection matrix P in (4.33) not only utilizes 
information from all fault classes, but also projects the data onto the same 
dimensions for each class. Because of these properties, the discriminant func­
tion (4.33) can significantly outperform (4.35) for diagnosing faults. To dis­
tinguish the one-model peA with the multi-model peA, we will refer to the 
one-model peA as PCAl and the multi-model peA as PCAm throughout 
the book. 

Assuming that the overall likelihood for all fault classes is the same and 
the sample covariance matrix of p.x for all classes is the same, the use of the 
score discriminant (4.35) reduces to use of the Tl statistic, where 

T2 - Tp 1]-2pT • -x • a, • • X (4.36) 

(similarly as shown in Section 3.2). In this case, the score discriminant will 
select the fault class as that which corresponds to the minimum Tl statistic. 

Assuming that the important variations in discriminating between the 
faults are contained in the residual space for each fault class, it is most likely 
that an observation is represented by the fault class i with the minimum 
residual discriminant 

(4.37) 

where the subscript i indicates fault class i. If the important variations in 
discriminating between the faults are contained both within the score and 
residual space, then an observation is most likely to be represented by the 
fault class i with the minimum combined discriminant 

(4.38) 

where c. is a weighting factor between 0 and 1 for fault class i. Assuming 
an out-of-control observation does not represent a new fault, each of these 
discriminant analysis techniques (4.35), {4.37}, and (4.38) can be used to 
diagnose the fault. 

When a fault is diagnosed as fault i, it is not likely to represent a new 
fault when 
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(4.39) 

and 

( 4.40) 

These conditions indicate that the observation is a good match to fault model 
i. If either of these conditions is not satisfied (for example, [TN(T~)i] or 
[Qi/(Qa)i] is greater than 1), then the observation is not accurately repre­
sented by fault class i and it is likely that the observation represents a new 
fault. 

Before the application of a pattern classification system to a fault diag­
nosis scheme, it is useful to assess the likelihood of successful diagnosis. In 
[187, 189], Raich and Cinar describe a quantitative measure of similarity be­
tween the covariance structures of two classes. The measure, referred to as 
the similarity index, for Classes 1 and 2 is calculated as 

(4.41) 

where Uj is the lh singular value of VtV2 and the matrices VI and V2 contain 
all m loading vectors for Classes 1 and 2, respectively. The value of / ranges 
between 0 and 1, where a value near 0 indicates a lack 0/ similarity and a 
value equal to 1 indicates an exact similarity [121]. While a high similarity 
does not guarantee misdiagnosis, a low similarity does generally indicate a 
low probability of misdiagnosis. The similarity index can be applied to PCA 
models by replacing VI and V2 with the loading matrix PI for Class 1 and 
the loading matrix P2 for Class 2, respectively. 

In [187, 189], a measure of class similarity using the overlap of the mean 
for one class into the score space of another class is developed from [147]. 
Define J-tl E nm and J-t2 E nm to be the means of Classes 1 and 2, respectively, 
P E nmxa as the projection matrix containing the a loading vectors for Class 
2, p as the fraction of the explained variance in the data used to build the 
second PCA model, and E E naxa as the covariance in a model directions for 
the second PCA model. The test statistic, referred to as the mean overlap, 
for Classes 1 and 2 is 

( 4.42) 

where t = pT(J-t1 - J-t2) is the approximation of J-tl by the second model and 
r = Pt - J-tl is the residual error in J-tl unexplained by the second model. The 
threshold for (4.42) can be determined from the following distribution 

ma = Fa(m - a,n - a) ( 4.43) 
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where n is the number of model observations for Class 2. In simulations, 
Raich and Cinar found that the mean overlap was not as successful as the 
similarity index for indicating pairwise misdiagnosis [187, 189]. 

Multiple faults occurring within the same time window are likely to hap­
pen for many industrial processes. The statistics for detecting a single fault 
are directly applicable for detecting multiple faults because the threshold 
in (4.14) depends only on the data from the normal operating conditions 
(Fault 0). The task of diagnosing multiple faults is rather challenging and 
the proficiencies of the fault diagnosis statistics depend on the nature of the 
combination of the faults. A straightforward approach for diagnosing multi­
ple faults is to introduce new models for each combination of interest; this 
approach could describe combinations of faults that produce models that are 
not simply the consensus of component models [187, 189]. The disadvantage 
of this approach is that the number of combinations grows exponentially with 
the number of faults. For a detailed discussion of diagnosing multiple faults, 
refer to the journal articles [187, 189]. 

4.7 Dynamic peA 

The previously discussed PCA monitoring methods implicitly assume that 
the observations at one time instant are statistically independent to observa­
tions at past time instances. For typical chemical processes, this assumption 
is valid only for long sampling times, i.e., 2 to 12 hours, and suggests that 
a method taking into account the serial correlations in the data is needed in 
order to implement a process monitoring method with fast sampling times. 
A simple method to check whether correlations are present in the data is 
through the use of an autocorrelation chart of the principal components 
{189, 224]. If signifi{:ant autocorrelation is shown in the autocorrelation chart, 
the following approaches can be used. One approach to address this issue is 
to incorporate EWMA/CUSUM charts with PCA (see Section 4.8). Another 
approach is to average the measurements over a number of data points. Al­
ternatively, PCA can be used to take into account the serial correlations by 
augmenting each observation vector with the previous h observations and 
stacking the data matrix in the following manner, 

X(h) = 

xl' Xl'-l' . . x[_h 
T 

xt-1 Xl'_2 ... x T h t- -1 

x T y,! ... x T 
t+h-n ·.+h-n-1 t-n 

( 4.44) 

where xl' is the m-dimensional observation vector in the training set at time 
interval t. By performing PCA on the data matrix in (4.44), a multivariate 
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autoregressive (AR), or ARX model if the process inputs are included, is 
extracted directly from the data [125, 228]. To see this, consider a simple 
example of a single input single output (SISO) process, which is described by 
the ARX(h) model 

Yt = alYt-l + ... + ahYt-h + fJoUt + f3lUt-l + ... + f3hUt-h + et 

(4.45) 

where Yt and Ut are the output and input at time t, respectively, al, ... , 

ah,f31.' .. , f3h are constant coefficients, and et is a white noise process with 
zero mean [224, 228]. Mathematically, the ARX(h) model states that the 
output at time t is linearly related to the past h inputs and outputs. With 
xl = [Yt Ut], the matrix X(h) in (4.44) becomes: 

Yt Ut Yt-l Ut-l Yt-h Ut-h 

X(h) = Yt-l Ut-l Yt-2 Ut-2 ... Yt-h-l Ut-h-l 

( 4.46) 

YHh-n uHh-n YHh-n-l uHh-n-l . . . Yt-n Ut-n 

The ARX(h) model indicates that the first column of X(h) is linearly related 
to the remaining columns. In the noise-free case the matrix formed in (4.46) 
would be rank deficient (i.e., not full rank). When PCA is applied to X(h) 
using (4.3), the eigenvector corresponding to the zero eigenvalue would reveal 
the ARX(h) correlation structure [125]. In the case where noise is present, 
the matrix will be nearly rank deficient. The eigenvector corresponding to a 
nearly zero eigenvalue will be an approximation of the ARX(h) correlation 
structure [125, 165]. 

Note that the Q statistic is then the squared prediction error of the ARX 
model. If enough lags h are included in the data matrix, the Q statistic is 
statistically independent from one time instant to the next, and the threshold 
(4.22) is theoretically justified. This method of applying PCA to (4.44) is 
referred to as dynamic PCA (DPCA). When multi-model PCAm is used 
with (4.44) for diagnosing faults, it will be referred to as DPCAm. Note 
that a statistically justified method can be used for selecting the number of 
lags h to include in the data for our studies (see Section 7.5). The method for 
automatically determining h described in [125] is not used here. Experience 
indicates that h = 1 or 2 is usually appropriate when DPCA is used for 
process monitoring. The fault detection and diagnosis measures for static 
PCA generalize directly to DPCA. For fault identification, the measures for 
each observation variable can be calculated by summing the values of the 
measures corresponding to the previous h lags. 

It has been stated that in practice the presence of serial correlations in 
the data does not compromise the effectiveness for the static PCA method 
when there are enough data to represent all the normal variations of the 
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process (113). Irrespective of this claim, including lags in the data matrix as 
in (4.44) can result in the PCA representation correlating more information. 
Therefore, as long as there are enough data to justify the added dimension­
ality of including h lags, DPCA is expected to perform better than PCA for 
detecting faults from serially correlated data, and this has been confirmed by 
testing PCA and DPCA on the Tennessee Eastman problem (125). 

4.8 Other PeA-based Methods 

The EWMA and CUSUM charts have been generalized to the multivariate 
case [29, 139, 144, 180, 236, 76), and these generalizations can be applied to 
the PCA-based T2 statistic in (4.12). Applying these methods can result in 
increased sensitivity and robustness of the process monitoring scheme, as dis­
cussed in Section 2.3. EWMA and CUSUM charts use data from consecutive 
observations. H a large number of observations is required, an increase in the 
detection delay can be expected. 

The process monitoring measures discussed so far are for continuous pro­
cesses. Process monitoring measures for batch processes have been devel­
oped with the most heavily studied being multiway PCA, [169, 228, 24). 
Multiway PCA is a three dimensional extension of the PCA approach. The 
three dimensions of the array represent the observation variables, the time 
instances, and the batches, respectively, whereas PCA methods for continu­
ous processes contain only two dimensions, the observation variables and the 
time instances. Details and applications of multiway PCA are provided in 
the references [169, 228, 24). 

PCA is a linear dimensionality reduction technique, which ignores the 
nonlinearities that may exist in the process data. Chemical processes are 
inherently nonlinear; therefore, in some cases nonlinear methods for pro­
cess monitoring may result in better performance compared to the linear 
methods. Kramer (114) has generalized PCA to the nonlinear case by using 
autoassociative neural networks (this is called nonlinear Principal Com­
ponent Analysis). Dong and McAvoy (38) have developed a nonlinear PCA 
approach based on principal curves and neural networks that produce in­
dependent principal components. It has been shown that for certain data 
nonlinearities these nonlinear PCA neural networks are able to capture more 
variance in a smaller dimension compared to the linear PCA approach. A 
comparison of three neural network approaches to process monitoring has 
been made [42). Neural networks can also be applied in a pattern classifica­
tion system to capture the nonllnearities in the data. A text on using neural 
networks as a pattern classifier is Neural Networks for Pattern Recogni­
tion by Bishop [15]. Although neural networks potentially can capture more 
information in a smaller dimensional space than the linear dimensionality re­
duction techniques, an accurate neural network typically requires much more 
data and computational time to train, especially for large scale systems. 
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4.9 Homework Problems 

1. Read an article on the use of multiway PCA (e.g., [169, 228, 24]) and 
write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
statistics are computed. Formulate both fault detection and diagnosis ver­
sions of the algorithm. For what types of processes are these algorithms 
suited? Provide some hypothetical examples. 

2. Describe in detail how to blend PCA with CUSUM and EWMA, includ­
ing the equations for the thresholds. 

3. Read an article on the use of PCA for diagnosing sensor faults (e.g., 
[43, 164]) and write a report describing in detail how the technique is im­
plemented and applied. Compare and contrast the techniques described 
in the paper with the techniques described in this book. 

4. Read an article on the application of nonlinear PCA (e.g., [114, 38]) 
and write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
statistics are computed. For what types of processes are these algorithms 
suited? Provide some hypothetical examples. 

5. Prove the properties 1-4 given below Equation 4.6. 
6. Section 5 of [101] describes several alternatives to the Q statistic for 

quantifying deviations outside of those quantified by the T2 statistic. 
Describe these statistics in detail, including their thresholds, advantages, 
and disadvantages. [Note: one of the statistics is closely related to the T; 
statistic in Chapter 7.] 

7. Apply PCA to the original Class 3 data set reported by Fisher [50], 
and construct Figure 4.2 including the confidence ellipsoid. Now reapply 
PCA and reconstruct the figure for the case where the outlier at (tl. t2) = 
(2.5,5.6) is removed from the Class 3 data set. Compare the confidence 
ellipsoids obtained in the two cases. Comment on the relative importance 
of removing the outlier from the Class 3 data set before applying PCA. 

8. Read the article [63] which describes the use of structured residuals and 
PCA to isolate and diagnose faults, and write a report describing in detail 
how the technique is implemented and applied. Compare and contrast the 
approach with the techniques described in this book. 



CHAPTERS 

FISHER DISCRIMINANT ANALYSIS 

5.1 Introduction 

In the pattern classification approach to fault diagnosis outlined in Chapter 
3, it was described how the dimensionality reduction of the feature extraction 
step can be a key factor in reducing the misclassification rate when a pattern 
classification system is applied to new data (data independent of the training 
set). The dimensionality reduction is especially important when the dimen­
sionality of the observation space is large while the numbers of observations 
in the classes are relatively small. A PCA approach to dimensionality reduc­
tion was discussed in the previous chapter. Although PCA contains certain 
optimality properties in terms of fault detection, it is not as well-suited for 
fault diagnosis because it does not take into account the information between 
the classes when determining the lower dimensional representation. Fisher 
Discriminant Analysis (FDA), a dimensionality reduction technique that 
has been extensively studied in the pattern classification literature, takes into 
account the information between the classes and has advantages over PCA 
for fault diagnosis. 

FDA provides an optimal lower dimensional representation in terms of 
discriminating among classes of data [41]. Although FDA is only slightly 
more complex than PCA, it has not yet found extensive use in the process 
industries for diagnosing faults [26, 192]. This is interesting, since FDA has 
advantages over PCA, when the primary goal is to discriminate among faults. 
We suspect that part of the reason that FDA is less popular than PCA in 
the process industries is that more chemical engineers read the statistics 
literature (where PCA is dominant) than the pattern classification literature 
(where FDA is dominant). 

This chapter begins in Section 5.2 by defining FDA and presenting some 
of its optimality properties for pattern classification. An information criterion 
for FDA is developed in Section 5.3 for automatically determining the order of 
dimensionality reduction. In Section 5.4, it is described how FDA can be used 
for fault detection and diagnosis. PCA and FDA are compared in Section 5.5 
both theoretically and in application to some data sets. Section 5.6 describes 
dynamic FDA (DFDA), an approach based on FDA that takes into account 
serial (temporal) correlations in the data. 

E. L. Russell et al., Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
© Springer-Verlag London Limited 2000
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5.2 Fisher Discriminant Analysis 

For fault diagnosis, data collected from the plant during specific faults are 
categorized into classes, where each class contains data representing a par­
ticular fault. FDA is a linear dimensionality reduction technique, optimal 
in terms of maximizing the separation amongst these classes [41]. It deter­
mines a set of projection vectors, ordered in terms of maximizing the scatter 
between the classes while minimizing the scatter within each class. 

Define n as the number of observations, m as the number of measurement 
variables, p as the number of classes, and nj as the number of observations 
in the lh class. Represent the vector of measurement variables for the ith 
observation as Xi. If the training data for all classes have already been stacked 
into the matrix X E nnxm as in (2.5), then the transpose of the ith row of 
X is the column vector Xi. 

To understand Fisher Discriminant Analysis, first we need to define var­
ious matrices that quantifying the total scatter, the scatter within classes, 
and the scatter between classes. The total-scatter matrix is [41, 88] 

n 

St = I)Xi - X)(Xi - x) T (5.1) 
i=l 

where x is the total mean vector 

(5.2) 

With Xj defined as the set of vectors Xi which belong to the class j, the 
within-scatter matrix for class j is 

Sj = L (Xi - Xj)(Xi - Xj) T 

xIEX; 

where Xj is the mean vector for class j: 

The within-class-scatter matrix is 

and the between-class-scatter matrix is 

P 

Sb = L nj(xj - x)(Xj - x)T. 
j=l 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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The total-scatter matrix is equal to the sum of the between-scatter matrix 
and the within-scatter matrix [41], 

(5.7) 

The objective of the first FDA vector is to maximize the scatter between 
classes while minimizing the scatter within classes: 

VTSbV 
max ---:::-::-=-­
v;fO vTSwv 

(5.8) 

assuming invertible Sw where v E Rm. The second FDA vector is computed 
so as to maximize the scatter between classes while minimizing the scatter 
within classes among all axes perpendicular to the first FDA vector, and 
so on for the remaining FDA vectors. It can be shown that the projection 
vectors for FDA can be calculated by computing the stationary points of 
the optimization problem (5.8) [41, 88). The FDA vectors are equal to the 
eigenvectors Wk of the generalized eigenvalue problem 

(5.9) 

where the eigenvalues .Ak indicate the degree of overall separability among 
the classes by projecting the data onto Wk. Any software package that does 
matrix manipulations, such as MATLAB [70, 71) or IMSL [89], has subrou­
tines for computing the generalized eigenvalues and eigenvectors. Because 
the direction and not the magnitude of Wk is important, the Euclidean norm 
(square root of the sum of squares of each element) of Wk can be chosen to 
be equal to 1 (1lwkll = 1). 

The FDA vectors can be computed from the generalized eigenvalue prob­
lem as long as Sw is invertible. This will almost always be true provided that 
the number of observations n is significantly larger than the number of mea­
surements m (the case in practice). Since Sw is expected to be invertible for 
applications of FDA to fault diagnosis, methods to calculate the FDA vectors 
for the case of non-invertible Sw are only cited here [25, 84, 207). 

The first FDA vector is the eigenvector associated with the largest eigen­
value, the second FDA vector is the eigenvector associated with the second 
largest eigenvalue, and so on. A large eigenvalue .Ak indicates that when the 
data in the classes are projected onto the associated eigenvector Wk there is 
overall a large separation of the class means relative to the class variances, 
and consequently, a large degree of separation among the classes along the 
direction Wk. Since the rank of Sb is less than p, there will be at most p - 1 
eigenvalues which are not equal to zero, and FDA provides useful ordering of 
the eigenvectors only in these directions. 

It is useful to write the goal of FDA more explicitly in terms of a pro­
jection. Define the matrix Wp E Rmx(p-l) with the p - 1 FDA vectors as 
columns. Then the projection of the data from m-dimensional space to (p-1)­
dimensional space is described by 
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Zi = WTXi p (5.1O) 

where Zi E n(p-l). FDA computes the matrix Wp such that data Xl, ... , xn 
for the p classes are optimally separated when projected into the p -1 dimen­
sional space. In the case where p is equal to 2, this is equivalent to projecting 
the data onto a line in the direction of the vector w, for which the projected 
data are the best separated. 

5.3 Reduction Order 

No reduction of dimensionality would be needed if the covariance matrix 
and mean vector were known exactly (see Section 3.3). Errors in the sample 
covariance matrix (2.6) occur in practice, however, and the dimensionality 
reduction provided by FDA may be necessary to reduce the misclassifica­
tion rate when the pattern classification system is applied to new data (data 
independent of the training set). A popular method for selecting the reduc­
tion order for dimensionality reduction methods is to use cross-validation 
[228, 61]. This approach separates the data into multiple sets: the training 
set, and the testing (or validation) set. The dimensionality reduction proce­
dure is applied to the data in the training set, and then its performance is 
evaluated by applying the reduced dimension model to the data in the test­
ing set for each reduction order. The reduction order is selected to optimize 
the performance based on the testing set. For example, if the goal is fault 
diagnosis, the order of the reduced model would be specified by minimizing 
the misclassification rate of the testing set. 

Cross-validation is not always practical in fault diagnosis applications 
because there may not be enough data to separate into two sets. In this 
situation, it is desirable to determine the order of the dimensionality reduction 
using all the data in the training set. Variations on cross-validation that split 
the data into larger numbers of sets (such as "leave-one-out" cross-validation 
[229]) are computationally expensive. 

As discussed in Section 3.3, the error of a model can be minimized by 
choosing the number of independent parameters so that it optimally trades 
off the bias and variance contributions on the mean-squared error. In an effort 
to minimize the mean-squared error, criteria in the form 

(prediction error term) + (model complexity term) (5.11) 

have been minimized to determine the appropriate model order [137]. The 
Akaike's information criterion (AIC), popularly applied in system iden­
tification for optimally selecting the model order (for an example, see Section 
7.6), can be derived in the form (5.11) [137]. In (5.11), the prediction error 
term is a function of the estimated model parameters and the data in the 
training set, and the model complexity term is a function of the number 
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of independent parameters and the amount of data in the training set. In 
system identification, the prediction error term is usually chosen as the aver­
age squared prediction-error for the model, but in general, the choice of the 
complexity term is subjective [137]. 

A strength of the Ale is that it relies only on information in one set of data 
(the training data), unlike cross-validation which requires either additional 
data or a partitioning of the original data set. A criteria in the form (5.11) 
can be developed for automatically selecting the order for FDA using the 
information only in the training set [26, 192]. The order can be determined 
by computing the dimensionality a that minimizes the information criterion 

(5.12) 

where f m (a) is the misclassification rate (the proportion of misclassifications, 
which is between 0 and 1) for the training set by projecting the data onto the 
first a FDA vectors, and ii is the average number of observations per class. 
The misclassification rate of the training set, fm{a), indicates the amount 
of information contained in the first a FDA vectors beneficial for pattern 
classification. While the misclassification rate of the training set typically 
decreases as a increases, for new data (data independent of the training set), 
the misclassification rate initially decreases and then increases above a certain 
order due to overfitting the data. The model complexity term alii is added 
in (5.12) to penalize the increase of dimensionality. 

The scaling of the reduction order a by the average number of observations 
per class, ii, has some intuitive implications. To illustrate this, consider the 
case where the number of observations in each class is the same, nj = ii. It 
can be shown using some simple algebra that the inclusion of the alii term in 
(5.12) ensures that the order selection procedure produces a value for a less 
than or equal to ii. In words, this constraint prevents the lower dimensional 
model from having a higher dimensionality than justified by the number of 
observations in each class. 

The model complexity term alii can also be interpreted in terms of the 
total number of misclassifications per class. Defining m{ a) as the total number 
of misclassifications in the training set for order a and assuming that nj = ii, 
the information criterion (5.12) can be written as 

m(a) + ~ 
pii ii 

(5.13) 

where n = pii is the total number of observations. Let us consider the case 
where it is to be determined whether a reduction order of a + 1 should be 
preferred over a reduction order of a. Using the information criterion (5.13) 
and recalling that a smaller value for the information criterion is preferred, 
a reduction order of a + 1 is preferred if 

m{a + 1) a + 1 m(a) a 
~--:-----'- + --- < --- + -=-. 

pn n pn n 
(5.14) 
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This is equivalent to 

mea) mea + 1) 
--- >1. 

p p 
(5.15) 

The complexity term does not allow the reduction order to be increased 
merely by decreasing the number of misclassifications, but only if the decrease 
in the total number of misclassifications per class is greater than 1. 

The above analyses indicate that the scaling of a in the model complexity 
term alii in the information criterion (5.12) is reasonable. This is confirmed 
by application in Chapter 10 (for example, see Figure 10.21, where the infor­
mation criterion correctly captures the shape and slope of the misclassifica­
tion rate curves for the testing sets). 

5.4 Fault Detection and Diagnosis 

When FDA is applied for pattern classification, the dimensionality reduc­
tion technique is applied to the data in all the classes simultaneously. More 
precisely, denote Wa E nmxa as the matrix containing the eigenvectors 
Wl, W2,.··, Wa computed from (5.9). The discriminant function can be de­
rived from (3.6) to be [60] 

9j(X) = -!(x - Xj) TWa (n;~1 WI8j Wa) -1 WaT(X - Xj) + In(Pi) 

-! In [det (n;~1 WI8j W a)] (5.16) 

where 8j , Xj, and nj are defined in (5.3) and (5.4). In contrast to PCA1 
(see Section 4.6), FDA uses the class information to compute the reduced 
dimensional space, so that the discriminant function (5.16) exploits that class 
information to a far greater degree than can be done by PCA. In contrast 
to PCAm, FDA utilizes all P fault class information when evaluating the 
discriminant function or each class. 

FDA can also be applied to detect faults by defining an additional class of 
data, that collected during in-control operations, to the fault classes. How­
ever, since this information will be unable to detect faults which occur outside 
of the lower dimensional space defined by the FDA vectors, this method can 
be insensitive to faults not represented in the training set. As discussed in 
Chapter 4, faults not represented in the training set that significantly affect 
the observations (measurements) can be detected with either the PCA Q or 
T2 statistics. 

As mentioned in Section 5.2, only the first P - 1 eigenvectors in FDA 
maximize the scatter between the classes while minimizing the scatter within 
each class. The rest of the m - P + 1 eigenvectors corresponding to the zero 
eigenvalues are not ordered by the FDA objective (5.8). The ranking of these 
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generalized eigenvectors is determined by the particular software package 
implementing the eigenvalue decomposition algorithm, which does not order 
the eigenvectors in a manner necessarily useful for classification. However, 
more than P - 1 dimensions in a lower dimensional space may be useful for 
classification, and a procedure to select vectors beyond the first P - 1 FDA 
vectors can be useful. Here two methods are described which use PCA to 
compute additional vectors for classification. 

One method is to use FDA for the space defined by the first P - 1 eigen­
vectors, and to use the PCA1 vectors for the rest of the m - P + 1 vectors, 
ordered from the PCA vectors associated with the highest variability to the 
vectors associated with the lower variability. IT the reduction order a ~ P - 1, 
Equation 5.16 is used directly. IT a;::: p, the alternative discriminant function 
is used: 

9i(x) = -~(x - Xj) T Wmiz,a (n;~l W~iz,aSi Wmiz,a) -1 W~iz,a (x - Xj) 

-~ln[det(n;~l W~iz,aSiWmiz,a)] +In(Pi) (5.17) 

where Wmiz,a = [Wp-l Pa- pH], and Pa- pH is the first a - P + 1 columns 
of the PCAlloading matrix P (defined in Section 4.6). When this method is 
used for diagnosing faults, it will be referred to as the FDA/PCAI method. 
Recall from Section 4.2 that the variances associated with the loading vectors 
in PCA are ranked in descending order. Given that the vectors from PCA1 
can be useful in a classification procedure (see Section 4.6), incorporating 
the first a - P + 1 PCA1 loading vectors into the FDA/PCA1 method may 
provide additional information for discriminating amongst classes. 

Another method to define an additional m - P + 1 vectors is to apply 
PCAI to the residual space of FDA, defined by 

R = X(I - Wp - 1 Wi_I)' (5.18) 

As before, if the reduction order a ~ P -1, Equation 5.16 is used directly. IT 
a;::: P, then the alternative discriminant function (5.17) is used with Wmiz a = 
[Wp- 1 Pa-pH], where Pa-PH is the first a - P + 1 columns of the PCA1 
loading matrix when PCA is applied to R. This method for diagnosing faults 
will be referred to as the FDA/PCA2 method. 

5.5 Comparison of PCA and FDA 

Here the PCA and FDA dimensionality reduction techniques are compared 
via theoretical and graphical analyses for the case where PCA is applied to all 
the data in all the classes together (PCA1 in Section 4.6). This highlights the 
geometric differences between the two dimensionality reduction procedures. 
It is also shown how using FDA can result in superior fault diagnosis than 
when PCA is applied. 
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The optimization problems for peA and FDA have been stated math­
ematically in (4.1) and (5.8), respectively. It can be shown that the peA 
loading vectors and FDA vectors can also be calculated by computing the 
stationary points of the optimization problems 

(5.19) 

and 

(5.20) 

respectively. Equations 5.19 and 5.20 indicate that the peA and FDA vectors 
are identical for the case when Sw = q I where q > O. One case in which this 
situation occurs if the data in each class can be described by a uniformly 
distributed ball (i. e., circle in 2-D space and sphere in 3-D space), even if the 
balls are of distinct sizes. Differences between the two techniques can occur 
only if there is elongation in the data used to describe anyone of the classes. 
These elongated shapes occur for highly correlated data sets (see Figure 4.2), 
typical for data collected from chemical processes. Therefore, when peA and 
FDA are applied in the same manner to process data, the peA loading vectors 
and FDA vectors are expected to be significantly different, and the differing 
objectives, (5.19) and (5.20), suggest that FDA will be significantly better 
for discriminating among classes of faults. 

Figure 5.1 illustrates a difference between peA and FDA that can occur 
when the distribution of the data in the classes are somewhat elongated. 
The first FDA vector and peA loading vector are nearly perpendicular, and 
the projection of the data onto the first FDA vector is much better able to 
separate the data in the two classes than the projection of the data onto the 
first peA loading vector. 

The projection of the experimental data taken from [50, 25] onto the first 
two peA and FDA loading vectors are shown in Figure 5.2. The within-class­
scatter matrix and between-class-scatter matrix are calculated as 

and 

[560S 37.3 16.4 9017] 
S _ 37.3 88.4 10.1 17.1 

w - 16.4 10.1 8.75 4.64 
9.17 17.1 4.64 22.8 

[ 
92.2 -55.7 113 108] 

S = -55.7 60.6 -75.3 -65.6 
b 113 -75.2 140 133 

108 -65.6 132 126 

(5.21) 

(5.22) 
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Fig. 5.1. A comparison of PCA and FDA for the projection of the data in classes 
'x' and '0' onto the first FDA vector and PCA loading vector 

respectively. Solving (5.9), we have p - 1 = 2 eigenvectors associated with 
nonzero eigenvalues, which are 

[ 
0.15 J 0.12 

WI = -0.96 
-0.18 

(5.23) 

and 

[
-0,13] 
-0.70 

W2 = -0.15 ' 
0.68 

(5.24) 

and the corresponding eigenvalues are >'1 = 27 and >'2 = 0.24, respectively. 
The large >'1 value indicates that there is a large separation of the class means 
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Fig. 5.2. The projections of experimental data [50, 25] for three classes onto the 
first two FDA and peA loading vectors, respectively 

relative to the class variances on Zl (see Figure 5.2). Indeed the average values 
of Zl for the 3 classes are -1.0, -0.37, and 1.42. The small .A2 value indicates 
that the overall separation of the class means relative to the class variances 
is small in the Z2 direction. The average values of Z2 for the 3 classes are 0.30, 
-0.43, and 0.12. 

The 95% elliptical confidence region for each class can be approximated 
by solving (3.8) with Tl set to 6.64. The Tl threshold is the same as in 
the example we showed in Chapter 4. Data falling in the intersection of the 
two elliptical confidence regions can result in misclassification. The degree of 
overlap between the confidence regions for Classes 1 and 2 is greater for PCA 
than for FDA (49 points vs. 17 points), indicating that the misclassification 
rates for PCA would be higher. 

While the elliptical confidence region can be used to illustrate the qual­
itative classification performance, the discriminant function (5.16) can be 
used to determine the exact misclassification rates for the experiment data 
[50, 25]. The results are illustrated in Table 5.1 for different FDA reduction 
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orders. Although Class 1 and Class 2 data overlap to some extent (see Figure 
5.2), the discriminant function (5.16) is able to correctly classify most of the 
data points. Indeed, no more than 3 out of 50 data points are misclassified 
regardless of the order selection (see Table 5.1). 

Table 5.1. The misclassification rates of the experimental data [50, 25] for FDA 

Order (a) 1 2 3 4 
Class 1 Misciassifications 0 0 0 0 
Class 2 Misclassifications 0.06 0.06 0.04 0.06 
Class 3 Misclassifications 0.06 0.02 0.02 0.02 
Overall Misclassifications 0.04 0.027 ~ 0.027 

AIC ~ 0.067 0.08 0.11 

For the training data, FDA produced the minimum overall misclassifica­
tion rate when the reduction order is 3. Although this order is optimal for 
the training set, it may not be the best order when the FDA model is applied 
to new data. The AlC can be used to estimate the optimal reduction order 
for FDA when applied to new data. The minimum value for the AlC (as 
reported in Table 5.1) is for the reduction order a = 1. 

This example is effective at illustrating the difference in the objectives be­
tween PCA and FDA. By comparing the limits of the horizontal and vertical 
axes and visually inspecting the data, it is clear that the span of the PCA 
projection is larger than the FDA projection. While PCA is better able to 
separate the data as a whole, FDA is better able to separate the data among 
the classes (*, 0, x). This is evident in the degree of overlap between ,*, and 
'0' data regions in the two plots, in which the data points '*' and '0' barely 
overlap for the FDA projection, while there is a clear intermingling of data 
for the PCA projection. 

The overall misclassification rates of the experimental data using the 
FDA, FDA/PCAl, FDA/PCA2, PCAl, PCArn, and MS classification meth­
ods are shown in Table 5.2 for various reduction orders. The overall misclas­
sification rates for FDA, FDA/PCAl, and FDA/PCA2 were the same except 
at a = 3. The FDA vectors corresponding to the two nonzero eigenvalues 
are very effective in discriminating the three classes. At a = 2, the over­
all misclassification rate is 0.027 (i.e., 146 out of 150 data points were cor­
rectly classified). When the p -1 FDA vectors are effective in discriminating 
classes, FDA/PCAI and FDA/PCA2 will not decrease the overall misclas­
sification rates further. Although the potential benefit of using FDA/PCAI 
and FDA/PCA2 over FDA is not shown in the example, FDA/PCAI and 
FDA/PCA2 can produce lower overall misclassification rates than FDA as 
shown in Section 10.8. 

For any reduction order, the FDA and mixed FDA/PCA methods had a 
lower overall misclassification rate than either PCA method. This agrees with 
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Table 5.2. Overall misclassification rates of the experimental data [50, 25] using 
PCA1, PCAm, FDA, and FDA/PCA methods 

Order (a) 1 2 3 4 
FDA 0.040 0.027 0.020 0.027 

FDA/PCA1 0.040 0.027 0.027 0.027 
FDA/PCA2 0.040 0.027 0.027 0.027 

PCA1 0.080 0.087 0.033 0.027 
PCAm 0.17 0.15 0.11 0.11 

MS - - - 0.027 

earlier comments that FDA can do a much better job at diagnosing faults 
than PCA. At any reduction order, PCAI gave lower overall misclassification 
rates than PCAm. This supports our discussion in Section 4.6 that PCAI 
will usually produce a better PCA representation for diagnosing faults. For 
a = 4, PCAl, FDAl, FDA/PCAl, and FDA/PCA2 gave the same overall 
misclassification rates as MS. As discussed in Section 4.6, MS is the same 
as PCAI when all orders are included. This does not generally hold for the 
FDA methods. 

For this particular example, dimensionality reduction was not necessary 
for providing low misclassification rates. This is because the classification 
methods were only being applied to training data. The benefit of dimension­
ality reduction is most apparent for the classification of new data. Applica­
tions of the methods to simulated plant data in Chapter 10 illustrate this 
point. 

5.6 Dynamic FDA 

As mentioned in Section 4.8, CUSUM and EWMA charts can be used to cap­
ture the serial correlations in the data for PCA. CUSUM and EWMA charts 
can also be generalized for FDA. The pattern classification method for fault 
diagnosis discussed in Chapter 3 and Section 5.4 can be extended to take 
into account the serial (temporal) correlations in the data, by augmenting 
the observation vector and stacking the data matrix in the same manner as 
(4.44), this method will be referred to as dynamic FDA (DFDA). This en­
ables the pattern classification system to use more information in classifying 
the observations. Since the information contained in the augmented observa­
tion vector is a superset of the information contained in a single observation 
vector, it is expected from a theoretical point of view that the augmented 
vector approach can result in better performance. However, the dimensional­
ity of the problem is increased by stacking the data, where the magnitude of 
the increase depends on the number of lags h. This implies that more data 
may be required to determine the mean vector and covariance matrix to the 
same level of accuracy for each class. In practice, augmenting the observation 
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vector is expected to perform better when there is both significant serial cor­
relation and there are enough data to justify the larger dimensionality. Since 
the amount of data n is usually fixed, performing dimensionality reduction 
using FDA becomes even more critical to the pattern classification system 
when the number oflags h is large. The application of FDA/PCA1 to (4.44) 
will be referred to as DFDA/DPCAl, and the developments in this chapter 
for FDA readily apply to DFDA and DFDA/DPCA1. 

5.7 Homework Problems 

1. In Sections 5.4 and 5.5 it was discussed how the best use of the PCA 
techniques (T2 and Q statistics) can outperform FDA for fault detection, 
while the best use of FDA techniques should outperform PCA for fault 
diagnosis. Construct data sets (in which you apply both PCA and FDA) 
to illustrate the key reasoning underlying these conclusions. 

2. Define a residual-based statistic for FDA similar to the Q statistic used 
in PCA. Would the FDA-based Q statistic be expected to outperform the 
PCA-based Q statistic for fault detection? Construct data sets (in which 
you apply both PCA and FDA) to illustrate the key reasoning underlying 
these conclusions. How does this answer depend on the reduction order 
for FDA? 

3. Derive Equations 5.19 and 5.20. 
4. Describe in detail how to blend FDA with CUSUM and EWMA, includ­

ing the equations for the thresholds. 
5. Write a one page technical summary of the classic paper by Fisher on 

discriminant analysis [50). Compare the equations derived by Fisher to 
the equations in this chapter. Explain any significant differences. 

6. Peterson and Mattson [179] consider more general criteria for dimension­
ality reduction. Compare their criteria to the Fisher criterion. What are 
the advantages and disadvantages of each? For what types of data would 
you expect one criterion to be preferable over the others? 

7. Show that the FDA vectors are not necessarily orthogonal (hint: the 
easiest way to show this is by example). Compare FDA with PLS and 
PCA in this respect. 



CHAPTER 6 

PARTIAL LEAST SQUARES 

6.1 Introduction 

Partial Least Squares (PLS), also known as Projection to Latent 
Structures, is a dimensionality reduction technique for maximizing the co­
variance between the predictor (independent) matrix X and the predicted 
(dependent) matrix Y for each component of the reduced space [61, 235]. A 
popular application of PLS is to select the matrix Y to contain only prod­
uct quality data which can even include off-line measurement data, and the 
matrix X to contain all other process variables [144]. Such inferential models 
(also known as soft sensors) can be used for the on-line prediction of the 
product quality data [149, 155, 156], for incorporation into process control 
algorithms [106, 181, 182], as well as for process monitoring [144, 181, 182]. 
Discriminant PLS selects the matrix X to contain all process variables and 
selects the Y matrix to focus PLS on the task of fault diagnosis [26]. 

PLS computes loading and score vectors that are correlated with the pre­
dicted block while describing a large amount of the variation in the predictor 
block [228]. H the predicted block has only one variable, the PLS dimension­
ality reduction method is known as PLS1j if the predicted block has multiple 
variables, the dimensionality reduction method is known as PLS2. PLS re­
quires calibration and prediction steps. The most popular algorithm used in 
PLS to compute the parameters in the calibration step is known as Non­
Iterative Partial Least Squares (NIPALS) [61,228]. Another algorithm, 
known as SIMPLS, can also be used [31]. As mentioned, the predicted blocks 
used in discriminant PLS and in other applications of PLS are different. In 
chemometrics and process control applications, where PLS is most commonly 
applied, the predicted variables are usually measurements of product quality 
variables. In pattern classification, where discriminant PLS is used, the pre­
dicted variables are dummy variables (lor 0) where '1' indicates an in-class 
member while '0' indicates a non-class member [6, 32, 170]. In the predic­
tion step of discriminant PLS, discriminant analysis is used to determine the 
predicted class [170]. 

Section 6.2 defines the PLS1 and PLS2 algorithms in enough detail to 
allow the reader to implement these techniques. Section 6.3 discusses the se­
lection of the reduction order. Section 6.4 discusses fault detection, identifica­
tion, and diagnosis 

using 
PLS. The PLS and peA techniques are compared in 
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Section 6.5. Section 6.6 summarizes several variations of the PLS algorithms 
for process monitoring. 

6.2 PLS Algorithms 

PLS requires a matrix X E 'Rnxm and a matrix Y E 'Rnxp , where m is the 
number of predictor variables (the number of measurements in each obser­
vation), n is the total number of observations in the training set, and p is 
the numbers of observation variables in Y. When Y is selected to contain 
only the product quality variables, then p is the number of product quality 
variables. When Y is selected as done in discriminant PLS, p is the number 
of fault classes. 

In discriminant PLS, diagnosed data are needed in the calibration. To aid 
in the description of discriminant PLS, the data in X will be ordered in a 
particular way. With p fault classes, suppose that there are nl, n2, ... , np 
observations for each variable in Classes 1, 2, ... , p respectively. Collect the 
training set data into the matrix X E 'Rnxm , as shown in (2.5), so that the 
first nl rows contain data from Fault 1, the second n2 rows contain data from 
Fault 2, and so on. Altogether, there are nl + n2 + ... + np = n rows. There 
are two methods, known as PLSI and PLS2, to model the predicted block. 
In PLS1, each of the p predicted variables is modeled separately, resulting 
in one model for each class. In PLS2, all predicted variables are modeled 
simultaneously [150]. 

In PLS2, the predicted block Y E 'Rnxp contains p product quality vari­
ables; in discriminant PLS2, the predicted block Y E 'Rnxp is 

1 0 0 0 

1 0 0···0 
o 1 0···0 

Y= 01 0···0 

o 0 0 1 

o 0 0 1 
... 

p columns 

(6.1) 

where each column in Y corresponds to a class. Each element of Y is filled 
with either one or zero. The first nl elements of Column 1 are filled with 
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a '1', which indicates that the first nl rows of X are data from Fault 1. In 
discriminant PLS1, the algorithm is run p times, each with the same X, but 
for each individual column of Yin (6.1). 

As mentioned in Section 2.2, data pretreatment is applied first, so that 
X and Y are mean-centered and scaled. The matrix X is decomposed into a 
score matrix T E 'R,Rxa and a loading matrix P E 'R,mxa, where a is the PLS 
component (reduction order), plus a residual matrix E E 'R,Rxm: 

(6.2) 

The matrix product T pT can be expressed as the sum of the product of the 
score vectors tj (the lh column of T) and the loading vectors Pj (the 
lh column of P) [61, 228, 105]: 

a 

X= EtjpT +E. (6.3) 
j=1 

Similarly, Y is decomposed into a score matrix U E 'R,Rxa, a loading 
matrix Q E 'R,pxa, plus a residual matrix F E 'R,RXp: 

T -Y=UQ +F. (6.4) 

The matrix product UQT can be expressed as the sum of the product of the 
score vectors Uj (the lh column of U) and the loading vectors qj (the lh 
column of Q): 

a 

'" T -Y=L.JUjqj+F. (6.5) 
j=1 

The decompositions in (6.3) and (6.5) have the same form as that used in 
peA (see (4.5». The matrices X and Y are represented as the sum of a series 
of rank one matrices. H a is set equal to min { m, n), then E and F are zero and 
PLS reduces to ordinary least squares. Setting a less than min( m, n) reduces 
noise and collinearity. The goal of PLS is to determine the loading and score 
vectors which are correlated with Y while describing a large amount of the 
variation in X. 

PLS regresses the estimated Y score vector 11j to the X score vector tj by 

(6.6) 

where bj is the regression coefficient. In matrix form, this relationship can be 
written 

U=TB (6.7) 

where B E 'R,axa is the diagonal regression matrix with Bjj = bj, and fJ has 
11j as its columns. Substituting fj from (6.7) in for U in (6.4), and taking into 
account that this will modify the residual matrix, gives 
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Y=TBQT +F (6.8) 

where F is the prediction error matrix. The matrix B is selected such that 
the induced 2-norm of F (the maximum singular value of F [66]), 11F1I2' 
is minimized [105]. The score vectors tj and Uj are calculated for each PLS 
factor (j = 1,2, ... , a) such that the covariance between X and Y is maximized 
at each factor. In PLSl, similar steps are performed, resulting in 

(6.9) 

where Yi E n,n is the ith column of Y, 1i E n,nxa is the score matrix, 
Bi E n,axa is the regression matrix, qi E n,a is the loading vector, and fi 
E n,n is the prediction error vector. Since there are p columns in Y, the range 
of i is from 1 to p. 

Now if the score and loadings matrices for X and Y were calculated 
separately, then their successive score vectors could be weakly related to each 
other, so that the regression (6.6) which relates X and Y would result in a 
poor reduced dimension relationship. The NIPALS algorithm is an iterative 
approach to computing modified score vectors so that rotated components 
result which lead to an improved regression in (6.6). It does this by using the 
score vectors from Y in the calculation of the score vectors for X, and vice 
versa. 

For the case of PLS2, the NIPALS algorithm computes the parameters 
using (6.10) to (6.20) [61, 105, 228]. The first step is the cross regression of X 
and Y, which are scaled so as to have zero mean and unit variance for each 
variable. Initialize the NIPALS algorithm using Eo = X and Fo = Y, j = 1, 
and Uj equal to any column of Fj - 1 • Equations (6.10)-(6.13) are iteratively 
computed until convergence, which is determined by comparing tj with its 
value from a previous iteration (the nomenclature II . II refers to the vector 
2-norm, also known as the Euclidean norm). 

EiC1Uj 
Wj = IIEl~.lujll (6.10) 

(6.11) 

(6.12) 

(6.13) 

Proceed to (6.14) if convergence; return to (6.10) if not. Mathematically, de­
termining tb UI, and WI from (6.10) to (6.13) is the same as iteratively 
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determining the eigenvectors of X XTyyT, yyT X X T, and XTyyT X as­
sociated with the largest eigenvalue, respectively [184, 229). 

In the second step, Pj is calculated as 

E;:_ltj 
Pj--­- tj Ttj 

The final values for Pj, tj, and Wj are scaled by the norm of Pj,old: 

_ Pj,old 
Pj,new - IIPj,oldll 

tj,new = tj,old II Pj ,old II 

Wj,new = Wj,oldllpj,oldll 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

Although it is common to apply the scalings (6.15) to (6.17) in the algorithm 
[228, 229, 61), the scalings are not absolutely necessary (149). In particular, 
the score vectors tj used to relate X to y in (6.6) are orthogonal in either 
case. 

Now that Uj and tj are computed using the above expressions, the regres­
sion coefficient bj that relates the two vectors can be computed from 

u·Tt· b. - _J __ J 
3 - t.Tt. 

J J 
(6.18) 

The residual matrices Ej and Fj needed for the next iteration are calculated 
from 

(6.19) 

and 

(6.20) 

This removes the variance associated with the already calculated score and 
loading vectors before computing the score and loading vectors for the next 
iteration. The entire procedure is repeated for the next factor (commonly 
called as latent variable [228, 229)) (j + 1) starting from (6.10) until j = 
min(m,n). 

AB discussed in the next section, predictions based on the PLS model can 
be computed directly from the observation vector and Pj, qj, Wj, and bj for 
j = 1, 2, ... , min(m, n). We will also see an alternative approach where the 
predictions are obtained from the regression matrix B2j [229, 150) 

(6.21) 
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where the matrices Pj E nmin(m,n)x j , Tj E nnx j , and Wj E nmin(m,n)xj 

are formed by stacking the vectors Pj, t j, and Wj, respectively. This matrix 
is saved for j = 1,2, ... , min(m, n). 

The NIPALS algorithm for PLSI is calculated using (6.22) to (6.27). Ini­
tialize the NIPALS algorithm using Eo = X, j = 1, and set i = 1. The 
following equations are used: 

E{_IYi 
WI,j = IIEl~.IYIIi 

E T t .. 
j-l 1,J 

PI,j = t .. T t . 
1,J 1,j 

(6.22) 

(6.23) 

(6.24) 

After rescaling of PI,j, tl,j, and WI,j similarly as in (6.15) to (6.17), the re­
gression coefficient bi, j is computed from 

(6.25) 

The residuals for the next iteration are calculated as follows 

E· = E·_ 1 - tl jpT. , , , 1,J (6.26) 

(6.27) 

where fo,1 = YI and qi, j = 1. The entire procedure is repeated for the next 
latent variable (j + 1) starting from (6.22) until j = min(m, n). After all 
the parameters for i = 1 are calculated, the algorithm is repeated for i = 
2,3, ... ,p. 

As discussed in the next section, predictions based on the PLS model can 
be computed directly from the observation vector and the PI,j, WI,j, and bi,j. 
Alternatively, the predictions are obtained from the regression matrix Bl j 
[6,150] 

Bl· = [bl • b2 •... b .] , ,J,J P,J (6.28) 

where 

(6.29) 

the matrices p,. . E nmin(m,n)xj w: .. E nmin(m,n)xj and T, . . E nnxj are 
1,3 , 1,1 ",1 

formed by stacking the vectors PI,j, WI,j, and tl,j, respectively. 
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6.3 Reduction Order and PLS Prediction 

It is important to have a proper number a of PLS factors selected in order to 
obtain a good prediction, since too high of a number (the maximum theoret­
ical value for a is the rank of X) will cause a magnification of noise and poor 
process monitoring performance. A standard way to determine the proper 
reduction order, denoted as c, is to apply cross-validation using the Predic­
tion Residual Sum of Squares (PRESS). The order c is set to be the order 
at which PRESS is minimum [61]. As discussed previously, the weakness of 
this approach is that it requires that the data be split into two parts (the 
training and the testing sets), with the PLS vectors computed based only on 
the data from the testing set. 

In the case of fault diagnosis, an alternative approach is to select the value 
of c which minimizes the information criterion (5.12). To determine c, the 
PLS vectors are constructed using all of the data, and then the PLS vectors 
are applied to all of the data to calculate the misclassification rates for each 
choice of the reduction order, where the misclassification rate is defined to be 
the ratio of the number of incorrectly assigned classes to the total number of 
classifications made (the number of observations in the training set). 

For each factor j = 1,2, ... , min{m, n), the estimated score vector tj and 
matrix residual Ei are 

(6.30) 

~ T 
E- = E· 1 - t·p. J J- J J (6.31) 

where Eo = X. To compute a prediction of the predicted block Ytrain2,a of 
the training set using PLS2 with a PLS components: 

a 

'" ~ T Ytrain2,a = Pi = L...J bitjqj . 
i=1 

(6.32) 

For PLSl, the prediction of the predicted block Ytrainl,a of the training set 
using PLSI with a PLS components is computed by 

Ytrainl,a = [Ytralnl,a Ytrain2,a ... Ytralnp,a] 

where 
a 

Ytraini,a = fi,j = Lbi,jtl,jqi,i 
j=1 

(6.33) 

(6.34) 

Alternatively, a prediction of PLS2 with a PLS components is given by 
the regression equation [6]: 

Ytrain2,a = X B2a (6.35) 

The above equation is also used for the alternative prediction of PLSI by 
replacing B2a with Bla. 
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6.4 Fault Detection, Identification, and Diagnosis 

An approach investigated in the chemical engineering community is to apply 
PLS in the same manner as peA, selecting the Y matrix to be the product 
quality variables. Monitoring the PLS scores in this way has the advantage 
over the peA scores in that the PLS scores will only monitor variations in X 
which are known to be related to the product quality variables. All the fault 
detection, identification, and diagnosis techniques for peA can be applied 
in exactly the same way for PLS (e.g., including the Q and T2 statistics, 
contribution plots, and discriminant analysis) [113, 228]. 

The use of discriminant PLS for fault diagnosis requires significantly more 
explanation. In discriminant PLS, the rows of ¥train will not have the form 
[0,0,0, ... ,1, ... ,0,0], which requires a method for assigning the class Ck to 
each observation k. One method is to assign Ck to correspond to the column 
index whose element is the closest to one [170]. A second method is to assign 
Ck to correspond to the column whose element has the maximum value. 

The term overestimation refers to the case where the element of ¥train 

for an in-class member > 1 or the element of ¥train for a non-class member 
> O. Underestimation is where the element of ¥train for an in-class member 
< 1 or the element of ¥train for a non-class member < O. Both assignment 
methods give accurate classifications in the ideal case, that is, when none of 
the elements of ¥train are overestimated nor underestimated, and in the case 
where all of the elements of ¥train are underestimated. If all of the elements 
of ¥train are overestimated, then the first assignment method can give high 
misclassification rates, while the second assignment method will still tend to 
give good classifications [170]. The second assignment method is preferred 
because of this wider usefulness. 

If some of the elements of ¥train are underestimated while others are 
overestimated, either of the above assignment methods can perform poorly. 
A method to resolve this problem is to take account of the underestimation 
and overestimation of Y into a second cycle of PLS algorithm [170]. The 
NIPALS algorithm is run for the second time for PLSI and PLS2 by replacing 
Yi by Ytrainl,i and Y by ¥train2 respectively. To distinguish between the 
normalPLS method and this adjusted method, PLSI and PLS2 are denoted as 
PLSladj and PLS2adj respectively. The predicted Y of the training set using 
PLSladj and PLS2adj, denoted as ¥trainl,adj and ¥train2,adj, are obtained in 
the similar fashion as PLSI and PLS2 respectively. 

The effectiveness of the algorithm can be determined by applying it to a 
testing set X test E n-rxm. The predicted block ¥testl of the testing set using 
PLSI is calculated using (6.30) to (6.31) and (6.33) to (6.34) by replacing X 
with X test while the predicted block ¥test2 of the testing set using PLS2 is 
calculated using (6.30) to (6.32) by replacing X with X test . The predicted 
blocks ¥teatl,adj and ¥test2,adj using PLSladj and PLS2adj respectively are 
obtained similarly. 
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To illustrate the application of discriminant PLS2, the same experimental 
data set [50, 25) is used as in Chapter 4. The predictor matrix X is formed by 
using data from all three classes, where n = 150 and m = 4; the corresponding 
predicted matrix Y is formed as in (6.1), where p = 3. The matrices X and 
Y are first autoscaled. The NIPALS algorithm is initialized using Eo = X, 
Po = Y, and Ul arbitrarily set to the third column of Y. After 12 iterations of 
(6.10)-{6.13), the score vector tl converges with an error of less than 10-10. 

The following vectors are then obtained: 

Wl = [0.48 -0.32 0.60 0.56) T, 

Pl = [0.52 -0.29 0.58 0.56) T . 

The same procedure are done for E1 and Pl , which results in 

W:a = [-0.28 -0.93 0.023 -0.28) T , 

P:a = [-0.37 -0.91 -0.045 -0.16)T. 

(6.36) 

(6.37) 

Since the rank of X is four, the procedure can be repeated until j = 4. 
Since only two factors are retained in the example as shown in Chapter 4, we 
will stop the calibration here and form the regression matrix B22 as 

[
-0.21 -0.051 0.26] 

B22 = 0.36 -0.46 0.096 . 
-0.33 0.078 0.25 
-0.26 -0.038 0.30 

(6.38) 

The matrix Yirain2,2 is formed using (6.35). With the ith column of 
Ytrain2,2 denoted by Yi, the three dimensional plot of Yl vs. Y2 vs. Y3 is illus­
trated in Figure 6.1. The data are reasonably well-separated. Observe that 
all the 'x' points have large Y3 values and small Y2 and Yl values, so all Class 
3 data would be correctly assigned. Some of the '0' and ,*, points overlap, 
which indicates that a small portion of the Class 2 data may be misclassified 
as Class 1 and vice versa. 

It was discussed above how to diagnose faults based on the rows of Y. An 
alternative fault diagnosis approach based on discriminant PLS is to apply 
discriminant analysis to the PLS scores for classification [108]. In the termi­
nology introduced in Chapter 5, for classifying p classes, the p - 1 PLS direc­
tions can have substantially non-zero between-groups variance. This method 
can also provide substantially improved fault diagnosis over PCA [108]. 

6.5 Comparison of PCA and PLS 

For fault diagnosis, a predicted block Y is not used in PCA, instead a linear 
transformation is performed in X such that the highest ranked PCA vectors 
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Fig. 6.1. The discriminant PLS predicted matrix plot for the data from [50, 251 

retain most of the variation in X . As described in Chapter 4, the retained 
scores can be used with discriminant analysis for classification. The disad­
vantage of the PCA approach is that the highest ranked PCA vectors may 
not contain the discriminatory power needed to diagnose faults. 

PCA maximizes the variance in X while PLS maximizes the covariance 
between X and Y. By specifying Y to include the fault information as done 
in discriminant PLS, the PLS vectors are computed so as to provide a lower 
dimensional representation which is correlated with differences in fault class. 
Thus fewer of the discriminant PLS vectors should be required and lower mis­
classification rates obtained. As discriminant PLS exploits fault information 
when constructing its lower dimensional model, it would be expected that 
discriminant PLS can provide better fault diagnosis than PCA. However, 
this is not always true, as will be demonstrated in application in Chapter 10. 

The projection of the experimental data taken from [50, 25] onto the 
first two PCA and discriminant PLS loading vectors is shown in Figure 6.2. 
Recall that the PCA model is built based on the data from all three classes. 
The two plots look similar indicating that PCA and discriminant PLS give 
similar separability of the data when two score vectors are used. For data of 



6.6 Other PLS Methods 77 

high dimension, our experience is that similarity between the first few peA 
and PLS score vectors is often observed [105]. For score vectors of higher 
orders, the difference between peA and discriminant PLS usually becomes 
more apparent. In this example, the loading matrices corresponding to all 
four loading vectors for peA and discriminant PLS are 

and 

P _ -0.2695 -0.9266 -0.1869 0.1842 [ 
0.5255 -0.3634 0.6686 -0.3804] 

peA - 0.5837 -0.0081 -0.0013 0.8119 
0.5572 -0.0969 -0.7197 -0.4027 

[ 
0.5167 -0.3709 0.7510 -0.2896] 

-0.2885 -0.9136 -0.0275 0.2084 
PPLS = 0.5836 -0.0449 0.0024 0.8001 ' 

0.5561 -0.1607 -0.6597 -0.4823 

respectively. 

(6.39) 

(6.40) 

Note that the first peA and discriminant PLS loading vectors are very 
closely aligned and the fourth loading vectors are much less so. Recall that 
the loading vectors for peA are orthogonal. In PLS, the loading vectors are 
rotated slightly in order to capture a better relationship between the pre­
dicted and predictor blocks (i.e., maximize the covariance between X and 
Y) [105). As a result of this rotation, the PLS loading vectors are rarely 
orthogonal. In general, the rotation for the first PLS loading vector is usu­
ally small. As the order increases, the deviation from orthogonality for the 
discriminant PLS loading vectors usually increases. Although the discrimi­
nant PLS loading vectors are not orthogonal, their score vectors are indeed 
orthogonal. Readers are urged to verify this property. 

6.6 Other PLS Methods 

The PLS methods described in this chapter can be extended to take into 
account the serial correlations in the data, by augmenting the observation 
vector and stacking the data matrix in the same manner as (4.44). The matrix 
Y has to be changed correspondingly. Implementation of this approach is left 
as an exercise for the readers. 

The PLS approaches can be generalized to nonlinear systems using non­
linear Partial Least Squares (NPLS) algorithms [234, 51, 148). In NPLS, 
the relationship between Uj and tj in (6.6) is replaced by 

(6.41) 
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Fig. 6.2. The projections of experimental data [50, 25] for three classes onto the 
first two discriminant PLS and peA loading vectors, respectively 

where f(tj) is a nonlinear, continuous, and differentiable function in tj. The 
simplest nonlinear relationship for NPLS is a quadratic function 

(6.42) 

andf(tj) = [J(tj,t} f(t;,2)" .f(t;,n)]T. This NPLS modelis commonly known 
as Quadratic Partial Least Squares (QPLS). At each iteration of QPLS, the 
ordinary PLS steps are applied to tj, qj, and Uj, and ordinary least squares 
are used to estimate the coefficients aj,bj , and Cj (see [234] for the detailed 
procedure). The nonlinearities can also be based on sigmoidal functions as 
used in artificial neural networks [83, 185]. 

For systems with mild nonlinearities, the same degree of fit can usually 
be obtained by a linear model with several factors, or by a nonlinear model 
with fewer dimensions [234]. In cases where the systems display strong non­
linearities (i. e., if the nonlinearities have maxima, minima, or have significant 
curvature), a nonlinear model is appropriate and NPLS can perform better 
than linear PLS especially when the systems are well-determined and with 
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high observation/variable ratio. However, for an underdetermined system, 
the models cannot be fitted with acceptable variance using NPLS because of 
the small number of degrees of freedom in the data sets [51]. 

Other PLS methods in the literature that have been applied to either 
simulations or actual process applications are recursive Partial Least Squares 
(RPLS) [184], multiblock Partial Least Squares [145, 228], and multiway Par­
tial Least Squares [169, 228]. The multiway technique is especially useful for 
the monitoring of batch processes, in which the predictor X is usually selected 
to be a three-dimensional array (i x j x k). A straightforward generalization 
of the PLS technique to the multi way technique provides a strategy for the 
detection and diagnosis of faults in batch processes. 

6.7 Homework Problems 

1. Describe in some detail how to formulate the Q and T2 statistics for 
detecting faults using PLS, where Y is the matrix of product quality 
variables. Compare and contrast this fault detection approach with the 
PCA-based Q and T2 statistics. Describe in detail how to generalize 
the discriminant-based PCA methods for fault diagnosis to PLS, where 
Y is the matrix of product quality variables. How would you expect 
the performance of this approach to compare with the performance of 
discriminant PLS? 

2. Generalize PLS as described in Problem 1 to EWMA and CUSUM ver­
sions, and to dynamic PLS. 

3. Show that the PCA loading vectors for the experimental data from 
[50,251 are orthogonal (hint: compute PJ,CAPPCA using PPCA in (6.39)). 
Show that the PLS loading vectors for the data are not orthogonal. Cal­
culate the angle between the lh PCA and lh PLS loading vector for the 
data for j = 1, ... ,4. How does the angle change as a function of j? 

4. Generalize discriminant PLS to dynamic discriminant PLS. 
5. Provide a detailed comparison of FDA and discriminant PLS. Which 

method would be expected to do a better job diagnosing faults? Why? 
6. Read an article on the use of multiway PLS (e.g., [112, 169]) and write a 

report describing in detail how the technique is implemented and applied. 
Describe how the computations are performed and how the statistics are 
computed. Formulate a discriminant multiway PLS algorithm. For what 
types of processes are these algorithms suited? Provide some hypothetical 
examples. 

7. Read an article on the application of multiblock PLS (e.g., [145, 52]) 
and write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
statistics are computed. Formulate a discriminant multiblock PLS algo­
rithm. For what types of processes are these algorithms suited? Provide 
some hypothetical examples. 
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8. Read an article on the application of nonlinear PLS (e.g., [234,51, 148]) 
and write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
statistics are computed. For what types of processes are these algorithms 
suited? Provide some hypothetical examples. 



CHAPTER 7 

CANONICAL VARIATE ANALYSIS 

7.1 Introduction 

In Section 4.7, it was shown how DPCA can be applied to develop an au­
toregressive with input ARX model and to monitor the process using the 
ARX model. The weakness of this approach is the inflexibility of the ARX 
model for representing linear dynamical systems. For instance, a low order 
autoregressive moving average ARMA (or autoregressive moving aver­
age with input ARMAX) model with relatively few estimated parameters 
can accurately represent a high order ARX model containing a large num­
ber of parameters [137]. For a single input single output (SIS0) process, an 
ARMAX( h) model is: 

h h h 

Yt = L OtiYt-i + L fliUt-i + L "Iiet-i + et (7.1) 
i=1 i=O i=1 

where Yt and Ut are the output and input at time t, respectively, OtI! ... ,Oth, 

fll' ... , flh' and "11, ... , "Ih are constant coefficients, and et is a white noise pro­
cess with zero mean [224]. For an invertible process, the ARMAX(h) model 
can be written as an infinite order ARX model [224]: 

00 00 

Yt = L 7riYt-i + L PiUt-i + et· (7.2) 
i=1 i=O 

The constant coefficients 7rI! 7r2, . .. and PI! P2, . .. are detennined from the 
coefficients in (7.1) via the backshift and division operations [224]. 

The classical approach to identifying ARMAX processes requires the a 
priori parameterization of the ARMAX model and the subsequent estima­
tion of the parameters via the solution of a least squares problem [137]. To 
avoid over-parameterization and identifiability problems, the structure of the 
ARMAX model needs to be properly specified; this is especially important 
for multi variable systems with a large number of inputs and outputs. This 
structure specification for ARMAX models is analogous to specifying the 
observability (or controllability) indices and the state order for state space 
models, and is not trivial for higher order multivariable systems [215]. An­
other problem with the classical approach is that the least squares problem 
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requires the solution of a nonlinear optimization problem. The solution of 
the nonlinear optimization problem is iterative, can suffer from convergence 
problems, can be overly sensitive to small data fluctuations, and the required 
amount of computation to solve the optimization problem cannot be bounded 
[131]. 

To avoid the problems of the classical approach, a class of system iden­
tification methods for generating state space models called subspace algo­
rithms has been developed in the past few years. The class of state space 
models is equivalent to the class of ARMAX models [8,137]. That is, given 
a state space model, an ARMAX model with an identical input-output map­
ping can be determined, and vice versa. The subspace algorithms avoid a 
priori parameterization of the state space model by determining the states of 
the system directly from the data, and the states along with the input-output 
data allow the state space and covariance matrices to be solved directly via 
linear least squares [215] (see Figure 7.1). These algorithms rely mostly on 
the singular value decomposition (SVD) for the computations, and there­
fore do not suffer from the numerical difficulties associated with the classical 
approach. 

Input-output 
Data ful, YI } 

Orth ogonal or Oblique Projections I Classical Identification 

-------+- -------I --------~------ -I 

1 
1 State Space and 

Kalman States 1 
1 Covariance Matrices 
1 
1 
1 
1 1 

Multiple L~ear Regression il~er KalmanF 
1 
1 

State Space and 
1 
1 

Kalman States Covariance Matrices 1 
1 
1 

1 1 ---------------- ----------------
Subspace Algorithm Approach Classical Approach 

Fig. 1.1. A comparison of the subspace algorithm approach to the classical ap­
proach for identifying the state space model and extracting the Kalman states 
[216] 
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Three popular subspace algorithms are numerical algorithms for 
subspace state space system identification (N4SID), multivariable 
output-error state space (MOESP), and Canonical Variate Analysis 
(CVA) [216]. Although the subspace algorithm based on CVA is often referred 
to as "CVA", CVA is actually a dimensionality reduction technique in mul­
tivariate statistical analysis involving the selection of pairs of variables from 
the inputs and outputs that maximize a correlation measure [131]. For clarity 
of presentation, "CVA" in this book refers to the dimensionality reduction 
technique, and the subspace algorithm based on CVA is called the CVA al­
gorithm. The philosophy of CVA shares many common features to PCA, 
FDA, and PLS (see Section 7.2), which makes it a natural subspace iden­
tification technique for use in developing process monitoring statistics. The 
CVA-based statistics described in in this chapter can be readily generalized 
to the other subspace identification algorithms. 

To fully understand all aspects of CVA requires knowledge associated 
with materials outside of the scope of this book. Enough information is given 
in this chapter for the readers to gain some intuitive understanding of how 
CVA works and to implement the process monitoring techniques. Section 7.2 
describes the CVA Theorem and an interpretation of the theorem indicating 
the optimality of CVA for dimensionality reduction. Section 7.3 describes the 
CVA algorithm with a statistical emphasis. Determination of the state space 
model and the issues of system identifiability are discussed in Section 7.4. 
Section 7.5 addresses the computational issues of CVA. A procedure for au­
tomatically and optimally selecting the state order of the state space model 
is presented in Section 7.6. Section 7.7 presents a systems theory interpreta­
tion for the CVA algorithm and the other subspace algorithms. Section 7.8 
discusses the process monitoring measures developed for the states extracted 
by the CVA algorithm. 

7.2 eVA Theorem 

CVA is a linear dimensionality reduction technique, optimal in terms of max­
imizing a correlation measure between two sets of variables. The CV A The­
orem states that given a vector of variables x E 1?,m and another vector of 
variables y E 1?,n with covariance matrices Ezz and Eyy , respectively, and 
cross covariance matrix Ezy , there exist matrices J E 1?,mxm and L E 1?,nxn 
such that 

(7.3) 

and 

JEzyLT = D = diag('Yl,'" ,'YnO,'" ,0), (7.4) 

where 'Yl ~ .•. ~ 'Yr. iii. = rank(Ezz), n = rank(Eyy), D contains the 
canonical correlations 'Yi, 1m E 1?,mxm is a diagonal matrix containing 
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the first in diagonal elements as one and the rest of the diagonal elements as 
zero, and In E Rnxn is the diagonal matrix containing the first n diagonal 
elements as one and the rest of the diagonal elements as zero [131]. The 
vector of canonical variables c = Jx contains a set of uncorrelated random 
variables and has the covariance matrix 

(7.5) 

and the vector of canonical variables d = Ly contains a set of uncorrelated 
random variables and has the covariance matrix 

Edd = LEyyLT = In. 

The cross covariance matrix between c and d is diagonal 

Ecd = JExyLT = D = diag('Yt,··· ,'Yr,O,'" ,0), 

(7.6) 

(7.7) 

which indicates that the two vectors are only pairwise correlated. The degree 
of the pairwise correlations is indicated and can be ordered by the canonical 
correlations 'Yi. 

CVA is equivalent to a generalized singular value decomposition 
(GSVD) [126, 131]. When Exx and Eyy are invertible, the projection matrices 
J and L and the matrix of canonical correlations D can be computed by 
solving the SVD 

(7.8) 

where J = UT E;x1/ 2, L = VT E;;yl/2, and D = E [127]. It is easy to verify that 
J, L, and D computed from (7.8) satisfy (7.3) and (7.4). The weightings E;x1/ 2 

and E;;yl/2 ensure that the canonical variables are uncorrelated and have unit 
variance, and the matrices UT and VT rotate the canonical variables so that 
c and d are only pairwise correlated. The degree of the pairwise correlations 
are indicated by the diagonal elements of E. Note that the GSVD mentioned 
above is not the same as the GSVD described in most of the mathematics 
literature [66, 214]. 

A CVA-related approach in the multivariate statistics literature [161, 34, 
135,204,122] is known as Canonical Correlation Analysis (CCA), which 
can be generalized into the CVA Theorem [161, 122]. While both CCA and 
CVA are suitable for correlating two sets of variables, CVA has been ap­
plied on time series data (see Section 7.3). To emphasis the application of 
the process monitoring algorithm on time series data, we prefer to use the 
terminology CVA over CCA. 

Several dimensionality reduction techniques have been interpreted in the 
framework of the GSVD [131, 135]. For example, consider the case where the 
left hand side of (7.8) is replaced by E;~2. Then 

(7.9) 
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Using the fact that U = V (Since 17!~2 is symmetric), squaring both sides 
give 

The corresponding equation (4.3) for peA is 

17xx = UAVT. 

(7.10) 

(7.11 ) 

We see that the diagonal elements of 17 in (7.9) is equal to the diagonal 
elements of 17 in (4.2). 

eVA can be reduced to FDA. The generalized eigenvalue problem for 
FDA (5.9) can be written as a function of x and y as defined in (7.3), where 
x contains the measurement variables and y contains dummy variables which 
represent class membership similarly to (6.1) [135J. 

PLS is also related with eVA, where both methods are equivalent to a 
GSVD on the covariance matrix. The difference is that eVA uses a weighting 
so as to maximize correlation, whereas PLS maximizes covariance [195J. eVA 
simultaneously obtains all components (J, L, and D) in one GSVD, whereas 
the PLS algorithm is sequential in selecting the important components, work­
ing with the residuals from the previous step. 

7.3 eVA Algorithm 

In Section 7.2, the optimality and the structure abstraction of eVA were 
presented via the eVA Theorem. While the eVA concept for multivariate 
statistical analysis was developed by Hotelling [85], it was not applied to 
system identification until Akaike's work on the ARMA model [131, 1, 2, 3J. 
Larimore developed eVA for state space models [131, 127, 126J. This section 
describes the linear state space model and the eVA algorithm for identifying 
state space models directly from the data. 

Given time series input data Ut E Rmu and output data Yt E Rmy, the 
linear state space model is given by [129J 

(7.12) 

(7.13) 

where Xt E Rk is a k-order state vector and Wt and Vt are white noise pro­
cesses that are independent with covariance matrices Q and R, respectively. 
The state space matrices cJj, G, H, A, and B along with the covariance ma­
trices Q and R specify the state space model. It is assumed here that the 
state space matrices are constant {time-in variance) and the covariance ma­
trices are constant (weakly stationary). The term Bw t in (7 .13) allows the 
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noise in the output equation (7.13) to be correlated with the noise in the state 
equation (7.12). Omitting the term BWt, typically done for many state space 
models, may result in a state order that is not minimal [127]. Time-varying 
trends in the data can be fitted by augmenting polynomial functions of time 
to the state space model; a software package that implements this is ADAPTx 
Version 3.03 [129]. 

An important aspect of the eVA algorithm is the separation of past and 
future. At a particular time instant t E (1,· .. , n) the vector containing the 
information from the past is 

_[T T T T ]T Pt- Yt-l,Yt-2,"',ut - 1 ,Ut-2,'" , (7.14) 

and the vector containing the output information in the present and future 
is 

(7.15) 

Assuming the data is generated from a linear state space model with a finite 
number of states k, the elements of the state vector Xt is equal to a set of k 
linear combinations of the past, 

(7.16) 

where Jk E 'Rkxmp is a constant matrix with mp < 00. The state vector Xt has 
the property that the conditional probability of the future f t conditioned on 
the past Pt is equal to the conditional probability of the future f t conditioned 
on the state Xt 

(7.17) 

In other words, the state provides as much information as past data does as to 
the future values of the output. This also indicates that only a finite number 
of linear combinations of the past affect the future outputs. This property of 
the state vector can be extended to include future inputs [129] 

(7.18) 

where qt = [ui, uiH , ... ] T. In the process identification literature, a process 
satisfying (7.18) is said to be a controlled Markov process of order k. 

Let the k-order memory, mt E 'R k, be a set of k linear combinations of 
the past Pt 

(7.19) 

where Ck E 'Rkxmp • The term "memory" is used here instead of "state" 
because the vector mt may not necessarily contain all the information in the 
past (for instance, the dimensionality of k may not be sufficient to capture all 
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the information in the past). The goal of process identification is to provide 
the optimal prediction of the future outputs based on the past and current 
state. Now in a real process the true state order k is unknown, so instead the 
future outputs are predicted based on the current memory: 

(7.20) 

where ft(mt) is the optimal linear prediction of the future ft based on the 
memory mt [129]. The eVA algorithm computes the optimal matrix for Ok 
in (7.19), that is, the matrix Ok which minimizes the average prediction error: 

(7.21) 

where E is the expectation operator and At is the pseudo inverse of A, which 
is a positive semidefinite symmetric matrix used to weigh the relative impor­
tance of the output variables over time. The choice A = E f f results in nearly 
maximum likelihood estimates [126, 195]. 

The optimal value for Ok in (7.19) is computed via the GSVD by substi­
tuting the matrix E zz with Epp, Eyy with Elf, and E zy with Epf in (7.3) 
and (7.4) [129]. The optimal estimate for matrix Ok is equal to Jk, where Jk 
is the first k rows of the matrix J in (7.3) [131]. The optimal k-order memory 
is 

opt J m t = kPt· (7.22) 

The structure of the solution indicates that the optimal memory for order k 
is a subset of the optimal memory for order k + 1. The optimal memory for a 
given order k corresponds to the first k states of the system [129], and these 
states are referred to as the eVA states. 

7.4 State Space Model and System Identifiability 

The process monitoring statistics described in Section 7.8 are based on the 
matrix J which is used to construct the eVA states, and do not require the 
construction of an explicit state space model (7.12)-(7.13). The calculation of 
the state space matrices in (7.12)-(7.13) is described here for completeness. 

Assuming the order of the state space model, k, is chosen to be greater 
than or equal to the order of the minimal state space realization of the actual 
system, the state vectors Xt in (7.12) and (7.13) can be replaced by the state 
estimate mt: 

(7.23) 

Since Ut and Yt are known, and mt can be computed once Jk in (7.22) is 
known, this equation's only unknowns (ifJ, G, H, A, and B) are linear in the 
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parameters. The state space matrices can be estimated by multiple linear 
regression (see Figure 7.1) 

[ ~ 0] A A_I iI..4. = Emy,muEmu,mu (7.24) 

where 

(7.25) 

and i:i,j represents the sample covariance matrix for variables i and j. The 
error of the multiple regression has the covariance matrix 

[ 8 11 812] A A A -1 AT 
8 21 8 22 = Emy,my - Emy,muEmu,muEmy,mu, (7.26) 

and the matrices B = 821 811, Q = 8 11 , and il = 8 22 - 821811812 where t 
signifies the pseudo-inverse [66]. With the matrices ..4., B, iI, 0, ~, Q, and 
il estimated, the state space model as shown in (7.12) and (7.13) can be 
used for various applications such as multistep predictions and forecasts, for 
example, as needed in model predictive control [195, 107]. 

There is a significant advantage in tenns of identifiability of state space 
identification approaches over classical identification based on polynomial 
transfer functions. For polynomial transfer functions, it is always possible 
to find particular values of the parameters that produce arbitrarily poor 
conditioning [129, 65], and hence a loss in identifiability of the model [222, 
183]. The simplest example of this is when a process pole nearly cancels a 
process zero. 

The state space model estimated using (7.24) and (7.26) is globally iden­
tifiable, so that the method is statistically well-conditioned [131]. The eVA 
algorithm guarantees the choice of a well conditioned parameterization. 

7.5 Lag Order Selection and Computation 

The discussion in Section 7.3 assumes that an infinite amount of data is 
available. For the computational problem, there is a finite amount of data 
available, and the vectors Pt, ft, and qt are truncated as 

[ T T T T T T ]T 
Pt = Yt-I,Yt-2,'" ,Yt-h, Ut-l' Ut -2,'" ,Ut-h , (7.27) 

[ T T T]T ft = Yt ,Yt+l ... ,Yt+I-I , (7.28) 
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[ T T T]T qt = Ut , Ut + 1 , ... , lli+l-l (7.29) 

where h and I are the number oflags included in the vectors. Note that Pt with 
h lags directly corresponds to the observation vector for (4.44) with h -1 lags. 
Theoretically, the eVA algorithm does not suffer when h = 1> k, where k is 
the state order of the system generating the data (actually, h and I just need 
to be larger than the largest observability index [216]). However, the state 
order of the system is not known a priori. The first step of computing of eVA 
is to determine the number of lags h. Assuming there are n observations in 
the training set and the maximum number for the lag order is max, Larimore 
suggests fitting autoregressive models with several different numbers of lags 
to the training data: 

(7.30) 

where the predicted matrix Y E R(mu+ml/)x(n-max) is given as: 

Y = [Ymax+l Ymax+2 ... Yn] 
Umax+l Umax+2 ... Un 

(7.31) 

and the predictor matrix Xj E Rj(mu+ml/)x(n-max) with j lags is given as 
the first j (mu + my) rows of 

Ymax Ymax+l ... Yn-l 

Umax Umax+l ... Un-l 

Ymax-l Ymax Yn-2 

X= Umax-l Umax Un -2 (7.32) 

Yl Y2 Yn-max 

Ul U2 Un-max 

and Eh E R(mu+ml/)x(n-max) is the residual matrix for lag order j. The 
regression matrix for Cj is determined via least squares: 

(7.33) 

where the covariance matrix Ey x j is equal to n-~ax Y XJ. The residual 
matrix Ej is calculated for j = 1,2, ... , max. The lag order h is selected 
to be the lag minimizing the small sample Ale criterion (7.37) discussed in 
Section 7.6. This ensures that large enough lags are used to capture all the 
statistically significant information in the data. The selection of the state 
order k is described in next section. 

The computational requirements are known a priori for the GSVD compu­
tation. The number of flop counts grows by order (nh+h3 ), and the required 
storage space is on the order (n + h2 ) [131]. 
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The near optimality of the state space model produced by the CVA 
algorithm has been observed in Monte Carlo simulations. The estimated 
Kullback-Leibler information distances (see Section 7.6) for both open 
and closed loop simulations were close to the information distances, related 
to the Cramer-Rao bound, corresponding to the minimum possible parame­
ter estimation error for any unbiased estimation procedure [131). Simulations 
have also verified the robustness of the CVA algorithm for systems involving 
feedback [131). 

7.6 State Order Selection and Akaike's Information 
Criterion 

The selection of the state order is an important step in identifying a state 
space model. The existence of a true state order is highly suspect when dealing 
with real process data; however, the state order can be utilized as a tradeoff 
parameter for the model complexity, similar to the order of model reduction, 
a, described for PCA, FDA, and PLS in Chapters 4, 5, and 6, respectively. For 
instance, choosing the state order too large results in the model overfitting the 
data, and choosing the state order too small results in the model underfitting 
the data. This section presents a method for state order selection based on 
Akaike's information criterion (AIC). 

The agreement between two probability density functions can be mea­
sured in terms of the Kullback-Leibler information distance (KLIB) 
[137) 

. ! P.(x) I(p.{x),p{x)) = P.{x) In p{x) dx (7.34) 

where x contains the random variables, P.(x) is the true probability density 
function, and p{ x) is the estimated probability density function. The KLIB 
is based on the statistical principles of sufficiency and repeated sampling in 
a predictive inference setting, and is invariant to model reparameterization 
[130). If the true probability density function of the process data is known, 
then the information distance (7.34) could be computed for various state 
orders and the optimal state order would correspond to the minimum infor­
mation distance. 

For large samples, the optimal estimator of the information distance (7.34) 
for a given order k is the AIC, 

(7.35) 

where p is the likelihood function [9), the vectors un and yn contain n obser­
vations for the input and output variables, respectively, and Ok are the Mk 
independent parameters estimated for state order k. The order k is selected 
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such that the Ale criterion (7.35) is minimized. The number of independent 
parameters in the state space model (7.12) and (7.13) is 

my(my + 1) 
Mk = k(2my + mu) + mumy + 2 . (7.36) 

The number of independent parameters is far less than the actual number of 
parameters in the state space model [137], and the result (7.36) was developed 
by considering the size of the equivalence class of state space models having 
the same input-output and noise characteristics [129]. 

For small samples, the Ale can be an inaccurate estimate of the KLIB. 
This has led to the development of the small sample correction to the Ale 
[129] 

(7.37) 

where the correction factor for small samples is 

f- n 
- _ (Mk m u +my +l) n - + ---=----

mu+my 2 

(7.38) 

where n is the number of one-step ahead predictions used to develop the 
model. The small sample correction to the Ale approaches the Ale (f -+ 1) 
as the sample size increases (n -+ 00). It has been reported to produce state 
order selections that are close to the optimal prescribed by the KLIB [131]. 
Within the context of Section 3.3, the selection of the optimal state order 
results in an optimal tradeoff between the bias and variance effects on the 
model error. 

7.7 Subspace Algorithm Interpretations 

The book Subspace Identification of Linear Systems by Van Overschee and 
De Moor [216] presents a unified approach to the subspace algorithms. It 
shows that the three subspace algorithms (N4SID, MOESP, and eVA) can 
be computed with essentially the same algorithm, differing only in the choice 
of weights. Larimore [131] states that the other algorithms differ from the 
eVA algorithm only in the choice of the matrices Exx and Eyy used in (7.3), 
and claims accordingly that the other algorithms are statistically suboptimal. 

It has been proven under certain assumptions that the subspace algo­
rithms can be used to produce asymptotically unbiased estimates of the state 
space matrices [216]. However, the state space matrices estimated by the three 
algorithms can be significantly different when the amount of input and output 
data is relatively small. 

Van Overschee and De Moor also show that the state sequences generated 
by the subspace algorithms are the outputs of non-steady state Kalman filter 
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banks. The basis for the states is determined by the weights used by the var­
ious algorithms, and the state space realizations produced by the algorithms 
are balanced realizations under certain frequency-weightings. Therefore, re­
ducing the dimensionality of the memory in the subspace algorithms can be 
interpreted in the framework of the frequency-weighted balanced truncation 
techniques developed by Enns [46], with the exception that the subspace al­
gorithms truncate the state space model before the model is estimated (see 
Figure 7.2). The amount of model error introduced by reducing the order is 
minimized by eliminating only those states with the smallest effect on the 
input-output mapping, and for the eVA algorithm, the amount of model er­
ror is proportional to the canonical correlations [129]. The model reduction 
approach of the eVA algorithm has the advantage in that truncating the 
memory vector prior to the estimation of the state space model instead of 
truncating the state vector based on a full order state space model is much 
more computationally and numerically robust (see Figures 7.1 and 7.2). The 
degree of model reduction, or equivalently the selection of the state order, 
is an important step in the identification process, and a statistically optimal 
method was discussed in Section 7.6. 

Input-output 
Data {ut, Yt} 

Subspace Algorithm I 
- - - - - - -} - - - - - - -I 

I 

Truncate the Memory I 
I 

Vector I 
I 
I 
I 
I 

Multiple Unear Regression 
I 
I 
I 

Compute the State I 

Space Model 
I 
I 
I 

I I ----------------
Subspace Algorithm Approach 

Classical Identification 

-------}------ -I 

Identify the State 
Space Model 

Enn's Mode 
I 

II 
I 

Reduction 

Truncate the State 
Space Model 

I I ----------------
Classical Approach 

Fig. 7.2. A comparison of the approaches to model reduction using Enn's model 
reduction technique and the subspace algorithm [216] 
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7.8 Process Monitoring Statistics 

The GSVD for the CVA algorithm produces a set of canonical variables, c = 
JPt (where c E nh(mu +mll »), that are uncorrelated and have unit variance. 
The T2 statistic for the canonical variables is 

(7.39) 

The T2 statistic (7.39), however, may contain a large amount of noise and 
may not be very robust for monitoring the process. Reducing the order a 
for DPCA can increase the effectiveness of the T2 statistic, and allows the 
process noise to be monitored separately via the Q statistic. An analogous 
approach is taken here for monitoring the process using the CVA states: 

(7.40) 

where Uk contains the first k columns of U in (7.8) 
A process monitoring statistic based on quantifying the variations of the 

CVA states has been applied by Negiz and Cinar to a milk pasteurization 
process [165, 166J. The measure is the T; statistic 

T: = p[ J[ JkPt, (7.41) 

and assuming normality, the T; statistic follows the distribution 

2 k(n2 -1) 
Ts a = ( k) Fa(k, n - k) , n n- (7.42) 

where n is the number of observations (see 2.11). The T; statistic measures 
the variations inside the state space, and the process faults can be detected, 
as shown in Section 2.4, by choosing a level of significance and solving the 
appropriate threshold using T;,a' 

The variations outside the state space can be measured using the statistic 

(7.43) 

where Jq contains the last q = h(mu + my) - k rows of J in (7.8). Assuming 
normality, the T2 statistic (7.43) follows the distribution 

2 q(n2 -1) 
Tra = ( ) Fa(q,n - q). , n n-q (7.44) 

A weakness of this approach is that T; can be overly sensitive because of the 
inversion of the small values of 1::1::1; in (7.8) [101J. This can result in a high 
false alarm rate. To address this concern, the threshold should be readjusted 
before applying the statistics for process monitoring (see Section 10.6 for an 
example). 
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The residual vector of the state space model in terms of the past Pt can 
be calculated 

(7.45) 

and the variation in the residual space can be monitored using the Q statistic 
similar to the (D)PCA approaches 

(7.46) 

The statistics of T; and Q essentially measure the noise of the process. 
The T2 statistic (7.39) is equal to T: +T;, and by extracting the CVA states 
from the data, the variations in the state and measurement noise space can be 
decoupled and measured separately using T: and T; , respectively. A violation 
of the T: statistic indicates that the states are out-of-control, and a violation 
of the T; statistic indicates that the characteristic of the measurement noise 
has changed and/or new states have been created in the process. This is 
similar to the PCA approach to fault detection outlined in Section 4.4, with 
the exception that the states of the system are extracted in a different manner. 
The flexibility of the state space model and the near optimality of the CVA 
approach suggest that the CVA states more accurately represent the status 
of the operations compared to the scores using PCA or DPCA. Other CVA­
based fault detection statistics are reported in the literature [132, 223]. 

The correlation structure of the CVA states allows the PCA-based statis­
tics in Chapter 4 for fault identification and diagnosis to be applicable to 
the CVA model. It is straightforward to extend the PCA-based statistics to 
CVA. The total contribution statistic (4.25) can be computed for the CVA 
model by replacing the scores with the CVA estimated states, mt = JkPt. 
The statistic (4.32) can be applied for fault identification using the residual 
vector in (7.45). A pattern classification system for fault diagnosis can be 
employed using the discriminant function (3.6) based on {T~)i' {Tr2)i, or Qi 
for each class i. These discriminant functions can improve the classification 
system upon using the discriminant function (3.6) based on the entire obser­
vation space, Pt, when most of the discriminatory power is contained in the 
state space or the residual space. 

7.9 Homework Problems 

1. Verify that the matrices J, L, and D computed from (7.8) satisfy (7.3) 
and (7.4). 

2. Describe in some detail how to formulate the CONT and RES statistics 
for identifying faults using CVA. Name advantages and disadvantages of 
this approach to alternative methods for identifying faults. Would CONT 
or RES expected to perform better? Why? 
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3. Describe in detail how to formulate CVA for fault diagnosis. Name ad­
vantages and disadvantages of this approach to alternative methods for 
diagnosing faults. 

4. Compare and contrast the CVA-based Q and T; statistics. Which statis­
tic would you expect to perform better for fault detection? Why? 

5. Read the following materials [195, 131, 135] and formulate PCA, PLS, 
FDA, and CVA in the framework of the generalized singular value decom­
position. Based on the differences between the methods as represented in 
this framework, state the strengths and weaknesses of each method for 
applying process monitoring statistics. 

6. Read a chapter in a book on the application of Canonical Correlation 
Analysis (CCA) [135, 161, 34]. Compare and contrast CCA with FDA 
and CVA. 

7. Compare and contrast the CVA-based statistics described in this chap­
ter with the CVA-based process monitoring statistics reported in these 
papers [132, 223]. 

8. Read an article on the application of nonlinear CVA (e.g., [128]) and 
write a report describing in detail how the technique is implemented and 
applied. Describe how the computations are performed and how process 
monitoring statistics can be computed. For what types of processes are 
these algorithms suited? Provide some hypothetical examples. 



Part IV 

APPLICATION 



CHAPTERS 

TENNESSEE EASTMAN PROCESS 

8.1 Introduction 

In Part IV the various data-driven process monitoring statistics are com­
pared through application to a simulation of a chemical plant. The methods 
would ideally be illustrated on data collected during specific known faults 
from an actual chemical process, but this type of data is not publicly avail­
able for any large scale chemical plant. Instead, many academics in process 
monitoring perform studies based on data collected from computer simula­
tions of a chemical process. The process monitoring methods in this book are 
tested on the data collected from the process simulation for the Tennessee 
Eastman process (TEP). The TEP has been widely used by the process 
monitoring community as a source of data for comparing various approaches 
[10, 24, 62, 63, 74, 77, 125, 133, 187, 189, 188]. 

The TEP was created by the Eastman Chemical Company to provide 
a realistic industrial process for evaluating process control and monitoring 
methods [39]. The test process is based on a simulation of an actual chemical 
process where the components, kinetics, and operating conditions have been 
modified for proprietary reasons. The process consists of five major units: a 
reactor, condenser, compressor, separator, and stripper; and, it contains eight 
components: A, B, C, D, E, F, G, and H. 

Chapter 8 describes the Tennessee Eastman process (TEP) in enough de­
tail to interpret the application of the process monitoring statistics in Chap­
ters 9 and 10. Sections 8.2 to 8.6 describe the process Howsheet, variables, 
faults, and simulation program. In reality, processes are operated under closed 
loop control. To simulate realistic conditions, the second plant-wide control 
structure described in [141] was implemented to generate the data for demon­
strating and comparing the various process monitoring methods. The control 
structure is described in Section 8.6. Detailed discussions on control struc­
tures for the TEP are available [152, 151, 163, 220]. 

E. L. Russell et al., Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
© Springer-Verlag London Limited 2000
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8.2 Process Flowsheet 

Figure 8.1 is a fl.owsheet for the chemical plant. The gaseous reactants A, C, 
D, and E and the inert B are fed to the reactor where the liquid products G 
and H are formed. The reactions in the reactor are: 

A(g) + C(g) + D(g) -+ G(liq), 
A(g) + C(g) + E(g) -+ H(liq), 

A(g) + E(g) -+ F(liq), 
3D(g) -+ 2F(liq). 

(8.1) 

The species F is a byproduct of the reactions. The reactions are irreversible, 
exothermic, and approximately first-order with respect to the reactant con­
centrations. The reaction rates are Arrhenius functions of temperature where 
the reaction for G has a higher activation energy than the reaction for H, re­
sulting in a higher sensitivity to temperature. 

The reactor product stream is cooled through a condenser and then fed 
to a vapor-liquid separator. The vapor exiting the separator is recycled to 
the reactor feed through a compressor. A portion of the recycle stream is 
purged to keep the inert and byproduct from accumulating in the process. 
The condensed components from the separator (Stream 10) is pumped to a 
stripper. Stream 4 is used to strip the remaining reactants from Stream 10, 
which are combined with the recycle stream via Stream 5. The products G 
and H exiting the base ofthe stripper are sent to a downstream process which 
is not included in the diagram. 

8.3 Process Variables 

The process contains 41 measured and 12 manipulated variables. The manip­
ulated variables are listed in Table 8.1. The 22 measured variables which are 
sampled every 3 minutes, XMEAS(l) through XMEAS(22), are listed in Ta­
ble 8.2. The 19 composition measurements, XMEAS(23) through XMEAS( 41), 
are described in Table 8.3. The composition measurements are taken from 
Streams 6, 9, and 11. The sampling interval and time delay for Streams 6 
and 9 are both equal to 6 minutes, and for Stream 11 are equal to 15 minutes. 
All the process measurements include Gaussian noise. 

8.4 Process Faults 

The Tennessee Eastman Process simulation contains 21 preprogrammed 
faults (see Table 8.4). Sixteen of these faults are known, and five are un­
known. Faults 1-7 are associated with a step change in a process variable, 
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Table 8.1. Manipulated variables 

Variable Description 

XM~~~! 
XMV(2) 

D Feed Flow ~~tream 2) 
E Feed Flow (Stream 3) 

XMV(3) A Feed Flow (Stream 1) 
XMV(4) Total Feed Flow (Stream 4) 
XMV(5) Compressor Recycle Valve 
XMV(6) Purge Valve (Stream 9) 
XMV(7) Separator Pot Liquid Flow (Stream 10) 
XMV(8) Stripper Liquid Product Flow (Stream 11) 
XMV(9) Stripper Steam Valve 

XMV(10) Reactor Cooling Water Flow 
XMV(l1) Condenser Cooling Water Flow 
XMV(12) Agitator Speed 

Table 8.2. Process measurements (3 minute sampling interval) 

Variable Description Units 

XMEA~~l) A Feed (Stream 1~ kscmh 
XMEAS(2) D Feed (Stream 2) kg/hr 
XMEAS(3) E Feed (Stream 3) kg/hr 
XMEAS(4) Total Feed (Stream 4) kscmh 
XMEAS(5) Recycle Flow (Stream 8) kscmh 
XMEAS(6) Reactor Feed Rate (Stream 6) kscmh 
XMEAS(7) Reactor Pressure kPa gauge 
XMEAS(8) Reactor Level % 
XMEAS(9) Reactor Temperature Deg C 
XMEAS(lO) Purge Rate (Stream 9) kscmh 
XMEAS(l1) Product Sep Temp Deg C 
XMEAS(12) Product Sep Level % 
XMEAS(13) Prod Sep Pressure kPa gauge 
XMEAS(14) Prod Sep Underflow (Stream 10) m3 /hr 
XMEAS(15) Stripper Level % 
XMEAS(16) Stripper Pressure kPa gauge 
XMEAS(17) Stripper Underflow (Stream 11) nr/hr 
XMEAS(18) Stripper Temperature Deg C 
XMEAS(19) Stripper Steam Flow kg/hr 
XMEAS(20) Compressor Work kW 
XMEAS(21) Reactor Cooling Water Outlet Temp Deg C 
XMEAS(22) Separator Cooling Water Outlet Temp Deg C 
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Table 8.3. Composition measurements 

Variable Description Stream Sampling Interval (min.) 
XMEAS(23) Component A 6 6 
XMEAS(24) Component B 6 6 
XMEAS(25) Component C 6 6 
XMEAS(26) Component D 6 6 
XMEAS(27) Component E 6 6 
XMEAS(28) Component F 6 6 
-XME~29! Component A 9 6 
XMEAS(30) Component B 9 6 
XMEAS(31) Component C 9 6 
XMEAS(32) Component D 9 6 
XMEAS(33) Component E 9 6 
XMEAS(34) Component F 9 6 
XMEAS(35) Component G 9 6 
XMEAS(36) Component H 9 6 
XMEAS(37) Component D 11 15 
XMEAS(38) Component E 11 15 
XMEAS(39) Component F 11 15 
XMEAS(40) Component G 11 15 
XMEAS(41) Component H 11 15 

Units are mole %. Dead time is equal to the sampling interval 

e.g., in the cooling water inlet temperature or in feed composition. Faults 8-
12 are associated with an increase in the variability of some process variables. 
Fault 13 is a slow drift in the reaction kinetics, and Faults 14, 15, and 21 are 
associated with sticking valves. 

The sensitivity and robustness of the various process monitoring methods 
will be investigated in Chapter 10 by simulating the process under various 
fault conditions. The simulation program allows the faults to be implemented 
either individually or in combination with one another. 

8.5 Simulation Program 

The simulation code for the process is available in FORTRAN, and a de­
tailed description of the process and simulation is available [39]. There are 
six modes to the process operation corresponding to various G jH mass ratios 
and production rates of Stream 11. Only the base case will be used here. The 
program is implemented with 50 states in open loop and a 1 second interval 
for integration. This integration interval is reasonable since the largest neg­
ative eigenvalue of the process is about 1.8 seconds. The simulation code for 
the process in open loop can be downloaded from http:j jbrahms.scs.uiuc.edu. 
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8.6 Control Structure 

The simulation of the TEP is made available by the Eastman Chemical Com­
pany in open loop operation. Since the process is open loop unstable and 
chemical processes in reality are operated under closed loop, a plant-wide 
control scheme was employed when applying the process monitoring meth­
ods in Chapter 10. In [141, 142], four different plant-wide control structures 
using only Proportional (P) and Proportional-Integral (PI) controllers were 
investigated for the TEP. The second control structure listed in [141, 142] was 
chosen for this book because this structure provided the best performance 
according to the authors. 

The control structure implemented to obtain the results in Chapter 10 
is shown schematically in Figure 8.1. The control structure consists of nine­
teen loops, and the values of the control parameters and other details of 
the control structure are listed in Table 8.5. The exact values for the con­
troller gains implemented by the author of [141] could not be determined 
because the controller gains were scaled to be dimensionless and the scalings 
on the controller inputs and outputs were not presented. However, we esti­
mated the controller parameters based on the values from [141], and these 
parameters are reported in Table 8.5 with units consistent with the manip­
ulated and measurement variables [39]. Some closed loop simulations with 
the control parameters from Table 8.5 are shown in Figures 8.2 and 8.3. A 
comparison of these plots with those in [141] indicates that relatively similar 
values for the control parameters were employed for both sets of simulations. 
The simulation code for the process in closed loop can be downloaded from 
http://brahms.scs. uiuc.edu. 

8.7 Homework Problems 

1. Plot the manipulated and measured variables over time for one of the pro­
cess faults in Table 8.4 using the closed loop controllers described in this 
chapter (the code can be downloaded from http://brahms.scs.uiuc.edu). 
Explain how the effect of the process fault propagates through the plant, 
as indicated by the process variables. What is the physical mechanism 
for each of the process variable changes? Does each variable change in 
the way you would expect? Explain. For each variable, explain how its 
time history is affected by the closed loop controllers. Which controllers 
mask the effect of the fault on the process variables? [Note to instructor: 
consider assigning a different fault to each student in the class.] 

2. Describe the step-by-step procedure used to arrive at the plant-wide con­
trol structure used in this chapter (hint: read [142]). 
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Fig. 8.2. Closed loop simulation for the steady state case with no faults. The solid 
and dotted lines in the lower right plot represent the compositions of G and H, 
respectively. 
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CHAPTER 9 

APPLICATION DESCRIPTION 

9.1 Introduction 

Chapter 8 describes the process, the control system, and the type of faults for 
the Tennessee Eastman plant simulator. In Chapter 10, this simulator will be 
used to demonstrate and compare the various process monitoring methods 
presented in Part III. The process monitoring methods are tested on data 
generated by the TEP simulation code, operating under closed loop with the 
plant-wide control structure discussed in Section 8.6. The original simulation 
code allows 20 preprogrammed faults to be selectively introduced to the pro­
cess [39]. We have added an additional fault simulation, which results in a 
total of 21 faults as shown in Table 8.4. In addition to the aforementioned 
aspects of the process, the process monitoring performance is dependent on 
the way in which the data are collected, such as the sampling interval and 
the size of the data sets. 

The purpose of this chapter is to describe the data sets and to present the 
process monitoring measures employed for comparing the process monitoring 
methods. Section 9.2 describes how the data in the training and testing sets 
were generated by the TEP. A discussion on how the selection of the sam­
pling interval and sample size of the data sets affects the process monitoring 
methods follows in Sections 9.3 and 9.4, respectively. Section 9.5 discusses 
the selection of the lag and order for each method. Sections 9.6, 9.7, and 
9.8 present the measures investigated for fault detection, identification, and 
diagnosis, respectively. The process monitoring methods (covered in Parts II 
and III) used for these purpose are collected into Tables 9.2-9.4 which show 
how the methods are related. 

9.2 Data Sets 

The data in the training and testing sets included all the manipulated and 
measured variables (see Tables 8.1-8.3), except the agitation speed of the 
reactor's stirrer for a total of m = 52 observation variables. (The agitation 
speed was not included because it was not manipulated.) An observation 
vector at a particular time instant is given by 

E. L. Russell et al., Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
© Springer-Verlag London Limited 2000
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x = [XMEAS(I), ... ,XMEAS(41),XMV(I),'" ,XMV(ll)] T. (9.1) 

The observations were simulated with an integration step size of 1 second, 
and this did not produce any numerical inaccuracies. Although some of the 
observations are sampled continuously while other variables contain time de­
lays (see Section 8.3), it simplifies the implementation to employ the same 
sampling interval for each variable when the data are collected for calculating 
multivariate process monitoring measures. A sampling interval of 3 minutes 
was used to collect the simulated data for the training and testing sets. 

The data in the training set consisted of 22 different simulation runs, 
where the random seed was changed between each run. One simulation run 
(Fault 0) was generated with no faults; another simulation run (Fault 21) 
was generated by fixing the position of the valve for Stream 4 at the steady 
state position; and, each of the other 20 simulation runs (Faults 1-20) was 
generated under a different fault, each corresponding to a fault listed in Table 
8.4. The simulation time for each run was 25 hours. The simulations started 
with no faults, and the faults were introduced 1 simulation hour into the run. 
The total number of observations generated for each run was n = 500, but 
only 480 observations were collected after the introduction of the fault. It is 
only these 480 observations actually used to construct the process monitoring 
measures. 

The data in the testing set also consisted of 22 different simulation runs, 
where the random seed was changed between each run. These simulation 
runs directly correspond to the runs in the training set (Faults 0-21). The 
simulation time for each run was 48 hours. The simulation started with no 
faults, and the faults were introduced 8 simulation hours into the run. The 
total number of observations generated for each run was n = 960. 

9.3 Sampling Interval 

The amount of time in which quality data are collected from chemical pro­
cesses during either in-control or out-of-control operations is usually limited 
in practice. Typically, only a small portion of the operation time exists where 
it can be determined with confidence that the data were not somehow cor­
rupted and no faults occurred in the process. Also, the process supervisors 
do not generally allow faults to remain in the process for long periods of time 
for the purpose of producing data used in fault diagnosis algorithms. 

Typically data collected during faulty operations are stored in historical 
databases in which engineers or operators diagnose the faults sometime after 
the fault occurs, and then enter that information into the historical database. 
The amount of such data available in the historical database is typically fixed 
and the sampling interval for the process monitoring methods needs to be 
determined. 
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It is desirable to detect, identify, and diagnose faults as soon as possible. 
This suggests a fast sampling rate. Also, given a fixed time T = nLlt, it 
is beneficial from an information point-of-view to sample as fast as possible 
(Llt ---+ 0, n ---+ (0). There are in terms of process monitoring, however, three 
possible problems with sampling as fast as possible. For the amount- of data 
produced, the computational requirements may exceed the computational 
power available. Additionally, the model fit may be concentrated to the higher 
frequencies, where measurement noise is predominant. When identifying an 
ARX model via a least squares approach, Ljung [137) shows how the bias 
is shifted when sampling with higher frequencies. This bias shift for fast 
sampling rates may be undesirable, especially if the faults primarily affect 
the lower frequency dynamics of the process. Finally, statistics that ignore 
serial correlation will generally perform more poorly for short sampling times. 

The choice of the sampling interval for process monitoring is usually se­
lected based on engineering judgment. For system identification, a rule of 
thumb is to set the sampling interval to one-tenth the time constant of the 
process [137). Considering that many of the time constants of the Tennessee 
Eastman problem under closed loop appear to be about 2 hours (see Figure 
8.2), it is advisable from a system identification point of view to sample at 
an interval of 12 minutes. This does not, however, take advantage of the in­
strumentation of the process, which allows much faster sampling rates (see 
Section 8.3). A sampling interval of 3 minutes was selected here to allow fast 
fault detection, identification, and diagnosis, and to allow a good comparison 
between techniques that either take into account or ignore serial correlations. 
In addition, the same sampling interval has been used in other applications 
of process monitoring to the TEP [125, 26, 74). 

An alternative approach would be to average each measurement over a 
period of time before using the data in the process monitoring algorithms. 
This and similar "moving window" techniques will generally reduce normal 
process variability and hence produce a more sensitive process monitoring 
method. However, this comes at a cost of delaying fault detection. Wise and 
co-workers [230) pointed out that the width of the windows (i.e., the number 
of data points used to compute the average) had an important effect on the 
performance. In general, a "wide" window allows the detection of smaller 
changes, but does not respond as quickly to changes as "narrow" windows. 

9.4 Sample Size 

As mentioned in the previous section, the total time spanned by the training 
set is generally limited. In the cases where the total time T = nLlt is fixed, 
the selection of the sampling interval Llt and the sample size n cannot be 
decoupled. Therefore, the effect of the sampling interval on the sample size 
should be considered when selecting the sampling interval, and vice versa. 
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An important consideration for the sample size is the total number of inde­
pendent parameters contained in the model being identified. It is desirable to 
have the number of model parameters be much smaller than the total number 
of process variables m multiplied by the total number of observations n. 

Because the data for this book are simulated by the TEP, the sample 
size is not limited by T and can be considered separately from the sampling 
interval. Downs and Vogel [39) recommend a simulation time between 24 
and 48 hours to realize the full effect of the faults. With a sampling interval 
equal to 3 minutes, 24 to 48 hours of simulation time contain n = 480 to 
960 observations. Simulations (see Figure 8.3) suggest that a run containing 
24 simulation hours sufficiently captures the significant shifts in the data 
produced by the fault. 

The sufficiency of the sample size for the training set n = 480 can be 
determined by examining the total number of independent parameters asso­
ciated with the orders of the various process monitoring methods (see Table 
9.1). The total number of states in the closed loop process is k = 61; 50 states 
from the open loop process plus 11 states from the PI controllers. For a state 
space model of state order k = 61 with 11 inputs and 41 outputs, the number 
of independent parameters Mk is equal to 6985 according to (7.36). For fault 
detection using the PeA-based T2 statistic (4.12), the number of estimated 
parameters Ma is equal to the number of independent degrees of freedom of 
the matrix product of PE;;2pT in (4.12), which is calculated from 

Ma = a + 2am - a2 

2 
(9.2) 

For a = 51, the number ofindependent parameters is 1377. For fault detection 
using the eVA-based Ts2 statistic (7.41), the number of estimated parameters 
Mk is equal to the number of independent degrees of freedom of f[ Jk in 
(7.41), which is calculated from 

Mk = k + 2kmh - k2 

2 
(9.3) 

For h = 2 and k = 61, the number of independent parameters is 4029. The 
total number of data points in the training set is equal to nm = (480)(52) = 
24,960. The absolute minimum requirement to apply the peA, eVA, or 
state space model at a given order is that the number of data points is 
greater than the number of independent parameters in the model. The ratio 
of the number of data points to the number of independent parameters is 
nm/Mk = (480){52)/6985 = 3.57 for the state space model, nm/Ma = 18.1 
for the PeA-based model, and nm/Mk = 5.53 for the eVA-based model. 
With all other variables being equal (e.g., the noise level), the larger the 
ratio is greater than one, the higher the accuracy of the model. For this data 
set, all ratios are greater than one, indicating that the size of the training 
set (n = 480) is sufficient to apply the peA, eVA, and state space model. 
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Reducing the order may still result in a higher quality model, depending on 
the noise level. As shown in Table 9.1, the state space model requires the 
largest number of independent parameters, followed by CVA, and PCA. A 
PCA model of a given order has significantly less independent parameters, 
but does not take into account serial correlations. 

Table 9.1. The number of independent parameters estimated for the various mod­
els and orders 

OrderT Inputs Outputs Parameters Parameters Parameters 
State Spacett pcAftt CVAtttt 

1 11 41 1405 52 104 
11 11 41 2335 517 1089 
21 11 41 3265 882 1974 
31 11 41 4195 1147 2759 
41 11 41 5125 1312 3444 
51 11 41 6055 1377 4029 
61 11 41 6985 - 4514 

t The order is equal to a for PCA and the state order k for the state space model and CVA 
tt The number of parameters is based on (7.36) 
ttt The number of parameters is based on (9.2) 
tttt The number of parameters is based on (9.3), using h = 2 lags 

9.5 Lag and Order Selection 

The number of lags included in the DPCA, DFDA, and CVA process mon­
itoring methods can substantially affect the monitoring performance. It is 
best to choose the number of lags as the minimum needed to accurately cap­
ture the dynamics of the process. Choosing the number of lags larger than 
necessary may significantly decrease the robustness of the process monitor­
ing measures, since the extra dimensionality captures additional noise, which 
may be difficult to characterize with limited data. The procedure used for 
this book follows Larimore's suggestion of selecting the number of lags h as 
that minimizing the small sample AIC criterion using an ARX model (see 
Section 7.5). This ensures that the number of lags is large enough to capture 
all the statistically significant information in the data. 

As described in Part III, the selection of the reduction order is critical 
to developing efficient measures for process monitoring. The order selection 
methods described in Part III will be used. The parallel analysis method 
(see Section 4.3) is applied to select a in PCA and DPCA. The information 
criterion (5.12) is used to determine a for FDA and DFDA. The small sample 
AIC (7.37) is applied to CVA to determine the state order k. 

Although it is popularly referred to in the literature, the cross-validation 
method is not used here for any of the process monitoring methods. Cross-
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validation is computationally expensive when dealing with several large data 
sets. More importantly, there can be problems with cross-validation when 
serial correlations in the data exist [125]. 

9.6 Fault Detection 

The proficiencies of PCA, DPCA, and CVA for detecting faults were investi­
gated on the TEP. The measures applied for each method, the corresponding 
equation numbers, and the distributions used to determine the thresholds for 
the measures are listed in Table 9.2. For instance, the first row indicates that 
PCA is used to generate the T2 statistic according to (4.12) and the threshold 
is calculated according to (4.14). The distribution listed as "TR" means that 
the threshold is set to be the tenth highest value for Fault 0 of the testing set, 
in which the number of observations n = 960. The threshold corresponds to 
a level of significance 0: = 0.01 by considering the probability distribution of 
the statistics for Fault O. A thorough discussion of the measures is available 
in the respective chapters, and more information related to applying these 
measures to the TEP is contained in Section 10.6. 

Table 9.2. The measures employed for fault detection 

Method Basis Equation Distribution 

PCA T2 4.12 4.14 
PCA Q 4.21 4.22 

DPCA T2 4.12t 4.14t 
DPCA Q 4.21t 4.22t 

CVA T2 • 7.41 7.42 
CVA T; 7.43 7.41 
CVA Q 7.46 TRtt 

t Applied to the data matrix with lags 
tt TR _ Threshold set based on testing data for Fault 0 

There exist techniques to increase the sensitivity and robustness of the 
PCA and DPCA process monitoring measures as described in Section 4.8, for 
example, through the use of the CUSUM or EWMA version of the measures. 
However, these techniques compromise the response time of the measures. 
Although such techniques can be highly useful in practice, the process moni­
toring methods applied in Chapter 10 do not employ them because it would 
complicate the comparison of the process monitoring methods. The mea­
sures investigated for each process monitoring method are designed to detect 
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and diagnose the faults with the smallest delay. Applying the CUSUM and 
EWMA versions of PCA and DPCA is left as a homework problem. 

9.7 Fault Identification 

The proficiencies of PCA, DPCA, and CVA for identifying faults were inves­
tigated on the TEP. The measures applied for each method and the corre­
sponding equation numbers are presented in Table 9.3. A discussion on how 
to apply the measures based on PCA, DPCA, and CVA can be found in Sec­
tions 4.5,4.7, and 7.8, respectively. A thorough discussion of the measures is 
available in the respective chapters, and more information related to applying 
these measures to the TEP is contained in Section 10.7. 

Table 9.3. The measures employed for fault identification 

Method Basis Equation 
PCA CO NT 4.25 
PCA RES 4.32 

DPCA CONT 4.25 with 4.44 
DPCA RES 4.32 with 4.44 
eVA UONT 4.25 with 7.22 
CVA RES 4.32 with 7.45 

9.8 Fault Diagnosis 

The proficiencies of the fault diagnosis methods described in Part III were 
investigated on the TEP. Fault diagnosis measures based on discriminant 
analysis that use no dimensionality reduction are given in (3.7). When this 
multivariate statistic (MS) is applied to data with no lags, it will be referred 
to as the TJ statistic. When the multivariate statistic is applied to data with 1 
lag, it will be referred to as the Tf statistic. These are considered in Chapter 
10 to serve as a benchmark for the other measures, as the dimensionality 
should only be reduced if it decreases the misclassification rate for a testing 
set. The fault diagnosis measures and the corresponding equation or section 
numbers are presented in Table 9.4. The statistic(s) which each measure is 
based upon is also listed in the table. A thorough discussion of the measures 
are available in the respective chapters, and more information related to 
applying these measures to the TEP is contained in Section 10.8. 
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Table 9.4. The measures employed for fault diagnosis 

Method Basis 

PCAm T2 
PCA1 T2 
PCAm Q 
PCAm T2 & Q 

DPCAm T2 
DPCAm Q 
DPCAm T2 & Q 

FDA T2 
FDA/PCA1 T2 
FDA/PCA2 T2 

DFDA/DPCA1 T2 

CVA T2 • 
CVA T? r 

CVA Q 

PLS1 -
PLS2 -

PLS1adj -
PLS2adj -

MS T6 
MS Tf 

t Applied to the score space only 

tt Ci = 0.5 and a = 0.01 

Equation/Section 

Equation 4.35t 
Equation 4.33t 
Equation 4.37 

Equation 4.38tt 

Equations 4.35t and 4.44 
Equations 4.37 and 4.44 

Equations 4.38tt and 4.44 

Equation 5.16t 
Equations 5.17t and 5.16 
Equations 5.17t and 5.16 

Equations 5.17t , 5.16, and 4.44 

Equations 4.35 t and 7.41 
Equations 4.35 and 7.43 
Equations 4.37 and 7.46 

Section 6.3 
Section 6.3 
Section 6.4 
Section 6.4 

Equation 3.7 
Equation 3.7 



CHAPTER 10 

RESULTS AND DISCUSSION 

10.1 Introduction 

In this chapter, the process monitoring methods in Part III are compared 
and contrasted through application to the Tennessee Eastman plant simu­
lator (TEP). The proficiencies of the process monitoring statistics listed in 
Tables 9.2-9.4 are investigated for fault detection, identification, and diagno­
sis. The evaluation and comparison of the statistics are based on criteria that 
quantify the process monitoring performance. To illustrate the strengths and 
weaknesses of each statistic, Faults 1, 4, 5, and 11 are selected as specific case 
studies in Sections 10.2, 10.3, 10.4, and 10.5, respectively. Sections 10.6,10.7, 
and 10.8 present and apply the quantitative criteria for evaluating the fault 
detection, identification, and diagnosis statistics, respectively. The ovemll re­
sults of the statistics are evaluated and compared. Results corresponding to 
the case studies are highlighted in boldface in Tables 10.6 to 10.20. 

10.2 Case Study on Fault 1 

In the normal operating condition (Fault 0), Stream 4 in Figure 8.1 contains 
0.485,0.005, and 0.510 mole fraction of A, B, and e, respectively [39J. When 
Fault 1 occurs, a step change is induced in the A/e feed ratio in Stream 4, 
which results in an increase in the e feed and a decrease in the A feed in 
Stream 4. This results in a decrease in the A feed in the recycle Stream 5 and 
a control loop reacts to increase the A feed in Stream 1 (see Figure 10.1). 
These two effects counteract each other over time, which results in a constant 
A feed composition in Stream 6 after enough time (see Figure 10.2). 

The variations the fiowrates and compositions of Stream 6 to the reac­
tor causes variations in the reactor level (see Figure 8.1), which affects the 
fiowrate in Stream 4 through a cascade control loop (see Figure 10.3). The 
fiowrate of Stream 4 eventually settles to a steady state value lower than its 
value at the normal operating conditions. 

Since the ratio of the reactants A and e changes, the distribution of the 
variables associated with material balances (i. e., level, pressure, composition) 
changes correspondingly. Since more than half of the variables monitored de­
viate significantly from their normal operating behavior, this fault is expected 

E. L. Russell et al., Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
© Springer-Verlag London Limited 2000
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to be easily detected. Process monitoring statistics that show poor perfor­
mance on Fault 1 are likely to perform poorly on other faults as well. 
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Fig. 10.1. Comparison of XMEAS(l) for Faults 0 and 1 

The (D)PCA-based and CVA-based statistics for fault detection are 
shown in Figures 10.4 and 10.5, respectively. The dotted line in each figure is 
the threshold for the statistic, the statistic above its threshold indicates that 
a fault is detected (the statistic is shown as a solid line) . The first eight hours 
were operated under normal operating conditions. Thus, all statistics are ex­
pected to fall below the thresholds for the first eight hours, which they did. 
The quantitative fault detection results are shown in Table 10.1. All of the 
statistics produced nearly zero missed detection rates. For a fault that signifi­
cantly changes the distribution of the variables monitored, all fault detection 
statistics perform very well. 

Assuming that process data collected during a fault are represented by a 
previous fault class, the objective of the fault diagnosis statistics in Table 9.4 
is to classify the data to the correct fault class. That is, a highly proficient 
fault diagnosis statistic produces small misclassification rates when applied 
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Fig. 10.2. Comparison of XMEAS(23) for Faults 0 and 1 

Table 10.1. Missed detection rates for Faults 1, 4, 5, and 11 

l''ault 1 4 5 11 
Method Basis 

PCA T2 0.008 0.956 0.775 0.794 
PCA Q 0.003 0.038 0.746 0.356 

DPCA T2 0.006 0.939 0.756 0.801 
DPCA Q 0.005 @] 0.748 10.1931 
CVA T2 0.001 0.688 ro- 0.515 • ro CVA T? @] @] 0.195 r ro CVA Q 0.003 0.975 0.669 
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Fig. 10.3. Comparison of XMEAS(4) for Faults 0 and 1 

to data independent of the training set. As shown in Table 10.2, most of 
the fault diagnosis statistics performed very well (Fault 1 being correctly 
diagnosed > 96% of the time). 

10.3 Case Study on Fault 4 

Fault 4 involves a step change in the reactor cooling water inlet temperature 
(see Figure 8.1). A significant effect of Fault 4 is to induce a step change in the 
reactor cooling water flowrate (see Figure 10.6). When the fault occurs, there 
is a sudden temperature increase in the reactor (see Figure 10.7 at time = 8 
hr), which is compensated by the control loops. The other 50 measurement 
and manipulated variables remain steady after the fault occurs; the mean 
and standard deviation of each variable differ less than 2% between Fault 
4 and the normal operating condition. This makes the fault detection and 
diagnosis tasks more challenging than for Fault 1. 
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Table 10.2. The overall misclassification rates for Faults 1, 4, 5, and 11 

Fault 1 4 5 11 
Method Basis 

PCAm T2 0.680 0.810 0.956 0.989 
PCA1 T2 0.024 0.163 0.021 0.234 
PCAm Q 0.028 0.951 0.913 0.859 
PCAm T2&Q 0.041 1.000 0.973 0.968 

DPCAm T2 0.880 0.720 0.874 0.948 
DPCAm Q 0.035 0.964 0.856 0.843 
DPCAm T2&Q 0.038 1.000 1.000 0.983 

PLS1 -
1
0.013

1 
0.170 10.0061 0.989 

PLS2 - 0.013 10.1191 0.008 0.979 
PLS1adj - 0.019 0.364 0.044 0.859 
PLS2aci,l - 0.019 0.320 0.043 0.886 

CVA T.2 • 0.028 0.981 0.061 0.904 
CVA T~ 0.026 0.358 0.040 0.139 
CVA Q 0.245 0.890 0.174 0.901 

FDA T2 0.025 0.176 0.020 0.245 
FDA/PCA1 T2 0.024 0.163 0.020 0.244 
FDA/PCA2 T2 0.025 0.176 0.020 0.245 

DFDA/DPCA1 T2 0.026 0.159 0.023 ro.usl 
MS T~ 0.025 0.178 0.020 0.245 
MS Tf 0.035 0.427 0.040 0.121 

The extent to which the (D)PCA-based and CVA-based statistics are sen­
sitive to Fault 4 can be examined in Figure 10.8 and Figure 10.9 respectively. 
The quantitative fault detection results are shown in Table 10.1. The vari­
ation in the residual space was captured by T;, but not by the CVA-based 
Q statistic. The potential advantage of applying T; to capture variation in 
the residual space is clearly shown. It is interesting to see that the PCA and 
DPCA-based Q statistics were able to detect Fault 4, but the CVA-based Q 
statistic did not. The CVA-based T; statistic passes the threshold much of 
time after the fault occurs, but does not have the persistence of the CVA­
based T; statistic (see Figure 10.9). Although the PCA and DPCA-based 
Q statistics both are able to detect the fault, the DPCA-based Q statistic 
outperformed the PCA-based statistic in terms of exceeding the threshold 
by a greater degree. This indicates the potential advantage of taking serial 
correlation into account when developing fault detection procedures. 

For this fault the PCA and DPCA-based Q statistics were more sensi­
tive than the PCA and DPCA-based T2 statistics, and the CVA-based T; 
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Fig. 10.4. The (D)PCA multivariate statistics for fault detection for Fault 1 

statistic was more sensitive than the eVA-based T; statistic (see Table 10.1). 
These statistics quantifying variations in the residual space were overall more 
sensitive to Fault 4 than the statistics quantifying the variations in the score 
or state space. In other words, the fault created new states in the process 
rather than magnifying the states based on in-control operations. Although 
this conclusion does not hold for all faults, it certainly is true for a large 
portion of them. 

Recall that Fault 4 is associated with a step change in the reactor cooling 
water inlet temperature (see Table 8.4), which is unmeasured. Engineering 
judgment and an examination of Figure 8.1 and Tables 8.1-8.3 indicate that 
the most closely related observation variable is the reactor cooling water 
flowrate . The fault identification statistics in Table 9.3 provide a rank or­
dering of the observation variables from most relevant to least relevant in 
terms of being associated with the fault . For Fault 4, the third column of 
Table 10.3 lists where the reactor cooling water flowrate was ranked by the 
various fault identification methods. All of the methods correctly ranked the 
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Fig. 10.5. The CVA multivariate statistics for fault detection for Fault 1 

reactor cooling water fiowrate as most closely related to Fault 4 except for 
the eVA-based CONT statistic. 

Table 10.3. The overall rankings for Faults 4 and 11 

PCA 
DPCA 
DPCA 
CVA 
CVA 

t 4 11 
Basis 
Til 

RES 1 1 
CONT 1 1 
RES 1 1 

CONT 11 13 
RES 1 1 

The eVA-based CONT statistic did not perform well because the inverse 
of the matrix Epp in (7.40) allowed certain observation variables to dominate 
the statistic. In particular, the maximum values of the Jk matrix correspond­
ing to the observation variables XI2, XIS , X17, X48, X49, and XS2 are above 50 
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while the elements of J k corresponding to all the other variables are less than 
3 (see Figure 1O.1O). The dominance of the observation variables X12, XIS, X17, 

X48, X49, and XS2 in Jk was observed for all of the other faults investigated 
as well. 

For fault diagnosis, many of the statistics performed poorly for Fault 4 
(see Table 1O.2). PLS2 gave the lowest misclassification rates. This indicates 
that discriminant PLS can outperform FDA for some faults although it would 
be expected theoretically that FDA should be better in most cases. PLSI had 
a similar misclassification rate as all the FDA-based statistics, PCAI, and 
MS TJ. PLSI and PLS2 gave significantly lower misclassification rates than 
PLSladj and PLS2adj. This makes the point that the adjustment procedure 
described in Section 6.4 does not always improve fault diagnosis. 

DFDA/DPCAI produced similar misclassification rates as the static FDA 
methods. However, including lagged variables actually degraded the perfor­
mance of the MS statistic. 
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Fig. 10.7. Comparison of XMEAS(9) for Faults 0 and 4 

10.4 Case Study on Fault 5 

Fault 5 involves a step change in the condenser cooling water inlet temper­
ature (see Figure 8.1). The significant effect of the fault is to induce a step 
change in the condenser cooling water fiowrate (see Figure 10.11). When the 
fault occurs, the fiowrate of the outlet stream from the condenser to the 
vapor/liquid separator also increases, which results in an increase in tem­
perature in the vapor/liquid separator, and thus the separator cooling water 
outlet temperature (see Figure 10.12). Similar to Fault 4, the control loops 
are able to compensate for the change and the temperature in the separator 
returns to its setpoint. The time it takes to reach the steady state is about 
10 hours. For the rest of the 50 variables that are being monitored, 32 vari­
ables have similar transients that settle in about 10 hours. Detecting and 
diagnosing such a fault should not be a challenging task. 

The (D)PCA-based and CVA-based statistics for fault detection are 
shown in Figures 10.13 and 10.14, respectively. The quantitative fault detec­
tion results are shown in Table 10.1, where it is seen that the (D)PCA-based 
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Fig. 10.8. The (D)PCA multivariate statistics for fault detection for Fault 4 

statistics had a high missed detection rate, and all the CVA statistics had a 
zero missed detection rate. The reason for the apparent poor behavior of the 
(D)PCA-based statistics is clear from plotting the observation variables over 
time. Most variables behaved similarly to Figure 10.12-they returned to 
their setpoints 10 hours after the fault occurred. The (D)PCA-based statis­
tics fail to indicate a fault 10 hours after the fault occurs (see Figure 10.13). 
On the other hand, all the CVA statistics stayed above their thresholds (see 
Figure 10.14). 

The persistence of a fault detection statistic (the CVA statistic in this 
case) is important in practice. At any given time a plant operator has several 
simultaneous tasks to perform and typically does not focus on all tasks with 
the same degree of attentiveness. Also, it usually takes a certain amount 
of time to track down the cause of abnormal process operation. When the 
time to locate the source of a fault is longer than the persistence of the 
fault detection statistic, a plant operator may conclude that the fault has 
"corrected itself" and assume that the process is again operating in normal 
operating conditions. In contrast, a persistent fault detection statistic will 
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Fig. 10.9. The CVA multivariate statistics for fault detection for Fault 4 

continue to inform the operator of a process abnormality although all the 
process variables will appear to have returned to their normal values. 

It is somewhat interesting that examination of the canonical variables 
(JPt) for Fault 5 reveals that the canonical variable corresponding to the 
99th generalized singular value is solely responsible for the out-of-control T; 
values between 10-40 hours after the fault occurred. 

10.5 Case Study on Fault 11 

Similar to Fault 4, Fault 11 induces a fault in the reactor cooling water 
inlet temperature. The fault in this case is a random variation. As seen in 
Figure 10.15, the fault induces large oscillations in the reactor cooling water 
flowrate, which results in a fluctuation of reactor temperature (see Figure 
10.16). The other 50 variables are able to remain around the setpoints and 
behave similarly as in the normal operating conditions. 

The extent to which the (D)PCA-based and CVA-based statistics are 
sensitive to Fault 11 can be examined in Figure 10.17 and Figure 10.18, 
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Fig. 10.10. The average contribution plot for Fault 4 for the eVA-based CO NT 

respectively. The quantitative fault detection results are shown in Table 10.1. 
The {D)PCA-based Q statistics performed better than the {D)PCA-based T2 
statistics. Similarly to Fault 4, the variation in residual space was captured 
better by T; than the CVA-based Q statistic. Overall, the DPCA-based Q 
statistic gave the lowest missed detection rate (see Table 10.1). 

As Fault 11 and Fault 4 affect the same process variable, the fault was 
expected to influence the reactor cooling water flow the most. Similarly to 
Fault 4, the CVA-based RES and the {D)PCA-based statistics gave superior 
results, in terms of correctly identifying the reactor cooling water flow as the 
variable responsible for this fault (see Table 10.3). The improper dominance of 
the observation variables X12, X15, X17, X48, X49, and X52 was again responsible 
for the poor performance of the CVA-based RES (see Figure 10.19). 

Some fault diagnosis techniques more easily diagnosed Fault 4 while others 
did better diagnosing Fault 11 (see Table 10.2). The lowest misclassification 
rates were provided by the MS Tf, DFDA/DPCA1 T2, and CVA T; statistics, 
all of which take serial correlation into account. It is interesting that 'dynamic' 
versions of PCA which are designed to take serial correlation into account did 
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Fig. 10.11. Comparison of XMV(ll) for Faults 0 and 5 

not provide significantly improved fault diagnosis over their static versions 
for Fault 11. 

10.6 Fault Detection 

The objectives of a fault detection statistic are to be robust to data inde­
pendent of the training set, sensitive to all the possible faults of the process, 
and prompt to the detection of the faults . The robustness of each statistic 
in Table 9.2 is determined by calculating the false alarm rate for the normal 
operating condition of the testing set and comparing it against the level of 
significance upon which the threshold is based. The sensitivity of the statis­
tics is quantified by calculating the missed detection rates for Faults 1-21 of 
the testing set. The promptness of the statistics is based on the detection 
delays for Faults 1-21 of the testing set. 

Prior to applying each of the statistics to the testing set, the parameter 
values associated with each statistic need to be specified. The orders deter-
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Fig. 10.12. Comparison of XMEAS(22) for Faults 0 and 5 

mined for PCA, DPCA, PLS, and CVA and the number of lags h determined 
for DPCA and CVA are listed in Table 10.4. The orders and the number of 
lags were determined by applying the procedures described in Section 9.5 to 
the pretreated data for the normal operating condition of the training set. 

The probability distributions used to determine the threshold for each 
statistic are listed in Table 9.2. Using a level of significance a = 0.01, the 
false alarm rates of the training and testing sets were computed and tabu­
lated in Table 10.5. The false alarm rates for the PCA and DPCA-based T2 
statistics are comparable in magnitude to a = 0.01. The CVA-based statis­
tics and the DPCA-based Q statistic resulted in relatively high false alarm 
rates for the testing set compared to the other multivariate statistics. The 
lack of robustness for T; and T; can be explained by the inversion of Epp 
in (7.40). The high false alarm rate for the DPCA-based Q statistic may be 
due to a violation of the assumptions used to derive the threshold (4.22) (see 
Homework Problem 12 for a further exploration of this issue). 

It would not be fair to directly compare the fault detection statistics in 
terms of missed detection rates when they have such widely varying false 
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Fig. 10.13. The (D)PCA multivariate statistics for fault detection for Fault 5 

Table 10.5. False alarm rates for the training and testing sets 

-Yethod Measures Training --set Testing Set 

PCA T2 0.002 0.014 
PCA Q 0.004 0.016 

DPCA T2 0.002 0.006 
DPCA Q 0.004 0.281 

CVA T? • 0.027 0.083 
CVA T? r 0 0.126 
CVA Q 0.009 0.087 
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Fig. 10.14. The eVA multivariate statistics for fault detection for Fault 5 

alarm rates. In computing the missed detection rates for Faults 1-21 of the 
testing set, the threshold for each statistic was adjusted to the tenth high­
est value for the normal operating condition of the testing set. The adjusted 
thresholds correspond to a level of significance Q = 0.01 by considering the 
probability distributions of the statistics for the normal operating condition. 
For statistics which showed low false alarm rates, the adjustment only shifted 
the thresholds slightly. For each statistic which showed a high false alarm 
rate, the adjustment increased the threshold by approximately 50%. Numer­
ous simulation runs for the normal operating conditions confirmed that the 
adjusted thresholds indeed corresponded to a level of significance Q = 0.0l. 
It was felt that this adjustment of thresholds provides a fairer basis for the 
comparison of the sensitivities of the statistics. For each statistic, the missed 
detection rates for all 21 faults were computed and tabulated in Table 10.6. 

The missed detection rates for Faults 3, 9, and 15 are very high for all the 
fault detection statistics. No observable change in the mean or the variance 
can be detected by visually comparing the plots of each observation variable 
associated with Faults 3, 9, and 15 to the plots associated with the normal 
operating condition (Fault 0) . It is conjectured that any statistic will result 
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Fig. 10.15. Comparison of XMV(IO) for Faults 0 and 11 

in high missed detection rates for those faults, in other words, Faults 3, 9, 
and 15 are unobservable from the data. Including the missed detection rates 
for these faults would skew the comparison of the statistics, and therefore 
these faults are not analyzed when comparing the overall performance of the 
statistics. 

The minimum missed detection rate achieved for each fault except Faults 
3, 9, and 15 is contained in a box in Table 10.6. The T; statistic with the 
threshold rescaled as described above had the lowest missed detection rate 
except for the unobservable Faults 3 and 9. The conclusion that the T; statis­
tic with a scaled threshold will always give lower missed detection rates than 
the other statistics would be incorrect, since another method may be better 
for a different amount of data or a different process. In particular, a fault that 
does not affect the states in the T; statistic will be invisible to this statistic. 
Since many of the statistics have comparable missed detection rates for many 
of the faults, it seems to have an advantage to incorporate the T; statistics 
with other statistics for fault detection. 
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Fig. 10.16. Comparison of XMEAS(9) for Faults 0 and 11 

The eVA-based Q statistic gave similar missed detection rates as the T; 
statistic for some faults, but performed more poorly for others. Other results, 
not shown here for brevity, showed that a slight shift in the lag order h or 
state order k can result in a large variation of the eVA-based Q statistic. 
Tweaking these parameters may improve the eVA-based Q statistic enough 
to give fault detection performance more similar to the T; statistic. 

The number of minimums achieved with the residual-based statistics is 
far more than the number of minimums achieved with state or score-based 
statistics. Residual-based multivariate statistics tended to be more sensitive 
to the faults of the TEP than the state or score-based statistics. The better 
performance of residual-based statistics supports the claims in the literature, 
based on either theoretical analysis [230] or case studies [125], that residual­
based statistics tend to be more sensitive to faults. A comparison of all the 
fault detection statistics revealed that the residual-based T; statistic was 
overall the most sensitive to the faults of the TEP. However, the T; statistic 
was found not to be very robust compared to most of the other statistics, due 
to the inversion of the matrix Epp in (7.40). Also, recall that the threshold 
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Fig. 10.11. The (D)PCA multivariate statistics for fault detection for Fault 11 

used here was rescaled based on the testing set to give a false alarm rate of 
0.01, as described in Section 10.6. The behavior of the T; statistic with the 
threshold (7.44) can give large false alarm rates, as was discussed earlier. 

On average, the DPCA-based statistics were somewhat more sensitive 
to the faults than the PCA-based statistics, although the overall difference 
was not very large. The high false alarm rates found for the DPCA-based Q 
statistic (see Table 10.5) indicate that the threshold (4.22) may need to be 
rescaled based on an additional set of data as was done here. 

Most statistics performed well for the faults that affect a significant num­
ber of observation variables (Faults 1, 2, 6, 7, 8, 14, and 18). In these cases, 
most variables deviated significantly from their distribution in the normal op­
erating conditions. The other faults had a limited number of the observation 
variables deviate from their distribution in the normal operating conditions. 
Detecting such faults is relatively more challenging. 

Since false alarms are inevitable, it is often difficult to determine whether 
the out-of-control value of a statistic is the result of a fault or of a false 
alarm. In order to decrease the rate of false alarms, it is common to show an 
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Fig. 10.18. The eVA multivariate statistics for fault detection for Fault 11 

alarm only when several consecutive values of a statistic have exceeded the 
threshold. In computing the detection delays for the statistics in Table 10.7, 
a fault is indicated only when six consecutive measure values have exceeded 
the threshold, and the detection delay is recorded as the first time instant 
in which the threshold was exceeded. Assuming independent observations 
and a = 0.01, this corresponds to a false alarm rate of 0.016 = 1 X 10-12• 

The det~ction delays for all 21 faults listed in Table 10.7 were obtained by 
applying the same thresholds as used to determine the missed detection rates. 

For the multivariate statistics, a close examination of Tables 10.6 and 10.7 
reveals that the statistics exhibiting small detection delays tend to exhibit 
small missed detection rates and vice versa. Since the detection delay results 
correlate well with the missed detection rate results, all of the conclusions for 
missed detection rates apply here. 
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Fig. 10.19. The average contribution plot for Fault 11 for the eVA-based CONT 

10.7 Fault Identification 

The objective of a fault identification statistic is to identify the observation 
variable(s) most closely related to the fault. The challenge in developing a 
good criterion for comparing the different statistics is choosing which obser­
vation variable(s) is most relevant to diagnosing the fault. This, of course, 
depends on the knowledge and expertise of the plant operators and engineers. 
The only faults investigated here for fault identification are those in which 
a direct and clear link between the fault and an observation variable could 
be determined. The faults investigated in this section for fault identification 
and the observation variables directly related to each fault are listed in Table 
10.8. The ranking of these observation variables for each fault is the criterion 
used to compare the different statistics listed in Table 9.3. 

The statistics investigated in this section are listed in Table 9.3, and the 
parameter values associated with the statistics are listed in Table 10.4. The 
rankings of the observation variables listed in Table 10.8 for each statistic 
and fault are contained in Tables 10.9, 10.10, and 10.11. These tables list the 
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Table 10.6. Missed detection rates for the testing set 

Fault PCA PCA DPCA DPCA C~A Cy'A CVA 
T2 Q T2 Q T. T: Q 

1 0.008 0.003 0.006 0.005 0.001 

~ 
0.003 

2 0.020 0.014 0.019 0.015 0.011 0.026 
3 0.998 0.991 0.991 0.990 0.981 0.986 0.985 
4 0.956 0.038 0.939 @] 0.688 "0 0.915 

~ 
,..-

~ 5 0.115 0.146 0.158 0.148 0 

6 0.011 ~ 
0.013 

~ 
roo r-

7 0.085 0.159 0.386 0 0.486 

8 0.034 0.024 0.028 0.025 0.021 Om.6 0.486 
9 0.994 0.981 0.995 0.994 0.986 0.993 0.993 

10 0.666 0.659 0.580 0.665 0.166 10.0991 0.599 

11 0.194 0.356 0.801 10•193 1 0.515 0.195 0.669 

12 0.029 0.025 0.010 0.024 [QJ IO~1 
0.021 

13 0.060 0.045 0.049 0.049 0.047 0.055 
14 0.158 [QJ 0.061 [QJ [QJ 0.122 
15 0.988 0.973 0.964 0.976 0.928 0.903 0.979 
16 0.834 0.755 0.783 0.708 0.166 "'Q.084 0.429 -17 0.259 0.108 0.240 0.053 0.104 0.024 0.138 
18 0.113 0.101 0.111 0.100 0.094 Q.o92 0.102 ----19 0.996 0.873 0.993 0.735 0.849 0.019 0.923 

20 0.701 0.550 0.644 0.490 0.248 D.087 0.354 
21 0.736 0.570 0.644 0.558 0.440 0T42 0.547 

rankings for the average statistic values over the time periods 0-5 hours, 5-24 
hours, and 24-40 hours, after the fault occurred. A ranking of 1 in the tables 
indicates that the observation variable listed in Table 10.8 had the largest 
average statistic value, and a ranking of 52 indicates that the observation 
variable listed in Table 10.8 had the smallest average statistic value. The 
best ranking for each fault is contained in a box. The results are divided 
into three tables because it is useful to analyze how the proficiencies of the 
statistics change with time. It is best to properly identify the fault as soon as 
it occurs, and therefore the results during the time period 0-5 hours after the 
fault are tabulated separately. The results for the time period between 5-24 
and 24-40 hours after the fault occurred were tabulated separately, because 
this is useful in determining the robustness of the statistics. 

As shown in Tables 10.9-10.11, the (D)PCA-based CO NT performed well. 
The better performance of the (D)PCA-based CONT to the (D)PCA-based 
RES suggests that the abstraction of structure provided by PCA was even 
more critical to fault identification than fault detection. For the faults where 
fault propagation occurred, the performance of the data-driven statistics de-
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Table 10.7. Detection delays (minutes) for the testing set 

Fault PCA PCA DPCA DPCA CVA CVA CVA 
T2 Q T2 Q T; T? r Q 

1 21 9 18 15 ~ 9 ~ 
2 51 ~ 48 39 39 45 75 
3 - - - - - - -
4 - 9 453 [!] 1386 [!] -

5 48 3 6 6 3 3 

~ 6 30 3 33 3 3 3 

7 3 3 3 3 3 3 

8 69 ~ 69 63 ~ ~ 63 
9 - - - - - - -

10 288 147 303 150 75 ~ 132 

11 912 33 585 @J 876 33 81 

12 66 24 9 24 6 6 @] 
13 147 

'ill' 
135 120 126 117 129 

14 12 18 [!J 6 [!J [!J 
15 - 2220 - - 2031 - -
16 936 591 597 588 42 27 33 

17 87 75 84 72 81 ~ 69 

18 279 252 279 252 249 (237: 252 

19 - - - 246 - 33 -
20 261 261 267 252 246 ['198' 216 

21 1689 855 1566 858 r8i9l 1533 906 

Table 10.8. The variables assumed to be most closely related to each disturbance 

Fault Process Variable Data Variable Variable Description 
2 XMV,~6). X47 Purge Valve (Stream ~) 
4 XMV(lO) X51 Reactor Cooling Water Flow 
5 XMEAS(22) X22 Sep. Cooling Water Outlet Temp 
6 XMV(3) X44 A Feed Flow (Stream 1) 
11 XMV(lO) X51 Reactor Cooling Water Flow 
12 XMEAS(22) X22 Sep. Cooling Water Outlet Temp 
14 XMV(lO) X51 Reactor Cooling Water Flow 
21 XMV(4) X45 A, B, and C Feed Flow (Stream 4) 
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Table 10.9. The rankings for the time period 0-5 hours after the fault occurred 

Fau t 

2 4 5 10 
4 1 [!] ~ 

10 
5 12 21 11 15 17 
6 

~ 
6 3 2 6 6 

11 [!] 

~ 
[!] 10 [!] 

12 6 3 10 14 
14 2 2 2 11 [I] 
21 52 40 48 48 52 52 

Table 10.10. The rankings for the time period 5-24 hours after the fault occurred 

Fault PCA PCA DPCA DPCA CVA CVA 
CONT RES CONT RES CONT RES 

2 ffi 5 

ffi 
7 10 3 

4 [!] [!] 12 [!] 
5 31 34 30 31 [ill 14 
6 5 52 8 45 8 ffi 11 rn [!] 

~ 
[!] 13 

12 12 3 13 24 
14 2 2 2 10 [I] 
21 52 46 51 51 52 52 

Table 10.11. The rankings for the time period 24-40 hours after the fault occurred 

Fault PCA PCA DPCA DPCA CVA CVA 
CONT RES CONT RES CONT RES 

2 2 5 3 12 10 4 - [!] [!] [!] [!] 4 1 11 -5 !. 35 14 30 16 16 
6 7 51 11 45 [I] 3 

11 [!] [!] 

~ 
[!] 13 [!] 

12 10 21 36 17 26 
14 2 2 2 11 [I] 
21 52 48 52 52 52 50 
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teriorated as the effect of the fault evolved. Robustness may be achieved by 
applying model-based fault identification statistics that are able to take into 
account the propagation of the fault (see Chapter 11). 

All fault identification statistics performed poorly for Fault 21 (see Tables 
10.9-10.11). The AlBIC feed How valve for Stream 4 was fixed at the steady 
state position (see Figure 8.1). The valve was stuck, indicating that the sig­
nals from this valve were constant, which corresponds to zero variance. The 
RES and CONT-based statistics had great difficulty identifying the AlBIC 
feed How as the variable associated with the fault because these statistics are 
designed to detect positive shift in variance only. This illustrates the impor­
tance in such cases of implementing statistics such as Equation 4.29 which 
can detect a negative shift in variance. This type of statistic implemented in 
the appropriate manner would have detected Fault 21 rather easily. In gen­
eral it is suggested that such a statistic should be applied to each process 
variable, with the a level set to keep the false alarm rate low. 

The performance of a fault identification statistic can significantly de­
teriorate over time for faults whose effects on the process variables change 
over time. For instance, the effect of Fault 12 propagates over the interval 5 
to 40 hours after the fault occurred. As a result, there is only one statistic 
producing a ranking below 10 in Table 10.11 while all but one statistic pro­
duced a ranking at or above 10 in Table 10.9. For Fault 6, the performance of 
the (D)PCA-based fault identification statistics substantially degraded over 
time, while the performance of the CVA-based statistics actually improved. 

10.8 Fault Diagnosis 

Assuming that process data collected during a fault are represented by a 
previous fault class, the objective of the fault diagnosis statistics in Table 9.4 
is to classify the data to the correct fault class. That is, a highly proficient 
fault diagnosis statistic produces small misclassification rates when applied to 
data independent of the training set. Such a statistic usually has an accurate 
representation of each class, more importantly such a statistic separates each 
class from the others very well. Recall that all the methods listed in Table 
9.4 are based on supervised classification. For the discriminant PLS, PCA1, 
MS, and FDA methods, one model is built for all fault classes. For the other 
methods listed in Table 9.4, a separate model is built for each fault class. The 
proficiencies of the statistics in Table 9.4 are investigated in this section based 
on the misclassification rates for Faults 1-21 of the testing set. The parameters 
for each statistic were determined from Faults 1-21 of the training set. The 
lags and orders associated with the statistics are listed in Table 10.4. 

The overall misclassification rate for each statistic when applied to Faults 
1-21 of the testing set is listed in Table 10.12. For each statistic, the mis­
classification rates for all 21 faults were computed and tabulated in Tables 
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10.13-10.20. The minimum misclassification rate achieved for each fault ex­
cept Faults 3, 9, and 15 is contained in a box. 

Table 10.12. The overall misclassification rates 

Method Basis Misclassification 
Rate 

PCAm T2 0.742 
PCA1 T2 0.212 
PCAm Q 0.609 
PCAm T2 & Q 0.667 

DPCAm T2 0.724 
DPCAm Q 0.583 
DPCAm T2 &Q 0.662 

PLS1 - 0.565 
PLS2 - 0.567 

PLS1adj - 0.576 
PLS2a di - 0.574 

CVA T.2 • 0.501 
CVA T.2 

r 0.213 
CVA Q 0.621 

FDA T2 0.195 
FDA/PCA1 T2 0.206 
FDA/PCA2 T2 0.195 

DFDA/DPCA1 T2 0.192 

MS T~ 0.214 
MS Tf 0.208 

When applying the fault diagnosis statistics, it was assumed that the a 
priori probability for each class i was equal to P(Wi) = l/p where p = 21 
is the number of fault classes. DFDA/DPCA1 produced the lowest overall 
misclassification rate (0.192), followed by the rest of the FDA-based meth­
ods, as shown in Table 10.12. The CVA-based T;, PCA1, and MS statistics 
produced comparable overall misclassification rates. 

To compare the FDA/PCA1 and FDA/PCA2 methods for diagnosing 
faults, the overall misclassification rates for the training and testing sets and 
the information criterion (5.12) are plotted for various orders using FDA, 
FDA/PCA1, and FDA/PCA2 (see Figures 10.20, 10.21, and 10.22), respec­
tively. The overall misclassification rates for the testing set using FDA/PCA1 
and FDA/PCA2 was lower than that of the FDA for most orders a ~ p. The 
performance of FDA/PC Al and FDA/PCA2 was very similar, indicating that 
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Fig. 10.20. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using FDA 

using PCA1 to rank the m - p + 1 eigenvectors corresponding to the zero 
eigenvalues in FDA is a reasonable approach. A close comparison of Figures 
10.21 and 10.22 indicates that for 20 ~ a ~ 48, the overall misclassification 
rate for the testing set using FDA/PCA1 is lower than FDA/PCA2. Because 
of this advantage of using FDA/PCA1 over FDA for this problem, lag vari­
ables will be included only on the data for FDA/PCA1 when investigating 
the proficiency of the methods for removing serial correlations of the data. 

To evaluate the potential advantage of including lagged variables in 
FDA/PCA1 to capture correlations, the overall misclassification rates for the 
training and testing sets and the information criterion (5.12) are plotted for 
various orders using FDA/PCA1 and DFDA/DPCA1 (see Figures 10.21 and 
10.23), respectively. FDA/PCA1 and DFDA/DPCA1 select excellent vectors 
for projecting to a lower dimensional space for small a. Figures 10.21 and 
10.23 show that most of the separation between the fault classes occurs in 
the space provided by the first 13 generalized eigenvectors. The misclassifi­
cation rate with a = 13 for FDA/PCA1 is 0.33 and DFDA/DPCA1 is 0.34. 
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Fig. 10.21. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using FDA/PCA1 

The FDA/PCA and DFDA/DPCA1-based statistics were able to separate 
the fault classes well for the space spanned by the first p - 1 generalized 
eigenvectors. The proficiency was slightly increased as the dimensionality 
was increased further for FDA/PCA1 and DFDA/DPCAl. DFDA/DPCA1 
produced the lowest overall misclassification rate among all of the fault di­
agnosis methods investigated in this chapter. Including lagged variables in 
FDA/PCA1 can give better fault diagnosis performance. The advantage be­
comes especially clear when DFDA/DPCA1 is applied to a system with a 
short sampling time (see Homework Problem 11). 

The information criterion performed relatively well, as the slope of the 
misclassification rate of the testing set is fairly equivalent to the slope of the 
information criterion for a = 15 to 50 in Figures 10.20-10.23. The AIC cap­
tures the shape and slope of the misclassification rate curve for the testing 
data. The AIC weighs the prediction error term and the model complexity 
term fairly. If one desires to have a lower dimensional FDA model for diag-
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Fig. 10.22. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using FDAjPCA2 

nosing faults, the model complexity term can be weighed more heavily (see 
Homework Problem 5). 

Figure 10.24 plots the overall misclassification rates for the training and 
testing sets and the information criterion (5.12) for various orders using PLSI 
and PLS2. The reduction order c is the point at which the information crite­
rion is minimized. The reduction order for each class in PLSI is Cl = 13 and 
the reduction order for PLS2 C2 = 45. In general, the overall misclassification 
rate of PLSI is lower than that of PLS2 for a fixed order, especially when 
a < Cl. Also, the performance of PLSI is less sensitive to order selection than 
PLS2. The misclassification rate on average is the same for the best reduction 
orders for PLSI and PLS2, as shown in Table 10.12. 

Figure 10.25 plots the overall misclassification rates for the training and 
testing sets and the information criterion (5.12) for various orders using 
PLSladj and PLS2adj. Figures 10.24 and 10.25 show similar trends. Regard­
less of order selected, PLSladj performs better than PLS2adj in terms of lower 
overall misclassification rates. The reduction orders that minimize the AIC 
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Fig. 10.23. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using DFDAjDPCAl 

(5.12) for PLSladj and PLS2adj are 16 and 41 respectively, which are close 
to the orders for PLSI and PLS2 (Cl and C2), respectively. In terms of over­
all misclassification rates, PLSladj and PLS2adj have similar performance to 
PLSI and PLS2, respectively. For a fixed model order, the PLSI methods 
almost always gave better fault diagnosis than the PLS2 methods. The per­
formance of the PLSI methods was also less sensitive to order selection than 
the PLS2 methods, and with the Ale resulting in lower model orders (see 
Table 10.4). 

The information criterion worked fairly well for all discriminant PLS 
methods. The overall misclassification rate for the testing set with the re­
duction order using the information criterion for PLSladj is 0.58 while that 
for the other three PLS methods is 0.57. The minimum overall misclassifica­
tion rate for the testing set is 0.56 for PLSladj and PLS2adj and 0.55 for PLSI 
and PLS2. The Ale curves (see Figures 10.24 and 10.25) nearly overlap the 
misclassification rate curves for PLS2 and adjusted PLS2, which indicates 
that the Ale will give similar model orders as cross-validation in these cases. 
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Fig. 10.24. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using PLSI and PLS2 

For PLSI and adjusted PLS1, the AIC does not overlap with the classification 
rate curves, but does have a minimum at approximately the same order as 
where the misclassification rate curves for the testing data flatten out. This 
indicates that the AIC provided good model orders for the PLSI methods. 

Figure 10.26 plots the overall standard deviation of misclassification rates 
for the training and testing sets for various orders using PLS1, PLS2, PLSladj, 

and PLS2adj. The standard deviations for PLSladj and PLS2adj were 10-25% 
lower than that of PLSI and PLS2 (respectively) for most orders. This indi­
cates that PLSladj and PLS2adj provided a more consistent prediction quality 
than PLSI and PLS2. For example, 7 of 21 classes had misclassification rates 
between 0.90 to 1.00 using PLSI and PLS2, respectively (see Table 10.14). 
However, only 2 of 21 classes were between 0.90 and 1.00 using PLSla dj 

and PLS2adj and the highest misclassification rate was 0.93. This also means 
that when PLSI and PLS2 produced low misclassification rates, PLSladj 

and PLS2adj tended to produce higher misclassification rates. There was an 
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Fig. 10.25. The overall misclassification rates for the training and testing sets and 
the information criterion (Ale) for various orders using PLS1a dj and PLS2adj 

advantage to apply PLSla dj and PLS2adj when PLSI and PLS2 performed 
poorly. 

Although PLSI was able to capture a large amount of variance using 
only a few factors, it does require more computation time. Recall that in the 
calibration steps, PLSI needs to run the NIPALS p times whereas PLS2 only 
needs to run the NIPALS one time, and that NIPALS runs from (6.10) to 
(6.20) for each PLS component. Since iteration from (6.10) to (6.13) is needed 
for PLS2, NIPALS requires a longer computation time in PLS2. Assume that 
it takes tl computation time to run from (6.22) to (6.27) for PLS1, and that 
it takes PLS2 tl + f computation time. The total computation time ttrain 

in the calibration steps is equal to patl and a(tl + f) for PLSI and PLS2, 
respectively, where a = min(m, n). In the prediction steps, assume it takes 
t2 computation time unit to run from (6.30) to (6.32), and that the total 
computation time ttest in the prediction step is equal to PCl t 2 and C2t2 for 
PLSI and PLS2, respectively. The ratio rt of the total computation time 
between PLSI and PLS2 is 
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Fig. 10.26. The standard deviation of misclassification rates for the testing set for 
various orders using PLS1, PLS2, PLS1a dj, and PLS2adj 

(10.1) 

This ratio is much greater than 1 when p is large. 
The overall misclassification rates for the training and testing sets and 

the information criterion (5.12) for various orders using peAl are plotted in 
Figure 10.27. At a = 52, the overall misclassification rates for the T2 statistics 
based on peAl and MS were the same (0.214). This verifies the discussion 
in Section 4.6 that peAl reduces to MS when a = m. Regardless of order 
selected, all FDA methods always gave a lower overall misclassification rate 
than peAl (see Figure 10.20, 10.21, and 10.27). This suggests that FDA 
model has an advantage over peA model for diagnosing faults. 

It is interesting to see that when all of the factors are included in the 
FDA methods, the overall misclassification rates were about 0.20, which were 
different than the overall misclassification rate produced by MS. This is be­
cause, when a = m, the matrices Wa in (5.16) and Wmix,a in (5.17) are not 
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necessarily orthogonal, and so may not project the data into an orthogonal 
space. 

PCAl 
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Fig. 10.27. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using PCA1 

The PCAm-based and DPCAm-based statistics produced high overall 
misclassification rates (see Table 10.12). A weakness of the PCAm-based 
statistics is that PCAm reduces the dimensionality of each class by using the 
information in only one class but not the information from all the classes. As 
shown in Tables 10.13, the T2 statistic based on PCA1 gave a much lower 
misclassification rate than the statistic based on PCAm for almost all faults. 

Now let us consider the PCA, DPCA, and CVA fault diagnosis statistics, 
all of which separate the dimensionality into a state or score space, and a 
residual space. For some faults the state or score space version of the statistic 
gave lower misclassification rates; in other cases the residual space statistics 
gave lower misclassification rates. Hence, a complete fault diagnosis approach 
should contain score/state space and residual statistics. 
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The misclassification rates for the 21 faults were separated into three 
time periods after the occurrence of the fault (0-5, 5-24, and 24-40 hours), 
and have been tabulated in Tables 10.15 to 10.20. These tables indicate that 
each fault diagnosis statistic gives the lowest misclassification rate for some 
choice of fault and time period. There is no single fault diagnosis statistic 
that is optimal for all faults or all time periods. 

Fault 6 is one of the more interesting faults, so it will be investigated 
in more detail here. For the time period 0-5 hours after the fault occurred, 
only the (D)PCAm-based statistics had high misclassification rates (see Table 
10.15). For the time period 5-24 hoUrs after the fault occurred, the (D)PCAm­
based statistics have low misclassification rates, while the discriminant PLS 
methods have high misclassification rates (see Table 10.17). For the time 
period 24-40 hours after the fault occurred, each fault diagnosis technique 
has a zero misclassification rate except for the discriminant PLS methods, 
which have nearly 100% misclassification. 

The very poor behavior of the discriminant PLS method for Fault 6 af­
ter t = 5 hours is somewhat surprising when studying the extreme process 
behavior caused by the fault. For Fault 6, there is a feed loss of A in Stream 
1 at t = 8 hours (see Figures 8.1 and 10.28), the control loop on Stream 1 
reacts to fully open the A feed valve. Since there is no reactant A in the feed, 
the reaction will eventually stop. This causes the gaseous reactants D and E 
build up in the reactor, and hence the reactor pressure increases. The reactor 
pressure continues to increase until it reaches the safety limit of 2950 kPa, at 
this point the valve for control loop 6 is fully open. Clearly, it is very impor­
tant to detect this fault promptly before the fault upsets the whole process. 
While the discriminant PLS methods were able to correctly diagnose Fault 
6 shortly after the fault, its diagnostic ability degraded nearly to zero once 
the effects of the fault worked their way through the system (which occurs 
approximately at t = 8 + 5 = 13 hours, see Figure 10.28). 

For these data sets it was found that the FDA-based methods gave the 
lowest misclassification rates averaged over all fault classes (see Table 10.12), 
and that the MS, PCA1, and CVA T; statistics gave comparable overall mis­
classification rates as the FDA methods. Based only on this information, one 
might hypothesize that dimensionality reduction techniques are not useful 
for fault diagnosis as their performance is very similar to MS. However, this 
conclusion would be incorrect, even for this particular application. For partic­
ular faults and particular time periods, substantially lower misclassification 
rates were provided by the statistics that used dimensionality reduction (see 
Tables 10.15 to 10.20). For example, 24-40 hours after Fault 18 occurred, two 
dimensionality reduction statistics resulted in a zero misclassification rate 
while one MS statistic had a 70% misclassification rate and the other had a 
100% misclassification rate (see Table 10.20). 

There are several general reasons that fault diagnosis statistics based on 
dimensionality reduction are useful in practice. First, there are inherent lim-
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Fig. 10.28. Closed loop simulation for a step change of A feed loss in Stream 1 
(Fault 6) 

itations due to roundoff errors that usually prevent the construction of full 
dimensional models for large scale systems such as chemical plants. Second, 
there can be limitations on the size of the models used by process monitoring 
methods that can be implemented in real time on the computer hardware 
connected to a particular process. While this limitation is becoming less of 
an issue over time, the authors are aware of industrial control systems still 
using older control computers. 

The main reason for dimensionality reduction is based on the amount 
of data usually available in practice that has been sufficiently characterized 
for use in process monitoring. This data, for example, should be cleaned 
of all outliers caused by computer or database programming errors [1781 . 
For the application of fault diagnosis methods it is required to label each 
observation as being associated with normal operating conditions or with 
a particular fault class. These requirements can limit the available training 
data, especially for the purposes of computing fault diagnosis statistics, to 
less than what was used in this chapter. 
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To illustrate the relationship between data dimensionality and the size 
of the training set, 100 data points were collected for each fault class in the 
training set (for all other simulations shown in this chapter, 500 data points 
were collected in the training sets). The overall misclassification rates for 
the training and testing sets and the information criterion (AIC) for various 
orders using PCAI are plotted in Figure 10.29. Although the misclassification 
rates reduced nearly to zero as a goes to 52 for the training set, the overall 
misclassification rates for the testing set were very high as compared to Figure 
10.27. Recall that PCAI reduces to the MS statistic when a = 52, this shows 
that the MS statistic gives a higher overall misclassification rate for many 
reduction orders (a = 20 to 45, as seen in Figure 10.29). In the case where 
the number of data points in the training set is insufficient (the usual case in 
practice), errors in the sample covariance matrix will be significant. In such 
cases there is an advantage to using dimensionality reduction techniques. The 
relationship between reduction order and the size of the training set is further 
investigated in Homework Problem 11. 

The purpose of dimensionality reduction techniques (PCA, FDA, PLS, 
and CVA) is to reduce the dimensions of the data while retaining the most 
useful information for process monitoring. In most cases, the lower dimen­
sional representations of the data will improve the proficiency of detecting 
and diagnosing faults. 

10.9 Homework Problems 

1. A co-worker at a major chemical company suggested that false alarms 
were not an issue with fault identification and that it may be useful to 
apply all the scores (not just the first a scores) for the PCA, DPCA, 
and CVA-based CONT as shown in Section 4.5. Evaluate the merits of 
the proposal. Apply this idea to the data collected from the Tennessee 
Eastman plant simulator (http://brahms.scs.uiuc.edu). What are your 
conclusions? 

2. Apply the similarity index (4.41) and mean overlap (4.42) to the data 
collected from the Tennessee Eastman plant simulator. Relate your re­
sults with these two measures with the misclassification rates of the fault 
diagnosis statistics as reported in this chapter. Do the similarity index 
and mean overlap assess the likelihood of successful diagnosis? Explain 
in detail why one measure performs better than the other. 

3. As discussed in Chapter 5, (D)FDA only ranks the eigenvectors associ­
ated with the nonzero eigenvalues. Propose a method other than PCAI 
to rank the eigenvectors associated with the zero eigenvalues. Evaluate 
your proposal using the data collected from the Tennessee Eastman plant 
simulator. 

4. In addition to the original 21 faults for the TEP, simulate 39 additional 
multiple faults (combination of two faults) of your choice. Apply FDA, 
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Fig. 10.29. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using PCA1 with 100 data points 
in the training set 

FDA/PCA1, FDA/PCA2, and their corresponding dynamic version to 
diagnose these 60 faults and comment on your findings. 

5. A co-worker at a major chemical company proposed to modify the model 
complexity term in the information criterion (5.12) to 1.5a/ii. Based only 
on the performance as given by Figure 10.23 which was obtained by an 
application of the original information criterion (5.12) to a simulated 
chemical plant, evaluate the relative merits of the co-worker's proposal. 
Another co-worker suggested to modify the model complexity term in the 
information criterion (5.12) to a/no Evaluate the relative merits of the 
second proposal. Based on Figure 10.23, propose a modification of the 
model complexity term which will give the best results for the simulated 
chemical plant. How well does your modified model complexity term per­
form? [Note that designing the best information criterion for one specific 
process application does not necessarily give the best possible informa­
tion criterion for other process applications.] 
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6. Formulate dynamic discriminant PLS for diagnosing faults. Apply this 
approach to the data collected from the Tennessee Eastman plant sim­
ulator. Compare the results with the discriminant PLS results as shown 
in this chapter. Does dynamic discriminant PLS perform better? 

7. Discuss the effect of lag order h and state order k selection on the fault 
detection performance using all the CVA statistics. Apply the Q, T;, and 
T; statistics for fault detection to the data collected from the Tennessee 
Eastman plant simulator. Now, perturb h and k from their optimal val­
ues. Report on your results. Which statistic deviates the most? Why? 

8. Describe in detail how to formulate CVA for fault diagnosis. Apply these 
techniques to the data collected from the Tennessee Eastman plant sim­
ulator. How do these fault diagnosis results compared with the results 
reported in this chapter? 

9. Write a report describing in detail how to implement PCA and PLS with 
EWMA and CUSUM charts to detect faults. Apply this technique to the 
data collected from the Tennessee Eastman plant simulator. Compare the 
results with the DPCA results as shown in this chapter. Which technique 
seems to better capture the serial correlations of the data? Justify your 
findings. List an advantage and disadvantage of using each technique. 

10. A co-worker proposed to average each measurement over a period of time 
before applying the data to the process monitoring algorithms. Evaluate 
the merits of this "moving window" proposal and apply the approach 
to PCA, DPCA, and CVA for fault detection using the data collected 
from the Tennessee Eastman plant simulator. Investigate the effect of the 
number of data points used in the averaging on the process monitoring 
performance. Was it possible to improve on DPCA and CVA using this 
approach? Justify your answers. 

11. Evaluate the effects of the size of training set and the sampling interval 
on the reduction order and process monitoring performance. Construct 
training and testing data sets for the TEP using (i) 150 points with a 
sampling interval of 10 minutes, (ii) 1500 points with a sampling interval 
of 1 minute, and (iii) 1500 points with a sampling interval of 10 minutes. 
Implement all process monitoring statistics described in this book. How 
is the relative performance of each process monitoring statistic affected? 
Why? How is the reduction order affected? Compare the techniques in 
terms of the sensitivity of their performance to changes in the size of the 
training set and the sampling interval. 

12. While the threshold for the Q statistic (Equation 4.22) is widely used in 
practice, its derivation relies on certain assumptions that are not always 
true (as mentioned in Section 10.6). Write a report on the exact distri­
bution for Q and how to compute the exact threshold for the Q statistic. 
Under what conditions is Equation 4.22 a valid approximation? Would 
these conditions be expected to hold for most applications to process data 
collected from large scale chemical plants? (Hint: Several papers that de-
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scribe the exact distribution for Q are cited at the end of the paper by 
Jackson and Mudholkar [101].) 



Part V 

OTHER APPROACHES 



CHAPTER 11 

OVERVIEW OF ANALYTICAL AND 
KNOWLEDGE-BASED APPROACHES 

As discussed in Section 1.2, process monitoring measures are derived based 
on the data-driven, analytical, or knowledge-based approaches. This book 
focuses mostly on the data-driven methods, which include control charts 
(Shewhart, CUSUM, and EWMA charts) and dimensionality reduction tech-

. niques (PCA, PLS, FDA, and CVA). A well-trained engineer should also 
have some familiarity with the analytical and knowledge-based approaches 
since they have advantages for some process monitoring problems. The ana­
lytical approach can provide improved process monitoring when an accurate 
first-principles model is available. Also, both analytical and knowledge-based 
approaches can incorporate process ftowsheet information in a straightfor­
ward way. 

Given that several detailed reviews of analytical and knowledge-based 
approaches are available [53, 92, 95, 93, 117], only a high level overview 
with pointers to some representative works is provided here. This should 
provide enough background to determine which approach is likely to be most 
promising in a particular application, with enough references for the reader 
to know where to go to learn about implementation. Analytical approaches 
based on parameter estimation, state estimation, and analytical redundancy 
are discussed in Sections 11.1 and 11.2. Knowledge-based approaches based 
on causal analysis and expert systems are discussed in Section 11.3. The use of 
pattern recognition approaches for process monitoring is covered in Section 
11.4. The chapter concludes in Section 11.5 by discussing combinations of 
various techniques. 

11.1 Parameter and State Estimation 

Parameter and state estimation are two of the quantitative approaches for 
fault detection and diagnosis based on detailed mathematical models. As­
suming the system is observable and appropriate mathematical models are 
available, these approaches are suitable for detecting and diagnosing faults 
associated with parameter or state changes. 

The state estimation approach is appropriate if the process faults are 
associated with changes in unmeasurable state variables. The states are re­
constructed hom the measurable input and output variables of the process 
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using a state observer, also known as a Kalman filter [19, 23, 104]. Thresholds 
on some or all of the changes in the estimated state can be defined similarly 
as done for Canonical Variate Analysis (CVA) in Chapter 7. The main dif­
ference is that CVA constructs the states directly from the process data, 
rather than through the use of state space equations and a state observer. 
Numerous variations of this approach which can detect abrupt changes in the 
state variables and the output variables have been developed [227]. Many of 
these approaches focus on detecting changes in the process noise, actuator 
behavior, and sensor behavior. 

The parameter estimation approach is appropriate if the process faults 
are associated with changes in parameters in the process model. The model 
parameters can be estimated using the standard least-squares techniques of 
parameter estimation [12], which can be implemented recursively to reduce 
computational expense. Constructing the models from first-principles facili­
tates relating the model parameters directly to parameters that have physical 
meaning in the process. Thresholds can be placed on the individual differ­
ences between the nominal model parameters and the parameter estimates, 
or on some combination of these differences. 

As the number of faults represented by the undetermined parameters in 
the model grows large, observability may be violated and structural param­
eters cannot typically be included in the estimation models. To solve both 
problems, parallel estimators can be used to reduce the number of adjustable 
parameters per model andj or replace structural parameterizations with ex­
plicitly enumerated structural alternatives [117]. Because of the strict mod­
eling requirement, the parallel estimator approach is not extensively applied 
in most large scale chemical plants. 

Several reviews describing process monitoring methods based on param­
eter and state estimation are available [91, 53, 95, 93]. Several recent papers 
have been published using these approaches [244, 153, 92, 93, 96, 109, 124, 
160). 

11.2 Analytical Redundancy 

The state and parameter estimation approaches are subsets of a broader 
approach known as analytical redundancy, which is the underlying princi­
ple behind the analytical approach to process monitoring. Approaches that 
use analytical redundancy incorporate an explicit process model to generate 
and evaluate residuals [54, 154). In some cases this residual is generated be­
tween the model prediction and the observed behavior. The observer-based 
approach can be used to reconstruct the output of the system from the mea­
surements or a subset of the measurements with the aid of observers, in which 
case the output estimation error is used as the residual [53, 35). In the case 
of parameter estimation, the residuals can be taken as the difference between 
the nominal model parameters and the estimated model parameters. In the 
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case of state estimation, the residuals can be taken as the difference between 
the nominal state variables and the estimated state variables. The residuals 
can also be defined in terms of some combination of the states or parameters, 
as in the case of parity equations 182, 64, 196, 118}. While first-principles 
models are preferred, empirical models such as artificial neural networks can 
be used [110, 30]. 

The residuals can be caused by unknown process disturbances, measure­
ment noise, faults, and model uncertainty. Quantifying the contribution of 
the unknown process disturbances and measurement noise on the residuals is 
rather straightforward provided that the disturbances and noise are modeled 
stochastically. Characterizing the model uncertainties and quantifying their 
effect on the residuals are more difficult. The larger the model uncertainty, the 
more difficult it is to detect and diagnose faults using residuals. Much atten­
tion has been focused on improving the robustness of analytical redundancy 
approaches to model uncertainty. Two of the more dominant methods are 
to use robust residual generators [221, 69, 55], or to use structured residuals 
with an unknown input observer [196, 56, 174]. 

The second step of analytical redundancy approaches is the residual 
evaluation step, in which the resulting residual is used as feature inputs to 
fault detection and diagnosis through logical, causal, or pattern recognition 
techniques. Gomez et al. [67] suggested using operating point computation, 
the Hotelling's statistic, and Scheffee's statistic to detect the normality of 
the residuals. The results are then formulated as a fuzzy logic rule for de­
tecting and diagnosing faults. Frank and Kiupel [57] evaluated the residual 
based on fuzzy logic incorporated with either adaptive thresholds or fuzzy 
inference with the assistance of a human operator. Garcia and Frank 158] 
proposed a method to integrate the observer-based approach with the pa­
rameter estimation approach. The observer-based residual is used for fault 
detection; when the signals are sufficiently rich, the parameter identification 
residual is then used for fault diagnosis. Ding and Guo [35] suggested that 
integrating the residual generation and residual evaluation stages of fault de­
tection and diagnosis design may improve the performance. They proposed 
a frequency domain approach to design an integrated fault detection system. 
Many other recent papers on analytical redundancy based approaches are 
available [36, 136, 22, 168, 176, 177, 14]. 

11.3 Causal Analysis and Expert Systems 

Approaches based on causal analysis use the concept of causal modeling of 
fault-symptom relationships. 

The signed directed graph (SDG) is a qualitative model-based ap­
proach for fault diagnosis that incorporates causal analysis [90, 197, 210}. 
The SDG represents pathways of causality in normal operating conditions. 
In a SDG, each node represents a process variable, which can be classified as 
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normal, high, or low. Each arc represents the causal relationship between the 
nodes. The direction of deviation of the nodes is represented by signs on the 
arcs. Assuming that a single fault affects only a single node (root node) and 
that the fault does not change other causal pathways in the SDG, the causal 
linkages will connect the fault origin to the observed symptoms of the fault. 
The advantages of SDG are that all the possible root nodes can be located. 
However, the SDG is tedious to develop for large scale chemical plants. 

The processing time required for using the SDG can be reduced by compil­
ing the SDG into rules [115]. The SDG has been extended to handle variables 
with compensatory response and inverse response [49, 173]. A digraph-based 
diagnosis reasoning approach known as the possible cause-effect graph 
can reduce the search space [226]. The SDG has also been extended to mul­
tiple fault diagnosis by assuming that the probability of occurrence of a mul­
tiple fault decreases with an increasing number of faults [219]. Several recent 
papers based on the SDG are available [87, 158, 206]. 

Many recent applications of SDG have made use of expert systems. Ex­
pert systems are knowledge-based techniques which are closer in style to 
human problem solving. Analysis proceeds deductively in a sequence of logi­
cal steps. Expert systems based on heuristics and expert testimony are called 
experiential knowledge expert systems, while those based on models are 
called model-based knowledge expert systems [116]. A combination ofSDG, 
expert systems, and fuzzy logic was applied to a simulated propane evapora­
tor in which 38 clusters representing 50 faults were considered [205]. 

A traditional approach to build an experiential knowledge expert system 
is to develop IF-THEN rules through expert knowledge; then the rules en­
code the domain knowledge [116]. Experiential knowledge expert systems are 
flexible and their conclusion can be easily verified and explained. A model­
based expert system based on engineering fundamentals can supplement an 
experiential expert system for fault diagnosis. 

Another approach to build an experiential knowledge expert system for 
fault diagnosis is through machine learning techniques. One approach is to 
integrate the symbolic information into an artificial neural network learning 
algorithm [202]. Such a learning system allows for knowledge extraction and 
background knowledge encoding in the form of rules; fuzzy logic is used to 
deal with uncertainty in the learning domain. Several recent papers on fault 
diagnosis using expert systems are available [21, 20]. 

A closely related representation to the SDG that can be used in causal 
analysis is the symptom tree model (STM). The STM is a real time version 
of the fault tree model that relates the faults and symptoms [237, 240, 241]. 
In STM, the root cause of a fault is determined by taking the intersection 
of causes attached to observed symptoms. It is highly likely that this pro­
cedure will result in more than one candidate fault, and it is impossible to 
determine the most probable cause among the suggested candidates. The 
weighted symptom tree model (WSTM) resolves the problem by at-
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taching a weight to each symptom-fault pair, with the weight obtained by 
training the WSTM. With the WSTM, the proposed candidate faults are 
ranked according to their probability. In the next step, a pattern matching 
algorithm is used which matches the observed fault propagation trends with 
standard fault propagation trends based on training set [172]. The fault that 
best matches the observed process variable changes is selected as the most 
probable candidate among the proposed ones. 

11.4 Pattern Recognition 

Many data-based, analytical, and knowledge based approaches incorporate 
pattern recognition techniques to some extent. For example, Fisher discrim­
inant analysis is a data-driven process monitoring method based on pattern 
classification theory. Numerous fault diagnosis approaches described in Part 
III combined dimensionality reduction (via peA, PLS, FDA, eVA, or a com­
bination of FDA and peA) with discriminant analysis, which is a general 
concept from the pattern recognition literature. Other uses of pattern recog­
nition in process monitoring were discussed earlier in Section 11.3. 

Some pattern recognition approaches to process monitoring use the re­
lationship between the data patterns and fault classes without modeling 
the internal process states or structure explicitly. These approaches include 
rule-based systems, artificial neural networks (ANN), and decision 
trees. Since pattern recognition approaches are based on inductive reason­
ing through generalization from a set of stored or learned examples of process 
behaviors, these techniques are useful when data are abundant, but when ex­
pert knowledge is lacking. A recent review of pattern recognition approaches 
is available [134]. 

An artificial neural network (ANN) is a nonlinear mapping between input 
and output which consists of interconnected "neurons" arranged in layers. 
The layers are connected such that the signals at the input of the neural net 
are propagated through the network. The choice of the neuron nonlinearity 
and the weights of connections between neurons specifies the nonlinear overall 
behavior of the neural network. Numerous papers are available which apply 
ANNs to fault detection and diagnosis; many of these techniques were derived 
from the pattern recognition perspective [80, 79, 213, 13, 175, 239, 68, 11]. 

Neural network models can also be used for unsupervised learning using 
a self-organizing map (SOM). An SOM maps the nonlinear statistical 
dependencies between high-dimensional data into simple geometric relation­
ships, which preserve the most important topological and metric relationships 
of the original data. This allows data to be clustered without knowing the 
class memberships of the input data. An SOM has been successfully applied 
in fault diagnosis [198, 199]. For fault detection, an SOM is trained to form a 
mapping of the input space during normal operating conditions; a fault can 
be detected by monitoring the quantization error [4]. 
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11.5 Combinations of Various Techniques 

Each fault detection and diagnosis technique has its advantages and disad­
vantages. Incorporating several techniques for fault detection and diagnosis 
seems attractive. Garcia and Vilim [59] combined physical modeling, neu­
ral processing, and likelihood testing for fault detection. Zhao et al. [243] 
proposed a hybrid ANN integrated with an expert system for dynamic fault 
diagnosis. Zhang et al. [242] combined a feedforward neural network (FNN) 
and a multiple model adaptive estimator (MMAE) for fault detection and 
diagnosis. Engelmore and Morgan [45] proposed a fault diagnosis system con­
sisting of diagnostic experts and a scheduler to integrate different diagnostic 
methods. Mylaraswamy and Venkatasubramanian [162] developed a hybrid, 
distributed, multiple-expert based framework called Dkit, which integrates 
SDG, observer-based methods, qualitative trend analysis, and statistical clas­
sifiers to perform collective fault diagnosis. 
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Adjusted PLS1, see PLS1adj 

Adjusted PLS2, see PLS2a dj 

Analytical-based approaches, 6 
- analytical redundancy, 170 
- parameter and state estimation, 169 
ARMA,81 
Artificial neural networks, 173 
ARX,50 
- comparison with DPCA, 50 
Autoregressive model, see ARX 
Autoregressive Moving Average model, 

see ARMA 
Autoscaling, 14 

Between class-scatter-matrix, 54 

Canonical Correlation Analysis, 84 
Canonical correlations, 83 
Canonical variables, 84 
Canonical Variate Analysis, see CVA 
Combined discriminant, 47 
Common cause, 13 
Contribution plots 
- CVA, 94 
- PCA,43 
- PLS, 74 
Cumulative sum chart, see CUSUM 
CUSUM, 17,51,114 
CVA 
- Akaike's information criterion, 90 
- algorithm, 85 
- canonical correlations, 83 
- canonical variables, 84 
- comparison with discriminant PLS, 

85 
- comparison with DPCA, 81 
- comparison with FDA, 85 
- comparison with PCA, 84 
- fault detection, 130 
- fault diagnosis, 94 
- fault identification, 94, 139 
- identifiability, 88 

- information criterion, 90 
- Q statistic, 94 
- SVD, 84 
- T2 statistic, 93 
- Theorem, 83 

Data-driven approaches, 6 
DFDA,64 
- fault diagnosis, 146 
Dimensionality reduction, 29 
Discrepancy detection, 7 
Discriminant analysis, 25, 26 
- discriminant PLS, 74 
Discriminant function, 26, 28, 46, 59 
Discriminant Partial Least Squares, see 

Discriminant PLS 
Discriminant PLS, 9 
- comparison with CVA, 85 
- comparison with DPCA, 75 
- dummy variables, 68 
- fault diagnosis, 148 
- prediction, 73 
- reduction order, 73 
Discriminant Projection to Latent 

Structures, see Discriminant PLS 
DPCA 
- comparison with ARX, 50 
- comparison with CVA, 81 
- fault detection, 136 
- fault diagnosis, 153 
- fault identification, 50, 139 
Dynamic Fisher Discriminant Analysis, 

see DFDA 
Dynamic Principal Component 

Analysis, see DPCA 

Eigenvalue decomposition 
- FDA, 55 
- PCA,34 
- T2 statistic, 19 
EWMA, 17, 51, 114 
Expert systems, 172 
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Exponentially-weighted moving 
average, see EWMA 

False alarm, 15 
Fault detection, 4 
- CVA, 130 
- DPCA, 50 
- FDA, 58 
- PCA, 39 
- PLS, 74 
Fault diagnosis, 4 
- CVA,94 
- DFDA, 146 
- DPCA, 153 
- FDA, 58, 143 
- PCA, 45, 153 
- PLS1adj , 74,148 
- PLS2adj, 74, 148 
- PLS1, 74, 148 
- PLS2, 74, 148 
Fault identification, 4 
- CVA, 94, 139 
- DPCA, 50, 139 
- PCA, 42, 139 
- PLS, 74 
- univariate statistic, 42 
FDA, 8, 53 
- Akaike's information criterion, 56 
- between class-seatter-matrix, 54 
- comparison with CVA, 85 
- comparison with PCA, 59 
- eigenvalue decomposition, 55 
- fault diagnosis, 58, 143 
- FDA/PCA1, 59 
- FDA/PCA2, 59 
- optimization, 55 
- reduction order, 56 
- total-scatter matrix, 54 
- within-class-scatter matrix, 54 
Feature extraction, 25, 28 
Fisher Discriminant Analysis, see FDA 

Generalized singular value decomposi­
tion, see GSVD 

GSVD,84 

Identifiability, 88 
Information criterion 
- CVA,90 
- DFDA, 147 
- discriminant PLS, 149 
- FDA, 56, 147 

KLIB,90 

Knowledge-based approaches, 6 
- causal analysis, 171 
- pattern recognition, 173 
Kullback-Leibler information distance, 

see KLIB 

Limit sensing, 7, 15 
Limit value checking, 15 
Loading vectors, 34, 69 

Markov process, 86 
Maximum selection, 25 
Mean overlap, 49 
Missed detection, 15 
MOESP,91 
Multivariate Statistics, see MS 

N4SID,91 
NIPALS 
- PLS1, 72 
- PLS2, 70 
Non-Iterative Partial Least Squares, see 

NIPALS 
Non-supervised classification, 45 

Observability, 134 
Ordinary Least Squares, 69 

Parallel analysis, 38 
Partial Least Squares, see PLS 
Pattern classification 
- discriminant analysis, 25, 26 
- feature extraction, 25, 28 
- maximum selection, 25 
PCA,8 
- application, 33 
- combined discriminant, 47 
- comparison with FDA, 59 
- comparison with CVA, 84 
- comparison with discriminant PLS, 

75 
- fault detection, 39 
- fault diagnosis, 45, 153 
- fault identification, 42, 139 
- multiway, 51 
- nonlinear, 51 
- optimization problem, 34 
- parallel analysis, 38 
- percent variance method, 37 
- PRESS statistic, 39 
- properties, 35 
- Q statistic, 41 
- reduction order, 37 
- residual discriminant, 47 



- residual matrix, 35 
- score discriminant, 46 
- scree test, 38 
- SPE,41 
- SVD representation, 34 
- T2 statistic, 39 
Percent variance method, 37 
PLS 
- loading vectors, 69 
- multiblock, 79 
- multiway, 79 
- NIPALS algorithm, 72 
- nonlinear, 78 
- PLS1adj, 74, 148 
- PLS2a dj, 74, 148 
- PLS1, 70 
- PLS2, 68 
- prediction, 73 
- score matrix, 69 
- score vectors, 69 
Prediction Sum of Squares statistic, see 

PRESS statistic 
PRESS statistic, 39, 73 
Principal Component Analysis, see 

PCA 
Process monitoring 
- analytical, 6, 169, 170 
- data-driven, 6 
- discrepancy detection, 7 
- knowledge-based, 6, 171, 173 
- limit sensing, 7 
- methods, 5, 7 
- multivariate statistic, 19 
- objective, 6 
- procedure, 4 
- univariate statistic, 15 
Process recovery, 4 
Promptness of statistics, 129 

Q statistic 
- CVA,94 
- PCA,41 
- PLS, 74 

Reduction order 
- discriminant PLS, 73 
- FDA, 56 
- PCA,37 
Removing outliers, 14 
Removing variables, 14 
Residual discriminant, 47 
Residual vector 
- CVA,94 
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- PCA,35 
Robustness of statistics, 129 

Score discriminant, 46 
Score matrix, 69 
Score vectors, 69 
Scree test, 38 
Sensitivity of statistics, 129 
Serial correlation, 7, 49, 64, 77, 111, 

129 
Shewhart chart, 15 
Signed directed graph, 171 
Similarity index, 48 
Singular Value Decomposition, see 

SVD 
Spacial correlation, 43 
SPE,41 
Special cause, 13 
Squared prediction error, see SPE 
State equation, 85 
Statistical process control, see Process 

monitoring 
Subspace algorithm, 82 
Supervised classification, 45, 142 
SVD 
- CVA,84 
- PCA, 34 
Symptom tree model, 172 
System identification theory, 29 

T2 statistic, 19 
- CVA, 93 
- eigenvalue decomposition, 19 
- MS, 19 
- PCA, 39 
- threshold, 20 
Tennessee Eastman Process, see TEP 
TEP 
- controller parameters, 105 
- faults, 100 
- manipulated variables, 100 
- process variables, 100 
Threshold 
- Q statistic, 41 
- T2 statistic, 20, 40, 93 
- univariate statistic, 15 
Total-scatter matrix, 54 
Type I error, 16 
Type II error, 16 

Univariate statistic, 15 
- CUSUM, 17 
- EWMA, 17 
- fault identification, 42 
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- Shewhart chart, 15 Within-class-scatter matrix, 54 
- threshold, 15 


